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1. Abstract

Mitochondria are central for cellular metabolism and therefore, mitochondrial homeostasis is 

tightly controlled. Mitochondrial dynamics, the mitochondrial unfolded protein response 

(UPRmt) and autophagy (or mitophagy) are quality control mechanisms that ensure 

mitochondrial homeostasis and, hence, proper functionality. The interplay of these quality 

control mechanisms is subject of this dissertation. In a genome-wide RNAi screen for 

modulators of UPRmt in Caenorhabditis elegans mutants with defects in mitochondrial fusion, 

we identified 299 suppressors and 86 enhancers of fzo-1(tm1133)-induced UPRmt. 

The complete list of candidates including a bioinformatic analysis of the dataset is presented 

in chapter I. We find that our dataset is highly conserved in humans and that a substantial part 

has implications in human disease. Furthermore, many of our candidates have roles in 

development, suggesting that mitochondrial function and homeostasis is adjusted during 

development and maintained throughout life. Moreover, we predominantly identified non-

mitochondrial suppressors of UPRmt in our dataset, which implies that mitochondrial fitness 

plays a vital role in cellular homeostasis since many pathways exist outside of mitochondria 

that compensate for defects in mitochondrial homeostasis. Conversely, we primarily identified 

mitochondrial enhancers in our dataset, suggesting that mitochondrial homeostasis can scarcely 

be affected by disruption of processes outside of mitochondria. However, we identified the 

maintenance of contact sites between mitochondria and the ER to be of importance for 

mitochondrial homeostasis. In addition, disruption of receptor-mediated endocytosis is another 

non-mitochondrial process that affects mitochondrial homeostasis and we speculate that 

disrupting endocytosis may affect cell non-autonomous UPRmt signaling. Moreover, we found 

a potential link between pre-mRNA splicing and UPRmt and identified several genes involved 

in IP3 signaling in our dataset, suggesting that this pathway may regulate UPRmt in fzo-

1(tm1133) mutants. Finally, we identified a so far uncharacterized gene to induce UPRmt and 

lead to altered mitochondrial morphology when knocked-down or mutated. We name this gene 

miga-1, according to its mammalian orthologs. 

Chapter II describes the findings of another genome-wide RNAi screen for inducers of UPRmt 

in wild-type animals, which was mainly conducted by Stéphane Rolland and Sandra Schneid. 

The enhancers of fzo-1(tm1133)-induced UPRmt (chapter I), which are known or are predicted 

to have a mitochondrial function and induce UPRmt upon depletion also in the absence of 

mitochondrial stress, were added to this dataset. Altogether, we identified all mitochondrial 
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processes, except mitochondrial calcium homeostasis and mitophagy, to induce UPRmt when 

disrupted. Analysis of this dataset suggests that the current understanding of the UPRmt, which 

is thought to counteract ‘mito-nuclear’ imbalance of mitochondrial multi-subunit protein 

complexes in situations of stress, cannot be applied to many of the identified candidate genes 

in our screen. Instead, we propose that a decrease in mitochondrial membrane potential, which 

has been shown to be accompanied by a decrease in mitochondrial import competence, is the 

common phenotype shared by all candidates in our dataset. Interestingly, we analyzed the 

mitochondrial targeting sequence (MTS) of ATFS-1ATF4,5, the master regulator of the UPRmt 

response, and found that due to its comparably weakness, ATFS-1ATF4,5 import into 

mitochondria is sensitive to subtle changes in mitochondrial membrane potential. 

Consequently, ATFS-1ATF4,5 cannot be imported into mitochondria in situations of 

mitochondrial stress but instead, translocates from the cytosol into the nucleus to activate its 

transcriptional program. In conclusion, we find that mitochondrial stress and the concomitant 

decrease in mitochondrial membrane potential is sensed by the MTS of ATFS-1ATF4,5, which 

acts as a molecular switch to turn the UPRmt on or off. 

In chapter III, we describe another subset of candidates from the screen in chapter I, which 

induce autophagy and suppress UPRmt in fzo-1(tm1133) upon knock-down. Initially, we 

identified three genes of the endosomal sorting complex required for transport (ESCRT) in our 

dataset and found evidence in the literature that these are negative regulators of autophagy in 

C. elegans. Subsequently, we tested all 299 suppressors of fzo-1(tm1133)-induced UPRmt and

strikingly, found that 143 induce autophagy when knocked-down. Moreover, we find that 

mitochondrial membrane potential, which is decreased in fzo-1(tm1133) mutants, is increased 

when ESCRT components or LET-363TOR are depleted, thereby leading to suppression of 

UPRmt in these animals. Furthermore, we find that autophagy and UPRmt functionally interact, 

since blocking autophagy induces UPRmt in the absence of mitochondrial stress. Finally, we 

analyzed the lipidome of fzo-1(tm1133), drp-1(tm1108) and spg-7(ad2249) mutants and found 

that the levels of certain triacylglycerols (TGs) are altered in mutants with defects in 

mitochondrial dynamics (fzo-1(tm1133) and drp-1(tm1108)). Induction of autophagy partially 

reverts the levels of these TGs in fzo-1(tm1133). This suggests that mitochondrial metabolism 

is fueled with lipids, which may be released from lipid droplets upon induction of autophagy. 

Furthermore, we speculate that this in turn leads to increased metabolic activity, an increase in 

mitochondrial membrane potential and consequently suppression of UPRmt in fzo-1(tm1133) 

mutants. 
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Chapter IV describes a new method for automated segmentation of mitochondrial morphology. 

Segmentation of mitochondrial morphology is crucial for subsequent statistical analysis and 

currently still a major issue in computational biology. Therefore, we established a new method 

for automated segmentation of mitochondrial morphology using a deep learning algorithm. Our 

U-net based algorithm ‘MitoSegNet’ was manually trained to segment mitochondrial

morphology in microscopic images of C. elegans body wall muscle cells and we show that it 

can also segment images of tissue culture cells, which have previously not been shown to the 

algorithm. Furthermore, we find that MitoSegNet outperforms the currently available 

segmentation tools in single object comparison, as well as in five feature descriptors. 
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2. Introduction

2.1 C. elegans as a model in molecular biology 

The nematode C. elegans has first been isolated, described and named (Rhabditis elegans) by 

the French librarian Émile Maupas in Algiers (Maupas, 1899, 1900). Victor M. Nigon and 

Ellsworth C. Doughtery developed more sophisticated culturing conditions for nematodes in 

the laboratory, studied their reproduction and conducted the first genetic experiments (Nigon, 

1943; Nigon and Dougherty, 1949; Dougherty et al., 1959; Fatt and Dougherty, 1963). 

Geneticist Sydney Brenner introduced C. elegans as a model for modern genetic studies in cell 

and developmental biology and published his results in 1974 (Brenner, 1974; Sulston and 

Brenner, 1974). In 1998, the C. elegans genome was the first genome of a multi-cellular 

organism to be completely sequenced (Consortium, 1998). 

C. elegans is a transparent, free-living nematode that is around one millimeter in length as an

adult. The majority of animals in a C. elegans population are self-fertilizing hermaphrodites, 

which lay around 300 eggs during their reproductive phase. Males exist in C. elegans 

populations under laboratory conditions, but do not appear very frequently (0.1-0.2%). 

Embryos are laid early during their development and therefore are covered by a strong 

protective shell. After the embryo hatches, larvae are molting four times to reach adulthood 

and these timepoints mark the four larval stages of larval development (Wood et al., 1988). 

The fourth and last larval stage in development is easily detectable in brightfield microscopy 

and therefore is often used in experimental setups in the laboratory (Figure 1). 

Figure 1: Microscopic image of C. elegans larvae in the fourth larval stage (L4). Animals are easily 
detectable at this stage since the developing vulva appears as a white dot in brightfield microscopy, 
indicated by white arrowheads. Scale bar: 100 µm. 
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The generation time under controlled laboratory conditions is approximately 3.5 days at 20 °C. 

C. elegans is fed with different Escherichia coli strains (e.g. OP50, HT115, HB101), depending

on the laboratory or experimental setup, which also has an influence on its metabolism. The C. 

elegans genome is around 100 Mbp long and codes for approximately 20,000 protein coding 

genes and 28,000 non-coding RNAs and pseudogenes (Consortium, 1998; Hillier et al., 2005) 

and approximately 41% of the genes are conserved in humans (Shaye and Greenwald, 2011; 

Kim et al., 2018). The genome consists of five autosomal chromosomes and one sex 

chromosome, the latter of which is present only once in males. For comparison, the human 

genome consists of 22 autosomal chromosomes and two sex chromosomes (XY) and according 

to the ‘Genome Reference Consortium Human Build 38 patch release 13 (GRCh38.p13, 

December 2013)’, it encompasses around 3.1 Gbp. The human genome encodes for 

approximately 21,000 protein coding genes and around 39,000 non-coding RNAs and 

pseudogenes (International Human Genome Sequencing, 2004). 

C. elegans was the first multi-cellular organism that has been fully sequenced (Consortium,

1998; Hillier et al., 2005). This allowed the development of reverse genetic tools like the 

knock-down of genes by RNA-interference (RNAi). Fire and colleagues found that production 

of ‘antisense RNA’ leads to specific knock-down of a gene of interest (Fire et al., 1991). Initial 

studies utilized ‘antisense (single-stranded) RNA’ that was either expressed from a plasmid or 

directly injected into the gonads (Fire et al., 1991; Guo and Kemphues, 1995). Subsequently, 

this method has been optimized in C. elegans and led to the discovery that knock-down 

efficiency of genes can be drastically increased by using double-stranded (ds) RNA (Fire et al., 

1998). Different methods for dsRNA delivery have been developed over time, including 

dsRNA injection and soaking (Tabara et al., 1998). Finally, the idea to express dsRNA in 

bacteria on which the worms feed further simplified knock-down by RNAi in C. elegans 

(Timmons and Fire, 1998; Kamath et al., 2000). Finally, this led to construction of RNAi-

libraries that cover large parts of the C. elegans genome (Kamath and Ahringer, 2003; Rual et 

al., 2004), which enables C. elegans researchers to conduct genome-wide screens using reverse 

genetics. 
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2.2 Mitochondria – general overview 

Mitochondria are eukaryotic organelles that are 0.5-1 µm in diameter and classically referred 

to as the ‘powerhouse of the cell’ due to their function in energy conversion. According to the 

endosymbiotic theory, mitochondria are the remnants of previously free-living aerobic 

proteobacteria that were taken up by heterotrophic anaerobe eubacteria around 2 billion years 

ago (Gabaldón and Huynen, 2004; Timmis et al., 2004). Therefore, mitochondria have their 

own genome and are encompassed by two membranes that facilitate compartmentalization 

required for versatile metabolic pathways taking place in mitochondria (Figure 2). 

Figure 2: Schematic overview of a mitochondrion and its compartments and structures. mtDNA – 
mitochondrial DNA. Schematic adapted from (McBride et al., 2006). 

The outer mitochondrial membrane (OMM) has a relatively low protein content and contains 

porins through which ions and small molecules can diffuse freely, as well as the translocase 

of the outer mitochondrial membrane (TOM), an active transporter for high-molecular weight 

proteins. Furthermore, several other proteins are associated with the OMM or reside in it, 

which play roles in apoptosis, innate immunity and mitochondrial dynamics (Walther and 

Rapaport, 2009). The aqueous space between the OMM and the inner mitochondrial 

membrane (IMM) is called the intermembrane space (IMS) where some of the proteins 

required for protein translocation to the mitochondrial matrix are located, as well as 

cytochrome c, which is associated with the IMM. The IMM is highly impermeable and 

contains the redox carriers (complex I-IV) required for oxidative phosphorylation (OXPHOS) 

and the adenosine triphosphate (ATP) synthase for generation of ATP in the matrix. It also 

contains the translocase of the inner mitochondrial membrane (TIM) for active transport of 

proteins across the membrane. Furthermore, the IMM is invaginated into numerous cristae 

to enlarge the surface area and therefore the ability to produce ATP (Neupert and 

Herrmann, 2007; Chacinska et al., 2009). The mitochondrial matrix is the aqueous space 

enclosed by the inner membrane, which contains many enzymes of the tricarboxylic acid 

cycle (TCA) and the oxidation of pyruvate and fatty acids. Additionally, it contains 

mitochondrial ribosomes, tRNA and the mitochondrial genome which codes for 37 
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genes (van der Bliek et al., 2017). Apart from the mitochondrial functions in bioenergetics, 

many other processes are regulated by or at mitochondria. For example, apoptosis can be 

initiated through the release of cytochrome c from the IMS, which acts as a signal to induce 

cell death. Furthermore, cellular calcium levels are to some extent regulated by the voltage-

dependent anion channel (VDAC) at the OMM of mitochondria. 

2.3 Mitochondrial import 

The mitochondrial proteome in higher eukaryotes consists, depending on the organism, of 

1200-1800 proteins, the bulk (99%) of which is encoded in the nuclear genome (Smith and 

Robinson, 2015; Muthye and Lavrov, 2020). The gene transfer from the mitochondrial to the 

nuclear genome in the course of evolution required the formation of a complex machinery for 

protein import into mitochondria. Most of the mitochondrial proteins are imported by active 

transport through TOM, the multi-subunit main entry gate. Depending on a proteins function 

and localization, five different sorting pathways are currently distinguished (Neupert and 

Herrmann, 2007; Chacinska et al., 2009; Becker et al., 2012; Harbauer et al., 2014; Wiedemann 

and Pfanner, 2017). 

The classical import pathway into the mitochondrial matrix is referred to as the presequence 

pathway, which translocates more than half of mitochondrial proteins (Vögtle et al., 2009). It 

translocates mitochondrial precursor proteins that contain a cleavable mitochondrial targeting 

sequence (MTS or ‘presequence’) at the N-terminus (Fölsch et al., 1998). Presequences 

typically vary between 10-50 amino acids (AA) in length and form amphipathic α-helices with 

a hydrophobic side and a positively charged side (Roise et al., 1986). The primary structure 

differs greatly among presequences but certain properties of the amphipathic α-helices are well 

conserved, which facilitate prediction of the MTS (Claros and Vincens, 1996; Neupert and 

Herrmann, 2007). Three different receptors (TOM20, TOM22, TOM70) of the TOM complex 

recognize the presequence of the mitochondrial precursor, which, upon translocation through 

the TOM40 channel, is transferred to the TIM complex (Mokranjac and Neupert, 2015). The 

efficiency of translocation across the IMM is determined by the electrophoretic effect of the 

mitochondrial membrane potential (Δψ) on the positive net charge of the presequence (Martin 

et al., 1991). TIM23 facilitates translocation in cooperation with the presequence translocase-

associated motor (PAM) (Truscott et al., 2001). PAM contains the ATP-dependent 
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mitochondrial heat-shock protein 70 (mtHSP70) (Kang et al., 1990) and the mitochondrial 

processing peptidase (MPP), which cleaves the presequence off in the mitochondrial matrix 

(Hawlitschek et al., 1988). Mitochondrial inner membrane proteins are either imported into the 

mitochondrial matrix and then exported and inserted into the IMM by OXA1 (Hell et al., 2001) 

or contain a non-cleavable hydrophobic stretch after the aminoterminal presequence and are 

laterally inserted into the mitochondrial inner membrane via TIM23 (van der Laan et al., 2007). 

The carrier pathway imports hydrophobic proteins of the mitochondrial metabolite carrier 

family and proteins containing multiple transmembrane domains into the IMS from where they 

are inserted into the IMM. These proteins contain internal targeting signals that are recognized 

by the import receptor TOM70 and TOM22 and pass through the TOM40 channel across the 

OMM. They are then transferred through the IMS by small TIM chaperones and inserted into 

the IMM via the TIM22 complex in a mitochondrial membrane potential (Δψ) dependent 

manner (Endres et al., 1999; Curran et al., 2002; Rehling et al., 2003). 

The majority of mitochondrial IMS proteins contains specific cysteine motifs and is imported 

via the mitochondrial intermembrane space assembly (MIA) pathway. The precursor enters the 

IMS via the TOM complex and is recognized by MIA40 (Chacinska et al., 2004). 

Subsequently, MIA40 introduces disulfide bonds into the precursor protein with the help of 

ERV1 in order to oxidize and thereby fold the precursor protein into its mature form (Mesecke 

et al., 2005; Rissler et al., 2005). 

Additionally, at least two alternative import routes exist for lateral insertion of proteins 

containing α-helical and β-barrel transmembrane segments into the OMM. Multi-spanning, 

tail-anchored and signal-anchored OMM proteins as well as most subunits of the TOM-

complex contain α-helical transmembrane domains and are inserted by the mitochondrial 

import (MIM) complex (Becker et al., 2008; Hulett et al., 2008; Popov-Čeleketić et al., 2008). 

This insertion route does not require the TOM40 channel but uses a transient interaction with 

the TOM70 receptor instead. β-barrel proteins of the OMM contain β-hairpin recognition 

motifs (Jores et al., 2016) and are inserted via the sorting and assembly (SAM) complex. 

Precursors of these proteins translocate through the TOM40 channel and are transferred to the 

SAM complex via small TIM chaperones of the IMS (Paschen et al., 2003; Wiedemann et al., 

2003; Klein et al., 2012). 
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2.4 Mitochondrial metabolism 

Mitochondria are referred to as ‘the powerhouses of the cell’ due to their primary function in 

the generation of ATP. Overall, mitochondrial oxidative metabolism accounts for 

approximately 95% of the cellular ATP production. For this, three different enzymatic 

pathways exist in mitochondria that utilize different substrates; the electron transport chain 

(ETC), the tricarboxylic acid (TCA) cycle and the β-oxidation of fatty acids (FAO). 

Furthermore, these pathways are interconnected and share some of their metabolites. For 

example, both FAO and the TCA cycle provide reduced nicotinamide adenine dinucleotide 

(NADH) and flavin adenine dinucleotide (FADH2) that function as electron carriers for the 

ETC (Nsiah-Sefaa and McKenzie, 2016). 

The FAO pathway in mitochondria breaks down fatty acids, thereby supplying acetyl-

coenzyme A (CoA) for fatty acid synthesis, the TCA cycle or the generation of ketone bodies, 

depending on the tissue and/or environmental conditions. Fatty acids derived from the diet, 

adipose tissue, intracellular storage sites like lipid droplets, peroxisomes or lysosomes first 

need to be converted to fatty acyl-CoA ester in the cytosol and then to fatty acylcarnitine at the 

OMM before being imported into mitochondria by the carnitine system (McGarry and Brown, 

1997; Wanders et al., 2010). Upon import into the mitochondrial matrix, fatty acylcarnitine is 

converted back to fatty acyl-CoA ester. The breakdown of fatty acyl-CoA ester in the 

mitochondrial matrix requires four enzymatic reactions: dehydrogenation, hydration, another 

dehydrogenation, followed by thiolytic cleavage. These reactions result in one molecule of 

two-carbon acetyl-CoA, two electrons, which supply the ETC in form of NADH and FADH2, 

and a fatty acyl-CoA ester molecule that has been shortened by two carbon atoms. 

Subsequently, the fatty acyl-CoA ester can undergo as many cycles of oxidation in the so-

called FAO spiral until only acetyl-CoA remains (Bartlett and Eaton, 2004; Wanders et al., 

2010; Nsiah-Sefaa and McKenzie, 2016; Spinelli and Haigis, 2018). 

The TCA- or citric acid cycle is an amphibolic pathway in eukaryotes that is central for the 

production of ATP and provides intermediates, which are crucial for the biosynthesis of lipids 

and nucleotides. Furthermore, TCA cycle metabolites have been shown to be required for post 

translational modifications of chromatin and thereby influence cellular signaling and gene 

expression (Martínez-Reyes and Chandel, 2020). The TCA cycle indirectly accounts for the 

majority of oxygen consumption and ATP production and therefore is central for aerobic 

metabolism, even though its reactions do not require oxygen (Akram, 2014). Moreover, several 

9

Introduction



allosteric regulators exist within the cycle, which enables for an appropriate regulation of 

metabolic flux. For example, reduced NADH accumulates when the ETC is dysfunctional and 

inhibits all enzymes of the TCA cycle (Martínez-Reyes and Chandel, 2020). The TCA cycle 

starts with acetyl-CoA, derived from oxidation of fatty acids, carbohydrates or amino acids, 

and consists of a series of eight subsequent reactions, with some intermediates directly feeding 

into the ETC (Figure 3). 

Figure 3: Schematic overview of the citric acid cycle (TCA) which consists of eight subsequent 
reactions and supplies the ETC with NADH and FADH2. Many intermediates of the TCA cycle are 
crucial for lipid and nucleotide biosynthesis. Schematic adapted from (Martínez-Reyes and Chandel, 
2020). 

Acetyl-CoA and oxaloacetate are initially converted to citrate, which, in the next step is 

isomerized to isocitrate. Isocitrate is dehydrogenated to oxalosuccinate and then 

decarboxylated to α-ketoglutarate. This step also produces reduced NADH and CO2. α-

ketoglutarate is dehydrogenated to succinyl-CoA, again producing NADH and CO2. When 

CoA is removed from succinyl-CoA to produce succinate, guanosine diphosphate (GDP) is 

simultaneously phosphorylated to form GTP, which later is converted to ATP. Next, succinate 

is dehydrogenated to fumarate generating reduced FADH2. Hydration of fumarate produces 

malate, which is dehydrogenated to regenerate oxaloacetate. This final step again produces 

NADH and CO2. The NADH and FADH2 molecules produced by the TCA cycle directly feed 

into the ETC (Akram, 2014; Anderson et al., 2018). 

The ETC generates an electrochemical gradient across the IMM that is used by the ATP 

synthase for the generation of ATP, a process called oxidative phosphorylation (OXPHOS) 

(Figure 4). The multimeric OXPHOS complexes are conserved from yeast to humans, as well 

as the ATP synthase, which is conserved from bacteria to plants and across the animal kingdom. 
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Figure 4: Schematic overview of the ETC and the ATP synthase. Complexes I-IV of the electron 
transport chain pump protons into the intermembrane space (IMS), thereby producing an 
electrochemical gradient across the inner mitochondrial membrane (IMM). This electrochemical 
gradient is used to set the ATP synthase in motion, which facilitates the phosphorylation of ADP to 
form ATP. UQ: Ubiquinone. Schematic adapted from (Letts and Sazanov, 2017). 

All enzymes of the ETC (Complexes I-IV) and the ATP synthase are located in cristae of the 

IMM and form higher order structures in different stoichiometries called supercomplexes. The 

exact mechanism leading to their formation, as well as their function is currently highly debated 

(Chaban et al., 2014). OXPHOS complexes I, III and IV are encoded by both nuclear and 

mitochondrial genomes and the assembly of these multi-subunit complexes requires high 

coordination of many assembly factors. Reduced NADH and FADH2 molecules from 

glycolysis in the cytosol, FAO or the TCA cycle fuel the ETC and thereby indirectly the ATP 

synthase. Complex I (NADH dehydrogenase) and complex II (succinate dehydrogenase) bind 

and oxidize NADH and FADH2
 via their iron-sulfur clusters, respectively, thereby reducing 

ubiquinone (Figure 4). The accompanied conformational change of complex I during this 

process allows for the translocation of four protons into the IMS. Next, reduced ubiquinone 

diffuses to complex III (cytochrome c oxidoreductase) and is re-oxidized while the electrons 

are passed to cytochrome c. Again, two protons can pass the IMM via complex III into the IMS 

during this process. Complex IV (cytochrome c oxidase) then oxidizes cytochrome c and 

reduces molecular oxygen to form water while four protons are pumped into the IMS. The 

pumping of protons into the IMS creates an electrochemical potential that drives 

phosphorylation of ADP by complex V (ATP synthase) (Chaban et al., 2014; Nsiah-Sefaa and 

McKenzie, 2016; Signes and Fernandez-Vizarra, 2018; Sousa et al., 2018). The c-ring of the 

IMM-embedded F0 part of the ATP synthase (indicated in orange in Figure 4) is rotating upon 

binding and transport of protons from the IMS into the matrix, thereby setting the central stalk 

of the F1 part in motion. This stepwise rotation allows for conformational changes in the non-

moving α and ß subunits of the F1 head (indicated in red and purple in Figure 4) that enables 
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ADP and phosphate binding, phosphorylation of ADP in the active site and the release of ATP. 

This mechanism requires 3 protons from the IMS per molecule of ATP (Sousa et al., 2018). 

2.5 Mitochondrial dynamics 

Mitochondria are central hubs for many metabolic and biosynthetic pathways and play an 

important role in other processes like cellular calcium homeostasis and apoptosis. Thus, 

mitochondrial homeostasis is tightly regulated by various mechanisms to ensure an intact and 

healthy population of mitochondria. Furthermore, the mitochondrial network is required to 

respond to certain environmental stimuli, which are often accompanied by changing energy 

demands. Mitochondrial plasticity is crucial for both the response to changing energy demands 

as well as mitochondrial quality control and is regulated by fission and fusion of mitochondrial 

membranes (Youle and van der Bliek, 2012). Mitochondrial dynamics is controlled by 

guanosine triphosphatases (GTPases) of the dynamin family, which are conserved from yeast 

to humans (Hales and Fuller, 1997; Otsuga et al., 1998; Smirnova et al., 1998; Bleazard et al., 

1999; Labrousse et al., 1999; Shepard and Yaffe, 1999; Santel and Fuller, 2001; Chen et al., 

2003; Santel et al., 2003; Ichishita et al., 2008; Kanazawa et al., 2008). 

Mitochondrial fission in mammals has been shown to primarily occur at contact sites between 

the endoplasmic reticulum (ER) and mitochondria (Friedman et al., 2011). Specifically, future 

fission events are initiated at sites where the ER is wrapped around mitochondria (Friedman et 

al., 2011), which enables polymerization of actin filaments (Korobova et al., 2013; Li et al., 

2014; Manor et al., 2015). Subsequently, the myosin motor protein is recruited, which pulls on 

these actin filaments leading to a pre-constriction of mitochondria (Korobova et al., 2013; 

Korobova et al., 2014). Finally, the cytosolic protein DRP1 (Dnm1p in Saccharomyces 

cerevisiae, DRP-1 in Caenorhabditis elegans) is recruited to fission sites where it matures to 

form constricting spirals around mitochondria and drives mitochondrial fission by GTP 

hydrolysis (Figure 5) (Ingerman et al., 2005; Ji et al., 2015; Ji et al., 2017). In C. elegans, DRP-

1DRP1 has been shown to control mitochondrial morphology in body wall muscle cells of C. 

elegans since mitochondria appear blebby and elongated upon drp-1(RNAi) and in drp-1DRP1 

mutants (Labrousse et al., 1999). Moreover, drp-1(RNAi) has been shown to result in high 

embryonic lethality due to a mitochondrial segregation defect during cell division. 
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Furthermore, basal oxygen consumption rate (OCR) in drp-1DRP1 mutants has been shown to 

be elevated, while maximal OCR is decreased (Luz et al., 2015). 

Figure 5: Simplified overview of mitochondrial fission by DRP-1. The endoplasmic reticulum wraps 
around mitochondria to mark future fission sites where DRP-1 assembles and drives mitochondrial 
fission by GTP hydrolysis. ER: Endoplasmic reticulum. Schematic adapted from (Zhu et al., 2018). 

Mitochondrial fusion of the OMM and IMM are each mediated by different GTPases. Defects 

in mitochondrial fusion have first been observed in Drosophila melanogaster (D. 

melanogaster) mutants during spermatogenesis, which lead to the identification of the first 

GTPase controlling mitochondrial dynamics (Hales and Fuller, 1997). The altered 

mitochondrial morphology in spermatids was described as ‘fuzzy onions’ and the gene therefore 

was named fzo. Two orthologs of fzo exist in mammalian systems (Mitofusin1/2(MFN1/2)) 

(Santel and Fuller, 2001; Chen et al., 2003), while there is one in each S. cerevisiae (Fzo1p 

(Rapaport et al., 1998)) and C. elegans (FZO-1 (Ichishita et al., 2008)). Biochemical analyses 

of Fzo1p localization and topology in yeast have shown that this protein is located on the OMM 

and that the coiled coil domain at its C-terminus, consisting of two hydrophobic heptad repeats, 

as well as the GTPase domain at its N-terminus are exposed to the cytosol, thereby facilitating 

OMM tethering and fusion, respectively (Hermann et al., 1998; Rapaport et al., 1998). 

Moreover, it has been shown that this topology is conserved from yeast to humans (Rojo et al., 

2002). The model for fusion of two adjacent mitochondrial membranes has been described to 

be dependent on the dimerization of antiparallel coiled-coil domains of Mitofusins resulting in 

tethering prior to fusion (Figure 6) (Koshiba et al., 2004). 

Figure 6: Simplified overview of mitochondrial fusion. FZO-1 drives fusion of the OMM, while EAT-
3 drives fusion of the IMM. Both these processes require GTP. Schematic adapted from (Zhu et al., 
2018). 
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Furthermore, OMM fusion in vitro is dependent on the proton gradient (Meeusen et al., 2004). 

More recently, the topology and the associated model of tethering via the coiled coil domain 

has been challenged since partial MFN1 proteins, only containing the GTPase domains, have 

been shown to dimerize (Qi et al., 2016; Cao et al., 2017). Moreover, the carboxy termini of 

Mitofusins have been shown to be located in the IMS or embedded in the OMM (Mattie et al., 

2017). Therefore, membrane tethering and -fusion may also occur only via the GTPase domains 

of adjacent Mitofusins. This illustrates that OMM fusion is still poorly understood and, 

therefore, is currently still under investigation. Moreover, it has recently been shown that 

mitochondrial fusion events are also linked to contact sites between the ER and mitochondria, 

both in human tissue culture and yeast (Abrisch et al., 2020), as it was shown for mitochondrial 

fission before (Friedman et al., 2011). The understanding of the exact molecular processes of 

mitochondrial fusion in C. elegans so far is limited. fzo-1MFN1,2 mutants show fragmented and 

swollen mitochondrial morphology (Ichishita et al., 2008), reduced brood size and increased 

embryonic lethality (Machiela et al., 2020). Moreover, these mutants have reduced pharyngeal 

pumping and thrashing rates (Johnson and Nehrke, 2010), as well as reduced maximal 

respiratory capacity (Luz et al., 2015), all of which is indicative for reduced metabolic flux. 

Furthermore, fzo-1MFN1,2 mutants may have defects in FAO since acylcarnitine has been shown 

to accumulate in these mutants (Weir et al., 2017). 

The GTPase required for fusion of the IMM has first been identified in S. cerevisiae (Mgm1p 

(Wong et al., 2000; Sesaki et al., 2003; Wong et al., 2003; Meeusen et al., 2006)) and its 

orthologs in other systems have subsequently been described (OPA1 (Olichon et al., 2002), 

EAT-3 (Figure 6) (Kanazawa et al., 2008)). Mgm1p is located in the IMM facing the IMS and 

can be laterally inserted into the IMM in its large isoform or is processed proteolytically in an 

ATP-dependent manner into its short isoform, which localizes to the IMS (Herlan et al., 2003; 

McQuibban et al., 2003; Herlan et al., 2004; Zick et al., 2009). Both large and short isoforms 

are required for IMM fusion in yeast (Herlan et al., 2004). Furthermore, it has been shown that 

IMM fusion is Δψ dependent in vitro (Meeusen et al., 2004). The first studies in mammalian 

systems indicated that only the long isoforms of the various splice variants of OPA1 are 

required for mitochondrial fusion, which are processed upon dissipation of Δψ (Duvezin-

Caubet et al., 2006; Ishihara et al., 2006). This Δψ-dependent processing was proposed to serve 

as a mitochondrial quality control mechanism and led to the discovery of stress-induced OPA1 

processing by OMA1 (Ehses et al., 2009; Head et al., 2009). Subsequent publications revealed 

that OPA1 can be processed at two cleavage sites by several different proteases, including 
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YME1L and OMA1, and that both short and long isoforms are required for IMM fusion even 

though this seems to be context or tissue- and cell type specific, respectively (Griparic  et al., 

2007; Song  et al., 2007; Ehses et al., 2009; Head et al., 2009). More recently, this model has 

again been challenged by the finding that mouse embryonic fibroblasts (MEFs) lacking both 

OMA1 and YME1L show tubular mitochondria, although to a much lesser extent than in wild 

type (Anand et al., 2014). In C. elegans, eat-3OPA1 mutants have initially been identified to be 

eating defective and later, EAT-3OPA1 has been shown to be required for IMM fusion of 

mitochondria (Avery, 1993; Kanazawa et al., 2008). Furthermore, mitochondria of eat-3OPA1 

mutants are fragmented and have reduced numbers of cristae and are instead further divided by 

septae, which only very rarely appear in mitochondria of wild-type animals (Kanazawa et al., 

2008; Byrne et al., 2019). Moreover, eat-3OPA1 mutant animals show severe developmental 

defects, reduced brood size and are sensitive to oxidative stress. Additionally, eat-3OPA1 

mutants have been shown to have reduced total fat mass, as well as pharyngeal pumping and 

thrashing rates (Johnson and Nehrke, 2010; Byrne et al., 2019; Machiela et al., 2020). 

In summary, mitochondrial membrane fusion is facilitated by GTPases located on the OMM, 

which initially tether two adjacent mitochondria and, upon GTP hydrolysis, bring the two 

OMM in close proximity in order to fuse. In the following step, the GTPase located on the 

IMMs of the previously separate mitochondria facilitate fusion through oligomerization in an 

ATP- and Δψ-dependent manner (Figure 6). Even though there has been extensive research in 

the field of mitochondrial dynamics, its bioenergetic control still remains largely unclear. As 

described above, both fission and fusion are GTP dependent processes and mitochondrial 

fusion is to some extent also Δψ-dependent. However, the exact mechanisms how the cellular 

energy state and metabolic flux control mitochondrial dynamics is poorly understood. 

Conversely, the consequences of perturbed mitochondrial dynamics on metabolism remain 

elusive. 

Mitochondrial dynamics additionally plays an important role in cellular homeostasis. Short 

term stress or reduced ETC activity has been shown to result in mitochondrial hyper fusion in 

order to maintain ATP levels (Tondera et al., 2009; Rolland et al., 2013). Persistent 

mitochondrial stress on the other hand, leads to fragmentation of the mitochondrial network, a 

process that also occurs during ageing (Regmi et al., 2014; Jiang et al., 2015). In addition to 

situations of stress, mitochondrial dynamics is also crucial to maintain an intact population of 

mitochondria under non-stressed physiological conditions. Mitochondria have been shown to 
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fuse in order to exchange and thereby complement their content (Yoneda et al., 1994; Nakada 

et al., 2001; Ono et al., 2001; Chen et al., 2005; Eisner et al., 2014). Moreover, mitochondrial 

fission is required for the selective removal of depolarized mitochondria via mitophagy (Twig 

et al., 2008), another cellular quality control mechanism, which is later described in more 

detail. 

2.6 Mitochondrial unfolded protein response (UPRmt) 

The mitochondrial unfolded protein response (UPRmt) is a conserved retrograde signaling 

pathway that restores homeostasis in dysfunctional mitochondria. The transcriptional 

upregulation of mitochondrial chaperones upon mitochondrial stress, induced by ethidium 

bromide (EthBr) treatment, has first been described in mammalian cell culture (Martinus et al., 

1996; Zhao et al., 2002). The construction of transcriptional green fluorescent protein (GFP) 

reporters of the mitochondrial chaperones hsp-6mtHSP70 and hsp-60HSPA1 in the laboratory of 

David Ron allowed detailed studies in C. elegans (Yoneda et al., 2004). Yoneda and colleagues 

found increased expression of these reporters upon ethidium bromide (EthBr) (reduces 

mitochondrial DNA (mtDNA) content by inhibition of mtDNA replication) or paraquat 

treatment (inhibits complex I and induces accumulation of reactive oxygen species (ROS)). 

Furthermore, screening of chromosome I for inducers of mitochondrial chaperone expression 

by RNAi identified 32 mitochondrial proteins, most of which have roles in the ETC, 

mitochondrial metabolism, mitochondrial protein synthesis or -import. Additionally, the 

mitochondrial matrix AAA-protease spg-7AFG3L2 was identified. Remarkably, the authors 

concluded from this data that knock-down of most genes in their dataset (as well as the EthBr 

and paraquat treatments) lead to perturbations of the mitochondrial folding environment and 

therefore named this pathway the mitochondrial unfolded protein response. They reasoned that 

many of the identified proteins are part of hetero-oligomeric complexes, which are encoded in 

the mitochondrial and the nuclear genome, leading to a ‘mito-nuclear imbalance’ and 

consequently the accumulation of these subunits upon mitochondrial stress. This in turn was 

proposed to require the expression of mitochondrial chaperones (Yoneda et al., 2004). 

Subsequently, a genome-wide RNAi screen for suppressors of UPRmt, induced by an 

unidentified mutation (zc32), was conducted leading to the following model. 
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The master regulator ‘Activating Transcription Factor associated with Stress-1 (ATFS-1ATF4,5)’ 

harbors an N-terminal MTS and, in the absence of mitochondrial stress, is imported into 

mitochondria where it is degraded by the mitochondrial LONP-1LONP1 protease (Haynes et al., 

2010; Nargund et al., 2012). In certain situations of mitochondrial stress, unfolded or misfolded 

proteins accumulate in the mitochondrial matrix (Figure 7). This accumulation can be caused 

by excessive production of ROS or mutations in the mitochondrial genome, which was 

proposed to lead to an imbalance of mitochondrial and nuclear encoded subunits of 

mitochondrial proteins (Houtkooper et al., 2013). This in turn leads to an overload of protease 

and chaperone capacity in mitochondria. UPRmt was proposed to be activated when the 

accumulating proteins are degraded into small peptide fragments by the matrix protease CLPP-

1CLPP (Haynes et al., 2007). Subsequently, these peptides are exported from the matrix by HAF-

1ABCB10 and diffuse freely into the cytosol (Haynes et al., 2010). This efflux of peptide 

fragments then somehow leads to inhibition of mitochondrial import and consequently to 

decreased import efficiency of ATFS-1ATF4,5 into mitochondria (Nargund et al., 2012). As a 

result, cytosolic ATFS-1ATF4,5 is imported into the nucleus due to its C-terminal nuclear 

localization sequence (NLS) and activates the transcriptional program of UPRmt, together with 

UBL-5UBL5 and DVE-1SATB1 (Benedetti et al., 2006; Haynes et al., 2007; Haynes et al., 2010; 

Nargund et al., 2012). 

Figure 7: Proposed UPRmt model according to Haynes and colleagues (~2010). Unfolded proteins 
accumulate in the mitochondrial matrix, which are cleaved into small peptides by CLPP-1. These 
peptides are transported into the cytosol by HAF-1 and somehow inhibit mitochondrial import, leading 
to ATFS-1ATF4,5 translocation from the cytosol into the nucleus and the concomitant induction of UPRmt. 
Schematic adapted from (Jovaisaite et al., 2014). 
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Furthermore, the kinase GCN-2EIF2AK4 was proposed to act in a complementary pathway to that 

of ATFS-1ATF4,5 (Baker et al., 2012). Baker and colleagues speculated that ROS coming from 

mitochondria somehow activate GCN-2EIF2AK4, which they showed to phosphorylate 

translation initiation factor 2 alpha (EIF-2AEIF2A) upon mitochondrial stress. Phosphorylation 

of EIF-2AEIF2A has previously been shown to lead to attenuation of cytosolic translation and 

has been implicated in other stress responses before (Boye and Grallert, 2020). Reducing the 

amount of nuclear encoded subunits of mitochondrial proteins would equilibrate the mito-

nuclear imbalance and therefore re-establish mitochondrial homeostasis (Baker et al., 2012). 

Consequently, activation of the UPRmt has in the beginning been mostly perceived as a 

response that restores homeostasis by expression of chaperones and proteases, thereby re-

establishing the ‘protein folding environment’ in mitochondria. 

A broader understanding of the UPRmt as a transcriptional program that also has an impact on 

cellular metabolism emerged only later. Upon UPRmt activation, genes required for oxidative 

phosphorylation and the TCA cycle have been shown to be repressed while expression of 

glycolysis related genes are induced (Nargund et al., 2012; Nargund et al., 2015). Additionally, 

ETC assembly factors, iron-sulfur biogenesis components as well as mitochondrial chaperones 

are induced upon mitochondrial stress in an ATFS-1ATF4,5-dependent manner (Nargund et al., 

2015). Therefore, activation of UPRmt allows for metabolic adaptation when mitochondria are 

dysfunctional. Furthermore, inhibition of the mevalonate pathway has been shown to suppress 

UPRmt but the mechanisms behind the requirement of mevalonate pathway metabolites, which 

control many aspects of cellular metabolism, for activation of UPRmt remain unknown (Liu et 

al., 2014; Ranji et al., 2014). Several enzymes of the mevalonate pathway have been shown to 

be upregulated via ATFS-1ATF4,5, which has been proposed to act as a compensatory 

mechanism in order to supply enough metabolites in situations of mitochondrial dysfunction 

(Nargund et al., 2012; Ranji et al., 2014; Nargund et al., 2015; Oks et al., 2018). Moreover, 

the ceramide and sphingolipid biosynthetic pathways have been shown to be involved in UPRmt 

signaling (Liu et al., 2014). These findings highlight the importance of UPRmt activation and 

its role in metabolic adaptation in situations of mitochondrial dysfunction and -stress. 

In the meantime, signaling of the UPRmt pathway itself has been further characterized and 

several other players have been identified. The nuclear co-factor LIN-65 and the histone 

methyltransferase MET-2 have been shown to be required for nuclear translocation of DVE-

1SATB-1 and facilitate epigenetic modifications and chromatin reorganization (Tian et al., 2016). 
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In addition, activation of UPRmt has been shown to be dependent on the histone demethylases 

JMJD-1.2PHF8 and JMJD-3.1JMJD3 (Merkwirth et al., 2016). Post-translational modifications 

also have been shown to affect UPRmt activation. ULP-4SENP6,7 deSUMOylates DVE-1SATB-1 

and ATFS-1ATF4,5, is required for nuclear translocation of DVE-1SATB-1 and stabilizes cytosolic 

ATFS-1ATF4,5 upon mitochondrial stress (Gao et al., 2019). UPRmt activation has also been 

shown to be propagated in a cell non-autonomous fashion. Specifically, mitochondrial stress 

occurring in neurons results in a systemic induction of UPRmt (Durieux et al., 2011; Berendzen 

et al., 2016; Shao et al., 2016; Kim and Sieburth, 2018; Zhang et al., 2018; Kim and Sieburth, 

2020). Serotonin and the neuropeptide FLP-2 have been shown to propagate the mitochondrial 

stress signal from neurons to peripheral tissues (Berendzen et al., 2016; Shao et al., 2016). 

Furthermore, the cell non-autonomous propagation of UPRmt requires components of the 

retromer complex and the Wnt signaling pathway (Zhang et al., 2018), as well as the G-protein-

coupled receptor (GPCR) FSHR-1 and the sphingosine kinase SPHK-1 (Kim and Sieburth, 

2018, 2020). 

2.7 Autophagy and Mitophagy 

The autophagic pathway is a cellular recycling system that targets cytosolic constituents, long 

lived proteins and defective organelles to the lysosome for degradation. Furthermore, 

autophagy is induced upon starvation to degrade cellular components as a compensatory 

mechanism for the lack of nutrient supply (Mizushima, 2007). Autophagy is an evolutionary 

conserved quality control mechanism, which leads to disease when deregulated. The machinery 

initiating and controlling the autophagic pathway has to a great extent been discovered in S. 

cerevisiae and orthologs for most of these genes have later been identified in mammalian 

systems, C. elegans and D. melanogaster (Levine and Klionsky, 2004). Depending on the 

material or organelle that is being recycled, it is referred to as autophagy, mitophagy, ER-

phagy, pexophagy, nucleophagy or lysophagy (Anding and Baehrecke, 2017). 

The induction of autophagy is suppressed by the target of rapamycin (TOR) kinase (ortholog 

of LET-363 in C. elegans) and its downstream effectors. Upon induction of autophagy, the 

initiator complex, including ATG1 (ortholog of UNC-51 in C. elegans), is assembled at the 

pre-autophagosomal structure, leading to formation of the phagophore (Feng et al., 2014; 

Palmisano and Meléndez, 2019). The cargo that is being recycled is subsequently engulfed by 
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the expanding phagophore, thereby forming the autophagosome (Figure 8). This elongation 

and expansion step during autophagosome formation requires assembly of additional ATG 

complexes, which include ATG8 (ortholog of LGG-1 in C. elegans), a protein that is lipidated 

and incorporated into the autophagosomal membranes. Subsequently, the autophagosome fuses 

with a lysosome and becomes an autolysosome, where hydrolases degrade the cargo and 

recycle its components (Levine and Klionsky, 2004; Mizushima, 2007; Feng et al., 2014). 

In C. elegans, autophagosomes can be visualized using a GFP::LGG-1GABARAP fusion protein 

(Figure 8) (Jenzer et al., 2015; Zhang et al., 2015; Palmisano and Meléndez, 2016; Chen et al., 

2017). Its fluorescent emission is quenched in autolysosomes due to the low pH in the 

lysosomal compartment. Furthermore, degradation of GFP::LGG-1GAPARAP in autolysosomes 

can be detected using western blot analysis. The appearance of ‘cleaved GFP’ on the blot  

membrane is indicative for the lysosomal turnover of GFP::LGG-1GAPARAP (Mizushima et al., 

2010; Chapin et al., 2015; Klionsky et al., 2016). SQST-1p62::GFP is often used in parallel to 

validate the induction of autophagy using fluorescence microscopy, since this fusion protein 

accumulates when autophagy is blocked in a later stage (e.g. when fusion of autophagosomes 

with lysosomes is blocked) (Tian et al., 2010). 

Figure 8: Schematic of the autophagic pathway. Upon induction of autophagy, a phagophore forms 
around the cargo. The phagophore elongates to build an autophagosome, which fuses with the lysosome 
in order to degrade its cargo. Lysosomal enzymes degrade the cargo and LGG-1 is recycled. Schematic 
modified from (Jing and Lim, 2012). 

