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Zusammenfassung xiii

Zusammenfassung

In der Diagnostik hämatologischer Erkrankungen wie der akuten myeloischen Leukämie
haben sich in den vergangenen Jahren bedeutende Fortschritte ergeben, die vor allem auf
einem vertieften Verständnis ihrer biologischen und genetischen Ursachen beruhen. Trotz-
dem spielt die zytomorphologische Untersuchung von Blut- und Knochenmarkspräparaten
nach wie vor eine zentrale Rolle in der diagnostischen Aufarbeitung. Die mikroskopische
Begutachtung dieser Präparate konnte bisher nicht automatisiert werden und erfolgt nach
wie vor durch menschliche Befunder, die eine manuelle Differentierung und Auszählung
relevanter Zelltypen vornehmen. Daher ist der Zugang zu zytomorphologischen Unter-
suchungen durch die Zahl verfügbarer zytologischer Befunder begrenzt. Darüber hinaus
beruht die Beurteilung der Präparate auf der individuellen Einschätzung der Befunder
und ist somit von deren Ausbildung und Erfahrung abhängig, was eine standardisierte und
quantitative Auswertung der Morphologie zusätzlich erschwert.

Ziel der vorliegenden Arbeit ist es, ein computerbasiertes System zu entwickeln, die die mor-
phologische Differenzierung von Leukozyten unterstützt. Zu diesem Zweck wird auf in den
letzten Jahren entwickelte leistungsfähige Algorithmen aus dem Bereich der Künstlichen
Intelligenz, insbesondere des sogenannten Tiefen Lernens zurückgegriffen. In einem ersten
Schritt des Projekts wurden periphere Blutausstriche von AML-Patienten und Kontrollen
mit Methoden der digitalen Pathologie erfasst. Erfahrene Befunder aus dem Labor für
Leukämiediagnostik am LMU-Klinikum München annotierten die digitalisierten Präparate
und differenzierten sie in ein 15-klassiges, aus der Routinediagnostik stammendes Standard-
schema. Auf diese Weise wurde mit über 18,000 morphologisch annotierten Leukozyten der
aktuell größte öffentlich verfügbare Datensatz relevanter Einzelzellbilder zusammengestellt.

In einer zweiten Phase des Projekts wurde dieser Datensatz verwendet, um Algorithmen
vom Typ neuronaler Faltungsnetze zur Klassifikation von Einzelzellbilden zu trainieren.
Eine Analyse ihrer Vorhersagen zeigt dass diese Netzwerke Einzelzellbilder der meisten
Zellklassen sehr erfolgreich differenzieren können. Für falsch klassifizierte Bilder ähnelt
ihr Fehlermuster dem menschlicher Befunder. Neben der Klassifikation einzelner Zellen
erlauben die Netzwerke auch die Beantwortung gröberer, binärer Fragestellungen, etwa
ob eine bestimmte Zelle blastären Charakter hat oder zu den morphologischen Klassen
gehört die in einem peripheren Blutausstrich nicht unter physiologischen Bedingungen
vorkommen. Bei diesen Fragen zeigen die Netzwerke eine ähnliche und leicht bessere Leis-
tung als der menschliche Befunder. Die Ergebnisse dieser Arbeit illustrieren das Potential
von Methoden der künstlichen Intelligenz auf dem Gebiet der Hämatologie und eröffnen
Möglichkeiten zu ihrer Weiterentwicklung zu einem praktischen Hilfsmittel der Leukämiedi-
agnostik.
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Abstract

Diagnosis of hematological malignancies and of acute myeloid leukemia in particular have
undergone wide-ranging advances in recent years, driven by an increasingly detailed knowl-
edge of its underlying biological and genetic mechanisms. Nevertheless, cytomorphologic
evaluation of samples of peripheral blood and bone marrow is still an integral part of
the routine diagnostic workup. Microscopic analysis of these samples has so far defied
automation and is still mainly performed by human cytologists manually classifying and
counting relevant cell populations. Access to this diagnostic modality is therefore limited
by the number and availability of educated cytologists. Furthermore, its results rest on
judgments of examiners, which may vary according to their education and experience, ren-
dering rigorous quantification and standardization of the method difficult.

