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2 Abstract

Tumor localization correlates with prognosis in coloadenocarcinoma, with aboral
tumors having a better overall survival. This can be attributed to their better
response to biologicals such as the anti-EGFR (epidermal growth factor receptor)
cetuximab.

Since the localization of a tumor is trivially determined in a clinical setting, it
remains a valuable surrogate parameter for predicting patient outcomes, though
it is not a mechanistic explanation. Some possible explanations have been o�ered:
it could be that aboral colonic epithelial cells respond di�erently to mutagenic
stimuli, or that the variation in gut flora from adoral to aboral plays a role
in tumor development or behavior. So far, there has been no consensus. By
eliminating tumor localization as a confounder, since some aboral tumors behave
and develop more like adoral tumors and vice versa, better treatment decisions
would be possible. While being slightly more complicated than simply defining
the tumor location, testing for a handful of mutations in a tumor specimen
is a routine procedure and the increased predictive power of such a model
would be of great value for making di�cult treatment decisions. It would also
represent a starting point for better understanding possible underlying molecular
mechanisms.

It was hypothesized that –regardless of the causal relationships– this “sidedness”
of coloadenocarcinomas could be reconstructed on a genomic and transcriptomic
level. In order to test this hypothesis, data from the TCGA (Tumor Cancer
Genome Atlas) database was used in a case-control study design to create
expression profiles by training two distinct machine-learning algorithms to predict
tumor location. The algorithms identified PRAC1, HOXB13, HOXC9, HOXC6,
HOTAIR, PRAC2, and HOXC8 (all members of the homeobox gene family)
as well as BST2, PLTP, FN1, ITLN1, and AREG as predictors of localization.
These finding corroborate previous research using various other methods and
fit well into the established framework of previously published literature which
solidifies the veracity of the machine-learning models as implemented.

As an additional benefit, the work-flow for creating the genomic and transcrip-
tomic profiles is very flexible and can be used for further analysis of the TCGA
dataset.
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3 Kurzzusammenfassung

Tumorlokalisation korreliert mit der Prognose Koloadenokarzinome, wobei ab-
orale Tumore ein besseres Gesamtüberleben zeigen. Dies kann man auf deren
bessere Antwort auf Biologika, wie das anti-EGFR (epidermal growth factor
receptor) Medikament Cetuximab, zurückführen.

Da die Lokalisation eines Tumors im klinischen Alltag vergleichsweise unkom-
pliziert festgestellt werden kann ist sie nach wie vor ein wichtiger Surrogatpa-
rameter für die Vorhersage von Therapieerfolg, obwohl sie keine mechanistische
Erklärung ist. Einige mögliche Erklärungen wurden schon vorgeschlagen: es
könnte sein, dass die aborale Kolonepithelzellen anders auf mutagene Stimuli
reagieren, oder dass die Variation der Flora im Kolon von adoral nach aboral
eine Rolle in der Tumorentwicklung und des Verhaltens spielt. Leider gibt es
noch keinen Konsens. Die Hypothese wurde aufgestellt, dass –unabhängig von
den kausalen Zusammenhängen– diese “Seitigkeit” der Koloadenokarzinomen auf
genomischer und transkriptomischer Ebene rekonstruiert werden kann. Indem
man die Tumorlokalisation als Confounder eliminiert könnten Therapieentschei-
dungen besser getro�en werden, da sich manche aborale Tumoren wie adorale
Tumore entwickeln und verhalten, und umgekehrt. Obwohl etwas komplizierter
als nur Tumorlokalisation zu bestimmen, ist die Suche nach einer Handvoll Muta-
tionen in einer Tumorprobe ein klinisches Routineverfahren und die verbesserte
Vorhersagekraft eines solchen Modells wäre wertvoll für schwierige Behand-
lungsentscheidungen. Es wäre auch ein Startpunkt für weitere Untersuchungen,
um die zugrundeliegenden molekularen Mechanismen besser zu verstehen.

Die Hypothese wurde aufgestellt, dass die “Seitigkeit” der Koloadenokarzinome
auf genomischer und transcriptomischer Ebene rekonstruiert werden könnte. Um
die Hypothese zu überprüfen wurden Daten aus der TCGA (Tumor Cancer
Genome Atlas) Datenbank in einer Fall-Kontroll-Studie verwendet, um Expres-
sionsprofile mittels Machine-Learning-Algorithmen zu erarbeiten, welche die
Tumorlokalisation vorhersagen können. Die Algorithmen identifizierten sowohl
PRAC1, HOXB13, HOXC9, HOXC6, HOTAIR, PRAC2, und HOXC8 (alles
Mitglieder der Homeobox Genfamilie) als auch BST2, PLTP, FN1, ITLN1,
und AREG als Prediktoren der Tumorlokalisation. Diese Ergebnisse bestäti-
gen bereits publizierte Erkenntnisse und bekräftigen somit die Genauigkeit der
Machine-Learning-Algorithmen wie sie hier implementiert wurden.
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Als zusätzlicher Nutzen ist der Workflow für die Erarbeitung der genomischen
und transcriptomischen Profile sehr flexibel und kann für weitere Analysen der
TCGA Daten verwendet werden.
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4 Background

Colorectal cancer is the third most common tumor in males globally behind lung
and prostate cancers, and the second most common in females globally behind
breast cancer (1). 40% of all colorectal cancer patients are 75 years old or older
(2). While regular screening and the associated early detection of precancerous
lesions has resulted in favorable trends in some Western countries (3), other
countries with historically low incidences such as Japan, the Czech Republic, and
Slovakia have seen a marked increase in cases (3). This can be attributed in part
to the “Westernization” of these countries, which is associated with increased
prevalence of fat and meat consumption, lack of physical exercise, and smoking
(4)(5)(6). Many developing countries can be expected to go through such growth
phases as well. As such, the prevention and treatment of colorectal cancer plays
an important role in global health.

While regular screening has reduced the mortality of colorectal cancers mea-
surably in countries that have such programs, there are none-the-less some
neoplasias which were not or could not be detected at an early enough stage
for therapeutic resection. In these cases of late stage tumors, chemotherapy
plays an important role. According to the 2008 S3 clinical guidelines for the
treatment of colorectal cancer published by the Association of the Scientific
Medical Societies in Germany, a number of drugs are commonly used in the
treatment of colorectal cancer, including 5-Fluorouracil, Capecitabine (a 5-FU
prodrug), Irinotecan, Oxaliplatin, Trifluridine, and tipiracil (2). In most cases
these chemotherapeutics are used in combinations of two or more and are some-
times combined with targeted therapy using antibodies (2), such as anti-EGFR
cetuximab or panitumumab, which are both used in the treatment of metastatic
colon cancer.

Since 1990, when Bufill et al. first described di�erences between colorectal
tumors proximal and distal to the splenic flexure (7)(in subsequent literature
synonymously referred to as right-/left-sided or aboral/adoral), there has been a
movement in the medical field to understand colorectal cancer as a heterogeneous
group of cancers rather than one distinct cancer. Although other prognostic
factors have been discovered since, tumor location has remained an important
parameter in clinical settings and is relied upon to be both prognostic and
predictive, with right-sided tumors being generally more aggressive and having

12



worse overall survival (8). Cetuximab in particular is ine�ective in metastasized
right-sided carcinomas (8). Attempts have been made to explain this di�erence
on a genomic level.

KRAS-gene and NRAS-gene mutation status has been shown to be a main
predictor of cetuximab response (9) and BRAF-gene mutations have prognostic
value for KRAS-gene wild-type tumors (10). Both KRAS-gene and BRAF-gene
mutations influence the signaling pathway for growth factors as shown in Fig
1. These mutations cause this signaling pathway to be activated and remain in
an on state independent of stimuli, thereby explaining the lack of response to
anti-EGFR therapy. Unfortunately, all patients inevitably develop resistance
to this treatment and about half of these cases are the result of KRAS-gene or
NRAS-gene mutations (11).

EGF

cell membrane
receptor RAS

RAF

MEK

ERK Nucleus

Cell growth 
and division

KRAS mutation

BRAF mutation

Figure 1: RAS-RAF-MEK-ERK Pathway. The black stars represent potential

mutations which could result in gain of oncogenic function.
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In patients who do not develop cetuximab resistance due to KRAS-gene, NRAS-
gene, or BRAF-gene mutations, additional predictors have been identified. Am-
plification of the MET receptor has been identified as an additional driver of
anti-EGFR resistance (11). MET and its cognate hepatocyte growth factor
(HGF) are responsible for cell mobilization, tissue repair, and wound healing
in di�erentiated cells and play an important role in embryogenesis (12). The
amplification of this receptor in colorectal cancer leads to anti-EGFR resistance,
probably by counteracting MAPK and AKT inhibition (11). Polycomb group
protein enhancer of zeste homolog 2 (EZH2) expression was recently positively
correlated with overall survival in KRAS-gene wild-type CRC patients treated
with anti-EGFR medications (13), suggesting a protective role in the development
of resistance, and fibroblast growth factor 9 (FGF9) up-regulation in KRAS-
gene wild-type CRC patients has been associated with resistance to anti-EGFR
therapy (14). A number of others have also attracted clinical attention, such as
HERZ amplification (15).

All these factors together account for most (>80% (11)) of cetuximab-resistant
colorectal carcinomas. The remaining cases hint towards further, as of yet
unknown markers for EGFR resistance.

In 2015 an international consortium of experts published a classification system
to distinguish between so-called consensus molecular subtypes, or CMS for short,
each with unique mutation spectra and clinical progressions (16) in the hope
that a more generalized, multi-parameter framework might help to give a better
basis for the molecular classification. The paper lays out four major subgroups
denoted CMS1 through 4, as shown in Fig. 2 (16). The paper also analyzed the
proportion of CMS in relation to tumor location, as seen in Fig. 3 (16)

The CMS paper further strengthened the conjecture that colorectal cancer
is not one but a complex, heterogeneous group of diseases. It also showed
tendencies in the tumor-biology associated with colorectal tumor localization.
However, as remarked in the paper, the poor genotype-phenotype correlation
in colorectal cancers make it di�cult to pinpoint biomarkers beyond those
previously validated (16). It also falls short of describing a molecular mechanism
or signature by which anti-EGFR resistance develops in colorectal cancer and
how this response is associated with tumor location. As such, left/right remains
a good predictor of anti-EGFR response in RAS wild-type colorectal cancer. It
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(Supplementary Fig. 9). Although CMS3 tumors appeared more 
‘normal’-like at the gene expression level (Supplementary Fig. 9),  
we did not find greater contamination with non-cancer tissue in 
tumors of the CMS3 group as compared to tumors from the other 
consensus subtypes after pathological review of a subset of sam-
ples from the PETACC-3 clinical trial10 as well as an assessment of 
ABSOLUTE tumor purity scores in TCGA data (Supplementary  
Fig. 7 and Supplementary Table 5).

Clinical and prognostic associations of the consensus  
molecular subtypes
We also found important associations between the CMS groups 
and clinical variables (Fig. 4 and Supplementary Table 5). CMS1 
tumors were frequently diagnosed in females with right-sided lesions 
(Fig. 4a,b, Supplementary Fig. 10 and Supplementary Table 5) 
and presented with higher histopathological grade (Fig. 4d and 
Supplementary Table 5). Conversely, CMS2 tumors were mainly left-
sided (Fig. 4b, Supplementary Fig. 10 and Supplementary Table 5),  
whereas CMS4 tumors tended to be diagnosed at more advanced 
stages (III and IV) (Fig. 4c and Supplementary Table 5). To deter-
mine whether the CMS groups differed in outcome, we performed 
a Cox proportional hazards analysis on the combined data sets and 
separately in the subset of patients enrolled in a clinical trial with uni-
form follow-up (PETACC-3 clinical trial10) (Supplementary Fig. 11  
and Supplementary Table 13). Irrespective of patient cohort, CMS4 
tumors resulted in worse overall survival (Fig. 4e) and worse relapse-
free survival (Fig. 4f) in both univariate and multivariate analyses, 
after adjustment for clinico-pathological features, MSI status and pres-
ence of BRAF or KRAS mutations (Supplementary Table 13). We also 
found superior survival rates after relapse in CMS2 patients (Fig. 4g), 
with a larger proportion of long-term survivors in this subset. Notably, 
the CMS1 population had a very poor survival rate after relapse 
(Fig. 4g), in agreement with recent studies showing worse progno-
sis of patients with MSI and BRAF-mutated CRCs that recur25–27.  

These differences in prognosis with unsupervised gene expression 
signatures confirm the clinical relevance of the intrinsic biological 
processes implicated in each CMS.