Mitophagy targets defective mitochondria to the lysosome for recycling and has been shown 

to be regulated via several different pathways. Initial studies have shown that PINK (ortholog 

of PINK-1 in C. elegans), an OMM kinase, accumulates on depolarized mitochondria and 

phosphorylates other OMM proteins. Subsequently, the E3 ligase Parkin (ortholog of PDR-1 

in C. elegans) is recruited and ubiquitinates OMM proteins, which serves as a so called ‘eat 

me’ signal for the autophagic machinery (Narendra  et al., 2008; Matsuda et al., 2010; Narendra 
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et al., 2010; Vives-Bauza et al., 2010; Koyano et al., 2014; Lazarou et al., 2015). The available 

data for the C. elegans orthologs PINK-1 and PDR-1 so far is limited since reliable assays to 

specifically monitor mitophagy do not exist (Springer et al., 2005; Palikaras et al., 2015; 

Cooper et al., 2017). Additionally, PINK- and Parkin- independent mitophagy pathways have 

been discovered that also lead to degradation of mitochondria via the autophagic machinery 

(Allen et al., 2013; Bhujabal et al., 2017; Villa et al., 2017; Di Rita et al., 2018). Various 

mitophagy receptors have been identified in mammalian systems, including NIX (Zhang and 

Ney, 2008; Zhang and Ney, 2009; Novak et al., 2010), BNIP3 (Zhang and Ney, 2009; Hanna 

et al., 2012) and FUNDC1 (Liu et al., 2012), the latter two of which have orthologs in C. 

elegans (Palikaras et al., 2015; Lim et al., 2019). 

2.8 The endosomal sorting complexes required for transport (ESCRT) 

Receptor-mediated endocytosis is a cellular transport mechanism targeting cargo to the 

lysosome for degradation. Thereby, the ESCRT plays a central role in the maturation of 

endosomes. Amino acids and lipids are transported into the cell from the extracellular space 

towards the lysosomal compartment in this manner. Upon arrival, the cargo binds to a receptor 

at the plasma membrane, leading to invagination of the membrane and ubiquitination of the 

receptor (Michelet et al., 2010; Christ et al., 2017) (Figure 9). 

Figure 9: Schematic overview of the assembly and disassembly of the endosomal sorting complexes 
required for transport (ESCRT). ESCRT-I, -II, -III are multimeric complexes each consisting of 4 or 
more proteins. MVB: Multivesicular body, ILV: Intraluminal vesicle. Schematic adapted from 
(Michelet and Legouis, 2012). 
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The ubiquitylated receptor acts as a signal to recruit the ESCRT. Subsequently, the four hetero-

multimeric ESCRT subcomplexes (ESCRT-0 – ESCRT-III) are assembling at the invaginated 

membrane in order to sort and pack the cargo into intraluminal vesicles, thereby forming 

multivesicular bodies (MVBs). Finally, the receptor is de-ubiquitylated and the ATPase VPS-

4VPS4 dissociates the whole complex. Subsequently, the generated MVBs are targeted for 

lysosomal degradation. Recently, apart from the canonical role in endocytosis, other functions 

of ESCRT in development and cellular signaling have been shown (Michelet et al., 2010; 

Christ et al., 2017). Moreover, depletion of either of the ESCRT subunits causes different 

defects and responses in mammals, flies, yeast and nematodes. While depletion of ESCRT 

components leads to a block in autophagy in mammals, flies and yeast due to its role in 

lysosomal fusion and closure of autophagosomes, respectively, it has been shown to induce 

autophagy in C. elegans (Filimonenko et al., 2007; Lee et al., 2007; Rusten et al., 2007; Tamai 

et al., 2007; Djeddi et al., 2012; Michelet and Legouis, 2012; Guo et al., 2014; Lefebvre et al., 

2018; Takahashi et al., 2018; Zhou et al., 2019). 

2.9 Inositol triphosphate (IP3) signaling 

The IP3 pathway processes signals from the extracellular space through an intracellular 

signaling cascade. Upon binding of certain substrates, such as hormones, growth factors or 

neurotransmitters to their receptors in the plasma membrane, phospholipase C (PLC) gets 

activated by GPCRs and hydrolyzes phosphatidylinositol 4,5-biphosphate (PIP2), thereby 

generating IP3 and diacylglycerol (DAG) (Berridge, 2009). Subsequently, these two second 

messengers mediate several cellular responses. Specifically, IP3 binds to the IP3 receptor (IP3R) 

at the ER, leading to the release of calcium from the ER into the cytosol, mitochondria and 

lysosomes (Kania et al., 2017). Interestingly, in mammals, calcium transfer into mitochondria 

has been shown to occur at ER-mitochondria contact sites (ERMCs) that harbor IP3R, as well 

as the voltage-dependent anion channel (VDAC) and the Mitofusins MFN1&2 (Raturi and 

Simmen, 2013; Marchi et al., 2014; Burgoyne et al., 2015). Moreover, spatial and temporal 

calcium oscillations have been shown to regulate many diverse processes, such as secretion, 

proliferation, fertility, metabolism and cell death (Decrock et al., 2013). Therefore, IP3 

signaling is versatile and controls many different aspects of cellular physiology. 
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3. Objectives

Mitochondrial membrane dynamics has been studied extensively over the past 20 years, but its 

role in the physiological context still remains largely unknown. How the bioenergetic state 

influences mitochondrial morphology, as well as the consequences of disrupted mitochondrial 

dynamics on development and mitochondrial homeostasis are currently poorly understood. 

Thus, we use Caenorhabditis elegans as a model to study the mitochondrial unfolded protein 

response (UPRmt) in animals with a block in mitochondrial fusion. Identification of modulators 

of this stress response, which acts to restore mitochondrial homeostasis and to adjust 

mitochondrial metabolism, may help to better understand the defects observed in mutants in 

which mitochondrial dynamics is blocked and to learn more about the UPRmt pathway itself. 

Therefore, we performed a genome-wide screen for modulators of the UPRmt response in 

mitochondrial fusion deficient mutants. 
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ABSTRACT 

Mitochondrial dynamics plays an important role in mitochondrial quality control and the 

adaptation of metabolic activity in response to environmental changes. The disruption of 

mitochondrial dynamics has detrimental consequences for mitochondrial and cellular 

homeostasis and leads to the activation of the mitochondrial unfolded protein response (UPRmt), 

a quality control mechanism that adjusts cellular metabolism and restores homeostasis. To 

identify genes involved in the induction of UPRmt in response to a block in mitochondrial 

fusion, we performed a genome-wide RNAi screen in Caenorhabditis elegans mutants lacking 

the gene fzo-1, which encodes the ortholog of mammalian Mitofusin, and identified 299 

suppressors and 86 enhancers. Approximately 90% of these 385 genes are conserved in humans, 

and one third of the conserved genes have been implicated in human disease. Many genes in 

our dataset have roles in developmental processes, which implies that mitochondrial function 

and the response to stress are defined during development and maintained throughout life. Our 

dataset primarily contains mitochondrial enhancers and non-mitochondrial suppressors of 

UPRmt, suggesting that the maintenance of mitochondrial homeostasis has evolved as a critical 

cellular function, which, when disrupted, can be compensated for by many different cellular 

processes. Analysis of the subsets of ‘non-mitochondrial’ enhancers and ‘mitochondrial’ 

suppressors suggests that organellar contact sites, especially between the ER and mitochondria, 

are of importance for mitochondrial homeostasis. In addition, we identified several genes 

involved in IP3 signaling that modulate UPRmt in fzo-1 mutants and found a potential link 

between pre-mRNA splicing and UPRmt activation. 

 (244/250 words) 
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INTRODUCTION 

Mitochondria are important for cellular adenosine triphosphate (ATP) production, iron-sulfur-

cluster biogenesis, lipid metabolism and apoptosis, and therefore, mitochondrial homeostasis is 

tightly regulated by several quality control mechanisms (Tatsuta and Langer, 2008; Kornmann, 

2014). Moreover, mitochondria are required to respond to environmental challenges, which are 

often accompanied by alterations in energy demand  (Youle and van der Bliek, 2012). 

Mitochondrial dynamics controls mitochondrial shape and -distribution, thus playing a central 

role in both mitochondrial homeostasis and the adjustment to changing energy demands (Yaffe, 

1999; van der Bliek et al., 2013). Dynamics of mitochondrial membranes is controlled by large 

guanosine triphosphate-binding proteins (GTPases) of the dynamin-like family, which are 

conserved from yeast to humans (Hales and Fuller, 1997; Otsuga et al., 1998; Smirnova et al., 

1998; Bleazard et al., 1999; Labrousse et al., 1999; Shepard and Yaffe, 1999; Chen et al., 2003; 

Santel et al., 2003; Ichishita et al., 2008; Kanazawa et al., 2008). In the nematode 

Caenorhabditis elegans, fusion of the outer and inner mitochondrial membrane (OMM and 

IMM) is facilitated by FZO-1MFN1,2 (Ichishita et al., 2008) and EAT-3OPA1 (Kanazawa et al., 

2008), respectively. Conversely, fission of the OMM and IMM is carried out by DRP-1DRP1 

(Labrousse et al., 1999), whose ortholog in Saccharomyces cerevisiae (Dnm1p) has been shown 

to form constricting spirals around mitochondria (Ingerman et al., 2005). The disruption of 

mitochondrial dynamics has detrimental consequences for mitochondrial and ultimately cellular 

homeostasis and is associated with several human diseases. Thus, mitochondrial homeostasis 

is controlled by several additional protective quality control mechanisms, including the 

mitochondrial unfolded protein response (UPRmt) and mitophagy (Chen and Chan, 2004; Youle 

and van der Bliek, 2012; van der Bliek et al., 2013; Kornmann, 2014). How these quality control 

mechanisms are coordinated with mitochondrial dynamics is not fully understood. Recently, 

disruption of mitochondrial dynamics has been shown to induce UPRmt (Kim and Sieburth, 

2018; Zhang et al., 2018; Rolland et al., 2019; Haeussler et al., 2020). UPRmt has been studied 

extensively in the past decade using genome-wide RNAi screens in C. elegans (Haynes et al., 

2007; Runkel et al., 2013; Bennett et al., 2014; Liu et al., 2014; Rolland et al., 2019). Upon 

mitochondrial stress and the concomitant decrease in mitochondrial membrane potential, the 

master regulator of UPRmt, ‘activating transcription factor associated with stress 1’ (ATFS-

1ATF4,5), instead of being imported into mitochondria, translocates to the nucleus, where it 

activates a broad transcriptional program (Haynes et al., 2010; Nargund et al., 2012; Rolland 

et al., 2019). UPRmt activation leads to the expression of a large set of cytoprotective genes 

including genes encoding chaperones (e.g. hsp-6mtHSP70 and hsp-60HSDP1, whose transcription is 
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commonly used to monitor UPRmt activation (Yoneda et al., 2004)) or proteases, and has been 

shown to promote mitochondrial biogenesis and coordinate cellular metabolism (Nargund et 

al., 2012; Nargund et al., 2015). (All genes that are specifically up- or downregulated upon 

induction of UPRmt are referred to as UPRmt effectors.) Moreover, UPRmt has been shown to 

act in a cell non-autonomous way, and once activated in a certain tissue can result in a systemic 

response (Durieux et al., 2011; Shao et al., 2016; Kim and Sieburth, 2018; Zhang et al., 2018; 

Kim and Sieburth, 2020). 

In this study, we performed a genome-wide RNAi screen to identify regulators of UPRmt in fzo-

1(tm1133) mutants and identified 299 suppressors and 86 enhancers. We analyzed this dataset 

using bioinformatic tools, such as GO enrichment analysis, gene network analysis and analysis 

of transcription factor binding sites in promotors of candidate genes. Furthermore, we 

determined the specificities of the candidates identified with respect to their ability to modulate 

UPRmt using secondary screens. Finally, we identified the C. elegans ortholog of the 

mammalian genes Miga1 and Miga2, which have been implicated in mitochondrial fusion, and 

demonstrate that the loss of the C. elegans ortholog leads to mitochondrial fragmentation and 

the induction of UPRmt. 
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METHODS 

General C. elegans methods and strains 

C. elegans strains were cultured as previously described (Brenner, 1974). Bristol N2 was used

as the wild-type strain. All experiments were carried out at 20°C and all strains were maintained 

at 20°C. The following alleles and transgenes were used: LGI: spg-7(ad2249) (Zubovych et al., 

2010); LGII: fzo-1(tm1133) (National BioResource Project); eat-3(ad426) (Kanazawa et al., 

2008); LGIV: drp-1(tm1108) (National BioResource Project); LGV: miga-1(tm3621) (National 

BioResource Project). Additionally, the following multi-copy integrated transgenes were used: 

zcIs9 (Phsp-60::gfp::unc-54 3’UTR), zcIs13 (Phsp-6::gfp::unc-54 3’UTR) (Yoneda et al., 2004); 

bcIs78 (Pmyo-3::gfpmt) (Rolland et al., 2013). 

RNA-mediated interference 

RNAi by feeding was performed using the updated ‘Ahringer’ RNAi library (Kamath and 

Ahringer, 2003), which covers around ~87% of the currently annotated C. elegans protein 

coding genes. For the primary and secondary screens with the multi-copy zcIs13 transgene in 

the fzo-1(tm1133), drp-1(tm1108), eat-3(ad426) or spg-7(ad2249) background, RNAi clones 

were cultured overnight in 100 µL of LB containing carbenicillin (100 μg/mL) in a 96 well 

plate format at 37°C and 200 rpm. 10 µL of each RNAi culture was used to seed one well of a 

24 well RNAi plate containing 0.25% Lactose (w/v) as described previously (Rolland et al., 

2019). The plates were incubated at 20°C in the dark. 24 hours later, 3 L4 larvae of all strains 

carrying the fzo-1(tm1133) and spg-7(ad2249) allele, and 2 L4 larvae of drp-1(tm1108) were 

transferred to each well of the RNAi plates. The F1 generation was scored by eye for 

fluorescence intensity of the Phsp-6 mtHSP70gfp reporter after 4-12 days and compared to worms 

of the respective genotype on the negative control sorb-1(RNAi). 

Screening procedure and sequencing of RNAi-clones 

For the primary screen, all RNAi clones of the library were tested once. Bacterial RNAi clones 

that enhanced or suppressed the Phsp-6 mtHSP70gfp reporter were picked from the wells and 

inoculated in 100 µL of LB containing carbenicillin (100 μg/mL) in a 96 well plate format and 

cultured overnight at 37°C and 200 rpm. Glycerol stocks of these overnight cultures were 

prepared the following day by adding 100 µL of LB containing 30% glycerol and frozen at -

80°C. After all RNAi clones of the library were tested, the 657 identified candidates were re-
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tested at least three times in duplicates for verification of the observed phenotype. The RNAi 

clones that reproduced the suppression or enhancement phenotype at least three out of six times 

were considered as verified candidates. 

The 385 verified RNAi clones were sequenced. For this, colony PCRs were performed directly 

from the glycerol stocks using the primers L4440F and L4440R. To remove excessive primers 

and nucleotides, PCR products were treated with ExoSAP-IT™ (Applied Biosystems, Cat.no. 

78200.200.UL) according to manufacturer’s protocol. After PCR clean-up, samples were sent 

for sequencing using L4440F primer. 

L4440 F 5’-TGGATAACCGTATTACCGCC-3’ 

L4440 R 5’-GTTTTCCCAGTCACGACGTT-3’ 

According to our sequencing results, seven of the RNAi clones covered two genes. These are 

indicated in column B (‘Sequence’) in Table S1. These RNAi clones were assigned to the GO 

group of the gene, which was predominantly covered by our sequencing result and all 

subsequent analysis were carried out using this gene. 

Subsequently, the verified and sequenced clones were rescreened in technical duplicates in 

three independent experiments in the secondary screens in drp-1(tm1108), eat-3(ad426) and 

spg-7(ad2249) mutant backgrounds.  

Identification of human orthologs 

Human orthologs and OMIM data (Amberger et al., 2018) were extracted from wormbase.org 

using https://intermine.wormbase.org (Harris et al., 2019). Human orthologs were then 

manually verified using ‘alliancegenome.org’ (The Alliance of Genome Resources, 2019), 

‘orthodb.org’ (Kriventseva et al., 2018), ‘ensembl.org’ (Hunt et al., 2018) and ‘uniprot.org’ 

(Consortium, 2018).  

Prediction of mitochondrial localization and mitochondrial targeting sequences 

First, https://intermine.wormbase.org (Harris et al., 2019) was used to identify all candidate 

genes, which are related to any mitochondrial processes/pathways. To that end, we extracted 

all 698 genes currently associated with at least one of the 404 GO-terms containing ‘mitochond’ 

and checked how many of our 385 candidate genes are among them. Additionally, we used the 

online platform ‘MitoProt’ (https://ihg.gsf.de/ihg/mitoprot.html) (Claros and Vincens, 1996) 

for computational prediction of mitochondrial targeting sequences. Proteins for which the 

prediction of a mitochondrial targeting sequence was ≥0.5 were considered to be mitochondrial. 
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Gene ontology enrichment analysis using DAVID 

In search of enriched gene ontology terms, we used the DAVID tool (version 6.8 (Huang et al., 

2008, 2009)) and ran the list of candidates against all genes of the C. elegans genome as a 

background list. Using an EASE score from the modified fisher-exact test, the clustering 

algorithm groups genes based on their association in GO categories and assigns a significance 

value to the group (Huang et al., 2007). The clustered groups were then plotted using modified 

functions from the GO plot package (R version 1.0.2 (Walter et al., 2015)). 

Transcription factor enrichment analysis 

We searched for enriched transcription factors using the tool g:Profiler (a tool for functional 

enrichment analysis using over-representation (Raudvere et al., 2019)). The two input lists 

(suppressors and enhancers of fzo-1(tm1133)-induced UPRmt) with WBGene-IDs of the 

identified candidate genes were used to search in the Transfac database (annotations: 

TRANSFAC Release 2019.1 classes: v2 (Knüppel et al., 1994; Matys et al., 2006)). 

Construction of gene networks of FZO-1 and MFN1/2, and the UPRmt 

The C. elegans interactomes were compiled for FZO-1 or all 16 genes that are currently 

associated with the GO-term ‘mitochondrial unfolded protein response’ (GO:0034514) from 

scientific literature (Durinck et al., 2009; Simonis et al., 2009) and databases such as mentha 

(Calderone et al., 2013), BioGRID3.5 (Oughtred et al., 2018), IntAct (Orchard et al., 2014) and 

STRING (Szklarczyk et al., 2018) (STRING was only used to build the FZOome). The human 

orthologs of those genes were identified and were searched as well. Whenever possible, the 

interaction partners were converted back to C. elegans genes using biomaRt (Durinck et al., 

2009) and available scientific literature (Shaye and Greenwald, 2011; Kim et al., 2018). The 

complete list of interactions was uploaded to cytoscape (v.3.7.2 (Shannon et al., 2003)) and a 

network was calculated, highlighting both enhancers and suppressors from the screening 

results. 

Image acquisition, processing and analysis 

For each mutant (Figure S1), 10-20 animals were immobilized with M9 buffer containing 150 

mM sodium azide on 2% agarose pads and imaged using a Leica GFP dissecting microscope 

(M205 FA) and Leica Application Suite software (3.2.0.9652). 

32

Chapter I



9 

Mitochondrial morphology was assessed in a strain carrying bcIs78 (Pmyo-3::gfpmt) using a Zeiss 

Axioskop 2 with a 63x objective and MetaMorph software (Molecular Devices). 
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RESULTS & DISCUSSION 

Genome-wide RNAi screen for suppressors and enhancers of fzo-1(tm1133)-induced 

UPRmt identifies highly conserved set of genes with relevance to human health 

The disruption of mitochondrial dynamics in C. elegans induces the mitochondrial unfolded 

protein response (UPRmt) (Kim and Sieburth, 2018; Zhang et al., 2018; Rolland et al., 2019; 

Haeussler et al., 2020). To identify genes affecting mitochondrial homeostasis in animals with 

defects in mitochondrial dynamics, we used a loss-of-function mutation of fzo-1MFN1,2, tm1133, 

(National BioResource Project) to induce the UPRmt reporter Phsp-6 mtHSP70gfp (zcIs13) and 

screened the C. elegans genome for modifiers. To that end, we used RNA-mediated interference 

(RNAi) and targeted ~87% of the currently annotated protein coding genes (Kamath and 

Ahringer, 2003) (Figure 1A). The moderate induction of the Phsp-6 mtHSP70gfp reporter in the fzo-

1(tm1133) background allowed the identification of both suppressors and enhancers of the 

response. Using a protocol in which the F1 generation is scored for Phsp-6 mtHSP70gfp expression 

levels in the fourth larval stage of development (L4), we initially identified 657 candidate genes 

of which 385 reproduced. Of the 385 candidates identified, 299 act as suppressors and 86 as 

enhancers (Figure 1B and Table S1). In order to assess whether the 86 identified enhancers are 

specific to the fzo-1(tm1133) background or if their depletion induces UPRmt also in the absence 

of mitochondrial stress, we knocked them down in a wild-type background and tested for 

induction of the Phsp-6 mtHSP70gfp reporter. All except three genes (copd-1ARCN1, F25H9.6PPCDC, 

F32A7.4METTL17) induce Phsp-6 mtHSP70gfp expression when knocked-down in wild-type animals, 

suggesting that the induction of UPRmt by depletion of these candidates is independent of the 

loss of fzo-1. (Candidates that  encode mitochondrial proteins and that induce UPRmt in a wild-

type background upon knock-down were included in a recent publication, which reported the 

systematic identification of mitochondrial inducers of UPRmt (Rolland et al., 2019)).  

Among the 299 suppressors, only 25 (8%) have previously been found to suppress UPRmt 

induced by other means upon knock-down (Haynes et al., 2007; Runkel et al., 2013; Liu et al., 

2014). Similarly, among the 86 enhancers, only 15 (17%) have previously been shown to induce 

UPRmt upon knock-down (indicated ‘previously identified’ in the ‘overview’ sheet of Table 

S1). This may be due to different genetic backgrounds and to differences in RNAi-protocols. 

Moreover, false negatives in RNAi screens have been estimated to vary between 10% and 30%, 

even if the same protocol is used by the same laboratory (Simmer et al., 2003).  

Using ‘alliancegenome.org’ (The Alliance of Genome Resources, 2019), ‘orthodb.org’ 

(Kriventseva et al., 2018), ‘ensembl.org’ (Hunt et al., 2018), ‘uniprot.org’ (Consortium, 2018) 
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and ‘wormbase.org’ (Harris et al., 2019) databases, we found that approximately 90% of the 

suppressors and enhancers (348) have at least one ortholog in humans (indicated ‘Human 

ortholog’ in the ‘overview’ sheet of Table S1). For comparison, the overall conservation of 

genes from C. elegans to humans is only about 41% (Shaye and Greenwald, 2011; Kim et al., 

2018). Moreover, we found that the orthologs of 36% (126) of the conserved candidates have 

previously been associated with human disease and are listed in the ‘Online Mendelian 

Inheritance in Man’ database (Amberger et al., 2018) (indicated ‘OMIM’ in the ‘overview’ and 

‘OMIM’ sheet of Table S1). In summary, we identified a set of predominantly conserved genes, 

many of them relevant to human health, which when knocked-down affect mitochondrial 

homeostasis in mutants with defects in mitochondrial fusion. 

Figure 1: Overview of genome-wide RNAi screen for suppressors and enhancers of fzo-

1(tm1133)-induced UPRmt. (A) Schematic overview of the RNAi screening procedure using 

the RNAi feeding library (Kamath and Ahringer, 2003) in fzo-1(tm1133) mutants that express 

the UPRmt reporter Phsp-6 mtHSP70gfp (zcIs13) . The moderate induction of the reporter in the fzo-

1(tm1133) background allowed screening for both suppressors and enhancers of the response. 

(B) The screen resulted in identification of 299 suppressors and 86 enhancers of fzo-1(tm1133)-

induced UPRmt, which were sorted into categories that we defined according to their function.

ETC: electron transport chain.
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Genes with functions in development, receptor-mediated endocytosis and metabolism 

modulate UPRmt signaling 

In order to obtain an overview of the type of processes that affect fzo-1(tm1133)-induced UPRmt, 

we analyzed the gene ontology (GO) terms of all 385 candidates, sorted them into ‘functional 

groups’ (Figure 1B) and performed a clustered gene enrichment analysis using DAVID (Huang 

et al., 2008, 2009) (Table S2 and Figure 2). (Thirty-one suppressors and enhancers could not 

be assigned to functional groups since these genes are uncharacterized in C. elegans and/or lack 

orthologs in humans. For this reason, they were assigned to the functional group 

‘uncharacterized’ (Figure 1B)). 
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Figure 2: Gene ontology enrichment analysis of suppressors and enhancers of fzo-

1(tm1133)-induced UPRmt using DAVID. (A) Results of the clustered gene ontology 

enrichment analysis of suppressors of fzo-1(tm1133)-induced UPRmt using DAVID (Huang et 

al., 2008, 2009). (B) Results of the clustered gene ontology enrichment analysis of enhancers 

of fzo-1(tm1133)-induced UPRmt using DAVID. (A) & (B) Statistically significant (P >0.05) 

enriched GO-terms, except the nematode specific GO-terms, of fzo-1(tm1133)-induced UPRmt 

are depicted. Circle size correlates with the number of genes associated with a specific GO-

term. 

In the clustered gene enrichment analysis, we found that the majority of both suppressors and 

enhancers are associated with at least one of the following GO-terms: ‘nematode larval 

development’, ‘embryo development ending in birth or egg hatching’ or ‘reproduction’ (Table 

S2). It has been shown that reducing the functions of some genes encoding components of the 

ETC (e.g. cox-5B(RNAi)) in specific tissues and at specific times during development can lead 

to both systemic activation of UPRmt and longevity (Dillin et al., 2002; Rea et al., 2007; Durieux 

et al., 2011). This indicates that the activity levels of mitochondria in an individual animal are 

‘set’ at a specific developmental stage and, once set, are maintained throughout development 

and adult life. Our results demonstrate that disrupting development compromises this process, 

thereby affecting an animal’s ability to cope with mitochondrial stress and to respond to UPRmt 

activation, which is expected to indirectly affect processes such as its lifespan. In support of 

this notion, we found that approximately 20% of the suppressors carry the GO-term 

‘determination of adult lifespan’.  

Among the suppressors, the GO-term ‘receptor-mediated endocytosis’ is enriched (Figure 2A 

and Table S2). It contains many genes with roles in vesicular trafficking and vesicle budding. 

Genes required for vesicular trafficking have been shown to affect mitochondrial morphology 

and homeostasis when inactivated, and it has been proposed that this is the result of altered 

contact sites between organelles and altered lipid transfer into mitochondria (Altmann and 

Westermann, 2005). Furthermore, we recently demonstrated that approximately half of the 

candidates in this GO-category are negative regulators of autophagy. Upon knock-down, these 

genes suppress fzo-1(tm1133)-induced UPRmt most probably by inducing autophagy thereby 

causing changes in lipid metabolism (Haeussler et al., 2020). Moreover, many cellular signaling 

pathways originate at the plasma membrane and, thus, are dependent on endocytosis (Sorkin 

and von Zastrow, 2009; Di Fiore and von Zastrow, 2014). Therefore, we speculate that 

depletion of the genes associated with the GO-term ‘receptor mediated endocytosis’ may either 
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cause changes in lipid metabolism thereby suppressing UPRmt or disrupt cell non-autonomous 

UPRmt signaling.  

The functional group ‘ribosome biogenesis’ contains 78 (26%) of the suppressors (Figure 1B) 

and includes both small- and large ribosomal subunits, as well as proteins with roles in the 

maturation or transport of ribosomal subunits and rRNAs. Accordingly, in all three GO-

domains (Biological Process, Cellular Compartment, Molecular Function), we found that 

several GO-terms related to the ribosome were significantly enriched (Figure 2A and Table S2). 

(The GO-term ‘apoptotic process’ also contains many ribosomal subunits leading to its 

enrichment in our analysis.) 

Moreover, we assigned a substantial part of the suppressors to the groups ‘RNA processing’ 

(38), ‘transcription’ (35) and ‘translation’ (27) (Figure 1B). Hence, we found five GO-terms 

related to translation-, two to transcription- and one to RNA-related processes to be enriched in 

a statistically significant manner in the GO enrichment analysis (Figure 2A and Table S2). 

These results raise the question whether knock-down of the candidates involved in cytosolic 

translation specifically suppresses UPRmt or simply reduces the expression of the Phsp-6 

mtHSP70gfp reporter. We recently showed that knock-down of the cytosolic tRNA synthetase 

hars-1HARS1, which we found to suppress Phsp-6 mtHSP70gfp expression in fzo-1(tm1133) and 

which presumably also compromises cytosolic translation, results in reduced expression of a 

control reporter, Pges-1 GES2gfp (Haeussler et al., 2020). Therefore, we cannot exclude the 

possibility that the knock-down of candidates related to the functional groups of transcription, 

RNA processing, ribosome biogenesis and translation may, at least to some extent, interfere 

with reporter expression per se. 

Among the enhancers, we assigned most candidates to the functional groups ‘metabolism’ and 

‘mitochondrial ribosome biogenesis’ as well as ‘cellular trafficking’, ‘mitochondrial 

translation’ and ‘ETC assembly’ (Figure 1B). Accordingly, GO analysis of the enhancers shows 

that the cellular compartments ‘mitochondrion’, ‘mitochondrial small ribosomal subunit’, 

‘mitochondrial large ribosomal subunit’, ‘mitochondrial inner membrane’, ‘mitochondrial 

matrix’ and ‘ribosome’ are enriched (Figure 2B and Table S2). In addition, the biological 

processes ‘translation’ (which also includes ‘mitochondrial translation’), ‘tricarboxylic acid 

cycle’ and ‘receptor-mediated endocytosis’ are enriched as is the molecular function ‘structural 

constituent of ribosome’ (Figure 2B and Table S2). Among the enhancers carrying the GO-term 

‘receptor-mediated endocytosis’, we identified many subunits of the mitochondrial ribosome 

and genes required for mitochondrial translation, which are most likely misannotated and 
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therefore led to enrichment of this GO-term. In summary, we showed that disrupting 

mitochondrial translation and metabolism induces UPRmt in fzo-1(tm1133). Disruption of these 

processes has also previously been shown to induce UPRmt in wild type (Durieux et al., 2011; 

Houtkooper et al., 2013). Therefore, we conclude that reducing mitochondrial function induces 

UPRmt independently of the genetic background. 

In summary, the GO enrichment analysis revealed that depletion of the majority of candidates 

in our dataset may modulate UPRmt due to their role in development. Furthermore, we propose 

that the suppressors with roles in endocytosis modulate UPRmt signaling indirectly and 

speculate that cellular signaling and/or alterations in organellar contact sites may influence 

mitochondrial metabolism and hence, UPRmt signaling. Finally, we find disruption of 

mitochondrial metabolism and translation to robustly enhance UPRmt signaling in fzo-

1(tm1133). 

Mitochondrial fitness balances cellular homeostasis 

Next, we determined which fraction of the identified enhancers and suppressors encode proteins 

that have a mitochondrial function or localize to mitochondria. We extracted all 698 genes that 

are associated with at least one of the 404 GO-terms containing ‘mitochond’ using the 

‘WormMine’ database (https://intermine.wormbase.org) (Harris et al., 2019), and then 

determined how many of our candidate genes are associated with any of these GO-terms. Using 

this approach, we identified 11 suppressors and 59 enhancers that encode proteins that localize 

to mitochondria or play a role in mitochondrial metabolism and dynamics, respectively 

(indicated ‘GO mitochond’ in ‘Overview’ and ‘Mitochondrial’ sheet of Table S1). Next, we 

used the online platform ‘MitoProt’ (https://ihg.gsf.de/ihg/mitoprot.html) (Claros and Vincens, 

1996) for computational prediction of mitochondrial targeting sequences and identified an 

additional 5 suppressors and 14 enhancers that are predicted to localize to mitochondria (cut-

off value ≥ 0.5) (indicated ‘MitoProt prediction’ in ‘Mitochondrial’ sheet of Table S1). Third, 

by literature searches, we found that the orthologs of 3 enhancers localize to mitochondria 

(Shafqat et al., 2003; Spaan et al., 2005; Cambier et al., 2012). In summary, 76 out of 86 (88%) 

enhancers and 16 out of 299 (5%) suppressors encode proteins that have a mitochondrial 

function. This suggests that only few processes exist outside of mitochondria that can perturb 

mitochondrial homeostasis when disrupted. Conversely, many processes and mechanisms exist 

outside of mitochondria that can compensate for mitochondrial dysfunction, thereby ensuring 

mitochondrial and consequently cellular homeostasis. 
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Among the 10 ‘non-mitochondrial’ enhancers of UPRmt are three genes (F29B9.8, Y61A9LA.11, 

C25H3.10) with yet unknown function, which lack orthologs in other systems. ORC-1ORC1 is a 

component of the origin recognition complex and plays a role in DNA replication (Gavin et al., 

1995; Ohta et al., 2003; Tatsumi et al., 2003). The disruption of DNA replication or cell cycle 

progression has previously not been reported to lead to UPRmt induction. We speculate that 

disruption of DNA replication leads to developmental defects and therefore induces UPRmt. 

F25H9.6PPCDC is the C. elegans ortholog of phosphopantothenoylcysteine decarboxylase, an 

enzyme required for biosynthesis of coenzyme A (CoA) (Daugherty et al., 2002). Thus, knock-

down of F25H9.6PPCDC may interfere with critical biosynthetic and metabolic pathways 

(including the TCA cycle) and therefore enhance UPRmt. NHR-209HNF4A,G is orthologous to 

Hepatocyte Nuclear Factor 4α (HNF4A) and belongs to the family of nuclear hormone 

receptors, a class of cofactor and ligand-inducible transcription factors (TFs) that regulate 

various cellular processes, including metabolism, development and homeostasis (Aranda and 

Pascual, 2001; Bolotin et al., 2010). Interestingly, long-chain fatty acids are ligands of HNF4A 

and, depending on their chain length and degree of saturation, activate or repress the 

transcriptional activity of HNF4A (Hertz et al., 1998; Dhe-Paganon et al., 2002; Wisely et al., 

2002; Duda et al., 2004). Furthermore, HNF4α activity has been shown to be required for ß-

oxidation of fatty acids both in mice and Drosophila melanogaster (Palanker et al., 2009; Chen 

et al., 2020). Thus, NHR-209HNF4A,G may have a similar role in C. elegans and act as a metabolic 

sensor, which when deactivated, enhances UPRmt in fzo-1(tm1133). Moreover, we identified 

cpna-3CPNE5,8,9, an ortholog of mammalian copine family members, a class of calcium 

dependent phospholipid binding proteins with roles in intracellular signaling and membrane 

trafficking (Creutz et al., 1998; Tomsig et al., 2003; Tomsig et al., 2004; Ramsey et al., 2008). 

Previously, another gene of the copine family, gem-4CPNE8, has been shown to be upregulated 

upon UPRmt activation (Nargund et al., 2012). Therefore, we speculate that signaling via copine 

family members may be important for UPRmt regulation. Another non-mitochondrial enhancer, 

copd-1ARCN1, encodes a protein orthologous to the delta subunit of coatomer in S. cerevisiae 

and humans (RET2 and ARCN1, respectively), which is involved in the formation of coat 

protein complex I (COPI) vesicles. COPI vesicles play a central role in the secretory pathway 

and are required for the retrieval of lipids and proteins from the Golgi apparatus and the 

subsequent retrograde transport of these lipids and proteins to the ER (Lee et al., 2004; Beck et 

al., 2009). Furthermore, the trafficking to their final destination of most non-mitochondrial and 

non-peroxisomal transmembrane proteins, as well as proteins required for the release of 

neurotransmitters, such as SNARE proteins, is dependent on COPI-mediated transport (Beck et 
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al., 2009). Thus, disruption of the secretory pathway affects many intra- and intercellular 

signaling pathways, including the Ras and TOR signaling pathways, as well as signaling via G-

protein-coupled receptors (GPCRs) and receptor tyrosine kinases (Farhan and Rabouille, 2011). 

Moreover, disruption of the retrograde transport system has been shown to lead to erroneous 

secretion of ER resident proteins (e.g. ER chaperones) and, consequently, to the activation of 

UPR in the ER (UPRER) (Aguilera-Romero  et al., 2008; Izumi et al., 2016). Therefore, we 

speculate that the enhancement of UPRmt induction in fzo-1(tm1133) animals upon copd-

1(RNAi) may be due to alterations in one of the above-mentioned signaling pathways. This 

notion is supported by the finding that phospholipase C (PLC-1PLCE1), a GPCR associated 

enzyme, is among the non-mitochondrial enhancers, as well as srh-40 (serpentine receptor class 

H), which is predicted to encode a GPCR. Taken together, we identified many genes among the 

‘non-mitochondrial’ enhancers, which regulate intra- and intercellular signaling cascades, and 

we speculate that these may play a role in signaling of UPRmt, both in a cell autonomous and 

cell non-autonomous fashion. In addition, we identified ‘non-mitochondrial’ enhancers that 

directly regulate metabolic homeostasis and, thus, enhance UPRmt in fzo-1(tm1133) mutants. 

Among the 16 identified ‘mitochondrial suppressors’ of UPRmt are candidates, such as TFG-

1TFG and GBF-1GBF1, that encode proteins that have been shown to associate with mitochondria 

but also other organelles. GBF-1GBF1 is a guanine nucleotide exchange factor (GEF) for the 

small GTPase ARF-1.2ARF1, which in yeast recruits ARF-1.2ARF1,3 to ER-mitochondria contact 

sites (Ackema et al., 2014). Depletion of GBF-1GBF1 leads to altered ARF-1.2ARF1,3 localization 

and changes in mitochondrial morphology both in yeast and C. elegans and this appears to be 

independent of their roles in endosomal transport (Ackema et al., 2014). Ackema and 

colleagues observed an increase in mitochondrial connectivity upon GBF-1GBF1 depletion, 

similar to that observed upon knock-down of miro-1MIRO1 and vdac-1VDAC, both of which 

encode proteins that also localize to ER-mitochondria contact sites. However, the alterations in 

mitochondrial morphology of FZO-1MFN1,2 depleted animals were shown to be epistatic to the 

changes in mitochondrial morphology observed upon gbf-1(RNAi) and arf-1.2(RNAi). 

Therefore, the suppression of UPRmt observed in fzo-1(tm1133) animals upon gbf-1(RNAi) may 

not be due to a rescue of the mitochondrial morphology defect but rather be the consequence of 

changes in ER-mitochondria contact sites. This highlights the importance of organellar contact 

sites for the maintenance of mitochondrial and consequently cellular homeostasis. Furthermore, 

we identified TFG-1TFG, a component of the secretory pathway via COPII vesicles (Witte et al., 

2011), as a suppressor of fzo-1(tm1133)-induced UPRmt. COPII vesicles transport newly 

synthesized proteins and lipids from specialized ER zones, so called ER exit sites (ERES), to 
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the Golgi apparatus (Budnik and Stephens, 2009; Kurokawa and Nakano, 2018). Similar to 

what we propose for copd-1(RNAi) (see above), we speculate that disruption of the secretory 

pathway may lead to alterations in cellular signaling, ER-mitochondria contact sites and, 

depending on the context, either to suppression or enhancement of UPRmt. Taken together, we 

demonstrate that the perturbation of primarily mitochondrial processes leads to the 

enhancement of UPRmt. However, the identification of non-mitochondrial enhancers 

demonstrates that disruption of processes taking place outside of mitochondria can also 

compromise mitochondrial function and activate or enhance UPRmt. Alterations in cellular 

signaling pathways and/or organellar contact sites may play a role in this respect. Moreover, 

we find that the majority of suppressors of fzo-1(tm1133)-induced UPRmt are non-

mitochondrial, suggesting that many cellular pathways outside of mitochondria exist that can 

compensate for mitochondrial stress and, hence, ensure mitochondrial homeostasis. In line with 

this notion, we identified a few ‘mitochondrial suppressors’, most of which are involved in the 

maintenance of contacts to other organelles, especially the ER. 

Defects in mitochondrial fusion and fission are suppressed and enhanced by the same 

pathways 

In order to define the specificity of the 299 suppressors and 86 enhancers, we carried out 

secondary screens. To identify general modifiers of UPRmt, we rescreened the candidates in the 

background of spg-7(ad2249), which induces UPRmt (Figure S1). spg-7AFG3L2 encodes a 

mitochondrial matrix AAA-protease, which induces UPRmt when depleted and which is 

commonly used as a positive control for UPRmt activation (Yoneda et al., 2004; Haynes et al., 

2007; Haynes et al., 2010). To identify genes in our dataset that specifically modify UPRmt 

induced by defects in mitochondrial membrane fusion, we rescreened all candidates in the eat-

3(ad426) background, in which IMM fusion is blocked. Finally, to identify genes that may 

modulate UPRmt induced by defects in mitochondrial dynamics, we rescreened all candidates 

in the drp-1(tm1108) background, in which mitochondrial fission is blocked. In the drp-

1(tm1108) background, of the 385 candidates, 291 suppress and 59 enhance. In the eat-3(ad426) 

background, 242 suppress and, 49 enhance. Finally, in the spg-7(ad2249) background, 181 

suppress and 54 enhance (Table S1). (Of note, there is an inverse correlation between the level 

of Phsp-6 mtHSP70gfp expression in the above-mentioned mutant background and the number of 

candidates that reproduce. Hence, the level of reporter expression may correlate with the 

number of false negatives in a given dataset of the secondary screens, for both suppressors and 
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enhancers.) Since more suppressors reproduced in drp-1(tm1108) and eat-3(ad426) compared 

to spg-7(ad2249), we conclude that defects in mitochondrial dynamics, to some extent, are 

suppressed or enhanced by the same pathways. Moreover, the suppressors of fzo-1(tm1133)-

induced UPRmt that were sorted into the functional groups ‘ribosome biogenesis’, ‘RNA 

processing’ and ‘translation’, reproduced comparably well in all secondary screens. Thus, 

attenuation of cytosolic translation may either be a general mechanism to suppress UPRmt or, 

as discussed above, interfere with reporter expression. Among the enhancers, genes that sorted 

into the functional groups ‘ETC assembly factors’, ‘mitochondrial ribosome biogenesis’ and 

‘mitochondrial translation’ showed the highest overlap among the secondary screens (Table 

S1), which demonstrates that disruption of mitochondrial translation robustly enhances UPRmt, 

independent of genetic background.  

Twelve candidates that suppressed UPRmt in the primary screen using fzo-1(tm1133), enhanced 

UPRmt in one or more of the secondary screens. Conversely, ten enhancers of fzo-1(tm1133)-

induced UPRmt suppress UPRmt in at least one of the mutants in the secondary screens (listed 

in ‘opposing UPRmt phenotypes’ sheet in Table S1). For example, knock-down of icd-1βNAC 

suppresses Phsp-6 mtHSP70gfp in all mitochondrial dynamics-related backgrounds, but enhances 

spg-7(ad22449)-induced UPRmt. Knock-down of icd-1βNAC in C. elegans has been reported to 

induce UPRER in wild-type embryos (Arsenovic et al., 2012). Furthermore, icd-1βNAC has been 

described as a cytosolic stress sensor, which in the absence of stress associates with ribosomes 

to promote cytosolic translation, and which acts as a chaperone in the cytosol upon heat stress 

(Kirstein-Miles et al., 2013). We recently showed that icd-1βNAC is a negative regulator of 

autophagy and that increased autophagic flux fuels mitochondria with certain triacylglycerols, 

thereby suppressing UPRmt in fzo-1(tm1133) and drp-1(tm1108) mutants (Haeussler et al., 

2020). Thus, blocking mitochondrial dynamics may reduce the flux of lipids into mitochondria, 

which can be compensated for by the induction of autophagy and we speculate that this 

mechanism may also apply to eat-3(ad426) mutants. Conversely, we speculate that defects in 

mitochondrial homeostasis induced by a point mutation in spg-7, may exert stress to the cytosol 

and that this is normally compensated for by factors, such as icd-1βNAC. Knocking-down icd-

1βNAC may therefore increase cytosolic stress, which in turn enhances UPRmt in spg-7(ad2249) 

mutants. Taking the candidates into account that have opposing UPRmt phenotypes in the 

secondary screens, 95% of the suppressors and 66% of the enhancers reproduce in drp-

1(tm1108), while 79% of the suppressors and 57% of the enhancers reproduce in eat-3(ad426). 

We found the lowest overlap of candidate genes in spg-7(ad2249) mutants, with 59% of the 

suppressors and 60% of the enhancers reproducing in this background. Taken together, the 
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results of the secondary screens show that there are candidates that, when depleted, act to 

influence UPRmt signaling in general whereas others are specific to a certain type of UPRmt 

induction, such as the disruption of mitochondrial dynamics.  

Transcription factor enrichment analysis identifies factors with roles in development, 

metabolism and oxidative stress response 

Next, we identified TF binding sites in the promoters of our candidates using ChIP-seq datasets 

from the modENCODE project (Celniker et al., 2009) in order to test for enrichment of TFs 

that bind to these sites. To that end, we used g:Profiler, a tool for functional enrichment analysis 

using over-representation (Raudvere et al., 2019), which utilizes TRANSFAC resources 

(Knüppel et al., 1994; Matys et al., 2006). Using this approach, we found 15 TFs to be enriched 

in a statistically significant manner. Ten of these TFs only bind promotor regions of suppressors 

(7) or enhancers (3) (‘suppressor- or enhancer specific’). The remaining five TFs bind to

promotor regions of both suppressors and enhancers (‘shared’) (Figure 3 and Table S3). The 

‘shared’ TFs have previously been implicated in cell fate determination or developmental 

timing (Figure 3 and Table S3). Five out of seven ‘suppressor specific’ TFs have been shown 

to exclusively control developmental processes. The remaining two ‘suppressor-specific’ TFs 

are ELT-3GATA3,4 and HLH-11TFAP4, which have been shown to play a role in development, 

ageing and the response to oxidative stress (Gilleard et al., 1999; Budovskaya et al., 2008; Hu 

et al., 2017) and to act as a dietary sensor that regulates metabolic gene expression, respectively 

(Soo-Ung et al., 2009; Watson et al., 2013). 
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Figure 3: Enrichment analysis of transcription factors binding to promotors of candidate 

genes that suppress or enhance fzo-1(tm1133)-induced UPRmt. (A) Transcription factor (TF) 

binding sites were identified using the modENCODE database (Celniker et al., 2009) and 

enrichment analysis was performed separately for suppressors and enhancers of fzo-1(tm1133)-

induced UPRmt using g:profiler (Knüppel et al., 1994; Raudvere et al., 2019). TFs that are 

statistically enriched among the candidate genes are shown. References: [1] (Grove et al., 

2009), [2] (Hallam et al., 2000), [3] (Horn et al., 2014), [4] (Huang et al., 2014), [5] (Armakola 

and Ruvkun, 2019), [6] (Ceol and Horvitz, 2001), [7] (Garbe et al., 2004), [8] (Chi and Reinke, 

2006), [9] (Miller et al., 2016), [10] (Baugh et al., 2005), [11] (Maduro et al., 2005), [12] (Lei 

et al., 2009), [13] (Schwarz et al., 2012), [14] (Gilleard et al., 1999), [15] (Budovskaya et al., 

2008), [16] (Hu et al., 2017), [17] (Soo-Ung et al., 2009), [18] (Watson et al., 2013), [19] (An 

and Blackwell, 2003), [20] (An et al., 2005), [21] (Inoue et al., 2005), [22] (Nargund et al., 
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2012), [23] (Nargund et al., 2015), [24] (Kim and Sieburth, 2018), [25] (Wu et al., 2018) [26] 

(Neves and Priess, 2005), [27] (McMiller et al., 2007), [28] (Quach et al., 2013), [29] (Ahringer, 

1996), [30] (Esmaeili et al., 2002), [31] (Pocock et al., 2004), [32] (Jacquemin et al., 2003), 

[33] (Furuno et al., 2008), [34] (Klimova et al., 2015), [35] (Ambros and Horvitz, 1984), [36]

(Chang et al., 2003), [37] (Uchida et al., 2003), [38] (Etchberger et al., 2007), [39] (Rahe and 

Hobert, 2019), [40] (Huang et al., 1995), [41] (Wilanowski et al., 2002), [42] (Venkatesan et 

al., 2003), [43] (Pradel et al., 2007), [44] (Kim et al., 2015). (B) Graphical representation of 

enriched TFs and the cellular processes they control. ‘Suppressor specific’ TFs are indicated in 

blue, ‘enhancer specific’ TFs in orange and ‘shared’ TFs in green. The number of candidate 

genes controlled by a certain group of TFs is indicated in each circle below the functional group 

name. 