In this thesis, an approach to cytomorphologic classification is presented that aims to
harness recent advances in computational image classification for leukocyte differentiation
using Deep Learning techniques that derive from the domain of Artificial Intelligence. In
a first stage of the project, peripheral blood smear samples from both AML patients and
controls were scanned using techniques from digital pathology. Experienced cytologists
from the Laboratory of Leukemia Diagnostics at the LMU Klinikum annotated the digi-
tized samples according to a scheme of 15 morphological categories derived from standard
routine diagnostics. The resulting set of over 18,000 annotated single-cell images is the
largest public database of leukocyte morphologies in leukemia available today.

In a second step, the compiled dataset was used to develop a neural network that is able
to classify leukocytes into the standard morphological scheme. Evaluation of network pre-
dictions show that the network performs well at the classification task for most clinically
relevant categories, with an error pattern similar to that of human examiners. The network
can also be employed to answer two questions of immediate clinical relevance, namely if
a given single-cell image shows a blast-like cell, or if it belongs to the set of atypical cells
which are not present in peripheral blood smears under physiological conditions. At these
questions, the network is found to show similar and slightly better performance compared
to the human examiner. These results show the potential of Deep Learning techniques in
the field of hematological diagnostics and suggest avenues for their further development as
a helpful tool of leukemia diagnostics.
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Chapter 1

Introduction

In this chapter, Acute Myeloid Leukemia (AML), the disease on which this work is focused,
is introduced. Its definition, pathogenesis and clinical properties are briefly reviewed, and
an overview of the most common diagnostic workup is presented, with an emphasis on
microscopic examination of blood smears. A brief review of artificial neural networks is
given, and their use in the context of image classification is explained. Finally, aims and
scope of the project are defined.

1.1 Acute Myeloid Leukemia

1.1.1 History
The pathophysiologic relevance of peripheral leukocytosis in the absence of infection was
first realized in 1845 by Bennett [1] and Virchow [2], who established the term leukemia
(derived from the ancient greek terms for “white” and for “blood”) for the high numbers
of leukocytes he observed in peripheral blood. Later, Ebstein introduced the notion of
acute leukemias to distinguish their rapidly progressive and quickly fatal clinical course
from a more indolent, chronic form of the disease [3]. Finally, the distinction of myeloid
and lymphoblastic leukemias was devised by Naegeli in 1900 [4], who also recognised the
myeloblast as the key malignant cell type of myeloid leukemias. In summary, these findings
allowed defining acute myeloid leukemia (AML) as a disease entity.

1.1.2 Etiology
In a present-day understanding, AML is a pathology based on the malignant transformation
of cells belonging the hematopoietic system. Specifically, neoplastic cells involved in AML
are part of the myeloid lineage of hematopoiesis (cf. Fig. 1.1). Various cell types on different
stages of myelopoiesis can be affected, leading to considerable diversity in etiology, clinical
presentation, and prognosis [5]. In this context, the predominant cell type affected is the
hematopoietic stem cell.
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Typically, malignant transformation is due to one or several genetic lesions in the hematopoi-
etic system, which in adults is located in the bone marrow [5]. As a consequence, uncon-
trolled proliferation of immature myeloid progenitor cells takes place in the bone marrow,
displacing other physiological cell types. In many cases, this uncontrolled proliferation
leads to flooding of immature myeloid cells into the peripheral blood stream.

Figure 1.1: Simplified, schematic depiction of the morphological cell types and differen-
tiation pathways involved in human hematopoiesis, including the myeloid and lymphoid
lineage. Image reproduced from Ref. [6].

However, malignant proliferation of hematopoietic cells can also lead to a normal or reduced
number of peripheral leukocytes [9], which is why their relative frequency in the bone
marrow is relevant for definitive diagnosis. In this context, presence of immature blast
cells above a threshold of 20% of nucleated cells in the bone marrow is required today to
establish the diagnosis for most subtypes of AML [7].
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Disease type Defining properties

AML with recurrent genetic abnormalities

AML with t(8:21)(q22;q22); RUNX1-RUNX1T1
AML with inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB-MYH11
Acute promyelocytic leukemia (APL) with PML-RARA
AML with t(9;11)(p21.3;q23.3); MLLT3-KMT2
AML with t(6;9)(p23;q34.1); DEK-NUP214
AML with inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); GATA2, MECOM
AML (megakaryoblastic) with t(1;22)(p13.3;q13.3); RBM15-MKL1
AML with BCR-ABL1 (provisional entity)
AML with mutated NPM1
AML with biallelic mutations of CEBPA
AML with mutated RUNX1 (provisional entity)

