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Overview 

The pathophysiological process in Alzheimer’s disease (AD), namely the accumulation of beta-

amyloid (Aβ) plaques and tau neurofibrillary tangles, begins decades before the initial clinical 

symptoms occur. The accumulation of both pathologies is considered to play a significant role 

in the neurodegenerative cascade leading to loss of neurons and synapses and ultimately 

affecting brain function and cognition in AD. Based on the disease stage and AD pathology 

levels, Aβ-plaques and pathologic tau may have a unique or synergistic effect on brain function 

and cognition.  

In this thesis, using advanced multimodal neuroimaging techniques, we explore the complex 

pathophysiology of AD by studying the association between PET tracers of Aβ and pathologic 

tau, brain function, and cognition across the AD spectrum. As measures of brain function, we 

focused on glucose metabolism assessed by FDG-PET (manuscript 1) and cerebral perfusion 

assessed by ASL-MRI (manuscript 2). Although glucose metabolism and cerebral perfusion 

both reflect neuronal function and therefore are tightly coupled in the brain, each measure 

provides unique characteristic spatiotemporal information based on the stage of the disease 

and the biomarker levels. Since the extent of cognitive impairment may vary substantially 

between different individuals, we took the next step to identify functional brain alterations 

that may explain those variations. We focused on the global connectivity of the left frontal 

cortex, a proxy measure underlying cognitive reserve, and tested whether it attenuates the 

adverse effect of AD pathologies on cognitive performance (manuscript 3).  
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Introductory summary 
1. Sporadic Alzheimer’s disease  

Alzheimer’s disease (AD) is a progressive neurodegenerative disease. It accounts for 60-70% 

of all dementia cases, with an increasing incidence rate with the age of the individuals, 

especially over the age of 65 (Kukull et al., 2002). AD usually manifests clinically with incidental 

forgetfulness at the initial stage. This stage can last 2-3 decades, during which individuals are 

still cognitively normal (CN) but start to accumulate beta-amyloid (Aβ) plaques and tau 

neurofibrillary tangles (Jack et al., 2010). Next, the disease progresses to mild cognitive 

impairment (MCI) stage which is characterized by episodic memory dysfunction and the 

inability to form new memories. This stage can last up to several years during which AD 

primary pathologies continue to accumulate. Finally, the majority of individuals with MCI will 

advance to full-blown AD dementia, which is defined as impairments in multiple domains 

including a severe decline in cognitive functions, personality, and behavioral changes (Albert 

et al., 2011; Dubois et al., 2016; Jack et al., 2018).  

While clinical symptoms are indicative of AD onset, the diagnosis of AD can be performed 

using an unbiased descriptive classification scheme, labeled - AT(N). The AT(N) system utilizes 

both fluid and imaging biomarkers and is referring to three pathologic processes which are 

evident in AD, including extracellular Aβ-plaques (A), intracellular neurofibrillary tau tangles 

(T) and, neurodegeneration (N) (Jack et al., 2018). While positive Aβ biomarkers are necessary 

to place an individual in the AD-continuum, tau biomarkers determine whether the individual 

has AD, since both biomarkers are required for neuropathological diagnosis of the disease. 

Finally, neurodegeneration biomarkers and cognitive symptoms provide non-specific 

information and are used only to stage disease severity.  

 

2. Biomarkers of Aβ and tau pathology 

Aβ-plaques and tau neurofibrillary tangles are the pathologic hallmarks of AD. Aβ is created 

from the abnormal cleavage of Aβ precursor protein by beta- and gamma-secretases (Esch et 

al., 1990; Selkoe, 1998). There are two major Aβ isoforms: Aβ40 and Aβ42, with Aβ42 isoform 

being the main constituent of Aβ-plaques in AD brains (Miller et al., 1993; Gravina et al., 1995) 
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due to its low solubility and propensity to form aggregates with β-pleated sheet structure (Gu 

and Guo, 2013). Tau is a soluble microtubule-associated protein which under normal 

physiological conditions stabilizes intracellular microtubules (Binder et al., 1985; Black et al., 

1996). In a disease state, tau is abnormally hyperphosphorylated, which leads to its 

detachment from the microtubule, loss of normal function, and promotes its self-aggregation 

(Lee et al., 2001). Abnormal tau is toxic to neurons and may further aggregate into paired 

helical filaments and neurofibrillary tangles, the key neuropathological feature in AD 

(Trojanowski and Lee, 1995; Ballatore et al., 2007). 

Both Aβ and tau pathologies can be measured using either fluid or neuroimaging biomarkers. 

However, anatomical information from imaging provides an advantage for imaging over fluid 

biomarkers since it can help to distinguish both temporally and anatomically between 

different disease stages. The visualization and quantification of Aβ and tau biomarkers can be 

performed by positron emission tomography (PET) imaging (Klunk et al., 2004; Wong et al., 

2010; Chien et al., 2013; Okamura et al., 2014). PET uses radiolabeled Aβ or tau precursors 

that cross the blood-brain barrier (BBB) and bind neuritic and diffuse Aβ-plaques or tau 

neurofibrillary tangles, respectively. 

The relationship between Aβ and pathologic tau on the one hand, and functional brain 

changes and cognition on the other hand, are incompletely understood. Although elevated Aβ 

levels may be indicative of future cognitive decline, the effect of Aβ on cognition appears to 

be mainly driven by neurodegenerative changes (Huijbers et al., 2014; Villeneuve et al., 2014). 

Moreover, results from histochemical post-mortem and PET studies suggest that in contrast 

to Aβ, the spatial patterns of tau tracer uptake are highly correlated with the patterns of 

neurodegeneration and clinical progression (Bischof et al., 2016; Ossenkoppele et al., 2016; 

Schöll et al., 2016; Dronse et al., 2017; Iaccarino et al., 2018; La Joie et al., 2020). Specifically, 

tau-PET uptake patterns closely match regional cross-sectional (Gordon et al., 2018) as well as 

longitudinal grey matter atrophy (La Joie et al., 2020) and reduced glucose metabolism 

(Bischof et al., 2016; Ossenkoppele et al., 2016). As for cognition, pathologic tau assessed by 

tau-PET specifically in the entorhinal cortex is associated with early episodic memory 

impairment (Schöll et al., 2016; Xia et al., 2017; Maass et al., 2018) and both baseline and 

changes in tau-PET are related to changes in cognition (Pontecorvo et al., 2019). Therefore, 

tau is the major driver of structural alterations and cognitive decline in AD. 
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3. Functional brain alterations in Alzheimer’s disease   

As structural alterations and cognitive decline are rather late events in the neurodegenerative 

cascade, changes detectable with functional imaging may provide a useful biomarker to assess 

the early effects of primary AD pathologies. Numerous functional imaging methods have been 

developed to investigate early pathological changes and are primarily based on the connection 

between neural activity, glucose metabolism, and blood flow.  

 

3.1. FDG-PET metabolism  

Mapping glucose metabolism, the main energy substrate of the brain, is possible using the 

artificial glucose analog [18F]-2-Fluoro-2-deoxy-D-glucose (FDG; Phelps et al., 1979), in which, 

the [18F] substitute the normal hydroxyl at the second carbon position. After injection into the 

blood, similar to glucose, FDG is actively transported across the BBB and phosphorylated in 

the tissue. However, because of the missing oxygen, phosphorylated FDG cannot metabolize 

further and becomes essentially “trapped” in the tissue (Mosconi, 2013; Young et al., 2020). 

Therefore, FDG uptake by the tissue is indicative of glucose metabolic rate. Since regional 

glucose metabolism is closely related to neuronal and synaptic activity (Rocher et al., 2003), 

FDG-PET may detect synaptic dysfunction by identifying regions with reduced glucose 

metabolism (Mosconi, 2005). 

Reductions in glucose metabolism (i.e., Hypometabolism)  are useful in detecting preclinical 

stages of AD and are highly correlated with disease severity (Mosconi, 2005). Hypometabolism 

in AD is detected by a lower FDG-PET uptake predominantly in the temporo-parietal, frontal, 

and posterior cingulate cortices (Minoshima et al., 1997; Mosconi, 2005). These patterns of 

hypometabolism are commonly observed not only in patients with AD dementia but also in 

CN elderly individuals which are Aβ-positive (Lowe et al., 2014), individuals at genetic risk of 

AD (Small et al., 1995), as well as in individuals with MCI (Anchisi et al., 2005). Moreover, the 

characteristic patterns of AD neurodegeneration appear earlier on FDG-PET than on MRI and 

are predictive of the progression from MCI to AD dementia (Shaffer et al., 2013; Blazhenets et 

al., 2019). 

Although FDG-PET hypometabolism was predominantly observed in Aβ-positive individuals 

and therefore was attributed to elevations in global amyloid-PET levels (Edison et al., 2007; 
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Ewers et al., 2012; Lowe et al., 2014), there is a weak spatial correspondence between the 

patterns of amyloid-PET deposition and FDG-PET metabolism (Li et al., 2008; Rabinovici et al., 

2008). Suggesting that amyloid-PET alone may not be directly responsible for FDG-PET deficits 

in AD. In fact, multiple neuroimaging studies recently showed that in prodromal and AD 

dementia, tau-PET is strongly associated with regionally matching decreases in FDG-PET 

metabolism (Bischof et al., 2016; Ossenkoppele et al., 2016; Dronse et al., 2017; Whitwell et 

al., 2018).  

Interestingly, during the course of AD, FDG-PET metabolism shows complex non-linear 

changes, including stages of reduced as well as increased (i.e., hypermetabolism) FDG-PET 

metabolism. While several studies have found an association between Aβ-deposition and 

hypermetabolism in CN individuals (Johnson et al., 2014; Oh et al., 2014) and individuals with 

MCI (Cohen et al., 2009), others have shown that hypermetabolism is independent of Aβ 

pathology in CN individuals at genetic risk of AD (Benzinger et al., 2013; Yi et al., 2014), and 

MCI (Ashraf et al., 2015). The apparently contradicting findings could result from an 

association between amyloid and tau pathology. In CN individuals, the relationship between 

tau-PET and FDG-PET metabolism appears to be dependent on amyloid-PET levels. Specifically, 

at low amyloid-PET, a positive association between tau-PET and FDG-PET metabolism is 

observed, while at high amyloid-PET this association becomes negative or no longer significant 

(Hanseeuw et al., 2017; Adams et al., 2018). Similarly, at more severe disease stages, high 

amyloid-PET levels are associated with a negative relationship between tau-PET and FDG-PET 

metabolism (Bischof et al., 2016).  

Taken together, stages of hyper- and hypometabolism are observed across the spectrum of 

AD and may be driven by the dynamic association between amyloid and tau pathology. How 

exactly these pathologies affect metabolism and whether there is indeed an abnormal 

increase in metabolism in MCI is currently unknown. Moreover, while it is clear that reductions 

in metabolism have detrimental effects and are predictive of disease severity (Mosconi, 2005), 

and cognitive decline in early (Mosconi et al., 2008) as well as in late disease stages (Landau 

et al., 2012), the effects of increases in metabolism are unclear.  

Therefore, in manuscript 1 we assessed the contribution of amyloid- and tau-PET to FDG-PET 

alterations in symptomatic elderly subjects (i.e., MCI), by assessing the main effect as well as 

the interaction between the pathologies. Next, as increases in metabolism can be interpreted 
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either as a compensatory response in order to maintain cognition or as an early excitotoxic 

disease process, we sought to determine whether increased FDG-PET metabolism is in fact 

abnormally high compared to healthy controls and whether it is beneficial or detrimental for 

cognitive performance.  

In the first study (manuscript 1), we observed that alterations in FDG-PET metabolism (i.e., 

stages of hypo- and hypermetabolism) in symptomatic elderly subjects are dependent on 

regional amyloid- and tau-PET levels. Specifically, we found that while FDG-PET is highly 

correlated with tau-PET levels, the direction of the association is dependent on regional 

amyloid-PET levels. When amyloid-PET levels are low, tau-PET is positively associated with 

FDG-PET, whereas at higher amyloid-PET levels, the association between tau-PET and FDG-

PET becomes non-significant or negative. Furthermore, we show that the positive association 

between tau-PET and FDG-PET metabolism is indicative of abnormally elevated metabolism 

levels compared to healthy controls and in turn is associated with worse cognitive 

performance.  

