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“Progress in combating disease depends upon an

expanding body of new scientific knowledge.”

Vannevar Bush (1945, Chapter 2)

Preface

Improving health is a fundamental goal of modern societies. Healthiness and longevity, while

being valuable in their own right, also have a positive impact on economic growth through

human capital accumulation, investment in human capital, and direct productivity effects

(e.g., Bloom et al., 2019; Prinz et al., 2018; Weil, 2014). Breakthroughs in medicine have

contributed significantly to progress in public health. In particular, new pharmaceutical treat-

ments, such as anti-cholesterol drugs, antibiotics, or new cancer drugs, have accounted for a

substantial increase in life expectancy and well-being (Cutler et al., 2007; Jayachandran et al.,

2010; Lichtenberg, 2019). Yet, the development of new drugs is a costly endeavor. Recent esti-

mates suggest average development costs to oscillate around $2.5 billion (DiMasi et al., 2016).

Hence, it is a first-order economic and policy concern how to effectively and efficiently pro-

mote biomedical science and pharmaceutical innovation, and how to direct them to areas of

highest societal benefit.

The development of new pharmaceutical treatments depends critically on the interplay

between markets and public interventions. Competitive markets may provide insufficient in-

centives for investments in innovation (Nordhaus, 1969). The nature of ideas as a public

good causes a gap between private and social returns from innovation and induces market

failures (Arrow, 1962; Nelson, 1959). Governments can address them either by lowering the

private cost of innovation, so-called “push” policies, or by increasing the private return to in-

novation, so-called “pull” policies (for a discussion, see e.g., Kyle, 2020; Lakdawalla, 2018).

These incentive mechanisms aim at increasing research and development (R&D) activities in

the pharmaceutical industry towards the socially desirable level.

“Push” approaches touch upon the determinants of (biomedical) scientific productivity

and public science policy as input for pharmaceutical innovations (Cockburn and Henderson,

2000). These policies target the direct provision and incentivization of new scientific discov-

eries. A variety of empirical studies suggests a high degree of complementarity between pub-

lic research and private drug development (Azoulay et al., 2019; Blume-Kohout, 2012; Toole,

2012; Ward and Dranove, 1995). More specifically, an increasing body of work identifies which

inputs to knowledge production are important and how policy can influence them. This in-

cludes, for example, human capital (Azoulay et al., 2010), funding (Jacob and Lefgren, 2011;

Myers, 2020), as well as access to and diffusion of research tools (Furman and Stern, 2011;

Murray et al., 2016). If the scientific domain is effective in producing high-quality research,
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PREFACE

it can translate into valuable and novel commercial applications like new drugs (Ahmadpoor

and Jones, 2017; Poege et al., 2019; Watzinger and Schnitzer, 2019).

The need for “pull” approaches arises from the very long nature and high upfront

investment costs of the drug development process (Adams and Brantner, 2006). Patents,

protecting a drug against unwanted imitation, are an effective and the most widely applied

policy tool (Cohen et al., 2000; Mansfield, 1986). However, there is emerging economic

literature discussing the inefficiencies of the patent system related to patent characteristics

(Budish et al., 2015), follow-on innovation (Gaessler et al., 2019; Galasso and Schankerman,

2015; Hall and Harhoff, 2012; Sampat and Williams, 2019; Williams, 2013), and patent

proliferation (Sternitzke, 2010). These recent contributions have created growing concerns

about whether societies should primarily rely on patents to incentivize drug development.

Thus, the toolkit of government interventions includes further supporting institutions, e.g.,

policy-induced expansions to demand (Blume-Kohout and Sood, 2013; Finkelstein, 2004),

innovation prizes such as transferable market exclusivities or advanced market commitments

(Batista et al., 2019; Kremer and Williams, 2010), data exclusivity (Gaessler and Wagner,

2020), and competition policy (Cunningham et al., 2021; Higgins and Rodriguez, 2006). It

is, however, unclear ex-ante which of these policies are effective and efficient. This remains

an empirical question to be answered.

This dissertation sheds light on three stimuli to biomedical science and pharmaceutical

innovation, each in a self-contained chapter. The first chapter investigates the functioning

of research tool markets. These are important input factors into science, and, hence, a

fundamental determinant of “push” approaches. Specifically, it observes why short-term

distortions to supply have enduring effects on tool adoption and, thus, the direction of

scientific research. The second chapter examines whether pharmaceutical companies adjust

their follow-on innovation activities when patentability standards increase. To this end, it

analyses changes in the innovation incentives caused by a drug’s marketing authorization.

The third chapter explores the relationship between downstream shifts in demand and

upstream research. It studies whether a policy-induced increase in market size, considered as

“pull” approach, affects scientific publishing by universities and corporations.

Chapter 1, in joint work with Stefano Baruffaldi and Fabian Gaessler, examines the func-

tioning of research tool markets. Exploiting an unforeseen negative supply shock to laboratory

mice in 1989, the study shows that new tools may fail to diffuse widely due to path dependency

created by switching costs.

New research tools are central to scientific and technological progress (Mokyr, 2002). Insti-

tutions, often supported by the public, and markets increasingly play a role in their production

and diffusion (Furman and Stern, 2011; Walsh et al., 2007). They embody positive feedback

loops that are conducive to the continuous accumulation of knowledge (Mokyr, 2002). Hence,

2
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gaining a better understanding of the mechanisms that govern the adoption of research tools

is of particular importance due to their role in the process of knowledge production (Stephan,

2012). However, upfront investments and uncertainties create switching costs that scientists

face when adopting new research tools (Klemperer, 1987). This has important implications

for the functioning of such markets due to path dependency: new tools may fail to diffuse

widely, whereas old tools remain dominant, leading to suboptimal market equilibria (David,

1985; Dosi, 1982). Under these circumstances, short-term changes in the costs of adoption

can lead to long-term changes in demand.

To explore whether the existence of these frictions undermines the functioning of research

tool markets, we study the consequences of a negative supply shock on the use of research

tools and the production of scientific knowledge. For this purpose, we leverage a natural

experiment in the market for research tools and exploit the Morrell Park fire at the world’s

largest mice breeding facility, the Jackson Laboratory (JAX), in 1989. It killed approximately

400,000 mice and caused a substantial but temporary supply shortage in certain mice strains

– essential tools for biomedical research (Murray et al., 2016) – for the scientific community.

We identify from JAX archival records mice strains that were in short supply in the af-

termath of the fire. To quantify their use by the research community, we link each strain to

scientific publications. This allows us to trace the use of JAX strains as well as of identical

mice strains from other suppliers. To study the consequences of the shock at the individual

level, we identify scientists exposed to the supply shortage and construct their full publication

history. At both mice and scientist level of the analysis, we deploy Difference-in-Differences

estimations, comparing groups with different levels of exposure to the supply shortage.

We find that the fire-induced supply shortage, albeit temporary, had long-lasting conse-

quences on the use of mice strains. The use of affected JAX mice strains declined relative to

both spared JAX strains and strains provided by other suppliers. In contrast, the adoption of

spared JAX strains appears to gradually increase in the period after the JAX reconstruction.

These effects are explained by those mice where pre-fire switching costs were presumably

higher. We find corroborating evidence for the proposed mechanism in our analysis at the

scientist level. Scientists affected by the supply shortage are more likely to use spared mice

strains relative to comparable scientists that were not affected by the fire. This adoption per-

sists even years after the fire. The affected scientists’ productivity is temporarily compromised,

as captured by a decrease in annual research output. This suggests some initial switching costs

when adopting the substitute strain. Since strains are imperfect substitutes, we find that adop-

tion of different mice, as a consequence of the shock, leads to durable changes in the scientists’

direction of research.

The study contributes to the literature on the inputs to knowledge production. Scholars

have initially focused on human capital and funding (e.g., Azoulay et al., 2010, 2018; Oettl,

2012; Jacob and Lefgren, 2011). More recently, a literature stream on research tools has

emerged showing that access to and diffusion of research tools enables cumulative knowledge
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production (Furman and Stern, 2011), leads to exploration in research (Furman and Teodor-

idis, 2020; Murray et al., 2016), and influences the composition of teams (Teodoridis, 2017;

Zyontz, 2019). Other studies have looked at the effect of negative shocks on physical capital

per se (Baruffaldi and Gaessler, 2021; Waldinger, 2016) and find medium- to long-term effects

on the rate and direction of research. To our knowledge, this study is the first to investigate

the nature of markets for research tools with evidence based on an exogenous supply shock.

Our results provide first evidence on tool-inherent frictions in the market for research tools.

Evidence across all these studies has important policy implications. It suggests that

the institutional arrangements that determine the allocation of investments, the level of

standardization, and the distribution of risks associated with the development and access to

research tools have important consequences for downstream scientific activities. The findings

of our study provide a further empirical justification for the support of institutional, industry,

and community level efforts to steer research tool markets towards desirable trajectories.

Chapter 2 investigates how drug approval affects follow-on innovation activities. Leverag-

ing variation in the length of time from patent filing until a drug’s approval, it finds innovation

activities conducted to prevent generic entry to decrease after the marketing authorization.

Investments in follow-on innovation are characteristic of the pharmaceutical industry

(Kyle, 2020). Some of these innovations, defined as “improvement innovations”, provide a

meaningful therapeutic benefit (Arcidiacono et al., 2013; Bokhari and Fournier, 2013). Oth-

ers are argued to be trivial modifications to the original drug conducted to delay generic entry

by expanding patent protection, defined as “enforcement innovations” (Amin and Kesselheim,

2012; Frakes and Wasserman, 2020; Gurgula, 2020; Sternitzke, 2010, 2013). Given that a

longer market exclusivity allows the originator company to earn supracompetitive profits (Bud-

ish et al., 2015), there is an ongoing economic and political discussion about the net consumer

surplus derived from incremental innovations in the pharmaceutical industry (Yin, 2017).

The event of drug approval is of capital importance in a drug’s life cycle. The transition

from pre-approval to post-approval may have two countervailing effects on follow-on inno-

vation activities: on the one hand, entering the market should stimulate originators to pro-

tect the approved drug from competition and to improve its features (European Commission,

2009; Sternitzke, 2010, 2013). On the other hand, the marketing authorization impedes the

enforceability of follow-on patents that are filed after approval by increasing the patentability

standards. In turn, this decreases the incentives of originators to invest in enforcement inno-

vations. The main reason is that (trial-related) information disclosed in the course of the drug

approval can render an invention obvious and serve as novelty threatening prior art (Breck-

enridge and Jacob, 2019; Kallenbach and Vallazza, 2018; Mello et al., 2013). Thus, this study

investigates how drug approval affects the two types of follow-on innovation activities.

To this end, I collect novel data on pharmaceutical patents that combines detailed informa-

tion on the focal inventions with follow-on innovations and data on marketing authorizations.
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I exploit the fact that follow-on innovations can be observed through patent citations (Galasso

and Schankerman, 2015) and distinguish between those likely related to enforcement, e.g.,

“secondary” patents and patents in the same field of application, and those likely related to

improvements, e.g., “product” patents and patents in different fields of applications. The em-

pirical strategy leverages differences in the timing of drug approval relative to patent filing

(time to approval). This relies on the assumption that the timing of marketing authorization

is to some degree independent of drug quality and commercial value. I provide evidence that

inventions with early and late marketing authorization do not differ in ex-ante patent or drug

characteristics and exhibit parallel pre-approval forward citation trends.

I find an immediate and long-lasting decrease in enforcement innovation activities after

the marketing authorization. This decrease in innovation is not only associated with the focal

firm, but also with third parties, who are likely in a vertical relationship with the originator.

Improvement innovation activities instead remain unaffected by the drug approval. The im-

mediate timing of the decrease in enforcement innovation is consistent with the interpretation

that the missing innovations are of marginal value. Moreover, I do not find similar effects

on enforcement innovation for prior milestones in the drug development process that are not

related to increases in patentability standards. These findings can be interpreted as corrobo-

rating evidence for the enforceability mechanism. Marketing authorization-related increases

in patentability standards delineate incremental innovation activities: pharmaceutical compa-

nies are self-adjusting their innovation behavior so that investments in improvement become

relatively more important than investments in enforcement with little therapeutic benefit.

The findings contribute to the literature on patent fencing and evergreening in the pharma-

ceutical industry (e.g., Abud et al., 2015; Hemphill and Sampat, 2012; Sternitzke, 2010). I

provide evidence that secondary pharmaceutical patenting becomes less likely with drug ap-

proval. This is embedded in the broader literature on the incentives for innovation in the

pharmaceutical industry. While the existence of intellectual property rights as an effective

“pull” policy to encourage innovation is well understood (Gaessler and Wagner, 2020; Kyle

and McGahan, 2012), I show that enforcement type innovation activities are responsive to

subtle changes in the patentability standards, e.g., due to drug approval.

This has important policy implications. Some scholars advocate “fixing” the existing

patenting system concerning patent proliferation and secondary patents. For example, Frakes

and Wasserman (2020) propose to empower patent examiners to properly investigate the

prior art of secondary pharmaceutical patents and, thus, to increase patentability standards.

This study supports their idea: if patent examiners had access to all trial information

submitted for drug approval, this would increase their ability to identify secondary patent

filings of low quality. Eventually, self-enforcement may lead pharmaceutical companies to

decrease enforcement innovation activities and resulting secondary patent filings themselves.
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Chapter 3, in joint work with Fabian Gaessler and Matthew J. Higgins, sheds light on

demand-driven incentives in basic science. Exploiting quasi-experimental variation in market

size introduced by Medicare Part D, we show that while drug development appears to respond

to downstream shifts in market demand, upstream scientific research fails to do so.

Dating back at least to Schumpeter (1939), scientists have been exploring the factors that

drive innovation. As aforementioned, some scholars suggest that both supply-side (“push”)

and demand-side (“pull”) factors might shape the pattern of investments in innovation. Prior

literature has established a link between market size and innovation, especially in the phar-

maceutical industry (Acemoglu and Linn, 2004; Blume-Kohout and Sood, 2013; Finkelstein,

2004). These studies, however, almost universally refer to the traditional rubric of “devel-

opment” activities, such as clinical trials or new drug approvals, as opposed to “research”,

such as biomedical science. Efforts to extend this linkage back to upstream research had lim-

ited success. Acemoglu and Linn (2004) and Finkelstein (2004), for example, do not find

a relationship between demographic-driven or policy-driven expansions in market size and

patenting. Bhattacharya and Packalen (2011) establish a link to research, but cannot disen-

tangle disease prevalence from profit incentives. Thus, the broader link, if it exists, between

market pull incentives and scientific research remains elusive.

In this study, we rely on a major policy intervention in the context of U.S. drug prescriptions

that affect a wide range of therapeutic areas and diseases: the 2003-introduction of Medicare

Part D, which substantially increased the demand for drugs more relevant for the elderly in the

U.S. (Blume-Kohout and Sood, 2013; Dranove et al., 2020). We build novel data that combines

all U.S. biomedical and life sciences publications, patent-paper links, and drug development

efforts mapped to disease categories. To this end, we employ a verified crosswalk between

publicly used disease codes and a controlled vocabulary to index publications (Bhattacharya

and Packalen, 2011). For each scientific publication, we add bibliographic information, which

allows us to accurately categorize research activities across universities and corporations as

well as to differentiate the type of research. Moreover, we map publications to patents to ap-

proximate whether scientific research was recognized in commercially relevant applications

(Marx and Fuegi, 2020). We replicate prior findings on drug development, sales, prices, and

revenues to verify our data construction. To examine the effects of quasi-experimental varia-

tion in market size introduced by Medicare Part D in 2003 on upstream research, we employ

a Difference-in-Differences estimation. The exposure to Medicare Part D is calculated based

on the pre-treatment share of Medicare patients among the total population for each disease

group (e.g., Duggan and Scott Morton, 2010). We account for demographic changes, public re-

search funding, and new research opportunities. The pre-2004 trends in scientific publications

are remarkably similar.

Over a decade following the implementation of Medicare Part D, we find no evidence of

an overall relationship between market size and biomedical science. Effect sizes are substan-

tially smaller than any effect on drug development activities found in the prior literature and
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in our own replication. However, we illustrate substantial effect differences by the type of af-

filiation. Any demand response is concentrated only among corporate research, and decreases

in magnitude by distance to the market (e.g., universities). More precisely, our results show

that Medicare Part D caused an increase primarily in corporate affiliated publications linked to

both clinical trials and pharmaceutical products, which are residuals from drug development

activities. Consistently, we do not find any causal relationship between any type of research

and market size for universities. Moreover, we observe that only in the years directly follow-

ing the Part-D enactment, greater exposure to Medicare Part D caused an initial increase in

corporate-affiliated patent-weighted research. Our back-of-the-envelope calculation suggests

that an expansion of market size by $43 million would only lead to one additional scientific

publication. These findings demonstrate a disconnect between the incentives for investments

in innovation in the private sector and the incentives for the production of scientific knowledge.

The study has important implications for firms and policymakers. The pharmaceutical

industry is highly dependent upon the external market for technologies (Higgins and

Rodriguez, 2006), with much of that research emanating from universities (Cockburn and

Henderson, 2000). While drug development (i.e., drugs in clinical trials) appears to respond

to downstream shifts in market demand, our results show that upstream research, especially

at universities, fails to do so. Firms face the prospect that the flow of research may not meet

the kind of development needs, they require. This disconnect suggests that more active policy

intervention may be needed. Policymakers may want to complement a market expansion

with early-stage research incentives, such as public research funding, which is known to be

an effective tool in fostering scientific research (Azoulay et al., 2019).

In summary, this dissertation offers new insights into the determinants of biomedical sci-

ence and pharmaceutical innovation. Evidence from these micro-economic analyses may con-

tribute to designing effective and efficient public policies that help stimulate R&D activities,

foster the development of new pharmaceutical treatments, and eventually improve public

health.
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Fire and Mice

The Effect of Supply Shocks on Research Tool Adoption

1.1 Introduction

New research tools have often been central to scientific and technological progress (Mokyr,

2002). While scientists create research tools for their own needs (Franzoni, 2009; Rosenberg,

1992), institutions have become increasingly important in their provision and diffusion. This

external supply is advantageous because it lowers costs due to economies of scale, reduces un-

certainty thanks to higher standardization, and fosters collaboration and knowledge sharing

(Furman and Stern, 2011; Walsh et al., 2007). A functioning market for research tools, there-

fore, embodies positive feedback loops between science and technology that are conducive to

the continuous accumulation of knowledge (Mokyr, 2002) and, ultimately, economic growth

(Romer, 1990). Hence, gaining a better understanding of the mechanisms that govern the

supply and demand of research tools is of particular importance (Stephan, 2012).

We posit that switching costs for scientists influence the adoption of research tools and

bear important implications for the functioning of such markets (Klemperer, 1987). First, the

adoption of research tools requires investments in specific tacit knowledge and complemen-

tary assets (Zyontz, 2019). Second, their full potential and range of applications is initially

unknown and changes dynamically over time. These upfront investments and uncertainties

create switching costs that scientists face when adopting new research tools. This generates

path dependency: past adoption determines the continued use of tools, irrespective of their

present characteristics relative to available alternatives. New tools may fail to diffuse widely

whereas old tools remain dominant, leading to suboptimal market equilibria (David, 1985;

Dosi, 1982; Greve and Seidel, 2015; Huckman, 2003). Under these circumstances, short-term

This chapter is based on joint work with Stefano Baruffaldi and Fabian Gaessler.
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changes in the costs of adoption can lead to long-term changes in demand. For example, a

temporary supply shock to some research tools may lead to the permanent adoption of substi-

tutes.

In this study, we investigate the consequences of a negative supply shock on the use of

research tools and the production of scientific knowledge. For this purpose, we leverage a

natural experiment in the market for research tools. More specifically, we investigate a fire

at the world’s largest mice breeding facility, the Jackson Laboratory (JAX), in 1989. This fire

caused a substantial but temporary supply shortage in certain mice strains – essential tools for

biomedical research – for the scientific community. We first study how this shock affected the

use of different mice strains in the long run. We then analyze whether changes in usage are due

to the adoption of different mice strains by scientists exposed to the supply shortage. Finally,

we test whether the adoption of different mice strains, which represent imperfect substitutes,

comes with switching costs, reflected by changes in the scientists’ research productivity and

research direction.

The empirical setting is ideal to study the dynamics of research tool markets. First, labora-

tory mice are an iconic example of research tools (Stephan, 2012; Murray et al., 2016). They

are complex biological models whose development and use is accompanied by uncertainty.

While self-development is an option, their breeding requires care and effort (The Jackson

Laboratory, 2009a). Second, the fire was an unforeseen event that led to a substantial but

temporary supply shortage.1 This allows us to overcome endogeneity issues, which are a com-

mon feature in the literature on research tool adoption. Third, the supply shortage applied to

some distinct mice strains, while the supply of other JAX mice strains remained unaffected.

Moreover, some strains remained available from alternative commercial suppliers. This creates

substantial heterogeneity. Fourth, despite these relative changes in supply, JAX, as a non-profit

organization, did not adjust prices.

From JAX archival records, we identify mice strains that were in short supply in the af-

termath of the fire. To quantify their use by the research community, we link each strain to

scientific publications based on information from the Mouse Genome Database and by textual

search in the Scopus database. This allows us to trace the use of JAX strains as well as of iden-

tical mice strains from other suppliers. We further characterize each mice strain by the extent

to which its genetic code was understood at the time of the fire, as a direct proxy of the level of

uncertainty associated with their use. To study the consequences of the shock at the individual

level, we identify scientists exposed to the supply shortage and construct their full publication

history. Both at mice and scientist level of analysis, we deploy Difference-in-Differences (DiD)

estimations, comparing groups with different levels of exposure to the supply shortage. At

scientist level, we use Coarsened Exact Matching (CEM) to account for observable differences

between researchers, such as the career life cycle.

1Thanks to large public investments, JAX returned to full capacity in two years’ time.
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We find that the fire-induced supply shortage had lasting consequences on the use of mice

strains. The use of affected JAX mice strains declined relative to both spared JAX strains

and strains provided by other suppliers. This decline shows no sign of convergence to pre-

fire levels even a decade after the fire (8 years after supply was fully restored). In contrast,

the use of unaffected JAX strains appears to have gradually increased in the period after the

JAX reconstruction. Heterogeneity analyses show that these effects are stronger when the

mice supply shortage induced larger switching costs for scientists. In particular, the long-term

decline is primarily driven by affected mice strains with low pre-fire JAX sales, not available

from other commercial mice providers, and with a higher level of uncertainty associated with

their use. For these mice, scientists are more likely forced to incur larger switching costs to

cope with the temporary supply shortage, and, at the same time, face higher costs in case they

intend to switch back to the previously used strains.

We find corroborating evidence for the proposed mechanism in our analysis at the scientist

level. Scientists affected by the supply shortage are more likely to use spared mice strains

relative to comparable scientists that were not affected by the fire. This adoption persists

even years after the fire. The affected scientists’ productivity is temporarily compromised,

as captured by a decrease in annual research output. This suggests some initial switching

costs when adopting the substitute strain. Moreover, we find that the adoption of imperfect

substitutes, as a consequence of the shock, leads to durable changes in the scientists’ direction

of research. In particular, their research output seems less related to their previous work,

as the scientists make fewer self-references, and more applied, as the scientists publish more

often in clinical research journals and receive more citations from patents. Consistent with our

findings, further analyses show that scientists with a relatively higher degree of dependence

on mice in prior research, and, thus, higher switching costs, adopt new strains at lower levels.

To our knowledge, our paper is the first to investigate the nature of markets for research

tools with evidence based on an exogenous supply shock. The existence of significant switch-

ing costs implies that short-term distortions regarding the accessibility of research tools can

have long-lasting effects on their adoption. Our results provide first evidence on tool-inherent

frictions in the market for research tools. Thus, our paper contributes to the literature on the

inputs to knowledge production. Scholars have initially focused on human capital and fund-

ing (e.g., Azoulay et al., 2010, 2018; Oettl, 2012; Jacob and Lefgren, 2011). More recently,

a literature stream on research tools has emerged. Related studies have shown that access to

and diffusion of research tools enables cumulative knowledge production (Furman and Stern,

2011), leads to exploration in research (Furman and Teodoridis, 2020), influences the com-

position of teams (Teodoridis, 2017; Zyontz, 2019), and is highly sensitive to scientists’ search

strategies (Kolympiris et al., 2021). Closest to our setting, Murray et al. (2016) study the ef-

fect of IP rights on the use of specific new mice technologies, finding both increased use and

exploration of areas of application when such exclusion rights are removed. The findings of
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our study provide a further empirical justification for the support of institutional, industry, and

community level efforts to steer research tool markets towards desirable trajectories.

Other studies have looked at the effect of negative shocks – of varying intensity – to physical

capital per se and research tools in particular on knowledge production, with mixed evidence.

Waldinger (2016) finds that damage to universities during World War II had more transitory

consequences than the departure of scientists. Hill (2019) finds transient productivity conse-

quences of adverse weather conditions during telescope viewing sessions in astronomy. Baruf-

faldi and Gaessler (2021) look at adverse events causing damage in research laboratories and

find that the loss of generic capital has transitory consequences, while the loss of specific, self-

developed capital can have long-term effects on the rate and direction of research of scientists.

Our findings are consistent to the extent that scientists suffered at most a delay in accessing

(imperfectly) substitutable mice strains, for which they did not sustain development costs. In

general, evidence across these studies suggests that the institutional arrangements that deter-

mine the allocation of investments, the level of standardization, and the distribution of risks

associated with the development and access to research tools have important implications for

downstream scientific activities and deserve further attention in future research.

The remainder of the paper is organized as follows. In the next section, we describe the

empirical setting related to the 1989 Morrell Park fire at JAX. Subsequently, we introduce the

data, our empirical strategy, and selected descriptive statistics. We then present our main

findings at the mice and scientist level and conclude with a brief discussion and outlook.

1.2 Empirical Setting

1.2.1 Laboratory Mice as Research Tools

Since 1902, when the French biologist Lucien Cuénot tried to test Mendel’s Laws of Inheri-

tance for the first time on an animal (Cuénot, 1902), researchers have used laboratory mice to

study the inheritance of genes and their relationship to diseases. Laboratory mice are the most

widely used mammal in biomedical research as they share many genes with humans (Paigen,

1995). Two features of laboratory mice are noteworthy. First, mice differ with regard to their

strain-specific genetic profile, which in turn determines their suitability as research tool for a

particular disease (The Jackson Laboratory, 2009b). Table A-5 provides examples. Moreover,

mice strains are likely to change their traits as a response to breeding conditions and differ

across narrow sub-strains and vendors (Nevalainen, 2014; Bryant, 2011). This creates im-

perfect substitutability between strains within one research project (The Jackson Laboratory,

2009b). Second, the use of laboratory mice in research is costly. A single laboratory may

need more than 1,000 mice per year, with unit prices ranging between $20 and $60 (Stephan,

2012).
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1.2.2 The Jackson Laboratory

Clarence Cook Little, known for having developed the first inbred mouse strain, founded the

Jackson Laboratory (JAX) in 1929 as a non-profit institution committed to research on and the

provision of laboratory mice.2 Buying mice from an external supplier, such as JAX, had several

benefits for scientists. First, it was cheaper and less time-consuming than self-breeding. Sec-

ond, given the high breeding standards at JAX, scientists could minimize the genetic variance

between mice from the same strain, which is necessary for controlled and replicable experi-

ments (Malakoff, 2000; The Jackson Laboratory, 2009b).

By 1989, JAX had become the leading research institution for laboratory mice, serving

two million inbred and mutant mice annually to scientists in over 11,000 laboratories (JAX

Archive-1).3 With 1,700 different strains, it then accounted for 21% of all genetically defined

mice used in the United States. JAX mice were used for research on a variety of diseases (e.g.,

AIDS, cancer, diabetes, and neurological dysfunctions) and by a large number of institutions.

About 51% of the customers were universities/medical schools, and 27% came from industry.

JAX supplied mice globally (9% of JAX customers were abroad), but had a clear focus on the

United States and Canada (see Table A-2 in the Appendix).

1.2.3 The 1989 JAX Fire and its Effect on Mice Supply

On May 10, 1989, a fire destroyed parts of the JAX production facilities in Bar Harbor, Maine,

killed 400,000 mice, and reduced production capacity by more than 50%.4 Since foundation

stocks of the inbred strains were kept at a different location, no mice strain was permanently

lost (JAX Archive-4).

The fire affected mice production at JAX in two ways. First, the physical capacity to rear

mice was largely compromised and, second, the existing stocks of several mice strains intended

for shipment and breeding were severely reduced. The drop in JAX’s mice production capacity

(JAX Archive-10) had direct consequences on mice supply. Sales dropped from 475,016 mice

in the pre-fire quarter of 1989 to 220,988 mice in the first quarter of 1990 (Figure 1.2b).

Notably, the impact of the fire was not uniform across all mice strains. The extent to which

the production of a particular mice strain was reduced largely depended on the exact location

of the respective mice cages in the main building. Figure 1.1 illustrates the microgeographic

discontinuity of damage in the production facilities. As a result, the supply of a few strains

remained largely unscathed with their unit sales in 1989 almost as high as in the previous

year (see Figure 1.2a). For example, one of the best-selling strains of JAX at that time, the

C57BL/6J strain – called B6, suffered a sales drop of only about 20%. In contrast, many other

2Inbred strains need to be maintained by continued sibling mating based on foundation stocks to avoid genetic
drift (The Jackson Laboratory, 2009b). This is a knowledge intensive and highly specialized endeavor.

3Documents directly collected from the JAX archive (The Jackson Laboratory Archives, 2012a,b) are cited as “JAX
Archive-XY”. Table A-1 in the Appendix provides an overview of the collected documents.

4The blaze resulted from the ignition of “flammable vapors from adhesive[s]” being used in the room of origin (JAX
Archive-3).
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inbred and mutant strains (e.g., the BALB/cJ strain) were subject to serious supply shortages,

as their sales fell by up to 95% relative to the previous year (JAX Archive-5).5 JAX estimated

that the fire significantly interfered with mice-dependent biomedical research to the extent of

about one billion dollars in annual research money (JAX Archive-1).6

Figure 1.1: Fire damage in the JAX production facilities

Notes: This figure illustrates the floor plan of the JAX main facilities (JAX-3). The striped area (25,895 square
feet) was destroyed by the fire. The rooms in the blank area were largely spared from the fire.

Figure 1.2: Mice production capacity and sales at JAX

(a) Sales decline at strain level

BALB/cJ

C3H/HeJ

DBA/2J
CBA/J

BALB/cByJ

B6D2F1/J

B6
CAF1/J

0

20

40

60

80

100

U
ni

t s
al

es
 in

 Q
3/

Q
4 

19
89

(in
 %

 o
f 1

98
8 

sa
le

s)

0 50,000 100,000 150,000 200,000
Unit sales in Q3/Q4 1988

 

(b) Production capacity over time
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Notes: Figure 1.2a plots the 25 best selling JAX mice strains by their unit sales in the second half of 1988 and in
the second half of 1989 (as a share of the 1988 sales). For reasons of clarity, only mice with 50,000 or more unit
sales are labeled. Figure 1.2b illustrates the breeding capacity at JAX before and after the fire. Numbers from June
1990 onward are forecast numbers provided by JAX (JAX Archive-10, JAX Archive-11, JAX Archive-12).

5Hybrid stocks and highly specialized research mice remained rather unaffected since both were reared in the
annex or main research building (JAX Archive-5).

6Expenses for JAX’s own research, however, remained constant in the post-fire years (JAX Archive-6). In total,
the fire resulted in an estimated loss of over $40 million, of which the accumulated operating deficits over the
two-year recovery period were about $9 million (JAX Archive-2).
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Quickly after the fire, JAX rolled out a recovery plan that involved both the construction

of emergency production space and the restoration of the damaged production facilities. For

this purpose, JAX initially used capital from insurance funds and private donations. In par-

allel, JAX undertook substantial political efforts to obtain further funds (JAX Archive-8).7 In

August 1990, JAX received an extramural NIH grant for the construction of new mouse breed-

ing, production, and support facilities (JAX Archive-7).8 This additional funding helped JAX

return to pre-fire production levels in mid-1991, without substantially raising the unit prices

of their mice.9 Figure 1.2b illustrates the steady increase in supply due to the re-breeding and

restoration efforts.

Despite its dominant position, JAX was not the sole supplier in the market for laboratory

mice. About ten U.S.-based commercial suppliers provided an alternative source for about 15

to 20 mice strains (JAX Archive-2).10 The offered strains were some of the most widely used

strains (JAX Archive-13). Facing capacity constraints themselves, the commercial suppliers

responded to the supply shortage at JAX with price increases of about 70-80% (JAX Archive-

14).11 We did not find any evidence in the historical records suggesting that JAX was favoring

specific customers in need.

Qualitative accounts suggest that the temporary supply shortage of particular mice strains

had a substantial impact on the demand side. The results of a representative survey of JAX

customers conducted in late 1989 suggest that more than half of the respondents had been

negatively affected by the supply shortage. These researchers partly switched to either self-

breeding or alternative mice, with a negative effect on their research (JAX Archive-17). These

findings are consistent with the consequences reported by NIH researchers relying on JAX

mice. They experienced delays in research projects due to the necessary search for alternative

mice strains (JAX Archive-16). Moreover, case studies conducted by JAX suggest that scientists

indeed reorganized their research (JAX Archive-18):

• “If The Jackson Laboratory is unable to supply the strain and number of mice Dr.

requires, she will have to switch projects and perhaps use different animals.”

• “They would have to begin a massive breeding program on their own. However, because

of the extremely high costs involved, they would eventually phase out projects requiring

large numbers of mice [...].”

• “Instead of pursuing many lines of research simultaneously, she is focusing on one or

two areas where the missing or hard-to-obtain strains are not required.”

7For instance, JAX orchestrated more than 1,500 support letters from scientists all over the U.S. addressed to their
local political representatives to lobby for extramural NIH funding.

8In 1991, JAX successfully applied for further funds to replace the temporary facilities with permanent, state-of-
the-art premises (JAX Archive-9).

9Price increases were about 10% on average (JAX Archive-15, based on own calculations).
10Commercial suppliers of laboratory mice in the U.S. at that time included Charles River, Harian Sprague Dawley,

Simonsen, Dominio, Bantin & Kingman, Taconic, Hilltop, Sasco.
11Even in combination, the commercial suppliers had a production capacity merely half as large as the one of JAX.
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1.3 Data and Summary Statistics

In the following, we first describe the dataset, in which we link archival data from JAX with

bibliometric information from publication databases. Subsequently, we outline our empirical

strategy exploiting the 1989 Morrell Park fire as a plausibly exogenous shock to the availability

of particular mice strains for the scientific community.

1.3.1 Mice Strain Level

Identifying Affected and Spared Mice Strains

We first determine which mice strains were affected by the fire. For this purpose, we make

use of collected fire recovery files, price lists, and personal memorabilia from JAX. These doc-

uments contain information on mice strains that were in actual short supply (JAX Archive-19),

in great demand (JAX Archive-20), only available with substantial delay (JAX Archive-21), or

experienced a substantial loss in sales (JAX Archive-22). Other documents list several mice

strains that remained unaffected by the fire and, thus, were in good supply (JAX Archive-23,

JAX Archive-22).12 In sum, we have sufficient information to classify 84 strains. Among these,

we consider 39 strains as affected and 45 strains as unaffected.13

Mice Usage Data

We use scientific publications to measure the use of different mice strains in research. Al-

though scientists typically mention the used mice in the publication, this does not happen in a

systematic and structured manner. Scientists may not all use the same name for a given strain

(but synonyms) and may mention the strain in different sections of the article. We rely on two

approaches to overcome the challenge of associating papers with distinct mice strains. First,

we draw on curated data from the Mouse Genome Informatics database. Second, we search for

mice strains in the title, abstracts, and keywords in Scopus.14

We make use of the Mouse Genome database, which is freely accessible and administered

by JAX (Blake et al., 2003). This database provides aggregate publication information on

laboratory mice and their profiles to facilitate the study of human health and diseases. As

the standard nomenclature of mice strains changes over time, we use the JAX order number,

which is a unique and stable identifier of research mice in the MGI database.15 We collect all

12Example documents can be found in Appendix A-1 and A-2.
13Table A-3 in the Appendix lists the classified strains and provides further details.
14A different approach is used by Murray et al. (2016), who use citations to seminal mice papers to proxy the use of

a strain in publications. This approach is unfeasible for our set of strains: most inbred strains do not have one
single seminal publication, and some strains were introduced in periods for which bibliographic data coverage
is limited (e.g., B6 was developed in 1920).

15To identify the JAX order number, we link the mice strains mentioned in the historical fire documents by name
to the 1989-price list.
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references in MGI for each mice strain over time. We find at least one pre-fire publication for

35 affected and 32 spared strains as referenced in the MGI data.

The MGI data does not claim full coverage for all mice strains and all mice-related publica-

tions. The reasons for this are twofold. First, the focus of MGI lies on mice strains developed

and offered by JAX. Second, it predominantly includes publications about new mice models

and newly identified genome-phenotype links of existing mice models. That is, the MGI data

likely omits publications on more applied research.

We extend the collection of publications related to different strains by means of a text-based

search in the Scopus database.16 We identify publications making use of different strains, by

searching for each strain name in the title, abstracts, or keywords of papers. Importantly,

the procedure also allows telling apart strains most certainly provided by JAX from the same

strains but provided by other different suppliers or bred locally. To do so, we leverage the

nomenclature convention, which prescribes that a "J" is added at the end of the strain name if

supplied by JAX. Conversely, strains from different suppliers have the same name but miss the

"J" at the end (Standardized Genetic Nomenclature for Mice, 2016).

Some precautions are necessary to correctly identify publications related to specific strains.

First, we extend each query with at least one generic keyword (e.g., mouse, mice, rat, rats,

strain) to minimize false positives. Second, we exclude in each query other strains with an

identical substring of the focal strain.17 Sublines of a particular strain often have the first part

of the name in common. While these strains share a common lineage, their properties as well

as their supply may differ, and therefore need to be distinguished. We find at least one pre-fire

publication for 21 affected JAX strains, 12 spared JAX strains, and 28 strains available from

other (non-commercial and commercial) suppliers.

Gene Data

Scientists rely on comprehensive information on the genetic profiles of mice when select-

ing the most suitable strain for a given research project. While the full sequencing of the

mouse genome was only achieved in 2002 (Mouse Genome Sequencing Consortium and oth-

ers, 2002), about 1,300 genetic loci had been indexed until 1989 (Lyon and Searle, 1989).18

We digitize the information from Lyon and Searle (1989) and calculate the number of gene

loci known for each strain. Figure A-4 in the Appendix illustrates the distribution of the num-

ber of loci across all strains and in our strain sample. We use this information to proxy how

well scientists understood the genetic profile of a given strain at the time of the supply shock.

16To this end, we query via the RESTful API the on-line Scopus search-engine, which provides advanced search
functionalities (e.g., wildcards) and robustness to different spellings or double spacing between letters (Rose
and Kitchin, 2019).

17Some strain names, particularly short ones, could be confounded with abbreviations in completely separate fields
(e.g. engineering, chemistry, etc.). Example queries are detailed in Appendix A.1.

18An example of this matrix can be found in the Appendix A-3.
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1. FIRE AND MICE

Table 1.1: Pre-fire characteristics of affected and spared mice strains (1979-1988)

MGI Mean Median Std. Dev. Min Max

Affected strains (N= 35)
First publication 1965.03 1967.00 11.92 1952 1985
Publications 39.37 21.00 50.92 1 217
JIF-weighted publications 254.11 184.35 299.29 0 1263
Citation-weighted publications 2623.83 1493.00 2982.21 39 12812

Spared strains (N= 32)
First publication 1969.56 1972.50 11.29 1949 1985
Publications 24.00 6.50 55.44 1 315
JIF-weighted publications 142.49 50.79 317.43 3 1795
Citation-weighted publications 1940.34 1192.50 3887.20 29 22210

Scopus Mean Median Std. Dev. Min Max

Affected strains (N= 39)
First publication 1962.13 1961.00 12.00 1946 1987
Publications 628.21 76.00 1637.09 1 9497
JIF-weighted publications 1226.85 189.66 3002.63 0 16073
Citation-weighted publications 13882.79 2416.00 32981.74 6 187187

Spared strains (N= 22)
First publication 1965.27 1965.00 11.61 1935 1980
Publications 516.23 40.00 1371.48 0 5873
JIF-weighted publications 1056.65 78.61 2959.50 0 13211
Citation-weighted publications 15825.68 1096.50 44403.35 0 196039

Notes: This table presents summary statistics of publications linked to affected and spared mice strains. The unit
of observation is at the mice strain level. Publication counts are aggregated in the 1979-1988 period. Note that two
spared strains have no Scopus publications in this ten-year period, but some in earlier years. 18 affected strains
and 10 spared strains were available from other suppliers and are treated as separate observations in the Scopus
data.

Summary Statistics

Table 1.1 reports summary statistics on bibliographic characteristics of affected and spared

mice strains by data source. In the MGI database, affected strains are linked to an average of

39 publications in the ten years before the fire, whereas spared mice strains are linked to an

average of 24 publications. This difference between affected and spared strains is robust to

weighting publications by impact (JIF/citations). Moreover, affected strains are slightly older.

In the Scopus database, we find considerably more mice publications in the 10 years before

the fire: about 630 for affected and 520 for spared strains. The reason for these higher counts

is twofold. First, in the Scopus data, there are also non-JAX strains among affected and spared

strains. These mice are genetically identical to the JAX mice but were provided by different

suppliers or self-bred by the scientists. These non-JAX strains constitute a sizeable share of

all mice-related publications. Second, in contrast to the MGI data, which focuses on studies

whose contributions directly relate to the respective strain, the Scopus data also encompasses

more applied studies, in which mice of a particular strain were employed as research material.
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1. FIRE AND MICE

As the JAX-curated MGI data oversamples in-house mice, we can only draw on other –

spared – JAX strains as a comparison group. For the Scopus data, we cannot only distinguish

between affected and spared strains but also whether they were supplied by JAX or acquired

from a different supplier (non-JAX). In a further analysis, we consider the group of affected

non-JAX strains as additional controls.

1.3.2 Scientist Level

Identifying Affected and Control Scientists

We identify all scientists who published scientific articles using affected or spared mice strains

prior to the JAX fire in 1989 based on the MGI and Scopus publication data. The initial data

set includes 20,078 publications with 16,154 scientists until 1988. For each scientist, we add

full bibliometric information from the Scopus database.19

We focus on all scientists with an affiliation in the U.S., Canada, or Western Europe and

who had at least one mice-related publication between 1984 and 1988. This reduces our

sample to 9,361 scientists.20

We determine the scientist level exposure to the supply shortage through the share of

publications that use an affected mice strain, relative to publications that use an affected or

spared mice strain, in the 5 years before the fire. To have sufficient variation when calculating

the treatment exposure, we drop 5,251 scientists with only one publication related to either

affected or spared mice strains.21

We define a scientist as being affected if her share of affected mice publications is larger

than 50%. The affected scientist may have publications with multiple strains, partly affected

and partly spared. To account for this in our exposure measure, we additionally require the

affected scientist’s share of publications that use a spared mice strain, to be below 50%:

affected scientisti =







0, if share affectedi,84-88 ≤ 0.5 ∧ share sparedi,84-88 ≥ 0.5,

1, if share affectedi,84-88 ≥ 0.5 ∧ share sparedi,84-88 ≤ 0.5.
(1.1)

This leaves us with 1,868 likely affected scientists and 465 likely control scientists.

Bibliometric information includes the age of a scientist (proxied by the time elapsed

from the first publication), the full publication record including journal impact factor (JIF)

19All mice publications in MGI are connected to Scopus Publication IDs via the common Pubmed ID, if available.
This allows us to extract disambiguated Scopus author identifiers for mice publications initially found in both
MGI and Scopus. These author identifiers are then searched in Scopus again to extract the full bibliometric
information of each scientist. To pull, cache and extract data we draw on the pybliometrics library (Rose and
Kitchin, 2019).

20We drop scientists with presumably unclean Scopus author profiles, e.g., with more than 50 years pre-fire publi-
cation record, and those who stopped publishing in 1988.

21This requirement on the exposure measure puts an high emphasis on more productive researchers. However,
prior literature has highlighted their instrumental role for progress in science (e.g., Iaria et al., 2018).
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weights,22 the global rank and country of a scientist’s affiliation in 1988,23 as well as the share

of last authored publications, and citation counts. We add Medical Subject Headings (MeSH)

from the National Library of Medicine24 to each publication and identify mice publications

through mice-related MeSH terms, such as mouse, mice, and murine.

Figure A-9 in the Appendix shows that the pre-treatment characteristics of all affected and

all control scientists differ significantly with regard to scientific productivity. We, therefore,

perform Coarsened Exact Matching (CEM) to identify more comparable dyads of scientists

with common pre-fire characteristics, such as age, the number of JIF-weighted mice publica-

tions, and the number of pre-fire citations to pre-fire (mice) publications.25 If there is more

than one dyad combination possible within a CEM stratum, we choose the dyad with the

smallest normalized distance in scientists’ characteristics based on the above variables and ad-

ditionally the affiliation ranking and the share of last authored publications. This leaves us

with 283 affected-control scientist dyads (sample A). Additionally, we select a second sample

of scientists in North America, the core market of JAX. This sample (sample USA) consists of

160 dyads, which should be more exposed to the shock given the geographic dimensions of

the supply shortage. Overall, our sample emphasizes scientists who had a high propensity to

stay in research.26

Summary Statistics

We compare pre-fire characteristics of affected and control scientists in the full sample (A) and

the subsample (USA) summarized in Figure 1.3.27 By construction, the affected and control

group show no significant mean differences in those characteristics used in the matching pro-

cedure (age, JIF-weighted (mice) publications, citations, affiliation rank, and the share of last

authored publications). Other independent characteristics, such as the set of (new) distinct

coauthors, self-references, new keywords, new MeSH terms, publications in clinical journals,

22The journal impact factor relies on the Scimago journal and country rank data coming from
https://www.scimagojr.com/journalrank.php [last accessed on March 8, 2021]. We use the annual Scimago
Journal Rank indicator, which expresses the average number of weighted citations received in the selected year
by the documents published in the journal in the three previous years. For most journals, the rank indicator
information is available since the early 1990s. For earlier publications, we extrapolate the ranking.

23We use the global rank information of the Scimago Institutions Ranking, which can be found here:
https://www.scimagoir.com/rankings.php [last accessed on March 8, 2021].

24MeSH is a controlled vocabulary thesaurus used for indexing articles in PubMed. More information on MeSH
terms are available at: https://www.nlm.nih.gov/mesh/meshhome.html [last accessed on March 8, 2021].

25The selection of matching variables and cut-off points (deciles/3-year age bins) is similar to Azoulay et al. (2010).
26Since the CEM and selection of dyads is based on criteria chosen by the authors, we built further alternative

samples with the following dimensions: a smaller sample B, which is stricter concerning age and scientific
productivity, and the full sample C before the matching.

27The corresponding summary statistics can be found in Tables A-9 & A-10 in the Appendix.
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1. FIRE AND MICE

patent-weighted number of publications are similar, too. We conduct various robustness checks

with regard to the dependent variable construction.28

The scientists differ in those categories which should resemble the treatment exposure

(bottom left part of Figure 1.3). The magnitudes of these differences indicate that most sci-

entists are active in either of these two mice categories. Additionally, the affected and control

scientists also differ with regards to strain types identified via MeSH terms from the full biblio-

metric information. Affected scientists have a substantially higher share of affected mice-related

publications based on MeSH terms,29 and control scientists have a much higher share of spared

strain-related publications such as B6 based on MeSH terms.30 This provides confidence in our

definition of treatment exposure.

Figure 1.3: Mean comparison of affected and control scientists

Age (from PhD)

Age (First Mice related Publ.)

Total Publications (JIF)

5 Year Publications (JIF)

Total Mice related Publ. (JIF)

5 Year Mice related Publ. (JIF)

5 Year Citations (84-88 Publ.)

5 Year Citations (84-88 Mice Publ.)

Share Affected Mice related Publ.

Share B6 Mice related Publ.

-1 -.8 -.6 -.4 -.2 0 .2 .4 .6 .8 1
Standardized mean difference

5 Year Citations (84-88 Mice Publ.)

c2

c3

c4

Jax/Non Jax Affected Publications

Jax/Non Jax Control Publications

Jax Affected Publications

Jax Control Publications

Non Jax Affected Publications

Non Jax Control Publications

-8 -6 -4 -2 0 2 4 6 8
Standardized mean difference

Affiliation Rank

Top 5% Publications

Share Last Author Publ.

Share Last Author Mice Publ.

Distinct Coauthors

Distinct New Coauthors

Mean Self-Reference Count

Mean New Keyword Count

Clinical Journal Publications

Patent weighted Publications

-1 -.8 -.6 -.4 -.2 0 .2 .4 .6 .8 1
Standardized mean difference

Patent weighted Publications

Share Last Author Mice Publ.

c3

c4

MeSH: All terms

MeSH: Diseases

MeSH: In Vitro

MeSH: Other Animal

MeSH: Human

MeSH: Norm. Diversity

-1 -.8 -.6 -.4 -.2 0 .2 .4 .6 .8 1
Standardized mean difference

Notes: The figures presents comparisons of standardized mean differences of key pre-fire characteristics of the
scientists in sample A and in sample USA after matching. The unit of observation is at the scientist level.

The pre-fire characteristics of the scientists are very similar not only in their means but

also in their distributions. Figure A-8 in the Appendix compares the distributions of various

pre-fire covariates. In the vast majority of cases, the distributions are nearly identical between

the two groups.

28We calculate alternative dependent variables. For this, we either log-transform the count dependent variables or
use simple counts instead of shares and averages. Moreover, we weight publications by the number of forward
citations instead of journal-impact factors or by the inverse number of coauthors. Additionally, we restrict the
dependent variable conservatively to only scientific journal articles with fewer than 20 authors.

29Affected mice identified by MeSH terms are: HRS, A, AKR, BALB/c, C3H, CBA, DBA, NOD, NZB, Obese.
30The MeSH terms include only four different types of unaffected strains (129, MRL-lpr, nude, and B6). Given the

importance of B6 in the mice strain level analysis, we opted to focus on this unaffected strain specifically and
not on all control strains.
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1.4 Empirical Strategy

For the main part of our empirical analysis, we rely on Difference-in-Differences models, ex-

ploiting the plausibly exogenous supply shock caused by the 1989 Morrell Park fire at JAX.

Unless mentioned otherwise, our baseline regressions have annual JIF-weighted scientific pub-

lication counts as the dependent variable. At the mice strain level, we investigate research

output and the usage of particular strains in research in the ten years before and after the fire.

The window of observation is restricted to the 10 years after the fire to minimize the overlap

with subsequent changes in the market of laboratory mice.31 For this purpose, we compare

the number of publications linked to affected mice strains to the number of publications linked

to spared mice strains before and after the fire. The model at mice strain level can be written

as follows:

E[yit|X it] = exp[α + β1 post-fire × affected strainit + δt + γi], (1.1)

where y represents the dependent variable, and the time-variant treatment variable post-fire

× affected strain indicates whether the current observation belongs to affected strains in the

post-fire period. Since laboratory mice became an increasingly popular research tool over time,

we control for time trends using calendar year effects δt . Given the differences in importance

and applicability (e.g., number and strength of gene-phenotype links), we include strain fixed

effects γi. We cluster standard errors at the mice strain level.

We explore the heterogeneity between different types of strain characteristics, such as

the availability of commercial suppliers, pre-fire sales, or the number of known gene loci by

using triple interactions. Furthermore, we restrict the sample to strains, for which there is

no ambiguity concerning the exposure to the fire and disentangle industry trends towards the

development of transgenic mice from our shock.

