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Summary

The concept of transfer learning aims at transferring knowledge learned during solving a specific
task in a specific domain to other tasks or domains, respectively. While this paradigm was already
employed in the field of Computer Vision in the early 2010s, it revolutionized the field of Natural
Language Processing about half a decade later. This doctoral thesis deals with three crucial
aspects which have to be considered and payed attention to when applying and researching about
these kinds of model architectures.

The first part of this work addresses critical aspects when it comes to the definition of fair com-
parisons for pre-trained language models. Contrary to classical machine learning it is not straight-
forward to define what a model essentially is, since a model is not just the mere architecture but
it also comprises the complete pre-training procedure (pre-training text corpus and amount of
computational power). Besides this, also the model size plays a crucial role as it sometimes may
be prohibitively large for some practitioners or devices which is why it should also be considered
when comparing state-of-the-art (SOTA) models. The first contributing article raises awareness
for the above-mentioned issues and proposes potential circumventions for them when performing
or evaluating model comparisons.

In the second part, the usefulness of several state-of-the-art architectures on a set of complex tasks
is evaluated. As for the second contributing article, the model performance is evaluated on the task
of automatically classifying answers to open-ended questions into a predefined set of categories.
This showcases an (extreme) multi-label classification task which social scientists are commonly
facing. Alongside with this, a fully reproducible preparation of the data from the American
National Election Studies (ANES 2008) for machine learning purposes is provided. In the third
contribution pre-trained models are applied to the task of Fake News Detection, with a special
focus on the sensitivity towards hyperparameters during model fine-tuning. Experiments and grid
search results for different freezing techniques, batch sizes and sequence lengths as well as learning
rate schedules are shown. The fourth and fifth contributing articles showcase industrial use cases:
The former is about trying to incorporate domain-specific knowledge from an external corpus via
Continual Pre-training of the language model with the aim of enabling the language model to act
as a sort of knowledge base for specific domains. Evaluation at fixed intervals during the training
procedure already show partly promising results. The latter project aimed at building a pipeline,
heavily relying on pre-trained (German) language models, to measure the concept of Customer
Centricity. Unstructured customer feedback about car insurances is classified with respect to the
addressed aspects and the respective tonality and subsequently (visually) summarized in a radar
chart. With the sixth contribution, the attempt is made to contribute to closing a large research
gap: Language-specific evaluation of pre-trained models. In this work, currently existing German
and multilingual pre-trained architectures are evaluated on the task of (Aspect-based) Sentiment
Analysis, resulting in a substantial increase of the state-of-the-art results.

The third part rounds off the scope of this thesis by showing experimental results from a benchmark
study. In the seventh and final contributing article, down-scaled versions of language models were
benchmarked on a set of tasks constraining external factors like the budget of computational
power and size of the pre-training text corpus.





Zusammenfassung

Das Ziel des Ansatzes des Transfer Learnings ist es, das beim Training bezüglich eines spezifischen
Tasks erlernte Wissen auf andere (ähnliche) Tasks bzw. Domänen zu übertragen. Während dieses
Vorgehen bereits seit Anfang der 2010er Jahre im Bereich der Computer Vision üblich ist, fand es
erst etwa ein halbes Jahrzehnt später im Bereich Natural Language Processing breite Anwendung.
In dieser Dissertation werden drei verschiedene Aspekte beleuchtet, welche bei der Anwendung
von und Forschung über diese Art von Modellarchitekturen berücksichtigt werden sollten.

Im ersten thematischen Teilkomplex dieser Arbeit wird der Fokus auf die aktuelle Praxis zum Ver-
gleich von vortrainierten Sprachmodellen gelegt. Hierbei werden insbesondere kritische Aspekte
herausgearbeitet, welche sich im Vergleich zum ”klassischen” maschinellen Lernen ergeben. Dies
rührt daher, dass die Modellarchitektur in diesem Fall nicht einfach nur aus dem Algorithmus
selbst, sondern auch dem gesamten Verfahren des Pre-Trainings (Pre-Training-Textkorpus und
verwendete Rechenleistung) besteht. Darüber hinaus spielt auch die Zahl der Modellparameter
eine nicht zu vernachlässigende Rolle, weshalb auch sie beim Vergleich von state-of-the-art (SOTA)
Modellen berücksichtigt werden sollte. Der erste wissenschaftliche Beitrag versucht das Bewusst-
sein hierfür zu schärfen und gleichzeitig mögliche Ansätze zur Verbesserung vorzuschlagen.

Der zweite Teilkomplex beinhaltet fünf verschiedene Anwendungsfälle anhand derer die Perfor-
mance mehrerer state-of-the-art Architekturen verglichen wird. Der zweite Beitrag beschäftigt sich
mit der Anwendung der Modelle zum Zwecke der automatischen Klassifizierung von Antworten auf
offene Fragen in vordefinierte Kategorien. Hierbei handelt es sich um ein multi-label Klassifika-
tionproblem, ein Task mit hohem Komplexitätsgrad, mit dem Sozialwissenschaftler oft konfron-
tiert sind. Im Rahmen der Analyse war eine vollständig reproduzierbare Aufbereitung der Daten
der American National Election Studies (ANES 2008) notwendig, welche ebenfalls einen wichti-
gen Teil dieser Publikation darstellt. Im dritten Beitrag wird die Empfindlichkeit vortrainierter
Modelle gegenüber Hyperparametern beim Fine-Tuning am Anwendungsfall der Fake News Detec-
tion untersucht. Es werden Experimente mittels Grid Search hinsichtlich verschiedener Freezing
Techniques, Batch Sizes und Sequence Lengths, sowie für verschiedene Learning Rate Schedules
durchgeführt. Der vierte und fünfte Beitrag zeigen Anwendungsfälle im industriellen Kontext:
Bei ersterem wird versucht domänenspezifisches Wissen aus einem externen Textkorpus durch
fortgesetztes Pre-Training in das Sprachmodell einzubringen, mit dem Ziel, es anschließend als
Knowledge base für die Automobil-Domäne verwenden zu können. Die Evaluierung des Modells
in fixen Abständen zeigt hierbei bereits teilweise vielversprechende Ergebnisse. Das zweite der
beiden Projekte zielt darauf ab, eine Pipeline zur Messung des Konzepts der Customer Centric-
ity aufzubauen. Hierbei wird unstrukturiertes Kundenfeedback zu Kfz-Versicherungen mit Hilfe
von (deutschen) vortrainierten Sprachmodellen hinsichtlich angesprochener Aspekte und deren
Tonalität klassifiziert und anschließend in einem Radar-Chart visualisiert. Im sechsten Beitrag
liegt der Fokus auf der sprachenspezifischen Evaluation von vortrainierten Modellen. Hier werden
deutsche und multilinguale vortrainierte Sprachmodelle auf dem Task der (aspektbasierten) Sen-
timentanalyse evaluiert, wobei eine Verbesserung der state-of-the-art Ergebnisse erreicht wird.

Der dritte thematische Abschnitt rundet den Anwendungsbereich dieser Arbeit durch experi-
mentelle Ergebnisse einer Benchmark-Studie ab. Im siebten Beitrag wurden hierbei herunter-
skalierte Versionen populärer Sprachmodelle, unter Einschränkung externer Faktoren wie Rechen-
leistung und Größe des Pre-Trainings-Textkorpus, hinsichtlich ihrer Performance auf einer Reihe
verschiedener Tasks verglichen.
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Notation

Throughout this thesis, the following conventions will be used:

C A corpus of M documents
C The confusion matrix of a classification problem
C Size of the context window
E Embedding size // Size of the vector representation
h Number of Attention heads in a Transformer-based architecture
H Dimension of the hidden layer of a neural network
i Running index for observations in a data set, words/tokens in a

sequence or documents in a corpus
j Running index for covariates or levels of a categorical target variable
k The number of classes of a categorical target variable
L A data generating process a.k.a. language
M A (language) model
m The number of words/tokens in a sequence s
M The number of documents in a corpus C
n The number of observations in a data set
p The number of features/covariates in a tabular data set
s An ordered sequence of m words
θ The parameters of a model
V = {w1, . . . , wN} The vocabulary of a corpus C or a language L
|V | or N The size (number of distinct words) of a vocabulary V
wt The word/token at the t-th position in a sequence
W The weight matrix of a neural network
x Influential variable(s)
y Target variable(s)

Scalars are denoted by lower case letters (x), while bold lower case letters (x) denote (column)
vectors and bold upper case letters (X) matrices. Subscripts are used to refer to (scalar) elements
of vectors (xi) or matrices (Xij), to entire rows/columns of matrices (xi) or to denote different
elements (X1 vs. X2).

xv





Part I.

Introduction and Background





1. Introduction

1.1. Outline

The time frame during which this thesis was written most definitely ranks among the most ex-
citing times regarding the developments in the field of Natural Language Processing (NLP). This
thesis will first describe the development of the most important methods and model architectures
along a time axis starting from the early 2000s. The contributions will then mainly focus on
the comparability of these architectures by evaluating them on a diverse set of real-world tasks
and performing benchmark experiments focused on rather technical parameters like run time and
performance under resource constraints.

Part I will lay the foundation for a thorough understanding of this thesis by introducing general
concepts and methods one has to deal with when it comes to language modeling. While Ch. 2
presents a set of (benchmark) tasks (Sec. 2.1), as well as accompanying performance measures
(Sec. 2.2) NLP researchers are generally interested in, the remaining part of this chapter (Sec. 2.3
– Sec. 2.6) puts a focus on methodological developments. Starting with rather simple, count-based
machine learning algorithms the focus is then shifted towards neural network based algorithms
and finally reaches cutting-edge deep learning methods for NLP. Why and how these methods fit
in the paradigm of (sequential) transfer learning will subsequently be explained in Ch. 3.

The remainder of this work is divided into three main parts (i.e., Part II – IV), in which all
contributions to this thesis are embedded as chapters. Part II deals with the issue of deficient
model comparability and thus provides the general scope and motivation for this thesis. The
subsequent Parts III and IV focus on comparing different models with respect to different criteria.
Alongside with the original publication, full reference as well as copyright information and a
description of the author’s contributions are provided for each chapter. Supplementary materials
like data sets, accompanying software or other are linked if applicable.

The concluding Part V describes the most recent research insights from the field of NLP and puts
the contributions in relation to them. Furthermore, open research questions and possible future
directions are emphasized.

1.2. Motivation and Scope

Written sequences of human language, i.e. text data, probably represent the most ubiquitous type
of data. While for a long time the focus of statistical modeling techniques and machine learn-
ing algorithms has been on tabular data sets, it has somewhat shifted in the past two decades.
These tabular data sets (partly) have to be created manually, generating a lot of extra effort and
potentially also costs. Text data on the other hand is omnipresent in nearly every situation of
everyday life, be it in daily communication via email or text messages, on the internet or even

3



1. Introduction

in good old-fashioned books. The vast amount of data as well as the overwhelming complexity
of human language still present a major challenge when it comes to its automated processing
by machines. Nevertheless it has become, alongside with visual data (images, videos), the most
important resource for algorithms which are nowadays most often referred to as ”Artificial Intel-
ligence”. While this might sound quite impressive at first, it is (at least in my humble opinion)
still a little bit of a very far reach since most of the architectures are basically highly specialized
algorithms performing extraordinary well on some specific (set of) tasks. So the scope of this thesis
is about evaluating and understanding the performance of these recently developed algorithms,
more specifically a set of pre-trained language models all centered around one focal point: BERT
(Devlin et al., 2019).

Several major breakthroughs concerning the methodology of how to process written forms of nat-
ural language have shaped the past ten years, with two of them really standing out: Mikolov
et al. (2013c) revolutionized the way researchers approach the problem of representing words by
introducing a framework which is able to efficiently transform these discrete units (words) into se-
mantically and syntactically meaningful continuous, real-valued representations. Since then more
(and even better) algorithms have been developed with an overall goal of Representation Learning
and it has become the standard procedure to build deep learning architectures on top of such
representations. All these efforts to enable models to learn ever better representations ultimately
culminated in the development of an algorithm framed ”Bidirectional Encoder Representations
from Transformers”, short BERT (Devlin et al., 2019). Since its introduction (10/2018 on ArXiv,
06/2019 at NAACL) it has become the point of focus for the whole field of NLP, triggering an
enormous amount of research aiming at (i) improving upon its performance, (ii) explaining its
inner workings, (iii) improving its computational efficiency, (iv) adapting it to various tasks and
more. This streamline of research is by now often referred to as an own research direction named
BERTology (Rogers et al., 2020).

The main motivation of all the research articles that ultimately ended up in constituting this
thesis, was to also contribute to this body of research. To enable a better understanding of the
architectures and to urge researchers to think a little bit more about somewhat more subtle aspects
when it comes to comparability and benchmarking of BERT & Co. have since the beginning been
the driving forces of this research.

More recently a new algorithm (GPT-3; Brown et al., 2020) was proposed, which might turn out
to be the next major breakthrough since the introduction of BERT. The architecture sets new
standards with respect to the amount of computational power as well as to the amount of data
that was used for training it. Furthermore, it employs a completely different paradigm compared
to BERT & Co., when it comes to adapting to new data and shows impressive results in doing so.
Nevertheless, there are also critical remarks about whether the approach of (colloquially spoken)
”higher, faster, further” will ultimately ”solve”1 the problem of teaching language to machine
learning models or if smaller and smarter alternatives (e.g. Schick and Schütze, 2020a) are the
solution. Section 11 provides some more details on recent and potential further developments.

1Of course the word ”solve” is only meant metaphorically in this context. This is, on a side note, a pretty nice
example of word sense disambiguation that (most probably) presents no problem for you, a human reader, but
most definitely would prove to be quite hard to understand for a machine.
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2. Methodological and General Background

2.1. Benchmarks Tasks

Natural Language Processing has nowadays become an umbrella term for a variety of different
tasks and algorithms. Because of this, it is important to obtain a thorough understanding of the
nature of different possible tasks and for how to evaluate performance. In the context of this
thesis, the term task will be almost exclusively used as a proxy for Supervised Classification Task
if not stated otherwise. While unsupervised1 machine learning methods like e.g. LSI (Deerwester
et al., 1990), pLSI (Hofmann, 1999), LDA (Blei et al., 2003) or the STM (Roberts et al., 2016)
are clearly very relevant topics and are still subject to active research, they are outside the scope
of this work. (Neural) Machine Translation and Sequence-to-sequence modeling (Sutskever et al.,
2014) in general will also, for the sake of completeness, be touched on very briefly during the
course of this chapter.

Supervised classification tasks can, in general, be subdivided into three different variants as de-
picted in Tab. 2.1. Since language modeling deals with a set of discrete units (e.g. words) it easily
fits in the framework of multi-class classification, where a ”class” is simply one word from the lan-
guage’s vocabulary. The classic language modeling task would thus be a multi-class classification
task with |V | classes, where V is the vocabulary. Besides this, binary classification is probably the
most common variant and includes tasks like e.g. Sentiment Analysis (Socher et al., 2013), with
the labels positive and negative, Duplicate/Spam Detection (Shankar et al., 2017) or Recognizing
Textual Entailment (Wang et al., 2018). A multi-class classification problem typically occurs (be-
sides for the language modeling task), when more fine-grained labels are present. This pertains
e.g. to tasks like Sentiment Analysis, when the label neutral is present additionally to positive
and negative, or Stance Detection (cf. Sec. 6). Multi-label classification differs from the other two
variants with respect to the number of labels which can be associated with one observation, which
is potentially larger than one for this case. Illustrative examples for this task are e.g. (supervised)
topic modeling, aspect-based sentiment analysis (Pontiki et al., 2014, 2015, 2016; Wojatzki et al.,
2017) or coding of open-ended questions in the social sciences (cf. Sec. 5).

So in order to better understand the issues when it comes to comparing and evaluating (pre-
trained) language models, this section will introduce the general concept of benchmarking as well
as the most frequently used tasks and practices in NLP. Furthermore, the measures for evaluation
will be explained, subdivided in task-specific and task-agnostic measures.

Benchmarking In the context of machine learning, the term Benchmarking refers to the com-
parison of different algorithms on one (or multiple) tasks with respect to selected performance
measures. Additionally, to ensure a maximum degree of comparability, identical train and test sets

1While supervised learning methods require external labels to be present, unsupervised methods can be applied
to unannotated data sets.

5



2. Methodological and General Background

Task Variant Output space Targets

Binary Classification L = {0; 1} yi = {0; 1}1
Multi-Class Classification L = {0; . . . ; k} yi = {0; . . . ; k}1
Multi-Label Classification L = {0; . . . ; k} yi = {0; . . . ; k}k

Table 2.1.: The different variants of supervised classification. In binary classification an observation can
only belong to one of two possible classes, while in multi-class classification it belongs to one of k classes.
Multi-label classification extends the multi-class case in a way, that multiple labels can be associated to
one observation.

as well as the same resampling strategy are used. When transferring this definition to the context
of deep learning and transfer learning several issues arise, which are addressed in the Discussion
section of the first contribution (cf. Sec. 4). Transfer learning models are not solely defined by the
specification of an algorithm, but also inherit a lot of their power from the pre-training procedure
(cf. Sec. 3.1). In the NLP context this specifically means the text corpus, which the model is
pre-trained on, as well as its size and the computational resources spent on pre-training. Thus,
these parameters should be taken into account when it comes to defining the term Benchmarking
in the context of transfer learning for NLP, but often they are not. This is oftentimes not the
fault of other researchers, but rather a result from constraints concerning time and computational
resources.

Benchmark Tasks in NLP Comparisons of different NLP (transfer learning) models are com-
monly conducted on benchmark data sets (e.g. Rajpurkar et al., 2016, 2018) or collections of
multiple data sets at once, with each data set providing a different task referring to (multiple)
different facets of e.g. Natural Language Understanding (NLU) (Wang et al., 2018, 2019). The
values of selected performance measures are subsequently aggregated and commonly displayed on
public leaderboards (cf. https://gluebenchmark.com/leaderboard). Of course numerous other
benchmark data sets exist, which is why it would be nearly impossible (and not in the scope of
this thesis) to provide an exhaustive list. Instead, this paragraph will provide an overview on
different possible types of tasks used for benchmarking in order to provide the basis for a better
understanding of the subsequent sections:

• Single sentence; binary: This one is probably the simplest of the listed tasks. Exam-
ples are (as mentioned above) Sentiment Analysis (SST-2, Socher et al. 2013) or Linguistic
acceptability judgements (CoLa, Warstadt et al. 2019).

• Single sentence; multi-class: Besides being slightly more challenging than binary classi-
fication, this one is probably also the more frequently occurring task since many problems
naturally do not just have two possible solutions. Sentiment analysis with three categories
(negative, neutral, positive) as well as many types of review data with ”star-ratings”, e.g.
Amazon reviews (Ni et al., 2019), belong to this type of task.

• Single sentence; multi-label: This type of task is the rarest one, since it is included
in none of the most popular benchmark data sets with natural language input. Never-
theless there are text-based data sets in the MULAN (http://mulan.sourceforge.net/
datasets-mlc.html) repository, namely the ”bibtex” data set (Katakis et al., 2008) and the
”EUR-Lex” data set (Mencia and Fürnkranz, 2008) and there are multi-label problems used
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2.2 Performance Measures

for Kaggle (https://www.kaggle.com/) competitions, e.g. the Toxic comment classification
challenge (Jigsaw and ConversationAI, 2018).

• Two sentences; binary: If the input consists of more than one sentence, the task often
refers to determining the relation between the two input sequences. Typically these are
similarity (QQP, Shankar et al. 2017) and paraphrase tasks (MRPC, Dolan and Brockett
2005) as well as inference taks (QNLI, RTE, WNLI, Wang et al. 2018).

• Two sentences; multi-class: The more complex type of task with a multiple sentence
input encompasses similarity (STS-B, Cer et al. 2017) and inference (MNLI, Williams et al.
2017) tasks, which vary in complexity due to the size of the label set.

• Two sentences; multi-label: At the moment of writing this thesis, I am not aware of
any existing data sets (commonly used for evaluation/benchmarking) taking two sentences
as input and having a multi-label objective.

Section 2.2 will provide a more detailed overview on task-agnostic measures for intrinsic evaluation
and task-specific measures for extrinsic evaluation as well as their advantages and drawbacks with
respect to the tasks presented above.

2.2. Performance Measures

The language modeling task allows measuring model performance of many NLP (transfer learning)
models in a way that is not related to any specific (classification) task. The only prerequisite for
these measures to be applicable, is that the model needs to be able to perform language modeling.
One might argue that this then does not meet the definition of ”task-agnostic”, but since language
modeling is the most basic task that can be performed by all of the considered transfer learning
architectures it is deemed to be sufficiently task-agnostic for this purpose.

Task-agnostic measures From a statistical point of view, a language can easiest be thought of
as a data generating process L with a discrete probability distribution which assigns a probability
to every word/token from its vocabulary V :

P (Wi = wi) = f(wi) = pi ∀ i = 1, 2, . . . , |V | (2.1)

with f(wi) ≥ 0,
|V |∑
i=1

f(wi) = 1

But since this refers to the context of language and text, one is rather interested in describing
and modeling the probabilities of sequences of words instead of single words themselves. Using
the conditional probability of a word wt at the t-th position of a sequence

P (wt) = P (wt|w1, w2, . . . , wt−1) (2.2)

one can write the probability of a whole sequence s = (w1, w2, . . . , wm) as follows:

P (s) = P (w1, w2, . . . , wm) =
m∏
i=1

P (wi|w0, . . . , wi−1) , (2.3)

where the special token w0 denotes the beginning of the sequence, i.e. P (w1|w0) = P (w1).
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The language modeling task can be formulated as predicting these conditional probabilities of
the upcoming word/token given the sequence of all previous words/tokens. Assume a language
model M was trained on a specific training corpus C generated by a language L. A held-out set,
generated by the same language, can be used to calculate the Perplexity, measuring the degree of
surprise of the model when confronted with a previously unseen sequence. Formally, the perplexity
is defined as the inverse of the geometric mean of the conditional probabilities of all words in a
sequence (given all previous words):

Perplexity(M, s) = P̂ (s)−
1
m = m

√√√√ m∏
i=1

1
P̂ (wi|w0, . . . , wi−1)

(2.4)

= m

√
1

P̂ (w1)
· 1
P̂ (w2|w1)

· . . . · 1
P̂ (wm|w1, . . . , wm−1)

where P̂ (·) denotes the probability predicted by the ModelM (as opposed to the true, underlying
probability P from the data generating process L).

High predicted (conditional) probabilities for each word/token, which would signify a lower degree
of surprise by the model, lead to a lower perplexity. Vice versa, if the model does not anticipate
the occurrence of the words/tokens very well, i.e. low predicted probabilities, the perplexity will
take a rather high value. The theoretical lower bound of the perplexity is 1, which is obviously
an unrealistic scenario as the model would, in this case, be able to predict every token correctly
with a certainty of 100%. This implies, that there would be only one possible continuation per
starting word of a sequence, making the language (colloquially speaking) quite ”boring”. On the
other end of the spectrum, the worst possible value for the perplexity would be the size of the
vocabulary |V |. This would imply a random guess of the model with probability 1

|V | for each
position in the sequence, meaning the preceding words do not convey any information at all (to
the model). Since both of these extreme values are rather unrealistic, the following enumeration
provides on overview on state-of-the-art perplexities for several data sets:

• For the 1B Word Benchmark (Chelba et al., 2013), a corpus with a vocabulary size of ∼ 800k,
the state-of-the art perplexity is 21.8 (Dai et al., 2019).

• For WikiText-103 (Merity et al., 2016a,b), a corpus of high-quality articles from Wikipedia
comprising a vocabulary of ∼ 270k words, state-of-the-art perplexity is 10.8 (Shoeybi et al.,
2019). For the subset WikiText-2 (Merity et al., 2016c) it is 18.3 (Radford et al., 2019).

• For the Penn Treebank (Marcus et al., 1994), a rather small corpus with |V | ≈ 10k, state-
of-the-art perplexity is 20.5 (Brown et al., 2020).

Entropy (Shannon, 1948) is a concept from information theory that is also applicable for measuring
the quality of language models. Generally, the Entropy of a single random variable X is defined
as2:

H(X) = −
∑
x∈X

P (x) · log2(P (x)). (2.5)

2The choice of the log’s base is basically arbitrary, but using base 2 yields the entropy measured in bits.
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Since in the case of language modeling we are confronted with sequential data, this requires the
extension of H(X) to the Entropy rate of a sequence s = (w1, w2, . . . , wm) defined as

1
m
H(s) = − 1

m

∑
s∈L

P (s) · log2(P (s)), (2.6)

and finally considering sequences of theoretically infinite length in order to generalize to L:

H(L) = − lim
m→∞

1
m

∑
s∈L

P (s) · log2(P (s)). (2.7)

The concept of Cross-Entropy is defined using the actual probabilities P (·) from L as well as the
predicted ones P̂ (·) from a model M

H(L,M) = − lim
m→∞

1
m

∑
s∈L

P (s) · log2(P̂ (s)) = − lim
m→∞

1
m

log2(P̂ (s)), (2.8)

with the equality holding under the assumptions3 of the Shannon-McMillan-Breiman Theorem
(Algoet and Cover, 1988; Cover and Thomas, 1991). Cross-Entropy itself is defined in the limit,
but can be approximated using a sufficiently long (fixed length) sequence s, as in the latter part
of Eq. (2.8). When being used to measure the quality of a character-level language model it
is referred to as Bits-per-Character (BPC), if the model is on a word-/token-level it is called
Bits-per-word/-token.

Task-specific measures (binary) Naturally, there is a larger set of applicable measures which is
partly determined by the type of task the model is applied to. But besides this, one always has
to carefully consider further aspects, like e.g. the class distribution (balanced vs. imbalanced),
when choosing a suitable measure for a combination of task and data set. This passage presents
suitable measures for a range of different (classification) tasks. It is not an exhaustive list, but
rather covers the measures which are necessary to understand the contributing publications and
contains pointers to further measures for the interested reader.

true condition
positive negative

predicted positive TP FP
negative FN TN

Table 2.2.: Exemplary confusion matrix C for a binary classification task.

The most straightforward performance measure for binary tasks is the plain accuracy, which
measures the fraction of correctly classified instances. Following Tab. 2.2 it can be written as

Accuracy = TP + TN

TP + FP + FN + TN
, with 0 ≤ Accuracy ≤ 1 . (2.9)

Since all correctly classified examples are given equal weight, using this measure in presence of
a skewed distribution of the classes can lead to bias towards predicting the majority class4. A

3The central assumptions are stationarity and ergodicity of a stochastic process, here: the language L.
4Consider a situation where 80% of the observations belong to one class. Even a completely useless classifier,

predicting the majority class all of the time, would reach an accuracy of 0.8.
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2. Methodological and General Background

measure that alleviates this shortcoming of plain accuracy is the F1-Score which is defined as the
harmonic mean of precision and recall

F1 = 2 · precision · recall
precision+ recall

, with 0 ≤ F1 ≤ 1 (2.10)

and precision = TP

TP + FP
and recall = TP

TP + FN
according to Tab. 2.2.

Despite balancing better between different classification goals (i.e. precision and recall), there are
still two drawbacks which should be considered when choosing a suitable measure. First, the F1-
score takes into account both precision and recall, but it does so by giving equal weight to them.
This neglects the (potentially) different importance/cost of different types of misclassification and
can thus be problematic if there are differences. Second, it does not account for the number of
TN making it still susceptible to problems in the presence of class imbalance. Mainly the latter
aspect is addressed by the Mathew’s Correlation Coefficient (MCC; Matthews, 1975) since it is
based an all four cells of the confusion matrix C. It is calculated via the following formula

MCC = TP · TN − FP · FN√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

, with − 1 ≤MCC ≤ 1 . (2.11)

The MCC is deemed the most suitable measure for (imbalanced) binary classifications tasks and
is e.g. used as performance measure for many tasks from the GLUE benchmark collection (Wang
et al., 2018).

Task-specific measures (multi-class) If the target variable possesses multiple classes, out of
which only one can be the true condition, the confusion matrix C looks as follows:

true condition
class 1 class 2 . . . class k

predicted

class 1 TP1
class 2 TP2

. . .
. . .

class k TPk

Table 2.3.: Exemplary confusion matrix C for a multi-class classification task.

It holds the correctly predicted cases for each class on the diagonal while all false predictions are
located in the upper and lower triangular. Accuracy has to be calculated by summing up the
values on the diagonal and dividing this sum by the number of observations n:

Accuracymulti = 1
n

k∑
j=1

TPj (2.12)

But similar to the binary case this measure struggles in the presence of class-imbalance. Since every
observation is given equal weight in this calculation, a classifier which does well in predicting the
predominant class(es) will achieve a high accuracy. Performance on classes with very few numbers
of training examples (which are typically harder to predict) will conversely suffer.
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For the F1-Score there are two distinct ways to adapt this measure to the presence of multiple
classes. One can either calculate TP , FP , FN for each class, use them to calculate separate
F1-Scores and average them across all classes5 (called ”macro-averaging”) or one can aggregate
TP , FP , FN over all classes first (called ”micro-averaging”). For the former approach the F1 is
defined as

F macro
1 = 1

n

k∑
j=1

F class j1 = 1
n

k∑
j=1

2 · precisionj · recallj
precisionj + recallj

, with 0 ≤ Fmacro1 ≤ 1, (2.13)

precisionj = TPj
TPj + FPj

and recallj = TPj
TPj + FNj

,

whereas for the latter one it is calculated as follows:

F micro
1 = 2 · precisionmicro · recallmicro

precisionmicro + recallmicro
, with 0 ≤ Fmicro1 ≤ 1, (2.14)

precisionmicro =
∑k
j=1 TPj∑k

j=1 TPj + FPj
and recallmicro =

∑k
j=1 TPj∑k

j=1 TPj + FNj

.

The macro-averaged version gives equal weight to each class and is thus well suited for imbalanced
data sets. Contrary, the micro-averaged version gives equal weight to each observation which is
why it is not well suited when labels are imbalanced (same reason as for the accuracy).

Gorodkin (2004) generalized correlation to the multivariate scenario, by defining RK as a correla-
tion coefficient applicable to K-dimensional data points. Further it was shown that by discretizing
RK , one obtains a multi-class equivalent for the MCC:

RK = MCCmulti−class
n · tr(C)−∑k,l CkCl√

n2 ·
∑
k,l Ck(Cᵀ)l

√
n2 ·

∑
k,l(Cᵀ)kCl

(2.15)

where Ck denotes the kth row, Cl the lth column and Cᵀ the transpose of C.

Task-specific measures (multi-label) Besides that both (micro- and macro-averaged) versions
of the F1-score can also be calculated for the multi-label case, there are other measures more
specifically tailored to this situation. The Subset Accuracy is a measure which is calculated on
the observation-level and is defined as the ratio of correctly classified observations (i.e. predictions
for all classes are correct) and the total number of observations

Subset Accuracy = 1
n

n∑
i=1

1(Pi = Yi) , (2.16)

where Yi are the true and Pi the predicted labels. As one can imagine this is a rather harsh metric,
as each observation for which not every class is predicted correctly is regarded as misclassified.
Potential partial correctness of prediction is thus neglected by this measure, a problem which

5There exist two versions of the macro-averaged F1-Score, which are both commonly used. Here, the definition from
above (arithmetic mean of class-wise F1-scores) will be used. According to the other definition one calculates
the macro-averaged F1 by first calculating arithmetic means of class-wise precision and recall and uses these
values to calculate Fmacro

1 . Opitz and Burst (2019) evaluated the properties of these different existing versions.
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could be alleviated by using one the different versions of the F1-Scores. For multi-label tasks, the
F1-Score can furthermore be calculated one a per-sample basis

F sample
1 = 1

n

n∑
i=1

2|Yi ∩ Pi|
|Yi|+ |Pi|

. (2.17)

Since this thesis is essentially about Natural Language Processing and this section just provides
some background knowledge, further details are considered out of scope. The interested reader is
(for the multi-label case) referred to to the excellent overview paper of Gibaja and Ventura (2014)
and their tutorial on multi-label learning (Gibaja and Ventura, 2015).

2.3. Machine Learning Methods for Text Data

Representing text data While text is potentially more rich in information content than any
other data source, traditional6 machine learning methods severely struggle when it comes to the
analyses of this kind of data. This type of models typically expects the input X to be of the
format n × p, where n is the number of observations and p is the number of covariates/features.
Text, however, mostly occurs in sequences of variable length which is why it is subject to further
pre-processing before machine learning methods can be applied to it. The easiest way to transform
a corpus C of M documents into a tabular data set is representing every document d as a ”bag of
its words”. To obtain these representations, the following steps have to be taken:

1. The number of features is defined by the size of the vocabulary, i.e. p = |V |

2. Each of the p columns in the tabular data set belongs to one word from the vocabulary,
oftentimes ordered alphabetically.

3. The number of observations n is equal to the number of documents, i.e. n = M

4. Every cell xi,j holds the word count of the j-th word in the i-th document.

The representation of a corpus of training examples through such a Document-Term-Matrix im-
plicitly inherits the ”Bag-of-Words” (BoW) assumption. This a very strong assumption, since
its crucial point is that the word order of a sequence is completely disregarded and words are
treated as independent from their context. The two exemplary sequences s1 = (”not”, ”bad”, ”,”,
”actually”, ”quite”, ”nice”) and s2 = (”not”, ”nice”, ”,”, ”actually”, ”quite”, ”bad”) show the
drawback of this assumption in quite a vivid way. Despite conveying completely opposing mean-
ings, both sequences would be represented by the exact same BoW-representation. One approach
to mitigate this problem is the use of n-grams, which are sub-sequences of n successive words. In
this context, the standard BOW-representations can be coined as a ”Bag-of-Unigrams” (1-grams),
while the use of ”Bigrams” (2-grams) would mean to additionally consider all occurring sequences
of two successive words. Further, also trigrams (3-grams), four-grams, etc. can also be used.

Nevertheless, this ability to capture context comes at a cost. Since many machine learning models
tend to perform worse in the presence of an unfavorable relation between the number of obser-
vations n and the number of features p (p >> n), one has to be careful at this point. The use

6”Traditional” machine learning methods are strictly separated from neural networks (cf. Sec. 2.4) in this thesis.
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of n-grams leads to an enlargement of V and consequently also of p, while the number of docu-
ments (and thus n) remains constant. This leads to a trade-off between the ability of capturing
local contexts (using n-grams) and the risk of having an unfavorable ratio of n and p. Methods
to reduce the number of features in a reasonable way include the removal of stop-words (words
that convey little or no meaning), stemming (reducing a word to its ”stem” by cutting of pre- and
suffixes) or lemmatization (similar to stemming, but the ”lemma” has to be an existing word). For
further implementation details the interested reader is referred to Bird et al. (2009, Ch. 3).

A further shortcoming of the naive BoW is the inherent assumption that the raw counts of a
word reflect its importance in a corpus. Actually, the information content of a word (generally)
decreases with increasing occurrence. This problem can be addressed by the ”term frequency –
inverse document frequency” (tf-idf) re-weighting scheme, which scales the raw counts of words
(or n-grams) with their (logarithmic) inverse document frequency7

idf(wi) = log
(

n∑
d|wi∈d 1

)
. (2.18)

At the time of writing this thesis, there exist more advanced and more efficient methods for
representing words and sequences (cf. Sec. 2.5 and 2.6.2). This part is nevertheless included to
provide context and to be referred to when stressing the advantages of the advanced methods.

Task-specific models for text data After pre-processing the data as described above, most of the
standard as well as advanced machine learning models can consume BoW-based representations
of dimension n × p as input and perform the task at hand. These models include (but are not
limited to) methods like (regularized) regression models, tree-based models (e.g. CART, Random
Forest), gradient-based methods (e.g. Boosting) or support vector machines. Depending on (i)
the type of the target variable, (ii) the amount of data, (iii) the exact characteristics of X and (iv)
the chosen hyperparameters basically any of these architectures could be well suited for a given
task and data situation.

2.4. Neural network architectures

Before dealing with NLP-related architectures, the basic8 concepts of artificial neural networks will
be introduced. First, the functionality of a single neuron will be described, before it is embedded in
the larger context of a (fully-connected) feed-forward neural network. Extensions towards deeper
networks with multiple layers and the training procedure of neural networks will be provided in
order to lay the foundation for more complex and deeper architectures in Ch. 2.5 and 2.6.

Single neurons A neuron can be thought of as the most basic unit of a network, performing
exactly one single part of the calculation in a two-step procedure. Assume a neuron receives
the vector x = (x1, x2, . . . , xp) as an input. In a first step, this input vector is multiplied by a

7There exist different variants of td-idf, like sublinear scaling of the term frequency or smoothing of the inverse
document frequency. See e.g. the implementation in Python’s scikit-learn library (Pedregosa et al., 2011).

8For deeper insights, the respective chapters from Goodfellow et al. (2016) will be referenced where suitable.
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(trainable) weight vector w ∈ Rp, the single elements are summed up and finally a (trainable)
so-called bias term b is added:

fin = wᵀx + b (2.19)

In a second step, fin is transformed by a non-linear activation function τ and subsequently emitted
by the neuron:

fout = τ(fin) = τ(wᵀx + b) (2.20)

Note, that while the activation function is a given function9 (e.g. sigmoid, softmax, tanh or ReLu),
w and b are model parameters that will be updated during the learning procedure.

Fully-connected feed-forward neural networks A neural network consists of multiple neurons
(per layer). If each of the neurons in one layer is connected to each of the neurons in the previous
layer, it is straightforward to extend the formulation from Eq. (2.19) and (2.20) to

f in = Wx + b (2.21)
f out = τ(f in) = τ(Wx + b)

for a whole layer10 instead of a single neuron, where in the weight matrix W each row Wi ∈ Rp.
Typically the first (input) layer holds the covariates, while the second (hidden) layer does the
computations described above. The output layer is always adapted to the type of task which is
to be solved by the network. This requires two crucial design choices for the final layer. First,
the number of output neurons has to be suitable for the task, e.g. only one neuron for binary
classification, since the probability for one class has to be predicted. Second, the activation
function also has to fit the task, e.g. the sigmoid function for binary classification, since it squashes
any real number to an interval between zero and one. This is why the activation function(s) of
the hidden layer(s) do(es) not necessarily have to be the same as for the output layer. While the
former can be considered a (tuneable) hyperparameter, the latter is predetermined by the task.
If there are multiple hidden layers stacked between the input and the output layer one speaks of
deep neural networks. These models contain more trainable weights and have thus (generally) a
higher learning capacity, but are obviously more expensive to train.

Training (deep) neural networks11 Before the start of the training, the trainable weights are
(potentially using some smart strategy) initialized with (small) random values. The training itself
consists of two separate phases: The forward pass and the backward pass. During the forward pass,
the input data flows through the computational graph defined by the network at the end of which
a predicted output f(x, θ) = ŷ is calculated. This prediction is, jointly with the true, known value
y of the target variable, used to calculate the error using a chosen loss function J(y, f(x, θ)).12

In order to minimize the loss, some version of (stochastic) gradient descent (SGD) is performed
via Backpropagation (Rumelhart et al., 1986). After the training procedure is finished, the neural
network can be used in order to make predictions for unseen inputs.