 

3.2. Cerebral perfusion   

Another functional brain alteration observed in AD is reduced cerebral perfusion (Prohovnik 

et al., 1988). Cerebral perfusion designates the blood supply of the microvasculature in the 

brain, which is important for oxygen and glucose supply as well as clearance of waste 

substances (Iadecola, 2013; Fantini et al., 2016). Disruption of the blood supply to the brain 

cells may cause a deficiency in oxygen and glucose, inevitably leading to neuronal dysfunction 

(Iadecola, 2013; Fantini et al., 2016). Since neuronal dysfunction is an early event in AD, which 

eventually may lead to cognitive impairment and neurodegeneration, there is a clear need to 

be able to detect early disruptions in perfusion. The most common way to measure cerebral 

perfusion is as cerebral blood flow (CBF) which refers to the rate of delivered arterial blood to 

brain tissue (Liu and Brown, 2007). While CBF is typically measured using [15O]-water-PET 

imaging or single-photon emission computed tomography (SPECT), it can also be non-

invasively measured using arterial spin labeling (ASL) MRI.  

ASL is a radiation-free MRI technique that measures CBF by magnetically labeling the protons 

of arterial blood water flowing into the brain tissue, thus eliminating the need for an external 
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tracer or a contrast agent. ASL shows reliable measurements of CBF in young and elderly adults 

with high spatial correlation with CBF measured by exogenous contrast agents, such as [15O]-

water-PET (Xu et al., 2010; Kilroy et al., 2014). ASL is easy to implement in routine MRI scans 

and shows reproducibility in multicenter studies (Petersen et al., 2010; Gevers et al., 2011). 

Therefore, ASL-MRI serves as a clinically attractive marker over radioactive methods for 

visualization and quantification of CBF.  

In AD, CBF is typically disrupted and most commonly reduced (i.e., hypoperfusion) in the 

temporo-parietal and the posterior cingulate cortex (Johnson et al., 2005; Dai et al., 2009; 

Binnewijzend et al., 2013; Binnewijzend et al., 2016). CBF differs as a function of AD risk and 

can differentiate between CN individuals, adults at risk, or patients diagnosed with AD 

(Wierenga et al., 2012; Wierenga et al., 2013; Okonkwo et al., 2014). Furthermore, lower CBF 

is associated with worse cognitive performance throughout the AD continuum (Chao et al., 

2010; Leijenaar et al., 2017).  Taken together, evidence suggests that CBF plays a role in 

maintaining cognitive function and disease progression, and therefore can be useful as a 

preclinical biomarker of AD.  

A substantial body of work describes the relationship between Aβ accumulation and CBF, 

including recent neuroimaging studies in which, increasing levels of Aβ were associated with 

reduced CBF in sporadic AD (Mattsson et al., 2014; Tosun et al., 2014; Michels et al., 2016) as 

well as in familial AD (McDade et al., 2014; Yan et al., 2017). Yet, accumulating evidence from 

CSF biomarkers studies show that tau proteins and not Aβ are related to CBF reductions in CN 

individuals (Stomrud et al., 2012), individuals at genetic risk for AD (Hays et al., 2020), and 

individuals with MCI or AD dementia (Habert et al., 2010). It also appears that the pattern of 

CBF reductions in AD is related to the spatial distribution of tau neurofibrillary tangles, i.e., 

Braak stages (Bradley et al., 2002). This was further corroborated in a recent mouse tauopathy 

model, in which, tau contributed to neurovascular alterations by interfering with the normal 

CBF dynamics in the brain (Park et al., 2020). These observations suggest that in AD tau 

pathology may play an important role in CBF alterations, however, no study has yet explored 

the spatial relationship between tau-PET and CBF. 

It is also important to note that small vessel disease (SVD) may play a role in CBF alterations, 

as it may reduce or interrupt perfusion to the affected regions. However, evidence regarding 

the associations between SVD and CBF is inconsistent. While some studies have observed 
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reduced CBF as a result of higher number of microbleeds (Gregg et al., 2015) or higher white 

matter hyperintensities (WMH) volume (Crane et al., 2015; Shi et al., 2016; Kim et al., 2020), 

others have found no association between CBF and overall SVD burden (Onkenhout et al., 

2020). Yet, considering that SVD may promote tau accumulation (Kim et al., 2018; Laing et al., 

2020), it is important to assess the effect of SVD on the relationship between tau-PET and CBF.   

Therefore, in manuscript 2, we explored the regional associations between CBF and 

biomarkers of amyloid and tau pathology, across the AD continuum. Given the different spatial 

accumulation of each pathology, we tested the independent effect of each pathology in its 

predilection regions as well as the interaction between the pathologies. Finally, we tested the 

effect of SVD on CBF alterations using MRI markers of SVD such as cerebral microbleeds and 

WMH.  

In the second study (manuscript 2) we found that alterations in CBF can be observed in a 

biomarker dependent manner preferentially in each pathology predilection regions. We 

expand over previously reported by showing that in addition to amyloid-PET, in the entorhinal 

cortex, tau-PET is associated with reduced CBF. This association was independent of Aβ 

pathology, and no interaction between the pathologies was observed. Finally, tau related CBF 

reductions were evident across the AD continuum, in early as well as in late disease stages, 

and were independent of SVD markers.  

  

4. Modulating the effect of primary AD pathologies 

Changes in brain function as a result of Aβ plaques and tau neurofibrillary tangles 

accumulation may lead to cognitive impairment and eventually dementia. However, the 

susceptibility to AD-related pathology may vary between individuals, as it seems that some 

individuals are able to tolerate more pathology while still maintaining normal function (Stern, 

2012). Furthermore, different individuals at a given level of primary AD pathologies may 

present substantial variance in the extent of cognitive impairment (Vemuri et al., 2011). These 

individual differences are due to higher resilience or higher reserve capacity against the effect 

of AD-related pathology (Park and Reuter-Lorenz, 2009; Stern, 2012). Therefore, higher 

reserve capacity may modulate the negative effect of AD-related pathology and alleviate the 

cognitive impairment (Stern, 2002, 2012; Cabeza et al., 2018).  
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While environmental factors such as education, occupation, and leisure activity can provide a 

reserve against AD-related pathology (Stern, 2002; Stern, 2009; Stern, 2012), the underlying 

mechanisms are largely unknown. Currently, it is believed that cognitive reserve acts by 

recruiting alternate neural networks or utilizing existing networks more efficiently to help 

maintain cognitive function despite brain pathology (Stern, 2009). Indeed, brain activation 

patterns that reflect higher neural efficiency have been observed in individuals with higher 

cognitive reserve (Bartrés-Faz and Arenaza-Urquijo, 2011; Barulli and Stern, 2013).  

A potential neural substrate of reserve is functional connectivity within major hubs of 

cognitive control networks (Serra et al., 2017). More specifically, higher global connectivity of 

the left frontal cortex (gLFC), a major hub of the frontoparietal control network (FPCN) (Cole 

et al., 2012; Cole et al., 2013), has been previously suggested to underlie cognitive reserve 

(Franzmeier et al., 2017; Franzmeier et al., 2018a; Franzmeier et al., 2018b). Higher gLFC, 

assessed by resting-state fMRI, was associated with higher education and attenuated effect of 

FDG-PET hypometabolism on memory performance (Franzmeier et al., 2017). 

Although Aβ deposition plays an important role in the pathophysiology of AD, the associations 

between Aβ plaques and cognitive impairment are rather weak (Nelson et al., 2012; Hedden 

et al., 2013; Huber et al., 2018). Instead, neuropathological data showed that neurofibrillary 

tangles are a stronger predictor of cognitive decline and therefore mediate the effect of 

amyloid on cognition (Giannakopoulos et al., 2003; Bennett et al., 2004). This was later 

confirmed in neuroimaging studies in which entorhinal tau-PET appeared to be a strong 

predictor of episodic-memory performance in CN individuals (Schöll et al., 2016; Maass et al., 

2018) as well as in individuals with MCI and AD dementia (Bejanin et al., 2017). 

Recent PET studies have found that individuals with higher reserve capacity show tolerance 

against tau pathology (Hoenig et al., 2017; Rentz et al., 2017). However, in those studies, 

reserve was assessed through non-specific proxies such as IQ or education, which lack 

mechanistic insight. On the other hand, functional connectivity extends the concept of reserve 

to functional brain mechanisms within neural networks (Bartrés-Faz and Arenaza-Urquijo, 

2011; Barulli and Stern, 2013). Whether individuals with increased functional connectivity 

within networks associated with reserve show higher tolerance against tau pathology is 

currently unknown.  
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Therefore, in manuscript 3, we tested whether higher functional connectivity within networks 

associated with cognitive reserve may attenuate the adverse effect of pathologic tau in non-

demented individuals. To that end, we tested the interaction between gLFC connectivity and 

tau-PET in the entorhinal cortex on cognitive performance. 

In the third study (manuscript 3) we found a significant gLFC connectivity by entorhinal tau-

PET interaction on memory in non-demented individuals. In which, individuals with higher 

gLFC connectivity showed attenuated effect of entorhinal tau on memory performance 

compared to individuals with lower gLFC connectivity. The interaction was specific to tau 

pathology, as it was not significant for amyloid-PET, and it extends to the whole FPCN which 

the LFC is a part of. Together, these findings suggest that higher reserve capacity as expressed 

by higher connectivity of the FPCN and in particular of its LFC hub attenuates the negative 

effect of entorhinal tau-PET on cognitive performance.  
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Discussion and Conclusions 

The major findings of the current thesis were 1) abnormally increased FDG-PET is related to 

higher tau-PET at low but not high amyloid-PET levels, which in turn is associated with worse 

cognitive performance 2) tau-PET is a major driver of CBF reductions in early Braak stages 3) 

the adverse effect of pathologic tau in the entorhinal cortex on cognitive performance is 

attenuated by higher gLFC connectivity.  

While non-linear changes in FDG-PET metabolism have been previously observed in CN 

individuals (Hanseeuw et al., 2017; Adams et al., 2018), our first study extends the findings to 

individuals with MCI and sheds light on the pathophysiological mechanisms underlying these 

changes. We found that local increases in FDG-PET metabolism are driven by high levels of 

spatially matching tau-PET and low levels of regional amyloid-PET. The relationship between 

tau and increased FDG-PET metabolism could be due to tau-induced disruption of inhibitory 

neurotransmission which may cause hyperexcitability of cortical circuits (Levenga et al., 2013; 

Shimojo et al., 2020). We further demonstrated that FDG-PET hypermetabolism is related to 

worse memory performance, indicating that abnormally increased FDG-PET metabolism levels 

are detrimental for cognition. Together, our results suggest that tau-related FDG-PET 

hypermetabolism may be an early event leading to progressive neurodegeneration and 

cognitive decline.  

Our second study revealed that tau pathology drives CBF reductions in early Braak stages. The 

association between pathologic tau and CBF is independent of Aβ pathology and diagnosis as 

it is detectable in early as well as in late disease stages. The exact mechanisms behind the 

effect of pathologic tau on CBF alterations are yet to be established. Tau pathology likely takes 

part in early vascular alterations that lead to hypoperfusion and ultimately 

neurodegeneration. This is supported by a recent in-vivo study in which aged tau-

overexpressing mice developed blood vessel abnormalities and disrupted blood flow that in 

turn lead to neurodegeneration (Bennett et al., 2018). Together, our results suggest that 

across the AD continuum, functional brain alterations as observed by reduced CBF, are tau-

dependent in areas of high tau accumulation.  
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Pathologic tau is a major driver of cognitive decline (Schöll et al., 2016; Bejanin et al., 2017; 

Maass et al., 2018). However, the adverse effects of tau pathology on cognition can be 

attenuated by protective functional brain mechanisms which render individuals less 

susceptible to pathological brain changes. In the current thesis, we took the crucial next step 

to identify those functional brain mechanisms that may explain tolerance to tau pathology. 

Our third study revealed that individuals with higher connectivity of the FPCN and in particular 

of its LFC hub, show attenuated effect of entorhinal tau-PET on memory performance. Thus, 

providing an insight into a functional brain mechanism that enhances tolerance against the 

negative effect of pathologic tau in the entorhinal cortex.  