At the scientist level, we compare research activities conducted by potentially affected

scientists to those of potentially unaffected scientists before and after the fire. First, we ana-

lyze the composition of mice strains in their research. Second, we investigate switching costs

and adjustments in the type of research. Formally, we estimate the following Difference-in-

Differences equation:

E[yit|X it] = exp[α + β1 post-fire × affected scientistit + f (ageit) + δt + γi]. (1.2)

Again, the time-variant treatment variable post-fire × affected scientist indicates whether the

current observation represents an affected scientist in the post-fire period. As the effect of the

supply shock might be correlated with the scientists’ career progress, we include age controls

up to the 3rd degree polynomial to capture the potential non-linearity in research output

31Murray et al. (2016) analyze the substantial changes in the mice IP landscape related to Cre-lox and Onco mice
due to NIH agreements in 1998 and 1999. This is around 10 years after the fire at JAX.
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throughout a scientist’s career. Moreover, δt corresponds to calendar year fixed effects and γi

corresponds to scientist fixed effects. We cluster standard errors at the scientist level.

We explore potential effect differentials by scientist characteristics through a triple interac-

tion. All scientist characteristics are binary indicators that split the sample around the median

of the respective dimension.

At both levels of analysis, we estimate Poisson pseudo-maximum likelihood (PPML) regres-

sions with high-dimensional fixed effects for count dependent variables.32 We apply PPML re-

gressions also in the context of annual averages, e.g., mean annual number of new MeSH terms,

to account for the long tail of the distribution. The coefficients represent semi-elasticities and

allow a direct interpretation. For continuous dependent variables, which are in our setting

log-transformed count dependent variables as well as shares, we run linear regressions mod-

els with high-dimensional fixed effects.33 We conduct various robustness checks concerning

the empirical specification.34,35

1.5 Results at Mice Strain Level

1.5.1 Descriptive Analysis

The top part of Figure 1.4 illustrates the trends in mice usage based on counts of publications

linked to affected and spared JAX mice strains in the decade before and after the fire. The

links between publications and mice strains are based on the MGI data. That is, we focus

on JAX mice strains and their use in upstream research activities, such as gene sequencing or

the development of new sub-strains. In Figure 1.4a, we compare the log-transformed annual

number of publications linked to affected strains and spared strains as aggregate counts. In

Figure 1.4b, we present JIF-weighted counts. Both groups follow a common path during the

10-years prior to the fire, i.e., differences in means are statistically insignificant. However,

shortly after the year of the fire, these trends diverge with more publications linked to the

group of spared strains. Notably, the difference in mice usage seems to be long-lasting as we

do not observe a convergence in trends despite the temporary nature of the fire-induced supply

shortage.

One spared mice strain – B6 – is linked to a particularly large number of publications.

Singling out this mice strain, we observe that the relative increase in the use of spared mice is

largely, but not entirely, driven by the B6 strain. This strain has many favorable characteristics

32We use the ppmlhdfe Stata package as described in Correia et al. (2020).
33We use the reghdfe Stata package based on Correia (2016).
34First, we use fewer and no age controls. Second, we cluster the standard errors at the scientist-year level or the

strain level (most often used strain by scientist). Third, we use a different operationalization of the exposure
variable. We also use continuous instead of binary definitions of the treatment variable affected scientisti.

35In our event study specifications, we follow Jaravel et al. (2018) and interact the affected strain/scientist variable

with a full set of leads and lags from −10 to +10 years around the JAX fire
∑ j

t= j βt(yeart × affectedi) with two-

year bins. We normalize the coefficient βt=-2 to zero and, hence, express the dynamic treatment effects relative
to this pre-treatment year.
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Figure 1.4: Mice usage – publication counts

Aggregated counts (MGI data)
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Notes: The top left-hand figure presents the log-transformed annual sums of publications linked to affected and
spared mice strains. The top right-hand figure presents the log-transformed annual sums of publications linked to
affected and spared mice strains weighted by their respective journal impact factor. Publications linked to affected
and spared mice are included twice. The bottom left-hand figure presents the log-transformed average publication
counts at mice strain level. The bottom right-hand figure presents the log-transformed average publication counts
weighted by their respective journal impact factor. Publications can be linked to multiple mice strains. In both
bottom graphs, the unit of observation is the unique mice strain.

and is widely applicable.36 In our analysis at the scientist level, we examine whether scientists

have used B6 as the main substitute for affected strains.

In the bottom part of Figure 1.4, we depict average trends in mice usage at the strain

level. To this end, we use the more comprehensive Scopus data, which also covers more

applied research, and links ten times more publications to mice strains than the MGI data.

Moreover, we can distinguish between publications linked to JAX and non-JAX mice, where

the latter group refers to strains that either were self-bred or acquired from other (commercial)

suppliers. Both simple and JIF-weighted publication counts show a notable decrease in the use

36As a matter of fact, JAX pointed in the aftermath of the fire towards this strain as a potential alternative for
research activities (see Figure A-2 in the Appendix).
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of affected strains provided by JAX whereas mice usage in the two comparison groups, spared

mice strains from JAX and affected strains from non-JAX sources, continues its pre-fire trend.37

1.5.2 Multivariate Analysis

The results of our empirical analysis at the mice strain level indicate that the use of affected

JAX mice decreased relative to that of spared JAX mice and affected non-JAX mice. This decline

was long-lasting, unrelated to industry trends, and affected mice usage in upstream as well

as downstream research. The long-lasting effect cannot be explained by fewer newcomer

scientists starting research with the affected mice strains. Instead, incumbent scientists appear

to have increasingly turned their back on strains that were temporarily unavailable.

In line with the descriptive results, we find a highly negative effect of the supply shortage

on subsequent mice usage (Table 1.2). Compared to spared strains, affected strains are linked

to about 70% fewer publications in the 10 years after the fire, presented in Column 1. In

Column 3, we measure mice usage based on our second publication data source (Scopus)

and find a statistically significant decrease of about 20%. Although less precisely estimated,

we find a negative effect of similar magnitude when adding non-JAX mice to the unaffected

group in Column 6. The results for simple publication counts are corroborated with those of

JIF-weighted publication counts.

Table 1.2: Impact of mice supply shortage on mice usage (strain level)

Strains (1) (2) (3) (4) (5) (6)
Sample: MGI JAX strains Scopus JAX strains Scopus all strains

+ 10 years Publ Publ (JIF) Publ Publ (JIF) Publ Publ (JIF)

Post × affected −0.721∗∗ −0.980∗∗∗ −0.233∗∗ −0.454∗∗∗ −0.306 −0.502∗

(0.366) (0.377) (0.113) (0.125) (0.207) (0.283)
Strain FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes

Observations 1344 1344 693 693 1239 1239
Strains 64 64 33 33 59 59
Log-likelihood −2403 −12508 −1375 −3583 −3238 −9570

Notes: Columns (1) to (6) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. The outcome variable is the number of (JIF-weighted) publications. The unit of obser-
vation is the individual mice strain by year. Standard errors are clustered at the mice strain level and shown in
parentheses. Significance levels: * p<0.1, ** p<0.05, *** p<0.01.

One important indicator of the validity of Difference-in-Differences estimations are paral-

lel trends prior to the exogenous supply shock following the fire. Figure 1.5a depicts event

study estimates with publication counts as the dependent variables. We observe a significant

reduction in the use of affected mice strains. Moreover, the lack of confounding pre-trends

37This result is robust to using a subset of treated mice strains that follows a more conservative classification (see
Figure A-6 in the Appendix).
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Figure 1.5: Impact of mice supply shortage on mice usage (strain level) – heterogeneity
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Notes: The figures show the event study estimates and the 90 percent confidence bands of Poisson pseudo-
maximum likelihood regressions with high-dimensional fixed effects following Equation 1.1 in (a) and with a
triple interaction term in (b) to (d). The unit of observation is the individual strain by year. Standard errors are
clustered at the strain level.

suggests that the parallel trends assumption is likely fulfilled in our setting.38 The reduction

in usage seems to be long-lasting, if not permanent.

In Figures 1.5b to Figures 1.5d, we further explore potential heterogeneity in the effect on

research output by strain characteristics that proxy the likely substitutability of the affected

strain through similar strains and/or different sources.39 We first distinguish between JAX

strains that belonged to the top-selling mice before the fire and niche mice with relatively low

sales figures. We find that mice strains with low sales figures drive the average decline in

mice usage. We further distinguish between mice strains that were available from commercial

mice suppliers and those exclusively offered by JAX. Notably, the decrease in mice usage is

driven by those affected strains which could not be purchased from other sources. Finally,

we distinguish between strains with high and low numbers of gene loci publicly known at the

time of the JAX fire. Mice with a large number of known gene loci are well understood in

the scientific community and it should be easier to judge whether another strain has a similar

genetic profile. The substitution of strains with many known genes should, hence, be easier

compared to strains with few known gene associations. In fact, the decrease in mice usage is

confined to strains with a below-average number of gene loci. These three differential effects

suggest that the temporary supply shortage had long-term consequences primarily for those

strains that were hard to adequately substitute. This provides one possible explanation for the

long-term effect on mice usage: scientists who had to adopt imperfect substitutes continued

using them given the necessary adjustments of their research line.

38Appendix Figure A-7 illustrates the event study results for weighted publication counts and for the MGI data.
39Appendix Table A-7 provides the corroborating results of triple Difference-in-Differences models.
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We can rule out that industry trends led to the observed change in mice usage. Murray et al.

(2016) elaborate that there was an ongoing development of new transgenic mice technologies

like Onco, Cre-lox, and Knock-out in the 1990s.40 To exclude any concerns that we depict

trends that would have happened in the absence of the JAX fire, we exclude all publications

from our sample, which are classified by the MeSH term “transgenic”. The results in Table

A-6 in the Appendix confirm that the decrease in publications related to affected strains is

unrelated to the development of transgenic mice. Consistently, the coefficients have a smaller

magnitude.

Moreover, we can exclude the alternative explanation that the long-term decline in mice

usage is purely a cohort effect. In the aftermath of the fire, young researchers entering the

biomedical field possibly started new research projects based on available (i.e., spared) mice

strains and kept on working with these permanently. If this was the case, the reduced research

output would be due to the lack of newcomers conducting research with affected mice strains,

whereas incumbent researchers continued working with their acquainted strains irrespective

of the temporary supply shortage. We split publications by whether the author team age lies

above the overall average team age in the respective publication year. As the results in Table

A-8 illustrate, the decrease in total publications related to a specific strain is not solely due to

a decrease in publications by young research teams. If anything, the decrease in publications

by old research teams appears to be larger in magnitude.

1.6 Results at Scientist Level

1.6.1 Descriptive Analysis

Figure 1.6 illustrates the trends in the average research output of affected and control scientists

over time for the full sample as well as for the North American sample. Pre-trends correlated

with the treatment exposure may lead to concerns that estimates pick up pre-existing activ-

ity. However, the plotted relationships support the parallel trends assumption at the scientist

level. The annual share in the usage of specific strains41 as well as the JIF-weighted publi-

cation counts move largely parallel in the 5-year period before the fire. This holds also true

when looking at longer pre-periods or unweighted simple publication counts. More formally,

we estimate a placebo specification of Equation 1.2 using pre-period data.42 The estimated

coefficients are small in magnitude and statistically insignificant. This supports a causal inter-

pretation of our estimates in the following multivariate analysis.

40Traditionally, the basis for these experiments has been the 129 strain. However, B6 became an increasingly
popular model (Seong et al., 2004). Figure A-5 in the Appendix illustrates the different dynamics between
those two strains. The sudden increase in the usage of B6 happens directly after the fire and substantially
earlier then the transgenic mice induced increase of 129 strains.

41We illustrate the spared strain B6 in Figures 1.6a and 1.6b and the affected mice strains in Appendix Figure A-11.
42This regression includes an interaction of affected scientists with an indicator for the 1986-8 period. Appendix

Table A-11 contains the results from this specification.
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Figure 1.6: Scientist publications linked to affected and spared mice strains
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Notes: The top Figures (a) and (b) illustrate the mean JIF-weighted share of B6 publications over time for affected
and control scientists. The bottom Figures (c) and (d) show the mean JIF-weighted publication counts. The unit
of observation is the scientist level.

Figures 1.6 and A-11 also provide a first impression concerning the effect of the supply

shock on the adoption of research material and switching costs. First, affected scientists in-

crease (decrease) the share of JIF-weighted publications related to spared strains (affected mice

strains) compared to control scientists. This suggests that affected scientists are more likely

to adopt different strains. Second, the trends in overall publication counts seem to diverge in

the years following the fire-induced supply shock, especially within the North American sam-

ple. Scientists that were unable to purchase the laboratory mice necessary for their research

published a lower number of articles than comparable scientists that had not previously relied

on affected JAX strains.43 Taken together, these descriptive analyses suggest the occurrence of

switching costs caused by the adoption of new tools.

43At the extensive margin in Appendix Figure A-10, both affected researchers and control researchers exit science
(defined by the last observable publication of this person) with a similarly low likelihood after the fire. 75% of
the scientists have their last publication 15 or more years after the fire.
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1.6.2 Multivariate Analysis

Adoption of Mice

In this section, we show that different levels of use of mice strain after the fire result from

scientists who previously worked with affected strains and then adopted spared mice strains.

One of the most intriguing aspects is that the scientists did not switch back to their former

strains after JAX was rebuilt. This suggests the existence of switching costs that make returning

to the prior equilibrium less attractive than continuing in the new one.

Figure 1.7 plots the event study estimates of the Poisson pseudo-maximum likelihood

model with scientist and year fixed effects (similar to Equation 1.2). The outcome variable

is the JIF-weighted share of B6 (affected) mice publications. In line with our descriptive anal-

ysis, the composition of research mice follows similar patterns for both groups of scientists

prior to the fire. After the fire, however, the use of affected mice strains decreases while the

use of unaffected strains increases. This divergence grows throughout the full post-fire period.

Figure 1.7: Adoption of mice – event study
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(b) Share B6 publ. - sample USA
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(c) Share affected publ. - sample A
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(d) Share affected publ - sample USA
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Notes: The figures show the event study estimates and the 90 percent confidence bands of linear regressions
with high-dimensional fixed effects following Equation 1.2. The outcome variable is the share of JIF-weighted
B6/affected mice publications relative to all mice publications. In both samples, the unit of observation is the
individual scientist by year. Standard errors are clustered at the scientist level.

Table 1.3 presents the estimates of Difference-in-Differences linear regression on the share

of (JIF-weighted) publications based on either spared B6 mice or affected mice strains. We

find statistically significant effects on the composition of mice strains used in the scientists’

research.44 Affected scientists are more likely to adopt B6 mice for their research, and less

likely to use affected mice strains in the post-fire period. This holds true for the full sample of

44In the Appendix, we illustrate that these results are quantitatively similar when using alternative specifications
(Table A-13), alternative dependent variables such as forward-citation weighted publications (Table A-16),
scientific articles with fewer than 20 coauthors (Table A-23), publications weighted by the inverse number
of coauthors (Table A-24), or alternative samples such as sample B (Table A-25) or the pre-matching sample C
(Table A-26).
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283 scientist dyads and the North American sample with 160 dyads. However, estimates are

more precise in the full sample. In terms of magnitude, affected scientists publish about 10

percentage points more JIF-weighted B6 publications in year 10 after the fire. Given a “base”

pre-fire share of about 20%, this resembles an increase of around 50% or one JIF-weighted B6

publication every two years. The effect is not driven by a change in the number of mice-related

publications,45 but rather by a higher share of these publications that rely on B6. In contrast,

affected scientists publish about 10 percentage points fewer publications with affected mice

strains in year 10 after the fire (see event studies in Figure 1.7).46

The change in the composition of research tools emerges and is already significant within

a shorter period of ±5 years around the fire, albeit the estimates are smaller in magnitude and

less precise (Appendix Table A-12). We argue that the smaller effect size in the±5 is consistent

with the idea the adoption of new research tools consolidates over time and becomes evident

in publications with some delay.

Table 1.3: Adoption of mice – DiD

Share/Linear (1) (2) (3) (4) (5) (6) (7) (8)
+10 years Sample A Sample USA

B6 Affected B6 (JIF) Affected (JIF) B6 Affected B6 (JIF) Affected (JIF)

Post × affected 0.046∗∗∗ −0.037∗∗ 0.040∗∗∗ −0.026∗ 0.025 −0.032∗ 0.020 −0.039∗∗

(0.015) (0.015) (0.015) (0.015) (0.018) (0.019) (0.018) (0.019)
Scientist FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Scientist age Yes Yes Yes Yes Yes Yes Yes Yes

Observations 9622 9622 9622 9622 5440 5440 5440 5440
Scientists 566 566 566 566 320 320 320 320
Log-likelihood −344 −478 −676 −679 159 −335 11 −498

Notes: Columns (1) to (8) show the estimates of linear regressions with high-dimensional fixed effects. The
outcome variable is the share of (JIF-weighted) B6/affected mice publications relative to all mice publications.
Columns (1) to (4) show the estimates for sample A and Columns (5) to (8) show the estimated for sample USA.
The unit of observation is the individual scientist by year. Standard errors are clustered at the scientist level and
shown in parentheses. Significance levels: * p<0.1, ** p<0.05, *** p<0.01.

Research Output

The results of our empirical analysis suggest that scientists who adopt new strains following the

temporary supply shock faced switching costs measured by decreases in research productivity.

These switching costs increase if adopting a different strain is difficult such as in North America.

45The Appendix includes Table A-12 for count and for log-transformed dependent variables.
46Table A-22 in the Appendix shows that affected scientists publish fewer publications with affected (JAX or Non-

JAX) strains and more with spared (JAX or Non-JAX) strains. Moreover, affected scientists publish fewer pub-
lications with inbred mice, but not more publications with transgenic mice. This supports the notion that our
results are not driven by industry trends towards new mice technologies (transgenic mice like Knockout mice)
but within the existing range of technology.
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Figure 1.8 depicts the event study results of the PPML model (Equation 1.2). The outcome

variable is the JIF-weighted number of (mice) publications. In line with our descriptive anal-

ysis, the number of scientific publications follows similar patterns for both groups of scientists

prior to the JAX fire. After the fire, there is a drop in the number of publications, especially for

North American scientists. This decrease is smaller when looking at mice publications only. Af-

ter the initial drop in 1991/1992, affected scientists return slowly to pre-fire levels of research

output.47

Figure 1.8: Research output – event study
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(b) Publication count - sample USA
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(c) Mice publication count - sample A
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(d) Mice publication count - sample USA
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Notes: The figures show the event study estimates and the 90 percent confidence bands of Poisson pseudo-
maximum likelihood regressions with high-dimensional fixed effects following Equation 1.2. The outcome variable
is the number of JIF-weighted (mice) publications. In both samples, the unit of observation is the individual sci-
entist by year. Standard errors are clustered at the scientist level.

Table 1.4 presents the estimates of Difference-in-Differences estimations with (mice) pub-

lication counts, in either simple counts or JIF-weighted. We find small negative effects of the

supply shock on all (JIF-weighted) publication activities. These effects are more pronounced

and significant when looking at affected scientists from North America only – who presumably

were most exposed to the shock. This is in line with our assumption that North American

scientists faced higher switching costs adopting spared strains. For instance, other U.S. com-

mercial suppliers increased their prices substantially in the aftermath of the fire, limiting the

range of affordable strains as potential substitutes.

The point estimate ranges between −0.187 for the North American sample and −0.055 for

the overall sample.48 This refers to a decrease in the magnitude of 18.7% (5.5%) relative to

the pre-fire mean of 4.33 (4.05) publications per year. Relative to the “base” mean publication

counts, this translates into 8.1 (2.2) fewer publications within 10 years.49 The dynamics of

47We illustrate the event study results of many other outcome variables in Figure A-12 in the Appendix.
48This results are broadly similar when looking at linear specifications in Table A-14 and alternative specifications

in Table A-15 in the Appendix.
49In robustness checks we account for outliers by winsorizing all count variables at the 95th percentile. All results

are robust using winsorized values.
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the effect (±5 years shown in Appendix Table A-14) suggest that switching costs occur only

temporarily at the moment of initial tool adoption. The results for all publications can be

confirmed broadly when looking at mice publications directly. We estimate – except for the

simple mice publication counts in the full sample – negative albeit insignificant effects.

To exclude the alternative explanation that changes in productivity might be driven by the

need to work with new people, we investigate whether the adoption of new tools is associated

with changes in the organization of research. This follows the discussion by Teodoridis (2017)

and Zyontz (2019), who show that scientists respond to the availability of new tools with a

re-organization of their scientific knowledge production. However, we show in Table A-17 in

the Appendix that, for instance, the average number of coauthors per paper as well as the po-

sition of the scientists within a project, e.g., last author as a proxy for senior scientist/principal

investigator, remains unaffected.

Table 1.4: Research output – DiD

Count/PPML (1) (2) (3) (4) (5) (6) (7) (8)
+10 years Sample A Sample USA

Publ Mice Publ (JIF) Mice (JIF) Publ Mice Publ (JIF) Mice (JIF)

Post × affected −0.055 0.030 −0.039 −0.027 −0.187∗∗ −0.025 −0.151 −0.122
(0.069) (0.079) (0.089) (0.111) (0.079) (0.103) (0.103) (0.139)

Scientist FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Scientist age Yes Yes Yes Yes Yes Yes Yes Yes

Observations 9622 9622 9622 9622 5440 5440 5440 5440
Scientists 566 566 566 566 320 320 320 320
Log-likelihood −20655 −14323 −51237 −40923 −11783 −8291 −32981 −26303

Notes: Columns (1) to (8) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. The outcome variable is the number of (JIF-weighted) publications/mice publications.
Columns (1) to (4) show the estimates for sample A and Columns (5) to (8) show the estimated for sample USA.
The unit of observation is the individual scientist by year. Standard errors are clustered at the scientist level and
shown in parentheses. Significance levels: * p<0.1, ** p<0.05, *** p<0.01.

Type of Research

A potential reason for our finding is the imperfect substitutability of different research mice,

requiring investments in complementary knowledge. If this was the case, one would expect

long-term adjustments in research trajectories related to the adopted strains, adjustment costs,

as well as a lower propensity to re-use old tools once they are available again.

Imperfect substitutability between old and newly adopted mice strains may require adjust-

ments to the scientist’s research pipeline. This is because different mice strains have different

genetic compositions leading to different traits, which determines their suitability to study

certain phenomena (see Table A-5 for examples) and their substitutability.50 Substitute mice

50As a matter of fact, the case studies cited in Section 1.2.3 describe, for example, that the unavailability of certain
strain may induce the researchers to switch topics as response to work with different mice.
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strains may overlap with respect to some relevant genetic features but differ with regard to

others. We show in this section that the adoption of new mice strains, as a response to the

shock, has led to long-term changes in the type of conducted research, in particular research

related to the newly adopted strains. Given that these adjustments became necessary when

adopting imperfect substitutes to the affected strains, scientists faced considerable costs of

switching back to the old strains once they had become available again.

Table 1.5 presents the effects of the supply shortage of laboratory mice on the scientists’

likelihood to work on new research topics. We create three distinct measures to capture these

changes in research direction. First, we use the mean annual number of self-references in

post-fire publications as an indicator to what extent the scientist relied on her previous body

of work (e.g., Baruffaldi and Gaessler, 2021). Second, we use the mean annual number of

keywords used for the first time by the scientist. Third, we leverage the detailed information

on the content of biomedical publications provided by the Medical Subject Headings. We

calculate the mean annual number of MeSH terms that are new to the scientists. This may

include also information on research methods. Additionally, we restrict the new MeSH terms

to disease-related vocabularies to proxy the novelty of the topic of research more specifically.

We find partial evidence that scientists, who adopt new mice strains, changed the direction

of their research towards unrelated projects. Comparing affected scientists to their controls,

our estimates show a negative effect on self-references to the respective scientist’s own pub-

lications in the magnitude of −0.223 for the full sample and −0.201 for the North American

sample. This decline is disproportionately larger than that for all references (see Appendix

Table A-18 for comparison). The differential effect suggests that affected scientists are more

likely to conduct exploratory research. However, the evidence remains mixed, as we do not

see a significant parallel shift in research topics, as captured by keywords. While all point

estimates are positive – in line with the results on self-references – none of the coefficients

is significant. Some of them are large in magnitude, e.g., the annual number of new disease-

related MeSH terms, and consistently higher than for old disease-related MeSH terms used by

the scientist.51

Table 1.6 shows that the scientists’ research became more applied, i.e., relevant for industry.

In Panel A, we investigate the share of publications published in journals relevant for clinical

research.52 We find positive significant effects of a magnitude of 3 percentage points. Affected

51We explore in Table A-19 whether affected scientists use different research methods such as “in vitro” research,
e.g., related to cell cultures, other typical “research animals”, e.g. rats, monkeys or hamster, or “humans”. In all
three cases, we do not find any significant changes. The point estimates are close to zero suggesting that there
is no differential effect of the supply shortage on other research tools than mice.

52We use a classification of journals based on the proportion of published research coming from general hospitals
and industry using the publicly available data set provided by Tijssen (2010). This list includes about 5,000
major scientific journals indexed in Web of Science. We link this list to scientific journals appearing in Scopus.
A journal is classified as relevant for clinical research, if more than 3% of all publications can be related to a
general hospital, but less than 3% to industry. This leaves us with a set of 1,182 journals or around 25% of all
journals. The data can be accessed here: https://www.vosviewer.com/journal-application-domain-map [last
accessed on March 8, 2021].
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Table 1.5: Type of research (novelty) – DiD

Mean/PPML (1) (2) (3) (4) (5) (6) (7) (8)
+10 years Self-References New Keywords New MeSH New Disease MeSH

All USA All USA All USA All USA

Post × affected −0.223∗∗ −0.201∗ 0.038 0.213 0.058 0.044 0.131 0.096
(0.093) (0.115) (0.156) (0.217) (0.045) (0.057) (0.088) (0.121)

Scientist FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Scientist age Yes Yes Yes Yes Yes Yes Yes Yes

Observations 9129 5270 8738 4981 9622 5440 9452 5338
Scientists 537 310 514 293 566 320 556 314
Log-likelihood −10287 −6134 −8331 −4486 −22339 −12542 −5454 −3124

Notes: Columns (1) to (8) show the estimates of linear regressions with high-dimensional fixed effects. The out-
come variable is the annual average number of self-references in Columns (1) and (2), new keywords in Columns
(3) and (4), new MeSH terms in Columns (5) and (6), and new disease-related MeSH terms in Columns (7) and
(8). Columns with odd numbers show the estimates for sample A and columns with even numbers show the esti-
mated for sample USA. The unit of observation is the individual scientist by year. Standard errors are clustered at
the scientist level and shown in parentheses. Significance levels: * p<0.1, ** p<0.05, *** p<0.01.

scientists are more likely to publish their research in clinical journals relative to their control

group, illustrated in Columns 1 & 5. This is driven by publications using unaffected strains: the

average B6 publication becomes more likely to be published in a clinical journal in Columns 3

& 7. The remaining affected mice strain publications, however, do not change their relevance

for clinical research in Columns 4 & 8.53 It is likely that affected scientists turn to this type of

research since spared mice were already associated with it before the fire.

We observe similar patterns when exploring the commercial applicability of the research

output. Thus, we link patents via references from the front page to scientific publications

using the open-access data set from Marx and Fuegi (2020).54 In Panel B of Table 1.6, we

weighted scientific publications by the availability of at least one reference to a patent within

10 years and calculate the share relative to all publications. The share of patent-weighted pub-

lications, thus commercially applicable, increases for all publications, presented in Columns 1

& 5. Again, we find that the effect is driven by publications based on spared strains like B6 in

Columns 3 & 7 and not by publications based on affected mice strains in Columns 4 & 8.55 We

investigate the content of citing patents by extracting the most frequently used expressions in

the patent title (Table A-14). Less than 2% of patents relate directly to the development of

53These results hold at the extensive margin. The (mice/B6) publication count in clinical journals is increasing in
PPML and linear regressions (Table A-20).

54Patent citations to non-patent literature are a commonly used approach to investigate the relevance of scientific
research for commercially relevant applications (e.g., Poege et al., 2019; Watzinger and Schnitzer, 2019; Ah-
madpoor and Jones, 2017). We link the scientific publications to patents via the Pubmed ID. Each patent-paper
linkage is assigned a confidence score. We keep NPL examiner citations with a confidence score greater than
3, that where found on a patent’s front page, and have an priority year available. Patents are aggregated to
DOCDB Patent Families. To minimize truncation of the data, we include only patents with a priority year 10 (or
5) years after the publications year of the scientific research.

55The same holds true at the extensive margin. For instance, we use patent-weighted publication counts and
observe a small significantly positive effect for B6 publications (Appendix A-20).
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Table 1.6: Type of research (appliedness) – DiD

Panel A (1) (2) (3) (4) (5) (6) (7) (8)
Share/Linear Sample All: Clinical Y / Y Publ Sample USA: Clinical Y / Y Publ

+10 years Y = All Y = Mice Y = B6 Y = Affectd Y = All Y = Mice Y = B6 Y = Affectd

Post × affected 0.030∗ 0.027∗ 0.036∗∗∗ −0.004 0.032 0.030 0.031∗∗ 0.000
(0.016) (0.016) (0.011) (0.010) (0.020) (0.020) (0.013) (0.013)

Scientist FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Scientist age Yes Yes Yes Yes Yes Yes Yes Yes

Observations 9622 9622 9622 9622 5440 5440 5440 5440
Scientists 566 566 566 566 320 320 320 320
Log-likelihood −878 −1046 1827 2238 −336 −452 1396 1195

Panel B (1) (2) (3) (4) (5) (6) (7) (8)
Share/Linear Sample All: Patent-Weighted Y / Y Publ Sample USA: Patent-Weighted Y / Y Publ

+10 years Y = All Y = Mice Y = B6 Y = Affectd Y = All Y = Mice Y = B6 Y = Affectd

Post × affected 0.024∗∗∗ 0.029∗∗∗ 0.019∗∗∗ 0.004 0.039∗∗∗ 0.040∗∗∗ 0.016∗∗ 0.003
(0.007) (0.008) (0.005) (0.006) (0.011) (0.012) (0.006) (0.009)

Scientist FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Scientist age Yes Yes Yes Yes Yes Yes Yes Yes

Observations 9622 9622 9622 9622 5440 5440 5440 5440
Scientists 566 566 566 566 320 320 320 320
Log-likelihood 5132 3686 7767 5512 2542 1850 4357 2446

Notes: Columns (1) to (8) show the estimates of linear regressions with high-dimensional fixed effects. In the
top part of the table, the outcome variable is the share of all/mice/B6/affected mice publications published in a
journal that usually publishes more clinical relevant research relative to all/mice/B6/affected mice publications.
In the bottom part of the table, the outcome variable is the share of all/mice/B6/affected mice publications that are
associated with a patent application (patent-weighted) relative to all/mice/B6/affected mice unweighted publica-
tions. A patent-weight is calculated based on the patent family’s first application being filed within 10 years from
the scientific publication. Columns with odd numbers show the estimates for sample A and columns with even
numbers show the estimated for sample USA. The unit of observation is the individual scientist by year. Standard
errors are clustered at the scientist level and shown in parentheses. Significance levels: * p<0.1, ** p<0.05, ***
p<0.01.

new mice strains (such as transgenic mice). Instead, the patents cover methods, treatments,

the functioning of cells, and the composition of genes (all of these are more important among

B6 publications, except methods). These results are in line with our findings on clinically rel-

evant journal publications. Affected scientists use the newly adopted mice strains to publish

research that is more applied.56

56In Table A-20 in the Appendix, we present the results of trajectory indicator weighted publication counts. These
estimates are, however, confounded by the overall decrease in the number of publications for affected scientists.
Nevertheless, they show an increase in B6 related applied publications. Moreover, our research trajectory results
are robust to alternative specifications in Table A-21.
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Heterogeneity

We solidify switching costs as the primary mechanism at work by exploiting heterogeneity

among scientists. We focus on the scientists’ pre-fire intensity of mice usage and seniority

as possible moderators of the average treatment effects on mice adoption, research output

and research direction.57 We augment the main specification (Equation 1.2) with a triple

interaction to elicit heterogeneous effects.

Figure 1.9 presents differential effects for affected scientists depending on their pre-fire

mice usage. Scientists with a high number of mice-related publications relied more heavily

and frequently on mice as research tools, managing larger supply and complementary facili-

ties. Accordingly, switching costs for these scientists are likely larger in absolute terms, pro-

portionally to the number of mice they used. Indeed, we find heterogeneous effects on the

adoption of mice strains, productivity, and type of research, which mirror the observed hetero-

geneity between sample A and sample USA. Affected scientists with an above-average pre-fire

number of mice publications experience disproportionate decreases in their research output.

This is in line with the interpretation that a higher pre-fire reliance on mice makes switching

more costly. The imperfect substitutability of strains creates the necessity to adjust research

projects. We find evidence for positive effects on the shares of clinical journal publications and

patent-cited publications.58

Figure 1.9: Heterogeneity by mice dependence
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(b) Publication count
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(c) Clinical-relevant publications
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(d) Patent-weighted publication count
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Notes: The figures show the event study estimates and the 90 percent confidence bands of regressions following
Equation 1.2 with a triple-interaction term using sample A. The triple-interaction term is a scientists’ JIF-weighted
mice publication record in the 5 years before the fire. Count data is estimated using Poisson pseudo maximum
likelihood regressions and shares are estimated using linear regressions. The unit of observation is the individual
scientist by year. Standard errors are clustered at the scientist level.

57Unfortunately, we cannot exploit variation in mice characteristics, because the most common strains in our sci-
entists’ portfolios are very similar regarding the number of gene loci, sales, or commercial availability.

58Tables in the Appendix Section A.5.9 show the results of regression estimations with interactions that confirm
the presented event studies.
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When examining potential heterogeneity by scientist age (Figure A-13), we expect more

senior scientists to be more path-dependent so that the adoption of new mice strains causes

more switching costs and higher adjustments to projects. In fact, older scientists are less

likely to adopt new strains such as B6, have fewer publications, and are more likely to change

their type of research towards more applied publications. However, these differences are not

significantly different from the baseline.

1.7 Discussion and Conclusion

Institutions and markets increasingly play a role in the production and diffusion of research

inputs. In this paper, we posit that the existence of switching costs for scientists influences the

adoption of research tools and bears important implications for the functioning of such mar-

kets. To provide empirical evidence, we exploit the unforeseen and temporary supply shortage

of specific mice strains caused by the 1989 Morrell Park fire at JAX as a natural experiment.

We find that the supply-shock, albeit temporary, had long-lasting effects on the adoption of

different mice strains. This effect is explained by those mice for which switching costs were

presumably higher, due to lower levels of supply prior to the fire, the lack of alternative sup-

pliers, and higher uncertainty associated with a more limited understanding of their genetic

code. Moreover, the shock favored an increase in the use of mice, among those not affected

by the fire, subject to lower uncertainty and characterized by higher versatility and robustness

in breeding (e.g., the B6 mouse).

Scientists more exposed to the shock have shifted their adoption from the mice in short

supply to these same mice. We further find that scientists incur only temporary losses in pro-

ductivity, but permanently change the type of their research along several dimensions. This is

again consistent with the existence of switching costs and an interpretation of different mice

strains as imperfect substitutes. The adoption of new mice strains comes with switching costs

that affect productivity in the short run. In the long run, the adjustments to the type of re-

search induced by the adoption of imperfect substitutes create further costs for scientists who

consider switching back to the mice they had previously used.

The existence of frictions that potentially undermine the functioning of markets is a central

tenant in the literature on innovation diffusion (David, 1985; Dosi, 1982). Our results demon-

strate the importance of these frictions for the adoption of research tools, which is of particular

importance due to their role in the process of knowledge production (Mokyr, 2002; Stephan,

2012). Moreover, we pin down the role of one key mechanism: demand-side switching costs.

The most relevant implication of these findings is that research tools markets may not nat-

urally converge to any specific or desirable equilibrium. Due to path dependency, idiosyncratic

shocks and distortions may have enduring effects. This underscores the importance of institu-

tional interventions and community-wide efforts to steer research tools markets’ trajectories.

Indeed, the biomedical community is engaged in activities that promote the diffusion of best
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practices and knowledge, and laboratories such as JAX take a central part in such activities

(e.g., training opportunities, knowledge platforms, coordination, and centralized production).

Analogous activities exist also in different research fields and innovation sectors, more broadly.

Our evidence provides an economic raison d’etre for such efforts that, arguably, are not the nat-

ural outcome of pure market mechanisms.

This study does not put into question the potential benefits of markets for research tools or

the role of institutions that intend to centralize their production. On the contrary, we posit that

they underpin the processes of knowledge sharing and standardization that favor diffusion

(Furman and Stern, 2011). If anything, we see that more established research tools (those

available from multiple suppliers and accompanied by a broader knowledge base) were re-

silient to the shock. Self-production alone would be most likely associated with more severe

frictions to diffusion and higher risks for scientists (Baruffaldi and Gaessler, 2021). However,

testing this broader hypothesis escapes the possibilities of our empirical setting and is left for

future research.
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2
The Innovation Effect

of Drug Approval

2.1 Introduction

Technological change in healthcare and pharmaceutical markets has been a main driver for

progress in human health. This applies especially to the development of new pharmaceutical

treatments, which are responsible for a substantial increase in life expectancy (Lichtenberg,

2019). A variety of case studies show that many of these health improvements are related to

radical innovations (see for discussion, e.g., Kyle, 2020).1 However, pharmaceutical companies

invest also a substantial amount of their resources into incremental follow-on innovations.

These are modifications over existing drugs, such as dosage formulations, the discovery of

new therapeutic use, or drug combinations (European Commission, 2009).

There is an ongoing economic and political discussion regarding the net consumer surplus

derived from incremental innovations in the pharmaceutical industry (Yin, 2017). Some incre-

mental innovations are meaningful improvements to therapeutic treatments for the benefit of

society (Arcidiacono et al., 2013; Bokhari and Fournier, 2013), which I define as “improvement

innovations”. However, other incremental innovations are argued to be trivial modifications

to the original drug that have little or no therapeutic benefits. The latter type of innovation

activities is conducted, i.a., to strategically enforce patent protection surrounding the focal

invention (Amin and Kesselheim, 2012; Frakes and Wasserman, 2020; Gurgula, 2020).2 In

the case of pharmaceuticals, this behavior aims at prolonging market exclusivity periods to

1Some examples are the development of sulfa drugs (Jayachandran et al., 2010), vaccines (Whitney et al., 2014),
new cancer drugs (Howard et al., 2016; Lichtenberg, 2018), or new treatments for cardiovascular disease
(Cutler et al., 2007).

2This is commonly described as strategic patenting, which can be defined as the use of the patent system to lever-
age “complementarities between patents in order to attain a strategic advantage over technological rivals”
(Von Graevenitz et al., 2007).
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limit and delay generic competition (also referred to as life-cycle management). This comes at

the expense of longer effective patent lives delaying generic entry and allowing the originator

company to earn supracompetitive profits (Budish et al., 2015). I posit that patenting reflects

underlying real (although marginal) innovation activities. I define this type of innovation

activities as “enforcement innovations”.3

The incentives of pharmaceutical companies to invest in improvement and enforcement

innovations may change over the drug life cycle. In the course of this, the event of drug ap-

proval is of capital importance. The transition from pre-approval to post-approval may have

two countervailing effects on follow-on innovation activities: on the one hand, entering the

market should stimulate originators to protect the approved drug from competition and to im-

prove its features. This would lead to an upsurge in enforcement and improvement innovation

activities after the drug’s marketing authorization (European Commission, 2009; Sternitzke,

2010, 2013). On the other hand, the marketing authorization impedes the enforceability of

follow-on patents that are filed after approval. There are multiple reasons for this, e.g., (trial-

related) information disclosed in the course of the drug approval can render an invention

obvious and serve as novelty threatening prior art and, thus, increase the patentability stan-

dards (Breckenridge and Jacob, 2019; Kallenbach and Vallazza, 2018; Mello et al., 2013).4

If the marketing authorization, in turn, reduced the effectiveness of follow-on patents filed

after approval, this would decrease the incentives of originators to invest in enforcement in-

novations. In contrast, improvement innovations, more likely to fulfill the requirements of

novelty and non-obviousness, should be unaffected by the changes in enforceability. Thus,

this study asks the question: is the marketing authorization an effective public institution to

reduce enforcement innovations that are presumably without actual therapeutic benefit?

To this end, I collect novel data on pharmaceutical patents that combines detailed informa-

tion on the focal inventions, follow-on innovation activities, and data on marketing authoriza-

tions. I exploit the fact that follow-on innovations can be observed through patent citations

(Galasso and Schankerman, 2015). Originator companies, which develop and commercialize

a new drug, file first for a “primary” patent covering the new molecular entity (NME). Thus,

forward citations to this “primary” NME patent capture all innovation activities building up

and being related to the focal invention. Among those patented follow-on innovations, I dis-

tinguish between those presumably related to enforcement and those presumably related to

improvements. First, I identify “secondary” patents, which cover subsidiary features of the

drug such as dosage formulations. These patents are commonly used to delay generic entry

(e.g., Amin and Kesselheim, 2012) and, thus, are more likely to be the result of enforcement

innovations. In contrast, I associate follow-on “product” patents with improvement innova-

3Other scholars define the “alteration of one or more technical elements of a product to limit or eliminate compe-
tition” as predatory innovation (Schrepel, 2018).

4Additionally, in some jurisdictions such as the United States (U.S.), institutional reasons require all patents that
protect the focal drug from generic entry to be listed in U.S. Food and Drug Administration’s Orange Book before
the first drug approval (21 U.S.C. §355(b)(1) & (2)).
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tions. Second, I identify whether patents are filed within the same disease category and, thus,

being more marginal compared to patents filed in different disease categories.

Successful drug candidates are on average more valuable and, hence, more likely to receive

follow-on innovations than drug candidates that never receive approval. Therefore, I compare

only approved drugs with each other and leverage plausibly random differences in the timing

of drug approval relative to the patent filing, called time to approval (e.g., Gilchrist, 2016).

Focal inventions that have not yet obtained a marketing authorization serve as a control group

for focal inventions with early approval. I provide evidence that inventions with early and

late marketing authorization do not differ in ex-ante patent or drug characteristics such as the

underlying technology, the timing of the patent grant, or the field of application (e.g., disease

categories), and exhibit parallel pre-approval trends.

First, I document the presence of considerable follow-on innovations related to improve-

ment and enforcement after the drug approval, both by the originator, vertically related firms,

and generic manufacturers. This is in line with prior literature (Howard, 2007; Sternitzke,

2013). While in the beginning of the drug life cycle, follow-on innovation activities are typi-

cally conducted by the originator company, this activity shifts towards third parties over time.

Second, I find support for the hypothesis that enforcement innovation activities decrease

substantially after the marketing authorization. This decrease is observed for secondary

patents and patents in the same narrow field of application. The immediate timing of the

decrease in follow-on innovation provides suggestive evidence for the proposed enforceability

mechanism. Consistent with this, I do not find similar effects on enforcement innovation for

prior milestones in the drug development process, such as the completion of phase II clini-

cal trials, that are presumably not related to increases of patentability standards. Moreover,

I illustrate that the decrease in innovation is not only associated with the focal firm, but also

with third parties, who are likely in a vertical relationship with the originator.5 Thus, my find-

ings suggest that the change in incentives provided by the marketing authorization also affects

enforcement innovation activities of other firms along the value chain.

Third, I show that improvement innovation activities, which are presumably not affected

by the increase in patentability standards at the marketing authorization, remain unaffected by

the drug approval.6 Originators seem to shift their resources towards more novel innovations,

such as new compounds and new diseases. Thus, marketing authorization-related increases

in patentability standards, which decrease the enforceability of marginal follow-on patents,

delineate incremental innovation activities: investments in improvement become relatively

more important than investments in enforcement with little therapeutic benefit.

5It is a common feature in the pharmaceutical industry that smaller biotech companies develop and patent the NME
and license them to larger firms with experience in designing clinical trials and commercializing/marketing
drugs (Higgins and Rodriguez, 2006).

6If at all, the decrease in uncertainty coming from the public validation of the safety and effectiveness of the drug,
may make incremental innovations with therapeutic benefit more worthwhile.
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Finally, I can exclude a variety of alternative explanations for my findings. I show that the

effects are not driven by differences in incentives for competitive entry by holding the market

exclusivity period constant. To this end, I exploit the discontinuities in the EU patent term

extension regime related to pharmaceutical products. Furthermore, I account for strategic

timing decisions, such as accelerated market entry for more valuable drugs. The results suggest

that the true effect is likely of a larger magnitude than the estimated effect (lower bound).

Furthermore, I show that the decrease in enforcement innovation after the drug approval is

also not driven by individual diseases.

I contribute to several strains of literature. First, I extend the literature on patent fencing

and evergreening in the pharmaceutical industry (e.g., Abud et al., 2015; European Commis-

sion, 2009; Gupta, 2020; Hemphill and Sampat, 2012; Sternitzke, 2010, 2013) and show that

secondary patenting becomes less likely with drug approval. This is presumably related to the

obstacles in enforceability of follow-on patents filed after approval (e.g., novelty threatening

prior art disclosed at the marketing authorization).

More generally, my findings relate to the literature on the incentives for innovation in

the pharmaceutical industry, e.g., market size (Acemoglu and Linn, 2004; Blume-Kohout and

Sood, 2013) or intellectual property rights (Gaessler and Wagner, 2020; Kyle and McGahan,

2012). I show that the type of incremental innovation activities carried out changes with drug

approval. Originators can streamline the innovation activities by investing less in life-cycle

management activities like enforcement innovations.

Lastly, I contribute to the literature on patents and follow-on innovation. It has been es-

tablished that patents have a negative impact on third-party follow-on innovation, e.g., due to

bargaining failures (Galasso and Schankerman, 2015) or by restricting the freedom-to-operate

(Gaessler et al., 2019).7 This study provides evidence that there are additional factors relevant

in the relationship between patents and follow-on innovation, such as the impact of product

commercialization – here proxied by drug approval.

This paper is structured as following: Section 2.2 describes the drug development process

and pharmaceutical patenting. Section 2.3 elaborates on the data, summary statistics and pro-

vides descriptive evidence. Section 2.4 details the empirical strategy. Section 2.5 presents the

estimation results and Section 2.6 discusses alternative explanations. Section 2.7 concludes.

7Extensive empirical literature investigates whether and at which magnitude patents decrease follow-on innovation
below the socially desirable. It consists of both technology specific studies largely focusing on Biotechnology
or Pharmaceuticals (Gaessler and Wagner, 2020; Murray et al., 2016; Sampat and Williams, 2019; Williams,
2013) and of across-technology studies (Gaessler et al., 2019; Galasso and Schankerman, 2015).
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2.2 Drug Development and Patenting

Drug development is a costly endeavor. Recent estimates of the average capitalized costs per

drug oscillate around $2.5 billion depending on the disease category (DiMasi et al., 2016).

These costs are the result of extensive clinical trials and approval processes with an aver-

age development time of about 12 years (Adams and Brantner, 2006). Additionally, pharma-

ceutical companies spend around $300 million related to post-approval R&D, which includes

enforcement innovations, improvement innovations, and the monitoring of possible adverse

reactions and/or new side effects (DiMasi et al., 2016). In total, the pharmaceutical indus-

try invests around 17 percent of its global revenues derived from prescription drugs in R&D

(European Commission, 2009).

The drug development process illustrated in Figure 2.1 starts with the discovery of an active

ingredient. The initial discovery phase is followed by (pre-)clinical trials once a concrete field

of application is found.8 This period can be described as the pre-approval period. Successful

development is verified in the marketing authorization process.9 Subsequently, pharmaceuti-

cal companies (either the originator, vertically related firms, or licensees) are allowed to launch

and sell the drug for indications approved by the marketing authorization. In the initial years

after the commercialization, the drug is typically protected by various forms of market exclu-

sivity, such as data exclusivity and patents. Thus, the originator can sell the newly developed

drug without competition from generic products. After patent expiry, generic products enter

the market (European Commission, 2009) and prices fall drastically (Morton and Kyle, 2011).

Intellectual property rights are considered to be the most important incentives in the de-

velopment of new drugs (Mansfield, 1986).10 Typically, promising drug candidates (active

ingredients/NME) are included in patent filings directly after discovery. These initial patents

are considered “primary patents” and have a fixed patent term of 20 years.11 In some jurisdic-

tions, such as the EU, pharmaceutical companies can extend the patent term by up to 5 years.

Besides, pharmaceutical companies file additional patents (called “secondary” patents) cover-

ing further subsidiary characteristics related to the drug, such as the different dosage forms

8Four phases of clinical trials can be differentiated: in phase I, originators assess the toxicity of a new drug candi-
date. Phase II proves efficacy. Phase III involves long-term trials with large patient groups. This phase is also
the origin of development of novel pharmaceutical formulations and dosage forms, which might be used for
strategic patenting purposes. Phase IV follows the product launch. Originators are required to monitor possible
adverse reactions and/or new side effects (European Commission, 2009). The duration of these clinical trials
depends on exogenous characteristics, e.g., related to the firm (Wagner and Wakeman, 2016). However, there
are considerable random elements unrelated to firm or drug (Gilchrist, 2016).

9Marketing authorization is either granted by the European Medicines Agency or nationally (European Commission,
2009). It verifies that medicines are safe, effective, and of good quality.

10Various empirical studies show that drug patents are an important determinant of investments in pharmaceutical
R&D (e.g., Kyle and McGahan, 2012; Gaessler and Wagner, 2020). Moreover, various scholars highlight the
importance of the design of patent characteristics (Budish et al., 2015; Gilchrist, 2016; Izhak et al., 2020).

11Budish et al. (2015) describe why this fixed patent term might distort the incentives for firms to invest in projects
with long clinical trials. The residual exclusivity time is too short to recover the investment costs. Therefore,
I conduct a robustness check in which the market exclusivity period does not change with the timing of the
marketing approval.
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(e.g., tablets or capsules) or particular pharmaceutical formulations (e.g., mixtures of active

agents), methods of delivery, or new combinations of active substances. The ratio of primary

to secondary patents is roughly 1:7 (European Commission, 2009).

Sternitzke (2013) describes that these secondary patents are often filed strategically to ex-

tend the market exclusivity time (called evergreening) and to broaden the scope of the patent

protection (called patent fencing). In a recent study, Gupta (2020) shows that secondary

patents effectively extend market exclusivity periods. However, the incentives for origina-

tors to invest in innovation activities may decrease after the marketing authorization, if the

invention’s only purpose was enforcement without actual therapeutic improvements. This is

because clinical trial documents published in the course of the marketing authorization may

create obstacles to meet the patentability requirements “novelty” and “inventive step/non-

obviousness”. Several decisions of the European Patent Office’s (EPO) Board of Appeal show

that the disclosure of clinical trial protocols and results, i.e., in scientific journals, was preju-

dicial to the novelty of secondary patents if they allow a skilled person to derive the follow-on

invention with a high degree of certainty (see e.g., EPO Boards of Appeal decisions T 385/07, T

715/03, T 1859/08, T 158/96, T 2506/12, T 1031/00). The same applies to non-obviousness.

Disclosure of the trial-related information can render an invention obvious if it increases the

likelihood that an average skilled person would solve the technical problem at hand in light

of the disclosed information (see e.g., EPO Boards of Appeal decisions T 1745/12, T 1493/09,

T 2506/12, T 0385/07). In some of these cases, the disclosure of the trial-related informa-

tion invalidated secondary patents (Breckenridge and Jacob, 2019; Kallenbach and Vallazza,

2018; Mello et al., 2013).12 Moreover, in some jurisdictions such as the U.S., institutional

reasons require all relevant secondary patents to be listed in the U.S. Food and Drug Adminis-

tration’s (FDA) Orange Book before the timing of the first drug approval (21 U.S.C. §355(b)(1)

& (2)).13 Both circumstances create obstacles for the enforceability of follow-on patents filed

after approval since they are more likely to be annulled in opposition or subsequent litigation

(European Commission, 2009).