Three TFs (SKN-1NFE2,NFE2L1,2,3, HLH-29 and VAB-7EVX2) were identified to be ‘enhancer-

specific’ (Figure 3 and Table S3). VAB-7EVX2 and HLH-29 are both required for certain aspects 

of development (Ahringer, 1996; Esmaeili et al., 2002; Pocock et al., 2004; Neves and Priess, 

2005; McMiller et al., 2007; Grove et al., 2009) and HLH-29 has additional roles in fatty acid 

metabolism and energy homeostasis (McMiller et al., 2007; Quach et al., 2013). Furthermore, 

HLH-29 and SKN-1NFE2,NFE2L1,2,3 are regulators of the oxidative stress response (An and 

Blackwell, 2003; An et al., 2005; Inoue et al., 2005; Quach et al., 2013) and SKN-1NFE2,NFE2L1,2,3 

has previously been implicated in the UPRmt pathway in C. elegans (Nargund et al., 2012; 

Nargund et al., 2015; Wu et al., 2018). In summary, we identified several TFs that bind to 

promotors of our candidate genes, which have previously been implicated in oxidative stress 

response, cellular metabolism and development in C. elegans. Interestingly, fzo-1(tm1133) 

mutants have previously been shown to be slightly sensitive to oxidative stress and have 

increased levels of carbonylated proteins, a measure for oxidative damage (Yasuda et al., 2011). 

Moreover, in isp-1(qm150) and clk-1(qm30) mutants, both of which have increased levels of 

reactive oxygen species (ROS) (Van Raamsdonk et al., 2010; Yang and Hekimi, 2010; Dues et 

al., 2017), UPRmt activation has been shown to lead to ATFS-1ATF4,5-dependent expression of 

genes required for detoxification of reactive oxygen species (Wu et al., 2018). This induction 

is orchestrated by ATFS-1ATF4,5 but may, to some extent, additionally be facilitated through 

activation of ELT-3GATA3,4 and HLH-29, as it has previously been shown for SKN-

1NFE2,NFE2L1,2,3 (Nargund et al., 2012; Nargund et al., 2015; Wu et al., 2018). The identification 

of many TFs controlling developmental processes is in agreement with our finding that GO-

terms related to developmental processes are enriched among our dataset. This again highlights 

that the activity levels of critical cellular processes and responses in somatic tissues appear to 
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be set during development. Finally, we previously found that the induction of autophagy 

suppresses UPRmt in fzo-1(tm1133) mutants most likely through increased metabolic activity 

(Haeussler et al., 2020). In our analysis, we identified two TFs, which regulate energy 

homeostasis and metabolic gene expression. This supports the notion that UPRmt in fzo-

1(tm1133) mutants acts to compensate for metabolic defects. In summary, we identified several 

TFs with roles in development, oxidative stress response and metabolism that previously have 

not been connected to UPRmt signaling. These TFs may be specific to UPRmt in fzo-1(tm1133) 

but some may generally be involved in UPRmt signaling. 

Interactome of UPRmt reveals potential new regulators 

In order to determine whether any of the suppressors or enhancers that we identified have 

previously been shown to interact with fzo-1MFN1,2 or its mammalian orthologs MFN1 or MFN2, 

we built a gene network containing all known interactions of fzo-1MFN1,2 and its mammalian 

orthologs MFN1 and MFN2. Using the interaction databases ‘string-db.org’, ‘IntAct’, 

‘BioGRID3.5’, ‘Genemania’, ‘CCSB’ and ‘mentha’ (Warde-Farley et al., 2010; Calderone et 

al., 2013; Orchard et al., 2014; Rolland et al., 2014; Oughtred et al., 2018; Szklarczyk et al., 

2018), we included genetic and physical interactions (but not predicted interactions or co-

expression data) and uploaded them to the cytoscape software (Shannon et al., 2003) to 

calculate a complete interaction network. The resulting network contains 38 genes and 67 

interactions (Figure S2). None of the 10 interactors of fzo-1MFN1,2 in C. elegans was identified 

in our screen (turquois dots in Figure S2). Next, we manually annotated the C. elegans orthologs 

of 24 interactors of Mfn1 or Mfn2 in mammals (except FAF2, MAVS, TCHP, SLC25A38 for 

which we did not find any orthologs in C. elegans, indicated in dark blue in Figure S2) but 

again did not find any overlap between the gene network and our screen dataset (orange dots in 

Figure S2). In summary, in our screen for modifiers of fzo-1(tm1133)-induced UPRmt, we did 

not find any previously known interactors of fzo-1MFN1,2. These could either have been missed 

in the RNAi screen, be essential in the fzo-1(tm1133) background or not have a function in 

mitochondrial homeostasis and, hence, UPRmt signaling. 

Similar to the approach described above, we used the 16 C. elegans genes currently associated 

with the GO-term ‘mitochondrial unfolded protein response’ (GO:0034514) (referred to as 

‘input genes’), identified their human orthologs and included known physical and genetic 

interactors from the interaction databases ‘BioGRID3.5’, ‘IntAct’ and ‘mentha’ (Calderone et 

al., 2013; Orchard et al., 2014; Oughtred et al., 2018) to calculate an interaction network 
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containing 2603 genes and 4655 interactions (Figures S3, Figure S4, Figure S5). In this 

‘UPRmtome’, we identified 129 genes (including the 16 ‘input genes’), 36 of which are 

enhancers and 77 of which are suppressors of fzo-1(tm1133)-induced UPRmt, with a total of 213 

interactions (Figure 4 and Table S4).  

For the ‘input gene’ atfs-1ATF4,5 , we found five interactors (gtf-2F2GTF2F2, lin-54LIN54, rps-6RPS6, 

spr-2SET, tbp-1TBP) that suppress fzo-1(tm1133)-induced UPRmt and the gene products of four 

of these localize to the nucleus (Sopta et al., 1989; Lichtsteiner and Tjian, 1993; Wen et al., 

2000; Thomas et al., 2003; Harrison et al., 2006; Tabuchi et al., 2011). These could potentially 

facilitate or directly be involved in the transcription of UPRmt effectors upon activation of the 

UPRmt response. Moreover, for the ‘input gene’ ubl-5UBL5, we found four interactors that 

overlap with our dataset of suppressors, three of which are splicing factors (pqbp-1.2PQBP1, sfa-

1SF1, snr-3SNRPD1) (Thomas et al., 1988; Krämer, 1992; Arning et al., 1996; Imafuku et al., 

1998; Kambach et al., 1999; Mazroui et al., 1999; Waragai et al., 1999). Of note, HUB1, the 

ortholog of UBL-5UBL5 in Saccharomyces pombe, has been shown to interact with components 

of the spliceosome. Furthermore, the loss of HUB1 results in reduced splicing efficiency of a 

variety of mRNAs (Wilkinson et al., 2004). Thus, the identification of the splicing factor genes 

pqbp-1.2PQBP1, sfa-1SF1, snr-3SNRPD1 in our dataset presents an interesting potential link between 

UPRmt activation and pre-mRNA splicing via UBL-5UBL5. In addition, we identified taf-4TAF4, 

which encodes an associated factor of transcription factor TFIID, to interact with the ‘input 

gene’ sphk-1SPHK1,2 and to suppress fzo-1(tm1133)-induced UPRmt upon knock-down. taf-4TAF4 

has previously been shown to be required for life span extension in isp-1(qm150), clk-1(qm30) 

and tpk-1(qm162) mutants, (Walker et al., 2001; Walker et al., 2004; Khan et al., 2013). Finally, 

we identified many genes interacting with the ‘input gene’ bar-1JUP,CTNNB1, which has 

previously been shown to be involved in cell non-autonomous propagation of UPRmt signaling 

(Zhang et al., 2018). Among these interactors is phospholipase C (plc-1PLCE), which enhances 

fzo-1(tm1133)-induced UPRmt and plays a central role in the inositol triphosphate (IP3) 

signaling pathway (Clandinin et al., 1998; Kariya et al., 2004). In summary, we identified 

several genes in our dataset using gene network analysis that have previously not been identified 

to play a role in UPRmt signaling in C. elegans. The genes with roles in pre-mRNA splicing and 

IP3 signaling may be particularly interesting in this respect. Furthermore, we propose that these 

genes may directly influence UPRmt signaling through interactions with known players of the 

UPRmt pathway. 
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Figure 4: Analysis of a gene network – the UPRmtome. Interactors of all genes that are 

currently associated with the GO-term ‘mitochondrial unfolded protein response’ and of their 

human orthologs were identified to build the complete UPRmtome using ‘IntAct’, 

‘BioGRID3.5’ and ‘mentha’ databases (Calderone et al., 2013; Orchard et al., 2014; Oughtred 

et al., 2018). 129 genes are depicted, which overlapped between the complete UPRmtome and 

the candidate list of our screen in fzo-1(tm1133) mutants. Turquois circles: ‘input genes’ 

currently associated with GO-term ‘mitochondrial unfolded protein response’, red arrowheads: 

suppressors of fzo-1(tm1133)-induced UPRmt that overlap with the complete UPRmtome, green 

triangles: enhancers of fzo-1(tm1133)-induced UPRmt that overlap with the complete 

UPRmtome. Interactions of two genes that were identified for C. elegans genes are indicated 

with green lines, interactions that were identified in human orthologs are indicated with blue 

lines.  
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Interactome analysis reveals involvement of IP3 signaling pathway in UPRmt regulation in 

fzo-1(tm1133) 

In our gene network analysis, we identified plc-1PLCE, which encodes phospholipase C, as an 

interactor of bar-1β-catenin (Byrne et al., 2007). Interestingly, we and others found several genes 

that play a role in inositol triphosphate (IP3) signaling (Figure 5) (Liu et al., 2014). The IP3 

pathway is well known for its role in the regulation of intracellular calcium levels and transmits 

signals from the extracellular space via GPCRs and second messengers to the ER (Berridge, 

2009). Thus, this signaling pathway may have a role in cell non-autonomous propagation of 

UPRmt.  

Figure 5: Candidate genes with roles in IP3 signaling. We identified four genes in our dataset 

that either play a direct role in the IP3 signaling pathway or are crucial for the synthesis of 

phosphatidylinositol-4,5-biphosphate (PI(4,5)P2). The IP3 receptor has previously been 

identified (Liu et al., 2014). Suppressors are shown in yellow boxes, enhancers in green boxes. 

PA phosphatidic acid, CDP-DAG cytidine biphosphate-diacylglycerol, PI phosphatidylinositol, 

PI(4)P phosphatidylinositol-4-phosphate, IP3 inositol triphosphate, ER endoplasmic reticulum, 

GPCR G-protein coupled receptor. 

We identified the enzyme CDGS-1CDS1, which is essential for the production of 

phosphatidylinositol (PI) (Wu et al., 1995; Vance, 1998), and EFR-3EFR3B, which targets PI-4-

kinase (PI4K) to the plasma membrane (Nakatsu et al., 2012). Furthermore, we identified the 

sole type I PIP kinase in C. elegans, PPK-1PIP5K1A (Weinkove et al., 2008), which 

phosphorylates PI4P to form PI(4,5)P2 (Ishihara et al., 1996; Loijens and Anderson, 1996). 

PLC-1PLCE is activated via GPCR and hydrolyzes PI(4,5)P2 to generate the second messengers 

DAG and IP3, known regulators of several signal transduction pathways (Clandinin et al., 1998; 

Kariya et al., 2004). One mechanism that is dependent on IP3-signaling is the release of calcium 
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from the ER (Clandinin et al., 1998; Kariya et al., 2004; Kovacevic et al., 2013). Interestingly, 

the IP3 receptor at the ER, ITR-1ITPR1, has previously also been identified as a suppressor of 

antimycin-induced UPRmt (Liu et al., 2014). Thus, it is tempting to speculate that altering IP3 

signaling influences cellular calcium signaling in fzo-1(tm1133), thereby affecting 

mitochondrial homeostasis and consequently UPRmt signaling. Moreover, we propose that the 

effect on UPRmt signaling may be indirect since we previously showed that knock-down of 

mitochondrial genes controlling calcium homeostasis does not induce UPRmt in wild type 

(Rolland et al., 2019). Furthermore, we propose that fzo-(tm1133) mutants may be more prone 

to changes in IP3 signaling and, consequently, calcium signaling since these mutants may have 

altered ER-mitochondria contact sites, as shown in tissue culture cells lacking the mammalian 

ortholog MFN2 (de Brito and Scorrano, 2008; Cosson et al., 2012; Filadi et al., 2015, 2016; 

Leal et al., 2016; Naon et al., 2016; Basso et al., 2018). 

miga-1(tm3621) mutants show mitochondrial fragmentation and induce UPRmt 

One of the enhancers we identified is K01D12.6, which is conserved from C. elegans to 

humans. The D. melanogaster ortholog of this gene has previously been identified in a screen 

for genes, which when knocked-down induce photoreceptor cell neurodegeneration. 

Furthermore, it was shown to be required for the maintenance of mitochondrial morphology 

and hence, named ‘Mitoguardin’ (Zhang et al., 2016). Moreover, the two orthologs of this gene 

in mammals (MIGA1, MIGA2) were found to regulate mitochondrial fusion and to be critical 

for mitochondrial function in human tissue culture cells and in mice (Liu et al., 2016; Zhang et 

al., 2016; Liu et al., 2017). Therefore, we named K01D12.6 ‘mitoguardin homolog-1 (miga-

1)’. We verified UPRmt induction using the Phsp-60 HSPD1gfp (zcIs9) reporter in the miga-

1(tm3621) mutant background (Figure 6A). On average, the induction of Phsp-60 HSPD1gfp is 

higher in miga-1(tm3621) animals compared to fzo-1(tm1133) animals. Moreover, we tested 

the effects of miga-1(tm3621) on steady-state mitochondrial morphology, which, in C. elegans, 

is carried out using a mitochondrial matrix-targeted GFP under a promoter that expresses the 

transgene in body wall muscle cells (Pmyo-3 MYHgfpmt ) (Labrousse et al., 1999; Ichishita et al., 

2008; Rolland et al., 2013). While wild-type worms show a tubular network of mitochondria, 

miga-1(tm3621) mutants have a ‘fragmented mitochondria’ phenotype, which is less severe 

than that caused by the loss of fzo-1 (Figure 6B). In summary and in line with previous 

observations in other organisms, we see drastic changes in mitochondrial morphology in miga-

1(tm3621) mutants, which are accompanied by the induction of UPRmt. 

53

Chapter I



30 

Figure 6: miga-1(tm3621) mutants induce UPRmt and have altered mitochondrial 

morphology. (A) Fluorescence images of L4 larvae expressing Phsp-60 mtHSPD1gfp (zcIs9) in wild 

type (+/+), miga-1(tm3621) or fzo-1(tm1133) mutants. Scale bar: 200 µm (B) Fluorescence 

images of L4 larvae expressing mitochondrial targeted gfp (Pmyo-3gfpmt) in wild type (+/+), 

miga-1(tm3621) or fzo-1(tm1133) mutants. Representative images are shown. Scale bar: 10 µm. 
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Figure S1: Mutations in GTPases of the dynamin family induce the UPRmt. fzo-1(tm1133), 

drp-1(tm1108) and eat-3(ad426) mutants differ in the level of induction of the Phsp-6 mtHSP70gfp 

(zcIs13) reporter, as compared to wild type (+/+). spg-7(ad2249) is used as a positive control. 

Scale bar: 200 µm. 

Figure S2: Analysis of a gene network – the FZOome. Interactors of C. elegans FZO-1 and 

of its human orthologs MFN1 and MFN2 were identified using ‘string-db.org’, ‘IntAct’, 

‘BioGRID3.5’, ‘Genemania’, ‘CCSB’ and ‘mentha’ databases (Warde-Farley et al., 2010; 

Calderone et al., 2013; Orchard et al., 2014; Rolland et al., 2014; Oughtred et al., 2018; 

Szklarczyk et al., 2018). The identified candidates that suppressed or enhanced fzo-1(tm1133)-

induced UPRmt do not overlap with the FZOome. Turquois dots: interactors of FZO-1 in C. 

elegans; Orange dots: interactors of MFN1 or MFN2 which have orthologs in C. elegans; Blue 

dots: interactors of MFN1 or MFN2 in humans without any known orthologs in C. elegans. 
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SUMMARY

The induction of the mitochondrial unfolded protein
response (UPRmt) results in increased transcription
of the gene encoding the mitochondrial chaperone
HSP70. We systematically screened the C. elegans
genome and identified 171 genes that, when
knocked down, induce the expression of an hsp-6
HSP70 reporter and encode mitochondrial proteins.
These genes represent many, but not all, mitochon-
drial processes (e.g., mitochondrial calcium ho-
meostasis and mitophagy are not represented).
Knockdown of these genes leads to reduced
mitochondrial membrane potential and, hence,
decreased protein import into mitochondria. In
addition, it induces UPRmt in a manner that is
dependent on ATFS-1 but that is not antagonized
by the kinase GCN-2. We propose that compro-
mised mitochondrial protein import signals the
induction of UPRmt and that the mitochondrial tar-
geting sequence of ATFS-1 functions as a sensor
for this signal.

INTRODUCTION

Ensuring that proteins acquire and maintain their proper confor-

mation is essential, as unfolded or misfolded proteins are inac-

tive and can form toxic aggregates that lead to disease (Macario

et al., 2005). Protein quality control occurs at all times but can be

upregulated via the ‘‘unfolded protein response’’ (UPR). UPR oc-

curs in multiple cellular compartments, allowing localized re-

sponses to specific stresses (Gardner et al., 2013; Jovaisaite

et al., 2014; Vabulas et al., 2010).

Mitochondrial UPR (UPRmt) has been best characterized in the

nematode Caenorhabditis elegans. The UPRmt transcription fac-

tor ATFS-1 contains both mitochondrial and nuclear localization

sequences (Nargund et al., 2012). In the absence of mitochon-

drial stress, ATFS-1 is imported into mitochondria and degraded

by the mitochondrial protease LONP-1 (Nargund et al., 2012).

Under stress conditions, unfolded proteins in the mitochondrial

matrix have been proposed to be cleaved into peptides by the

protease CLPP-1 (Haynes et al., 2007, 2010). Peptides gener-

ated are thought to be exported across the inner mitochondrial

membrane (IMM) by the ABC transporter HAF-1 (Haynes et al.,

2010). The release of peptides through HAF-1 has been pro-

posed to block mitochondrial import by an unknown mecha-

nism, resulting in the relocalization of ATFS-1 to the nucleus,

where it activates the transcription of genes encoding mitochon-

drial chaperones and proteases (Haynes et al., 2010; Nargund

et al., 2012). This pathway is at least partially conserved in mam-

mals (Fiorese et al., 2016; Yano, 2017). An additional pathway

has been described in C. elegans, which involves the cyto-

plasmic kinase GCN-2 (Baker et al., 2012). GCN-2 has been

proposed to be activated by ROS generated by dysfunctional

mitochondria. Once activated, GCN-2 phosphorylates the trans-

lation initiation factor eIF2a, thereby blocking general cytosolic

translation, which has been proposed to help regain mitochon-

drial proteostasis by reducing the protein folding load of mito-

chondrial chaperones (Baker et al., 2012). Hence, the induction

of UPRmt is antagonized by the kinase GCN-2.

In C. elegans, UPRmt can be induced by different types of

stress, such as the knockdown of nuclear genes encoding sub-

units of the electron transport chain (ETC) (Durieux et al., 2011) or

a block in mitochondrial translation (Houtkooper et al., 2013).

These perturbations alter the stoichiometry between mitochon-

dria- and nuclear-encoded ETC subunits (‘‘mito-nuclear imbal-

ance’’), leading to the accumulation of unassembled subunits

of ETC complexes and causing unfolded protein stress

(Houtkooper et al., 2013). This stress has been proposed to

trigger UPRmt (Yoneda et al., 2004), but the mechanism through

which this signal is transduced to the nucleus remains unclear.

To systematically identify genes and processes that trigger

UPRmt when compromised, we performed a genome-wide

RNAi screen in C. elegans. We found that impairment of most,
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Figure 1. Genome-wide RNAi Screen Identifies Genes Required for the Maintenance of Mitochondrial Homeostasis

(A) Percentage of genes identified in our screen previously implicated or not in UPRmt.

(B) Percentage of genes in the entire genome (Shaye and Greenwald, 2011) or among the genes identified in our screen with human orthologs.

(C) Overlap between genes of the GO ‘‘mitochondrion’’ and genes identified in our screen.

(D) The 171 candidates identified were grouped into 22 mitochondrial processes.

(legend continued on next page)
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but not all, mitochondrial processes triggers UPRmt that is

dependent on ATFS-1 but not antagonized by GCN-2. Interest-

ingly, some of these mitochondrial processes are not predicted

to directly cause a mito-nuclear imbalance when blocked.

Instead, they are predicted to cause a decrease in mitochondrial

membrane potential. Therefore, we propose that a decrease in

mitochondrial membrane potential acts as a signal that triggers

UPRmt. Furthermore, we propose that the mitochondrial target-

ing sequence (MTS) of ATFS-1 acts as a sensor for changes in

mitochondrial membrane potential. Consistent with this model,

we demonstrate that the ‘‘weak’’ MTS of ATFS-1 is essential

for its ability to sense a decrease in mitochondrial membrane

potential and to activate UPRmt.

RESULTS

Genome-wide RNAi Screen for Genes that Induce UPRmt

When Knocked Down
To systematically identify C. elegans genes that induce UPRmt

when knocked down, we performed a genome-wide RNAi

screen covering R90% of annotated C. elegans genes (Kamath

and Ahringer, 2003). UPRmt induction was monitored with a

hsp-6 HSP70 transcriptional reporter (Phsp-6GFP) (Yoneda

et al., 2004). We identified 198 ‘‘inducer’’ genes that reproducibly

cause the upregulation of the Phsp-6GFP reporter when knocked

down. Among these, 171 encode proteins that have been shown

to localize to mitochondria or are predicted to do so (Table S1A).

We refer to this subset as the ‘‘mitochondrial inducers’’ and have

focused our analyses on this group of genes.

The mitochondrial inducers encode proteins that represent

each of the four major mitochondrial sub-compartments. Most

of these genes have human orthologs (95%) and have not previ-

ously been identified as affecting UPRmt (56%) (Bennett et al.,

2014; Runkel et al., 2013) (Figures 1A and 1B). The inducers

include 96 of the 424 genes in the Gene Ontology (GO) category

‘‘mitochondrion’’ (Figure 1C). Although the remaining 75 genes

do not belong to this GO category, they encode proteins that

have been shown, or are predicted, to localize to mitochondria.

Concerning the remaining 328 genes that belong to the GO cate-

gory ‘‘mitochondrion’’ and that we did not identify, we cannot

exclude that we missed some because of RNAi efficiency. How-

ever, as shown below, compromising certain mitochondrial pro-

cesses does not induce UPRmt. In order to assess the specific

nature and diversity of processes affected by the mitochondrial

inducers, we analyzed all 57 sub-GO groups included in the

GO category ‘‘mitochondrion.’’ We found that the genes we

identified are associated with 44 of these sub-GO groups and

that 5 of these sub-GO groups were not previously identified

as inducing UPRmt when compromised (Table S1B).

Compromising Mitochondrial Ca2+ Homeostasis or
Mitophagy Fails to Induce UPRmt

The 13 sub-GO groups not represented by any of the 171 genes

we identified include a total of 19 genes. We retested the 14

genes present in the RNAi library (Kamath and Ahringer, 2003)

and identified two additional genes that induce Phsp-6GFP

expression when knocked down (Table S1C).

MitochondrialCa2+homeostasis isoneof themitochondrial pro-

cesses that did not induce UPRmt when compromised. The sub-

GOgroup ‘‘mitochondrial Ca2+ homeostasis’’ contains two genes:

mcu-1 and emre-1. In order to confirm our RNAi results, we

analyzed animals carrying the mcu-1 mutation ju1154 (Xu and

Chisholm, 2014) and showed that the loss of mcu-1 does not

induce the expression of the Phsp-6GFP reporter, confirming that

compromising mitochondrial Ca2+ homeostasis does not trigger

UPRmt (Figure S1A). Mitophagy (Pickrell and Youle, 2015) is

another process that was not identified in our screen. Accumula-

tion of misfolded proteins in the mitochondrial matrix of cultured

mammalian cells has been shown to trigger PINK1- and Parkin-

dependentmitophagy (Jin and Youle, 2013).We analyzed animals

carrying a deletion in the C. elegans Parkin gene pdr-1, lg103

(Springer et al., 2005) and animals carrying a deletion in the

C. elegans PINK1 gene pink-1, tm1779 (Sämann et al., 2009) and

found that neither mutation induces the Phsp-6GFP reporter (Fig-

ures S1B–S1E). In addition, the upregulation of the Phsp-6GFP

reporter by spg-7(RNAi) is not significantly affected by

pink-1(tm1779) or pdr-1(lg103) (spg-7 encodes the C. elegans ho-

molog of the mitochondrial quality control protease AFG3L2).

Finally, wedid not observe any induction of the Phsp-6GFP reporter

upon the knockdown of the gene dct-1, which encodes the

C. elegans BNIP3 homolog, thought to be required for mitophagy

(Palikaras et al., 2015) (Table S1C). Thus, not all mitochondrial pro-

cesses trigger UPRmt activation when compromised.

UPRmt Induced by Compromising Most Mitochondrial
Processes Is Dependent on ATFS-1 but Is Not
Antagonized by the Kinase GCN-2
We divided the 171 mitochondrial inducers into 22 groups on the

basis of their roles in specific mitochondrial processes (Fig-

ure 1D). For most of the 22 groups, we selected one representa-

tive gene and quantified the induction of the Phsp-6GFP reporter

(Figure 1E). As a negative control, we knocked down tag-208,

which encodes the C. elegans homolog of human Sorbin and

does not induce UPRmt when knocked down (Figures S1F and

S1G). To confirm that the observed effects are not specific to

hsp-6 HSP70, we also quantified induction of a hsp-60 HSP60

transcriptional reporter (Phsp-60GFP) (Yoneda et al., 2004).

With the exception of sdhd-1, knockdown of all genes caused

Phsp-60GFP upregulation (Figure 1F).

(E and F) Effect of the knockdown of one candidate for each mitochondrial process on the (E) Phsp-6GFP and (F) Phsp-60GFP reporters. Reporter expression was

monitored by fluorescence microscopy and quantified (n = 2-3;mean and SD are shown; *RNAi was diluted with tag-208(RNAi)).

(G) Double RNAi with tag-208(RNAi) or atfs-1(RNAi). Reporter expression was monitored by fluorescence microscopy and quantified (n = 2-3; mean and SD

are shown).

(H) Knockdown was performed in wild-type (+/+) or a strain carrying gcn-2(ok871). Reporter expression was monitored by fluorescence microscopy and

quantified (n = 2–6; mean and SD are shown; *RNAi was diluted with tag-208(RNAi)).

In all panels, n is the number of biological replicates.

See also Table S1 and Figures S1 and S2.
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Next, we tested whether UPRmt induced by compromising the

mitochondrial processes identified is dependent on the tran-

scription factor ATFS-1 (Nargund et al., 2012). To that end, we

performed double RNAi experiments with the representative

genes and either atfs-1(RNAi) or, as a control, tag-208(RNAi).

Double RNAi of any of the genes with tag-208(RNAi) induced

the upregulation of the Phsp-6GFP reporter (Figure 1G, gray

bars). In contrast, double RNAi of any of the genes with atfs-

1(RNAi) resulted in the complete suppression of the upregulation

(black bars). We also tested whether the kinase GCN-2 plays a

role in the induction of UPRmt upon inactivation of the genes

identified in our screen. To that end, we used a strain carrying

the gcn-2 loss-of-function mutation ok871. As shown in Fig-

ure 1H, for the genes tested, the upregulation of the Phsp-6GFP

reporter observed in wild-type animals (gray bars) was similar

to that observed in gcn-2(ok871) mutant animals (black bars).

We confirmed this result with an independent loss-of-function

mutation gcn-2(ok886) (Figures S2A and S2B). In contrast, acti-

vation of the Phsp-6GFP reporter by the loss-of-function mutation

clk-1(qm30) (clk-1 is required for ubiquinone synthesis) is

enhanced by knockdown of gcn-2 (Figure S2C), as published

previously (Baker et al., 2012). Therefore, UPRmt induced by

compromising most mitochondrial processes is dependent on

ATFS-1 but is not antagonized by the kinase GCN-2.

UPRmt Is Triggered by Compromising Mitochondrial
Processes that Are Required for the Maintenance of the
Mito-nuclear Balance
The GO category ‘‘mitochondrial translation’’ is significantly en-

riched in our dataset (Table S1D). Among genes present in the

RNAi library (Kamath and Ahringer, 2003), we identified 75% of

the large subunits of the mitochondrial ribosome (mrpl genes)

and �96% of the small subunits of the mitochondrial ribosome

(mrps genes). Furthermore, we also found nine genes encoding

mitochondrial aminoacyl tRNA synthetases, and genes encod-

ing mitochondrial translation initiation and elongation factors.

The GO category ‘‘protein import into mitochondrial matrix’’ is

also significantly enriched in our dataset (Table S1D). We identi-

fied components of the TOM and TIM complexes (Figures 2A

and 2B). (Some were previously identified as inducers of UPRmt;

Bennett et al., 2014; Runkel et al., 2014). We also confirmed that

the knockdown of timm-23, which encodes the major subunit of

the TIM23 complex, induces UPRmt. We also identified gop-3

and tin-9.1, which encode the homolog of the human SAMM50

protein, and the homolog of the small Tim protein Tim9, respec-

tively (Figures 2A and 2B). Tim9 functions as a chaperone in the

intermembrane space and assists beta-barrel proteins in reach-

ing the SAM complex to be inserted into the outer mitochondrial

membrane (OMM) (Wiedemann and Pfanner, 2017; Wiedemann

et al., 2004). Tim9 also assists carrier proteins in reaching

the TIM22 complex to be inserted into the IMM (Adam et al.,

1999; Wiedemann and Pfanner, 2017). These two aspects of

mitochondrial protein import were not previously identified as

inducing UPRmt when compromised.

Finally, we found that the knockdown of the nuclear-encoded

subunits of complex I, III, IV, or V of the ETC also triggers UPRmt

and that several GO categories associated with ETC complexes

are significantly enriched in our dataset. (Table S1D). Further-

more, we found that compromising assembly of complex I, III,

or IV also leads to UPRmt activation (e.g., by knockdown of

nuaf-1, which encodes the homolog of the human complex I as-

sembly factor NDUFAF1; bcs-1, which encodes the homolog of

the human complex III assembly factor BCS1L; or cox-14, which

encodes the homolog of the human complex IV assembly factor

COX14; see Table S1).

The identification of mitochondrial translation, import and ETC

as mitochondrial processes that when compromised induce

UPRmt is consistent with mito-nuclear imbalance and the result-

ing accumulation of unassembled subunits of ETC complexes

being the signal that triggers UPRmt (Houtkooper et al., 2013).

Mitochondrial Processes that Are Not Required for the
Maintenance of the Mito-nuclear Balance Also Trigger
UPRmt When Compromised
We found that the knockdown of the cytochrome c gene cyc-2.1

induces UPRmt. The knockdown of cyc-2.1 presumably causes a

defect in the activity of the ETC; however, it is not predicted to

directly cause mito-nuclear imbalance. In addition, we identified

genes encoding subunits of complex II (sdha-1, sdhd-1, and

sdhc-1). Although knockdown of these genes may cause an

accumulation of other complex II subunits, it does not cause

mito-nuclear imbalance, because all subunits of complex II are

encoded in the nuclear genome. To test whether knockdown

of any subunit of complex II induces UPRmt, we individually

knocked down the genes encoding all four subunits. As shown

in Figures 2C and 2D, knockdown of any of these genes induces

upregulation of the Phsp-6GFP reporter. We also found that the

level of endogenous HSP-6 protein but not HSP-60 protein

significantly increases upon sdhc-1(RNAi) (Figure S3). Hence,

compromising the ETC is sufficient to trigger UPRmt.

The GO category ‘‘tricarboxylic acid cycle’’ is significantly

enriched in our dataset (Table S1D). We identified several

genes encoding subunits of enzymes of the tricarboxylic acid

(TCA) cycle (Table S1A). Reduced levels of these proteins

may lead to the disruption of the stoichiometry of their respec-

tive TCA complexes, thereby leading to the accumulation of un-

assembled proteins in the mitochondrial matrix. Alternatively,

UPRmt might also be triggered by the dysfunction of the TCA

cycle itself. To test this hypothesis, we knocked down genes

encoding the remaining enzymes of the TCA cycle. Knockdown

of aco-2, idha-1, cts-1, mdh-2, and fum-1 induce the Phsp-6GFP

reporter (Figure 3). We also found that the level of endogenous

HSP-6 protein but not HSP-60 protein tends to slightly increase

albeit not significantly upon fum-1(RNAi) (Figure S3) (It should

be noted that because HSP-6 and HSP-60 are highly abundant

proteins (Bensaddek et al., 2016), even small changes repre-

sent substantial changes in protein amounts. Furthermore,

the basal expression level of Phsp-6GFP is low in contrast to

the high basal level of endogenous HSP-6 protein. Hence, the

fold change of Phsp-6GFP is likely an overestimation of the

fold change of HSP-6. Finally, although tubulin is ubiquitously

expressed, the UPRmt transcriptional reporters are expressed

mostly in intestinal cells. Hence, it is possible that UPRmt is

restricted to certain tissues. The HSP-6/tubulin or HSP-60/

tubulin ratio might therefore underestimate the upregulation of

HSP-6 or HSP-60 in the cells in which UPRmt occurs. Such
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an underestimation might affect HSP-60 more strongly than

HSP-6, as hsp-60 is less strongly transcriptionally upregulated

upon mitochondrial stress than hsp-6 (Haynes et al., 2007).

Because CTS-1, FUM-1, and MDH-2 are homo-oligomeric en-

zymes, reduction in their levels will not cause proteotoxic

stress. It will, however, cause a decrease in the activity of the

TCA cycle. Hence, compromising the TCA cycle is sufficient

to trigger UPRmt.

A

B

D

C

Figure 2. Knockdown of Mitochondrial Import Machinery or Complex II Induces UPRmt

(A and C) Bright-field and fluorescence images of the Phsp-6GFP reporter strain after different RNAi treatment to knock down the mitochondrial import machinery

(A) or complex II subunits (C). Two intensity scales are shown.

(B and D) Quantification of Phsp-6GFP fluorescence intensity (n R 5; n is the number of biological replicates; mean and SD are shown; for B, ***p < 0.001 and

****p < 0.0001 by one-way ANOVA with Bonferroni’s multiple-comparison test to tag-208(RNAi); for D, **p < 0.01 and ***p < 0.001 by Welch’s ANOVA with

Games-Howell post hoc test to tag-208(RNAi)).

See also Figure S3.
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We also identified genes encoding proteins required for lipid

catabolism (e.g., ard-1, ech-6, and acdh-13 encode three mito-

chondrial beta-oxidation enzymes). The GO category ‘‘fatty

acid biosynthetic process’’ is also enriched in our dataset (Table

S1D).We identified two genes (pgs-1 andmdmh-35) that encode

proteins involved in cardiolipin (CL) biosynthesis, a lipid biosyn-

thetic pathway that was not identified before as inducing UPRmt

when compromised. To confirm this result, we tested crls-1,

which encodes CL synthase, and found that its knockdown in-

duces the Phsp-6GFP reporter expression (Figure S4). To test

whether the biosynthesis of other lipids also induces UPRmt,

we tested psd-1, which encodes phosphatidylserine decarbox-

ylase and plays a role in the biosynthesis of phosphatidylethanol-

amine (PE) (Osman et al., 2011). We found that knockdown of

psd-1 also induces Phsp-6GFP reporter expression (Figure S4).

Hence, compromising lipid metabolism triggers UPRmt.

A Reduction in Mitochondrial Membrane Potential
Correlates with the Induction of UPRmt

Rather than directly causing mito-nuclear imbalance, the pro-

cesses described above are predicted to cause a reduction in

mitochondrial membrane potential. Although compromising the

ETC directly causes a decrease in mitochondrial membrane po-

tential, compromising the TCA cycle leads to a decrease in the
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Figure 3. Knockdown of Any Enzyme of TCA Cycle Induces UPRmt

(A) TCA cycle. Single and double asterisks indicate genes identified in our screen and subsequent experiments, respectively.

(B) Bright-field and fluorescence images of Phsp-6GFP reporter strain after different RNAi treatment. Two intensity scales are shown.

(C) Quantification of Phsp-6GFP fluorescence intensity (nR 5; n is the number of biological replicates; mean and SD are shown; *p < 0.05 byWelch’s ANOVA with

Games-Howell post hoc test to tag-208(RNAi)).

See also Figures S3 and S4.
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NADH level, resulting in a decrease in ETC function and, conse-

quently, a reduction in mitochondrial membrane potential.

Furthermore, compromising beta-oxidation causes a reduction

in the level of acetyl-CoA entering the TCA cycle, indirectly

causing a reduction in mitochondrial membrane potential.

Finally, compromising CL biosynthesis has been shown to affect

the formation of respiratory supercomplex in S. cerevisiae

(Pfeiffer et al., 2003). Although this indirectly leads to proteotoxic

stress, it also causes a reduction inmitochondrial membrane po-

tential (Jiang et al., 2000). Finally, compromising PE biosynthesis

in S. cerevisiae has been shown to cause a decrease in mito-

chondrial membrane potential (Böttinger et al., 2012).

To test whether genes that induce UPRmt when knocked

down are required to maintain mitochondrial membrane poten-

tial, using the mitochondrial potential-sensitive dye TMRE, we

stained animals in which some of these genes had been

A B

DC

Figure 4. Genes that Induce UPRmt When

Knocked Down Are Required to Maintain

Mitochondrial Membrane Potential

(A) Wild-type (+/+) or animals carrying different

loss-of-function mutations were stained with

TMRE. Representative images of mitochondria in

hypodermal cells are shown with two intensity

scales.

(B) Wild-type subjected to different RNAi (mrpl-

9(RNAi) was diluted with tag-208(RNAi)) were

stained with TMRE. Representative images of

mitochondria in hypodermal cells are shown with

two intensity scales.

(C and D) Quantification of TMRE fluorescence

intensity per area (C, n R 7; D, n R 17; n is the

number of animals analyzed; mean and SD are

shown; *p < 0.05, ***p < 0.001, and ****p < 0.0001

by one-way ANOVA with Bonferroni’s multiple-

comparison test to tag-208(RNAi) or +/+; sdhc-

1(RNAi) with data was not quantified, as the signal

was too low to be detected by the segmentation

macro; for mcu-1(ju1154) and tag-208(RNAi) the

250–1,500 intensity images are white because of

saturation).

knocked down by mutation or RNAi

and measured TMRE fluorescence in-

tensity per area in mitochondria in

hypodermal cells. We found that the

knockdown of any of the genes tested

results in a lower average mitochondrial

TMRE fluorescence intensity. (Figure 4).

The mitochondrial TMRE fluorescence

intensity is proportional to mitochondrial

membrane potential (Loew et al., 1993),

indicating that the loss of genes that

induce UPRmt when knocked down re-

sults in a reduction in mitochondrial

membrane potential. In contrast, animals

carrying loss-of-function mutations in

genes that do not induce UPRmt when

knocked down (such as pdr-1(lg103),

pink-1(tm1779), or mcu-1(ju1154)), do

not exhibit a lower average mitochondrial TMRE fluorescence

intensity and therefore do not exhibit a reduction of mitochon-

drial membrane potential (Figure 4). Therefore, there is a

correlation between a reduction in mitochondrial membrane

potential and the induction of UPRmt.

The MTS of ATFS-1 Acts as a Sensor for Mitochondrial
Membrane Potential
Mitochondrial protein import is sensitive to mitochondrial mem-

brane potential and depends on the net charge of the MTS

(Martin et al., 1991). Mitochondrial proteins containing a MTS

with a low net charge can only be imported into mitochondria

with a high membrane potential. However, mitochondrial pro-

teins containing a MTS with a high net charge can be imported

even into mitochondria with a low membrane potential. The

MTS of ATFS-1 has a lower net charge (+4) than that of
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HSP-60 (+5) or SPG-7 (+7) (Figure 5A). Animals carrying the

atfs-1 mutations et15gf or et18gf exhibit constitutive activation

of UPRmt. Interestingly, both mutations result in a reduction in

the net charge of the MTS and presumably a reduction in mito-

chondrial import (Rauthan et al., 2013). Thus, we hypothesized

that a decrease in mitochondrial membrane potential reduces

the efficiency with which ATFS-1, but not HSP-60 or SPG-7, is

imported into mitochondria.

To test this hypothesis we generated transgenic lines that ex-

press either a wild-type atfs-1 rescuing construct (Figure 5B,

atfs-1(WT) [wild-type]) or a rescuing construct encoding a

modified ATFS-1 protein (ATFS-1(NcATP9MTS)), in which the

N-terminal 24 amino acids have been replaced with the N-termi-

nal 69 amino acids of the ATP synthase subunit 9 of Neurospora

crassa, which is a strong MTS with a net charge of +12 (Figures

5A and 5B).

A C D

B

E F G

Figure 5. The Weak MTS of ATFS-1 Is Necessary for the Ability of ATFS-1 to Act as a Sensor of UPRmt

(A) Analysis of the MTS of C. elegans ATFS-1(WT), ATFS-1(et15), ATFS-1(et18), HSP-60(WT), SPG-7(WT), and N. crassa ATP9.

(B) Schematic of the constructs. The MTS of ATFS-1 was replaced with the MTS of ATP synthase subunit 9 of N. crassa in the atfs-1(NcATP9MTS) construct.

(C) All strains carry the Phsp-60GFP reporter. Wild-type (+/+) and atfs-1(tm4525) animals carrying the empty vector (EV), the atfs-1(WT) transgene, or the

atfs-1(NcATP9MTS) transgene were treated with spg-7(RNAi) and analyzed by bright-field and fluorescence microscopy.

(D) Strains indicated in (C) were treated with timm-23(RNAi).

(E and F) Quantification of Phsp-60GFP fluorescence intensity (nR 6; n = number of biological replicates; mean and SD are shown; for E, ****p < 0.0001 byWelch’s

ANOVA with Games-Howell post hoc test to +/+ with tag-208(RNAi); for F, **p < 0.01 by Kruskal-Wallis with Dunn’s multiple-comparisons test to +/+; tag-

208(RNAi)).

(G) Model of activation of UPRmt.

See also Figure S5.
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We found that the atfs-1(WT) transgene partially rescues the

atfs-1(tm4525) phenotype, restoring induction of the Phsp-60GFP

reporter upon spg-7(RNAi) (Figures 5C and 5E). In contrast, we

found that the atfs-1(NcATP9MTS) transgene fails to restore

the induction of the Phsp-60GFP reporter upon spg-7(RNAi),

although the levels of ATFS-1(NcATP9MTS) and ATFS-1(WT)

proteins were similar (Figure S5). Hence, the ATFS-

1(NcATP9MTS) protein is unable to activate UPRmt in response

to mitochondrial stress caused by spg-7(RNAi). We speculate

that ATFS-1(NcATP9MTS) import is very efficient and not

affected by a partial reduction in mitochondrial membrane po-

tential caused by the loss of spg-7 function. As a further test,

we knocked down the gene timm-23, which compromises mito-

chondrial protein import directly. The strain carrying the

atfs-1(WT) transgene fully restored the induction of the

Phsp-60GFP reporter upon timm-23(RNAi). Furthermore, we

observed a partial rescue of Phsp-60GFP induction even in the

strain carrying the atfs-1(NcATP9MTS) transgene (Figures 5D

and 5F). Hence, in response to higher levels of mitochondrial

stress (i.e., when mitochondrial import is directly compromised)

ATFS-1(NcATP9MTS) is able to activate UPRmt. Although this

result supports our model, it also demonstrates that the ATFS-

1(NcATP9MTS) protein is able to activate the transcriptional re-

porter and therefore is a functional transcription factor. On the

basis of these findings, we propose that a reduction in mitochon-

drial membrane potential acts as a signal for the induction of

UPRmt and that the MTS of ATFS-1 acts as a sensor for this

signal.

DISCUSSION

Similar to other UPRs, UPRmt was proposed to be triggered by

the accumulation of unfolded proteins (Yoneda et al., 2004).

Although several lines of evidence are consistent with unfolded

protein stress being the signal that triggers UPRmt (Haynes

et al., 2007, 2010; Houtkooper et al., 2013), it has so far only

been shown in mammalian cells that a misfolded mitochondrial

matrix protein can trigger it (Zhao et al., 2002). It has recently

been noted that all perturbations known to induce UPRmt are

also likely to reduce mitochondrial import efficiency (Melber

and Haynes, 2018). Therefore, it has been proposed that under

these conditions, ATFS-1 relocalizes to the nucleus and acti-

vates UPRmt. In order to better understand which signal triggers

UPRmt, we performed a genome-wide RNAi screen to systemat-

ically identify mitochondrial processes that induce UPRmt when

compromised.