In conclusion, in this thesis we show that while pathologic tau is a major driver of early 

functional alterations in the AD neurodegenerative cascade, its effect may be dependent on 

the dynamic associations with Aβ-plaques. However, the detrimental effect of pathologic tau 

on cognition may be attenuated by protective functional brain mechanisms.  
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Outlook 

The findings of this thesis contribute to the understanding of the complex pathophysiology of 

Alzheimer’s disease and therefore have implications for clinical trials in terms of design and 

methodology. First, our results suggest that both AE plaques and tau neurofibrillary tangles 

should be targeted for effective treatment of AD since they act both independently and 

synergistically as a function of disease stage and biomarker levels. Second, when FDG-PET is 

used as an outcome measure, it is important to consider that depending on the levels of AE 

and tau biomarkers, FDG-PET metabolism may not only be reduced but also increased. This is 

of main importance since a beneficial drug or treatment may not necessarily reduce the 

decline of FDG-PET, but could also reduce the harmful increase in FDG-PET (Rubinski et al., 

2020). Similarly, when cognition is used as an outcome measure, reserve capacity should be 

recognized as a factor that might influence rates of cognitive decline. This is of main 

importance in studies that rely on differences in the rate of cognitive decline between patients 

on drug and placebo. Finally, ASL-MRI is a sensitive technique to identify not only AE-induced 

CBF alterations but also CBF reductions due to early tau deposition. For patients that are 

undergoing an MRI scan, ASL technique is a promising replacement for PET imaging as it may 

provide similar diagnostic utility and does not require exposure of the patient to radiation. 

Therefore, ASL-assessed CBF can serve as a non-invasive biomarker for identifying candidates 

in preclinical phases of the disease, as well as for testing the beneficial effects of anti-tau/anti-

amyloid therapies.  

The current findings may be a starting point for longitudinal studies on biomarker trajectories 

to further elucidate the mechanisms by which AE and tau pathology affect brain function and 

cognition over time. Future studies should also assess the influence of various modifiers, such 

as cognitive reserve, vascular pathology, and genetics on biomarker trajectories and 

outcomes. Thus, paving the way to personalized medicine based on the individual 

characteristics of each patient.  
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FDG-PET hypermetabolism is associated
with higher tau-PET in mild cognitive
impairment at low amyloid-PET levels
Anna Rubinski1, Nicolai Franzmeier1, Julia Neitzel1, Michael Ewers1,2* and the Alzheimer’s Disease Neuroimaging
Initiative (ADNI)

Abstract

Background: FDG-PET hypermetabolism can be observed in mild cognitive impairment (MCI), but the link to
primary pathologies of Alzheimer’s diseases (AD) including amyloid and tau is unclear.

Methods: Using voxel-based regression, we assessed local interactions between amyloid- and tau-PET on spatially
matched FDG-PET in 72 MCI patients. Control groups included cerebrospinal fluid biomarker characterized cognitively
normal (CN, n = 70) and AD dementia subjects (n = 95).

Results: In MCI, significant amyloid-PET by tau-PET interactions were found in frontal, lateral temporal, and posterior
parietal regions, where higher local tau-PET was associated with higher spatially corresponding FDG-PET at low levels
of local amyloid-PET. FDG-PET in brain regions with a significant local amyloid- by tau-PET interaction was higher
compared to that in CN and AD dementia and associated with lower episodic memory.

Conclusion: Higher tau-PET in the presence of low amyloid-PET is associated with abnormally increased glucose
metabolism that is accompanied by episodic memory impairment.

Keywords: FDG-PET, Hypermetabolism, Tau-PET, Amyloid-PET, Hyperactivation, Mild cognitive impairment

Introduction
In Alzheimer’s disease (AD), alterations in glucose me-
tabolism as assessed by [18F]fluorodeoxyglucose positron
emission tomography (FDG-PET) are a common patho-
logical hallmark [1]. Specifically, FDG-PET hypometabo-
lism within temporoparietal regions is commonly
observed in AD dementia and earlier AD stages, includ-
ing in amyloid-positive mild cognitive impairment (MCI;
i.e., prodromal AD) [2] and cognitively normal (CN) eld-
erly at genetic risk of AD [3]. However, FDG-PET me-
tabolism shows complex changes during the course of

AD, where not only reductions but also increases in
FDG-PET metabolism have been reported across CN
amyloid-positive subjects [4] and subjects at genetic risk
of AD [5, 6] and MCI [7]. Thus, clinical staging of cogni-
tive symptoms does not correspond to FDG-PET alter-
ations in a straightforward manner.
Studies using amyloid- and tau-PET imaging suggest

that these pathologies are important predictors of re-
gional FDG-PET alterations. For amyloid-PET, elevated
global levels of amyloid-PET have been associated with
reduced FDG-PET in both AD dementia [8] and MCI
[9]. However, increased FDG-PET has also been ob-
served in association with elevated amyloid-PET [4].
Furthermore, there is a poor regional match between
amyloid-PET and FDG-PET in typical [10] and atypical
AD [11] suggesting that amyloid-PET alone cannot fully
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account for FDG-PET alterations. Results from tau-PET
studies suggest that tau pathology may be an important
modulating factor of FDG-PET [12–14]. Results from re-
cent studies in elderly asymptomatic CN revealed an
interaction between amyloid- and tau-PET, where higher
tau-PET was associated with higher FDG-PET at low
levels of amyloid-PET, but with lower levels of FDG-
PET at high levels of amyloid-PET [15, 16]. These results
provide an intriguing model of the dynamic bidirectional
changes in relationship to beta-amyloid (Aβ) and tau
pathology. The focus on biomarkers of Aβ and tau path-
ology rather than the clinical diagnosis of AD allows to
investigate the effect of different mixtures of both path-
ologies on FDG-PET changes and cognitive impairment.
This is important because even in the absence of abnor-
mal levels of Aβ, abnormal tau-PET levels can be ob-
served in higher cortical brain areas in a substantial
number of elderly subjects, where higher tau-PET was
associated with cognitive impairment [17]. However, the
association of higher tau-PET with FDG-PET alterations
at varying levels of Aβ in symptomatic elderly subjects is
unclear. In order to address this research gap, we exam-
ined both the main and interaction effects of [18F]AV45
amyloid-PET and [18F]AV1451 tau-PET on FDG-PET in
subjects with amnestic MCI. Furthermore, we tested
whether the observed higher levels of FDG-PET repre-
sent abnormally increased FDG-PET, i.e., FDG-PET hy-
permetabolism, and whether such increases in FDG-PET
are beneficial or detrimental for cognition.

Methods
Participants
All subjects were recruited within the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI phase III; http://
adni.loni.usc.edu/) [18]. Inclusion criteria for the current
study beyond those of ADNI were a diagnosis of MCI at
the PET acquisition visit (Mini-Mental State Examin-
ation (MMSE) > 24, Clinical Dementia Rating (CDR) =
0.5, objective memory loss on the education-adjusted
Wechsler Memory Scale II, preserved activities of daily
living) and the availability of [18F]AV1451 tau-PET,
[18F]AV45 amyloid-PET, and [18F]FDG-PET up to 6
months apart. From the total sample of 74 MCI subjects
fulfilling the inclusion criteria, two subjects failed pre-
processing and were excluded, yielding a final sample of
72 MCI subjects. Apolipoprotein E (APOE) genotyping
was available as well.
In addition to the MCI group with all three PET mo-

dalities, a group of 70 cerebrospinal fluid (CSF) Aβ- and
p-tau181-negative CN subjects (MMSE > 24, CDR = 0)
and 95 AD dementia subjects (MMSE < 26, CDR > 0.5,
fulfillment of NINCDS/ADRDA criteria for probable
AD) [19] were also included to assess group-level differ-
ences in regional FDG measures. These subjects were

recruited in ADNI phase II and were selected for the
current study based on the availability of FDG-PET and
CSF biomarkers of Aβ and tau. CN subjects were asymp-
tomatic and Aβ and phosphorylated tau (p-tau) negative
based on a quantitative CSF threshold (Elecsys CSF im-
munoassay; Aβ1–42 > 976.6 pg/ml, p-tau181 < 21.8 pg/ml
[20];). AD dementia subjects were diagnosed based on
ADNI diagnostic criteria and were CSF biomarker posi-
tive (Elecsys CSF immunoassay; Aβ1–42 < 976.6 pg/ml, p-
tau181 > 21.8 pg/ml [20]).

MRI and PET acquisition
All MRI data were obtained on 3-T scanner systems at
each ADNI site according to standardized protocol.
Tau-PET data were acquired for 30-min dynamic emis-
sion scan, six 5-min frames, 75–105 min post-injection
of 10.0 mCi of [18F]AV1451. Amyloid-PET data were ac-
quired for 20-min dynamic emission scan, four 5-min
frames, 50–70min post-injection of 10.0 mCi of
[18F]AV45. FDG-PET data were acquired for 30-min dy-
namic emission scan, six 5-min frames, 30–60min post-
injection of 5.0 mCi of [18F]FDG. PET data underwent
extensive quality control protocols and standardized
image preprocessing correction steps to produce uni-
form data across the ADNI centers. These steps in-
cluded frame co-registration, averaging across the
dynamic range, and standardization with respect to the
orientation, voxel size, and intensity [21]. Detailed infor-
mation on the imaging protocols and standardized image
preprocessing steps for MRI and PET can be found at
http://adni.loni.usc.edu/methods.

MRI and PET preprocessing
T1 MRI images acquired in closest temporal proximity
to the tau-PET scan were preprocessed using the same
SPM12-based (Wellcome Trust Centre for Neuroimag-
ing, University College London) pipeline as described
previously [18]. Briefly, for each subject, the T1 MRI
image was segmented into gray matter (GM), white mat-
ter (WM), and CSF maps. Next, non-linear high-
dimensional spatial normalization parameters were
estimated, and a group-specific template was created
using SPM’s DARTEL toolbox. The group-specific tem-
plate was linearly registered to the MNI template in
order to estimate the affine transformation parameters.
For each subject, tau-PET, amyloid-PET, and FDG-

PET images were coregistered to the participant’s T1
MRI image in native space. For the voxel-based analyses,
all PET images were subsequently spatially warped to
MNI space using the DARTEL flow fields and affine
transformation parameters estimated based on the MRI
spatial registration described above. For all PET modal-
ities, standardized uptake value ratio (SUVR) images
were computed using the inferior cerebellar gray for tau-
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PET, the whole cerebellum for amyloid-PET, or the pons
for FDG-PET as reference regions. A GM mask was cre-
ated by warping the group-average GM map from the
DARTEL template to MNI space and binarizing the
image to only include voxels that had at least 30% GM
probability. We further excluded subcortical structures
(basal ganglia, thalamus, cerebellum, and brain stem)
from the mask because they were either used as refer-
ence region or in order to avoid inclusion of regions that
show off-target [18F]AV1451 binding likely unrelated to
tau [22]. All PET images were GM masked and
smoothed using an 8-mm Gaussian smoothing kernel.

Creation of z-transformed deviation images (z-maps)
To assess differences in tau deposition, we computed
voxel-wise mean and standard deviation of SUVR values
for CN. The CN group was recruited in ADNI phase III
and consisted of 27 amyloid-negative CN subjects with
[18F]AV1451 tau-PET. z-score deviation maps were cre-
ated for each of the MCI subjects, by subtracting from
each voxel the voxel-wise mean and dividing by the
standard deviation of CN group SUVR.

Assessment of amyloid status
Amyloid status was computed using a pre-established proto-
col [23]. Specifically, T1 MRI images were segmented and
parcellated into cortical regions with Freesurfer (v5.3; surfer.
nmr.mgh.harvard.edu/), which was used to extract mean
amyloid-PET uptake from GM regions (frontal, lateral tem-
poral, lateral parietal, and anterior/posterior cingulate) rela-
tive to the whole cerebellum. Participants were classified as
amyloid-positive or amyloid-negative based on established
cut-points (global amyloid-PET SUVR ≥ 1.11) [23].

Cognitive assessment
To estimate memory performance, we used ADNI-
MEM, an episodic memory composite score based on a
broad battery of neuropsychological memory tests [24].
The ADNI-MEM score includes the Rey Auditory Ver-
bal Learning Test, the Alzheimer’s Disease Assessment
Scale, the Wechsler Logical Memory I and II, and the
word recall of the MMSE.