DISCUSSION
This report is a unique example of a discovery effort performed by a 
community of experts to identify a consensus gene expression–based 
subtyping classification system for CRC. Thanks to the collaborative 
bioinformatics work on the largest collection of CRC cohorts with 
molecular annotation to date, and building upon previous efforts by 
the independent researchers, the analyses by members of the con-
sortium resulted in a consensus molecular classification system that 
allows the categorization of most tumors into one of four robust sub-
types. Marked differences in the intrinsic biological underpinnings 
of each subtype support the new taxonomy of this disease (Fig. 5). 
We believe that this new taxonomy (CMS1 (MSI immune), CMS2 
(canonical), CMS3 (metabolic) and CMS4 (mesenchymal)) will facili-
tate future research in the CRC field and should be adopted by the 
community for CRC stratification. From a biological perspective, we 
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Figure 4 Clinicopathological and prognostic associations of consensus molecular subtype groups. (a–d) Distribution of gender (n = 2,844) (a), 
tumor site location (n = 2,641) (b), stage at diagnosis (n = 2,952) (c) and histopathological grade (n = 747) (d) across consensus subtype samples, 
represented by the colored bars CMS1, yellow; CMS2, blue; CMS3, pink; CMS4, green. (e–g) Prognostic value of CMS1 (yellow), CMS2 (blue),  
CMS3 (pink) and CMS4 (green) with Kaplan-Meier survival analysis in the aggregated cohort for overall survival (n = 2,129) (e), relapse-free survival  
(n = 1,785) (f) and survival after relapse (n = 405) (g). The hazard ratios (HR) and 95% confidence intervals (CI) for significant pairwise comparisons  
in univariate analyses (log-rank test) are displayed in each Kaplan-Meier plot. Numbers below the x axes represent the number of patients at risk at  
the selected time points. Detailed statistics are in Supplementary Tables 5 and 13.
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Figure 5 Proposed taxonomy of colorectal cancer, reflecting significant 
biological differences in the gene expression-based molecular subtypes. 
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SCNA, somatic copy number alterations.

Figure 2: Description of the 4 major CMS
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(Supplementary Fig. 9). Although CMS3 tumors appeared more 
‘normal’-like at the gene expression level (Supplementary Fig. 9),  
we did not find greater contamination with non-cancer tissue in 
tumors of the CMS3 group as compared to tumors from the other 
consensus subtypes after pathological review of a subset of sam-
ples from the PETACC-3 clinical trial10 as well as an assessment of 
ABSOLUTE tumor purity scores in TCGA data (Supplementary  
Fig. 7 and Supplementary Table 5).

Clinical and prognostic associations of the consensus  
molecular subtypes
We also found important associations between the CMS groups 
and clinical variables (Fig. 4 and Supplementary Table 5). CMS1 
tumors were frequently diagnosed in females with right-sided lesions 
(Fig. 4a,b, Supplementary Fig. 10 and Supplementary Table 5) 
and presented with higher histopathological grade (Fig. 4d and 
Supplementary Table 5). Conversely, CMS2 tumors were mainly left-
sided (Fig. 4b, Supplementary Fig. 10 and Supplementary Table 5),  
whereas CMS4 tumors tended to be diagnosed at more advanced 
stages (III and IV) (Fig. 4c and Supplementary Table 5). To deter-
mine whether the CMS groups differed in outcome, we performed 
a Cox proportional hazards analysis on the combined data sets and 
separately in the subset of patients enrolled in a clinical trial with uni-
form follow-up (PETACC-3 clinical trial10) (Supplementary Fig. 11  
and Supplementary Table 13). Irrespective of patient cohort, CMS4 
tumors resulted in worse overall survival (Fig. 4e) and worse relapse-
free survival (Fig. 4f) in both univariate and multivariate analyses, 
after adjustment for clinico-pathological features, MSI status and pres-
ence of BRAF or KRAS mutations (Supplementary Table 13). We also 
found superior survival rates after relapse in CMS2 patients (Fig. 4g), 
with a larger proportion of long-term survivors in this subset. Notably, 
the CMS1 population had a very poor survival rate after relapse 
(Fig. 4g), in agreement with recent studies showing worse progno-
sis of patients with MSI and BRAF-mutated CRCs that recur25–27.  

These differences in prognosis with unsupervised gene expression 
signatures confirm the clinical relevance of the intrinsic biological 
processes implicated in each CMS.

DISCUSSION
This report is a unique example of a discovery effort performed by a 
community of experts to identify a consensus gene expression–based 
subtyping classification system for CRC. Thanks to the collaborative 
bioinformatics work on the largest collection of CRC cohorts with 
molecular annotation to date, and building upon previous efforts by 
the independent researchers, the analyses by members of the con-
sortium resulted in a consensus molecular classification system that 
allows the categorization of most tumors into one of four robust sub-
types. Marked differences in the intrinsic biological underpinnings 
of each subtype support the new taxonomy of this disease (Fig. 5). 
We believe that this new taxonomy (CMS1 (MSI immune), CMS2 
(canonical), CMS3 (metabolic) and CMS4 (mesenchymal)) will facili-
tate future research in the CRC field and should be adopted by the 
community for CRC stratification. From a biological perspective, we 
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Figure 4 Clinicopathological and prognostic associations of consensus molecular subtype groups. (a–d) Distribution of gender (n = 2,844) (a), 
tumor site location (n = 2,641) (b), stage at diagnosis (n = 2,952) (c) and histopathological grade (n = 747) (d) across consensus subtype samples, 
represented by the colored bars CMS1, yellow; CMS2, blue; CMS3, pink; CMS4, green. (e–g) Prognostic value of CMS1 (yellow), CMS2 (blue),  
CMS3 (pink) and CMS4 (green) with Kaplan-Meier survival analysis in the aggregated cohort for overall survival (n = 2,129) (e), relapse-free survival  
(n = 1,785) (f) and survival after relapse (n = 405) (g). The hazard ratios (HR) and 95% confidence intervals (CI) for significant pairwise comparisons  
in univariate analyses (log-rank test) are displayed in each Kaplan-Meier plot. Numbers below the x axes represent the number of patients at risk at  
the selected time points. Detailed statistics are in Supplementary Tables 5 and 13.
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Figure 3: Proportion of CMS in relation to tumor location. The labels 1 through

4 denote CMS 1 through 4.

was hypothesized that by developing a better understanding of the molecular
di�erences underpinning tumor location not only on a genomic but also on a
transcriptomic and morphological level, it would be possible to overcome the
poor genotype-phenotype correlation described in the CMS paper and define
molecular/morphological signatures of left- and right-sided colorectal cancers.
After validating these signatures, they could be used to aid in the discovery of
molecular weak-points in right-sided colorectal cancers which could represent
potential therapeutic targets.
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5 Methods

For detailed explanations of the steps taken and complete source code, please
refer to the development repository of this work, available via Gitlab (17), or to
the print copy of the jupyter notebook at the end of this thesis.

5.1 Overview of Software

The analysis was largely done using computer algorithms written in python3

(18). Python was chosen as it contains a rich, well-established suite of core
modules, many of which were used in this work.

5.1.1 Core Modules

os (19) ~ facilitates use of operating system dependent tasks, such as opening and
reading files, building and retrieving paths, and creating, moving and renaming
files and folders.

glob (20) ~ facilitates searching for files and folders using Unix style pathname
pattern expansion.

csv (21) ~ facilitates the reading and writing of data in “comma-separated value”
format, the most common interchange format for tabular data. It is capable of
handling arbitrary delimiters.

shutil (22) ~ facilitates high-level operations on files and collections of files
which go beyond those implemented in the os module.

collections (23) ~ extends the default Python data types to include specialized
data containers. In particular, this work used the defaultdict constructor
which calls a factory function to supply missing values.

json (24) ~ facilitates the encoding and decoding of Python data structures into
and out of JavaScript Object Notation (JSON), a data-interchange format most
commonly used in REST API-based client-server communication.

gzip (25) ~ a wrapper for the zlib (26) implementation of the gzip algorithm,
which facilitates the compression of data and is particularly well-suited to the
data types used in this work.

xml (27) ~ facilitates the reading and writing of data stored in Extensible Markup
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Language (XML).

pickle (28) ~ To facilitate development, a disk storage and retrieval function was
implemented using the python pickle library, which allows for the serialization
and deserialization of python objects to and from a binary file. This allows a
user to store and retrieve the panda DataFrames as well as use the final, trained
classifiers to verify results or use the classification system in another context.

5.1.2 External Modules

The use of the Python programming language also made it possible to leverage a
number of third-party data-retrieval, data-management, statistics, and machine-
learning modules already implemented, well-documented, and (with the exception
of plotly) freely available to the public. They are listed and described below.

Requests ~ The Requests module for Python implements HTTP/1.1 GET,
OPTIONS, HEAD, POST, PUT, PATCH, and DELETE requests. These are commonly
used when communicating with servers over the Internet via exposed REST
APIs.

iPython (29) and Jupyter (30) ~ iPython is a command shell for interactive
computing using the python programming language. It implements a number of
features that go beyond the standard python interpreter, which facilitate rapid
prototyping and development. The programming-agnostic utilities have since
been moved to a separate project called “Jupyter”. Jupyter is a web application
which functions as a wrapper for iPython, but can be similarly used for many
other programming languages, provided that the language implementation o�ers
some form of a Read–Evaluate–Print Loop (REPL) environment (30).

NumPy (31) ~ NumPy is a python module which adds support for large, multi-
dimensional arrays and matrices, along with a large collection of high-level
mathematical functions to operate on these arrays (32). It is the basis upon
which most of the other SciPy packages are built. Its implementation of N-
dimensional data arrays (ndarray) in particular is useful when dealing with
large quantities of data, as was the case with this work.

Pandas (33) ~ Pandas is a module for python which extends the functionality of
Python + NumPy to include data manipulation and analyses for numerical and
time series data. While most operations using pandas can be executed using
NumPy alone, its two fundamental data structures, Series (1-dimensional)
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and DataFrame (2-dimensional) greatly simplify tasks dealing with labeled or
relational data with heterogeneous data types, as was the case in this work.

scikit-learn (34) ~ scikit-learn is the de facto standard machine-learning
module for Python. It features e�cient, flexible, and reusable data analysis tools
for python with an emphasis on machine learning algorithms, such as the logistic
regression and random forests classifier used in this work, which are described in
detail below.

t-SNE (35) ~ Initial exploration was done using t-distributed stochastic neighbor
embedding (t-SNE), implemented using the scikit-learn module. Using this
probabilistic (non-deterministic) model, it is possible to explore the ultra-high-
dimensional dataset in 3 spacial dimensions, thereby facilitating fast and e�ective
data-exploration, which can lend important first insights when approaching an
unknown set of data.

matplotlib (36) ~ matplotlib is the de facto standard 2D plotting library for
Python. It provides a MATLAB-style interface and integrates well into other
SciPy libraries such as iPython and Jupyter Notebook. While it supplies full
flexibility for creating publication quality graphs, this proved more of a burden
while rapidly integrating work-flow changes, which is why most of the graphing
was done using the plotly library (see below).

plotly (37) ~ plotly is a non-free javascript library for creating browser-based
graphs in Jupyter with it’s associated python API, plotly.py. It features a simple
interface which is not based on MATLAB as is the case with matplotlib, and
generates interactive plots for quick, intuitive data analysis.

Anaconda (38) ~ Anaconda is a package manager using development environ-
ments, which allows for the management of dependencies on a project-by-project
basis. Anaconda, in comparison to other environment managers, not only man-
ages the Python module dependencies, but also the Python executable itself,
which allows for the existance of multiple Python versions on a system in parallel.
This enables any user to install the analysis workflow created in this work without
disturbing any existing software on the system.

5.1.2.1 Classifiers

Since logistic regression and random forest classification constitute a key part of
the analysis in this thesis, they are explained below in further detail.
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5.1.2.1.1 Logistic Regression

First described by David Cox in 1958 (39), logistic regression can be used to
predict the probability of an outcome using an arbitrary number of predictors.
While it is not technically a classifier, it can be used to construct one by defining
a cuto�-value for the probability outcome. In the binary classification case this
trivially implemented using a simple majority vote.

The implementation in this work is a nested cross-validated logistic regression,
with 10 outer folds and 12 inner folds, based on the LogisticRegressionCV()

function in scikit-learn. Cross-validation is done by splitting the dataset into
k subsets (in this case stratified to ensure an even distribution of left and right
samples) and then iteratively taking one of these subsets out for testing. A
portion of this process is shown in Fig. 4. The results of all iterations are then
combined, forming a mean quality of the regression over the entire dataset.

1
2
3
4
5
6
7
8
9

fold

10

Train set

Test set

1 2 3 4 5 6 7 8 9 10
subset

Figure 4: k-fold cross validation for k=10. Each row represents the complete

dataset, split into 10 subsets, represented by the columns. For each fold,

represented by the rows, a di�erent subset of the data is selected as the test set.

This process is repeated until all subsets have been used in both the training

and testing case.

The choice of k is somewhat arbitrary. While choosing a larger k is less likely to
overestimate the true expected error, this results in smaller testing sets, which
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in turn leads to greater variability in the results, and a near-linear increase in
computational costs. The limit case is so-called “leave-one-out cross validation”,
where k = n ≠ 1.