Our results demonstrate that most mitochondrial processes

trigger UPRmt when compromised. Therefore, most mitochon-

drial processes are required for the maintenance of mitochon-

drial homeostasis. However, some processes, such as

mitophagy, do not appear to be required. In addition, we found

that a block in mitophagy has no effect on the induction of

UPRmt. Haynes and co-workers have proposed that UPRmt is

the first line of defense that can help mitochondria to regain ho-

meostasis. If this line of defense fails, mitophagy is activated to

eliminate irremediably damaged mitochondria (Pellegrino et al.,

2013). Our data show that the converse is not the case (i.e., a

block in mitophagy does not induce UPRmt).

Our unbiased genome-wide approach confirms that blocking

mitochondrial import leads to the activation of UPRmt. Although

the knockdown of components of the TOM or TIM23 complexes

directly affects the import of ATFS-1, the effect of the knock-

down of the small Tim protein Tim9 on ATFS-1 is likely indirect,

because Tim9 is not involved in the import of mitochondrial ma-

trix targeted protein. We also show that UPRmt is induced in

response to compromising mitochondrial processes (electron

transport, TCA cycle, lipid catabolism, CL and PE biosynthesis)

that are predicted to be required for the maintenance of mito-

chondrial membrane potential, but not for the maintenance of

mito-nuclear balance. Furthermore, compromising any of the

other mitochondrial processes that we identified in our screen

is expected to at least indirectly reduce mitochondrial mem-

brane potential. Although we cannot exclude that a decrease

in mitochondrial ATP levels caused by a reduction in mitochon-

drial membrane potential participates in the activation of UPRmt

(because ATP is required for protein folding as well as mitochon-

drial import), we propose that a reduction in mitochondrial mem-

brane potential is a general signal for the induction of UPRmt.

Consistent with this model, drugs known to cause a reduction

in mitochondrial membrane potential (such as rotenone or anti-

mycin) (Johnson et al., 1981) have been shown to induce UPRmt

(Liu et al., 2014; Runkel et al., 2013). Finally, it was shown that the

induction of UPRmt upon spg-7(RNAi) is partially dependent on

the transporter HAF-1 (Haynes et al., 2010). Our model is still

compatible with a role of HAF-1 in the UPRmt pathway. We spec-

ulate that because peptides exported by HAF-1 are most likely

charged, they may affect mitochondrial membrane potential

when exported. Such peptides may also affect mitochondrial

protein import as recently shown with isolated mammalian mito-

chondria in vitro (Oliveira and Hood, 2018).

Bioinformatic analysis revealed that the MTS of ATFS-1 is

weaker than that of other mitochondrial proteins, such as

HSP-60 or SPG-7. Furthermore, in contrast to HSP-60 and

SPG-7, ATFS-1 additionally contains a C-terminal nuclear

localization sequence (NLS). We propose that the combination

of the NLS and the relative ‘‘weakness’’ of the MTS is essential

for ATFS-1’s function as a UPRmt sensor. To test this, we

generated a chimeric ATFS-1 protein containing a strong

MTS and showed that this protein is unable to induce UPRmt

in response to lower levels of mitochondrial stress (i.e., spg-

7(RNAi)) but is able to induce UPRmt in response to higher

levels of mitochondrial stress (i.e., timm-23(RNAi)). We specu-

late that this chimeric ATFS-1 protein is unable to act as a

UPRmt sensor in response to lower levels of mitochondrial

stress because its import is very efficient and not affected by

a decrease in mitochondrial membrane potential caused by

spg-7(RNAi). We propose a model in which defects in most

mitochondrial processes lead to a decrease in mitochondrial

membrane potential, which blocks the import of ATFS-1,

thereby causing its relocalization to the nucleus. The effectors

of UPRmt, such as HSP-60 and SPG-7, can still be imported

into these compromised mitochondria because their MTSs

are stronger than that of ATFS-1 (Figure 5G). Consistent with

this model, we demonstrated that UPRmt induced by a defect

in any of the mitochondrial processes identified in our screen

is dependent on ATFS-1. In conclusion, we propose that
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the predominant signal triggering UPRmt is a decrease in mito-

chondrial membrane potential, which is sensed by the MTS of

ATFS-1.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit anti-HSP-6 Köhler et al., 2015 N/A

Mouse anti-HSP-60 (Hadwiger et al., 2010) available

at DHSB

HSP60 s

Rabbit anti-ATFS-1 Gift from C. Haynes (UMass

Medical School)

N/A

Mouse anti-Tubulin DM1a Sigma-Aldrich Cat # T6199; RRID:AB_477583

Mouse anti-b-actin AC-15 Sigma-Aldrich Cat # A-1978;RRID:AB_476692

Goat Anti-Mouse IgG (HL)-HRP Conjugate antibody Biorad Cat # 1706516;RRID:AB_11125547

Goat Anti-Rabbit IgG (HL)-HRP Conjugate antibody Biorad Cat # 1706515;RRID:AB_11125142

Bacterial and Virus Strains

RNAi clones Ahringer library Kamath and Ahringer, 2003 N/A

OP50 Caenorhabditis Genetics Center OP50

HT115 Caenorhabditis Genetics Center HT115

DH5a ThermoFischer Cat # 18265017

Chemicals, Peptides, and Recombinant Proteins

IPTG Carl-Roth Cat # CN08.2

TMRE ThermoFischer Scientific Cat # T-669

Amersham ECL Western Blotting Detection Reagent Sigma-Aldrich Cat # GERPN2106

Amersham ECL prime Western Blotting Detection

Reagent

Sigma-Aldrich Cat # GERPN2236

Experimental Models: Organisms/Strains

Wildtype C. elegans strain N2 Caenorhabditis Genetics Center N2

TK22 (sdhc-1(kn1) III) Caenorhabditis Genetics Center TK22

DA2249 (spg-7(ad2249) I) Caenorhabditis Genetics Center DA2249

BR2430 (pdr-1(lg103) III) Gift from R. Baumeister (University

of Freiburg)

N/A

MD3399 (pink-1(tm1779) II) This study N/A

CZ19982 (mcu-1(ju1154) IV) Caenorhabditis Genetics Center CZ19982

SJ4100 (zcIs13 V) Caenorhabditis Genetics Center SJ4100

SJ4058 (zcIs9) Caenorhabditis Genetics Center SJ4058

MD3800 (mcu-1(ju1154) IV; zcIs13 V) This study N/A

MD4205 (pink-1(tm1779) II; zcIs13 V) This study N/A

MD4203 (zcIs13 V) This study N/A

MD4001 (pdr-1(lg103) III; zcIs13 V) This study N/A

MD4002 (zcIs13 V) This study N/A

MD4126 (gcn-2(ok871) II; zcIs13 V) This study N/A

MD4164 (gcn-2(ok886) II; zcIs13 V) This study N/A

MD4165 (zcIs13 V) This study N/A

MD4284 (oxTi179 II; unc-119(ed3) III; atfs-1(tm4525)

V zcIs9 V)

This study N/A

MD4306 (bcSi78 [pCFJ350] II; unc-119(ed3) III; atfs-1

(tm4525) zcIs9 V)

This study N/A

(Continued on next page)
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LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Barbara

Conradt (b.conradt@ucl.ac.uk).

All C. elegans strains and plasmids generated in this study are freely available upon request to the Lead Contact, Barbara Conradt

(b.conradt@ucl.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

C. elegans strains and culture conditions
C. elegans strains were cultured as previously described (Brenner, 1974). Bristol N2 was used as the wild-type strain. The screen was

performed using the strain SJ4100, which carries the Phsp-6GFP transcriptional reporter (Yoneda et al., 2004). Further experiments

were performed using the strain SJ4058, which carries the mitochondrial chaperone hsp-60 transcriptional reporter (Phsp-60GFP)

(Yoneda et al., 2004). Mutations used in this study were described by Riddle et al. (1997) except: (LG I) spg-7(ad2249) (Zubovych

et al., 2010) (LG II) gcn-2(ok871) and gcn-2(ok886) (OMRF Knockout Group), pink-1(tm1779) (National BioResource Project), (LGIII)

pdr-1(lg103) (Springer et al., 2005) and mev-1(kn1) (Honda et al., 1993), (LGIV) mcu-1(ju1154) (Xu and Chisholm, 2014) and (LGV)

atfs-1(tm4525) (National BioResource Project).

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

MD4314 (bcSi80 [pBC1753] II; unc-119(ed3) III; atfs-1

(tm4525) zcIs9 V)

This study N/A

MD4323 (bcSi81 [pBC1759] II; unc-119(ed3) III; atfs-1

(tm4525) zcIs9 V)

This study N/A

Oligonucleotides

Forward primer to amplify Patfs-1:atfs-1[CDS]:atfs-1

[30UTR] from gDNA atfs-1FSpeI 50-ACTAGTTATCCC

GATTCAAATCATTG-30

This study N/A

Reverse primer to amplify Patfs-1:atfs-1[CDS]:atfs-1

[30UTR] from gDNA atfs-1RAvrII 50-CCTAGGTTACAC

AACTGCGTCACG-30

This study N/A

Primer for sequencing RNAi clones L4440 F 50-TGGA

TAACCGTATTACCGCC-30
This study N/A

Recombinant DNA

pCFJ350 (empty MosSCI vector) Addgene Plasmid #34866

pBC1753 (Patfs-1:atfs-1[CDS with afts-1MTS]:

atfs-1[30UTR])
This study N/A

pBC1759 (Patfs-1:atfs-1[CDS with su9MTS]:

atfs-1[30UTR])
This study N/A

Software and Algorithms

Fiji v. 2.0.0-rc-69/1.52i Schindelin, 2012 https://imagej.net/Fiji/Downloads

Prism v. 6 GraphPad Software https://www.graphpad.com/scientific-

software/prism/

MitoProt Claros and Vincens, 1996 https://ihg.gsf.de/ihg/mitoprot.html

Leica Application Suite v. 3.2.0.9652 Leica Microsystems https://www.leica-microsystems.com/

products/microscope-software/p/leica-

application-suite/

Metamorph v. 7.1.0.0. Molecular Device Corporation https://www.moleculardevices.com/

David Database v. 6.8 Huang et al., 2009 https://david.ncifcrf.gov

Image Lab v. 5.2.1. build 11 Bio-Rad http://www.bio-rad.com/de-de/product/

image-lab-software

R Studio v. 1.1.423 with ‘‘userfriendlyscience’’

package

RStudio Team, 2015; Peters,

2018

https://www.rstudio.com
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Transgenic lines generation
To generate the atfs-1 rescuing construct (Patfs-1:atfs-1[CDS]:atfs-1[30UTR]), we used as a promoter the �2.4kb DNA fragment be-

tween ZC376.6, the gene upstream of atfs-1, and the coding sequence of atfs-1. As a 30UTR, we used the �300bp DNA fragment

downstream of the coding sequence of atfs-1, which is described in Wormbase as the 30UTR of atfs-1. Patfs-1:atfs-1[CDS]:atfs-1

[30UTR] was amplified from gDNA using the primer atfs-1FSpeI (50-ACTAGTTATCCCGATTCAAATCATTG-30) and atfs-1RAvrII

(50-CCTAGGTTACACAACTGCGTCACG-30) and cloned into the MosSCI vector pCFJ350 to generate pBC1753. A second plasmid

(pBC1759) was generated, in which the first 24 amino acids of ATFS-1 were replaced with the first 69 amino acids of the subunit

9 of ATP synthase of Neurospora crassa. In order to generate stably integrated, single-copy transgenes of these two constructs

as well as the control vector, both plasmids as well as the empty pCFJ350 vector were used for MosSCI injection of the strain

MD4284 (oxTi179 II; unc-119(ed3) III; atfs-1(tm4525) zcIs9 [Phsp-60GFP] V). To generate the MD4284 strain, we crossed the strain

CMH5 (atfs-1(tm4525) zcIs9 [Phsp-60GFP] V) (kind gift fromC. Haynes) and EG8079 (oxTi179 II unc-119(ed3) III). To determine the level

of the ATFS-1 protein, the different transgenic lines were treated with tag-208(RNAi) or lonp-1(RNAi) and analyzed by Western using

affinity purified rabbit anti-ATFS-1 antibodies (1:5000; generated by Nargund et al. [2012]) and anti-b-actin antibodies (1:2000,

Sigma). We also generated a single copy atfs-1(wt)::GFP transgene. In contrast to the non-tagged atfs-1(wt) transgene, which

restores the induction of the Phsp-60GFP reporter upon spg-7(RNAi) to�58% of wild-type level, the afts-1(wt)::GFP single copy trans-

gene restores the induction of the Phsp-60GFP reporter to only�14%of wild-type level. Hence, the presence of GFP appears to nega-

tively affect the ability of ATFS-1 to function as a transcription factor. The name and genotype of all the transgenic lines generated in

this study are indicated in Table S2.

METHOD DETAILS

Genome wide RNA interference screen
The screen was performed using the technique of RNAi by feeding using the Ahringer RNAi library (Kamath and Ahringer, 2003).We

specifically used the latest updated version of the library which covers more than 90% of the annotated genes of the C. elegans

genome and is available from Source BioScience (www.lifesciences.sourcebioscience.com).

For the L4 screen, RNAi clones were cultured overnight in 100 mL of LB carbenicillin (100 mg/ml) in a 96 wells plate format on day 1.

On day 2, 10 mL of the culture was used to inoculate 24 well lactose RNAi plates (similar to NGMmedium (Stiernagle, 2006) with 4g/l

bacto-tryptone instead of 2.5g/l of Bacto-Peptone and supplemented with 100 mg/ml Carbenicillin and 0.25% lactose (w/v)) and

the plates were incubated at room temperature until the next day. On day 3, a synchronized population of L4 of the SJ4100 strain

(Phsp-6GFP) was resuspended in MPEG (M9 medium (Stiernagle, 2006) supplemented with 0.1% PEG (w/v)). Two L4 larvae were pi-

petted in each well of the 24 well plates. The plates were incubated at 20�C for four days and screened for GFP positive progeny.

Positive candidates were re-screened in three independent experiments using 24 well 6mM IPTG RNAi plates (NGMmedium (Stier-

nagle, 2006) supplemented with 25 mg/ml Carbenicillin and 6mM IPTG). As indicated in Table S1, the level of induction of UPRmt was

classified from 0 (basal expression of the Phsp-6GFP reporter similar to the one observed in tag-208(RNAi) animals) to 3 (strong

expression of the Phsp-6GFP reporter).

For the L1 screen, a sub-library containing the 2000 genes described as essential for embryonic and larval development according

to Ahringer and co-workers was generated (Kamath and Ahringer, 2003). RNAi clones were cultured overnight in 100 mL of LB car-

benicillin (100 mg/ml) in a 96well plate format on day 1. On day 2, 10 mL of the culture was used to inoculate 24well lactose RNAi plates

(see above) and the plates were incubated at room temperature until the next day. On day 2, gravid adults of the SJ4100 strain

(Phsp-6GFP) were bleached as previously described (Stiernagle, 2006). The embryos were incubated overnight in M9medium in order

to produce a synchronized population of L1 larvae the next morning. On day 3, 50 synchronized L1 larvae were inoculated onto each

well of the 24 wells Lactose RNAi plates. The plates were incubated at 20�C for three days and screened for GFP positive animals.

Positive candidates were re-screened in three independent experiments using 24 wells 6mM IPTG RNAi plates (see above).

Bioinformatic analysis
For prediction of the mitochondrial targeting sequence and its charge, we used the Mitoprot software ((Claros and Vincens, 1996);

https://ihg.gsf.de/ihg/mitoprot.html). For the functional annotations and clustering we used the DAVID database v. 6.8 (Huang et al.,

2009). The list of candidates was used as an input and was ran against the C. elegans background list for searching of enriched GO

categories. The GO-term enrichment is calculated using a modified Fisher’s exact test. The so-called EASE score provides a more

conservative method to calculate the enrichment of a term, guaranteeing results consistency.

Further analysis of the candidates
RNAi clones were cultured overnight in 2ml of LB carbenicillin (100 mg/ml) at 37�C and 200rpm. The RNAi cultures were adjusted to

0.5OD and 50 mL was used to seed 30mm RNAi plates containing 6mM IPTG (see above). The plates were incubated at 20�C in the

dark. [In the case of double RNAi, each RNAi culture was diluted 1:3 with atfs-1(RNAi) or tag-208(RNAi) bacteria.] 24 hours later, four

L4 larvae of SJ4100 or SJ4058were inoculated onto the RNAi plates and newRNAi plates were seeded. 24 hours later, the four adults

of SJ4100 or SJ4058 were transferred onto new seeded RNAi plates and let to lay eggs for 4 hours at 20�C. The adults were

then removed from the plates and the plates were further incubated for 4 days at 20�C (For the rescue experiments, the plates

e3 Cell Reports 28, 1659–1669.e1–e5, August 13, 2019 86

Chapter II



were incubated for 5 days at 20�C). For each RNAi condition, �10 animals were imaged using a Leica GFP dissecting microscope

(M205 FA) and the software Leica Application Suite (3.2.0.9652). We used Fiji-implemented macro using the IJ1 Macro language to

automate the intensity measurement within defined areas of 2-dimensional images using ImageJ. An automated threshold using the

Triangle method was applied to the brightfield microscopy image, in order to generate a binary mask (The Triangle method was

selected among the 16 available auto threshold methods of ImageJ as it provided the best results). The mask was then inverted

and the Particle Analyzer of ImageJ was used to remove noise by setting a minimum size (10 pixels) for objects to be included in

the mask. After removing manually any remaining unwanted objects, the mask was applied to the corresponding fluorescence mi-

croscopy image and mean fluorescence intensity was measured. The mean fluorescence intensity outside the mask was defined as

the background. The script (‘‘Worm_SignalQuantification.ijm’’) used for the analysis can be found in Data S1.

Analysis of HSP-6 and HSP-60 protein levels
Two L4 larvae of N2 were inoculated on tag-208(RNAi), fum-1(RNAi) or sdhc-1(RNAi) plates and the plates were incubated for 5 days

at 20�C. Mixed-stage populations of worms were harvested in 1ml MPEG, washed 3 times with 1ml MPEG and resuspended in 1

volume of Laemmli buffer 2x. The samples were analyzed by SDS-PAGE and Western using a monoclonal anti-Tubulin (1:10000;

Sigma), a polyclonal anti-HSP-6 (1:10000; (Köhler et al., 2015)) and a monoclonal anti-HSP-60 (1:2000; generated by Hadwiger

et al. (2010) and available at DHSB). As secondary antibodies, we used horseradish peroxidase conjugated goat anti-mouse

antibodies (BioRad #1706516) at 1:10000 for the anti-Tubulin and at 1:7500 for the anti-HSP-60. For the anti-HSP-6, we used a horse-

radish peroxidase conjugated goat anti-rabbit (BioRad #1706515) at 1:10000. Western was developed using ECL (Amersham

#RPN2106) and images were quantified using the ChemiDoc XRS+ System (Bio-Rad).

TMRE staining and quantification
L2/L3 larvaewere inoculated onNGMplates (Stiernagle, 2006) supplementedwith 0.1 mMTetramethylrhodamine, Ethyl Ester (TMRE)

with a small inoculum of OP50 E. coli bacteria. After an incubation over-night at 20�C, L4 larvae were analyzed by fluorescence mi-

croscopy using amicroscope equippedwith a 633 1.4 NA oil lens (Axioskop 2; Carl Zeiss, Inc.) and a charge-coupled device camera

(1300; Micromax). The acquisition was performed with 100ms exposure using the software Metamorph (Molecular Device Corpora-

tion; v. 7.1.0.0). For the RNAi experiments, L4 larvae were inoculated onto 6mM IPTG RNAi plates as indicated above. After 2 days,

L2/L3 larvae of the F1 generation were inoculated on TMRE plates and analyzed the next day as indicated above. We used Fiji-im-

plemented macro using the IJ1 Macro language to segment the images. Specifically, we used a background subtraction with the

‘‘rolling ball’’ algorithm with a ball radius of 15 pixels to remove continuous background signal from the image (Sternberg, 1983).

This was followed by the application of the Tubeness plugin, which generates a score of how tube-like each point in the image is,

by using the eigenvalues of the Hessian matrix to calculate the measure of ‘‘tubeness’’ (Sato et al., 1998). The resulting 32-bit image

was converted to 8-bit and an automatic threshold (using the IsoData algorithm) was used to generate a binary mask. The final step

involved the removal of any particles that are smaller than 10 pixels in size for they are assumed to be noise. After removing manually

any remaining unwanted objects, another macro was used to measure mean fluorescence intensity. Specifically, all objects in the

binary mask segmented with the first macro were selected and this selection was restored on the original image, allowing tomeasure

the mean fluorescence intensity within regions that correspond to the binary mask. This binary mask corresponds to the TMRE

labeled mitochondria in the image. The mean fluorescence intensity outside the mask was defined as the background and was

subtracted from the signal. Since the mean fluorescence intensity corresponds to the sum of the gray values of all the pixels in

the selection divided by the number of pixels in the selection, the values indicated in Figures 4C and 4D correspond to fluorescence

intensities per area. The scripts (‘‘TMRE Hessian_segmentation.ijm’’ and ‘‘TMRE mean_intensity_measurement.ijm’’) used for the

analysis can be found in Data S1.

QUANTIFICATION AND STATISTICAL ANALYSIS

For Figures 1, 2, 3, 5, S1, S2, and S4, n indicates the number of biological replicates analyzed for a given RNAi (One replicate cor-

responds to one individual RNAi plate. As indicated inMETHODDETAILS, for each replicate�10 animals were imaged and themean

fluorescence intensity of these animals wasmeasured). For Figure 4, n indicates the number of animals analyzed for a given genotype

or RNAi. For Figure S3, n indicates the number of biological replicates analyzed byWestern for a given RNAi. In the quantification of all

the Figures, the mean values with the standard deviation are indicated. To perform the statistical analyses, we used the software

Graphpad Prism 6 and R Studio Version 1.1.423 (RStudio Team, 2015) with the package ‘‘userfriendlyscience’’ (Peters,

2018).When comparing more than two independent groups, we tested the data for normality using the Kolmogorov-Smirnov test

or Shapiro-Wilk test depending on sample size and for equal variance using the Brown-Forsythe test. When the data was normally

distributed and showed equal variance, we used one-way ANOVA with Bonferroni’s multiple comparison test. In the case of hetero-

scedasticity, we used a Welch’s ANOVA with Games-Howell post hoc test. When the data was not normally distributed, we used a

Kruskal-Wallis with Dunn’s multiple comparisons test. When only comparing two independent groups, we tested for normality using
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the Kolmogorov-Smirnov test or Shapiro-Wilk test depending on sample size and for equal variance using the F-test. We used un-

paired two-sample t test when the data was normally distributed and Wilcoxon-Mann-Whitney-test when the data was not normally

distributed. For the western-blot analysis (Figure S3), we used a one-sample t test when the data was normally distributed and aWil-

coxon signed rank test when the data was not normally distributed.

DATA AND CODE AVAILABILITY

The published article includes all datasets and code generated or analyzed during this study.
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Figure S1:  Compromising mitochondrial Ca2+ homeostasis and mitophagy fail 

to induce UPRmt  (Related to Figure 1). (A) Wild-type animals or mcu-1(ju1154) 

mutant animals carrying the mitochondrial chaperone hsp-6 transcriptional reporter 

(Phsp-6GFP) were analyzed by fluorescence microscopy. Brightfield and fluorescence 

microscopy analysis of the Phsp-6GFP transcriptional reporter strain (+/+) or the Phsp-

6GFP transcriptional reporter strains carrying the pdr-1(lg103) mutation (B) or the 

pink-1(tm1779) mutation (C). The wild-type strains (+/+) used as controls in each 

panel were isolated as F2 siblings of the homozygous mutants. (D,E) Quantification 

of the Phsp-6GFP fluorescence intensity is indicated.  (n≥5 (n=number of biological 

replicates); mean and SD are shown; ns: the difference between wild-type (+/+) and 

pdr-1(lg103) or pink-1(tm1779) are not significant by unpaired t-test). Quantification 

of the Phsp-6GFP fluorescence intensity (F) or the Phsp-60GFP fluorescence intensity 

(G) upon treatment with mock(RNAi) (RNAi bacteria containing the empty L4440

vector) or tag-208(RNAi). (n=5 for panel F and n=6 for panel G (n=number of 

biological replicates); mean and SD are shown; ns: the differences are not significant 

by unpaired t-test for panel F and by Wilcoxon-Mann-Whitney-test test for panel G). 
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Figure S2: Effect of GCN-2 on UPRmt induction (Related to Figure 1). (A) The 

strain carrying the Phsp-6GFP transcriptional reporter strain in the wild-type 

background (+/+) and the gcn-2(ok871) mutant background were subjected to the 

knock-down of mrpl-9. Animals of the next generation were analyzed by fluorescence 

microscopy and the Phsp-6GFP fluorescence intensity was quantified as described in 

methods. (n≥3 (n=number of biological replicates); mean and SD are shown; ns: the 

difference of UPRmt induction between wild-type (+/+) and gcn-2(ok871) are not 

significant by Wilcoxon-Mann-Whitney-test) (B) The strain carrying the Phsp-6GFP 

transcriptional reporter strain in the wild-type background (+/+) and the gcn-2(ok886) 

mutant background were subjected to the knock-down of mrpl-9. Animals of the next 

generation were analyzed by fluorescence microscopy and the Phsp-6GFP fluorescence 

intensity was quantified as described in methods. (n=10 (n=number of biological 

replicates); mean and SD are shown; ns: the difference of UPRmt induction between 

wild-type (+/+) and gcn-2(ok886) are not significant by unpaired t-test, * this wild-

type strain was isolated as a F2 sibling of the homozygous ok886 mutants) (C) The 

strain carrying the Phsp-6GFP transcriptional reporter strain and the clk-1(qm30) 

mutation was subjected to tag-208(RNAi) and gcn-2(RNAi). Animals of the next 

generation were analyzed by fluorescence microscopy and the Phsp-6GFP fluorescence 

intensity was quantified as described in methods. (n=2 (n=number of biological 

replicates); mean and SD are shown). 
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Figure S3: Knock-down of fum-1 and sdhc-1 induces the up-regulation of 

endogenous HSP-6 and HSP-60 proteins (Related to Figure 2 and 3). (A) Western 

analysis of animals treated with tag-208(RNAi), fum-1(RNAi) and sdhc-1(RNAi) using 

anti-HSP-6, anti-HSP-60 and anti-Tubulin antibodies. In the part of the blot showing 

the HSP-60 protein, * indicates the Tubulin protein. The membrane was probed with 

anti-Tubulin antibodies, then with anti-HSP-6 antibodies and then with anti-HSP-60 

antibodies. The Tubulin band indicated by * is still visible after probing the 

membrane with anti-HSP-60 antibodies. (B) Quantification of the ratio of HSP-

6/Tubulin and HSP-60/Tubulin relative to tag-208(RNAi) (n=5 (n=number of 

biological replicates); mean and SD are shown; * p<0.05 by one-sample t-test). 
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Figure S4: Knock-down of genes involved in lipid biosynthesis induces UPRmt 

(Related to Figure 3). (A) Brightfield and fluorescence microscopy analysis of the 

Phsp-6GFP transcriptional reporter treated with tag-208(RNAi), psd-1(RNAi) and crls-

1(RNAi). Fluorescence images are shown with two different intensity scales. (B) 

Quantification of the Phsp-6GFP fluorescence intensity.  (n=6 (n=number of biological 

replicates); mean and SD are shown; * p<0.05 by Welch’s ANOVA with Games-

Howell post-hoc test to tag-208(RNAi)). 
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Figure S5: Analysis of the levels of ATFS-1 protein in the different transgenic 

lines (Related to Figure 5).  To confirm that in the absence of UPRmt induction, both 

ATFS-1(wt) and ATFS-1(NcATP9MTS) proteins are imported into mitochondria, the 

transgenic lines, indicated in Figure 5 panel C-F, were treated with either tag-

208(RNAi) or lonp-1(RNAi). (lonp-1 encodes the mitochondrial protease LONP-1, 

which is responsible for the degradation of ATFS-1 protein (Nargund et al., 2012)) 

and analyzed by Western using affinity purified rabbit anti-ATFS-1 antibodies 

(1:5000; generated by C. Haynes and co-workers (Nargund et al., 2012)) and anti-β-

actin antibodies (1:2000, Sigma). Compared to tag-208(RNAi), lonp-1(RNAi) greatly 

increases the amount of both proteins demonstrating that both proteins are imported 

into mitochondria and degraded by LONP-1. * indicates nonspecific band detected 

with the anti-ATFS-1 antibodies. The membrane was probed with anti-ATFS-1 

antibodies and then with anti-β-actin antibodies. The nonspecific band indicated by * 

is also visible after probing the membrane with anti-β-actin antibodies. 
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Strain 

name 

Genotype Notes Reference 

SJ4100 zcIs13 V (Yoneda et al., 

2004) 

SJ4058 zcIs9 (Yoneda et al., 

2004) 

MD3800 mcu-1(ju1154) IV ; zcIs13 V This study 

MD4205 pink-1(tm1779) II ; zcIs13 V MD4205 and MD4203 are 
isogenic with the exception 
of pink-1(tm1175) 

This study 

MD4203 zcIs13 V 

MD4001 pdr-1( lg103)  III ; zcIs13 V MD4001 and MD4002 are 
isogenic with the exception 
of pdr-1(lg103) 

This study 

MD4002 zcIs13 V This study 

MD4126 gcn-2(ok871) II ; zcIs13 V This study 

MD4164 gcn-2(ok886) II ; zcIs13 V MD4164 and MD4165 are 
isogenic with the exception 
of gcn-2(ok886) 

This study 

MD4165 zcIs13 V This study 

MD4284 oxTi179 II ; unc-119(ed3) III ; atfs-

1(tm4525) V zcIs9 V     

This study 

MD4306 bcSi78 [pCFJ350] II  ; unc-119(ed3) III ; 

atfs-1(tm4525) zcIs9 V 

Described in Figure 5 as 

atfs-1(tm4525) + EV (Empty 

Vector)  

This study 

MD4314 bcSi80 [pBC1753] II  ; unc-119(ed3) III ; 

atfs-1(tm4525) zcIs9 V 

Described in Figure 5 as 

atfs-1(tm4525) +  afts-1(wt) 

rescue strain 

This study 

MD4323 bcSi81 [pBC1759] II  ; unc-119(ed3) III ; 

atfs-1(tm4525) zcIs9 V 

Described in Figure 5 as 

atfs-1(tm4525) + afts-

1(NcATP9MTS) rescue 

strain 

This study 

Table S2: Name and genotype of the transgenic strains used in this study 
(Related to STAR Methods). 
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Abstract

Compromising mitochondrial fusion or fission disrupts cellular homeostasis; however, the

underlying mechanism(s) are not fully understood. The loss of C. elegans fzo-1MFN results

in mitochondrial fragmentation, decreased mitochondrial membrane potential and the induc-

tion of the mitochondrial unfolded protein response (UPRmt). We performed a genome-wide

RNAi screen for genes that when knocked-down suppress fzo-1MFN(lf)-induced UPRmt. Of

the 299 genes identified, 143 encode negative regulators of autophagy, many of which have

previously not been implicated in this cellular quality control mechanism. We present evi-

dence that increased autophagic flux suppresses fzo-1MFN(lf)-induced UPRmt by increasing

mitochondrial membrane potential rather than restoring mitochondrial morphology. Further-

more, we demonstrate that increased autophagic flux also suppresses UPRmt induction in

response to a block in mitochondrial fission, but not in response to the loss of spg-7AFG3L2,

which encodes a mitochondrial metalloprotease. Finally, we found that blocking mitochon-

drial fusion or fission leads to increased levels of certain types of triacylglycerols and that

this is at least partially reverted by the induction of autophagy. We propose that the break-

down of these triacylglycerols through autophagy leads to elevated metabolic activity,

thereby increasing mitochondrial membrane potential and restoring mitochondrial and cellu-

lar homeostasis.

Author summary

Various quality control mechanisms within the cell ensure mitochondrial homeostasis.

Specifically, mitochondrial fission and fusion, the mitochondrial unfolded protein

response (UPRmt) and/or mitophagy are induced upon mitochondrial stress to maintain

or restore mitochondrial homeostasis. How these different quality control mechanisms

are coordinated and how they influence each other is currently not well understood.
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Interestingly, the disruption of mitochondrial dynamics has recently been shown to

induce UPRmt. We performed a genome-wide RNAi screen for suppressors of UPRmt

induced by a block in mitochondrial fusion and found approximately half of the candidate

genes identified to negatively regulate autophagy, a central quality control mechanism

that adjusts cellular metabolism under conditions of stress. Furthermore, we found that

induction of autophagy also suppresses UPRmt induced by a block in mitochondrial fis-

sion. In addition, we demonstrate that defects in mitochondrial dynamics lead to changes

in lipid metabolism, which can partially be reverted by the induction of autophagy. Taken

together, our results suggest a so far unknown functional connection between UPRmt and

autophagy in animals with defects in mitochondrial dynamics.

Introduction

Mitochondrial dynamics plays an important role in the maintenance of mitochondrial func-

tion and, hence, cellular homeostasis [1]. Mitochondrial fission and fusion are both mediated

by members of the family of dynamin-like guanosine triphosphatases (GTPases) [2]. In the

nematode Caenorhabditis elegans, mitochondrial fission is facilitated by the cytosolic dyna-

min-like GTPase DRP-1DRP1, which is recruited to mitochondria where it presumably forms

constricting spirals as shown for its Saccharomyces cerevisiae counterpart Drp1 [3,4]. Con-

versely, fusion of the outer and inner mitochondrial membranes is carried out by the mem-

brane-anchored dynamin-like GTPases FZO-1MFN [5] and EAT-3OPA1 [6], respectively. The

consequences with respect to mitochondrial function and cellular homeostasis of disrupting

mitochondrial dynamics are not yet fully understood; however, it has recently been demon-

strated that this activates a retrograde quality control signaling pathway referred to as the

‘mitochondrial Unfolded Protein Response’ (UPRmt) [7,8]. In C. elegans, UPRmt is activated

upon mitochondrial stress, which leads to a decrease in mitochondrial membrane potential

and the subsequent import into the nucleus of the ‘Activating Transcription Factor associated

with Stress 1’ (ATFS-1ATF4,5) [9,10]. ATFS-1ATF4,5 harbors both an N-terminal mitochondrial

targeting sequence and a C-terminal nuclear localization sequence and is normally imported

into mitochondria [11]. Upon mitochondrial stress, ATFS-1ATF4,5 is imported into the

nucleus, where it cooperates with the proteins UBL-5UBL5 and DVE-1SATB1 to promote the

transcription of genes that act to restore mitochondrial function and to adjust cellular metabo-

lism [9,10,12,13]. Among these genes are the mitochondrial chaperone genes hsp-6mtHSP70 and

hsp-60HSP60, the transcriptional upregulation of which is commonly used to monitor UPRmt

activation [14].

Whereas UPRmt is a quality control pathway that is activated upon mitochondrial stress,

macro-autophagy (from now on referred to as ‘autophagy’) is a more general cellular quality

control mechanism. Through autophagy, cytosolic constituents, long-lived proteins or dys-

functional organelles are degraded and recycled [15,16]. Upon the induction of autophagy, a

double-membrane structure called ‘phagophore’ forms, which enlarges and eventually engulfs

the cargo to form an ‘autophagosome’. The autophagosome then fuses with a lysosome to

form an ‘autolysosome’, in which the engulfed cargo is subsequently degraded by lysosomal

hydrolases [16–18]. A key regulator of autophagy in C. elegans is the kinase LET-363mTOR

[19]. When cellular nutrients are abundant, LET-363mTOR represses the ‘induction complex’,

which includes UNC-51ULK, a kinase that initiates autophagy [20–26].

Another vesicular process that targets cargo for degradation to the lysosome is endocytosis.

The ‘Endosomal Sorting Complex Required for Transport’ (ESCRT) plays a critical role in
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endocytosis [27,28]. The ESCRT is composed of five different subcomplexes (ESCRT-0, -I, -II,

-III and the AAA-ATPase VPS4) and was originally identified because of its role in the forma-

tion of multivesicular bodies (MVBs), which enables ubiquitinated membrane proteins to be

sorted into small intralumenal vesicles (ILVs) [29,30]. The ESCRT has since been shown to be

required for a number of other cellular processes, such as cytokinesis and virus budding

[27,31,32]. ESCRT activity has also been shown to affect autophagy. Studies in mammals and

Drosophila melanogaster demonstrated that depleting ESCRT components results in a block in

autophagy and that in these animals, the ESCRT is required for the fusion of endosomes with

lysosomal compartments and also autophagosomes [33–36]. Moreover, ESCRT components

have recently been shown to be involved in the closure of autophagosomes in mammals and

yeast [37,38]. However, in C. elegans, the depletion of ESCRT components results in the induc-

tion of autophagy, which suggests that in this species, ESCRT function antagonizes or sup-

presses autophagy [39,40].

Whereas a functional connection between the ESCRT and autophagy has been established

in yeast, nematodes, flies and mammals [33–40], functional connections between the ESCRT

and UPRmt or between autophagy and UPRmt [40] have not been described or are poorly

understood. In this study, we present evidence that in C. elegans, the ESCRT, autophagy and

UPRmt functionally interact. Specifically, we found that the induction of autophagy suppresses

UPRmt induced by a block in mitochondrial fusion or fission. Interestingly, lipid profiling

revealed alterations in the lipidome of mutants defective in mitochondrial dynamics, and we

present evidence that changes in the levels of certain types of triacylglycerols (TGs) in fzo-
1MFN mutants can be reverted by the induction of autophagy. We propose that through the

breakdown of these triacylglycerols, the induction of autophagy leads to elevated metabolic

activity, thereby increasing mitochondrial membrane potential and restoring mitochondrial

and, hence, cellular homeostasis.

Results

In C. elegans, knock-down by RNA-mediated interference (RNAi) of genes encoding dyna-

min-like GTPases required for mitochondrial fusion (fzo-1MFN, eat-3OPA1) or mitochondrial

fission (drp-1DRP1) induces the ‘mitochondrial Unfolded Protein Response’ (UPRmt) [7,8].

Using a multi-copy transgene of the transcriptional reporter Phsp-6 mtHSP70gfp (zcIs13) [14], we

tested strong loss-of-function (lf) mutations of fzo-1MFN and drp-1DRP1 (fzo-1(tm1133), drp-1
(tm1108) (National BioResource Project)) and found that they induce UPRmt to different

degrees (S1A and S1C Fig). As a positive control, we used animals carrying a lf mutation of the

gene spg-7AFG3L2 (spg-7(ad2249)), which encodes a mitochondrial metalloprotease required

for mitochondrial function [41]. The zcIs13 transgene shows very low baseline expression in

wild-type animals and is widely used to monitor UPRmt in C. elegans [7,9–14,42–44]. In the

case of fzo-1(tm1133) animals, for example, its expression is induced more than 15-fold (S1C

Fig). Furthermore, RNAi knock-down of spg-7AFG3L2 or genes encoding subunits of the elec-

tron transport chain (ETC), or treatments with drugs targeting the latter (e.g. antimycin) lead

to strong induction of zcIs13 expression [14,43]. This makes the zcIs13 transgene suitable for

high throughput, large-scale screens.

However, considering that fzo-1(tm1133) causes an increase in the amount of endogenous

HSP-6mtHSP70 protein by only 1.44-fold (S1E Fig), the fold induction observed with the multi-

copy zcIs13 transgene may not reflect the physiological response with respect to UPRmt induc-

tion by the loss of fzo-1MFN. Furthermore, the zcIs13 transgene exhibits large variability in

expression between animals (inter-individual variability) (S1A Fig), which makes it difficult to

obtain consistent results, especially when knocking-down genes using RNA-mediated
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interference (RNAi). For this reason, we generated a single-copy transgene, bcSi9 (integrated at

a defined chromosomal location using MosSCI), of the transcriptional reporter Phsp-6 mtHSP70gfp.

As shown in S1B Fig, the bcSi9 transgene shows low baseline expression and, in the case of spg-7
(ad2249) and fzo-1(tm1133), an increase in expression of ~5-fold or ~4-fold, respectively (S1D

Fig). Furthermore, compared to fzo-1(tm1133) animals carrying the multi-copy transgene

zcIs13, fzo-1(tm1133) animals carrying the single-copy transgene bcSi9 exhibit less inter-individ-

ual variability (S1A and S1B Fig). Similarly, drp-1(tm1108) animals carrying bcSi9 show signifi-

cantly less inter-individual variability compared to drp-1(tm1108) animals carrying the multi-

copy transgene zcIs13 (S1A and S1B Fig). Importantly, for all genotypes tested, we found that

compared to the fold-induction observed with the multi-copy transgene zcIs13, the fold-induc-

tion observed with the single-copy transgene bcSi9 correlated better with the fold-induction

observed in the amount of endogenous HSP-6mtHSP70 protein (S1A–S1E Fig). Finally, to com-

pare inter-individual variability of the expression of the two Phsp-6 mtHSP70gfp transgenes zcIs13
and bcSi9 as well as the endogenous hsp-6mtHSP70 locus in a quantitative manner, we performed

single-worm RT-qPCR experiments in synchronized populations of 36 individual animals and

compared inter-individual variability in expression of zcIs13, bcSi9 or the endogenous hsp-
6mtHSP70 locus to those of loci with low (hsp-1HSPA1L), medium (ttr-45) or high (nlp-29) inter-

individual variability in expression, respectively (S1F Fig). While the expression of the endoge-

nous hsp-6mtHSP70 locus is not variable between individuals of a population, the expression of

the multi-copy transgene zcIs13 is highly variable in both a wild-type and fzo-1(tm1133) back-

ground (S1F Fig). Furthermore, the single-copy transgene bcSi9 exhibits some inter-individual

variability in expression, however, to a much lower degree than the transgene zcIs13. Therefore,

based on these results, we decided to use the multi-copy transgene zcIs13 for a genome-wide

RNAi screen for suppressors of fzo-1(tm1133)-induced UPRmt and the single-copy transgene

bcSi9 for subsequent analyses of candidates identified (see below).

Depletion of ESCRT components suppresses fzo-1(tm1133)-induced UPRmt

To identify genes that affect the induction of UPRmt in response to a block in mitochondrial

fusion, we performed a genome-wide RNAi screen using fzo-1(tm1133) animals carrying the

multi-copy Phsp-6 mtHSP70gfp transgene zcIs13 (S1A Fig). To that end, we used an RNAi feeding

library that covers approximately 87% of C. elegans protein coding genes [45] and analyzed

animals of the F1 generation. Among the 299 suppressors identified, three genes, vps-4VPS4,

vps-20CHMP6 and vps-37VPS37, encode components of the ‘Endosomal Sorting Complex

Required for Transport’ (ESCRT) [27–30]. We analyzed the suppression of fzo-1(tm1133)-
induced UPRmt using the single-copy Phsp-6 mtHSP70gfp transgene bcSi9 and found that knock-

down of vps-4VPS4 or vps-20CHMP6 by RNAi (referred to as ‘vps-4(RNAi)’ or ‘vps-20(RNAi)’)
causes suppression by 39% or 23% on average, respectively (Fig 1A and 1C). vps-37(RNAi)
does not result in a statistically significant suppression on average; however, some individual

animals show strong suppression (see Fig 1A; vps-37(RNAi); red arrowheads). As a positive

control, we knocked-down the function of atfs-1ATF4,5 by RNAi, which results in suppression

of fzo-1(tm1133)-induced UPRmt by 54% on average. (In a wild-type background, atfs-1
(RNAi), vps-4(RNAi) or vps-20(RNAi) suppresses baseline expression of the bcSi9 transgene by

8%, 14% or 14%, respectively (S2A Fig).) To confirm the suppression of fzo-1(tm1133)-
induced UPRmt upon ESCRT(RNAi), we used a multi-copy transgene (zcIs9) of a transcrip-

tional reporter of the gene hsp-60HSP60 (Phsp-60 HSP60gfp), which is also transcriptionally upre-

gulated in response to the induction of UPRmt [14]. Using the Phsp-60 HSP60gfp reporter, we

found that vps-37(RNAi), vps-20(RNAi) or vps-4(RNAi) suppresses by 34%, 41% or 33% on

average, respectively (Fig 1B and 1D).

PLOS GENETICS Functional interactions between autophagy and mitochondrial stress

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008638 March 19, 2020 4 / 37

102

Chapter III



To validate that the reduced Phsp-6 mtHSP70gfp (bcSi9) and Phsp-60 HSP60gfp (zcIs9) expression

in fzo-1(tm1133) animals upon ESCRT(RNAi) is specific to the UPRmt response, we tested a

Fig 1. Depletion of ESCRT components and LET-363 suppresses fzo-1(tm1133)-induced UPRmt. (A) Fluorescence

images of L4 larvae expressing Phsp-6gfp (bcSi9) in wild type (+/+) or fzo-1(tm1133). L4 larvae were subjected to control
(RNAi), atfs-1(RNAi), vps-4(RNAi), vps-20(RNAi), vps-22(RNAi), hgrs-1(RNAi), vps-36(RNAi), vps-37(RNAi) or let-363
(RNAi) and the F1 generation was imaged. Red arrowheads indicate suppressed animals upon vps-37(RNAi). Scale bar:

200 μm. (B) Fluorescence images of L4 larvae expressing Phsp-60gfp (zcIs9) in wild type (+/+) or fzo-1(tm1133). L4

larvae were subjected to control(RNAi), atfs-1(RNAi), vps-4(RNAi), vps-20(RNAi), vps-22(RNAi), hgrs-1(RNAi), vps-36
(RNAi), vps-37(RNAi) or let-363(RNAi) and the F1 generation was imaged. Scale bar: 200 μm. (C) Quantifications of

fluorescence images from panel A. After subtracting the mean fluorescence intensity of wild type (+/+) on control
(RNAi), the values were normalized to fzo-1(tm1133) on control(RNAi). Each dot represents the quantification of

fluorescence intensity of 15–20 L4 larvae. Values indicate means ± SD of at least 3 independent experiments in

duplicates. ��P<0.01, ����P<0.0001 using one-way ANOVA with Dunnett’s multiple comparison test to control
(RNAi). (D) Quantifications of fluorescence images from panel B. After subtracting the mean fluorescence intensity of

wild type (+/+) on control(RNAi), the values were normalized to fzo-1(tm1133) on control(RNAi). Each dot represents

the quantification of fluorescence intensity of 10–20 L4 larvae. Values indicate means ± SD of 3 independent

experiments in duplicates. ns: not significant, �P<0.05, ��P<0.01, ����P<0.0001 using Kruskal-Wallis test with Dunn’s

multiple comparison test to control(RNAi).

https://doi.org/10.1371/journal.pgen.1008638.g001
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transcriptional reporter, Pges-1 CES2gfp, that has a similar expression pattern as the two UPRmt

reporters. Depletion of ESCRT component VPS-4VPS4 or VPS-20CHMP6 does not result in sup-

pression of the Pges-1 CES2gfp reporter (Fig 2A and 2B), suggesting that ESCRT depletion does

not cause degradation of cytosolic GFP per se but specifically suppresses the expression of the

two UPRmt reporters.