9For more details about activation functions, see Goodfellow et al. (2016, Ch. 6.3)
10Note, that the activation function τ is now applied element-wise.
11This is a very high-level explanation, for detailed explanations see Goodfellow et al. (2016, Ch. 6 and Ch. 8)
12Common loss functions for classification tasks are binary or categorical cross-entropy.
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2.5. Shallow Networks for Natural Language Processing

2.5.1. Neural probabilistic language model

Bengio et al. (2003) proposed a neural network based model for the language modeling task. In
their architecture they did not rely on features like (tf-idf weighted) word or n-gram counts in the
input layer, but utilized binary indicators for the presence/absence of words which are mapped
to (trainable) continuous representations in the first hidden layer. This mapping is performed by
matrix multiplication of a one-hot encoded vector x of dimension 1 × |V | with a look-up table
matrix of dimension |V | × E.13 Thus, the i-th row of this matrix can be regarded as the feature
vector associated with the i-th word in the vocabulary. Note that the look-up table matrix in
the first hidden layer is shared for every occurrence of a word, which means that a word will
be represented by the same feature vector irrespective of (i) the position and (ii) the context
it appears in. Since the model is trained on the language modeling task, it consumes a chosen
number C of words and uses them to predict some word wt in the sequence. The dimensionality
E of the look-up table matrix as well as the context size C are hyperparameters of the model.

In order to predict the word at position t, the words wt−C , . . . , wt−1 are first fed to the input
layer of the network and are transformed to their vector representations wt−C, . . . ,wt−1 from
the look-up table matrix in the first hidden layer. These vector representations are subsequently
concatenated into a context vector x = concat(wt−C, . . . ,wt−1) which is transformed by a tanh
non-linearity in the second hidden layer before it is fed into the output layer with a softmax
activation function producing a |V |-dimensional vector of probabilities for the the word wt:

P (wt = wi|wt−1, . . . , wt−C) = exp(ηwi)∑
wj∈V ηwj

with η = W2 tanh (W1x + b1) + W3x + b2, (2.22)

where ηwi is the wi-th element of η corresponding to the i-th word in the vocabulary.
The model is trained via stochastic gradient ascent maximizing the training corpus’ penalized
log-likelihood, which is equivalent to minimizing the negative penalized log-likelihood via SGD.

The authors showed the superiority of their model over different models based on n-grams by
measuring the perplexity (cf. Ch. 2.2) on a held out test set on several different corpora. With
respect to the rest of this thesis, the most important fraction of this model is the mapping of
discrete units (words or tokens) to continuous representations (embeddings) which happens in the
first hidden layer. Most of current research fundamentally builds on this idea, starting with the
extremely influential work of Mikolov et al. (2013a,b,c,d) in the early 2010s.

2.5.2. Representation learning

Word2Vec Mikolov et al. (2013a) picked up on the idea of representing words as continuous
vectors, but dropped the simultaneous objective of training a functioning language model.14 The
authors solely focus on generating high-quality word embeddings while simultaneously employing
computational tricks in order to avoid the high computational cost which is implied by the softmax
13The notation in this thesis differs (for the sake of consistency) from the one used by Bengio et al. (2003).
14Interestingly this behaviour can be observed at a later point in time (cf. Sec. 3.3). Devlin et al. (2019) also use

(parts of) an existing type of architecture (Transformer, Vaswani et al. 2017) and ”abuse” it in order to learn
high-quality word representations, while thereby sacrificing the language modeling objective.
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function in the output layer of the Neural probabilistic language model (NPLM). Mikolov et al.
(2013a) specify the computational complexity of one single training example in the NPLM as

n× E + n× E ×H +H × |V | , (2.23)

where H is the dimensionality of the hidden layer. While n is typically around 5 – 20 words
and E and H are typically three-digit or low four-digit numbers, |V | is for most of the languages
between 10.000 and 100.000 words. The most complex part (H×|V |) could at this time already be
efficiently reduced to H× log2 (|V |) by using hierarchical softmax (Morin and Bengio, 2005), such
that n×E ×H remained the most costly part of this model. Mikolov et al. (2013a) simply drop
this expensive part and thus reduce the complexity of the model by a large margin. Furthermore,
in a follow-up paper, Mikolov et al. (2013c) add the idea of noise-contrastive estimation (NCE;
Gutmann and Hyvärinen, 2010; Mnih and Teh, 2012) to this architecture, enabling it to learn
high-quality word embeddings in a very efficient manner.

Figure 2.1.: The two word2vec model architectures proposed by Mikolov et al. (2013a), figures adopted
from the original paper.

The two log-linear models (which are colloquially summarized under the umbrella term word2vec)
are both simple feed-forward architectures which can be distinguished by their objective and
hence also by how training examples are constructed from the training corpus. In the Continuous
Bag-of-Words (CBOW) architecture, the objective is to maximize the average log probability of
a center word given the surrounding in a defined context window of size 2 · C,

1
m

m∑
t=1

log p(wt|wt−C , . . . , wt−1, wt+1, . . . , wt+C) (2.24)

with p(wt|wt−C , . . . , wt−1, wt+1, . . . , wt+C) = exp(wout
t

ᵀ win
C )∑|V |

i=1 exp(wout
i

ᵀ win
C )
,

where the probabilities are calculated via the softmax function and win
C is the summation of

the word embeddings of all context words wt−C , . . . , wt+C (cf. left part of Fig. 2.1). It is
important to distinguish between win

t , which is the word embedding of wt (i.e. the weights of the
input/projection layer), and wout

t , which depicts the weights of the output layer for wt.
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Employing the Skip-Gram (SG) architecture basically reverses the idea of CBOW, since one single
center word is now used to predict the surrounding words in a context window of size 2 ·C. Hence
the objective (graphically depicted in the right part of Fig. 2.1) can be formulated as follows:

1
m

m∑
t=1

∑
−C≤j≤C,j 6=0

log p(wt+j |wt) (2.25)

with p(wt+j |wt) =
exp(wout

t+j
ᵀ win

t )∑|V |
i=1 exp(wout

i
ᵀ win

t )

Note, that the formulation of ”maximizing the average log probability” is equivalent to minimizing
the negative log-likelihood for both architectures. Introducing Negative Sampling (Mikolov et al.,
2013c), based on the idea of NCE as mentioned above, further decreases the computational cost of
both architectures. Negative Sampling trains the model to distinguish the true target word from a
chosen number K of ”negative examples” randomly drawn from a noise distribution Pn(w). This
replaces p(wt+j |wt) in the SG objective by

log(σ(wout
t+j

ᵀ win
t )) +

K∑
i=1

log(σ(−wout
i

ᵀ win
t )) (2.26)

where σ(x) = 1
1+exp(−x) is the sigmoid activation function. As noise distribution Pn(w), Mikolov

et al. (2013c) (empirically) chose the unigram distribution of the training corpus raised to the
power of 3/4.

GloVe Another paradigm for learning vector representations was presented by Pennington et al.
(2014), who rely on a matrix factorization algorithm. In a first step a global co-occurrence matrix
X with entries Xij is constructed by counting how often a word wj occurs in the context of a
word wi. The definition of context, i.e. the window size C, can be considered one of the most
important hyperparameters of this model architecture. The vector representations are learned by
minimizing the following objective:

|V |∑
i=1

|V |∑
j=1

f(Xij) ·
(
win

i
ᵀ wout

j + bini + boutj − log(Xij)
)2

, (2.27)

with f(x) =
{

(x/100)α if x < 100
1 otherwise

,

where bini and boutj are the bias terms of target and context word and f(·) is a weighting function.
The resulting representations are denoted as Global Vectors (GloVe), since this method relies on
global instead of local (as in CBOW and SG) co-occurrences.

Following these important milestone publications, two important extensions were proposed based
on the word2vec framework. First, Le and Mikolov (2014) extended the architecture with respect
to being able to learn representations for whole paragraphs or documents instead of just for
words. Second, Bojanowski et al. (2017) addressed to problem of out-of-vocabulary words by
using subword embeddings. The remainder of this section will be dedicated to briefly introducing
these two concepts, starting with the doc2vec framework (Le and Mikolov, 2014).
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2. Methodological and General Background

Doc2Vec The doc2vec framework presents a simple, but yet very powerful, extension to the
word2vec framework. The basic idea is to enlarge the vocabulary V by a unique identifier for
every document in the training corpus, such that the size of the new ”vocabulary” equals |V |+M .
The Distributed Bag of Words version of Paragraph Vector (PV-DBOW) architecture resembles
the SG word2vec architecture, since a single document identifier is used as ”center word” to predict
the words in the context window (i.e. the whole document, cf. left part of Fig. 2.2). Vice versa,
the Distributed Memory Model of Paragraph Vectors (PV-DM) architecture aims at predicting a
center word given the surrounding context word plus the document identifier. It is thus exactly
alike to the CBOW version of word2vec, with the document identifier as only difference. According
to Le and Mikolov (2014), the identifier ”acts as a memory that remembers what is missing from
the current context”, hence the name ”distributed memory”.

Figure 2.2.: The two doc2vec model architectures (PV-DBOW on the left, PV-DM on the right) proposed
by Le and Mikolov (2014), figures adopted from the original paper.

FastText This algorithm was introduced by Bojanowski et al. (2017), who modified the Skip-
Gram architecture by adding character n-grams (”subwords”) to the vocabulary. By doing so, not
only the center word itself, but also its character n-grams15 are used as model input. Generating
character n-grams (n = 3) for e.g. the word ”hello” would lead to the following decomposition:

hello ⇒ <he, hel, ell, llo, lo>, <hello> ,

where the special tokens ”<” and ”>” denote word boundaries and the word itself is also kept.
This leads to a replacement of the dot product between the vector representations of wt and wt+j
in Eq. (2.25) and (2.26) by the sum of the dot products between the vector representations of the
character n-grams of wt and wt+j . Let Gwt denote the set of character n-grams appearing in wt
(including wt itself, see above), such that the scoring function looks as follows:∑

g∈Gwt

wout
t+j

ᵀ win
g . (2.28)

By incorporating n-grams, the model now also learns embeddings for these n-grams and is thus
highly likely able to represent previously unseen words by combining different n-gram embeddings.
This property of being able to represent a basically open vocabulary by a fixed-size vocabulary of
subword tokens is a very central concept for (i) neural machine translation architectures (which are
out of the scope of this thesis) and (ii) for transfer learning architectures (cf. Ch. 3). While simply
adding a set of character n-grams to the vocabulary is a rather heuristic way of achieving this,
15n is a hyperparameter determining how fine-grained a word will be disassembled. In practice, a range is defined

for n by specifying the upper and lower boundary, meaning n1- to n2-grams (e.g. 3- to 5-grams) are used.
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2.6 Deep Learning for Natural Language Processing

more elaborated data-driven procedures for efficiently constructing vocabularies will be introduced
in Sec. 2.6.2.

Algorithm Authors Pre-training Corpus Languages

word2vec Mikolov et al. (2013a) Google News data set English
GloVe Pennington et al. (2014) Wikipedia (amongst others) English
FastText Bojanowski et al. (2017) Wikipedia (amongst others) 157+

Table 2.4.: An overview on the resources for the pre-trained word embeddings generated using the different
algorithm presented in the section.

Regarding the computational complexity of the presented algorithms for representation learning,
the following can be stated: In general it is feasible to train these architectures on standard con-
sumer machines in a reasonable amount of time. There exist stable implementations for multiple
programming languages, including the gensim module (Řeh̊uřek and Sojka, 2010) for Python or
the text2vec package (Selivanov et al., 2020) for R. Nevertheless pre-trained versions were also
made available by the authors, which makes the respective vector representations usable as out-
of-the-box tool for a variety of different tasks. Tab. 2.4 holds the information on where to obtain
the pre-trained embeddings.

2.6. Deep Learning for Natural Language Processing

Neural network architectures in general have been introduced in Sec. 2.4 and shallow neural net-
works have been employed in the models presented in Sec. 2.5. As already briefly mentioned,
neural networks can consist of multiple hidden layers of arbitrarily complex form. These architec-
tures are commonly referred to as Deep Learning Models. Since neural networks are inherently
modular architectures, it is straightforward to extract the key idea of the embedding models (i.e.
the projection layer, holding the embeddings) and to combine it with deeper, more complex ar-
chitectures. The additional parts can include tailored (combinations of) activation functions or
task-specific output layer activations in order to make the models end-to-end trainable for down-
stream tasks. This section will present two types of neural architectures which have shaped the
way deep learning models were applied to NLP tasks in the past decade. Starting with recurrent
neural networks (RNN) in general, two wildly popular variations, namely Long-Short Term Mem-
ory (LSTM) networks (Hochreiter and Schmidhuber, 1997) and Gated Recurrent Units (GRU;
Cho et al., 2014), will be introduced briefly. Subsequently the Attention mechanism (Bahdanau
et al., 2014), a major innovation for improving RNNs, as well as the Transformer architecture
(Vaswani et al., 2017), the backbone of all transfer learning architectures in Ch. 3, is introduced
and will be explained in thorough detail.

2.6.1. Recurrent architectures

While conventional fully-connected feed-forward neural networks (FFNNs) probably represent the
most basic type of a deep network architecture, the above mentioned recurrent architectures are
specifically tailored for processing sequential data, such as language. A FFNN typically consumes
and processes all features of a given example at once, which may not necessarily be desirable when

19

https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/docs/en/english-vectors.html


2. Methodological and General Background

it comes to modeling sequences. Instead, RNNs only consume one ”feature” of the input sequence
(x1, . . . , xp) at a time, with the ”features” being ordered words, i.e. (w1, . . . , wm).

The network itself can be defined using hidden states

ht = τ(ht−1;wt; θhidden), (2.29)

which are continuously re-used for computing the subsequent hidden state of the model.16 Design-
ing the network this way, permits it access to all previous words w1, . . . , wt−1 in the sequence when
computing the hidden state for the word at position t. The output can (but does not necessarily
have to) be computed at each time step:

ot = τ(ht; θout) (2.30)

Computation of an output is executed at each time step when performing token-level tasks (e.g.
Named Entity Recognition), whereas for sequence-level tasks (e.g. Sentiment Classification) it is
usually only issued at the last time step. Also note, that the parameters θhidden are (i) shared
across all time steps and (ii) distinct form the parameters θout of the output layer.

The parameter sharing across time steps is both a benefit, when considering the parsimony of deep
learning architectures, as well as a threat, when it comes to the stability during the process of the
optimizing procedure via (stochastic) gradient descent. Since the same mathematical operation
(cf. Eq. 2.29) is performed using the same parameters at each time step of the sequence, gradients
will be identical and thus be raised to the power of the length of the sequence. For gradients which
are somewhat further away from an absolute value of one, this will cause them either to vanish
(if the absolute value is smaller than one) or to explode (if the absolute value is larger than one)
further back through the network. The vanishing gradients problem makes learning difficult in
general, since the overall direction of suitable parameter updates becomes unclear. The exploding
gradients problem on the other hand, leads to an unstable learning procedure and can be dealt
with using methods like gradient clipping (Pascanu et al., 2013).

The LSTM (Hochreiter and Schmidhuber, 1997) was initially proposed to deal with the vanishing
gradients problem and is thus able to model dependencies over a much longer range compared to
vanilla RNNs. This architecture stands out by the introduction of (gated) self-loops defined as
follows:

ft = σ(ht−1;xt; θforget)
it = σ(ht−1;xt; θinput)
h′t = tanh(ht−1;xt; θcandidate) (2.31)
ot = σ(ht−1;xt; θoutput)

The forget gate ft determines the information kept in the long-term memory ct (cf. Eq. 2.32),
while the input gate it, together with the candidate state h′t, determines what is added. The
output gate is used to compute the next hidden state using also the long-term memory ct (cf. Eq.
2.32). The newly introduced long-term memory ct allows the gradient to ”travel” further back in
time, while ht can be thought of as a short-term memory:

ct = ft � ct−1 + it � h′t (2.32)
ht = ot � tanh(ct)

16The initial hidden state h0 is initialized together with the other parameters θ of the network.
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2.6 Deep Learning for Natural Language Processing

The GRU (Cho et al., 2014) is a slightly less complex alternative to the LSTM, achieving an
oftentimes competitive performance at a somewhat lower computational expense.

All of the presented architectures are able to take into account the sequential nature of text by pro-
cessing it in a left-to-right fashion and thus taking into account the left-side context w1, . . . , wt−1
when processing wt. This makes sense when considering the ”causal” process of reading or writing,
but for some tasks (e.g. machine translation) internal representations of the network depending on
context from both sides might make sense. Bidirectional RNNs (biRNNS, and biLSTMs/biGRUs
respectively) solve this issue by simultaneously running a RNN (LSTM/GRU) on the sequence in
reversed order, thus conditioning on the right-side context only. Concatenating the two internal
representations from the forward and the backward RNN hence results in representations for each
token that are conditioned on both sides of the context.

When performing sequence-to-sequence modeling on text data (e.g. Machine Translation or Ques-
tion Answering), the model needs to be allowed to produce an output sequence of length mout

dissimilar to the length min of the input sequence. This requirement can be fulfilled by using
encoder-decoder architectures17 (Sutskever et al., 2014), where the encoder network maps the input
sequence to a fixed-size internal representation. The decoder network is subsequently conditioned
on this internal representation to generate the output sequence. Since the internal representation
is assumed to contain the information about the ”context” (i.e. the complete input sequence) this
can lead to an information bottleneck in case of an unfavorable ratio of input sequence length to
dimension of the internal representation.

Bahdanau et al. (2014) picked up on this limitation in the context of machine translation and
alleviated it by proposing the Attention mechanism, which allows the decoder network to access
all hidden layer representations (h1, . . . , hmin) of the encoder network instead of just one single
fixed size representation. The basic idea of this mechanism is to use a weighted combination of
the hidden layer representations as context representation for computing the decoder hidden state
si. The weights are determined by the similarity between the previous decoder hidden state si−1
and the elements in (h1, . . . , hmin). This approach can be formalized as follows:

1. Calculate the alignment: eij = a(si−1, hj) with a(.) as the alignment model.

2. Softmax-Normalization of the weights: αij = exp(eij)∑min
k=1 exp(eik) .

3. Calculate the context representation: ci = ∑min
j=1 αij · hj .

The alignment model mentioned in the first step can be thought of as a hyperparameter of the
model, just like any other activation function inside a neural network. Luong et al. (2015), besides
extending and generalizing the Attention mechanism to Global and Local Attention, provided an
overview on different options for the alignment model:

a(si−1, hj) =


sᵀi−1hj dot

sᵀi−1Wahj general

vᵀa tanh(Wa[sᵀi−1hj ]) concat

(2.33)

While Bahdanau et al. (2014) employed the variant which is referred to as concat in Eq. (2.33),
Luong et al. (2015) show the superiority of the other, much simpler variants.
17Note, that this type of architecture is not limited to its use in conjunction with RNNs, but can also be used with

other types of neural networks as to be shown in Section 2.6.2.
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2.6.2. The Transformer

(Multi-Head) Self-Attention The Attention mechanism presented in Sec. 2.6.1 can be viewed
in a more general way by introducing the notion of keys, queries and values. Attention then simple
means to compare a query to a set of keys in order to determine weights which can be used to
compute a weighted sum of some values. Translating these concepts to the Attention mechanisms
proposed by Bahdanau et al. (2014) and Luong et al. (2015) makes the previous decoder hidden
state the query and all the encoder hidden layer representations simultaneously the keys and the
values. Generalizing from this has essentially two implications:

• Keys and values do not necessarily have to be the same, any (meaningful) vector represen-
tations are possible.

• Query and keys can refer to the same underlying sequence, this will be introduced as Self-
Attention in this section.

Vaswani et al. (2017), with the goal in mind to reduce the number of sequential computations in
a network, proposed the Transformer architecture. This model framework still has an encoder-
decoder structure as described in Sec. 2.6.1, but instead of employing RNNs as encoder and
decoder networks, the authors solely rely on the so-called ”Self-Attention” mechanism. Their
Scaled dot-product Attention mechanism can be formalized as follows:

1. Mapping of the input sequence18 (w1, . . . , wmin) to E-dimensional input embeddings
(x1, . . . , xmin).

2. Linear projection of each input embedding to a query-vector qi, a key-vector ki and a value-
vector vi of dimensions dq, dk, dv (where dq = dk).

3. This results in three matrices: Q ∈ Rmin×dk ; K ∈ Rmin×dk ; V ∈ Rmin×dv

4. Calculate the alignment: a(Q,K) = QKᵀ
√
dk

5. Softmax-Normalization and Multiplication with V: Softmax
(

QKᵀ
√
dk

)
V

The output of the Self-Attention mechanism can be described as a new, contextualized dv-
dimensional embedding for every token wi from the input sequence. In the Transformer, these
computations are executed h times in parallel by so-called Attention Heads. This is implemented
by letting the model learn h different projection matrices (as described in the second step) which
project the input embeddings into different sub-spaces of the original embedding space. The
dimensions dk and dv are thereby chosen such that dk = dv = E/h, which again ensures an
embedding size of E after performing Multi-Head Self-Attention and concatenation the different
dv-dimensional embeddings resulting from the h different heads.

Since this mechanism does not process the input in a sequential fashion (as opposed to RNNs,
cf. Sec. 2.6.1) all information about the word order would be lost. In order to prevent this from
happening, Vaswani et al. (2017) add E-dimensional positional encodings to the input embeddings
before linearly projecting them to Q, K and V. After experimenting with learned and fixed
positional encodings, they decided to use fixed one composed of sine and cosine functions.
18Before feeding the input sequence to the model, Vaswani et al. (2017) apply a specific tokenization algorithm

(BPE; Gage, 1994) producing subword units. Further details on tokenization will be provided in Sec. 3.1.
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Encoder-Decoder Architecture The encoder network of the Transformer is constructed by stack-
ing six identical layers, where each of these layers is composed of a Multi-Head Self-Attention
module and an FFNN (cf. Fig. 2.3). Both of these components are supplemented by (i) residual
connections (He et al., 2016) and (ii) subsequent layer normalization (Ba et al., 2016).

Figure 2.3.: The encoder network of the Transformer architecture proposed by Vaswani et al. (2017), figure
adopted from the original paper.

Unconstrained employment of Self-Attention only makes sense in the encoder network (similar
to biRNNs), since it would destroy the auto-regressive property of the decoder required for the
machine translation task it was proposed for. Therefore, in the decoder Vaswani et al. (2017)
employ a constrained version of the Self-Attention mechanism, namely Masked Self-Attention
(sometimes also referred to as ”causal” Attention). This modification prevents information flow
from right to left by ”masking” all tokens on the right-hand side of the current position by setting
the scaled-dot product attention weights to −∞ (resulting in attention weights of zero after
softmax normalization). Additionally, the first layer of the decoder is an embedding layer mapping
the tokens of the sequence to their output embeddings (which can be distinct from the encoder’s
input embeddings) and offsetting them by one position to the right. This offset, together with the
Masked Self-Attention, ensures that only tokens which have a strictly lower position index can be
used for prediction. Similar to the encoder, the decoder adds positional encodings and employs
(Masked) Multi-Head Self-Attention as well as an FFNN (again each of them supplemented by
residual connections and layer normalization). Between these two sub-modules another Multi-
Head Self-Attention module is added, operating on the final keys and values from the encoder
and the queries from the decoder. This part of the model grants the decoder full access to the
contextualized input sequence. Vaswani et al. (2017) stack six identical layers for constructing the
decoder network, which makes the complete architecture look as depicted in Fig. 2.4.

This architecture was initially proposed to solve a machine translation task, which is why the
output layer of the network is a softmax layer generating a probability distribution over all tokens
from the vocabulary. In subsequent research nevertheless, hardly ever the complete Transformer
architecture was used again, but rather either the encoder or the decoder. For many models that
were built on the basis of the Transformer encoder, the authors came up with a meaningful task
which enabled training the encoder-only model in order to obtain high-quality, contextualized
representations.
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Figure 2.4.: The encoder and the decoder network of the Transformer architecture proposed by Vaswani
et al. (2017), figure adopted from the original paper.

Computational implications One of the key contributions of this architecture is the complete
abandonment of recurrence in the network. Substituting the recurrence mechanism by Self-
Attention reduces the number of sequential operations necessary to model a sequence of length m
from O(m) to O(1). The first implication of this drastic reduction is the reduced maximum path
length between two arbitrary positions in the input and the output. It can be seen as an indicator
for the ease with which a model is able to learn long-range dependencies and is also reduced from
O(m) to O(1).

The second implication is the change in the degree to which a model is parallelizable. The O(m)
required sequential operations in a recurrent architecture clearly hinder parallelization, whereas
in architectures based on the Self-Attentions mechanism the whole sequence can be processed in
parallel due to O(1) required sequential operations.

This property to be highly parallelizable helps in turn (partly) to overcome the drawback of
architectures based on the Self-Attention mechanism. Due to the necessity to calculate the atten-
tion scores for a token with all the other tokens in the sequence, the computational complexity
O(m2 ·E) of the Self-Attention mechanism scales quadratically with the sequence length m. Com-
pared to the complexity O(m · E2) of recurrent architectures this depicts a drawback as soon as
the sequence length exceeds the dimensionality of the embedding layer. This quadratic scaling
is still a problem nowadays and has led to a variety of different approaches proposing different
amendments to the vanilla Self-Attention mechanisms. These proposed changes include (but are
not limited to) recurrence mechanisms (Dai et al., 2019; Rae et al., 2019), low-rank approximation
or kernel methods (Choromanski et al., 2020; Wang et al., 2020) or the use of specific (sparse) At-
tention patterns (Zaheer et al., 2020; Kitaev et al., 2020; Beltagy et al., 2020). This categorization
is adopted from Tay et al. (2020), who provide a comprehensive overview on the methodologies
of the aforementioned architectures and further approaches.
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The paradigm of Transfer Learning is especially appealing for NLP applications since all of them
are based on a natural language input. This common input across tasks makes it similar to the
field of Computer Vision, where the inputs are mostly images (i.e. tensors of pixels) or videos (i.e.
time series of images). In Computer Vision, Transfer Learning has become the de-facto standard
with the introduction of ImageNet (Deng et al., 2009), a large-scale data set of 3.2 million images
belonging to over 5.000 categories. Interestingly, up until the time of writing this thesis, there
has been no comparable data set for NLP which is as influential as ImageNet is for Computer
Vision.1

The remainder of this chapter will be organized as follows: First, the general taxonomy of Transfer
Learning will be established so that all subsequently presented concepts and architectures can be
adequately categorized. Sec. 3.1 lays out the concept of Self-Supervised Pre-training, which
depicts the foundation for all sequential transfer learning models. ”Self-Supervised” in this case
refers to a lack of necessity of externally labeled data, since the labels can be generated from the
data itself. Two other important aspects of pre-training, corpora and computational resources,
will be addressed as well. Hereafter different architectures will be introduced in the temporal
order of their proposal, differentiating between feature-based transfer learning approaches (Sec.
3.2) and approaches relying on fine-tuning of complete pre-trained architectures (Sec. 3.3).

In order to establish a general taxonomy, the work of Ruder (2019), who adapted the general
notation of Pan and Yang (2009) to NLP, will serve as the foundation. Ruder (2019) differentiates
between the concepts of Transductive Transfer Learning and Inductive Transfer Learning, both
of which will be briefly explained in order to allow for a better placement of the contributions of
this thesis in the research context.

Transductive Transfer Learning With this concept, Ruder (2019) refers to transfer learning in
situations where labeled data are solely present in the so-called source domain and the task is the
same one across domains. Again, two areas can be subsumed under this umbrella term:

• If domain refers to an actual thematic concept, like for example different product categories
when talking about review data, the learning problem can be referred to as Domain Adap-
tation. In this case, the model is pre-trained on a (labeled) training corpus from the source
domain and is subsequently used for inference on data from the target domain.

• Cross-lingual Learning refers to the situation where domain actually describes a language.
It aims at transferring knowledge gained from pre-training on (labeled) data from a source
language to performing the same task on data from the target language.

1My personal intuition why this might be the case, is that an image is a much more universal type of data than
written text. There are probably much less diverse examples needed in order to visually represent concepts,
like e.g. a dog, than there are when representing this concept with written text (considering different languages,
paraphrases and writing styles). This makes it harder to create one universal pre-training resource for text.
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Inductive Transfer Learning When the knowledge transfer happens across tasks, Ruder (2019)
frames this as Inductive Transfer Learning. Here, labeled data is only present in the target domain,
which is why it is mostly combined with general domain pre-training on a self-supervised task.

• Multi-task Learning denotes the approach to train a model with the ability to learn multiple
tasks simultaneously, i.e. there are multiple target tasks for which labeled data are present.

• If tasks are not learned simultaneously, but in a sequential fashion, one speaks of Sequential
Transfer Learning. This often also implies the presence of multiple models, which are fine-
tuned separately starting from identical copies of a pre-trained architecture.

3.1. Self-Supervised Pre-training

In general, learning algorithms are broadly classified into two2 distinct categories: Unsupervised
and Supervised Learning. While the first one mostly refers to clustering or pattern detection
algorithms, which do not require external labels attached to the training samples, the latter
one, subsuming various regression or classification algorithms, explicitly requires these labels.
Regarding the pre-training procedure, which large language models are subject to, neither of these
two categories are perfectly adequate. On the one hand side, plain unannotated text corpora
without any external labels can be seamlessly used for pre-training, which makes the learning
problem look unsupervised. On the other hand, smart definitions of tasks in conjunction with
data augmentation techniques allow generating labeled training examples from the plain corpus
itself. The actual training is subsequently carried out in a supervised fashion, most of the time
as a classification task. Overall, these two properties required coming up with a distinct name for
this learning problem, which is why it is mostly referred to as Self-Supervised Learning.

Objectives Designing a suitable pre-training objective is crucial for a successful pre-training step,
since this predominantly influences the ability to effectively transfer knowledge into the model’s
weights. During the course of this thesis, already a couple of objectives were presented without
explicitly naming them as self-supervised pre-training objectives: The language modeling task (cf.
Sec. 2.2 and 2.5), the SG and CBOW objective (cf. Sec. 2.5) as well as the the PV-DM and the
PV-DBOW objective (cf. Sec. 2.5) can be classified as such. Further self-supervised objectives
will be introduced during the course of this chapter together with the architectures using them
for pre-training.

Tokenization An important pre-step, before raw text data can be entered into a model, is to-
kenization. While machine learning models trained for single tasks (cf. Sec. 2.3) often employ
custom tokenization schemes, e.g. simple whitespace tokenization, a more subtle approach has to
be taken when it comes to transfer learning. The two main requirements of a tokenization scheme
in order to be suitable for transfer learning are

(a) that it should be able to cover the whole vocabulary of the language(s)/domain(s) it is
intended to be used for, not just the vocabulary seen during training, and

2Note, that the field of Reinforcement Learning is intentionally omitted here, since it does not (yet) play a major
role in NLP and is not relevant for the subsequent explanations. But one can surely argue that a classification
of all learning algorithms into these three categories is in general more adequate.
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(b) it should be perfectly reproducible, since the subsequent use of the pre-trained model cru-
cially depends on the employment of the exact same tokenization.

Overall, these two points also make the tokenization scheme an important design choice (including
its hyperparameters) of an architecture. A slightly more elaborated, but still kind of heuristic,
tokenization scheme is the one used by FastText (cf. Sec. 2.5) where a subword tokenization
based on character n-grams is employed.

BytePair Encoding (BPE; Gage, 1994) is an algorithm originally proposed for data compression
and was adapted to be used for neural machine translation by Sennrich et al. (2016). This
conceptually appealingly simple algorithm needs to be initialized with a starting token vocabulary,
which is in most cases just the set of all characters plus an end-of-word token in order to control
word boundaries. Subsequently, co-occurrences of tokens are counted (without crossing word
boundaries) and the most frequently co-occurring token pair is merged to a new token, which is
then added to the vocabulary (e.g. ”A” + ”B” → ”AB”). This process is repeated until a pre-
defined vocabulary size is reached. The WordPiece algorithm (Schuster and Nakajima, 2012; Wu
et al., 2016), which is heavily used in current SOTA architectures, works in a related way, with the
major difference that a language model is trained on the initial vocabulary and the increase of the
likelihood in the training data is used as a criterion for merging two tokens. Additionally to the
vocabulary size, the incremental increase of the likelihood can also serve as stopping criterion for
this algorithm. SentencePiece (Kudo and Richardson, 2018) represents a pipeline-style alternative
which does not require any language-specific pre-processing prior to tokenization, but consumes
complete sequences. Under the hood, either BPE or a unigram language model are applied for
tokenization. Just recently, Clark et al. (2021) proposed an architecture which directly consumes
character sequences and thus poses an interesting alternative to the data-driven tokenization
algorithms. It will be described in more detail in Sec. 11.

Text corpora Since there are no requirements to pre-training corpora regarding external labels,
the most important criteria are size, diversity and quality.3 As already mentioned, there is no
such standard pre-training data set as ImageNet is for Computer Vision, but still there are some
corpora which are used more often than others. The English Wikipedia and Wikitext-103 (Merity
et al., 2016a,b) represent examples for high quality data, while different subsets of CommonCrawl,
WebText (Radford et al., 2019) or OpenWebText (Gokaslan and Cohen, 2019) are representatives
for rather large corpora. Linguistic diversity is introduced by using coprora like e.g. the BooksCor-
pus (Zhu et al., 2015), the 1B Word Benchmark (Chelba et al., 2013) or the Stories corpus (Trinh
and Le, 2018). A more in-depth discussion on the use of pre-training corpora can be found in the
first contribution to this thesis (cf. Ch. 4).

Computational resources As mentioned in Sec. 2.6, current SOTA deep learning architectures
require a rather large amount of computational power, especially when pre-trained on sometimes
> 100 GB of plain text. Large-scale pre-training requires the use of (at least multiple) GPUs,
but even better TPUs4, whereas the task-specific fine-tuning step is relatively cheap (at least if
compared to the pre-training). The use of computational resources for SOTA architectures as well
as the resulting implications are discussed more in depth in the contribution in Ch. 4.

3Quality here refers to measurable quantities like e.g. grammatical correctness or percentage of spelling mistakes
(cf. Kiefer (2019)) since other criteria like writing style or stylistic beauty are subjective and hardly measurable.

4More information on Tensor Processing Units: https://cloud.google.com/tpu/
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3.2. Feature-based Transfer Learning

After the language model has been pre-trained, there are two very distinct proceedings which will
be described in further detail in this chapter. When the pre-trained architecture is utilized as
is, i.e. the model weights are not further altered, but used as features in a second architecture
building thereupon, one speaks of feature-based transfer learning. On the other hand, when the
pre-trained weights are further adapted, this is called the fine-tuning approach. A third direction,
which is recently emerging, can be categorized as low-shot learning and will be touched on briefly
in Sec. 11.

Without explicitly naming it, some representatives of the class of feature-based transfer learning
approaches have already been introduced in Sec. 2.5. All types of (sub)word or document embed-
ding algorithms are used in such a fashion, since the (static) representations are extracted from the
pre-trained model and subsequently used for some specific task at hand. A severe shortcoming of
all these algorithms is the missing contextuality in the representations they produce. All of these
architectures are only able to learn one single embedding per word/token which is independent of
the context it appears in.

A more recent algorithm for feature-based transfer learning is able to overcome this shortcoming,
by employing a recurrent architecture for contextualizing the embeddings: Embeddings from
Language Models (ELMo; Peters et al., 2018) is an architecture consisting of two biLSTM layers
preceded by a (character-based) token embedding layer which is pre-trained on a forward and
a backward language modeling task. Denoting the context-independent representation from the
embedding layer as xLMk and the context-dependent internal representations as −→h LM

k,j and ←−h LM
k,j

for the k-th token in the j-th layer, the complete set of representations can be written as

Rk =
{

xLMk ,
−→h LM
k,j ,
←−h LM
k,j |j = 1, 2

}
=
{

hLMk,j |j = 0, 1, 2
}
, where xLMk = hLMk,0 and hLMk,j = [−→h LM

k,j ,
←−h LM
k,j ]. (3.1)

In order to train a downstream model including the pre-trained ELMo embeddings Rk as features,
task-specific parameters Θtask = (γtask, staskj ) are included and subsequently learned, resulting in
the following notation for a task-specific ELMo model:

ELMotaskk = E
(
Rk; Θtask

)
= γtask

L∑
j=0

staskj hLMk,j , (3.2)

where E(.) denotes the task-specific ELMo embedding. The parameters are (softmax-normalized)
weights staskj for weighting the ELMo embeddings and a task-specific scaling parameter γtask.

In order to prove the effectiveness of the pre-trained ELMo embeddings, Peters et al. (2018)
selected six benchmark tasks which they, in a first step, trained a (task-specific) baseline model
on. In a second step they enhanced this baseline by adding ELMo to the architecture, resulting
in a notable increase of the baseline performance as well as in an increase of the SOTA results on
these tasks at this point in time (cf. Tab. 1 in Peters et al., 2018)

Nevertheless, this approach shows two major disadvantages: First, ELMo representations can not
be further adapted to specific tasks or domains since just the task-specific weighting- and scaling
parameters are trainable. Second, having separate forward and backward representation may
hinder deep contextualization. Both of these shortcomings will be tackled by the architectures
introduced in the upcoming Sec. 3.3.
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3.3. Fine-tuning approach

Regarding the fine-tuning approach one has to take into consideration one particular model
that has changed much of the NLP landscape. Bidirectional Encoder Representations from
Transformers (BERT; Devlin et al., 2019) is the first architecture simultaneously capturing bidi-
rectional context and relying on the Transformer architecture. Architectures introduced before
BERT are either feature-based bidirectional contextual models (ELMo; Peters et al., 2018) or uni-
directional contextual LSTM- (ULMFiT; Howard and Ruder, 2018) or Transformer-based (GPT;
Radford, 2018) models relying on the fine-tuning paradigm. The algorithms designed in the time
period after BERT either tried to alter and improve the BERT architecture itself or were in some
way fundamentally different while still heavily inheriting from BERT. During the remainder of
this chapter, these models are introduced in a timely ordered fashion (cf. Fig. 3.1, 3.2 and 3.3).

Figure 3.1.: A sketch of the developments in Transfer Learning in NLP upon the introduction of BERT.

Pre-BERT architectures At around the same point in time when ELMo entered the picture, two
concurring algorithms were proposed. They were able to alleviate some of ELMo’s shortcomings,
but on the other hand also showed some of their own. Universal Language Model Fine-Tuning
(ULMFiT; 33M parameters; Howard and Ruder, 2018) relies on AWD-LSTMs (Merity et al.,
2017), which were the state-of-the-art LSTM architecture at that point in time, and was pre-
trained on the language modeling task using Wikitext-103 (Merity et al., 2016b) as pre-training
corpus. The model consists of an embedding layer, using complete words as tokens and |V | = 30k,
and three subsequent LSTM layers complemented by a softmax layer for pre-training. Adaption
to the target task is carried out in two different steps. First, the model is further trained5 on
the language modeling task, but now using data from the target task domain. Finally, a target
task specific classifier is added on top of the pre-trained architecture. This classifier’s weights are
learned (from scratch) by performing supervised learning on the target task data.