The nested approach additionally separates the training set of each iteration into
further subsets, enabling the tuning of hyper-parameters of the model without
“leaking” information into the results, at the expense of computational e�ort.

5.1.2.1.2 Random Forest

In general, random forest classification builds upon the concept of decision trees.
The random forest algorithm, an extension of Tin Kam Ho’s “random decision
forests” (40) using Leo Breiman’s concept of bootstrap aggregation (41), is an
ensemble-type machine learning method, which operates by constructing a large
number of decision trees with random subsets of the feature space, training
each tree individually, and making a majority vote with all decisions. Random
forests are robust classifiers which avoid the tendency for over-fitting of standard
decision tree classifiers, at the expense of computational complexity and some
loss of direct interpretability. Importantly in contrast to many other classification
methods, the classification error ‘ of a random forest algorithm CRF is proven
to converge to a constant c as the number of observations n approaches infinity
(42), or

lim
næŒ

‘(CRF ) = c.

This, in combination with its resistance to over-fitting due to its random nature
(41) allows it to be used in proofs and the validity of the model can be assessed
using a receiver operating characteristic (ROC) curve as is common in the life
sciences. Interestingly, the rate of convergence is independent of the dimension-
ality of the data d and depends only on the number of “strong features”, which
explains how it is possible for RF classifiers to readily handle data where d ∫ n

(43). A general explanation of random forests follows by way of example.

Consider the dataset X, where fa1 is the ath feature of sample 1, etc.

X =

S

WWWWWU

fa1 fb1 fc1 . . . fm1 C1

fa2 fb2 fc2 . . . fm2 C2
...

...
...

. . .
...

...
fan fbn fcn . . . fmn Cn

T

XXXXXV
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In the first step, called “bootstrap aggregation” or “bagging”, a subset

XS ™ X

of samples is taken at random for each of n trees.

XS =

S

WWU

fa3 fb3 fc3 . . . fm3 C3

fa7 fb7 fc7 . . . fm7 C7

fa9 fb9 fc9 . . . fm9 C9

T

XXV ™ X.

Then, for each node in the decision tree, a subset

XSf ™ XS

of features is chosen at random.

XSf =

S

WWU

fb3 fc3 fg3 C3

fb7 fc7 fg7 C7

fb9 fc9 fg9 C9

T

XXV ™ XS

Finally the optimal feature (based on gini purity) is chosen for the split as
shown in Fig. 5.

This process is continued iteratively on each node until the tree is “pure”,
meaning that each leaf contains samples of only one class. Due to this iterative
process, the random forest classifier is capable of recovering information about
compounding e�ects, where the e�ect Eab of two simultaneous variants a and b is
greater than Ea + Eb. This di�ers from logistic regression, where the coe�cient
of an independent variable is tuned by the e�ect of that variable only.

The choice of forest size, similar to the choice of k for cross-validation, is largely
up to the user (44). However, it can be said that generally, the larger the forest,
the more stable the result.

The implementation in this work uses the RandomForestClassifier() function
from scikit-learn.

5.1.3 TCGA Database Tools

A number of tools specific to the TCGA Dataset were used in this work. These
facilitate access to the data using web-based interfaces. They are described in
detail below.
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Figure 5: A: An example node, starting with a branch containing 10 samples

of each class. The node results in a non-optimal split using feature a. B: Using

the same starting branch as shown in A, the node now splits the samples using

feature b, which results in the optimal separation amongst possible features

in the set {a, b}. C: Continuing with the second (right side) branch from

B, another node is created using feature c, which results in leaves containing

samples of only one class. This branch is now considered “pure”.
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GDC Data Portal (45) ~ The GDC Data Portal is the main web-page for access-
ing TCGA databases. It features powerful search functionality and supplies some
rudimentary analysis tools. The most useful feature in the context of this work
was the “repository”, where data can be filtered and selected (“checked-out”)
for download. This yields a so-called “manifest” file which can then be passed
through the gdc-client.

gdc-client (46) ~ The gdc-client is a command line utility for downloading
data files from the TCGA database. It accepts manifest files generated via the
GDC Data Portal and downloads the files listed therein serially. It yields not
only clinical data files, but also transmission logs and annotation information.

GDC REST API ~ The GDC Representational state transfer (REST) Application
Programming Interface (API) represents the back-end functionality of the GDC
Data Portal. All information served via the Data Portal is available via the API
and vise versa. Use of the API is necessary when dealing with large amounts
of data in a programmatic fashion. For this work it was particularly useful for
retrieving meta-data about the files downloaded via the gdc-client.

5.1.4 TCGA Data Format

The TCGA Dataset (47) (which has since been integrated into the Genomic
Data Commons) is organized into top-level “projects” corresponding to primary
tumor sites, i.e. kidney, lung, ovary, etc. These projects contain some number of
cases, each with raw sequencing data, transcriptome profiling, single nucleotide
variation, copy number variation, methylation information, and biospecimen
supplement. The data model used by the GDC is explained in detail on the
GDC Data Model Components page (48). Legacy versions of the dataset contain
additional data, such as digital tumor specimen slides (45), which can be used
to assess tumor morphology. Each file also possesses meta-data, which contains
association information between files. Finally, there are some project-level
aggregate files including the somatic Mutation Annotation Format files, which
is where collected genomics data is stored (45). These files are created using a
pipeline described here: https://docs.gdc.cancer.gov/Data/File_Formats/MAF_
Format/

5.1.4.1 Clinical Data File Format
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Clinical data associated with cases in the TCGA is supplied in XML format, with
each file being approximately 30 KiB in size and containing approximately 130
fields. Each file belongs to a specific case in the dataset. These files optionally con-
tain information on tumor location, which was essential for this work. The avail-
able anatomic location information was available as one of eight classes: Cecum,
Ascending Colon, Hepatic Flexure, Transverse Colon, Splenic Flexure,
Descending Colon, Sigmoid Colon, and Rectosigmoid Junction as shown in
Fig. 6.

Cecum

ascending descending

transversehepatic flexure splenic flexure

sigmoid

rectum

anatomic
separation

rectosigmoid
junction

Figure 6: Visualization of the anatomic location information available via

the TCGA. The transverse colon and splenic flexure were not included in the

analysis. This is denoted by the lighter shade of gray.

5.1.4.2 Genomic Data Format

The genomic data in the TCGA database is available in multiple formats, the
result of three separate so-called “variant calling pipelines” using the variant
callers MuSE, VarScan and SomaticSniper, or MuTect. The detection of variants
in a tumor tissue sample is a complicated process and there is no consensus on
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the best variant calling algorithm (49).

Somatic Sniper has been largely superseded by next-generation variant callers
due to its high number of false-positive calls (50), and VarScan displays low
agreement with other variant callers (50).

MuTect is a variant calling algorithm developed by the Broad Institute which has
a well-established status as being highly-sensitive and highly-specific (51). It is
particularly good at detecting point substitutions in samples with low frequency
of mutations, which occur when there is great heterogeneity in the tumor sample
or the sample contains a measurable amount of normal cells. Moreover, it is
amongst the recommended variant callers when compared with others (50). Since
colorectal cancer is heterogeneous in nature and since it was neither possible to
control the tumor sample selection methods nor the preparation of the DNA
and thereby the relative amount of tumor cell DNA, the MuTect was chosen for
the analysis. Ideally, an intelligent ensemble method utilizing a combination of
callers would be ideal, however this was beyond the scope of this thesis.

5.1.4.3 Transcriptome Data Format

The transcriptome is the set of the RNA molecules in cells or a tissue. In a
narrower sense, “transcriptome” can refer specifically to mRNA. A number of
aspects have to be taken into account when dealing with transcriptomic data.

For one, the transcriptomic data is continuous, indicated by its representation
using floating point (decimal) values. Secondly, when generating expression data
using next-generation sequencing techniques, the length of the mRNA influences
the expected number of reads. As such, a higher number of reads may be due
either to a higher expression or simply a longer transcript. Thirdly, the mRNA
in cells are not always complete, but rather exist in fragments in various stages
of degradation, the rate of which is dependent on further extraneous factors.

It follows that the absolute amount of a transcript cannot be used to directly infer
expression levels. Instead, relative expression levels are generated by normalizing
the read counts to those of reference genes which are commonly referred to as
“housekeeping genes”. There are a number of ways to achieve this, but the TCGA
uses either FPKM (Fragments Per Kilobase of transcript per Million mapped
reads) (equation 1) or FPKM-UQ (FPKM-Upper Quartile) (equation 2).
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FPKM = RCg ú 109

RCg� ú L
(1)

FPKM ≠ UQ = RCg ú 109

RCg75 ú L
(2)

• RCg: Number of reads mapped to the gene
• RCg�: Number of reads mapped to all protein-coding genes
• RCg75: The 75th percentile read count value for genes in the sample
• L: Length of the gene in base pairs, calculated as the sum of all exons in a

gene

In both cases, the 109 reads per gene are normalized to all reads multiplied
by the length of the gene in question. Normalizing by the length of the gene
ensures that large genes do not erroneously lead to high measured expression
levels and vice versa. Then, in FPKM, the read counts are normalized over
all reads mapped to all protein-coding genes, whereas in FPKM-UQ, the read
counts are normalized over the upper quartile, that is, the upper quarter of read
counts for the given batch of genes (52). This makes it easier to compare values
generated using di�erent experimental conditions. It is worth noting that this
normalization procedure depends on the specific batch of genes it was normalized
against. This means that in order for the scaled values to be useful, they have
to be analyzed in the context of the entire gene set.
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6 Results

A large portion of the work involved modifying the format of the incoming data
from the TCGA dataset for further processing and final analysis.

Care was taken not to modify the original data in-place to ensure that the
work-flow would be reproducible. In order to maintain consistency in naming
conventions, files and cases —once read— are referred to strictly by their
universally unique identifier (UUID)

6.1 Retrieval

A large number of files from the TCGA portal were required in order to conduct
the analyses, including clinical data, mutation data, and normalized transcrip-
tome data. The GDC uses a relational database to represent the data, however
the client-side implementation is file-system-based. This greatly reduced up-
front implementation complexity and allowed for the utilization of native python
functions and iteration methods to build the data frames.

The files were selected from the GDC Data Portal, then a manifest file was down-
loaded via the browser, and finally the manifest file was fed into the gdc-client

program which conducted the download of the actual files. The download via the
gdc-client yielded transmission logs and annotation information in addition
to the actual data.

The transmission logs are files containing information about the transfer of data
from the server to the local machine to control the quality of the data. In
this case the data transmission concluded without errors so that the veracity
of the download was assumed. However, the transmission logs needed to be
removed before further analysis could be conducted. Removal was done by
an iterating procedure over the file hierarchy in search of files matching a
regular expression. Regular expressions (also known as regex) in formal
language theory are search patterns for use in string searching algorithms and
are ubiquitously implemented in word processors.

The relationships between the files and their corresponding cases are necessary for
associating di�erent files with one another. However, this information is stored
in separate server-side meta-data and so had to be queried separately using the
GDC REST API. This was done by iterating through the manifest file, extracting

27



the UUID for each downloaded file, querying the REST API for that UUID using
the python request library, and dumping the resulting json data to a file on
disk. Then the meta-data was searched for the case_id and this association was
stored in a dictionary, with each file having an entry containing its associated
case in the TCGA-COAD project. After this database was constructed, the
association of the matrix was reversed, creating a one-to-many association of
cases and their respective files.

6.2 Filtering

The TCGA COAD Project contains 459 cases. Having retrieved the data (n=459,
100%), the parameters needed for the analysis had to be extracted and filtered.
Processing the data to get it into a state in which it can be analyzed is sometimes
called “data munging”. This takes up a large portion of the work and each step
requires careful planning to avoid both introducing unwanted complexity and
reducing the data set more than necessary.

6.2.1 Annotations

The downloaded files were searched for annotations, which is how possible
confounding features such as preceding or additional cancers are noted in the
database (45). Though using this information is theoretically possible, the deci-
sion was made to ignore these cases, 69 in total, as correcting for the confounders
on a case-by-case basis would have immensely increased the complexity of the
analysis (n=390, 85%).

6.2.2 Localization

Since right-sided CRC tend not to respond to anti-EGFR therapy despite KRAS
and NRAS wild-type configuration, it was hypothesized that the discovery
of genomic markers which predict left- and right-sidedness could also help to
mechanistically explain the di�erence in anti-EGFR response. As such, the goal
was to compare only two classes, “left” and “right” tumors, so these groups
had to first be rigorously defined. This was done using the clinical data from
the TCGA. The tumor location information was extracted from each of the 459
clinical data files. 16 cases had no such information and so had to be removed
from the analysis. This was done by iterating over the clinical data files of each
case in the dataset and comparing the available tumor location data with the
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sets defined below. The 16 cases containing files containing no such data where
flagged for removal and removed en bloc at the end of the iteration (n=374,
82%).