12For further discussions, see:
https://www.iam-media.com/clinical-trial-disclosures-obstacle-patentability-in-europe [last accessed on March
8, 2021] or https://www.lexology.com/library/detail.aspx?g=51697502-e1a1-4639-9c32-f45e298e2675 [last
accessed on March 8, 2021].

13Following the Hatch-Waxman Act in 1984, a generic manufacturer has to wait until all of the patents listed in
the FDA’s Orange Book expire or file a “Paragraph-IV challenge” by successfully showing non-infringement or
invalidity of all these patents (Branstetter et al., 2016). For further discussions, see:
https://www.finnegan.com/en/insights/articles/requirements-benefits-and-possible-consequences-of-listing-
patents-in-fdas-orange-book.html [last accessed on March 8, 2021].
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Figure 2.1: Drug development process and patenting
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Market exclusivity

Primary Patent Filing Secondary Patent Filings

Notes: The figure illustrates the typical drug development and patenting process following the European Commis-
sion (2009).

2.3 Data and Summary Statistics

2.3.1 Data

This study aims at investigating whether drug approval decreases enforcement innovations.

However, linking inventions (focal patents) and products is a difficult endeavor (de Rassen-

fosse, 2018). This is because many inventions relate to more than one commercialization

attempt and many products are based on more than one technology. The pharmaceutical in-

dustry provides a unique setting since few patents protect a drug, and few drugs are protected

by the same patent (Cohen et al., 2000). This allows me to clearly link a focal invention –

the drug – to its primary patent, the drug approval, and all related incremental innovation

activities.

Patent-Drug Link

I use data on primary patents covering a NME and the approved drug(s) from public registers.

The data is available because firms can apply for the extension of their patent term by applying

for Supplementary Protection Certificates (SPC) in the European Union.14 A formal require-

ment is to provide information on the patent-drug link. National patent authorities, like the

German Patent and Trade Mark Office (DPMA), collect and publish this information.15

I collect all patent-drug links at the DPMA until September 2018 (Figure 2.2a). This data

includes the primary patent application number, the drug name, the patent applicants, and all

relevant dates concerning the drug approval, such as the date of the first EU marketing autho-

14Available empirical studies that investigate SPC have descriptive character and analyze primarily the determinants
of SPC usage as well as application outcomes (Kyle, 2017; Mejer, 2017; Gaessler and Byrski, 2018).

15Similar data sets are available for example at the FDA with the Orange Book. The FDA includes all secondary
patents related to the drug. In this study, I rely on forward citations instead, since it allows me to differentiate
between follow-on innovation activities related to enforcement and improvement.
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rization. The full data set comprises 1,405 patent-drug links16 with 1,135 unique INPADOC

patent families.

Originators can wait until the patent expiry day to file for a SPC and, thus, to include

the patent-drug link into the database. Therefore, more recent patent cohorts may suffer

from truncation and selection problems since only a (non-random) subset of patent-drug links

is included. Hence, I restrict the sample using the following steps. First, I account for the

truncation issues by excluding all patents that are filed within the last 20 years before data

collection (1997+patent term). This has the additional advantage of including only similarly

relevant patents and drugs into the analysis. Figure 2.2b shows that the 1997-restricted sample

still includes a large share of the primary patents.17 Second, I only keep those observations

that relate to the first drug associated with a primary patent.18

The data provided allows me to calculate the approval-lag. It is computed between the

priority date of the focal drug’s primary patent and the date of the first EU marketing au-

thorization.19 I exclude extreme values in the time to approval. Setting the cut-off point at

90%, which corresponds to 16 years, this restriction allows me to investigate a full five-year

post-approval period for all observations.20

The final data set eventually comprises 590 unique patent families that correspond to 590

unique drugs. This is a similar magnitude compared to other studies using drug approval data

(Gilchrist, 2016). Due to the 1-to-1 relationship, I use the expressions “(focal) drug”, “primary

patent”, and “(focal) invention” interchangeably.

Patent Data

I link the resulting data set to further patent information on the primary patent from Patstat

via the application number and collect all patent information at the INPADOC patent family ID

level.21 The main dependent variable is the annual number of EPO forward citations, which

the primary patent received from subsequent EP patents.22 Prior literature has argued that

16The SPC data comprises also plant protection patents, which I exclude in this study.
17All results are quantitatively similar when using the larger full sample in Appendix Figure B-11.
18Some firms try to apply for more than one SPC for one drug patent, which yields several patent-drug links. These

SPC applications are registered in the data set, but in most cases rejected (Kyle, 2017; Mejer, 2017; Gaessler
and Byrski, 2018), so that I drop duplicative SPC filings.

19In the SPC data the approval-lag, which is the basis for the calculation of the patent term extension, is calcu-
lated using the national application year. Since forward citations can occur from priority onward, I define the
priority date as the “real” starting point of an invention’s age. Moreover, the SPC data includes all marketing
authorization dates in the EU. I choose the first EU marketing authorization for this study.

20The last patent is filed 1997 with a priority year in 1996. Forward Citations are observed until 2017. 1996 plus
a maximum of 16 years time to approval leaves a post period of 5 years for the last patent filed in the sample.
All results are robust to alternative or no thresholds (Appendix Figure B-11).

21The pharmaceutical industry is characterized by a high number of continuations. These continuations are fre-
quently not included in narrower patent family definitions (DOCDB). For a discussion, see Martinez (2010).

22Citations are aggregated at the INPADOC family level on both sides: cited INPADOC patent family ID and citing
INDPADOC patent family IDs.
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Figure 2.2: Distribution of SPC filings and patent priority filings over time
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Notes: Figure (a) presents the distribution of all 1,405 SPC filings over time (full sample). Each SPC filing includes
a patent-drug link, which is used throughout the analysis. A SPC is typically filed at the end of a patent’s lifetime.
Figure (b) shows the distribution of the corresponding patent priority filings over time. The grey window shows
the restricted sample with 590 unique patent-drug links.

forward citations serve as a proxy for follow-on innovation and knowledge spillovers.23 If not

stated otherwise, the citation counts are log-transformed with one being added before taking

the logarithm to include patents with no forward citations in the respective year.

Furthermore, I extract the harmonized firm names curated by the OECD (Harmonised Ap-

plicant Names – HAN) of all applicants mentioned in all cited and citing patent publications.

I use this information to distinguish between self- and other companies’ citations following

the approach outlined in Gaessler et al. (2019). I investigate the nature of these third party

citations by manually checking the applicant. The 20 largest pharmaceutical firms are related

to 50% of the forward citations. Some citations are, however, generated by firms that fo-

cus on generic manufacturing. Additionally, I differentiate between examiner-generated and

applicant-generated citations and the citation type. To this end, I identify X and Y citations

that reference the primary patents as validity-threatening prior art (e.g., Harhoff and Wag-

ner, 2009; Nagler and Sorg, 2020; Wagner and Wakeman, 2016). Moreover, I identify further

patent characteristics like the patent family size or the number of applicants, and identify the

first patent grant within the patent family.

Drug Data

I complement the publicly available register data by adding drug-level characteristics from the

proprietary pharmaceutical Clarivate Analytics’ Cortellis Investigational Drugs database (com-

monly known as Cortellis) at the patent, drug, and firm level. I link cited and citing patents

by their INPADOC patent family ID to the Cortellis database. If citing patents are successfully

linked, I define the forward citation as being in the "pharmaceutical" domain. Crucially, Cortel-

23EPO citations are less strategic than citations generated at the United States Patent and Trademark Office. For a
discussion, see Gaessler et al. (2019).
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lis categorizes patents by their relationship to the respective drug (called “patent type”). This

allows me to differentiate citing patents into product patents (e.g., new products, new product

derivatives, new macromolecule), process patents, and secondary patents (e.g., new formu-

lations, new dosage forms, new drug combinations, or new use). I use the “product” patent

category as a proxy for innovation activities that are more likely to involve actual improve-

ments, and the “secondary” as well as “process” patent categories as proxies for innovation

activities that are more likely related to enforcement.

Moreover, I use the Cortellis link to investigate how marginal citing patents are compared

to the cited patent. To do so, I identify whether the patents belong to the same narrow field of

application – here the drug market is defined by diseases. In Cortellis, each patent is associated

with targeted conditions, which I assign to the World Health Organization’s ICD-9 disease codes

using the crosswalk by Dranove et al. (2020).24 I use this data to identify whether each citing-

cited patent dyad overlaps in at least one disease category.

To identify the origin of the follow-on innovation activities, I rely on the drugs’ full develop-

ment history and retrieve information on the timing of clinical trials for each focal patent-drug

link.25 If the citing companies conducted clinical trials that are related to the focal drug, I

define their citations as being generated from a vertically related firm.

2.3.2 Summary Statistics

In this section, I summarize the data and investigate whether the approval lag is correlated

with observable ex-ante patent and drug characteristics. This analysis as well as Section 2.3.3

inform and motivate the empirical strategy, in which I exploit staggered drug approval.

First, I divide the sample into two equally sized groups, using as a threshold the median

of the time to approval, as illustrated in Figure 2.3. It shows inventions that obtained the

first marketing authorization within 10 years (early MA) and inventions that obtained the

first marketing authorization between 11 to 16 years (late MA) after the priority date. The

distribution of the time to approval is smooth between 5 and 16 years suggesting the absence

of structural breaks. By definition, a longer time to approval leads to marketing authorizations

occurring in later years. These characteristics are in line with Sternitzke (2010), who finds the

average approval lag to be 11 years. The market exclusivity period, shown in Appendix Figure

B-2, is uniform in the early MA group at 15 years but decreases if the approval lag exceeds ten

years. I exploit this discontinuity in Section 2.6 when investigating alternative explanations.

Figure 2.3c illustrates that the annual distribution of patent priority filings is largely un-

correlated with the approval lag. This suggests the absence of cohort effects. Overall, citing

patents’ priority filings are similarly distributed, as well, with one notable exception (Figure

24Dranove et al. (2020) had two expert medical coders independently code the concordance between Cortellis
indications and ICD-9 codes. I am grateful to Manuel Hermosilla for sharing the mapping.

25Some patents are related to more than one drug. Thus, I manually evaluate which of these drugs corresponds
most likely with the drug in the SPC data set. To this end, I compare the drug names conditional on being
authorized in a similar time period.
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Figure 2.3: Distribution of further timing related variables
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Notes: The figures compare the distribution of timing related variables between early MA and late MA drugs. The
main sample of 590 patent-drug links is split in two equally sized groups, using as threshold the median of the
approval lag.

2.3d). Primary patents in the early MA group are referenced in fewer follow-on patents from

1995 onward. This is precisely at a time, where the majority of these early MA primary patents

received their first marketing authorization.

Additionally, the primary patent’s first grant year and the time to patent grant are equally

distributed (Figures 2.3e & 2.3f). This is important because one could assume that patents
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with a late drug approval are associated with an inherently different technology or differential

firm incentives.26 For example, prior research shows that more valuable patents have a shorter

patent pendency time at the respective patent offices (Harhoff and Wagner, 2009). However,

the time to patent grant does not differ across different drug approval lags.

Second, I compare the same groups of focal inventions along a variety of patent and drug

characteristics in Table 2.1. This provides further confidence in the idea that the approval

lag is unrelated to any other initial patent and drug indicator that could potentially affect the

evolution of forward citations.27

The dependent variables, such as self-citation counts or secondary patent citation counts,

exhibit a similar magnitude in the first years after the priority filing. The mean levels of for-

ward citations in the initial year are not statistically different from each other. The same

applies to the primary patent-related covariates, which are determined at or shortly after the

patent filing. Except for a few cases, they are uncorrelated with the approval lag. For example,

primary patents have a similar family size, number of applicants, likelihood of being filed in-

ternationally, and likelihood of being filed in all three major patent offices (EPO, USPTO, JPO).

This indicates an ex-ante similar private value between the patents (see, e.g., Harhoff et al.

(1999, 2003) for a discussion). However, early-approval patents are filed more often under the

technology classification pharmaceuticals and less often in biotechnology. If the nature of the

technology influences the timing of the marketing authorization as well as the forward citation

patterns, this could potentially bias the results. Therefore, the empirical strategy accounts for

those differences by using patent fixed effects. Drug-related covariates (combination of active

ingredients and salts) are equally distributed.

To shed further light on whether the nature of the drugs differs by the timing of the mar-

keting authorization, I exploit the disease categories associated with each invention. At large,

pharmaceutical patents with early or late MA also do not differ with regard to the indications

listed in the patent applications. The five most prominent disease categories are “infectious

and parasitic diseases", “neoplasms", and “endocrine, nutritional and metabolic diseases, and

immunity disorders", “diseases of the nervous system and sense organs", and “diseases of the

circulatory system" (Table 2.2). The likelihood of being associated with one of these top 5

categories does not differ across patent-drug approval pairs except for “endocrine, nutritional

and metabolic diseases, and immunity disorders". This shows that early and late approved

drugs occur among similar diseases. However, it might still be the case that unobserved differ-

ences at a lower aggregation ICD-9 disease level may drive different dynamics in generating

forward citations. Thus, I will account for this in Section 2.6. In a nutshell, focal drugs with

early and late MA are similar concerning most ex-ante patent and drug characteristics. This is

important because it constitutes the basis for the definition of treatment and control.

26Prior literature suggests that economic outcomes are related to the timing of the grant decision, e.g., likelihood of
licensing (Gans et al., 2008) or the willingness to invest in commercialization (Wagner and Wakeman, 2016).

27Summary statistics without the sample split can be found in Appendix Tables B-1 and B-2.
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Table 2.1: Mean comparison – ex-ante patent and drug characteristics

Early MA vs Late MA (1) (2) (3) (4) (5) (6) (7) (8)
Early MA (N= 288) Late MA (N= 302)

Mean Median Std. Err Mean Median Std. Err Diff p-value

Time to approval 8.26 8 1.3 13.21 13 1.7 4.94 0.000∗∗∗

Time to patent grant 2.33 2 1.2 2.44 2 1.4 0.11 0.322
Patent priority year 1987.38 1987 5.1 1987.00 1987 5.8 -0.39 0.394
First patent grant year 1989.66 1990 5.4 1989.36 1990 6.3 -0.30 0.533
First MA year 1995.64 1996 5.0 2000.17 2000 6.1 4.53 0.000∗∗∗

Market exclusivity 15.00 15 0.0 12.88 13 1.7 -2.12 0.000∗∗∗

Initial forward cit. 0.66 0 1.1 0.64 0 1.1 -0.02 0.812
Initial self cit. 0.27 0 0.5 0.28 0 0.5 0.02 0.684
Initial other cit. 0.40 0 0.9 0.36 0 0.8 -0.04 0.586
Initial same ICD9 cit. 0.25 0 0.5 0.25 0 0.5 0.00 0.967
Initial other ICD9 cit. 0.03 0 0.2 0.04 0 0.2 0.00 0.915
Initial biotech patent cit. 0.00 0 0.0 0.00 0 0.1 0.00 0.329
Initial secondary patent cit. 0.13 0 0.4 0.10 0 0.3 -0.03 0.334
Initial process patent cit. 0.02 0 0.2 0.03 0 0.2 0.00 0.875
Initial product patent cit. 0.19 0 0.4 0.21 0 0.5 0.02 0.544

Pediatric drug 0.07 0 0.2 0.07 0 0.2 0.00 0.990
Drug combination 0.30 0 0.5 0.31 0 0.5 0.01 0.810
Salt of drug molecule 0.14 0 0.4 0.18 0 0.4 0.04 0.229

Size of patent family 26.83 24 16.7 24.77 24 14.6 -2.06 0.112
Number of applicants 1.09 1 0.3 1.10 1 0.3 0.01 0.827
Transn. patent family 0.87 1 0.3 0.85 1 0.4 -0.01 0.630
Triadic patent family 0.52 1 0.5 0.56 1 0.5 0.05 0.268
Tech area organic chem. 0.44 0 0.5 0.50 1 0.5 0.07 0.110
Tech area pharma. 0.47 0 0.5 0.36 0 0.5 -0.10 0.010∗∗∗

Tech area biotech. 0.06 0 0.2 0.10 0 0.3 0.05 0.035∗∗

Tech area material chem. 0.01 0 0.1 0.01 0 0.1 -0.00 0.616
Applicant country US 0.36 0 0.5 0.33 0 0.5 -0.03 0.497
Applicant country Europe 0.47 0 0.5 0.43 0 0.5 -0.04 0.311

Notes: This table compares ex-ante patent & drug characteristics split at the median approval lag with t-tests. The
unit of observation is the unique patent-drug level. Initial forward citation counts include all patent references
within 12 months from the primary patent’s priority filing. Significance levels:* p<0.1, ** p<0.05, *** p<0.01.

2.3.3 Descriptive Analysis

If the marketing authorization decreased the incentives for the originator to invest in incremen-

tal innovation activities related to enforcement, the trend in forward citations should diverge

from the marketing authorization onward. In the following figures, focal drugs are again split

by the median time to approval. Thus, inventions in the early MA group obtain the marketing

authorization between year 5 and 10 (median year 8), which is highlighted by the grey bar.

Inventions in the late MA group are not associated with a drug approval at this point in time.

Figure 2.4 presents the development of the average yearly number of forward citations. It

becomes apparent that the forward citation count develops parallel before any approval and

diverges precisely around the timing of the early marketing authorizations (between year 5

and 10). Inventions with early MA start to accumulate fewer forward citations after the drug
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Table 2.2: Mean comparison – disease characteristics

Early MA vs Late MA (1) (2) (3) (4) (5) (6) (7) (8)
Early MA (N= 288) Late MA (N= 302)

Mean Median Std. Err Mean Median Std. Err Diff p-value

Number of ICD9 2.32 2 2.4 2.26 2 2.4 -0.06 0.790
Infectious/parasitic diseases 0.23 0 0.4 0.26 0 0.4 0.03 0.470
Neoplasms 0.14 0 0.4 0.15 0 0.4 0.00 0.905
Endocrine/immun. disorders 0.12 0 0.3 0.18 0 0.4 0.06 0.066∗

Blood diseases 0.03 0 0.2 0.02 0 0.2 -0.01 0.482
Mental disorders 0.05 0 0.2 0.09 0 0.3 0.04 0.061∗

Nervous system diseases 0.12 0 0.3 0.11 0 0.3 -0.01 0.633
Circulatory system diseases 0.17 0 0.4 0.15 0 0.4 -0.03 0.435
Respiratory system diseases 0.07 0 0.3 0.05 0 0.2 -0.02 0.321
Digestive system diseases 0.06 0 0.2 0.04 0 0.2 -0.02 0.405
Genitourinary diseases 0.08 0 0.3 0.12 0 0.3 0.04 0.192
Pregnancy/childbirth 0.00 0 0.1 0.00 0 0.1 -0.00 0.952
Skin diseases diseases 0.07 0 0.3 0.02 0 0.2 -0.04 0.017∗∗

Musculoskeletal diseases 0.07 0 0.3 0.09 0 0.3 0.01 0.578
Congenital anomalies 0.00 0 0.0 0.00 0 0.0 0.00 .
Conditions perinatal period 0.04 0 0.2 0.02 0 0.1 -0.02 0.213
Ill-defined conditions 0.09 0 0.3 0.08 0 0.3 -0.02 0.542
Ijury/poisoning 0.08 0 0.3 0.07 0 0.2 -0.01 0.541

Notes: This table compares disease characteristics split at the median approval lag with t-tests. The unit of ob-
servation is the unique patent-drug level. A primary patent can be associated with more than one ICD-9 category.
Significance levels:* p<0.1, ** p<0.05, *** p<0.01.

approval (Figure 2.4a). This divergence becomes especially apparent when looking at self-

citations within the originator company, which are the core of this study (Figure 2.4b). The

divergence is permanent.

Secondary patents, which are the result of enforcement innovations, are filed to a sub-

stantial degree after the approval. This is fully in line with Howard (2007) or Sternitzke

(2013), who show that pharmaceutical companies continue with patent filings after the ap-

proval. There is, however, also a substantial drop in self-citations related to secondary patents

for the early MA group around the time of their respective drug approval. This divergence

is not visible for product patents, which are more likely to involve actual improvements (Fig-

ures 2.4c and 2.4d). In the Appendix, I describe a variety of alternative outcome variables

(Figures B-3 and B-4). In all cases, early MA and late MA inventions develop parallel in the

pre-approval period and patent citations more likely related to enforcement innovation de-

crease for the early MA group after their approval.

These findings are supported when looking at more narrowly defined groups. In Figure

B-5 in the Appendix, I split the early MA group and the late MA group at their respective

median time to approval.28 These subgroups of patents, which still differ by around 2 years in

their time to approval, are supposedly even more similar concerning the type of drug/type of

28I split the early MA group at the median time to approval, which is 8 years, and I split the late MA group at the
median time to approval, which is 12 years. All four sub-samples have roughly the same sample size.

52



2. THE INNOVATION EFFECT OF DRUG APPROVAL

technology. In both cases, the subgroups receiving the marketing authorization earlier diverge

negatively after the approval.

This graphical analysis provides first descriptive evidence that enforcement innovation ac-

tivities decrease after drug approval. Importantly, it shows that follow-on innovation activities

have parallel trends before the marketing authorization.

Figure 2.4: Evolution of forward citations by time to approval
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(b) Mean self-citations
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(c) Mean self-citations - secondary patents
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(d) Mean self-citations - product patents
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Notes: The figures present the average log-transformed number of forward citations split at the median approval
lag (early/late MA) over time. The annual citation count is normalized by the average citation count from the
pre-approval period t0-t5. The unit of observation is the unique patent-drug level.

2.4 Empirical Strategy

In a perfect experiment, I would be able to compare patented inventions for which a drug gets

randomly approved to other inventions for which a drug randomly fails to obtain regulatory

approval. However, the approval of drugs or failure in drug development is far from random

but is determined by the quality of the underlying invention or strategic R&D and market-

related decisions. Therefore, I hold the existence of drug approval constant and leverage the

timing instead. It cannot be predicted perfectly at the time of the patent filing whether and

when a drug associated with the patent will be on the market. Gilchrist (2016) describes a
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variety of reasons why this period involves random elements unrelated to eventual drug and

firm characteristics, such as uncertainty in the development process. Strategic delay of mar-

keting authorizations is costly since the product would enter the market later and may lose

first-mover-advantages (Lakdawalla, 2018; Robinson et al., 1994). Thus, drugs associated

with a late approval serve as a counterfactual scenario for drugs associated with an early ap-

proval. This depends on the assumption that forward citations would have developed similarly

between those two groups in the absence of the approval. I find support for this assumption

given the high similarity between early and late approved drugs in terms of ex-ante primary

patent/drug characteristics and the observed parallel trends before approval in Sections 2.3.2

and 2.3.3. Thus, I expect a primary patent’s forward citation count to change after drug ap-

proval relative to primary patents with later drug approval.

For this reason, I employ an event study design, which follows Schmidheiny and Siegloch

(2019) and exploits the variation in the timing of the treatment (staggered drug approval)

across inventions. It studies the dynamics of an outcome variable during a time span around

a treatment. Therefore, I regress the number of forward citations in a year t on a set of non-

parametric event variables, which indicate when the marketing authorization has happened

relative to t. Formally, I estimate the following event study equation:

E[yit| X it] = exp[α +
j
∑

j= j

β j MA j
it + δt + θi], (2.1)

where yit represents the number of forward citations. δt is a citation year fixed effect, and θi

a patent-drug fixed effect. The patent-drug FE and the citation year FE are capturing together

the age of the invention. MA j
i t is a treatment indicator for the drug approval happening j

periods away from t. I limit the effect window of the drug approval event that is allowed to

influence the outcome variable, from j < 0 periods before to the event to j ≥ 0 periods after

the event. The effect on y is assumed to stay constant outside the defined effect window. This

is achieved by binning the treatment indicators MA j
i t at the endpoints of the effect window.

Here, at the endpoints j = −5 and j = +5 the treatment indicator is set to 1.29 This indicates

that at the endpoints the treatment for unit i at time t has happened j or more periods ago, or

will happen in j or more periods into the future. Therefore, the coefficients corresponding to

the endpoints cannot be interpreted. However, binning up the endpoints is essential in order

to separately identify dynamic treatment effects β j from secular time trends even when no

never-treated units are present (Schmidheiny and Siegloch, 2019). The coefficient β j of MA j
i t

with j < 0 looks forward in time, j = 0 at present time, and j > 0 at past time. I cluster robust

standard errors at the unique patent-drug level.

In my preferred specification, I control additionally for the time-varying effects of patent

grants and patent term extensions (SPC grants) to disentangle further dynamic factors, which

29The results are robust to using larger effect windows (Appendix Figure B-9).
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may impact forward citation patterns:

E[yit| X it] = exp[α +
j
∑

j= j

β j MA j
it +

j
∑

j= j

γ j patent j
it +

j
∑

j= j

η j SPC j
it + δt + θi], (2.2)

where patent j
i t is a treatment indicator for the patent grant happening j periods away from

t and SPC j
i t is a treatment indicator for the patent term extension (SPC grant) happening j

periods away from t.

For continuous dependent variables like log-transformed forward citation counts, I run

linear regression models with high-dimensional fixed effects. In a robustness check, I estimate

Poisson pseudo-maximum likelihood regressions with high-dimensional fixed effects for count

dependent variables.30

2.5 Empirical Results

In this section, I present and discuss the results from the event study analysis outlined in

Section 2.4. I evaluate whether a marketing authorization has an impact on enforcement and

improvement innovation by originators and third parties.

2.5.1 Main Effect on Originators

First, I provide evidence for a decrease in innovation activities building up on the focal drug

following the marketing authorization within the focal firm.

Figure 2.5a depicts event study estimates with log-transformed self-citation counts as the

dependent variable. I estimate a linear regression with invention and calendar year fixed

effects as well as indicators for alternative events such as patent/SPC grant (Equation 2.2). I do

not observe (potentially confounding) differential trends on self-citations before the approval.

This shows that related follow-on patents are not always filed shortly before approval such as

at the end of clinical trials in phase III. If this was the case, late approved inventions would

exhibit different pre-trends in (self)-citations. Thus, the absence of such “bunching” before

approval provides suggestive evidence that any effect of the marketing authorization on follow-

on innovation activities is not driven by timing effects.

After the drug approval, I find a significant decrease in self-citations. Thus, the focal firm

seems to reference the primary patent less often in new patents after the related drug receives

its first EU marketing approval. The decrease in self-citations happens immediately and is

long-lasting. Figure B-9 in the Appendix shows that there is no recovery in self-citations.

Prior literature has emphasized that outcomes of innovation inputs typically become visible

only with a 2-3 year time lag (Hall et al., 2010). The immediate timing of the decrease in

30For linear regressions, I use the reghdfe Stata package based on Correia (2016). For PPML regressions, I use the
ppmlhdfe Stata package as described in Correia et al. (2020).
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follow-on innovation is consistent with the interpretation that the missing innovations are of

enforcement type rather than actual improvements. This provides first suggestive evidence for

the proposed enforceability mechanism.

The effects can be interpreted as semi-elasticities. After the drug approval, self-citations

to the focal invention decrease by a magnitude of 4-5%. This decrease is of larger magnitude

when looking at Poisson pseudo-maximum likelihood estimates with count data (Figure B-6

and Table B-12 in the Appendix). The effect size seems reasonable given that the enforceability

of follow-on patents changes at the intensive and not extensive margin. As shown descriptively

in Section 2.3.3, investments in incremental innovation remain an important feature of the

pharmaceutical industry also post-approval (e.g., Sternitzke, 2013).

All results are robust to alternative dependent variable constructions, such as winsorizing

at the 99% or 95% level to account for outliers (Table B-11), and alternative specifications,

such as the replacement of patent-drug fixed effects by patent cohort and ICD-9 category in-

dicators, different control variables, or more restricted samples (Table B-7 in the Appendix).

Moreover, they do not change when excluding controls for alternative events like the patent

grant (following Equation 2.1 in Figure 2.5b). The findings are coherent with the interpreta-

tion that the marketing authorization changes the incentives for firms to conduct incremental

innovation activities, which build up on the focal invention. In the next section, I investigate

whether this decrease is driven by follow-on innovation activities related to enforcement.

Figure 2.5: Impact of marketing authorization on self-citations
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(b) Without patent/SPC grant controls
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Notes: The figures show the event study estimates and the 90 percent confidence bands of linear regressions with
high-dimensional fixed effects. The outcome variable is the log-transformed annual self-citation count. Figure
(a) follows the preferred specification (Equation 2.2) and Figure (b) follows the specification without controls for
patent grant and SPC grant (Equation 2.1). The unit of observation is the unique patent-drug level. Standard
errors are clustered at the patent-drug level.

2.5.2 Type of Innovation

As outlined in Section 2.2, different types of incremental innovation activities should respond

differently to the marketing authorization. While I expect innovation activities related to en-

forcement to decrease due to the obstacles to patent enforceability after drug approval, this
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should not be the case for improvement innovations. Thus, I split originator forward citations

by patent and disease types to distinguish between those likely related to enforcement and

those likely related to improvements.

Patent Type

First, I show that the drop in incremental follow-on innovation is related to secondary patents

that are more likely to be used solely to prevent generic entry.

Figure 2.6a illustrates that the drop in self-citations differs substantially by patent type. The

negative effect is most pronounced in self-references to secondary patents. The effect size is of

similar magnitude compared to the total effect discussed in Section 2.5.1. Moreover, I find a

decrease in references to process patents, which is considerably smaller. This is consistent with

the idea that process patents are more related to the production of the approved drug and less

so for patent fencing purposes. In contrast, references to product patents or patents related to

more complex biotechnology do not decrease after the focal drug received its first marketing

authorization. Thus, incentives for improvement innovation efforts are not negatively affected

by the approval.

At the same time, I show in Figure B-8 in the Appendix that the decrease in self-citations

is concentrated among examiner citations, who are more likely to include conflicting prior art

into the patent documents. Applicant citations, which are set more strategically, do not sig-

nificantly decrease after the drug approval. Similarly, the effect results both from XY-citations

and No-XY citations. This suggests that at least parts of the “missing” self-citations are con-

sidering the focal invention as novelty threatening prior art. Wagner and Wakeman (2016)

argue that X and Y references “are indicators of legally “weak” patents as they [...] increase the

likelihood of a post-grant validity challenge.” This is a common characteristic of enforcement

innovations, where, e.g., the resulting secondary patents face regular legal challenges and are

annulled regularly (European Commission, 2009).

These findings support the hypothesis that the marketing authorization only impacts inno-

vation activities related to enforcement.

Disease Type

I further differentiate between the field of application of the incremental follow-on innova-

tion activities to assess how closely the incremental innovation is related to the field of the

primary innovation. This is related to the fact that a marketing authorization is tied to specific

indications approved. To this end, I differentiate between self-citations within the same ICD-9

disease category and self-citations in other ICD-9 disease categories.

Figure 2.7 shows that the decrease in self-citations is entirely driven by a reduction of

patents applied within the same ICD-9 disease area. The magnitude of the effect resembles

the overall effect size. Self-citations related to patents in different ICD-9 disease areas, which
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Figure 2.6: Impact of marketing authorization by type of patent

(a) Self-citations - secondary patents
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(b) Self-citations - process patents
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(c) Self-citations - product patents
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(d) Self-citations - biotech patents
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Notes: The figures show the event study estimates and the 90 percent confidence bands of linear regressions with
high-dimensional fixed effects. The outcome variable is the log-transformed annual self-citation count generated
by (a) secondary patents, (b) process patents, (c) product patents, and (d) biotechnology patents. The unit of
observation is the unique patent-drug level. Standard errors are clustered at the patent-drug level.

are likely to cover more meaningful inventions in unrelated markets, do not decrease after the

approval of the focal drug.

These findings support the notion that the marketing authorization mainly affects inventive

activities marginal to the focal invention, and thus more likely to be conducted to prevent

generic entry.

Enforceability

If the effect was caused by an increase in patentability standards that threaten the validity of

patents, it should not be observable in earlier stages of the development process. Therefore,

I investigate the effect of prior milestones in drug development on forward citations, which

should not change the enforceability of follow-on patents. To this end, I identify the year of

successful phase II clinical trials completion, when only limited novelty threatening informa-

tion is disclosed, and use these event years similarly as in Equation 2.2.

Figure 2.8 shows the absence of any negative effect on self-citations after earlier events.

This also holds true when looking at enforcement innovations (proxied by secondary patents)

directly. This is consistent with the interpretation that the decreases in forward citations ob-

served before are related to the proposed enforcement mechanism around the drug approval.
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Institutional features surrounding the marketing authorization successfully remove some in-

centives of originators to invest in enforcement innovation activities.31

Figure 2.7: Impact of marketing authorization by type of disease

(a) Self-citations - same ICD-9
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(b) Self-citations - different ICD-9
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Notes: The figures show the event study estimates and the 90 percent confidence bands of linear regressions with
high-dimensional fixed effects. The outcome variable is the log-transformed annual self-citation count generated
(a) in the same narrow ICD-9 category and (b) in a different ICD-9 category as the primary patent. The unit of
observation is the unique patent-drug level. Standard errors are clustered at the patent-drug level.

Figure 2.8: Impact of ending phase II/beginning phase III trials on self-citations

(a) Self-citations - all patents
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(b) Self-citations - secondary patents
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Notes: The figures show the event study estimates and the 90 percent confidence bands of linear regressions with
high-dimensional fixed effects. The event is the end of phase II/beginning of phase III clinical trials. The outcome
variable is the log-transformed annual self-citation count from (a) all patents and (b) secondary patents. The unit
of observation is the unique patent-drug level. Standard errors are clustered at the patent-drug level.

2.5.3 Other Parties

This section is designated to explore the effect of the marketing authorization on other par-

ties. In the pharmaceutical industry, vertical and horizontal relationships are common practice

(Higgins and Rodriguez, 2006; Scherer, 2010). Thus, the originator is likely to have several

collaborators both in the development of the NME and in the execution of clinical trials. Incre-

mental follow-on innovation activities surrounding the focal drug should therefore not only be

31I use the beginning year of phase III clinical trials as proxy for the success of phase II clinical trials. This is possible
because of the sequential order in the drug development process. I quantify these results in Table B-13 in the
Appendix.
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conducted by the originators but also by vertically related parties.32 At the same time, generic

companies file for a substantial amount of secondary patents themselves to protect their own

exclusivity space once they are allowed to enter the market (Howard, 2007).

First, I show the results of all third parties together. The development of forward citations

by other parties follows a similar pattern as for the originator. Figures 2.9a and 2.9b show that

the negative effect of other parties’ citations is concentrated among secondary patents. There

is no decrease in incremental innovation activities resulting in product patents. The same

applies for the distinction into “same ICD-9 category” versus “different ICD-9 category” patent

citations illustrated in B-7 in the Appendix.33 Across all variables, the effect happens later and

is less precise. The latter hints towards substantial heterogeneity within other parties. The

findings are consistent with the idea that the originator is affected most prominently by the

marketing authorization, while the effect attenuates towards other firms.

Second, I provide suggestive evidence that this decrease is related to vertically related

companies. Unfortunately, I cannot directly distinguish between a patent filed by a vertically

related firm and a generic company because many brand-manufactures are also engaged in

the generic product market, e.g., one of the largest generic manufacturers Sandoz AG is part

of Novartis AG. However, I observe whether a third party in my sample is engaged in clinical

trials related to the focal drug. Since this is more likely to be the case for vertically related

companies than for generic manufactures, I interpret this link as vertical relation between the

originator and the third party. Figures 2.9c and 2.9d show that the decrease in enforcement

innovation activities is related to patents filed by these presumably vertically related firms.

Prior literature shows that secondary patent filings of generic firms are happening shortly

before the expiry – year 20 to 25 from priority filing – of the primary patent (e.g., Howard,

2007). Consequently, my findings are consistent since these periods are outside of the effect

window in my estimation for most inventions.

The findings suggest that due to the vertical relationships in the pharmaceutical develop-

ment process, shocks to one entity may diffuse to all related firms.

2.5.4 Summary Findings

Table 2.3 summarizes and quantifies all findings.34 I observe decreases in the number of

self-citations driven by secondary patents and within the same ICD-9 disease category. Taken

together, this evidence supports the hypothesis that marketing authorization has an impact on

the investment activities into incremental innovation related to enforcement. Innovations that

are more likely to be related to actual improvements remain unaffected by the drug approval.

The information disclosed (published results of clinical trials) in the course of the marketing

32Moreover, if the focal patent applicant is a smaller pharmaceutical company specialized in development activities
but not in commercialization, it might license or sell the focal patent to large pharmaceutical corporations. It
goes beyond of the scope of this study to analyse patent transfer.

33In Appendix Figure B-7, I illustrate the event study results on other outcome variables related to other parties.
34The Appendix quantifies the results on only self-citations in Tables B-8, B-9, and B-10.
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Figure 2.9: Impact of marketing authorization on other parties’ forward citations

(a) Other citations - secondary patents
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(b) Other citations - product patents
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(c) Citations - vertically related
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(d) Citations - not vertically related
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Notes: The figures show the event study estimates and the 90 percent confidence bands of linear regressions
with high-dimensional fixed effects. In the top, the outcome variable is the log-transformed annual other parties’
citation count generated by (a) secondary patents and (b) product patents. In the bottom, the outcome variable is
the log-transformed annual forward citation count by (c) presumable vertically related firms and (d) presumable
vertically unrelated firms. The unit of observation is the unique patent-drug level. Standard errors are clustered
at the patent-drug level.

authorization increases patentability standards (novelty threatening prior art/obstacles to non-

obviousness) and, thus, impedes the enforceability of follow-on patents. Consistent with this

proposed enforcement mechanism, I find pharmaceutical firms to decrease their investments

in enforcement innovation activities, which have the sole purpose to limit or delay generic

entry.

2.6 Alternative Explanations

In this section, I rule out alternative explanations that might explain the decrease in forward

citations due to drug approval, such as competitive entry, accelerated approval, or unobserved

heterogeneity.

Market Exclusivity and Incentives for Competitive Entry

First, I investigate whether the effect of drug approval is driven by changes in the likelihood of

competitive entry. Due to the primary patent’s fixed exclusivity term (20 years), it is inherent to

the empirical setup that an earlier marketing authorization leads to a longer market exclusivity
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Table 2.3: Impact of marketing authorization on forward citations

Log/Linear (1) (2) (3) (4) (5) (6) (7) (8)
DV: Log(1+Forward Citations)

All Self Other Secondary Process Product = ICD9 6= ICD9

n years before MA −0.006 0.006 −0.012 −0.024 −0.018 0.014 −0.026 0.017
(0.038) (0.021) (0.037) (0.026) (0.013) (0.020) (0.025) (0.022)

4 years before MA −0.023 −0.015 −0.010 −0.019 −0.022∗ 0.003 −0.016 −0.011
(0.031) (0.020) (0.028) (0.020) (0.011) (0.017) (0.021) (0.015)

3 years before MA −0.034 −0.005 −0.035 −0.009 −0.008 −0.005 −0.014 0.008
(0.028) (0.018) (0.027) (0.020) (0.011) (0.015) (0.018) (0.015)

2 years before MA 0.003 −0.009 0.009 −0.040∗∗ −0.018∗ 0.006 −0.010 −0.013
(0.026) (0.017) (0.024) (0.018) (0.009) (0.014) (0.018) (0.014)

1 year before MA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(.) (.) (.) (.) (.) (.) (.) (.)

Year of MA −0.023 −0.027∗ −0.001 −0.015 0.002 0.003 −0.022 −0.001
(0.026) (0.016) (0.025) (0.019) (0.012) (0.014) (0.017) (0.014)

1 year after MA −0.017 −0.029∗ 0.006 −0.049∗∗∗ 0.012 0.017 −0.024 0.001
(0.028) (0.016) (0.026) (0.019) (0.013) (0.015) (0.019) (0.014)

2 years after MA −0.024 −0.036∗∗ 0.001 −0.036∗ −0.010 0.022 −0.014 0.002
(0.032) (0.017) (0.030) (0.020) (0.014) (0.018) (0.022) (0.016)

3 years after MA −0.084∗∗ −0.040∗∗ −0.050 −0.075∗∗∗ −0.015 −0.011 −0.073∗∗∗ 0.003
(0.037) (0.019) (0.035) (0.022) (0.016) (0.018) (0.024) (0.018)

4 years after MA −0.074∗ −0.046∗∗ −0.037 −0.058∗∗ −0.015 0.006 −0.068∗∗ −0.002
(0.040) (0.021) (0.039) (0.025) (0.017) (0.020) (0.027) (0.020)

n years after MA −0.120∗∗ −0.053∗∗ −0.076 −0.090∗∗∗ −0.019 −0.009 −0.083∗∗ −0.027
(0.049) (0.025) (0.047) (0.028) (0.019) (0.024) (0.032) (0.023)

Patent Grant Yes Yes Yes Yes Yes Yes Yes Yes
SPC Grant Yes Yes Yes Yes Yes Yes Yes Yes
Patent-Drug FE Yes Yes Yes Yes Yes Yes Yes Yes
Citation Year FE Yes Yes Yes Yes Yes Yes Yes Yes

Observations 12390 12390 12390 12390 12390 12390 12390 12390
Cluster 590 590 590 590 590 590 590 590
Log-likelihood −9340 −1712 −8885 −3982 1515 −1443 −4500 −1257

Notes: Columns (1) to (8) show the estimates of linear regressions with high-dimensional fixed effects. The
dependent variable is the annual number of log-transformed forward citations in Column (1), self-citations in
Column (2), other parties’ citations in Column (3), forward citations generated by secondary patents in Column
(4), by process patents in Column (5), by product patents in Column (6), within the same ICD-9 category in Column
(7), and in a different ICD-9 disease category in Column (8). The unit of observation is the unique patent-drug
level by year. Standard errors are clustered at the patent-drug level and shown in parentheses. Significance levels:
* p<0.1, ** p<0.05, *** p<0.01.

time (Budish et al., 2015). Prior literature finds that incentives for competitive entry are

positively correlated with a longer market exclusivity period. It is associated with higher rates

of subsequent entry (Gilchrist, 2016), paragraph IV challenges (Branstetter et al., 2016),35 and

non-infringing imitation activities (Izhak et al., 2020). This is because the longer the delay

in generic entry, the higher is the increase in potential competitors’ duopoly profits. If earlier

drug approval caused more competition, it would increase the incentives to protect the focal

35If generic manufacturers seek to enter patent-protected markets, they can file an abbreviated new drug applica-
tion with the FDA (Paragraph IV challenge) either by claiming non-infringement or invalidity of the branded
product’s patent (Branstetter et al., 2016).
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invention by a higher number of secondary patents. Thus, my estimates would underestimate

the total effect of drug approval on incremental innovation activities.

I exploit the discontinuity in market exclusivity extensions provided by the SPC system in

the EU. As illustrated in Figure B-1 in the Appendix, it grants up to five years of patent-like

compensation for long approval lags.36 All focal inventions that are authorized between 5 to

10 years from priority receive a uniform total market exclusivity period of 15 years. For patents

with a drug approval after 10 years, there is a negative linear relationship. Thus, for a subset

of the drugs in my sample, the market exclusivity is independent of the time to approval and

incentives for competitive entry can be considered as constant.

Figure 2.10 shows that the results are robust to this restriction and some point estimates

become slightly larger. This supports the notion that the true effect is likely of a larger magni-

tude than the estimated effect.37

Figure 2.10: Constant market exclusivity period

(a) Self-citations - all patents
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(b) Self-citations - secondary patents

-0.060

-0.040

-0.020

0.000

0.020

0.040

Ef
fe

ct
 o

f  
M

A
 x

  y
ea

r

-4 -3 -2 MA 0 1 2 3 4

Estimate 90% CI

 

Notes: The figures show the event study estimates and the 90 percent confidence bands of linear regressions with
high-dimensional fixed effects. The sample comprises only those 288 patent-drugs links that are associated with a
marketing authorization within 10 years. This early MA group has uniform market exclusivity period of 15 years.
The outcome variable is the log-transformed annual self-citation count from (a) all patents and (b) secondary
patents. The unit of observation is the unique patent-drug level. Standard errors are clustered at the patent-drug
level.

Accelerated Approval

Although the time to approval is not correlated with observable (value-related) characteristics,

there is still room for concerns regarding unobserved heterogeneity. Dranove and Meltzer

(1994) find that the importance of a drug is related to faster development times. If more

valuable drugs were approved earlier, this would introduce an upward bias into my event

study estimates.

36The SPC regime aims at compensating for the reduction in the effective patent life of pharmaceuticals caused
by the delay when obtaining a marketing authorization. The SPC term is calculated by the difference between
the date of the first marketing authorization in the EU and the filing date of the basic patent, less 5 years, and
subject to a cap of 5 years.

37Further outcome variables can be found in the Appendix in Figure B-10.
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Thus, I employ an instrument variables strategy following Gilchrist (2016). He reasons

that the time from patent filing to the beginning of first clinical trials is uncorrelated with a

drug’s value. Among other reasons, this is because the science of drug development is highly

uncertain and involves substantial spurious elements while the patent system forces firms to

file primary patents immediately after a new promising molecule was discovered.38 I follow his

approach and create a cross-section of my data set using the total number of (self)-citations

as the outcome variable.39 A short pre-approval period (early MA) is related to fewer self-

citations. I also replicate the main results of the previous analysis using the cross-section in

Tables B-3 and B-5 in the Appendix.

Table B-6 shows the results of the IV approach, in which I use the time to the beginning of

clinical trials as an instrumental variable for the time to approval. The sample size decreases

substantially for reasons of data availability and estimates become noisier. In the second stage,

showing the impact of time to approval on self citations, the IV estimates increase in magnitude

compared to the OLS results.40 These results suggest that my event study results are more

conservative and present the lower bound of the effect.

Field of Application

Lastly, I investigate whether the effect is driven by unobserved differences in focal disease cate-

gories. Abud et al. (2015) show that secondary patents are more relevant for some therapeutic

classes such as anti-depressants. These differences in importance can have dynamic patterns

not controlled for using patent-drug fixed effects. Thus, I estimate leave-one-out regressions

for each of the 17 ICD-9 disease categories mentioned in Table 2.2. The results presented in

Figure 2.11 exemplify that the negative effect of the marketing authorization on self-citations

is not driven by different compositions of disease categories among early and late approved

drugs. This rules out the idea that there are different incentives for enforcement innovations

across drug types.

38Gilchrist (2016) provides two further reasons why the time between patent filing and the start of clinical trials
is uncorrelated with the invention: agency problems within firms and larger organizational frictions such as
merger or acquisition activity may delay development processes.

39If the drug approval had an impact on related incremental innovation activities, this should shift the slope of
forward citations downward and hence decrease the total citation count. In order to more closely mirror the
event study in my analysis, I restrict the sample to forward citations accumulated between year 5 and year 16.
This reflects the time period of the first MA (all forward citations after approval) and the last MA (all forward
citations before approval).

40The instrument marginally passes the Stock et al. (2005) critical values for weak identification tests. The
endogeneity-test shows that IV estimates are significantly different from OLS estimates when using the time
to the beginning of phase I trials as instrument. In a larger sample using the time to the beginning of phase III
trials as an instrument instead, the estimates point to a similar direction.
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Figure 2.11: Leave one ICD-9 group out

(a) Self-citations - all patents
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(b) Self-citations - secondary patents
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Notes: The Figures show the event study estimates and the 90 percent confidence bands of linear regressions
with high-dimensional fixed effects. In each regression, I leave out one of the 17 ICD-9 categories. The outcome
variable is the log-transformed annual self-citation count from (a) all patents and (b) secondary patents. The unit
of observation is the unique patent-drug level. Standard errors are clustered at the patent-drug level.

2.7 Conclusion

Enforcement innovations are a common feature of modern drug development (Sternitzke,

2010, 2013). However, these innovations often have little or no therapeutic benefit (Frakes

and Wasserman, 2020; Gurgula, 2020) so that the gain in consumer surplus is likely to be

smaller than the loss resulting from longer market exclusivity periods and higher prices (Yin,

2017). In this study, I show that the incentives for enforcement innovation activities decrease

in the course of a drug’s marketing authorization. I posit this to be due to obstacles in the

enforceability of follow-on patents filed after drug approval. Incremental innovation activi-

ties that are more likely to result in therapeutic benefits remain unaffected by the drug ap-

proval. This relates to the ongoing debate in the legal and economic literature on how to

design more efficient incentives for the development of new drugs. Some scholars argue in

favor of strengthening data and market exclusivity mechanisms, which are both unrelated to

patents but directly provided by the regulatory health authorities (see e.g., Gaessler and Wag-

ner, 2020). Others suggest “fixing” the existing patenting system, e.g., by strengthening the

examination process (Frakes and Wasserman, 2020).

The results of my study show that pharmaceutical companies are self-adjusting their inno-

vation behavior as a reaction to institutional features that potentially impede the enforceability

of patents, like information disclosure at the time of drug approval. Thus, strengthening the

patenting system might reinforce this type of reaction. For this purpose, Frakes and Wasser-

man (2020) recommend empowering patent examiners, e.g., by providing them with more

examination time. My result suggests to complement this by enhancing the information basis

on which examiners assess novelty and non-obviousness. Not all drug approval-related infor-

mation, which is submitted to the regulatory health authorities in the course of the marketing

authorization, is publicly available. Therefore, granting patent examiners access to all docu-

ments submitted to the EMA or national health authorities may allow them to properly assess
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the degree of novelty involved in secondary patent filings. If this increased patentability stan-

dards further, my results suggest that the self-enforcement of pharmaceutical companies will

advance.

While this study provides a first explanation, it is of great importance to further disentangle

the multiple channels through which the marketing authorization is having an impact on in-

cremental innovation activities in future research. Given that the discussion about information

disclosure (e.g., clinical trial results) and the resulting obstacles to patentability in Europe is on-

going in the legal profession, as well, this calls upon collaboration between law and economics

in order to fully understand both empirically as well as legally how the patent system can be

strengthened. In this study, I considered follow-on patenting as a proxy for innovation. It is

left for future research to differentiate between strategic patenting and enforcement innova-

tion activities per se. Moreover, it is important to re-investigate these questions from a welfare

perspective. The loss of market exclusivity may discourage pharmaceutical firms to invest in

R&D (Budish et al., 2015; Higgins et al., 2020). The possibility, however, to file patents as a

result of enforcement innovations may contribute to the development of totally new drugs by

guaranteeing the necessary ex-ante incentives and cash flows. These considerations may help

policymakers to design more efficient and effective incentives in the pharmaceutical industry

that foster innovation activities with therapeutic benefits.
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3
Market Size and Research

Evidence from the Pharmaceutical Industry

3.1 Introduction

What factors drive innovation? This question has actively engaged scholars dating back to

Schumpeter (1939). While the importance of this question is obvious for firms and policymak-

ers, the answer is neither singular nor simple. Among others, Mowery and Rosenberg (1979)

suggested that both supply-side (“technology push”) and demand-side (“demand pull”) fac-

tors may impact the innovation process. In general, technology push relies on accumulated

knowledge from research and development (R&D) activities to drive the introduction of new

products. In contrast, demand pull relies on demand characteristics (e.g., population, dispos-

able income, and preferences) to shape the pattern of investments in innovation (Kyle, 2020).