AML with myelodysplasia-related changes
Therapy-related myeloid neoplasms

AML, not otherwise specified (NOS)

AML with minimal differentiation
AML without maturation
AML with maturation
Acute myelomonocytic leukemia
Acute monoblastic/monocytic leukemia
Acute erythroid leukemia
Pure erythroid leukemia
Acute megakaryoblastic leukemia
Acute basophilic leukemia
Acute panmyelosis with myelofibrosis

Myeloid sarcoma
Myeloid proliferations
related to Down syndrome

Transient abnormal myelopoiesis
Myeloid leukemia associated with Down syndrome

Table 1.1: Overview of the 2016 classification of AML according to the WHO, focussing
on genetic properties. Table adapted from [7] and [8].

1.1.3 Classifications
According to the current classification scheme published by the World Health Organization
(WHO), AML can be further classified using a variety of morphological, immunophenotyp-
ical and genetic criteria, as well as clinical findings [7]. A brief overview of the structure
of the 2016 WHO classification is given in Tab. 1.1.
While recent versions of the WHO classification increasingly rely on a genetic character-
ization of AML, the so-called French-American-British (FAB) classification is also still
commonly used. It forms the basis for describing cases which do not fit into a genetically
defined subtype and are subsumed under the category “AML, not otherwise specified” in
the WHO classification (cf. Tab. 1.1 and 1.2.). First established in the 1970s [12] and later
extended [13], that classification is primarily inspired by morphological criteria. A sum-
mary of the main classes included in the updated FAB classification is shown in Tab. 1.2.

1.1.4 Epidemiology
A detailed understanding of the origins of the genetic alterations leading to AML remains
elusive today. However, a number of risk factors are known to be associated with an
increased risk. These include environmental factors such as exposure to benzene, ionizing
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FAB Class Description Comments
M0 AML with minimal differentiation No Auer rods.

M1 AML without maturation Rare Auer rods.

M2 AML with maturation
Auer rods possible.
Most common type
(30-40% of cases).

M3 Acute promyelocytic leukemia
(APL)

“Faggott cells” with many Auer rods.
M3v variant has bilobed nuclei in peripheral blood.

M4 Acute myelomonocytic leukemia
(AMMoL)

Auer rods uncommon.
M4eo variant has abnormal eosinophils.

M5 Acute monoblastic leukemia
No Auer rods.
Further subclassification possible:
M5a: Monoblasts predominant
M5b: Monocytes predominant

M6 Acute erythroid leukemia Presence of multinucleated erythroblasts
and myeloblasts.

M7 Acute megakaryoblastic leukemia Polymorphic blasts.
May include cytoplasmic vacuolization.

Table 1.2: Overview of the FAB classification, primarily based on morphological properties.
Note that apart from the M3 subclass, the FAB scheme is included in the subclassification
of “AML, not otherwise specified” type of the 2016 WHO classification (cf. Tab. 1.1). Table
compiled from Refs. [9, 10, 11].

radiation, alkylating agents and cigarette smoke, as well as non-modifiable risk factors such
as old age and male sex [11, 14, 15]. Additionally, some chromosomal genetic disorders
such as the Down, Klinefelter and Turner syndromes are associated with an elevated
risk [11]. Furthermore, AML can also arise secondary to a previous hematipoietic disorder,
usually Myelodysplastic Syndrome (MDS) or Myeloproliferative Neoplasm (MPN) [16].
Both AML and MDS can emerge as a complication of previous medical treatment, such as
cytotoxic chemotherapy or radiation therapy.