The anatomic location information was available from the GDC as a set of 8
classes as shown in Fig. 6.

The 23 Transverse Colon and Splenic Flexure cases where also removed
from the analysis (n=351, 77%). It was suspected that this would achieve a
better separation of the two groups. This point was chosen because the Arc
of Riolan, an arterio-arterial anastomosis between the superior and inferior
mesenterial arteries, and the Cannon-Böhm point, which marks the transition
from vagal to sacral innervation, are both found in this section of the colon, and
as such it represents the natural junction between mid- and hindgut (53). The
final grouping was:

Right Colon ~ Cecum, Ascending Colon, Hepatic Flexure

Left Colon ~ Descending Colon, Sigmoid Colon, Rectosigmoid Junction

Now after having clearly separated groups of cases representing left and right,
the next requirement was to retrieve the genomic and transcriptomic data and
then to find a set of cases for which all data was available. This amounts to a
definition and intersection of three sets: the clinical, genomic, and transcriptomic
data. This was done serially in three major steps, as shown in Fig. 7 and
described below.

clin gen

trans

clin ∩ gen

clin ∩ gen ∩ trans

Figure 7: Diagram showing the set operations performed on the data.
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6.2.3 Genomic Data

The mutation data of the TCGA is stored in mutation annotation format (MAF)
files. These files contain all mutations for all cases of a project in a long list
of variant calls. This list was first filtered to remove information which was
irrelevant to the analysis.

6.2.3.1 Missing Data

Ideally, TCGA MAF files contain variant information for all cases in a project.
However, 42 of the cases for which clinical data was available had no entry in
the MAF file. Thus, these cases had to be removed (n=293, 64%). Conversely,
64 cases referenced in the MAF file had no associated clinical data and were also
removed, though this did not impact the total number of cases. After filtering
out this incomplete data, the remaining cases were comprised of both clinical
and variant data.

6.2.3.2 KRAS and NRAS Mutations

Since KRAS and NRAS mutations have already been established as highly
correlated with anti-EGFR resistance (9), the cases where these mutations were
present were removed. This was done by first generating a list of the associated
case_id�s of variants with the Hugo_Symbol “KRAS” and “NRAS”. Then, all
variant calls with a case_id matching one of the case_id�s in the previously
generated list where removed from the matrix. This reduced n by another 130
cases (n=163, 36%).

6.2.3.3 Synonymous Variants

Synonymous variants are those variants which do not change the amino acid
in the final protein. For example the triplets CGA and CGC di�er in their final
base (A vs. C), yet they both encode the same amino acid (Arginine). This is
due to the redundancy of the genetic code. Under the assumption that known
synonymous variants have no discernible e�ect on the pathogenesis of tumors
and are most likely polymorphisms or artifacts of hyper-mutated tumor genomes

—which needed to be controlled for— these 21,751 variants were removed from
the feature set. This was done by using the Consequence column in the MAF
file. All calls where the Consequence value was equal to synonymous_variant
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where removed. This did not reduce the number of cases but was an important
feature reduction step.

6.2.3.4 Transposition of the Matrix

Finally, the mutation information had to be associated with each corresponding
case. Since the MAF file does not o�er this information directly, as is the case
with the clinical data, where each case has an associated clinical data file, it was
necessary to transpose the matrix so that each row corresponds to a particular
case and each column denotes a gene with a potential mutation. This is shown
by example in Fig. 8.

Hugo_Symbol Entrez_Gene_Id Start_Position End_Position case_id …

gene1 … … … 7 …

gene2 … … … 9 …

gene3 … … … 3 …

gene4 … … … 7 …

gene5 … … … 6 …

gene6 … … … 8 …

gene7 … … … 7 …

gene8 … … … 4 …

gene9 … … … 4 …

case_id gene1 gene2 gene3 gene4 gene5 gene6 gene7 gene8 gene9

1 0 0 1 0 0 0 1 0 0

2 0 0 1 0 0 1 0 1 1

3 1 1 1 0 1 0 0 0 0

4 1 1 1 1 1 0 1 1 1

5 1 0 1 1 0 0 0 1 1
6 0 1 0 1 0 0 0 1 0

7 0 1 1 0 0 1 0 0 0

8 1 1 0 0 0 0 0 0 1

9 0 1 0 0 0 1 0 1 0

Figure 8: Transposing the database matrix over the value case_id retaining

only mutation status of Hugo_Symbol. “1” and “0” in the bottom table represent

the binary mutation status, where a “1” denotes the existence of a particular

mutation (column) in a given case (row) and a “0” denotes its absence.
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6.2.3.5 Hypermutation

Looking at the variant count distribution (in Fig. 9), it can be seen that the
number of variants per sample di�ers greatly between left and right tumors,
with a large number of right-sided samples having more than 250 variants. This
hyper-mutated state is described as CMS1 (16) and is highly correlated with
right-sidedness in the CMS classification. Training the random forest classifier
on this data yielded a ROC curve (Fig. 11), which denotes a bias in the classifier.
This means that the classifier relies on the discrepant variant counts instead
of the variants themselves for its prediction. Since the variants in the MSI
(microsatellite instability) cases are unlikely to be mechanistically involved in
anti-EGFR resistance but are nonetheless asymmetrically represented in the
classes, the predictive power (in this case for right-sidedness) of these variants
would be unrealistically high. Additionally, specific therapy is available for
MSI high CRC via anti-PDL1 (programmed death ligand 1) chemotherapy (54).
Therefore, microsatellite-instable cases had to be removed from the analysis if
novel markers where to be discovered. A variant count of 250 was used as a
cuto� to exclude cases with high frequency of mutations, as this was an easy-to-
implement surrogate for MSI status. This resulted in an additional 40 samples
with higher variant counts which were removed from the final analysis (Fig. 10)
(n=123, 27%).

n mutations / case

n cases

80

60

40

20

0
0 2k 4k 6k 8k 10k

left-sided
right-sided

Figure 9: Native Variant Frequency Distribution. In the set of right-sided

tumors, there exist some cases with an extreme number of mutations, represented

by data points on the far right of the graph.
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Figure 10: Corrected Variant Frequency Distribution. After removing the

extreme cases, the two groups are more similar, thereby largely correcting the

selection bias.
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Figure 11: The sigmoid ROC due to discrepant mutation distributions in the

classification groups.

6.2.4 Transcriptomic Data

The initial consideration of combining genomic and transcriptomic data to train a
single set of classifiers would have made analysis practically impossible due to the
di�ering dimensionality of the data. This is due to the fact that the classifying
algorithms predict a dependent variable (in our case tumor location) per unit
change of an independent variable. In order to compare the feature “importance”
over the combined feature space, either the boolean mutation values would
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need to be normalized over the range of possible transcriptome values, thereby
artificially inflating the dimensionality and reducing the predictive power per unit
change by at least three orders of magnitude, or the range of the transcriptome
values would have had to be reduced to boolean, thereby artificially reducing
the entropy of the data. Both of these choices would have required a much
greater number of cases, which were unavailable. As neither of these possibilities
were feasible, the alternative chosen was to train separate classifiers on the two
datasets.

FPKM-UQ data was chosen as the format for the transcriptomic data as it
facilitates the comparison of the generated values with other results which may
have been generated using di�erent experimental conditions. The transcriptome
data in the TCGA database is organized analogously to the mutation annotations
in that the relationship is inverse to that of the clinical data. As such, the
association in the data had to be transposed in the same way as the mutation
data.

After removing the cases unsuitable for analysis, 27% of the original dataset was
left, a total of 123 cases.

6.3 Analysis

The reduced dimension visualization using t-SNE showed some potential –albeit
modest– clustering of left- and right-sided tumors(17)1.

For the final analysis, two binary classification techniques were chosen, cross-
validated logistic regression and random forest. Logistic regression is widely-used
and well-understood and serves as a baseline result for better comparison with
other research, while Random Forest is a relatively new ensemble classification
technique and potentially yields better results. Both models where implemented
such that it was possible to extract the n most important features (in terms of
coe�cient values and gini importance for logit and rf, respectively2) and n

“most sided” (where the calculated probability for the class was highest amongst
all cases) which was the means of selection for potential further histomorphology.

The classification target was tumor location, which was encoded as a boolean
tumor left. In other words, the algorithms classified cases as being left (true)

1To see this interactive analysis, please refer to the source code of this thesis (Section 9.8.2)
2for definitions of these terms, please refer to the respective section in the methods
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or not-left (false).

6.3.1 Logistic Regression

The logistic regression was tuned using nested cross-validation. The benefit of
cross-validation is its use of the entire dataset for training, thereby maximizing
the available data, while being resilient against over-fitting. The choice of 12
for k enabled an optimal use of hardware, as it was exactly twice the number of
processor cores available (which was 6). This allowed for parallel computation
of 6 inner folds at a time, which was repeated twice for each of the default 10
outer folds (55), resulting in 120 unique iterations. If the choice of k had not
been a multiple of the processor cores then the cores would not have been able
to parallelize the load e�ciently. For example, had 13 inner folds been chosen,
then the computer would have run 6 parallel threads twice, followed by a single
thread, thereby increasing the computation time by 50% for a single additional
inner fold.

The variance between the folds3 was used to calculate a standard deviation of
the modal over the input data, allowing for an evaluation of the reliability of the
results.

6.3.2 Random Forest

A liberal one fourth of total features (20,000) was chosen as the number of trees
for the random forest classifier (this was the recommendation as discussed in
a consultation with a statistics institute in Munich). The size of XSf

4 was set
to

Ô
features, a commonly chosen value to encourage tree variability, and the

default value for RandomForestClassifier() (56).

A measure of variance in the random forest model similar to the one implemented
in the logistic regression model was taken into consideration but ultimately not
implemented, as this would have greatly increased the computation required.
The results from the random forest classifier could be su�ciently interpreted by
comparing them with the results from the logistic classifier.

3refer to the methods section for an explanation of cross-validation "folds"
4the subset X of features f of a subset of samples S. For a more detailed explanation,

please refer to the methods.
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7 Analysis Results

It was hypothesized that it would be possible to generate molecular (genomic
or transcriptomic) predictors of tumor location by training classifiers, using the
classification target tumor left versus non tumor left (=right). As analysis
was done on two datasets using two algorithms, a total of four results was yielded.
The ROC curves of all classifications are shown in Fig. 12.
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Figure 12: Overview of the receiver operating characteristics of both classifiers

on both data sets. A: Logistic regression on genomic data. The line of non-

discrimination is included within one standard deviation of the result. (AUC =

0.61 ± 0.11). B: Random forest classification on genomic data (AUC = 0.6).

C: Logistic regression on transcriptomic data (AUC = 0.82 ± 0.1). D: Random

forest classification on transcriptomic data (AUC = 0.7).
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Since the logit regression estimates correlate with the dependent variable (left-
sidedness), the coe�cients of the logit regression are positive when the variable
correlates positively with left-sidedness, and negative when positively correlated
with right-sidedness. The random forest classifier does not yield coe�cients but
rather gini importance, which is a measure of classification power irrespective
of outcome. Therefore the results of the random forest classifiers are all positive.

The functions of the genes found are discussed in further detail in the Discussion.

7.1 Genomic Data

7.1.1 Logit

The logit analysis of the genomic data yielded a ROC (receiver operating char-
acteristic) with an AUC (area under the curve) of 0.61 ± 0.11 (Fig. 12), a
non-significant result as it contains 0.5. The 20 genes with the largest coe�cients
(10 largest left and 10 largest right) show that the classification power was mostly
influenced by right-sidedness-predicting variables (Fig. 13).

The genes of the variants (57) of the 10 largest coe�cients in descending order
were

• MEIS3 - Meis Homeobox 3
• APC - Adenomatous polyposis coli
• SSH2 - Slingshot Protein Phosphatase 2
• AMER1 - APC Membrane Recruitment Protein 1
• PLCZ1 - Phospholipase C Zeta 1
• BRAF - B-Raf proto-oncogene, serine/threonine kinase
• RYR3 - ryanodine receptor 3
• SMAD4 - Mothers against decapentaplegic
• PCDHGA7 - Protocadherin Gamma Subfamily A, 7
• OR52L1 - Olfactory Receptor Family 52 Subfamily L Member 1

7.1.2 Random Forest

The results from the logic analysis were corroborated in the random forest
analysis. The random forest analysis yields an ROC without a measure of
accuracy (while possible, the implementation is considerably more complex and
so was decided to be beyond the scope of this work). However, considering the
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Figure 13: The 20 genomic variants with largest regression coe�cients (10

largest left and 10 largest right) as identified by the logit classifier.

small AUC of 0.6 (Fig. 12), which is in consensus with the logit analysis, it can
be assumed that the results of this analysis (Fig. 14) are similarly non-significant.

It is reassuring however that there is a large overlap in best predictors (7 of
10). AMER1, APC, BRAF, PLCZ1, BRAF, PCDHGA7, and RYR3 are all
represented in the most important features for the random forest and logit
classifiers.
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Figure 14: 10 most important features of RF classifier trained on genomic data.