Statistical analysis
Demographics were compared between diagnostic
groups using t tests for continuous variables and chi-
squared tests for categorical variables.
We conducted voxel-based linear regression analyses

to test the main effect as well as the local interactions
amyloid- by tau-PET on FDG-PET. All analyses were
controlled for age, gender, education, study site, and - in
case of testing the interaction effect - the main effects
of amyloid- and tau-PET. All PET measures were in-
cluded as continuous variables and obtained in spatially

corresponding voxels across all three PET modalities,
thus assessing the local relationship between the vari-
ables. These calculations were done via the software
package VoxelStats, a MATLAB (Mathworks Inc., Na-
tick, MA, USA)-based package for multimodal voxel-
wise brain image analysis [25]. The customized GM
mask (see above) was used to constrain the analysis to
cortical GM. The voxel-based statistical parametric maps
were corrected for multiple comparisons, where the stat-
istical significance was defined using a random field
theory-based [26] threshold of p < 0.05 with a cluster
forming threshold of p < 0.001. In order to examine the
nature of the amyloid- by tau-PET interaction, signifi-
cant voxel clusters of the interactions were identified
and labeled according to the largest overlap to the auto-
mated anatomical labeling regions. For all three PET
modalities, we extracted the mean voxel values within
each cluster showing significant amyloid- by tau-PET in-
teractions on FDG-PET resulting from the voxel-wise
analyses. We plotted the interactions to ensure that results
were not driven by extreme values. The robustness of the
interaction effect for each cluster was tested by rerunning
the regression model after removing influential cases de-
fined by Cook’s distance D [27]. Observations with large
influence (the threshold for considering an observation as
influential was defined as 4/number of observations) and
observations exceeding 3 standard deviations from the
mean were excluded in order to test whether the regres-
sion coefficient remained significant. Clusters were con-
sidered significant and stable when meeting an alpha
threshold of 0.05 after removing influential cases.
In addition, post hoc interaction analyses on the mean

cluster values were conducted controlling additionally
for APOE genotype status (APOE ε4 allele carriers vs
non-carriers).
Group-level differences in regional FDG measures

were assessed by a one-way ANCOVA (controlling for
age, gender, education, and study site) with post hoc t
test between each pair to assess the difference between
MCI subgroups and control groups.

In order to test whether FDG-PET cluster values were
associated with memory performance, we conducted for
each cluster a linear regression analysis including ADNI-
MEM scores as the dependent variable and the FDG-
PET cluster values as the predictor, controlling for age,
gender, education, and study site.
All statistical analyses were performed using R-statistical

software (http://www.R-project.org). Associations were con-
sidered significant when meeting an alpha threshold of 0.05.

Results
Sample characteristics
Demographic characteristics and group differences are
presented in Table 1. Figure 1 shows the tau-PET
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distribution within amyloid-negative CN subjects. Tau-
PET levels predominantly in the temporal lobe were
higher in MCI compared to those in amyloid-negative
CN (Fig. 1b).

Voxel-wise amyloid- and tau-PET main effects on FDG-PET
metabolism
First, we tested the main effects of amyloid- and tau-
PET on FDG-PET in MCI. As shown in Fig. 2 (for statis-
tics, see supplementary Table 1), higher amyloid-PET
was associated with higher FDG-PET in small clusters
located in the right superior frontal, right occipital, left
cuneus, and right temporal pole. On the other hand,
higher tau-PET was associated with higher FDG-PET in
multiple regions within the bilateral parietal lobe, left in-
sular, and cingulate cortices. Negative associations were
primarily observed within the left middle frontal and left
temporoparietal regions.
When stratified by amyloid status (global amyloid-

PET SUVR ≥ 1.11), the associations between higher

tau-PET and higher FDG-PET metabolism are evident
only within the amyloid-negative subgroup, while the
opposite association was primarily observed in the
amyloid-positive subgroup (Fig. 2, Table 1).

Voxel-wise amyloid- by tau-PET interactions on FDG-PET
metabolism
Since we found that the associations between tau-PET
and FDG-PET are dependent on Aβ levels, we further
tested the local amyloid- by tau-PET interaction on
FDG-PET in MCI. Linear regression analysis of the
interaction of amyloid-PET by tau-PET (included as
continuous variables) showed significant effects in
multiple brain regions. In order to examine whether
any outliers may drive these interactions, we extracted
the mean voxel values in each cluster and examined
the undue influence of any observations based on
Cook’s distance. Those clusters that survived the qual-
ity check are displayed in Fig. 3a (for statistics, see
Table 2).
All amyloid-PET by tau-PET interactions were of

the same direction, i.e., higher tau-PET was associated
with higher FDG-PET at low levels of amyloid-PET
but not at high levels of amyloid-PET (Fig. 3b). These
clusters were predominantly located within the left
middle temporal gyrus, right inferior temporal gyrus,
right lingual gyrus, left precuneus, bilateral inferior
parietal gyrus, left superior frontal gyrus, and right
middle frontal gyrus.
To determine whether these effects were driven by dif-

ferences in APOE status, we tested whether APOE status
had influenced the results. When controlling all above
listed models for APOE, the observed interactions
remained significant (p < 0.05) in all clusters.

Table 1 Group characteristics (mean ± SD)
CN (n = 70) MCI (n = 72) AD dementia (n = 95)

Age (years) 72.00 ± 5.48c 76.74 ± 7.33 74.11 ± 8.60a

Gender (M/F) 33/37 42/30 52/44

Education (years) 16.53 ± 2.65 16.33 ± 2.88 15.48 ± 2.68

MMSE 28.99 ± 1.22b 28.22 ± 1.88 22.98 ± 2.04c

Aβ−/Aβ+d 70/0 42/30 0/95

Abbreviations: Aβ amyloid-beta, AD Alzheimer’s disease, CN cognitively normal,
F female, M male, MCI mild cognitive impairment, MMSE Mini-Mental
State Exam
Significantly different from MCI—ap < 0.05, bp < 0.01, and cp < 0.001
dAβ status was determined via PET in MCI and via CSF in CN and AD
dementia groups

Fig. 1 Tau-PET distribution. a Mean tau-PET uptake in amyloid-negative CN subjects. b z-maps of tau-PET deviation in MCI from those
in amyloid-negative CN
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Tau-related hypermetabolism in amyloid-negative MCI
subjects
In order to examine whether the observed tau-related
increase in FDG-PET cluster values in the MCI subjects
with low amyloid represented abnormal FDG-PET hy-
permetabolism, we compared the FDG-PET cluster
values in the MCI subgroups to the FDG-PET in
amyloid-negative CN (n = 70) and subjects with full-
blown AD dementia (n = 95). Note that these two refer-
ence groups including CN and AD dementia were char-
acterized by CSF biomarker profile of Aβ1–42 and p-
tau181 rather than amyloid- and tau-PET given that
those imaging modalities were not available in a suffi-
ciently large number of CN and AD dementia subjects.
MCI subjects were divided by high and low tau-PET

(median split) and by amyloid status (global amyloid-
PET SUVR ≥ 1.11), resulting in four subgroups (high vs
low tau/positive vs negative amyloid). FDG-PET levels
for all MCI subgroups along with the control groups are
plotted in Fig. 4. ANCOVA showed significant (p < 0.05)
group differences in FDG-PET for all clusters except for
one cluster within the left superior frontal gyrus (p =

0.067). Post hoc analyses confirmed that the tau-related
increase in FDG-PET in the high-tau/amyloid-negative
MCI subgroup was significantly higher compared to the
CN group in clusters located within the right middle
frontal, left middle temporal, and right lingual gyri. The
same group also had significantly higher FDG-PET levels
compared to AD dementia cases within the same clus-
ters, confirming that the FDG-PET levels will eventually
decrease with clinical AD progression.

Hypermetabolism in the right middle frontal cortex is
associated with lower memory performance
Next, we addressed the question whether tau-related
FDG-PET hypermetabolism in MCI is associated with
memory performance. Since FDG-PET hypermetabolism
was observed at lower levels of amyloid-PET (see above),
we chose to test FDG-PET cluster values as predictors of
memory performance in amyloid-negative MCI subjects
in each cluster. We found a significant association in the
right middle frontal (p = 0.013; Fig. 5). The association
was negative, meaning higher FDG-PET metabolism in
the middle frontal gyrus cluster of FDG-PET

Fig. 2 Main effect of amyloid- and tau-PET on FDG-PET metabolism in MCI. Projection of significant clusters resulting from the voxel-wise analysis.
MNI coordinates and t values of the peaks are provided in supplementary Table 1
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Fig. 3 Regional interactions between amyloid- and tau-PET on FDG-PET metabolism in MCI. a Projection of significant clusters resulting from the
voxel-wise analysis. b Scatterplots are based on mean SUVR values extracted from voxel-wise analyses for each of the significant clusters (arranged by
anatomical adjacency). For all statistical analyses, amyloid-PET was used as a continuous measure; for illustrational purposes, however, amyloid levels
were binarized into high and low levels (median split). Scatterplots are presented after removal of outliers (i.e., defined as influential observations by
Cook’s distance and 3 standard deviations from the mean); for regression plots including the outliers, see supplementary Fig. 1
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hypermetabolism was associated with a lower ADNI-
MEM score. This result suggests that right frontal FDG-
PET hypermetabolism is associated with worse memory
performance. Control analysis in the amyloid-positive
MCI subjects did not show significant associations be-
tween FDG-PET and cognition for any of the clusters.

Discussion
Our first major finding showed that higher tau-PET was
associated with higher glucose metabolism in subjects
with lower levels of amyloid-PET, but not higher levels
of amyloid-PET. These effects were predominantly
found within the middle temporal gyrus, posterior par-
ietal, and frontal cortex and were independent of APOE
genotype. Our second major finding was that the tau-
related increases in FDG-PET represented hypermetabo-
lism since the FDG-PET level exceeded that of CN and
AD dementia subjects. Our third major finding was that
the tau-related FDG-PET hypermetabolism in MCI sub-
jects with low amyloid was associated with lower mem-
ory performance.
Our findings advance the current understanding of

FDG-PET changes in MCI, providing an explanatory
model of FDG-PET hypermetabolism that has been ob-
served in multiple studies in asymptomatic and symp-
tomatic elderly subjects (for a review, see [28]). In line
with our results, a recent study in MCI reported in-
creased FDG-PET metabolism at low levels of amyloid-
PET but not high levels of amyloid-PET [7]. FDG-PET
metabolism was positively associated with Aβ in MCI,
but inversely associated with Aβ in AD dementia [29].
We show that tau-PET plays an important role in FDG-
PET hypermetabolism in MCI subjects at low Aβ levels,
suggesting the interaction of tau and amyloid pathology
in non-demented subjects to be key for the increase in

FDG-PET. Compared to the interaction approach, our
analysis of tau-PET stratified by negative vs positive
amyloid-PET showed a more widespread association of
higher tau-PET and FDG-PET. Higher tau-PET was
preferentially associated with higher FDG-PET in Aβ-
negative MCI subjects, but with lower FDG-PET in Aβ-
positive subjects, consistent with the results of our inter-
action analyses. The spatially more restricted inter-
action effect is probably due to lower statistical power
to test an interaction effect compared to testing a
main effect.
Our results are consistent with recent findings in CN,

where higher tau-PET was associated with higher FDG-
PET in participants with low levels of amyloid-PET [15,
16]. We expand significantly above those previous re-
sults by showing that the interaction extends to MCI,
where the tau-related increase in FDG-PET represents
hypermetabolism above normal levels and is associated
with lower memory performance. These findings on
FDG-PET show parallels to fMRI detected hyperactiva-
tion as a function of tau and amyloid pathology. Both
resting-state and task-evoked hyperactivity, especially in
the medial temporal lobe [30], but also other brain re-
gions [31] has been observed in early-phase autosomal
dominant AD [32] and MCI [30, 31, 33]. fMRI-assessed
hyperactivation in the medial temporal lobe was associ-
ated with faster cognitive decline in MCI [33], consistent
with our findings of FDG-PET hypermetabolism to be
associated with lower cognitive performance in MCI.
Furthermore, fMRI-assessed hyperactivation was associ-
ated with higher tau-PET in CN [34, 35]. An interaction
of tau-PET by amyloid-PET on resting-state fMRI-
assessed network connectivity in CN was observed, such
that after a phase of hyperconnectivity, there was a de-
cline in network connectivity when both tau-PET and
amyloid-PET were high [36]. These results are reminis-
cent of the interaction effect of tau-PET by amyloid-PET
on FDG-PET observed in the current study. Together,
these studies suggest a synergistic interaction of tau and
amyloid pathology on brain activity assessed across dif-
ferent modalities.
In the current study, we took a biomarker-centered

approach using amyloid- and tau-PET to predict changes
in FDG-PET in MCI. A subset of the MCI patients
showed no abnormal Aβ levels. Higher tau-PET levels in
the absence of abnormal Aβ levels may be due to
primary age-related tauopathy (PART) [37]. PART is
characterized by elevated tau pathologies confined to
Braak-stage regions I–IV at absent or low levels of amyl-
oid plaques and has been proposed to be an etiological
entity that is qualitatively different from AD [37, 38].
Although it is still debated whether PART is part of the
AD continuum [39], it is generally accepted that
abnormal Aβ levels are a defining feature of AD. Thus,