Since vps-4VPS4, vps-20CHMP6 and vps-37VPS37 are part of different ESCRT subcomplexes

(vps-4VPS4—ATPase, vps-20CHMP6—ESCRT-III, vps-37VPS37—ESCRT-I) [27], we tested

whether depletion of components of the two remaining ESCRT subcomplexes, ESCRT-0 and

ESCRT-II, also suppresses fzo-1(tm1133)-induced UPRmt. Using the Phsp-6 mtHSP70gfp reporter

(bcSi9), we found that RNAi knock-down of hgrs-1HGS (ESCRT-0) suppresses by 23% on aver-

age (Fig 1A and 1C). In contrast, RNAi knock-down of two genes encoding components of

ESCRT-II, vps-22SNF8 and vps-36VPS36, fails to suppress. Similarly, using the Phsp-60 HSP60gfp
reporter (zcIs9), we found suppression by hgrs-1(RNAi) but not vps-22(RNAi) or vps-36(RNAi)
(Fig 1B and 1D). Taken together, our results demonstrate that the depletion of components of

ESCRT-0, -I, -III or VPS-4 ATPase can suppress fzo-1(tm1133)-induced UPRmt.

Depletion of ESCRT components does not rescue the fragmented

mitochondria phenotype in fzo-1(tm1133) animals but increases

mitochondrial membrane potential

The loss of fzo-1MFN function has a dramatic effect on steady-state mitochondrial morphology.

This is easily detectable in C. elegans body wall muscles using a reporter that drives the expres-

sion of mitochondrial-matrix targeted GFP protein (Pmyo-3 MYHgfpmt) [3,5,46]. In control
(RNAi) animals, the mitochondria in body wall muscle cells are predominantly tubular (Fig

2C). In contrast, in fzo-1(tm1133) animals treated with control(RNAi), the mitochondria are

predominantly fragmented (referred to as ‘fragmented mitochondria’ phenotype). To deter-

mine whether the depletion of components of ESCRT-I or -III, or the depletion of the ATPase

VPS-4VPS4 restores steady-state mitochondrial morphology, we analyzed mitochondrial mor-

phology in fzo-1(tm1133) animals, in which vps-4VPS4, vps-20CHMP6 or vps-37VPS37 had been

knocked-down by RNAi. We found that knock-down of these genes has no effect on the frag-

mented mitochondria phenotype in body wall muscle cells of fzo-1(tm1133) animals (Fig 2C).

Knock-down of vps-4VPS4, vps-20CHMP6 or vps-37VPS37 in fzo-1(tm1133) animals also has no

effect on mitochondrial morphology in hypodermal or intestinal cells (Fig 2E and S3B Fig).

(ESCRT depletion has no effect on steady-state mitochondrial morphology in body wall mus-

cle cells in a wild-type background (S3A Fig).)

Since we did not see a change in mitochondrial morphology in fzo-1(tm1133) animals upon

ESCRT(RNAi), we tested whether it affects mitochondrial membrane potential. Therefore, we

stained larvae with TMRE (Tetramethylrhodamine ethyl ester), a membrane potential depen-

dent dye that is commonly used in C. elegans to measure mitochondrial membrane potential

in hypodermal cells [10,14]. To measure the intensity of TMRE signal, mitochondria in the

fluorescent images were segmented using Fiji image software to generate a binary mask (S4

Fig). This mask, which includes all mitochondria of an image, was then used to measure

TMRE fluorescence intensity per mitochondrial area in the raw image. Compared to wild

type, TMRE fluorescence intensity per mitochondrial area was reduced by 63% in fzo-1
(tm1133) animals (Fig 2D). We found increased levels of TMRE fluorescence intensity per

mitochondrial area in fzo-1(tm1133) animals upon vps-4(RNAi) (19%) or vps-20(RNAi) (33%),

compared to control(RNAi) (Fig 2E and 2F). In contrast, ESCRT depletion in the wild-type

background causes a reduction in TMRE fluorescence intensity per mitochondrial area by

24% upon vps-4(RNAi) or 18% upon vps-20(RNAi) (Fig 2G and 2H). Mitochondrial TMRE
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Fig 2. Induction of autophagy increases mitochondrial membrane potential and suppresses fzo-1(tm1133)-induced UPRmt.

(A) Fluorescence images of L4 larvae expressing Pges-1gfp in wild type (+/+). L4 larvae were subjected to control(RNAi), vps-4
(RNAi), vps-20(RNAi), let-363(RNAi) or hars-1(RNAi) and the F1 generation was imaged. Scale bar: 200 μm. (B) Quantifications

of fluorescence images from panel A. The values were normalized to control(RNAi) and each dot represents the quantification of
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fluorescence intensity is proportional to mitochondrial membrane potential [47]. Therefore,

ESCRT(RNAi) results in an increase in mitochondrial membrane potential in fzo-1(tm1133)
mutants. Hence, our data suggests that the suppression of fzo-1(tm1133)-induced UPRmt upon

ESCRT depletion is due to rescue of the decreased mitochondrial membrane potential and not

the fragmented mitochondria phenotype.

Depletion of ESCRT components increases autophagic flux in fzo-1
(tm1133) animals

Previous studies have shown that in C. elegans, the depletion of ESCRT components leads to

the induction of autophagy [39,40]. We confirmed this in wild-type animals (S2B Fig) and

tested whether ESCRT depletion also induces autophagy in fzo-1(tm1133) animals. First, we

determined the basal level of autophagy in fzo-1(tm1133) animals using three different assays

that utilize the reporters Plgg-1 GABARAPgfp::lgg-1 and Psqst-1 p62sqst-1::gfp, which are widely used

to monitor autophagy in C. elegans [40,48–52]. Specifically, we determined the number of

GFP::LGG-1GABARAP foci in hypodermal seam cells of animals of the fourth larval stage (L4

larvae) and found that the average number of GFP::LGG-1GABARAP foci increases from ~4 on

average in wild-type animals (+/+) to ~23 on average in fzo-1(tm1133) animals (Fig 3A and

3B). As a positive control, we used RNAi against the gene let-363mTOR, which induces autop-

hagy when knocked-down [19]. As expected, let-363(RNAi) animals show an increase in the

number of GFP::LGG-1GABARAP foci in hypodermal seam cells (~15 on average) (Fig 3A and

3B). To determine whether the increase in the number of GFP::LGG-1GABARAP foci is caused

by a block in autophagy, we analyzed the expression of the reporter Psqst-1 p62sqst-1::gfp. (The

accumulation of SQST-1p62::GFP is indicative of defective autophagic clearance [51].) Whereas

embryos homozygous for a lf mutation of unc-51ULK, e369, a gene required for autophagy [26],

show strong accumulation of SQST-1p62::GFP, we found that fzo-1(tm1133) embryos do not

accumulate SQST-1p62::GFP (Fig 3C). To further verify an increase in autophagic flux in fzo-1
(tm1133) animals, we used an immunoblotting assay based on the cleavage of the GFP::LGG-

1GABARAP fusion protein (in autolysosomes) to generate a ‘free GFP’ fragment, referred to as

‘cleaved GFP’ [50,53,54]. As shown in Fig 3D, compared to wild type, fzo-1(tm1133) mutants

exhibit a ~2.7-fold increase on average in the level of cleaved GFP. This confirms that autopha-

gic flux is increased in animals lacking fzo-1MFN.

To test whether depletion of ESCRT components can further increase autophagy in fzo-1
(tm1133) animals, we knocked-down vps-4VPS4, vps-20CHMP6, hgrs-1HGS or vps-37VPS37 in fzo-

fluorescence intensity of 15–20 L4 larvae. Values indicate means ± SD of 3 independent experiments in duplicates. ns: not

significant, ����P<0.0001 using one-way ANOVA with Dunnett’s multiple comparison test to control(RNAi). (C) Fluorescence

images of L4 larvae expressing Pmyo-3gfpmt in wild type (+/+) or fzo-1(tm1133). L4 larvae were subjected to control(RNAi), atfs-1
(RNAi), vps-4(RNAi), vps-20(RNAi), vps-37(RNAi) or let-363(RNAi) and the F1 generation was imaged. Scale bar: 10 μm. (D)

Fluorescence images and quantifications of L4 larvae stained with TMRE in wild type (+/+) or fzo-1(tm1133). L4 larvae were

subjected to control(RNAi) and the F1 generation was stained with TMRE overnight and imaged. Scale bar: 10 μm. Values

indicate means ± SD of 3 independent experiments in duplicates. ����P<0.0001 using unpaired two-tailed t-test with Welch’s

correction. (E) Fluorescence images of L4 larvae stained with TMRE in fzo-1(tm1133). L4 larvae were subjected to control(RNAi),
vps-4(RNAi), vps-20(RNAi), let-363(RNAi) or hars-1(RNAi) and the F1 generation was stained with TMRE overnight and imaged.

Scale bar: 10 μm. (F) Quantifications of fluorescence images from panel E. The values were normalized to fzo-1(tm1133) on

control(RNAi) and each dot represents the quantification of fluorescence intensity per area from one L4 larvae. Values indicate

means ± SD of 3 independent experiments in duplicates. ns: not significant, �P<0.05, ��P<0.01, ���P<0.001 using Kruskal-

Wallis test with Dunn’s multiple comparison test to control(RNAi). (G) Fluorescence images of wild-type L4 larvae stained with

TMRE. L4 larvae were subjected to control(RNAi), vps-4(RNAi), vps-20(RNAi), let-363(RNAi) or hars-1(RNAi) and the F1

generation was stained with TMRE overnight and imaged. Scale bar: 10 μm. (H) Quantifications of fluorescence images from

panel G. The values were normalized to wild type on control(RNAi) and each dot represents the quantification of fluorescence

intensity per area from one L4 larvae. Values indicate means ± SD of 3 independent experiments in duplicates. ��P<0.01,
����P<0.0001 using Kruskal-Wallis test with Dunn’s multiple comparison test to control(RNAi).

https://doi.org/10.1371/journal.pgen.1008638.g002
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1(tm1133) animals and analyzed GFP::LGG-1GABARAP foci using the Plgg-1 GABARAPgfp::lgg-1
reporter. We found that RNAi knock-down of each of these four genes in fzo-1(tm1133) ani-

mals causes a dramatic increase in the accumulation of GFP::LGG-1GABARAP foci in

Fig 3. Autophagy is induced independently of ATFS-1ATF4,5 in fzo-1(tm1133) animals and further increased after ESCRT

depletion. (A) Plgg-1gfp::lgg-1 expression in hypodermal seam cells of wild type (+/+), fzo-1(tm1133) or fzo-1(tm1133); atfs-1
(tm4525) L4 larvae. For RNAi against let-363 and atfs-1, L4 larvae were subjected to the respective RNAi and the F1 generation was

imaged. Scale bar: 5 μm. (B) Quantification of GFP::LGG-1 foci in hypodermal seam cells from panel A. Each dot represents the

average amount of GFP::LGG-1 foci counted from 2–5 seam cells in one animal. n�12 for each genotype; values indicate

means ± SD; ns: not significant, ���P<0.001, ����P<0.0001 using Kruskal-Wallis test with Dunn’s multiple comparison to wild type

(+/+) or fzo-1(tm1133), respectively. (C) Nomarski and fluorescent images of the Psqst-1sqst-1::gfp translational reporter in embryos

of wild type (+/+) or fzo-1(tm1133). As a positive control for a block in autophagy, unc-51(e369) was used. Representative images of

>60 embryos are shown. Scale bar: 10 μm. (D) Western blot analysis of cleaved GFP levels in wild type (+/+) or fzo-1(tm1133) using

anti-GFP antibodies. Quantification of three independent experiments is shown. Values indicate means ± SD. (E) Plgg-1gfp::lgg-1
expression of fzo-1(tm1133) L4 larvae in hypodermal seam cells and intestinal cells upon control(RNAi), vps-4(RNAi), vps-20(RNAi),
vps-22(RNAi), hgrs-1(RNAi), vps-36(RNAi) or vps-37(RNAi). Representative images of>80 animals from four independent

biological replicates are shown. Scale bar hypodermal seam cells: 5 μm. Scale bar intestinal cells: 20 μm. (F) Western blot analysis of

cleaved GFP levels in fzo-1(tm1133) upon control(RNAi), vps-4(RNAi) or vps-20(RNAi) using anti-GFP antibodies. Quantification of

four independent experiments is shown. Values indicate means ± SD.

https://doi.org/10.1371/journal.pgen.1008638.g003
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hypodermal seam cells as well as intestinal cells (Fig 3E). Furthermore, compared to control
(RNAi)-treated animals, we found increased levels of cleaved GFP in fzo-1(tm1133) animals

treated with vps-4(RNAi) (~5.5-fold) or vps-20(RNAi) (~5.9-fold) (Fig 3F). However, RNAi

against the ESCRT-II components vps-22SNF8 or vps-36VPS36 (which fail to suppress fzo-1
(tm1133)-induced UPRmt when knocked-down (Fig 1A–1D)) has no effect on the formation

of GFP::LGG-1GABARAP foci in hypodermal seam cells or intestinal cells (Fig 3E), probably due

to an inefficient knock-down. In summary, our findings demonstrate that the depletion of

components of ESCRT-0, -I, -III or the VPS-4 ATPase increases autophagic flux in fzo-1
(tm1133) animals.

Induction of autophagy suppresses fzo-1(tm1133)-induced UPRmt

To determine whether increasing autophagy through means other than knock-down of

ESCRT components also suppresses fzo-1(tm1133)-induced UPRmt, we knocked-down let-
363mTOR by RNAi and examined the expression of Phsp-6 mtHSP70gfp (bcSi9) and Phsp-60 HSP60gfp
(zcIs9) in fzo-1(tm1133) animals. We found that compared to controls, the expression of both

reporters is significantly suppressed upon let-363(RNAi) in fzo-1(tm1133) animals (Fig 1A–

1D). Specifically, on average, the expression of Phsp-6 mtHSP70gfp is suppressed by 40% and that

of Phsp-60 HSP60gfp by 45%, which is comparable to the level of suppression observed upon

RNAi knock-down of either atfs-1ATF4,5 or vps-4VPS4. As shown for the depletion of ESCRT

components, mitochondrial morphology upon let-363(RNAi) was found not to be altered in

fzo-1(tm1133) or wild-type animals (Fig 2C, 2E and 2G and S3A and S3B Fig).

To obtain further evidence that induction of autophagy leads to suppression of fzo-1
(tm1133)-induced UPRmt, we searched for additional genes with a regulatory role in autop-

hagy in our dataset of 299 suppressors. We found 17 additional genes that were previously

identified in a genome-wide RNAi screen for regulators of autophagy in C. elegans [40] (Fig

4A). Moreover, we used a database of autophagy-related genes and their orthologs (http://

www.tanpaku.org/autophagy/index.html) [55], results from two screens for regulators of

autophagy in mammals [56,57], three interaction databases (wormbase.org, genemania.org

and string-db.org) followed by literature searches and identified 13 additional genes in our

dataset that potentially induce autophagy upon knock-down (Fig 4A) [58–74]. Therefore,

including the three genes encoding components of the ESCRT (vps-4VPS4, vps-20CHMP6, vps-
37VPS37), 33 of the 299 suppressors have previously been shown to induce autophagy when

knocked-down.

Finally, we knocked-down all 299 suppressors in an otherwise wild-type background and

tested for an increase in autophagy. Using this approach, we found that 126 genes encode neg-

ative regulators of autophagy (16 of which were among the 33 genes identified through our lit-

erature search; indicated by § in Fig 4A), since they result in the accumulation of GFP::LGG-

1GABARAP foci in hypodermal seam cells and/or intestinal cells of larvae but not in the accumu-

lation of SQST-1p62::GFP in embryos when knocked-down (S1 Table). Adding the 17 genes

that we identified through literature searches, which were not found in this ‘autophagy’ screen

(Fig 4A), we, in total, found 143 out of 299 suppressors (~48%) of fzo-1(tm1133)-induced

UPRmt to negatively regulate autophagy.

To confirm that the additionally identified genes enhance autophagy also in the fzo-1
(tm1133) background, we knocked-down six of them (cogc-2COG2, cogc-4COG4, hars-1HARS,

rpt-3PSMC4, smgl-1NBAS and ins-7) and tested them for increased autophagic flux in fzo-1
(tm1133) animals. We found that the knock-down of each gene causes an increase in autopha-

gic flux in fzo-1(tm1133) animals, most prominently in the intestine (Fig 4B). We also deter-

mined the level of cleaved GFP in these animals and found that, compared to fzo-1(tm1133)
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Fig 4. Additional candidates identified by RNAi screen that suppress fzo-1(tm1133)- and drp-1(tm1108)-induced UPRmt

through activation of autophagy. (A) List of candidate genes identified in the primary screen with fzo-1(tm1133); Phsp-6gfp
(zcIs13) by RNAi. L4 larvae were subjected to the respective RNAi and the F1 generation was imaged. Candidate genes were

screened three times in technical duplicates with the same reporter in two different mutant backgrounds: drp-1(tm1108) and spg-
7(ad2249). Fluorescence intensity was scored and classified from very strong suppression to weak suppression (gradual violet
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animals on control(RNAi), the level is increased ranging from ~1.5-fold upon rpt-3(RNAi) to

~7.4-fold upon hars-1(RNAi) (Fig 4C). Using the single-copy Phsp-6 mtHSP70gfp transgene bcSi9,

we confirmed that the knock-down of cogc-2COG2, cogc-4COG4, hars-1HARS, rpt-3PSMC4, smgl-
1NBAS or ins-7 suppresses fzo-1(tm1133)-induced UPRmt (Fig 4D and 4E). Therefore, we pro-

pose that it is the increase in autophagic flux that suppresses fzo-1(tm1133)-induced UPRmt.

Since let-363mTOR as well as some of the additionally identified candidates (such as hars-
1HARS, rars-1RARS, tars-1TARS or iars-1IARS) have roles in translation [19], we tested the effects

of the depletion of let-363mTOR or hars-1HARS on Pges-1 GES2gfp expression in order to exclude

that their depletion simply attenuates synthesis of GFP protein. We found that let-363(RNAi)
or hars-1(RNAi) leads to suppression of Pges-1 GES2gfp expression by 39% or 25%, respectively

(Fig 2A and 2B). However, we found that depletion of let-363mTOR or hars-1HARS also has a

beneficial effect on mitochondrial membrane potential in fzo-1(tm1133) mutants since TMRE

fluorescence intensity per mitochondrial area is increased by 14% or 31%, respectively while

having the opposite effect in wild-type animals, in which it is decreased by 40% or 47%, respec-

tively (Fig 2E–2H). This suggests that the suppression of fzo-1(tm1133)-induced UPRmt upon

depletion of let-363mTOR or hars-1HARS is the result of a combination of an increase in mito-

chondrial membrane potential and the attenuation of cytosolic translation.

The induction of autophagy is not per se beneficial for organismal fitness

Since mitochondrial membrane potential is increased in fzo-1(tm1133) animals upon induc-

tion of autophagy, we tested whether this has a beneficial effect at the organismal level. Using

the ‘thrashing’ assay [75,76], we tested whether the motility of fzo-1(tm1133) animals is

improved. As previously shown [77], thrashing rates are decreased in fzo-1(tm1133) mutants

when compared to wild type (S5A Fig). We found that thrashing rates do not change upon

vps-4(RNAi) or vps-20(RNAi) in either fzo-1(tm1133) or wild-type animals (S5B and S5C Fig).

Therefore, increasing autophagic flux does not per se have beneficial effects on organismal fit-

ness. In contrast, we found that thrashing rates are significantly increased upon let-363(RNAi)
or hars-1(RNAi) in both fzo-1(tm1133) and wild-type animals (S5B and S5C Fig). Thus, the

induction of autophagy can lead to increased motility under certain circumstances, but this

effect may be covered upon depletion of ESCRT.

Depletion of ESCRT components in fzo-1(tm1133) animals with a block in

autophagy results in embryonic lethality

To test the hypothesis that increased autophagic flux is necessary for the suppression of fzo-1
(tm1133)-induced UPRmt in ESCRT-depleted animals, we generated a fzo-1(tm1133); unc-51
(e369) double mutant in the Phsp-6 mtHSP70gfp (bcSi9) reporter background and subjected it to

coloring) or no suppression (white). § indicates genes that, upon knock-down in our experiments, showed accumulation of GFP::

LGG-1 dots in hypodermal seam cells or intestinal cells. (B) Plgg-1gfp::lgg-1 expression of fzo-1(tm1133) L4 larvae in intestinal cells

upon control(RNAi), cogc-2(RNAi), cogc-4(RNAi), hars-1(RNAi), ins-7(RNAi), rpt-3(RNAi) or smgl-1(RNAi). Representative

images of>60 animals from four independent biological replicates are shown. Scale bar: 20 μm. (C) Western blot analysis of

cleaved GFP levels in fzo-1(tm1133) upon control(RNAi), smgl-1(RNAi), ins-7(RNAi), hars-1(RNAi), cogc-2(RNAi), cogc-4(RNAi)
or rpt-3(RNAi) using anti-GFP antibodies. Quantification of three independent experiments is shown. Values indicate

means ± SD. (D) Fluorescence images of L4 larvae expressing Phsp-6gfp (bcSi9) in wild type (+/+) or fzo-1(tm1133). L4 larvae were

subjected to control(RNAi), atfs-1(RNAi), cogc-2(RNAi), cogc-4(RNAi), hars-1(RNAi), ins-7(RNAi), rpt-3(RNAi) or smgl-1(RNAi)
and the F1 generation was imaged. Scale bar: 200 μm. (E) Quantifications of fluorescence images from panel D. After subtracting

the mean fluorescence intensity of wild type (+/+) on control(RNAi), the values were normalized to fzo-1(tm1133) on control
(RNAi). Each dot represents the quantification of fluorescence intensity of 15–20 L4 larvae. Values indicate means ± SD of at least

3 independent experiments in duplicates. ns: not significant, �P<0.05, ���P<0.001, ����P<0.0001 using one-way ANOVA with

Dunnett’s multiple comparison test to control(RNAi).

https://doi.org/10.1371/journal.pgen.1008638.g004
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RNAi against either vps-4VPS4 or vps-20CHMP6. However, we found that either RNAi treatment

results in progeny that undergoes embryonic arrest. To circumvent this problem, we subjected

fzo-1(tm1133) mutants to double-RNAi against unc-51ULK and ESCRT but failed to detect sup-

pression of UPRmt upon ESCRT(RNAi) diluted with control(RNAi) (S6A Fig). Next, we depleted

ESCRT components by RNAi starting from the second larval stage (L2) (rather than in the

parental generation and throughout development) and examined reporter expression once the

animals had reached the fourth larval stage (L4). Interestingly, we found that subjecting fzo-1
(tm1133) L2 larvae to vps-4(RNAi) or vps-20(RNAi) does not increase autophagic flux and fails

to suppress UPRmt, while atfs-1(RNAi) is able to suppress UPRmt under these conditions (S6B

and S6C Fig). We repeated this experiment in the background of an RNAi-sensitizing mutation,

rrf-3(pk1426), but again were unable to detect suppression of the Phsp-6 mtHSP70gfp (bcSi9)
reporter upon ESCRT(RNAi) while atfs-1(RNAi) suppressed (S6D Fig). Based on these results,

we conclude that ESCRT(RNAi) does not directly act on ATFS-1ATF4,5 to suppress UPRmt.

Instead, we propose that it affects UPRmt indirectly through the induction of autophagy.

Blocking mitophagy does not prevent suppression in fzo-1(tm1133)

animals of UPRmt by ESCRT depletion

Since we were unable to test whether blocking autophagy blocks the suppression of fzo-1
(tm1133)-induced UPRmt by depletion of ESCRT components, we tested the role of pdr-1Parkin-

and fndc-1FUNDC1,2-dependent mitophagy in this context [78,79]. First, we used fzo-1(tm1133);
pdr-1(lg103) double mutants, carrying the Phsp-6 mtHSP70gfp (bcSi9) reporter, to test whether pdr-
1Parkin-dependent mitophagy is required for ESCRT-dependent suppression of fzo-1(tm1133)-
induced UPRmt. We found that knock-down of vps-4VPS4, vps-20CHMP6 or hgrs-1HGS still sup-

presses fzo-1(tm1133)-induced UPRmt in the pdr-1(lg103) background (Fig 5A and 5B). Fur-

thermore, compared to the level of suppression in fzo-1(tm1133) animals alone, the level of

UPRmt suppression in fzo-1(tm1133); pdr-1(lg103) animals is similar upon vps-4(RNAi) or vps-
20(RNAi) and even higher upon hgrs-1(RNAi) (Figs 1A, 1C, 5A and 5B). Second, we tested

whether depletion of ESCRT components suppresses UPRmt in fzo-1(tm1133) fndc-1(rny14)
double mutants and found that it does so to a similar extent (Fig 5C and 5D). Therefore, pdr-
1Parkin- and fndc-1FUNDC1,2-dependent mitophagy are not required for the suppression of fzo-1
(tm1133)-induced UPRmt upon ESCRT depletion.

Blocking autophagy in the absence of mitochondrial stress induces UPRmt,

but neither blocking nor inducing UPRmt affects autophagy

Increasing autophagic flux suppresses fzo-1(tm1133)-induced UPRmt. To test whether decreas-

ing autophagic flux, conversely, induces UPRmt, we analyzed unc-51(e369) animals (in which

autophagy is blocked) and found that compared to wild-type animals, the Phsp-6 mtHSP70gfp
reporter is induced by 41% on average (Fig 5E and 5F). To determine whether the Phsp-6

mtHSP70gfp reporter is also induced under conditions where UPRmt is already activated, we ana-

lyzed fzo-1(tm1133); unc-51(e369) double mutant animals. We found that, in the fzo-1
(tm1133) background, the loss of unc-51ULK does not result in a significant increase in the

expression of Phsp-6 mtHSP70gfp (Fig 5E and 5F). Thus, blocking autophagy induces UPRmt

in the absence of mitochondrial stress but not under conditions where UPRmt is already

activated.

Next, we analyzed whether blocking or inducing UPRmt affects autophagy. Therefore, we

analyzed autophagy in animals homozygous for either the atfs-1ATF4,5 lf mutation tm4525 or

the atfs-1ATF4,5 gain-of-function (gf) mutation et15gf [11,80]. atfs-1(tm4525) has been shown

to suppress the expression of the Phsp-6 mtHSP70gfp and Phsp-60 HSP60gfp reporters upon spg-7
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Fig 5. Functional interactions between mitophagy, autophagy and UPRmt. (A) L4 larvae of fzo-1(tm1133); pdr-1(lg103) expressing

Phsp-6gfp (bcSi9) were subjected to control(RNAi), atfs-1(RNAi), vps-4(RNAi), vps-20(RNAi) or hgrs-1(RNAi) and the F1 generation was

imaged. Scale bar: 200 μm. (B) Quantifications of fluorescence images from panel A. After subtracting the mean fluorescence intensity

of wild type (+/+) on control(RNAi), the values were normalized to fzo-1(tm1133); pdr-1(lg103) on control(RNAi). Each dot represents

the quantification of fluorescence intensity of 15–20 L4 larvae. Values indicate means ± SD of 3 independent experiments in
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(RNAi) and of the endogenous hsp-6mtHSP70 and hsp-60HSP60 loci upon cco-1(RNAi) [11,81].

Conversely, atfs-1(et15gf) has been shown to constitutively activate UPRmt [80]. We found that

compared to wild-type animals, hypodermal seam cells of atfs-1(tm4525) or atfs-1(et15gf) ani-

mals show no significant changes in the number of GFP::LGG-1GABARAP foci (Fig 5G and 5H).

In addition, atfs-1(tm4525) or atfs-1(et15gf) embryos do not accumulate SQST-1p62::GFP foci

(Fig 5I). Since it has previously been reported that mitochondrial stress induces autophagy in an

atfs-1ATF4,5-dependent manner [40], we also tested whether the loss of atfs-1ATF4,5 suppresses

autophagy in fzo-1(tm1133) animals. We found that the number of GFP::LGG-1GABARAP foci

remains unchanged both in fzo-1(tm1133) animals upon atfs-1(RNAi) as well as fzo-1(tm1133);
atfs-1(tm4525) double mutants (Fig 3A and 3B), demonstrating that the induction of autophagy

in fzo-1(tm1133) mutants is ATFS-1ATF4,5-independent. Finally, we tested whether increasing

UPRmt in fzo-1(tm1133) mutants by introducing atfs-1(et15gf) affects autophagic flux. However,

we found that fzo-1(tm1133); atfs-1(et15gf) double mutants are not viable. Therefore, blocking

or inducing UPRmt by manipulating ATFS-1ATF4,5 activity does not affect autophagic flux in

wild type and blocking UPRmt does not affect autophagy in fzo-1(tm1133) animals.

The induction of autophagy suppresses UPRmt induced by a block in

mitochondrial dynamics but not by the loss of spg-7AFG3L2

To determine whether the suppression of UPRmt by increased autophagic flux is specific to

fzo-1(tm1133)-induced UPRmt, we tested all 143 suppressors of fzo-1(tm1133)-induced UPRmt

with a role in autophagy for their ability to suppress drp-1(tm1108)- or spg-7(ad2249)-induced

UPRmt using the multi-copy Phsp-6 mtHSP70gfp transgene zcIs13. As shown in Fig 4A and S1

Table, we found that the knock-down of 138 of the genes (~97%) also suppresses drp-1
(tm1108)-induced UPRmt. In contrast, the knock-down of 90 of the genes (~63%) suppresses

spg-7(ad2249)-induced UPRmt. Among these 90 genes, 41 belong to the GO categories ‘Trans-

lation’ or ‘Ribosome Biogenesis’. Hence, their depletion may interfere with synthesis of GFP.

Interestingly, we found that knock-down of vps-4VPS4 but not vps-20CHMP6 or vps-37VPS37

also suppresses spg-7(ad2249)-induced UPRmt (Fig 4A). Therefore, we tested whether the

knock-down of vps-4VPS4 or vps-20CHMP6 leads to increased autophagic flux in spg-7(ad2249)
animals. We first analyzed the basal level of autophagy in spg-7(ad2249) animals using the Plgg-

1 GABARAPgfp::lgg-1 reporter and found that compared to wild type, the number of GFP::LGG-

1GABARAP foci is increased 2-fold (from ~4 on average in wild-type animals to ~8 on average in

spg-7(ad2249) animals) (S7A and S7B Fig). To determine whether this increase in autophago-

somes is due to a block in autophagy, we analyzed the accumulation of SQST-1p62::GFP using

duplicates. ��P<0.01, ���P<0.001, ����P<0.0001 using one-way ANOVA with Dunnett’s multiple comparison test to control(RNAi).
(C) L4 larvae of fzo-1(tm1133) fndc-1(rny14) expressing Phsp-6gfp (bcSi9) were subjected to control(RNAi), atfs-1(RNAi), vps-4(RNAi)
or vps-20(RNAi) and the F1 generation was imaged. Scale bar: 200 μm. (D) Quantifications of fluorescence images from panel C. After

subtracting the mean fluorescence intensity of wild type (+/+) on control(RNAi), the values were normalized to fzo-1(tm1133) fndc-1
(rny-14) on control(RNAi). Each dot represents the quantification of fluorescence intensity of 15–20 L4 larvae. Values indicate

means ± SD of 3 independent experiments in duplicates. ���P<0.001, ����P<0.0001 using one-way ANOVA with Dunnett’s multiple

comparison test to control(RNAi). (E) Fluorescence images of L4 larvae expressing Phsp-6gfp (bcSi9) in wild type (+/+), unc-51(e369),
fzo-1(tm1133) or fzo-1(tm1133); unc-51(e369). Scale bar: 200 μm. (F) Quantifications of fluorescence images from panel E. Each dot

represents the quantification of fluorescence intensity of 15–20 L4 larvae. Values indicate means ± SD of at least 4 independent

experiments in duplicates. ns: not significant, ����P<0.0001 using two-tailed t-test. (G) Plgg-1gfp::lgg-1 expression in hypodermal seam

cells of wild type (+/+), atfs-1(tm4525) or atfs-1(et15gf) L4 larvae. Scale bar: 5 μm. (H) Quantification of GFP::LGG-1 foci in

hypodermal seam cells from panel G. Each dot represents the average amount of GFP::LGG-1 foci counted from 2–5 seam cells in one

animal. n�12 for each genotype; values indicate means ± SD; ns: not significant using one-way ANOVA with Dunnett’s multiple

comparison test to wild type (+/+). (I) Nomarski and fluorescent images of the Psqst-1sqst-1::gfp translational reporter in embryos of

wild type (+/+), atfs-1(tm4525) or atfs-1(et15gf) animals. As a positive control for a block in autophagy, unc-51(e369) was used.

Representative images of>60 embryos are shown. Scale bar: 10 μm.

https://doi.org/10.1371/journal.pgen.1008638.g005
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the Psqst-1 p62sqst-1::gfp reporter. We did not observe SQST-1p62::GFP accumulation in spg-7
(ad2249) animals, thus indicating that autophagic flux is increased in spg-7(ad2249) mutants

(S7C Fig). Next, we tested whether vps-4(RNAi) or vps-20(RNAi) further induces autophagy in

the spg-7(ad2249) background and found that knock-down of vps-4VPS4 and also vps-20CHMP6

leads to an increase in the average number of GFP::LGG-1GABARAP foci in hypodermal seam

cells and intestinal cells (Fig 6A). Confirming an increase in autophagic flux, immunoblotting

of GFP::LGG-1GABARAP in spg-7(ad2249) animals revealed increased levels of cleaved GFP

upon vps-4(RNAi) or vps-20(RNAi) (~5.7-fold and ~3.7-fold, respectively; Fig 6B). Finally, we

tested whether the loss of let-363mTOR, which induces autophagy and suppresses fzo-1
(tm1133)-induced UPRmt (Fig 1A–1D), can suppress spg-7(ad2249)-induced UPRmt. Using

the single-copy Phsp-6 mtHSP70gfp transgene bcSi9, we found that RNAi knock-down of let-
363mTOR fails to suppress spg-7(ad2249)-induced UPRmt (Fig 6C and 6D). In summary, these

results indicate that UPRmt induced by the loss of spg-7AFG3L2 is not suppressed by increasing

autophagic flux. Based on these findings we propose that the induction of autophagy is suffi-

cient to suppress UPRmt induced by a block in mitochondrial dynamics but not by the loss of

spg-7AFG3L2.

Fig 6. Induction of autophagy is not sufficient to suppress spg-7(ad2249)-induced UPRmt. (A) Plgg-1gfp::lgg-1 expression

of spg-7(ad2249) L4 larvae in hypodermal seam cells and intestinal cells upon control(RNAi), vps-4(RNAi) or vps-20(RNAi).
Representative images of>80 animals from three independent biological replicates are shown. Scale bar hypodermal seam

cells: 5 μm. Scale bar intestinal cells: 20 μm. (B) Western blot analysis of cleaved GFP levels in spg-7(ad2249) upon control
(RNAi), vps-4(RNAi) or vps-20(RNAi) using anti-GFP antibodies. Quantification of three independent experiments is

shown. Values indicate means ± SD. (C) Fluorescence images of L4 larvae expressing Phsp-6gfp (bcSi9) in wild type (+/+) or

spg-7(ad2249). L4 larvae were subjected to control(RNAi), atfs-1(RNAi) or let-363(RNAi) and the F1 generation was

imaged. Scale bar: 200 μm. (D) Quantifications of fluorescence images from panel C. After subtracting the mean

fluorescence intensity of wild type (+/+) on control(RNAi), the values were normalized to spg-7(ad2249) on control(RNAi).
Each dot represents the quantification of fluorescence intensity of 15–20 L4 larvae. Values indicate means ± SD of 3

independent experiments in duplicates. ns: not significant, ��P<0.01 using Kruskal-Wallis test with Dunn’s multiple

comparison test to control(RNAi).

https://doi.org/10.1371/journal.pgen.1008638.g006
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Defects in mitochondrial dynamics lead to changes in the levels of certain

types of triacylglyerols, which can partially be reverted by induction of

autophagy

To elucidate how the induction of autophagy leads to suppression of UPRmt in fzo-1(tm1133)
and drp-1(tm1108) animals, we determined potential differences in metabolism in these

genetic backgrounds. Since mitochondria and autophagy are known to regulate specific

aspects of lipid metabolism, we performed non-targeted lipid profiling in fzo-1(tm1133), drp-1
(tm1108) and spg-7(ad2249) mutant backgrounds and compared them to wild type.

Of the 5284 lipid ‘features’ detected, the levels of 3819 are changed in at least one of the

three pairwise comparisons (fzo-1(tm1133) vs. wild type, drp-1(tm1108) vs. wild type, spg-7
(ad2249) vs. wild type) (S8A Fig). Among the 3819 lipid features that are changed, 1774 are

currently annotated as lipids. Interestingly, a third of the annotated lipids, whose levels were

changed, are triacylglycerols (TGs). TGs are storage lipids and make up a major part of lipid

droplets, which are broken down into fatty acids and subsequently oxidized in mitochondria

upon energy demand [82–84]. We initially determined the total amounts of TGs in the mutant

backgrounds and compared them to that of wild type. Whereas drp-1(tm1108) mutants show

an increase in the total amount of TGs, no changes are observed in fzo-1(tm1133) mutants and

a decrease is detected in spg-7(ad2249) mutants (S8B Fig). To determine whether the amounts

of TG species with a specific length of acyl chains and/or number of double bonds are altered,

we plotted all 659 detected TGs and subsequently marked TGs that are specifically up- (red) or

downregulated (blue) in fzo-1(tm1133), drp-1(tm1108) or spg-7(ad2249) animals (S8C Fig and

S2 Table). Consistent with the observed decrease in the total amount of TGs, most of the indi-

vidual TG species are downregulated in spg-7(ad2249) mutants (S8B and S8C Fig). In the drp-
1(tm1108) background, TG species with altered levels initially showed no distinct pattern

regarding length of acyl chains or degree of desaturation (S8C Fig and S2 Table). However, in

the fzo-1(tm1133) background, these TG species can be separated into two clusters. Whereas

TGs with shorter acyl chains are downregulated in fzo-1(tm1133) mutants, ‘longer’ TGs with a

higher degree of unsaturation are increased (S8C Fig and S2 Table). Interestingly, when look-

ing at the overlap between fzo-1(tm1133) and drp-1(tm1108), we observed a similar trend

regarding changes in acyl length and desaturation for drp-1(tm1108) as well (S8D Fig and S2

Table).

Next, we tested whether the induction of autophagy can revert the specific changes in TG

pattern observed in fzo-1(tm1133) mutants. Therefore, we knocked-down vps-4VPS4 or cogc-
2COG2 to induce autophagy in fzo-1(tm1133) and wild-type animals and again, performed lipid

profiling. We used principal component analysis (PCA) in order to show how distinct or simi-

lar the lipid profiles upon vps-4(RNAi) or cogc-2(RNAi) are. Interestingly, knock-down of vps-
4VPS4 in either genotype was distinct from controls, which indicates major changes in the lipi-

dome due to an efficient RNAi knock-down (Fig 7A). Moreover, we found that RNAi against

cogc-2COG2 has only mild effects, since the samples cluster with controls in both genotypes.

This might be attributed to a weak knock-down and most probably a weak induction of

autophagy.

Subsequently, we specifically analyzed the TGs in fzo-1(tm1133) mutants on control(RNAi)
and, consistent with our previous results (S8C Fig (left panel) and S2 Table), detected a

decrease in the levels of TGs with shorter acyl chains while levels of TGs with longer chains

increase, compared to wild type on control(RNAi) (Fig 7B (left panel) and S2 Table). The levels

of TGs that are downregulated in the fzo-1(tm1133) background are either unchanged or fur-

ther decreased upon depletion of vps-4VPS4 and the concomitant induction of autophagy (Fig

7B (middle panel) and S2 Table). In contrast, the levels of TGs that are upregulated in fzo-1
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(tm1133) animals are reduced upon induction of autophagy by knock-down of vps-4VPS4,

although not always to the levels of wild type (Fig 7B (right panel) and S2 Table). Upon cogc-2
(RNAi), we detected only minor effects on the levels of TGs in fzo-1(tm1133) (S9A Fig and S2

Table), which is consistent with the relatively small changes in the lipid profile as assessed by

PCA (Fig 7A). However, the levels of most TGs that are decreased upon cogc-2(RNAi) are also

decreased upon depletion of vps-4VPS4 (S9B Fig), suggesting that the induction of autophagy

caused by the two different knock-downs leads to partially overlapping changes in the levels of

TGs. Taken together, we find that the levels of specific TGs are changed in a similar manner in

mutants with defects in mitochondrial dynamics. Moreover, we show that some of these

changes can be reverted by the induction of autophagy in fzo-1(tm1133) animals.

Discussion

Induction of autophagy increases mitochondrial membrane potential and

suppresses UPRmt in fzo-1(tm1133) mutants

We propose that the induction of autophagy partially restores membrane potential and thereby

suppresses fzo-1(tm1133)-induced UPRmt. Interestingly, a decrease in mitochondrial mem-

brane potential has recently been shown to be the signal for UPRmt induction [10]. Therefore,

some aspect of mitochondrial stress that leads to both decreased membrane potential and the

Fig 7. Induction of autophagy upon vps-4(RNAi) changes the levels of specific TGs in fzo-1(tm1133) mutants. (A) Principal

component analysis (PCA) scores plot of wild-type (+/+) and fzo-1(tm1133) animals subjected to control(RNAi), cogc-2(RNAi) or

vps-4(RNAi). Turquois squares indicate internal quality controls (QC). (B) Scatterplot indicating the distribution and changes in

the levels of TG species in fzo-1(tm1133) mutants in comparison to wild type (+/+). The x-axis labels the number of carbons (# of

C) and the y-axis the number of double bonds (DB) in the acyl sidechains. The size of a dot indicates the number of detected

isomers for a specific sum composition. Grey dots represent all detected TGs species and blue and red dots indicate down- (blue)

or upregulation (red).

https://doi.org/10.1371/journal.pgen.1008638.g007
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induction of UPRmt in fzo-1(tm1133) mutants can be rescued by the induction of autophagy in

these animals. We were unable to verify our hypothesis since ESCRT-depleted fzo-1(tm1133);
unc-51(e369) double mutants arrest during embryogenesis. This is in agreement with a study

from Djeddi et al., which reported that induction of autophagy is a pro-survival mechanism in

ESCRT-depleted animals [39]. Moreover, our data suggests that clearance of defective and

depolarized mitochondria by pdr-1Parkin- or fndc-1FUNDC1,2-dependent mitophagy does not

play a role in the suppression of fzo-1(tm1133)-induced UPRmt. In addition, we propose that

the induction of autophagy may lead to increased organismal fitness, but that this effect is

masked by pleiotropic effects upon knock-down of certain genes such as the ESCRT genes.

Increased autophagic flux compensates for a block in mitochondrial

dynamics

We provide evidence that the induction of autophagy can also compensate for a block in mito-

chondrial fission and, hence, for defects in mitochondrial dynamics. In contrast, induction of

autophagy does not suppress spg-7(ad2249)-induced UPRmt. Among the genes that suppress

spg-7(ad2249)-induced UPRmt almost half have roles in translation or ribosome biogenesis,

the knock-down of which may impair GFP synthesis by compromising cytosolic translation.

Furthermore, we speculate that the knock-down of the remaining genes suppresses spg-7
(ad2249)-induced UPRmt through mechanisms other than the induction of autophagy. This

supports the notion that UPRmt induced by different types of mitochondrial stress are distinct

in their mechanisms of induction and also in their mechanisms of suppression. In line with

this, we found that different mitochondrial stresses have different impacts on the lipidome.

Although FZO-1 and DRP-1 play different roles in mitochondrial dynamics, they have similar

effects on the levels of many TGs when mutated. In contrast, the levels of these TGs are distinct

in spg-7(ad2249) animals. The role of mitochondria in the metabolism of TGs is diverse. First,

mitochondria are using fatty acids released from TGs upon lipolysis for energy production.

Second, lipid droplet associated mitochondria deliver building blocks and energy for the syn-

thesis of fatty acids and TGs. Fatty acids derived from this pathway typically show lower chain

length and a higher degree of saturation [85]. Since we see a decrease in TGs with shorter

chain length in fzo-1(tm1133) mutants, it is plausible that contact sites between lipid droplets

and mitochondria are affected. Consistent with this, Benador et al. found high levels of MFN2

in lipid droplet associated mitochondria in brown adipose tissue of mice [85]. Furthermore,

Rambold et al. reported that altered mitochondrial morphology in mouse embryonic fibro-

blasts lacking either Opa1 or Mfn1 affects fatty acid transfer from lipid droplets to mitochon-

dria, thereby causing heterogeneous fatty acid distribution across the mitochondrial

population [86]. Therefore, we speculate that the loss of fzo-1MFN or drp-1DRP1 but not spg-
7AFG3L2 leads to alterations in contact sites between lipid droplets and mitochondria and that

these alterations lead to specific changes in metabolism.

Interestingly, we found that increasing autophagic flux in fzo-1(tm1133) animals reverts

some of the changes in the levels of TGs. Consistent with these results, autophagy has been

shown to have a role in the breakdown of TGs from lipid droplets, which ensures a constant

fatty acid supply to mitochondria for β-oxidation [87], highlighting the importance of autop-

hagy in fatty acid metabolism. More recently, autophagy has also been shown to directly affect

the levels of enzymes involved in β-oxidation by causing the degradation of the co-repressor of

PPARα, a master regulator of lipid metabolism [88]. Therefore, we propose that the induction

of autophagy in mutants with defects in mitochondrial dynamics results in elevated break-

down of specific TGs that are used to fuel mitochondrial metabolism, thereby leading to

increased mitochondrial membrane potential and suppression of UPRmt.
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Functional interactions between autophagy and UPRmt

Protection of mitochondrial and ultimately cellular homeostasis was previously proposed to be

dependent on the integration of different mitochondrial and cellular stress pathways but

experimental data so far was limited [89]. The first evidence that autophagy can affect UPRmt

was the finding by Haynes et al. that knock-down of rheb-1RHEB, a known positive regulator of

TOR [90], suppresses the Phsp-60 HSP60gfp reporter [13]. Two more recent studies reported con-

tradictory results with respect to the effect of blocking mitophagy on UPRmt induction [7,91].