5Subtleties of the training procedure are not described in further detail, but it is highly recommendable to have a
look at the variety of nifty techniques applied by Howard and Ruder (2018).
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The OpenAI GPT (117M parameters; Radford et al., 2018) refers to a pre-trained model consist-
ing of a stack of twelve Transformer decoder blocks which was pre-trained on the BooksCorpus
(Zhu et al., 2015) using a standard language modeling objective. Radford et al. (2018) stick to the
BPE tokenization algorithm also employed in the original implementation of the Transformer by
Vaswani et al. (2017). The rationale for using only the decoder part instead of the whole Trans-
former architecture is the causality preserving property of the Masked Self-Attention employed
in the decoder. This property allows the authors to achieve (unidirectional) contextuality using
Self-Attention without compromising the language modeling objective. For fine-tuning, a softmax
classification layer is added on top of the pre-trained model and it is trained to jointly minimize
the cross-entropy loss of the specific task at hand alongside with the (auxiliary) language modeling
loss. A timeline of these architectures (alongside with word2vec, ELMo and BERT) is depicted
in Fig. 3.1.

BERT Using the encoder part of the Transformer for learning bidirectionally contextual repre-
sentations, however, remained an open problem, despite the advances made by Howard and Ruder
(2018) and Radford et al. (2018). Unconstrained Self-Attention, inducing bidirectional contextual-
ity, would eventually cause each word in a sequence to have access to its own representations from
previous layers. Hence, using a stack of Transformer encoder blocks for pre-training via language
modeling – similar to what Radford et al. (2018) do with decoder blocks – is not feasible as it
would allow the model to ”cheat”. Devlin et al. (2019) proposed the pre-training task of Masked
Language Modeling (MLM), closely related to the cloze task (Taylor, 1953), where a random por-
tion of the input tokens is masked and has to be predicted by the model. Additionally, the Next
Sentence Prediction (NSP) task is utilized for pre-training, i.e. each input sequence consists of
two sentences where the model needs to predict whether the second sentence actually follows the
first one or whether it is a random sentence from the training corpus.

BERT is built on the WordPiece tokenization algorithm (Wu et al., 2016) with |V | = 30k and
adds three special tokens to the vocabulary: The [CLS]-token precedes every sequence and is used
for classification tasks (i.e. NSP during pre-training), while the [SEP]-token is injected between
the two input sequences. Solely during pre-training a special [MASK]-token is added, since it is
required for MLM. Summing up the token embeddings with (learned) positional embeddings and
special (learned) segment embeddings yields the complete input representations. The actual model
thereafter consists of 12 Transformer encoder blocks with a hidden dimension6 of H = E = 768
and h = 12 Attention heads for the BERTBASE variant (110M parameters) and 24 encoder blocks
(H = E = 1024, h = 16) for the BERTLARGE variant (340M parameters).

In order to prepare the training corpus, consisting of the BooksCorpus (Zhu et al., 2015) and the
English Wikipedia, the following steps were taken: For MLM, a portion of 15% of the tokens was
randomly selected for prediction. Thereof 80% were replaced by [MASK], 10% were replaced by a
random token and another 10% were left unchanged7. For NSP, sentences were paired such that
in 50% of the cases the second sentence was actually the successor of the first one whereas in the
other 50% of the cases it was not. The second requirement was for the paired sentences not to
exceed a combined sequence length of 512 tokens, which is the maximum number of tokens BERT
is able to process.

6The hidden layer dimension is chosen to be equal to the dimension of the embedding layer.
7The rationale behind this procedure was to mitigate the discrepancy introduced between the pre-training and the

fine-tuning phase through the artificial [MASK]-token which only appears during pre-training.
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Fine-tuning of the architecture is performed by either using the [CLS] for sequence classification
tasks or by using each of the token representations from the final encoder block for token-level
tasks. Upon its introduction, BERT set new SOTA results on nearly all of the relevant leader-
boards (Wang et al., 2018; Rajpurkar et al., 2016, 2018), partly exceeding the performance of the
previous leader by a large margin and thus becoming the new ”one to be beaten”. Regarding
the successors of BERT, the remainder of this chapter will differentiate between models directly
altering BERT (cf. Fig. 3.2) and models proposing alternate architectures (nevertheless also built
upon the Transformer, cf. Fig. 3.3).

Figure 3.2.: A sketch of the developments in Transfer Learning in NLP based on the architecture of BERT.

BERT-based architectures Much of the following research was about detecting flaws and weak-
nesses within BERT, which subsequently led to the introduction of BERT-based architectures
alleviating these shortcomings. The whole field of interpreting/explaining and improving BERT
is often referred to as BERTology (Rogers et al., 2020) and is unfortunately by far too large8 to
be covered more in depth in this thesis. Hence, the remainder of this paragraph introduces three
specific architectures which are considered to have had a large impact. Liu et al. (2019) pro-
posed a Robustly optimized BERT pre-training approach, short RoBERTa (360M parameters),
focussing on turning the adjusting screws on BERT. While architecturally the only change is a
larger embedding layer, originating from the use of a 50k BPE vocabulary (instead of 30k Word-
Piece in BERT), the pre-training regime is revised substantially. First, the pre-training corpus
is replicated ten times and each replicate is (randomly) masked differently.9 Second, pre-training
is performed (i) on a (more than ten times) larger corpus, (ii) using a notably larger batch size
(8k vs. 256) and (iii) waiving the NSP objective. This led to a substantial increase of the SOTA
results, supporting the claim of Liu et al. (2019) that ”BERT was significantly undertrained”.

A Lite BERT (ALBERT; 233M parameters Lan et al., 2019) can be seen as a representative of
the model class of (attempted) more efficient BERT-based architectures. The authors substituted

8Having a look at https://github.com/tomohideshibata/BERT-related-papers might give a good impression of
the sheer amount of BERT-related models and literature.

9This process is called Dynamic Masking and is deemed superior to BERT’s static masking once before pre-training,
since the model is confronted with the same texts masked differently and is thus able to extract more knowledge.
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the NSP objective by their Sentence Order Prediction (SOP) objective, where the task is to
predict whether the two sentences are fed to the model in the right order or not. More important
architectural changes include (i) the disentanglement10 of H and E and (ii) sharing parameters
across layers, increasing parameter efficiency. These changes resulted in an (initially) smaller
model, which Lan et al. (2019) scaled up to a size comparable to BERT, achieving superior results
on GLUE (Wang et al., 2018), SQuAD (Rajpurkar et al., 2016, 2018) and RACE (Lai et al., 2017).
Regarding the claimed higher efficiency it is important to note, that while the memory footprint
is reduced by the parameter sharing, the inference speed is not significantly reduced, since the
architecture is scaled up again.

Sanh et al. (2019) employ a model distillation technique (Buciluǎ et al., 2006; Hinton et al.,
2015) to compress the pre-trained BERTBASE architecture into their DistilBERT model (66M
parameters) exhibiting half the size. For pre-training, the same corpus as for BERT but the
improvements of RoBERTa (no NSP, dynamic masking, larger batches) are used, resulting in an
architecture which can be fine-tuned to achieve nearly 97% of the performance of BERTBASE.

Figure 3.3.: A sketch of further developments in Transfer Learning in NLP since the introduction of BERT.

Post-BERT architectures Like in the previous paragraph, only four of the most notable subse-
quent alternatives are presented. The next milestone model which was proposed 4 months after
BERT is called GPT-2 (Radford et al., 2019), the direct successor of OpenAI GPT. Its most
notable features were its sheer size (1.5B parameters, which was the largest parameter count at
that point in time) as well as its outstanding ability in text generation. It will be further discussed
in Sec. 11.

Another four months later (cf. Fig. 3.3), Yang et al. (2019) proposed the XLNet (340M parame-
ters) architecture, also based on the Self-Attention mechanism. Their new Permutation Language
Modeling (PLM) objective allowed combining the auto-regressive formulation of a standard left-to-
right language model with the deep bidirectional contextuality of BERT’s MLM objective. PLM
describes the objective of maximizing the expected log likelihood for all possible permutations of
10In the Transformer, BERT and RoBERTa those dimensions were tied, i.e. H = E, limiting flexibility.
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the factorization order of a sequence. By including all possible permutations, the model assures
that each token has access to tokens from both sides of the context. Despite being computationally
more expensive than MLM, PLM addresses two crucial shortcomings of MLM: First, by predicting
all of the masked tokens separately, MLM implicitly contains the assumption that the predicted
tokens are independent, while PLM does not need this assumption due to its auto-regressive for-
mulation. Second, the discrepancy between pre-training and fine-tuning in BERT, introduced
by the artificial [MASK]-token during pre-training, ceases to exist, since XLNet’s auto-regressive
structure does not require this kind of input corruption. XLNet exhibits a superior performance
compared to BERT on the pertinent benchmark data sets (GLUE, SQuAD, RACE) but also
proves to be more computationally demanding.

Instead of just using the Transformer encoder (like BERT & Co.) or the decoder (GPT models),
the Text-to-Text-Transfer-Transformer T5 (11B parameters; Raffel et al., 2019) is a complete
Transformer and thus a sequence-to-sequence model. The underlying idea for this approach is
to re-formulate every possible NLP task to a ”text-to-text” problem, i.e. both input and output
are sequences of tokens. This allows for Multi-task learning (cf. beginning of Chap. 3), since the
algorithm is enabled to be trained to solve multiple different tasks simultaneously. Instead, all of
the previously introduced models had to be fine-tuned to each of the different tasks separately.
Alongside with this novelty, Raffel et al. (2019) introduced the Colossal Clean Crawled Corpus
(C4, 750GB of plain text) with the intention for (subsets of) it to be used as a standardized pre-
training resource. They also performed exhaustive experiments with respect to the architecture,
model size, pre-training objective as well as fine-tuning methods and multi-task learning strategies.
Again, their final T5 model conquered the top of the most commonly used leaderboards.

The last model presented in this section is ELECTRA (340M parameters; Clark et al., 2020),
an architecture relying on a pre-training objective of discriminative (rather than generative11)
nature. This algorithm requires two language models for pre-training: A smaller helper model
(comparable to BERT) performing masked language modeling on corrupted sequences and the
actual ELECTRA model, which is trained on discriminating between ”original” tokens and tokens
that were generated by the helper model. During pre-training, the objective is for the complete
architecture to minimize a combined loss consisting of the MLM loss from the helper model and
the discriminator’s loss. After the pre-training is finished, the helper model is discarded and
the discriminator model can be used for fine-tuning. Clark et al. (2020) dubbed this objective
Replaced Token Detection and claim that it makes more efficient use of the pre-training corpus
since it enables the model to learn from all tokens in the sequence instead of just from e.g. 15%
that were masked (cf. BERT) before pre-training. The final ELECTRA model of a size similar
to BERTLARGE was pre-trained on the same corpus as XLNet using approximately the same
amount of compute as RoBERTa. Performance-wise it is able to outperform (or to reach at least
similar performance compared to) all of the presented models, except for T5, on the GLUE and
SQuAD benchmarks.

11Nearly all of the pre-training objective described before (Language modeling, Skip-gram, MLM, PLM) can be
described as generative, since the model is trained to generate plausible substitutions for the next or the masked
token.
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4. On the comparability of pre-trained language
models

Chapter 4 describes several state-of-the-art transfer learning architectures (at the time of writing
this article). It provides a comprehensive overview on the differences between the models with re-
gard to their architectural details as well as the usage of computational resources, size and quality
of the corpora used for pre-training.
Furthermore, a comparison of the performance values for the evaluated architectures on bench-
marks sets them into context by relating performance to (i) model size, (ii) utilized amount of
computational power and (iii) size and accessability of the pre-training corpora.
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Abstract

Recent developments in unsupervised rep-
resentation learning have successfully es-
tablished the concept of transfer learn-
ing in NLP. Instead of simply plugging
in static pre-trained representations, end-
to-end trainable model architectures are
making better use of contextual informa-
tion through more intelligently designed
language modelling objectives. Along
with this, larger corpora are used for self-
supervised pre-training of models which
are afterwards fine-tuned on supervised
tasks. Advances in parallel computing
made it possible to train these models with
growing capacities in the same or even in
shorter time than previously established
models. These developments agglomer-
ate in new state-of-the-art results being re-
vealed in an increasing frequency. Never-
theless, we show that it is not possible to
completely disentangle the contributions
of the three driving forces to these improve-
ments.
We provide a concise overview on several
large pre-trained language models, which
achieved state-of-the-art results on differ-
ent leaderboards in the last two years, and
compare them with respect to their use
of new architectures and resources. We
clarify where the differences between the
models are and attempt to gain some in-
sight into the single contributions of lexical
and computational improvements as well
as those of architectural changes. We do
not intend to quantify these contributions,

Copyright c© 2020 for this paper by its authors. Use permitted
under Creative Commons License Attribution 4.0 Interna-
tional (CC BY 4.0)

but rather see our work as an overview in
order to identify potential starting points
for benchmark comparisons.

1 Introduction

For solving NLP tasks, most researchers turn to
using pre-trained word embeddings (Mikolov et al.,
2013; Pennington et al., 2014; Bojanowski et al.,
2017) as a key component of their models. These
representations map each word of a sequence to a
real valued vector of fixed dimension. Drawbacks
of these kinds of externally learned features are
that they are (i) fixed, i.e. can not be adapted to a
specific domain they are used in, and (ii) context
independent, i.e. there’s only one embedding for a
word by which it is represented in any context.
More recently, transfer learning approaches, as for
example convolutional neural networks (CNNs)
pre-trained on ImageNet (Krizhevsky et al., 2012)
in computer vision, have entered the discussion.
Transfer learning in the NLP context means pre-
training a network with a self-supervised objective
on large amounts of plain text and fine-tuning its
weights afterwards on a task specific, labelled data
set. For a comprehensive overview on the current
state of transfer learning in NLP, we recommend
the excellent tutorial and blog post by Ruder et al.
(2019)1.
With ULMFiT (Universal Language Model Fine
Tuning), Howard and Ruder (2018) proposed a
LSTM-based (Hochreiter and Schmidhuber, 1997)
approach for transfer learning in NLP using AWD-
LSTMs (Merity et al., 2017). This model can be
characterised as unidirectional contextual, while a
bidirectionally contextual LSTM-based model was
presented in ELMo (Embeddings from Language
Models) by Peters et al. (2018).
The bidirectionality in ELMo is achieved by using

1https://ruder.io/state-of-transfer-learning-in-nlp/
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biLSTMs instead of AWD-LSTMs. On the other
hand, ULMFiT uses a more "pure" transfer learn-
ing approach compared to ELMo, as the ELMo-
embeddings are extracted from the pre-trained
model and are not fine-tuned in conjunction with
the weights of the task-specific architecture.
The OpenAI GPT (Generative Pre-Training, Rad-
ford et al., 2018) is a model which resembles the
characteristics of ULMFiT in two crucial points.
It is a unidirectional language model and it al-
lows stacking task specific layers on top after pre-
training, i.e. it is fully end-to-end trainable. The
major difference between them is the internal ar-
chitecture, where GPT uses a Transformer decoder
architecture (Vaswani et al., 2017).
Instead of processing one input token at a time, like
recurrent architectures (LSTMs, GRUs) do, Trans-
formers process whole sequences all at once. This
is possible because they utilize a variant of the At-
tention mechanism (Bahdanau et al., 2014), which
allows modelling dependencies without having to
feed the data to the model sequentially. At the same
time, GPT can be characterised as unidirectional
as it just takes into account the left side of the con-
text. Its successor OpenAI GPT2 (Radford et al.,
2019) possesses (despite some smaller architectural
changes) the same model architecture and thus can
also be termed as unidirectional contextual.
BERT (Bidirectional Encoder Representations
from Transformers, Devlin et al., 2019), and con-
sequently the other two BERT-based approaches
discussed here (Liu et al., 2019; Lan et al., 2019) as
well, differ from the GPT models by the fact that
they are bidirectional Transformer encoder models.
Devlin et al. (2019) proposed Masked Language
Modelling (MLM) as a special training objective
which allows the use of a bidirectional Transformer
encoder without compromising the language mod-
elling objective. XLNet (Yang et al., 2019) on the
contrary relies on an objective which the authors
call Permutation Language Modelling (PLM) and
is also able to model a bidirectional context despite
being an auto-regressive model.

2 Related work

In their stimulating paper, Raffel et al. (2019) take
several steps in a similar direction by trying to
ensure comparability among different Transformer-
based models. They perform various experiments
with respect to the transfer learning ability of a
Transformer encoder-decoder architecture by vary-

ing the pre-training objective (different variants
of denoising vs. language modelling), the pre-
training resources (their newly introduced C4 cor-
pus vs. variants thereof) and the parameter size
(from 200M up to 11B). Especially, their idea of
introducing a new corpus and creating subsets re-
sembling previously used corpora like RealNews
(Zellers et al., 2019) or OpenWebText (Gokaslan
and Cohen, 2019) is a promising approach in order
to ensure comparability.
However, their experiments do not cover an impor-
tant point we are trying to address with our work:
Focussing on only one specific architecture does
not yield an answer to the question which com-
ponents explain the performance differences be-
tween models where the overall architecture differs
(e.g. Attention-based vs. LSTM-based). Yang et al.
(2019) also address comparability to some extent
by performing an ablation study to compare their
XLNet explicitly to BERT. They train six different
XLNet-based models where they modify different
parts of their model in order to quantify how these
design choices influence performance. At the same
time they restrict themselves to an architecture of
the same size as BERT-BASE and use the same
amount of lexical resources for pre-training. Liu
et al. (2019) vary RoBERTa with respect to model
size and amount of pre-training resources in or-
der to perform an ablation study also aiming at
comparability to BERT. Lan et al. (2019) go one
step further with ALBERT by also comparing their
model to BERT with regard to run time as well as
width and depth of the model.
Despite all these experiments are highly valuable
steps into the direction of better comparability,
there are still no clear guidelines on which com-
parisons to perform in order to ensure a maximum
degree of comparability with respect to multiple
potentially influential factors at the same time.

3 Materials and Methods

First, we present the different corpora which were
utilised for pre-training the models and compare
them with respect to their size and their accessi-
bility (cf. Tab. 1). Subsequently, we will briefly
introduce benchmark data sets which the models
are commonly fine-tuned and evaluated on.
While conceptual differences between the evalu-
ated models have been addressed in the introduc-
tion, the models will now be described in more
detail. This is driven by the intention to emphasise
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differences beyond the obvious, conceptual ones.

3.1 Pre-training corpora

English Wikipedia Devlin et al. (2019) state that
they used data from the English Wikipedia and
provide a manual for crawling it, but no actual data
set. Their version encompassed around 2.5B words.
Wikipedia data sets are available in the Tensorflow
Datasets-module.

CommonCrawl Among other resources, Yang
et al. (2019) used data from CommonCrawl. Be-
sides stating that they filtered out short or low-
quality content, no further information is given.
Since CommonCrawl is a dynamic database, which
is updated on a monthly base (and the extracted
amount of data always depends on the user) we can
not provide a word count for this source in Tab. 1.

ClueWeb (Callan et al., 2009), Giga5 (Parker
et al., 2011) The information about ClueWeb
and Giga5 is similarly sparse as for Common-
Crawl. ClueWeb was obtained by crawling ∼ 2.8M
web pages in 2012, Giga5 was crawled between
01/2009 and 12/2010.

1B Word Benchmark2 (Chelba et al., 2013)
This corpus, actually introduced as a benchmark
data set by Chelba et al. (2013), combines multi-
ple data sets from the EMNLP 2011 workshop on
Statistical Machine Translation. The authors nor-
malised and tokenized the corpus and performed
further pre-processing steps in dropping duplicate
sentences as well as discarding words with a count
below three. Additionally, they randomised the
ordering of the sentences in the corpus. This consti-
tutes a corpus with a vocabulary of 793.471 words
and a total word count of 829.250.940 words.

BooksCorpus3 (Zhu et al., 2015) In 2015, Zhu
et al. introduced the BooksCorpus, which is heavily
used for pre-training language models (cf. Tab. 1).
In their work, they used the BooksCorpus in order
to train a model for retrieving sentence similarity.
Overall, the corpus comprises 984.846.357 words
in 74.004.228 sentences obtained from analysing
11.038 books. They report a vocabulary consisting
of 1.316.420 unique words, making the corpus lex-
ically more diverse than the 1B Word Benchmark,
as it possesses a by 66% larger vocabulary whereas
having a word count which is only 19% higher.

2https://research.google/pubs/pub41880/
3https://yknzhu.wixsite.com/mbweb

Wikitext-103 (Merity et al., 2016a,b) The au-
thors emphasised the necessity for a new large scale
language modelling data set by stressing the short-
comings of other corpora. They highlight the occur-
rence of complete articles, which allows learning
long range dependencies, as one of the main bene-
fits of their corpus. This property is, according to
the authors, not given in the 1B Word Benchmark
as the sentence ordering is randomised there. With
a count of 103.227.021 tokens and a vocabulary
size of 267.735, it is about one eighth of the 1B
Word Benchmark’s size concerning token count
and about one third concerning the vocabulary size.
Note, that there is also the smaller Wikitext-2 cor-
pus (Merity et al., 2016c) available, which is a
subset of about 2% of the size of Wikitext-103.

CC-News (Nagel, 2016) This corpus was pre-
sented and used by Liu et al. (2019). They used a
web crawler proposed by Hamborg et al. (2017) to
extract data from the CommonCrawl News data set
(Nagel, 2016) and obtained a data set similar to the
RealNews data set (Zellers et al., 2019).

Stories4 (Trinh and Le, 2018) The authors built
a specific subset of the CommonCrawl data based
on questions from common sense reasoning tasks.
They extracted nearly 1M documents, most of
which are taken from longer, coherent stories.

WebText (Radford et al., 2019) This pre-
training corpus, obtained by creating "a new web
scrape which emphasised document quality" (Rad-
ford et al., 2019), is not publicly available.

OpenWebText (Gokaslan and Cohen, 2019)
As a reaction to Radford et al. (2019) not releasing
their pre-training corpus, Gokaslan and Cohen
(2019) started an initiative to emulate an open-
source version of the WebText corpus.

It becomes obvious that there is a lot of hetero-
geneity with respect to the observed combinations
of availability, quality and corpus size. Thus, we
can state that there is some lack of transparency
when it comes to the lexical resources used for
per-training. Especially, the missing standardised
availability of the BooksCorpus is problematic as
this corpus is heavily used for pre-training.

4https://console.cloud.google.com/storage/browser/
commonsense-reasoning/reproduce/stories_corpus

4. On the comparability of pre-trained language models
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Corpora Word-count♥ Accessibility Used by

English Wikipedia ∼ 2.500M Fully available BERT; XLNet; RoBERTa; ALBERT

CommonCrawl Unclear Fully available XLNet
ClueWeb 2012-B, Giga5 Unclear Fully available ($$) XLNet
1B Word Benchmark ∼ 830M Fully available ELMo
BooksCorpus ∼ 985M Not available GPT; BERT; XLNet; RoBERTa; ALBERT

Wikitext-103 ∼ 103M Fully available ULMFit
CC-News Unclear Crawling Manual RoBERTa
Stories ∼ 7.000M♦ Fully available RoBERTa
WebText Unclear Not available GPT2
OpenWebText Unclear Fully available RoBERTa

Table 1: Pre-training resources (sorted by date). Crawling Manual means the authors did not provide data, but at
least a manual for crawling it. Dollar signs signify the necessity of a payment in order to get access. RealNews
(Zellers et al., 2019) and C4 (Raffel et al., 2019) are not included as they were not used by the evaluated models.
♥ We report the word-count as given in the respective articles proposing the corpora. Note that the number of
tokens reported in other articles depends on the tokenization scheme used by a specific model.
♦ Stated by one of the authors on twitter: https:/twitter.com/thtrieu_/status/1096672446864748545

3.2 Benchmark data sets for fine-tuning

GLUE5 (Wang et al., 2018) The General Lan-
guage Understanding Evaluation (GLUE) bench-
mark is a freely available collection of nine data
sets on which models can be evaluated. It provides
a fixed train-dev-test split with held out labels for
the test set, as well as a leaderboard which displays
the top submissions and the current state-of-the-art
(SOTA). The relevant metric for the SOTA is an
aggregate measure of the nine single task metrics.
The benchmark includes two binary classification
tasks with single-sentence inputs (CoLa [Warstadt
et al., 2018] and SST-2 [Socher et al., 2013]) and
five binary classification tasks with inputs that con-
sist of sentence-pairs (MRPC [Dolan and Brockett,
2005], QQP [Shankar et al., 2017], QNLI, RTE
and WNLI [all Wang et al., 2018]). The remain-
ing two tasks also take sentence-pairs as input but
have a multi-class classification objective with ei-
ther three (MNLI [Williams et al., 2017]) or five
classes (STS-B [Cer et al., 2017]).

SuperGLUE6 (Wang et al., 2019) As a reaction
to human baselines being surpassed by the top
ranked models, Wang et al. (2019) proposed a set
of benchmark data sets similar to, but, according
to the authors, more difficult than GLUE. It did not
make sense to include it as a part of our model com-
parison, as (at the time of writing) only two of the

5https://gluebenchmark.com/
6https://super.gluebenchmark.com/

discussed models were evaluated on SuperGLUE.

SQuAD7 (Rajpurkar et al., 2016, 2018) The
Stanford Question Answering Dataset (SQuAD)
1.1 consists of 100.000+ questions explicitly de-
signed to be answerable by reading segments of
Wikipedia articles. The task is to correctly locate
the segment in the text which contains the answer.
A shortcoming is the omission of situations where
the question is not answerable by reading the pro-
vided article. Rajpurkar et al. (2018) address this
problem in SQuAD 2.0 by adding 50.000 hand-
crafted unanswerable questions to SQuAD 1.1. The
authors provide a train and development set as well
as an official leaderboard. The test set is completely
held out, participants are required to upload their
models to CodaLab. The SQuAD 1.1 data is, in an
augmented form (QNLI), also part of GLUE.

RACE8 (Lai et al., 2017) The Large-scale
ReAding Comprehension Dataset From
Examinations (RACE) contains English exam
questions for Chinese students (middle/high
school). In most of the articles using RACE
for evaluation, it is described to be especially
challenging due to (i) the length of the passages,
(ii) the inclusion of reasoning questions and (iii)
the intentionally tricky design of the questions
in order to test a human’s ability in reading
comprehension. The data set can be subdivided

7https://rajpurkar.github.io/SQuAD-explorer/
8http://www.qizhexie.com/data/RACE_leaderboard.html
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in RACE-M (middle school examination) and
RACE-H (high school examination) and comprises
a total of 97.687 questions on 27.933 passages of
text.

3.3 Evaluated Models

ULMFit (Howard and Ruder, 2018) The
AWD-LSTMs in this architecture make use of
DropConnect (Wan et al., 2013) for better regu-
larisation and apply averaged stochastic gradient
descent (ASGD) for optimization (Polyak and Ju-
ditsky, 1992). The model consists of an embed-
ding layer followed by three LSTM layers with
a softmax classifier on top for pre-training. It is
complemented by a task specific final layer during
fine-tuning. The vocabulary size is limited to 30k
words as in Johnson and Zhang (2017).
ULMFiT was not evaluated on GLUE, but on sev-
eral other data sets (IMDb [Maas et al., 2011],
TREC-6 [Voorhees and Tice, 1999], Yelp-bi, Yelp-
full, AG’s news, DBpedia [all Zhang et al., 2015]).

ELMo (Peters et al., 2018) Consisting of mul-
tiple biLSTM layers, one can extract multiple
intermediate-layer representations from ELMo.
These representations are used for computing a
(task-specific) weighted combination, which is
concatenated with external, static word embed-
dings. During the training of the downstream
model, ELMo embeddings are not updated, only
the weights for combining them are. For the GLUE
benchmark there are multiple ELMo-based archi-
tectures available on the leaderboard. In Tab. 3, we
report the best-performing model, an ELMo-based
BiLSTM-model with Attention (Wang et al., 2018).

OpenAI GPT (Radford et al., 2018) The Open-
AI GPT is a pure attention-based architecture that
does not make use of any recurrent layers. Pre-
training is performed by combining Byte-Pair en-
coded (Sennrich et al., 2015) token embeddings
with learned position embeddings, feeding them
into a multi-layer transformer decoder architecture
with a standard language modelling objective. Fine-
tuning was, amongst others, performed on the nine
tasks that together form the GLUE benchmark.

BERT (Devlin et al., 2019) BERT can be seen
as a reference point for everything that came there-
after. Similar to GPT it uses Byte-Pair Encod-
ing (BPE) with a vocabulary size of 30k. By in-
troducing the MLM objective, the authors were
able to combine deep bidirectionality with Self-

Attention for the first time. Additionally, BERT
also utilizes the next-sentence prediction (NSP) ob-
jective, the usefulness of which has been debated
in other research papers (Liu et al., 2019). The
BERT-BASE model consists of 12 bidirectional
transformer-encoder blocks (24 for BERT-LARGE)
with 12 (16 respectively) attention heads per block
and an embedding size of 768 (1024 respectively).

OpenAI GPT2 (Radford et al., 2019) Com-
pared to its predecessor GPT, it contains some
smaller changes concerning the placement of layer
normalisation and residual connections. Overall,
there are four different versions of GPT2 with the
smallest one being equal to GPT, the medium one
being of similar size as BERT-LARGE and the
xlarge one being released as the actual GPT2 model
with 1.5B parameters.

XLNet (Yang et al., 2019) In order to overcome
(what they call) the pretraining-finetune discrep-
ancy, which is a consequence of BERT’s MLM
objective, and to simultaneously include bidirec-
tional contexts, Yang et al. (2019) propose the PLM
objective . They use two-stream self-attention for
preserving the position information of the token to
be predicted, which would otherwise be lost due
to the permutation. While the content stream at-
tention resembles the standard Self-Attention in
a transformer-decoder, the query stream attention
doesn’t allow the token to see itself but just the
preceding tokens of the permuted sequence.

RoBERTa (Liu et al., 2019) With RoBERTa
(Robustly optimized BERT approach), Liu et al.
(2019) introduce a replicate of BERT with tuned
hyperparameters and a larger corpus used for pre-
training. The masking strategy is changed from
static (once during pre-processing) to dynamic (ev-
ery sequence just before feeding it to the model),
the additional NSP objective is removed, the BPE
vocabulary is increased to 50k and training is per-
formed on larger batches than BERT. These adjust-
ments improve performance of the model and make
it competitive to the performance of XLNet.

ALBERT (Lan et al., 2019) By identifying that
the increase of the model size is a problem, AL-
BERT (A Lite BERT) goes into another direc-
tion compared to most of post-BERT architectures.
Parameter-reduction techniques are applied in or-
der to train a faster model with lower memory de-
mands that, at the same time, yields a comparable

4. On the comparability of pre-trained language models
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Compute Resources

Model Hardware Training time pfs-days ♥ #parameters lexical

ULMFiT NA NA NA 33M 0.18GB
GPT 8 GPUs (P600) ∼ 30 days 0.96 117M < 13GB
BERT-BASE 4 Cloud TPUs ∼ 4 days 0.96 [2.24] ♦ 110M 13GB
BERT-LARGE 16 Cloud TPUs ∼ 4 days 3.84 [8.96] ♦ 340M 13GB
GPT2-MEDIUM NA NA NA 345M 40GB
GPT2-XLARGE 8 v3 Cloud TPUs ∼ 7 days 7.84 1.500M 40GB
XLNet-LARGE 128 v3 Cloud TPUs ∼ 2.5 days 44.8 340M 126GB
RoBERTa DGX-1 GPUs (8xV100) ♣ NA ♣ NA 360M 160GB

1024 32GB V100 GPUs ♠ ∼ 1 day ♠ 4.78 360M 16GB
ALBERT 64 – 1024 v3 Cloud TPUs NA NA 233M 16GB

Table 2: Usage of compute and pre-training resources alongside with model size for the evaluated model archi-
tectures. With lexical resources we refer to the size of the pre-training corpus. ELMo not included as it is not
end-to-end trainable (Size depends on the used model after obtaining the embeddings). The size of ULMFiT is
assumed to be the larger value from Merity et al. (2017), since Howard and Ruder (2018) use AWD-LSTMs with
a vocabulary size of 30k tokens (Johnson and Zhang, 2016, 2017). Values for GPT2-XLARGE are taken from
Strubell et al. (2019).
♥ Petaflop-days: Estimation according to the formula proposed on https://openai.com/blog/
ai-and-compute/:
pfs-days = number of units × PFLOPS/unit × days trained × utilization, with an
assumed utilization of 1

3 . PFLOPS/unit for TPUs from https://cloud.google.com/tpu/.
♦ Unclear, whether v2 or v3 TPUs were used. Thus, we provide calculations for both: v2[v3]
♣ Full RoBERTa model (Liu et al., 2019) ♠ RoBERTa variant utilizing less pre-training resources

performance to SOTA models. We will always re-
fer to the best performing ALBERT-XXLARGE,
despite also the smaller ALBERT models yield re-
sults comparable to BERT.

4 Model comparison

Tab. 2 gives an overview on the amount of com-
putational power needed to pre-train a given archi-
tecture on given pre-training (lexical) resources. In
Tab. 3 we will directly try to relate model architec-
ture and size as well as usage of lexical resources
to model performance.
One thing we can learn from Tab. 2 is the lack of de-
tails when it comes to reporting the computational
resources used for pre-training. While Howard and
Ruder (2018) do not provide any information on
the computational power utilised for pre-training,
the other articles report it to different degrees. Un-
fortunately, there are no clear guidelines on how
to appraise this when it comes to evaluating and
comparing models. This may be attributed to the
rapidly growing availability of hardware, but in
our opinion it should nevertheless be accounted for,
since it might pose environmental issues (Strubell

et al., 2019) and also limits portability to smaller
devices.

Further, it is important to consider the differ-
ences displayed in the Tab. 2 and Tab. 3 when
comparing the model performances. Consider-
ing two models of approximately the same size
(BERT-BASE vs. GPT), the superior performance
of BERT-BASE seems to originate purely from its
more elaborated architecture because of the similar
size. But one should also be aware of the larger
lexical resources (BERT-BASE uses at least twice
as much data for pre-training) and the unknown
differences in usage of computational power. We
approximated the latter as the pfs-days (cf. Tab. 2),
resulting in an estimation for BERT-BASE being
not less than the one for GPT.
Another aspect which should not be ignored when
evaluating performance is ensembling. As can be
seen in the first column of Tab. 3, the three model
ensembles outperform both of the BERT models
by a large margin. Only parts of these differences
may be attributed to the model architecture or the
hyperparameter settings, as the ensembling as well
as the larger pre-training resources might give an
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GLUE SQuAD RACE Resources

Model leaderboard dev♥ v1.1 (dev) v2.0 (dev) test #parameters lexical

BERT-BASE 78.3 – 88.5 76.3 ♣ 65.0 ♠ 110M 13GB

ELMo-based - 8.3 – - 2.9 – – – –
GPT - 5.5 – – – - 6.0 1.1x < 0.5x
BERT-LARGE + 2.2 84.05 + 2.4 + 5.6 + 7.0 ♠ 3.1x 1.0x
XLNet-BASE – – – + 5.03 + 1.05 ∼ 1.0x 1.0x
XLNet-LARGE + 10.1 ♦ + 3.39 + 6.0 + 12.5 + 16.75 3.1x 9.7x
RoBERTa + 10.2 ♦ + 5.19 + 6.1 + 13.1 + 18.2 3.3x 12.3x
RoBERTa-BASE – + 2.30 – – – 1.0x 12.3x
RoBERTa ‡ – + 3.79 + 5.1 + 11.0 – 3.3x 1.2x †

ALBERT + 11.1 ♦ + 5.91 + 5.6 + 13.9 + 21.5 2.1x 1.2x †

Table 3: Performance values as well as model size and resource usage (Reference in italics, highest improvements
in bold). Performance differences are given in percentage points (%pts), differences in size/resources as factors.
ULMFiT and GPT2 are omitted as there are no performance values on these data sets publicly available. No model
size for ELMo provided, since the performance values are from different models (cf. Sec. 3.3).
Displayed performance measures are Matthews Correlation (GLUE), F1 score (SQuAD) and Accuracy (RACE).
♥ Own calculations based on Lan et al. (2019), Tab. 13; WNLI is excluded ♦ Ensemble performance
♣ Values taken from Yang et al. (2019), Tab. 6 ♠ Values taken from Zhang et al. (2019), Tab. 2
† Liu et al. (2019) and Lan et al. (2019) specify the BooksCorpus + English Wikipedia as 16GB
‡ This variant of RoBERTa uses only BooksCorpus + English Wikipedia for pre-training

advantage to these models. As there are no perfor-
mance values of single models available for XL-
Net, RoBERTa and ALBERT on the official GLUE
leaderboard, we also compare the single model per-
formances from Lan et al. (2019) obtained on the
dev sets. From this comparison we get an impres-
sion of how high the contribution of ensembling
might be: The difference between BERT-LARGE
and the XLNet ensemble in the official score (7.9
%pts) is more than twice as high as the difference
in dev score (3.4 %pts).
In order to address the differences in size of the
pre-training resources, Yang et al. (2019) make the
extremely insightful effort to compare a XLNet-
BASE variant to BERT-BASE using the same pre-
training resources. While the F1 score on SQuAD
v2.0 is still remarkably higher than for BERT-
BASE (comparable to BERT-LARGE) it does not
show a large improvement on RACE (which might
have been expected due to the large improvement
of XLNet-LARGE over both BERT models).
The comparability of RoBERTa from the GLUE
leaderboard (ensemble + larger pre-training re-
sources) to BERT-LARGE is limited, but the au-
thors perform several experiments in order to show
the usefulness of their optimisations. Pre-training

a single model on comparable lexical resources
(13GB for BERT vs. 16GB for RoBERTa), the
RoBERTa model shows a smaller (compared to
the RoBERTa ensemble), but still remarkable, im-
provement over BERT-LARGE. In another ablation
study, Liu et al. (2019) train a RoBERTa-BASE
variant on larger pre-training resources. Even
though comprising only about one third of the size
of BERT-LARGE, the larger pre-training corpus in
conjunction with the optimised training leads to a
slightly better performance on the GLUE dev set.
We are not able to compare RoBERTa-BASE to
BERT-BASE, as neither the "official" leaderboard
score for RoBERTa-BASE nor the "inofficial" dev
set score for BERT-BASE are available.
In order to set the results of ULMFiT into con-
text, we present the results published by Yang
et al. (2019) alongside with information on size
and pre-training resources in Tab. 4. Despite
being much larger and pre-training on some or-
ders of magnitude larger corpora, BERT-LARGE
and XLNet-LARGE do not exhibit that large im-
provements over the performance of ULMFiT. This
might partly originate from the relative simplic-
ity of the tasks, but partly also from the already
achieved high performances.

4. On the comparability of pre-trained language models
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Sentiment Topic Resources

Model IMDb Yelp-bi Yelp-full AG’s news DBpedia size lexical

ULMFiT 95.40 97.84 70.02 94.99 99.20 33M 0.18GB

BERT-LARGE + 0.09 + 0.27 + 0.66 – + 0.16 10.3x 72.2x
XLNet-LARGE + 0.81 + 0.61 + 2.28 + 0.52 + 0.18 10.3x 222.2x

Table 4: Performance comparison (+ model size and resource usage) on the benchmark data sets used by Howard
and Ruder (2018). Specification of the differences and highlighting as in Tab. 3. We report accuracies, as opposed
to Howard and Ruder (2018); Yang et al. (2019), in order to facilitate a similar interpretation compared to Tab. 3.