Table 2 Areas showing significant voxel-wise interaction
between amyloid- and tau-PET on FDG-PET in MCI
Labels Cluster

index
Size
(voxels)

t
value

MNI coordinates

x Y z

L middle temporal 1 3552 5.64 − 51 − 60 24

L superior frontal 2 1853 6.4 − 7.5 27 63

R inferior parietal 3 1448 6.11 52.5 − 36 51

R inferior temporal 4 1122 5.29 58.5 − 49.5 − 24

L precuneus 5 606 5.91 − 4.5 − 76.5 39

R middle frontal 6 444 6.24 37.5 10.5 61.5

R middle frontal 7 432 5.07 36 57 13.5

R lingual 8 224 4.39 21 − 48 6

L inferior parietal 9 191 4.25 − 45 − 51 52.5

L left, R right
MNI coordinates and t values of the peaks are provided. t values are based on
voxel-wise regressions controlling for age, gender, education, and study site.
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not all MCI participants were within the AD con-
tinuum. Nevertheless, based on biomarker-driven rather
than diagnostic characterization, our study showed that
the interaction between both types of AD pathologies is
predictive of FDG-PET alterations.
The mechanism by which pathologic tau or amyloid is

associated with an increase in glucose metabolism re-
mains an open question. In vitro electrophysiological

analysis showed that secreted extracellular tau fragments
obtained post-mortem from the brain of an individual
with AD cause neuronal hyperactivity in human neurons
[40]. Moreover, transgenic mice studies showed that re-
ducing tau protein levels in the brain is associated with
reduced susceptibility to neuronal hyperexcitability and
seizures [41], suggesting that tau modulates neuronal
hyperactivity of neuronal networks [42]. The disruption

Fig. 4 FDG-PET levels in MCI subgroups compared to CN and AD control groups. Mean FDG-PET levels for each cluster (arranged by anatomical
adjacency) compared to CN and AD dementia subjects. MCI subjects were stratified by high and low tau PET (median split) and amyloid PET (global
amyloid-PET SUVR ≥ 1.11). Significant differences between groups are indicated by *p < 0.05, **p < 0.01, and ***p < 0.001; one-way ANCOVA with post
hoc t test between each pair
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of GABAergic neuronal network has been suggested as a
possible mechanism of tau-associated disturbance of
hippocampal neuron excitability [43]. The differential
role of tau and amyloid in driving hypermetabolism is
somewhat unclear. In transgenic mice expressing amyl-
oid, higher amyloid was linked to higher neural excit-
ability [44]. A recent study in transgenic mouse
models of tau and amyloid suggests that amyloid is
driving neuronal hyperactivity, but increased levels of
tau lead to reduced neuronal activity [45]. However,
these results are in conflict with previous results of
the amyloid-independent association of tau-related
susceptibility to hyperexcitability discussed above [41].
One possibility to reconcile the findings is that tau
enhances amyloid-related neuronal hyperactivity at
lower levels of amyloid, but reduces neuronal function
at higher levels of amyloid. This stance would be in
agreement with results from previous studies in
humans reporting tau-PET but not amyloid-PET to
be linked to fMRI-assessed hyperactivation [35] or
FDG-PET hypermetabolism [15, 16]. Furthermore, we
observed FDG-PET hypermetabolism in the group of
amyloid-negative/high-tau but not amyloid-positive/
low-tau suggesting that higher levels of tau in the
presence of lower levels of amyloid are decisive for

FDG-PET hypermetabolism. As a third alternative,
neuronal hyperexcitability may drive initial tau re-
lease, propagation, and spread [46, 47]. Future pre-
clinical and intervention studies targeting amyloid or
tau pathology will be instrumental in disentangling
the causative relationship between primary AD path-
ologies and FDG-PET hypermetabolism.
Another major finding of our study was the associ-

ation between FDG-PET hypermetabolism and lower
memory performance suggesting that FDG-PET hyper-
metabolism may reflect pathologically altered FDG-PET
levels that are detrimental rather than of compensatory
nature. In previous studies including cognitively im-
paired elderly subjects, increased FDG-PET in the hip-
pocampal formation was associated with poorer
cognitive performance [48]. Moreover, reducing hippo-
campal hyperactivity by drug intervention improves cog-
nition in MCI [49], where the same drug reduced tau-
related neuronal hyperexcitability in a transgenic mouse
model of AD [50]. Alternatively, higher neural activity
may enhance tau spreading which in turn may lead to
cognitive decline [46, 47]. To test such a potentially mu-
tually reinforcing chain of events would require longitu-
dinal studies. With the caution that the current study
does not allow for a causative interpretation, our

Fig. 5 Associations among FDG-PET and memory performance. Scatterplot for the regression model of FDG-PET on ADNI-MEM in amyloid-negative
MCI subjects
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findings suggest that local FDG-PET hypermetabolism
in the presence of tau has no beneficial effect on cogni-
tion. We further caution that the MCI syndrome may
have been also caused by other pathologies than amyloid
and tau pathologies, especially in the MCI subjects with
low amyloid. Alternative pathologies that have been
linked to AD-like symptoms include cerebrovascular dis-
ease, aggregation of the transactive response DNA bind-
ing protein 43 kDa (TDP-43), and alpha-synuclein [51–
54].
Several caveats need to be considered when interpret-

ing the results of the current study. First, the current
study is cross-sectional in nature. A longitudinal study
will be informative to test the predictive value of tau-
and amyloid-PET for the subsequent changes in FDG-
PET and cognition. Second, the presence of the APOE
ε4 allele has been previously shown to be associated with
glucose hypermetabolism [6] and thus may provide a
confounding variable. However, a post hoc analysis
showed that the observed interaction remained signifi-
cant even when controlling for APOE genotype, suggest-
ing that any association between APOE and tau
pathology did not explain the current results. Third, al-
though FDG-PET is commonly interpreted to reflect
neural activity, it is possible that FDG-PET also reflects
glial activity. For example, microglia activation is in-
creased in relation to tau and amyloid pathology and can
be associated with FDG-PET hypermetabolism as sug-
gested by findings in mice [55]. However, our results on
FDG-PET show parallels with the findings on resting-
state and task-evoked fMRI BOLD signal which is less
likely to reflect glia activity, discounting the possibility of
glia activation as a major source of PET. Fourth, we did
not apply partial volume correction to FDG-PET. We
did so deliberately in order to avoid that FDG-PET hy-
permetabolism may occur due to the correction proced-
ure. Here, we observed increased FDG-PET despite not
correcting, supporting the view that a true increase in
FDG-PET can be observed as a function of tau and
amyloid pathology.

Conclusions
We found that FDG-PET hypermetabolism occurs as a
function of increased tau-PET in the presence of low
amyloid-PET, and is associated with worse cognitive per-
formance. Our results have implications for clinical tri-
als, where FDG-PET is often used as an outcome
parameter [56]. Given the non-linear changes of FDG-
PET as a function of tau and amyloid pathology, a bene-
ficial drug effect on FDG-PET may not always translate
into a reduction in the decline of FDG-PET, but could
also be a reduction of the detrimental increase in FDG-
PET. Clearly, our results call for a more sophisticated

model of FDG-PET changes in the course of AD, taking
both amyloid- and tau-PET into account.
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Supplementary Figure 1: Regional interactions between amyloid- and tau-PET on FDG-PET 

metabolism in MCI. (a) Projection of significant clusters resulting from the voxel-wise analysis. (b) 

Scatterplots are based on mean SUVR values extracted from voxel-wise analyses for each of the 

significant clusters (arranged by anatomical adjacency). Amyloid was used as a continues measure, for 

illustrational purposes amyloid levels were stratified to high and low (median split).  

(a) 

(b) 
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Supplementary Table 1: Areas showing significant voxel-wise effect of amyloid-PET and tau-PET on 
FDG-PET in MCI.  

Size 
(voxels) T-value MNI coordinates  

x Y z 
Main effect of amyloid-PET on FDG-PET 

Positive association 
590 4.94 24 15 -31.5 
472 3.76 24 -90 30 
335 3.82 -18 12 69 
220 4.25 -4.5 -85.5 39 
180 4.35 -13.5 -12 76.5 

Main effect of tau-PET on FDG-PET 
Positive association 

10844 7.55 4.5 -43.5 67.5 
4312 6.66 -4.5 -45 70.5 
1439 5.05 -64.5 -12 27 
748 5.7 -49.5 -24 10.5 
410 4.28 -34.5 -21 3 
397 4.84 15 70.5 9 
328 5.1 -4.5 -93 -18 
244 5.81 28.5 -55.5 9 
212 4.91 -24 -54 6 
183 4.77 -1.5 45 15 

Negative association 
2124 4.94 -28.5 45 16.5 
1251 4.94 -49.5 -52.5 9 
564 4.62 24 -76.5 -10.5 

Main effect of tau-PET on FDG-PET in AE+ subjects 
Positive association 

935 5.49 -46.5 -30 9 
280 4.67 42 -15 15 
241 5.34 4.5 -42 64.5 

Negative association 
5725 7.07 -57 -48 -10.5 
2723 7.12 -34.5 6 51 
1878 6.61 30 -90 3 
587 5.25 -10.5 -57 46.5 
421 5.57 -48 25.5 7.5 
322 5.2 45 -52.5 42 

Main effect of tau-PET on FDG-PET in AE- subjects 
Positive association 

4262 5.85 36 -21 63 
3091 6.96 -21 -22.5 75 
533 4.85 27 57 13.5 
504 4.39 55.5 -37.5 54 
433 4.54 3 46.5 3 
406 5.76 52.5 19.5 30 
285 4.92 -19.5 -48 72 
243 4.44 -57 -63 -16.5 
220 4.67 -45 6 16.5 
220 4.06 21 54 28.5 

MNI coordinates and t-values of the peaks are provided. T-values are based on voxel-wise regressions controlling 
for age, gender, education, study site and amyloid/tau-PET. (L, Left; R, Right).   
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a b s t r a c t 
Alzheimer’s disease (AD) is associated with reduced temporo-parietal cerebral blood flow (CBF). However, 
a substantial variability in CBF across the clinical spectrum of AD has been reported, possibly due to dif- 
ferences in primary AD pathologies. Here, we assessed CBF (ASL-MRI), tau (AV1451-PET) and amyloid 
(AV45/FBB-PET) in 156 subjects across the AD continuum. Using mixed-effect regression analyses, we as- 
sessed the local associations between amyloid-PET, tau-PET and CBF in a hypothesis-driven way focusing 
on each pathology’s predilection areas. The contribution of Apolipoprotein E (APOE) genotype, and MRI 
markers of small vessel disease (SVD) to alterations in CBF were assessed as well. Tau-PET was associated 
with lower CBF in the entorhinal cortex, independent of A β . Amyloid-PET was associated with lower CBF 
in temporo-parietal regions. No associations between MRI markers of SVD and CBF were observed. These 
results provide evidence that in addition to A β , pathologic tau is a major correlate of CBF in early Braak 
stages, independent of A β , APOE genotype and SVD markers. 

© 2021 Elsevier Inc. All rights reserved. 

1. Introduction 
Reduced perfusion of the brain tissue is a common patho- 

logical alteration in Alzheimer’s disease (AD) ( Love and Min- 
ers, 2016 ). Alterations in perfusion, including lower cerebral blood 
flow (CBF), are predictive of cognitive decline ( Xekardaki et al., 
2015 ) and the conversion from mild cognitive impairment (MCI) 
to AD ( Chao et al., 2010 ), rendering CBF measurement as a can- 
didate biomarker of dementia risk ( Wolters et al., 2017 ). CBF can 
be quantified using an arterial spin labeling (ASL) MRI sequence 
which uses magnetically labeled endogenous arterial blood water 
as a tracer ( Wolf and Detre, 2007 ). Therefore, it provides a radi- 
ation free and noninvasive measure of CBF, and thus a clinically 
attractive alternative over radioactive tracers ( Chen et al., 2011 ; 
Tosun et al., 2016 ). 