In light of the significance, a further interpretation of the results is ine�ectual.
The results from the transcriptomic data is discussed in much further detail
below.

7.2 Transcriptomic Data

7.2.1 Logit

The logit analysis of the transcriptomic data yielded a ROC with an AUC of 0.82
± 0.1 (Fig. 12). Unlike the genomics results, the transcriptomics logit classifier
used more left-sidedness predictors for its classification.

Transcript Gene Description (57)(58) Predicts

ENSG00000159182.4 PRAC1 PRAC1 small nuclear protein left
ENSG00000130303.11 BST2 bone marrow stromal cell antigen 2 right
ENSG00000100979.13 PLTP phospholipid transfer protein left
ENSG00000115414.17 FN1 fibronectin 1 left
ENSG00000179914.4 ITLN1 intelectin 1 left
ENSG00000109321.9 AREG amphiregulin left
ENSG00000189060.5 H1F0 H1 histone family member 0 left

The eighth and further coe�cients have absolute values < 0.5µ and taper o� very
slowly, strongly suggesting that these coe�cients are not significantly discernible
from statistical noise.

The transcript ENSG00000159182.4, corresponding to the gene PRAC1 (PRAC1
small nuclear protein), is highly predictive of left-sidedness, having a coe�cient
larger than the next biggest coe�cient by a factor of over 3.5 (Fig. 15).

7.2.2 Random Forest

The random forest classification yielded a ROC with an AUC of 0.7 (Fig. 12). It
identified ENSG00000159184.7, ENSG00000180806.4, and ENSG00000159182.4
as the top 3 most important features (Fig. 16). The first two transcripts
correspond to homeobox B13 and C9 (58), respectively, and PRAC1, the third
most important transcript, being identical to the top logit predictor, corroborates
the result from the logit regression.
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Figure 15: The 20 transcripts with largest regression coe�cients (10 largest left

and 10 largest right) as identified by the logit classifier.

Transcript Gene Description (57)(58)

ENSG00000159184.7 HOXB13 homeobox B13
ENSG00000180806.4 HOXC9 homeobox C9
ENSG00000159182.4 PRAC1 PRAC1 small nuclear protein
ENSG00000197757.7 HOXC6 homeobox C6
ENSG00000169676.5 DRD5 dopamine receptor D5
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Transcript Gene Description (57)(58)

ENSG00000228630.4 HOTAIR HOX transcript antisense RNA
ENSG00000128610.10 FEZF1 FEZ family zinc finger 1
ENSG00000230316.5 FEZF1-AS1 FEZF1 antisense RNA 1
ENSG00000229637.3 PRAC2 PRAC2 small nuclear protein
ENSG00000037965.5 HOXC8 homeobox C8
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Figure 16: Ten most important features of RF classifier trained on transcriptomic

data.
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8 Discussion

It was hypothesized that it would be possible to find molecular markers which
could help mechanistically explain the tumor-biological di�erences, in particular
the di�ering response to anti-EGFR therapy, between left- and right-sided
colorectal cancers by using machine learning classifiers to predict tumor location
based on genomic and transcriptomic data from the TCGA database. The
genomic and transcriptomic datasets di�er significantly in their information
density. While a genomic datum is boolean and therefore dichotomous, a
transcriptomic datum encodes information on a much wider range of possibilities,
allowing for a more subtle analysis. This explains why, although the gini

importance per unit change is less for the transcriptomic data, the result is
nonetheless more statistically significant.

By consistently reproducing findings from previously published work by other
authors, the validity of the classifier as implemented in this thesis was demon-
strated as a means of analyzing genomic and transcriptomic data. Unfortunately
it was not possible to define further novel predictors of tumor location, as the
statistical significance of the lesser predictors is questionable in light of the final
sample size of n = 123 after adjusting the data.

The results are organized into a genomic and transcriptomic part, as these
analyses were conducted separately from one another. The genomics results are
discussed first to keep with the structure of the rest of this thesis.

8.1 Genomics

The genomics analysis did not yield statistically significant results. As such, no
conclusions can be drawn from the results. For example, the gene of the top
predictor, PLCZ1, is expressed exclusively in the acrosome of spermatozoa where
it generates Ca2+ oscillations (59). It has no known connection to colorectal
cancer and its usefulness in this classification setup is likely due to chance.
It follows that the lesser predictors are even more likely to be no more than
statistical noise.
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8.2 Transcriptomics

The transcriptomics dataset yielded better results. This is likely due to the
higher dimensionality of the data. Although there where less features in total
compared to the genomics data, each feature carried more information than the
dichotomous values in the genomics dataset.

Transcript ENSG00000159182.4, corresponding to the gene PRAC1, which was
identified by the logit and RF classifiers as being highly predictive of left-
sidedness, was identified recently by researchers in China as being significantly
down-regulated in right-sided coloadenocarcinoma (60) which is consistent also
with previous findings (61). The positive correlation with left-sidedness fits well
into this established framework.

ENSG00000130303.11 or BST2 was the second-best predictor and the only
predictor of right-sidedness in the logit model. The exact function of the BST2
protein remains unclear, but it is likely involved in the restriction of infectivity
of various viruses as part of the BST-2/CD317/HM1.24/tetherin complex (62).
Additionally, BST2 has been shown to be over-expressed in colorectal cancers
(63) and while the localization of the cases was not considered in the cited
analysis (63), the overall post-operative survival of BST2-positive cases was
worse than BST2-negative cases (63), which is consistent with the prediction of
right-sidedness in the logit model.

Transcript ENSG00000100979.13 was the second-strongest predictor of left-
sidedness in the logit regression model. It corresponds to the gene PLTP which
plays an important role in lipoprotein metabolism and has been shown to be up-
regulated in obese men (64). Additionally, high HDL and hypercholesterolemia
have been shown to be protective factors in CRC in mouse models (65). As such,
if the PLTP protein is up-regulated in left-sided coloadenocarcinomas and has a
protective function, this could be a potential explanation for the better overall
survival of patients with left-sided coloadenocarcinomas. However more research
is needed to say for certain.

HOXB13 and HOXC9, as identified by the transcriptomic logit and random
forest classifiers, belong to the homeobox (HOX) gene family, which is highly-
conserved among vertebrates (66). HOXB13 is expressed exclusively in colon and
prostate, indicating a potential association with the di�erent levels of PRAC1
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expression, a gene similarly expressed in prostate, colon, and rectum. It has also
been shown to be down-regulated in left-sided colon cancers (67). HOXC9 has
been associated with colorectal carcinogenesis (68). The high gini importance

of this gene family in the random forest classification also fits well into this
established framework.

PRAC1, HOXB13, HOXC9, HOXC6, HOTAIR, PRAC2, and HOXC8 all belong
to the homebox gene family and their association with one another was uncovered
by the random forest classifier. The fact that PRAC1 had the largest logit
coe�cient but was only third-best in terms of random forest gini importance

is likely due to the ability of the random forest algorithm to assess compounding
e�ects. This means that there are probably combinations of genes containing
PRAC1, HOXB13, HOXC9, etc. in various combinations which predict tumor
location better than any one transcript alone. PRAC1 belongs to the posterior
HOXB gene cluster (69) and a group of researchers in Japan noted a significant
di�erence in the expression of the homeobox gene family in the morphological
domains of the digestive tract in a chick-model (70), which may indicate a
neoplasia-independent marker of sidedness. However, while the classifier may
have picked up on this physiological di�erence in expression, the fact that these
genes are additionally down-regulated in left-sided colon cancers (67) may hint
toward the progenitor tissue as a determining factor in CRC development. It
remains unclear what role the various homeobox genes play in oncogenesis and
regulation, but it appears to be very heterogeneous with some promoting and
others inhibiting tumor growth (71). As such, more research is needed for a
mechanistic explanation to be gleaned from these results.

Transcript ENSG00000115414.17 corresponds to the gene FN1 which is involved,
among other things, in cell adhesion and metastasis (72). Fibronectin (along
with collagen) was shown by the CMS research group to be associated with
CMS4 (16), which has poor overall survival and relapse-free survival, compared
to the other CMS. CMS4 is slightly more prevalent in left-sided CRC than
in right-sided CRC (see Fig. 3). The fact that the logit regression identified
this transcript as the fourth most important predictor fits into this established
framework.

Transcript ENSG00000179914.4 corresponds to the gene ITLN1. ITLN1 plays
a potential role in modulating insulin action and therefore glucose uptake (73).
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It additionally modulates the phosphorylation of Akt (73), thereby posing a
potential mechanism of anti-EGFR therapy resistance. More research is needed
to say for certain if intelectin plays a mechanistic role in this context.

Transcript ENSG00000109321.9 corresponds to the gene AREG. Amphiregulin
is a EGFR ligand and stimulates cell proliferation, apoptosis, and migration and
has been shown to be up-regulated in colon cancer (74). The fact that AREG
was associated with left-sidedness may hint toward a more complex association,
since left-sided CRC tend to have better overall survival. Perhaps the lack of
AREG up-regulation in right-sided CRC promotes the development of other,
more detrimental tumor-biological changes. More research is needed to say for
certain.

8.3 Closing Remarks

By framing the hypothesis around the notion that there is a discernible di�erence
between left- and right-sided CRC on the genomic and transcriptomic level and
training machine learning classifiers on the data, results were produced which
show the di�ering impact the features have on predicting the tumor location.
The results do not allow for the interpretation of the absolute impact of a feature,
be it a genetic mutation or a relative di�erence in amounts of a transcript, on
the biology of the cancer.

The classification analysis resulted in a number of genes which have been previ-
ously validated by other researchers and fit in the established framework both
of oncogenic/tumor-biological (PRAC1, homeobox genes, FN1, and Amphireg-
ulin) and metabolic (PLTP and ITLN1) factors. The tumor-biological factors
represent potential but as-of-yet undeveloped chemotherapeutic targets such
as cell-adhesion pathways and modulators of di�erentiation. However while
these genes help to explain the tumor-biological di�erences between left- and
right-sided CRC, it remains unknown if these molecular markers are perhaps
only the symptom of some other, yet-to-be-determined mechanism. On the other
hand, the metabolic factors underscore the importance of dietary and lifestyle
factors influencing the development of colorectal cancer; CRC does not need to be
treated via chemotherapy if it can be prevented by helping individuals regulate
their cholesterol and blood sugar levels. As such, prevention will continue to
play an important role in the fight against colorectal cancers for the foreseeable
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future.

The analysis was hampered by a lack of usable input data. Unfortunately, this
meant that it was not possible to identify molecular predictors of tumor location
beyond those previously documented. The fact that the transcriptomic data
yielded significant results while the genomic data did not is likely due to the
more precise nature of the data. It also reinforces the notion as stated in the
CMS paper that transcriptomics allow for a more refined sub-classification of
CRC compared to genomics alone (16). Ideally, both genomic and transcriptomic
data should be used in an intelligent ensemble approach in order to maximize
the size of the incoming dataset, as this was the limiting factor in this thesis
and continues to be a major obstacle for multi-omics-based analyses. The CMS
paper for example used an intelligent ensemble containing data from 18 separate
data sets, including the TCGA, normalized into a single matrix (16). However,
the statistical expertise required for this approach was not available and went
above and beyond the scope of this thesis. Another potential approach would be
to disregard the genomics data altogether, thereby avoiding the loss of data via
integration and maximizing the amount of data available to the transcriptomics
classifier. This should be taken into account when approaching further research
topics. Furthermore, in an attempt to increase the separation of the target
classes, 23 intermediate cases (transverse colon, splenic flexure) from the TCGA
dataset were ignored. Integrating these into the data and training not only for a
binary but a multi-class outcome may also provide clues about the mechanism
behind the tumor-biological di�erences seen clinically in CRC. For example, a
gradual progression of transcript amount may hint towards gut milieu as an
oncogenic factor, while an abrupt change around the splenic flexure would be
more indicative of a embryological, progenitor-tissue dependent di�erence.

The choice of alternate classification algorithms may also lead to better results.
While logistic regression is a robust algorithm with a proven track-record espe-
cially in the medical field, it can be outperformed by next-generation classifiers
such as random forest or support vector machines. The random forest algorithm
in particular is well-suited to the analysis of genomic and transcriptomic data
where there are many more dimensions than there are samples, since the rate
of convergence is proportional to only the subset of important features. The
trade-o� is the potentially more complex interpretation of results since they may
not be framed in the traditional units of measure many researchers have become

46



accustomed to. Nevertheless, analysis using algorithms other than the ones used
here may potentially lead to further insights while avoiding the need to harvest
new input data. Support vector machines (SVM) in particular show potential
in genomics research due to their intrinsically high-dimensional nature. The
computational complexity of SVM classification is also largely independent of
the dimensionality of the data, rather on the sample size n (in the form n(n≠1)

2 ),
which tends to be rather small in research scenarios similar to this one. However,
the limiting factor remains the amount of data. Regardless, the classifiers already
trained in the context of this thesis can also be validated and/or further trained
on new input data, should this data be collected some time in the future via
projects similar to the TCGA Project.