5 Discussion

This chapter reflects the main takeaways from the
above comparisons and raises some issues for re-
search practices. We do not claim to have a solution
to these potentially problematic aspects, but rather
think that these points are highly debatable.

Why no benchmark corpus for pre-training?
It is good practice to use benchmark data sets for
comparing the performance of pre-trained language
models on different types of Natural language un-
derstanding (NLU) tasks. Many recently published
articles (Liu et al., 2019; Yang et al., 2019; Lan
et al., 2019) perform (partly extensive) ablation
studies controlling for pre-training resources in or-
der to make (versions of) their models comparable
to BERT, which is really important as it helps to
get an intuition for the impact of pre-training re-
sources. Nevertheless, it is unfortunately not per-
fect due to two critical issues: (i) BERT and all of
its successors make use of the BooksCorpus (Zhu
et al., 2015) which is not publicly available and
(ii) this only leads to model comparisons in a low
pre-training resource environment (compared to
more recent models) and yields no insight on the
behaviour of the reference model (e.g. BERT) in
a medium or high resource context. So we view
statements of the type "Model architecture A is su-
perior to model architecture B on performing task
X." somewhat critical and propose to phrase it more
like the following statement: "Model architecture A
is superior to model architecture B on performing
task X, when pre-trained on a small/medium/large
corpus of low/high quality data from domain Y for
pre-training time Z."

Why no standardised description of (computa-
tional) resources? When writing this article, it
turned out difficult to get one unified measure for

the amount of the computational power used for
pre-training. In our opinion, this is not a careless-
ness of the authors but rather the lack of a clear
reporting standard. We found ourselves confronted
with the following situations:

a) No information at all (Radford et al., 2019)

b) Hardware (Liu et al., 2019; Lan et al., 2019)

c) Hardware and training time (Devlin et al.,
2019; Yang et al., 2019)

d) Standardised measure (Radford, 2018)

While a) is clearly unsatisfactory and should be
avoided, b) and c) provide most of the necessary
information but miss out on going the last final step
to d), where the reporting reaches universal compa-
rability across different articles. The measure we
computed (cf. Tab. 2) is of course not as exact as
a computation based on the counts of operations
in a network, but requires no deep insight into the
model architecture and is thus applicable to a wide
range of architectures without much effort.

Shouldn’t performance be evaluated in relation
to size and resource usage? As larger models
have a higher capacity for learning representations
and using larger pre-training resources should im-
prove their quality, varying these two components
simultaneously with the model architecture might
lead to interference between the individual effects
on model performance. This aspect has a slight
overlap with the question raised above, but while
the above is more or less about introducing some
reference, this is about carefully varying and evalu-
ating the effects of different model parts.

6 Conclusion

As can be seen from the above analysis, there is a
lack of a concise guideline for fair comparisons of

45



large pre-trained language models. It is not suffi-
cient to just rank models by their performance on
the common benchmark data sets as this does not
take into account all the other factors mentioned
in this analysis. Further aspects worth reporting
are the use of resources (time and compute) spent
on model development (including all experimental
runs and trials) and hyperparameter tuning during
pre-training. In our opinion, this is important with
respect to two facets: On the one hand side it is
important to take into account environmental con-
siderations when training deep learning models
(Strubell et al., 2019), on the other hand side it is
also a signal to the reader/user how difficult it is
to train (and to fine-tune) the model. This might
have implications for the usage of a model as trans-
fer learning model for diverse downstream tasks.
Models that have already been tuned to a high de-
gree during pre-training to reach a certain level of
performance, may have, in the long run, less poten-
tial for further improvements compared to models
which do so without much hyperparameter tuning.
To conclude, we unfortunately cannot say with de-
termination which one of the influential factors
(architecture or amount of pre-training resources)
is more important, but we think that a substan-
tial amount of the recent improvements can be at-
tributed to larger pre-training resources. A detailed
disentanglement of the influence of the different
components stays an open research question which
might be answerable by carefully designed bench-
mark studies.

Acknowledgments

We would like to thank the three anonymous re-
viewers for their insightful comments and their
feedback on our work.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Jamie Callan, Mark Hoy, Changkuk Yoo, and Le Zhao.
2009. Clueweb09 data set.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-
Gazpio, and Lucia Specia. 2017. Semeval-2017

task 1: Semantic textual similarity-multilingual and
cross-lingual focused evaluation. arXiv preprint
arXiv:1708.00055.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, Phillipp Koehn, and Tony Robin-
son. 2013. One billion word benchmark for measur-
ing progress in statistical language modeling. arXiv
preprint arXiv:1312.3005.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

William B Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP2005).

Aaron Gokaslan and Vanya Cohen. 2019. Openweb-
text corpus.

Felix Hamborg, Norman Meuschke, Corinna Bre-
itinger, and Bela Gipp. 2017. News-please: a
generic news crawler and extractor. In 15th Interna-
tional Symposium of Information Science (ISI 2017),
pages 218–223.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Jeremy Howard and Sebastian Ruder. 2018. Univer-
sal language model fine-tuning for text classification.
arXiv preprint arXiv:1801.06146.

Rie Johnson and Tong Zhang. 2016. Convolutional
neural networks for text categorization: Shallow
word-level vs. deep character-level. arXiv preprint
arXiv:1609.00718.

Rie Johnson and Tong Zhang. 2017. Deep pyramid
convolutional neural networks for text categoriza-
tion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 562–570.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. 2012. Imagenet classification with deep con-
volutional neural networks. In Advances in neural
information processing systems, pages 1097–1105.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang,
and Eduard Hovy. 2017. Race: Large-scale reading
comprehension dataset from examinations. arXiv
preprint arXiv:1704.04683.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.

4. On the comparability of pre-trained language models

46



2019. Albert: A lite bert for self-supervised learn-
ing of language representations. arXiv preprint
arXiv:1909.11942.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Andrew L Maas, Raymond E Daly, Peter T Pham, Dan
Huang, Andrew Y Ng, and Christopher Potts. 2011.
Learning word vectors for sentiment analysis. In
Proceedings of the 49th annual meeting of the as-
sociation for computational linguistics: Human lan-
guage technologies-volume 1, pages 142–150. Asso-
ciation for Computational Linguistics.

Stephen Merity, Nitish Shirish Keskar, and Richard
Socher. 2017. Regularizing and optimizing lstm lan-
guage models. arXiv preprint arXiv:1708.02182.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016a. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016b. Wikitext-103. Accessed:
2020-02-10.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016c. Wikitext-2. Accessed:
2020-02-10.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Sebastian Nagel. 2016. Cc-news.

Robert Parker, David Graff, Junbo Kong, Ke Chen,
and Kazuaki Maeda. 2011. English gigaword
fifth edition, june. Linguistic Data Consortium,
LDC2011T07, 12.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language process-
ing (EMNLP), pages 1532–1543.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. arXiv preprint arXiv:1802.05365.

Boris T Polyak and Anatoli B Juditsky. 1992. Ac-
celeration of stochastic approximation by averag-
ing. SIAM Journal on Control and Optimization,
30(4):838–855.

Alec Radford. 2018. Improving language understand-
ing with unsupervised learning. Accessed: 2020-02-
10.

Alec Radford, Karthik Narasimhan, Tim Salimans,
and Ilya Sutskever. 2018. Improving language
understanding by generative pre-training. URL
https://s3-us-west-2. amazonaws. com/openai-
assets/researchcovers/languageunsupervised/language
understanding paper. pdf.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
Blog, 1(8).

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for squad. arXiv preprint arXiv:1806.03822.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250.

Sebastian Ruder, Matthew E. Peters, Swabha
Swayamdipta, and Thomas Wolf. 2019. Trans-
fer learning in natural language processing. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Com-
putational Linguistics: Tutorials, pages 15–18,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909.

Iyer Shankar, Dandekar Nikhil, and Csernai Kornél.
2017. First quora dataset release: Question pairs.
Accessed: 2020-02-10.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 conference on
empirical methods in natural language processing,
pages 1631–1642.

Emma Strubell, Ananya Ganesh, and Andrew Mc-
Callum. 2019. Energy and policy considera-
tions for deep learning in nlp. arXiv preprint
arXiv:1906.02243.

Trieu H Trinh and Quoc V Le. 2018. A simple
method for commonsense reasoning. arXiv preprint
arXiv:1806.02847.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

47



Ellen M Voorhees and Dawn M Tice. 1999. The trec-8
question answering track evaluation. In TREC, vol-
ume 1999, page 82. Citeseer.

Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun,
and Rob Fergus. 2013. Regularization of neural net-
works using dropconnect. In International confer-
ence on machine learning, pages 1058–1066.

Alex Wang, Yada Pruksachatkun, Nikita Nangia,
Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel R Bowman. 2019. Super-
glue: A stickier benchmark for general-purpose
language understanding systems. arXiv preprint
arXiv:1905.00537.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 353–355, Brussels, Belgium.
Association for Computational Linguistics.

Alex Warstadt, Amanpreet Singh, and Samuel R Bow-
man. 2018. Neural network acceptability judgments.
arXiv preprint arXiv:1805.12471.

Adina Williams, Nikita Nangia, and Samuel R Bow-
man. 2017. A broad-coverage challenge corpus for
sentence understanding through inference. arXiv
preprint arXiv:1704.05426.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V Le.
2019. Xlnet: Generalized autoregressive pretrain-
ing for language understanding. arXiv preprint
arXiv:1906.08237.

Rowan Zellers, Ari Holtzman, Hannah Rashkin,
Yonatan Bisk, Ali Farhadi, Franziska Roesner, and
Yejin Choi. 2019. Defending against neural fake
news. arXiv preprint arXiv:1905.12616.

Shuailiang Zhang, Hai Zhao, Yuwei Wu, Zhuosheng
Zhang, Xi Zhou, and Xiang Zhou. 2019. Dual co-
matching network for multi-choice reading compre-
hension. arXiv preprint arXiv:1901.09381.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in neural information pro-
cessing systems, pages 649–657.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In Proceedings of the IEEE inter-
national conference on computer vision, pages 19–
27.

4. On the comparability of pre-trained language models

48



Part III.

Task-specific evaluation





5. Evaluating pre-trained language models on
applications in Social Sciences

Chapter 5 deals with a complicated classification task – namely multi-label classification – where
one observation can potentially be assigned to multiple classes simultaneously. This use case
of classifying answers to open-ended questions on electoral participation, voting behavior and
public opinion into up to 72 categories while only having less than 10.000 examples proves to
be very challenging for the evaluated transfer learning models. A further main outcome of this
contribution is a transparent and fully reproducible preparation of the used data sets, which was
not available in this format prior to this research project.
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Evaluating the usefulness of pre-trained language models for classifying open-ended survey re-
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Abstract: In order to evaluate transfer learning models for Natural Language Processing on a common ground, numerous
general domain (sets of) benchmark data sets have been established throughout the last couple of years. Pri-
marily, the proposed tasks are classification (binary, multi-class), regression or language generation. However,
no benchmark data set for (extreme) multi-label classification relying on full-text inputs has been proposed in
the area of social science survey research to this date. This constitutes an important gap, as a common data set
for algorithm development in this field could lead to more reproducible, sustainable research. Thus, we pro-
vide a transparent and fully reproducible preparation of the 2008 American National Election Study (ANES)
data set, which can be used for benchmark comparisons of different NLP models on the task of multi-label
classification. In contrast to other data sets, our data set comprises full-text inputs instead of bag-of-words rep-
resentations or similar. Furthermore, we provide baseline performances of simple logistic regression models
as well as performance values for recently established transfer learning architectures, namely BERT (Devlin
et al., 2018), RoBERTa (Liu et al., 2019) and XLNet (Yang et al., 2019).

1 INTRODUCTION

The quasi-standard method in machine learning to de-
termine the performance of a newly proposed method
is to evaluate it on benchmark data sets. The same ap-
plies for the evaluation of pre-trained language mod-
els frequently utilized for transfer learning in Natural
Language Processing (NLP). Collections of bench-
mark data sets for different natural language under-
standing (NLU) tasks (Rajpurkar et al., 2016; Lai
et al., 2017; Wang et al., 2018) have gained mas-
sive popularity among researchers in this field. These
benchmark collections stand out mainly due to two as-
pects: They are extremely well documented with re-
spect to their creation and they are fixed with respect
to the train-test split and the applied evaluation met-
rics. Furthermore they provide public leaderboards1,
where the results of submitted models are displayed
in a unified fashion. For the majority of the pro-
posed benchmark data sets the task is either a binary
or a multi-class classification task (cf. data sets from

a https://orcid.org/0000-0003-2154-5774
1e.g. https://gluebenchmark.com/leaderboard

Wang et al. (2018)). In the context of social science
survey research, however, to our knowledge no exist-
ing (extreme) multi-label data sets (Lewis et al., 2004;
Mencia and Fürnkranz, 2008) have been used for per-
formance evaluation by any of the current state-of-
the-art (SOTA) transfer learning models. These, and
other (tabular) multi-label data sets can e.g. be found
in repositories like MULAN.

In the social sciences, especially in survey re-
search, definitive standards for raw data formatting of
open-ended survey questions have not yet been estab-
lished to our knowledge. This is not to say that there
exist no current standards for handling and organiz-
ing survey research data in general (Inter-University
Consortium For Political And Social Research (IC-
SPR), 2012; CESSDA Training Team, 2020) or the
metadata describing the primary data (Vardigan et al.,
2008; Hoyle et al., 2016). Yet, for open-ended sur-
vey questions and their coding2, these standards have
not been well established, apart from descriptions of
best practices by some authors (Züll, 2016; Lupia,

2The process of manually assigning survey responses to
pre-defined sets of labels (codes) is known as coding.
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Meidinger, M. and Aßenmacher, M.
A New Benchmark for NLP in Social Sciences: Evaluating the Usefulness of Pre-trained Language Models for Classifying Open-ended Survey Responses.
In Proceedings of the 13th International Conference on Agents and Artificial Intelligence (ICAART 2021) - Volume 2, pages 866-873
ISBN: 978-989-758-484-8 ISSN: 2184-433X
Copyright © 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

5. Evaluating pre-trained language models on applications in Social Sciences

52



2018b,a).
Our data set preparation represents a novelty since

it combines an interesting use-case (multi-label clas-
sification) for NLP models in Social Sciences with a
fully reproducible pre-processing resulting in full-text
strings as inputs. Note that this combination is not
yet included in the benchmark collections mentioned
above3. Thus, in the spirit of the growing overall
need for standardized data sets and for reproducibil-
ity, we provide a description (cf. Sec. 2), an overview
on previous use of this data set (cf. Sec. 3) and a
thoroughly described pre-processing (cf. Sec. 4.1)
of the ANES 2008 data, which enables its usage for
benchmark comparisons for multi-label classification.
Baseline performance values for a simple machine
learning model as well as for more recently proposed
transfer learning architectures are provided in Sec. 5.

2 THE ”AMERICAN NATIONAL
ELECTION STUDIES” SURVEY

The American Election Studies (ANES) provide
high-quality data for political and social science re-
search by conducting surveys on political participa-
tion, public opinion and voting behavior since 1948.
To fulfill this commitment, ANES conducts a series
of biennial election studies which cover these topics,
sometimes extended by surveys on special-interest
topics and expanded methodological instrumentation.

The 28th ANES time series study in 2008 (The
American National Election Studies, 2015) has been
supplemented by a coding project for open-ended re-
sponses (Krosnick et al., 2012) to various pre- and
post-election questions. The topics ranged from rea-
sons to vote for a presidential candidate, perceived
reasons why a candidate won or lost the 2008 election,
across the most important problems for the country
and the electorate, over to (dis)likes of the competing
political figures and parties among the respondents.

Like in all previous ANES studies conducted
in years of presidential elections, respondents were
interviewed in pre-election interviews and then re-
interviewed in the two months following the election
(post-election interviews), hence there was a varying
number of respondents.

3Despite these benchmark collections do include data
sets with text input, all inputs are provided as bag-of-words
representations or similar, but not as full-text verbatims.

3 RELATED WORK

Card and Smith (2015) already investigated machine
learning methods for automated coding of the ANES
2008 data. Namely, they evaluated (regularized) lo-
gistic regression models as well as recurrent neu-
ral network architectures, including long short-term
memory (LSTM) units (Hochreiter and Schmidhuber,
1997). As a result, they find that recurrent neural
network based methods are not generally able to out-
perform the more ”traditional” natural language pro-
cessing methods, like logistic regression models com-
bined with uni-/bigrams or additional features. An in-
teresting conclusion they draw from their analysis is
that this might be due to the limited amount of train-
ing data available for this multi-label classification
task at hand. Since this is a problem statement explic-
itly addressed by recent transfer learning approaches,
we are curious to find out whether pre-trained archi-
tectures like BERT & Co. are able to perform better
on this task. Roberts et al. (2014) work on the ANES
2008 data by applying a structural topic model as a
fully unsupervised approach for automated coding,
which is a highly interesting strategy for previously
unlabeled data sets. But since our goal is to evaluate
the ability of transfer learning models (which rely on
labeled data) for multi-label classification, we do not
make use of this methodology.

4 MATERIALS AND METHODS

4.1 Preparation of the ANES Data

The data from the Open Ended Coding Project4 con-
sists of a main file in *.xls - format which combines
all verbatims5 from the targeted respondents collected
on the individual questions in separate spreadsheets.
The codes assigned to these verbatims are stored sep-
arately in so-called codes-files.

Analogously to the work of Card and Smith
(2015), we only use the answers to the open-ended
questions unrelated to occupation/industry of the re-
spondents. The topics of the questions defining the
different data sets are displayed in Tab. 1. As some
of the questions share the same code sets, they can be
grouped into ten individual data sets comprising all of
the questions on the topics mentioned in Sec. 2. With
this, we follow the data preparation strategy of Card

4Publicly available under: ANES time series study and
the Open Ended Coding Project

5Answers to the open-ended survey questions are re-
ferred to as verbatims
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and Smith (2015), to keep our later results roughly
comparable to their model benchmarks.
Until now, there seems to be no broadly accepted data
format or structure in the social sciences regarding
the storage and publication of codes assigned to indi-
vidual responses to open-ended questions in surveys.
Data sets seem to be structured matrix-like ad-hoc to
fit an individual survey’s needs.

Besides the obvious structural requirements,
namely that the codes assigned to each response have
to be identifiable using a particular variable (here this
is provided via an ”ID”, alternatively designated as
”caseID”) and that there is a limited amount of vari-
ables which can be used for storing the code values for
a single response, the internals of such data sets seem
to be highly idiomatic. Another aspect which partially
varies between different surveys are the codes being
used for indicating that a value is missing. This in
turn leads to the problem that these data sets as such
are hardly usable for standard machine learning pur-
poses without extensive preprocessing which has to
reflect the individual survey’s logic.

In the particular case of the ANES 2008, one has
to turn to the so-called ”coding report” accompanying
each response-codes data set to identify the columns
which contain the codes for a specific question and
to understand their meaning. The pre-defined codes
for each question have been manually assigned to the
individual responses by professional human coders.
The coding procedure has been developed after a thor-
ough review of the ANES open-ended coding meth-
ods and a subsequent conference in December 20086

which suggested best practices.
As the sets of predefined codes belonging to indi-

vidual questions cannot be used for machine learning
purposes as such, we have to transform them into a
useful format. In order to generate usable data sets
from the files distributed by the Open Ended Cod-
ing Project, we exploit the notion of representing the
codes, which have been assigned to each textual ob-
servation, by a binary vector.

As described previously by various authors
(Tsoumakas and Katakis, 2007; Gibaja and Ventura,
2015; Herrera et al., 2016), multi-label problems
can be formalized by proposing an output space L =
L1,L2, ..,Lq of q labels (q > 1), which allows us to de-
scribe each observation in the data as (x,Y) where
x = (x1, ..,xd) ∈ X is a d-dimensional instance which
has a set of labels associated Y ⊆ L. In this paper, we
understand the codes assigned to each response in the
data as the labels encountered in a multi-label learn-
ing problem, just as Card and Smith (2015) did pre-

6The ANES Conference on Optimal Coding of Open-
Ended Survey Data took place in Dec. 2018

viously. In order to transform the numeric codes as-
signed to the responses into multi-hot encodings, we
exploit the cardinality of the code set associated with
each question. This helps us to represent the labels
associated to each observation by a q-dimensional bi-
nary vector y = (y1, ..,yq) = {0,1}q where each ele-
ment is 1 if the respective label was assigned to the
response and 0 otherwise.

To map the numeric codes to binary label vec-
tor elements one-to-one, we sourced the total size
of each code set from the codes-documents enclosed
with each data set. Using this information, we de-
fined the length of the binary mapping vectors to be
identical to the cardinality of the code sets. To gener-
ate multi-hot encoded label vectors for each response
contained in the data sets, we designed a mapping dic-
tionary for each code set defining which code from
the current set belongs to which element in the binary
vector generated for a particular response. To finally
obtain the binary label vectors from the set of nu-
meric codes associated to each observation, we trans-
formed all data sets using a custom function which
can be fed a mapping dictionary and the raw data
row-by-row. The function then returns the binary la-
bel vectors of length q for each observation, where
each vector element is 1 if the code mapped to this el-
ement was assigned to the response and 0 otherwise.
For the latter application of machine learning meth-
ods we split the data into train and test set (90/10) us-
ing an iterative stratification method for balancing the
label distributions (Sechidis et al., 2011; Szymański
and Kajdanowicz, 2017a) implemented in the novel
scikit-multilearn library for Python (Szymański
and Kajdanowicz, 2017b). This represents an inno-
vation, as such stratification has not been previously
used by Card and Smith (2015). The resulting data
splits are publicly available.7

4.2 Model Architectures

Simple Baseline. As a simple baseline we use a
logistic regression classifier (without regularization)
for one vs. rest classification per label and thus ob-
tain a varying number of single models per label
set. Verbatim-level averaged fasttext-vectors (Bo-
janowski et al., 2017) are used as input and one-
hot vectors per label as targets. We use nltk (Bird
et al., 2009) for a mild preprocessing of the raw
verbatims, dropping punctuation, interviewer annota-
tion and lowercasing. Then, we fit the model using
the scikit-learn implementation (Pedregosa et al.,

7Code, data sets and leaderboard available at https://
github.com/mxli417/co benchmark.

ICAART 2021 - 13th International Conference on Agents and Artificial Intelligence

868

5. Evaluating pre-trained language models on applications in Social Sciences

54



Table 1: Overview of the prepared data sets of ANES 2008, which our analysis will be based on, and their respective topics.
Additional details and descriptive statistics about the data sets can be found in Appendix 7.1.

ID Topic Question ID n #labels

1 General Election T5, T6 238 34
2 Primary Election T2, T3 288 29
3 Party (Dis-)Likes C1b, C1d, C2b, C2d 4393 33
4 Person (Dis-)Likes A8b, A8d, A9b, A9d 4672 34
5 Terrorists S1 2100 26
6 Important Issues Q3a1, Q3a2, Q3b1, Q3b2 8399 72
7 Office Recognition Question: Gordon Brown J3c 2096 9
8 Office Recognition Question: Dick Cheney J3b 2094 11
9 Office Recognition Question: Nancy Pelosi J3a 2094 14
10 Office Recognition Question: John Roberts J3d 2092 9

2011) in conjunction with gensim (Radim Rehurek,
2010) for including the fasttext-vectors.

Transfer Learning Architectures. As represen-
tatives for the class of transfer learning models
we use existing cased8 implementations of BERT-
base (Devlin et al., 2018), RoBERTa-base (Liu
et al., 2019) and XLNet-base (Yang et al., 2019)
via simpletransformers, which is based on the
transformers module (Wolf et al., 2019). The ba-
sic structure of the models is complemented by a
multilabel-classification head9. The used loss func-
tion is BCEWithLogitsLoss from pytorch per node
in order to account for the multi-label structure of the
targets. We do not intend to perform excessive tuning
of hyperparameters, but rather want to evaluate the
performance of these models when used ”out-of-the-
box” for a much more difficult task than the common
ones. This approach is also largely in line with re-
cent works extending BERT to multi-label problems
(Lee and Hsiang, 2019; Chang et al., 2019). All mod-
els were fine-tuned on the data sets for three epochs
with a maximum sequence length of 128 tokens and a
batch size of eight sequences. (Peak) learning rate for
fine-tuning was set to 2e-05 for every model.

4.3 Evaluation Metrics

Generally, metrics commonly used for the evalua-
tion of machine learning methods in binary or multi-
class classification tasks cannot be used for multi-
label learning without some further considerations
(Tsoumakas and Katakis, 2007). This is mainly due
to the fact that the performance of a given classifier
should be evaluated over all labels and the partial cor-
rectness of a prediction must be taken into account.

8Since RoBERTa only exists in a cased version, we had
to choose the other models analogously.

9For implementation details of this head see https://
github.com/ThilinaRajapakse/simpletransformers

Thus, we here utilize a set of multi-label evaluation
metrics reported in overview articles by different au-
thors (Tsoumakas and Katakis, 2007; Sorower, 2010;
Gibaja and Ventura, 2014, 2015; Herrera et al., 2016)
to assess various aspects of the performance of the
classifiers we investigate.

For the following, we resume the previous nota-
tion. Let us assume that we have a multi-label test
set T = (xi,Yi)∣1 ≤ i ≤ n with n instances and different
label sets Yi, representing the ground truth, at our dis-
posal. Further, let Pi be the set of predicted labels for
a given observation.

First, we will report the widely known F1 score,
which is the harmonic mean of Precision and Recall

F1 = 2 ⋅ precision ⋅ recall
precision+ recall

. (1)

We report the micro- and macro-averaged versions of
this score, as the F1 score is a binary evaluation mea-
sure and one needs to choose an averaging approach
in the multi-label case. By doing so, different perfor-
mance aspects can be investigated (Gibaja and Ven-
tura, 2015). Micro-averaging mainly tends to summa-
rize the classifier performance on the most common
categories, whereas macro-averaging tends to report
performance on the rare categories of the test set. Val-
ues towards 1 are better, the minimum value is 0.

Additionally, we also report the sample-based F1
score as this is also the central metric Card and Smith
(2015) use and report in their paper10. This version of
the F1 score can be formally described as:

F sample
1 = 1

N

N∑
i=1

2∣Yi∩Pi∣∣Yi∣+ ∣Pi∣ (2)

(cf. Gibaja and Ventura (2014)) where N is the total
number of samples in the test set.

Second, we report the subset accuracy, often also
referred to as exact match ratio. It computes the frac-
tion of instances in the data for which the predicted

10Note that they did not use the same notation, but essen-
tially used the same metric described in a vectorized form.
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Table 2: Model performances (measured as micro- and macro-averaged F1-scores) for all considered architectures. Results are
displayed separately for each data set with the best performance per data set in bold. We report F sample

1 to ensure comparability
to the results reported by Card and Smith (2015).

Dataset-ID 1 2 3 4 5 6 7 8 9 10

n 238 288 4393 4672 2100 8399 2096 2094 2094 2092
#labels 34 29 33 34 26 72 9 11 14 9

F
sa

m
pl

e
1

Baseline 0.44 0.51 0.57 0.54 0.68 0.88 0.92 0.95 0.90 0.91
BERT 0.00 0.02 0.44 0.35 0.41 0.79 0.94 0.95 0.91 0.93

RoBERTa 0.00 0.00 0.56 0.55 0.57 0.85 0.95 0.97 0.93 0.94
XLNet 0.00 0.00 0.54 0.58 0.55 0.86 0.96 0.98 0.91 0.92

Card and Smith (2015) 0.55 0.67 0.71 0.71 0.81 0.86 0.94 0.96 0.93 0.96

F
m

ic
ro

1

Baseline 0.40 0.48 0.53 0.51 0.61 0.84 0.89 0.93 0.85 0.90
BERT 0.00 0.03 0.51 0.44 0.46 0.79 0.94 0.95 0.91 0.93

RoBERTa 0.00 0.00 0.60 0.60 0.62 0.85 0.96 0.97 0.94 0.95
XLNet 0.00 0.00 0.59 0.61 0.61 0.85 0.96 0.97 0.90 0.93

F
m

ac
ro

1

Baseline 0.23 0.29 0.33 0.34 0.47 0.46 0.62 0.51 0.56 0.71
BERT 0.00 0.01 0.11 0.16 0.12 0.09 0.47 0.40 0.39 0.58

RoBERTa 0.00 0.00 0.18 0.26 0.21 0.14 0.51 0.51 0.44 0.58
XLNet 0.00 0.00 0.20 0.27 0.21 0.16 0.58 0.53 0.43 0.66

labels exactly match their corresponding true labels.
This is a very harsh metric, as it does not distin-
guish between partially and completely incorrect pre-
dictions. It is defined as:

subset accuracy = 1
N

N∑
i=1
1(Pi =Yi) (3)

Next, we report the Label Ranking Average Precision
(LRAP). This metric computes the fraction of labels
ranked above a certain label λ ∈ Yi which belong to
Yi, averaged across all observations (Gibaja and Ven-
tura, 2015). For this, a function f ∶ X ×Y →R is gen-
erated by a label-ranking algorithm which orders all
possible labels for a given instance xi by their rele-
vance (Gibaja and Ventura, 2014). If a given label
λ′ ∈Yi is ranked higher than a another label λ ∈Yi, then
f (xi,λ′) > f (xi,λ) must hold. In the following we
consider f̂λ to be a function which returns the ranking
for a given label λ, generated by the used ranking al-
gorithm. Here, the higher the obtained metric results
are, the better. The best achievable value is 1. LRAP
is defined as (Gibaja and Ventura, 2014):

LRAP = 1
N

N∑
i=1

1∣Yi∣ ∑λ∈Yi

∣{λ′ ∈Yi∣ ˆfλ′ ≤ f̂λ}∣
f̂λ

(4)

The LRAP favors classifiers which can rank the rel-
evant labels associated with each observation higher
than the irrelevant ones.

5 RESULTS

We report all of the above mentioned metrics for the
baseline model as well as for the three mentioned pre-

trained architectures on the test set. The results will be
structured as follows: In Tab. 2 we report macro- and
micro-averaged F1 scores, additionally the sample-
based F1 scores (cf. Card and Smith 2015) will be
reported as well. Tab. 3 shows the label ranking aver-
age precision LRAP and the subset accuracy.

Considering the F sample
1 scores from Tab. 2, it

becomes clear that all used models can hardly out-
perform the previous best results. Note that the best
model from Card and Smith (2015) on almost all data
sets has been a thoroughly tuned logistic regression
model with a battery of different features. Overall,
the best logistic regression model has outperformed
even much more advanced architectures in 7 out of 10
cases, establishing that this kind of model can handle
multi-label text classification problems surprisingly
well. In line with this, we observe that our baseline
can beat the transfer learning architectures on 5 out of
10 data sets. Only RoBERTa and XLNet can beat the
previous best results on two data sets by a small mar-
gin. On all other data sets the previously set bench-
mark results remain largely unchallenged.

When focussing on the F micro
1 measure, we

can see that the more advanced models, especially
RoBERTa and XLNet, outperform the baseline as
soon as the data set size gets bigger, even if they
sometimes demonstrate only a slightly better perfor-
mance. BERT still performs relatively poorly, and
even gets beaten by the baseline on five out of ten
data sets. RoBERTa also shows only slightly better
performance than the baseline on the data set 5 con-
taining the question on terrorism and the data set 6 on
Important Issues. On the remaining data sets, how-
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Table 3: Model performances (measured as LRAP and subset accuracy) for all considered architectures. Results are displayed
separately for each data set with the best performance per data set in bold.

Dataset-ID 1 2 3 4 5 6 7 8 9 10

LR
A

P Baseline 0.59 0.65 0.70 0.70 0.75 0.93 0.95 0.98 0.92 0.95
BERT 0.09 0.10 0.41 0.32 0.40 0.71 0.94 0.95 0.90 0.93

RoBERTa 0.09 0.09 0.51 0.49 0.55 0.79 0.95 0.97 0.93 0.94
XLNet 0.09 0.09 0.49 0.52 0.53 0.80 0.95 0.97 0.90 0.92

su
bs

et
ac

c. Baseline 0.00 0.10 0.20 0.17 0.35 0.70 0.80 0.89 0.76 0.80
BERT 0.00 0.00 0.16 0.08 0.20 0.41 0.89 0.90 0.81 0.87

RoBERTa 0.00 0.00 0.22 0.20 0.32 0.54 0.91 0.94 0.87 0.89
XLNet 0.00 0.00 0.22 0.22 0.31 0.58 0.92 0.94 0.80 0.87

ever, it can clearly outperform the baseline. XLNet
also mostly outperforms the baseline, with the ex-
ception of the data set concerning terrorism. On the
very small and thus very challenging data sets 1 and 2
which contain questions on the General and Primary
Election outcomes, the baseline model still is the best.

Finally, when considering the F macro
1 score, we

observe that the baseline model is the single best
model across almost all data sets. Only for data set 8,
the larger RoBERTa and XLNet can match or outper-
form it. While this might be quite surprising, it proves
again that a binary relevance approach with a logistic
regression as a base learner can be a quite competitive
model – which is exactly the same finding Card and
Smith (2015) have reported.

Regarding LRAP (cf. Tab. 3), RoBERTa and XL-
Net can partially match the baseline model especially
on the last four data sets, which have a small label set
and are reasonably large. But XLNet and RoBERTa
also hardly outperform the baseline on all remaining
data sets, which makes the baseline model a powerful
ranking algorithm. BERT, however, cannot beat the
baseline at any of the data sets. For the strict measure
subset accuracy the baseline is not a strictly superior
competitor, as it outperforms the more advanced mod-
els only on 3 out of 10 data sets. This is also why it
is important to compare several evaluation metrics in
multi-label classification, as each metric focuses dif-
ferent performance characteristics (Nam, 2019). Un-
fortunately, Card and Smith (2015) have not provided
any results beyond the F sample

1 metric.
After these comparisons we conclude that con-

cerning data sets 1 and 2, which contain 238
and 288 observations respectively, BERT, RoBERTa
and XLNet cannot obtain any results above zero.
Additionally, these models outperform the base-
line only marginally on the data sets regarding the
Party (Dis)Likes, Person (Dis)Likes and the Office-
Recognition-Question for Dick Cheney. Nonetheless,
they can outperform the baseline as soon as the data

sets get larger and the label sets remain relatively
small.

6 DISCUSSION

Transfer learning has, in this specific use case, not
turned out to be a strong alternative compared to pre-
vious research. BERT, RoBERTa and XLNet can not
generally outperform previous best results obtained
on the same data. Additionally, we observed just like
the previous authors that a binary relevance approach
with logistic regression can be a strong competitor,
sometimes even outperforming advanced models. On
small data sets, however, no model achieved good re-
sults with respect to the subset accuracy, our harshest
metric. This is most certainly due to the size, as the
data does not contain much information for automated
classifiers to learn from. In this case, relying on hand-
coding by humans might still be a good option.

Our findings are somewhat contrary to previously
reported results, where BERT was used quite suc-
cessfully in multi-label classification (Adhikari et al.,
2019; Chang et al., 2019; Lee and Hsiang, 2019), even
yielding new SOTA results. The data sets these au-
thors have used to train their models, however, were
much larger than the ones we can utilize here. As
noted previously, we try to generate a benchmark re-
garding the usability of these models in the context of
scarce data, which is common in the social sciences.
In the light of the good performance of the baseline
model, the bigger models also might not be the best
choice if computational efficiency is the goal. As so-
cial scientists typically do not have unlimited com-
puting power at their disposal, a model which can be
trained to obtain reasonable levels of, for example,
subset accuracy, in a short amount of time might be
especially interesting for future research. Addition-
ally, this model also can handle smaller data sets sig-
nificantly better and does not break down on bigger
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ones. This might be an indicator to look at smaller,
more problem-specific algorithms like feature-based
transfer learning to advance the research on automatic
coding in the future.

7 CONCLUSION

In this work, we provided an extension to the collec-
tion of commonly used benchmark data sets used for
evaluation transfer learning models for NLP. The full-
text data set encompasses a different task than most of
the others and thus widens the opportunities for care-
fully evaluating pre-trained models on a different kind
of challenge. Furthermore we propose a unified pre-
processing of the data set going along with a fixed
train-test split enabling a valid comparison against our
baselines. We evaluated the performance of state-of-
the-art transfer learning models on the ANES 2008
data set and compared them to a simple baseline
model. Our comparison illustrates that, despite the
extremely good performances of those models on bi-
nary, multi-class and previous multi-label classifica-
tion tasks, there is still a lot of room for improvement
concerning the performance on challenging multi-
label classification tasks on small to mid-sized data
sets.
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APPENDIX

7.1 Pre-processed Data Set

Table 4: Multi-label descriptive statistics for our data prepa-
ration approach.
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6. Detecting stances of Fake News using
pre-trained language models

Chapter 6 addresses the detection of (potential) fake news articles using pre-trained language
models, which is in this case a multi-class classification task. Further the sensitivity towards a
set of selected hyperparameters is evaluated and thus concluding statements about the necessity
of tuning these hyperparameters are made. Additional insights are provided by comparing two
different data sets as well as considering class-wise performance measures and linking those to the
characteristics of the different architectures.
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Abstract

Our goal is to evaluate the usefulness of unsupervised representation learning techniques for de-
tecting stances of Fake News. Therefore we examine several pretrained language models with
respect to their performance on two Fake News related data sets, both consisting of instances
with a headline, an associated news article and the stance of the article towards the respective
headline. Specifically, the aim is to understand how much hyperparameter tuning is necessary
when finetuning the pretrained architectures, how well transfer learning works in this specific
case of stance detection and how sensitive the models are to changes in hyperparameters such as
batch size, learning rate (schedule), sequence length as well as the freezing technique. The re-
sults indicate that the computationally more expensive autoregression approach of XLNet (Yang
et al., 2019) is outperformed by BERT-based models, notably by RoBERTa (Liu et al., 2019).
While the learning rate seems to be the most important hyperparameter, experiments with dif-
ferent freezing techniques indicate that all evaluated architectures had already learned powerful
language representations that pose a good starting point for finetuning them.

1 Introduction

With the rise of social media, exchange of opinions and news happens faster than ever. News circulation
is therefore less and less bound to traditional print journalism that usually requires extensive research,
fact checking and accurate coverage in order to be a reliable news resource. It is relatively easy to
share opinions that are either not supported by researched facts or simply wrong. In the worst case a
large amount of people can be targeted by propaganda in order to shift societal discussions in favor of a
wanted agenda. Human resources are limited to identify such Fake News, since they cover a wide range
of topics and linguistic writing styles (Shu et al., 2017, p.2). Automated Fake News detection (FND) has
therefore proven to be an important challenge for NLP researchers in recent years. To this day, a variety
of approaches dealing with FND exists (Khan et al., 2019).

In 2017, the Fake News Challenge Stage 1 was introduced which tackles FND as a stance detection task
(Pomerleau and Rao, 2017), where the idea is to determine the stance of a news article to a given headline
(Hanselowski et al., 2018, p.1). We now evaluate the five models BERT (Devlin et al., 2019), RoBERTa
(Liu et al., 2019), DistilBERT (Sanh et al., 2019), ALBERT (Lan et al., 2019) and XLNet (Yang et al.,
2019) which were developed and enhanced recently. All architectures were pretrained on large unlabeled
corpora using a self-supervised objective and can be finetuned on a desired task at hand. Our main focus
is to evaluate the necessity of hyperparameter tuning as well as the general performance.1 Besides this,
it is of special interest to examine the differences between auto-encoding (BERT-based models) and
auto-regressive architectures (XLNet).