Despite CBF alterations being common in AD, their link to 
primary pathologies including A β and fibrillar tau remains un- 
clear. Previously, a correlation between higher amyloid-PET and 
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lower CBF was demonstrated across the spectrum of sporadic AD 
( Mattsson et al., 2014 ; Tosun et al., 2014 ) and autosomal domi- 
nant AD ( McDade et al., 2014 ). However, no significant CBF re- 
ductions were observed in nondemented elderly who had ab- 
normal CSF A β1-42 yet normal CSF t-tau ( Binnewijzend et al., 
2016 ). Accumulating evidence shows that CSF tau proteins are as- 
sociated with lower CBF in cognitively normal (CN) individuals 
( Stomrud et al., 2012 ) as well as in patients with MCI and AD 
dementia ( Habert et al., 2010 ). These in vivo findings are corrob- 
orated by brain autopsy studies reporting that antemortem CBF 
reduction in AD is related to higher postmortem Braak stages of 
tau pathology ( Bradley et al., 2002 ). However, neither postmortem 
histochemical analyses nor CSF biomarker studies allow for as- 
sessing region-specific effects of tau pathology on CBF. Moreover, 
given that A β deposition is a strong predictor of tau accumula- 
tion ( Jack et al., 2018 ), any association between tau and CBF may 
be related to A β deposition. Therefore, the main focus of the cur- 
rent study was to test whether local tau-PET is associated with 
lower CBF in spatially corresponding brain regions, with and with- 
out controlling for the contribution of A β . 

Here, we examined the regional associations between CBF 
(pseudo-continues ASL; pCASL), fibrillar tau ([ 18 F]AV1451-PET) and 
A β ([ 18 F]AV45/([ 18 F]FBB-PET) in spatially matched regions of inter- 
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est (ROIs). We restricted these ROI analyses in a hypothesis-driven 
manner to each pathology’s predilection areas, that is, Braak-stage 
ROIs for tau-PET, and the default-mode-network (DMN) ROIs for 
amyloid-PET. 

Furthermore, small vessel disease (SVD) is common both in 
aging and AD. Previous studies have shown that MRI proxies of 
SVD, namely, higher number of microbleeds ( Gregg et al., 2015 ) 
and higher white matter hyperintensity (WMH) volume ( Shi et al., 
2016 ; Kim et al., 2020 ) are associated with reduced CBF. Since 
increased tau-PET levels are also observed in subjects with SVD 
( Kim et al., 2018 ), it is possible that any associations between tau 
and CBF are mediated by SVD. 

Therefore, we assessed the contribution of markers of SVD in- 
cluding WMH and cerebral microbleeds in addition to tau-PET and 
amyloid-PET as predictors of CBF. 
2. Methods 
2.1. Participants 

We included a sample of 156 participants comprised of CN 
(n = 84), amnestic MCI (n = 51) and AD dementia (n = 21) which 
were assessed at a total of 14 study sites within the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI; recruitment phase III). Be- 
yond the inclusion criteria of ADNI, additional requirements com- 
prised availability of 3D pCASL images and [ 18 F]AV1451 tau-PET ob- 
tained no longer than 12 months apart (mean 30.72 ± 39.78 days 
apart). In addition, 145 participants had either [ 18 F]AV45 amyloid- 
PET (n = 82) or [ 18 F]FBB amyloid-PET (n = 63) scans acquired 
within 12 months from the pCASL scan (mean 76.41 ± 115.32 days 
apart). Apolipoprotein E (APOE) genotyping was available in a sub- 
set of 140 participants. 

The diagnostic criteria of CN in ADNI included a Mini Mental 
State Exanimation (MMSE) score ≥ 24, Clinical Dementia Rating 
(CDR) = 0 and no memory concerns ( Petersen et al., 2010 ). Amnes- 
tic MCI participants had MMSE score ≥ 24, CDR = 0.5, subjective 
memory concern, objective memory loss measured by education 
adjusted scores on the Wechsler Memory Scale Memory II, absence 
of significant levels of impairment in other cognitive domains, es- 
sentially preserved activities of daily living and an absence of de- 
mentia ( Petersen et al., 2010 ). AD dementia participants had MMSE 
score ≤ 26, CDR > 0.5 and fulfillment of NINCDS/ADRDA criteria 
for probable Alzheimer’s disease ( Petersen et al., 2010 ). 

Ethical approval was obtained by the ADNI investigators, all 
participants provided written informed consent (further informa- 
tion about the inclusion/exclusion criteria may be found at www. 
adni-info.org ). 
2.2. T1 acquisition and preprocessing 

All imaging data were downloaded from the ADNI LONI im- 
age archive ( https://ida.loni.usc.edu ). All MRI data were obtained 
on 3T General Electric (GE) MRI scanner according to standard- 
ized protocol within ADNI phase III. 3D T1-weighted scans were 
acquired using an accelerated Fast Spoiled Gradient Echo with In- 
version Recovery-Preparation (IR-FSPGR) sequence, 1 mm isotropic 
resolution and a TR/TE/Flip angle = 7.3–7.7 s/3.05–3.12 ms/11 °. 

For each participant, we applied volumetric segmentation to 
the native-space structural images using FreeSurfer-based pipeline 
(version 6.0; freesurfer.net), in which subcortical and cortical ar- 
eas are segmented automatically using the probabilistic Desikan- 
Killiany atlas ( Desikan et al., 2006 ). 

2.3. ASL acquisition and preprocessing 
ASL-MRI scans were acquired using a 3D pCASL sequence on ex- 

clusively GE scanners with resolution = 1.9 × 1.9 × 4 mm 3 and a 
TR/TE/Flip angle = 4.9 s/10.5–10.7 ms/111 °. ASL images were pre- 
processed with ExploreASL, an automated MATLAB based toolbox 
for ASL analysis ( Mutsaerts et al., 2020 ). Quantitative CBF images 
were estimated based on recommended modeling for clinical ap- 
plications ( Alsop et al., 2015 ). The major assumptions of this model 
included homogeneous blood/brain partition coefficient of 0.9 mL/g 
for water, labeling inversion efficiency of 80%, background suppres- 
sion efficiency of 75% and T1 of blood at 1.6 s. The partial satura- 
tion of the reference proton density image was corrected for by 
using a T1t of 1.2 s, typical of GM. The difference between the 
corrected proton density image and the perfusion weighted im- 
age, yielding the quantitative CBF in mL/100 g/min units of arte- 
rial water density. Partial volume effect (PVE) correction was per- 
formed using a spatial linear regression algorithm to estimate the 
flow contribution of each tissue at a given voxel as described previ- 
ously ( Asllani et al., 2008 ; Petr et al., 2018 ). All statistical analyses 
were computed based on PVE corrected CBF data. 

PVE corrected CBF images in the participant’s T1 space were 
resliced using SPM12 (Wellcome Trust Centre for Neuroimaging, 
University College London) to T1 resolution and ROI based val- 
ues were extracted based on FreeSurfer anatomical parcellations 
from the T1 images. Regional CBF values were residualized by the 
mean signal of the precentral gyrus as the reference region in or- 
der to render comparability to earlier studies on the associations 
between amyloid-PET and ASL assessed CBF ( Mattsson et al., 2014 ; 
Yew et al., 2017 ). 
2.4. [18F]AV1451 tau-PET and [ 18 F]AV45/[ 18 F]FBB amyloid-PET 
acquisition and preprocessing 

Tau-PET data were acquired for 30 minutes dynamic emission 
scan, six 5-minutes frames, 75105 minutes postinjection of 10.0 
mCi of [ 18 F]AV1451. Amyloid-PET data were acquired for 20 min- 
utes dynamic emission scan, four 5-minutes frames, 50–70 min- 
utes post injection of 10.0 mCi of [ 18 F]AV45 or 20 minutes dynamic 
scan, four 5-minutes frames, 90–110 minutes post injection of 8.1 
mCi of [ 18 F]FBB. 

Final datasets including amyloid-PET and tau-PET ROI values 
were downloaded from the ADNI website. PET quality control and 
preprocessing were centrally conducted at the ADNI PET core cen- 
ter at University of California Berkeley as previously described 
( Jagust et al., 2015 ). The preprocessing steps included frame coreg- 
istration, averaging across the dynamic range and standardiza- 
tion with respect to the orientation, voxel size and intensity and 
smoothing to produce images of a uniform isotropic resolution of 
8 mm FWHM ( Jagust et al., 2015 ). Tau-PET scans were corrected 
for partial volume effects using the Geometric Transfer Matrix ap- 
proach as previously described ( Baker et al., 2017 ). Preprocessed 
PET images were subsequently coregistered to the participant’s T1 
image in native-space and FreeSurfer-based anatomical parcella- 
tions were applied to extract ROI based values. Standardized up- 
take value ratio (SUVR) scores were obtained by normalizing ROI 
values to the mean uptake of the whole cerebellum for amyloid- 
PET data, and to the mean uptake of the inferior cerebellar GM for 
tau-PET data, following previous recommendations ( Landau et al., 
2012 ; Maass et al., 2017 ). 
2.5. Assessment of amyloid status 

82 participant underwent [ 18 F]AV45 amyloid-PET and 63 par- 
ticipants [ 18 F]FBB amyloid PET. Amyloid status was computed fol- 
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Fig. 1. (A) Spatial mapping of Braak stage-specific ROIs that were used to determine regional CBF and tau-PET uptake. For Braak stage II, the hippocampus was not included 
due to known off-target binding of the AV1451-PET tracer in that region. (B) Spatial mapping of default mode network ROIs that were used to determine regional CBF and 
amyloid-PET uptake. 
lowing a method described previously ( Landau et al., 2012 ). Briefly, 
the global cortical amyloid scores were calculated as a mean 
across FreeSurfer-derived cortical GM ROIs (frontal, lateral tem- 
poral, lateral parietal and anterior/posterior cingulate) divided by 
whole cerebellum reference region. Participants were classified as 
A β+ or A β- based on established cutoff values (global AV45- 
PET SUVR > 1.11 or global FBB-PET SUVR > 1.08) ( Landau et al., 
2012 ). To obtain comparable quantification of the amyloid bur- 
den across tracers, we used the following centiloid calculation as 
recommended for the ADNI pipeline: AV45 centiloid = 196.9 X 
SUVR FBP - 196.03, where SUVR FBP is the SUVR of AV45, and FBB 
centiloid = 159.08 X SUVR FBB − 151.65, where SUVR FBB is the SUVR 
of FBB). 
2.6. A priori selection of ROIs 

In order to test the association between tau-PET and CBF, we 
included ROIs defined by the Braak-staging ( Fig. 1 A). That is, aver- 
age values for three composite ROIs scores including Braak stage I 
(entorhinal), Braak III/IV (limbic) and Braak V/VI (neocortical) were 
obtained for each modality including tau-PET, amyloid-PET and 
CBF. Braak stage II (hippocampus) was not included due to spill 
of from known off-target binding of the tau-PET tracer to choroid 
plexus ( Marquie et al., 2015 ). 

In order to test the association between amyloid-PET and CBF, 
we focused on DMN regions which are predilection areas of amy- 
loid deposition early in the course of AD ( Palmqvist et al., 2017 ). 
Values of amyloid-PET, tau-PET and CBF were extracted for 6 a 
priori designated ROIs within the DMN: medial-orbitofrontal, pre- 
cuneus, posterior cingulate, inferior parietal, inferior temporal and 
parahippocampal gyrus ( Fig. 1 B). To obtain comparable quantifica- 
tion of the amyloid burden across tracers, we used the centiloid 
calculation mentioned above for regional amyloid-PET measures. 
2.7. White matter hyperintensity segmentation 

WMH volumes were extracted using T1 and Fluid-Attenuated 
Inversion Recovery (FLAIR) scans. 3D FLAIR scans were acquired 
with resolution = 1 × 1 × 1.2 mm 3 and a TR/TE/Flip angle = 4.8 

s/119 ms/90 °. Detailed information describing the assessment pro- 
cess is available online on the ADNI website ( http://adni.loni.usc. 
edu/methods ). The total WMH volume was divided by the total 
intracranial volume to obtain a normalized global WMH volume. 
Since WMHs typically have a skewed distribution, we applied an 
inverse-hyperbolic sine (IHS) transform to the WMH volume ratio, 
as reported previously ( Caballero et al., 2020 ). 
2.8. Cerebral microbleeds assessment 

Cerebral microbleeds were defined as areas of signal void on 
T2 ∗-weighted MRI and performed by ADNI MRI-Core (available 
for a subset of 155 participants). T2 ∗-weighted scans were ac- 
quired with resolution = 0.85 × 0.85 × 4 mm 3 and a TR/TE/Flip 
angle = 650ms/20ms/20 °. Relevant findings were cataloged with 
information about each observation of the finding on the associ- 
ated T2 ∗ image. Findings cataloged as definite microbleeds were 
counted and used for further analysis. Detailed information de- 
scribing the assessment process is available online on the ADNI 
website ( http://adni.loni.usc.edu/methods ). 
2.9. Statistical analysis 

Group demographics were compared between groups using 
Kruskal-Wallis for continuous measures (followed by Bonferroni- 
corrected post-hoc Dunn tests) and Chi-squared tests for categori- 
cal measures. 