It is encouraging to see that even with relatively simple means, using completely
open-source and freely-available software packages, robust methods can be
implemented and utilized to analyze the overwhelmingly large quantities of data
available in the medical field today, in a way that is accessible and reproducible
for anyone with a laptop and an Internet connection. In addition, the methods
put forth in this work and available online in the spirit of open research can be
easily –even directly— applied to further analysis of the TCGA dataset.

The retrieval steps in particular are useful outside the scope of this project.
While some packages already exist for accessing the TCGA dataset using the R
programming language (75)(76), RTCGA has been failing its own build tests since
September 2017, and FirebrowseR is a simple R wrapper for the Firebrowse

REST API provided by the Broad Institute. So far, no packages are available
for the python programming language. While this work does not constitute a
plug-and-play solution, a point was made to use best-practices for the original
work and common, well-maintained packages where ones already existed. As
such, a user with basic understanding of programming and data structures could
easily modify the code base to suit their specific needs.
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9 Jupyter Notebook

9.1 Notes

• In order to maintain consistency in naming conventions, files and cases are
referred to strictly by their UUID.

• The original plan was to use a single case_to_file dictionary to store
all files for a given case, and output all data into a common directory. It
has remained in place since it most naturally represents the data as a file
belonging to a case, but its use creates more work. May be refactored at a
later time.

9.2 Set Flags

first_run = False

verbose = True

verboseprint = print if verbose else lambda *a, **k: None

9.3 Dependencies

import os

import glob

import requests

import csv

import shutil

from collections import defaultdict

try:

import simplejson as json

except ImportError:

import json

import gzip

import pandas as pd

import numpy as np

import xml.etree.ElementTree as ET
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from scipy import interp

from matplotlib.pyplot import get_cmap

from plotly.offline import download_plotlyjs

from plotly.offline import init_notebook_mode

from plotly.offline import iplot

import plotly.graph_objs as go

init_notebook_mode()

from sklearn.manifold import TSNE

from sklearn.linear_model import LogisticRegressionCV

from sklearn.ensemble import RandomForestClassifier

from sklearn.model_selection import train_test_split

from sklearn.model_selection import StratifiedKFold

from sklearn.metrics import classification_report

from sklearn.metrics import precision_recall_curve

from sklearn.metrics import roc_curve

from sklearn.metrics import auc

input_dir = os.path.join(os.getcwd(), �in�)

output_dir = os.path.join(os.getcwd(), �out�)

# initialize input directory

in_clin_manifest = os.path.join(

input_dir,

�clinical�,

�clinical_manifest.tsv�)

in_clin_data = os.path.join(

input_dir,

�clinical�,

�data�)

in_maf_file = os.path.join(input_dir,

�maf�,

�TCGA.COAD.mutect.853e5584-b8c3-4836-9bda-6e7e84a64d97.DR-7.0.somatic.maf�)
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varsome_api_key_file = os.path.join(input_dir, �varsome_api_key�)

# initialize output directory

out_clin_data = os.path.join(output_dir, �clinical�, �data�)

out_clin_meta = os.path.join(output_dir, �clinical�, �meta�)

mut_df_file = os.path.join(output_dir, �mut_df.gz�)

trans_df_file = os.path.join(output_dir, �trans_df.gz�)

if first_run:

for path in [out_clin_data, out_clin_meta]:

os.mkdirs(path)

class tcgaFileQuery:

def __init__(self, file_id):

_cases_endpt = �https://gdc-api.nci.nih.gov/files/ids�

self._payload = {�query�: file_id}

self._response = requests.get(_cases_endpt, params=self._payload)

self.data = self._response.json()

self.case_id = self.data[�data�][�hits�][0][�cases�][0][�case_id�]

self.data_type = self.data[�data�][�hits�][0][�data_type�]

def dump_json(json_data, path):

with open(path, �w�) as jsonFile:

json.dump(json_data, jsonFile, separators=(�,�, �: �), indent=4)

def fetch_metadata(manifest, output_location):

file_to_case = {}

UUID_to_filename = {}

# metadata from server to file_to_case

verboseprint(�loading � + manifest + �...�)

with open(manifest) as tsvFile:

# get lenth of manifest file

for line_count, value in enumerate(tsvFile):

pass
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tsvFile.seek(0) # return to top of file

tsvData = csv.reader(tsvFile, delimiter=�\t�)

next(tsvData, None) # skip header row of manifest file

for row in tsvData:

file_id = row[0]

UUID_to_filename[file_id] = row[1]

verboseprint(

str(line_count)

+ �\tfetching metadata for �

+ str(file_id)

+ �...�,

end=��

)

json_file = os.path.join(

output_location,

str(file_id) + �_meta.json�)

if first_run:

queryResult = tcgaFileQuery(file_id)

dump_json(queryResult.data, json_file)

# store important metadata in databse

file_to_case[file_id] = (queryResult.case_id,

queryResult.data_type)

else:

with open(json_file, �rt�) as jsonFile:

reader = jsonFile.read()

jsonData = json.loads(reader)

json_case_id = jsonData[�data�][

�hits�][0][�cases�][0][�case_id�]

json_data_type = jsonData[�data�][
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�hits�][0][�data_type�]

# store important metadata in databse

file_to_case[file_id] = json_case_id, json_data_type

verboseprint(�done�)

line_count -= 1

verboseprint(�all metadata retrieved successfully�, �\n�)

verboseprint(�flipping association...�, end=� �)

# flip association, since one case potentially

# contains multiple files

case_to_file = {}

for file_id in file_to_case:

case_id = file_to_case[file_id][0]

file_type = file_to_case[file_id][1]

case_to_file[case_id] = file_id, file_type

verboseprint(�done�)

return case_to_file, UUID_to_filename

def remove_annotated(input_data, case_to_file, UUID_to_filename):

# by using a defaultdict, even if multiple files

# of a case are annotated, no duplicate entries are

# created (as with a list) and no key errors result

is_annotated = defaultdict(lambda: False)

for case_id, f in case_to_file.items():

file_id = f[0]

path_to_file = os.path.join(input_data,

file_id,

UUID_to_filename[file_id])

# verboseprint(�looking at file�, file_id, �... �)
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if os.listdir(os.path.split(path_to_file)[

0]).count(�annotations.txt�) > 0:

verboseprint(�annotation found for case�, case_id)

is_annotated[case_id] = True

verboseprint(len(is_annotated), �annotated cases found�)

verboseprint(�ignoring annotated cases�)

for case in is_annotated.keys():

del case_to_file[case]

return case_to_file

9.4 Retrieve from Disk

if the workflow has been executed before, the assembled DataFrame can be
extracted from disk. Use the link below to jump to the Data Analysis section.

case_to_mut_df = pd.read_pickle(mut_df_file, compression=�gzip�)

case_to_trans_df = pd.read_pickle(trans_df_file, compression=�gzip�)

Jump to Exploration and Analysis

9.5 Genomics

9.5.1 Fetch Genomic Metadata

clin_c_to_f, clin_id_to_fn = fetch_metadata(in_clin_manifest, out_clin_meta)

9.5.2 Remove annotated cases

cases are annotated mostly due to some confounders and would require more
complicated analysis to compensate for, so we will ignore them for the time
being

clin_c_to_f = remove_annotated(in_clin_data, clin_c_to_f, clin_id_to_fn)

verboseprint(�after removing annotated cases, our n =�, len(clin_c_to_f))
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9.5.3 Copy Clinical Data to Output

this way we retain the input as-is and can work on the output without worrying
too much.

def clin_to_output():

verboseprint(�copying/extracting to output folder...�)

for case, file in clin_c_to_f.items():

in_file = os.path.join(in_clin_data, file[0], clin_id_to_fn[file[0]])

out_location = os.path.join(out_clin_data, case)

out_file = os.path.join(out_clin_data, case, file[0] + �.xml�)

os.mkdir(out_location)

verboseprint(�copying file�, file[0], �to output...�, end=��)

shutil.copyfile(in_file, out_file)

verboseprint(�done�)

verboseprint(�extraction complete\n�)

if first_run: clin_to_output()

9.5.4 Define “Left” & “Right”

anatomic_right = (�Cecum�,

�Ascending Colon�,

�Hepatic Flexure�)

# �Transverse Colon�

anatomic_left = (�Descending Colon�,

�Sigmoid Colon�,

�Rectosigmoid Junction�)

# �Splenic Flexure�

9.5.5 Extract Tumor Location

retrieve tumor location information from clinical data. some cases do not contain
anatomic location information, so we cannot use them for our analysis

def extract_tumor_location_from_clin():

tumor_location = {}

cases_without_location = []
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for case, file in clin_c_to_f.items():

# only for clinical xml data

file_loc = os.path.join(out_clin_data, case, file[0] + �.xml�)

with open(file_loc) as xmlFile:

tree = ET.parse(xmlFile)

root = tree.getroot()

if root[1][34].text == None:

cases_without_location.append(case)

elif root[1][34].text in anatomic_right:

tumor_location[case] = False

elif root[1][34].text in anatomic_left:

tumor_location[case] = True

verboseprint(len(cases_without_location),

�cases do not contain anatomic location information�)

for case in cases_without_location:

verboseprint(�ignoring case�, case)

del clin_c_to_f[case]

# return as pandas Series

return pd.Series(tumor_location)

tumor_location = extract_tumor_location_from_clin()

9.6 The MAF File

9.6.1 Format

• Format specification
• TCGA search result for all COAD MAF files
• Legacy Tumor-Normal Pair
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9.6.2 The Problem

cells are defined by their genes. cancers carry variations in those genes which
cause aberrant behavior. however, this causal relationship is not one-to-one,
and additionally these variations do not need to be somatic mutations. they
can be part of the individuals genome before the cancer develops. we require
some function which is capable of separating irrelevant ‘polymorphisms’ from
cancer-causing ‘mutations’.

9.6.3 The Solution

The GDCs approach is the MAF file. It compares the tumor genome to the
individuals normal genome and a reference sequence. The choice of reference
sequence can impact the results. There are multiple workflows which achieve
this result

• varscan
• mutect
• muse
• somaticsniper

9.6.4 HGVSc

• stands for “Human Genome Variation Society, coding”. the full nomencla-
ture definition can be found here. there are following possible su�xes.

– “g” genomic
– “m” mitochondrial
– “c” coding DNA
– “n” non-coding DNA
– “r” RNA reference sequence (transcript)
– “p” protein reference sequence

• the HGVSc variant information is based o� of reference sequences. these
can be found in Gene

# columns of maf file (without loading entire file)

! echo $in_maf_file

! head -6 $in_maf_file | tail -1 | tr �\t� �\n�

56

https://www.ncbi.nlm.nih.gov/grc/human
https://www.biostars.org/p/113100/
http://varnomen.hgvs.org/recommendations/DNA/


9.6.5 TODO: Reference_Allele vs HGVSc

in synonymous variant entries, the Reference_Allele vs Allele di�ers from
the HGVSc notation! * for example, for PERM1 the alleles are G and A, but the
HGVSc notation specifies C>T

# mutect and somaticsniper share columns

maf_df = pd.read_csv(in_maf_file, sep=�\t�,

usecols=[

�Hugo_Symbol�,

# �Reference_Allele�,

�HGVSc�,

�HGVSp�,

# �Allele�,

# �Gene�,

�Consequence�,

�case_id�

],

header=5)

maf_df.head()

9.6.6 Intersection of Sets

some cases in the data portal do not have entries in the MAF file. analogously,
some entries in the MAF file do not seem to be associated with any case in the
current data portal version. we may only use the intersection of these two sets.

tumor_location is derived from clin_c_to_f - clin_is_annotated -
cases_without_location.
some of these cases are not present in the MAF file. therefore we cannot use
them.

bad_cases = []

for case in tumor_location.keys():

if case not in maf_df[�case_id�].unique():

verboseprint(�case�, case, �has no entry in MAF file�)

bad_cases.append(case)
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tumor_location.drop(bad_cases, inplace=True)

del bad_cases

# trimmed of cases that are not in MAF

tumor_location.shape[0]

# maf not yet trimmed

len(maf_df[�case_id�].unique())

# for some cases in MAF we do not have adequate data.

# therefore we must remove them.

# drop entries where the case_id is NOT (~) in tumor_location.

entries_of_cases_without_location = maf_df.loc[~maf_df[

�case_id�].isin(tumor_location.keys())][�case_id�].index

maf_df.iloc[entries_of_cases_without_location].case_id.unique().shape[0]

maf_df.drop(entries_of_cases_without_location, inplace=True)

# number of cases matches trimmed location cases if == 0

len(maf_df[�case_id�].unique()) - tumor_location.shape[0]

maf_df[�case_id�].unique().shape[0]

9.6.7 Remove k- and n-RAS

• Mutations in these genes correlate strongly with resistance to anti-IgF
therapy.