In this context, the term Fake News is defined as a text piece that is verifiably wrong and spread with a
malicious intention. In doing so, other media sources such as video, images or audio are excluded. Since
the intention has to be malicious all sorts of entertainment related false news such as hoaxes and april
fools are excluded. The definition is similar to the narrow definition that Shu et al. (2017) undertake.
This work is licensed under a Creative Commons Attribution 4.0 International License.
License details: http://creativecommons.org/licenses/by/4.0/.

1Code and data sets available on GitHub: https://github.com/magud/fake-news-detection
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2 The Fake News Challenge (FNC-1)

In 2017, the Fake News Challenge Stage 1 (FNC-1) was published. Organizers from industry and
academia created an online challenge accessible via http://www.fakenewschallenge.org/
(Pomerleau and Rao, 2017). The FNC-1 is conceptualized as an important pre-step in identifying Fake
News and exploring how artificial intelligence tools can be leveraged in combatting them. Given a certain
claim about a topic, what are different news agencies reporting about this claim? If most news agencies
agree with a claim, this can be interpreted as an indicator of the truthfulness of the claim. On the contrary,
if a lot of news disagree with the claim, the claim is likely Fake News. Statistically speaking this idea
is translated into a stance detection task with the claim being treated as a headline and the stance of the
article body being either Agree, Disagree, Discuss or Unrelated. FND is thus treated as a classification
task with four categories which are interpreted as the stance of an article body towards a given headline
claim. Along with a baseline model, a training and test set was published. According to Hanselowski et
al. (2018), 50 teams participated in the challenge.

3 Related Work

In general, FND can be interpreted as a binary classification task where a text document is classified as
either Fake News or No Fake News or as a multi-class problem often with ordinal labels. One major dis-
tinction in different classification algorithms can be drawn in the consideration of auxiliary information.
Most contributions take a purely feature-oriented approach, while others try to incorporate information
revolving around spreading Fake News and the respective dissemination process. The feature-based
approach focuses on extracting relevant linguistic peculiarities associated with Fake News. Typical ex-
amples are characters n-grams, words or a measure of the readability and syntax of an article body
(Pérez-Rosas et al., 2018, p.5). Other authors included the average word length, counts of exclamation
marks or the sentiment of an article (Khan et al., 2019, p.6). After finding appropriate features, tradi-
tional machine learning algorithms as well as (deep) neural networks are proposed to classify the text
instance given the extracted features. Other feature-based approaches directly rely on deep learning, us-
ing neural networks for learning good representations of the text input by a stack of hidden layers which
is then fed in a last classification layer. This approach is used by Yang et al. (2018) who simultaneously
train a CNN on text and image data to classify fake entities and by Dong et al. (2019) who implement a
two-step approach of using supervised and unsupervised learning with a CNN as well. But despite the
fact that feature-based approaches are fairly popular within the FND research, Shu et al. (2017) argue
that they are not sufficient. Approaches that use auxiliary information e.g. revolve around modeling the
dissemination process of Fake News by incorporating spatio-temporal information about users who like,
share or publish (potential) Fake News (Ruchansky et al., 2017; Ren and Zhang, 2020). The FNC-1
organizers use a feature-based approach by proposing a baseline model that extracts various features
from the headlines and article bodies. The approach of specifically modeling the relationship between a
headline and a respective article body was also exploited by Yoon et al. (2019) in the context of clickbait
detection while the FNC-1 takes this approach as a pre-step to FND.

4 Material and Methods

4.1 Model architectures

Representation learning can be seen as one of the crucial success factors of large pretrained models such
as BERT or XLNet that yield outstanding performances on a variety of NLP tasks. With the introduction
of BERT (Devlin et al., 2019) - short for Bidirectional Encoder Representations from Transformers -
the possibility of simultaneously learning left and right word context was introduced. Up to this point,
considering bidirectionality was only possible by modeling two separate networks for each direction that
would later be combined (Peters et al., 2018). After learning deep bidirectional representations from
unlabeled text, BERT can be used for either finetuning or feature extraction. The model is pretrained on
the combined objective of masked language modeling (MLM) and next-sentence prediction. The main
premise of RoBERTa (Liu et al., 2019) is the assumption that BERT was seriously undertrained during
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pretraining. RoBERTa is thus trained on larger batches of longer sequences from a larger per-training
corpus for a longer time. In addition, Liu et al. (2019) argue that the second task of the next-sentence
prediction does not improve BERT’s performance in a way worth mentioning and therefore remove the
task from the training objective. While RoBERTa focuses on improving pretraining, DistilBERT (Sanh et
al., 2019) and ALBERT (Lan et al., 2019) were introduced as lighter versions of BERT applying param-
eter reduction techniques in order to be usable under constrained computational training and inference
budgets. Sanh et al. (2019) criticize the idea of simply enlarging data sets and running more and more
exhaustive pretraining since this does not consider computational costs, memory requirements and even
environmental aspects that are often neglected for the sake of further enhancing performance (Strubell et
al., 2019; Hao, 2019; Peng, 2019). DistilBERT ends up diminishing BERT’s architecture by around 40%
while retaining around 97% of its language understanding capabilities and being 60% faster by using a
distinct knowledge distillation approach (Hinton et al., 2015), while ALBERT relies on factorized em-
bedding parameterization and cross-layer parameter sharing. Lan et al. (2019) specifically point out that
simply enlarging model architectures by using bigger hidden size dimensions or more layers can lead to
unexpected model degradation2. While RoBERTa, DistilBERT and ALBERT focus on either improving
or reducing the size of BERT, the overall bidirectional encoder architecture with the MLM objective
remains the same. With XLNet, Yang et al. (2019) propose an alternative approach that works in an
auto-regressive manner. Since BERT’s objective is to reconstruct a corrupted input, it can be described
as a denoising autoencoder (DAE) approach. In contrast to the denoising autoencoder, auto-regressive
(AR) language modeling uses a sequential token prediction that can only condition on either left or right
context. XLNet combines the advantages of both approaches, namely the bidirectionality while captur-
ing dependency structures among tokens better by employing a so called permutation language modeling
objective (PLM).

The pretrained models are all implemented in PyTorch (Paszke et al., 2019) using the huggingface
transformers library (Wolf et al., 2019) that makes a large variety of the SOTA models in NLP
available and ready to use. Architecture-wise, the base-cased implementations with the suitable
head for sequence classification (i.e. <model name>ForSequenceClassification) are used.
For DistilBERT and XLNet the weights of the pooling layers are randomly initialized, while BERT,
RoBERTa and ALBERT rely on pretrained pooler layers. The weights for the softmax classification
layer are randomly initialized for all five models. For DistilBERT a model version that is distilled from
the RoBERTa base model was chosen. All models are finetuned using an Ubuntu 18.04.3 LTS OS image
with 40 CPUs (Intel Xeon, 2.4 GHz clock speed), 736 GB of RAM and a maximum of two Tesla V100-
PCIE-16GB GPUs.

All models were finetuned using the Adam algorithm with default values for its hyperparameters as
indicated by Kingma and Ba (2014). As warmup ratio, we chose a value of 0.06 complemented by a
more extensive evaluation when it comes to the learning rate schedule, where we conduct small grid
search experiments later on. In order to avoid gradient explosion, the norm of all gradients is clipped
with a maximum value of 1. Gradients are not accumulated. For all models, the pretrained weights of
the specified huggingface version are loaded once. The experiments and grid search steps thus use the
same randomly initialized weights for the finetuning layers per model3.

4.2 Data

The FNC-1 data set was created from the Emergent data set (Ferreira and Vlachos, 2016) which was
developed for an online journalism project about rumour debunking. The project is still running and a
website with manually checked claims is available (Silverman, 2019). Rumours were extracted from
websites such as snopes.com and twitter accounts such as @Hoaxalizer. Journalists then first identified
the respective claim and searched for articles mentioning this claim. As a next step the journalists labeled

2However, the performance of BERT, RoBERTa and XLNet can only be exceeded when the model is upscaling its width
again which is contrary to the authors initial idea of presenting a leaner model architecture.

3Please note that the term finetuning layer refers to the additional layers that are put on top of the main model architecture,
while pretraining layers are those layers that are part of all models no matter which finetuning task is used. Which layers were
updated during the finetuning is not indicated by these terms, but is rather defined by the specified freezing technique.

6. Detecting stances of Fake News using pre-trained language models

64



6342

the article as For, Against or Observing and then summarized the article into a headline. As an additional
step the veracity level of the claim was labeled as True, False or Unverified. In total, 300 rumoured
claims and 2,595 associated news with an average ratio of 8.65 (sd = 7.31) articles per claim were
considered. The data set thus contains real world data which was manually labeled by journalists with
regard to their stance and veracity level. For the FNC-1, organizers matched every article body with its
respective headline and additionally created the fourth class Unrelated by randomly matching headlines
and article bodies that belonged to different topics. Furthermore, 266 instances were created in addition
to prevent participation teams from deriving labels for the test set since the Emergent data set is publicly
available. The class distribution over the four classes in the FNC-1 data set is heavily skewed towards
the Unrelated class. The 49,972 instances each consist of a headline (i.e. the claim to be looked at),
the respective article body and label. In total, there are 1,669 unique article bodies and 1,648 unique
headlines. The 300 topics are divided into 200 topics for training and 100 topics for testing. Not every
claim is associated with all four labels.

Hanselowski et al. (2018) introduce the extended data set FNC-1 ARC as follows: ARC consists
of 188 manually selected debate topics of popular questions from the user debate section of the New
York Times. For each of these debate topics those user posts were selected that were highly ranked by
other users. These highly ranked user posts were processed by producing two opposing claims for them.
Afterwards, crowd workers decided on the stance of the user posts with regard to the two opposing claims
and labeled the post as either Agree, Disagree or Discuss. The Unrelated label was created by randomly
matching user posts to different topics. As this data set is built on user posts as opposed to the online
news articles of the original FNC-1 data set, it consists of shorter documents that tend to express one
viewpoint only and are less balanced in their opinion as news articles. Using this additional data set, the
robustness of the provided models can thus be tested. The extended FNC-1 ARC data set combines the
FNC-1 with the ARC data set. It comprises 64,205 instances, 14,233 more than the FNC-1 data set. The
label distribution is overall similar to the original data but the Disagree category has a bigger proportion.

4.3 Pre-Processing

As a first step, headlines and article bodies are concatenated into one long sequence with headline com-
ing first and the respective article body following. In doing so, the models can be evaluated with respect
to their capabilities of learning the semantic structures of one instance as a whole. All model architec-
tures can be used with their own respective tokenizer. Since every tokenizer provides the possibility to
process cased text, it was decided to not perform lower-casing. All tokenizers can detect and ignore
control characters. It was thus not necessary to explicitly remove them. The removal of seemingly unin-
formative words, so called stop words, was kept as low as possible and consisted of a manually selected
list containing the words The, the, A, a, An, an. In order to remove stop words, it was necessary to first
tokenize the instances to be able to filter out the mentioned stop words. After tokenizing each instance,
the remaining tokens were padded. Instances that have a longer sequence length than 512 were truncated.
As a final result, all tokens have a sequence length of T = 512 including all necessary special tokens. In
addition, the model is fed with an identifier of which token is padded and which is not. This is necessary
to only place the attention over the span of ”true” tokens that is of non-padded tokens.

5 Results

5.1 Initial Experiments

The goal of the exploration step is to evaluate the general performance and gain insights as to how
useful the given recommendations for hyperparameter choices are. Therefore, the main hyperparameters
of interest, namely the sequence length, batch size, learning rate and learning rate schedule are kept
fixed to determine how well the models perform with respect to different freezing techniques. The
drawn conclusions are then considered for the grid search. The exploration step takes the full maximum
sequence length that is available for each model which consists of 512 tokens. The common assumption
for batch sizes is that a higher batch size yields a more accurate estimate of the gradients (Goodfellow
et al., 2016, p.276). For the given hardware resources this results in a batch size of 8 which is the best
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possible value for the given sequence length and memory capacity of the hardware. The learning rate is
set to 3e-5 with a linear schedule. The number of epochs is 2 since it is not the goal of the experimental
step to receive the best possible performance but rather to gain first insights into the general adaptability
of transfer learning for the stance detection of Fake News.

Concerning freezing, different degrees can be considered: It is obviously possible to finetune all lay-
ers, that is to use the pretrained weights as starting point and then update all parameter weights during
finetuning. The other extreme would be to only train the additional task-specific layers that are placed
on top of the general model structure. For the setup of the initial experiments, three different versions
are considered: The first one we call Freeze, meaning that all layers except for the last projection as well
as the final classification layer are frozen. Second, No Freeze uses no freezing at all which means that
all parameters are updated during finetuning, while the last approach Freeze Embed is done with frozen
embedding layers only. For every freezing technique finetuning was performed three times. The results
are given in Tab. 1 and reported with respect to the mean macro-averaged F1-m metric which is known
to handle imbalanced class distributions more effectively compared to the accuracy.

FNC-1 FNC-1 ARC

Freeze No Freeze Freeze Embed Freeze No Freeze Freeze Embed

BERT 20.88 75.62 74.93 21.06 75.16 75.31
RoBERTa 20.88 79.27 81.72 21.00 78.89 77.64
DistilBERT 20.88 76.57 76.46 21.00 75.31 76.62
ALBERT 34.66 67.91 68.16 34.70 69.49 69.97
XLNet 27.51 80.95 82.18 25.72 80.20 78.88

Table 1: Mean F1-m metric over three runs for the exploration step. For Freeze only the last projection
and classification layers are updated. For No Freeze all layers are updated, while for Freeze Embed all
embedding-specific layers are excluded from updating. Results are on the dev set of a train/dev split of
the actual training set. An overview on the runtimes can be found in Tab. 5 in Appendix A.

The results indicate the importance of not freezing too many layers. All models have problems to
accurately learn when the main layers (id est the encoder layers for the BERT-based and the relative-
attention with feed-forward layers for XLNet) are frozen. Most models still predict every instance as
Unrelated after two epochs. ALBERT performs best in this setting. This is not surprising since all
encoder layers in ALBERT share weights and the model thus learns less information in general. Freezing
the encoder layers therefore leads to less information loss for ALBERT. XLNet performs slightly better
compared to BERT, RoBERTa and DistilBERT. For both No Freeze and Freeze Embed all models are
able to accurately learn to classify the given data sets. For the FNC-1 data set, the performances of
XLNet and RoBERTa are very close. Overall, there is a slight tendency for models to perform better
when only the embedding layers are frozen. The main takeaway is that only finetuning the task-specific
layers is not sufficient. Between not freezing any layers and freezing the embedding related layers, the
difference in performance with respect to the F1-m metric is often neglectable. For the grid search,
all models are finetuned with frozen embedding layers since this bears the advantage of speeding up
training. Furthermore, models are trained for 3 instead of 2 epochs for the grid search.

5.2 Detailed Grid Search

Since traditional research on hyperparameter optimization focuses on training a model from scratch,
some of the generated insights and algorithms might not be appropriate for the setting of transfer learn-
ing and finetuning (Li et al., 2020). There is little research on the effectiveness and necessity of hy-
perparameter optimization when finetuning, especially for NLP tasks. The biggest difference between
pretraining and finetuning lies in the initialization of the weights. In the case of finetuning this initial-
ization relies on the pretrained model which hopefully captures some intrinsic knowledge, whilst the
pretraining phase usually works with random initialization. The goal of this experimental setup is thus to
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gain more insights on the effectiveness and necessity of hyperparameter tuning for finetuning in an NLP
context. Therefore, a grid search for the hyperparameters batch size, maximal sequence length and type
of learning rate schedule and learning rate is conducted as indicated in Tab. 2.

The learning rate is the most common hyperparameter that is tuned. It is so important that Goodfellow
et al. (2016) state to only tune the learning rate, if one has only time/budget to address one hyperpa-
rameter. For the finetuning setting, it is usually assumed that a drastically smaller learning rate should
be used in comparison to pretraining (Li et al., 2020, p.1). During pretraining the model already learns
fairly good representations which are valuable for any downstream task. These should therefore not be
destroyed by using a too big learning rate that strides away too fast from the already gained knowledge.
Thus, learning rate values of 1e-5, 2e-5, 3e-5 and 4e-5 are considered.

Hyperparameter Considered Configurations

Batch size/Sequence length 16 / 256; 32 / 256; 4 / 512; 8 / 512
Learning rate 1e-05; 2e-05; 3e-05; 4e-05
Learning rate schedule constant (cst), linear (lin), cosine (cos)

Table 2: Search space over chosen hyperparameters. The sequence length and batch size depend on one
another due to memory capacity reasons. For the longer sequence length only smaller batch sizes could
be considered. All learning rate schedules use a warmup period of 6% of the total optimization steps.

In addition, the schedule that is used along with the learning rate itself plays an important role. In this
context, three different schedule types are considered, namely a constant, linear and a cosine schedule.
All three types of schedules use the same warmup strategy for which a lower learning rate is used at the
start of training to overcome optimization difficulties. After a warmup period the targeted learning rate is
reached. The schedules now differ in the successive handling of the learning rate. The constant schedule
keeps it at the targeted value, while the linear and cosine schedule decay it accordingly.

For the sequence length the naive assumption is that using as much context as possible is beneficial
for the performance. A longer sequence length that does not truncate input sequences might therefore
perform better. On the other hand it is imaginable that news articles might not need to be fed fully to the
model since they might contain redundant discussion parts. Often, the main arguments are already shared
at the beginning of the article with the full article further elaborating on the initially made statements. It
might be sufficient to look at the beginning of articles which translates to a shorter sequence length. For
the grid search, sequence lengths of T1 = 256 and T2 = 512 are examined.

Lastly, a shorter sequence length bears the possibility to increase the batch size which was found to
be rather low in the exploration step due to limited memory capacities. A larger batch size is usually
affiliated with a more accurate estimate of the gradient (Goodfellow et al., 2016, p.276). On the contrary,
smaller batch sizes often have a regularizing effect which might be due to the additional noise they add
to the learning process. The values for the batch sizes are chosen such that a constant tokens per batch
ratio is reached. Given the memory constraints, the highest possible batch sizes are 32 and 8 for a a
sequence length of T1 = 256 and T2 = 512 respectively. Given the defined search space in Tab. 2, 48
combinations are evaluated for each model and data set. The combinations are examined per learning
rate and presented in Tab. 3.

When it comes to the sequence length, a value of 256 is preferred by most models for the FNC-1 data
set, while for the FNC-1 ARC data set there is no preferred choice. This means that even though, the
FNC-1 data set contains longer sequences on average, a shorter sequence length is often preferred. This
can be interpreted as an indication that the similarity of instances is more important than the average
sequence length. Apart from the fact that the FNC-1 ARC data set contains more instances compared to
the FNC-1 data set, the biggest distinction is that the additional instances were generated from a different
context. Hanselowski et al. (2018) specifically introduced the extended data set to test a proposed model’s
robustness by using the more heterogeneous FNC-1 ARC data set. The general performance on the
different data sets is elaborated at a later point when discussing the indications of Tab. 4.
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For a sequence length of T2 = 512 a batch size of 8 leads to the best performance more often. The only
exceptions are found for a smaller learning rate of 1e-5 or 2e-5. This is not surprising since a smaller
batch size introduces more uncertainty in estimating the gradient. This uncertainty is then compensated
by a smaller learning rate. For a sequence length of T1 = 256 the affiliated preferred batch size is more
evenly distributed. For the FNC-1 data set a sequence length of 256 is chosen 14 times in total with
eight configurations preferring a batch size of 16 and six configurations one of 32. Hence, for the FNC-1
data set a smaller batch size is preferred for a sequence length of 256. For the FNC-1 ARC and the
same sequence length a similar even distribution can be reported, with the batch size 16 being chosen
four and the batch size 32 being chosen five times. There is thus an indication that the batch size seems
to be especially important for longer sequence lengths where a higher batch size is preferred unless the
models are trained on a very small learning rate. For both data sets a higher batch size of 32 tends to
occur along with a higher learning rate of 4e-5.

BERT RoBERTa DistilBERT ALBERT XLNet

LR Winner F1-m Winner F1-m Winner F1-m Winner F1-m Winner F1-m

FN
C

-1

1e-5 16,256,cos 62.46 4,512,lin 78.18 8,512,cst 65.72 4,512,lin 56.62 4,512,cos 73.47
2e-5 16,256,cst 70.18 16,256,lin 76.54 16,256,lin 67.64 8,512,cos 59.74 16,256,cos 75.00
3e-5 16,256,cst 69.36 32,256,cos 76.52 32,256,cst 69.64 16,256,lin 59.80 32,256,cos 73.27
4e-5 8,512,lin 68.09 32,256,lin 74.84 32,256,cst 72.11 16,256,lin 58.33 32,256,lin 73.46

FN
C

-1
A

R
C 1e-5 8,512,lin 68.87 4,512,lin 78.19 8,512,lin 71.99 8,512,cst 63.40 4,512,lin 74.42

2e-5 4,512,lin 72.20 8,512,lin 77.27 8,512,cst 73.59 8,512,cos 65.01 8,512,lin 75.47
3e-5 8,512,cos 70.93 16,256,lin 77.54 32,256,lin 72.99 16,256,lin 64.67 16,256,lin 73.97
4e-5 32,256,lin 70.83 32,256,lin 77.54 16,256,lin 73.13 32,256,lin 63.63 32,256,lin 75.57

Table 3: Overview over the results of the grid search with respect to the learning rate (LR) in the left.
Winner denotes the winning configuration (chosen with respect to F1-m on the evaluation set) out of
the 12 possible configurations per LR. The values in the Winner column indicate batch size, sequence
length and LR schedule (abbreviated by cst for constant, lin for linear and cos for cosine) in this order.
The F1-m of the winning configuration per model is indicated in bold, values in teal indicate the overall
winning configuration per data set. The overall winning configuration over both data sets (RoBERTa;
F1-m = 78.19) is additionally marked by a box. All reported values are obtained on the official test set.

Evaluating the learning rate schedule, the most surprising finding is that the linear schedule is chosen
most frequently with being the preferred choice in 25 of all 40 reported winning configurations. The con-
stant and the cosine schedule are very much on par with being chosen seven and nine times respectively.
For the FNC-1 data set the distribution of the schedulers is more equal with nine configurations choosing
the linear, five the constant and six the cosine schedule. For the FNC-1 ARC data set a clear preference
towards the linear scheduler can be observed. It seems that a linear decay is sufficient but important for
both data sets. There are no peculiarities when it comes to ALBERT which uses a different optimizer
during pretraining.

When it comes to the learning rate, most models perform best for a smaller value of either 1e-5 or
2e-5. There is a difference in the two data sets however. For FNC-1 ARC the overall winning configu-
ration is always either one of the two smaller learning rates for all models. Looking at the FNC-1 data
set, DistilBERT and ALBERT yield an overall winning configuration with a learning of 4e-5 and 3e-5
respectively. For DistilBERT this can be explained by the fact that it only uses half the layers compared
to its teacher RoBERTa which might require the model to stride away more from its pretrained version
in comparison to the other models in order to adequately capture the given downstream task. For FNC-1
ARC this might not be observable since the heterogeneous data set requires a smaller learning rate in
general. Both DistilBERT and ALBERT perform relatively bad for a learning rate of 1e-5 on the FNC-
1 data set. Given the data set of the finetuning task is relatively homogeneous in its instances, lighter
BERT-based frameworks require a larger learning rate than 1e-5 in order to achieve a better performance.
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The general best performing learning rates are 1e-5 and 2e-5. It seems that a more cautious updating
of the pretrained parameters is important which is a strong indication of how well the large pretrained
models already perform. Li et al. (2020) note that ”it is believed that adhering to the original hyperpa-
rameters for finetuning with small learning rate prevents destroying the originally learned knowledge or
features.” (Li et al., 2020, p.1). A small learning rate is seemingly the most important factor for correctly
using large pretrained NLP models for downstream tasks. BERT and RoBERTa prefer a learning rate
of 2e-5 and 1e-5 respectively and show the same tendencies in performance with respect to the learning
rate for both data sets. Thus this recommendation is relatively stable. DistilBERT and ALBERT prefer a
larger learning rate for the more homogeneous FNC-1 data set and a smaller learning rate for the more
heterogeneous FNC-1 ARC data set. Later, it will become evident that ALBERT’s better performance
for the FNC-1 ARC data set can be explained largely by the improved prediction strength on the sparse
category of Disagree instances. The more evenly distributed class labels of FNC-1 ARC have the biggest
impact on BERT and ALBERT.

Looking at the overall performance, ALBERT performs the worst and even worse than BERT. This
confirms the statements of Lan et al. (2019) who have reported that ALBERT can only outperform BERT
for the xlarge and xxlarge variant. Surprisingly, DistilBERT can outperform BERT on the FNC-1 ARC
data set and partly on the FNC-1 data set. When comparing the two different approaches of DAE versus
AR, the best BERT-based model (RoBERTa) performs better than XLNet. XLNet still outperforms
BERT, DistilBERT and ALBERT on both data sets and is thus the second-best overall model. However,
XLNet bears the additional disadvantage of a much longer training time than any BERT-based model.
While RoBERTa trains for around 59 minutes for one configuration, XLNet takes around 140 minutes
which is more than twice the finetuning time of RoBERTa. All other BERT-based model train faster than
RoBERTa. The reason why XLNet does not beat RoBERTa might originate from the specific advantage
that XLNet introduces. Yang et al. (2019) criticize BERT for making the assumption that all masked
tokens in a sequence are independent. By using the PLM objective, XLNet can avoid making such an
assumption and is furthermore able to capture dependencies between tokens better than BERT-based
architectures. The given task of stance detection is not a token-level but a segment-level task. The
advantage of XLNet of better capturing the dependencies between tokens might thus be not of much use
in this context. The overall winning model is RoBERTa with a batch size of 4, a sequence length of 512
and a learning rate of 1e-5 with a linear schedule for both data sets.

The evaluation done so far focused on the F1-m metric. Since both data sets consist of unevenly
distributed and heavily skewed class labels, the class-wise F1 is now considered in order to gain further
insights: In general, the performance improves for the extended data set FNC-1 ARC for all models.
All models except for RoBERTa can drastically improve their prediction strength for the Disagree class
which has the fewest training instances, precisely 1.7% (FNC-1) and 3.5% (FNC-1 ARC). RoBERTa can
not push the performance on the extended data set as much on this category as other models. This could
be interpreted as some sort of saturation effect, since using more evenly distributed data only helps to
a certain degree. The FNC-1 ARC data set is still heavily skewed and in addition more heterogeneous
than the FNC-1 data set. If the overall model architecture is already very powerful, as is the case for
RoBERTa, the heterogeneity in the training instances might outweigh the positive factor of having more
evenly distributed data.

XLNet can boost its performance for the extended data set more, in relative comparison to RoBERTa.
This can be largely attributed to the boosted performance on the Disagree class. All models perform
relatively well on the Discuss and extraordinarily well on the Unrelated class. The worst F1-UNR values
occur for ALBERT with 96.65 for the FNC-1 and 96.83 for the FNC-1 ARC data set.

RoBERTa is the strongest model since it also outperforms XLNet. This better performance is not
attributable to one specific class, since RoBERTa performs stronger on all classes. When considering
F1-m, all models improve their performance when finetuned on more data, especially on the hardest to
predict class Disagree.

In summary, the grid search showed a very strong performance of RoBERTa which also outperforms
XLNet. This might be due to the specific FND task that is on a segment- rather than a token-level. In
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BERT RoBERTa DistilBERT ALBERT XLNet

Metric FNC-1 + ARC FNC-1 + ARC FNC-1 + ARC FNC-1 + ARC FNC-1 + ARC

F1-m 70.18 72.20 78.18 78.19 72.11 73.59 59.80 65.01 75.00 75.57
F1-AGR 60.31 63.48 70.69 70.57 61.95 65.29 53.19 53.97 68.00 68.57
F1-DSG 41.76 48.28 56.15 58.92 45.09 50.46 13.21 34.07 49.47 53.69
F1-DSC 80.36 78.82 86.78 84.16 82.83 80.22 76.16 75.18 83.73 81.43
F1-UNR 98.28 98.22 99.10 99.09 98.58 98.38 96.65 96.83 98.80 98.60

Table 4: Model performances with respect to class-wise F1 as well as F1-m in comparison for FNC-1
and FNC-1 ARC. For better readability we indicate the columns for FNC-1 ARC just with ”+ ARC”.

addition to performing better, RoBERTa also trains much faster than XLNet. The learning rate is the
most important hyperparameter which is in line with current research. For BERT and RoBERTa a clear
recommendation for the learning rate can be drawn, while DistilBERT, ALBERT and XLNet exhibit
their best performances for different values of the learning rate. The sequence length is not as important
and dominated by the similarity of training instances within a data set. If the instances are more similar,
the models manage finetuning well with shorter sequences. A more heterogeneous data set requires the
model to consider more context and thus a longer sequences. As a learning rate schedule, a linear choice
is sufficient and a cosine schedule is not necessary per se.

6 Conclusion

The overall conclusion that can be drawn from this work is how powerful and strong the evaluated archi-
tectures are for the examined task related to Fake News Detection. Even with minimal hyperparameter
tuning and only finetuning for 3 epochs, the models already performed considerably well on both data
sets. With respect to the considered hyperparameters the two most important conclusions are to not only
finetune the classification and pooling layers that are stacked on top of the pretrained models4. Sec-
ondly, the most important hyperparameter is the learning rate. The recommendation of Goodfellow et
al. (2016) to focus on the learning rate, when one has only time to address one single hyperparameter
can be confirmed. At last, the models are relatively robust with respect to the learning rate schedule, the
batch size, as long as it is adjusted to the learning rate and to a certain degree also the sequence length.
Furthermore, the excessive pretraining approach of RoBERTa can outperform the permutation language
model objective of XLNet.

Fake News detection itself is often time treated as a inherently binary task5 (i.e. a document either
contains Fake News or it does not). The underlying truth, however, might be more complicated, since
most of the times a document can not unambiguously be assigned to either of these two classes. This is
why our experiments on the FNC-1 data sets, which comprehend Fake News detection as a multi-class
classification problem, might be more beneficial for this field of research compared to experiments on
data sets with a binary target. We would not a go as far as concluding that these findings are without
further ado transferable to other Fake News related data sets using different tasks or label sets, but
nevertheless think that our findings can serve as starting points for further experiments in related fields.
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either as ”reliable” or ”unreliable”.
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Appendix

A Finetuning time for different freezing techniques

FNC-1 FNC-1 ARC

Freeze No Freeze Freeze Embed Freeze No Freeze Freeze Embed

BERT 00:27:11 01:01:45 00:57:49 00:32:40 01:17:33 01:12:37
(sd = 4 sec) (sd = 6 sec) (sd = 6 sec) (sd = 2 sec) (sd = 6 sec) (sd = 11 sec)

RoBERTa 00:28:24 01:03:01 00:58:59 00:33:50 01:18:49 01:13:40
(sd = 11 sec) (sd = 7 sec) (sd = 6 sec) (sd = 5 sec) (sd = 5 sec) (sd = 5 sec)

DistilBERT 00:17:05 00:35:19 00:34:08 00:19:03 00:43:30 00:38:33
(sd = 1 sec) (sd = 2 min) (sd = 0 sec) (sd = 2 sec) (sd = 5 sec) (sd = 25 sec)

ALBERT 00:20:01 00:49:28 00:47:36 00:25:25 01:03:43 01:01:14
(sd = 3 sec) (sd = 3 sec) (sd = 2 sec) (sd = 3 sec) (sd = 2 sec) (sd = 3 sec)

XLNet 01:26:46 02:26:01 02:20:44 01:49:07 03:06:21 02:58:49
(sd = 50 sec) (sd = 10 sec) (sd = 18 sec) (sd = 26 sec) (sd = 53 sec) (sd = 25 sec)

Table 5: Mean finetuning time in hh:mm:ss over three runs for the exploration step. For Freeze only
the last projection and classification layers are updated. For No Freeze all layers are updated, while for
Freeze Embed all embedding-specific layers are excluded from updating. The learning rate was kept
fixed at 3e-5 with a linear schedule. The batch size was 8 with a sequence length of 512 tokens.
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7. Pre-trained language models as knowledge
bases for automated complaint analysis

Chapter 7 showcases the use of pre-trained language models as potential substitutes for traditional
knowledge bases by transferring domain-specific knowledge into the architecture’s weights. It
shows how this can be achieved by continual pre-training, explains the creation of an appropriate
test set for probing the models and finally performs experiments using several state-of-the-art
pre-trained architectures. This contribution shows rather promising results which indicate that
this approach might (in the future) present a valid alternative to expensive handcrafted knowledge
bases for some applications.

Contributing article:

Viellieber, V. D. and Aßenmacher, M. (2020). Pre-trained language models as knowledge bases
for Automotive Complaint Analysis. arXiv preprint arXiv:2012.02558. https: // arxiv. org/
abs/ 2012. 02558 .

Copyright information:

This article is licensed under a Creative Commons Attribution 4.0 International license
(https://creativecommons.org/licenses/by/4.0/).
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The paper was jointly written and reworked by both authors. Matthias Aßenmacher mostly
contributed by bringing up the idea of continual pre-training, designing the experimental setup of
interleaved evaluation on the test set and selecting the models to be evaluated. Vanessa Viellieber
brought in her extensive in-domain knowledge from the automotive sector by designing the test
set for probing the pre-trained model’s ability to act as a knowledge base.
A similar split can be reported when it comes to the writing and the coding: While Matthias
Aßenmacher wrote the theoretical parts and put the results into context, Vanessa Viellieber wrote
the practical parts and did the programming. Furthermore, Christian Heumann contributed
substantially by discussing the paper’s content, providing valuable hints regarding its structure
and jointly revising the code with both of the authors. Both authors proofread the paper.
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ABSTRACT

Recently it has been shown that large pre-trained language models like BERT (Devlin et al., 2018)
are able to store commonsense factual knowledge captured in its pre-training corpus (Petroni et al.,
2019). In our work we further evaluate this ability with respect to an application from industry
creating a set of probes specifically designed to reveal technical quality issues captured as described
incidents out of unstructured customer feedback in the automotive industry. After probing the out-of-
the-box versions of the pre-trained models with fill-in-the-mask tasks we dynamically provide it with
more knowledge via continual pre-training on the Office of Defects Investigation (ODI) Complaints
data set. In our experiments the models exhibit performance regarding queries on domain-specific
topics compared to when queried on factual knowledge itself, as Petroni et al. (2019) have done.
For most of the evaluated architectures the correct token is predicted with a Precision@1 (P@1) of
above 60%, while for P@5 and P@10 even values of well above 80% and up to 90% respectively
are reached. These results show the potential of using language models as a knowledge base for
structured analysis of customer feedback.

1 Introduction

Recently researchers developed some interest in the knowledge stored in the large pre-trained models. Petroni et al.
(2019) investigated BERT (Devlin et al., 2018) and other architectures with respect to their ability of storing common-
sense factual knowledge. As the stored knowledge depends heavily on the pre-training corpus, we are curious about
whether one can ”teach” these kinds of models further knowledge by exposing them to texts from specific domains,
like customer complaints in the automotive industry.

Especially for product-driven organizations as car manufacturers, customer feedback provides a precious source of
information for product improvements, e.g. in terms of potential security risks identified and mentioned by customers.
However, the structured use of this data is an open problem in industry, despite numerous investigations with advanced
NLP methods (Choe et al., 2013; Lee et al., 2015; Akella et al., 2017; Liang et al., 2017; Joung et al., 2019). Handling
this fuzzy data and satisfying the demand for detailed information extraction in an intelligent manner remains chal-
lenging.

The recent developments in NLP lead us to the idea of evaluating the ability of pre-trained language models to act as
a domain-specific knowledge base. We investigate if a language model, further pre-trained on customer feedback, is
able to store customer opinions about products, features, and services as knowledge in model parameters.

7. Pre-trained language models as knowledge bases for automated complaint analysis
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2 Related work

Besides the challenges of vast customer complaints with free flow writing, different languages, abbreviations, mis-
spellings, domain-specific entities, what makes the analysis of customer complaints so heavily complex is that cus-
tomer issues occur in so many different forms and combinations. With supervised learning methods the limits are that
customer feedback analysis only works along a certain number of categories (Liang et al., 2017; Akella et al., 2017).
With these methods it is impossible to automatically identify newly emerging, possibly security-relevant, risks. The
lack of labeled training data as well as imbalanced data is a hurdle in the development of NLP models in industrial
customer feedback analysis (Choe et al., 2013; Akella et al., 2017). Furthermore, it is relevant for product manufac-
turers to be able to identify implied connections in customer feedback. Lee et al. (2015) used Web Ontology Language
(OWL) to express semantic relations in the customer complaint analysis. But schema engineering strongly needs hu-
man supervision and is very time-consuming (Lee et al., 2015; Wang et al., 2016). Therefore this depicts an expensive
process (for industrial application) that some product manufacturers shy away from and thus leave a great deal of
information unused.

As recently observed by Petroni et al. (2019) and Zhang et al. (2019), language models can store implicit knowledge
after pre-training and thus act as a kind of knowledge base, which could be a solution for the predominant challenges
in customer complaint analysis. Therefore we use these findings to create domain specific probes for automotive
industry in the style of Petroni et al. (2019). They used a general corpus of facts representing knowledge statements
like ”iPod Touch is produced by Apple”. After converting these facts into cloze statements they query the language
model asking it to fill in a masked token, which was always the object of a fact triple (subject - predicate - object). For
the evaluation of the models they determined how high the ground truth token was ranked against every other word in
a fixed candidate vocabulary.

3 Materials and Methods

We evaluate a selection of pre-trained language models for the English language which recently achieved state-of-the-
art results on frequently used benchmarks, for which we use the stable implementations via the unified API of the
transformers1 module (Wolf et al., 2019). As we want to infer the effect of continual pre-training on a domain-
specific corpus, we use the architectures with the respective heads (e.g. BertForMaskedLM2).

As in-domain corpus for the continual pre-training we use a collection of roughly 500.000 publicly available e-mails
containing customer complaints of various vehicle makes. Since this corpus should inherit many details which indicate
deeper knowledge of the original equipment manufacturers (OEMs) products, we suspect that continual pre-training
transfers this knowledge into the model’s weights.

The evaluation set of probes is handcrafted from a held-out set from the same corpus which we utilize for continual
pre-training. We created a dictionary containing technical terms of automotive industry and subsequently filtered the
corpus using this dictionary in order to obtain suitable sentences where model parts could be masked for probing the
model.

3.1 Pre-trained language models

BERT (Devlin et al., 2018) is a bidirectionally contextual transformer encoder model, which is available in a base (∼
110M parameters) and a large (∼ 340M parameters) variant. The base, uncased variant will be used as baseline
model. The cased variants for both model sizes are not considered since the raw data is only available capital letters
and is thus lower-cased during pre-processing. The competing RoBERTa model (Liu et al., 2019) is an optimized,
but architecturally alike, version of BERT pre-trained on a significantly larger corpus. We will also compare BERT
to DistilBERT (Sanh et al., 2019) and ALBERT (Lan et al., 2019), two models which employ parameter reduction to
the original BERT architecture. While DistilBERT relies on knowledge distillation (Hinton et al., 2015), ALBERT
primarily makes use of cross-layer parameter sharing techniques (Lan et al., 2019).