1.1.5 Clinical presentation and treatment
On an epidemiologic level, AML represents the most common acute leukemia in adults,
with an incidence of 3 – 4 per 100,000 persons per year [15]. Median age at diagnosis in
large populations tends to be found in the range of 66 – 74 years [15, 17]. Most prominent
clinical findings in AML patients include general symptoms such as weakness, fatigue and
fever. Pallor, increased infection risk, easy bruising and increased risk of bleeding reflect
hematopoietic derangement, leading to anemia, neutropenia and thrombopenia. Certain
AML subgroups can exhibit more specific symptoms, such as infiltration of the gums by
blasts in the FAB groups M4 and M5 [11].
Without treatment, AML has a very poor prognosis with survival times of days to few
months [8]. It was only with the advent of chemotherapy from the 1950s onwards that this
natural history could be significantly improved [18].
The current standard initial treatment still consists of a chemotherapy backbone with the
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aim of inducing remission, i.e. reduction of blasts in the bone marrow under 5%, and a nor-
malization of peripheral leukcocyte and thrombocyte counts. In order to achieve this aim,
an induction treatment with cytarabine and an anthracycline according to the so-called
7+3 scheme remains a standard of care [19]. Eventually, a significant number of patients
relapse and become non-responsive to further therapeutic intervention. As an addition
or alternative to chemotherapy, hematopoietic stem cell transplant can be considered in
suitable patients [20].
Overall, AML still today has a poor prognosis, and 5-year survival rates in adult patients
can be as low as 10% [21]. A notable exception is Acute Promyelocytic Leukemia, whose
treatment has dramatically improved thanks to the introduction of regimens based on all-
trans retinoic acid (ATRA) and arsenic trioxide (ATO), with cure rates reaching well over
80% [22].

Advances in the understanding of the genetic landscape underlying the disease biology
of AML have led to a considerable diversification in the identification of patient sub-
groups [19]. This has triggered the development of various novel therapeutic approaches,
and an expansion of the range of available drugs whose success remains to be thoroughly
evaluated [23]. The hope is to ultimately arrive at treatment strategies which use the de-
tailed knowledge of disease mechanisms acquired in recent years in the framework targeted
and personalized therapies [24, 25, 26].

Figure 1.2: Historical and present-day leukocyte images.
Left: Drawings of leukocytes in a leukemia patient published by Bennett in 1851 [27],
thought to be the first depictions of cell morphology in patient with that disease [18].
Right: Scan of a peripheral blood smear of a leukemia patient in Pappenheim stain, ob-
tained with the scanner device used for the work presented in this thesis.
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1.2 Diagnostic modalities

1.2.1 Light microscopy
The methods included in the diagnostic workup of AML cover a broad range of tech-
nological aspects, and have co-evolved with the increasingly detailed understanding and
sub-classification of the disease. This necessitates use of a several diagnostic methods in
order to arrive at a final diagnosis. Morphological examination of peripheral blood smears
and bone marrow samples under a light microscope is by far the oldest method, which
however remains a key step of the diagnostic algorithm [28]. As it is the main imaging
method used in this work, its basic properties are briefly discussed here.
The technological roots of light microscopy, including use of water and oil immersion tech-
niques, can be traced back to the pioneering works of Hooke [29] and van Leeuwen-
hoek [30] in the 17th century. Improvements in the quality of microscopes by Abbe and
others enabled their use in the investigation of pathologic alterations in tissues and cells,
which also lead to the first modern descriptions of leukemia [2, 1] (cf. Fig. 1.2).
Today, microscopic evaluation of cytologic specimina remains an important cornerstone
in the diagnosis of AML, and high resolution represents a key requirement of diagnostic
quality. In this context, an optical objective magnification of 63x to 100x is usually re-
quired [31]. Furthermore, oil immersion is commonly used. The primary effect of this
method is a decrease in the minimum distance δ required for two points to be optically
discernible, which is given by [32]

δ = 0.61 λ

NA
. (1.1)

Here, λ is the wavelength of the illuminating light, and NA = n · sinα the so-called
numerical aperture of the objective used, which in turn depends on the refraction index n
of the surrounding medium and the geometric half-opening angle α of the optical system
(cf. Fig. 1.3). Intuitively, the numerical aperture NA is a measure of the system’s ability to
focus incoming light. Higher values of NA correlate with a higher transversal resolution,
i.e. the ability to separate points geometrically close in the transverse direction of the
optical axis. Hence, the objective resolution can be increased by replacing the air around
the objective (nair ≈ 1.0) with an optically denser medium with higher refractive index
(cf. Fig. 1.3). Standard immersion oil used today typically has values of n ≈ 1.5.
Another important optical parameter in the use of microscopes and scanners is the depth
of field (DOF), i.e. the maximum distance from the focal plane at which an object can be
simultaneously in focus. Using an optical detector whose smallest resolvable distance is
given by e, the DOF of a microscope with magnification M is given by [32]

dDOF = λ · n
NA2 + n

M ·NA
e. (1.2)