We demonstrate that a block in autophagy in the absence of mitochondrial stress induces

UPRmt. Blocking autophagy results in major changes in metabolism [92,93] which may, to

some extent, be caused by decreased delivery of lipids into mitochondria. This could conse-

quently lead to the activation of UPRmt and thereby to a metabolic shift towards glycolysis

[94]. Thus, fzo-1(tm1133) mutants, in which UPRmt is already activated, are less dependent on

their mitochondria with regard to energy production and this might explain why blocking

autophagy in these animals does not further increase UPRmt. Interestingly, based on our

results, altering autophagy can influence UPRmt, but changes in UPRmt do not affect autop-

hagy. In contrast, Guo et al. reported that upon mitochondrial stress, upregulation of both

UPRmt and autophagy is dependent on ATFS-1ATF4,5 [40] and Nargund et al. showed that a

small subset of autophagy related genes are upregulated via ATFS-1ATF4,5 upon mitochondrial

stress (induced by spg-7(RNAi)) [11]. However, we show that import of ATFS-1ATF4,5 into the

nucleus under conditions where mitochondrial stress is absent, is not sufficient to induce

autophagy. Taken together, we found a previously undescribed functional connection between

autophagy and UPRmt. We propose that the two pathways do not interact directly but that the

induction of autophagy leads to improved mitochondrial function by affecting lipid metabo-

lism and ameliorating cellular homeostasis, thereby suppressing UPRmt in mutants with

defects in mitochondrial dynamics (Fig 8).

Genome-wide RNAi screen identifies a new autophagy network

In our dataset of 299 suppressors of fzo-1(tm1133)-induced UPRmt we found 143 genes that

negatively regulate autophagy. Interestingly, 94% of these candidates (135/143) have orthologs

in humans. We identified several components of the ubiquitin-proteasome system (UPS) (rpt-
3PSMC4, rpn-13ADRM1, ufd-1UFD1, rbx-1RBX1, cul-1CUL1) [73,95,96] and found evidence in the

literature that activation of autophagy compensates for the loss of the UPS [59,63]. Addition-

ally, we identified several genes that are involved in cell signaling, e.g. ruvb-1RUVBL1, a

Fig 8. Autophagy compensates for defects in mitochondrial dynamics. The disruption of mitochondrial dynamics

leads to altered mitochondrial morphology and to activation of UPRmt and autophagy. We propose that in animals

with compromised mitochondrial dynamics, the induction of autophagy fuels mitochondrial metabolism, thereby

leading to increased mitochondrial membrane potential (ψ) and improved cellular homeostasis, which consequently

results in suppression of UPRmt.

https://doi.org/10.1371/journal.pgen.1008638.g008
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component of the TOR pathway in C. elegans that induces autophagy when knocked-down

[71]. Among the genes with roles in cellular trafficking, we found imb-2TNPO1,2, a regulator of

the nuclear transport of DAF-16FOXO [70], which has been implicated in the regulation of

autophagy [74]. Approximately one third of the candidates identified (44/143) are genes that

regulate protein biosynthesis (S1 Table, GO categories ‘Ribosome Biogenesis’ and ‘Transla-

tion’), which was shown to be protective against mitochondrial stress when impaired [97].

Baker and colleagues showed that knock-down of protein kinases involved in translation, such

as let-363mTOR, specifically suppress Phsp-60 HSP60gfp (zcIs9) expression. Based on our results,

we propose that this effect could, to some extent, be due to the induction of autophagy. Taken

together, we identified a broad range of cellular components and processes that all impact

autophagy when deregulated, demonstrating the diverse and critical roles of autophagy in cel-

lular homeostasis.

Conclusions

A block in mitochondrial dynamics leads to decreased mitochondrial membrane potential and

the induction of UPRmt. Lipid profiling indicates that a block in mitochondrial dynamics also

causes an increase in the levels of certain types of TGs, which is reversed by induction of

autophagy. We propose that the breakdown of these TGs through an autophagy-dependent

process leads to elevated metabolic activity and that this causes an increase in mitochondrial

membrane potential and the suppression of UPRmt.

Methods

General C. elegans methods and strains

C. elegans strains were cultured as previously described [98]. Bristol N2 was used as the wild-

type strain and the following alleles and transgenes were used: LGI: spg-7(ad2249) [41]; LGII:

fzo-1(tm1133) (National BioResource Project), rrf-3(pk1426) [99], fndc-1(rny14) [78]; LGIII:

pdr-1(lg103) [100]; LGIV: drp-1(tm1108) (National BioResource Project), bcSi9 (Phsp-6::gfp::

unc-54 3’UTR) (this study), frIs7 (nlp-29p::GFP + col-12p::DsRed) [101]; LGV: unc-51(e369)
[23], atfs-1(tm4525) (National BioResource Project), atfs-1(et15gf) [80]. Additionally, the fol-

lowing multi-copy integrated transgenes were used: adIs2122(lgg-1p::GFP::lgg-1 + rol-6
(su1006)) [102], bpIs151 (sqst-1p::sqst-1::GFP + unc-76(+)) [51], zcIs9 (Phsp-60::gfp::unc-54
3’UTR) [14], zcIs13 (Phsp-6::gfp::unc-54 3’UTR) [14], zcIs18 (Pges-1::gfp(cyt)) [103], bcIs79 (Plet-

858::gfpmt::let-858 3’UTR + rol-6(su1006)), bcIs78 (Pmyo-3::gfpmt::unc-54 3’UTR + rol-6(su1006))
[46]. The strains MOC92 bicIs10(hsp-1::tagRFP::unc-54 3’UTR) and MOC119 bicIs12(ttr-45p::

tagRFP::ttr-45 3’UTR) were generated in the Casanueva lab by gonadal microinjection of plas-

mids pMOC1 and pMOC2, respectively followed by genome integration via UV irradiation

using a Stratagene UV Crosslinker (Stratalinker) [104]. The irradiation dose was 35mJ/cm2

corresponding to Stratalinker power set up at 350. The single-copy integration allele bcSi9 was

generated using MosSCI [105] of the plasmid pBC1516. The strain EG8081 (unc-119(ed3) III;
oxTi177 IV) was used for targeted insertion on LGIV [106]. The strain MD2988 (Plet-858gfpmt)

was generated by gonadal microinjection of the plasmid pBC938 followed by genome integra-

tion via EMS mutagenesis.

Plasmid construction

The plasmid pBC1516 was constructed using Gibson assembly [107]. The vector pCFJ350 (a

gift from Erik Jorgensen; Addgene plasmid no. 34866) [108] was digested using AvrII. The

putative hsp-6 promoter (1695bp upstream of the start codon of hsp-6) + 30 bp of the hsp-6
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gene were PCR amplified from gDNA using overhang primers to pCFJ350 5’- acgtcaccggttcta-

gatacTCGAGTCCATACAAGCACTC -3’ and gfp::unc-54 3’UTR 5’- ctttactcatGGAAGACAA

GAATGATCGTG -3’ (lower case letters indicating overhangs). gfp::unc-54 3’UTR was PCR

amplified from pPD95.77 using overhang primers to Phsp-6 5’- cttgtcttccATGAGTAAAGGA

GAAGAACTTTTC -3’ and pCFJ350 5’- tagagggtaccagagctcacAAACAGTTATGTTTGGTA

TATTGG -3’ (lower case letters indicating overhangs).

The plasmid pBC938 was constructed using a classical cloning approach. Therefore, gfpmt

was amplified by PCR from pBC307 (Phsgfpmt) [109] using the following primers carrying a

NheI or KpnI restriction site, respectively:

mitogfpFKpnI: 5’- GGTACCATGGCACTCCTGCAATCAC -3’

mitogfpRNheI: 5’- GCTAGCCTATTTGTATAGTTCATCCATGC -3’

The amplified fragment was then digested with KpnI and NheI and subsequently ligated

into the NheI and KpnI digested backbone L3786 (Plet-858NLS-GFP) (L3786 was a gift from

Andrew Fire (Addgene plasmid # 1593; http://n2t.net/addgene:1593; RRID:Addgene_1593)).

The plasmids pMOC1 and pMOC2 were generated by Gibson cloning, using Gibson

Assembly Master Mix (New England Biolabs E2611) according to standard protocol using the

vector pTagRFP-C as backbone (Evrogen). For the plasmid pMOC1 (hsp-1p::tagRFP::unc-54
3’UTR)), the 1.3 kb intergenic region upstream hsp-1 was amplified and inserted at ScaI site,

using the following primers:

hsp-1p fwd: 5’- GCCTCTAGAGTTACTTCGGCTCTATTACTG -3’

hsp-1p rev: 5’- tatcgcgagtTTTTACTGTAAAAAATAATTTAAAAATCAAGAAATAG -3’

The 3’UTR of unc-54 was amplified and inserted at XhoI site using the primers:

unc54UTR RFP fwd: 5’- CTTAATTaaAGGACTCAGATCgtccaattactcttcaacatc -3’

unc54UTR RFP rev: 5’- CAGAATTCGAAGCTTGAGCttcaaaaaaatttatcagaag -3’

For the plasmid pMOC2 (ttr-45p::tagRFP::ttr45 3’UTR), the 1.85 kb intergenic region

upstream ttr-45 was amplified and inserted at XbaI site, using the following primers:

ttr-45p fwd: 5’- GCCTGCAGGCGCGCCTctgaaaaaaaatcatattacaaatcag -3’

ttr-45p rev: 5’- AGATATCGCGAGTACTtgaaattttaaattttgaattttagtc -3’

The 3’UTR of ttr-45, contained in the following primer (lower case) was inserted at the

XhoI site:

ttr-45UTR:

5’- TTaaAGGACTCAGATCaataattttgattttatgtataataaagactttatctcggGCTCAAGCTTCGAA

TT -3’

RNA-mediated interference

RNAi by feeding was performed using the Ahringer RNAi library [45]. sorb-1(RNAi) was used

as a negative control (referred to as ‘control(RNAi)’) in all RNAi experiments. For all experi-

ments, except for the screens in fzo-1(tm1133), drp-1(tm1108) and spg-7(ad2249), RNAi clones

were cultured overnight in 2 mL of LB carbenicillin (100 μg/mL) at 37˚C and 200 rpm. The

RNAi cultures were adjusted to 0.5 OD and 50 μL were used to seed 30 mm RNAi plates con-

taining 6 mM IPTG. The plates were incubated at 20˚C in the dark. 24 hours later, two L4 lar-

vae of all wild-type strains or 16 L4 larvae of all strains carrying the fzo-1(tm1133) allele were

inoculated onto the RNAi plates. L4 larvae of the F1 generation were collected after 4 days

(wild-type strains) or 6–7 days (fzo-1(tm1133) mutants). hars-1(RNAi) was diluted 1:5 with

sorb-1(RNAi) in all experiments. Larvae were imaged using M9 buffer with 150 mM sodium

azide.

For the screens with the multi-copy zcIs13 transgene in fzo-1(tm1133), drp-1(tm1108) and

spg-7(ad2249), RNAi clones were cultured overnight in 100 μL of LB carbenicillin (100 μg/mL)
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in a 96 well plate format at 37˚C and 200 rpm. 10 μL of the RNAi cultures was used to seed 24

well RNAi plates containing 0.25% Lactose (w/v). The plates were incubated at 20˚C in the

dark. 24 hours later, 3 L4 larvae of all strains carrying the fzo-1(tm1133) and spg-7(ad2249)
allele, and 2 L4 larvae of drp-1(tm1108) were inoculated onto the RNAi plates. The F1 genera-

tion was scored by eye for fluorescence intensity after 4–7 days.

Image acquisition, processing and analysis

For each RNAi condition, 10–20 animals were immobilized with M9 buffer containing 150

mM sodium azide on 2% agarose pads and imaged at 100x using a Leica GFP dissecting micro-

scope (M205 FA) and the software Leica Application Suite (3.2.0.9652).

For image analysis, we used a Fiji-implemented macro using the IJ1 Macro language to

automate the intensity measurement within defined areas of 2-dimensional images. An auto-

mated threshold using the Triangle method was applied to the fluorescence microscopy image,

in order to generate a binary mask (The Triangle method was selected among the 16 available

auto threshold methods of ImageJ as it provided the best results.). The mask was then inverted

and the Particle Analyzer of ImageJ was used to remove noise by setting a minimum size (10

pixels) for objects to be included in the mask. After manually removing any remaining

unwanted objects, the mask was applied to the corresponding fluorescent microscopy image

and mean fluorescent intensity was measured. The mean fluorescent intensity outside the

mask was defined as the background.

Mitochondrial morphology was assessed in a strain carrying bcIs78 and bcIs79 using a Zeiss

Axioskop 2 and MetaMorph software (Molecular Devices).

TMRE staining and quantification

TMRE staining was performed with the F1 generation of respective RNAi treatments. L2 lar-

vae were inoculated onto plates containing 0.1 μM TMRE (Thermo Life Sciences T669) and

imaged in L4 stage using a 63x objective on Zeiss Axioskop 2 and MetaMorph software

(Molecular Devices). Thereby TMRE is used in non-quenching mode and therefore suitable

for quantifications and direct correlations to mitochondrial membrane potential.

The image is first converted to an 8-bit image, after which the continuous background sig-

nal is removed through background subtraction using the “rolling ball” algorithm with a ball

radius of 15 pixels [110]. To remove remaining noise, two filters are applied. The first being a

minimum filter with a value of 1, therefore replacing each pixel in the image with the smallest

pixel value in a particular pixel’s neighborhood. This is followed by a mean filter with a radius

of 2, which replaces each pixel with the neighborhood mean. Next, the Tubeness plugin is run

with a sigma value of 1.0, which generates a score of how tube-like each point in the image is

by using the eigenvalues of the Hessian matrix to calculate the measure of “tubeness” [111].

The resulting 32-bit image is converted back to 8-bit and an automatic threshold (using the

IsoData algorithm) generates a binary mask. The final step involves the removal of any parti-

cles that are smaller than 10 pixels in size for they are assumed to be noise.

Raw image files are opened in parallel to their appendant binary masks (generated by the

segmentation macro) and a mask-based selection is created in the raw image. Within this

selection measurements are obtained in the raw image and collected for subsequent analysis.

Western blot analysis

Mixed-stage populations of worms were harvested, washed three times in M9 buffer, and the

pellets were lysed in 2x Laemmli buffer. For analysis of the additional candidates (Fig 4) 60–80

L4 stage animals were picked for western blotting. For analysis of endogenous HSP-6, 100 L4
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larvae were harvested per genotype. The protein extracts were separated by 10% SDS-PAGE

and transferred to a PVDF membrane (0.45 μm pore, Merck Millipore). To detect GFP and

Tubulin, we used primary anti-GFP (1:1000, Roche 11814460001) and primary anti-α-Tubulin

(1:5000, Abcam ab7291) antibodies and secondary horseradish peroxidase-conjugated goat

anti-mouse antibodies (BioRad #1706516). To detect endogenous HSP-6, we used anti-HSP-6

(1:10,000) as described previously [42] and secondary horseradish peroxidase-conjugated goat

anti-rabbit antibodies (BioRad #1706515). Blots were developed using ECL (Amersham) or

ECL Prime (Amersham) according to manufacturer’s protocol and images were quantified

using the ChemiDoc XRS+ System (BioRad).

Analysis of autophagy and quantification of GFP::LGG-1 foci

L4 stage animals (except otherwise mentioned) were immobilized with M9 buffer containing

150 mM sodium azide on 2% agarose pads. Animals were imaged using a Leica TCS SP5 II

confocal microscope (Leica Application Suite LAS software) with a 63x objective. GFP fluores-

cence was detected by excitation at 488 nm and emission at 507–518 nm. GFP::LGG-1 foci

were counted in hypodermal seam cells on single images where the nucleus could clearly be

seen. The amount of GFP::LGG-1 foci was counted in 2–5 seam cells per animal and the aver-

age number of GFP::LGG-1 foci per hypodermal seam cell was plotted for graphical represen-

tation and statistical analysis. SQST-1::GFP was imaged using Zeiss Axioskop 2 and

MetaMorph software (Molecular Devices).

Analysis of thrashing rate

Body bends of L4 larvae were counted as previously described [75]. Briefly, the animals were

transferred from the RNAi plates onto an empty NGM plate to get rid of all bacteria and then

subsequently transferred into an empty petri dish filled with M9 buffer. After letting the L4 lar-

vae adjust for one minute, they were recorded using a Samsung Galaxy S8 attached to a Leica

MS5 stereomicroscope. The videos were played back at reduced speed using VLC media player

(v3.0.8) and the number of body bends was counted manually for 1 minute.

Statistics

For experiments where two groups were compared, datasets were first tested for normality

using Shapiro-Wilk normality test. If all samples of one dataset were found to be normally dis-

tributed, we conducted an unpaired two-tailed t-test. If samples were found to have non-equal

variance, we conducted an unpaired tow-tailed t-test with Welch’s correction. For experiments

where more than two groups were compared, datasets were first tested for normal distribution

using Shapiro-Wilk normality test and then tested for equal variance using Brown-Forsythe

test. If samples of one dataset were found to be normally distributed and to have equal vari-

ance, one-way ANOVA with Dunnett’s post hoc test was used to test for statistical significance

with multiple comparisons to controls. If the dataset was not found to have normal distribu-

tion and/or have equal variance, Kruskal-Wallis test with Dunn’s post hoc test for multiple

comparisons to controls was used.

Lipid profiling using UPLC-UHR-ToF-MS

RNAi in lipidomic experiments was performed using OP50(xu363), which is compatible for

dsRNA production and delivery [112]. The L4440 plasmids containing the coding sequence of

sorb-1, cogc-2 or vps-4 were purified from HT115 bacteria of the Ahringer library [45] using

Qiagen Plasmid Mini Kit (Cat. No. 12125) and subsequently transformed into chemically
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competent OP50(xu363). Single clones were picked, sequenced and glycerol stocks were made

for subsequent experiments. Bacterial clones were grown as described in section ‘RNA-medi-

ated interference’ and 1 mL bacterial culture (OD600 = 0.5) was seeded onto 92 mm RNAi

plates containing 1 mM IPTG. For sorb-1(RNAi) 120 L4 larvae, for vps-4(RNAi) 240 L4 larvae

and for cogc-2(RNAi) 200 L4 larvae were transferred onto RNAi plates. Worms were collected

in L4 stage after 6 days by washing the plates with MPEG. Worm pellets were subsequently

washed using M9 and shock-frozen using liquid nitrogen and kept at -80˚C until extraction.

Lipids were extracted using the BUME method [113]. Briefly, worms were resuspended in

50 μL MeOH and transferred to custom made bead beating tubes. Samples were homogenized

at 8000 rpm in a Precellys Bead Beater for 3 times 10 seconds with 20 seconds breaks in

between. The additional Cryolys module was used with liquid nitrogen to prevent excessive

heating of samples during disruption. 150 μL butanol and 200 μL heptane-ethyl acetate (3:1)

was added to each sample sequentially which were then incubated for 1 h at 500 rpm / RT.

200 μL 1% acetic acid was added to each sample followed by centrifugation for 15 min at

13000 rpm / 4˚C. The upper organic phase was transferred to a fresh Eppendorf tube and the

lower aqueous phase was re-extracted by the addition of 200 μL heptane-ethyl acetate followed

by incubation and centrifugation as described above. The upper organic phase was transferred

to the already obtained organic phase. The lower phase was transferred to a new Eppendorf

tube and used for metabolomic analyses. Samples were evaporated to dryness and stored at

-20˚C. For lipidomics, samples were re-dissolved in 50 μL 65% isopropanol / 35% acetonitrile /

5% H2O, vortexed and 40 μL were transferred to an autosampler vial. The remaining 10 μL

were pooled to form a QC sample for the entire study. The precipitated proteins in the aqueous

phase were used for determination of protein content using a Bicinchoninic Acid Protein

Assay Kit (Sigma-Aldrich, Taufkirchen, Germany).

Lipids were analyzed as previously described [114]. Briefly, lipids were separated on a

Waters Acquity UPLC (Waters, Eschborn, Germany) using a Waters Cortecs C18 column

(150 mm x 2.1 mm ID, 1.6 μm particle size, Waters, Eschborn Germany) and a linear gradient

from 68% eluent A (40% H2O / 60% acetonitrile, 10 mM ammonium formate and 0.1% formic

acid) to 97% eluent B (10% acetonitrile / 90% isopropanol, 10 mM ammonium formate and

0.1% formic acid). Mass spectrometric detection was performed using a Bruker maXis

UHR-ToF-MS (Bruker Daltonic, Bremen, Germany) in positive ionization mode using data

dependent acquisition to obtain MS1 and MS2 information. Every ten samples, a pooled

QC was injected to check performance of the UPLC-UHR-ToF-MS system and used for

normalization.

Raw data was processed with Genedata Expressionist for MS 13.0 (Genedata AG, Basel,

Switzerland). Preprocessing steps included noise subtraction, m/z recalibration, chro-

matographic alignment and peak detection and grouping. Data was exported for Genedata

Expressionist for MS 13.0 Analyst statistical analysis software and as .xlxs for further investiga-

tion. Maximum peak intensities were used for statistical analysis and data was normalized on

the protein content of the sample and an intensity drift normalization based on QC samples

was used to normalize for the acquisition sequence.

Lipid features that were detected in all pooled QC samples and had a relative standard devi-

ation (RSD) < 30% were further investigated by statistical analysis. 5284 features passed this

filter and the different mutants were compared against the wild-type control using Welch test.

Lipids with a p-value < 0.05 were considered to be significantly changed.

Lipids were putatively annotated on the MS1 level using an in-house developed database for

C. elegans lipids and bulk composition from LipidMaps [115], when available. Matching of

MS2 spectra against an in-silico database of C. elegans lipids and LipidBlast was performed

using the masstrixR package [116] (https://github.com/michaelwitting/masstrixR) and only
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hits with a forward and reverse matching score > 0.75 were considered. Annotations of inter-

esting biological peaks were manually verified and corrected if necessary.

High throughput qRT-PCR on single worms using the Biomark system

cDNA from single worms was analyzed on the biomark system using Flex Six IFC. This nano-

fluidic chip allows the comparison of 12 target genes across 36 individual worms per genotype.

We monitored biological variability in gene expression of targets: endogenous hsp-6, hsp-60
and either bcSi9 single-copy or zcIs13 multi-copy transgenes. In addition, we monitored vari-

ability in gene expression of three “gold standard” control genes: either non-variable (hsp-1),

medium variable (ttr-45) or highly variable (nlp-29). Ct values for all targets were normalized

to the average of three housekeeping genes (cdc-42, ire-1 and pmp-3).

Design of qRT-PCR primers. Primers sets were designed to quantify C. elegans post-

spliced transcripts. Primer sets were designed to span exon-exon junctions using NCBI Primer

Blast software and subsequently blasted against the C. elegans genome to test for off-target

complementarity. The list of qRT-PCR primers used with their PCR efficiency and coefficient

of determination (R2) is shown in S3 Table.

Quantification of primer efficiency and specificity. Primers were selected for high PCR

efficiency between 90 and 115%. To estimate primer efficiencies, a comprehensive titration of

cDNA obtained from 500 ng of Trizol-extracted RNA was prepared within the range of linear

amplification using a 1:2 series dilution. Each qRT-PCR reaction contained 1.5 μL of primer

mix forward and reverse at 1.6 μM each, 3.5 μL of nuclease free water, 6 μL of 2X Platinum1

SYBR1 Green qPCR Supermix-UDG (Thermo Fisher Scientific PN 11744–500) and 1 μL of

worm DNA lysate diluted or not. The qRT-PCR reactions were run on an iCycler system (Bio-

Rad). PCR efficiencies were calculated by plotting the results of the titration of cDNA (Ct val-

ues versus log dilution) within the range of linear amplification. The efficiency was defined by

the formula 100 x (10 (-1/slope)/2) with an optimal slope defined as -3.3 (1/3.3) = 2.

Worm synchronization. Worms were grown at 20˚C and bleach synchronized. 36 worms

per genotype were harvested at the L4.8/L4.9 stage based on vulval development [117], at

about 48h post L1 plating for WT and about 65h post L1 plating for fzo-1(tm1133).
Worm lysis for total RNA preparation of single worm RNA. During harvesting, syn-

chronized worms were individually picked into 10 μL lysis buffer (Power SYBR1 Green

Cells-to-CT™ kit, Thermo Fisher Scientific) in 8 strip PCR tubes. After harvesting the worms,

the 8 strip PCR tubes were freeze-thawed 10 times by transferring tubes from a liquid nitrogen

bath into a warm water bath (about 40ºC). Samples were vortexed during 20 minutes on a

thermoblock set up at 4ºC. The samples were then quickly spun down and 1 μL of stop solu-

tion (Power SYBR Green Cells-to-CT kit, Thermo Fisher scientific) was added in each tube.

The samples were then stored at -80ºC before further processing. Storage time was no more

than one week before proceeding to reverse transcription.

Reverse transcription. Reverse Transcription PCR (RT-PCR) was performed by adding

5 μL of lysis mix (lysis buffer and stop solution) to 1.25 μL of Reverse Transcription Master

Mix (Fluidigm PN 100–6297) into 96 well plates. We included one minus RT control per plate,

containing 5 μL of lysis mix and 1.25 μL of RNase free water. Reverse Transcription cycling

conditions were 25ºC for 5 min, 42ºC for 30 min and 85ºC for 5 min.

Pre-amplification. Pre-amplification was performed according to Fluidigm instruction

manual: for every nano-fluidic chip, a pooled primer mix was prepared by adding 1 μL of

primer stock (for every target gene to be tested on the chip) to water up to a final volume of

100 μL. Every primer stock contained both reverse and forward primers at a concentration of

50 μM each. A pre-amplification mix was prepared containing for each sample: 1 μL of
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PreAmp Master mix (Fluidigm PN 100–5744), 0.5 μL of pooled primer mix and 2.25 μL of

nuclease free water. 3.75 μL of pre-amplification mix was then aliquoted in a 96 well-plate.

1.25 μL of cDNA was then added in each well. The samples were mixed by quick vortexing

and centrifuged. Pre amplification conditions were the following: 95ºC for 2 min, 10 cycles of

denaturation at 95ºC for 15 s followed by annealing/extension at 60ºC for 4 min.

Exo I treatment and sample dilution. To remove unincorporated primers, 2 μL of Exo-

nuclease I mix was added to each pre-amplification reaction. The Exonuclease I mix contained

0.2 μL of Exonuclease I reaction buffer (New England BioLabs), 0.4 μL Exonuclease I at 20

Units/μL (New England BioLabs), and 1.4 μL of nuclease free water. The samples were incu-

bated at 37ºC for 30 min followed by 15 min at 80ºC. The samples were finally diluted 1:5 by

adding 18 μL of DNA suspension buffer (10 mM Tris, 0.1 mM EDTA, pH = 8.0, TEKnova

PN-T0021).

Assay Mix preparation. For every pair of primers to be tested on the Fluidigm nano-flu-

idic chip, an assay mix was individually prepared on a 384 well PCR plate (for easier transfer to

the Fluidigm nano-fluidic chips), typically the day before the experiment. Each assay mix (for

36 samples) contained 6.25 μL of 2X Assay loading reagent (Fluidigm PN 100–5359), 5 μL of

DNA suspension buffer (10 mM Tris, 0.1 mM EDTA, pH = 8.0, TEKnova PN T0021), and

1.25 μL of primer stock (reverse and forward primers at a concentration of 50 μM each). Assay

mixes were vortexed during 30 s minimum on a thermoblock set up at 4 ºC and centrifuged

for 30 s minimum. 3 μL of each assay mix were loaded onto Flex Six Gene Expression IFC

chips (Fluidigm PN 100–6308).

Sample Mix preparation. The samples mixes were prepared at the day of the experiment.

1.8 μL of diluted PreAmp and Exo I treated samples were added to a sample mix containing

2 μL of 2X SsoFast EvaGreen Supermix with Low ROX (Bio-Rad, PN 172–5211) and 0.2 μL of

Flex Six Delta Gene Sample Reagent (Fluidigm PN 100–7673). 3 μL of each sample mix was

loaded onto Flex Six IFC chips.

Biomark Run and data clean-up. Assay and sample mixes of Flex Six IFCs were loaded

using a HX IFC controller (Fluidigm). The nano-fluidic chips were then run on a Biomark HD

using the FlexSix Fast PCR+melt protocols. After the run, the data from every well on the plate

was checked and cleaned up as following: samples for which all PCRs failed were eliminated.

Any well, in which the melting peak temperature of a particular pair of primers was not as

expected, was eliminated. It would happen occasionally, presumably when pairs of primers

form dimers when target gene concentrations are very low, or from interactions of target

primers with other primers in the pooled primer mix. Ct values were then normalized to the

average of housekeeping genes and relative mRNA expression levels were calculated using the

delta Ct method.

Determination of “Gold Standard” stable and variable transcripts. To validate our sin-

gle-worm high throughput qRT-PCR method to monitor inter-individual variability in gene

expression, we measured the coefficient of variation CV (CV = standard deviation/mean) for

fluorescent transcriptional reporters of a stable gene MOC92 bicIs10(hsp-1p::tagRFP::unc-54
3'UTR) and of two variable transgenes MOC119 bicls12(ttr-45p::tagRFP::ttr45 3’UTR)
(medium variable) and IG274 frIs7(nlp-29p::GFP; col-12p::DsRed) (highly variable). We veri-

fied that it matches the coefficient of variation calculated from normalized Ct values of endog-

enous transcripts hsp-1, ttr-45 and nlp-29 measured in our high-throughput single worm

qPCR assay. Synchronized MOC92 and MOC119 transgenic worms were immobilized in M9

containing 3 mM Levamisole and imaged on a Nikon SMZ18 stereo epi-fluorescence micro-

scope, while synchronized IG274 transgenic animals were mounted in 3 mM levamisole on a

2% agarose pad and imaged on a Nikon Ti Eclipse inverted microscope, as the fluorescence

levels of the nlp-29 reporter in IG274 were too low to be imaged on the Nikon SMZ18. The
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fluorescence of each individual transgenic worm was quantified using Fiji software, by sub-

tracting the background measurement from fluorescence measurements. The coefficient of

variation was determined for synchronized population of day 2 animals (day 2 of adulthood:

74h post L1 plating at 20˚C) for nlp-29 and ttr-45 reporters, while it was determined in day 1

synchronized animals (50h post L1 plating at 20˚C) for hsp-1 reporter. The coefficient of varia-

tion is measured as follows:

• bicIs10(hsp-1p::tagRFP::unc-54 3'UTR): 0.09< CV<0.14 (3 biological replicates)

• bicls12(ttr-45p::tagRFP::ttr45 3’UTR): 0.31<CV<0.45 (3 biological replicates)

• frIs7(nlp-29p::GFP; col-12p::DsRed): CV = 1.0 (1 biological replicate)

We observed a good correlation between the coefficient of variation for hsp-1, ttr-45 and

nlp-29 transgenic reporters and the coefficient of variation for endogenous transcripts hsp-1,

ttr-45 and nlp-29 measured by single worm qRT-PCR (S1F Fig).

Supporting information

S1 Fig. Comparison of expression levels and inter-individual variability of multi-copy

Phsp-6 mtHSP70gfp (zcIs13) and single-copy integrated Phsp-6 mtHSP70gfp (bcSi9) transgenes.

(A) Brightfield (upper panel) and fluorescence images (lower panel) of L4 larvae expressing

Phsp-6gfp (zcIs13) in wild type (+/+), spg-7(ad2249), fzo-1(tm1133) or drp-1(tm1108). Scale bar:

200 μm. (B) Brightfield (upper panel) and fluorescence images (lower panel) of L4 larvae

expressing Phsp-6gfp (bcSi9) in wild type (+/+), spg-7(ad2249), fzo-1(tm1133) or drp-1(tm1108).
Scale bar: 200 μm. (C) Quantifications of fluorescence images of panel A (Phsp-6gfp (zcIs13))
are shown. Each dot represents quantification of 15–20 L4 larvae. Values indicate means ± SD

of�5 independent measurements. (D) Quantifications of fluorescence images of panel B

(Phsp-6gfp (bcSi9)) are shown. Each dot represents quantification of 15–20 L4 larvae. Values

indicate means ± SD of�4 independent measurements. (E) Quantifications of western blot

analysis of endogenous HSP-6 levels in wild-type (+/+), spg-7(ad2249), fzo-1(tm1133) or drp-1
(tm1108) using anti-HSP-6 antibodies. For each genotype, 100 L4 larvae were harvested per

experiment for western blot analysis. Values indicate means of relative HSP-6 expression

(HSP-6/TUB) ± SD, n = 2. (F) Inter-individual variability in gene expression of target genes in

bcSi9 and zcIs13 in both wild type (+/+) and fzo-1(tm1133). To estimate inter-individual vari-

ability in gene expression, the coefficient of variation was calculated from individual mRNA

levels obtained from normalized Ct values using the delta Ct method. Inter-individual variabil-

ity values were normalized such that variability values for nlp-29 in wild type = 1 (bcSi9 or

zcIs13). Number of individual worms: n = 35 (bcSi9), n = 32 (bcSi9; fzo-1(tm1133)), n = 31

(zcIs13), n = 31 (zcIs13; fzo-1(tm1133)).
(TIF)

S2 Fig. RNAi against vps-4VPS4 and vps-20CHMP6 suppresses expression of bcSi9 and

induces autophagy in wild type (+/+). (A) L4 larvae were subjected to control(RNAi), atfs-1
(RNAi), vps-4(RNAi) or vps-20(RNAi) and the F1 generation was imaged. Each dot represents

the quantification of fluorescence intensity of 15–20 L4 larvae. Values indicate means ± SD of

5 independent experiments in duplicates. �P<0.05, ���P<0.001 using one-way ANOVA with

Dunnett’s multiple comparison test to control(RNAi). (B) Plgg-1gfp::lgg-1 expression of L4 lar-

vae in hypodermal seam cells and intestinal cells upon control(RNAi), vps-4(RNAi) or vps-20
(RNAi). Representative images of>30 animals from two independent biological replicates are

shown. Scale bar hypodermal seam cells: 5 μm. Scale bar intestinal cells: 20 μm.

(TIF)
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S3 Fig. Knock-down of ESCRT components in body wall muscle cells of wild type and

intestinal cells in fzo-1(tm1133) does not change mitochondrial morphology. (A) Fluores-

cence images of L4 larvae expressing Pmyo-3gfpmt in wild type (+/+). L4 larvae were subjected to

control(RNAi), atfs-1(RNAi), vps-4(RNAi), vps-20(RNAi) or let-363(RNAi) and the F1 genera-

tion was imaged. Scale bar: 10 μm. (B) Fluorescence images of L4 larvae expressing Plet-

858gfpmt in wild type (+/+) or fzo-1(tm1133). L4 larvae were subjected to control(RNAi), atfs-1
(RNAi), vps-4(RNAi), vps-20(RNAi) or let-363(RNAi) and the F1 generation was imaged. Scale

bar: 10 μm.

(TIF)

S4 Fig. Image segmentation and intensity measurement workflow. A raw 16-bit image (1) is

converted to 8-bit, followed by a background subtraction using the rolling ball algorithm (2).

This is followed by the successive application of a minimum (3) and average filter (4). The

ImageJ Tubeness plugin generates an image with object curvature scores (5), after which the

IsoData autothresholding is applied to generate the binary mask (6). Noise is removed by fil-

tering out particles below a certain size (7) and the final mask is used to define the area in

which intensity measurements are obtained (8). Scale bar: 5 μm.

(TIF)

S5 Fig. Thrashing assay in wild-type and fzo-1(tm1133) animals upon induction of autop-

hagy. Thrashing rate was analyzed by counting body bends of animals swimming for 1 minute

in M9 buffer in 3 independent experiments. Each dot represents one L4 larvae. (A) Thrashing

rates of wild-type (+/+) or fzo-1(tm1133) L4 larvae. ����P<0.0001 using unpaired two-tailed t-

test. n = 30. (B) Thrashing rates in wild-type animals upon induction of autophagy. L4 larvae

were subjected to control(RNAi), vps-4(RNAi), vps-20(RNAi), let-363(RNAi) or hars-1(RNAi)
and the F1 generation was analyzed. ns: not significant, ����P<0.0001 using Kruskal-Wallis

test with Dunn’s multiple comparison test to control(RNAi). n = 30. (C) Thrashing rates in fzo-
1(tm1133) animals upon induction of autophagy. L4 larvae were subjected to control(RNAi),
vps-4(RNAi), vps-20(RNAi), let-363(RNAi) or hars-1(RNAi) and the F1 generation was ana-

lyzed. ns: not significant, ���P<0.001 using Kruskal-Wallis test with Dunn’s multiple compari-

son test to control(RNAi). n = 30.

(TIF)

S6 Fig. RNAi against vps-4VPS4 and vps-20CHMP6 does not suppress fzo-1(tm1133)-induced

UPRmt when diluted with control(RNAi) or carried out in one generation from L2 to L4

larvae. (A) Quantifications of fluorescence images of L4 larvae expressing Phsp-6gfp (bcSi9) in

fzo-1(tm1133). Each ESCRT(RNAi) was diluted 1:1 with control(RNAi). After subtracting the

mean fluorescence intensity of wild type (+/+) on control(RNAi), the values were normalized

to fzo-1(tm1133) on control(RNAi). Each dot represents the quantification of fluorescence

intensity of 15–20 L4 larvae. Values indicate means ± SD of 3 independent experiments in

duplicates. ns: not significant, using one-way ANOVA with Dunnett’s multiple comparison

test to control(RNAi). (B) Quantifications of fluorescence images of L4 larvae expressing Phsp-

6gfp (bcSi9) in fzo-1(tm1133). L2 larvae were subjected to control(RNAi), atfs-1(RNAi), vps-4
(RNAi) or vps-20(RNAi) and the same animals were imaged in L4 stage. After subtracting the

mean fluorescence intensity of wild type (+/+) on control(RNAi), the values were normalized

to fzo-1(tm1133) on control(RNAi). Each dot represents the quantification of fluorescence

intensity of 15–20 L4 larvae. Values indicate means ± SD of 4 independent experiments in

duplicates. ns: not significant, ��P<0.01 using Kruskal-Wallis test with Dunn’s multiple com-

parison test to control(RNAi). (C) Plgg-1gfp::lgg-1 expression of fzo-1(tm1133) L4 larvae in
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hypodermal seam cells and intestinal cells. L2 larvae were subjected to control(RNAi), vps-4
(RNAi) or vps-20(RNAi) and the same animals were imaged in L4 stage. Representative images

of>60 animals from two independent biological replicates are shown. Scale bar hypodermal

seam cells: 5 μm. Scale bar intestinal cells: 20 μm. (D) Quantifications of fluorescence images

of L4 larvae expressing Phsp-6gfp (bcSi9) in fzo-1(tm1133) rrf-3(pk1426). L2 larvae were sub-

jected to control(RNAi), atfs-1(RNAi), vps-4(RNAi) or vps-20(RNAi) and the same animals

were imaged in L4 stage. After subtracting the mean fluorescence intensity of wild type (+/+)

on control(RNAi), the values were normalized to fzo-1(tm1133) on control(RNAi). Each dot

represents the quantification of fluorescence intensity of 15–20 L4 larvae. Values indicate

means ± SD of 4 independent experiments in duplicates. ns: not significant, ����P<0.0001

using one-way ANOVA with Dunnett’s multiple comparison test to control(RNAi).
(TIF)

S7 Fig. Autophagy is induced in spg-7(ad2249) animals. (A) Plgg-1gfp::lgg-1 expression in

hypodermal seam cells of wild type (+/+) or spg-7(ad2249) L4 larvae. Scale bar: 5 μm. (B)

Quantification of GFP::LGG-1 foci in hypodermal seam cells from panel A. Each dot repre-

sents the average amount of GFP::LGG-1 foci counted from 2–5 seam cells in one animal.

n�18 for each genotype; values indicate means ± SD; ��P<0.01 using unpaired two-tailed t-

test with Welch’s correction. (C) Nomarski and fluorescent images of the Psqst-1sqst-1::gfp
translational reporter in embryos of wild type (+/+) and spg-7(ad2249) animals. As a positive

control for a block in autophagy, unc-51(e369) was used. Representative images of>60

embryos are shown. Scale bar: 10 μm.

(TIF)

S8 Fig. Defects in mitochondrial homeostasis lead to major changes in lipid metabolism.

(A) Venn diagrams showing the overlap of lipids up- or downregulated in fzo-1(tm1133), drp-
1(tm1108) and spg-7(ad2249) in comparison to wild type (+/+). (B) Total amount of TGs in

wild type (+/+), fzo-1(tm1133), drp-1(tm1108) and spg-7(ad2249) backgrounds. Means ± SD

are shown; ns: not significant, �P<0.05, ����P<0.0001 using Welch test. (C) Scatterplot indi-

cating the distribution and changes in the levels of TG species in the different mutants in com-

parison to wild type (+/+). (D)) Scatterplot indicating the overlap of the changes in the levels

of TG species of fzo-1(tm1133) and drp-1(tm1108) mutants in comparison to wild type (+/+).

(C) and (D) The x-axis labels the number of carbons (# of C) and the y-axis the number of

double bonds (DB) in the acyl sidechains. The size of a dot indicates the number of detected

isomers for a specific sum composition. Grey dots represent all detected TGs species and blue

and red dots indicate down- (blue) or upregulation (red).

(TIF)

S9 Fig. Induction of autophagy upon cogc-2(RNAi) changes the levels of specific TGs in

fzo-1(tm1133) mutants. (A) Scatterplot indicating the distribution and changes in the level of

TG species in fzo-1(tm1133) mutants in comparison to wild type (+/+). The x-axis labels the

number of carbons (# of C) and the y-axis the number of double bonds (DB) in the acyl side-

chains. The size of a dot indicates the number of detected isomers for a specific sum composi-

tion. Grey dots represent all detected TGs species and blue and red dots indicate down- (blue)

or upregulation (red). (B) Venn diagram indicating the overlap of TG species downregulated

(left panel) or upregulated (right panel) in fzo-1(tm1133) and downregulated upon vps-4
(RNAi) or cogc-2(RNAi).
(TIF)

S1 Table. List of genes that suppress fzo-1(lf)-induced UPRmt and induce autophagy in

wild-type animals upon knock-down. Candidate genes were identified in the primary RNAi-
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screen using fzo-1(tm1133), subsequently knocked-down and tested for induction of autop-

hagy and re-screened for UPRmt suppression in two different mutant backgrounds: drp-1
(tm1108) and spg-7(ad2249).
(XLSX)

S2 Table. Numerical data of lipidomic experiments. Significantly up- or downregulated lip-

ids in fzo-1(tm1133), drp-1(tm1108) or spg-7(ad2249) mutants (Sheet 1), significantly up- or

downregulated TGs in fzo-1(tm1133), drp-1(tm1108) or spg-7(ad2249) mutants (Sheet 2) and

significantly up- or downregulated TGs in fzo-1(tm1133) upon induction of autophagy by vps-
4(RNAi) or cogc-2(RNAi) (Sheet 3). MS1 annotations, P-values and fold change are indicated.

(XLSX)

S3 Table. List of qRT-PCR primers. Primers used for qRT-PCR including PCR efficiency and

coefficient of determination (R2).

(XLSX)
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113. Löfgren L, Forsberg G-B, Ståhlman M. The BUME method: a new rapid and simple chloroform-free

method for total lipid extraction of animal tissue. Scientific Reports. 2016; 6(1):27688.

114. Witting M, Maier TV, Garvis S, Schmitt-Kopplin P. Optimizing a ultrahigh pressure liquid chromatogra-

phy-time of flight-mass spectrometry approach using a novel sub-2μm core–shell particle for in depth

lipidomic profiling of Caenorhabditis elegans. Journal of Chromatography A. 2014; 1359:91–9. https://

doi.org/10.1016/j.chroma.2014.07.021 PMID: 25074420

115. O’Donnell VB, Dennis EA, Wakelam MJO, Subramaniam S. LIPID MAPS: Serving the next generation

of lipid researchers with tools, resources, data, and training. Science Signaling. 2019; 12(563):

eaaw2964. https://doi.org/10.1126/scisignal.aaw2964 PMID: 30622195

116. Kind T, Liu K-H, Lee DY, DeFelice B, Meissen JK, Fiehn O. LipidBlast in silico tandem mass spectrom-

etry database for lipid identification. Nature Methods. 2013; 10(8):755–8. https://doi.org/10.1038/

nmeth.2551 PMID: 23817071

117. Mok DZL, Sternberg PW, Inoue T. Morphologically defined sub-stages of C. elegans vulval develop-

ment in the fourth larval stage. BMC developmental biology. 2015; 15:26–. https://doi.org/10.1186/

s12861-015-0076-7 PMID: 26066484

PLOS GENETICS Functional interactions between autophagy and mitochondrial stress

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008638 March 19, 2020 37 / 37

135

Chapter III



S1 Fig: Comparison of expression levels and inter-individual variability of multi-copy 

Phsp-6 mtHSP70gfp (zcIs13) and single-copy integrated Phsp-6 mtHSP70gfp (bcSi9) transgenes. (A) 

Brightfield (upper panel) and fluorescence images (lower panel) of L4 larvae expressing Phsp-

6gfp (zcIs13) in wild type (+/+), spg-7(ad2249), fzo-1(tm1133) or drp-1(tm1108). Scale bar: 

200 µm. (B) Brightfield (upper panel) and fluorescence images (lower panel) of L4 larvae 

expressing Phsp-6gfp (bcSi9) in wild type (+/+), spg-7(ad2249), fzo-1(tm1133) or drp-

1(tm1108). Scale bar: 200 µm. (C) Quantifications of fluorescence images of panel A (Phsp-6gfp 
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(zcIs13)) are shown. Each dot represents quantification of 15-20 L4 larvae. Values indicate 

means ± SD of ≥5 independent measurements. (D) Quantifications of fluorescence images of 

panel B (Phsp-6gfp (bcSi9)) are shown. Each dot represents quantification of 15-20 L4 larvae. 

Values indicate means ± SD of ≥4 independent measurements. (E) Quantifications of western 

blot analysis of endogenous HSP-6 levels in wild-type (+/+), spg-7(ad2249), fzo-1(tm1133) or 

drp-1(tm1108) using anti-HSP-6 antibodies. For each genotype, 100 L4 larvae were harvested 

per experiment for western blot analysis. Values indicate means of relative HSP-6 expression 

(HSP-6/TUB) ± SD, n = 2. (F) Inter-individual variability in gene expression of target genes 

in bcSi9 and zcIs13 in both wild type (+/+) and fzo-1(tm1133). To estimate inter-individual 

variability in gene expression, the coefficient of variation was calculated from individual 

mRNA levels obtained from normalized Ct values using the delta Ct method. Inter-individual 

variability values were normalized such that variability values for nlp-29 in wild type = 1 (bcSi9 

or zcIs13). Number of individual worms: n=35 (bcSi9), n=32 (bcSi9; fzo-1(tm1133)), n=31 

(zcIs13), n=31 (zcIs13; fzo-1(tm1133)). 