Focusing on demand-side factors, early work by Griliches (1957) and Schmookler (1966)

recognized the importance of profit incentives and market size as drivers of innovation. This

recognition has been carried forward into more recent work. Two seminal papers have es-

tablished a causal link between market size and pharmaceutical innovation (Acemoglu and

Linn, 2004; Finkelstein, 2004). Since then, a steady stream of empirical studies has examined

how demand affects pharmaceutical innovation (e.g., Agarwal and Gaule, 2021; Blume-Kohout

and Sood, 2013; Clemens and Olsen, 2021; Dranove et al., 2020; Dubois et al., 2015; Kyle and

McGahan, 2012; Lichtenberg and Waldfogel, 2009).1

These studies, however, focus on the ‘D’ as opposed to the ‘R’ in pharmaceutical R&D. They

consider molecules entering (pre-)clinical trials, new drug approvals, or various other defini-

This chapter is based on joint work with Fabian Gaessler and Matthew J. Higgins. An adapted version of this chapter
was published as an NBER working paper in May 2021 (Byrski et al., 2021).

1A few studies exist which confirm these results for innovation responses following market size shocks outside the
pharmaceutical industry (e.g., Aghion et al., 2018).
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tions that generally fall within the traditional rubric of ‘development’ as opposed to ‘research’.

Heretofore, efforts to establish a link between downstream demand and upstream research

have resulted in limited success. Acemoglu and Linn (2004) and Finkelstein (2004), for ex-

ample, were unable to find a relationship between patenting and demographic-driven expan-

sions2 or policy-induced expansions3 in market size, respectively. In contrast, using a similar

identification strategy as Acemoglu and Linn (2004), Bhattacharya and Packalen (2011, also

referred to as B&P2011) identify some positive relationship between disease prevalence and

upstream research, but cannot disentangle the increase in societal importance from pure profit

incentives.

While an important first step, the Bhattacharya and Packalen (2011) link is not unexpected

since their finding was driven by research conducted at academic medical centers.4 This is pre-

cisely where one would expect clinical studies or ‘development’ to occur and the corresponding

results to be published. Hence, ex ante there should be a positive correlation between research

conducted at academic medical centers (‘research’) and clinical trials (‘development’). Like-

wise, while Arora et al. (2018) show a general decline in overall corporate research, there

should still be a positive correlation between publications by pharmaceutical firms and their

clinical trial activities. Hence, the broader link, if it exists, between downstream demand and

upstream scientific research remains elusive.

In this paper, we fill this gap and use the introduction of Medicare Part D to examine the

effects of market size on science. For this purpose, we use novel data on scientific publications,

patent-paper links, and drug development efforts mapped to disease categories. Moreover,

while we use similar measures of disease exposure to Medicare Part D (the Medicare market

share) as the extant literature,5 the use of scientific publications necessitates a categorization

of research at the disease level, as opposed to the therapeutic class level.6 To demonstrate

that our data construction choice does not bias the results, we start by replicating the main

findings of the prior literature on drug development (e.g., Blume-Kohout and Sood, 2013;

Dranove et al., 2020).

We make several important contributions to the existing literature. First, over the decade

following the implementation of Medicare Part D, we find no evidence for a causal relationship

between market size and research. An increase of one standard deviation in the exposure

to Medicare Part D leads only to an overall insignificant increase in scientific publications by

2They provide a variety of reasons for this result. First, they highlight the imperfection of their patent match.
Second, they describe attenuation issues resulting from the delay in the research process. Third, they point
towards companies being more responsive to profit incentives in later development stages.

3In her paper, Finkelstein argues that “[..] the quick initial response in development suggests the existence of a
substantial reservoir of technologically feasible products ‘on the shelf’. The decision to begin clinical trials is
responsive, on the margin, to increases in the expected economic return to the clinical trial.”

4Academic medical centers are hospitals that are linked to medical schools and engage in clinical trials.
5See, for instance, Blume-Kohout and Sood (2013), Dranove et al. (2020), Duggan and Scott Morton (2010),

Hermosilla and Wu (2018), and Krieger et al. (2018).
6In the course of the analysis, we account for demographic changes, public research funding, and new research

opportunities.
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6.9%. This is substantially smaller than any effect on drug ‘development’ activities found in the

prior literature and in our replication (+20.2%). These findings support Finkelstein’s (2004)

assertion that the link between market size and increases in drug development appears to be

driven by a reordering of products already ‘on the shelf’. This is also consistent with Dranove

et al. (2020) who show that the upsurge in development appears to be driven by clinical trials

of less scientifically novel drugs.

Second, there is extensive literature on scientist motivations. For example, scientists are

motivated by external funding or rewards (Cohen et al., 2020; Foray and Lissoni, 2010; Hvide

and Jones, 2018; Thursby and Thursby, 2011), altruism and prestige (Stern, 2004), recogni-

tion by the scientific community (Stephan, 2012), research opportunities and academic free-

dom (Aghion et al., 2008), public funding (Azoulay et al., 2019; Myers, 2020), and the desire

to work on topics useful for society (Merton, 1973). It also appears that some scientists are

motivated by monetary incentives (Levin and Stephan, 1991; Stephan, 1996), making them

engage in patenting (Lach and Schankerman, 2008; Owen-Smith and Powell, 2001; Thursby

et al., 2001). Our findings suggest that these upstream motivations have no direct link to the

opportunities created by shifts in downstream demand in the form of market size changes.

Third, given the importance of academic medical centers, Bhattacharya and Packalen

(2011) demonstrate that the type of research affiliation may matter. Various affiliations have

different product market orientations. For example, on one end of the spectrum, the objectives

of corporate scientists will be aligned with their firms, while on the other end of the spectrum,

scientists at the National Institutes of Health (NIH) may be more interested in basic science

research. To explore this variation, we accurately categorize research activities by four dif-

ferent types of affiliation: the NIH, universities, academic medical centers, and corporations.

Consistent with our core findings, we illustrate substantial differences in semi-elasticities. Any

demand response is concentrated only among corporate research (+22.7% in year 10 after the

Part-D introduction), and decreases in effect size by distance to the market (e.g., universities

show an insignificant demand response of only +5.8%).

Fourth, we further refine our analysis by focusing not just on the type of affiliation but

also the type of research (e.g., applied or basic). With this refinement, we find that Medicare

Part D primarily caused an increase in corporate affiliated publications linked to both clinical

trials and pharmaceutical products, which are residuals from drug development activities (i.e.,

applied research). The increase disappears for corporate affiliated publications that are more

basic, which is broadly consistent with Arora et al. (2018). Consistently, we do not find any

causal relationship between the type of research and market size for universities or academic

medical centers. The divergence between our results and those of Bhattacharya and Packalen

(2011) suggests that the differences in the types of downstream demand matter. In their case,

research appears to respond to disease prevalence, while in our case, it does not respond to

changes in disposable income within those diseases.
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Fifth, not all publications are equal so we generate three different measures of impact. Our

first measure are publications weighted by journal impact factors. Second, we map publica-

tions to patents to approximate whether scientific research was recognized in commercially

relevant applications (Marx and Fuegi, 2020).7 Finally, we weight the number of publications

by the patent family size associated with the publication. Overall, results remain robust with

our core findings – changes in downstream demand have no impact on upstream research.

However, there is one exception. In the years directly following the Part D-enactment, a

one standard deviation increase in the exposure to Medicare Part D caused an initial 15.8 per-

cent increase in corporate-affiliated patent-weighted research. This is consistent with the idea

that corporate publishing is used strategically in commercialization activities such as patenting

(Della Malva and Hussinger, 2012). Finally, we conclude with a series of robustness tests that

redefine the dependent variable, use alternative calculations of Medicare market size, alterna-

tive controls, alternative specifications, alternative event windows, and different aggregation

levels. In all cases, our core results hold.

Finally, our work has important implications for firms and policymakers. The pharma-

ceutical industry is highly dependent upon the external market for technologies (Higgins and

Rodriguez, 2006), with much of that research emanating from universities (Cockburn and

Henderson, 2000). While drug development (i.e., drugs in clinical trials) appears to respond

to downstream shifts in market demand, our results suggest that upstream research fails to

do so. Firms face the prospect that the flow of research may not meet the kinds of develop-

ment needs they may require. This problem is even more significant given the slow decline

in corporate-level basic science research (Arora et al., 2018). This disconnect suggests that a

more active role for policymakers may be needed. For example, in their recent work analyz-

ing the innovation response to COVID-19, Agarwal and Gaule (2021) argue that policymakers

may want to complement the market expansion with early-stage research incentives.

The remainder of the paper is organized as follows. In the next section, we describe the

empirical setting related to the introduction of Medicare Part D and the empirical strategy.

Subsequently, we introduce the data and selected descriptive statistics. We then present our

main findings and conclude with a discussion.

3.2 Medicare Modernization Act

In the United States, Medicare is the national health insurance program for the elderly. Prior

to 2006, it only covered drugs administered during in-patient hospital stays or at doctor of-

fices, but it did not cover out-patient prescription drugs. In December 2003, U.S. Congress

passed the Medicare Prescription Drug, Improvement, and Modernization Act (MMA), which

7Prior empirical research has shown that the relationship between scientific publications and patents is especially
strong in technology fields that are related to the medical sector like chemistry or molecular biology (e.g.,
Ahmadpoor and Jones, 2017; Poege et al., 2019; Watzinger and Schnitzer, 2019).
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implemented the Medicare Part D prescription drug benefit as of January 2006.8 This cover-

age is available for U.S. residents with age 65 and older who fulfill the eligibility criteria of

Medicare Part A and B.9 In contrast to other Medicare programs, Part D contracts with private

companies that are authorized to sell insurance coverage. However, Medicare Part D is both

regulated and subsidized, especially for low-income individuals.10

Medicare Part D covers all drugs that are also covered under Medicaid, which is a federal

program that assists with medical costs for people with limited income, and that fulfill the

following criteria: First, the drug has been approved by the Food and Drug Administration

(FDA). Second, it must be available only by prescription. Third, the drug is medically necessary

for on-label indications (e.g., this limits off-label usage). Finally, Medicare Part D also covers

biological drugs, insulin, smoking cessation drugs, and vaccines. While insurance plans do not

have to cover all drugs mentioned above, there are certain “protected classes” for which most

drugs are required to be included (e.g., anti-cancer, anti-convulsant, anti-depressants, anti-

psychotic, immuno-suppressant, HIV and AIDS drugs). The program excludes, for example,

drugs that may be covered under Medicare Part A or B and over-the-counter drugs.11

The implementation of Medicare Part D was one of the most significant recent changes in

the U.S. healthcare system. It was projected to benefit 29 million people in 2006 and 44 million

people in 2015. The expected total public expenditures in the first 10 years were estimated to

be $800 billion.12 This expenditure corresponded to around 0.42% of GDP in 2006, increasing

to 0.76% in 2015.13 The program can be categorized as a demand subsidy.

As expected, Medicare Part D considerably increased the prescription drug use by elderly

patients (Duggan and Scott Morton, 2010, 2011). In Figure 3.1 we illustrate this development.

At the extensive margin, drug use by Medicare-insured patients increased substantially after

2006, especially in the quartile of diseases most likely to afflict older patients. This implies

that previously uninsured elderly are now able to purchase prescription drugs. The same

applies when looking at prescriptions for both existing and newly insured patients (Appendix

8The Medicare Prescription Drug, Improvement, and Modernization Act was introduced by Representative Dennis
J. Hastert on June 25, 2003. It was heavily discussed and accumulated 21 roll-call votes until the U.S. House of
Representatives agreed on November 22, 2003. Given the close vote, we assume that anticipation of the MMA
was not very likely. More details can be found here: https://www.congress.gov/bill/108th-congress/house-
bill/1 [last accessed on March 8, 2021].

9In fact, the eligibility criteria are broader. Besides the elderly, Medicare Part D is available for U.S. residents who re-
ceive Social Security disability payments for at least 2 years or have been diagnosed with end-stage renal disease
or kidney failure. See: https://www.healthline.com/health/medicare/medicare-part-d-eligibility#choosing-a-
plan [last accessed on March 8, 2021].

10See: https://www.medicareadvocacy.org/medicare-info/medicare-part-d/ [last accessed on March 8, 2021].
11It further excludes drugs for weight loss or gain, cough and cold preparations, fertility, erectile dysfunction, cos-

metic and hair growth, as well as vitamins and minerals. Blume-Kohout and Sood (2013) exploit this set
of rules to distinguish between diseases that profit more (e.g., a high number of Medicare-Medicaid dual-
eligible beneficiaries and a high number of protected drug classes) and less (e.g., a high number of drugs
previously covered by Medicare Part B) from the introduction of Medicare Part D. For more information, see:
https://www.medicareadvocacy.org/medicare-info/medicare-part-d/ [last accessed on March 8, 2021].

12Own calculations based on the 2006 Medicare Trustees Report using an annual inflation rate of 5%.
13https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-

Reports/ReportsTrustFunds/downloads/tr2006.pdf [last accessed on March 8, 2021].
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Figure C-4). Thus, we can see that the MMA differentially increased the market size for drugs

that are developed to treat diseases more prevalent among older individuals. This will be a

fundamental aspect of our empirical strategy, which we outline in the next section.

Figure 3.1: Evolution of Medicare beneficiaries
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Evolution of patient counts by MMS quartiles

Notes: The figures show the evolution of patient counts of each ICD-9 group aggregated by Medicare market share
quartiles. These are patients who received a prescription drug designated to a ICD-9 group disease at least once
in a given year. Our exposure measure to Medicare Part D is described in Section 3.3.3. The grey bars display
the number of Medicare patients, the blue bars display the non-Medicare patients. Patients are counted multiple
times if they appear in more than one ICD-9 group. MMS quartiles are based on the pre-2004 weighted average of
patient-based MMS. The red line represents the relative increase in the number of Medicare patients with respect
to the baseline year 2003. The figures depict a discrete increase in Medicare patients after 2006 in the highest age
quartile.

3.3 Data and Methodology

We are interested in the causal effect of Medicare Part D (i.e., changes in downstream market

demand) on upstream research. If upstream research responded similarly positively to market

demand pull effects as downstream drug development, we would expect to find an increase in

the number of scientific publications, all else equal. Further, we would also expect to see an

increase in patent-paper links, which can be viewed as an output of basic science research.

3.3.1 Sample Selection

To create a link between Medicare Part D and R&D activities, we combine data on biomedical

scientific publications from the NIH’s MEDLINE/PubMed database and Web of Science (WoS),

patent information from Patstat, and drug development activities from the Clarivate Analytics’

Cortellis Investigational Drugs database (commonly known as Cortellis) database by ICD-9
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disease categories and their exposure to Medicare Part D based on the Medical Expenditure

Panel Survey (MEPS).

However, matching publications to disease categories requires considerable expertise, be-

cause the keywords in biomedical publication databases do not correspond 1-to-1 to standard

international disease classifications. We take advantage of an existing crosswalk introduced

by Bhattacharya and Packalen (2011), which we update and present in Table C-1. This cross-

walk provides a mapping of Medical Subject Headings (MESH) terms with a range of ICD-9

three-digit codes.14 Since some MeSH terms relate to multiple ICD-9 three-digit codes and

vice versa, MeSH and ICD-9 three-digit codes are grouped at the level of mutually exclusive

ICD-9 groups that comprise similar diseases.15 The crosswalk is not exhaustive: it is restricted

to ICD-9 categories at the three-digit level, which do not include the words “other” or “unspec-

ified” since those categories typically include various very distinct diseases.16

Our final sample includes 129 separate matches at the ICD-9 group level,17 which corre-

sponds to 272 unique ICD-9 three-digit codes and 192 high-level MeSH terms. We take advan-

tage of the stringent MeSH hierarchy to extend the initial set of MeSH terms by all synonyms

and lower-level terms. Eventually, our sample comprises 1,563 MeSH terms. The selected ICD-

9 groups constitute the basis for all other independent variables and drug development-related

dependent variables.

3.3.2 Empirical Strategy

Figure 3.2 presents our empirical strategy through a case study. We select two disease cate-

gories from our panel, one with a very high and one with a very low exposure to Medicare

Part D measured by the Medicare market share (MMS): Alzheimer’s disease and inflammatory

skin diseases, such as Acne Vulgaris and Seborrhoeic Dermatitis. We show that the trend in the

number of scientific publications and number of preclinical trials (drug discoveries) related to

either Alzheimer’s or inflammatory skin diseases stay parallel before the passage of Medicare

Part D in 2003. While the low-MMS inflammatory skin diseases seem to be uncorrelated with

14MeSH is a hierarchical medical vocabulary administered by the NLM and consists of approximately 30.000 differ-
ent terms in 2020 (https://meshb.nlm.nih.gov/search) [last accessed on March 8, 2021]. The International Sta-
tistical Classification of Diseases and Related Health Problems (ICD) is administered by the World Health Organi-
zation. The 9th version (ICD-9) comprises around 13.000 codes (https://www.cdc.gov/nchs/icd/icd9cm.htm)
[last accessed on March 8, 2021].

15There exists no official publicly administrated crosswalk between ICD-9 and MeSH terms. NIH resources like
the UMLS Metathesaurus (https://www.ncbi.nlm.nih.gov/books/NBK9684/ [last accessed on March 8, 2021])
only include selected 1-to-1 matches. The usage of the PubMed search algorithm, which searches for terms
in titles and abstracts, is infeasible because it requires the user to search for all possible synonyms. Further-
more, identifying appropriate MeSH terms for each ICD-9 category using the MeSH on demand algorithm
(https://meshb.nlm.nih.gov/MeSHonDemand [last accessed on March 8, 2021]) requires an expert assessment
in case of multiple results.

16The match is further limited to ICD-9 codes that appear more than 100 times in the MEPS data from 2007.
It excludes the following ICD-9 categories: pregnancy (class 11), congenital (class 14), perinatal (class 15),
symptoms (class 16), injuries (class 17), and services (class V).

17In addition to the 127 disease categories in B&P2008, we include two major diseases that they excluded: HIV &
Alzheimer. Our results are not sensitive concerning these categories.

73

https://meshb.nlm.nih.gov/search
https://www.cdc.gov/nchs/icd/icd9cm.htm
https://www.ncbi.nlm.nih.gov/books/NBK9684/
https://meshb.nlm.nih.gov/MeSHonDemand


3. MARKET SIZE AND RESEARCH

the MMA in the science and technology sphere, the high-MMS Alzheimer’s disease increases

disproportionately from 20 to 60 drug candidates (i.e., drug development). This trend, how-

ever, does not occur with publications where the trends remain parallel after 2003.

Figure 3.2: Trends in R&D activities in Alzheimer’s and inflammatory skin diseases
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Notes: The left-hand Figure presents the number of publication counts, the right-hand Figure the number of newly
discovered new molecular entities for the Alzheimer’s disease (ICD-9 code: 331; MMS is 97%) versus inflammatory
skin diseases (ICD-9 codes: 690/706; MMS is 4%) between 1997 and 2016.

In our multivariate analyses, we exploit the passage of the MMA by using the variation

in exposure measured by the 1997-2003 MMS. To this end, we use a panel data model that

observes each disease-related MeSH terms by year. The MeSH terms m are nested within

ICD-9 disease groups i(m) (defined as i in the following), which in turn constitute the level of

treatment exposure. To capture the dynamics of the effect, we amend the standard Difference-

in-Differences framework by replacing the post-period dummy with three-year binned sets of

leads from 2004 onward. Hence, we compare research-related outcome variables before and

after the introduction of Medicare Part D between more and less affected MeSH terms. The

empirical model can be written as follows:

E[Nmt| X it] = exp[α+
2016
∑

t=2004

β t Medicare Market Sharei × 1{δt=t}

+µ (
f
∑

lead=1

Mi,t+lead ) +λ (
l
∑

lag=1

NIHi,t-lag ) + γ (
t
∑

t=0

Ki,t )

+ δt + θi],
x
∑

placeholder=x

(3.1)

where Nmt represents the dependent variable (e.g., the number of publications per MeSH term

in year t). The interaction terms MMSi×1{δt=t} indicate the exposure to the MMA and whether

we are in the pre- or in the post-MMA periods (i.e., t ≥ 2004). Consistent with prior literature

on market size and R&D, our empirical model includes controls for the future demography-

driven market size Mit, past public research funding NIHit, and research opportunities Kit.
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Given the differences in the level of R&D activities across disease categories, we either include

ICD-9 group fixed effects θi or MeSH term fixed effects θm. Furthermore, we control for time

trends using calendar year effects δt . In alternative specifications, we interact the MMS with

a full set of two-year binned leads and lags
∑2016

t=1997 β
t MMSi × 1{δt=t}.

18 In this setting, we

normalize the coefficient β t=2002/3 to zero and, hence, express the dynamic treatment effects

relative to this pre-treatment year. This also allows us to examine whether the parallel trends

assumption is likely fulfilled.

We estimate the relative change of R&D activity using Poisson pseudo-maximum likelihood

regressions. Since our dependent variables are count data, Poisson is the preferred economet-

ric model in panels (Hausman et al., 1984). We do not need to use a zero-inflated model,

because all MeSH terms have at least one publication. Under our identification assumption,

β t gives us the average causal effect of the MMA in year t. The coefficients can be interpreted

as semi-elasticities.19 We cluster standard errors at the level of the treatment exposure, thus

at the ICD-9 group level.

When re-investigating the effect of Medicare Part D on drug development, we turn to an

analysis at the ICD-9 three-digit code level Nct, which is the most fine-grained level of observa-

tion for our new molecular entities or clinical trials. ICD-9 three-digit code c are again nested

in ICD-9 groups i(c). In these specifications, we include either ICD-9 group fixed effects θi or

ICD-9 code fixed effects θc , while all other parts of Equation 3.1 remain the same.

Lastly, we investigate heterogeneous effects by splitting the dependent variable along sev-

eral categories, such as affiliations, journal types, clinical relevance, and funding sources. We

use this battery of dependent variables to explore treatment effects along the entire scientific

and innovation value chain.

3.3.3 Medicare Market Share

We exploit variation across disease categories in their pre-Part D MMS, expecting larger in-

creases in scientific research in disease categories with higher MMS. Following previous stud-

ies on Medicare Part D (e.g., Blume-Kohout and Sood, 2013; Dranove et al., 2020; Duggan and

Scott Morton, 2010; Hermosilla and Wu, 2018; Krieger et al., 2018), we build a measure of a

disease category’s exposure to Part D based on MEPS.20 Unlike Blume-Kohout and Sood (2013)

and others, we use ICD-9 disease categories as our level of observations and not therapeutic

classes because scientific articles are typically indexed by keywords corresponding to diseases.

In MEPS, each patient-level drug prescription is associated with a designated disease, an in-

dicator of whether the beneficiary was insured by Medicare, and the patient’s age. Using this

data, we calculate the MMS for each disease at the ICD-9 three-digit level and the more ag-

18Our post-treatment period overlaps with the passage/implementation of the Affordable Care Act (ACA) in 2010.
However, we do not consider this as a concern because the ACA involved only low reimbursement for pharma-
ceuticals and, thus, small revenue increases or incentives from market size (Garthwaite et al., 2020).

19A one percentage point higher MMSi leads to a change of the dependent variable Nmt of β t ∗ 100 percent.
20The MEPS data is available here: https://www.meps.ahrq.gov/mepsweb [last accessed on March 8, 2021].
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gregated ICD-9 group level. The latter corresponds with the level of our match between ICD-9

and MeSH terms, and, thus, with the level of our empirical analysis on biomedical science.

Researchers could anticipate the market size increase from the authorization of the MMA in

December 2003 onward. Thus, we calculate the fraction of patient counts, prescription counts,

and quantity weighted prescription counts filled by Medicare-covered individuals compared

to all individuals for each disease category as a weighted-average between 1997 and 2003.21

The categories with the highest MMS are Alzheimer, Retinal Diseases, Cataract, and Angina

Pectoris. Among the diseases with the lowest MMS are Hyperkinetic Syndrome of Childhood,

Scarlet Fever, Infantile Cerebral Palsy, and Inflammatory Skin Diseases. The distribution of our

MMS at the ICD-9 group level is presented in Figure 3.3, has a mean of 32%, and is in line

with other studies (e.g., Dranove et al., 2020; Hermosilla and Wu, 2018). It does not vary

with the ICD-9 level, sample selection, or the use of (quantity weighted) prescription counts

(Appendix Figure C-3). We are confident in our sample of 129 ICD-9 disease groups as our

level of analysis since we are able to replicate the main results of the prior literature (Duggan

and Scott Morton, 2010).22

Figure 3.3: Distribution of Medicare market shares (1997-2003)
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Notes: The figure presents the distribution of MMS scores among ICD-9 groups that are included in the MeSH-
ICD-9 crosswalk (B&P2011 sample). We use the patient-weighted average of each year between 1997-2003. The
annual MMS are calculated using the total number of patients in Medicare relative to all patients for each ICD-9
group.

21We weight each survey respondent in MEPS by her representativeness (person-level sampling weight).
22Our disease level data allows us to replicate the development of quantities, drug prices, and revenues. We

document the positive effect of Medicare Part D on drug consumption (Appendix Figure C-4). Moreover, in line
with Duggan and Scott Morton (2010) and Duggan and Scott Morton (2011) drug prices decrease between
2006 and 2009 since patients were able to switch to cheaper insurance plans. However, prices increased after
2009 (holding the 2003-2005 drug basket for each disease constant). Despite the initial price declines, by
2006 revenues increased disproportionately for high MMS diseases. This suggests that the quantity increase
outweighs the initial price decline (Appendix Figure C-5).
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3.3.4 Dependent Variables

Scientific Publications

NIH’s MEDLINE/Pubmed database includes the entire universe of references to journal articles

in the biomedical sciences from the early 20th century to the present. We retrieve all publica-

tions (also referred to as PMIDs) with at least one of the 1,563 MeSH terms linked to the 129

ICD-9 groups. We restrict our sample to U.S. publications. Next, we match these publications

with bibliographic data from Web of Science (WoS) to take advantage of WoS’s proper author

name and affiliation disambiguation. The WoS data enables us to look at various splits in the

publication data, such as the affiliation type (i.e., NIH, university, corporate, academic medi-

cal centers),23 and appliedness of the journal.24 Moreover, the WoS bibliographic information

allows us to add information regarding forward citations and journal impact factors.

The coverage of PMIDs in WoS is high, which gives confidence in capturing all relevant

papers related to medical science. Moreover, we extract for each paper all indexed MeSH

terms from the Pubmed database to classify whether a publication is related to disease terms

that are not in our sample. Since we do not know the exposure of these additional disease-

related MeSH to the MMA, we treat them cautiously as potentially confounding and drop them

from the sample. Beyond that, we use all indexed MeSH terms to classify whether a publication

is related to clinical trials or pharmaceutical products.25,26

Next, we measure the extent of the research efforts related to a disease group by counting

the number of matched scientific publications at the MeSH term level. Publications might be

associated with more than one ICD-9 group, so that we account for this in two alternative

ways: we either treat them as simple counts for each disease group separately or weight them

by the inverse number of linked diseases that sum up to one across all disease groups. The

resulting final data set spans from 1997 to 2016 and includes 449,996 unique publications.

Patents

We use references in patents to the scientific non-patent literature (SNPL) to identify knowl-

edge diffusion between upstream research and more downstream innovation activities, like

23We infer the affiliation type from the disambiguated Web of Science publication data based on the string name
of each affiliation. Academic medical center are identified using the string “hospital”. Corporate affiliations are
identified using legal forms like “Corp.” or “Inc.”.

24We use a classification of journals based on the proportion of published research coming from a general hospi-
tal and industry using the publicly available data set provided by Tijssen (2010). See for more information:
https://www.vosviewer.com/journal-application-domain-map [last accessed on March 8, 2021].

25The category “clinical trials” includes all MeSH terms that are related to the MeSH ID “D016430” (Clinical Trial)
and the entire set of MeSH terms at the hierarchy levels below, such as “Adaptive”, “Phase I”, “Phase II”, “Phase
III”,“Phase IV”,“Controlled Clinical Trial” or “Randomized Controlled Trial”.

26The category “pharmaceutical products” includes all MeSH terms that are related to the MeSH ID “D004364”
(Pharmaceutical Preparations) and the entire set of MeSH terms at the hierarchy levels below, such as “Dosage
Forms”, “Drug Combinations”, “Drugs, Generic”, “Drugs, Investigational”, “Pharmaceutic Aids” or “Prescription
Drugs”.
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patenting (following Ahmadpoor and Jones, 2017; Marx and Fuegi, 2020; Poege et al., 2019;

Watzinger and Schnitzer, 2019).27 We locate publications that are directly cited in a patent

by matching the Pubmed-patent link constructed by Marx and Fuegi (2020) to our sample of

scientific publications.28 Thus, we weight U.S. scientific publications by an indicator variable

that specifies whether a publication was cited as a SNPL within a 5-year window.29 This applies

to 19,891 biomedical scientific publications.30

Clinical Drug Development

To measure the impact of Medicare Part D on drug development activities, we use time-series

data from Cortellis on all clinical drug development events by disease categories at each stage

in the pharmaceutical development process. We link the Cortellis targeted conditions to ICD-9

codes using the crosswalk by Dranove et al. (2020)31 and identify unique new molecular en-

tities (NME) entering Phase I, Phase II, or Phase III clinical testing, as well as being submitted

to the FDA for approval. We limit the sample of NMEs to those, which are discovered/test-

ed/approved in the U.S., and include information on the target-based action and at least one

designated disease. If a clinical trial occurs more than once for a NME-disease link, we use the

first event. To be consistent with our science level analysis, we count the number of NMEs at

the more fine-grained ICD-9 three-digit code level, which is nested within our ICD-9 groups.

In total, we identify 9,943 NMEs entering at least one phase of the drug development

process. This comprises 201 ICD-9 three-digit codes, and 121 ICD-9 groups (we lose 8 ICD-9

groups that had no NME between 1997 and 2016).

3.3.5 Control Variables

The empirical model includes a set of additional determinants of R&D: projected market size,

public research funding, and research opportunities. A detailed description of the control

variables construction can be found in the Appendix C.1. First, we control for the projected

market size due to U.S. population growth (Acemoglu and Linn, 2004; Blume-Kohout and

Sood, 2013). For this purpose, we use demographic (projection) data from the UN World Pop-

27Patents reference various types of documents that relate to the protected invention by either determining novelty
(prior art) or explaining the content of the underlying invention. A subset of these references relates to scientific
articles, called SNPL references (Poege et al., 2019).

28We use the patent-paper link provided by Marx and Fuegi (2020), which includes patents until 2019. Their link
between Microsoft Academics Graphs (and PubMed/MEDLINE) and patents is based on front-page citations to
non-patent prior art.

29We aggregate all citing patent applications at the DOCDB family level and calculate the 5-year window from the
year of the scientific publication to the year of the priority year of the patent family.

30Our publication-patent link may suffer from attrition because late publications have not yet been cited in patents.
However, we have little reason to expect that the time to patent varies systematically by MMS. This is supported
by our finding that the minimum time lag between a scientific article’s publication year and a patent’s priority
year is uncorrelated with the MMS (i.e., the pairwise correlation is −0.0365).

31Dranove et al. (2020) had two expert medical coders independently code the concordance between Cortellis
indications and ICD-9 codes. We are grateful to Manuel Hermosilla for sharing the mapping with us.
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ulation Prospects. Figure 3.4a illustrates the average development of the population-growth

driven projected market size before and after the introduction of Medicare Part D. While mar-

ket size will increase in all disease categories, diseases in the highest quartile of MMS exhibit

the sharpest growth due to an aging population.32

Second, we control for previous years’ public research funding related to each disease cate-

gory. Therefore, we calculate for each of our 129 ICD-9 groups the exposure to the NIH budget

over time by linking each group to the relevant NIH Institute/Center (e.g., ICD-9 162 malig-

nant neoplasm of trachea, bronchus, and lung to the NCI National Cancer Institute).33 Figure

3.4b presents the normalized average NIH spending by ICD-9 groups in each MMS quartile. It

becomes apparent that diseases in the lowest quartile of MMS are associated with the largest

relative increase of NIH funding. However, high MMS diseases receive a substantially higher

level of NIH funding.34

Third, we account for the availability of research opportunities.35 We develop a direct mea-

sure of new research opportunities in a disease area based on the introduction of new terms in

the respective branch of the MeSH tree. New terms are added for emerging diseases, a more

detailed definition of existing diseases, as well as additional terminology to reflect topical ar-

eas that are not well represented in MeSH. Figure 3.4c shows substantial heterogeneity in new

research opportunities across ICD-9 groups. High MMS diseases exhibit greater increases in

research opportunities around 2000.

3.4 Descriptive Analysis

Our final data set consists of 129 disease groups from 1997 to 2016. This allows us to investi-

gate the possible effects of Medicare Part D on scientific research over a period of 13 post-MMA

years. Each of the 129 ICD-9 groups in our sample is associated with, on average, 12.1 disease

MeSH terms (1,563 observations). For 121 of these ICD-9 groups, we find drug development

activities in around 1.7 ICD-9 three-digit codes per group (201 observations).

Table 3.1 provides summary statistics for the full set of independent and dependent vari-

ables in the year 2003. The average ICD-9 group has 204.3 scientific publications or 16.9 per

MeSH term. The majority of publications (77.8%) have at least one author with a university

affiliation, 13.6% have at least one author with an academic medical center affiliation, 5.4%

32We also calculate projected market size at the OECD level. Figure C-1 illustrates the evolution.
33Since grants are distributed within Institutes primarily by scientific merit (see discussion on NIH funding rules

by Azoulay et al. (2019)) and not by allocation to narrower disease categories, we attribute the full Institute’s
budget to each ICD-9 group. We retrieve NIH spending data (Mechanism Detail by IC, FY 1983-2019) from
https://officeofbudget.od.nih.gov/spending_hist.html [downloaded on February 17, 2020].

34In an alternative approach we attribute budgets based on the share of all publications in a disease category that
acknowledge a specific Institute. Figure C-2 in the Appendix illustrates the evolution.

35In similar fashion, Bhattacharya and Packalen (2011) construct a measures of research opportunities based on
the content of research inputs and the first appearance of the idea in a scientific publication. The disadvantage
of the approach is that it relies on a very narrow set of research inputs that relate primarily to drug-related
medical research but not basic science.
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Figure 3.4: Control variables over time
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Notes: The three figures present the normalized annual control variables by MMS quartiles over time. In Figure
3.4a, we aggregate the U.S. population-growth driven market size (in 2003 values) of each ICD-9 group. In Figure
3.4b, we average the NIH spending (in 2003 values) of all Institutes/Centers, which are related to our ICD-9
groups. In Figure 3.4c, we accumulate the number of new MESH terms associated with our ICD-9 groups.

have a corporate affiliation, and 4.9% are published with NIH participation. Moreover, 6.2% of

these publications are cited in patent applications. This share, however, is substantially larger

for corporate publications (14.3%). At the same time, 2.03 NMEs enter pre-clinical trials per

ICD-9 group. This number decreases throughout the clinical trial process resulting in 0.09 new

drug approvals per ICD-9 group in 2003.

A simple comparison between ICD-9 groups split at the MMS median in Appendix Table

C-2 illustrates that both groups are very similar regarding the pre-MMA levels in the majority

of dependent variables. This also applies to the distribution of dependent variables (Appendix

Figure C-6). An important exception is that diseases prevalent among the elderly are more

related to clinically relevant journals and patents. This is not surprising since the overall

market size is larger, in levels, before the MMA. Moreover, the MMS is positively correlated

with the level of all independent variables. This supports our decision to control for these

factors in our multivariate analysis.

Descriptively, the total yearly log-transformed number of scientific publications in low or

high MMS ICD-9 disease groups develops in a parallel fashion until 2003. This provides visual
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Table 3.1: Summary statistics

N Mean Median Std. Dev. Min Max

ICD9 group level

MMS (cases) 129 31.81 27.32 23.22 0 97
MMS (prescription counts) 129 34.42 30.21 24.53 0 98
MMS (prescription quantity) 129 35.18 29.28 25.31 0 97
Cumul. US Market Sizet to t+12 129 13575.14 2695.54 40242.85 29 343211
Cumul. NIH fundingt-1 to -12 129 16.72 14.38 10.97 3 46
Cumul. New MeSH termst 129 0.23 0.00 0.70 0 4

MeSH term level

Scientific publications 1563 16.86 2.00 69.33 0 1128
Publications - fractional 1563 13.11 1.00 58.95 0 1000
NIH publications 1563 0.82 0.00 4.14 0 70
University publications 1563 13.28 1.00 54.87 0 890
Academic Medical Center publications 1563 2.29 0.00 8.63 0 151
Corporate publications 1563 0.91 0.00 4.41 0 80
NIH grant publications 1563 6.67 0.00 32.87 0 565
Clinical trial university publications 1563 1.27 0.00 5.75 0 110
Clinical trial corporate publications 1563 0.21 0.00 1.16 0 25
Pharmaceutical university publications 1563 0.33 0.00 1.74 0 27
Pharmaceutical corporate publications 1563 0.07 0.00 0.46 0 9
Citation-weighted publications 1563 353.33 16.00 1646.59 0 29351
JIF-weighted publications 1563 60.88 4.28 266.30 0 4518
Patent-weighted publications 1563 1.05 0.00 6.26 0 125
Patent-weighted university publications 1563 0.83 0.00 4.99 0 102
Patent-weighted corporate publications 1563 0.13 0.00 0.75 0 14
Patent family size-weighted publications 1563 9.17 0.00 53.45 0 1082

ICD9 3-digit code level

Drug discoveries 201 2.03 0.00 5.43 0 47
Phase I clinical trials 201 0.54 0.00 1.32 0 8
Phase II clinical trials 201 0.82 0.00 1.97 0 17
Phase III clinical trials 201 0.26 0.00 0.67 0 4
Drug approval 201 0.09 0.00 0.37 0 3

Notes: This table presents summary statistics linked to the 129 ICD-9 groups in 2003. The unit of observation is
at the ICD-9 group level for both the treatment and control variables; at the MeSH term level for the dependent
publication variables; and at the ICD-9 three-digit code level for dependent drug development variables.

support for our parallel trends assumption which is needed for our Difference-in-Differences

framework (see Figure 3.5a). These trends also hold across other dependent variables, like

corporate publications (see Figure 3.5b).36 Formal tests for parallel trends, e.g., by splitting the

pre-period and testing whether there are differential changes in the slope, are employed and

found supportive (Appendix Tables C-3 & C-7). After 2004, the log number of publications

associated with high-MMS diseases increase disproportionately, but only to a small degree.

This divergence is more pronounced for publications from corporate affiliates.

Parallel trends are also supported by the annual count of drug discoveries and approvals

in Figures 3.5c and 3.5d, which evolve in a similar fashion for low- and high-MMS diseases

36Further univariate graphs with other dependent variables can be found in the Appendix in Figure C-7.
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until 2003. The number of drug discoveries and drug approvals increases after 2003. As such,

we can replicate the prior literature (Blume-Kohout and Sood, 2013; Dranove et al., 2020)

descriptively within our sample of ICD-9 groups.

Figure 3.5: Trends in scientific publications and drug development by MMS

(a) All publications
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(c) Drug discoveries
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Notes: Figure (a) presents the log-transformed average number of annual publication counts associated with
all affiliations and Figure (b) selects only publications from corporate affiliations. Figure (c) displays the log-
transformed average number of annual drug discoveries and Figure (d) the log-transformed average number of
annual drug approval. In all graphs, the unit of observation is the unique ICD-9 group level.

This descriptive analysis suggests that the introduction of Medicare Part D and, thus, the

sudden insurance-induced increase of market size for diseases more prevalent among the el-

derly, has led to more commercial drug development activities. Upstream research activities,

in general, seem to be more resilient to these changes in downstream market size. However,

upstream research conducted by corporations appears more elastic in high MMS disease cate-

gories after the MMA.

The following multivariate analysis will investigate this pattern in more detail, accounting

for other factors like demographic trends, public funding, and new research opportunities that

may have an impact on R&D outcomes besides Medicare Part D.
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3.5 Empirical Results – Clinical Drug Development

We start by replicating prior results showing the effect of the MMA on clinical drug develop-

ment. This replication exercise provides validation for our sample selection and variable con-

struction. Moreover, the results of this analysis will enable us to compare the effects among

scientific research and drug development activities within our sample. Figure 3.6 shows the

event study results similar to Equation 3.1. The dependent variables are the number of newly

discovered NMEs and the number of drug approvals, respectively.

Figure 3.6: Event study – drug development

(a) Drug discoveries
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Notes: The figures show the event study estimates and the 90 percent confidence bands of Poisson pseudo-
maximum likelihood regressions with high-dimensional fixed effects following Equation 3.1. The unit of observa-
tion is the ICD-9 three-digit code level, with MMS being calculated based on patient counts at the ICD-9 group
level. The sample includes all ICD-9 groups appearing in the B&P2011 crosswalk. Standard errors are clustered
at the level of treatment (ICD-9 group level).

In line with our descriptive analysis, the number of new drug discoveries and the num-

ber of drug approvals display broadly similar patterns independent of the pre-MMA MMS.

This suggests the absence of confounding pre-trends. After the passage of the MMA in 2003,

disease categories with higher exposure to Medicare Part D exhibit a relative increase in drug

discoveries. The effect becomes larger over time and is statistically significant. The same holds

true for drug approvals. However, there is a significant up-tick directly after the introduction

of Medicare Part D in 2004 and 2005.37

Next, Table 3.2 presents the estimates of our Difference-in-Differences estimation with dy-

namic post-periods. Columns 1 and 2 present the results on drug discoveries with and without

control variables. In Columns 3 and 4 we present NMEs in all stages of the clinical develop-

ment process. Finally, Columns 5 and 6 present clinical trials in Phase I-III and drug approvals

separately. We find a positive and significant effect of a higher MMS on early drug develop-

ment, accelerating over time. In our preferred specification, in which we control for the future

market size, past NIH funding, and research opportunities, the effect becomes significant af-

ter 2011. This is consistent with the long discovery process in the pharmaceutical industry.

The point estimate in 2015-2016 has a magnitude of 0.87%. This implies that one standard

deviation (23.2 percentage points) increase in MMS leads to 20.2% more drug discoveries.
37We show the event study results of other drug related outcome variables in Figure C-8 in the Appendix.
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Importantly, these effects are similar in magnitude compared to Dranove et al. (2020) and

slightly smaller than the results of Blume-Kohout and Sood (2013).

These effects are smaller and occur later when looking at drug development in all stages

of clinical development or NMEs in Phase I-III clinical trials. However, this is not surprising

given the staggered fashion of drug development (from preclinical to clinical trials to approval)

and supported by other studies on drug development (Blume-Kohout and Sood, 2013). An

exception are drug approvals, which show a positive significant increase immediately after

the introduction of the MMA in 2004-2005 by 2.5% per additional percentage point of MMS.

These results strongly support Finkelstein (2004) and suggest that pharmaceutical companies

reacted by pushing forward advanced drug candidates already in their development pipeline

relevant for elderly patients.

Table 3.2: Drug development

All ICD9 Groups (1) (2) (3) (4) (5) (6)
Count/PPML Drug Development

Early Development All Development Stages Phase 1-3 Approval

MMS × 2004-05 −0.0011 −0.0007 −0.0011 −0.0007 −0.0044 0.0256∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.003) (0.009)
MMS × 2006-08 0.0006 0.0013 0.0000 0.0007 −0.0017 0.0070

(0.002) (0.003) (0.002) (0.002) (0.003) (0.008)
MMS × 2009-11 0.0009 0.0020 0.0001 0.0012 −0.0004 0.0138

(0.002) (0.003) (0.002) (0.003) (0.004) (0.010)
MMS × 2012-14 0.0035 0.0053∗ 0.0024 0.0040 0.0016 0.0198∗

(0.002) (0.003) (0.003) (0.003) (0.004) (0.012)
MMS × 2015-16 0.0065∗ 0.0087∗∗ 0.0046 0.0066∗ 0.0043 0.0191

(0.003) (0.004) (0.003) (0.004) (0.006) (0.012)
Cumul. US Market Sizet to t+12 No Yes No Yes Yes Yes
Cumul. NIH fundingt-1 to -12 No Yes No Yes Yes Yes
Cumul. New MeSH idst No Yes No Yes Yes Yes
ICD9 group FE Yes Yes Yes Yes Yes Yes
Calendar Year FE Yes Yes Yes Yes Yes Yes

Observations 3800 3800 3880 3880 3760 3220
ICD9-codes 190 190 194 194 188 161
ICD9-groups 110 110 114 114 110 87
Log-likelihood −6733 −6723 −10459 −10449 −6136 −1316

Notes: Columns (1) to (6) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. The unit of observation is the ICD-9 three-digit code by year. The dependent variable
is the annual number of newly discovered NMEs in Columns (1) and (2), NMEs in all clinical development stages
(i.e., preclinical, clinical trials, registrations, approvals) in Columns (3) and (4), NMEs in Phase I-III clinical trials
in Column (5), and approved NMEs in Column (6). The control variables are log-transformed. Standard errors
are clustered at the level of treatment (ICD-9 group level) and shown in parentheses. Significance levels: * p<0.1,
** p<0.05, *** p<0.01.
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3.6 Empirical Results – Biomedical Science

In this section, we pivot and present the results of our empirical strategy outlined in Section

3.3. We evaluate whether Medicare Part D differentially affected scientific publications for

disease categories with higher MMS. Importantly, we differentiate by the type of affiliation as

well as type of research and investigate the (commercial) impact.

3.6.1 Main Effect

First, we evaluate whether Medicare Part D differentially affected scientific research in MeSH

categories associated with high MMS ICD-9 disease groups from all types of affiliations. Our

event study results in Figure 3.7 are based on a Poisson pseudo-maximum likelihood regression

with the full set of control variables, ICD-9 group and calendar year fixed effects (adapting

Equation 3.1). Overall, we see no pre-MMA effect on scientific publications suggesting the

absence of confounding pre-trends. After the passage of Medicare Part D, we observe only a

slight divergence for the average MeSH category, which is neither significantly different from

zero nor large in magnitude.

Figure 3.7: Event study – scientific publications
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Notes: The figure shows the event study estimates and the 90 percent confidence bands of Poisson pseudo-
maximum likelihood regressions with high-dimensional fixed effects following Equation 3.1. The unit of observa-
tion is the MeSH term level, with MMS being calculated based on patient counts at the ICD-9 group level. Standard
errors are clustered at the level of treatment (ICD-9 group level).

We quantify the changes in scientific research in response to the Part D demand shock in

Table 3.3. In Columns 1 and 2, we report the results from a simple Difference-in-Differences

regression. The post-treatment period is defined to start in 2004 and to last until the end

of our sample’s observation period in 2016. Again, there is no significant effect on scientific

publications, independent of the usage of control variables.

In Columns 3 to 6, we estimate the dynamic changes in science. The first time period shows

the transitional effect between the passage and the implementation of Medicare Part D. The
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post-implementation effects are divided in three-year bins. Column 3 presents the effect of the

MMA on MeSH categories related to high MMS diseases without controls. Results are close to

zero and insignificant. Adding control variables in Columns 4 to 6 increases the coefficients

but not the interpretation of the results. Our preferred specification (Equation 3.1) in Column

6 includes the full set of controls and serves as the baseline for the further analysis.

Under the assumption that there was no relationship between MMS and scientific activity

prior to 2003, positive coefficients would indicate that the Part D demand shock led to an

increased number of scientific publications in a given time period. This does not seem to be

the case. Ten years from the passage of Medicare Part D, the point estimate can be interpreted

as one additional percentage point in MMS resulting in 0.3% additional publications. This

is considerably below the effect size on drug discoveries.38 Taking the point estimate at face

value, a MMS increase of one standard deviation (23.2 percentage points) leads to only 6.9%

additional scientific publications. This can be considered fairly inelastic.

Table 3.3: Scientific publications

All ICD9 Groups (1) (2) (3) (4) (5) (6)
Count/PPML DV: Scientific Publications

MMS × post 2003 0.0003 0.0002
(0.001) (0.001)

MMS × 2004-05 0.0002 0.0006 0.0006 0.0006
(0.001) (0.001) (0.001) (0.001)

MMS × 2006-08 −0.0008 −0.0002 −0.0001 −0.0001
(0.001) (0.001) (0.001) (0.001)

MMS × 2009-11 0.0003 0.0013 0.0013 0.0013
(0.001) (0.002) (0.002) (0.002)

MMS × 2012-14 0.0004 0.0018 0.0017 0.0017
(0.001) (0.002) (0.003) (0.003)

MMS × 2015-16 0.0016 0.0032 0.0030 0.0030
(0.002) (0.003) (0.003) (0.003)

Cumul. US Market Sizet to t+12 No Yes No Yes Yes Yes
Cumul. NIH fundingt-1 to -12 No Yes No No Yes Yes
Cumul. New MeSH idst No Yes No No No Yes
ICD9 group FE Yes Yes Yes Yes Yes Yes
Calendar Year FE Yes Yes Yes Yes Yes Yes

Observations 31260 31260 31260 31260 31260 31260
MeSH IDs 1563 1563 1563 1563 1563 1563
ICD-group 129 129 129 129 129 129
Log-likelihood −894474 −894404 −894397 −894371 −894319 −894319

Notes: Columns (1) to (6) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. The unit of observation is the MeSH term by year. The dependent variable is the annual
number of scientific publications. The control variables are log-transformed. Standard errors are clustered at the
level of treatment (ICD-9 group level) and shown in parentheses. Significance levels: * p<0.1, ** p<0.05, ***
p<0.01.

38The 95th percentile confidence interval rules out an increase greater than 0.9%, which is approximately the effect
of drug discoveries in Table 3.2.
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3.6.2 Type of Affiliation

We expect the relationship between market size and scientific research to depend on product

market orientation. Biomedical scientists with corporate affiliations have direct financial ties

to the market for prescription drugs. Their objectives should be aligned with those of the

pharmaceutical industry (Henderson and Cockburn, 1996). Moreover, corporate scientists

participate in the publication of the results of clinical trials in scientific journals. The latter also

applies to scientists and practitioners at academic medical centers, who play an intermediary

role between industry and academia (Lander and Atkinson-Grosjean, 2011; Lander, 2013).

For scientists at universities, the relationship is more complex since market orientation differs

across sub-fields and depends on a variety of factors (elaborated in Foray and Lissoni, 2010),

but should be overall less pronounced compared to corporate scientists.

Figure 3.8: Event study – scientific publications by affiliation type

(a) NIH
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(c) Academic Medical Centers
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Notes: The figures show the event study estimates and the 90 percent confidence bands of Poisson pseudo-
maximum likelihood regressions with high-dimensional fixed effects following Equation 3.1. The unit of observa-
tion is the MeSH term level. The dependent variable is the annual number of scientific publications split by at least
one author’s affiliation. Standard errors are clustered at the level of treatment (ICD-9 group level).

In the following analysis, we split our dependent variable by whether the publication was

coauthored by at least one scientist who was affiliated with the NIH, a university, an academic

medical center, or a corporation. Figure 3.8 shows the event study results, displaying the yearly

excess publications in high MMS relative to low MMS MeSH categories. While generally not

significant, the effects still go along with our predictions. It is least pronounced in the public

research sphere at the NIH and most pronounced in the private research sphere at corporations.

This is consistent with the idea that the market orientation of scientists matters.
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Table 3.4 quantifies the Medicare Part D demand responses by affiliation subgroup. We

find that the demand response following the introduction of Medicare Part D is concentrated

among scientific publications with at least one corporate affiliation and increases gradually

over time. The timing of the effect is consistent with the results of Blume-Kohout and Sood

(2013), where the response magnifies through 2009 and appears to stabilize after 2012. In

contrast, scientific publications with at least one university scientist have substantially smaller

coefficients.39 The demand response from academic medical centers sits plausibly in-between

universities and industry.