For microscopes with high magnification and numerical aperture as used in cytomorphol-
ogy, the depth of field predicted by eq. 1.2 can be well below 0.5 µm. Normally, a shallow
DOF is compensated by focussing through the sample when examining one field of view
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with an optical microscope. For scanners, that image larger regions of a coverslip consisting
of many fields of view, this shallow focus depth means that small inhomogeneities of the
coverslip surface can cause the image to defocus. This necessitates frequent re-focussing
or elaborate focus tracking methods, which in turn tend to considerably slow the scanning
process [33].

Figure 1.3: Oil immersion in light microscopy.
Left: Microscope with objective immersed in oil, as commonly used in cytomorphologic
examination. Adapted from [34].
Right: Schematic depiction of optical path with air and immersion oil as surrounding
medium. Use of optically dense immersion oil results in an increase of numerical aperture
NA = n · sinα, and hence resolution.

1.2.2 Microscopy sample preparation and staining
For sample preparation of peripheral blood smears, a droplet of capillary or venous blood
anticoagulated using an ethylene diamine tetraacetic acid (EDTA) buffer is put at the edge
of a ground cover glass, and is then smeared out using the technique shown in Fig. 1.4. In
order to morphologically differentiate the cellular components of the smear, different com-
mon staining protocols are available [36]. In Europe, the most frequently used protocol is a
combination of the May-Grünwald and Giemsa stains, which is also known as Pappen-
heim stain after its original developer [37]. Its main ingredients include eosin, methylene
blue as well as azure A and B [36]. A very similar alternative is the Wright stain, which
is more popular in the United States [38]. Both stains are panoptic, with eosinophilic,
basophilic and neutrophilic components. While these standard panoptic chemical stains
are the most frequently used stains for hematological cytomophology, many more staining
methods exist for specific purposes, including e.g. the Heilmeyer stain for reticulocyte
counting, or the Berlin Blue Iron stain for detection of trivalent iron [39].
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Figure 1.4: Preparation of peripheral blood smears.
Left: To produce a blood smear, a droplet of blood is placed on a coverslip and smeared
out in the fashion schematically shown. Modified from [35].
Right: Macroscopic aspect of a blood smear sample prepared as shown on the left and
stained using a Pappenheim protocol.

Another class of important stains relevant in the diagnosis of AML are cytochemical stains,
whose behaviour relies on the use of cellular enzymes and that are relevant in the context
of the FAB classification of AML [13]. The most important stains from this class are the
myeloperoxidase, nonspecific esterase and PAS stains.
The focus of the present work is on cytomophology from standard stains, hence all samples
included were stained using a routine Pappenheim protocol. A typical sample is shown
in Fig. 1.4.