• Hugo Symbols are KRAS and NRAS

• unfortunately, this reduces our n by about 50%

kRAS_cases = maf_df.loc[maf_df[�Hugo_Symbol�] == �KRAS�][�case_id�]

nRAS_cases = maf_df.loc[maf_df[�Hugo_Symbol�] == �NRAS�][�case_id�]

knRAS_cases_set = set(kRAS_cases.tolist() + nRAS_cases.tolist())

len(knRAS_cases_set)

entries_of_cases_with_knRAS_mutations = maf_df.loc[maf_df[

�case_id�].isin(knRAS_cases_set)].index

maf_df.drop(entries_of_cases_with_knRAS_mutations, inplace=True)

maf_df[�case_id�].unique().shape[0]
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9.6.8 Remove Synonymous Variants

using the Consequence column, value: synonymous_variant

synonymous_variants = maf_df.loc[

maf_df[�Consequence�] == �synonymous_variant�].index

maf_df.drop(synonymous_variants, inplace=True)

synonymous_variants.shape[0]

9.6.9 Unique Variant Identifier

In order to completely define our mutations, we must combine multiple
columns. A complete definition can be formatted as Gene:HGVSc * i.e. PERM1 is
ENSG00000187642:c.1827C>T

# create unique variant ID, store in column �uvi�

# note, there are some NaN in the data set

maf_df.loc[:,�uvi�] = pd.Series(maf_df[

�Hugo_Symbol�] + �:� + maf_df[�HGVSc�], index=maf_df.index)

case_to_mut_df = pd.DataFrame(False, index=maf_df[

�case_id�].unique(), columns=maf_df.uvi.unique())

# add column to end of DataFrame, left = True

case_to_mut_df.loc[:, �tumor_loc_left�] = tumor_location

for case, mutations in maf_df.groupby(�case_id�)[�uvi�]:

for mut in mutations:

case_to_mut_df.at[case, mut] = True

def mut_freq_histogram():

df_left = case_to_mut_df.loc[case_to_mut_df[�tumor_loc_left�] == True]

df_right = case_to_mut_df.loc[case_to_mut_df[�tumor_loc_left�] == False]

df_left.drop(�tumor_loc_left�, axis=1)

df_right.drop(�tumor_loc_left�, axis=1)

count_left = []

for case in df_left.index:

count_left.append(df_left.loc[case].value_counts()[1])
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count_right = []

for case in df_right.index:

count_right.append(df_right.loc[case].value_counts()[1])

trace1 = go.Histogram(

x=count_left,

name=�left-sided�,

opacity=0.8

)

trace2 = go.Histogram(

x=count_right,

name=�right-sided�,

opacity=0.8

)

data = [trace1, trace2]

layout = go.Layout(barmode=�overlay�)

fig = go.Figure(data=data, layout=layout)

iplot(fig)

mut_freq_histogram()

9.6.9.1 Remove hypermutated cases

cases with more than 250 mutations are removed to approximately account for
MSI status

count = 0

for case in case_to_mut_df.index:

if case_to_mut_df.loc[case].value_counts()[1] > 250:

count += 1

case_to_mut_df.drop(case, inplace=True)

print(�removed�, count, �cases�)

case_to_mut_df.shape[0]
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9.6.10 Save to Disk

to save us the hassle of reevaluating every time, store finished, assembled
DataFrame to disk.

case_to_mut_df.to_pickle(mut_df_file, compression=�gzip�)

9.7 Transcriptome

using transcriptome information from the TCGA Database, we can expand the
amount of information per case.

possibilities include * adding transcriptome information to the MAF Dataframe,
thereby expanding the dimensionality of our data set * This could however
be potentially problematic, because we would introduce continuous values into
our previously purely dichotomous data. This could make the analysis more
complicated. * creating a separate database, running a logistic regression on that
set, and comparing it to the genomic regression. In theory it should be possible
to combine the results of both regressions to get a combined result. * associating
the variants with their corresponding transcript, and using some combination of
this data to train our classifier. * It is unclear to me how the combined value
should be calculated, and what it would represent. For example, if there are 20

variants in gene x1 and the corresonding transcipt x2 has a FPKM-UQ value
of 1000 what would the function f(x1, x2), used to combine these two bits of
information, look like?

in_trans_manifest = os.path.join(

input_dir,

�transcriptome�,

�transcriptome_manifest.tsv�)

in_trans_data = os.path.join(input_dir, �transcriptome�, �data�)

out_trans_data = os.path.join(output_dir, �transcriptome�, �data�)

out_trans_meta = os.path.join(output_dir, �transcriptome�, �meta�)

trans_c_to_f, trans_id_to_fn = fetch_metadata(

in_trans_manifest,

out_trans_meta)

trans_c_to_f = remove_annotated(
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in_trans_data,

trans_c_to_f,

trans_id_to_fn)

len(trans_c_to_f)

bad_cases = []

for case in trans_c_to_f.keys():

if case not in case_to_mut_df.index:

verboseprint(�case�, case, �has no entry in MAF file�)

bad_cases.append(case)

verboseprint(len(bad_cases), �cases will be removed from analysis�)

for case in bad_cases:

trans_c_to_f.pop(case)

del bad_cases

len(trans_c_to_f)

case_to_mut_df.shape

def trans_extract_to_output():

verboseprint(�copying/extracting to output folder...�)

for case, file in trans_c_to_f.items():

in_file = os.path.join(in_trans_data, file[0], trans_id_to_fn[file[0]])

out_location = os.path.join(out_trans_data, case)

out_file = os.path.join(out_trans_data, case, file[0] + �.txt�)

os.mkdir(out_location)

verboseprint(�copying file�, file[0], �to output...�, end=��)

with gzip.open(in_file, �rb�) as f:

file_content = f.read()

with open(out_file, �wb�) as f:

f.write(file_content)

verboseprint(�done�)

verboseprint(�extraction complete\n�)

if first_run: trans_extract_to_output()
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for case in case_to_mut_df.index:

try: trans_c_to_f[case]

except KeyError:

verboseprint(case)

case_to_mut_df.drop(case, inplace=True)

def make_transcriptome_DataFrame():

transcriptome = defaultdict(dict)

for case, file in trans_c_to_f.items():

file_loc = os.path.join(out_trans_data, case, file[0] + �.txt�)

with open(file_loc, �r�) as tsvFile:

tsvData = csv.reader(tsvFile, delimiter=�\t�)

for row in tsvData:

transcriptome[case][row[0]] = row[1]

return pd.DataFrame.from_dict(transcriptome, orient=�index�, dtype=�float�)

case_to_trans_df = make_transcriptome_DataFrame()

case_to_trans_df.loc[:, �tumor_loc_left�] = tumor_location

9.7.1 Save to Disk

to save us the hassle of reevaluating every time, store finished, assembled
DataFrame to disk.

case_to_trans_df.to_pickle(trans_df_file, compression=�gzip�)

9.8 Exploration and Analysis

9.8.1 Naming Convention

X is the information we give the regression model, y is the correct result.

9.8.2 t-Distributed Stochastic Neighbor Embedding

We can use t-SNE to visualize our dataset in 2 or 3 dimensions, to try to
gain further insight into our data set. It is useful for quickly reducing the
dimensionality of a dataset without any prior insight. In this example, 3
dimensions are used. this can be chosen using the n_components variable.
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The model reduces high-dimensional datasets to something that humans are
capable of comprehending. May yield di�erent results on repeated runs.

9.8.3 Logistic Regression

A binary logistic regressor, using nested cross-validation. * Outer CV * Sample
Selection: Stratified k-fold * Scoring: Receiver Operating Characteristic Area
Under the Curve * Inner CV * Hyperparameter C is assessed for n_inner_folds

(default: 10) logarithmically spaced values between 10-4 and 104 * Sample
Selection: Stratified k-fold * Scoring: Accuracy

9.8.4 Random Forest

A binary classifier based on random subsampling and decision trees.

def get_n_colors(n):

"""return list of colors from viridis colorspace for use with plotly"""

cmap = get_cmap(�viridis�)

colors_01 = cmap(np.linspace(0, 1, n))

colors_255 = []

for row in colors_01:

colors_255.append(

�rgba({}, {}, {}, {}�.format(

row[0] * 255,

row[1] * 255,

row[2] * 255,

row[3]

)

)

return colors_255

def tsne(df):

tsne = TSNE(n_components=3, perplexity=20, n_iter=5000)
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X = df.drop(�tumor_loc_left�, axis=1)

y = df[�tumor_loc_left�]

X_3d = tsne.fit_transform(X)

verboseprint(�t-SNE�)

verboseprint(�-----�)

verboseprint(��)

verboseprint(�reduced dimensionality from {} to {} dimensions�.format(

X.shape[1], X_3d.shape[1]

)

)

trace_true = go.Scatter3d(

x = X_3d[y==True, 0],

y = X_3d[y==True, 1],

z = X_3d[y==True, 2],

name = �left�,

mode = �markers�,

marker = dict(

color = �rgba(37, 146, 34, 0.8)�

),

text = X[y==True].index.tolist()

)

trace_false = go.Scatter3d(

x = X_3d[y==False, 0],

y = X_3d[y==False, 1],

z = X_3d[y==False, 2],

name = �right�,

mode = �markers�,

marker = dict(

color = �rgba(209, 28, 36, 0.8)�

),

text = X[y==False].index.tolist()

)

layout = go.Layout(title=�t-SNE Representation�)
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fig = go.Figure(data=[trace_true, trace_false], layout=layout)

iplot(fig)

class logit_clf:

def __init__(self, df, n_inner_folds=12, n_outer_folds=10, v=0):

self.df = df

self.n_outer_folds = n_outer_folds

self.X = df.drop(�tumor_loc_left�, axis=1)

self.y = df[�tumor_loc_left�]

self.classifier = LogisticRegressionCV(

Cs=10,

fit_intercept=True,

cv=n_inner_folds,

dual=False,

penalty=�l1�,

solver=�liblinear�,

tol=0.0001,

max_iter=100,

class_weight=None,

n_jobs=-1,

verbose=v,

refit=True,

intercept_scaling=1.0,

random_state=3257

)

self.cv = StratifiedKFold(

n_splits=self.n_outer_folds,

random_state=5235)

def fit_and_print_roc(self):

tprs = []
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aucs = []

mean_fpr = np.linspace(0, 1, 100)

plotly_data = []

colors = get_n_colors(self.n_outer_folds)

i = 0

for train, test in self.cv.split(self.X, self.y):

probabilities_ = self.classifier.fit(

self.X.iloc[train],

self.y.iloc[train]

).predict_proba(self.X.iloc[test])

# Compute ROC curve and area under the curve

fpr, tpr, thresholds = roc_curve(

self.y.iloc[test],

probabilities_[:, 1])

tprs.append(interp(mean_fpr, fpr, tpr))

tprs[-1][0] = 0.0

roc_auc = auc(fpr, tpr)

aucs.append(roc_auc)

plotly_data.append(

go.Scatter(

x=fpr,

y=tpr,

name=�ROC fold {} (AUC = {})�.format(

i, round(roc_auc,2)),

line=dict(color=colors[i], width=1)

)

)

i += 1

# add ROC reference line

plotly_data.append(

go.Scatter(
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x=[0, 1],

y=[0, 1],

mode=�lines�,

line=dict(

color=�navy�,

width=2,

dash=�dash�

),

showlegend=False

)

)

# mean

mean_tpr = np.mean(tprs, axis=0)

mean_tpr[-1] = 1.0

mean_auc = auc(mean_fpr, mean_tpr)

std_auc = np.std(aucs)

# Standard Deviation

std_tpr = np.std(tprs, axis=0)

tprs_upper = np.minimum(mean_tpr + std_tpr, 1)

tprs_lower = np.maximum(mean_tpr - std_tpr, 0)

plotly_data.append(

go.Scatter(

x=mean_fpr,

y=tprs_upper,

name=�upper bound�,

line=dict(color=�grey�),

opacity=0.1,

showlegend=False

)

)

# plot mean above std deviation

plotly_data.append(

go.Scatter(

x=mean_fpr,
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y=tprs_lower,

name=�± 1 std. dev.�,

fill=�tonexty�,

line=dict(color=�grey�),

opacity=0.1

)

)

plotly_data.append(

go.Scatter(

x=mean_fpr,

y=mean_tpr,

name=�Mean ROC (AUC = {} ± {})�.format(

round(mean_auc, 2),

round(std_auc, 2)

),

line=dict(color=�darkorange�, width=3),

)

)

layout = go.Layout(title=�Receiver operating characteristic�,

xaxis=dict(title=�False Positive Rate�),

yaxis=dict(title=�True Positive Rate�)

)

fig = go.Figure(data=plotly_data, layout=layout)

iplot(fig)

def get_n_pos_most_important(self, r_min, r_max, n=10, plot=True):

"""Return Variants whose Regression Coefficients are largest.

assumes that the target class is �left�.