S2 Fig: RNAi against vps-4VPS4 and vps-20CHMP6 suppresses expression of bcSi9 and 

induces autophagy in wild type (+/+). (A) L4 larvae were subjected to control(RNAi), atfs-

1(RNAi), vps-4(RNAi) or vps-20(RNAi) and the F1 generation was imaged. Each dot represents 

the quantification of fluorescence intensity of 15-20 L4 larvae. Values indicate means ± SD of 

5 independent experiments in duplicates. *P<0.05, ***P<0.001 using one-way ANOVA with 

Dunnett’s multiple comparison test to control(RNAi). (B) Plgg-1gfp::lgg-1 expression of L4 

larvae in hypodermal seam cells and intestinal cells upon control(RNAi), vps-4(RNAi) or 

vps-20(RNAi). Representative images of >30 animals from two independent biological 

replicates are shown. Scale bar hypodermal seam cells: 5 μm. Scale bar intestinal cells: 20 μm. 

137

Chapter III



S3 Fig: Knock-down of ESCRT components in body wall muscle cells of wild type and 

intestinal cells in fzo-1(tm1133) does not change mitochondrial morphology. (A) 

Fluorescence images of L4 larvae expressing Pmyo-3gfpmt in wild type (+/+). L4 larvae were 

subjected to control(RNAi), atfs-1(RNAi), vps-4(RNAi), vps-20(RNAi) or let-363(RNAi) and the 

F1 generation was imaged. Scale bar: 10 µm. (B) Fluorescence images of L4 larvae expressing 

Plet-858gfpmt in wild type (+/+) or fzo-1(tm1133). L4 larvae were subjected to control(RNAi), 

atfs-1(RNAi), vps-4(RNAi), vps-20(RNAi) or let-363(RNAi) and the F1 generation was imaged. 

Scale bar: 10 µm. 

S4 Fig: Image segmentation and intensity measurement workflow. A raw 16-bit image (1) 

is converted to 8-bit, followed by a background subtraction using the rolling ball algorithm (2). 

This is followed by the successive application of a minimum (3) and maximum filter (4). The 

ImageJ Tubeness plugin generates an image with object curvature scores (5), after which the 

IsoData autothresholding is applied to generate the binary mask (6). Noise is removed by 

filtering out particles below a certain size (7) and the final mask is used to define the area in 

which intensity measurements are obtained (8). Scale bar: 5 µm.  
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S5 Fig: Thrashing assay in wild-type and fzo-1(tm1133) animals upon induction of 

autophagy. Thrashing rate was analyzed by counting body bends of animals swimming for 1 

minute in M9 buffer in 3 independent experiments. Each dot represents one L4 larvae. (A) 

Thrashing rates of wild-type (+/+) or fzo-1(tm1133) L4 larvae. ****P<0.0001 using unpaired 

two-tailed t-test. n=30. (B) Thrashing rates in wild-type animals upon induction of autophagy. 

L4 larvae were subjected to control(RNAi), vps-4(RNAi), vps-20(RNAi), let-363(RNAi) or hars-

1(RNAi) and the F1 generation was analyzed. ns: not significant, ****P<0.0001 using Kruskal-

Wallis test with Dunn’s multiple comparison test to control(RNAi). n=30. (C) Thrashing rates 

in fzo-1(tm1133) animals upon induction of autophagy. L4 larvae were subjected to 

control(RNAi), vps-4(RNAi), vps-20(RNAi), let-363(RNAi) or hars-1(RNAi) and the F1 

generation was analyzed. ns: not significant, ***P<0.001 using Kruskal-Wallis test with 

Dunn’s multiple comparison test to control(RNAi). n=30. 
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S6 Fig: RNAi against vps-4VPS4 and vps-20CHMP6 does not suppress fzo-1(tm1133)-induced 

UPRmt when diluted with control(RNAi) or carried out in one generation from L2 to L4 

larvae. (A) Quantifications of fluorescence images of L4 larvae expressing Phsp-6gfp (bcSi9) in 

fzo-1(tm1133). After subtracting the mean fluorescence intensity of wild type (+/+) on 

control(RNAi), the values were normalized to fzo-1(tm1133) on control(RNAi). Each dot 

represents the quantification of fluorescence intensity of 15-20 L4 larvae. Values indicate 

means ± SD of 3 independent experiments in duplicates. ns: not significant, using one-way 

ANOVA with Dunnett’s multiple comparison test to control(RNAi). (B) Quantifications of 

fluorescence images of L4 larvae expressing Phsp-6gfp (bcSi9) in fzo-1(tm1133). L2 larvae were 

subjected to control(RNAi), atfs-1(RNAi), vps-4(RNAi) or vps-20(RNAi) and the same animals 

were imaged in L4 stage. After subtracting the mean fluorescence intensity of wild type (+/+) 

on control(RNAi), the values were normalized to fzo-1(tm1133) on control(RNAi). Each dot 

represents the quantification of fluorescence intensity of 15-20 L4 larvae. Values indicate 

means ± SD of 4 independent experiments in duplicates. ns: not significant, **P<0.01 using 

Kruskal-Wallis test with Dunn’s multiple comparison test to control(RNAi). (C) Plgg-1gfp::lgg-

1 expression of fzo-1(tm1133) L4 larvae in hypodermal seam cells and intestinal cells. L2 

larvae were subjected to control(RNAi), vps-4(RNAi) or vps-20(RNAi) and the same animals 
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were imaged in L4 stage. Representative images of >60 animals from two independent 

biological replicates are shown. Scale bar hypodermal seam cells: 5 μm. Scale bar intestinal 

cells: 20 μm. (D) Quantifications of fluorescence images of L4 larvae expressing Phsp-6gfp 

(bcSi9) in fzo-1(tm1133) rrf-3(pk1426). L2 larvae were subjected to control(RNAi), atfs-

1(RNAi), vps-4(RNAi) or vps-20(RNAi) and the same animals were imaged in L4 stage. After 

subtracting the mean fluorescence intensity of wild type (+/+) on control(RNAi), the values 

were normalized to fzo-1(tm1133) on control(RNAi). Each dot represents the quantification of 

fluorescence intensity of 15-20 L4 larvae. Values indicate means ± SD of 4 independent 

experiments in duplicates. ns: not significant, ****P<0.0001 using one-way ANOVA with 

Dunnett’s multiple comparison test to control(RNAi). 

S7 Fig: Autophagy is induced in spg-7(ad2249) animals. (A) Plgg-1gfp::lgg-1 expression in 

hypodermal seam cells of wild type (+/+) or spg-7(ad2249) L4 larvae. Scale bar: 5 µm. (B) 

Quantification of GFP::LGG-1 foci in hypodermal seam cells from panel A. Each dot 

represents the average amount of GFP::LGG-1 foci counted from 2 – 5 seam cells in one 

animal. n≥18 for each genotype; values indicate means ± SD; **P<0.01 using unpaired two-

tailed t-test with Welch’s correction. (C) Nomarski and fluorescent images of the Psqst-1sqst-

1::gfp translational reporter in embryos of wild type (+/+) and spg-7(ad2249) animals. As a 

positive control for a block in autophagy, unc-51(e369) was used. Representative images of 

>60 embryos are shown. Scale bar: 10 µm.

141

Chapter III



S8 Fig: Defects in mitochondrial homeostasis lead to major changes in lipid metabolism. 

(A) Venn diagrams showing the overlap of lipids up- or downregulated in fzo-1(tm1133), drp-

1(tm1108) and spg-7(ad2249) in comparison to wild type (+/+). (B) Total amount of TGs in 

wild type (+/+), fzo-1(tm1133), drp-1(tm1108) and spg-7(ad2249) backgrounds. Means ± SD 

are shown; ns: not significant, *P<0.05, ****P<0.0001 using Welch test. (C) Scatterplot 

indicating the distribution and changes in the levels of TG species in the different mutants in 

comparison to wild type (+/+). (D) Scatterplot indicating the overlap of the changes in the 

levels of TG species of fzo-1(tm1133) and drp-1(tm1108) mutants in comparison to wild type 

(+/+). (C) and (D) The x-axis labels the number of carbons (C) and the y-axis the number of 

double bonds (DB) in the acyl sidechains. The size of a dot indicates the number of detected 

isomers for a specific sum composition. Grey dots represent all detected TGs species and blue 

and red dots indicate down- (blue) or upregulation (red). 
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S9 Fig: Induction of autophagy upon cogc-2(RNAi) changes the levels of specific TGs in 

fzo-1(tm1133) mutants. (A) Scatterplot indicating the distribution and changes in the level of 

TG species in fzo-1(tm1133) mutants in comparison to wild type (+/+). The x-axis labels the 

number of carbons (C) and the y-axis the number of double bonds (DB) in the acyl sidechains. 

The size of a dot indicates the number of detected isomers for a specific sum composition. Grey 

dots represent all detected TGs species and blue and red dots indicate down- (blue) or 

upregulation (red). (B) Venn diagram indicating the overlap of TG species downregulated (left 

panel) or upregulated (right panel) in fzo-1(tm1133) and either up- or downregulated upon vps-

4(RNAi) or cogc-2(RNAi).  
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S1 Table: List of genes that suppress fzo-1(lf)-induced UPRmt and induce autophagy in 

wild-type animals upon knock-down. Candidate genes were identified in the primary RNAi-

screen using fzo-1(tm1133), subsequently knocked-down and tested for induction of autophagy 

and re-screened for UPRmt suppression in two different mutant backgrounds: drp-1(tm1108) 

and spg-7(ad2249). 

144

Chapter III



Category Sequence Gene name Human ortholog fzo-1(lf) drp-1(lf) spg-7(lf)

K07C5.1 arx-2 ACTR2

D2024.6 cap-1 CAPZA1,2

M106.5 cap-2 CAPZB

C53A5.6 C53A5.6 IPP

C17H12.1 dyci-1 DYNC1I1,2

W03H9.4 cacn-1 CACTIN

H25P06.2 cdk-9 CDK9

C24H11.7 gbf-1* GBF1

T01G9.6 kin-10* CSNK2B

C27H6.2 ruvb-1* RUVBL1

C06G3.10 cogc-2* COG2

Y51H7C.6 cogc-4* COG4

F23F1.5 F23F1.5 SNUPN

F38A1.8 F38A1.8 SRPRA

F32E10.4 ima-3 KPNA3,4

C53D5.6 imb-3 IPO5, RANBP6

Y59E9AL.7 nbet-1 BET1

Y77E11A.13 npp-20 SEC13

H15N14.2 nsf-1* NSF

R186.3 R186.3 SRPRB

F20G4.1 smgl-1* NBAS

F55C5.8 srpa-68 SRP68

T10H9.3 syx-18 STX18

Y63D3A.5 tfg-1 TFG

Y34D9A.10 vps-4* VPS4A,B

Y65B4A.3 vps-20* CHMP6

CD4.4 vps-37* VPS37B,C

Y48G1A.5 xpo-2/imb-5 CSE1L

ZK1251.1 htas-1 H2AFY, H2AFY2

F26F12.7 let-418 CHD4

F55A3.3 spt-16 SUPT16H

C33H5.18 cdgs-1 CDS2

C06E4.6 C06E4.6 HSD17B14

F25B4.6 hmgs-1 HMGCS1,2

H37A05.1 lpin-1 LPIN1,2,3

W09B6.1 pod-2 ACACB

C47E12.4 pyp-1 PPA1,2

T17E9.2 nmt-1 NMT1,2

W02A11.4 uba-2 UBA2

T21B10.7 cct-2 CCT2

C04A2.7 dnj-5 DNAJC14

C56C10.8 icd-1 BTF3,L4

F21C3.5 pfd-6 PFDN6

F54C9.2 stc-1 HSPA13

F19B6.2 ufd-1* UFD1L

Proteostasis

PTM

Cell Architecture

Cell Signaling

Cellular Trafficking

Chromatin Structure

Metabolism
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B0511.6 B0511.6 DDX18

C14A4.4 crn-3 EXOSC10

C55B7.8 dbr-1 DBR1

F42H10.7 ess-2 ESS2

F59C6.4 exos-3 EXOSC3

F10B5.8 F10B5.8 INTS11

C17E4.5 pabp-2 PABPN1

C06E1.10 rha-2 DHX37

C47E12.7 rrp-1 RRP1B, RRP1

Y116A8C.32 sfa-1 SF1

T28D9.10 snr-3 SNRPD1

Y49E10.15 snr-6 SNRPE

K02F2.3 teg-4 SF3B3

W04A4.5 W04A4.5 INTS4

B0261.1 B0261.1 BDP1

F10E9.4 F10E9.4 TWISTNB

C48E7.2 let-611 POLR3C

Y113G7B.18 mdt-17 MED17

F28F8.5 mdt-28 MED28

F58A4.9 rpac-19 POLR1D

H43I07.2 rpac-40 POLR1C

C42D4.8 rpc-1 POLR3A

F09F7.3 rpc-2 POLR3B

ZK856.10 rpc-25 POLR3H

R119.6 taf-4 TAF4B, TAF4

F30F8.8 taf-5 TAF5

ZK1320.12 taf-8 TAF8

K03B4.3 taf-10 TAF10

Y50D7A.2 xpd-1 ERCC2

W07B3.2 gei-4 n.a.

Y46G5A.6 phi-3 n.a.

ZK637.8 unc-32 ATP6V0A1,4

C23G10.8 C23G10.8 n.a.

K02E2.7 K02E2.7 n.a.

K10G6.5 K10G6.5 n.a.

K10H10.4 K10H10.4 n.a.

Y82E9BR.13 pals-17 n.a.

E02H1.1 E02H1.1 DIMT1

T01C3.7 fib-1 FBLL1

K12H4.3 K12H4.3 BRIX1

R13A5.12 lpd-7 PES1

T07A9.9 nog-1* GTPBP4

R151.3 rpl-6 RPL6

F53G12.10 rpl-7 RPL7

Y24D9A.4 rpl-7A RPL7A

JC8.3 rpl-12 RPL12

C04F12.4 rpl-14 RPL14

Y45F10D.12 rpl-18 RPL18

E04A4.8 rpl-20 RPL18A

RNA Processing

Transcription

Miscellaneous

Uncharacterized
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C14B9.7 rpl-21 RPL21

C27A2.2 rpl-22 RPL22

B0336.10 rpl-23 RPL23

F28C6.7 rpl-26 RPL26

C53H9.1 rpl-27 RPL27

W09C5.6 rpl-31 RPL31

ZK652.4 rpl-35 RPL35

B0393.1 rps-0 RPSA

C23G10.3 rps-3 RPS3

Y71A12B.1 rps-6 RPS6

F40F11.1 rps-11 RPS11

Y41D4B.5 rps-28 RPS28

F10G7.1 tag-151 TSR1

F17C11.9 eef-1G EEF1G

H06H21.3 eif-1.A EIF1AX,Y

F11A3.2 eif-2B δ EIF2B4

D2085.3 eif-2B ε EIF2B5

Y54E2A.11 eif-3.B EIF3B

B0511.10 eif-3.E EIF3E

H19N07.1 erfa-3 GSPT1,2

F28H1.3 aars-2 AARS

T08B2.9 fars-1 FARSA

T10F2.1 gars-1 GARS

T11G6.1 hars-1* HARS, HARS2

R11A8.6 iars-1* IARS

F22D6.3 nars-1 NARS

Y41E3.4 qars-1 QARS

F26F4.10 rars-1* RARS

C47D12.6 tars-1* TARS, TARS2,2L

Y80D3A.1 wars-1 WARS

R08D7.4 R08D7.4 EEF2KMT, FAM86B1,2

Y65B4A.6 Y65B4A.6 EIF4A3

* Genes that are already implemented in Fig 4A

from the strongest to no GFP suppression

Candidate genes were screened for UPRmt suppression three times in technical duplicates with the same reporter (zcIs13)

in two different mutant backgrounds: drp-1(tm1108)  and spg-7(ad2249) . Fluorescence intensity was scored and classified

from very strong suppression to weak suppression (gradual violet coloring) or no suppression (white). 

PTM: Post-translational modification.

Translation

Ribosome Biogenesis
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S3 Table: Design of qRT-PCR primers. Primers sets were designed to quantify C. elegans 

postspliced transcripts. Primer sets were designed to span exon-exon junctions using NCBI 

Primer Blast software and subsequently blasted against the C. elegans genome to test for off-

target complementarity. The list of qRT-PCR primers used with their PCR efficiency and 

coefficient of determination (R2) is shown. 
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MitoSegNet: Easy-to-use Deep Learning
Segmentation for Analyzing
Mitochondrial Morphology

Christian A. Fischer,1,2,3 Laura Besora-Casals,1 Stéphane G. Rolland,1 Simon Haeussler,1 Kritarth Singh,4

Michael Duchen,4 Barbara Conradt,1,2,4,* and Carsten Marr3,5,*

SUMMARY

While the analysis of mitochondrial morphology has emerged as a key tool in the
study of mitochondrial function, efficient quantification of mitochondrial micro-
scopy images presents a challenging task andbottleneck for statistically robust con-
clusions. Here, we present Mitochondrial Segmentation Network (MitoSegNet), a
pretrained deep learning segmentation model that enables researchers to easily
exploit the power of deep learning for the quantification of mitochondrial
morphology. We tested the performance of MitoSegNet against three feature-
based segmentation algorithms and themachine-learning segmentation tool Ilastik.
MitoSegNet outperformed all other methods in both pixelwise and morphological
segmentation accuracy. We successfully applied MitoSegNet to unseen fluores-
cence microscopy images of mitoGFP expressing mitochondria in wild-type and
catp-6ATP13A2 mutant C. elegans adults. Additionally, MitoSegNet was capable of
accurately segmenting mitochondria in HeLa cells treated with fragmentation
inducing reagents. We provide MitoSegNet in a toolbox for Windows and Linux
operating systems that combines segmentation with morphological analysis.

INTRODUCTION

Cellular organelles are integral to eukaryotic cells and their functions. One organelle that has always been

of particular interest is the mitochondrion, which plays an essential role in several metabolic pathways

including that of Adenosine triphosphate (ATP). Mitochondria are often represented as static, bean-

shaped organelles but actually form highly dynamic ‘tubular’ networks that often undergo changes in dis-

tribution and morphology (Tilokani et al., 2018; Chan, 2020). The steady-state morphology of mitochondria

in a cell is a result of a balance between two opposing processes, mitochondrial fusion and fission. Changes

in this balance result in changes in mitochondrial morphology. It has been shown that changes in

morphology allow mitochondria to respond to metabolic or environmental stresses, while maintaining ho-

meostasis (Tondera et al., 2009; Rolland et al., 2013; Wai and Langer, 2016). While partially damaged mito-

chondria can be rescued by exchanging their contents with functional mitochondria through mitochondrial

fusion, mitochondrial fission enables the removal of damaged mitochondria and can also facilitate

apoptosis during increased levels of cellular stress (Pernas and Scorrano, 2016). Mitochondrial fusion

and fission are regulated by a conserved family of dynamin-related GTPases and have been well studied

in Caenorhabditis elegans (van der Bliek et al., 2017). In C. elegans, the membrane anchored dynamin-

related GTPases FZO-1MFN and EAT-3OPA1 are required for the fusion of the outer- and inner mitochondrial

membranes, respectively. The loss of function of either of these two proteins results in mitochondria with a

‘fragmented’ morphology (Breckenridge et al., 2008; Ichishita et al., 2008; Kanazawa et al., 2008; Tan et al.,

2008; Rolland et al., 2009).

Mitochondrial fission inC. elegans ismediatedbyDRP-1DRP�1, a cytosolicdynamin-relatedGTPase.Depletionof

DRP-1 has been shown to result in mitochondria with an ‘elongated’ morphology (Labrousse et al., 1999). Muta-

tions in the human orthologs of the genes encoding these proteins have been associated with several diseases,

including neurodegenerative diseases (Chan, 2020). For this reason, understanding mitochondrial fusion and

fission is not only an important basic biological question but is critical for our ability to understand the pathology

of thesediseases and todevelop novel therapeutics to treat them.However, such studies havebeen hinderedby

the fact that is difficult to assess mitochondrial morphology in different genetic backgrounds or physiological
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conditions in an unbiased and quantitative manner. Specifically, the diversity of shapes among mitochondria

(elongated, fragmented, tubular, as well as ‘mixed’ morphologies) poses a challenge to the automated quanti-

ficationofmitochondrialmorphology.For this reason, researchersoften resorted to theuseof a simplequalitative

assessment ofmitochondrial morphology. As a result, subtle differences inmorphology and, hence, phenotypes

are often not detected. To analyze mitochondrial morphology, for example, in C. elegans, mitochondria are

labeled using either a mitochondria-specific fluorescent dye (such as TMRE) or a transgene expressing a mito-

chondrial-targeted GFP (mitoGFP) (Regmi and Rolland, 2017) and a fluorescent microscopy image is acquired.

In order to quantify the mitochondrial morphology in an automated and unbiased manner, the next critical

step is tosegment theobjects in thefluorescent image.The simplest formof imagesegmentation is thresholding,

which is only successful if features arewell separated and their intensities vary considerably from the background

(TorborgandFeller, 2004).These requirementsare seldommet in live cell imagingduetoautofluorescence,noise

or fluctuating intensities. Thresholding segmentation can be improved through the prior application of feature

enhancement algorithms based on intensity derived features, such as the Difference-of-Gaussians (DoG), Deter-

minant ofHessian (Satoet al., 1998) or Laplacian-of-Gaussian (LoG),which are also knownasblobdetectors. DoG

is used to enhance the visibility of edges by removing high frequency information but at the cost of reducing the

overall image contrast,while LoG is useful fordetectingedges that appear atdifferent image scales ordegreesof

focus (Marr andHildreth, 1980; Lindeberg, 1994). Curvilinear structures (such as nerve fibers or blood vessels) can

besegmentedusing theeigenvaluesof aHessianmatrix,withwhichonecancalculate theobject curvature. There

are a many other methods available used in segmentation workflows, such as morphological filtering (dilation,

erosion, etc.), region accumulation (watershed transform), deformable model fitting (active contour model)

and machine learning (k-means clustering, random forest, etc.) (Meijering, 2012). Most of these methods can

now be implemented by biologists through free and opensource tools such as Fiji (Schindelin et al., 2012), Cell-

Profiler (McQuin et al., 2018) or Ilastik (Berg et al., 2019).

All of these segmentation methods have shown varying degrees of success depending on the images they

were supposed to segment (de Boer et al., 2015; Li et al., 2015; Akram et al., 2017; Berg et al., 2019). How-

ever, with rising image complexity as well as a decreased signal-to-noise ratio, most of the methods

perform poorly. For such cases, the only option in the past was manual segmentation, which is highly labo-

rious and introduces a varying degree of bias on each labeled image. With the recent emergence of deep

learning and in particular the development of convolutional neural networks (CNNs) (LeCun et al., 1989;

Krizhevsky et al., 2012) automated approaches that perform these tasks with human accuracy have become

available. CNNs were inspired by the research of Hubel and Wiesel on the primary visual cortex of cats

(Wiesel and Hubel, 1963). CNN’s can classify data based on convolution and pooling operations. Convo-

lution describes the extraction of features from an image by sliding filters across the image and generating

feature maps. Pooling reduces the dimensionality of each feature map, while retaining the most important

information. It also reduces the number of network parameters, prevents overfitting, and makes the

network invariant to small distortions in the input image (Scherer et al., 2010). Through the successive

and repetitive application of convolution and pooling, CNNs are capable of classifying highly complex im-

ages with great accuracy (Szegedy et al., 2014). To perform semantic segmentation, which is the assign-

ment of a class label to each pixel, one must use a fully convolutional neural network (FCNN) (Long

et al., 2014). A popular FCNN in the biological community is the U-Net that was specifically developed

for biomedical image segmentation (Ronneberger et al., 2015). It has been successfully applied to many

different biomedical image segmentation tasks and yields good results with only a few hand-segmented

images (Chlebus et al., 2018; De Fauw et al., 2018; Stember et al., 2018).

In this study, we trained a U-Net, which we namedMitochondrial Segmentation Network (MitoSegNet), to learn

howtosegmentmitochondria inadultC.elegansbodywallmusclecells, compared itsperformanceandtested its

generalizability in biologically relevant applications that demonstrateC. elegans animals carrying a loss-of-func-

tion mutation in the gene catp-6ATP13A2 exhibit a previously unreported mitochondrial morphology phenotype.

We also show that MitoSegNet can be successfully used to analyze mitochondrial morphology in HeLa cells.

RESULTS

The MitoSegNet Model

The MitoSegNet model was generated by training a modified U-Net with a training set of 12 1300 3 1030

pixel fluorescent microscopy, maximum-intensity projection images, depicting mitochondria in body wall

muscle cells of adult C. elegans worms (mitochondria were visualized using a transgene expressing mito-

chondrial matrix-targetedGFP under the control of a body wall muscle-specific promoter (Pmyo3::mitoGFP))
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(Figure 1A and Methods). Our U-Net modification entails the removal of dropout layers at the end of the

contracting pathway and instead placing batch normalization layers after every convolutional layer prior to

ReLU activation in the contracting pathway. This modification decreased the amount of necessary training

time. Each image was split into 4 overlapping tiles. For each tile, 80 augmented copies were generated for

training themodel. A cross validation was performed to estimate the performance of theMitoSegNet on an

unseen test set and to compare it against other segmentation methods (Figure 1B).

Visual Comparison of Segmentation Performance

To qualitatively evaluate the performance of the MitoSegNet, we compared the predicted segmentations

against manually segmented ground truth in an unseen test set. The same procedure was repeated for four

other segmentation methods. We considered three classical feature enhancement methods (Gaussian,

Hessian, and Laplacian) followed by different thresholding algorithms, all implemented in ImageJ/Fiji.

The fourth method is the machine-learning segmentation tool Ilastik (Kreshuk and Zhang, 2019). The

Gaussian, Hessian, Laplacian, and Ilastik methods failed to consistently prevent false positive and/or false

negative segmentation on all phenotypes (Figure 2). The Gaussian segmentation produced large sections

of false positive predictions in the mixed and tubular phenotype (indicated by yellow arrows). The Hessian

and Laplacian segmentation largely avoided false positive predictions but instead often failed to recognize

mitochondria, resulting in false negative segmentations in the elongated, mixed, and tubular phenotype

(and fragmented for the Laplacian segmentation) (Figure 2). The Ilastik-based segmentation produced

only very little false negative predictions but like the Gaussian segmentation, predicted large amounts

of false positives in all but the fragmented phenotype. The MitoSegNet segmentation drastically reduces

the amount of false negative or false positive segmentation when compared to the other methods and

yielded consistent results across all different phenotypes (Figure 2).
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Figure 1. Training the MitoSegNet Model and Using It with the MitoS Tool

(A) The original training data is comprised 12 raw images and the appendant hand-generated ground truth images. Each

image is split into 4 overlapping tiles of equal length. For each tile, a weight map is generated and subsequently all three

set of tiles (raw images, ground truth, and weight maps) are augmented 80 times, increasing the size of the training data to

3,840 image tiles. Prior to training, the augmented training data is split into training (80%) and validation data (20%). The

pretrained MitoSegNet model can now be used to segment new images of mitochondria.

(B) We performed a cross validation for which 12 separate MitoSegNet models were trained each with 11 images,

excluding one image that was later used to test the prediction accuracy against other segmentation methods.
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Quantitative Comparison of Segmentation Performance

To compare the methods’ performance more quantitatively, we evaluated the pixelwise segmentation ac-

curacy using the dice coefficient (Taha and Hanbury, 2015). The MitoSegNet outperforms the feature-

based and Ilastik-generated segmentations (Figure 3A) with a median dice coefficient of 0.89 and a lower

and upper 95% confidence interval of 0.87 and 0.91 (N = 12) significantly (p = 5.11*10�5, Kruskal-Wallis test).

However, pixelwise accuracy as measured by the dice coefficient does not necessarily guarantee correct

prediction of morphology (Figure 3B). Because segmented images in biology are often used for morpho-

logical quantification (de Boer et al., 2015; Abdolhoseini et al., 2019; Orozco-Fuentes et al., 2019), we as-

sessed the morphological accuracy with two other approaches. The single object shape deviation per ob-

ject was measured for five shape descriptors (area, eccentricity, aspect ratio, perimeter, and solidity) and

averaged over 12 images (Figure 3C). The MitoSegNet with a median average fold deviation of 1.09 and

a lower and upper 95% confidence interval of 1.07 and 1.12 (N = 60) outperforms all other methods in

the accurate prediction of single object morphology (p = 7.4*10�10, Kruskal-Wallis test) (Figure 3D).

Because the single object shape deviation method does not consider false negative predictions, we also

compared all segmented objects in ground truth and prediction. For each image and each of the five ob-

ject descriptors, the energy distance between the ground truth and predicted distributions was calculated

(Figure 3E). Due to the different value ranges among the descriptors the values were normalized prior sta-

tistical analysis. The MitoSegNet segmentation achieves a median normalized energy distance of 0.20 with

a lower and upper 95% confidence interval of 0.16 and 0.23 (N = 60) and again statistically outperforms all

other non-deep learning segmentation methods (p = 3.3*10�18, Kruskal-Wallis test) (Figure 3F).

Comparison of Mitochondrial Morphology between Catp-6ATP13A2 Mutant and Wild-type

To evaluate the applicability of the MitoSegNet on a different, unseen set of images, we decided to use the

MitoSegNet to determine whether a loss-of-function mutation of the gene catp-6ATP13A2, ok3473 (hereafter

referred to as catp-6(lf)), causes a mitochondrial morphology phenotype. catp-6ATP13A2 encodes a member

of the family of P-type ATPases, which transport various compounds across membranes using ATP hydro-

lysis as energy source (Moller et al., 1996; Lambie et al., 2013; Anand et al., 2020). In addition, catp-6ATP13A2
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Figure 2. MitoSegNet Visually Outperforms Feature-Based Segmentation Approaches

On the left side, four images of elongated, fragmented, tubular, and mixed C. elegansmitochondria and their respective

ground truth are shown. The masks on the right show the results of MitoSegNet and the four segmentation methods

applied to each image, displaying the false negative segmentation in red, the false positive segmentation in turquoise,

the true negative segmentation as black, and the true positive segmentation as white. The yellow arrows indicate areas in

which false segmentation occured. The scale bar is 5 mm.
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is the human ortholog of ATP13A2, mutations of which leads to Kufor-Rakeb syndrome, a form of inherited

juvenile-onset Parkinsons disease (Ramirez et al., 2006; Di Fonzo, Chien et al., 2007). No abnormal differ-

ences in mitochondrial morphology has so far been reported for the catp-6(lf). Consistent with this,

upon brief visual inspection, no obvious differences in mitochondrial morphology are noticeable (Fig-

ure 4A). We applied the MitoSegNet (Figures 4A) to 19 fluorescence microscopy images of each genotype
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Figure 3. MitoSegNet’s Pixelwise Accuracy Outperforms Non-Deep Learning Segmentation Methods

(A) The average dice coefficient achieved with the MitoSegNet is significantly higher than with the four other

segmentation approaches. The data was statistically evaluated by using the Kruskal-Wallis test followed by a Dunn’s

multiple comparisons test.

(B) The dice coefficient is limited as a predictor of morphological segmentation performance: A dice coefficient close to

1.0 does not guarantee correct prediction of morphology. Contrary, a low dice coefficient does not rule out an accurate

shape prediction. Ground truth segmentation is shown in orange, and the predicted segmentation in green.

(C) To gain insight into how accurately the shape of ground truth objects is predicted, five object shape descriptors (area,

eccentricity, aspect ratio, perimeter, and solidity) are compared by calculating the fold deviation. Predicted objects that

correspond to more than one ground truth object (or vice versa) are excluded from this analysis.

(D) The MitoSegNet shows the lowest average fold deviation between predicted and ground truth object shape

descriptors. The data were statistically evaluated by first testing for normality using D’Agostino’s K-squared test and then

subsequently using the Kruskal-Wallis test followed by a Dunn’s multiple comparisons test. N = 60.

(E) To determine the total morphological prediction accuracy, the same five shape descriptors were measured for each

image. The descriptor distributions in the ground truth and predicted images were statistically evaluated for differences

by calculating the energy distances between predicted and ground truth distribution. The energy distances for each

shape descriptor and image were normalized prior to statistical analysis.

(F) The MitoSegNet shows the lowest normalized energy distance, statistically outperforming all other segmentation

approaches. The data were first tested for normality using the D’Agostino’s K-squared. After determining that all

distributions were non-parametric, a Kruskal-Wallis test was used followed by a Dunn’s multiple comparisons test. N = 60.

*p < 0.05, **0.001 < p < 0.01, ***p < 0.001 for (A), (D) and (F).
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and subsequently analyzed the data with the MitoA tool (Figure 4B). Segmentation masks (Figure 4A) visu-

ally matched the raw images closely and subsequent quantification revealed a statistically significant

morphological difference between mitochondria in wild-type and catp-6(lf) mutants. Compared to wild-

type, mitochondria are significantly thinner and longer in catp-6(lf) mutants, as determined by the average

minor (p = 0.047, independent two-sample t test) and major axis length (p = 0.029, independent two-sam-

ple t test) (Figure 4B). Furthermore, the averagemitochondrial area is larger (p = 0.00039, independent two-

sample t test) and the perimeter is longer (p = 0.043, independent two-sample t test) in wild-type compared

to catp-6(lf) mutants (Figure 5B). Excessive mitochondrial fission (i.e. mitochondrial fragmentation) as a

cause for these observations can be excluded since the numbers of mitochondria in wild-type and catp-

6(lf) mutants are similar (p = 0.56, independent two-sample t test) (Figure 4B). Differences were also found
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Figure 4. Wild-type and Catp-6 Mutant Mitochondria Show Significant Morphological Differences

(A) Visual comparison of catp-6 mutant and wild-type mitochondrial morphology. Raw images are at the top and

MitoSegNet model segmentations at the bottom. The scale bar is 3 mm.

(B) Mitochondrial shape descriptor comparison.

(C) Mitochondrial branch descriptor comparison. Average area, minor andmajor axis length (see scheme for explanation),

perimeter, number of mitochondria, average branch length, and number of branches were measured in segmented

images of wild-type and catp-6mutant mitochondria. *p < 0.05, **0.001 < p < 0.01, ***p < 0.001 using the Mann-Whitney

U test. N = 19.
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in terms of mitochondrial branch morphology (Figure 4C). While the average mitochondrial branch length

in catp-6(lf) mutants is larger than in wild-type (p = 0.01, independent two-sample t test), the average

number of mitochondrial branches was found to be significantly smaller in catp-6(lf) mutants (p = 0.009,

Mann-Whitney U test). Altogether these results indicate that catp-6(ok3473) causes a previously unre-

ported mitochondrial morphology phenotype that cannot be detected by simple visual inspection.

MitoSegNet Segmentation of Mitochondria in HeLa Cells

To test the generalizability of our model even further, we applied the MitoSegNet to segment 8 confocal

microscopy images depictingmitochondria in HeLa cells (Figure 5A). The fragmentation of mitochondria in

HeLa cells treated with oligomycin and antimycin for 3 hr was captured in the segmentation both visually

and quantitatively. As expected, the average mitochondrial area is significantly larger in untreated cells

compared to treated HeLa cells (p = 0.0068, independent two-sample t test) (Figure 5B). The average ec-

centricity is lower for the fragmented mitochondria compared to the untreated mitochondria, indicating a

more circular shape (p = 1.32*10�8, independent two-sample t test) (Figure 5B). The average perimeter dis-

tribution reflects a similar pattern as found for the area, showing the fragmented mitochondria to have a

smaller perimeter on average (p = 0.00037, independent two-sample t test) (Figure 5B). The average branch

length is also significantly smaller in the treated mitochondria compared to the untreated mitochondria

(p = 1.30*10�5, independent two-sample t test) (Figure 5B).

The MitoS Segmentation and MitoA Analysis Tool

To enable non-experts, we implemented the MitoSegNet in an easy-to-use tool, the MitoS segmentation

tool, a Python-based, standalone executable. MitoS can be executed in a basic mode, which utilizes the

pretrained MitoSegNet for segmentation of mitochondria and allows us to easily apply the model without

prior deep learning experience (Figure 1). We applied the MitoS image segmentation using the pretrained
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Figure 5. MitoSegNetModel Segmentation andMorphological Quantification Can Be Applied toMitochondria of

Mammalian Cells

Comparing untreated HeLa cells and HeLa cells treated with oligomycin or antimycin for a duration of 3 h.

(A) Visual comparison of untreated and treated mitochondrial morphology. Raw images are at the top and MitoSegNet

model segmentations at the bottom. The scale bar is 2.5 mm.

(B) Average area, eccentricity, perimeter, and branch length of mitochondria were measured in segmented images of

treated and untreated mitochondria. *p < 0.05, ***p < 0.001 using an independent two-sample t test. N = 8.
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MitoSegNet on two different systems. For all cases 10 images of each 1300 3 1030 px size (8-bit) were

segmented. TheMitoSGPU segmentation was run using anNVIDIAGeForce GTX 960M andNVIDIA TITAN

X and segmentation took 65 and 15 s, respectively. Segmentation using the MitoS CPU version was per-

formed on an Intel(R) Core(TM) i7-6700HQ CPU and a system using four Intel(R) Xeon(R) CPU E5-2680 v4

processors and lasted 7.5 min and 65 s, respectively. The basic mode also includes a fine-tuning module,

which allows us to optimize the pretrained on new images (Figure S1A). The MitoS advanced mode can be

used if other structures besides mitochondria should be segmented or if the user wishes to build a self-

configured deep learning segmentation model (Figure S1B). The MitoA analyzer is a separate Python-

based, standalone executable tool that can be run after successful segmentation for quantification and

visualization of potential morphological differences (Figure S3). It measures ten different morphological

and three intensity-based features for each object and summary statistics for all object features per image

are generated. The tables of two or multiple samples containing these summary statistics can then be sub-

jected to hypothesis testing, visualization, and correlation analysis. The MitoS and MitoA tools require no

installation and no prerequisite installations (such as frameworks), and they are available for both Windows

and Linux.

DISCUSSION

We present MitoSegNet, a segmentation model that exploits the power of deep learning to address the

challenging problem of accurate mitochondria segmentation. We show that the MitoSegNet outperforms

feature-based, non-deep learning-based algorithms and that it is generalizable to unseen images from

C. elegans and mammalian cells.

MitoSegNet Model Segmentation Performance

While the superior visual and quantitative performance of the MitoSegNet model segmentation might not

come as a surprise to researchers acquainted with the capabilities of deep learning-based segmentation,

we believe these results to be interesting to researchers who commonly use feature-based segmentation

methods. For accuracy evaluation, we did not rely only on pixel-based accuracy, as we found this to be an

insufficient measure of morphological accuracy but extended our analysis. Our single object shape com-

parison as well as the calculation of energy distances for five different feature descriptors per image

demonstrate that the MitoSegNet model segmentation yields the best morphological accuracy compared

with commonly applied segmentation methods.

Comparison of Mitochondrial Morphology between Catp-6ATP13A2 Mutants and Wild-type

The visual comparison of mitochondrial morphology in wild type and catp-6(lf) mutants did not reveal any

obvious differences in morphology. In both cases, mitochondria appeared to be largely tubular. However, the

quantitative analysis using theMitoSegNet revealed that average area, perimeter, andminor axis length ofmito-

chondria in catp-6(lf) mutants are smaller than in wild-type. Since the average number of mitochondria per cell is

the same as in wild-type, we concluded that catp-6(lf) causes a reduction in overall mitochondrial mass. This is

consistent with observations of Anand et al., who found that oxygen consumption is lower inC. elegans catp-6(lf)

mutants than inwild type (Anand et al., 2020). Inmammalian cells, mutation ofATP13A2 has been found to cause

impairment of mitochondrial function and induce mitochondrial fragmentation (Gusdon et al., 2012; Ramonet

et al., 2012). However, this is associated with increased mitochondrial mass due to inefficient autophagic clear-

ance (Grünewald et al., 2012). The differences between the mutant phenotypes observed in C. elegans and

mammalian cells is likely to reflect the multiple roles of ATP13A2 and CATP-6 transport substrates (polyamines)

in maintaining mitochondrial function (van Veen et al., 2020). Further research on properties of catp-6 deficient

mitochondria, such asmembrane potential or levels of reactive oxygen species, might uncover the cause for the

observed differences in mitochondrial morphology.

Application of the MitoSegNet to Mitochondria in HeLa Cells

Although the pretrained model was generated with standard fluorescence microscopy images, depicting

mitoGFP-labeled mitochondria in C. elegans, the same pretrained model was able to generate visually ac-

curate segmentations of mitoRFP labeledmitochondria in HeLa cells using a laser scanning confocal micro-

scope. This demonstrates the high robustness and generalization capabilities of our pretrained MitoSeg-

Net model and that it can be used for segmentation of mitochondria in organisms other than C. elegans.

Furthermore, our MitoSegNet Analysis tool quantitatively confirmed the morphological differences of

mitochondria between untreated HeLa cells and HeLa cells treated with oligomycin or antimycin.
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MitoSegNet Model Architecture

Although the MitoSegNet architecture is largely based on the U-Net, through testing various changes in

the original architecture, we found that the validation dice coefficient as well as the validation loss

improved upon removing the dropout layers and instead placing a batch normalization layer (Ioffe and

Szegedy, 2015) after every convolution layer in the contracting pathway. Interestingly, a recent study found

that the combined usage of batch normalization followed by dropout (forming an independent component

layer) stabilized the training process, increased convergence speed, and improved the convergence limit

(Chen et al., 2019). It would require further testing to find out if the usage of an independent component

layer would improve the current MitoSegNet performance even further.

MitoS and MitoA Tools

Most deep learning applications in the field of biological image segmentation were created for the purpose of

2D cell segmentation (Chen et al., 2017; Al-Kofahi et al., 2018; Falk et al., 2019; Kusumoto and Yuasa, 2019),

while organelle-specific deep learning applications are scarce. Although most tools allow the user to retrain

available 2D cell segmentation models to segment other biological structures of interest, this often requires

computer science-related skills, such as familiarity with programming languages, shell interaction or knowledge

on how to install various deep learning frameworks. One of the main motivations behind MitoSegNet and the

MitoS andMitoA toolbox was to make deep learning segmentation accessible to researchers that do not have

an extensive background in computer science or deep learning. TheMitoS tool can be run without installation.

The simple graphical user interface allows users to quickly navigate theMitoS andMitoA tools. TheMitoS basic

mode also comeswith a fine-tuningmodule that allows researchers that would like to segment other organelles

or images taken under different conditions than those used for training the MitoSegNet model. Since the sub-

sequent step after segmentation is usually the analysis, we included theMitoA tool to save researchers the time

to look up appropriate analysis tools and instead be able to quickly obtain potentially interesting insights.

Conclusion

The MitoSegNet has been shown to outperform both conventional feature-based and machine-learning-

based segmentation of mitochondria. The pretrained model can be easily applied to new 2D microscopy

images of mitochondria through the usage of the MitoS tool, which is available for both standard and high-

end Windows and Linux systems. Successfully segmented images of mitochondria can be subjected to

quantification, statistical testing, and visualization with the MitoA tool.

Limitations of the Study

The MitoSegNet model used for segmentation of images depicting fluorescently labeled mitochondria in

C. elegans and HeLa cells was trained with 12 pairs of raw images and the appendant hand-labeled ground

truth images. Although both the visual and quantitative segmentation accuracy was shown to be high in this

study, there remains a bias which is based on the two annotators who generated 6 ground truth images each.

To reduce the ground truth bias and increase the generalizability of the MitoSegNet model, more images

labeled by different annotators can be added. Furthermore, image sections in which single mitochondria

were not clearly distinguishable due to optical constraints of the microscope used to generate the image,

made it difficult for the annotator to create labeled images that accurately represent the ground truth. This

uncertainty introduced to the MitoSegNet model can be decreased by adding images recorded with higher

resolution, thus reducing the sections in which such visually indistinguishable mitochondria exist.

Resource Availability

Lead Contact

Further information and requests for resources should be directed to and will be fulfilled by the Lead

Contact, Carsten Marr (carsten.marr@helmholtz-muenchen.de).

Materials Availability

Images used for training and testing the model are available upon request.

Data and Code Availability

The software documentation for the MitoS andMitoA tool can be found at https://github.com/mitosegnet.

The MitoSegNet segmentation model, the MitoA analysis and MitoS segmentation tool (GPU/CPU) for
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Linux and Windows are available at https://zenodo.org/search?page=1&size=20&q=mitosegnet. The Py-

thon code used for generating the figures displayed in the manuscript is available at https://github.com/

MitoSegNet/MitoSegNet_AccuracyTesting_Manuscript.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.101601.
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4. Discussion

4.1 Genome-wide RNAi-screen for suppressors and enhancers of fzo-1(tm1133)-induced 

UPRmt 

In a genome-wide RNAi screen, we identified a complex network of 385 candidate genes that 

either suppress or enhance fzo-1(tm1133)-induced UPRmt. Interestingly, we find that 90% of 

these genes are conserved in humans (Consortium, 2018; Hunt et al., 2018; Kriventseva et al., 

2018; Harris et al., 2019; The Alliance of Genome Resources, 2019), one third of which are 

implicated in human disease (Amberger et al., 2018). Our dataset includes many genes, which 

have not previously been found or implicated in the modulation of UPRmt upon depletion. 

Previous screens were carried out using different genetic backgrounds (an uncharacterized 

mutation (zc32)) or drug treatments (antimycin, paraquat) in order to induce the UPRmt 

response (Haynes et al., 2007; Runkel et al., 2013; Bennett et al., 2014; Liu et al., 2014), which 

could potentially have led to the observed differences in the datasets. Moreover, variability of 

RNAi efficiency plays an important role in the reproducibility of phenotypes, especially in 

RNAi-screens. Simmer and colleagues estimated false negatives to vary between 10%-30% in 

RNAi experiments, even when performed by the same people in the same laboratory (Simmer 

et al., 2003). Taken together, we identified a highly conserved set of genes that, upon depletion, 

influences mitochondrial homeostasis in mutants with defects in mitochondrial fusion. 

4.2 Genes with functions in development, receptor-mediated endocytosis and metabolism 

modulate UPRmt signaling 

Using gene ontology (GO) enrichment analysis, we identified various processes in our dataset 

that modulate UPRmt signaling (Figure 10). We found several GO-terms related to nematode 

development to be enriched both among the suppressors and enhancers of fzo-1(tm1133)-

induced UPRmt. Interestingly, reducing mitochondrial respiration by depletion of ETC 

components in the nervous system at a specific time point during C. elegans development, has 

previously been shown to result in a systemic UPRmt response throughout adult life and to lead 

to increased lifespan (Dillin et al., 2002; Rea et al., 2007; Durieux et al., 2011). Thus, many 

cellular processes and pathways, such as mitochondrial metabolism and -chaperone expression, 

are adjusted at a certain level during development, which are then maintained throughout life. 