For all subsequent analysis on CBF, PVE-corrected values were 
used and for the sake of simplicity, we simply refer to CBF values. 
For our main analyses, we tested whether increased tau-PET was 
associated with reduced perfusion in Braak stage ROIs. To this end, 
we conducted mixed-effect regression analysis to test whether re- 
gional tau-PET levels are a significant predictor of participants’ CBF 
in the 3 spatially matched composite Braak-stage ROIs, accounting 
for age, gender, diagnosis, education (fixed effects) and the study 
site as a random effect. Analyses were performed in the entire 
sample as well as in the nondemented subgroup (excluding AD de- 
mentia participants) or in subgroups defined by A β status. Division 
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Table 1 
Sample characteristics, mean (SD) 

Group CN (n = 84) MCI (n = 51) AD (n = 21) p -value 
Age (years) 72.70 (6.49) 74.90 (8.05) 76.10 (6.16) 0.032 
Gender (M / F) 36/48 31/20 14/7 0.045 
Education (years) 16.71 (2.43) 16.65 (2.59) 15.76 (2.39) 0.199 
MMSE 29.35 (0.88) 27.94 (2.41) ∗ 22.38 (3.81) ∗ , † < 0.001 
A β-/A β+ a 55-/25 + 32-/15 + 18 + ∗ , † < 0.001 
APOE ε4 carriers -/ + b 52-/30 + 27-/15 + 4-/12 + ∗ , † 0.012 
Global A β centiloid a 2.43 (28.65) 28.34 (45.88) 86.18 (31.39) ∗ , † < 0.001 
Global tau-PET SUVR 1.42 (0.15) 1.52 (0.33) 1.95 (0.95) ∗ , † < 0.001 
Global GM CBF c (mL/100g/min) 42.39 (9.73) 38.25 (10.38) 33.70 (12.31) ∗ < 0.001 
WMH volume (mL) d 3.13 (4.90) 4.28 (4.73) 6.22 (8.33) ∗ 0.003 
Microbleeds count e 0.45 (0.89) 0.75 (2.29) 0.57 (0.81) 0.604 

Key: A β , amyloid-beta; AD, Alzheimer’s disease; APOE, Apolipoprotein E; CBF, cerebral blood flow; CN, 
cognitively normal; F, female; GM, grey matter; M, male; MCI, mild cognitive impairment; MMSE, Mini- 
Mental State Exam; WMH, white matter hyperintensity. 

∗ Significantly different from CN. 
† Significantly different from MCI. (Significant after applying a Bonferroni-corrected α-threshold of 

0.017). 
a Available for 145 subjects. 
b Available for 140 subjects. 
c Data is PVE corrected. 
d Raw, nontransformed data 
e Available for 155 subjects. 

to subgroups was performed in order to ensure that our results are 
not driven by extreme AD dementia cases or by A β burden. 

Moreover, we checked whether there were few highly influ- 
ential cases based on by Cook’s distance D ( Cook and Weis- 
berg, 1982 ). Influential cases were defined as observations with 
Cook’s distance exceeding the predefined threshold (calculated as 
4/N; N = number of observations ( Bollen and Jackman, 1985 )). In 
case observations exceeding the threshold were detected, analyses 
were rerun excluding those observations to test for the robustness 
of the results. 

To account for the effect of amyloid pathology, the main analy- 
ses were repeated with regional amyloid-PET centiloid or tau-PET 
x amyloid-PET centiloid as additional predictors. All models were 
controlled for age, gender, diagnosis, education (fixed effects) and 
the study site as a random effect. 

Next, we tested whether increased global or regional amyloid- 
PET was associated with reduced perfusion in DMN ROIs, i.e. 
predilection areas of amyloid deposition. To this end, we conducted 
mixed-effect regression analyses with global or regional amyloid- 
PET centiloid in DMN ROIs, as predictors of CBF in spatially corre- 
sponding ROIs. The analyses were repeated with regional tau-PET 
as additional predictor. All models were controlled for age, gender, 
diagnosis, education (fixed effects) and the study site as a random 
effect. 

Lastly, we tested the associations between MRI markers of SVD 
(WMH volume and microbleeds) and global CBF. To that end, we 
used linear mixed-effect regression model with IHS-transformed 
WMH ratio or the microbleeds count as the independent variable 
and global mean CBF as the dependent variable, accounting for age, 
gender, diagnosis, education (fixed effects) and study site (random 
effect). 

All analyses were performed using R statistical software pack- 
age ( http://www.R-project.org ). Associations (standardized beta co- 
efficients and correlation) were considered significant when meet- 
ing an α-threshold of 0.05. Correction for multiple comparisons 
was done using Bonferroni correction. 
2.10. Data availability statement 

Data on participant demographics are available in Table 1 . ADNI 
data are accessible from http://adni.loni.usc.edu/data-samples/ 
access-data/ . 

Table 2 
Linear mixed models testing the regional effects of tau-PET on CBF in the whole 
group (n = 156) 

ROI Tau 
b/SE p -value 

Braak I -0.371/0.088 < 0.001 ∗
Braak III/IV -0.120/0.089 0.180 
Braak V/VI 0.156/0.082 0.057 

Models are controlled for age, gender, education, diagnosis (fixed effects) and 
study site (random effect). 

∗ Remains significant after applying a Bonferroni-corrected α-threshold of 
0.017 (i.e., α = 0.05 adjusted for 3 tests). 

3. Results 
3.1. Sample characteristics 

For the current study, we analyzed data from 156 participants 
of the ADNI cohort, including 84 CN, 51 MCI and 21 AD dementia 
subjects (see Table 1 for sample characteristics). After correction 
for multiple comparisons, there were no differences in baseline 
demographics (age, gender, education) as well as in microbleeds 
count between the different diagnostic groups. As expected, AD de- 
mentia subjects had lower MMSE score, higher frequency of A β
positivity and APOE ε4 carriage, higher global A β centiloid, higher 
global tau-PET SUVR, lower mean global CBF, and higher WMH vol- 
ume. 

Regional distributions of amyloid-PET centiloid, tau-PET SUVRs 
and CBF within the sample are shown for the Desikan-Kiliany ROIs 
in supplementary Figure 1. 
3.2. Higher tau-PET is associated with lower perfusion exclusively in 
the entorhinal cortex 

In a first step, we tested the hypothesis that tau pathology is as- 
sociated with reduced perfusion in Braak stage ROIs ( Figure 1 A). As 
shown in Fig. 2 ( Table 2 ), we found that higher tau-PET was asso- 
ciated with lower CBF in the entorhinal cortex (Braak I: β = -0.371, 
SE = 0.088, p < 0.001) accounting for confounding effects of age, 
gender, diagnosis, education (fixed effects) and study site (random 
effect). After exclusion of nine outliers detected based on Cook’s 
distance, the association between tau-PET and CBF in the entorhi- 
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Fig. 2. Higher tau-PET is associated with lower CBF in the entorhinal cortex (Braak 
stage I). 
nal cortex remained significant (Braak I: β = -0.423, SE = 0.088, 
p < 0.001). There were no significant associations between tau- 
PET and CBF in Braak stage ROIs III/IV and V/VI ( p = 0.180 and 
p = 0.057 respectively). The association in the entorhinal cor- 
tex remained significant after applying a Bonferroni-corrected α- 
threshold of 0.017 (i.e., α = 0.05 adjusted for 3 tests). 

To test whether the association between tau-PET and CBF in the 
entorhinal cortex is independent of A β , as a first step we split the 
sample into A β- and A β+ subgroups. We found significant associ- 
ations both in the A β+ subgroup (Braak I: β = -0.485, SE = 0.139, 
p = 0.001), and the A β- subgroup (Braak I: β = -0.313, SE = 0.095, 
p = 0.002). Similarly, inclusion of regional amyloid-PET as a co- 
variate in the main analysis did not alter the association between 
tau-PET and CBF in the entorhinal cortex (Braak I: β = -0.363, 
SE = 0.095, p < 0 .001). No interaction between regional tau-PET 
and regional amyloid-PET centiloid was observed. 

To ensure that our results are not driven by extreme AD demen- 
tia cases, we repeated the analysis in a nondemented subgroup 
(consists of 84 CN and 51 MCI participants). We found that the 
association between higher tau-PET and lower CBF remained sig- 
nificant in the entorhinal cortex (Braak I: β = -0.236, SE = 0.086, 
p = 0.007). 

As exploratory analysis we also tested the effect of APOE geno- 
type on the association between tau-PET and CBF. Inclusion of 
APOE status as a covariate in the main analysis did not alter the as- 
sociation between tau-PET and CBF in the entorhinal cortex (Braak 
I: β = -0.412, SE = 0.095, p < 0 .001). We found a significant as- 
sociation of tau-PET and CBF, both in the APOE e4- non-carriers 
subgroups (Braak I: β = -0.397, SE = 0.111, p < 0 .001) as well as in 
the APOE e4 + carriers subgroup (Braak I: β = -0.372, SE = 0.162, p 
= 0.026). No interaction between regional tau-PET and APOE geno- 
type was observed. See supplementary Table 1 for detailed statis- 
tics. 
3.3. Higher global and regional amyloid-PET are associated with 
reduced perfusion in temporo-parietal regions 

We tested whether CBF is associated with global or regional 
amyloid-PET centiloid in DMN ROIs ( Fig. 1 B). As shown in Fig. 3 

Table 3 
Linear mixed models testing the effects of global amyloid-PET on CBF in the 
amyloid subsample (n = 145) 

ROI A β
b/SE p -value 

Inferior temporal -0.367/0.083 < 0.001 ∗
Parahippocampus -0.094/0.092 0.305 
Inferior parietal -0.259/0.076 < 0.001 ∗
Posterior cingulate 0.041/0.087 0.637 
Precuneus -0.214/0.085 0.013 
Medial orbitofrontal -0.042/0.082 0.610 

Models are controlled for age, gender, education, diagnosis (fixed effects) and 
study site (random effect). 

∗ Remains significant after applying a Bonferroni-corrected α-threshold of 
0.008 (i.e., α = 0.05 adjusted for 6 tests). 

( Table 3 ), higher global amyloid-PET centiloid was associated with 
lower CBF in the inferior temporal ( β = -0.367, SE = 0.083, p 
< 0 .001), inferior parietal ( β = -0.259, SE = 0.076, p < 0 .001), 
and precuneus ( β = -0.214, SE = 0.085, p = 0.013). Associations 
in the inferior temporal and the inferior parietal remained signif- 
icant after applying a Bonferroni-corrected α-threshold of 0.008 
(i.e., α = 0.05 adjusted for 6 tests). Similar results were observed 
when testing the associations between regional amyloid-PET cen- 
tiloid and CBF. 

When including in the model tau-PET obtained in the same 
ROIs, the association between global amyloid-PET centiloid and 
CBF remained unchanged in the inferior temporal and the pre- 
cuneus. However, in the inferior parietal, global amyloid-PET cen- 
tiloid no longer had a significant association with CBF, instead, an 
association between tau-PET and CBF ( β = -0.336, SE = 0.083, p < 
0 .001) was observed. See supplementary Table 2 for detailed statis- 
tics. 
3.4. CBF is not associated with MRI markers of SVD 

In order to ensure that our results are not driven by vascular 
factors, we tested the association between MRI markers of SVD 
(WMH volume and microbleeds) and CBF. No associations between 
global mean CBF and WMH volume ( p = 0.77) or microbleeds 
count ( p = 0.56) were observed. 
4. Discussion 

Our main findings show an association between higher tau-PET 
and lower CBF in the entorhinal cortex, independent of A β pathol- 
ogy. For A β , higher global and regional amyloid-PET were associ- 
ated with reduced CBF in temporo-parietal regions, even after con- 
trolling for tau-PET in the same ROIs. There were no associations 
between MRI-markers of SVD and CBF. Together, these results sug- 
gest that pathologic tau, is a major correlate of lower CBF in early 
Braak stages, independent of A β , SVD markers and APOE genotype. 