"""

coefs = self.classifier.fit(self.X, self.y).coef_[0]

indices = np.argsort(coefs)[::-1]
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n_indices = []

for i in range(n):

n_indices.append(indices[i])

if plot:

trace1 = go.Bar(x=self.df.columns[n_indices],

y=coefs[n_indices],

text = self.df.columns[n_indices],

marker=dict(color=�green�),

opacity=0.5

)

layout = go.Layout(

title="Positive Regression Coefficients",

yaxis=dict(range=[r_min, r_max])

)

fig = go.Figure(data=[trace1], layout=layout)

iplot(fig)

def get_n_neg_most_important(self, r_min, r_max, n=10, plot=True):

"""Return Variants whose Regression Coefficients are largest.

assumes that the target class is �left�.

"""

coefs = self.classifier.fit(self.X, self.y).coef_[0]

indices = np.argsort(coefs)

n_indices = []

for i in range(n):

n_indices.append(indices[i])

if plot:

trace1 = go.Bar(x=self.df.columns[n_indices],

y=coefs[n_indices],

text = self.df.columns[n_indices],
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marker=dict(color=�green�),

opacity=0.5

)

layout = go.Layout(

title="Negative Regression Coefficients",

yaxis=dict(range=[r_min, r_max])

)

fig = go.Figure(data=[trace1], layout=layout)

iplot(fig)

def get_n_most_sided(self, n=10):

"""return two dicts, right and left, each with n case UUIDs

and respective P(right-sidedness) - P(left-sidedness), where

this value is minimal in the classifier.

the classifier must be fit() before using this function.

"""

# The order of the classes in probas corresponds to that

# in the attribute classes_, in this case [False, True]

probas = self.classifier.predict_proba(self.X)

proba_diffs = np.array(probas[:,0] - probas[:,1])

indices = np.argsort(proba_diffs)

left_indices = []

right_indices = []

for i in range(n):

left_indices.append(indices[i])

right_indices.append(np.flip(indices, 0)[i])

right = {}

for i in right_indices:
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case_id = self.df.index[i]

proba_diff = round(proba_diffs[i], 4)

right[case_id] = proba_diff

left = {}

for i in left_indices:

case_id = self.df.index[i]

proba_diff = round(proba_diffs[i], 4)

left[case_id] = proba_diff

return right, left

class rf_clf:

def __init__(self, df, n_trees=1000, v=0):

self.df = df

self.X = df.drop(�tumor_loc_left�, axis=1)

self.y = df[�tumor_loc_left�]

self.classifier = RandomForestClassifier(

n_estimators=n_trees,

criterion=�gini�,

max_features=�sqrt�,

max_depth=None,

min_samples_split=2,

min_samples_leaf=1,

min_weight_fraction_leaf=0.0,

max_leaf_nodes=None,

min_impurity_decrease=0.0,

min_impurity_split=None,

bootstrap=True,

oob_score=True,

n_jobs=-1,

random_state=3576,

verbose=v,

warm_start=False,

class_weight=None

)
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def fit(self):

self.classifier.fit(self.X, self.y)

def print_roc(self):

tprs = []

aucs = []

mean_fpr = np.linspace(0, 1, 100)

y_decision = self.classifier.oob_decision_function_[:,1]

fpr, tpr, thresholds = roc_curve(self.y, y_decision)

roc_auc = auc(fpr, tpr)

trace0 = go.Scatter(

x=fpr,

y=tpr,

name=�ROC AUC = {}�.format(round(roc_auc, 2)),

line=dict(color=�darkorange�, width=2)

)

trace1 = go.Scatter(

x=[0, 1],

y=[0, 1],

mode=�lines�,

line=dict(color=�navy�, width=2, dash=�dash�),

showlegend=False

)

layout = go.Layout(

title=�Receiver operating characteristic�,

xaxis=dict(title=�False Positive Rate�),

yaxis=dict(title=�True Positive Rate�)

)

data = [trace0, trace1]

fig = go.Figure(data=data, layout=layout)

iplot(fig)
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def get_n_most_important(self, n=10, plot=True):

"""Return Variants IDs deemed most important by the Classifier.

Metric used by rf clf is (by default) �gini impurity�, or

if specified, entropy gain.

"""

def std_dev_of_features(n=8000):

"""use chunking to get std dev in memory-efficient way

For large numbers of features and large numbers of trees,

the memory required to store the input matrix for np.std becomes

unfeasable. Here, the approach is to scan through all trees

multiple times, selecting only a batch of features at a time

and then calculating the std dev on that batch. This way we avoid

loading the entire matrix of possibilities into memory at once.

"""

std = np.zeros(self.X.shape[1])

for i in range(0, self.X.shape[1], n):

chunk_buffer = []

for tree in self.classifier.estimators_:

chunk_buffer.append(tree.feature_importances_[i:i+n])

std[i:i+n] = np.std(chunk_buffer, axis=0)

del chunk_buffer

return std

std = std_dev_of_features()

importances = self.classifier.feature_importances_

indices = np.flip(np.argsort(importances), 0)

n_indices = []

for i in range(n):

n_indices.append(indices[i])

if plot:
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# plotly

trace = go.Bar(x=self.df.columns[n_indices],

y=importances[n_indices],

text = self.df.columns[n_indices],

marker=dict(color=�green�),

error_y=dict(

visible=True,

arrayminus=std[n_indices]),

opacity=0.5

)

layout = go.Layout(title="Feature importance")

fig = go.Figure(data=[trace], layout=layout)

iplot(fig)

return self.df.columns[n_indices].tolist()

def get_n_most_sided(self, n=10):

"""return two dicts, right and left, each with n case UUIDs

and respective P(right-sidedness) - P(left-sidedness), where

this value is minimal in the classifier.

the classifier must be fit() before using this function.

"""

# The order of the classes in probas corresponds to that

# in the attribute classes_, in this case [False, True]

probas = self.classifier.predict_proba(self.X)

proba_diffs = np.array(probas[:,0] - probas[:,1])

indices = np.argsort(proba_diffs)

left_indices = []

right_indices = []
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for i in range(n):

left_indices.append(indices[i])

right_indices.append(np.flip(indices, 0)[i])

right = {}

for i in right_indices:

case_id = self.df.index[i]

proba_diff = round(proba_diffs[i], 4)

right[case_id] = proba_diff

left = {}

for i in left_indices:

case_id = self.df.index[i]

proba_diff = round(proba_diffs[i], 4)

left[case_id] = proba_diff

return right, left

tsne(case_to_trans_df)

t-SNE

-----

reduced dimensionality from 60483 to 3 dimensions

mut_logit_clf = logit_clf(case_to_mut_df)

mut_logit_clf.fit_and_print_roc()

mut_logit_important = mut_logit_clf.get_n_most_important()

mut_logit_sided = mut_logit_clf.get_n_most_sided()

forest_size = case_to_mut_df.shape[1] // 4

mut_rf_clf = rf_clf(case_to_mut_df, n_trees=forest_size, v=1)

mut_rf_clf.fit()

mut_rf_clf.print_roc()

mut_rf_important = mut_rf_clf.get_n_most_important()

mut_rf_sided = mut_rf_clf.get_n_most_sided()

trans_logit_clf = logit_clf(case_to_trans_df, v=1)

trans_logit_clf.fit_and_print_roc()
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trans_logit_important = trans_logit_clf.get_n_most_important()

trans_logit_sided = trans_logit_clf.get_n_most_sided()

forest_size = case_to_trans_df.shape[1] // 4

trans_rf_clf = rf_clf(case_to_trans_df, v=1)

trans_rf_clf.fit()

trans_rf_clf.print_roc()

trans_rf_important = trans_rf_clf.get_n_most_important()

trans_rf_sided = trans_rf_clf.get_n_most_sided()

TODO we can get the n cases which best represent left- or right-sidedness by
finding P(left) - P(right). Then, we take the case UUIDs and download the
slides from the legacy TCGA. Prof. Kirchner can then typify them.

import pickle

9.9 Save Classifiers to Disk

with open(�./out/classifiers/mut_logit_clf.pickle�, �wb�) as f:

# Pickle the �data� dictionary using the highest protocol available.

pickle.dump(mut_logit_clf, f, pickle.HIGHEST_PROTOCOL)

with open(�./out/classifiers/mut_rf_clf.pickle�, �wb�) as f:

# Pickle the �data� dictionary using the highest protocol available.

pickle.dump(mut_rf_clf, f, pickle.HIGHEST_PROTOCOL)

with open(�./out/classifiers/trans_logit_clf.pickle�, �wb�) as f:

# Pickle the �data� dictionary using the highest protocol available.

pickle.dump(trans_logit_clf, f, pickle.HIGHEST_PROTOCOL)

with open(�./out/classifiers/trans_rf_clf.pickle�, �wb�) as f:

# Pickle the �data� dictionary using the highest protocol available.

pickle.dump(trans_rf_clf, f, pickle.HIGHEST_PROTOCOL)

9.10 Retrieve Classifiers from Disk

# Mutation Logistic Regression

with open(�./out/classifiers/mut_logit_clf.pickle�, �rb�) as f:

unpickler = pickle.Unpickler(f)

mut_logit_clf = unpickler.load()
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# Mutation RandomForest

with open(�./out/classifiers/mut_rf_clf.pickle�, �rb�) as f:

unpickler = pickle.Unpickler(f)

mut_rf_clf = unpickler.load()

# Transcriptome Logistic Regression

with open(�./out/classifiers/trans_logit_clf.pickle�, �rb�) as f:

unpickler = pickle.Unpickler(f)

trans_logit_clf = unpickler.load()

# Transcriptome RandomForest

with open(�./out/classifiers/trans_rf_clf.pickle�, �rb�) as f:

unpickler = pickle.Unpickler(f)

trans_rf_clf = unpickler.load()

mut_rf_clf.classifier.predict_proba(

case_to_mut_df.drop(

�tumor_loc_left�, axis=1))[:,0]

mut_logit_clf.get_n_pos_most_important(r_min=0, r_max=8)

mut_logit_clf.get_n_neg_most_important(r_min=-8, r_max=0)

trans_logit_clf.get_n_pos_most_important(r_min=0, r_max=0.000004)

trans_logit_clf.get_n_neg_most_important(r_min=-0.000004, r_max=0)

np.array(

mut_rf_clf.classifier.predict_proba(

case_to_mut_df.drop(

�tumor_loc_left�, axis=1))[

:,0] - mut_rf_clf.classifier.predict_proba(

case_to_mut_df.drop(�tumor_loc_left�, axis=1))[:,1]

)

9.11 Variant Information

• using the VarSome search engine API, we can retrieve a large amount of
information about our variants.

• Reference API Client written in Python, hosted on GitHub
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9.11.0.1 Available GET Parameters

params are passed as dict with key value pairs, for example
params={�expand-pubmed-articles�: 1, �add-source-databases�:

�gerp,wustl-civic�}

• add-all-data = 1 or 0
• add-region-databases = 1 or 0
• expand-pubmed-articles = 1 or 0
• add-main-data-points = 1 or 0
• add-source-databases = all or none or

– gerp
– wustl-civic
– ncbi-dbsnp
– ensembl-transcripts
– broad-exac
– dbnsfp-dbscsnv
– gwas
– ncbi-clinvar
– gnomad-genomes
– dbnsfp
– sanger-cosmic
– dann-snvs
– sanger-cosmic-public
– gnomad-exomes
– ncbi-clinvar2
– refseq-transcripts
– uniprot-variants
– gnomad-genomes-coverage
– gnomad-exomes-coverage
– thousand-genomes
– isb-kaviar3
– iarc-tp53-germline
– sanger-cosmic-licensed
– iarc-tp53-somatic
– icgc-somatic

• allele-frequency-threshold = float
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from variantapi.client import VariantAPIClient

varsome_api_key = with open(varsome_api_key_file) as f: f.read()

varsome_api = VariantAPIClient(varsome_api_key)

result = varsome_api.batch_lookup(

list(significant_var_dict.keys()),

params={�add-source-databases�: �gerp�},

ref_genome=�hg19�)

result

9.11.1 various test snippets

missence_variants = maf_df.loc[

maf_df[�Consequence�] == �missense_variant�].index

var_list = []

for entry in maf_df.loc[missence_variants][

[�Hugo_Symbol�, �HGVSc�]].values:

# concatenate as HUGO:HGVSc

var_def = entry.tolist()[0] + �:� + entry.tolist()[1]

var_list.append(var_def)

# create batches of at most n variants

n = 10

q_chunks = [var_list[i:i+n] for i in range(

0, len(var_list), n)]

TODO: above, n is set to 10 for testing, for final release, set to 10000
(ten thousand)

result = varsome_api.batch_lookup(q_chunks[0],

params={�add-source-databases�: �gerp�},

ref_genome=�hg19�)

interesting = [�alt�, �chromosome�]

[result[0][x] for x in interesting]
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