The point estimates of our analysis suggest that scientific research at non-corporate affili-

ations is less responsive to changes in market size compared to drug development within the

same sample of ICD-9 groups. For instance, a MMS increase of one standard deviation (23.2

percentage points) leads to only 5.8% (7.9%) of additional scientific publications from univer-

sity (academic medical center) scientists. The effect on scientific research directly conducted

at the NIH is essentially zero. However, the same market size expansion leads to an increase of

scientific publications coming from industry by 22.7%. This resembles the magnitude of our

findings on drug development from Section 3.5. In the following sections, we will investigate

which type of research drives this effect.

As outlined in Section 3.2, private insurance plans, which fall under the scope of Medicare

Part D, do not have to cover all approved drugs. However, there are certain “protected drug

classes” for which most drugs are required to be included (e.g., anti-cancer, anti-convulsant,

anti-depressants, anti-psychotic, immuno-suppressant, HIV and AIDS drugs). Hence, we dis-

tinguish between ICD-9 groups that correspond to “unprotected” or “protected” drug classes.

Our results in Figures C-12 in the Appendix correspond with our expectations and the previous

literature (Blume-Kohout and Sood, 2013; Dranove et al., 2020). However, the only specifi-

cation that contains statistically significant effects is the model focused on corporate affiliated

scientists publishing in “protected” ICD-9 groups.

3.6.3 Type of Research

Given the rise of corporate science in response to Medicare Part D, we investigate the vertical

orientation of these research publications. To this end, we differentiate between scientific

publications that are related to the development of drugs (i.e., more applied in nature) and

more basic science. We add the full set of MeSH terms to each publications and identify those

MeSH terms that are related to clinical trials and those that are related to pharmaceutical

products. We interpret the residual as fairly basic research. Finally, we split the dependent

variable by the appliedness of the journal.

39These findings are quantitatively similar but less precise when looking at publications from only corporate affil-
iations. This is consistent with the idea that pharmaceutical industry and university research are interlinked
(Henderson and Cockburn, 1996).
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Table 3.4: Scientific publications by affiliation type

All ICD9 Groups (1) (2) (3) (4) (5) (6)
Count/PPML Scientific Publications

NIH University No University AMC Corporate All US

MMS × 2004-05 −0.0006 0.0004 0.0007 0.0001 −0.0001 0.0004
(0.002) (0.001) (0.001) (0.001) (0.002) (0.001)

MMS × 2006-08 −0.0021 −0.0005 −0.0002 −0.0002 0.0010 −0.0004
(0.002) (0.001) (0.001) (0.002) (0.002) (0.001)

MMS × 2009-11 −0.0014 0.0010 0.0014 0.0011 0.0036 0.0009
(0.003) (0.002) (0.002) (0.002) (0.003) (0.002)

MMS × 2012-14 −0.0018 0.0012 0.0020 0.0020 0.0059 0.0011
(0.004) (0.003) (0.003) (0.003) (0.004) (0.002)

MMS × 2015-16 −0.0001 0.0025 0.0034 0.0030 0.0098∗ 0.0018
(0.004) (0.003) (0.003) (0.004) (0.005) (0.003)

Cumul. US Market Sizet to t+12 Yes Yes Yes Yes Yes Yes
Cumul. NIH fundingt-1 to -12 Yes Yes Yes Yes Yes Yes
Cumul. New MeSH idst Yes Yes Yes Yes Yes Yes
ICD9 group FE Yes Yes Yes Yes Yes Yes
Calendar Year FE Yes Yes Yes Yes Yes Yes

Observations 30480 31260 31260 31240 31120 31260
MeSH IDs 1524 1563 1563 1562 1556 1563
ICD-group 111 129 129 128 125 129
Log-likelihood −55113 −742561 −584310 −156719 −68090 −669330

Notes: Columns (1) to (6) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. The unit of observation is the MeSH term by year. The dependent variable is the annual
number of scientific publications split by at least one author’s affiliation. In Column (1) at least one author is
affiliated with the NIH, in Column (2) with a university, in Column (4) with an academic medical center, and
in Column (5) with a firm. Column (3) includes publications that have at least one author not affiliated with a
university. In Column (6), we count only publications, for which all authors have U.S. affiliations. The control
variables are log-transformed. Standard errors are clustered at the level of treatment (ICD-9 group level) and
shown in parentheses. Significance levels: * p<0.1, ** p<0.05, *** p<0.01.

We show in Table 3.5 that the increases in corporate scientific publishing are more articu-

lated among publications that relate to clinical trials and pharmaceutical products but less so

in basic science. The latter is supported by the fact that there is no increase in publications, for

which the scientists received a NIH grant, a good proxy for the basicness of research. There

is also no demand response on clinical trial and pharmaceutical product-related scientific re-

search at universities or academic medical centers (Appendix Table C-18).40 These results are

supported by our event study analyses (Appendix Figure C-13) indicating that the dispropor-

tional increases in clinical trials and pharmaceutical product publications for corporation are

not driven by pre-existing trends but by the introduction of Medicare Part D. The magnitudes

of the effects on corporate applied science are substantially larger compared to all (other)

types of research.

These results are consistent with our findings on the appliedness of journals. The demand

response is most pronounced for research published in clinical practice, industry practice, and

40If at all, there is evidence for crowding out in those areas with the strongest increase among corporate publica-
tions: pharmaceutical products-related publications.
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Table 3.5: Scientific publications by type of research

All ICD9 Groups (1) (2) (3) (4) (5) (6)
Count/PPML University Corporate

Basic CT Pharma Basic CT Pharma

MMS × 2004-05 0.0008 −0.0010 −0.0044∗∗ −0.0020 0.0045 0.0090∗∗

(0.001) (0.001) (0.002) (0.002) (0.003) (0.005)
MMS × 2006-08 −0.0002 −0.0015 −0.0056∗∗ 0.0001 0.0042 0.0060

(0.001) (0.002) (0.003) (0.002) (0.004) (0.004)
MMS × 2009-11 0.0013 −0.0006 −0.0056∗ 0.0008 0.0104∗ 0.0161∗∗∗

(0.002) (0.003) (0.003) (0.003) (0.006) (0.006)
MMS × 2012-14 0.0015 0.0010 −0.0052 0.0028 0.0125∗ 0.0209∗∗

(0.003) (0.004) (0.004) (0.003) (0.007) (0.008)
MMS × 2015-16 0.0029 0.0018 −0.0059 0.0066 0.0162∗∗ 0.0236∗∗∗

(0.003) (0.005) (0.006) (0.005) (0.007) (0.009)
Cumul. US Market Sizet to t+12 Yes Yes Yes Yes Yes Yes
Cumul. NIH fundingt-1 to -12 Yes Yes Yes Yes Yes Yes
Cumul. New MeSH termst Yes Yes Yes Yes Yes Yes
ICD9 group FE Yes Yes Yes Yes Yes Yes
Calendar Year FE Yes Yes Yes Yes Yes Yes

Observations 31260 30960 30860 31100 30080 28240
MeSH terms 1563 1548 1543 1555 1504 1412
ICD-group 129 124 120 124 109 95
Log-likelihood −659174 −85517 −32763 −50491 −20014 −7944

Notes: Columns (1) to (6) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. The unit of observation is the MeSH term by year. In Columns (1) to (3), the dependent
variable is the number of university scientific publications and in Column (4)-(6) the number of corporate scientific
publications, both split by the type of research. Columns (2) and (5) include only publications that are associated
with MeSH terms related to clinical trials, and Columns (3) and (6) with MeSH terms related to pharmaceutical
products. Column (1) and (4) include the residual. The control variables are log-transformed. Standard errors are
clustered at the level of treatment (ICD-9 group level) and shown in parentheses. Significance levels: * p<0.1, **
p<0.05, *** p<0.01.

clinical-industrial journals driven by corporate research activity (Appendix Table C-16) and not

by universities (Appendix Table C-15). We view our findings as evidence for the interpretation

that a majority of corporate scientific publications, which result from the increase in market

size, are related to actual drug development activities (e.g., published clinical trial results) and

do not constitute basic research. It supports the notion that demand pull effects are not strong

enough to encourage true basic science – not even within industry.

3.6.4 Research Impact

In the last part of the analysis, we explore the impact of scientific research both within the

scientific domain and beyond. As outlined in Section 3.3.4 we trace scientific publications to

patents. These patent-paper linkages approximate whether scientific research got recognized

in commercially relevant applications (Marx and Fuegi, 2020), in our context pharmaceutical

and biomedical patents. Thus, we weight scientific publications by the journal impact factor
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(which is less affected by truncation compared to forward citations), by the 5-year availability

of patents, and by the patent family size.

Our impact-weighted results in Table 3.6 show a similar but more noisy pattern with

smaller magnitudes than the overall unweighted publication counts. Within the science do-

main, there is a disproportional increase in corporate JIF-weighted publications (although not

significant), which is substantially smaller for university publications. The magnitude of the

corporate effect is around 50% of the effect on simple counts. This suggests that the effects on

corporate science are more pronounced at the extensive (quantity) margin and less so when

quality-weighted.

Patent-weighted publications increase primarily among corporate affiliations. The

strongest effect is found initially after the passage of Medicare Part D. Corporate scientific

research that ends up cited in a patent, increases by 0.68% in the years 2004-2005. This cor-

responds to an increase of 15.8% given a MMS increase of one standard deviation. The effect

size decreases in the following years but reaches similar levels after 2011. The quick initial

response suggests the existence of a reservoir of scientific research "on the shelf" available

for commercialization. This is consistent with prior literature, which suggests that publishing

corporate science is used strategically in the patenting process (Della Malva and Hussinger,

2012). An alternative explanation is that industry became more likely to patent ideas from

scientific publications as a reaction to the discrete increase in market size.41

3.7 Robustness Checks

We conduct a variety of robustness checks, which can be found in the Appendix. The demand

response of corporate scientific research to the increase in market size is robust across a va-

riety of changes, unless otherwise stated. The same applies to the inelastic response of all

publications, across all other types of affiliation.

First, we redefine the dependent variable as a count of the annual number of scientific pub-

lications weighted by the inverse number of linked diseases (fractional counts) to account for

multiple disease MeSH terms per publication. We also winsorize the dependent variable to

deal with outliers (Figure C-10, Table C-8 and C-12).

Second, we calculate different exposure variables, for example, MMS based on prescription

counts/quantity, binary indicators, and MMS based on 2003 values only (Figures C-11).

Third, we use alternative control variables such as the OECD market size or NIH funding

calculated as a share of all publications in a disease category that acknowledge a specific

Institute. Moreover, we include control variables that do not accumulate future/past periods

41Family-size weighted publications show a similar pattern, except for an arbitrary decrease in 2015-2016. All
results are more pronounced when looking at event studies (Appendix Figure C-14). Using alternative measures
for research impact, such as forward citations or SNPL references to drug patents that occur in the Cortellis
database in the same ICD-9 group as the scientific publication, point to similar results (Appendix Table C-17).
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Table 3.6: Impact/patent-weighted scientific publications

All ICD9 Groups (1) (2) (3) (4) (5) (6)
Count/PPML JIF-Weighted Patent-Weighted Family Size-Weighted

Uni Corporate Uni Corporate Uni Corporate

MMS × 2004-05 −0.0001 −0.0002 0.0020 0.0068∗ 0.0001 0.0049
(0.001) (0.003) (0.002) (0.004) (0.003) (0.005)

MMS × 2006-08 −0.0015 −0.0011 0.0009 0.0016 0.0000 0.0045
(0.002) (0.003) (0.002) (0.003) (0.002) (0.004)

MMS × 2009-11 0.0004 0.0028 0.0011 0.0025 −0.0003 0.0044
(0.002) (0.004) (0.003) (0.004) (0.003) (0.005)

MMS × 2012-14 0.0006 0.0039 0.0008 0.0058 −0.0013 0.0078
(0.003) (0.004) (0.003) (0.004) (0.004) (0.005)

MMS × 2015-16 0.0017 0.0058 0.0003 0.0062 −0.0019 −0.0013
(0.003) (0.005) (0.004) (0.006) (0.004) (0.007)

Cumul. US Market Sizet to t+12 Yes Yes Yes Yes Yes Yes
Cumul. NIH fundingt-1 to -12 Yes Yes Yes Yes Yes Yes
Cumul. New MeSH idst Yes Yes Yes Yes Yes Yes
ICD9 group FE Yes Yes Yes Yes Yes Yes
Calendar Year FE Yes Yes Yes Yes Yes Yes

Observations 31260 31120 30700 27980 30700 27980
MeSH IDs 1563 1556 1535 1399 1535 1399
ICD-group 129 125 114 92 114 92
Log-likelihood −2998960 −268192 −50082 −10335 −329216 −73054

Notes: Columns (1) to (6) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. The unit of observation is the MeSH term by year. In Columns (1) to (2), the dependent
variable is the journal impact factor-weighted number of university/corporate scientific publications. In Columns
(3) to (4), the dependent variable is the number of university/corporate scientific publications that are associated
with at least one patent application (patent-weighted). In Columns (5) to (6), we weight the number of scientific
publications by the size of the average patent family associated with the publication. A patent/family size-weight is
calculated based on the patent family’s first application being filed within five years from the scientific publication.
The control variables are log-transformed. Standard errors are clustered at the level of treatment (ICD-9 group
level) and shown in parentheses. Significance levels: * p<0.1, ** p<0.05, *** p<0.01.

but only consider year t (Table C-9 for all publications, Table C-13 for university publications,

and Table C-14 for corporate publications).

Fourth, we estimate our model using different specifications, e.g., using MeSH term fixed

effects and cluster standard errors at the MeSH term level. Additionally, we employ a linear

regression with count dependent variables. In this specification, we find a significant increase

in overall scientific publications, which suggests that MeSH terms with a high number of pre-

MMA publications profit from a larger market in absolute counts but not relatively (Table

C-9). The effect size is substantially higher for corporate publications (Table C-14) than for

university publications (Table C-13) when comparing the coefficients to the pre-MMA sample

mean. Fifth, we restrict our dependent variable to publications in which all authors are affiliated

with universities or firms, respectively. While the effect sizes remain quantitatively similar,

the estimation becomes less precise (Figures C-11) since we lose variation in the dependent

variables. We also restrict the sample to publications in which all authors have a U.S. affiliation.

This does not change the results (Table C-10).
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Sixth, we re-investigate the effects including the year of the MMA implementation (2005)

into our baseline period. This does not change the results regarding the type of affiliations or

the type of research. The effects on patent-weighted publications disappear. This, however, is

not surprising given that our initial findings showed primarily a disproportionate increase in

2004-2005 (Table C-19).

Seventh, we include all publications in our sample regardless of whether they include

additional disease-related MeSH terms with unknown MMS. In our default specifications, we

drop these PMIDs since we do not know the exposure of these additional disease-related MeSH

terms to the MMA (potentially confounding). Including them does not change the results

(Table C-20).

Lastly, we chose different aggregation levels for our analysis. In Table C-21, we aggregate

the dependent variable to the ICD-9 group level. Our results are robust to this aggregation.

Our results on drug development are robust to estimations at the ICD-9 three-digit code

level (Table C-4), alternative controls (Table C-5), alternative MMS calculations (Figures C-9),

and including the MMA implementation in 2005 into our baseline period (Table C-6).

3.8 Thought Experiment – Incentivizing Upstream Research

We conclude with a thought experiment. For this example and the ensuing back-of-the-

envelope calculation, we will take our results at face value. The goal is to explore the magni-

tude of the linkage between changes in downstream demand and upstream research. We start

by assuming that scientific publications are mutually exclusive, meaning they are either cate-

gorized as a university, academic medical center, or corporate publication. From our preferred

specification, a MMS increase of one standard deviation (23.2 percentage points) in exposure

to Medicare Part D, leads to around 1,834 additional publications per year.42 These additional

publications break down broadly as follows: 1,203 authored by scientists with university affil-

iations, 249 with academic medical center affiliations, 323 with corporate affiliations with the

remaining 74 authored by scientists with NIH affiliations. Although the quantitative majority

of these publications are focused in the subcategories where one would expect basic science

research to occur, it remains open whether this response is meaningful.

The direct costs of Medicare Part D, paid as subsidies to private insurances, during the

program’s first ten years was expected to be $80 billion annually (Medicare Trustees Report,

2006). When comparing our estimates to these direct costs, our results suggest that a subsidy-

driven expansion of market size by $43 million would only lead to one additional scientific

publication. This is substantially lower than, for example, the direct benefits of public funding,

for which Myers (2020) reports that the average cost per publication is between $344,000 and

$665,000 depending on the grant regime. At the midpoint of this range, this suggests that

42We take the point estimate of our preferred specification and multiply it with the standard deviation in MMS and
the 2003 number of scientific publications from Table 3.1.
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direct public funding of research would generate about 85 publications for each additional

publication from our findings.

In the pre-MMA period, only about 5.4% of publications were authored by scientists af-

filiated with corporations. This rises to about 17.6% in the post-MMA period. If the whole

scientific domain was as responsive as corporations, the “cost” of one additional publication

would fall from $43 million to $13.4 million. Direct public funding of research would still

generate about 26 publications for each additional publication from our findings. Thus, even

considering the most responsive case, it does not appear that changes in downstream demand

serve as sufficient incentives for upstream research.

Putting the results from this thought experiment into a broader context, Finkelstein’s

(2004) assertion appears to be correct – the post-MMA change in development was driven

by a reordering of technology already in the development pipeline. Even in the context of our

thought experiment, the impact on research appears to be insufficient, especially compared to

public funding.

3.9 Conclusion

R&D consists of two separate, but equally important components: research and development.

The extant literature has conclusively found a link between changes in downstream market

size and drug development – i.e., ‘D’ – (e.g., Acemoglu and Linn, 2004; Blume-Kohout and

Sood, 2013; Dranove et al., 2020; Finkelstein, 2004). Heretofore, however, efforts to extend

this linkage back to research – i.e., ‘R’ – have been met with limited success. Acemoglu and

Linn (2004), for example, were unable to find a relationship between demographic-driven

expansions in market size and patenting. Using a similar identification strategy, Bhattacharya

and Packalen (2011) find a positive relationship between disease prevalence and upstream

research conducted at academic medical centers, but do not explicitly account for profit in-

centives. By exploiting the effects of quasi-experimental variation in market size introduced

by Medicare Part D, we do not find a causal relationship between market size and research.

We identify one limited exception to our core findings, however, and that involves corporate

scientists conducting applied research.

Why does it appear that scientists are not incentivized by these changes in downstream

market size? We can only conjecture as to what might explain the inelastic response. First,

this type of demand pull incentive may attenuate by market distance so that it never reaches

scientists (e.g., Acemoglu and Linn, 2004). For example, if firms respond to demand shocks

with ‘off the shelf’ projects (Finkelstein, 2004), new scientific discoveries may not be neces-

sary to fuel the clinical pipeline. Similarly, the existing knowledge stock may be large enough

to accommodate (for some time) the industry’s higher demand for scientific discoveries. Our

findings, however, suggest no response from university science even more than a decade later.

Thus, a disconnect appears to exist between the kind of research industry uses as knowledge
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inputs and the kind of research upstream scientists conduct. Such exploration of this discon-

nect is left for future work.

Second, scientists may react to market size changes only if these changes affect the sci-

entists’ incentives through indirect channels, such as altruism, funding, or prestige. This is

perhaps more likely the case if the market size increase is due to disease prevalence (e.g.,

epidemics) as opposed to insurance coverage (e.g., Medicare Part D). Third, scientists may re-

spond to demand pull differently, for example, by providing tacit knowledge through training

(junior) scientists for industry (Roach and Sauermann, 2010). Unfortunately, we are unable

to explore the above mechanisms with our data. Future research is necessary to understand

the inelastic response of scientists. Survey evidence would be most helpful and may shed light

on the mechanisms driving the disconnect between research and market size.

Finally, our study has important implications for policymakers. To the extent that there is

a disconnect between the direction of academic research and the requirements of downstream

markets, additional incentives may be needed to close this gap. NIH grants and public sector

funding would appear to be the obvious choice as they are effective tools in fostering scientific

research (Azoulay et al., 2019). It may also be the case that an expansion of R&D tax credits

could be used to help incentivize companies to re-engage in and reverse the trend away from

basic science research (Arora et al., 2018). These issues are left for future research.
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A.1 Sources and Data Construction

Archival Documents

Table A-1: Reference list archival documents

Reference ID Title Year

JAX Archive-1 Paigen, K., Statement of Need in Blue Book 1989
JAX Archive-2 JAX, Brown Book 1989 1989
JAX Archive-3 Fire Investigation Report 1989
JAX Archive-4 Mouse News Letter 1989
JAX Archive-5 JAX, Letter to Recipients of Jackson Laboratory Mice 1989
JAX Archive-6 JAX, Annual reports 1988–1992
JAX Archive-7 NIH, Notice of Approval, RFA-OD-90-02 1990
JAX Archive-8 JAX, NIH Construction Grant Application 1990
JAX Archive-9 JAX, NIH application CA-56393-01 1991
JAX Archive-10 JAX, Letter Standel to NIH 1989
JAX Archive-11 JAX, Recovery Plan 1990
JAX Archive-12 JAX, Presentation slides about the fire 1989
JAX Archive-13 JAX, Reply to Charles River Laboratories “Fact Sheet” 1989
JAX Archive-14 JAX, Handwritten note attached to wait list 1990
JAX Archive-15 JAX, Price lists 1989–1990
JAX Archive-16 JAX, Jackson Lab Memorandum 1989
JAX Archive-17 Northeast Research, Survey results 1989
JAX Archive-18 JAX, Case Studies 1990
JAX Archive-19 ILAR, Strains in actual short supply (TJLA Grants) 1989
JAX Archive-20 ILAR, Strains in great demand (August) 1989
JAX Archive-21 JAX, Waiting list 1990
JAX Archive-22 JAX, Top 25 mice strains (sales data) 1988–1989
JAX Archive-23 JAX, Jax Notes 438 (July) on mice in good supply 1989

Notes: All documents were collected in May 2018 from the Joan Staats Library at JAX. A full inventory list of the
documents available in the JAX archive can be found in The Jackson Laboratory Archives (2012a,b).
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Figure A-3: Gene-loci strain linkage from (Lyon and Searle, 1989)

101



A. APPENDIX TO CHAPTER 1

Scopus Queries to Identify Strains

• Search for Jax (“J”) mice strains:

1. Strain-J in title, abstracts or keywords

2. Exclude strains with same beginning

3. At least one “mice”-like keyword

( TITLE−ABS−KEY("129X1/SvJ " )
AND NOT TITLE−ABS−KEY("129X1/Sv −Lamc2 jeb /Dcr " ) )
AND KEY(mouse OR mice OR r a t OR r a t s OR s t r a i n )

• For non-“J” mice strains:

1. Strain in title, abstracts or keywords

2. Exclude strains-J nomenclature

3. . . .

( TITLE−ABS−KEY("129X1/Sv " )
AND NOT TITLE−ABS−KEY("129X1/SvJ " )
AND NOT TITLE−ABS−KEY("129X1/Sv −Lamc2 jeb /Dcr " ) )
AND KEY(mouse OR mice OR r a t OR r a t s OR s t r a i n )
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A.2 Figures at Mice Level

Figure A-4: Distribution of known gene-loci by strain in 1989
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Notes: The figure presents the number of known gene-loci by strain from (Lyon and Searle, 1989). “All strains”
include all 246 strains mentioned in the gene-loci strain matrix curated by JAX, “spared strains” include 19 strains
that are in our sample of identified spared mice and in the curated matrix, “affected strains” include 26 strains that
are in our sample of identified affected mice and in the curated matrix. The unit of observations is the individual
mice strain.

Figure A-5: Number of publications B6 vs. 129 strains

Notes: The figure presents the distribution of publications related to the B6 strain and related to an exemplary
129 substrain, which is in our sample, over time. The unit of observations is the individual mice strain. The figure
shows that B6 increases after the fire and much earlier than the transgenic-mice related rise in 129 mice usage.
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Figure A-6: Mice usage – publication counts (alternative classification)

Aggregated counts (MGI data)
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(d) Publications (JIF-weighted)
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Notes: The top left-hand figure presents the log-transformed annual sums of publications linked to affected and
spared mice strains. The top right-hand figure presents the log-transformed annual sums of publications linked to
affected and spared mice strains weighted by their respective journal impact factor. Publications linked to affected
and spared mice are included twice. The bottom left-hand figure presents the log-transformed average publication
counts at mice strain level. The bottom right-hand figure presents the log-transformed average publication counts
weighted by their respective journal impact factor. Publications can be linked to multiple mice strains. In both
bottom graphs, the unit of observation is the unique mice strain.
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Figure A-7: Event studies at mice strain level
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(d) Publications (JIF-weighted)
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(f) Publications (JIF-weighted)
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Notes: The figures show the event study estimates and the 90 percent confidence bands of Poisson pseudo-
maximum likelihood regressions with high-dimensional fixed effects following Equation 1.1 based on MGI data
in (a) and (b) and on Scopus data in (c) to (f). The unit of observation is the individual strain by year. Standard
errors are clustered at the strain level.
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A.3 Figures at Scientist Level

A.3.1 Figures – Summary Statistics/Descriptive Analysis

Figure A-8: Distribution of scientist characteristics
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Notes: The figures compare the Kernel density of aggregated pre-fire characteristics of affected and control scien-
tists in the five years before the fire. The unit of observation is the scientist level.
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Figure A-9: Mean comparison – alternative samples
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(b) Sample C (pre-matching)

Age (from PhD)

Age (First Mice related Publ.)

Total Publications (JIF)

5 Year Publications (JIF)

Total Mice related Publ. (JIF)

5 Year Mice related Publ. (JIF)

5 Year Citations (84-88 Publ.)

5 Year Citations (84-88 Mice Publ.)

Share Affected Mice related Publ.

Share B6 Mice related Publ.

-1 -.8 -.6 -.4 -.2 0 .2 .4 .6 .8 1
Standardized mean difference

Affected: 1868 / Control: 465

5 Year Citations (84-88 Mice Publ.)

c2

c3

c4

Jax/Non Jax Affected Publications

Jax/Non Jax Control Publications

Jax Affected Publications

Jax Control Publications

Non Jax Affected Publications

Non Jax Control Publications

-8 -6 -4 -2 0 2 4 6 8
Standardized mean difference

Affected: 1868 / Control: 465

Notes: The left-hand figure presents comparisons of standardized mean differences of key pre-fire characteristics
of the scientists in sample B, where additional emphasize was given on a similar age and similar pre-fire productivity.
The right-hand figures presents sample C with scientists before matching. The unit of observation is at the scientist
level.

Figure A-10: Comparison of affected/unaffected scientists
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Notes: The figure presents the distribution of years of each scientist’s last publication (for the 20-year time frame
after the fire) between affected and control scientists for sample A and sample USA. The unit of observation is the
individual scientist.
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Figure A-11: Scientist publications linked to affected and spared mice strains
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Notes: Figures (a) and (b) illustrate the mean share of affected publications relative to all mice publications (both
JIF-weighted) over time for affected and control scientists. Figures (c) and (d) show the mean JIF-weighted mice
publication counts. The unit of observation is the scientist level.
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A.3.2 Figures – Multivariate Analysis

Figure A-12: Event studies at scientist level
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(b) Self-references - sample USA
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(c) New disease MeSH - sample A
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(d) New disease MeSH - sample USA

-0.2

0.0

0.2

0.4

0.6

0.8

Ef
fe

ct
 s

iz
e 

of
JA

X
 fi

re
 x

 y
ea

r

-6 -4 -2 0 2 4 6 8 10
Years relative to JAX fire

 Sample USA

 
DV: Average New Disease MeSH Term Count

(e) Clinical journal - sample A
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(f) Clinical journal - sample USA
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(g) Patent-weighted - sample A
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(h) Patent-weighted - sample USA
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Notes: The figures show the event study estimates and the 90 percent confidence bands of linear regressions
with high-dimensional fixed effects following Equation 1.2. The outcome variable is the mean number of self-
references in (a) and (b), the mean number of new disease related MeSH terms in (c) and (d), the share of
publications published in a journal that usually publishes more clinical relevant research in column (e) and (f),
and the share of publications that is associated with a patent application (patent-weighted). In both samples, the
unit of observation is the individual scientist by year. Standard errors are clustered at the scientist level.
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A.3.3 Figures – Heterogeneity Analysis

Figure A-13: Heterogeneity by age
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Notes: The figures show the event study estimates and the 90 percent confidence bands of regressions following
Equation 1.2 with a triple-interaction term using sample A. The triple-interaction term is the age (since PhD) of a
scientists at the time of the fire. Count data is estimated using Poisson pseudo maximum likelihood regressions and
shares are estimated using linear regressions. The unit of observation is the individual scientist by year. Standard
errors are clustered at the scientist level.
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A.3.4 Figures – Patents

Figure A-14: Most often used words in patents associated with scientists’ publications
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Notes: The figure presents the share of occurrences of the 45 most often used words in the titles of U.S. patent
applications related to the 566 scientists in our sample A.
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A.4 Tables at Mice Level

Table A-2: Distribution of JAX mice by sector and region in 1988

USA CAN Rest
Sector N % N % N %

Government agencies 140,822 7.3 176 0.0 775 0.0
Hospitals 238,502 12.4 30,245 1.6 644 0.0
Industry 503,668 26.2 7,428 0.4 15,358 0.8
Medical schools and universities 873,127 45.4 50,284 2.6 63,753 3.3

Total 1,756,179 91.2 88,133 4.6 80,530 4.2

Notes: Source of data: JAX Archive-2.
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Table A-3: JAX mice strains

JAX strain id Strain name Strain type Group Competitor

JAX:001137 129P1/ReJ inbred strain mouse control
JAX:000690 129P3/J inbred strain mouse control
JAX:000691 129X1/SvJ inbred strain mouse control
JAX:000140 A.By/SnJ congenic/mutant strain mouse control
JAX:000471 A.SW/SnJ congenic/mutant strain mouse control
JAX:000645 A/HeJ inbred strain mouse control
JAX:000646 A/J inbred strain mouse treated
JAX:000647 A/WySnJ inbred strain mouse control
JAX:100001 AKD2F1/J F1 hybrid strain mouse treated
JAX:000648 AKR/J inbred strain mouse treated Yes
JAX:000820 AKR/J-nuˆstn congenic/mutant strain mouse control
JAX:000467 B10.A(5R)/SgSnJ congenic/mutant strain mouse control
JAX:000469 B10.A/SgSnJ congenic/mutant strain mouse treated
JAX:000465 B10.BR/SgSnJ congenic/mutant strain mouse treated
JAX:000463 B10.D2/nSnJ congenic/mutant strain mouse treated
JAX:000461 B10.D2/oSnJ congenic/mutant strain mouse treated
JAX:000457 B10.RIII(71INS)/SnJ congenic/mutant strain mouse control
JAX:001060 B6.C-H-2ˆbml/ByJ congenic/mutant strain mouse control
JAX:100002 B6AF1/J F1 hybrid strain mouse control
JAX:100010 B6C3F1/J F1 hybrid strain mouse control
JAX:100011 B6CBAF1/J F1 hybrid strain mouse treated
JAX:100006 B6D2F1/J F1 hybrid strain mouse control Yes
JAX:100012 B6SJLF1/J F1 hybrid strain mouse control
JAX:001026 BALB/cByJ inbred strain mouse control Yes
JAX:000711 BALB/cByJ- nu congenic/mutant strain mouse control Yes
JAX:000651 BALB/cJ inbred strain mouse treated Yes
JAX:000740 BXSB/MpJ inbred strain mouse treated
JAX:100004 C3D2F1/J F1 hybrid strain mouse treated Yes
JAX:000438 C3H.Sw/SnJ congenic/mutant strain mouse treated
JAX:000659 C3H/HeJ inbred strain mouse treated Yes
JAX:000509 C3H/HeJ- bgˆJ congenic/mutant strain mouse control
JAX:000635 C3H/OuJ inbred strain mouse treated
JAX:000658 C3HeB/FeJ inbred strain mouse control
JAX:000665 C57BL/10J inbred strain mouse treated Yes
JAX:000666 C57BL/10SnJ congenic/mutant strain mouse treated
JAX:001139 C57BL/6ByJ inbred strain mouse control
JAX:000664 C57BL/6J inbred strain mouse control Yes
JAX:000629 C57BL/6J-bgˆJ congenic/mutant strain mouse treated
JAX:000819 C57BL/6J-nu congenic/mutant strain mouse treated
JAX:000632 C57BL/6J-ob congenic/mutant strain mouse treated
JAX:000160 C57BL/6J-slˆd congenic/mutant strain mouse control
JAX:000049 C57BL/6J-wˆv congenic/mutant strain mouse control
JAX:000662 C57BL/KsJ inbred strain mouse control

continued on next page
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Table A-4: JAX mice strains (continued)

JAX strain id Strain name Strain type Group Competitor

JAX:000642 C57BL/KsJ-db congenic/mutant strain mouse control
JAX:000667 C57BR/cdJ inbred strain mouse control
JAX:000668 C57L/J inbred strain mouse treated
JAX:000669 C58/J inbred strain mouse treated
JAX:100003 CAF1/J F1 hybrid strain mouse control Yes
JAX:100007 CB6F1/J F1 hybrid strain mouse control Yes
JAX:000655 CBA/CaH-T6J congenic/mutant strain mouse treated
JAX:001011 CBA/CaHN-xid/J inbred strain mouse treated
JAX:000654 CBA/CaJ inbred strain mouse treated Yes
JAX:000656 CBA/J inbred strain mouse treated Yes
JAX:100009 CByB6F1/J F1 hybrid strain mouse control
JAX:000657 CE/J inbred strain mouse control
JAX:100019 CSJLF1/J F1 hybrid strain mouse control
JAX:000670 DBA/1J inbred strain mouse treated
JAX:001140 DBA/1LacJ inbred strain mouse control
JAX:000671 DBA/2J inbred strain mouse treated Yes
JAX:000643 DW/J congenic/mutant strain mouse control
JAX:000673 HRS/J inbred strain mouse treated Yes
JAX:000674 I/LnJ inbred strain mouse control
JAX:100005 LAF1/J inbred strain mouse treated
JAX:000676 LP/J inbred strain mouse treated
JAX:000677 MA/MyJ inbred strain mouse treated
JAX:000486 MRL/MpJ-+ inbred strain mouse control Yes
JAX:000485 MRL/MpJ-lpr congenic/mutant strain mouse control Yes
JAX:001976 NOD inbred strain mouse treated Yes
JAX:000684 NZB inbred strain mouse treated
JAX:100008 NZBWF1/J F1 hybrid strain mouse treated
JAX:001058 NZW/LacJ inbred strain mouse treated
JAX:000680 PL/J inbred strain mouse treated
JAX:100299 (PL/J F x SJL/J M)F1 F1 hybrid strain mouse treated
JAX:000726 RBF/DnJ inbred strain mouse control
JAX:000682 RF/J inbred strain mouse treated
JAX:000683 RIIIS/J inbred strain mouse treated
JAX:000687 SM/J inbred strain mouse control
JAX:000688 ST/bJ inbred strain mouse control
JAX:000689 SWR/J inbred strain mouse treated
JAX:100525 WB/ReJ inbred strain mouse control
JAX:000692 WB/ReJ-w inbred strain mouse control
JAX:100410 WBB6F1/J-w/wˆv congenic/mutant strain mouse control
JAX:000693 WC/REJ-sl congenic/mutant strain mouse control
JAX:100401 WCB6F1/J-sl/slˆd congenic/mutant strain mouse control

Notes: The table describes the 84 mice strains used in the analysis.
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Table A-5: Inbred strains and research application from Lutz et al. (2012)

Parent strain Strain abbreviation Research applications

129P3/J 129P Spontaneous testicular teratomas, targeted mutagenesis
129/S1/SvImJ 129S Spontaneous testicular teratomas, targeted mutagenesis
A/J A Widely used in cancer and immunology research;

low-incidence cleft palate
AKR/J AK High incidence of leukaemia
BALB/c Cby General purpose immunology
C3H/HeJ C3 General purpose strain in a wide variety of research areas

including cancer, infectious disease, sensorineural and
cardiovascular biology research

C57BL/6J B6 General purpose, cardiovascular biology research,
background strain for most mice carrying transgenes,
spontaneous or targeted mutations

C57BL10/J B10 General purpose
DBA/1J D1 Widely used as a model for rheumatoid arthritis;

in response to challenge, mice develop immune-mediated nephritis
DBA/2J D2 General purpose, show low susceptibility to developing

atherosclerotic aortic lesions; used in glaucoma research
NZW/LacJ NZW Type 1 diabetes
NZB/B1NJ NZB Autoimmunity
SJL Cancer (reticulum cell sarcomas), autoimmunity

(experimental allergic encephalomyelitis, EAE)
SWR SW General purpose; ageing mice exhibit a high incidence of lung

and mammary gland tumours. Highly susceptible to experimental
allergic encephalomyelitis

Notes: The figure provides examples for the heterogeneity in application between mice strains.
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Table A-6: Research output (strain level) – no transgenic mice

Strains (no transgenic) (1) (2) (3) (4) (3) (4)
Sample: MGI JAX strains Scopus JAX strains Scopus all strains

+10 years Publ Publ (JIF) Publ Publ (JIF) Publ Publ (JIF)

Post × affected −0.664∗ −0.866∗∗ −0.194∗ −0.388∗∗∗ −0.248 −0.449
(0.384) (0.404) (0.110) (0.122) (0.209) (0.300)

Strain FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes

Observations 1344 1344 693 693 1239 1239
Strains 64 64 33 33 59 59
Log-likelihood −2257 −11031 −1335 −3388 −3167 −9385

Notes: Columns (1) to (6) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. The unit of observation is the individual mice strain by year. All models include com-
mon trend interactions. The sample excludes publications with the MeSH term “transgenic”. Standard errors are
clustered at the mice strain level and shown in parentheses. Significance levels: * p<0.1, ** p<0.05, *** p<0.01.

Table A-7: Research output (strain level) – heterogeneity

Strains (1) (2) (3) (4) (3) (4)
Sample: Scopus all strains

+10 years Publ Publ (JIF) Publ Publ (JIF) Publ Publ (JIF)

Post × affected −0.035 −0.127 −0.058 −0.134 −0.027 −0.097
(0.130) (0.175) (0.132) (0.177) (0.128) (0.171)

× low JAX sales −0.934∗∗∗ −0.950∗∗∗

(0.222) (0.367)
× no other suppliers −0.789∗∗∗ −0.889∗∗

(0.226) (0.353)
× few gene loci −0.885∗∗∗ −1.286∗∗

(0.307) (0.627)
Strain FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes

Observations 1239 1239 1239 1239 1239 1239
Strains 59 59 59 59 59 59
Log-likelihood −2870 −7793 −2863 −7615 −2860 −7644

Notes: Columns (1) to (6) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. The unit of observation is the individual mice strain by year. All models include common
trend interactions (e.g., low JAX sales x Year FEs). Standard errors are clustered at the mice strain level and shown
in parentheses. Significance levels: * p<0.1, ** p<0.05, *** p<0.01.
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Table A-8: Research output (strain level) – author age

Strains (1) (2) (3) (4) (5) (6)
Sample: Scopus all strains

Age of authors (avg) Age of authors (min) Age of authors (max)
Young Old Young Old Young Old

+10 years Publ (JIF) Publ (JIF) Publ (JIF) Publ (JIF) Publ (JIF) Publ (JIF)

Post × affected −0.299 −0.660∗∗ −0.378 −0.547∗∗ −0.394 −0.594∗

(0.288) (0.292) (0.313) (0.275) (0.266) (0.316)
Strain FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes

Observations 1218 1218 1197 1239 1218 1218
Strains 58 58 57 59 58 58
Log-likelihood −5762 −7305 −5025 −7851 −6173 −6780

Notes: Columns (1) to (6) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. The unit of observation is the individual mice strain by year. All models include common
trend interactions. Age is defined at the team level. In Columns (1) and (2), we define team age at the mean,
in Columns (3) and (4) at the age of the youngest team member, and in Columns (5) and (6) at the age of the
oldest team member. In all these specifications, the sample is split at the median in “young” and “old”. Standard
errors are clustered at the mice strain level and shown in parentheses. Significance levels: * p<0.1, ** p<0.05,
*** p<0.01.
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A.5 Tables at Scientist Level

A.5.1 Tables – Summary Statistics

Table A-9: Summary statistics (scientist level in sample A)

Affected vs Control (1) (2) (3) (4) (5) (6) (7) (8)
Affected (N= 283) Controls (N= 283)

Mean Median Std. Error Mean Median Std. Error Diff. p-value

Age (from PhD) 12.92 12.00 7.26 12.85 12.00 7.27 −0.07 0.908
Age (First Mice Publ.) 9.72 8.00 6.31 9.53 8.00 6.05 −0.19 0.714
Total Publications (JIF) 131.82 49.57 212.08 147.13 57.14 255.02 15.31 0.438
5 Year Publications (JIF) 62.01 25.82 100.36 72.54 29.23 125.19 10.53 0.270
Total Mice Publications (JIF) 73.62 25.24 135.55 69.80 24.13 125.79 −3.82 0.729
5 Year Mice Publications (JIF) 37.63 13.95 70.81 39.50 12.83 79.14 1.87 0.767
5 Year Citations (84-88 Publ.) 82.01 27.00 140.93 81.10 29.00 144.64 −0.92 0.939
5 Year Cit. (84-88 Mice Publ.) 46.95 13.00 93.04 43.05 14.00 77.90 −3.90 0.589
Share Affected Mice Publications 0.35 0.25 0.31 0.12 0.00 0.22 −0.23 0.000∗∗∗

Share B6 Mice related Publications 0.19 0.11 0.23 0.32 0.21 0.33 0.14 0.000∗∗∗

Jax/Non Jax Affected Publications 2.82 2.00 1.45 0.35 0.00 0.80 −2.46 0.000∗∗∗

Jax/Non Jax Control Publications 0.14 0.00 0.38 2.87 2.00 2.09 2.73 0.000∗∗∗

Jax Affected Publications 0.59 0.00 1.03 0.17 0.00 0.47 −0.42 0.000∗∗∗

Jax Control Publications 0.07 0.00 0.28 1.61 1.00 2.21 1.53 0.000∗∗∗

Non Jax Affected Publications 2.31 2.00 1.63 0.19 0.00 0.63 −2.12 0.000∗∗∗

Non Jax Control Publications 0.07 0.00 0.25 1.28 1.00 1.37 1.21 0.000∗∗∗

Affiliation Rank 179.22 172.00 157.37 192.62 155.00 181.09 13.40 0.348
Top 5 Percent Publications 1.34 0.00 3.60 1.69 0.00 4.13 0.35 0.288
Share Last Author Publ. 0.24 0.17 0.23 0.26 0.20 0.24 0.02 0.276
Share Last Author Mice Publ. 0.21 0.15 0.24 0.22 0.15 0.25 0.01 0.662
Distinct Coauthors 9.87 6.20 9.78 9.68 6.00 12.34 −0.19 0.836
Distinct New Coauthors 5.70 4.00 5.52 5.65 3.40 7.34 −0.05 0.927
Mean Self-Reference Count 0.53 0.28 0.72 0.50 0.30 0.61 −0.03 0.611
Mean New Keyword Count 0.19 0.00 0.38 0.20 0.00 0.38 0.00 0.900
Clinical Journal Publ. 4.70 3.00 9.23 5.25 3.00 7.11 0.55 0.426
Patent Weighted Publ. (10yrs) 1.03 0.00 2.24 1.17 0.00 3.00 0.14 0.525
Mean New MeSH Count 62.26 52.00 39.80 62.02 53.00 37.29 −0.24 0.940
Mean New Disease MeSH 6.61 4.00 7.41 6.40 4.00 6.72 −0.22 0.713
In Vitro related Publications 3.86 2.00 5.17 3.42 1.00 5.47 −0.44 0.328
Other animal related Publications 2.52 1.00 7.21 4.34 1.00 8.32 1.81 0.006∗∗∗

Human related Publications 7.28 2.00 12.15 5.67 2.00 11.11 −1.61 0.101
Diversity MeSH 377.23 312.00 277.50 385.24 326.00 290.00 8.02 0.737

Notes: The table compares pre-fire scientists characteristics by treatment group with t-tests and displays the mean,
median and the standard errors for each group using sample A. If not stated otherwise, observations are aggregated
in the period 1984-1988 (5 years pre-fire). The unit of observation is the individual scientist. Significance levels:
* p<0.1, ** p<0.05, *** p<0.01.
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Table A-10: Summary statistics (scientist level in sample USA)

Affected vs Control (1) (2) (3) (4) (5) (6) (7) (8)
Affected (N= 160) Controls (N= 160)

Mean Median Std. Error Mean Median Std. Error Diff. p-value

Age (from PhD) 12.97 12.00 7.31 12.93 12.00 7.32 −0.04 0.957
Age (First Mice Publ.) 9.54 8.00 6.24 9.24 8.00 5.82 −0.30 0.657
Total Publications (JIF) 166.56 65.77 250.77 178.24 71.94 295.96 11.68 0.704
5 Year Publications (JIF) 78.80 32.81 120.21 91.33 38.85 146.96 12.53 0.405
Total Mice Publications (JIF) 87.61 28.87 156.35 81.60 26.03 147.02 −6.01 0.723
5 Year Mice Publications (JIF) 46.26 18.09 84.27 47.69 15.03 92.39 1.43 0.885
5 Year Citations (84-88 Publ.) 107.31 42.00 171.93 99.86 43.50 146.82 −7.44 0.677
5 Year Cit. (84-88 Mice Publ.) 60.89 17.50 115.39 54.16 17.50 93.20 −6.73 0.567
Share Affected Mice Publications 0.37 0.31 0.31 0.14 0.00 0.22 −0.23 0.000∗∗∗

Share B6 Mice related Publications 0.16 0.07 0.21 0.26 0.13 0.31 0.10 0.001∗∗∗

Jax/Non Jax Affected Publications 2.68 2.00 1.36 0.35 0.00 0.83 −2.33 0.000∗∗∗

Jax/Non Jax Control Publications 0.18 0.00 0.43 2.79 2.00 2.35 2.61 0.000∗∗∗

Jax Affected Publications 0.83 0.00 1.16 0.17 0.00 0.49 −0.66 0.000∗∗∗

Jax Control Publications 0.10 0.00 0.32 1.45 1.00 2.42 1.35 0.000∗∗∗

Non Jax Affected Publications 1.93 2.00 1.53 0.19 0.00 0.62 −1.74 0.000∗∗∗

Non Jax Control Publications 0.08 0.00 0.27 1.34 1.00 1.33 1.26 0.000∗∗∗

Affiliation Rank 162.21 104.00 163.30 181.49 132.00 173.75 19.28 0.307
Top 5 Percent Publications 1.92 0.00 4.56 2.21 0.00 4.82 0.29 0.584
Share Last Author Publ. 0.23 0.17 0.23 0.25 0.20 0.24 0.02 0.444
Share Last Author Mice Publ. 0.20 0.13 0.25 0.21 0.12 0.25 0.01 0.734
Distinct Coauthors 10.79 6.70 10.44 10.48 6.60 12.07 −0.31 0.804
Distinct New Coauthors 6.43 4.20 6.15 6.16 3.90 7.55 −0.27 0.731
Mean Self-Reference Count 0.58 0.28 0.82 0.55 0.35 0.66 −0.03 0.702
Mean New Keyword Count 0.15 0.00 0.33 0.19 0.00 0.34 0.04 0.288
Clinical Journal Publ. 4.72 2.00 7.57 5.46 3.00 7.61 0.74 0.385
Patent Weighted Publ. (10yrs) 1.35 0.00 2.76 1.54 0.00 3.68 0.19 0.606
Mean New MeSH Count 66.49 54.50 43.53 65.40 60.50 37.80 −1.09 0.812
Mean New Disease MeSH 7.26 5.00 8.21 6.68 4.00 7.35 −0.57 0.509
In Vitro related Publications 4.44 2.00 5.44 4.19 2.00 6.41 −0.24 0.714
Other animal related Publications 2.88 0.50 8.54 4.83 2.00 8.39 1.94 0.041∗∗

Human related Publications 8.04 3.00 12.33 6.38 2.00 12.50 −1.67 0.230
Diversity MeSH 390.89 325.50 281.98 410.17 355.50 289.51 19.28 0.547

Notes: The table compares pre-fire scientists characteristics by treatment group with t-tests and displays the mean,
median and the standard errors for each group using sample USA. If not stated otherwise, observations are aggre-
gated in the period 1984-1988 (5 years pre-fire). The unit of observation is the individual scientist. Significance
levels: * p<0.1, ** p<0.05, *** p<0.01.
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A.5.2 Tables – Parallel Trends

Table A-11: Test parallel trends assumption

Sample A (1) (2) (3) (4)
Pre-Period: 1983-1988 Publ Mice Publ B6 Affected

86-88 × affected 0.003 −0.004 −0.158 0.146
(0.056) (0.068) (0.134) (0.130)

Scientist FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Scientist age Yes Yes Yes Yes

Observations 3396 3390 2268 2082
Scientists 566 565 378 347
Log-likelihood −6412 −4903 −2010 −1819

Sample USA (1) (2) (3) (4)
Pre-Period: 1983-1988 Publ Mice Publ B6 Affected

86-88 × affected −0.046 −0.008 −0.194 0.187
(0.067) (0.081) (0.187) (0.162)

Scientist FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Scientist age Yes Yes Yes Yes

Observations 1920 1914 1188 1266
Scientists 320 319 198 211
Log-likelihood −3667 −2787 −1004 −1099

Notes: Columns (1) to (4) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. The time period of these regressions is the pre-fire period 1983-1988. We employ a
placebo test (1986-1988 x affected scientists with 1983-1985 as the baseline period) to test the parallel trends
assumption. The outcome variable is the annual number of all/mice/B6/affected mice publications. The top table
shows the estimates for sample A, and the bottom table the estimates for sample USA. The unit of observation
is the individual scientist by year. Standard errors are clustered at the scientist level and shown in parentheses.
Significance levels: * p<0.1, ** p<0.05, *** p<0.01.
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A.5.3 Tables – Adoption of Mice

Table A-12: Adoption of mice – alternative dependent variables

Share/Linear (1) (2) (3) (4) (5) (6) (7) (8)
+5 years Sample A Sample USA

B6 Affected B6 (JIF) Affected (JIF) B6 Affected B6 (JIF) Affected (JIF)

Post × affected 0.031∗∗ −0.017 0.024 −0.006 0.016 −0.004 0.013 −0.013
(0.015) (0.016) (0.015) (0.016) (0.018) (0.020) (0.018) (0.020)

Scientist FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Scientist age Yes Yes Yes Yes Yes Yes Yes Yes

Observations 6792 6792 6792 6792 3840 3840 3840 3840
Scientists 566 566 566 566 320 320 320 320
Log-likelihood −262 −570 −511 −682 138 −357 23 −461

Count/PPML (1) (2) (3) (4) (5) (6) (7) (8)
+10 years Sample A Sample USA

B6 Affected B6 (JIF) Affected (JIF) B6 Affected B6 (JIF) Affected (JIF)

Post × affected 0.299∗∗ −0.195 0.002 −0.293 0.203 −0.174 −0.165 −0.496∗

(0.132) (0.155) (0.200) (0.219) (0.187) (0.213) (0.267) (0.269)
Scientist FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Scientist age Yes Yes Yes Yes Yes Yes Yes Yes

Observations 7616 7480 7514 7174 4216 4386 4131 4250
Scientists 448 440 442 422 248 258 243 250
Log-likelihood −5804 −5593 −17251 −15234 −3166 −3328 −10286 −10150

Log+1/Linear (1) (2) (3) (4) (5) (6) (7) (8)
+10 years Sample A Sample USA

B6 Affected B6 (JIF) Affected (JIF) B6 Affected B6 (JIF) Affected (JIF)