3.2 Data for continual pre-training

We use data from the ODI3 of the National Highway and Traffic Safety Administration (NHTSA). NHTSA-ODI’s data
set consists, amongst other sources, of vehicle owner’s complaints regarding different manufacturers and is used to

1https://github.com/huggingface/transformers
2https://huggingface.co/transformers/model_doc/bert.html#bertformaskedlm
3https://catalog.data.gov/dataset/nhtsas-office-of-defects-investigation-odi-complaints
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identify safety issues that warrant investigation and to determine if a safety-related defect trend exists. Other sources
are e.g. consumer action groups or insurance companies. In our work, we filtered the data base only for direct
customer complaints in order to obtain a data set most alike to customer complaints as they are addressed to OEMs
and documented in their CRM system.

The final corpus consists of 502.445 distinct complaints and has a size of 142.776 kilo bytes. We divide the data with a
ratio of 90 to 10 into training and held-out set. The whole corpus has a vocabulary of 139.982 distinct words on which
we, besides lower-casing, did not perform any other pre-processing steps. Descriptive statistics are displayed in Tab.
1, we use the respective tokenizers for the models.

avg. length min 25% 50% 75% max

raw data 35.94 1 30 41 43 71
tokenized (BERT base uncased) 45.47 1 38 51 54 91
tokenized (BERT large uncased) 45.55 1 38 51 54 106

tokenized (RoBERTa base) 49.33 3 42 54 58 124
tokenized (DistilBERT base uncased) 45.55 1 38 51 54 106

tokenized (ALBERT xxlarge) 48.70 3 40 54 58 130
Table 1: Descriptives for the raw and the tokenized sequences of the train set. BERT uses a word-piece tokenizer,
while ALBERT uses sentence-piece. RoBERTa and DistilBERT rely on a BPE-tokenizer.

3.3 Set of evaluation probes

We extracted the affected components from the variable compdesc (description of affected components) in ODI’s
data set. To stick to the one-token logic of Petroni et al. (2019), we split up compounds and thus get a dictionary of 364
distinct, mainly technical, terms related to the vehicle. Due to the decomposition of the compounds, it is sometimes
the case that individual terms do not necessarily describe a vehicle component unambiguously, but are nevertheless
mainly of a technical nature or relevant in automotive customer complaints. An excerpt of the most frequent ten entries
can be seen in Tab. 2.

term engine hydraulic service brakes system cooling antilock air power seat

frequency 42903 31861 30058 30044 27874 17396 16391 16301 16154 15874
Table 2: Most frequent technical terms to be replaced for creating the probes.

We identified the sentences which contain the relevant terms and masked one of these terms per sequence to prepare
for the masked language modeling task. Tab. 3 shows exemplary evaluation probes.

original gear shift cable failure in auto transmission

masked [CLS] [MASK] shift cable failure in auto transmission [SEP]
masked [CLS] gear [MASK] cable failure in auto transmission [SEP]

Table 3: Exemplary probe from our test set. One original sentence can lead to multiple probes if it contains more than
one affected component. Multi-token components are not replaced by one MASK.

4 Results

We evaluate the models at regularly spaced intervals defined by the number of in-domain examples seen by a model.
Performance values for all five different models are displayed in Tab. 4.

Overall we can see that across all different models there is only little ability for successfully performing this task when
simply used ”out-of-the-box”, only ALBERT (Lan et al., 2019) already consistently predicts domain relevant terms.
E.g. for the second masked sequence from Tab. 3 ALBERT’s ”out-of-the-box” version predicts the following top five
tokens: (1) ’wrench’, (2) ’axle’, (3) ’shifter’, (4) ’shift’ (ground truth), (5) ’switch’ which contain the ground truth on
rank four. The other models do not predict solely technical terms in such a consistent way. When pre-trained on our
domain-specific corpus in a continual fashion, we can see that performance steadily increases for each of the examined

3
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#in-domain examples out-of-the-box 100k 200k 300k 400k

B
E

RT base, uncased 12.5 (25.8/ 30.2) 44.5 (71.5/ 78.3) 49.5 (74.2/ 80.5) 58.2 (80.5/ 85.6) 59.0 (81.6/ 86.4)
large, uncased 27.1 (57.1/ 65.0) 49.7 (74.1/ 80.6) 55.0 (78.3/83.9) 64.6 (85.2/ 89.0) 63.8 (84.8/ 88.8)

O
th

er
s RoBERTa (base) 35.8 (61.8/ 71.1) 52.2 (79.9/ 87.7) 51.8 (80.0/ 88.6) 51.2 (80.2/ 89.1) 51.5 (80.8/ 89.2)

DistilBERT (base) 25.5 (47.8/ 57.4) 56.5 (78.4/ 84.0) 58.1 (79.4/ 84.8) 60.0 (81.1/ 86.1) 61.1 (82.1/ 86.9)
ALBERT (xxlarge) 43.3 (70.0/ 78.3) 60.4 (83.7/ 89.8) 59.3 (83.7/ 90.7) 60.6 (84.4/ 91.2) 59.0 (84.0/ 91.2)

Table 4: Model performances on the test set measured as Precision@k P@1 (P@5/P@10) in percent for all consid-
ered architectures. Results are displayed separately for different amounts of additional in-domain examples used for
continual pre-training. Best performance per column in bold.

models, partly by a large margin. After having seen 100k domain-specific examples, the values for P@1 stagnate for
all of the architectures. For RoBERTa and ALBERT this happens rather early (after between 100k and 200k examples),
while both BERT variants as well as DistilBERT still show smaller improvements until having seen all 400k examples.
When relaxing the performance measure by considering P@5 and P@10 we observe similar behavior for the BERT
variants and for DistilBERT. RoBERTa and ALBERT (contrary to before) are now also showing steady, decreasing
improvements until the end of continual pre-training. The superiority of ALBERT, which we already observe for the
”out-of-the-box” version, mostly prevails over the course of the evaluation intervals. Only the large variant of BERT
is able to compete when having seen many (300k – 400k) in-domain examples. Concerning the choice of a suitable
performance measure, P@1 might be a little bit too harsh, since in some cases plausible alternative are ranked above
the ground truth. This is a point which requires further evaluation of qualitative nature.

5 Discussion

There are several limitations which we have not yet been able to address. First and foremost multi-token words repre-
sent a problem, especially in our domain of application. A significant amount of car parts (e.g. coolant system) and key
issues (e.g. not working properly) are not represented by single tokens, but instead have multi-token representations.
Following Petroni et al. (2019), probing multi-tokens and predicates remains an open challenge. Further extensions of
this work will try to address this shortcoming. In addition, we would like to investigate the effects on the model when
focal points of different components are described by the same defect patterns, under which conditions the model is
then able to differentiate. Moreover we are interested in the time trend within the language models: Can knowledge
for a certain temporal period be mapped or queried as such? It is also necessary to investigate the velocity with which
new technical issues can be identified in a knowledge base.

6 Conclusion

We took an approach already investigated by Petroni et al. (2019) on some tentative probes for commonsense factual
knowledge and extended it via continual pre-training on a corpus from a specific domain. Our experiment shows
promising results which indicate that pre-trained language models have the ability of representing focal points gathered
from customer complaints and are therefore able to represent domain-specific knowledge. Concluding, language
models could be an innovative approach to handle the predominant problems in industry to utilize the full potential
of unstructured information in customer feedback at economically acceptable expense. According to our industry
experience, both the problem and the solution can be transferred from the automotive domain to other product-driven
industries. Nevertheless, there are still some severe limitations to the use of language models as a customer opinion
base. These limitations require further investigation and have to be overcome eventually in order to replace scheme-
based knowledge bases with these self-supervised approaches.
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8. Applying pre-trained language models for
measuring Customer Centricity

Chapter 8 showcases how multiple pre-trained language models can be seamlessly integrated in a
pipeline-like structure with the goal to measure and to visualize a specific concept from the field
of Insurance Marketing. The chapter describes the necessary pre-processing and data annotation
steps which had to be taken prior to the application of two different state-of-the-art pre-trained
architectures, namely DistilBERT (Sanh et al., 2019) and LCF-BERT (Zeng et al., 2019). This
contribution depicts an interesting use case that indicates how such architectures can easily be
used in a fast and productive manner in real world applications.

Contributing article:
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INTRODUCTION
Business-to-consumer (B2C) industries, 
like car insurance companies, have to 
focus on their customers’ needs in order 
to provide them with the desired product. 
As touch points between companies and 
customers are infrequent, companies must 
get the most they can out of customer 
feedback. At present, such feedback is 
mainly found in unstructured texts that 
are publicly available on the internet, 
for instance in comparison portals. Star 
ratings, in particular, are a popular way 
for consumers to comment on the overall 
quality of an insurance company. But 
this is only a very general approach to 
a complex issue. More differentiating 
information can be found in the review 
texts themselves. In order to avoid manual 
analysis of this vast amount of data, an 
automated approach for information 
extraction and visualisation is needed. 
Working together, Insaas and LMU 
Munich have developed a multi-step 
procedure to solve this problem. The 
solution can detect topics and their 
polarity and group this information in 
such a way that customer opinions can be 
represented in the form of a graph, known 
as the customer centricity graph. This graph 
helps companies to identify those areas in 
which areas they perform better than their 
competitors and where there is room for 
improvement.

APPROACH
Based on state-of-the-art methods in the 
field of natural language processing (NLP), 
Insaas and LMU Munich have developed 
a pipeline that takes an arbitrary amount of 
review data as input and compresses that 
information into a customer centricity graph. 
This approach is targeted at the car insurance 
industry and at German review texts. The 
novelty of this work is the combination of 
several building blocks to produce a multi-
step procedure that can be run automatically.

Its main features are pre-trained German 
language models from the BERT1-family. 
BERT is a Transformer2-based language 
representation model, ie a model that is 
trained to represent words in a meaningful 
way, based on their bi-directional context. 
As pre-training such models requires massive 
amounts of computational power (typically 
Tensor Processing Units) and time, it is 
common practice to use pre-trained versions 
of such models. The present research used a 
variant pre-trained on German texts, so had 
only to fine-tune the model for the task at 
hand, ie the classification of reviews with 
respect to topics or polarities.

In what follows, this paper will provide 
an overview of the various steps of the 
procedure (Figure 1). In order to make 
subsequent explanations easier to understand, 
two exemplary reviews are added. As a first 
step, aspects (ie topics) are extracted from 
the reviews. Aspects highlight different facets 

Abstract Certain industries, such as car insurance, do not have many customer touch 
points and do not offer a great deal of differentiation in the market. Marketers in such 
industries must therefore analyse vast amounts of customer-generated feedback in order 
to analyse customer preference in a quantitative manner. At present, this is done via market 
research or manual work, as an automated tool for summarising unstructured texts is as 
yet unavailable for certain European languages, including German. This paper discusses 
how Insaas and LMU Munich have used publicly available feedback on car insurance in 
Germany to develop a dedicated pipeline for the computation and visualisation of customer 
opinions. This paper provides an overview of the various steps of the procedure.
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of a review and may be either explicit or 
implied; in the latter case, the aspect may be 
identified from the context. For example, in 
the case of ‘Der Mitarbeiter war sehr freundlich’ 
[‘The employee was very friendly’], 
‘Mitarbeiter’ [‘employee’] is the aspect, while 
in ‘Alles super’ [‘Everything’s great’], no 
aspect can be detected. Depending on the 
results of this first step, the data may be 
split into two groups: those reviews with 
identified aspects and those without. 

Aspect-based sentiment analysis is then 
performed on the data with aspects, meaning 
that the sentiment, which is basically the 
emotion or the polarity, is determined 
separately for each aspect. In the case of 
‘Mitarbeiter’ [‘employee’], the context 
suggests a positive sentiment for this aspect. 
Second, the aspects must be matched to 
their corresponding entities. Entities are 
categories in which the aspects can be 
grouped to reduce complexity. They are a 
priori defined to be ‘Beratung’, ‘Erreichbarkeit’, 
‘Freundlichkeit’, ‘Kompetenz’, ‘Qualität’, 
‘Problemlösung’, ‘Preis’ and ‘Leistung’, which 
can be translated as ‘guidance’, ‘availability’, 
‘friendliness’, ‘expertise’, ‘quality’, ‘problem 

solving’, ‘price’ and ‘benefit’. These entities, 
which can be grouped into either product  
or service-related, will dominate the 
definition of the resulting visualisation. 
In the example, it makes sense to assign 
‘Mitarbeiter’ [‘employee’] to Freundlichkeit 
[‘friendliness’], ie entities and sentiments 
are connected via aspects. For that part of 
the data without any aspects, a sentiment 
is predicted for the whole review; this will 
be called aspect-free sentiment. For the 
example ‘Alles super’ [‘Everything’s great’], this 
should clearly be positive. All this extracted 
information is then turned into entity-
wise scores by calculating the mean of the 
sentiments of all aspects belonging to each 
entity. These are depicted in a radar chart, 
also known as a spider diagram, with one 
corner point per entity. For the reviews 
without any aspects, an aspect-free score is 
calculated in a similar manner.

THE DATA
The data used for training the different 
building blocks of the multi-step approach 
was collected from publicly available web 

Figure 1: Overview on the steps conducted throughout the pipeline
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pages such as comparison portals such as 
Trustpilot (https://de.trustpilot.com/). From 
the original data set, called the review-wise 
labelled data, Insaas derived several smaller 
pieces of data that were targeted for special 
parts of the pipeline. Short descriptions for 
these are provided in the following.

Review-wise labelled data
After excluding irrelevant and duplicate 
reviews, a total of 93,543 samples of data 
were obtained. Each sample comprised seven 
variables, namely: feedback, date, source, 
company, rating, aspect and sentiment. As 
consumer review text falls under the heading 
of ‘feedback’, the present study considers 
this to be the most important variable. All 
review texts were written in German and 
varied in length from just a few words to 
multiple sentences. 

The time stamp in the ‘date’ variable was 
initially used solely to identify duplicates. As 
this paper will discuss, however, including 
time as an additional dimension in the 
pipeline can provide an interesting extension 
to the analysis, hence it was also used to 
split up reviews by year and thereby create 
separate graphs.

The variables of ‘source’ and ‘company’ 
are used to indicate the source of the data (ie 
which comparison portal) and the company 
being commented upon, respectively. Due 
to the different sources being used, company 
names initially differed in spelling and it was 
necessary to consolidate them in order to 
group the data by company. 

If the source of the review provided 
star ratings, this information was recorded 
under the heading of ‘rating’, on a scale of 
either 1–5 or 0–10. This information was 
used by Insaas to correct the predictions 
of the sentiment model, which predicted 
the reviews to be ‘negative’, ‘neutral’ or 
‘positive’ (stored in the corresponding 
‘sentiment’ column). These sentiments 
were used as true labels for the aspect-free 
sentiment prediction. 

The ‘aspect’ variable describes the aspects 
predicted by the Insaas aspect detection 
model and serves as the ground truth for 
aspect prediction.

Aspect-wise labelled data
The second sub data set, which was 
constructed for the purpose of training 
one of the building blocks of the pipeline, 
will be referred to as aspect-wise labelled data 
in order to distinguish it from the review-
wise labelled data. It was annotated this way 
because several reviews include more than 
one aspect. As for aspect-based sentiment 
classification and aspect-entity matching, 
the sentiment and the corresponding entity 
were required for each aspect. This created 
the need to construct a further data source. 
Thus, the new labels include aspect-based 
sentiments and entities for up to three 
aspects per review. The data comprise a 
subset of 584 observations of the review-
wise labelled data which were manually 
annotated during the course of the project.

Lemmatisation list
A lemmatisation list was used to efficiently 
cope with the huge amount of different 
aspects in the review-wise labelled data. 
Lemmatisation entails grouping inflected 
words according to their lemma; for 
example, ‘Beiträge’ [‘insurance premiums’], 
‘Beitrages’ and ‘Beitrags’ are all assigned to the 
lemma ‘Beitrag’ [‘insurance premium’]. 

Initially, there were over 1,000 different 
aspects. Not only was this too complex for 
the model to handle, but there was also the 
problem of multiple aspects referring to 
the same underlying construct. To address 
this, the researchers manually created a 
list where all aspects were assigned to a 
so-called lemmatised aspect. The approach 
was extended by grouping words with 
similar meaning to the lemmatised aspects; 
for example, aspects like ‘Vertragsabschluss’ 
[‘completion of contract’], ‘Vertragsformular’ 
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[‘contract form’], ‘Unterlagen’ [‘documents’] 
and ‘Vertragswechsel’ [‘change of contract’] 
were allocated to the lemmatised aspect 
‘Vertrag’ [‘contract’]. While this procedure 
retained the meaning of the aspects, the 
generalisation made the task less complex. 
The lemmatisation list held 197 lemmatised 
aspects, which were utilised during aspect-
based sentiment classification and aspect-
entity matching.

Entity synonyms
For the task of aspect-entity matching, a list 
of synonyms for the entities was created. 
This list was created using ConceptNet,3 a 
semantic network that connects potentially 
related words with one another. For each 
entity, there were 50–75 synonyms both 
with respect to meaning, eg ‘Hilfsbereitschaft’ 
[‘helpfulness’] for ‘Freundlichkeit’ 
[‘friendliness’], as well as spelling, eg 
‘Qualtiät’ for ‘Qualität’. Also note that some 
synonyms are not unique for one entity; for 
example, ‘Qualität’ [‘quality’] can also be 
used as a synonym for ‘Leistung’ [‘benefit’].

PIPELINE BASED ON BERT MODELS
The goal of the project was to create 
a code pipeline to transform data from 
one company (serving as input) into a 
comprehensive visualisation that can be 
compared with data from other companies. 
This paper demonstrates the pipeline using 
data from Allianz and HUK, and will 
comprehensively discuss the results of each 
step inside the pipeline. 

A total of 10,680 reviews of Allianz and 
11,932 reviews of HUK were obtained.

The first step in the pipeline was aspect 
detection. This entailed training a classifier 
for so-called multi-label classification, so 
that reviews may (potentially) be assigned 
to more than one label (ie aspect). After 
removing very rare aspects and applying 
the lemmatisation list, a list of 198 aspects 
(including a ‘no aspect’ label) was obtained. 

For this task, the German DistilBERT4 
model (https://huggingface.co/distilbert-
base-german-cased) was employed on a 
subset of the review-wise labelled data. 
DistilBERT is a smaller version of BERT 
that was created to address BERT’s 
memory and computational issues. The key 
technique for reducing the model size is 
knowledge distillation, which is discussed 
in depth elsewhere.5,6 An in-depth 
theoretical explanation is beyond the scope 
of this paper, but the basic idea behind 
this technique is to train a small(er) student 
model to mimic the predictions of a large(r) 
teacher model.

For the next steps, the data were 
separated into samples with and without 
aspects. On the reviews with aspects, aspect-
based sentiment classification methods were 
used to predict one sentiment per aspect. 
This was necessary as there were reviews 
like ‘Der Mitarbeiter war sehr freundlich, aber 
der Versicherungsbeitrag zu hoch’ [‘The employee 
was very friendly, but the insurance premium was 
too high’, where the sentiments of ‘Mitarbeiter’ 
[‘employee’] and ‘Versicherungsbeitrag’ 
[‘insurance premium’] contradicted each 
other. LCF-BERT7 was selected for this task 
and trained on the aspect-wise labelled data 
set, which introduces a local-context-focus 
(LCF) mechanism. This means that, in order 
to identify the sentiment of an aspect, an 
additional focus is set on words that are close 
to the aspect. The basic BERT model used 
here was the bert-base-german-cased from the 
huggingface transformers library8 (https://
huggingface.co/bert-base-german-cased). If 
a review had no predicted sentiment for any 
aspect, this review was removed from the 
data set with aspects and added to the one 
without aspects.

For the task of matching aspects and 
entities, the list of synonyms for each entity 
was employed together with FastText9 
embeddings on aspects, entities and entity 
synonyms. Subsequently, each aspect was 
paired with all entities as well as entity 
synonyms. For each pair of embeddings 
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(aspect, entity/entity synonym), the cosine 
similarity was calculated. In order to obtain 
an entity for each aspect, the researchers 
took the ten most similar entities or entity 
synonyms, looked up the entities of the 
entity synonyms and chose their mode as 
the final entity for this aspect. If there was 
no unique mode, the knowledge from the 
aspect-entity list that had been extracted 
from the aspect-wise labelled data set was 
included. If the entity was still undecided, 
the entity with the highest similarity was 
added to the list and another attempt to 
take the mode was taken. Following this 
process, there remained two aspects that had 
no unique entity assigned. For these, the 
number of entity synonyms was reduced 
until it was possible to calculate a mode. 
This list of aspects and entities was used in 
the pipeline.

If no aspects were found within a review 
text, it was not possible to employ aspect-
based methods for sentiment classification. 
In such instances, a multi-class classifier 
was used to predict the review’s aspect-
free sentiment, thus effectively obtaining 
the sentiment of the entire review. This 
was done similarly with aspect detection, 
but with multi-class instead of multi-label 
prediction as the target variable contained 
exactly one label per review. For this task, 
a German DistilBERT model was fine-
tuned on those parts of the review-wise 
labelled data that were not labelled with 
any aspects.

To visualise the extracted information, 
sentiments had to be converted into 
numbers that could be depicted. The 
researchers devised multiple scores to deal 
with special subgroups of reviews and to 
see which one best showed the results. For 
reviews without any aspects, aspect-free 
sentiments were predicted. The absolute 
values were used to calculate an aspect-free 
score with the following formula where 
review corresponds to a review without 
aspects and N_without_aspects is the total 
number of them:

aspect free score

N without aspects
sentiment review

_ _
1

_ _
( )

review
without
aspects

=

∑

Sentiment (review) ∈{–1; 0; 1} indicates 
the sentiment of each review, encoded for 
negative, neutral and positive, respectively. 
This score is basically the mean of the 
sentiments with a lower bound of –1 and 
an upper bound of 1. For Allianz data, the 
aspect-free scores are 0.5112 and 0.4504 
for the years 2016 and 2020, respectively; 
for HUK data, they are 0.6780 and 0.4268, 
respectively. This means that the reviews 
without aspects were more positive in 2016 
than in 2020. Comparing both companies, 
one may observe that HUK obtained a 
significantly higher value than Allianz in 
2016, but that Allianz scored marginally 
better in 2020.

For the remaining number of reviews 
with aspects, the researchers calculated a 
score for each entity. This formula is actually 
the same as the one for the aspect-free score, 
but in this case, one takes into account only 
those sentiments that correspond to the 
aspects linked to the respective entity. As 
the connecting point between sentiments 
and entities is the aspect, the corresponding 
aspects may be summed as

score entity
N entity

sentiment aspect( )
1

_
( )

aspect
assigned
to entity

= ∑

where N_entity is the number of aspects 
assigned to the entity and the sentiment 
(aspect) ∈{–1; 0; 1} is the sentiment 
belonging to an aspect of this entity. As 
these scores do not consider the varying 
values of N_entity, it may also be interesting 
for future work to include weights to 
account for this issue in a meaningful way.

THE DASHBOARD
For the final visualisation in the Insaas 
dashboard, data can be filtered by company 
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Figure 2: Customer centricity graphs for Allianz and HUK for 2020

Figure 3: Customer centricity graphs for Allianz and HUK for 2016
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and by year. The companies of interest 
in the present use case were Allianz and 
HUK. In addition to the entity-wise 
scores, the dashboard also includes time as a 
dimension. In Figure 2, which depicts the 
2020 customer centricity graphs for Allianz 
and HUK, one can clearly see that HUK 
receives higher scores compared with Allianz 
with respect to all entities. Nevertheless, it is 
interesting that they both receive the highest 
values for ‘Freundlichkeit’ [‘friendliness’]. This 
is also the only entity for which Allianz has 
reached a positive value, unlike HUK, which 
obtained a positive value for three entities.

By comparison, Figure 3 shows customer 
centricity graphs for both companies for the 
year 2016. Already back then, ‘Freundlichkeit’ 
[‘friendliness’] was the highest ranked entity 
with respect to the sentiment, but besides 
this, many things appear to be different. 
Both companies had far better ratings 
in 2016: while HUK obtained positive 
sentiment scores for all entities, Allianz did 
so for all bar two. These year-wise scores 
can be used to evaluate the impact of certain 
changes, for example in customer service. 
Note that the scales differ between 2016 and 
2020, as the dashboard automatically adjusts 
its scaling according to obtained scores.

In Figure 4, absolute frequencies of the 
sentiments per entity (aggregated over all 
years) showcase yet another visualisation 
option of the versatile dashboard. The right 
side shows values for a company of interest 
(here, Allianz), while on the left, a so-called 
‘industry benchmark’, consisting here of 
HUK and Allianz, serves for comparison. 
Note that the user can configure the 
composition of the industry benchmark 
by checking or unchecking the respective 
boxes. On the x-axis, the total amounts of 
the predicted sentiments are displayed, scaled 
to a similar width in order to allow for better 
visual comparability. Clearly one can see 
that on both sides ‘Kompetenz’ [‘expertise’] 
receives the lowest absolute frequency of 
sentiments whereas ‘Beratung’ [‘guidance’] is 
discussed most frequently. These quantities 

must also be taken into account when 
interpreting the customer centricity graphs 
in Figures 2 and 3 as they make entity-wise 
scores more or less reliable.

CONCLUSION
This study has described the development 
of an automated approach for the analysis 
and visualisation of customer opinions 
from feedback texts that employs state-of-
the-art methods from the field of natural 
language processing. Nevertheless, there are 
still several issues that could be improved. 
First of all, each of the steps can potentially 
perform better. In particular, a context-
based approach may be applied to take the 
aspect-entity matching to the next level. 
Furthermore, the amount of entities, as 
shown in Figure 4, could be added to the 
customer centricity graph, for example by 
adjusting the angles of the entities according 
to their proportion of all entities. Another 
way of visualisation could be to take the 
height as a new dimension of the radar 
chart. The higher a score is placed in this 
dimension, the more entities it is based on. 

Despite these issues, the researchers 
have established a working infrastructure 
for extracting valuable and differentiating 
information from review data. As the 
pipeline is built in a modular fashion, its 
building blocks can be easily modified or 
improved without the need to change 
everything else.

With respect to developing this research, 
future studies could integrate the quality of 
each review into the scores. Following the 
hypothesis that reviews with good grammar 
and spelling show a more fine-grained 
and reliable opinion, this might obtain 
interesting new results. This information 
could be added in the form of weights. 
Emojis and emoticons are also related to the 
style of writing. These can be used to further 
improve the sentiment predictions.

Another idea would be to extend the  
set of entities, as the given set of eight  
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Figure 4: Sentiment frequencies per entity for Allianz data versus an industry benchmark built from HUK and Allianz data; numbers are 
summed up over all years

entities is not always sufficient to  
categorise all the various categories that 
people discuss. As such, it might be of 
benefit to add new entities, for example 
from the field of marketing and sales. 
Generalising these entities may also make 
the approach applicable to other business 
sectors.
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9. Re-Evaluating GermEval17 using German
pre-trained language models

Chapter 9 is an attempt to estimate the improvements on the task of Aspect-based Sentiment
Analysis (ABSA) for German texts induced by the use of pre-trained architectures. The Ger-
mEval17 shared task (Wojatzki et al., 2017) was conducted before the broad application of trans-
fer learning architectures, such that the best performance values were also achieved without these
more powerful models. Since the huggingface transformers module (Wolf et al., 2020) provides
us with a multitude of German as well as multilingual models, a comprehensive re-evaluation of
this task is made possible. Furthermore, parallels to the improvements in English ABSA due
to the introduction of pre-trained models are drawn by considering the developments of SOTA
performance on related tasks for the English language (Pontiki et al., 2014).
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Abstract

The lack of a commonly used benchmark
data set (collection) such as (Super) GLUE
(Wang et al., 2018, 2019) for the evalua-
tion of non-English pre-trained language
models is a severe shortcoming of cur-
rent English-centric NLP-research. It con-
centrates a large part of the research on
English, neglecting the uncertainty when
transferring conclusions found for the En-
glish language to other languages. We eval-
uate the performance of German and mul-
tilingual BERT models currently available
via the huggingface transformers li-
brary on four subtasks of Aspect-based
Sentiment Analysis (ABSA) from the
GermEval17 workshop. We compare them
to pre-BERT architectures (Wojatzki et al.,
2017; Schmitt et al., 2018; Attia et al.,
2018) as well as to an ELMo-based ar-
chitecture (Biesialska et al., 2020) and a
BERT-based approach (Guhr et al., 2020).
The observed improvements are put in rela-
tion to those for a similar ABSA task (Pon-
tiki et al., 2014) and similar models (pre-
BERT vs. BERT-based) for the English
language and we check whether the re-
ported improvements correspond to those
we observe for German.

1 Introduction

(Aspect-based) Sentiment Analysis is often used
to transform reviews into helpful information on
how a product or service of a company is per-
ceived among the customers. Until recently,

Copyright © 2021 for this paper by its authors. Use permitted
under Creative Commons License Attribution 4.0 Interna-
tional (CC BY 4.0)

Sentiment Analysis was mainly conducted us-
ing traditional machine learning and recurrent
neural networks, like LSTMs (Hochreiter and
Schmidhuber, 1997) or GRUs (Cho et al., 2014).
Those models have been practically replaced
by language models relying on (parts of) the
Transformer architecture, a novel framework pro-
posed by Vaswani et al. (2017). Devlin et al.
(2019) developed a Transformer-encoder-based lan-
guage model called BERT (Bidirectional Encoder
Representations from Transfomers), achieving
state-of-the-art (SOTA) performance on several
benchmark tasks - mainly for the English language
- and becoming a milestone in the field of NLP.

Up to now, only a few researchers have focused
on sentiment related problems for German reviews,
despite language-specific evaluation is a crucial
driving force for a more universal model develop-
ment and improvement. Unique characteristics of
the different languages present different challenges
to the models, which is why sole evaluation on
English data is a severe shortcoming.

The first shared task on German ABSA, which
provides a large annotated data set for training
and evaluation, is the GermEval17 Shared Task
(Wojatzki et al., 2017). The participating teams
back then analyzed the data using mostly stan-
dard machine learning techniques such as SVMs,
CRFs, or LSTMs. In contrast to 2017, today, dif-
ferent pre-trained BERT models are available for
a variety of different languages, including Ger-
man. We re-analyzed the complete GermEval17
Task using seven pre-trained BERT models suit-
able for German provided by the huggingface
transformers library (Wolf et al., 2020). We
evaluate which one of the models is best suited
for the different GermEval17 subtasks by compar-
ing their performance values. Furthermore, we
compare our findings on whether (and how much)
BERT-based models are able to improve the pre-
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BERT SOTA in German ABSA with the SOTA
developments for English ABSA by the example
of SemEval-2014 (Pontiki et al., 2014).

We first give an overview on the GermEval17
tasks (cf. Sec. 2) and on related work (cf. Sec.
3). Second, we present the data and the models (cf.
Sec. 4), while Section 5 holds the results of our
re-evaluation. Sections 6 and 7 conclude our work
by stating our main findings and drawing parallels
to the English language.

2 The GermEval17 Task(s)

The GermEval17 Shared Task (Wojatzki et al.,
2017) is a task on analyzing aspect-based senti-
ments in customer reviews about ”Deutsche Bahn”
(DB) - the German public train company. The main
data was crawled from various social media plat-
forms such as Twitter, Facebook and Q&A web-
sites from May 2015 to June 2016. The documents
were manually annotated, and split into a train-
ing (train), a development (dev) and a synchronic
(testsyn) test set. A diachronic test set (testdia) was
collected the same way from November 2016 to
January 2017 in order to test for temporal robust-
ness. The task comprises four subtasks represent-
ing a complete classification pipeline. Subtask A is
a binary Relevance Classification task which aims
at identifying whether the feedback refers to DB.
Subtask B aims at classifying the Document-level
Polarity (”negative”, ”positive” and ”neutral”). In
Subtask C, the model has to identify all the aspect
categories with associated sentiment polarities in a
relevant document. This multi-label classification
task was divided into Subtask C1 (Aspect-only)
and Subtask C2 (Aspect+Sentiment). For this pur-
pose, the organizers defined 20 different aspect cat-
egories, e.g. Allgemein (General), Sonstige
Unregelmäßigkeiten (Other irregularities).
Finally, Subtask D refers to the Opinion Target Ex-
traction (OTE), i.e. a sequence labeling task extract-
ing the linguistic phrase used to express an opinion.
We differentiate between exact match (Subtask D1)
and overlapping match, tolerating errors of +/−
one token (Subtask D2).

3 Related Work

Already before BERT, many researchers focused
on (English) Sentiment Analysis (Behdenna et al.,
2018). The most common architectures were tra-
ditional machine learning classifiers and recurrent
neural networks (RNNs). SemEval14 (Task 4; Pon-

tiki et al., 2014) was the first workshop to introduce
Aspect-based Sentiment Analysis (ABSA) which
was expanded within SemEval15 Task 12 (Pontiki
et al., 2015) and SemEval16 Task 5 (Pontiki et al.,
2016). Here, restaurant and laptop reviews were ex-
amined on different granularities. The best model
at SemEval16 was an SVM/CRF architecture using
GloVe embeddings (Pennington et al., 2014). How-
ever, many works recently focused on re-evaluating
the SemEval Sentiment Analysis task using BERT-
based language models (Hoang et al., 2019; Xu
et al., 2019; Sun et al., 2019; Li et al., 2019; Karimi
et al., 2020; Tao and Fang, 2020).

In comparison, little research deals with German
ABSA. For instance, Barriere and Balahur (2020)
trained a multilingual BERT model for German
Document-level Sentiment Analysis on the SB-10k
data set (Cieliebak et al., 2017). Regarding the
GermEval17 Subtask B, Guhr et al. (2020) consid-
ered both FastText (Bojanowski et al., 2017) and
BERT, achieving notable improvements. Biesialska
et al. (2020) made use of ensemble models: One is
an ensemble of ELMo (Peters et al., 2018), GloVe
and a bi-attentive classification network (BCN; Mc-
Cann et al., 2017), achieving a score of 0.782, and
the other one consists of ELMo and a Transformer-
based Sentiment Analysis model (TSA), reaching
a score of 0.789 for the synchronic test data set.
Moreover, Attia et al. (2018) trained a convolu-
tional neural network (CNN), achieving a score of
0.7545 on the synchronic test set. Schmitt et al.
(2018) advanced the SOTA for Subtask C by em-
ploying biLSTMs and CNNs to carry out end-to-
end Aspect-based Sentiment Analysis. The highest
score was achieved using an end-to-end CNN archi-
tecture with FastText embeddings, scoring 0.523
and 0.557 on the synchronic and diachronic test
data set for Subtask C1, respectively, and 0.423
and 0.465 for Subtask C2.

4 Materials and Methods

Data The GermEval17 data is freely available in
.xml- and .tsv-format1. Each data split (train,
validation, test) in .tsv-format contains the fol-
lowing variables:

• document id (URL)

• document text

• relevance label (true, false)

1The data sets (in both formats) can be obtained from
http://ltdata1.informatik.uni-hamburg.de/germeval2017/.
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• document-level sentiment label
(negative, neutral, positive)

• aspects with respective polarities
(e.g. Ticketkauf#Haupt:negative)

For documents which are annotated as irrelevant,
the sentiment label is set to neutral and no as-
pects are available. Visibly, the .tsv-formatted
data does not contain the target expressions or their
associated sequence positions. Consequently, Sub-
task D can only be conducted using the data in
.xml-format, which additionally holds the infor-
mation on the starting and ending sequence posi-
tions of the target phrases.

The data set comprises ∼ 26k documents in to-
tal, including the diachronic test set with around
1.8k examples. Further, the main data was ran-
domly split by the organizers into a train data set
for training, a development data set for validation
and a synchronic test data set. Table 1 displays the
number of documents for each split.

train dev testsyn testdia
19,432 2,369 2,566 1,842

Table 1: Number of documents per split of the data set.

While roughly 74% of the documents form the train
set, the development split and the synchronic test
split contain around 9% and around 10%, respec-
tively. The remaining 7% of the data belong to
the diachronic set (cf. Tab. 1). Table 2 shows
the relevance distribution per data split. This un-
veils a pretty skewed distribution of the labels since
the relevant documents represent the clear majority
with over 80% in each split.

Relevance train dev testsyn testdia
true 16,201 1,931 2,095 1,547
false 3,231 438 471 295

Table 2: Relevance distribution for Subtask A.

The distribution of the sentiments is depicted in
Table 3, which shows that between 65% and 69%
(per split) belong to the neutral class, 25–31% to
the negative and only 4–6% to the positive class.

Table 4 holds the distribution of the 20 different
aspect categories assigned to the documents2. It

2Multiple annotations per document are pos-
sible; for a detailed category description see
https://sites.google.com/view/germeval2017-absa/data.

shows the number of documents containing cer-
tain categories without differentiating between how
often a category appears within a given document.

Sentiment train dev testsyn testdia
negative 5,045 589 780 497
neutral 13,208 1,632 1,681 1,237
positive 1,179 148 105 108

Table 3: Sentiment distribution for Subtask B.

The relative distribution of the aspect categories
is similar between the splits. On average, there
are ∼ 1.12 different aspects per document. Again,
the label distribution is heavily skewed, with
Allgemein (General) clearly representing the
majority class, as it is present in 75.8% of the
documents with aspects. The second most frequent
category is Zugfahrt (Train ride) appearing
in around 13.8% of the documents. This strong
imbalance in the aspect categories leads to an
almost Zipfian distribution (Wojatzki et al., 2017).

Category train dev testsyn testdia
Allgemein 11,454 1,391 1,398 1,024
Zugfahrt 1,687 177 241 184
Sonstige Unregelmäßigkeiten 1,277 139 224 164
Atmosphäre 990 128 148 53
Ticketkauf 540 64 95 48
Service und Kundenbetreuung 447 42 63 27
Sicherheit 405 59 84 42
Informationen 306 28 58 35
Connectivity 250 22 36 73
Auslastung und Platzangebot 231 25 35 20
DB App und Website 175 20 28 18
Komfort und Ausstattung 125 18 24 11
Barrierefreiheit 53 14 9 2
Image 42 6 0 3
Toiletten 41 5 7 4
Gastronomisches Angebot 38 2 3 3
Reisen mit Kindern 35 3 7 2
Design 29 3 4 2
Gepäck 12 2 2 6
QR-Code 0 1 1 0

total 18,137 2,149 2,467 1,721
# documents with aspects 16,200 1,930 2,095 1,547
∅ different aspects/document 1.12 1.11 1.18 1.11

Table 4: Aspect category distribution for Subtask C.
Multiple mentions of the same aspect category in a doc-
ument are only considered once.