Our dual-tracer assessment of A β and tau pathology allowed 
to discern the roles of each pathology in local decreases in CBF. 
Our results provide an important advance beyond previous reports 
that focused only on the association between amyloid-PET and CBF 
( Bangen et al., 2017 ; Hansson et al., 2018 ; Mattsson et al., 2014 ; 
McDade et al., 2014 ; Michels et al., 2016 ; Rodell et al., 2016 ). Our 
results of the association between tau-PET and lower perfusion 
are in general agreement with previous findings on the associa- 
tion between higher levels of CSF biomarkers of tau and perfu- 
sion in cognitively normal APOE e4 carriers ( Hays et al., 2020 ) 
and postmortem findings of higher Braak-stages of tau pathology 
to be associated with higher expression of the vascular endothelial 
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Fig. 3. Higher global amyloid-PET is associated with lower CBF in the inferior temporal, inferior parietal and precuneus. 
growth factor (VEGF), i.e. a marker of hypoperfusion related hy- 
poxia ( Thomas et al., 2015 ). Interestingly, tau-PET was associated 
also with lower CBF in the inferior parietal in the secondary anal- 
ysis focusing on predilection areas of A β , suggesting that also sub- 
tle elevations of tau-PET are related to lower perfusion. Together 
these findings suggest that local associations of tau-PET and CBF 
are strongest in the entorhinal cortex, but tau pathology may drive 
amyloid related changes in CBF also in other higher cortical areas. 

We found associations between global as well as regional 
amyloid-PET and lower temporo-parietal perfusion. While our find- 
ings are in agreement with previous reports ( Mattsson et al., 2014 ; 
Tosun et al., 2014 ), our results also suggest that for the attribu- 
tion of CBF reductions to A β , tau pathology needs to be taken into 
account. As a note of caution, however, the current study design 
does not allow for a causative interpretation of any effects of tau 
pathology, and thus our findings neither address the directionality 
nor answer the question which specific pathology is causing CBF 
changes. 

The mechanisms linking local tau pathology to local perfusion 
are not established yet. A potential candidate mechanism includes 
tau pathology to cause vascular changes that in turn lead to hypop- 
erfusion. A recent study in transgenic mouse model of neurofib- 
rillary tangles showed structural microvascular abnormalities and 
disrupted blood flow that was associated with neurodegeneration 
( Bennett et al., 2018 ). In brain tissue from both transgenic mice 
of tau pathology and brain tissue from AD patients, tau pathol- 
ogy was associated with alterations in RNA expression linked to 
vascular function and hypoxia. In contrast, those changes were 
not observed in a transgenic mouse model of A β ( Bennett et al., 
2018 ). These observations in mice and humans suggest that tau 
pathology may directly impinge upon the microvasculature and 
thus reduced hypoperfusion. However, lower perfusion may also 
cause the pathologic tau accumulation as chronic hypoperfusion 
has been found to be associated with higher phosphorylated tau 
and A β oligomers in rodents ( Park et al., 2019 ). Yet, in nonde- 
mented elderly individuals with chronic hypoperfusion due to uni- 
lateral artery occlusion showed neither higher amyloid nor tau 
pathology, suggesting that hypoperfusion may not be eliciting AD 
pathology ( Hansson et al., 2018 ). It should be noted though that 
the sample was small, with only 5 individuals receiving tau-PET, 
and thus the cause of events in humans remains to be estab- 
lished. A third possibility is that tau pathology causes GM atro- 
phy which in turn reduces perfusion. However, other studies using 
combined structural MRI and ASL changes reported spatially diver- 
gent patterns of CBF reduction and GM atrophy in MCI and AD 
( Tosun et al., 2014 ; Wirth et al., 2017 ), supporting the view that 

CBF alterations do not occur merely as a function of neurodegen- 
eration. In the current study, correction for PVE did not alter the 
results, thus, while the influence of GM atrophy on CBF changes 
cannot be excluded, it is unlikely that CBF changes can be reduced 
to GM atrophy. 

Previous study reported increased tau-PET levels in subjects 
with SVD ( Kim et al., 2018 ). Because SVD is associated with re- 
duced cerebral perfusion ( Shi et al., 2016 ), it is possible that any 
association between tau and lower perfusion is mediated due to 
SVD. However, we found no association between SVD markers and 
CBF in contrast to previous reports of an association between lower 
perfusion and higher number of microbleeds in nondemented el- 
derlies ( Gregg et al., 2015 ). A potential cause for the discrepancies 
in the findings is the relatively lower number of microbleeds in the 
current study compared to that in the previous study. For WMH, 
findings have been inconsistent, where the latter study reported 
no association between WMH and CBF ( Gregg et al., 2015 ), but a 
positive association was reported in nondemented individuals in 
other studies ( Kim et al., 2020 ). We note that there is currently 
no direct biomarker of SVD available, rather proxy measure such 
as WMH and microbleeds provide only crude measures of SVD in 
vivo. While we found no evidence supporting a role of SVD in the 
association between tau pathology and CBF, we cation that the cur- 
rent study was not tailored to test these associations. Moreover, 
since we focused only on grey matter perfusion, we cannot exclude 
the effect of SVD on perfusion in the white matter. Therefore, the 
role of SVD in tau associated decreases in perfusion in human re- 
mains to be tested. 

Some limitations of this study should be considered. First, our 
study design was cross-sectional and not longitudinal, therefore 
we could not determine the temporal relationships between tau 
and CBF changes. Second, ADNI is a multi-site study and as such 
is susceptible to variability across sites. Therefore, we limited the 
current study to data acquired on a single scanner and all regres- 
sion models were controlled for study site effects. Third, pCASL is 
currently the recommended ASL method by the ISMRM Perfusion 
Study Group and European Consortium for ASL in Dementia due 
to its relatively high signal-to-noise ratio (SNR) and clinical ap- 
plicability ( Alsop et al., 2015 ). However, the hemodynamic status 
of each individual cannot be precisely estimated using the current 
method and therefore the quantitative values of CBF may not be 
accurate. Optimizations of pCASL, such as multi-phase sequences, 
can collect data in multiple time phases and therefore may of- 
fer a more accurate CBF measure ( Sugimori et al., 2015 ). Fourth, 
the sample size of the AD dementia group in our study was rel- 
atively small and most of the subjects were nondemented with 
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relatively low levels of tau-PET ( Johnson et al., 2016 ; Jack et al., 
2017 ). Enrichment of the sample with subjects with more ad- 
vanced tau pathology, may have resulted in higher sensitivity to 
detect associations between CBF and tau-PET not only in the en- 
torhinal cortex but also higher cortical areas. Lastly, we investi- 
gated only linear associations between CBF vs amyloid- or tau- 
PET. Previous studies reported - apart from decreases - also in- 
creases in CBF ( Wierenga et al., 2012 ; Beason-Held et al., 2013 ; 
Fazlollahi et al., 2020 ), suggesting that changes in CBF are com- 
plex in AD. However, the results of those previous studies were 
inconsistent with regard to which specific brain regions and clin- 
ical phases are linked to increased CBF ( Wierenga et al., 2014 ), 
and several studies did not report any increases in CBF in MCI 
( Binnewijzend et al., 2013 ; Wirth et al., 2017 ) or AD dementia 
( Chen et al., 2011 ; Binnewijzend et al., 2013 ) at all. In the cur- 
rent study, we observed only inverse associations between CBF and 
tau-PET or amyloid-PET. The current sample size did not allow to 
model nonlinear relationships or analyses stratified by clinical sub- 
group, and thus nonlinear relationships with tau-PET remain to be 
investigated. 
5. Conclusion 

In conclusion, decreases in regional CBF can be observed not 
only in an amyloid-PET manner but also tau-PET dependent, pref- 
erentially in regions of high tau-PET uptake. These associations are 
detectable at an early stage of tau pathology in the absence of clin- 
ical dementia as well as in later AD stages and are independent of 
A β pathology, APOE genotype or SVD markers. Thus, CBF measured 
by pCASL could potentially identify tau- associated CBF alterations 
in preclinical phase and serve as a noninvasive biomarker for the 
early detection of AD. 
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Supplementary 

Supplementary Table 1: Sub-analyses of linear mixed models testing the effects of tau-PET on CBF.   

Model terms 
Braak I Braak III/IV Braak V/VI 

b/SE p b/SE p  b/SE p  

Aβ+ subjects (n=58):  Main effect - Regional Tau-PET 

Tau -0.485/0.139 0.001 0.106/0.150 0.483 -0.107/0.132 0.422 

Aβ- subjects (n=87):  Main effect - Regional Tau-PET 

Tau -0.313/0.095 0.002 -0.238/0.109 0.032 0.021/0.118 0.857 

Non-demented subgroup (n=138): Main effect - Regional Tau-PET 

Tau -0.236/0.086 0.007 -0.095/0.089 0.287 -0.111/0.088 0.208 

Amyloid subset (n=145): Main effect - Regional Tau-PET + Regional amyloid-PET centiloid 

Tau -0.363/0.095 <0.001 -0.040/0.102 0.694 -0.067/0.089 0.451 

Aβ 0.077/0.084 0.359 -0.168/0.098 0.089 -0.229/0.089 0.012 

Amyloid subset (n=145): Interaction- Regional Tau-PET x Regional amyloid-PET centiloid 

Tau -0.346/0.096 <0.001 0.017/0.172 0.920 0.273/0.191 0.155 

Aβ -0.297/0.282 0.294 0.010/0.438 0.981 0.609/0.425 0.154 

Tau x Aβ 0.379/0.273 0.166 -0.221/0.529 0.676 -1.059/0.526 0.461 

APOE subset (n=140): Main effect - Regional Tau-PET + APOE status 

Tau -0.412/0.095 <0.001 -0.109/0.097 0.261 -0.119/0.089 0.182 

APOE 0.039/0.082 0.639 -0.062/0.089 0.487 -0.102/0.083 0.222 

APOE e4- subjects (n=83):  Main effect - Regional Tau-PET 

Tau -0.397/0.111 <0.001 -0.146/0.116 0.210 -0.011/0.118 0.923 

APOE e4+ subjects (n=57):  Main effect - Regional Tau-PET 

Tau -0.372/0.162 0.026 -0.029/0.153 0.849 -0.119/0.138 0.392 

APOE subset (n=140): Interaction: Regional Tau-PET x APOE status 

Tau -0.469/0.127 <0.001 -0.200/0.194 0.304 0.004/0.265 0.987 

APOE -0.130/0.261 0.619 -0.284/0.420 0.501 0.172/0.569 0.763 

Tau x APOE 0.203/0.298 0.498 0.269/0.498 0.590 -0.333/0.681 0.625 

Models are controlled for age, gender, education, diagnosis (fixed effects) and study site (random effect) 
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Models are controlled for age, gender, education, diagnosis (fixed effects) and study site (random effect) 

 

 

Supplementary Figure 1: Spatial mapping of amyloid-PET centiloid, tau-PET SUVR, and CBF distribution 

Model terms 
Inferior temporal Parahippocampus Inferior parietal Posterior cingulate Precuneus Medial orbitofrontal 

b/SE p b/SE p  b/SE p  b/SE p  b/SE p  b/SE p  
Amyloid subset (n=145): Main effect - Global amyloid-PET + regional Tau-PET 

Aβ -0.291/0.095 0.003 -0.108/0.110 0.330 -0.117/0.080 0.149 0.010/0.092 0.912 -0.184/0.091 0.044 -0.025/0.085 0.773 
Tau -0.155/0.098 0.116 0.026/0.112 0.821 -0.336/0.083 <0.001 0.093/0.091 0.310 -0.087/0.089 0.324 -0.062/0.083 0.462 

Amyloid subset (n=145): Main effect - Regional amyloid-PET centiloid 
Aβ -0.288/0.085 <0.001 -0.092/0.087 0.292 -0.243/0.076 0.002 0.042/0.084 0.617 -0.207/0.084 0.015 -0.036/0.083 0.660 
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