Post × affected 0.065∗∗∗ −0.047∗∗ 0.049 −0.064∗ 0.034 −0.047 −0.002 −0.125∗∗

(0.022) (0.022) (0.038) (0.038) (0.028) (0.030) (0.052) (0.056)
Scientist FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Scientist age Yes Yes Yes Yes Yes Yes Yes Yes

Observations 9622 9622 9622 9622 5440 5440 5440 5440
Scientists 566 566 566 566 320 320 320 320
Log-likelihood −2962 −2733 −8923 −8433 −1627 −1664 −5233 −5221

Notes: In the top part of this table, Columns (1) to (8) show the estimates of Poisson pseudo-maximum likelihood
regressions with high-dimensional fixed effects. The outcome variable is the share of (JIF-weighted) B6/affected
mice publications. In the middle/bottom part of this table, Columns (1) to (8) show the estimates of linear regres-
sions with high-dimensional fixed effects. The outcome variable is the (log-transformed) number of B6/Affected
mice related publications. The unit of observation is the individual scientist by year. Standard errors are clustered
at the scientist level and shown in parentheses. Significance levels: * p<0.1, ** p<0.05, *** p<0.01.
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Table A-13: Adoption of mice – alternative specifications

Sample A (1) (2) (3) (4) (5) (6) (7) (8)
Share/Linear +10 years

DV: Share B6 (JIF) Age FE Cluster Level Treatment Variable

Post × affected 0.040∗∗∗ 0.040∗∗∗ 0.040∗∗∗ 0.040∗∗ 0.040
(0.015) (0.015) (0.015) (0.019) (0.045)

× affected (cont.) 0.046∗∗∗

(0.017)
× affected (mice publ) 0.015

(0.015)
× affected (all publ) 0.034∗∗

(0.015)
Scientist FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Scientist age No Yes Yes Yes Yes Yes Yes Yes
Scientist age (squared) No No Yes Yes Yes Yes Yes Yes
Scientist age (3rd poly) No No No Yes Yes Yes Yes Yes

Observations 9622 9622 9622 9622 9622 9622 9622 9622
Scientists 566 566 566 566 566 566 566 566
Cluster ScientistScientist Scientist Sc. × Year Strain Scientist ScientistScientist
Log-likelihood −679 −679 −676 −676 −676 −676 −682 −678

Sample USA (1) (2) (3) (4) (5) (6) (7) (8)
Share/Linear +10 years

DV: Share B6 (JIF) Age FE Cluster Level Treatment Variable

Post × affected 0.020 0.020 0.020 0.020 0.020
(0.018) (0.018) (0.018) (0.019) (0.039)

× affected (cont.) 0.028
(0.019)

× affected (mice publ) 0.005
(0.018)

× affected (all publ) 0.022
(0.018)

Scientist FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Scientist age No Yes Yes Yes Yes Yes Yes Yes
Scientist age (squared) No No Yes Yes Yes Yes Yes Yes
Scientist age (3rd poly) No No No Yes Yes Yes Yes Yes

Observations 5440 5440 5440 5440 5440 5440 5440 5440
Scientists 320 320 320 320 320 320 320 320
Cluster ScientistScientist Scientist Sc. × Year Strain Scientist ScientistScientist
Log-likelihood 8 10 10 11 11 11 10 11

Notes: Columns (1) to (8) show the estimates of linear regressions with high-dimensional fixed effects (the top
table uses sample A, the bottom table uses sample USA). The outcome variable is the share of B6 mice publications.
Treatment is defined binary based on the pre-fire share of treated mice publications relative the all treated &
control mice publications in Columns (1) to (5), relative to all mice publications in Column (7), and relative to
all publications in Column (8). Treatment is defined continuously in Column (6). The unit of observation is the
individual scientist by year. Standard errors are shown in parentheses. They are clustered at the scientist level in
Columns (1) to (3) as well as (6) to (8), at the scientist times year level in Column (4), and at the mice strain level
(most often used by the scientists) in Column (5). Significance levels: * p<0.1, ** p<0.05, *** p<0.01.
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A.5.4 Tables – Research Output

Table A-14: Research output – alternative dependent variables

Count/PPML (1) (2) (3) (4) (5) (6) (7) (8)
+5 years Sample A Sample USA/Canada

Publ Mice Publ (JIF) Mice (JIF) Publ Mice Publ (JIF) Mice (JIF)

Post × affected −0.052 0.040 −0.059 −0.041 −0.139∗∗ −0.002 −0.137 −0.120
(0.059) (0.068) (0.078) (0.104) (0.071) (0.085) (0.093) (0.125)

Scientist FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Scientist age Yes Yes Yes Yes Yes Yes Yes Yes

Observations 6792 6792 6792 6792 3840 3840 3840 3840
Scientists 566 566 566 566 320 320 320 320
Log-likelihood −14132 −10168 −35208 −28197 −8035 −5807 −22811 −17972

Count/Linear (1) (2) (3) (4) (5) (6) (7) (8)
+10 years Sample A Sample USA

Publ Mice Publ (JIF) Mice (JIF) Publ Mice Publ (JIF) Mice (JIF)

Post × affected −0.232 0.051 −0.538 −0.185 −0.829∗∗ −0.039 −2.288 −0.871
(0.302) (0.131) (1.238) (0.810) (0.364) (0.185) (1.781) (1.250)

Scientist FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Scientist age Yes Yes Yes Yes Yes Yes Yes Yes

Observations 9622 9622 9622 9622 5440 5440 5440 5440
Scientists 566 566 566 566 320 320 320 320
Log-likelihood −24537 −18367 −40564 −37791 −13734 −10719 −23737 −22213

Log+1/Linear (1) (2) (3) (4) (5) (6) (7) (8)
+10 years Sample A Sample USA

Publ Mice Publ (JIF) Mice (JIF) Publ Mice Publ (JIF) Mice (JIF)

Post × affected −0.018 0.025 0.013 0.025 −0.092 −0.001 −0.093 −0.080
(0.047) (0.039) (0.065) (0.060) (0.061) (0.051) (0.093) (0.085)

Scientist FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Scientist age Yes Yes Yes Yes Yes Yes Yes Yes

Observations 9622 9622 9622 9622 5440 5440 5440 5440
Scientists 566 566 566 566 320 320 320 320
Log-likelihood −7738 −6958 −11753 −11856 −4307 −3957 −6826 −6976

Notes: In the top part of this table, Columns (1) to (8) show the estimates of Poisson pseudo-maximum likelihood
regressions with high-dimensional fixed effects. In the middle/bottom part of this table, Columns (1) to (8) show
the estimates of linear regressions with high-dimensional fixed effects. In the top/middle tables, the outcome
variable is the number of (JIF-weighted) publications/mice publications, in the bottom table the outcome variable
is log-transformed ln(+1). The unit of observation is the individual scientist by year. Standard errors are clustered
at the scientist level and shown in parentheses. Significance levels: * p<0.1, ** p<0.05, *** p<0.01.
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Table A-15: Research output – alternative specifications

Sample A (1) (2) (3) (4) (5) (6) (7) (8)
Count/PPML +10 years

DV: Publ (JIF) Age FE Cluster Level Treatment Variable

Post × affected −0.030 −0.030 −0.035 −0.039 −0.039
(0.089) (0.089) (0.089) (0.104) (0.065)

× affected (cont.) 0.017
(0.094)

× affected (mice publ) −0.061
(0.091)

× affected (all publ) −0.038
(0.088)

Scientist FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Scientist age No Yes Yes Yes Yes Yes Yes Yes
Scientist age (squared) No No Yes Yes Yes Yes Yes Yes
Scientist age (3rd poly) No No No Yes Yes Yes Yes Yes

Observations 9622 9622 9622 9622 9622 9622 9622 9622
Scientists 566 566 566 566 566 566 566 566
Cluster ScientistScientist Scientist Sc. × Year Strain Scientist ScientistScientist
Log-likelihood −51599 −51599 −51296 −51237 −51237 −51242 −51231 −51238

Sample USA (1) (2) (3) (4) (5) (6) (7) (8)
Count/PPML +10 years

DV: Publ (JIF) Age FE Cluster Level Treatment Variable

Post × affected −0.131 −0.134 −0.151 −0.151 −0.151∗∗

(0.105) (0.106) (0.103) (0.122) (0.064)
× affected (cont.) −0.116

(0.102)
× affected (mice publ) −0.110

(0.112)
× affected (all publ) −0.074

(0.109)
Scientist FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Scientist age No Yes Yes Yes Yes Yes Yes Yes
Scientist age (squared) No No Yes Yes Yes Yes Yes Yes
Scientist age (3rd poly) No No No Yes Yes Yes Yes Yes

Observations 5440 5440 5440 5440 5440 5440 5440 5440
Scientists 320 320 320 320 320 320 320 320
Cluster ScientistScientist Scientist Sc. × Year Strain Scientist ScientistScientist
Log-likelihood −33406 −33384 −32986 −32981 −32981 −33015 −33013 −33029

Notes: Columns (1) to (8) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects (the top table uses sample A, the bottom table uses sample USA). The outcome variable
is the JIF-weighted number of publications. Treatment is defined binary based on the pre-fire share of treated
mice publications relative the all treated & control mice publications in Columns (1) to (5), relative to all mice
publications in Column (7), and relative to all publications in Column (8). Treatment is defined continuously in
column (6). The unit of observation is the individual scientist by year. Standard errors are shown in parentheses.
They are clustered at the scientist level in Columns (1) to (3) as well as (6) to (8), at the scientist times year level
in Column (4), and at the mice strain level (most often used by the scientists) in Column (5). Significance levels:
* p<0.1, ** p<0.05, *** p<0.01.
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Table A-16: Research output – forward citation-weighted

Sample A (1) (2) (3) (4) (5) (6)
+10 years Count/PPML Mean/PPML

Citations All Citations Mice Citations B6 Citations All Citations Mice Citations B6

Post × affected −0.109 −0.054 0.336 0.043 0.040 0.350
(0.143) (0.158) (0.253) (0.080) (0.107) (0.216)

Scientist FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Scientist age Yes Yes Yes Yes Yes Yes

Observations 9622 9622 7616 9622 9622 7616
Scientists 566 566 448 566 566 448
Log-likelihood −1027444 −722581 −273824 −226919 −257519 −171279

Sample USA (1) (2) (3) (4) (5) (6)
+10 years Count/PPML Mean/PPML

Citations All Citations Mice Citations B6 Citations All Citations Mice Citations B6

Post × affected −0.240 −0.037 0.306 0.045 0.004 0.320
(0.162) (0.192) (0.326) (0.101) (0.131) (0.294)

Scientist FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Scientist age Yes Yes Yes Yes Yes Yes

Observations 5440 5440 4216 5440 5440 4216
Scientists 320 320 248 320 320 248
Log-likelihood −667977 −469538 −164438 −138378 −154737 −100227

Notes: Columns (1) to (6) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. The outcome variable in Columns (1) to (3) is the lifetime citation weighted number of
publications per scientists per year. The outcome variable in Columns (4) to (6) is the average number of lifetime
citations that a scientist received for her publications in a given year. The top part of this table uses sample A,
the bottom part uses sample USA. The unit of observation is the individual scientist by year. Standard errors are
clustered at the scientist level and shown in parentheses. Significance levels: * p<0.1, ** p<0.05, *** p<0.01.
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Table A-17: Research output – organizational indicator-weighted

Sample A (1) (2) (3) (4) (5) (6) (7)
+10 years Count/PPML Mean/PPML Share/Linear

Coauth. New Coauth. Mean Coauth. Last Last Mice First First Mice

Post × affected −0.063 −0.054 0.004 −0.005 −0.002 0.004 0.000
(0.073) (0.076) (0.042) (0.017) (0.018) (0.016) (0.015)

Scientist FE Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes
Scientist age Yes Yes Yes Yes Yes Yes Yes

Observations 9622 9622 9622 9622 9622 9622 9622
Scientists 566 566 566 566 566 566 566
Log-likelihood −41650 −34241 −19479 −456 −1355 −683 −681

Sample USA (1) (2) (3) (4) (5) (6) (7)
+10 years Count/PPML Mean/PPML Share/Linear

Coauth. New Coauth. Mean Coauth. Last Last Mice First First Mice

Post × affected −0.217∗∗∗ −0.239∗∗∗ 0.036 −0.001 0.008 0.001 −0.011
(0.084) (0.087) (0.053) (0.022) (0.023) (0.021) (0.019)

Scientist FE Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes
Scientist age Yes Yes Yes Yes Yes Yes Yes

Observations 5440 5440 5440 5440 5440 5440 5440
Scientists 320 320 320 320 320 320 320
Log-likelihood −23517 −19654 −10887 −158 −747 −406 −300

Notes: Columns (1) to (3) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. The outcome variable in Column (1) to (2) is the number of distinct (new) coauthors in
each year. The outcome variable in Column (3) is the average number of coauthors per publication in each year.
Columns (4) to (7) show the estimates of linear regressions with high-dimensional fixed effects. The outcome
variable is the share of last/first authored (mice) publications in each year. The top part of this table uses sample
A, the bottom part uses sample USA. The unit of observation is the individual scientist by year. Standard errors are
clustered at the scientist level and shown in parentheses. Significance levels: * p<0.1, ** p<0.05, *** p<0.01.
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A.5.5 Tables – Type of Research

Table A-18: Type of research – all keywords (incl. old keywords)

Mean/PPML (1) (2) (3) (4) (5) (6) (7) (8)
+10 years References Keywords MeSH Disease MeSH

All USA All USA All USA All USA

Post × affected −0.031 −0.028 0.043 0.188 0.002 0.013 0.026 0.042
(0.072) (0.095) (0.156) (0.216) (0.036) (0.048) (0.066) (0.091)

Scientist FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Scientist age Yes Yes Yes Yes Yes Yes Yes Yes

Observations 9622 5440 8738 4981 9622 5440 9469 5355
Scientists 566 320 514 293 566 320 557 315
Log-likelihood −64296 −37089 −9015 −4843 −33996 −18986 −7995 −4566

Notes: Columns (1) to (8) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. The outcome variable is the annual average number of all-references in Columns (1)
and (2), all keywords in Columns (3) and (4), all MeSH terms in Columns (5) and (6), and all disease related
MeSH terms in Columns (7) and (8). Columns with odd numbers show the estimates for sample A and columns
with even numbers show the estimated for sample USA. The unit of observation is the individual scientist by year.
Standard errors are clustered at the scientist level and shown in parentheses. Significance levels: * p<0.1, **
p<0.05, *** p<0.01.
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Table A-19: Type of research – MeSH terms related to alternative research tools

Share/Linear (1) (2) (3) (4) (5) (6)
+10 years Sample All Sample USA

In Vitro Animal Human In Vitro Animal Human

Post × affected 0.013 0.009 −0.013 0.013 0.015 0.005
(0.013) (0.012) (0.016) (0.013) (0.017) (0.022)

Scientist FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Scientist age Yes Yes Yes Yes Yes Yes

Observations 9622 9622 9622 9622 5440 5440
Scientists 566 566 566 566 320 320
Log-likelihood 1134 2368 −694 1134 1276 −413

Notes: Columns (1) to (6) show the estimates of linear regressions with high-dimensional fixed effects. The
outcome variable is the share of “In Vitro” (defined by MeSH terms) related publications in Column (1) and (4),
other non-mice but “animal” (defined by MeSH terms) related publications in Column (2) and (5), and “Human”
(defined by MeSH terms) related publications in Column (3) and (6). Columns (1) to (3) show the estimates for
sample A and Columns (4) to (6) show the estimated for sample USA. The unit of observation is the individual
scientist by year. Standard errors are clustered at the scientist level and shown in parentheses. Significance levels:
* p<0.1, ** p<0.05, *** p<0.01.
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Table A-20: Type of research – alternative dependent variables

Count/PPML (1) (2) (3) (4) (5) (6) (7) (8)
+10 years Self-References New Keywords New MeSH New Disease MeSH

All USA All USA All USA All USA

Post × affected −0.289∗∗ −0.449∗∗∗ 0.132 0.100 −0.063 −0.166∗∗ −0.026 −0.125
(0.132) (0.141) (0.150) (0.202) (0.055) (0.068) (0.089) (0.113)

Scientist FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Scientist age Yes Yes Yes Yes Yes Yes Yes Yes

Observations 9129 5270 8738 4981 9622 5440 9452 5338
Scientists 537 310 514 293 566 320 556 314
Log-likelihood −32736 −19567 −23637 −13091 −53726 −30386 −13917 −8059

Count/PPML (1) (2) (3) (4) (5) (6) (7) (8)
+10 years Sample All: Clinical Y Publ Sample USA: Clinical Y Publ

Y = All Y = Mice Y = B6 Y = Affectd Y = All Y = Mice Y = B6 Y = Affectd

Post × affected −0.026 0.147 0.660∗∗∗ −0.089 −0.244∗∗ 0.058 0.663∗∗∗ −0.128
(0.104) (0.111) (0.187) (0.235) (0.109) (0.141) (0.244) (0.329)

Scientist FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Scientist age Yes Yes Yes Yes Yes Yes Yes Yes

Observations 9180 8330 4709 4386 5168 4743 2550 2601
Scientists 540 490 277 258 304 279 150 153
Log-likelihood −11174 −6483 −2141 −2083 −6174 −3606 −1101 −1181

Count/PPML (1) (2) (3) (4) (5) (6) (7) (8)
+10 years Sample All: Patent-Weighted Y Publ Sample USA: Patent-Weighted Y Publ

Y = All Y = Mice Y = B6 Y = Affectd Y = All Y = Mice Y = B6 Y = Affectd

Post × affected 0.197 0.268 0.953∗∗∗ −0.199 0.159 0.211 0.898∗ −0.160
(0.144) (0.166) (0.368) (0.345) (0.176) (0.194) (0.538) (0.414)

Scientist FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Scientist age Yes Yes Yes Yes Yes Yes Yes Yes

Observations 6936 5593 2278 2771 4267 3349 1360 1887
Scientists 408 329 134 163 251 197 80 111
Log-likelihood −4935 −3311 −775 −1117 −3186 −2113 −456 −784

Notes: Columns (1) to (8) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. In the top part of this table, the outcome variable is the number of self-references
in Columns (1/2), new keywords in Columns (3/4), new MeSH terms in Columns (5/6), and new disease re-
lated MeSH terms in Columns (7/8). In the middle part of this table, the outcome variable is the share of al-
l/mice/B6/affected mice publications published in a journal that usually publishes more clinical relevant research
relative to all/mice/B6/affected mice publications. In the bottom part of the table, the outcome variable is the
share of all/mice/B6/affected mice publications that are associated with a patent application (patent-weighted)
relative to all/mice/B6/affected mice unweighted publications. A patent-weight is calculated based on the patent
family’s first application being filed within 10 years from the scientific publication. The unit of observation is
the individual scientist by year. Standard errors are clustered at the scientist level and shown in parentheses.
Significance levels: * p<0.1, ** p<0.05, *** p<0.01.
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Table A-21: Type of research – alternative specifications

Sample A (1) (2) (3) (4) (5) (6) (7) (8)
Share/Linear +10 years

DV: Patent-Weighted (10yrs) Age FE Cluster Level Treatment Variable

Post × affected 0.024∗∗∗ 0.025∗∗∗ 0.024∗∗∗ 0.024∗∗∗ 0.024∗∗∗

(0.007) (0.007) (0.007) (0.008) (0.006)
× affected (cont.) 0.026∗∗∗

(0.008)
× affected (mice publ) 0.017∗∗

(0.007)
× affected (all publ) 0.018∗∗

(0.008)
Scientist FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Scientist age No Yes Yes Yes Yes Yes Yes Yes
Scientist age (squared) No No Yes Yes Yes Yes Yes Yes
Scientist age (3rd poly) No No No Yes Yes Yes Yes Yes

Observations 9622 9622 9622 9622 9622 9622 9622 9622
Scientists 566 566 566 566 566 566 566 566
Cluster ScientistScientist Scientist Sc. × Year Strain Scientist ScientistScientist
Log-likelihood 5130 5130 5132 5132 5132 5132 5128 5129

Sample USA (1) (2) (3) (4) (5) (6) (7) (8)
Share/Linear +10 years

DV: Patent-Weighted (10yrs) Age FE Cluster Level Treatment Variable

Post × affected 0.039∗∗∗ 0.039∗∗∗ 0.039∗∗∗ 0.039∗∗∗ 0.039∗∗∗

(0.011) (0.011) (0.011) (0.010) (0.012)
× affected (cont.) 0.038∗∗∗

(0.012)
× affected (mice publ) 0.025∗∗

(0.011)
× affected (all publ) 0.021∗

(0.011)
Scientist FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Scientist age No Yes Yes Yes Yes Yes Yes Yes
Scientist age (squared) No No Yes Yes Yes Yes Yes Yes
Scientist age (3rd poly) No No No Yes Yes Yes Yes Yes

Observations 5440 5440 5440 5440 5440 5440 5440 5440
Scientists 320 320 320 320 320 320 320 320
Cluster ScientistScientist Scientist Sc. × Year Strain Scientist ScientistScientist
Log-likelihood 2541 2541 2542 2542 2542 2540 2536 2535

Notes: Columns (1) to (8) show the estimates of linear regressions with high-dimensional fixed effects (the top
table uses sample A, bottom table uses sample USA). The outcome variable is the share of patent application-
weighted publications (within 10 years from publication) in each year. Treatment is defined binary based on the
pre-fire share of treated mice publications relative the all treated & control mice publications in Columns (1) to
(5), relative to all mice publications in Column (7), and relative to all publications in Column (8). Treatment is
defined continuously in Column (6). The unit of observation is the individual scientist by year. Standard errors are
shown in parentheses. They are clustered at the scientist level in Columns (1) to (3) as well as (6) to (8), at the
scientist times year level in Column (4), and at the mice strain level (most often used by the scientists) in Column
(5). Significance levels: * p<0.1, ** p<0.05, *** p<0.01.

130



A. APPENDIX TO CHAPTER 1

A.5.6 Tables – Alternative Classification of Mice

Table A-22: Alternative classification of mice publications

Sample A (1) (2) (3) (4) (5) (6) (7)
Count/PPML Strain Types Affected Strains Spared Strains

+10 years Inbred Transgenic Mutant Jax Non Jax Jax Non Jax

Post × affected −0.127 −0.161 0.392 −1.669∗∗∗ −1.564∗∗∗ 2.198∗∗∗ 1.899∗∗∗

(0.139) (0.445) (0.330) (0.369) (0.298) (0.482) (0.293)
Scientist FE Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes
Scientist age Yes Yes Yes Yes Yes Yes Yes

Observations 9282 2772 5406 3332 5916 3995 4675
Scientists 546 198 318 196 348 235 275
Log-likelihood −27709 −10004 −13454 −4051 −7979 −6194 −6064

Sample USA (1) (2) (3) (4) (5) (6) (7)
Count/PPML Strain Types Affected Strains Spared Strains

+10 years Inbred Transgenic Mutant Jax Non Jax Jax Non Jax

Post × affected −0.332∗ 0.000 −0.067 −1.683∗∗∗ −2.074∗∗∗ 1.685∗∗∗ 1.534∗∗∗

(0.178) (0.506) (0.425) (0.416) (0.403) (0.527) (0.336)
Scientist FE Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes
Scientist age Yes Yes Yes Yes Yes Yes Yes

Observations 5253 1764 3162 2261 3247 2227 2890
Scientists 309 126 186 133 191 131 170
Log-likelihood −17296 −6990 −8434 −2905 −4686 −3735 −4157

Notes: Columns (1) to (7) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. In Columns (1) to (3), the outcome variable is the number of publications that include
an inbred, transgenic or mutant mice MeSH term. In Columns (4) to (7), the outcome variable is the number of
publications that mention a certain affected or spared Jax/non Jax mice strain. The top part of this table uses
sample A, the bottom part uses sample B. The unit of observation is the individual scientist by year. Standard
errors are clustered at the scientist level and shown in parentheses. Significance levels: * p<0.1, ** p<0.05, ***
p<0.01.
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A.5.7 Tables – Alternative Counts

Table A-23: Scientific articles with fewer than 20 authors

Sample A (1) (2) (3) (4) (5) (6) (7) (8)
+10 years Count/PPML Share/Linear

DV: Articles All All (JIF) Mice Mice (JIF) B6 B6 (JIF) Affected Affected (JIF)

Post × affected−0.044 −0.019 0.030 −0.005 0.048∗∗∗ 0.042∗∗∗ −0.035∗∗ −0.024∗

(0.068) (0.086) (0.079) (0.108) (0.015) (0.016) (0.015) (0.015)
Scientist FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Scientist age Yes Yes Yes Yes Yes Yes Yes Yes

Observations 9622 9622 9622 9622 9622 9622 9622 9622
Scientists 566 566 566 566 566 566 566 566
Log-likelihood −20028 −48685 −14107 −40074 −434 −738 −528 −708

Sample USA (1) (2) (3) (4) (5) (6) (7) (8)
+10 years Count/PPML Share/Linear

DV: Articles All All (JIF) Mice Mice (JIF) B6 B6 (JIF) Affected Affected (JIF)

Post × affected−0.186∗∗ −0.137 −0.018 −0.099 0.026 0.021 −0.030 −0.038∗

(0.079) (0.100) (0.103) (0.134) (0.018) (0.018) (0.019) (0.020)
Scientist FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Scientist age Yes Yes Yes Yes Yes Yes Yes Yes

Observations 5440 5440 5440 5440 5440 5440 5440 5440
Scientists 320 320 320 320 320 320 320 320
Log-likelihood −11425 −31047 −8152 −25707 104 −29 −383 −524

Notes: Columns (1) to (4) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. The outcome variable is the number of (mice related) articles in scientific journals
(JIF weighted) with fewer than 20 coauthors. Columns (5) to (8) show the estimates of linear regressions with
high-dimensional fixed effects. The outcome variable is the share of B6/affected mice related articles in scientific
journals (JIF weighted) with fewer than 20 coauthors relative to all mice related articles in scientific journals (JIF
weighted). The top part of this table uses sample A, the bottom part uses sample B. The unit of observation is
the individual scientist by year. Standard errors are clustered at the scientist level and shown in parentheses.
Significance levels: * p<0.1, ** p<0.05, *** p<0.01.
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Table A-24: Research output weighted by inverse of coauthor counts

Sample A (1) (2) (3) (4) (5) (6) (7) (8)
+10 years Count/PPML Share/Linear

DV: Fractions All All (JIF) Mice Mice (JIF) B6 B6 (JIF) Affected Affected (JIF)

Post × affected−0.086 −0.076 0.050 0.021 0.046∗∗∗ 0.039∗∗ −0.037∗∗ −0.027∗

(0.068) (0.091) (0.082) (0.109) (0.015) (0.015) (0.015) (0.015)
Scientist FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Scientist age Yes Yes Yes Yes Yes Yes Yes Yes

Observations 9622 9622 9622 9622 9622 9622 9622 9622
Scientists 566 566 566 566 566 566 566 566
Log-likelihood −10460 −19578 −6424 −13914 −378 −646 −551 −687

Sample USA (1) (2) (3) (4) (5) (6) (7) (8)
+10 years Count/PPML Share/Linear

DV: Fractions All All (JIF) Mice Mice (JIF) B6 B6 (JIF) Affected Affected (JIF)

Post × affected−0.186∗∗ −0.163 0.004 −0.073 0.024 0.019 −0.031 −0.038∗∗

(0.080) (0.104) (0.103) (0.135) (0.018) (0.018) (0.019) (0.019)
Scientist FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Scientist age Yes Yes Yes Yes Yes Yes Yes Yes

Observations 5440 5440 5440 5440 5440 5440 5440 5440
Scientists 320 320 320 320 320 320 320 320
Log-likelihood −6059 −12525 −3722 −8759 143 30 −378 −506

Notes: Columns (1) to (4) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. The outcome variable is the number of (mice related) publications (JIF weighted)
divided by the number of coauthors (fractional count). Columns (5) to (8) show the estimates of linear regressions
with high-dimensional fixed effects. The outcome variable is the fractional share of B6/affected mice related
publications (JIF weighted) to all mice related publications (fractional/JIF weighted). The top part of this table
uses sample A, the bottom part uses sample B. The unit of observation is the individual scientist by year. Standard
errors are clustered at the scientist level and shown in parentheses. Significance levels: * p<0.1, ** p<0.05, ***
p<0.01.
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A.5.8 Tables – Alternative Samples

Table A-25: Alternative sample B

Sample B (1) (2) (3) (4) (5) (6) (7) (8)
+10 years Research Output Impact/Organization Trajectories

All Mice B6 Affected Citations Coauthors Clinical Patents

Post × affected −0.107 −0.007 0.051∗∗ −0.033∗ −0.007 −0.140 0.022 0.023∗∗∗

(0.109) (0.130) (0.020) (0.018) (0.097) (0.087) (0.019) (0.009)
Scientist FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Scientist age Yes Yes Yes Yes Yes Yes Yes Yes

Observations 6358 6358 6358 6358 6358 6358 6358 6358
Scientists 374 374 374 374 374 374 374 374
Log-likelihood −33097 −26399 −497 −355 −154732 −26574 −522 3429

Sample B (1) (2) (3) (4) (5) (6) (7) (8)
+5 years Research Output Impact/Organization Trajectories

All Mice B6 Affected Citations Coauthors Clinical Patents

Post × affected −0.068 0.036 0.038∗ −0.014 −0.066 −0.117 0.015 0.018∗∗

(0.094) (0.121) (0.020) (0.019) (0.118) (0.077) (0.019) (0.009)
Scientist FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Scientist age Yes Yes Yes Yes Yes Yes Yes Yes

Observations 4488 4488 4488 4488 4488 4488 4488 4488
Scientists 374 374 374 374 374 374 374 374
Log-likelihood −22665 −18278 −371 −390 −93769 −16681 −317 2795

Notes: This table shows a summary of the regressions results using sample B, which is more strict concerning
age and scientific productivity. Columns (1), (2), (5) and (6) show the estimates of Poisson pseudo-maximum
likelihood regressions with high-dimensional fixed effects. The outcome variables are the number of (mice related)
publications (JIF weighted), mean number of citations, and number of distinct coauthors. Columns (3), (4), (7)
and (8) show the estimates of linear regressions with high-dimensional fixed effects. The outcome variables are
the share of (no) B6 publications (JIF weighted), share of clinical journal publications, and the share of patent-
weighted publications. The unit of observation is the individual scientist by year. Standard errors are clustered at
the scientist level and shown in parentheses. Significance levels: * p<0.1, ** p<0.05, *** p<0.01.
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Table A-26: Alternative sample C

Sample C (1) (2) (3) (4) (5) (6) (7) (8)
+10 years Research Output Impact/Organization Trajectories

All Mice B6 Affected Citations Coauthors Clinical Patents

Post × affected −0.016 −0.126 0.040∗∗∗−0.074∗∗∗ 0.092∗ −0.018 0.016∗ 0.015∗∗∗

(0.059) (0.088) (0.010) (0.014) (0.048) (0.046) (0.009) (0.004)
Scientist FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Scientist age Yes Yes Yes Yes Yes Yes Yes Yes

Observations 39661 39627 39661 39661 39661 39661 39661 39661
Scientists 2333 2331 2333 2333 2333 2333 2333 2333
Log-likelihood −208570 −165362 −469 −19079 −839063 −174336 −2296 20584

Sample D (1) (2) (3) (4) (5) (6) (7) (8)
+5 years Research Output Impact/Organization Trajectories

All Mice B6 Affected Citations Coauthors Clinical Patents

Post × affected −0.038 −0.125 0.023∗∗ −0.057∗∗∗ 0.047 −0.048 0.005 0.013∗∗∗

(0.053) (0.077) (0.010) (0.015) (0.051) (0.039) (0.010) (0.004)
Scientist FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Scientist age Yes Yes Yes Yes Yes Yes Yes Yes

Observations 27996 27972 27996 27996 27996 27984 27996 27996
Scientists 2333 2331 2333 2333 2333 2332 2333 2333
Log-likelihood −141886 −114373 −101 −13627 −517145 −108763 −1303 16997

Notes: This table shows a summary of the regressions results using the pre-matching sample C. Columns (1), (2),
(5) and (6) show the estimates of Poisson pseudo-maximum likelihood regressions with high-dimensional fixed
effects. The outcome variables are the number of (mice related) publications (JIF weighted), mean number of
citations, and number of distinct coauthors. Columns (3), (4), (7) and (8) show the estimates of linear regressions
with high-dimensional fixed effects. The outcome variables are the share of (no) B6 publications (JIF weighted),
share of clinical journal publications, and the share of patent-weighted publications. The unit of observation is
the individual scientist by year. Standard errors are clustered at the scientist level and shown in parentheses.
Significance levels: * p<0.1, ** p<0.05, *** p<0.01.
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A.5.9 Tables – Heterogeneity

Table A-27: Heterogeneity by mice dependence

Sample A (1) (2) (3) (4) (5) (6) (7) (8)
+10 years Research Output Impact/Organization Trajectories

All Mice B6 Affected Citations Coauthors Clinical Patents

Post × affected 0.072 0.311 0.080∗∗∗−0.029 0.067 0.005 0.038 0.014∗

(0.157) (0.212) (0.022) (0.021) (0.121) (0.122) (0.025) (0.008)
× Mice Publ. −0.127 −0.372 −0.078∗∗ 0.004 −0.029 −0.095 −0.015 0.021

(0.186) (0.244) (0.030) (0.029) (0.157) (0.152) (0.031) (0.014)
Post × Mice Publ. −0.154 −0.180 0.085∗∗∗−0.030∗ −0.071 0.086 0.056∗∗∗ 0.018∗

(0.133) (0.196) (0.024) (0.017) (0.112) (0.104) (0.021) (0.010)
Scientist FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Scientist age Yes Yes Yes Yes Yes Yes Yes Yes

Observations 9622 9622 9622 9622 9622 9622 9622 9622
Scientists 566 566 566 566 566 566 566 566
Log-likelihood −51153 −40815 −662 −676 −226854 −41641 −869 5144

Notes: This table shows a summary of the regressions results following Equation 1.2 with a triple-interaction term.
Columns (1), (2), (5) and (6) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. The outcome variables are the number of (mice related) publications (JIF weighted),
mean number of citations, and number of distinct coauthors. Columns (3), (4), (7) and (8) show the estimates of
linear regressions with high-dimensional fixed effects. The outcome variables are the share of (no) B6 publications
(JIF weighted), share of clinical journal publications, and the share of patent-weighted publications. The triple-
interaction term is a scientists JIF-weighted mice publication record in the 5 years before the fire. The unit of
observation is the individual scientist by year. Standard errors are clustered at the scientist level and shown in
parentheses. Significance levels: * p<0.1, ** p<0.05, *** p<0.01.
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Table A-28: Heterogeneity by age

Sample A (1) (2) (3) (4) (5) (6) (7) (8)
+10 years Research Output Impact/Organization Trajectories

All Mice B6 Affected Citations Coauthors Clinical Patents

Post × affected −0.048 0.063 0.046∗∗ −0.023 0.074 −0.209∗ 0.019 0.019∗

(0.133) (0.158) (0.021) (0.019) (0.138) (0.116) (0.022) (0.011)
× Experience 0.014 −0.134 −0.012 −0.008 −0.053 0.215 0.024 0.012

(0.174) (0.215) (0.031) (0.029) (0.166) (0.148) (0.031) (0.015)
Post × Experience 0.046 0.221 0.012 0.014 0.000 −0.097 0.003 −0.017

(0.132) (0.183) (0.031) (0.023) (0.133) (0.107) (0.025) (0.013)
Scientist FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Scientist age Yes Yes Yes Yes Yes Yes Yes Yes

Observations 9622 9622 9622 9622 9622 9622 9622 9622
Scientists 566 566 566 566 566 566 566 566
Log-likelihood −51233 −40896 −676 −679 −226908 −41621 −877 5133

Notes: This table shows a summary of the regressions results following Equation 1.2 with a triple-interaction term.
Columns (1), (2), (5) and (6) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. The outcome variables are the number of (mice related) publications (JIF weighted),
mean number of citations, and number of distinct coauthors. Columns (3), (4), (7) and (8) show the estimates of
linear regressions with high-dimensional fixed effects. The outcome variables are the share of (no) B6 publications
(JIF weighted), share of clinical journal publications, and the share of patent-weighted publications. The triple-
interaction term is the age (since PhD) of a scientists at the time of the fire. The unit of observation is the individual
scientist by year. Standard errors are clustered at the scientist level and shown in parentheses. Significance levels:
* p<0.1, ** p<0.05, *** p<0.01.
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B.1 Patent Term Extensions

Figure B-1: Patent term extensions by SPC

Notes: The figure illustrates the EU SPC regime introduced in 1993. All patents in the sample were retrieved from
the SPC data and are, thus, subject to the SPC regime. The patent term extension is capped at 5 years so that
market exclusivity can be seen as constant for patents with a approval-lag between 5 and 10 years.

Figure B-2: Distribution – expected market exclusivity
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Notes: The figure presents the distribution the expected market exclusivity, which is calculated from first EU
marketing authorization until patent expiry account for the patent term extension granted by SPC. The sample of
590 patent-drug links is split in two equally sized groups, using as threshold the median of the approval lag.
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B.2 Figures

B.2.1 Figures – Descriptive Analysis

Figure B-3: Evolution of various citation counts by time to approval

(a) Mean forward citations - full sample
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(b) Mean other citations
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(c) Mean citations - secondary patents
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(d) Mean citations - product patents

0

.75

1.5

2.25

3

Lo
g(

1+
C

ita
tio

ns
 - 

Pr
od

uc
t P

at
en

t)

0 5 10 15 20 25 30 35
Years from Priority Filing

Early MA Late MA

 

(e) Mean citations - same ICD-9
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(f) Mean citations - different ICD-9
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Notes: The figures present the average log-transformed number of forward citations split at the median approval
lag (early/late MA) over time. The annual citation count is normalized by the average citation count from the
pre-approval period t0-t5. Figure (a) includes the “full” sample with all 1,405 SPC filings. The other figures are
based on the “main” sample of 590 patent-drug links. The unit of observation is the unique patent-drug level.
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Figure B-4: Evolution of various citation counts by time to approval (cont.)

(a) Mean citations - pharma patents
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(b) Mean citations - no pharma patents
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(c) Mean citations - biotech patents
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(d) Mean citations - process patents
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(e) Mean citations - vertically related
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(f) Mean citations - not vertically related
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Notes: The figures present the average log-transformed number of forward citations split at the median approval
lag (early/late MA) over time. The annual citation count is normalized by the average citation count from the pre-
approval period t0-t5. Figures are based on the “main” sample of 590 patent-drug links. The unit of observation
is the unique patent-drug level.
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Figure B-5: Evolution of citations by time to approval – early/late MA

(a) Mean self-citations - early MA
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(b) Mean self-citations - late MA
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(c) Mean secondary patent citations - early MA
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(d) Mean secondary patent citations - late MA
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(e) Mean product patent citations - early MA
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(f) Mean product patent citations - late MA
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Notes: Figures (a), (c), (e) present the average log-transformed number of forward citations split at the median
approval lag within the sample of early MA drugs (approval between year 5 and 10 from priority filing). Figures
(b), (d), (f) present the average log-transformed number of forward citations split at the median approval lag
within the sample of late MA drugs (approval between year 10 and 16 from priority filing). The annual citation
count is normalized by the average citation count from the pre-approval period t0-t5. The unit of observation is
the unique patent-drug level.
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B.2.2 Figures – Multivariate Analysis

Figure B-6: Impact of marketing authorization on self citations – alternative specifications

(a) Without patent/SPC grant controls
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(b) Winsorized
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(c) PPML without patent/SPC grant controls

-1.000

-0.500

0.000

0.500

Ef
fe

ct
 o

f  
M

A
 x

  y
ea

r

-4 -3 -2 MA 0 1 2 3 4

Estimate 90% CI

 

(d) PPML with patent/SPC grant controls
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Notes: Figures (a) and (b) show the event study estimates and the 90 percent confidence bands of linear regressions
with high-dimensional fixed effects. The outcome variable is the log-transformed annual self-citation count. Figure
(a) follows the specification without patent grant and SPC grant controls (Equation 2.1). Figure (b) follows the
preferred specification (Equation 2.1) with citation counts being winsorized at the 99% level. Figures (c) and
(d) show the event study estimates and the 90 percent confidence bands of Poisson pseudo-maximum likelihood
regressions with high-dimensional fixed effects. The outcome variable is the self-citation count. Figure (c) follows
the specification without patent grant and SPC grant controls (Equation 2.1). Figure (d) follows the preferred
specification (Equation 2.1). The unit of observation is the unique patent-drug level. Standard errors are clustered
at the patent-drug level.
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Figure B-7: Impact of marketing authorization on other parties’ citations by type of patent

(a) Other citations
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(b) Other citations - PPML
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(c) Other citations - pharma patents
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(d) Other citations - no pharma patents
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(e) Other citations - same ICD-9
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(f) Other citations - different ICD-9
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Notes: The Figures (a) & (c)–(f) show the event study estimates and the 90 percent confidence bands of linear
regressions with high-dimensional fixed effects. The outcome variable is the log-transformed annual other parties’
citation count generated by all patents in (a), the other pharmaceutical companies’ citation count in (b), the
other non-pharma companies’ citation count in (c), the other parties’ citation count generated by pharmaceutical
patents in the same ICD-9 category in (e), and the other parties’ citation count generated by pharmaceutical
patents in a different ICD-9 category in (f). The Figures (b) shows the event study estimates and the 90 percent
confidence bands of Poisson pseudo-maximum likelihood regressions with high-dimensional fixed effects. The
outcome variable is the annual other parties’ citation. The unit of observation is the unique patent-drug level.
Standard errors are clustered at the patent-drug level.
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Figure B-8: Impact of marketing authorization on examiner/XY citations

(a) Examiner citations
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(b) Applicant citations
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(c) XY-citations
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(d) No XY-citations
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Notes: The figures show the event study estimates and the 90 percent confidence bands of linear regressions with
high-dimensional fixed effects. The outcome variable is the log-transformed annual self-citation count generated
by (a) examiners, (b) applicants, (c) XY-references, and (d) no XY-references. The unit of observation is the unique
patent-drug level. Standard errors are clustered at the patent-drug level.
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Figure B-9: Impact of marketing authorization on citations – longer post period

(a) Self-citations
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(b) Other citations
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(c) Citations - secondary patents
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(d) Citations - product patents
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(e) Citations - same ICD-9
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(f) Citations - different ICD-9
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Notes: The figures show the event study estimates and the 90 percent confidence bands of linear regressions with
high-dimensional fixed effects. It follows Equation 2.2 with longer effect windows. The treatment indicator MA j

i t

is set to 1 at the endpoint j = +8. The unit of observation is the unique patent-drug level. Standard errors are
clustered at the patent-drug level.
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Figure B-10: Impact of marketing authorization on citations – constant market exclusivity

(a) Forward citations
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(b) Other citations
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(c) Self-citations - process patents
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(d) Self-citations - product patents
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(e) Citations - same ICD-9
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(f) Citations - different ME
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Notes: The figures show the event study estimates and the 90 percent confidence bands of linear regressions with
high-dimensional fixed effects. The sample comprises only those 288 patent-drugs links that are associated with a
marketing authorization within 10 years. This early MA group has uniform market exclusivity period of 15 years.
The outcome variable is the log-transformed annual forward citation count in (a), other parties’ citation count in
(b), self-citation count generated from process patents in (c), self-citation count generated from product patents
in (d), the self-citation count generated by pharmaceutical patents in the same ICD-9 category in (e), and the self-
citation count generated by pharmaceutical patents in a different ICD-9 category in (f). The unit of observation is
the unique patent-drug level. Standard errors are clustered at the patent-drug level.
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Figure B-11: Impact of marketing authorization on citations – full sample

(a) Forward citations
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(b) Citations - secondary patents
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(c) Citations - process patents
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(d) Citations - product patents

-0.040

-0.020

0.000

0.020

0.040

Ef
fe

ct
 o

f  
M

A
 x

  y
ea

r

-4 -3 -2 MA 0 1 2 3 4

Estimate 90% CI

(e) Self-citations
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(f) Other-citations
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(g) Citations - same ICD-9
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(h) Citations - different ICD-9
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Notes: The figures show the event study estimates and the 90 percent confidence bands of linear regressions with
high-dimensional fixed effects using the full sample of 1,405 SPC filings. The unit of observation is the unique
patent-drug level. Standard errors are clustered at the patent-drug level.
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B.3 Tables

B.3.1 Tables – Summary Statistics

Table B-1: Summary statistics – ex-ante patent/drug characteristics

N Mean Median Std. Dev. Min Max

Time to approval 590 10.79 11.00 2.90 5 16
Time to patent grant 590 2.38 2.00 1.31 0 10
Patent priority year 590 1987.18 1987.00 5.48 1974 1996
Patent application year 590 1988.29 1988.50 5.53 1975 1997
First patent grant year 590 1989.51 1990.00 5.88 1975 2005
First MA year 590 1997.96 1998.00 6.07 1986 2012
SPC filing year 590 2000.00 1999.00 5.49 1993 2015
SPC grant year 490 2003.41 2004.00 5.66 1995 2016
Market exclusivity 590 13.92 15.00 1.61 9 15
Total forward cit. 590 16.41 7.00 29.07 0 263
Total self cit. 590 2.21 1.00 4.92 0 55
Total other cit. 590 14.16 6.00 26.69 0 253
Total pharma cit. 590 7.56 3.00 13.86 0 114
Total no pharma cit. 590 8.86 4.00 17.35 0 164
Total same ICD9 cit. 590 4.71 1.00 9.26 0 80
Total other ICD9 cit. 590 2.41 1.00 5.92 0 57
Total biotech patent cit. 590 0.23 0.00 1.08 0 13
Total secondary patent cit. 590 4.40 1.00 7.84 0 63
Total process patent cit. 590 1.17 0.00 2.60 0 22
Total product patent cit. 590 2.68 1.00 6.58 0 75
Total clinical trials cit. 590 1.90 0.00 5.26 0 59
Total clinical trials cit. 590 1.50 0.00 4.41 0 45
Pediatric drug 590 0.07 0.00 0.25 0 1
Drug combination 590 0.31 0.00 0.46 0 1
Salt of drug molecule 590 0.16 0.00 0.37 0 1
Size of patent family 590 25.78 24.00 15.71 1 115
Number of applicants 590 1.09 1.00 0.32 1 3
IPC in mainarea 1 590 0.01 0.00 0.08 0 1
IPC in mainarea 2 590 0.11 0.00 0.31 0 1
IPC in mainarea 3 590 1.00 1.00 0.04 0 1
IPC in mainarea 4 590 0.02 0.00 0.13 0 1
Transn. patent family 590 0.86 1.00 0.35 0 1
Triadic patent family 590 0.54 1.00 0.50 0 1
Tech area organic chem. 590 0.47 0.00 0.50 0 1
Tech area pharma. 590 0.42 0.00 0.49 0 1
Tech area biotech. 590 0.08 0.00 0.27 0 1
Tech area material chem. 590 0.01 0.00 0.09 0 1
Inventor country US 590 0.36 0.00 0.48 0 1
Inventor country Europe 590 0.40 0.00 0.49 0 1
Applicant country US 590 0.35 0.00 0.48 0 1
Applicant country Europe 590 0.45 0.00 0.50 0 1

Notes: This table displays the summary statistics of ex-ante patent & drug characteristics. Initial forward cita-
tion counts include all patent references within 12 months from the primary patents priority filing. The unit of
observation is the unique patent-drug level.
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Table B-2: Summary statistics – diseases

N Mean Median Std. Dev. Min Max

ICD9 code available 493 0.85 1.00 0.36 0 1
Number of ICD9 493 2.29 2.00 2.39 0 23
Infectious/parasitic diseases 493 0.24 0.00 0.43 0 1
Neoplasms 493 0.15 0.00 0.35 0 1
Endocrine/immun. disorders 493 0.15 0.00 0.36 0 1
Blood diseases 493 0.03 0.00 0.17 0 1
Mental disorders 493 0.07 0.00 0.25 0 1
Nervous system diseases 493 0.11 0.00 0.32 0 1
Circulatory system diseases 493 0.16 0.00 0.37 0 1
Respiratory system diseases 493 0.06 0.00 0.24 0 1
Digestive system diseases 493 0.05 0.00 0.22 0 1
Genitourinary diseases 493 0.10 0.00 0.30 0 1
Pregnancy/childbirth 493 0.00 0.00 0.06 0 1
Skin diseases diseases 493 0.04 0.00 0.21 0 1
Musculoskeletal diseases 493 0.08 0.00 0.27 0 1
Congenital anomalies 493 0.00 0.00 0.00 0 0
Conditions perinatal period 493 0.03 0.00 0.17 0 1
Ill-defined conditions 493 0.09 0.00 0.28 0 1
Ijury/poisoning 493 0.07 0.00 0.26 0 1

Notes: This table displays the summary statistics of disease characteristics. A primary patent can be associated
with more than one ICD-9 category. The unit of observation is the unique patent-drug level.
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B.3.2 Tables – Results from Cross Section

Table B-3: Impact of marketing authorization on citations – cross section

Log/Linear (1) (2) (3) (4) (5) (6) (7)
DV: Log(1+Citations) All Self Other Seondary Product = ICD9 6= ICD9

Time to Approval (Priority) 0.027∗ 0.026∗∗ 0.015 0.020 0.018 0.027∗ 0.004
(0.017) (0.013) (0.017) (0.014) (0.013) (0.016) (0.013)

Priority Year FE Yes Yes Yes Yes Yes Yes Yes
Patent Grant Year FE Yes Yes Yes Yes Yes Yes Yes
Patent Controls Yes Yes Yes Yes Yes Yes Yes
Product Controls Yes Yes Yes Yes Yes Yes Yes
Technology Controls Yes Yes Yes Yes Yes Yes Yes
Inventor Controls Yes Yes Yes Yes Yes Yes Yes

Observations 584 584 584 584 584 584 584
Log-likelihood −775 −636 −788 −669 −621 −726 −620

Notes: Columns (1) to (7) show the estimates of linear regressions using a cross-sectional data set. The dependent
variable is the total number of log-transformed forward citations between year 5 and year 16 (first approval in data
set and last approval in data set). Column (1) counts all citations, Column (2) self-citations, Column (3) other
parties’ citations, Column (4) citations generated from secondary patents, Column (5) citations generated from
product patents, Column (6) citations within the same ICD-9 category, Column (7) citations in different ICD-9
categories. The unit of observation is the unique patent-drug level. Heteroskedasticity robust standard errors are
shown in parentheses. Significance levels: * p<0.1, ** p<0.05, *** p<0.01.

Table B-4: Impact of marketing authorization on citations by patent type – cross section

Log/Linear (1) (2) (3) (4) (5) (6) (7) (8)
DV: Log(1+Citations) Secondary Patents Process Patents Product Patents Biotech Patents

Self Other Self Other Self Other Self Other

Time to Approval (Priority) 0.009 0.013 0.012∗∗ 0.012∗∗ 0.007 0.012 −0.001 0.010
(0.008) (0.013) (0.005) (0.005) (0.006) (0.013) (0.001) (0.006)

Priority Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Patent Grant Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Patent Controls Yes Yes Yes Yes Yes Yes Yes Yes
Product Controls Yes Yes Yes Yes Yes Yes Yes Yes
Technology Controls Yes Yes Yes Yes Yes Yes Yes Yes
Inventor Controls Yes Yes Yes Yes Yes Yes Yes Yes

Observations 584 584 584 584 584 584 584 584
Log-likelihood −404 −654 −44 −44 −232 −611 1146 −136

Notes: Columns (1) to (7) show the estimates of linear regressions using a cross-sectional data set. In Columns
with uneven numbers, the dependent variable is the total number of log-transformed self-citations. In Columns
with even numbers, the dependent variable is the total number of log-transformed other parties’-citations. In all
cases, citations are counted between year 5 and year 16 (first approval in data set and last approval in data set).
Citations are generated from secondary patents in Columns (1)/(2), process patents in Columns (3)/(4), product
patents in Columns (5)/(6), biotech patents in Columns (7)/(8). The unit of observation is the unique patent-
drug level. Heteroskedasticity robust standard errors are shown in parentheses. Significance levels: * p<0.1, **
p<0.05, *** p<0.01.