Pre-trained architectures BERT was initially
introduced in a base (110M parameters) and a
large (340M) variant, Sanh et al. (2019) pro-
posed an even smaller BERT model (DistilBERT,
60M parameters) trained via knowledge distillation
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Model variant Pre-training corpus Properties

bert-base-german-cased 12GB of German text (deepset.ai) L=12, H=768, A=12, 110M parameters
bert-base-german-dbmdz-cased 16GB of German text (dbmdz) L=12, H=768, A=12, 110M parameters
bert-base-german-dbmdz-uncased 16GB of German text (dbmdz) L=12, H=768, A=12, 110M parameters
bert-base-multilingual-cased Largest Wikipedias (top 104 languages) L=12, H=768, A=12, 179M parameters
bert-base-multilingual-uncased Largest Wikipedias (top 102 languages) L=12, H=768, A=12, 168M parameters
distilbert-base-german-cased 16GB of German text (dbmdz) L=6, H=768, A=12, 66M parameters
distilbert-base-multilingual-cased Largest Wikipedias (top 104 languages) L=6, H=768, A=12, 134M parameters

Table 5: Pre-trained models provided by huggingface transformers (version 4.0.1) suitable for German. For
all available models, see: https://huggingface.co/transformers/pretrained_models.html.

(Hinton et al., 2015). The exact model specifica-
tions regarding number of layers (L), number of
attention heads (A) and embedding size (H) for
available German BERT models are depicted in
the last column of Table 5. Both architectures were
pre-trained on the Masked Language Modeling task
as well as on the auxiliary Next Sentence Predic-
tion task (only BERT) and can subsequently be
fine-tuned on a task at hand.

We include three German (Distil)BERT models
pre-trained by DBMDZ3 and one by Deepset.ai4.
The latter one is pre-trained using German
Wikipedia (6GB raw text files), the Open
Legal Data dump (2.4GB; Ostendorff et al.,
2020) and news articles (3.6GB). DBMDZ com-
bined Wikipedia, EU Bookshop (Skadiņš
et al., 2014), Open Subtitles (Lison and
Tiedemann, 2016), CommonCrawl (Ortiz Suárez
et al., 2019), ParaCrawl (Esplà-Gomis et al.,
2019) and News Crawl (Haddow, 2018) to a cor-
pus with a total size of 16GB with ∼ 2, 350M
tokens. Besides this, we use the three mul-
tilingual (Distil)BERT models included in the
transformers module. This amounts to five
BERT and two DistilBERT models, two of which
are ”uncased” (i.e. every character is lower-cased)
while the other five models are ”cased” ones.

5 Results

For the re-evaluation, we used the latest data pro-
vided in .xml-format. Duplicates were not re-
moved, in order to make our results as comparable
as possible. We tokenized the documents and fixed
single spelling mistakes in the labels5. For Subtask
D, the BIO-tags were added based on the provided

3MDZ Digital Library team at the Bavarian State Li-
brary. Visit https://www.digitale-sammlungen.de for details
and https://github.com/dbmdz/berts for their repository on
pre-trained BERT models.

4Visit https://deepset.ai/german-bert for details.
5”positve” in train set was replaced with ”positive”,

” negative” in testdia set was replaced with ”negative”.

sequence positions, i.e. one entity corresponds to at
least one token tag starting with B- for ”Beginning”
and continuing with I- for ”Inner”. If a token does
not belong to any entity, the tag O for ”Outer” is
assigned. For instance, the sequence ”fährt nicht”
(engl. ”does not run”) consists of two tokens and
would receive the entity Zugfahrt:negative
and the token tags [B-Zugfahrt:negative,
I-Zugfahrt:negative] if it refers to a DB
train which is not running.

The models were fine-tuned on one Tesla V100
PCIe 16GB GPU using Python 3.8.7. Moreover,
the transformers module (version 4.0.1) and
torch (version 1.7.1) were used6. The considered
values for the hyperparameters for fine-tuning fol-
low the recommendations of Devlin et al. (2019):

• Batch size ∈ {16, 32},
• Adam learning rate ∈ {5e,3e,2e} − 5,
• # epochs ∈ {2, 3, 4}.
After evaluating the model performance for com-

binations7 of the different hyperparameters, all pre-
trained architectures were fine-tuned with a learn-
ing rate of 5e-5 for four epochs, which turned out
to be the most promising combination across the
different models. The maximum sequence length
was set to 256, which is sufficient since the eval-
uated data set consists of rather short texts from
social media, and a batch size of 32 was chosen.

Other models Eight teams officially participated
in the GermEval17 shared task, five of which an-
alyzed Subtask A, all of them Subtask B and two
repectively Subtask C and D. We furthermore con-
sider the system by Ruppert et al. (2017) addition-
ally to the participants’ models from 2017, even

6Source code is available on GitHub:
https://github.com/ac74/reevaluating germeval2017. The
results are fully reproducible for Subtasks A, B and C. For
Subtask D, reproducibility could not be ensured. The micro
F1 scores fluctuate across different runs between +/-0.01
around the reported values.

7Due to memory limitations, not every hyperparameter
combination was applicable.

93



though they were the organizers and did not ”offi-
cially” participate. They also tackled all four sub-
tasks. Since 2017 several other authors analyzed
(parts of) the GermEval17 subtasks using more ad-
vanced models, which we also consider for compar-
ison here. Table 6 shows which authors employed
which kinds of models to solve which task.

Subtask A B C1 C2 D1 D2

Models from 2017
X X X X X X

(Wojatzki et al., 2017; Ruppert et al., 2017)

Our BERT models X X X X X X

CNN (Attia et al., 2018) – X – – – –
CNN+FastText (Schmitt et al., 2018) – – X X – –
ELMo+GloVe+BCN (Biesialska et al., 2020) – X – – – –
ELMo+TSA (Biesialska et al., 2020) – X – – – –
FastText (Guhr et al., 2020) – X – – – –
bert-base-german-cased

– X – – – –
(Guhr et al., 2020)

Table 6: An overview on all the models discussed in
this article, an ”X” in a column indicates that the archi-
tecture was evaluated on the respective subtask.

Subtask A The Relevance Classification is a
binary document classification task with classes
true and false. Table 7 displays the micro F1
score obtained by each language model on each
test set (best result per data set in bold).

Language model testsyn testdia
Best model 2017 (Sayyed et al., 2017) 0.903 0.906

bert-base-german-cased 0.950 0.939
bert-base-german-dbmdz-cased 0.951 0.946
bert-base-german-dbmdz-uncased 0.957 0.948
bert-base-multilingual-cased 0.942 0.933
bert-base-multilingual-uncased 0.944 0.939
distilbert-base-german-cased 0.944 0.939
distilbert-base-multilingual-cased 0.941 0.932

Table 7: F1 scores for Subtask A on synchronic and
diachronic test sets.

All the models outperform the best result achieved
in 2017 for both test data sets. For the synchronic
test set, the previous best result is surpassed by
3.8–5.4 percentage points. For the diachronic test
set, the absolute difference to the best contender of
2017 varies between 2.6 and 4.2 percentage points.
With a micro F1 score of 0.957 and 0.948, respec-
tively, the best scoring pre-trained language model
is the uncased German BERT-BASE variant by
dbmdz, followed by its cased version. All the
pre-trained models perform slightly better on the
synchronic test data than on the diachronic data.
Attia et al. (2018), Schmitt et al. (2018), Biesialska
et al. (2020) and Guhr et al. (2020) did not evaluate
their models on this task.

Subtask B Subtask B refers to the Document-
level Polarity, which is a multi-class classification
task with three classes. Table 8 demonstrates the
performances on the two test sets:

Language model testsyn testdia
Best models 2017 (testsyn: Ruppert et al., 2017)

0.767 0.750
(testdia: Sayyed et al., 2017)

bert-base-german-cased 0.798 0.793
bert-base-german-dbmdz-cased 0.799 0.785
bert-base-german-dbmdz-uncased 0.807 0.800
bert-base-multilingual-cased 0.790 0.780
bert-base-multilingual-uncased 0.784 0.766
distilbert-base-german-cased 0.798 0.776
distilbert-base-multilingual-cased 0.777 0.770

CNN (Attia et al., 2018) 0.755 –
ELMo+GloVe+BCN (Biesialska et al., 2020) 0.782 –
ELMo+TSA (Biesialska et al., 2020) 0.789 –
FastText (Guhr et al., 2020) 0.698† –
bert-base-german-cased (Guhr et al., 2020) 0.789† –

Table 8: Micro-averaged F1 scores for Subtask B on
synchronic and diachronic test sets.
†Guhr et al. (2020) created their own (balanced & un-
balanced) data splits, which limits comparability. We
compare to the performance on the unbalanced data
since it more likely resembles the original data splits.

All models outperform the best model from 2017
by 1.0–4.0 percentage points for the synchronic,
and by 1.6–5.0 percentage points for the diachronic
test set. On the synchronic test set, the uncased
German BERT-BASE model by dbmdz performs
best with a score of 0.807, followed by its cased
variant with 0.799. For the diachronic test set, the
uncased German BERT-BASE model exceeds the
other models with a score of 0.800, followed by
the cased German BERT-BASE model reaching
a score of 0.793. The three multilingual models
perform generally worse than the German mod-
els on this task. Besides this, all the models per-
form slightly better on the synchronic data set than
on the diachronic one. The FastText-based model
(Guhr et al., 2020) comes not even close to the
baseline from 2017, while the ELMo-based mod-
els (Biesialska et al., 2020) are pretty competitive.
Interestingly, two of the multilingual models are
even outperformed by these ELMo-based models.

Subtask C Subtask C is split into Aspect-only
(Subtask C1) and Aspect+Sentiment Classification
(Subtask C2), each being a multi-label classifica-
tion task8. As the organizers provide 20 aspect
categories, Subtask C1 includes 20 labels, whereas
Subtask C2 has 60 labels since each aspect category

8This leads to a change of activation functions in the final
layer from softmax to sigmoid + binary cross entropy loss.
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can be combined with each of the three sentiments.
Consistent with Lee et al. (2017) and Mishra et al.
(2017), we do not account for multiple mentions
of the same label in one document. The results for
Subtask C1 are shown in Table 9:

Language model testsyn testdia
Best model 2017 (Ruppert et al., 2017) 0.537 0.556

bert-base-german-cased 0.756 0.762
bert-base-german-dbmdz-cased 0.756 0.781
bert-base-german-dbmdz-uncased 0.761 0.791
bert-base-multilingual-cased 0.706 0.734
bert-base-multilingual-uncased 0.723 0.752
distilbert-base-german-cased 0.738 0.768
distilbert-base-multilingual-cased 0.716 0.744

CNN+FastText (Schmitt et al., 2018) 0.523 0.557

Table 9: Micro-averaged F1 scores for Subtask C1
(Aspect-only) on synchronic and diachronic test sets. A
detailed overview of per-class performances for error
analysis can be found in Table 15 in Appendix A.

All pre-trained German BERTs clearly surpass the
best performance from 2017 as well as the results
reported by Schmitt et al. (2018), who are the only
ones of the other authors to evaluate their models
on this tasks. Regarding the synchronic test set,
the absolute improvement ranges between 16.9 and
22.4 percentage points, while for the diachronic test
data, the models outperform the previous results
by 17.8–23.5 percentage points. The best model
is again the uncased German BERT-BASE model
by dbmdz, reaching scores of 0.761 and 0.791,
respectively, followed by the two cased German
BERT-BASE models. One more time, the multi-
lingual models exhibit the poorest performances
amongst the evaluated models. Next, Table 10
shows the results for Subtask C2:

Language model testsyn testdia
Best model 2017 (Ruppert et al., 2017) 0.396 0.424

bert-base-german-cased 0.634 0.663
bert-base-german-dbmdz-cased 0.628 0.663
bert-base-german-dbmdz-uncased 0.655 0.689
bert-base-multilingual-cased 0.571 0.634
bert-base-multilingual-uncased 0.553 0.631
distilbert-base-german-cased 0.629 0.663
distilbert-base-multilingual-cased 0.589 0.642

CNN+FastText (Schmitt et al., 2018) 0.423 0.465

Table 10: Micro-averaged F1 scores for Subtask C2
(Aspect+Sentiment) on synchronic and diachronic test
sets. A detailed overview of per-class performances for
error analysis can be found in Table 16 in Appendix A.

Here, the pre-trained models surpass the best model
from 2017 by 15.7–25.9 percentage points and
20.7–26.5 percentage points, respectively, for the

synchronic and diachronic test sets. Again, the best
model is the uncased German BERT-BASE dbmdz
model reaching scores of 0.655 and 0.689, respec-
tively. The CNN models (Schmitt et al., 2018)
are also outperformed. For both, Subtask C1 and
C2, all the displayed models perform better on the
diachronic than on the synchronic test data.

Subtask D Subtask D refers to the Opinion
Target Extraction (OTE) and is thus a token-
level classification task. As this is a rather
difficult task, Wojatzki et al. (2017) distinguish
between exact (Subtask D1) and overlapping
match (Subtask D2), tolerating a deviation of
+/− one token. Here, ”entities” are identified
by their BIO-tags. It is noteworthy that there
are less entities here than for Subtask C since
document-level aspects or sentiments could not
always be assigned to a certain sequence in the
document. As a result, there are less documents
at disposal for this task, namely 9,193. The
remaining data has 1.86 opinions per document on
average. The majority class is now Sonstige
Unregelmäßigkeiten:negative with
around 15.4% of the true entities (16,650 in total),
leading to more balanced data than in Subtask C.

Language model testsyn testdia
Best model 2017 (Ruppert et al., 2017) 0.229 0.301

bert-base-german-cased 0.460 0.455

w
ith

ou
tC

R
F bert-base-german-dbmdz-cased 0.480 0.466

bert-base-german-dbmdz-uncased 0.492 0.501
bert-base-multilingual-cased 0.447 0.457
bert-base-multilingual-uncased 0.429 0.404
distilbert-base-german-cased 0.347 0.357
distilbert-base-multilingual-cased 0.430 0.419

bert-base-german-cased 0.446 0.443
bert-base-german-dbmdz-cased 0.466 0.444

w
ith

C
R

F bert-base-german-dbmdz-uncased 0.515 0.518
bert-base-multilingual-cased 0.472 0.466
bert-base-multilingual-uncased 0.477 0.452
distilbert-base-german-cased 0.424 0.403
distilbert-base-multilingual-cased 0.436 0.418

Table 11: Entity-level micro-averaged F1 scores for
Subtask D1 (exact match) on synchronic and di-
achronic test sets. A detailed overview of per-class per-
formances for error analysis can be found in Table 17
in Appendix B.

In Table 11, we compare the pre-trained models
using an ”ordinary” softmax layer to when using a
CRF layer for Subtask D1.

The best performing model is the uncased Ger-
man BERT-BASE model by dbmdz with CRF
layer on both test sets, with a score of 0.515 and
0.518, respectively. Overall, the results from 2017
are outperformed by 11.8–28.6 percentage points
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Language model testsyn testdia
Best models 2017 (testsyn: Lee et al., 2017)

0.348 0.365
(testdia: Ruppert et al., 2017)

bert-base-german-cased 0.471 0.474

w
ith

ou
tC

R
F bert-base-german-dbmdz-cased 0.491 0.488

bert-base-german-dbmdz-uncased 0.501 0.518
bert-base-multilingual-cased 0.457 0.473
bert-base-multilingual-uncased 0.435 0.417
distilbert-base-german-cased 0.397 0.407
distilbert-base-multilingual-cased 0.433 0.429

bert-base-german-cased 0.455 0.457
bert-base-german-dbmdz-cased 0.476 0.469

w
ith

C
R

F bert-base-german-dbmdz-uncased 0.523 0.533
bert-base-multilingual-cased 0.476 0.474
bert-base-multilingual-uncased 0.484 0.464
distilbert-base-german-cased 0.433 0.423
distilbert-base-multilingual-cased 0.442 0.427

Table 12: Entity-level micro-averaged F1 scores for
Subtask D2 (overlapping match) on synchronic and di-
achronic test sets. A detailed overview of per-class per-
formances for error analysis can be found in Table 18
in Appendix B.

on the synchronic test set and 5.6–21.7 percentage
points on the diachronic test set.

For the overlapping match (cf. Tab. 12), the best
system from 2017 are outperformed by 4.9–17.5
percentage points on the synchronic and by 4.2–
16.8 percentage points on the diachronic test set.
Again, the uncased German BERT-BASE model by
dbmdz with CRF layer performs best with an mi-
cro F1 score of 0.523 on the synchronic and 0.533
on the diachronic set. To our knowledge, there
were no other models to compare our performance
values with, besides the results from 2017.

Main Takeaways For the first two subtasks,
which are rather simple binary and multi-class clas-
sification tasks, the pre-trained models are able to
improve a little upon the already pretty decent per-
formance values from 2017. Further, we do not see
large differences between the different pre-trained
models. Nevertheless, the small differences we
can observe, already point in the same direction as
what can be observed for the primary ABSA tasks
of interest, C1 and C2:

• Uncased models have a tendency of outper-
forming their cased counterparts for the mono-
lingual models, for multilingual models this
cannot be clearly confirmed.

• Monolingual models outperform the multilin-
gual ones.

• There are no large performance differences
between the two cased BERT models by
DBMDZ and Deepset.ai, which suggests only
a minor influence of the different corpora,
which the models were pre-trained on.

• The monolingual DistilBERT model is pretty
competitive, it consistently outperforms its
multilingual counterpart as well as the multi-
lingual BERT models on the subtasks A – C
and is at least competitive to the monolingual
BERT models.

For D1 and D2 we observe a rather clear domi-
nance of the uncased monolingual model which is
not observable to this extent for the other tasks.

6 Discussion

After having observed a notable performance in-
crease for German ABSA when employing pre-
trained models, the next step is to compare these
observations to what was reported for the English
language. Therefore, we examine the temporal de-
velopment of the SOTA performance on the most
widely adopted data sets for English ABSA, orig-
inating from the SemEval Shared Tasks (Pontiki
et al., 2014, 2015, 2016). When looking at pub-
lic leaderboards, e.g. https://paperswithcode.com/,
Subtask SB2 (aspect term polarity) from SemEval-
2014 is the task which attracts most of the re-
searchers. This task is related, but not perfectly
similar, to Subtask C2, since in this case, the as-
pect term is always a word which has to present
in the given review. For this task, a comparison
of pre-BERT and BERT-based methods reveals no
big ”jump” in the performance values, but rather a
steady increase over time (cf. Tab. 13).

Language model Laptops Restaurants

Best model SemEval-2014
0.7048 0.8095

pr
e-

B
E

R
T (Pontiki et al., 2014)

MemNet (Tang et al., 2016) 0.7221 0.8095

HAPN (Li et al., 2018) 0.7727 0.8223

BERT-SPC (Song et al., 2019) 0.7899 0.8446

B
E

R
T-

ba
se

d

BERT-ADA (Rietzler et al., 2020) 0.8023 0.8789

LCF-ATEPC (Yang et al., 2019) 0.8229 0.9018

Table 13: Development of the SOTA Accuracy
for the aspect term polarity task (SemEval-2014;
Pontiki et al., 2014). Selected models were
picked from https://paperswithcode.com/sota/aspect-
based-sentiment-analysis-on-semeval.

Clearly more related, but unfortunately also less
used, are the subtasks SB3 (aspect category ex-
traction; comparable to Subtask C1) and SB4 (as-
pect category polarity; comparable to Subtask C2)
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from SemEval-2014.9 Limitations with respect
to comparability arise from the different numbers
of categories: Subtask SB4 only exhibits five as-
pect categories (as opposed to 20 categories for
GermEval17) which leads to an easier classifica-
tion problem and is reflected in the already pretty
high scores of the 2014 baselines. Table 14 shows
the performance of the best model from 2014 as
well as performance of subsequent (pre-BERT and
BERT-based) models for subtasks SB3 and SB4.

Restaurants
Language model SB3 SB4

pr
e-

B
E

R
T Best model SemEval-2014

0.8857 0.8292
(Pontiki et al., 2014)

ATAE-LSTM (Wang et al., 2016) —- 0.840

BERT-pair (Sun et al., 2019) 0.9218 0.899

B
E

R
T-

ba
se

d

CG-BERT (Wu and Ong, 2020) 0.9162† 0.901†

QACG-BERT (Wu and Ong, 2020) 0.9264 0.904†

Table 14: Development of the SOTA F1 score (SB3)
and Accuracy (SB4) for the aspect category extrac-
tion/polarity task (SemEval-2014; Pontiki et al., 2014).
†Additional auxiliary sentences were used.

In contrast to what can be observed for SB2, in this
case, the performance increase on SB4 caused by
the introduction of BERT seems to be kind of strik-
ing. While the ATAE-LSTM (Wang et al., 2016)
only slightly increased the performance compared
to 2014, the BERT-based models led to a jump of
more than 6 percentage points. So when taking into
account the potential room for improvement (0.16
for SB4 vs. 0.60 for C2), the improvements relative
to the potential (0.06/0.16 for SB4 vs. 0.23/0.60
for C2) are quite similar.

Another issue is that (partly) highly specialized
(T)ABSA architectures were used for improving
the SOTA on the SemEval-2014 tasks, while we
”only” applied standard pre-trained German BERT
models without any task-specific modifications or
extensions. This leaves room for further improve-
ments on this task on German data which should
be an objective for future research.

9Since the data sets (Restaurants and Laptops) have been
further developed for SemEval-2015 and SemEval-2016, sub-
tasks SB3 and SB4 are revisited under the names Slot 1 and
Slot 3 for the in-domain ABSA in SemEval-2015. Slot 2
from SemEval-2015 aims at OTE and thus corresponds to
Subtask D from GermEval17. For SemEval-2016 the same
task names as in 2015 were used, subdivided into Subtask 1
(sentence-level ABSA) and Subtask 2 (text-level ABSA).

7 Conclusion

As one would have hoped, all the state-of-the art
pre-trained language models clearly outperform all
the models from 2017, proving the power of trans-
fer learning also for German ABSA. Throughout
the presented analyses, the models always achieve
similar results between the synchronic and the di-
achronic test sets, indicating temporal robustness
for the models. Nonetheless, the diachronic data
was collected only half a year after the main data.
It would be interesting to see whether the trained
models would return similar predictions on data
collected a couple of years later.

The uncased German BERT-BASE model by
dbmdz achieves the best results across all subtasks.
Since Rönnqvist et al. (2019) showed that mono-
lingual BERT models often outperform the mul-
tilingual models for a variety of tasks, one might
have already suspected that a monolingual Ger-
man BERT performs best across the performed
tasks. It may not seem evident at first that an
uncased language model ends up as the best per-
forming model since, e.g. in Sentiment Analysis,
capitalized letters might be an indicator for polar-
ity. In addition, since nouns and beginnings of
sentences always start with a capital letter in Ger-
man, one might assume that lower-casing the whole
text changes the meaning of some words and thus
confuses the language model. Nevertheless, the
GermEval17 documents are very noisy since they
were retrieved from social media. That means that
the data contains many misspellings, grammar and
expression mistakes, dialect, and colloquial lan-
guage. For this reason, already some participating
teams in 2017 pursued an elaborate pre-processing
on the text data in order to eliminate some noise
(Hövelmann and Friedrich, 2017; Sayyed et al.,
2017; Sidarenka, 2017). Among other things,
Hövelmann and Friedrich (2017) transformed the
text to lower-case and replaced, for example, ”S-
Bahn” and ”S Bahn” with ”sbahn”. We suppose
that in this case, lower-casing the texts improves
the data quality by eliminating some of the noise
and acts as a sort of regularization. As a result,
the uncased models potentially generalize better
than the cased models. The findings from May-
hew et al. (2019), who compare cased and uncased
pre-trained models on social media data for NER,
corroborate this hypothesis.
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Appendix

A Detailed results (per category) for
Subtask C

It may be interesting to have a more detailed look
at the model performance for this subtask because
of the high number of classes and their skewed
distribution by investigating the performance on
category-level. Table 15 shows the performance
of the uncased German BERT-BASE model by
dbmdz per test set for Subtask C1. The support in-
dicates the number of appearances, which are also
displayed in Table 4 in this case. Seven categories
are summarized in Rest because they have an F1
score of 0 for both test sets, i.e. the model is not
able to correctly identify any of these seven aspects
appearing in the test data. The table is sorted by
the score on the synchronic test set.

testsyn testdia
Aspect Category Score Support Score Support
Allgemein 0.854 1,398 0.877 1,024
Sonstige Unregelmäßigkeiten 0.782 224 0.785 164
Connectivity 0.750 36 0.838 73
Zugfahrt 0.678 241 0.687 184
Auslastung und Platzangebot 0.645 35 0.667 20
Sicherheit 0.602 84 0.639 42
Atmosphäre 0.600 148 0.532 53
Barrierefreiheit 0.500 9 0 2
Ticketkauf 0.481 95 0.506 48
Service und Kundenbetreuung 0.476 63 0.417 27
DB App und Website 0.455 28 0.563 18
Informationen 0.329 58 0.464 35
Komfort und Ausstattung 0.286 24 0 11
Rest 0 24 0 20

Table 15: Micro-averaged F1 scores and support by as-
pect category (Subtask C1). Seven categories are sum-
marized in Rest and show each a score of 0.

The F1 scores for Allgemein (General),
Sonstige Unregelmäßigkeiten (Other ir-
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regularities) and Connectivity are the highest.
13 categories, mostly similar between the two test
sets, show a positive F1 score on at least one of
the two test sets. For the categories subsumed un-
der Rest, the model was not able to learn how to
correctly identify these categories.

Subtask C2 exhibits a similar distribution of the
true labels, with the Aspect+Sentiment category
Allgemein:neutral as majority class. Over
50% of the true labels belong to this class. Table 16
shows that only 12 out of 60 labels can be detected
by the model (see Table 16).

testsyn testdia
Aspect+Sentiment Category Score Support Score Support
Allgemein:neutral 0.804 1,108 0.832 913
Sonstige Unregelmäßigkeiten:negative 0.782 221 0.793 159
Zugfahrt:negative 0.645 197 0.725 149
Sicherheit:negative 0.640 78 0.585 39
Allgemein:negative 0.582 258 0.333 80
Atmosphäre:negative 0.569 126 0.447 39
Connectivity:negative 0.400 20 0.291 46
Ticketkauf:negative 0.364 42 0.298 34
Auslastung und Platzangebot:negative 0.350 31 0.211 17
Allgemein:positive 0.214 41 0.690 33
Zugfahrt:positive 0.154 34 0 34
Service und Kundenbetreuung:negative 0.146 36 0.174 21
Rest 0 343 0 180

Table 16: Micro-averaged F1 scores and support by As-
pect+Sentiment category (Subtask C2). 48 categories
are summarized in Rest and show each a score of 0.

All the aspect categories displayed in Ta-
ble 16 are also visible in Table 15 and
most of them have negative sentiment.
Allgemein:neutral and Sonstige
Unregelmäßigkeiten:negative show the
highest scores. Again, we assume that here, 48
categories could not be identified due to data
sparsity. However, having this in mind, the model
achieves a relatively high overall performance
for both, Subtask C1 and C2 (cf. Tab. 9 and
Tab. 10). This is mainly owed to the high
score of the majority classes Allgemein and
Allgemein:neutral, respectively, because
the micro F1 score puts a lot of weight on majority
classes. It might be interesting whether the clas-
sification of the rare categories can be improved
by balancing the data. We experimented with
removing general categories such as Allgemein,
Allgemein:neutral or documents with
sentiment neutral since these are usually less
interesting for a company. We observe a large
drop in the overall F1 score which is attributed to
the absence of the strong majority class and the
resulting data loss. Indeed, the classification for
some single categories could be improved, but the

rare categories could still not be identified by the
model.

B Detailed results (per category) for
Subtask D

Similar as for Subtask C, the results for the best
model are investigated in more detail. Table 17
gives the detailed classification report for the un-
cased German BERT-BASE model with CRF layer
on Subtask D1. Only entities that were correctly
detected at least once are displayed. The table is
sorted by the score on the synchronic test set. The
classification report for Subtask D2 is displayed
analogously in Table 18.

testsyn testdia
Category Score Support Score Support
Zugfahrt:negative 0.702 622 0.729 495
Sonstige Unregelmäßigkeiten:negative 0.681 693 0.581 484
Sicherheit:negative 0.604 337 0.457 122
Connectivity:negative 0.598 56 0.620 109
Barrierefreiheit:negative 0.595 14 0 3
Auslastung und Platzangebot:negative 0.579 66 0.447 31
Connectivity:positive 0.571 26 0.555 60
Allgemein:negative 0.545 807 0.343 139
Atmosphäre:negative 0.500 403 0.337 164
Ticketkauf:negative 0.383 96 0.583 74
Ticketkauf:positive 0.368 59 0 13
Komfort und Ausstattung:negative 0.357 24 0 16
Atmosphäre:neutral 0.348 40 0.111 14
Service und Kundenbetreuung:negative 0.323 74 0.286 31
Informationen:negative 0.301 68 0.505 46
Zugfahrt:positive 0.276 62 0.343 83
DB App und Website:negative 0.232 39 0.375 33
DB App und Website:neutral 0.188 23 0 11
Sonstige Unregelmäßigkeiten:neutral 0.179 13 0.222 2
Allgemein:positive 0.157 86 0.586 92
Service und Kundenbetreuung:positive 0.115 23 0 5
Atmosphäre:positive 0.105 26 0 15
Ticketkauf:neutral 0.040 144 0.222 25
Connectivity:neutral 0 11 0.211 15
Toiletten:negative 0 15 0.160 23
Rest 0 355 0 115

Table 17: Micro-averaged F1 scores and support by As-
pect+Sentiment entity with exact match (Subtask D1).
35 categories are summarized in Rest, each of them ex-
hibiting a score of 0.

For Subtask D1, the model returns a pos-
itive score on 25 entity categories on at
least one of the two test sets. The category
Zugfahrt:negative can be classified best
on both test sets, followed by Sonstige
Unregelmäßigkeiten:negative and
Sicherheit:negative for the synchronic
test set and by Connectivity:negative and
Allgemein:positive for the diachronic set.
Visibly, the scores between the two test sets differ
more here than in the classification report of the
previous task.

The report for the overlapping match (cf. Tab.
18) shows slightly better results on some categories
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testsyn testdia
Category Score Support Score Support
Zugfahrt:negative 0.708 622 0.739 495
Sonstige Unregelmäßigkeiten:negative 0.697 693 0.617 484
Sicherheit:negative 0.607 337 0.475 122
Connectivity:negative 0.598 56 0.620 109
Barrierefreiheit:negative 0.595 14 0 3
Auslastung und Platzangebot:negative 0.579 66 0.447 31
Connectivity:positive 0.571 26 0.555 60
Allgemein:negative 0.561 807 0.363 139
Atmosphäre:negative 0.505 403 0.358 164
Ticketkauf:negative 0.383 96 0.583 74
Ticketkauf:positive 0.368 59 0 13
Komfort und Ausstattung:negative 0.357 24 0 16
Atmosphäre:neutral 0.348 40 0.111 14
Service und Kundenbetreuung:negative 0.323 74 0.286 31
Informationen:negative 0.301 68 0.505 46
Zugfahrt:positive 0.276 62 0.343 83
DB App und Website:negative 0.261 39 0.406 33
DB App und Website:neutral 0.188 23 0 11
Sonstige Unregelmäßigkeiten:neutral 0.179 13 0.222 2
Allgemein:positive 0.157 86 0.586 92
Service und Kundenbetreuung:positive 0.115 23 0 5
Atmosphäre:positive 0.105 26 0 15
Ticketkauf:neutral 0.040 144 0.222 25
Connectivity:neutral 0 11 0.211 15
Toiletten:negative 0 15 0.160 23
Rest 0 355 0 112

Table 18: Micro-averaged F1 scores and support by
Aspect+Sentiment entity with overlapping match (Sub-
task D2). 35 categories are summarized in Rest and
show each a score of 0.

than for the exact match. The third-best score
on the diachronic test data is now Sonstige
Unregelmäßigkeiten:negative. Besides
this, the top three categories per test set remain the
same.

Apart from the fact that this is a different kind of
task than before, one can notice that even though
the overall micro F1 scores are lower for Subtask D
than for Subtask C, the model manages to success-
fully identify a larger variety of categories, i.e. it
achieves a positive score for more categories. This
is probably due to the more balanced data for Sub-
task D than for Subtask C2, resulting in a lower
overall score and mostly higher scores per category.

9. Re-Evaluating GermEval17 using German pre-trained language models
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10. Benchmarking down-scaled
transformer-based architectures
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tive, embedding dimension, number of layers as well as pre-training steps and batch size on model
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Abstract

Large Transformer-based language models are
pre-trained on corpora of varying sizes, for
a different number of steps and with differ-
ent batch sizes. At the same time fundamen-
tal components, such as the pre-training ob-
jective or architectural hyperparameters, are
modified. In total, it is therefore difficult
to ascribe changes in performance to specific
factors. Since searching the hyperparame-
ter space over the full systems is too costly,
we pre-train down-scaled versions of several
popular Transformer-based architectures on a
common pre-training corpus and benchmark
them on a subset of the GLUE tasks (Wang
et al., 2018). Specifically, we systemati-
cally compare three pre-training objectives for
different shape parameters and model sizes,
while also varying the number of pre-training
steps and the batch size. In our experiments
MLM + NSP (BERT-style) consistently out-
performs MLM (RoBERTa-style) as well as
the standard LM objective. Furthermore, we
find that additional compute should be mainly
allocated to an increased model size, while
training for more steps is inefficient. Based
on these observations, as a final step we at-
tempt to scale up several systems using com-
pound scaling (Tan and Le, 2019) adapted to
Transformer-based language models.

1 Introduction

The introduction of the Transformer (Vaswani et al.,
2017) together with the application of transfer
learning (Thrun and Pratt, 1998) has led to major
advances in Natural Language Processing (NLP).
While many different lines of research exist, most
attention is generally paid to the largest systems
which often reach new state-of-the-art (SOTA) re-
sults. The current trend is to scale up such systems
to ever new orders of magnitude: 213M parame-
ters in the Transformer, 300M parameters in BERT

(Devlin et al., 2019), 1.5B parameters in GPT-2
(Radford et al., 2019) and 175B in GPT-3 (Brown
et al., 2020). Since these models are pre-trained on
corpora of widely varying sizes, for a different num-
ber of training steps and with different batch sizes,
comparability suffers (Aßenmacher and Heumann,
2020). At the same time, new systems often apply
fundamentally different methods, such as using a
different pre-training objective or modified archi-
tectural hyperparameters. While altering multiple
components simultaneously can help achieve new
SOTA results, which is an important endeavor, it
is difficult to disentangle the effects of the various
factors. Though there exist various ablation stud-
ies, these often show only a small excerpt from
the broad spectrum of experimental opportunities
and can thus not provide a comprehensive picture.
In this work, we conduct a systematic study of
three Transformer-based architectures with respect
to several pre-training hyperparameters.

2 Related work

One line of research empirically derives generaliza-
tion results for large neural NLP systems. Rosen-
feld et al. (2019) study how the generalization error
of language models (LMs) depends on model and
data set size. Regarding model size, they provide
an approximation of the test loss, assuming that a
LM is scaled with respect to a pre-defined scheme,
such as increasing solely the embedding dimension.
A related but more comprehensive study was con-
ducted by Kaplan et al. (2020), examining power
laws of the test loss when scaling large neural LMs
with respect to a broad variety of different dimen-
sions. These dimensions include architectural hy-
perparameters, model size, data set size, number of
training steps and batch size. A central question in
their work is how these factors can be combined to
attain an optimal performance given a fixed amount
of compute.

10. Benchmarking down-scaled transformer-based architectures
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Compute efficient training is also investigated
by Li et al. (2020), recognizing that an optimal
allocation of computational resources is crucial
for improving model performance. Considering
Masked Language Modeling (MLM) pre-training,
Li et al. (2020) examine the optimal choice of num-
ber of training steps and batch size in the relation
to the model size. In a large-scale study, Raffel
et al. (2019) cover an even broader variety of mod-
eling scenarios than Kaplan et al. (2020), but train a
much smaller number of systems per scenario. For
instance, they include several variants of the Trans-
former, different pre-training objectives and vari-
ous fine-tuning strategies in their analysis. Finally,
based on their observations, Raffel et al. (2019)
also scale-up a system to 11B parameters.

3 Materials and Methods

Pre-training data We pre-train all models on
WikiText-1031 (Merity et al., 2016), a large-scale
text corpus for training and evaluating language
models on long-range contexts, which has served
as an evaluation data set (Radford et al., 2019; Dai
et al., 2019; Shoeybi et al., 2019) as well as for
pre-training (Howard and Ruder, 2018). We pre-
train all models on the training set of WikiText-103,
which allows for learning long-range dependencies
(Rae et al., 2019). The validation set is employed to
compare different architectures by their validation
loss during pre-training. WikiText-103 is much
smaller than most pre-training corpora of modern
language models. For instance, Devlin et al. (2019)
trained BERT on a 3, 300M words corpus, which is
approximately 32x the size of WikiText-103. Aside
from this, pre-training data sets of different models
often vary considerably in size, which makes fair
comparisons difficult (Aßenmacher and Heumann,
2020). Pre-training on the same corpus allows us
to exclude the amount and quality of pre-training
data as confounding factors when evaluating the
different model components.

Models We compare three different model types:
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019) and GPT-2 (Radford et al., 2019). BERT is a
bidirectional Transformer encoder which is trained
with both MLM as well as Next Sentence Predic-
tion (NSP). Its direct successor RoBERTa relies on
the exact same architecture and differs from BERT
solely in the pre-training procedure. Amongst other

1www.salesforce.com/products/einstein/ai-research/the-
wikitext-dependency-language-modeling-dataset/

changes, Liu et al. (2019) abandoned the NSP ob-
jective and introduced a dynamic masking2 proce-
dure for the MLM objective3. GPT-2 is a Trans-
former decoder, and thus a unidirectional model,
trained with the standard LM objective.

Since we train a multitude of down-scaled ver-
sions for each model type, thus modifying the
specifications of the original models, we intro-
duce the following conventions: We label models
trained with MLM & NSP as BERT-style, models
trained with MLM as RoBERTa-style, and mod-
els trained with LM as GPT-2-style. Alongside
with the pre-training objectives, we also use the
respective tokenizers of the different models. This
means using byte-level BPE (Radford et al., 2019)
for RoBERTa- and GPT-2-style and the WordPiece
algorithm (Schuster and Nakajima, 2012) for BERT-
style models, all of them exhibiting a uniform vo-
cabulary size of 30,000 tokens

Fine-tuning data We fine-tune and evaluate our
systems on GLUE (Wang et al., 2018). We mainly
compare performances on MNLI (Williams et al.,
2017), QQP (Shankar et al., 2017) and QNLI
(Wang et al., 2018), which are the three largest
GLUE tasks, since the results on these tasks are
the most reliable. In particular, we therefore cal-
culate the average score over the validation set
performances of the three tasks, which we denote
by GLUE-Large. For MNLI, we consider only
the matched validation set when calculating this
score. Whenever meaningful results for the two
next largest data sets SST-2 (Socher et al., 2013)
and CoLa (Warstadt et al., 2019) were achieved4,
those will also be reported.

Training details Hyperparameters and the pre-
training/fine-tuning procedure are largely adopted
from the original models (cf. Appendix A and B).

4 Experiments

4.1 Comparison of different Shapes5

In computer vision it has been observed that the per-
formance of a neural network strongly depends on
the choice of architectural hyperparameters, such

2We also use dynamic masking throughout this study.
3There were further alterations, none of which are crucial

for our experiments since we are using fixed pre-training data
sets, batch sizes, learning rates, etc. for better comparability.

4For the smaller model sizes the performance on these
smaller data sets did not significantly differ from zero.