This may then in turn affect processes, such as ageing. Consistent with this notion, we 
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additionally identified the GO-term ‘determination of lifespan’ to be enriched among the 

suppressors and speculate that there are several other genes among our candidates that have 

previously not been associated with a role in lifespan extension. 

Figure 10: Overview of all enriched gene ontology (GO) terms among suppressors and enhancers of 
fzo-1(tm1133)-induced UPRmt.  

Among the enhancers, GO-terms related to mitochondrial translation and -metabolism are 

highly enriched. This is in line with previous reports where disruption of these processes has 

been found to induce UPRmt, also under non-stressed conditions (Durieux et al., 2011; 

Houtkooper et al., 2013). Thus, reducing mitochondrial function robustly induces UPRmt. In 

addition, ‘receptor-mediated endocytosis’ is enriched in the GO analysis among the enhancers. 

Analysis of this subset of candidates revealed that many mitochondrial ribosomal subunits and 

genes involved in mitochondrial translation are misannotated with this term, leading to its 

enrichment in our statistical analysis. 

Among the suppressors, the GO-term ‘apoptotic process’ and ‘receptor mediated endocytosis’ 

are enriched. While misannotation of ribosomal subunits most likely led to the enrichment of 

the GO-term ‘apoptotic process’, the GO-term ‘receptor mediated endocytosis’ contains 101 

candidate genes, many of which have roles in vesicular trafficking and vesicle budding. 

Previously, we showed that around half of these (53), negatively regulate autophagy (chapter 

III (Haeussler et al., 2020)). Moreover, we detected specific changes in the levels of certain 

triacylglycerols (TGs) upon induction of autophagy in fzo-1(tm1133) mutants. We speculated 

that these changes in lipid metabolism upon autophagy induction may in turn suppress UPRmt 

in these animals. In line with this notion, a previous study for essential genes that influence 

mitochondrial morphology in yeast identified many genes with roles in vesicular trafficking 
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(Altmann and Westermann, 2005). The authors proposed that the observed changes in 

mitochondrial morphology may result from changes in organellar contact sites and, as a 

consequence, altered lipid transfer into mitochondria. Moreover, endocytosis plays an 

important role in several cellular signaling pathways, which originate at the plasma membrane, 

such as signaling via G-protein-coupled receptors (GPCR) or receptor-mediated tyrosine 

kinases (Sorkin and von Zastrow, 2009; Di Fiore and von Zastrow, 2014). Thus, the disruption 

of endocytosis may either influence mitochondrial homeostasis through metabolic changes or 

directly influence cell non-autonomous UPRmt signaling. 

Moreover, the GO-terms related to ‘ribosome biogenesis’ and ‘translation’ are highly enriched 

in our statistical GO analysis, as well as the GO-terms of transcription- and RNA-related 

processes. We found the highest overlap between our list of candidates and the dataset of the 

Baumeister group (Runkel et al., 2013), who also identified many ribosomal subunits or genes 

that are implicated in cytosolic translation to suppress paraquat-induced UPRmt. Knock-down 

of these genes may lead to reduced biosynthesis of the gfp reporter and, thus, may be unspecific 

to the UPRmt response. Runkel and colleagues therefore tested the ability of ife-2EIF4E mutants, 

which have reduced cytosolic translation, to express the Phsp-6 mtHSP70gfp reporter upon paraquat 

treatment and surprisingly, detected increased levels of the reporter (Runkel et al., 2013). 

However, in our experiments, reducing the levels of a cytosolic tRNA synthetase HARS-1HARS, 

and the concomitant decrease in translation efficiency, led to attenuated biosynthesis of an 

unrelated GFP reporter, which is expressed in the same tissue as the Phsp-6 mtHSP70gfp reporter 

(chapter III (Haeussler et al., 2020)). Thus, the candidates related to the functional groups 

‘transcription’, ‘RNA processing’, ‘ribosome biogenesis’ and ‘translation’ may, to some 

extent, affect expression of the gfp reporter. 

In contrast, attenuation of cytosolic translation has previously been suggested to be an ATFS-

1ATF4,5-independent arm of the UPRmt pathway in animals that lack clk-1COQ7 function (Baker 

et al., 2012). In these mutants, Baker and colleagues showed that attenuation of cytosolic 

translation by depletion of GCN-2EIF2AK4 leads to suppression of UPRmt. The suggested model 

predicted that mitochondrial stress (by excessive ROS production, decreased mitochondrial 

translation and/or function) leads to stochiometric imbalance of mitochondrial and nuclear 

encoded subunits of the multi-subunit complexes of the ETC (Baker et al., 2012; Houtkooper 

et al., 2013). The nuclear encoded subunits would in turn accumulate in the mitochondrial 

matrix, overload mitochondrial chaperone capacity and subsequently induce UPRmt. Therefore, 

decreasing cytosolic translation would counteract this so-called ‘mito-nuclear’ imbalance. 
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However, conflicting with this model, we recently showed that UPRmt is activated upon knock-

down of complex II subunits, which exclusively are encoded by the nuclear genome and 

therefore cannot lead to a ‘mito-nuclear’ imbalance. Thus, we proposed that the MTS of ATFS-

1ATF4,5 acts as a sensor for any decrease in mitochondrial membrane potential (chapter II 

(Rolland et al., 2019)). Even though we predict a different model for the activation of UPRmt, 

the two models are not mutually exclusive. Accumulation of subunits of, for example, the 

respiratory chain complexes upon mitochondrial stress may further perturb mitochondrial 

homeostasis under these conditions. Thus, mitochondrial import and the biosynthesis of 

mitochondrial precursors in the cytosol need to be balanced in order to maintain homeostasis. 

The importance of a balance between cytosolic translation and mitochondrial import is further 

highlighted by the existence of numerous stress pathways, which coordinate cytosolic 

translation and the removal of precursors from the OMM in situations when mitochondrial 

import is impaired. These are the ‘mitochondrial compromised protein import response’ 

(mitoCPR), the ‘unfolded protein response activated by mistargeting of proteins’ (UPRam) and 

the ‘mitochondrial precursor over-accumulation stress’ (mPOS) (Wang and Chen, 2015; 

Wrobel et al., 2015; Weidberg and Amon, 2018). In chapter III we show that mitochondrial 

membrane potential and, hence, mitochondrial import is reduced in fzo-1(tm1133) mutants 

(Haeussler et al., 2020). Thus, mitochondrial proteins that are encoded in the nuclear genome 

may accumulate on the OMM of fzo-1(tm1133) mutants, thereby exerting stress both to the 

cytosolic and mitochondrial compartments. The knock-down of ribosomal subunits and other 

genes with roles in transcription, RNA-processing and translation may therefore be beneficial 

for mitochondrial and ultimately cellular homeostasis in mutants with attenuated mitochondrial 

import. In this scenario, mitochondrial proteins, which are specifically upregulated upon UPRmt 

induction, may be imported more efficiently into mitochondria in order to mitigate 

mitochondrial stress. However, as stated above, we cannot exclude that compromising 

transcription, RNA processing and cytosolic translation interferes with gfp reporter expression 

per se. Thus, further testing of these candidates using an, to the UPRmt unrelated, gfp reporter 

may help to identify their exact role in the suppression of UPRmt. 

In summary, for the majority of our candidates we identified a role in development and propose 

that disruption of certain processes at specific time points during development leads to the 

adjustment of many cellular processes, which are persistent throughout life and have an 

influence, for example, on ageing. Furthermore, our GO analysis revealed that disruption of 

receptor-mediated endocytosis suppresses UPRmt and we speculate that this is the result either 
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of altered cell non-autonomous signaling or changes in metabolism. Further experiments are 

required in order to find out if attenuation of cytosolic translation specifically suppresses UPRmt 

in mutants with a block in mitochondrial fusion. Finally, we identify the reduction of 

mitochondrial metabolism and translation as processes that robustly induce UPRmt when 

disrupted. 

4.3 Defects in mitochondrial fusion and fission are suppressed and enhanced by the same 

pathways 

The secondary screens in drp-1(tm1108), eat-3(ad426) and spg-7(ad2249) mutant backgrounds 

revealed a certain specificity of the identified candidates. We found most of the suppressors 

reproducing in all mitochondrial dynamics mutants and around half to influence UPRmt 

signaling in general since they reproduced also in spg-7(ad2249) mutants (Figure 11). 

Figure 11: Venn diagram showing the number of candidates reproducing in each of the mutant 
backgrounds tested in the secondary screens (drp-1(tm1108), eat-3(ad426), spg-7(ad2249)). The 
overlap between the datasets was identified using Oliveros, J.C. (2007-2015) Venny; An interactive 
tool for comparing lists with Venn's diagrams. https://bioinfogp.cnb.csic.es/tools/venny/index.html. 

We identified the suppressors, which generally suppress UPRmt independent of the genetic 

background, to be assigned to the functional groups ‘ribosome biogenesis’, ‘RNA processing’ 

and ‘translation’. Thus, we speculate that decreased mitochondrial membrane potential may 

also be a consequence of the defects in drp-1(tm1108) and eat-3(ad426) mutants and therefore, 

attenuation of mitochondrial translation may specifically lead to suppression of UPRmt in these 

animals. This may also apply for spg-7(ad2249) mutants, since we detected reduced 

mitochondrial membrane potential in these animals (chapter II, (Rolland et al., 2019)). 

However, as previously discussed, GFP synthesis may be affected upon knock-down of these 

genes, leading to the observed reduction in GFP signal intensity in these experiments. In 

addition, we found an inverse correlation in the results of the secondary screens between the 
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number of candidates reproducing and the level of reporter expression in the genetic 

backgrounds tested. Thus, the number of false negatives among both the suppressors and the 

enhancers may be higher in spg-7(ad2249) as compared to drp-1(tm1108) mutants. 

Interestingly, we identified a subset of 22 genes in the secondary screens that either suppress 

fzo-1(tm1133)-induced UPRmt and enhance UPRmt in one or more of the other genetic 

backgrounds, or which were initially identified as enhancers in fzo-1(tm1133) mutants and 

reproduced as suppressors in the secondary screens. For example, we identified icd-1βNAC 

among the suppressors in all mitochondrial dynamics related backgrounds, while it enhances 

spg-7(ad2249)-induced UPRmt. Knock-down of icd-1βNAC in mutants with defects in 

mitochondrial dynamics may therefore rescue some aspect and has adverse effects in spg-

7(ad2249) mutants. The role of icd-1βNAC as a cytosolic stress sensor (Kirstein-Miles et al., 

2013) or the fact that depletion of icd-1βNAC also induces UPRER in wild-type embryos 

(Arsenovic et al., 2012) may be important in this context. Moreover, we previously identified 

the knock-down of icd-1βNAC to induce autophagy, which leads to suppression of UPRmt in fzo-

1(tm1133) and drp-1(tm1108) mutants through increased metabolic activity. Therefore, we 

propose that UPRmt may also be suppressed by this mechanism in eat-3(ad426) mutant and 

speculate that the enhancement of UPRmt upon icd-1(RNAi) in spg-7(ad2249) mutants is 

independent of the induction of autophagy. In addition to the perturbations in mitochondrial 

homeostasis, spg-7(ad2249) mutants might as well have defects in cytosolic homeostasis, 

which are normally compensated for by ICD-1ßNAC. Thus, depletion of ICD-1ßNAC may increase 

cytosolic stress and in turn further impair homeostasis both in the cytosol and in mitochondria 

and therefore enhance UPRmt in spg-7(ad2249) mutants. Another interesting candidate, which 

we found to enhance UPRmt in fzo-1(tm1133) and suppress spg-7(ad2249)-induced UPRmt, 

while having no effect on Phsp-6 mtHSP70gfp expression in drp-1(tm1108) and eat-3(ad426), is 

moma-1APOO,APOOL. MOMA-1APOO,APOOL has been shown to localize to the OMM and to lead 

to altered mitochondrial morphology and cristae structure when mutated (Head et al., 2011). 

Therefore, MOMA-1APOO,APOOL may take over some function of FZO-1MFN1,2 in its absence, 

leading to increased mitochondrial stress and enhancement of UPRmt upon depletion. 

Moreover, we propose that the defects in mitochondrial morphology, which have been 

observed upon spg-7(RNAi) (Haynes et al., 2007), are also present in spg-7(ad2249) mutants 

and speculate that RNAi against moma-1APOO,APOOL may have an effect on mitochondrial shape 

and distribution in these mutants, thereby suppressing UPRmt. Thus, analyzing mitochondrial 

morphology upon knock-down of moma-1APOO,APOOL both in fzo-1(tm1133) and spg-7(ad2249) 
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mutants may give further insights into the underlying mechanism of UPRmt modulation. Taken 

together, we identified a subset of 22 genes in our dataset with opposing UPRmt phenotypes in 

one or more genetic backgrounds of the secondary screens. These candidates may be interesting 

for further studies in fzo-1(tm1133), drp-1(tm1108), eat-3(ad426) and spg-7(ad2249) mutants 

due to their specific phenotypes in these mutants. Moreover, we identified the majority of 

suppressors reproducing in all mitochondrial dynamics related mutant backgrounds, which 

suggests that common pathways exist that can compensate for the defects in these mutants. 

Furthermore, we identified the disruption of mitochondrial function by depletion of 

mitochondrial translation and metabolism to robustly induce UPRmt in all mutant backgrounds. 

However, only around half of the enhancers reproduced in drp-1(tm1108), eat-3(ad426) and 

spg-7(ad2249) mutants, while almost all induced UPRmt in a wild-type background. Therefore, 

we speculate that the baseline expression of Phsp-6 mtHSP70gfp in the mutants may interfere with 

the identification of enhancers in these mutants. 

4.4 Mitochondrial fitness balances cellular homeostasis 

The majority (88%) of enhancers of fzo-1(tm1133)-induced UPRmt have been shown to localize 

to mitochondria or are predicted to do so, according to our MTS analysis. In contrast, we also 

identified ten non-mitochondrial inducers of UPRmt. Among these, Y61A9LA.11 may be 

targeted to mitochondria since the prediction of its MTS is just below our cut-off value. Thus, 

Y61A9LA.11 may also have a mitochondrial function. Furthermore, Y61A9LA.11, as well as 

C25H3.10 and F29B9.8 are so far uncharacterized in C. elegans and lack obvious orthologs in 

yeast, flies or mammals and may therefore be interesting for further studies specifically in C. 

elegans. The remaining seven non-mitochondrial enhancers are PLC-1PLCE1, SRH-40, CPNA-

3CPNE5,8,9, NHR-209ESRRG, ORC-1ORC1, F25H9.6PPCDC and COPD-1ARCN1 (Figure 12), the latter 

two of which do not induce UPRmt upon depletion in the absence of mitochondrial stress. 

F25H9.6PPCDC is orthologous to mammalian phosphorpantothenoylcysteine decarboxylase 

(PPCDC), which synthesizes precursors for coenzyme A (coA) production (Daugherty et al., 

2002). Therefore, depletion of F25H9.6PPCDC may limit availability of certain substrates 

required for biosynthetic and metabolic pathways, thereby enhancing UPRmt in fzo-1(tm1133) 

and we speculate that depletion of F25H9.6PPCDC may be compensated for in wild-type animals. 

The orthologs of COPD-1ARCN1 have been shown to be involved in the formation of coat 

complex I (COPI) vesicles both in yeast and humans. COPI vesicles transport many ER resident 
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proteins and lipids from the Golgi apparatus back to the ER (Lee et al., 2004; Beck et al., 2009). 

Moreover, most of the non-mitochondrial and non-peroxisomal transmembrane proteins are 

targeted to their final destination by the secretory pathway (Farhan and Rabouille, 2011). Some 

of these proteins play important roles in intra- and intercellular signaling pathways, such as 

signaling via GPCRs and receptor tyrosine kinases. Furthermore, intracellular signaling 

pathways, such as Ras and TOR, receive signals from the secretory pathway (Farhan and 

Rabouille, 2011). In addition, knock-down of ARCN1, the ortholog of COPD-1ARCN1 in 

humans, and other coatomer components in yeast have been shown to lead to secretion of ER 

chaperones and the induction of UPRER (Aguilera-Romero  et al., 2008; Izumi et al., 2016). 

Thus, knock-down of copd-1ARCN1 may interfere with inter- and/or intracellular signaling 

pathways, which could lead to enhancement of UPRmt in fzo-1(tm1133). In line with this notion, 

depletion of phospholipase C (PLC-1PLCE1), a GPCR associated enzyme, and SRH-40 

(Serpentine Receptor class H), a predicted GPCR, also enhances UPRmt in fzo-1(tm1133) 

mutants. 

Figure 12: Schematic showing non-mitochondrial processes that, when disrupted, lead to induction of 
UPRmt in fzo-1(tm1133). GPCR: G-protein-coupled receptor, ER: Endoplasmic reticulum, IP3(R): 
Inositol triphosphate (receptor), CoA: Acetyl coenzyme A, Ca2+: Calcium ion, COPI: Coat complex I. 
VDAC: Voltage-dependent anion channel. 
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Depletion of ORC-1ORC1, a component of the origin recognition complex (Gavin et al., 1995; 

Ohta et al., 2003; Tatsumi et al., 2003), presumably leads to defects in DNA-replication and 

the cell cycle. This in turn may affect development, thereby disrupting mitochondrial 

homeostasis and enhancing UPRmt. Moreover, we identified NHR-209HNF4A,G among the non-

mitochondrial enhancers, which is the C. elegans ortholog of Hepatocyte Nuclear Factor 4α 

and γ (HNF4A,G). The superfamily of nuclear hormone receptors (NHRs) are dependent on 

co-factors and ligands for their transcriptional activity and regulate diverse cellular processes 

(Aranda and Pascual, 2001; Bolotin et al., 2010). Interestingly, HNF4A binds long-chain fatty 

acids and has been shown to activate or repress the transcription of its targets, depending on 

the chain length and saturation status of its ligands (Hertz et al., 1998; Dhe-Paganon et al., 

2002; Wisely et al., 2002; Duda et al., 2004). In accordance with this, HNF4A has been shown 

to regulate FAO both in mice and D. melanogaster (Palanker et al., 2009; Chen et al., 2020). 

Therefore, we speculate that NHR-209HNF4A,G may act as a metabolic sensor also in C. elegans 

and, thus, enhances UPRmt upon depletion. In addition, we found a copine family member, 

CPNA-3CPNE5,8,9, among the non-mitochondrial enhancers. Members of this family are 

calcium-dependent phospholipid binding proteins, which are implicated in intracellular 

signaling and membrane trafficking (Creutz et al., 1998; Tomsig et al., 2003; Tomsig et al., 

2004; Ramsey et al., 2008). Interestingly, gem-4CPNE8, which is orthologous to mammalian 

copine 8 (CPNE8), has been shown to be upregulated upon mitochondrial stress induced by 

spg-7(RNAi), but this upregulation was independent of ATFS-1ATF4,5 (Nargund et al., 2012). 

Thus, UPRmt signaling may be dependent on members of the copine family. In summary, we 

identified the majority of enhancers of UPRmt to localize to mitochondria but additionally found 

several processes outside of mitochondria to enhance UPRmt when disrupted (Figure 12). Some 

of the above-mentioned non-mitochondrial enhancers may directly be required for UPRmt 

signaling, while others regulate metabolism and, thus, influence mitochondrial function and 

homeostasis. 

Furthermore, our analysis revealed that only ~5% of the suppressors localize to mitochondria. 

Among these are tfg-1TFG and gbf-1GBF1, both of which associate with contact sites between the 

ER and mitochondria. GBF-1GBF1 is a guanine nucleotide exchange factor for ARF-1.2ARF1,3  

and is required for the localization of ARF-1.2ARF1,3 to ER-mitochondria contact sites (ERMCs) 

(Ackema et al., 2014). Furthermore, gbf-1(RNAi) has been shown to lead to altered 

mitochondrial morphology, which is comparable to that upon depletion of MIRO-1MIRO1 and 

VDAC-1VDAC, two other proteins residing at contact sites between the ER and mitochondria. 
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Moreover, epistasis experiments showed that mitochondrial morphology in animals lacking 

fzo-1MFN1,2 function is not further altered upon gbf-1(RNAi) or arf-1.2(RNAi) (Ackema et al., 

2014). From this data, we conclude that gbf-1(RNAi) in fzo-1(tm1133) mutants leads to altered 

ER-mitochondria contact sites rather than a rescue in mitochondrial morphology. Furthermore, 

we speculate that the changes in contact sites between these two organelles influences 

mitochondrial metabolism and consequently mitochondrial function, thereby leading to 

suppression of UPRmt in fzo-1(tm1133) animals (Figure 13).  

Figure 13: Schematic showing processes that affect mitochondria when disrupted, leading to 
suppression of UPRmt in fzo-1(tm1133). ER: Endoplasmic reticulum, ERMCs: ER-mitochondria contact 
sites, COPII: Coat complex II, IP3R: Inositol triphosphate receptor, VDAC: Voltage-dependent anion 
channel. 

Moreover, we identified a component of the secretory pathway, TFG-1TFG, as a non-

mitochondrial suppressor of UPRmt in fzo-1(tm1133). TFG-1TFG is implicated in COPII vesicle 

transport and localizes to ER-exit sites (ERES) (Witte et al., 2011). ERES are specialized ER 

zones that stay in close contact to the Golgi apparatus where lipids as well as newly synthesized 

proteins are loaded into COPII vesicles for their transport to the Golgi apparatus (Budnik and 

Stephens, 2009; Kurokawa and Nakano, 2018). As previously discussed for COPD-1ARCN1, we 

propose that the disruption of the secretory pathway may affect cellular signaling and contact 

sites between the ER and mitochondria, thereby influencing mitochondrial function and 

consequently UPRmt (Figure 13). Furthermore, we speculate that, depending on the context, 

disruption of the secretory pathway can both suppress or enhance UPRmt. Taken together, these 

results suggest a role for contact sites, especially between mitochondria and the ER, to 

influence mitochondrial homeostasis and, hence, UPRmt signaling. Furthermore, we 
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demonstrate that disrupting the secretory pathway can challenge or improve mitochondrial 

homeostasis under certain circumstances. Apart from these non-mitochondrial candidates that 

enhance UPRmt signaling in fzo-1(tm1133) mutants, we find that mitochondrial homeostasis is 

primarily affected when processes within mitochondria are disrupted. Conversely, we primarily 

identified non-mitochondrial suppressors, suggesting that mitochondrial function plays a vital 

role in cellular homeostasis since many processes outside of mitochondria can compensate for 

mitochondrial dysfunction. 

4.5 Transcription factor enrichment analysis identifies factors with roles in development, 

metabolism and oxidative stress response 

The identification of transcription factors (TFs) that specifically bind to the promotors of the 

identified candidate genes in our dataset revealed additional potential regulators of UPRmt 

signaling. Using this approach, we identified several TFs that play a role in development, 

metabolism and oxidative stress response. As previously discussed, the level of UPRmt 

signaling has been shown to be adjusted during development (Dillin et al., 2002; Rea et al., 

2007; Durieux et al., 2011). Therefore, we speculate that the identified TFs may play a role in 

this process during development. Moreover, we previously demonstrated that induction of 

autophagy leads to alterations in cellular metabolism and, hence, can influence UPRmt signaling 

in fzo-1(tm1133) (Haeussler et al., 2020). Consistent with this notion, we identified two TFs 

(HLH-11TFAP4, HLH-29) in our analysis, which are known to regulate metabolic gene 

expression and energy homeostasis (McMiller et al., 2007; Quach et al., 2013; Watson et al., 

2013). Therefore, we propose that UPRmt is induced to compensate for metabolic defects in 

fzo-1(tm1133) animals, which may require HLH-11TFAP4 and HLH-29. Finally, we identified 

three TFs (SKN-1NFE2,NFE2L1,2,3, ELT-3GATA3,4, HLH-29), which are known to regulate the 

response to oxidative stress (An and Blackwell, 2003; An et al., 2005; Inoue et al., 2005; Quach 

et al., 2013; Hu et al., 2017). The expression of ROS detoxifying genes has previously been 

shown to be part of the transcriptional program, which is expressed upon activation of UPRmt 

in an ATFS-1ATF4,5 and SKN-1NFE2,NFE2L1,2,3 -dependent manner (Nargund et al., 2012; Nargund 

et al., 2015; Wu et al., 2018). Thus, we propose that additional TFs may be required for the 

expression of the oxidative response upon UPRmt activation and speculate that ELT-3GATA3,4, 

HLH-29 may play a role in this process. In summary, we identified several TFs that may play 
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a role in UPRmt signaling and speculate that some of them are generally required for UPRmt 

signaling. 

4.6 Interactome analysis reveals potential new regulators of UPRmt 

In the interactome analysis, we identified many potential new regulators of the UPRmt response 

in fzo-1(tm1133), some of which may regulate UPRmt in general. For example, we identified 

four interactors (GTF-2F2GTF2F2, LIN-54LIN54, SPR-2SET, TBP-1TBP) of the master regulator of 

UPRmt, ATFS-1ATF4,5, that localize to the nucleus (Sopta et al., 1989; Lichtsteiner and Tjian, 

1993; Wen et al., 2000; Thomas et al., 2003; Harrison et al., 2006; Tabuchi et al., 2011) and 

therefore may generally be involved in activation of the transcriptional program of the UPRmt 

response. Moreover, we identified the E2 SUMO conjugating enzyme UBC-9UBE2I, a 

suppressor of fzo-1(tm1133)-induced UPRmt interacting with known players of the UPRmt 

pathway POP-1LEF1,TCF7,TCF7L2 and DVE-1SATB1. Conflicting with our results of the secondary 

screens where ubc-9(RNAi) suppresses UPRmt exclusively in mutants with defects in 

mitochondrial membrane fusion, while having no effects in drp-1(tm1108) and spg-7(ad2249) 

mutants, ubc-9(RNAi) has previously been shown to further enhance antimycin and spg-

7(RNAi)-induced UPRmt (Gao et al., 2019). This may be explained by the different 

experimental approaches used since Gao and colleagues first depleted ubc-9UBE2I before 

inducing mitochondrial stress while in our experiments mitochondrial stress is persistent. 

Further validation of these results would be required to determine the role of UBC-9SATB1 in 

UPRmt signaling. In addition, we identified three splicing factors (PQBP-1.2PQBP1, SFA-1SF1, 

SNR-3SNRPD1) among our dataset that interact with UBL-5UBL5. Interestingly, a study in 

Saccharomyces pombe previously reported a function of HUB1, the ortholog of UBL-5UBL5 in 

budding yeast, in pre-mRNA splicing. Depletion of HUB1 resulted in accumulation of 

unspliced RNAs of various genes (Wilkinson et al., 2004). In contrast, ubl-5(RNAi) has 

previously been reported not to result in the accumulation of unspliced RNAs in C. elegans 

(Haynes et al., 2007). Therefore, we propose that we identified a potential link between pre-

mRNA splicing and activation of UPRmt via UBL-5UBL5. Taken together, we identified several 

candidates among our dataset that may directly act in the UPRmt pathway through interaction 

with known players of the response. 

177

Discussion



4.7 Interactome analysis reveals involvement of IP3 signaling pathway in UPRmt 

regulation in fzo-1(tm1133) 

The interactome analysis also revealed an interaction between phospholipase C (plc-1PLCE) and 

bar-1β-catenin (Byrne et al., 2007), which previously has been shown to be required for cell non-

autonomous regulation of UPRmt in C. elegans (Zhang et al., 2018). This interaction drew our 

attention to the IP3 signaling pathway, which could potentially also have a role in cell non-

autonomous regulation of UPRmt in fzo-1(tm1133) mutants. Interestingly, we found three more 

suppressors in our dataset that also act in the IP3 signaling pathway. We identified the enzyme 

cytidine biphosphate-diacylglycerol (CDP-DAG) synthase, which is required for 

phosphatidylinositol (PI) production (Wu et al., 1995; Vance, 1998). In humans, PI4-kinase 

phosphorylates PI to form PI 4-phosphate (PI4P) and has been shown to be targeted to the 

plasma membrane by EFR3B (Nakatsu et al., 2012), which is orthologous to one of the 

candidates in our dataset, EFR-3EFR3B. Thus, it would be interesting to test whether depletion 

of the PI 4-kinase PIFK-1PI4KB can also suppress UPRmt in fzo-1(tm1133) animals. This gene 

has been identified in another screen before (Runkel et al., 2013), but was later withdrawn from 

the dataset by the authors. PI4P is further phosphorylated by the sole type I PIP kinase in C. 

elegans (Weinkove et al., 2008), PPK-1PIP5K1A, which is among our candidates, thereby 

forming PI(4,5)P2 (Ishihara et al., 1996; Loijens and Anderson, 1996). Upon activation via 

GPCRs, PLC-1PLCE hydrolyzes PI(4,5)P2, thereby generating IP3 and DAG. These two second 

messengers are powerful signaling molecules that are known for their role in the regulation of 

cellular calcium levels (Clandinin et al., 1998; Kariya et al., 2004; Kovacevic et al., 2013). 

While we identified depletion of PLC-1PLCE to enhance UPRmt, all other above-mentioned 

genes were found to suppress UPRmt in fzo-1(tm1133) upon knock-down. Furthermore, Liu and 

colleagues identified ITR-1ITPR1, the IP3 receptor at the ER, to suppress antimycin-induced 

UPRmt (Liu et al., 2014). Taken together, we propose that IP3 signaling and the interrelated 

regulation of cellular calcium may influence mitochondrial homeostasis and UPRmt signaling 

in fzo-1(tm1133). In contrast, we previously did not find a role for mitochondrial calcium 

signaling in a screen for inducers of UPRmt (chapter II (Rolland et al., 2019)). Furthermore, we 

speculate that we identified this previously unknown signaling cascade to have an influence on 

UPRmt specifically in fzo-1(tm1133) mutants since ER-mitochondria contact sites, known to 

serve as hubs for the exchange of calcium between the ER and mitochondria, may be disrupted 

in these mutants. Of note, MFN2 has previously been shown to be involved in the regulation 
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of these contact sites (de Brito and Scorrano, 2008; Cosson et al., 2012; Filadi et al., 2015, 

2016; Leal et al., 2016; Naon et al., 2016; Basso et al., 2018). 

4.8 Compromised mitochondrial protein import acts as a signal for UPRmt 

In a genome-wide RNAi screen for inducers of UPRmt (chapter II) we found that dysregulation 

of almost all mitochondrial processes induces UPRmt, except for the disruption of 

mitochondrial calcium signaling and mitophagy. In total, 171 candidates were identified to 

induce the expression of the Phsp-6 mtHSP70gfp reporter when knocked-down in wild-type animals. 

Previously, it has been proposed that UPRmt is induced when unfolded or misfolded proteins 

accumulate in the mitochondrial matrix (Yoneda et al., 2004), similar to the induction of  the 

unfolded protein response in the ER (UPRER) (Walter and Ron, 2011). Since many 

mitochondrial proteins are multi-subunit complexes, which are encoded both in the 

mitochondrial and the nuclear genomes, the accepted model in the field predicted that nuclear 

encoded subunits would accumulate if the protein folding environment in mitochondria is 

disturbed (Haynes et al., 2007; Haynes et al., 2010; Houtkooper et al., 2013). However, this 

model does not fit with many of the identified candidates in our dataset since disruption of the 

ETC, the TCA cycle or mitochondrial lipid metabolism does not result in accumulation of 

unfolded or misfolded proteins in the mitochondrial matrix. Instead, we propose that a decrease 

in mitochondrial membrane potential acts as the signal for UPRmt induction (Figure 14). We 

analyzed the net charge of several MTS’s of mitochondrial proteins acting in the UPRmt 

pathway. Consistent with our hypothesis, we found that the major regulator of the response, 

ATFS-1ATF4,5, has a weak MTS as compared to some of the UPRmt effectors, such as 

HSP60HSPA1 and SPG-7AFG3L2. Additionally, we found that a chimeric ATFS-1ATF4,5 protein, 

containing a strong MTS, induces UPRmt in a mitochondrial membrane dependent manner. 

Hence, situations of high mitochondrial membrane potential would allow for ATFS-1ATF4,5 

import into mitochondria and its subsequent degradation. Conversely, any reduction in 

mitochondrial membrane potential would lead to decreased import of ATFS-1ATF4,5 into 

mitochondria and consequently to its import into the nucleus (Figure 14), since ATFS-1ATF4,5 

additionally contains an NLS at its C-terminus (Nargund et al., 2012). Thus, we propose that 

the MTS of ATFS-1ATF4,5 acts as a sensor for mitochondrial membrane potential, which is the 

signal for UPRmt induction. 
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Figure 14: Revised UPRmt model according to (Rolland et al., 2019). The comparably weak MTS of 
ATFS-1ATF4,5 acts as a stress sensor since it is sensitive to subtle changes in mitochondrial membrane 
potential (ψ). If mitochondrial homeostasis is perturbed, mitochondrial membrane potential decreases 
leading to less efficient import of ATFS-1ATF4,5 into mitochondria. This in turn leads to import of ATFS-
1ATF4,5 into the nucleus where it activates its transcriptional program (UPRmt). Schematic adapted from 
(Jovaisaite et al., 2014). 

4.9 Induction of autophagy suppresses UPRmt in fzo-1(tm1133) mutants by increasing 

mitochondrial membrane potential 

Among the 299 suppressors of fzo-1(tm1133)-induced UPRmt, we identified 143 genes that 

negatively regulate autophagy. Depletion of these negative regulators of autophagy does not 

result in altered steady-state mitochondrial morphology but instead, to an increase in 

mitochondrial membrane potential. Thus, some aspect of mitochondrial homeostasis, which is 

perturbed in fzo-1(tm1133) mutants leading to decreased mitochondrial membrane potential, is 

partially restored by the induction of autophagy. As shown in chapter II, we found that ATFS-

1ATF4,5, the master regulator of the UPRmt response, is sensitive to changes in mitochondrial 

membrane potential. Consequently, the observed increase in mitochondrial membrane 

potential upon autophagy induction leads to suppression of UPRmt. To further test this 

hypothesis, we wanted to show that knock-down of ESCRT components, which are among the 

negative regulators of autophagy, would still suppress UPRmt in fzo-1(tm1133) mutants when, 

in parallel, autophagy is blocked. However, fzo-1(tm1133); unc-51(e369) mutants, which are 
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unable to induce autophagy, died during embryogenesis upon ESCRT(RNAi). Djeddi et al. 

previously showed that induction of autophagy in ESCRT depleted animals is a compensatory 

mechanism for the defects in the endosomal pathway (Djeddi et al., 2012). Furthermore, we 

did not find any evidence for pdr-1parkin- or fndc-1FNDC-dependent mitophagy in the suppression 

of UPRmt in fzo-1(tm1133) mutants upon ESCRT depletion. Therefore, we conclude that 

induction of autophagy rather than mitophagy plays a role in suppression of UPRmt in fzo-

1(tm1133) mutants. 

4.10 Defects in mitochondrial dynamics can be compensated for by the induction of 

autophagy 

Knock-down of 97% of the identified negative regulators of autophagy also suppress UPRmt in 

drp-1(tm1108), while only 63% suppress in spg-7(ad2249). Thus, the induction of autophagy 

may not suppress UPRmt in general but rather compensate for defects in mitochondrial 

dynamics. This hypothesis is supported by the finding that let-363(RNAi) does not suppress 

UPRmt in spg-7(ad2249). Using lipidomics, we detected changes in the levels of certain TGs 

in both fzo-1(tm1133) and drp-1(tm1108) mutants, as compared to wild type, which were not 

detectable in spg-7(ad2249) mutants. Additionally, we found that the induction of autophagy 

in fzo-1(tm1133) animals reverted some of the observed changes in the levels of these TGs.  

Interestingly, autophagy has been shown to play a role in the breakdown of TGs from lipid 

droplets, which are closely associated with mitochondria to ensure a constant fatty acid supply 

for FAO (Singh et al., 2009). Additionally, lipid droplets play an important role in the delivery 

of building blocks for the synthesis of fatty acids and TGs. These fatty acids typically have 

lower chain length and a high degree of saturation (Benador et al., 2018), which we see to be 

decreased in mitochondrial dynamics mutants. Furthermore, disruption of mitochondrial 

dynamics by deletions in Opa1 or Mfn1 in mouse embryonic fibroblasts (MEFs) has been 

shown to affect fatty acid transfer from lipid droplets to mitochondria (Rambold et al., 2015). 

Moreover, MFN2 has been shown to be enriched in contact sites between lipid droplets and 

mitochondria (Benador et al., 2018). In addition, the master regulator of lipid metabolism, 

PPARα, which affects expression of key enzymes of the FAO pathway by transcriptional 

repression, has been shown to be degraded by autophagy (Saito et al., 2019). Therefore, we 

hypothesize that the disruption of mitochondrial dynamics leads to alterations in contact sites 
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between mitochondria and lipid droplets. Furthermore, we speculate that the induction of 

autophagy mobilizes lipids that are stored in lipid droplets for oxidation in mitochondria with 

altered morphology and -distribution (Figure 15), as it has recently been shown in yeast upon 

glucose starvation (Seo et al., 2017; Weber et al., 2020). Thus, in mutants with defects in 

mitochondrial dynamics, the induction of autophagy fuels mitochondria with fatty acids for 

FAO and OXPHOS, leading to increased metabolic activity and consequently mitochondrial 

membrane potential and in turn to suppression of UPRmt. 

Figure 15: Lipid droplets containing triacylglycerols are degraded in the lysosomal compartment by the 
induction of autophagy. Fatty acids derived from these lipid droplets fuel mitochondrial metabolism 
leading to increased membrane potential (ψ).  

On the other hand, we do see a very similar trend in the results of the secondary screens in drp-

1(tm1108) and spg-7(ad2249) mutants for the 156 suppressors, which do not negatively 

regulate autophagy. Altogether, 96% of the suppressors reproduced in drp-1(tm1108), while 

59% reproduced in spg-7(ad2249) (see chapter I). Moreover, 78% of the candidates negatively 

regulating autophagy reproduced in eat-3(ad426) mutants, while overall 81% of the 

suppressors reproduced in this background. As discussed earlier, we find the number of 

candidates reproducing to negatively correlate with the expression level of the Phsp-6 mtHSP70gfp 

reporter. Consequently, the expression level of the reporter may influence the ability of a 

certain candidate to reproduce in a specific genetic background. These results allow for two 

alternative conclusions. First, the induction of autophagy can exclusively compensate for 

defects in mitochondrial dynamics induced by fzo-1(tm1133) and drp-1(tm1108), since eat-

3(ad426)-induced UPRmt is not suppressed by all of the identified negative regulators of 

autophagy. Second, the induction of autophagy may generally fuel mitochondria with 

substrates for respiration in mutants with defects in mitochondrial homeostasis that also have 

reduced membrane potential, thereby increasing metabolic activity and mitochondrial 
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membrane potential. Thus, UPRmt may also be suppressed under these conditions but the 

suppression of UPRmt in eat-3(ad426) and spg-7(ad2249) mutants may be harder to detect due 

to the high GFP expression of the reporter in these mutants. Consequently, this requires further 

experiments to test if mitochondrial membrane potential is increased in drp-1(tm1108) and spg-

7(ad2249) mutants upon autophagy induction. Furthermore, it would be interesting to analyze 

the lipid profiles of these mutants and to compare them upon induction of autophagy to see 

how TGs behave in these genetic backgrounds.  

4.11 Functional interactions of autophagy and UPRmt 

The functional interaction of different cellular quality control mechanisms has previously been 

proposed (Pellegrino et al., 2013) and this idea has been supported by several different studies 

in recent years. Haynes and colleagues, pioneers in the field of UPRmt research in C. elegans, 

found rheb-1RHEB, a positive regulator of mTOR (Honjoh et al., 2008), as a suppressor of 

UPRmt. The authors did not study the mechanistic details at the time but concentrated on 

describing the UPRmt pathway itself (Haynes et al., 2007). More recently, it has been shown 

that certain mitochondrial stresses (e.g. spg-7(RNAi)) upregulate both UPRmt and autophagy in 

C. elegans (Guo et al., 2014), which we also show for fzo-1(tm1133) and spg-7(ad2249)

mutants. The functional connection between blocking mitophagy and the consequences in 

respect to UPRmt induction also has been tested in two independent studies before. However, 

conflicting results were published since one study found that UPRmt is induced when 

mitophagy is blocked (Cooper et al., 2017) while the other study could not detect an 

upregulation of the UPRmt reporter (Kim and Sieburth, 2018). We tested the functional 

interaction of autophagy and UPRmt and found that a block in autophagy using unc-51(e369) 

mutants induces UPRmt in the absence of mitochondrial stress while UPRmt is not further 

increased in fzo-1(tm1133). The role of autophagy in cellular metabolism has been shown to 

be diverse and, hence, also influences mitochondrial homeostasis (Rabinowitz and White, 

2010; Kim and Lee, 2014). Therefore, we conclude that a block in autophagy results in 

decreased supply of substrates for respiration into mitochondria, which may lead to a decrease 

in mitochondrial membrane potential, increased UPRmt and a concomitant metabolic switch 

towards glycolysis (Lin and Haynes, 2016). Furthermore, we speculate that if UPRmt is already 

activated, as in fzo-1(tm1133) mutants, a block in autophagy does not further influence UPRmt 

signaling since this metabolic shift already occurred. Moreover, we found that neither blocking 
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nor activating UPRmt constitutively influences autophagic flux in the absence of mitochondrial 

stress. Thus, from our results, we conclude that alterations in autophagic flux can influence 

UPRmt signaling but changes in UPRmt do not have an impact on autophagy. Therefore, our 

data contradicts previous reports where induction of UPRmt and autophagy was found to be 

dependent on ATFS-1ATF4,5 (Guo et al., 2014). Taken together, we show that the interaction 

between the autophagic pathway and UPRmt is unidirectional. In addition, we speculate that 

blocking autophagy limits substrate supply into mitochondria and, hence, the interaction of 

these pathways is indirect. 

4.12 Genome-wide RNAi screen identifies a new autophagy network 

Among our dataset of 299 suppressors of fzo-1(tm1133)-induced UPRmt, we identified 143 

genes that negatively regulate UPRmt, 94% of which are conserved in humans. In addition to 

the ESCRT components, we found several other genes involved in cellular trafficking, which 

play roles in nuclear import and -export, respectively (imb-2TNPO1,2, imb-3IPO5,RANBP6, ima-

3KPNA3,4, xpo-2/imb-5CSE1L). Interestingly, imb-2TNPO1,2, a regulator of the nuclear transport of 

DAF-16FOXO (Putker et al., 2013), has previously been implicated in the regulation of 

autophagy (Zhao et al., 2010). Moreover, loss of components of the ubiquitin-proteasome 

system has previously been shown to result in increased autophagic flux (Takahashi et al., 

2002; Mouysset et al., 2006; Yang et al., 2013) and we identified several of these components 

in our screen (rpt-3PSMC4, rpn-13ADRM1, ufd-1UFD1, rbx-1RBX1, cul-1CUL1). In addition, we 

identified a gene of the TOR pathway, ruvb-1RUVBL1, in our dataset (Sheaffer et al., 2008). 

Furthermore, we identified approximately one third of the genes in our autophagy network to 

have roles in translation or ribosome biogenesis. Interestingly, translation inhibition is often 

accompanied by the induction of autophagy in cancer (Acevo-Rodríguez et al., 2020) and 

therefore may be a general cellular mechanism. In summary, we identified many different 

cellular components that negatively regulate autophagy. Moreover, we propose that the 

induction of autophagy upon knock-down of these genes is a secondary effect in order to 

maintain cellular homeostasis. 
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4.13 MitoSegNet: a deep learning segmentation tool for the analysis of mitochondrial 

morphology 

Mitochondrial morphology and mitochondrial function are closely linked but determination of 

abnormal mitochondrial morphology by visual examination has proven difficult. Segmentation 

and subsequent quantification of microscopic images helps to determine even subtle 

differences that are present in mitochondrial morphology. We developed a deep learning 

segmentation tool called MitoSegNet and found that it outperforms currently available 

threshold algorithms in ImageJ/Fiji, as well as another machine-learning segmentation tool 

currently available (Kreshuk and Zhang, 2019). MitoSegNet provides more accuracy in single 

object comparison as well as in the calculation for five different feature descriptors (area, 

eccentricity, aspect ratio, perimeter and solidity). Taken together, we provide a deep learning 

tool for the automated segmentation of mitochondrial morphology and subsequent statistical 

analysis with high accuracy, which can be used in C. elegans, as well as in other organisms. 

4.14 Conclusions 

In summary, we identified a highly conserved dataset that influences mitochondrial 

homeostasis and therefore modulates UPRmt signaling in fzo-1(tm1133) mutants. The majority 

of suppressors do not localize to mitochondria, suggesting that non-mitochondrial processes 

exist that can compensate for disrupted mitochondrial dynamics. We identified autophagy to 

be one of these non-mitochondrial processes, which, upon activation, fuels mitochondria of 

mitochondrial dynamics defective mutants with lipids to elevate mitochondrial metabolism, 

thereby leading to suppression of UPRmt (Figure 16). Furthermore, we find that contact sites 

between organelles, especially between mitochondria and the ER, to be of importance to 

mitochondrial homeostasis and propose a role for IP3 signaling in the UPRmt pathway. 

Moreover, we find that disruption of primarily mitochondrial processes to induce UPRmt 

signaling, which further highlights the importance of mitochondrial homeostasis in a cellular 

context. In line with this notion, we identified a role for the mitochondrial membrane potential, 

which is sensed by the MTS of ATFS-1ATF4,5, in UPRmt activation. Finally, we found a so far 

uncharacterized gene (miga-1) in C. elegans, which may have a role in mitochondrial dynamics 

and which induces UPRmt when knocked-down or mutated. Therefore, we propose that mutants 

with defective mitochondrial morphology and -distribution may either activate UPRmt due to 
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reduced mitochondrial quality control or the secondary effects resulting from the altered 

mitochondrial morphology. Future experiments using drp-1(tm1108); fzo-1(tm1133) double 

mutants in which mitochondrial morphology is partially restored (Weir et al., 2017) may help 

to explain how UPRmt is induced in mutants with defects in mitochondrial dynamics. 

Figure 16: The majority of the identified suppressors have roles outside of mitochondria. The induction 
of autophagy, alterations in ER-mitochondria contact sites (ERMCs) and the inositol triphosphate (IP3) 
signaling pathway were identified to influence UPRmt signaling. UPRmt signaling is dependent on the 
import efficiency of its master regulator ATFS-1ATF4,5. GPCR: G-protein-coupled receptor, Ca2+: 
Calcium ion, ER: Endoplasmic reticulum, VDAC: Voltage-dependent anion channel. 
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