152



B. APPENDIX TO CHAPTER 2

Table B-5: Impact of marketing authorization on citations by originator – cross section

Log/Linear (1) (2) (3) (4) (5) (6) (7) (8)
DV: Log(1+Citations) Pharma No Pharma Same ICD9 Other ICD9

Self Other Self Other Self Other Self Other

Time to Approval (Priority) 0.024∗∗ 0.010 0.004 0.016 0.023∗∗∗ 0.013 0.002 0.001
(0.010) (0.016) (0.010) (0.016) (0.009) (0.015) (0.006) (0.012)

Priority Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Patent Grant Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Patent Controls Yes Yes Yes Yes Yes Yes Yes Yes
Product Controls Yes Yes Yes Yes Yes Yes Yes Yes
Technology Controls Yes Yes Yes Yes Yes Yes Yes Yes
Inventor Controls Yes Yes Yes Yes Yes Yes Yes Yes

Observations 584 584 584 584 584 584 584 584
Log-likelihood −499 −734 −511 −776 −409 −714 −226 −596

Notes: Columns (1) to (7) show the estimates of linear regressions using a cross-sectional data set. In Columns
with uneven numbers, the dependent variable is the total number of log-transformed self-citations. In Columns
with even numbers, the dependent variable is the total number of log-transformed other parties’-citations. In all
cases, citations are counted between year 5 and year 16 (first approval in data set and last approval in data set).
Citations are generated from pharmaceutical patents in Columns (1)/(2), non-pharmaceutical patents in Columns
(3)/(4), patents in the same ICD-9 category in Columns (5)/(6), patents in a different ICD-9 category in Columns
(7)/(8). The unit of observation is the unique patent-drug level. Heteroskedasticity robust standard errors are
shown in parentheses. Significance levels: * p<0.1, ** p<0.05, *** p<0.01.

Table B-6: Impact of marketing authorization on self-citations – IV regression

Log/Linear (1) (2) (3) (4) (5) (6)
DV: Log(1+Self Citations IV: Time to Phase I Trials) IV: Time to Phase III Trials

OLS Reduced Form IV OLS Reduced Form IV

Time to Approval (Priority) 0.049 0.290∗ 0.045 0.060
(0.051) (0.169) (0.040) (0.055)

IV: Time Phase I 0.082∗

(0.044)
IV: Time Phase III 0.047

(0.044)
Priority Year FE Yes Yes Yes Yes Yes Yes
Patent Grant Year FE Yes Yes Yes Yes Yes Yes
Patent Controls Yes Yes Yes Yes Yes Yes

Underidentification test 9.18 36.99
Weak identification test 9.34 82.33
Endogeneity test 4.14 0.18
p-value 0.04 0.67
Observations 77 77 77 125 125 125

Notes: Columns (1), (2), (4), and (5) show the estimates of linear regressions using a cross-sectional data set. The
dependent variable is the total number of log-transformed self-citations between year 5 and year 16 (first approval
in data set and last approval in data set). Columns (3) and (6) show the estimates of 2SLS regressions. The “Time
to Approval” variable is instrumented with the “Time to Phase I” in Column (3) and with the “Time to Phase III”
in Column (6). The underidentification and weak identification tests are the heteroskedasticity-robust Kleibergen
and Paap (2006) rk LM and Wald F statistics, respectively. I use the ivreghdfe Stata package as described in Correia
(2018). The unit of observation is the unique patent-drug level. Heteroskedasticity robust standard errors are
shown in parentheses. Significance levels: * p<0.1, ** p<0.05, *** p<0.01.
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B.3.3 Tables – Results from Panel

Table B-7: Impact of marketing authorization on self-citations – alternative specifications

Log/Linear (1) (2) (3) (4) (5) (6) (7)
DV: Log(1+ Self Citations)

Baseline Different Controls Without θ FE pre-1993 ICD9 avail.

n years before MA 0.006 0.004 −0.017 −0.019 −0.038 −0.006 −0.007
(0.018) (0.018) (0.022) (0.018) (0.024) (0.023) (0.028)

4 years before MA −0.015 −0.010 −0.025 −0.026 −0.039∗ −0.012 −0.037
(0.021) (0.020) (0.020) (0.016) (0.019) (0.022) (0.025)

3 years before MA −0.005 −0.002 −0.011 −0.013 −0.017 −0.013 −0.008
(0.015) (0.014) (0.018) (0.017) (0.020) (0.020) (0.024)

2 years before MA −0.009 −0.007 −0.012 −0.013 −0.014 −0.023 −0.019
(0.014) (0.013) (0.017) (0.016) (0.018) (0.019) (0.021)

1 year before MA 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(.) (.) (.) (.) (.) (.) (.)

Year of MA −0.027∗ −0.027∗ −0.024 −0.022 −0.020 −0.042∗∗ −0.033
(0.015) (0.014) (0.016) (0.017) (0.021) (0.017) (0.020)

1 year after MA −0.029∗ −0.028∗ −0.022 −0.019 −0.027 −0.039∗∗ −0.049∗∗

(0.016) (0.014) (0.016) (0.013) (0.016) (0.019) (0.021)
2 years after MA −0.036∗∗ −0.034∗∗ −0.026 −0.021 −0.030 −0.050∗∗ −0.054∗∗

(0.016) (0.014) (0.017) (0.016) (0.019) (0.020) (0.022)
3 years after MA −0.040∗∗ −0.037∗ −0.029 −0.020 −0.028 −0.056∗∗ −0.065∗∗∗

(0.020) (0.019) (0.019) (0.018) (0.022) (0.022) (0.024)
4 years after MA −0.046∗∗ −0.044∗∗ −0.035∗ −0.021 −0.023 −0.068∗∗∗ −0.067∗∗

(0.022) (0.019) (0.021) (0.013) (0.020) (0.023) (0.028)
n years after MA −0.053∗∗ −0.059∗∗∗ −0.049∗∗ −0.009 −0.014 −0.081∗∗∗ −0.078∗∗

(0.024) (0.021) (0.025) (0.021) (0.027) (0.029) (0.033)
Patent Grant Yes No Yes Yes Yes Yes Yes
SPC Grant Yes No Yes Yes Yes Yes Yes
Age squared No No Yes No No No No
Priority Year FE No No No Yes Yes No No
ICD9 FE No No No No Yes No No
Patent-Drug FE Yes Yes Yes No No Yes Yes
Citation Year FE Yes Yes Yes Yes Yes Yes Yes

Observations 12390 12390 12390 12390 10353 9119 8756
Cluster 590 590 590 23 23 456 417
Log-likelihood −1712 −1745 −1678 −3378 −3059 −885 −1790

Notes: Columns (1) to (7) show the estimates of linear regressions with high-dimensional fixed effects in various
specifications. The dependent variable is the annual number of log-transformed self-citations. Column (1) shows
the results from Equation 2.2. Column (2) is without controls for patent grant and SPC grant. Column (3) adds
a control for squared age in order to account for potential nonlinearities not covered by fixed effects. Column (4)
replaces patent-drug fixed effects by priority year FE and Column (5) by priority year FE and ICD-9 FE in order to
account more explicitly for age-cohort links. Column (6) restricts the sample to pre-1993, in which patent term
extension did not exist at the time of the patent filing. Lastly Column (7) restricts the sample to observations with
available ICD-9 link. The unit of observation is the unique patent-drug level by year. Standard errors are clustered
at the patent-drug level and shown in parentheses. Significance levels: * p<0.1, ** p<0.05, *** p<0.01.
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Table B-8: Impact of marketing authorization on citations by type of patent

Log/Linear (1) (2) (3) (4) (5) (6) (7) (8)
DV: Log(1+Citations) Secondary Patent Process Patent Product Patent Biotech Patent

Self Other Self Other Self Other Self Other

n years before MA −0.011 −0.008 0.001 −0.017 0.002 0.016 0.002 −0.005
(0.012) (0.024) (0.005) (0.013) (0.009) (0.019) (0.003) (0.006)

4 years before MA −0.010 −0.009 −0.004 −0.018∗ −0.012 0.016 0.001 −0.003
(0.012) (0.018) (0.005) (0.010) (0.008) (0.015) (0.001) (0.005)

3 years before MA −0.007 0.000 0.004 −0.011 −0.007 0.002 0.001 −0.005
(0.011) (0.017) (0.006) (0.010) (0.008) (0.013) (0.001) (0.005)

2 years before MA −0.015 −0.027∗ −0.005 −0.013 0.001 0.004 0.002 −0.008
(0.009) (0.016) (0.005) (0.008) (0.008) (0.013) (0.001) (0.005)

1 year before MA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(.) (.) (.) (.) (.) (.) (.) (.)

Year of MA −0.020∗ 0.008 0.006 −0.003 −0.006 0.006 0.002 −0.001
(0.010) (0.018) (0.006) (0.010) (0.007) (0.013) (0.002) (0.005)

1 year after MA −0.018∗ −0.032∗ −0.001 0.012 −0.002 0.018 0.000 −0.003
(0.010) (0.018) (0.006) (0.012) (0.007) (0.014) (0.001) (0.007)

2 years after MA −0.022∗∗ −0.013 −0.008∗ −0.003 −0.002 0.024 −0.001 −0.006
(0.011) (0.019) (0.005) (0.013) (0.007) (0.017) (0.001) (0.005)

3 years after MA −0.026∗∗ −0.049∗∗ −0.008∗ −0.007 −0.002 −0.011 −0.001 −0.009
(0.012) (0.022) (0.005) (0.015) (0.008) (0.017) (0.001) (0.008)

4 years after MA −0.028∗∗ −0.030 −0.011∗ −0.006 0.002 0.006 0.001 −0.005
(0.013) (0.025) (0.006) (0.017) (0.009) (0.020) (0.001) (0.008)

n years after MA −0.037∗∗∗−0.054∗∗ −0.010∗ −0.009 0.001 −0.007 0.001 −0.006
(0.013) (0.028) (0.006) (0.018) (0.010) (0.023) (0.001) (0.009)

Patent Grant Yes Yes Yes Yes Yes Yes Yes Yes
SPC Grant Yes Yes Yes Yes Yes Yes Yes Yes
Patent-Drug FE Yes Yes Yes Yes Yes Yes Yes Yes
Citation Year FE Yes Yes Yes Yes Yes Yes Yes Yes

Observations 12390 12390 12390 12390 12390 12390 12390 12390
Cluster 590 590 590 590 590 590 590 590
Log-likelihood 5881 −3287 14458 2094 8917 −764 29205 13076

Notes: Columns (1) to (8) show the estimates of linear regressions with high-dimensional fixed effects in various
specifications. In Columns with uneven numbers, the dependent variable is the total number of log-transformed
self-citations. In Columns with even numbers, the dependent variable is the total number of log-transformed other
parties’-citations. Citations are generated from secondary patents in Columns (1)/(2), process patents in Columns
(3)/(4), product patents in Columns (5)/(6), biotech patents in Columns (7)/(8). The unit of observation is the
unique patent-drug level by year. Standard errors are clustered at the patent-drug level and shown in parentheses.
Significance levels: * p<0.1, ** p<0.05, *** p<0.01.
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Table B-9: Impact of marketing authorization on citations by disease type

Log/Linear (1) (2) (3) (4) (5) (6) (7) (8)
DV: Log(1+Citations) Pharma No Pharma Same ICD9 Other ICD9

Self Other Self Other Self Other Self Other

n years before MA −0.007 −0.025 0.021 0.025 0.003 −0.025 −0.003 0.025
(0.015) (0.029) (0.017) (0.032) (0.012) (0.023) (0.009) (0.021)

4 years before MA −0.016 −0.015 0.007 0.008 −0.008 −0.009 −0.007 −0.001
(0.015) (0.022) (0.016) (0.024) (0.012) (0.018) (0.008) (0.014)

3 years before MA 0.001 −0.018 −0.004 −0.012 0.003 −0.018 −0.002 0.011
(0.013) (0.020) (0.015) (0.022) (0.011) (0.016) (0.008) (0.014)

2 years before MA −0.011 −0.030 0.002 0.039∗ −0.007 −0.008 −0.001 −0.012
(0.012) (0.018) (0.013) (0.021) (0.011) (0.015) (0.006) (0.012)

1 year before MA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(.) (.) (.) (.) (.) (.) (.) (.)

Year of MA −0.019 0.000 −0.011 0.002 −0.022∗∗ −0.005 0.002 −0.001
(0.013) (0.020) (0.011) (0.022) (0.011) (0.016) (0.007) (0.013)

1 year after MA −0.018 −0.015 −0.014 0.019 −0.015 −0.013 −0.001 0.002
(0.012) (0.021) (0.012) (0.023) (0.011) (0.018) (0.006) (0.013)

2 years after MA −0.021∗ −0.002 −0.021∗ −0.001 −0.020∗ 0.001 0.002 0.001
(0.012) (0.024) (0.012) (0.025) (0.012) (0.021) (0.007) (0.014)

3 years after MA −0.025∗ −0.062∗∗ −0.016 0.003 −0.028∗∗ −0.053∗∗ 0.004 0.003
(0.014) (0.028) (0.013) (0.030) (0.012) (0.023) (0.008) (0.017)

4 years after MA −0.030∗ −0.037 −0.017 −0.016 −0.033∗∗ −0.043 −0.003 0.003
(0.016) (0.031) (0.013) (0.032) (0.013) (0.027) (0.008) (0.019)

n years after MA −0.040∗∗ −0.067∗ −0.013 −0.018 −0.035∗∗ −0.054∗ −0.004 −0.017
(0.017) (0.035) (0.017) (0.041) (0.014) (0.030) (0.009) (0.022)

Patent Grant Yes Yes Yes Yes Yes Yes Yes Yes
SPC Grant Yes Yes Yes Yes Yes Yes Yes Yes
Patent-Drug FE Yes Yes Yes Yes Yes Yes Yes Yes
Citation Year FE Yes Yes Yes Yes Yes Yes Yes Yes

Observations 12390 12390 12390 12390 12390 12390 12390 12390
Cluster 590 590 590 590 590 590 590 590
Log-likelihood 2664 −5869 1351 −6796 5125 −3885 9751 −653

Notes: Columns (1) to (8) show the estimates of linear regressions with high-dimensional fixed effects in various
specifications. In Columns with uneven numbers, the dependent variable is the total number of log-transformed
self-citations. In Columns with even numbers, the dependent variable is the total number of log-transformed other
parties’-citations. Citations are generated from pharmaceutical patents in Columns (1)/(2), non-pharmaceutical
patents in Columns (3)/(4), patents in the same ICD-9 category in Columns (5)/(6), patents in a different ICD-9
category in Columns (7)/(8). The unit of observation is the unique patent-drug level by year. Standard errors are
clustered at the patent-drug level and shown in parentheses. Significance levels: * p<0.1, ** p<0.05, *** p<0.01.
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Table B-10: Impact of marketing authorization on citations by citation type

Log/Linear (1) (2) (3) (4) (5) (6) (7) (8)
DV: Log(1+Citations) Examiner Applicant XY No XY

Self Other Self Other Self Other Self Other

n years before MA 0.012 0.005 −0.005 −0.040 0.003 0.021 0.004 −0.032
(0.019) (0.032) (0.012) (0.028) (0.013) (0.024) (0.018) (0.034)

4 years before MA −0.008 0.012 −0.006 −0.034∗ −0.001 0.012 −0.011 −0.033
(0.019) (0.026) (0.008) (0.019) (0.014) (0.021) (0.016) (0.025)

3 years before MA −0.005 −0.028 0.001 −0.018 0.002 −0.002 −0.005 −0.040∗

(0.017) (0.024) (0.008) (0.017) (0.012) (0.019) (0.015) (0.023)
2 years before MA −0.004 0.018 −0.005 −0.014 −0.005 0.015 −0.006 0.000

(0.016) (0.023) (0.006) (0.014) (0.013) (0.019) (0.013) (0.021)
1 year before MA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(.) (.) (.) (.) (.) (.) (.) (.)
Year of MA −0.024 −0.008 −0.002 0.009 −0.023∗∗ −0.006 −0.007 0.012

(0.015) (0.023) (0.007) (0.016) (0.011) (0.018) (0.013) (0.023)
1 year after MA −0.035∗∗ −0.007 0.006 0.023 −0.021∗ 0.023 −0.011 −0.013

(0.015) (0.024) (0.008) (0.018) (0.011) (0.020) (0.014) (0.023)
2 years after MA −0.041∗∗ −0.036 0.001 0.038∗ −0.018 0.000 −0.022 0.002

(0.016) (0.027) (0.006) (0.022) (0.012) (0.021) (0.013) (0.027)
3 years after MA −0.044∗∗ −0.063∗∗ 0.003 0.014 −0.019 −0.015 −0.027∗ −0.044

(0.017) (0.031) (0.009) (0.026) (0.013) (0.025) (0.015) (0.031)
4 years after MA −0.061∗∗∗−0.098∗∗∗ 0.019 0.051∗ −0.030∗∗ −0.042 −0.022 −0.019

(0.018) (0.033) (0.012) (0.030) (0.013) (0.027) (0.017) (0.033)
n years after MA −0.064∗∗∗−0.122∗∗∗ 0.011 0.028 −0.026∗ −0.067∗∗ −0.035∗ −0.047

(0.020) (0.038) (0.013) (0.040) (0.015) (0.030) (0.020) (0.043)
Patent Grant Yes Yes Yes Yes Yes Yes Yes Yes
SPC Grant Yes Yes Yes Yes Yes Yes Yes Yes
Patent-Drug FE Yes Yes Yes Yes Yes Yes Yes Yes
Citation Year FE Yes Yes Yes Yes Yes Yes Yes Yes

Observations 12390 12390 12390 12390 12390 12390 12390 12390
Cluster 590 590 590 590 590 590 590 590
Log-likelihood −435 −6962 7196 −5206 3342 −4127 981 −7508

Notes: Columns (1) to (8) show the estimates of linear regressions with high-dimensional fixed effects in various
specifications. In Columns with uneven numbers, the dependent variable is the total number of log-transformed
self-citations. In Columns with even numbers, the dependent variable is the total number of log-transformed other
parties’-citations. Citations are generated by examiners in Columns (1)/(2), applicants in Columns (3)/(4), XY-
references in Columns (5)/(6), no XY-references in Columns (7)/(8). The unit of observation is the unique patent-
drug level by year. Standard errors are clustered at the patent-drug level and shown in parentheses. Significance
levels: * p<0.1, ** p<0.05, *** p<0.01.
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Table B-11: Impact of marketing authorization on winsorized citations

Log/Linear (1) (2) (3) (4) (5) (6) (7) (8)
DV: Log(1+Forward Citations winsorized)

All Self Other Secondary Process Product = ICD9 6= ICD9

n years before MA −0.020 0.001 −0.025 −0.038 −0.015 0.000 −0.032 0.002
(0.036) (0.019) (0.035) (0.023) (0.012) (0.017) (0.023) (0.018)

4 years before MA −0.030 −0.021 −0.016 −0.025 −0.020∗ −0.003 −0.020 −0.017
(0.031) (0.018) (0.028) (0.020) (0.010) (0.016) (0.020) (0.014)

3 years before MA −0.041 −0.008 −0.041 −0.013 −0.006 −0.007 −0.016 0.004
(0.028) (0.017) (0.027) (0.019) (0.010) (0.014) (0.018) (0.015)

2 years before MA 0.001 −0.009 0.007 −0.042∗∗ −0.015∗ 0.005 −0.010 −0.015
(0.026) (0.016) (0.024) (0.018) (0.009) (0.014) (0.018) (0.014)

1 year before MA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(.) (.) (.) (.) (.) (.) (.) (.)

Year of MA −0.021 −0.025∗ 0.001 −0.015 0.004 0.006 −0.021 0.000
(0.026) (0.015) (0.025) (0.019) (0.011) (0.014) (0.017) (0.014)

1 year after MA −0.014 −0.025 0.009 −0.045∗∗ 0.014 0.016 −0.024 0.005
(0.028) (0.016) (0.026) (0.019) (0.012) (0.015) (0.019) (0.014)

2 years after MA −0.020 −0.031∗ 0.005 −0.030 −0.008 0.021 −0.015 0.008
(0.032) (0.016) (0.030) (0.021) (0.013) (0.017) (0.021) (0.016)

3 years after MA −0.079∗∗ −0.037∗∗ −0.046 −0.069∗∗∗ −0.016 −0.011 −0.071∗∗∗ 0.007
(0.037) (0.018) (0.035) (0.023) (0.014) (0.017) (0.024) (0.017)

4 years after MA −0.070∗ −0.041∗∗ −0.034 −0.053∗∗ −0.014 0.005 −0.066∗∗ 0.002
(0.040) (0.020) (0.039) (0.025) (0.016) (0.019) (0.026) (0.019)

n years after MA −0.120∗∗ −0.051∗∗ −0.076 −0.088∗∗∗ −0.017 −0.011 −0.079∗∗∗ −0.028
(0.048) (0.023) (0.046) (0.028) (0.017) (0.022) (0.031) (0.022)

Patent Grant Yes Yes Yes Yes Yes Yes Yes Yes
SPC Grant Yes Yes Yes Yes Yes Yes Yes Yes
Patent-Drug FE Yes Yes Yes Yes Yes Yes Yes Yes
Citation Year FE Yes Yes Yes Yes Yes Yes Yes Yes

Observations 12390 12390 12390 12390 12390 12390 12390 12390
Cluster 590 590 590 590 590 590 590 590
Log-likelihood −9090 −935 −8606 −3521 2628 −551 −4007 −428

Notes: Columns (1) to (8) show the estimates of linear regressions with high-dimensional fixed effects. The
dependent variable is the annual number of log-transformed forward citations in Column (1), self-citations in
Column (2), other parties’ citations in Column (3), forward citations generated by secondary patents in Column
(4), by process patents in Column (5), by product patents in Column (6), within the same ICD-9 category in
Column (7), and in a different ICD-9 disease category in Column (8). All outcome variables are winsorized at the
99% level. The unit of observation is the unique patent-drug level by year. Standard errors are clustered at the
patent-drug level and shown in parentheses. Significance levels: * p<0.1, ** p<0.05, *** p<0.01.
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Table B-12: Impact of marketing authorization on citations – PPML regression

Count/PPML (1) (2) (3) (4) (5) (6) (7) (8)
DV: Forward Citations

All Self Other Secondary Process Product = ICD9 6= ICD9

n years before MA 0.291∗∗ 0.230 0.279∗∗ 0.196 −0.662∗∗ 0.456∗∗ 0.009 0.501∗∗

(0.125) (0.254) (0.125) (0.176) (0.311) (0.217) (0.201) (0.216)
4 years before MA 0.090 0.088 0.076 0.031 −0.982∗∗∗ 0.160 −0.023 −0.070

(0.083) (0.195) (0.082) (0.130) (0.375) (0.179) (0.151) (0.188)
3 years before MA 0.071 0.076 0.051 0.101 −0.324 −0.054 −0.028 0.135

(0.075) (0.173) (0.080) (0.117) (0.285) (0.157) (0.115) (0.180)
2 years before MA 0.067 −0.023 0.086 −0.178∗ −0.598∗∗ 0.072 −0.056 −0.120

(0.057) (0.146) (0.059) (0.101) (0.236) (0.135) (0.104) (0.163)
1 year before MA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(.) (.) (.) (.) (.) (.) (.) (.)
Year of MA −0.060 −0.216 −0.021 −0.064 0.056 −0.041 −0.108 0.028

(0.057) (0.143) (0.060) (0.104) (0.216) (0.134) (0.096) (0.140)
1 year after MA −0.074 −0.302∗ −0.028 −0.238∗∗ 0.225 0.119 −0.094 −0.019

(0.058) (0.159) (0.060) (0.098) (0.222) (0.140) (0.104) (0.132)
2 years after MA −0.143∗∗ −0.397∗∗ −0.090 −0.244∗∗ −0.054 0.045 −0.049 −0.093

(0.069) (0.170) (0.074) (0.095) (0.253) (0.154) (0.111) (0.137)
3 years after MA −0.209∗∗ −0.353∗ −0.164∗ −0.409∗∗∗ 0.076 −0.141 −0.287∗∗ −0.020

(0.082) (0.212) (0.088) (0.107) (0.267) (0.144) (0.131) (0.137)
4 years after MA −0.232∗∗∗ −0.432∗ −0.176∗ −0.311∗∗ 0.065 −0.029 −0.204 −0.068

(0.089) (0.235) (0.095) (0.121) (0.248) (0.157) (0.139) (0.158)
n years after MA −0.265∗∗∗ −0.354 −0.217∗∗ −0.441∗∗∗ 0.115 −0.109 −0.258∗ −0.169

(0.097) (0.280) (0.103) (0.115) (0.264) (0.169) (0.134) (0.154)
Patent Grant Yes Yes Yes Yes Yes Yes Yes Yes
SPC Grant Yes Yes Yes Yes Yes Yes Yes Yes
Patent-Drug FE Yes Yes Yes Yes Yes Yes Yes Yes
Citation Year FE Yes Yes Yes Yes Yes Yes Yes Yes

Observations 12182 8853 12035 9687 6161 8331 8512 7727
Cluster 581 423 574 465 301 397 407 371
Log-likelihood −17258 −5113 −15440 −7157 −2905 −4955 −7388 −4477

Notes: Columns (1) to (8) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. The dependent variable is the annual number of forward citations in Column (1), self-
citations in Column (2), other parties’ citations in Column (3), forward citations generated by secondary patents in
Column (4), by process patents in Column (5), by product patents in Column (6), within the same ICD-9 category in
Column (7), and in a different ICD-9 disease category in Column (8). The unit of observation is the unique patent-
drug level by year. Standard errors are clustered at the patent-drug level and shown in parentheses. Significance
levels: * p<0.1, ** p<0.05, *** p<0.01.
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Table B-13: Impact of end on phase II/beginning of phase III clinical trials on citations

Log/Linear (1) (2) (3) (4) (5) (6) (7) (8)
DV: Log(1+Forward Citations)

All Self Other Secondary Process Product = ICD9 6= ICD9

n years before Phase III −0.238∗∗ −0.065 −0.201∗ −0.064 −0.140∗∗∗ −0.112∗∗ −0.273∗∗∗ 0.024
(0.115) (0.057) (0.115) (0.086) (0.049) (0.056) (0.084) (0.064)

4 years before Phase III −0.157∗ −0.058 −0.118 −0.096∗ −0.075∗∗ −0.156∗∗∗ −0.230∗∗∗ −0.025
(0.081) (0.051) (0.077) (0.057) (0.035) (0.043) (0.062) (0.041)

3 years before Phase III −0.152∗∗ −0.076∗ −0.102 −0.022 −0.042 −0.066 −0.096∗ 0.013
(0.074) (0.043) (0.070) (0.048) (0.029) (0.042) (0.058) (0.036)

2 years before Phase III −0.140∗∗ 0.010 −0.148∗∗ −0.082∗∗ −0.026 −0.076∗∗ −0.075 −0.032
(0.066) (0.044) (0.062) (0.037) (0.028) (0.037) (0.049) (0.028)

1 year before Phase III 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(.) (.) (.) (.) (.) (.) (.) (.)

Year of Phase III 0.066 0.057 0.036 0.056 0.034 0.002 0.019 0.071∗

(0.064) (0.042) (0.059) (0.048) (0.032) (0.040) (0.051) (0.038)
1 year after Phase III 0.111 0.044 0.088 0.106∗ 0.024 0.027 0.102∗ 0.077∗

(0.074) (0.043) (0.068) (0.056) (0.033) (0.043) (0.058) (0.043)
2 years after Phase III 0.144∗ 0.006 0.152∗∗ 0.143∗∗ 0.070∗ 0.057 0.137∗∗ 0.063

(0.074) (0.043) (0.068) (0.059) (0.038) (0.044) (0.061) (0.040)
3 years after Phase III 0.187∗∗ 0.092∗ 0.142∗ 0.142∗∗ 0.100∗∗ 0.106∗∗ 0.167∗∗ 0.119∗∗

(0.088) (0.052) (0.084) (0.064) (0.049) (0.051) (0.066) (0.051)
4 years after Phase III 0.162∗ 0.043 0.170∗ 0.088 0.105∗∗ 0.128∗∗ 0.089 0.129∗∗

(0.094) (0.053) (0.094) (0.074) (0.047) (0.057) (0.072) (0.054)
n years after Phase III 0.144 0.027 0.159 0.043 0.110∗∗ 0.141∗∗ 0.065 0.122∗∗

(0.111) (0.059) (0.113) (0.077) (0.054) (0.060) (0.086) (0.059)
Patent Grant Yes Yes Yes Yes Yes Yes Yes Yes
SPC Grant Yes Yes Yes Yes Yes Yes Yes Yes
Patent-Drug FE Yes Yes Yes Yes Yes Yes Yes Yes
Citation Year FE Yes Yes Yes Yes Yes Yes Yes Yes

Observations 2750 2750 2750 2750 2750 2750 2750 2750
Cluster 131 131 131 131 131 131 131 131
Log-likelihood −2192 −566 −2110 −1327 −400 −809 −1509 −860

Notes: Columns (1) to (8) show the estimates of linear regressions with high-dimensional fixed effects. The event
is the end of phase2/beginning of phase III clinical trials. The dependent variable is the annual number of log-
transformed forward citations in Column (1), self-citations in Column (2), other parties’ citations in Column (3),
forward citations generated by secondary patents in Column (4), by process patents in Column (5), by product
patents in Column (6), within the same ICD-9 category in Column (7), and in a different ICD-9 disease category
in Column (8). The unit of observation is the unique patent-drug level by year. Standard errors are clustered at
the patent-drug level and shown in parentheses. Significance levels: * p<0.1, ** p<0.05, *** p<0.01.

160



C
Appendix to Chapter 3

Market Size and Research

161



C. APPENDIX TO CHAPTER 3

C.1 Data Construction

Control Variables

This data appendix describes the construction of our control variables: projected market size,

NIH funding, and research opportunities.

Projected Market Size

We build a measure of the exogenous components of U.S. market size (Acemoglu and Linn,

2004; Blume-Kohout and Sood, 2013). Each disease group has a different age profile and,

hence, is differently affected by both domestic and global demographic trends. Therefore, we

use demographic (projection) data from the UN World Population Prospects1 for the United

States between 1997 and 2040 in order to calculate how the potential future market size would

develop if only population growth mattered.

To this end, we keep the age profile of each disease constant and calculate the average

expenditure share of drugs associated with each five-year age bin for each ICD-9 group in the

pre-MMA period. Drug expenditures are measured in real-terms (base year of 2003) based on

the MEPS data. We then attribute the US population growth to each age bin until 2040. Hence,

our measure for projected US market size Mit displays the annual expected drug expenditures

in each ICD-9 group i in year t. In concordance with Blume-Kohout and Sood (2013), we

accumulate the projected market size Mit over a period of 12 lead years as of year t. This

reflects the average market exclusivity term of new drugs (Adams and Brantner, 2006).

Since pharmaceutical markets are typically considered as global (Acemoglu and Linn,

2004), we build the same measure for the potential market size in all OECD countries.

NIH Funding

We control for previous years’ public research funding related to each disease category. Many

scholars have shown the importance of public research funding, e.g., from the NIH, for progress

in biomedical research2 and pharmaceutical innovation.3 Since Congress doubled the NIH

budget in the five years preceding the MMA from $13.6 billion in 1998 to $27.1 billion in

2003, it becomes an especially important determinant of R&D in any analysis of Part D (Smith,

2006). The NIH consists of twenty-seven Institutes and Centers, where each receives its own

Congressional appropriation (Azoulay et al., 2019). However, the historical doubling of re-

search funding was distributed unequally between these Institutes. In order to control for any

1The data can be found here: https://population.un.org/wpp/Download/Standard/Population/.
2See Jacob and Lefgren (2011) on scientific productivity, Myers (2020) on the direction of science, and Packalen

and Bhattacharya (2018) on novelty.
3See Azoulay et al. (2019) on patenting and Blume-Kohout and Sood (2013) on NMEs entering clinical trials, and

Toole (2012) on new drugs approved.
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disproportionate increase in funding correlated with the MMA, we calculate for each of our

129 ICD-9 groups the exposure to the NIH budget over time.4

To this end, we assign each ICD-9 group to one of these Institutes (e.g., ICD-9 162 ma-

lignant neoplasm of trachea, bronchus, and lung to the NCI National Cancer Institute). Since

research grants are distributed within Institutes primarily by scientific merit (see discussion

on NIH funding rules by Azoulay et al. (2019)) and not by allocation to narrower disease cat-

egories, we attribute the full annual Institute’s budget to each ICD-9 group.5 In an alternative

approach we attribute budgets based on the share of all publications in a disease category that

acknowledge a specific Institute. According to aforementioned studies, the effect of funding on

research typically materializes within the first years from the grant. Therefore, we accumulate

the NIHit funding over a period of 12 lagged years until year t.6

Research Opportunities

Scientists may switch research projects to take advantage of greater research opportunities. We

therefore account for the availability of research opportunities in similar fashion to Bhattacharya

and Packalen (2011).7

We develop a direct measure of new research opportunities taking advantage of the de-

velopment of the MeSH hierarchy over time.8 The MeSH vocabulary in its current form was

introduced in 1963 (Rogers, 1963) and was intended as a dynamic list that incorporates new

concepts in the medical field.9 The NLM introduces annually hundred new MeSH terms based

on the need to appropriately describe concepts being discussed in the literature. This includes

new diseases, a more detailed definition of existing diseases, as well as additional terminology

to reflect topical areas that are not well represented in MeSH.10 We interpret the introduc-

tion of a new MeSH term as an emerging research opportunity since NLM employees collect

new terms that begin to appear in the scientific literature, for example in emerging areas of

4We retrieve NIH spending data (Mechanism Detail by IC, FY 1983-2019) from https://officeofbudget.od.nih.gov/
spending_hist.html [downloaded on February 17, 2020].

5In rare cases we assign more then one Institute or Center to an ICD-9 group. In these cases we attribute both
budgets to the disease category.

6We use the Biomedical Research and Development Price Index in order to calculate real values with the base year
of 2003. The data can be found here: https://officeofbudget.od.nih.gov/gbipriceindexes.html.

7Bhattacharya and Packalen (2011) construct a measures of research opportunities based on the content of research
inputs and the first appearance of the idea in a scientific publication. Using the set of approved active ingredients
as an input factor for future scientific research, they estimate structural productivity parameters, which takes
into account diffusion and exhaustion of knowledge, in order to infer the quality of associated opportunities.
The disadvantage of the approach is that it relies on a very narrow set of research inputs that relate primarily
to drug-related medical research but not basic science.

8MeSH terms are organised into a hierarchy called the MeSH tree. Disease groups are first defined very broadly,
but become more narrow with every sub-type of a disorder. The bulk data can be found here: https://www.
nlm.nih.gov/databases/download/mesh.html.

9See https://www.nlm.nih.gov/mesh/intro_preface.html#pref_rem.
10The list of new MeSH Headings for 2020 published by the NLM is available here: https://www.nlm.nih.gov/

mesh/2020/download/2020NewMeSHheadingsSingleColumn.pdf.
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research.11 In 2003, the NLM added, for instance, the following MeSH terms to the vocab-

ulary: Retinoschisis reflects a more detailed conceptualisation of an existing disease (Retinal

Degeneration), Severe Acute Respiratory Syndrome describes a newly occurring disease related

to the 2000s outbreaks of the SARS-Coronavirus. All together, the introduction of each term

approximates the beginning of a new research field.

We measure new research opportunities Kit that are associated with an ICD-9 group by

calculating the number of new MeSH terms that occur below the hierarchy level of our ICD-

9-MeSH crosswalk, introduced in a given year t.12 Since new research opportunities likely

become obsolete over time, we add a discount factor of 0.8.13 This approach is novel to the

literature, which typically uses MeSH terms statically as keywords to understand shifts in the

direction of science, but not the dynamic development of opportunities.

11See https://www.nlm.nih.gov/pubs/factsheets/mesh.html.
12We use the date of establishment since this is not sensitive to the transformation of the analogue MeSH vocabulary

to the digital vocabulary in 1999. For more details on the variables, see https://www.nlm.nih.gov/mesh/xml_
data_elements.html.

13Estimated depreciation rates of knowledge capital vary in the literature. Common values lie between 15%
(Griliches, 1981; Hall and Mairesse, 1995) and 25% (Pakes and Schankerman, 1984). Our results are robust
to applying different depreciation rates.
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Evolution Alternative Controls

Figure C-1: OECD market size growth
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driven by population growth (in 2003 values)
based on ICD9 groups in B&P 2011

Evoluation of potential market size

MMS quartile 1, observed
MMS quartile 2, observed
MMS quartile 3, observed
MMS quartile 4, observed

MMS quartile 1, prediction
MMS quartile 2, prediction
MMS quartile 3, prediction
MMS quartile 4, prediction

Notes: The left figure presents the annual OECD population-growth driven market size (in 2003 values) of each
ICD-9 group, aggregated by MMS quartiles, and normalized in 1990. The right figure shows the annual change in
OECD market size relative to the prior year.

Figure C-2: NIH funding trends (proportionally by the share of all publications)
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Notes: The figure presents the annual NIH spending (in 2003 values) attributed to each ICD-9 group, averaged
by MMS quartiles, and normalized in 1990. We attribute NIH budgets based on the share of all publications in an
ICD-9 group that acknowledge a specific Institute/Center.
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C.2 Figures

C.2.1 Figures – Medicare Market Shares

Figure C-3: Distribution of Medicare market shares in 1997-2003

(a) Based on number of Medicare patients
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(b) Based on number of Medicare prescriptions
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Notes: The figures in the top present the distribution of MMS scores among ICD-9 three-digit codes. Figure (a)
shows all 272 ICD-9 three-digit codes, which are included in the MeSH-ICD-9 crosswalk (B&P2011 sample). Figure
(b) shows all 752 ICD-9 three-digit codes in the 1997-2003 MEPS. We use the patient-weighted average of each
year between 1997-2003. The annual MMS are calculated using the total number of patients in Medicare relative
to all patients for each ICD-9 three-digit code. The figures in the bottom present the distribution of MMS scores
among the 129 ICD-9 groups, which are included in the MeSH-ICD-9 crosswalk (B&P2011 sample). In Figure (c)
we use the prescription count-weighted average of each year between 1997-2003. The annual MMS are calculated
using the total number of prescriptions financed by Medicare relative to all prescriptions for each ICD-9 group. In
Figure (d) we use the prescription quantity-weighted average of each year between 1997-2003. The annual MMS
are calculated using the quantity-weighted prescriptions financed by Medicare relative to all quantity-weighted
prescriptions for each ICD-9 group.
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Figure C-4: Evolution of Medicare drug prescriptions by MMS quartiles
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based on ICD9 groups in B&P 2011
 

Evolution of prescription quantity by MMS quartiles

Notes: The figure shows the evolution of prescription quantities for each ICD-9 group aggregated by MMS quar-
tiles. The grey bars display the quantity of prescriptions financed by Medicare, the blue bars display the non-
Medicare prescription quantities. Prescriptions are counted multiple times if they appear in more than one ICD-9
group. The red line represents the relative increase in the quantity of Medicare prescriptions with respect to the
baseline year 2003. MMS quartiles are based on the pre-2004 weighted average of patient-based MMS in order to
be consistent with other outcome variables.
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Figure C-5: Evolution of drug prices and total revenue

(a) Evolution of drug price indices
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(b) Composition of total revenue
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(c) Evolution of total revenue
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Notes: The top figure presents the evolution of a price index by MMS quartile. It is calculated based on a prescrip-
tion quantity-weighted basket of drugs (1000 most sold drugs in total) following the procedure outlined in Duggan
and Scott Morton (2010). Drug-level prices are inferred from the MEPS, winsorized, and imputed/extrapolated if
missing. We drop a drug-form-disease combination if it does not appear in at least 2/3 of the sample periods, in 3
consecutive years, and exhibits price growth in the top 1% of the distribution. The index is set to one by using a
1997-2003 divisor. The bottom left figure presents the composition of total drug revenues by MMS quartile over
time. Revenues are calculated based on the total payment of all drugs which are prescribed for a certain ICD-9
group. The bottom right figure shows the normalized evolution of total revenues. 2003 serves as the baseline year.
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C.2.2 Figures – Descriptive Analysis

Figure C-6: Distribution of pre-MMA dependent/independent variables
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Notes: The figures compare the Kernel density of dependent and independent variables split at the Median MMS
in the year 2003. The unit of observation is the MeSH level for publications related variables, the ICD-9 three-digit
code level for drug related variables, and the ICD-9 group level for MMS/control variables.

169



C. APPENDIX TO CHAPTER 3

Figure C-7: Trends in scientific publications and drug development by MMS
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Notes: Figures (a)-(c) present the log-transformed average number of annual publication counts (a) with NIH
participation, (b) with university participation, and (c) with academic medical center participation. Figure (d)
presents the log-transformed average number of patent-weighted publications from all affiliations. Figures (e)-
(f) present the log-transformed average number of annual NME (e) in phase I-III clinical trials and (f) in all
drug development stages (preclinical, phase I-III clinial trials, registration, approval). In all graphs, the unit of
observation is the unique ICD-9 group level.
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C.2.3 Figures – Multivariate Analysis Clinical Drug Development

Figure C-8: Event study – drug development (alternative outcomes)
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DV: All drug development stages

Notes: The figures show the event study estimates and the 90 percent confidence bands of Poisson pseudo-
maximum likelihood regressions with high-dimensional fixed effects following Equation 3.1. The unit of observa-
tion is the ICD-9 three-digit code level, with MMS being calculated based on patient counts at the ICD-9 group
level. Standard errors are clustered at the level of treatment (ICD-9 group level).

Figure C-9: Event study – drug development (alternative MMS)

MMS based on prescription counts
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(c) Drug discoveries
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DV: Drug discoveries (d) Drug approvals

-0.020

0.000

0.020

0.040

Ef
fe

ct
 o

f  
M

M
S

 (R
x 

qu
an

tit
y)

 x
  y

ea
r

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

Estimate 90% CI

PPML with FE & control variables
 

DV: Drug approval

Notes: The figures show the event study estimates and the 90 percent confidence bands of Poisson pseudo-
maximum likelihood regressions with high-dimensional fixed effects following Equation 3.1. The unit of observa-
tion is the ICD-9 three-digit code level. In the top figures, the MMS is calculated based on prescription counts, in
the bottom figures the MMS is calculated based on prescription quantity, both at the ICD-9 group level. Standard
errors are clustered at the level of treatment (ICD-9 group level).
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C.2.4 Figures – Multivariate Analysis Biomedical Science

Figure C-10: Event study – scientific publications (alternative outcomes)
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(e) Corporate publications (fractional)
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Notes: The figures show the event study estimates and the 90 percent confidence bands of Poisson pseudo-
maximum likelihood regressions with high-dimensional fixed effects following Equation 3.1. The unit of observa-
tion is the MeSH term level. In the left figures, the dependent variable is the annual number of scientific publi-
cations weighted by the number of distinct ICD-9 per publications (thus, counted fractional). In the right figures,
the number of scientific publications is winsozired at the annual 99th percentile. Standard errors are clustered at
the level of treatment (ICD-9 group level).
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Figure C-11: Event study – scientific publications (alternative MMS)

MMS based on patient counts (2003 only)
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(e) University publications
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MMS based on patient counts (above median)

(g) University publications
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DV: Corporate publications

Notes: The figures show the event study estimates of Poisson pseudo-maximum likelihood regressions. The de-
pendent variable is the annual number of scientific publications. In the top figures, the MMS is calculated based
on 2003 patients counts. In the middle figures, the MMS is calculated based on prescription counts/quantity. In
the bottom figures, the treatment variable is binary based on patients counts. Standard errors are clustered at the
level of treatment (ICD-9 group level).
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Figure C-12: Event study – scientific publications (protected classes)
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Notes: The figures show the event study estimates and the 90 percent confidence bands of Poisson pseudo-
maximum likelihood regressions with high-dimensional fixed effects following Equation 3.1. The unit of observa-
tion is the MeSH term level. The dependent variable is the annual number of scientific publications. In the top
figures, we exclude all ICD-9 groups related to protected drug classes. In the bottom figures, we include only ICD-9
groups related to protected drug classes. Standard errors are clustered at the level of treatment (ICD-9 group
level).
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Figure C-13: Event study – scientific publications by type of research
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Notes: The figures show the event study estimates and the 90 percent confidence bands of Poisson pseudo-
maximum likelihood regressions with high-dimensional fixed effects following Equation 3.1. The unit of ob-
servation is the MeSH term level. In the top figures, the dependent variable is the annual number of scientific
publications, which are associated with a MeSH term related to “clinical trials”. In the middle figure, the depen-
dent variable is the annual number of scientific publications, which are associated with a MeSH term related to
“pharmaceutical preparations”. In the bottom figures, the dependent variables is the residual, thus scientific pub-
lications neither related to clinical trials nor pharmaceutical products. Standard errors are clustered at the level of
treatment (ICD-9 group level).
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Figure C-14: Event study – weighted scientific publications
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Notes: The figures show the event study estimates and the 90 percent confidence bands of Poisson pseudo-
maximum likelihood regressions with high-dimensional fixed effects following Equation 3.1. The unit of observa-
tion is the MeSH term level. In the top figures, the dependent variable is the journal impact factor-weighted number
of university/corporate scientific publications. In the middle figure, the dependent variable is the number of uni-
versity/corporate scientific publications that are associated with at least one patent application (patent-weighted).
In the bottom figures, we weight the number scientific publications by the size of the average patent family asso-
ciated with the publication. A patent/family size-weight is calculated based on the patent family’s first application
being filed within 5 years from the scientific publication. Standard errors are clustered at the level of treatment
(ICD-9 group level).
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C.3 Tables

C.3.1 Tables – Data Overview

Table C-1: Updated ICD-9/MeSH crosswalk (based on B&P2011)

ICD group ICD code ICD entry/entries MeSH entry/entries MeSH ID

Infectious and parasitic diseases

011 011 Pulmonary tuberculosis Tuberculosis, Pulmonary D014397

034 034 Streptococcal sore throat/scarlet fever Scarlet Fever D012541

042 042 Human immunodeficiency virus disease HIV Infections D015658

052 052 Chickenpox Chickenpox D002644

053 053 Herpes zoster Herpes Zoster D006562

054 054 Herpes simplex Herpes Simplex D006561

070 070 Viral hepatitis Hepatitis D006505

075 075 Infectious mononucleosis Infectious Mononucleosis D007244

110 110 Dermatophytosis Tinea D014005
111 Dermatomycosis (unspecified) Tinea Versicolor D014010

112 112 Candidiasis Candidiasis D002177

132 132 Pediculosis/phthirus infestation Lice Infestations D010373

133 133 Acariasis Mite Infestations D008924

No Match 038 Septicemia
074 Specific diseases due to Coxsackie virus

Neoplasms

150 150-159 Malignant neoplasm digestive organs Digestive System Neoplasms D004067
211 Benign neoplasm digestive system Abdominal Neoplasms D000008

Anal Gland Neoplasms D000694

162 162 Malignant neoplasm bronchus/lung Respiratory Tract Neoplasms D012142
163 Malignant neoplasm pleura

171 171 Malignant melanoma skin Soft Tissue Neoplasms D012983
214 Lipoma
215 Benign neoplasm connective tissue

172 172 Malignant melanoma skin Skin Neoplasms D012878
173 Malignant neoplasm skin
216 Benign neoplasm skin

174 174 Malignant neoplasm female breast Breast Neoplasms D001943
175 Malignant neoplasm male breast
217 Benign neoplasm breast

179 179 Malignant neoplasm uterus Genital Neoplasms, Female D005833
180 Malignant neoplasm cervix uteri Genital Neoplasms, Male D005834
181 Malignant neoplasm placenta Urologic Neoplasms D014571
182 Malignant neoplasm body of uterus
183 Malignant neoplasm ovary
184 Malignant neoplasm female genitals
218 Uterine leiomyoma
219 Benign neoplasm uterus
220 Benign neoplasm ovary
221 Benign neoplasm female genitals
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ICD group ICD code ICD entry/entries MeSH entry/entries MeSH ID

185 Malignant neoplasm prostate
186 Malignant neoplasm testis
187 Malignant neoplasm penis/male genitals
222 Benign neoplasm male genital organs
188 Malignant neoplasm bladder
189 Malignant neoplasm kidney
223 Benign neoplasm kidney

200 200-208 Malignant neoplasm lymphatic tissue Leukemia D007938
Lymphoma D008223

230 230-234 Carcinoma in situ Carcinoma in Situ D002278

Endocrine, nutritional and metabolic diseases, and immunity disorders

240 240 Simple goiter Goiter D006042
241 Nontoxic nodular goiter

242 242 Thyrotoxicosis with/without goiter Hyperthyroidism D006980

243 243 Congenital hypothyroidism Hypothyroidism D007037
244 Acquired hypothyroidism

250 250 Diabetes mellitus Diabetes Mellitus D003920

265 265 Thiamine/niacin deficiency states Vitamin B Deficiency D014804
266 Deficiency B-complex components

272 272 Disorders lipoid metabolism Lipid Metabolism Disorders D052439

274 274 Gout Gout D006073

275 275 Disorders mineral metabolism Hemochromatosis D006432
Hepatolenticular Degeneration D006527
Hypophosphatemia, Familial D007015
Hypercalcemia D006934
Hypocalcemia D006996

276 276 Disorders acid-base balance Hypokalemia D007008
Hypernatremia D006955
Acidosis D000138
Alkalosis D000471

279 279 Disorders immune mechanism Agammaglobulinemia D000361
DiGeorge Syndrome D004062
Dysgammaglobulinemia D004406
Wiskott-Aldrich Syndrome D014923

No Match 256 Ovarian dysfunction

Diseases of blood and blood-forming organs

280 280 Iron deficiency anemias Anemia D000740
281 Deficiency anemias
282 Hereditary hemolytic anemias
283 Acquired hemolytic anemias
284 Aplastic anemia
285 Anemias

288 288 Diseases white blood cells Agranulocytosis D000380
Granulomatous Disease, Chronic D006105
Eosinophilia D004802
Leukocytosis D007964

Mental disorders

295 295 Schizophrenic psychoses Schizophrenia D012559
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ICD group ICD code ICD entry/entries MeSH entry/entries MeSH ID

296 296 Affective psychoses Mood Disorders D019964
309 Adjustment reaction Adjustment Disorders D000275

299 299 Psychoses with origin in childhood Child Development Disorders D002659

300 300 Neurotic disorders Anxiety Disorders D001008
Dissociative Disorders D004213
Feeding/Eating Disorders D001068
Somatoform Disorders D013001

301 301 Personality disorders Personality Disorders D010554

302 302 Sexual deviations/disorders Sexual and Gender Disorders D019968

303 303 Alcohol dependence syndrome Substance-Related Disorders D019966
304 Drug dependence
305 Nondependent drug abuse

314 314 Hyperkinetic syndrome (childhood) Attention Deficit Disorder D001289

315 315 Specific delays in development Developmental Disabilities D002658
Communication Disorders D003147

No Match 308 Acute reaction to stress
306 Physiological malfunction

Diseases of the nervous system and sense organs

320 320 Bacterial meningitis Meningitis D008581
321 Meningitis (other organisms) Central Nervous System - D020805

Viral Diseases
322 Meningitis Myelitis D009187
323 Encephalitis/myelitis/encephalomyelitis