5There exist several other choices, but examining the entire
spectrum of possible shapes is out of the scope of this study.
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as width or depth (Tan and Le, 2019). In contrast,
Kaplan et al. (2020) observed a similar LM test loss
over a wide range of shape parameters. Similarly,
for MLMs, Li et al. (2020) found that the valida-
tion loss does not depend strongly on the model
shape. This holds true also for the MNLI validation
accuracy of fine-tuned systems.

In this study, we examine the impact of
three different architectural hyperparameters in
Transformer-based models: depth, width and the
number of attention heads. Depth is given by
the number of layers L. Stacking many layers in
Transformer-based systems can be somewhat inef-
ficient and does not always lead to a considerable
increase in performance (Lan et al., 2019). Width
corresponds to the embedding dimension H . In-
creasing H has in general produced slightly better
results than increasing L in Transformer-based sys-
tems (Lan et al., 2019; Raffel et al., 2019; Li et al.,
2020). Attention Heads are used to discriminate
between different regions of the embedding space.
In most applications of the Transformer, the num-
ber of attention heads A is set in fixed relation to
H , such as H = 64×A. Decreasing performance
has been reported for larger ratios (Vaswani et al.,
2017; Brown et al., 2020).

4.2 Model Size, Training Steps and Batch size
Several recent studies have investigated the prob-
lem of compute efficient training of Transformer-
based systems (Raffel et al., 2019; Li et al., 2020;
Kaplan et al., 2020). The consensus among these
studies is that, under a restricted budget, optimal
performance is achieved by training very large mod-
els and stopping training well before convergence.
Furthermore, additional compute should rather be
used to increase the batch size instead of training
for more steps. To examine convergence character-
istics, we monitor the pre-training validation loss of
several systems and test how this loss corresponds
to different model sizes and shapes. Additionally,
we conduct experiments regarding the effect of the
batch size and the number of training steps. In par-
ticular, we evaluate how the training time and the
model performance depend on both factors.

4.3 Definition of the Model Size
We follow Kaplan et al. (2020) and use the approx-
imate number of non-embedding parameters to de-
fine the model size, which we denote as Nmodel.
Since the share of embedding parameters decreases
for larger models, similarly to Kaplan et al. (2020)

we expect that discarding the number of embed-
ding parameters allows for better generalization
of our results to large models. Another advantage
of defining the model size as the number of non-
embedding parameters is that it is closely linked
to the number of (non-embedding related) floating
point operations (FLOPs) per input token (Kaplan
et al., 2020). This enables us to design bench-
marking scenarios by training different models of
comparable size, which at the same time require
roughly similar amounts of computation.

Omitting biases and other sub-leading terms, the
number of non-embedding parameters is given by

Nmodel = 12LH2, (1)

assuming that queries, keys and values are all trans-
formed to dimension H

A and the feed-forward di-
mension is 4H . For a more in-depth explanation,
please see Appendix E.

5 Results6

We start by evaluating how varying single shape di-
mensions affects the performance on GLUE-Large
for the three different pre-training objectives (cf.
Sec. 5.1). This aims at investigating whether
the performance gain diminishes after a certain
level, comparing how the performance changes
when scaling different dimensions, and examining
whether models with different pre-training objec-
tives respond differently to single-dimension scal-
ing. Subsequently in Section 5.2, we change multi-
ple shape dimensions simultaneously to investigate
whether the different dimensions depend on each
other. In Sections 5.3 and 5.4 we study how to train
efficiently by varying the model size, the number
of training steps and the batch size. In Section 5.5
we put together our observations from the previous
sections and scale networks to different sizes.

5.1 Scaling Single Shape Dimensions
In this section, we separately scale L and H , while
holding all other dimensions constant. As shown
in Figure 1, BERT-style systems perform signifi-
cantly better than GPT-2-style and RoBERTa-style
systems on GLUE-Large, contrary to the results
of Liu et al. (2019) and in line with the original
findings of Devlin et al. (2019).

Observation 1 The pre-training objective has a
large impact on the performance of a fine-tuned

6Source code: https://github.com/PMSchulze/NLP-
benchmarking
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Figure 1: Average score on GLUE-Large, when varying H (left) vs. when varying L (right). For detailed perfor-
mance values on the single tasks, see Table 5 and Table 6 in Appendix C.

system. Pre-training with the combination of MLM
& NSP achieves the best results on sentence-pair
tasks7, while pre-training with the unidirectional
LM objective shows in general the worst perfor-
mance.

Furthermore, for BERT-style systems the average
performance is a relatively smooth function of the
model size. Scaling up H results in an increas-
ing performance, which saturates at approximately
72%, while for L we cannot clearly see this satu-
ration (even not at 75%). For RoBERTa-style sys-
tems, the difference between scaling L and H indi-
vidually is much larger. Furthermore, a saturation
(as for BERT-style systems) can not be observed.8

For GPT-2-style systems, the average score slightly
increases when scaling the embedding size, but in-
terestingly, stacking more layers shows no positive
effect at all. This suggests that GPT-2-style sys-
tems require more pre-training data compared to
BERT-style and RoBERTa-style systems.

Observation 2 In most cases, the performance of
a fine-tuned system increases up to a certain level
when scaling either width or depth, but the progres-
sion depends strongly on the pre-training objective.

5.2 Scaling Multiple Shape Dimensions

We next examine whether the performance can be
improved by scaling multiple dimensions at the
same time. First, we increase both H and L and

7Note that this does not necessarily generalize to other
languages or other types of tasks.

8Note that the relatively low average score for the 18-layer
RoBERTa-style system, shown in the right plot of Figure 1, is
due to a weak performance on the QNLI task.

compare the performance with the results from
Section 5.1. Fig. 2 shows that for RoBERTa-style
and BERT-style systems, scaling both dimensions
significantly improves the performance on GLUE-
Large.

Observation 3 Scaling multiple shape dimensions
can lead to a better performance than scaling sin-
gle dimensions.

Therefore, we conclude that the shape dimensions
are not independent of each other. For GPT-2-
style systems, however, we do not observe a perfor-
mance increase, as shown in Table 1.

BERT-Style Validation Set Performance
A H L Nmodel GLUE-Large

2 204 7 3,495,744 77.1
2 256 9 7,077,888 78.6
8 544 2 7,102,464 78.4

GPT-2-Style Validation Set Performance
A H L Nmodel GLUE-Large

2 204 7 3,495,744 63.6
2 256 9 7,077,888 63.8
8 544 2 7,102,464 66.0

RoBERTa-Style Validation Set Performance
A H L Nmodel GLUE-Large

2 204 7 3,495,744 72.9
2 256 9 7,077,888 75.0
8 544 2 7,102,464 70.9

Table 1: Performance on GLUE-Large when increasing
multiple shape dimensions at the same time.

So far, we did not increase A when scaling H
and observed that, without using more attention
heads, wide systems perform worse than deep sys-
tems (cf. Fig. 1). To evaluate whether a larger num-
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Figure 2: Performance on GLUE-Large when increasing multiple shape dimensions.

ber of attention heads can boost the performance of
wide systems, we re-implement our widest systems
with A = 8 attention heads, which corresponds to
H
A = 68. We observe that the score of the widest
system on GLUE-Large improved substantially by
doing so (cf. Fig. 1 and Tab. 1). In particular, when
using A = 8 instead of A = 2, the wide BERT-
style system (A = 8, H = 544, L = 2) performs
even better than the deep BERT-style system of
comparable size (A = 2, H = 128, L = 36). Fur-
thermore, as also shown in Table 1, the wide BERT-
style system (with increased A) performs close to
the balanced one (A = 2, H = 256, L = 9).

Observation 4 The fine-tuning performance can
be similar over a wide range of shapes. For BERT-
style systems, wide systems perform slightly better
than deep systems, if the number of attention heads
is adapted to the embedding dimension.

In contrast to BERT-style systems, deep RoBERTa-
style systems still perform better than wide sys-
tems, even when increasing the number of atten-
tions heads. For GPT-2-style systems, adding more
attention heads hardly increases the performance.

5.3 Monitoring the Validation Loss

In the previous sections, different models were
made comparable by their number of non-
embedding parameters. As stated in section 4.3,
this number is related to the computational cost
when evaluated as the number of FLOPs per to-
ken. Reporting the computational cost in FLOPs
neglects, however, that some operations can be run
in parallel, while others cannot. In order to assess
the speed of convergence, following Li et al. (2020),

we therefore directly report the wall-clock time in
seconds.

Figure 3 shows the validation loss for BERT-
style systems of different shape, when pre-trained
on the short sequences.9. The left plot depicts sev-
eral pre-training loss curves corresponding to the
single-dimension scaling experiments from Section
5.1. Interestingly, when comparing the validation
loss with the GLUE-Large results (cf. Fig. 1), we
find that, although increasing H (while holding
A fixed) results in a lower validation loss than in-
creasing L, the GLUE-Large score shows a higher
increase in the latter case.

Observation 5 The pre-training validation loss is
not necessarily a good indicator for the perfor-
mance of a fine-tuned system.

Dependent on the downstream task some archi-
tectures presumably favor fine-tuning more than
others, which can offset a relatively worse initial-
ization point. This finding suggests that, although
Kaplan et al. (2020) observe similar test losses for
different shapes, benchmarking the corresponding
fine-tuned versions may present a different picture.

In the left plot of Figure 3 we furthermore ob-
serve that shape has a significant effect on the pre-
training time. In particular, stacking many layers
requires much longer pre-training. It is also evident
that increasing the size does not lead to a propor-
tionate increase in the pre-training time. This holds
true especially when scaling multiple dimensions,
as depicted in the right plot of Figure 3. When dou-
bling the number of pre-training parameters, the

9We do pre-training on short and long sequences. For a
detailed description, see Appendix A and Appendix F.
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Figure 3: Loss curves of BERT-Style systems of different shape. All loss curves are associated with the first stage
of pre-training, where we train on short sequences with a of 128 tokens (For the loss curves for the subsequent
training on the long sequences, see Appendix D). The depicted parameter counts refer to the model size Nmodel.

training time only increases from approximately
11, 800 seconds to approximately 14, 400 seconds.
In particular, the loss of the larger system is smaller
at any measured point in time.

Observation 6 Given a fixed time budget, training
large systems for a relatively small number of steps
is more efficient than training small systems for a
large number of steps.

The 9-layer system in the right plot of Figure 3
achieves a notably lower validation loss than the
7-layer system after 10, 000 seconds, which corre-
sponds to approximately 65, 800 and 79, 800 steps,
respectively. Li et al. (2020) made a similar obser-
vation by showing that larger Transformer-based
systems generally reach a lower pre-training valida-
tion perplexity in shorter time. A point of concern
might be that larger systems overfit more easily dur-
ing fine-tuning. However, Li et al. (2020) showed
that, when stopping models of different size at the
same pre-training validation perplexity, large sys-
tems generally achieve comparable downstream
task performances to small systems, which contra-
dicts the overfitting argument.

5.4 Number of Training Steps and Batch Size

The amount of processed data can be increased by
increasing either the number of trainig steps or the
batch size. In Table 2 we compare how halving the
number of steps vs. halving the batch size impacts
model performance. As baseline we use our best
performing system thus far (A = 2, H = 256, L =
9), pre-trained RoBERTa- and BERT-style.

In both cases we find that reducing the number
of training steps is more detrimental to the perfor-
mance than reducing the batch size. Conversely,
it follows that when scaling up a system, a better
model performance can be achieved when doubling
the amount of training steps than when doubling
the batch size, which is consistent with the results
of Raffel et al. (2019). On the other hand, we ob-
serve that the systems with the smaller batch size
were trained for a significantly longer time than
the systems with the reduced number of training
steps. Therefore, increasing the batch size may
result in a more favorable training duration than in-
creasing the number of training steps. The modest
drop in GLUE-Large performance, when halving
the number of training steps is consistent with our
findings from Section 5.3 and provides additional
evidence that training for a large number of steps
is inefficient.
Observation 7 Doubling the number of training
steps marginally increases the downstream task
performance, whereas doubling the batch size sig-
nificantly reduces the average training time of an
input sequence.
As stated, several other studies have shown that
using a larger batch size is in general more efficient
than training for more steps (Kaplan et al., 2020).
This means that the reduction of training time by
using larger batches dominates the marginal perfor-
mance gains resulting from an increased number
of training steps. However, for each specific model
and training configuration there exists a critical
batch size, after which the performance hardly im-
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BERT-Style Validation Set Performance
Training Strategy Total Time GLUE-Large MNLI-(m/mm) QQP QNLI SST-2

Baseline 21, 358s 78.6 72.0/72.7 81.2 82.5 83.4
1
2

x steps, 1x batch 10, 736s 77.4 70.2/71.2 80.5 81.5 82.5
1x steps, 1

2
x batch 14, 575s 78.2 71.5/71.9 80.9 82.3 83.9

RoBERTa-Style Validation Set Performance
Training Strategy Total Time GLUE-Large MNLI-(m/mm) QQP QNLI SST-2

Baseline 19, 760s 75.0 68.4/70.9 78.2 78.3 75.0
1
2

x steps, 1x batch 9, 906s 73.7 67.0/69.0 76.7 77.4 83.5
1x steps, 1

2
x batch 13, 101s 75.6 68.2/70.0 79.5 78.9 84.4

Table 2: GLUE results and total pre-training time when halving batch size vs. number of training steps.

proves, if at all (Kaplan et al., 2020; Li et al., 2020).
Our results suggest that this critical size is very
small in our experiments, which we believe is due
to the small size of the pre-training data set, as also
observed by Kaplan et al. (2020).

5.5 Systematic Scaling

In this section we apply a modified version of the
compound scaling method that was used to scale
up EfficientNet (Tan and Le, 2019), a model that
achieved a notably better accuracy on ImageNet
(Deng et al., 2009) than previous approaches using
less compute. For scaling, we only consider BERT-
style systems and propose the following compound
scaling method for Transformer-based systems:

L = αφ, H = βφ, A ≈ H/64,

s.t. αβ2 ≈ 2, with α ≥ 1, β ≥ 1.
(2)

For suitable values of α and β, a system is scaled
up by increasing the compound coefficient φ. Dou-
blingL doublesNmodel, whileH leads to a fourfold
increase. Since Nmodel dominates the amount of
compute in a Transformer, the constraint αβ2 ≈ 2
thus ensures that when scaling the network from
φold to φnew, the amount of compute (which is ap-
prox. independent of A) approximately increases
by the factor 2φnew−φold . Following existing ap-
proaches and using Observation 4, we therefore
set the number of attention heads to A ≈ H/64.

Grid search To determine α and β, we follow
Tan and Le (2019) and perform a grid search over
a set of nine small networks of comparable size
trained only on the short sequences. Subsequently,
we select the three systems with the lowest valida-
tion loss. Based on Observation 5, we then fine-
tune and evaluate these three systems on GLUE-
Large, which leads to the best performing system

having L = 3 and H = 104 (cf. Tab. 7 in Ap-
pendix C). From the constraint in Eq. (2) it fol-
lows that the size of this system corresponds to
a compound coefficient of φ = log2(LH

2) =

14.99 ≈ 15, such that we obtain α = 3
1
15 ≈ 1.076,

β = 104
1
15 ≈ 1.363. Note that the resulting coeffi-

cients favor scaling width over depth. In general,
we believe that this is reasonable, especially in light
of the much longer training times of deep networks
compared to wide networks (cf. Fig. 3). However,
we also want to emphasize that further research
is needed, whether these scaling coefficients are
suitable for BERT-style systems. For GPT-2-style
systems, Kaplan et al. (2020) proposed to scale
such that width/depth remains fixed. Importantly,
however, Kaplan et al. (2020) did not study the
effect of shape parameters on the GLUE-Large per-
formance, but instead only monitored the LM test
loss. In machine translation, on the other hand,
Transformer-based systems are scaled preferably
by increasing width (Shazeer et al., 2018; Li et al.,
2020). Other approaches focus on increasing depth,
while making modifications to the Transformer to
allow for more efficient training (Al-Rfou et al.,
2019).

Scaling Based on Observation 6, we successively
increase the compound coefficient to scale three
systems to larger sizes than all previously trained
systems, but train for less steps. For our smallest
system, we train for 5 epochs on both the long
and the short sequences.10 The results are listed
in Table 4. Furthermore, Table 3 shows a compari-
son of the smallest of the three systems to the best
performing system so far, as well as to a modifica-
tion of this system which fulfills the requirement

10Since validation loss on the long sequences did not further
decrease after 3 epochs, the two larger systems were only
trained for 3 epochs on these sequences (cf. Appendix D).

10. Benchmarking down-scaled transformer-based architectures
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BERT-Style Validation Set Performance
φ A H L Nmodel Total Time Epochs GLUE-Large Final Loss

NA 2 256 9 7,0778,88 21,358s 6 78.6 3.24
NA 4 256 9 7,0778,88 21,703s 6 78.9 3.29

19.865 7 469 4 10,558,128 20,873s 5 79.4 3.13

Table 3: Verification of the scaling method: The proposed modifications lead to a better GLUE score and a lower
validation loss, while requiring less training time compared to previous best performing models.

BERT-Style Validation Set Performance
φ A H L Nmodel GLUE-Large MNLI-(m/mm) QQP QNLI SST-2 CoLA

20.578 9 585 5 20,553,500 80.7 75.3/75.5 83.5 83.4 85.1 16.5
21.716 13 832 5 41,553,440 81.4 75.6/75.9 84.1 84.4 85.8 21.3

Table 4: GLUE results of BERT-style systems, scaled up based on the observations made in the previous sections.

A ≈ H/64. As can be observed, both the perfor-
mance on the large GLUE-Large tasks and the final
validation loss are improved, while requiring less
training time. For the two larger systems, each ob-
tained by approximately doubling the model size,
downstream performance and validation loss are
further improved (cf. Tab. 4). Note that these sys-
tems are rather large compared to the amount of
pre-training data. This demonstrates the remark-
able robustness of these systems with respect to
overfitting on the pre-training data, which is in line
with the results of Kaplan et al. (2020).

6 Conclusion & Future work

Limitations The most severe limitation is the
small pre-training data set. Based on the obser-
vations of Kaplan et al. (2020), systems train faster
if more training examples are used. The small
size of the pre-training data set might also be the
cause of overfitting on smaller tasks. Therefore,
for further experiments, we suggest to expand the
amount of pre-training data. Furthermore, we did
no hyperparameter tuning, but instead adopted the
configurations from the original models. It would
be advisable to adjust the hyperparameters accord-
ingly (Li et al., 2020), especially since we used
different batch sizes as the original models.

Directions for Further Research Kaplan et al.
(2020) studied the effect of the amount of pre-
training data, however, not with regard to down-
stream task performance. Due to the fact that cur-
rent NLP systems are trained on vastly different
amounts of pre-training data, we believe that this
relationship should be explored further.

Although attempts have been made to study the

relationship between different pre-training objec-
tives and the performance on downstream tasks
(Arora et al., 2019), this relation is yet not well
understood. Empirically, contrastive pre-training
objectives, such as replaced token detection (Clark
et al., 2020) have shown very promising results. It
would be interesting to extend the study to such
contrastive objectives. Since we observed that the
NSP task is beneficial for learning sentence-pair
relationships, comparing it to ALBERT’s SOP task
(Lan et al., 2019) could yield further insights.

Finally, by fine-tuning on a larger variety of tasks
we could break down in more detail how different
modeling choices affect the performances on dif-
ferent tasks. We believe that further investigation
of such relationships will open many opportunities
for future research.

Conclusion In our experiments, BERT-style sys-
tems consistently outperform RoBERTa-style and
GPT-2-style systems. We therefore conclude that,
at least in case of a relatively small pre-training
data set, the combination of MLM & NSP is prefer-
able to MLM or LM. Although our experiments
were conducted on a much smaller scale than other
studies, we were able to reproduce many previous
findings. For instance, we observed that, provided
multiple dimensions are scaled, systems with very
different shapes can achieve similar performances.

Consistent with previous studies (Kaplan et al.,
2020; Li et al., 2020) we found that it is in general
inefficient to train until convergence and that train-
ing for more steps improves the performance rather
marginally. Instead, in accordance with Kaplan
et al. (2020), we believe that increasing the batch
size is more beneficial than training for more steps.
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More importantly, also consistent with the re-
sults of Kaplan et al. (2020) and Li et al. (2020),
we conclude that the model size is the key factor in
Transformer-based systems. We observed that even
for rather large systems, both the final pre-training
validation loss and the GLUE performance bene-
fit from further increasing the size. At the same
time, the total pre-training time increases at a rather
low rate. In particular, given a fixed time budget,
large systems reach a lower loss than small sys-
tems. Therefore, we believe that additional com-
pute should be allocated mainly to increase the
model size.
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Appendix

A Pre-training details

Training duration To ensure a fair compari-
son of the different pre-training objectives, we
pre-train RoBERTa-style and GPT-2-style systems
for 10 epochs, and BERT-style systems for 6
epochs, which in all cases equates to approximately
137, 000 total training steps combined over both
partitions.11 Since the data is duplicated when train-
ing with MLM & NSP, it is natural to simply lower
the number of epochs in relation to the amount of
pre-training data. While the amount of pre-training
data of RoBERTa-style and GPT-2-style systems
amounts to more than 60% of the data of BERT-
style systems, we found that, on the other hand, the
average WordPiece token contains slightly more
information than the average byte-level BPE token.

Optimization Apart from the experiments in sec-
tion 5.4, we use a batch size of 64 when training
on the short sequences and a batch size of 16 for
the long sequences. We optimize all systems with
Adam (Kingma and Ba, 2014) using the follow-
ing parameters: β1 = 0.9, β2 = 0.999, ε = 1e-6
and L2 weight decay of 0.01. For BERT-style and
RoBERTa-style systems we use a maximum learn-
ing rate of 1e-4, and for GPT2-style systems the
maximum learning rate is 2.5e-4. In all cases we
use a linear warmup for the first 1000 steps, which
corresponds to approximately 1% of the total steps.
Furthermore, for all systems we employ dropout
with a rate of 0.1 on all layers. The activation func-
tion of all systems is the GELU (Hendrycks and
Gimpel, 2016). The hyperparameters are in gen-
eral chosen as in the original systems, except for
RoBERTa-style systems, because RoBERTa was
trained with significantly larger batches, which re-
quires different hyperparameters. For RoBERTa-
style systems we therefore choose the same hyper-
parameters as for BERT-style systems.

Implementation We pre-train all systems on a
single NVIDIA 16GB V100 GPU, making use of
the Hugging Face transformers library (Wolf et al.,
2020). The same also holds true for fine-tuning.

Short and long sequences With our pre-training
procedure we follow Devlin et al. (2019): The

11In sections where we do not compare the different objec-
tives the number of epochs may differ.

first 90% of the steps on short sequences (128 to-
kens), the remaining 10% on long ones (512 to-
kens). When inspecting the validation loss, we ad-
just the evaluation sequence lengths to the lengths
of the training sequences, so ensure the same distri-
bution for training and validation data. This causes
the validation loss on the long sequences to start at
a slightly higher point than the final validation loss
on the short sequences (cf. Appendix D).

B Fine-tuning details

We follow Devlin et al. (2019) and train for three
epochs on all GLUE tasks. We use a batch size of
16 and a learning rate of 2e-5 for each task. Apart
from these hyperparameter configurations, we ap-
ply the same fine-tuning procedures that were used
by the original systems. For GPT-2-style systems,
we implemented the fine-tuning approach of GPT
(because GPT-2 was not fine-tuned).

However, we do make one small modification
to the original implementations. In contrast to
BERT-style systems, the pre-training objective of
RoBERTa-style and GPT-2-style systems does not
contain a classification task. When performing the
NSP task, in the original BERT the contextualized
representation of the CLS token is obtained by feed-
ing the corresponding final hidden state through a
linear layer with dropout and tanh activation. Sub-
sequently, the contextualized representation is fed
through another linear layer with dropout, which is
the output layer mapping the contextualized repre-
sentation to the class probabilities. Consequently,
when fine-tuning BERT-style systems on a classi-
fication task, there are in fact two linear layers be-
tween the final hidden state and the output classes.
However, RoBERTa and GPT in their original im-
plementation use only one linear layer. In order
to be as consistent as possible, in contrast, we use
two linear output layers for all systems. The first
linear layer is followed by a tanh activation and
both layers are implemented with a dropout rate of
0.1. For more information regarding this issue see
huggingface’s discussion forum.

C Detailed performance values for single
shape dimensions and results for the
grid search

Performance values on GLUE-Large and SST-2
for scaling H (Tab. 5) and for scaling L (Tab. 6).
Table 7 shows the results of the grid search.
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BERT-Style Validation Set Performance
A H L Nmodel GLUE-Large MNLI-(m/mm) QQP QNLI SST-2

2 128 2 393,216 65.4 59.0/60.2 72.3 64.8 78.0
2 192 2 884,736 67.2 62.1/62.8 74.0 65.4 82.6
2 288 2 1,990,656 69.3 63.7/65.2 76.0 68.3 82.0
2 384 2 3,538,944 72.3 65.7/66.6 77.8 73.2 81.1
2 544 2 7,102,464 72.3 66.8/68.1 78.0 72.0 83.3

GPT-2-Style Validation Set Performance
A H L Nmodel GLUE-Large MNLI-(m/mm) QQP QNLI SST-2

2 128 2 393,216 61.6 56.3/56.2 66.1 62.3 79.8
2 192 2 884,736 62.9 58.0/58.4 68.7 61.9 79.7
2 288 2 1,990,656 63.9 58.7/58.7 70.9 62.2 81.7
2 384 2 3,538,944 64.9 59.8/59.6 71.9 63.0 81.2
2 544 2 7,102,464 65.0 59.8/59.7 72.4 62.9 82.5

RoBERTa-Style Validation Set Performance
A H L Nmodel GLUE-Large MNLI-(m/mm) QQP QNLI SST-2

2 128 2 393,216 60.1 53.7/55.1 64.7 61.9 79.2
2 192 2 884,736 60.5 54.4/55.4 65.0 62.0 80.8
2 288 2 1,990,656 63.0 57.5/58.0 68.1 63.4 80.3
2 384 2 3,538,944 64.3 59.4/59.8 69.0 64.6 81.9
2 544 2 7,102,464 66.5 60.2/60.7 72.7 66.5 81.8

Table 5: Performance on GLUE when increasing only the embedding dimension.

BERT-Style Validation Set Performance
A H L Nmodel GLUE-Large MNLI-(m/mm) QQP QNLI SST-2

2 128 2 393,216 65.4 59.0/60.2 72.3 64.8 78.0
2 128 5 983,040 68.9 62.1/64.2 75.0 68.6 79.8
2 128 10 1,966,080 72.0 65.3/66.9 76.7 74.1 81.8
2 128 18 3,538,944 74.2 67.2/68.6 77.8 77.7 82.2
2 128 36 7,077,888 75.9 69.7/70.4 79.7 78.3 83.3

GPT-2-Style Validation Set Performance
A H L Nmodel GLUE-Large MNLI-(m/mm) QQP QNLI SST-2

2 128 2 393,216 61.6 56.3/56.2 66.1 62.3 79.8
2 128 5 983,040 62.4 57.6/56.1 67.4 62.0 80.5
2 128 10 1,966,080 62.0 56.9/57.0 67.7 61.5 81.4
2 128 18 3,538,944 61.8 56.1/56.4 66.8 62.4 80.6
2 128 36 7,077,888 61.4 56.6/56.7 66.6 61.1 80.7

RoBERTa-Style Validation Set Performance
A H L Nmodel GLUE-Large MNLI-(m/mm) QQP QNLI SST-2

2 128 2 393,216 60.1 53.7/55.1 64.7 61.9 79.2
2 128 5 983,040 64.8 59.5/60.6 70.4 64.4 80.2
2 128 10 1,966,080 67.1 60.9/61.9 72.0 68.5 81.7
2 128 18 3,538,944 67.2 62.9/64.3 74.3 64.3 80.0
2 128 36 7,077,888 73.3 67.6/69.1 77.3 75.0 82.6

Table 6: Performance on GLUE when increasing only the number of layers.

BERT-Style Validation Loss (WikiText-103) Validation Performance (GLUE)
A H L Nmodel BERT-Style Loss GLUE-Large
2 128 2 393,216 5.66 66.6
2 104 3 389,376 6.34 68.2
2 90 4 388,800 6.41 67.1
2 74 6 394,272 6.47 -
2 64 8 393,216 6.50 -
2 58 10 403,680 6.54 -
2 52 12 389,376 6.58 -
2 48 14 387,072 6.62 -
2 46 16 406,272 6.62 -

Table 7: Grid search over nine small BERT-style systems.
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Figure 4: Validation loss of scaled-up BERT-style sys-
tems when pre-training on the short sequences. The
depicted parameter counts refer to Nmodel.

E Definition of the model size

We follow Kaplan et al. (2020) and use the approx-
imate number of non-embedding parameters to de-
fine the model size, which we denote as Nmodel.
The embedding parameters consist of all token, po-
sition and (if present) segment embeddings. The
number of embedding parameters does not depend
on the network depth, and when scaling width
and/or depth, it is a sub-leading term of the total
number of parameters. Furthermore, the number of
FLOPs related to embedding (and de-embedding)
is also sub-leading term of the total number of
FLOPs. Consistent with this is the observation of
Kaplan et al. (2020) that discarding the number
of embedding parameters when calculating model
size and amount of compute results in significantly
cleaner scaling laws. Since the share of embedding
parameters decreases significantly for larger mod-
els, similarly to Kaplan et al. (2020) we expect that
discarding the number of embedding parameters
allows for a better generalization of our results to
large models. Another advantage of defining the
model size as the number of non-embedding pa-
rameters is that this number is closely linked to the
number of (non-embedding related) FLOPs. This
enables us to design benchmarking scenarios by
training different models of comparable size, which
at the same time require roughly similar amounts
of computation.
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Figure 5: Validation loss of scaled-up BERT-style sys-
tems when pre-training on the long sequences. The de-
picted parameter counts refer to Nmodel.

Number of Non-Embedding Parameters
Omitting biases and other sub-leading terms, the
number of non-embedding parameters, which is
our definition of the model size, is given by

Nmodel := 12LH2, (3)

where we have assumed that Hk = Hv = H
A and

Hff = 4H . Therefore, per layer there are approx-
imately 12H2 non-embedding parameters. This
number can be derived from the following three
steps performed in each layer of a Transformer:

1. Input projection For each attention head, the
queries, keys and values of dimension H

A are ob-
tained with the three matrices WQ

i , WK
i , and

W V
i , which are each of size H × H

A . In total, the
input projection thus consists of 3 ·A · H2

A = 3H2

parameters.

2. Output projection First, note that performing
attention on the projected inputs of dimension H

A in-
volves no additional parameters. The concatenated
attention results are projected back to dimension
H with the H × H matrix WO. Therefore, the
output projection involves an additional set of H2

parameters.

3. Feed-forward network The last sub-layer of
each layer consists of applying a feed-forward net-
work to the output projections. There exist H · 4H
connections between the output projections and the
neurons of the inner-layer, and another 4H · H
connections from the inner-layer to the final output
neurons. This step hence involves 8H2 parameters.

10. Benchmarking down-scaled transformer-based architectures
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Note that the feed-forward network accounts for the
majority of non-embedding parameters, followed
by the input and output projections, respectively.

Relation to FLOPs

As stated, the number of non-embedding param-
eters is closely linked to the number of non-
embedding related FLOPs. We start by deriving
the number of FLOPs per token and forward pass
for GPT-2-style systems, where sub-leading terms
such as biases and layer normalization are again
omitted.

1. Input projection The matrix-vector products
of each per-layer input with WQ

i , WK
i , and W V

i

involve approximately 3 · 2 · H · HA FLOPs per
attention head. Considering all attention heads, the
input projection thus requires approximately 6H2

FLOPs per token.

2. Attention The computation of the attention
operation can be divided into two sub-components:

• Computation of the weights: On average,
Nctx
2 attention weights have to be computed

per input token, since on average half of the
tokens are masked for each input token. Com-
putation of a dot-product attention weight re-
quires approximately 2HA FLOPs per head. In
total, the computation of the attention weights
hence involves approximately NctxH FLOPs
per token.

• Computation of the weighted sum: Since
only half of the tokens are summed on average,
given the attention weights, calculation of the
weighted sum of the values has an average
cost of approximately NctxH FLOPs for each
token.

3. Output projection The vector matrix product
of the attention outputs with WO requires approxi-
mately 2H2 FLOPs for each token.

4. Feed-forward network The feed-forward net-
work consists of two consecutive matrix multiplica-
tions, where each matrix contains 4H2 parameters.
Thus, the feed-forward network requires approxi-
mately 2 · 2 · 4H2 = 16H2 FLOPs per token.

The number of FLOPs per token and forward
pass in GPT-2-style systems, which we denote by

Cforward, can hence be approximated as

Cforward ≈ L(6H2 +NctxH +NctxH

+ 2H2 + 16H2)

= 24LH2 + 2LNctxH

= 2Nmodel + 2LNctxH.

(4)

BERT-style and RoBERTa-style systems require
slightly more FLOPs than GPT-2-style systems,
because these systems have no autoregressive at-
tention mask. Hence, in both steps of the attention
operation above, the computational cost is approx-
imately twice as much, i.e., 2NctxH in each step.
Therefore, BERT-style and RoBERTa-style sys-
tems require approximately 2Nmodel + 4LNctxH
FLOPs per token and forward pass. As mentioned
by Kaplan et al. (2020), if H > Nctx/12, the
context-dependent term in Eq. (4) only accounts
for a relatively small fraction of the compute of
GPT-2-style systems. In particular, when increas-
ing H , the importance of the context-dependent
term diminishes. For BERT-style and RoBERTa-
style systems the context-dependent term becomes
small ifH > Nctx/6. Both constraints are satisfied
by a large margin for all our systems, especially
since we mainly train on rather short sequences.
The backward pass requires approximately twice
as much compute as the forward pass (Kaplan et al.,
2020), such that the total amount of non-embedding
related compute per token and training step can be
approximated as

C := 6Nmodel. (5)

F Sequence characteristics

The following Table 8 provides an overview on the
number of tokens in short and long sequences.

System Partition Number of Tokens
Total Average

BERT-Style Short 110, 888, 186 110.04
Long 43, 274, 856 375.52

RoBERTa-Style Short 70, 025, 709 110.31
Long 27, 692, 351 457.04

GPT-2-Style Short 70, 564, 106 111.16
Long 27, 729, 551 457.65

Table 8: Number of tokens for the short and the long
sequences as well as the average sequence lengths re-
sulting from the different tokenizers.

119





Part V.

Conclusion





11. Future Directions and Concluding Remarks

11.1. Few-Shot Learning

Since the time the latest model presented in Section 3.3 was proposed (ELECTRA, March 2020)
the whole field of NLP has moved even further and different directions and approaches have been
explored. ELECTRA seemed to be a suitable cut point, prior to including the Parts II – IV
holding the publications constituting this thesis, since all architectures used in these publications
were introduced prior to it. This last Chapter concludes this thesis by summing up what has
happened since then and tries to give a tentative outlook into the future.1

Already when introducing GPT-2, Radford et al. (2019) did set new standards with respect to
model size, utilized computational power and size of the pre-training corpus at that time. But more
importantly, they also already started to investigate the concept of Zero-Shot Learning, a transfer
learning paradigm where the model is tested on its ability to execute tasks without any explicit
supervision (i.e. no task-specific fine-tuning). The authors measured the zero-shot performance
of their architecture on the language modeling task, the task they were initially pre-trained on,
but for specific domains distinct from the domain of the pre-training corpus. Furthermore, they
evaluated the model regarding its accuracy on the Children’s Book Test (CBT; Hill et al., 2015)
and the LAMBADA (Paperno et al., 2016) benchmarks, both of which are cloze-style tasks.

Brown et al. (2020) went even further by training GPT-3, a model similar to GPT-2 regarding the
basic architecture, but again by no means comparable regarding size and pre-training efforts. With
a model size of up to 175B parameters and a pre-training corpus of 499 Billion tokens (approx. 50
times the size of the pre-training corpus from GPT-2), a new bar was set. Model performance is
subsequently evaluated by transforming every evaluated task into a sequence-to-sequence format2

and testing the model on it. Brown et al. (2020) relax the concept of Zero-Shot Learning by framing
it more generally as Few-Shot Learning, where K denotes the number of example provided to the
model. This in turn includes both Zero-Shot (K = 0) as well as One-Shot Learning (K = 1) as
special cases. Model training of GPT-3 consists of two distinct phases:

Outer Loop: The model is pre-trained on the language modeling task (i.e. in a self-supervised
fashion) via stochastic gradient descent. This is the only part of the training, where the model
is subject to explicit (self-)supervision of the language modeling task. Regarding the expense of
computational power, this part is extremely resource intensive due to the immense size of the
pre-training corpus and the large number of parameters in the model to be updated.

1Although, given the current speed and amount in which new research and new ideas are currently published,
giving an outlook is pretty difficult and speculative.

2This procedure is comparable to what Raffel et al. (2019) do prior to fine-tuning T5 regarding task formulation.
But differently from T5, GPT-3 is not fine-tuned, i.e. no gradient updates are performed using the task-specific
data.
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Inner Loop (In-Context Learning): The model is provided with a task description, followed by
exactly K examples (i.e. source and target sequence) and eventually a single prompt (i.e. only a
source sequence). This In-Context Learning does not happen via explicit supervision, which would
include gradient updates, just like in the traditional pre-training + fine-tuning setting. Rather
the model ”learns” by the demonstration of K examples which task (and how) to perform and
transfers this to the prompt. This makes the model input look as follows:

task description

source => target
...

source => target

prompt => . . .

While its predecessor GPT-2 was only evaluated on pure language modeling and cloze-style
tasks, GPT-3 also showed impressive performance on a wider range of benchmark tasks including
(amongst others) NMT tasks, the SuperGLUE benchmark and various reading comprehension
tasks. Already when using only a small number of labelled examples for demonstration (K ≤ 64
in most cases), GPT-3 already achieves a pretty competitive performance compared to fine-tuned
BERT models.

11.2. Final Thoughts

As already mentioned in Sec. 1.2, controversial discussions about recent developments and direc-
tions are pretty prominent in the current scientific debate, which is why I will conclude this thesis
with three final thoughts:

• It remains an open question, which of these two paradigms (fine-tuning vs. few-shot) will
prove to be superior in the future. Probably there will also be a hybrid of both, since the
few-shot approach suffers from its inflexibility: GPT-3 was trained on a huge amount of
internet data from a specific time period, which is why it will most likely have a hard time
adopting to (future) texts with a large temporal distance to the time frame in which its
training data was collected.

• Ever larger models set the bars higher and higher when it comes to performance and the
amount of consumed data, but often lack explainability/interpretability and are difficult
to deploy. It will be interesting to see where the field is heading to, whether model sizes
are further increasing or if smaller models like e.g. iPET (Schick and Schütze, 2020b) will
succeed.

• Clark et al. (2021) recently brought up the issue of why tokenization, a step preceding every
large pre-trained language model, might be problematic. It will be interesting to see, if and
to what extent their proposal of tokenization-free encoders will potentially shape the next
generation of pre-trained language models.

With that said, there still are and will be a lot of open problems which pre-trained language models
might help solving, for all of which a focus on model comparability and a proper benchmarking
setup are important prerequisites.
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