331 331 Cerebral degenerations (Alzheimer’s disease) Alzheimer Disease D000544

332 332 Parkinson’s disease Parkinsonian Disorders D020734

340 340 Multiple sclerosis Multiple Sclerosis D009103

343 343 Infantile cerebral palsy Cerebral Palsy D002547

345 345 Epilepsy Epilepsy D004827

346 346 Migraine Migraine Disorders D008881

350 350-359 Disorders peripheral nervous system Peripheral Nervous - D010523
Disorders peripheral nervous system System Diseases

361 361 Retinal detachments/defects Retinal Diseases D012164
362 Retinal disorders

363 360 Disorders of the globe Uveal Diseases D014603

363 363 Chorioretinal inflammations/scars

363 364 Disorders iris/ciliary body

365 365 Glaucoma Glaucoma D005901

366 366 Cataract Cataract D002386

367 367 Disorders of refraction Refractive Errors D012030

368 368 Visual disturbances Vision Disorders D014786
369 Blindness/low vision

371 371 Corneal opacity/disorders of cornea Corneal Diseases D003316

372 372 Disorders conjunctiva Conjunctival Diseases D003229

373 373 Inflammation eyelids Eyelid Diseases D005141
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ICD group ICD code ICD entry/entries MeSH entry/entries MeSH ID

374 Disorders eyelids

375 375 Disorders lacrimal system Lacrimal Apparatus Diseases D007766

380 380 Disorders external ear Otitis Externa D010032

381 381 Nonsuppurative otitis media Otitis Media D010033
382 Suppurative otitis media
383 Mastoiditis/related conditions

386 386 Vertiginous synd. vestibular system Labyrinth Diseases D007759

389 389 Hearing loss Hearing Loss D034381

Diseases of the circulatory system

401 401-405 Hypertensive disease Hypertension D006973

410 410 Acute myocardial infarction Myocardial Infarction D009203
412 Old myocardial infarction

413 413 Angina pectoris Angina Pectoris D000787

414 414 Chronic ischemic heart disease Arteriosclerosis D001161
440 Atherosclerosis Aneurysm D000783
441 Aortic aneurysm/dissection
442 Aneurysm

426 426 Conduction disorders Arrhythmias, Cardiac D001145
427 Cardiac dysrhythmias

428 428 Heart failure Heart Failure D006333

430 430-438 Cerebrovascular disease Cerebrovascular Disorders D002561

444 444 Arterial embolism/thrombosis Embolism and Thrombosis D016769
451 Phlebitis/thrombophlebitis Phlebitis D010689
452 Portal vein thrombosis
453 Venous embolism/thrombosis

454 454 Varicose veins lower extremities Varicose Veins D014648
456 Varicose veins other sites

455 455 Hemorrhoids Hemorrhoids D006484

458 458 Hypotension Hypotension D007022

Diseases of the respiratory system

460 460 Acute nasopharyngitis Nasopharyngitis D009304
462 Acute pharyngitis Pharyngitis D010612
472 Chronic pharyngitis/nasopharyngitis

461 461 Acute sinusitis Sinusitis D012852
473 Chronic sinusitis

463 463 Acute tonsillitis Tonsillitis D014069
474 Chronic disease tonsils/adenoids

464 464 Acute laryngitis/tracheitis Laryngitis D007827
476 Chronic laryngitis/laryngotracheitis Tracheitis D014136

Epiglottitis D004826
Croup D003440

466 466 Acute bronchitis/bronchiolitis Bronchitis D001991
490 Bronchitis
491 Chronic bronchitis

477 477 Allergic rhinitis Rhinitis D012220
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ICD group ICD code ICD entry/entries MeSH entry/entries MeSH ID

480 480 Viral pneumonia Pneumonia D011014
481 Pneumococcal pneumonia
482 Bacterial pneumonia
483 Pneumonia (other specified organism)
484 Pneumonia in infectious diseases
485 Bronchopneumonia
486 Pneumonia
514 Pulmonary congestion/hypostasis

487 487 Influenza Influenza, Human D007251

492 492 Emphysema Emphysema D004646

493 493 Asthma Asthma D001249

511 511 Pleurisy Pleurisy D010998

No Match 470 Deviated nasal septum

Diseases of the digestive system

520 520 Disorders tooth development Tooth Abnormalities D014071
521 Diseases hard tissues of teeth Tooth Erosion D014077
524 Dentofacial anomalies Tooth Abrasion D014072

Malocclusion D008310

522 522 Diseases pulp/periapical tissues Periapical Diseases D010483
523 Gingival/periodontal diseases Dental Pulp Diseases D003788

Periodontitis D010518
Gingival Diseases D005882

526 526 Diseases jaws Jaw Cysts D007570
Granuloma, Giant Cell D006101

527 527 Diseases salivary glands Salivary Gland Diseases D012466

528 528 Diseases oral soft tissues Stomatitis D013280
Noma D009625

530 530 Diseases esophagus Esophageal Diseases D004935

531 531 Gastric ulcer Peptic Ulcer D010437
532 Duodenal ulcer Peptic Ulcer Hemorrhage D010438
533 Peptic ulcer Gastrointestinal Hemorr. D006471
534 Gastrojejunal ulcer
578 Gastrointestinal hemorrhage

535 535 Gastritis/duodenitis Gastritis D005756
555-558 Noninfective enteritis/colitis Duodenitis D004382

Enteritis D004751
Colitis D003092

536 536 Disorders function of stomach Achlorhydria D000126
Gastric Dilatation D013271
Dyspepsia D004415

540 540 Acute appendicitis Appendicitis D001064
541 Appendicitis, unqualified
542 Appendicitis

550 550-553 Hernia of abdominal cavity Hernia D006547

560 560 Intestinal obstruction Intestinal Obstruction D007415

562 562 Diverticula of intestine Diverticulum, Colon D004241
Diverticulum, Stomach D013273
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ICD group ICD code ICD entry/entries MeSH entry/entries MeSH ID

574 574 Cholelithiasis Cholelithiasis D002769

577 577 Diseases pancreas Pancreatitis D010195
Pancreatic Cyst D010181

No Match 571 Chronic liver disease/cirrhosis

Diseases of the genitourinary system

590 590 Infections kidney Nephritis D009393

592 592 Calculus kidney/ureter Nephrolithiasis D053040
Ureterolithiasis D053039

595 595 Cystitis Cystitis D003556

600 600 Hyperplasia prostate Prostatic Diseases D011469
601 Inflammatory diseases prostate
602 Disorders prostate

607 607 Disorders penis Penile Diseases D010409

610 610 Benign mammary dysplasias Breast Diseases D001941
611 Disorders breast

614 614 Inflammatory disease ovary Adnexal Diseases D000291
620 Noninflammatory disorders ovary

615 615 Inflammatory diseases uterus Uterine Diseases D014591
616 Inflammatory disease cervix/vagina/vulva Vaginal Diseases D014623
618 Genital prolapse Vulvar Diseases D014845
621 Disorders uterus
622 Noninflammatory disorders cervix
623 Noninflammatory disorders vagina
624 Noninflammatory disorders vulva/perineum
625 Pain associated with female genital organs

617 617 Endometriosis Endometriosis D004715

628 628 Infertility, female Infertility, Female D007247

No Match 627 Menopausal/postmenopausal disorders

Diseases of the skin and subcutaneous tissue

680 680 Carbuncle/furuncle Furunculosis D005667

681 681 Cellulitis/abscess finger/toe Cellulitis D002481
682 Cellulitis/abscess

684 684 Impetigo Impetigo D007169

690 690 Erythematosquamous dermatosis Dermatitis, Seborrheic D012628
706 Diseases sebaceous glands Acne Vulgaris D000152

691 691 Atopic dermatitis/related conditions Dermatitis, Atopic D003876
692 Contact dermatitis/eczema Dermatitis, Contact D003877

696 696 Psoriasis/similar disorders Psoriasis D011565
Pityriasis D010915
Parapsoriasis D010267

698 698 Pruritus/related conditions Pruritus D011537
Prurigo D011536
Neurodermatitis D009450

700 700 Corns/callosities Callosities D002145

703 703 Diseases nail Nail Diseases D009260
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ICD group ICD code ICD entry/entries MeSH entry/entries MeSH ID

704 704 Diseases hair/hair follicles Hair Diseases D006201

705 705 Disorders sweat glands Sweat Gland Diseases D013543

708 708 Urticaria Urticaria D014581

No Match 707 Chronic ulcer skin
695 Erythematous conditions
693 Dermatitis (substances taken internally)

Diseases of the musculoskeletal system and connective tissue

710 710 Diffuse diseases connective tissue Sjogrens Syndrome D012859
728 Disorders muscle/ligament/fascia Scleroderma, Systemic D012595

Scleroderma, Localized D012594
Dermatomyositis D003882
Myositis D009220

715 715 Osteoarthrosis/allied disorders Osteoarthritis D010003
721 Spondylosis/allied disorders

722 722 Intervertebral disc disorders Intervertebral Disk Displac. D007405

726 726 Peripheral enthesopathies Bursitis D002062

734 734 Flat foot Flatfoot D005413

735 735 Acquired deformities toe Hallux Valgus D006215
Hallux Varus D050488

737 737 Curvature spine Spinal Curvatures D013121

No Match 717 Internal derangement knee
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C.3.2 Tables – Multivariate Analysis Clinical Drug Development

Table C-3: Drug development – parallel trends

All ICD9 Groups (1) (2) (3) (4)
Count/PPML Drug Development

Early All Stages Phase 1-3 Approval

MMS × 2000-02 −0.0014 −0.0008 −0.0017 −0.0035
(0.002) (0.002) (0.003) (0.009)

ICD9 group FE Yes Yes Yes Yes
Calendar Year FE Yes Yes Yes Yes

Observations 1002 1044 918 648
ICD9-codes 167 174 153 108
ICD9-groups 93 100 83 52
Log-likelihood −1633 −2457 −1368 −270

Notes: Columns (1) to (4) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. The time period of these regressions is the pre-MMA period 1997-2002. We employ
a placebo test (2000-2002 x MMS with 1997-1999 as the baseline period) in order to test the parallel trends
assumption. The dependent variable is the annual number of newly discovered NME in Column (1), NME in all
development stages in Column (2), NME in phase I-III clinical trials in Column (3), and the annual number of
approved drugs in Column (4). The unit of observation is the ICD-9 three-digit level by year. Standard errors are
clustered at the level of treatment (ICD-9 group level) and shown in parentheses. Significance levels: * p<0.1, **
p<0.05, *** p<0.01.
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Table C-4: Drug development – all ICD-9 three-digit codes

All ICD9 codes (1) (2) (3) (4) (5) (6)
Count/PPML Drug Development

Early Development All Development Stages Approval

MMS (ICD9 level) × 2004-05 −0.0005 −0.0002 0.0005 0.0006 0.0195∗∗∗ 0.0246∗∗∗

(0.002) (0.002) (0.001) (0.002) (0.006) (0.008)
MMS (ICD9 level) × 2006-08 0.0007 0.0019 0.0001 0.0009 0.0052 0.0041

(0.002) (0.002) (0.002) (0.002) (0.005) (0.007)
MMS (ICD9 level) × 2009-11 0.0015 0.0036 0.0006 0.0019 0.0112∗∗ 0.0060

(0.002) (0.002) (0.002) (0.002) (0.005) (0.008)
MMS (ICD9 level) × 2012-14 0.0032 0.0076∗∗∗ 0.0018 0.0049∗ 0.0066 0.0104

(0.002) (0.003) (0.002) (0.003) (0.005) (0.009)
MMS (ICD9 level) × 2015-16 0.0051∗ 0.0119∗∗∗ 0.0037 0.0085∗∗ 0.0104∗∗ 0.0074

(0.003) (0.004) (0.003) (0.004) (0.005) (0.010)
Cumul. US Market Sizet to t+12 No Yes No Yes No Yes
Cumul. NIH fundingt-1 to -12 No Yes No Yes No Yes
Cumul. New MeSH idst No Yes No Yes No Yes
ICD9 code FE Yes Yes Yes Yes Yes Yes
Calendar Year FE Yes Yes Yes Yes Yes Yes

Observations 6980 3340 7740 3740 4260 2380
ICD9-codes 349 167 387 187 213 119
Log-likelihood −9333 −4785 −12764 −6620 −2067 −1183

Notes: Columns (1) to (6) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. Column (1), (3), and (5) include all ICD-9 three-digit codes available in Cortellis.
Column (2), (4), and (6) include all ICD-9 three-digit codes available in the ICD-9-MeSH crosswalk by B&P2011.
In both cases, the MMS is calculated at the ICD-9 three-digit code level. The unit of observation of the dependent
variable is the ICD-9 three-digit code by year. It is the annual number of newly discovered NME in Columns (1) and
(2), NME in all development stages (preclinicals, clinical trials, registrations, approvals) in Columns (3) and (4),
and approved NME in Column (5) and (6). The control variables are log-transformed. Standard errors are clustered
at the level of treatment (in this table, ICD-9 three-digit code level) and shown in parentheses. Significance levels:
* p<0.1, ** p<0.05, *** p<0.01.
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Table C-5: Drug development – alternative controls

All ICD9 Groups (1) (2) (3) (4) (5) (6)
Count/PPML Drug Development

Early Development All Develop. Stages Approval

MMS × 2004-05 −0.0004 −0.0006 −0.0010 −0.0007 0.0275∗∗∗ 0.0241∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.009) (0.008)
MMS × 2006-08 0.0019 0.0011 0.0004 0.0004 0.0098 0.0046

(0.003) (0.003) (0.003) (0.002) (0.008) (0.007)
MMS × 2009-11 0.0029 0.0012 0.0008 0.0004 0.0179∗ 0.0096

(0.004) (0.002) (0.004) (0.003) (0.010) (0.007)
MMS × 2012-14 0.0063 0.0039 0.0035 0.0027 0.0253∗∗ 0.0140

(0.004) (0.003) (0.004) (0.003) (0.012) (0.009)
MMS × 2015-16 0.0099∗ 0.0066∗ 0.0060 0.0046 0.0261∗ 0.0117

(0.005) (0.003) (0.005) (0.004) (0.014) (0.010)
Cumul. OECD Market Sizet to t+12 Yes No Yes No Yes No
Cumul. NIH funding (Share)t-1 to -12 Yes No Yes No Yes No
Cumul. New MeSH idst Yes No Yes No Yes No
US Market Sizet No Yes No Yes No Yes
NIH fundingt-1 No Yes No Yes No Yes
New MeSH termst No Yes No Yes No Yes
ICD9 group FE Yes Yes Yes Yes Yes Yes
Calendar Year FE Yes Yes Yes Yes Yes Yes

Observations 3780 3800 3860 3880 3200 3220
ICD9-codes 189 190 193 194 160 161
ICD9-groups 109 110 113 114 86 87
Log-likelihood −6681 −6717 −10378 −10447 −1308 −1315

Notes: Columns (1) to (6) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. Column (1), (3), and (5) include alternative control variables such as OECD market
size and NIH funding calculated as a share of all publications in a disease category that acknowledge a specific
Institute/Center. Column (2), (4), and (6) include control variables that do not accumulate future/past periods but
only consider year t. In both cases, control variables are log-transformed and the MMS is calculated at the ICD-9
group level. The unit of observation of the dependent variable is the ICD-9 three-digit code by year. It is the annual
number of newly discovered NME in Columns (1) and (2), NME in all development stages (preclinicals, clinical
trials, registrations, approvals) in Columns (3) and (4), and approved NME in Column (5) and (6). Standard
errors are clustered at the level of treatment (ICD-9 group level) and shown in parentheses. Significance levels: *
p<0.1, ** p<0.05, *** p<0.01.
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Table C-6: Drug development – pre-MMS period until 2005

All ICD9 Groups (1) (2) (3) (4)
Count/PPML Drug Development

Early All Stages Phase 1-3 Approval

MMS × 2006-08 0.0015 0.0009 −0.0003 −0.0025
(0.002) (0.002) (0.003) (0.006)

MMS × 2009-11 0.0022 0.0014 0.0012 0.0028
(0.002) (0.002) (0.003) (0.008)

MMS × 2012-14 0.0056∗∗ 0.0043∗ 0.0034 0.0073
(0.003) (0.003) (0.004) (0.009)

MMS × 2015-16 0.0090∗∗ 0.0070∗∗ 0.0063 0.0054
(0.004) (0.003) (0.005) (0.010)

Cumul. US Market Sizet to t+12 Yes Yes Yes Yes
Cumul. NIH fundingt-1 to -12 Yes Yes Yes Yes
Cumul. New MeSH idst Yes Yes Yes Yes
ICD9 group FE Yes Yes Yes Yes
Calendar Year FE Yes Yes Yes Yes

Observations 3800 3880 3760 3220
ICD9-codes 190 194 188 161
ICD9-groups 110 114 110 87
Log-likelihood −6723 −10449 −6139 −1320

Notes: Columns (1) to (4) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. The pre-MMA period includes the years 1997-2005 (until the implementation of the
MMA). The dependent variable is the annual number of newly discovered NME in Column (1), NME in all devel-
opment stages in Column (2), NME in phase I-III clinical trials in Column (3), and the annual number of approved
drugs in Column (4). The unit of observation is the ICD-9 three-digit level by year. The control variables are log-
transformed. Standard errors are clustered at the level of treatment (ICD-9 group level) and shown in parentheses.
Significance levels: * p<0.1, ** p<0.05, *** p<0.01.
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C.3.3 Tables – Multivariate Analysis Biomedical Science

Table C-7: Scientific publications – parallel trends

All ICD9 Groups (1) (2) (3) (4) (5) (6)
Count/PPML Scientific Publications

All All Fractions University Corporate Patent-Weighted

MMS × 2000-02 0.0002 −0.0002 0.0002 −0.0007 −0.0008
(0.001) (0.001) (0.001) (0.001) (0.002)

MMS > Median × 2000-02 0.0239
(0.026)

ICD9 group FE Yes Yes Yes Yes Yes Yes
Calendar Year FE Yes Yes Yes Yes Yes Yes

Observations 9366 9366 9366 9366 9030 9030
MeSH IDs 1561 1561 1561 1561 1505 1505
ICD-group 127 127 127 127 108 107
Log-likelihood −180453 −180451 −148840 −142788 −12798 −15509

Notes: Columns (1) to (6) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. The time period of these regressions is the pre-MMA period 1997-2002. We employ a
placebo test (2000-2002 x MMS with 1997-1999 as the baseline period) in order to test the parallel trends assump-
tion. The dependent variable is the annual number of scientific publications from all affiliations (1)-(2), disease
weighted (fractional) number of scientific publications from all affiliations (3), number of scientific publications
from at least one author affiliated with an university (4), affiliated with a corporation (5), and patent-weighted
number of scientific publications (6). A patent-weight is calculated based on the patent family’s first application
being filed within 5 years from the scientific publication. The unit of observation is the MeSH term by year. Stan-
dard errors are clustered at the level of treatment (ICD-9 group level) and shown in parentheses. Significance
levels: * p<0.1, ** p<0.05, *** p<0.01.
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Table C-8: Scientific publications – fractional counts/winsorized

All ICD9 Groups (1) (2) (3) (4) (5) (6)
Count/PPML Scientific Publications Scientific Publications - fractions

winsorized winsorized count count winsorized winsorized

MMS × post 2003 0.0004 0.0001 0.0004
(0.001) (0.001) (0.001)

MMS × 2004-05 0.0006 0.0005 0.0006
(0.001) (0.001) (0.001)

MMS × 2006-08 0.0004 −0.0001 0.0004
(0.001) (0.001) (0.001)

MMS × 2009-11 0.0010 0.0007 0.0009
(0.001) (0.002) (0.001)

MMS × 2012-14 0.0015 0.0009 0.0013
(0.001) (0.003) (0.002)

MMS × 2015-16 0.0023 0.0018 0.0018
(0.002) (0.003) (0.002)

Cumul. US Market Sizet to t+12 Yes Yes Yes Yes Yes Yes
Cumul. NIH fundingt-1 to -12 Yes Yes Yes Yes Yes Yes
Cumul. New MeSH idst Yes Yes Yes Yes Yes Yes
ICD9 group FE Yes Yes Yes Yes Yes Yes
Calendar Year FE Yes Yes Yes Yes Yes Yes

Observations 31260 31260 31260 31260 31260 31260
MeSH IDs 1563 1563 1563 1563 1563 1563
ICD-group 129 129 129 129 129 129
Log-likelihood −224810 −224798 −739655 −739630 −174355 −174351

Notes: Columns (1) to (6) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. The unit of observation is the MeSH term by year. The dependent variable is the annual
number of scientific publications winsorized at the 99 percentile in Columns (1) and (2), the number of scientific
publications weighted by the inverse number of linked diseases (fractional counts) in Columns (3) and (4), and
the winsorized number of scientific publications weighted by the inverse number of linked diseases in Columns (5)
and (6). The control variables are log-transformed. Standard errors are clustered at the level of treatment (ICD-9
group level) and shown in parentheses. Significance levels: * p<0.1, ** p<0.05, *** p<0.01.
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Table C-9: Scientific publications – alternative controls/different models

All ICD9 Groups (1) (2) (3) (4)
DV: Scientific Publications Count/PPML Count/Linear

MeSH FE Different Controls OLS

MMS × 2004-05 0.0006 0.0014 0.0005 0.0908∗∗

(0.001) (0.001) (0.001) (0.043)
MMS × 2006-08 −0.0001 0.0010 −0.0004 0.1174∗

(0.001) (0.001) (0.001) (0.068)
MMS × 2009-11 0.0013 0.0030 0.0009 0.2071∗∗

(0.002) (0.002) (0.001) (0.099)
MMS × 2012-14 0.0017 0.0039 0.0012 0.2695∗∗

(0.003) (0.003) (0.002) (0.125)
MMS × 2015-16 0.0030 0.0058∗ 0.0024 0.3414∗∗

(0.003) (0.003) (0.003) (0.149)
Cumul. US Market Sizet to t+12 Yes No No Yes
Cumul. NIH fundingt-1 to -12 Yes No No Yes
Cumul. New MeSH termst Yes Yes No Yes
Cumul. OECD Market Sizet to t+12 No Yes No No
Cumul. NIH funding (Share)t-1 to -12 No Yes No No
US Market Sizet No No Yes No
NIH fundingt-1 No No Yes No
New MeSH termst No No Yes No
ICD9 group FE No Yes Yes Yes
MeSH FE Yes No No No
Calendar Year FE Yes Yes Yes Yes

Observations 30680 31180 31260 31260
MeSH terms 1534 1559 1563 1563
ICD-group 129 126 129 129
Log-likelihood −89923 −894188 −894359 −183443

Notes: Columns (1) to (3) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. The unit of observation is the MeSH term by year. The dependent variable is the annual
number of scientific publications. In Column (1), we use MeSH term fixed effects instead of ICD-9 group level
fixed effects and cluster standard errors at the MeSH term level instead of ICD-9 group level. Column (3) includes
alternative control variables such as OECD market size and NIH funding calculated as a share of all publications
in a disease category that acknowledge a specific Institute/Center. Column (4) includes control variables that
do not accumulate future/past periods but only consider year t. In Column (5), we show the estimates of linear
regressions with high-dimensional fixed effects. The control variables are always log-transformed. Standard errors
are shown in parentheses. Significance levels: * p<0.1, ** p<0.05, *** p<0.01.
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Table C-10: Scientific publications by affiliation type – US only

All ICD9 Groups (1) (2) (3) (4) (5)
Count/PPML Scientific Publications - US only

NIH University No University AMC Corporate

MMS × 2004-05 −0.0011 0.0003 0.0006 0.0003 −0.0002
(0.002) (0.001) (0.001) (0.002) (0.002)

MMS × 2006-08 −0.0042 −0.0006 −0.0004 −0.0002 0.0013
(0.003) (0.001) (0.001) (0.002) (0.002)

MMS × 2009-11 −0.0026 0.0008 0.0009 0.0011 0.0037
(0.004) (0.002) (0.002) (0.003) (0.003)

MMS × 2012-14 −0.0032 0.0007 0.0014 0.0026 0.0064∗∗

(0.004) (0.003) (0.003) (0.004) (0.003)
MMS × 2015-16 −0.0027 0.0014 0.0022 0.0030 0.0113∗∗

(0.006) (0.003) (0.003) (0.004) (0.005)
Cumul. US Market Sizet to t+12 Yes Yes Yes Yes Yes
Cumul. NIH fundingt-1 to -12 Yes Yes Yes Yes Yes
Cumul. New MeSH idst Yes Yes Yes Yes Yes
ICD9 group FE Yes Yes Yes Yes Yes
Calendar Year FE Yes Yes Yes Yes Yes

Observations 30400 31260 31220 31140 30840
MeSH IDs 1520 1563 1561 1557 1542
ICD-group 108 129 128 125 121
Log-likelihood −38133 −532245 −403089 −95553 −46363

Notes: Columns (1) to (5) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. The unit of observation is the MeSH term by year. The dependent variable is the annual
number of scientific publications split by at least one author’s affiliation. All authors have US affiliations. In Column
(1) at least one author is affiliated with the NIH, in Column (2) with a university, in Column (4) with an academic
medical center (AMC), and in Column (5) with a firm. Column (3) includes publications that have at least one
author not affiliated with a US university. The control variables are log-transformed. Standard errors are clustered
at the level of treatment (ICD-9 group level) and shown in parentheses. Significance levels: * p<0.1, ** p<0.05,
*** p<0.01.
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Table C-11: Scientific publications by affiliation type – all authors from same type

All ICD9 Groups (1) (2) (3) (4) (5)
Count/PPML Scientific Publications

NIH only Uni only No Uni only AMC only Corp only

MMS × 2004-05 −0.0007 0.0003 0.0011 0.0027 −0.0022
(0.003) (0.001) (0.001) (0.002) (0.005)

MMS × 2006-08 −0.0056 −0.0003 0.0003 0.0028 0.0028
(0.004) (0.001) (0.001) (0.003) (0.004)

MMS × 2009-11 −0.0029 0.0007 0.0012 0.0036 0.0009
(0.004) (0.002) (0.002) (0.004) (0.006)

MMS × 2012-14 −0.0035 0.0008 0.0018 0.0042 0.0058
(0.006) (0.002) (0.003) (0.005) (0.005)

MMS × 2015-16 −0.0047 0.0022 0.0030 0.0063 0.0081
(0.008) (0.003) (0.003) (0.006) (0.007)

Cumul. US Market Sizet to t+12 Yes Yes Yes Yes Yes
Cumul. NIH fundingt-1 to -12 Yes Yes Yes Yes Yes
Cumul. New MeSH termst Yes Yes Yes Yes Yes
ICD9 group FE Yes Yes Yes Yes Yes
Calendar Year FE Yes Yes Yes Yes Yes

Observations 28080 31260 31200 30300 30100
MeSH terms 1404 1563 1560 1515 1505
ICD-group 91 129 127 120 111
Log-likelihood −13385 −337848 −177541 −20659 −10336

Notes: Columns (1) to (5) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. The unit of observation is the MeSH term by year. The dependent variable is the annual
number of scientific publications split by all author’s affiliations. In Column (1) all authors are affiliated with the
NIH, in Column (2) with a university, in Column (4) with an academic medical center, and in Column (5) with a
firm. Column (3) includes publications that have all authors not affiliated with a university. The control variables
are log-transformed. Standard errors are clustered at the level of treatment (ICD-9 group level) and shown in
parentheses. Significance levels: * p<0.1, ** p<0.05, *** p<0.01.
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Table C-12: Scientific publications by affiliation type – fractional count/winsorized

All ICD9 Groups (1) (2) (3) (4) (5) (6)
Count/PPML Scientific Publications - fractional winsorized

NIH University AMC Corporate University Corporate

MMS × 2004-05 −0.0008 0.0003 −0.0003 −0.0003 0.0003 −0.0005
(0.002) (0.001) (0.002) (0.002) (0.001) (0.002)

MMS × 2006-08 −0.0016 −0.0004 −0.0003 0.0012 −0.0001 −0.0002
(0.002) (0.001) (0.002) (0.002) (0.001) (0.002)

MMS × 2009-11 −0.0017 0.0005 0.0003 0.0024 0.0010 0.0026
(0.003) (0.002) (0.002) (0.003) (0.001) (0.003)

MMS × 2012-14 −0.0023 0.0005 0.0009 0.0048 0.0015 0.0037
(0.004) (0.003) (0.003) (0.004) (0.002) (0.003)

MMS × 2015-16 −0.0013 0.0013 0.0016 0.0081∗ 0.0029 0.0068∗

(0.005) (0.003) (0.004) (0.005) (0.002) (0.004)
Cumul. US Market Sizet to t+12 Yes Yes Yes Yes Yes Yes
Cumul. NIH fundingt-1 to -12 Yes Yes Yes Yes Yes Yes
Cumul. New MeSH termst Yes Yes Yes Yes Yes Yes
ICD9 group FE Yes Yes Yes Yes Yes Yes
Calendar Year FE Yes Yes Yes Yes Yes Yes

Observations 30480 31260 31240 31120 31260 31120
MeSH terms 1524 1563 1562 1556 1563 1556
ICD-group 111 129 128 125 129 125
Log-likelihood −45219 −614764 −126599 −56819 −540867 −52867

Notes: Columns (1) to (6) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. The unit of observation is the MeSH term by year. In Columns (1) to (4), the dependent
variable is the annual number of scientific publications weighted by the inverse number of linked diseases (frac-
tional counts) split by at least one author’s affiliation. In Columns (5) to (6), the dependent variable is the annual
number of scientific publications winsorized at the 99 percentile. The control variables are log-transformed. Stan-
dard errors are clustered at the level of treatment (ICD-9 group level) and shown in parentheses. Significance
levels: * p<0.1, ** p<0.05, *** p<0.01.
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Table C-13: University publications – alternative controls/different models

All ICD9 Groups (1) (2) (3) (4)
DV: University Publications Count/PPML Count/Linear

MeSH FE Different Controls OLS

MMS × 2004-05 0.0004 0.0012 0.0004 0.0808∗∗

(0.001) (0.001) (0.001) (0.040)
MMS × 2006-08 −0.0005 0.0009 −0.0006 0.1059∗

(0.002) (0.002) (0.001) (0.062)
MMS × 2009-11 0.0010 0.0029 0.0007 0.1885∗∗

(0.002) (0.002) (0.002) (0.092)
MMS × 2012-14 0.0012 0.0038 0.0009 0.2456∗∗

(0.003) (0.003) (0.002) (0.117)
MMS × 2015-16 0.0025 0.0057∗ 0.0021 0.3103∗∗

(0.003) (0.003) (0.003) (0.138)
Cumul. US Market Sizet to t+12 Yes No No Yes
Cumul. NIH fundingt-1 to -12 Yes No No Yes
Cumul. New MeSH termst Yes Yes No Yes
Cumul. OECD Market Sizet to t+12 No Yes No No
Cumul. NIH funding (Share)t-1 to -12 No Yes No No
US Market Sizet No No Yes No
NIH fundingt-1 No No Yes No
New MeSH termst No No Yes No
ICD9 group FE No Yes Yes Yes
MeSH FE Yes No No No
Calendar Year FE Yes Yes Yes Yes

Observations 30560 31180 31260 31260
MeSH terms 1528 1559 1563 1563
ICD-group 129 126 129 129
Log-likelihood −79980 −742452 −742594 −177688

Notes: Columns (1) to (3) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. The unit of observation is the MeSH term by year. The dependent variable is the annual
number of scientific publications with at least one author affiliated with an university. In Column (1), we use MeSH
term fixed effects instead of ICD-9 group level fixed effects and cluster standard errors at the MeSH term level
instead of ICD-9 group level. Column (2) includes alternative control variables such as OECD market size and NIH
funding calculated as a share of all publications in a disease category that acknowledge a specific Institute/Center.
Column (3) includes control variables that do not accumulate future/past periods but only consider year t. In
Column (4), we show the estimates of linear regressions with high-dimensional fixed effects. The control variables
are always log-transformed. Standard errors are shown in parentheses. Significance levels: * p<0.1, ** p<0.05,
*** p<0.01.
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Table C-14: Corporate publications – alternative controls/different models

All ICD9 Groups (1) (2) (3) (4)
DV: Corporate Publications Count/PPML Count/Linear

MeSH FE Different Controls OLS

MMS × 2004-05 −0.0001 0.0012 −0.0012 0.0047
(0.002) (0.002) (0.002) (0.003)

MMS × 2006-08 0.0010 0.0031 −0.0005 0.0088
(0.002) (0.002) (0.002) (0.006)

MMS × 2009-11 0.0036 0.0065∗∗ 0.0014 0.0151∗

(0.003) (0.003) (0.003) (0.008)
MMS × 2012-14 0.0059 0.0096∗∗∗ 0.0031 0.0206∗∗

(0.004) (0.003) (0.003) (0.010)
MMS × 2015-16 0.0098∗∗ 0.0142∗∗∗ 0.0064 0.0295∗∗

(0.004) (0.004) (0.004) (0.012)
Cumul. US Market Sizet to t+12 Yes No No Yes
Cumul. NIH fundingt-1 to -12 Yes No No Yes
Cumul. New MeSH termst Yes Yes No Yes
Cumul. OECD Market Sizet to t+12 No Yes No No
Cumul. NIH funding (Share)t-1 to -12 No Yes No No
US Market Sizet No No Yes No
NIH fundingt-1 No No Yes No
New MeSH termst No No Yes No
ICD9 group FE No Yes Yes Yes
MeSH FE Yes No No No
Calendar Year FE Yes Yes Yes Yes

Observations 19880 31100 31120 31260
MeSH terms 994 1555 1556 1563
ICD-group 125 124 125 129
Log-likelihood −18220 −68061 −68103 −96677

Notes: Columns (1) to (3) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. The unit of observation is the MeSH term by year. The dependent variable is the annual
number of scientific publications with at least one author affiliated with a corporation. In Column (1), we use MeSH
term fixed effects instead of ICD-9 group level fixed effects and cluster standard errors at the MeSH term level
instead of ICD-9 group level. Column (2) includes alternative control variables such as OECD market size and NIH
funding calculated as a share of all publications in a disease category that acknowledge a specific Institute/Center.
Column (3) includes control variables that do not accumulate future/past periods but only consider year t. In
Column (4), we show the estimates of linear regressions with high-dimensional fixed effects. The control variables
are always log-transformed. Standard errors are shown in parentheses. Significance levels: * p<0.1, ** p<0.05,
*** p<0.01.
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Table C-15: University publications by journal type

All ICD9 Groups (1) (2) (3) (4) (5) (6)
Count/PPML Scientific Publications

Academic Clinical Clin. Pract Ind./Clin. Industrial Ind. Pract

MMS × 2004-05 0.0012 −0.0011 0.0017 0.0020 0.0006 0.0050
(0.002) (0.001) (0.001) (0.001) (0.002) (0.003)

MMS × 2006-08 −0.0052 −0.0023 0.0011 0.0002 0.0011 0.0015
(0.003) (0.002) (0.002) (0.002) (0.002) (0.004)

MMS × 2009-11 −0.0038 −0.0001 0.0017 0.0008 0.0026 −0.0012
(0.004) (0.002) (0.002) (0.003) (0.002) (0.004)

MMS × 2012-14 −0.0027 −0.0004 0.0027 0.0011 −0.0012 0.0020
(0.005) (0.003) (0.003) (0.003) (0.003) (0.007)

MMS × 2015-16 −0.0037 −0.0002 0.0049 0.0018 −0.0025 0.0030
(0.006) (0.004) (0.003) (0.004) (0.004) (0.006)

Cumul. US Market Sizet to t+12 Yes Yes Yes Yes Yes Yes
Cumul. NIH fundingt-1 to -12 Yes Yes Yes Yes Yes Yes
Cumul. New MeSH termst Yes Yes Yes Yes Yes Yes
ICD9 group FE Yes Yes Yes Yes Yes Yes
Calendar Year FE Yes Yes Yes Yes Yes Yes

Observations 30440 31180 31240 31120 29840 26800
MeSH terms 1522 1559 1562 1556 1492 1340
ICD-group 111 127 128 124 107 86
Log-likelihood −16852 −286422 −124736 −188377 −22302 −9915

Notes: Columns (1) to (6) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. The unit of observation is the MeSH term by year. The dependent variable is the number
of scientific publications with at least one author affiliated with an university in academic journals in Column (1), in
clinically relevant journals in Column (2), in clinical practice journals in Column (3), in industry-clinical journals
in Column (4), in industrial journals in Column (5), and in industry practice journals in Column (6). Journal
classification is based on the proportion of published research coming from general hospitals and industry using
the publicly available data set provided by Tijssen (2010). The control variables are log-transformed. Standard
errors are clustered at the level of treatment (ICD-9 group level) and shown in parentheses. Significance levels: *
p<0.1, ** p<0.05, *** p<0.01.
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Table C-16: Corporate publications by journal type

All ICD9 Groups (1) (2) (3) (4) (5) (6)
Count/PPML Scientific Publications

Academic Clinical Clin. Pract Ind./Clin. Industrial Ind. Pract

MMS × 2004-05 0.0015 −0.0037 0.0029 0.0017 −0.0003 −0.0046
(0.014) (0.003) (0.004) (0.002) (0.006) (0.006)

MMS × 2006-08 −0.0048 −0.0011 0.0069 0.0003 −0.0054 −0.0109∗

(0.014) (0.004) (0.005) (0.003) (0.004) (0.006)
MMS × 2009-11 −0.0129 0.0031 0.0038 0.0021 0.0056 −0.0127∗∗

(0.015) (0.005) (0.006) (0.005) (0.007) (0.006)
MMS × 2012-14 −0.0113 0.0024 0.0085 0.0062 −0.0080 −0.0046

(0.017) (0.007) (0.007) (0.006) (0.006) (0.007)
MMS × 2015-16 −0.0205 0.0060 0.0133 0.0101 −0.0131 0.0035

(0.024) (0.008) (0.009) (0.008) (0.009) (0.006)
Cumul. US Market Sizet to t+12 Yes Yes Yes Yes Yes Yes
Cumul. NIH fundingt-1 to -12 Yes Yes Yes Yes Yes Yes
Cumul. New MeSH termst Yes Yes Yes Yes Yes Yes
ICD9 group FE Yes Yes Yes Yes Yes Yes
Calendar Year FE Yes Yes Yes Yes Yes Yes

Observations 21800 30300 29580 30040 26320 24020
MeSH terms 1090 1515 1479 1502 1316 1201
ICD-group 53 109 111 111 76 66
Log-likelihood −990 −22655 −10788 −26692 −2656 −3119

Notes: Columns (1) to (6) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. The unit of observation is the MeSH term by year. The dependent variable is the number
of scientific publications with at least one author affiliated with a corporation in academic journals in Column (1), in
clinically relevant journals in Column (2), in clinical practice journals in Column (3), in industry-clinical journals
in Column (4), in industrial journals in Column (5), and in industry practice journals in Column (6). Journal
classification is based on the proportion of published research coming from general hospitals and industry using
the publicly available data set provided by Tijssen (2010). The control variables are log-transformed. Standard
errors are clustered at the level of treatment (ICD-9 group level) and shown in parentheses. Significance levels: *
p<0.1, ** p<0.05, *** p<0.01.
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Table C-17: Scientific publications – alternative impact/patent weights

All ICD9 Groups (1) (2) (3) (4) (5) (6)
Count/PPML Citation-Weighted Drug Patent (Cortellis) Drug Patent same ICD

Uni Corporate Uni Corporate Uni Corporate

MMS × 2004-05 −0.0006 0.0010 −0.0008 0.0068 −0.0008 0.0104∗

(0.001) (0.004) (0.003) (0.006) (0.004) (0.006)
MMS × 2006-08 −0.0018 −0.0010 −0.0031 −0.0060 −0.0025 −0.0020

(0.002) (0.004) (0.003) (0.005) (0.003) (0.005)
MMS × 2009-11 −0.0007 0.0029 −0.0042 0.0040 −0.0051 0.0044

(0.002) (0.005) (0.004) (0.005) (0.004) (0.005)
MMS × 2012-14 0.0000 0.0012 −0.0083 0.0021 −0.0092 0.0022

(0.003) (0.006) (0.005) (0.006) (0.006) (0.006)
MMS × 2015-16 0.0033 0.0040 −0.0058 −0.0017 −0.0054 0.0006

(0.004) (0.008) (0.007) (0.007) (0.008) (0.008)
Cumul. US Market Sizet to t+12 Yes Yes Yes Yes Yes Yes
Cumul. NIH fundingt-1 to -12 Yes Yes Yes Yes Yes Yes
Cumul. New MeSH termst Yes Yes Yes Yes Yes Yes
ICD9 group FE Yes Yes Yes Yes Yes Yes
Calendar Year FE Yes Yes Yes Yes Yes Yes

Observations 31260 31120 29580 26240 29100 26020
MeSH terms 1563 1556 1479 1312 1455 1301
ICD-group 129 125 104 81 100 79
Log-likelihood −14628648 −1677386 −21419 −5591 −17709 −4857

Notes: Columns (1) to (6) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. The unit of observation is the MeSH term by year. In Columns (1)-(2), the dependent
variable is the forward citation-weighted number of university/corporate scientific publications. In Columns (3)-
(4), the dependent variable is the number of university/corporate scientific publications that are associated with
at least one patent family (patent-weighted) that appears in the Cortellis drug database. In Columns (5)-(6), the
patent family has to appear in the Cortellis drug database in the same ICD-9 group as the scientific publications. A
patent-weight is calculated based on the patent family’s first application being filed within 5 years from the scientific
publication. The match between patent families with SNPLs and Cortellis was conducted at the INPADOC family
level. The control variables are log-transformed. Standard errors are clustered at the level of treatment (ICD-9
group level) and shown in parentheses. Significance levels: * p<0.1, ** p<0.05, *** p<0.01.
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Table C-18: Academic Medical Center publications – type of research/impact

All ICD9 Groups (1) (2) (3) (4) (5) (6)
Count/PPML MeSH-Weighted JIF-Weighted Patent-Weighted

Academic Medical Center Basic CT Pharma JIF Patent Family Size

MMS × 2004-05 0.0005 −0.0015 −0.0029 −0.0012 −0.0011 −0.0053
(0.001) (0.002) (0.004) (0.002) (0.004) (0.004)

MMS × 2006-08 −0.0001 −0.0003 −0.0037 −0.0015 0.0028 0.0042
(0.002) (0.003) (0.005) (0.003) (0.004) (0.005)

MMS × 2009-11 0.0014 0.0005 −0.0016 −0.0005 0.0023 0.0030
(0.002) (0.004) (0.006) (0.004) (0.005) (0.007)

MMS × 2012-14 0.0019 0.0029 0.0025 0.0010 0.0049 0.0061
(0.003) (0.005) (0.007) (0.004) (0.005) (0.007)

MMS × 2015-16 0.0029 0.0038 0.0015 0.0021 0.0019 −0.0003
(0.003) (0.006) (0.007) (0.005) (0.008) (0.008)

Cumul. US Market Sizet to t+12 Yes Yes Yes Yes Yes Yes
Cumul. NIH fundingt-1 to -12 Yes Yes Yes Yes Yes Yes
Cumul. New MeSH termst Yes Yes Yes Yes Yes Yes
ICD9 group FE Yes Yes Yes Yes Yes Yes
Calendar Year FE Yes Yes Yes Yes Yes Yes

Observations 31240 30740 29600 31240 29480 29480
MeSH terms 1562 1537 1480 1562 1474 1474
ICD-group 128 117 105 128 104 104
Log-likelihood −134852 −29085 −7536 −695655 −11485 −74365

Notes: Columns (1) to (6) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. The unit of observation is the MeSH term by year. The dependent variable is the number
of scientific publications from at least one author affiliated with an academic medical center that are associated with
MeSH terms related to clinical trials in Column (2) and pharmaceutical preparations in Column (3). In Column
(1), we include the residual academic medical center publications (non CT/non pharmaceutical preparations). In
Columns (4), the dependent variable is the journal impact factor-weighted number of scientific publications from at
least one author affiliated with an academic medical center. In Column (5), the dependent variable is the number
of academic medical center publications that are associated with at least one patent application (patent-weighted).
In Column (6), we weight the number of academic medical center publications by the size of the average patent
family associated with the publication. A patent/family size-weight is calculated based on the patent family’s first
application being filed within 5 years from the scientific publication. The control variables are log-transformed.
Standard errors are clustered at the level of treatment (ICD-9 group level) and shown in parentheses. Significance
levels: * p<0.1, ** p<0.05, *** p<0.01.
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Table C-19: Scientific publications – pre-MMS period until 2005

All ICD9 Groups (1) (2) (3) (4) (5) (6)
Count/PPML Scientific Publications Patent-Weighted

All Fractions University Corporate University Corporate

MMS × 2006-08 −0.0004 −0.0003 −0.0006 0.0011 0.0001 −0.0009
(0.001) (0.001) (0.001) (0.002) (0.001) (0.002)

MMS × 2009-11 0.0010 0.0005 0.0008 0.0037 0.0002 −0.0003
(0.002) (0.002) (0.002) (0.003) (0.002) (0.003)

MMS × 2012-14 0.0014 0.0006 0.0010 0.0060∗ −0.0002 0.0025
(0.002) (0.002) (0.002) (0.003) (0.002) (0.003)

MMS × 2015-16 0.0027 0.0015 0.0023 0.0098∗∗ −0.0009 0.0026
(0.003) (0.003) (0.003) (0.004) (0.003) (0.005)

Cumul. US Market Sizet to t+12 Yes Yes Yes Yes Yes Yes
Cumul. NIH fundingt-1 to -12 Yes Yes Yes Yes Yes Yes
Cumul. New MeSH termst Yes Yes Yes Yes Yes Yes
ICD9 group FE Yes Yes Yes Yes Yes Yes
Calendar Year FE Yes Yes Yes Yes Yes Yes

Observations 31260 31260 31260 31120 30700 27980
MeSH terms 1563 1563 1563 1556 1535 1399
ICD-group 129 129 129 125 114 92
Log-likelihood −894324 −739633 −742563 −68090 −50084 −10339

Notes: Columns (1) to (6) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. The unit of observation is the MeSH term by year. The pre-period lasts until 2005,
which is the year before the implementation of the MMA. The dependent variable is the annual number of scientific
publications from all affiliation types in Column (1), weighted by the inverse number of linked diseases in Column
(2), with at least one author being affiliated with an university in Column (3), and with a corporation in Column
(4). In Columns (5) and (6), the dependent variable is the number of university/corporate scientific publications
that are associated with at least one patent application (patent-weighted). A patent-weight is calculated based on
the patent family’s first application being filed within 5 years from the scientific publication. The control variables
are log-transformed. Standard errors are clustered at the level of treatment (ICD-9 group level) and shown in
parentheses. Significance levels: * p<0.1, ** p<0.05, *** p<0.01.
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Table C-20: Scientific publications – all PMID (incl. confounded)

All ICD9 Groups (1) (2) (3) (4) (5) (6)
Count/PPML Scientific Publications Patent-Weighted

All Fractions University Corporate University Corporate

MMS × 2004-05 0.0014∗∗ 0.0009 0.0013∗∗ 0.0011 0.0034∗∗∗ 0.0044∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.002)
MMS × 2006-08 0.0007 0.0003 0.0005 0.0006 0.0024∗∗ 0.0028

(0.001) (0.001) (0.001) (0.002) (0.001) (0.002)
MMS × 2009-11 0.0014 0.0010 0.0014 0.0018 0.0019 0.0022

(0.001) (0.001) (0.001) (0.002) (0.002) (0.003)
MMS × 2012-14 0.0016 0.0011 0.0014 0.0035 0.0016 0.0063∗

(0.001) (0.002) (0.002) (0.003) (0.002) (0.004)
MMS × 2015-16 0.0026 0.0019 0.0025 0.0065∗ 0.0033 0.0098∗∗

(0.002) (0.002) (0.002) (0.003) (0.002) (0.004)
Cumul. US Market Sizet to t+12 Yes Yes Yes Yes Yes Yes
Cumul. NIH fundingt-1 to -12 Yes Yes Yes Yes Yes Yes
Cumul. New MeSH termst Yes Yes Yes Yes Yes Yes
ICD9 group FE Yes Yes Yes Yes Yes Yes
Calendar Year FE Yes Yes Yes Yes Yes Yes

Observations 31460 31460 31460 31440 31280 30160
MeSH terms 1573 1573 1573 1572 1564 1508
ICD-group 129 129 129 128 122 107
Log-likelihood −1765706 −1037220 −1447553 −120655 −93633 −18148

Notes: Columns (1) to (6) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. The unit of observation is the MeSH term by year. The dependent variable is the annual
number of scientific publications including PMID, which are associated with a disease MeSH term with unknown
MMS (confounded). It includes publications from all affiliation types in Column (1), weighted by the inverse
number of linked diseases in Column (2), with at least one author being affiliated with an university in Column
(3), and with a corporation in Column (4). In Columns (5) and (6), the dependent variable is the number of
university/corporate scientific publications (including confounded PMID) that are associated with at least one
patent application (patent-weighted). A patent-weight is calculated based on the patent family’s first application
being filed within 5 years from the scientific publication. The control variables are log-transformed. Standard
errors are clustered at the level of treatment (ICD-9 group level) and shown in parentheses. Significance levels: *
p<0.1, ** p<0.05, *** p<0.01.
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Table C-21: Scientific publications – ICD-9 group level

All ICD9 Groups (1) (2) (3) (4) (5) (6)
Count/PPML Scientific Publications Patent-Weighted

All Fractions University Corporate University Corporate

MMS × 2004-05 0.0005 0.0004 0.0003 −0.0002 0.0013 0.0056∗

(0.001) (0.001) (0.001) (0.002) (0.002) (0.003)
MMS × 2006-08 −0.0003 −0.0002 −0.0006 0.0010 0.0002 0.0018

(0.001) (0.001) (0.001) (0.002) (0.002) (0.003)
MMS × 2009-11 0.0007 0.0008 0.0005 0.0030 0.0003 0.0013

(0.002) (0.002) (0.002) (0.003) (0.002) (0.003)
MMS × 2012-14 0.0010 0.0011 0.0006 0.0052 −0.0003 0.0038

(0.002) (0.003) (0.003) (0.004) (0.003) (0.003)
MMS × 2015-16 0.0021 0.0022 0.0016 0.0082∗ −0.0011 0.0031

(0.003) (0.003) (0.003) (0.005) (0.004) (0.005)
Cumul. US Market Sizet to t+12 Yes Yes Yes Yes Yes Yes
Cumul. NIH fundingt-1 to -12 Yes Yes Yes Yes Yes Yes
Cumul. New MeSH termst Yes Yes Yes Yes Yes Yes
ICD9 group FE Yes Yes Yes Yes Yes Yes
Calendar Year FE Yes Yes Yes Yes Yes Yes

Observations 2580 2580 2580 2500 2280 1840
ICD-group 129 129 129 125 114 92
Log-likelihood −13270 −12351 −12072 −5187 −3917 −1931

Notes: Columns (1) to (6) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. The unit of observation is the ICD-9 group level (MeSH terms aggregated to the ICD-9
group in the B&P2011 ICD-9-MeSH crosswalk presented in Table C-1). The dependent variable is the annual
number of scientific publications from all affiliation types in Column (1), weighted by the inverse number of
linked diseases in Column (2), with at least one author being affiliated with an university in Column (3), and with
a corporation in Column (4). In Columns (5) and (6), the dependent variable is the number of university/corporate
scientific publications that are associated with at least one patent application (patent-weighted). A patent-weight
is calculated based on the patent family’s first application being filed within 5 years from the scientific publication.
The control variables are log-transformed. Standard errors are clustered at the level of treatment (ICD-9 group
level) and shown in parentheses. Significance levels: * p<0.1, ** p<0.05, *** p<0.01.
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