1.2.3 Other diagnostic methods
In the light of a more detailed understanding of the disease biology of AML, several other
methods have rapidly become integral parts of the routine diagnostic workup of myeloid
neoplasms. Most of these methods yield intrinsically more quantitative data, but are much
more costly and technologically complex, and are therefore often used only after initial
cytomorphologic examination. As this thesis is concerned with microscopic examination
of blood smears, they are mentioned briefly here for completeness. In a routine setting, all
methods are increasingly used concurrently in an integrated fashion, allowing to arrive at
a more complete picture of the entity in question [40]. This includes molecular information
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that bears direct relevance for the treatment and prognosis of the disease, such as the
BCR-ABL or FLT3 markers [41].
A key aspect in the characterization and sub-classification of Leukemias is determination
of the immunophenotype. This is typically done using flow cytometry, which allows sorting
of cells according to parameters such as cell size, granularity or antigen pattern present
in the cytoplasm or on the cell surface [9]. This allows quantitative allocation of cells
to defined subclasses defined by characteristic markers (cf. Fig. 1.5). Depending on the
suspected class, comprehensive consensus marker panels have been established [42].
Furthermore, genetic methods represent a large and increasingly important part of leukemia
diagnostics. This category includes cytogenetics, i.e. interpretation of number and banding
patterns of stained metaphase chromosomes (cf. Fig. 1.5), which can exhibit characteristic
alterations in AML [20], and is essential to classifying the disease according to the current
WHO classification (cf. Tab. 1.1). Genetic methods also comprise fluorescence in-situ hy-
bridization (FISH), a technique that relies on the use of nucleic acid probes complementary
to defined sequences on chromosomes that are tagged by fluorescent labels. Therefore, they
allow targeting specific genetic alterations on a sub-microscopic scale, e.g. a rearrangement
of the PML and RARA genes in the framework of acute promyelocytic leukemia [43, 7].
Finally, molecular genetics plays an increasingly important part in the understanding
and classification of AML. In the past few years, a rapidly expanding list of molecular
biomarkers have been introduced, which allow for specific characterization of genetic alter-
ations in diseased cell populations and hold considerable potential for the future diagnostic
workup [40]. Furthermore, PCR-based techniques have become a very sensitive tool in
monitoring and quantifying the disease kinetics of post-therapy AML through detection of
minimal residual disease [40, 44].

1.3 Artificial Neural Networks for image classification
Models of computation that try to emulate the human thought process as “artificial intelli-
gence” have a longstanding history that go back to the first modern concepts of computing
machines in the mid-19th century [46, 47, 48]. Over time, these concepts have led to a large
variety of approaches to define and concretely realise “artificially intelligent” algorithms.
One line of thought derives from the idea to computationally emulate neural processing in
the brain, leading to the concept of “artificial neural networks”. Following the theory of
learning based on neural plasticity developed by Hebb in the 1940s [49], a first artificial
neural network, the perceptron, was developed by Rosenblatt in 1958 [50] as a pattern
recognition algorithm. Work by Hubel, Wiesel and others on the neurophysiology of
information processing in the visual cortex added biological plausibility to the use of ar-
tificial neural networks in recognising visual patterns [51]. However, computers available
at the time of their first study made training of networks large and fast enough to be
used for practical tasks difficult due to their limited performance and memory availability.
Furthermore, results by Papert and Minsky outlined theoretical limitations of artificial
neural networks [52], leading to a phase of reduced interest in the subject known as “AI
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Figure 1.5: Common modalities in the diagnostic workup of AML.
Left: Dot plot resulting from flow cytometry of staining for the cell surface markers CD13
and or CD33 versus CD14. The myeloid population of interest is coloured green, and a
small lymphoid population in red.
Middle: Dual fusion signal in a FISH study, in this case using an LSI MLL dual color DNA
probe.
Middle: Typical cytogenetic study, revealing changes to chromosomal structure and an
additional chromosome 8.
Images reproduced from Ref. [45]

winter” [53]. Nevertheless, the following years led to important advances, such as develop-
ment of the backpropagation algorithm, which is important for efficiently training artificial
neural networks [54, 55] and remains in widespread use.

While neurophysiological findings remain an inspiration for the development of artificial
neural networks today, their practical design and training is typically independent of di-
rect biological models. Neural networks used today consist of basic, abstract processing
units, which produce an output by applying a usually nonlinear activation function to
several input values. In this regard, their structure is inspired by the function of biological
neurons, which receive and integrate synaptic activations as inputs that influence their
firing behaviour and produce an output signal that is transduced via the axon. However,
the details in the implementation of abstract neurons differ considerably and lack a bio-
logical correlate [55] (cf. Fig. 1.6). Output and input channels of individual neurons are
connected to form an abstract neural network. Training such an abstract neural network
hence amounts to finding a set of weights in the neural connections that lead to a desired
collective behaviour of the network. In particular, sequential stacking of multiple layers
of neurons between input and output layer, forming so-called hidden layers, has turned
out to be an important aspect in the development of successful applications. Networks
with a large number of hidden layers are called deep networks. Increasing the depth (i.e.,
number of consecutive layers) has been a major driver in the development of more suc-
cessful CNNs [56]. Machine learning methods that rely on the use of deep artificial neural
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networks are often subsumed under the term “deep learning”.

Figure 1.6: Analogy of biological neurons (upper schematic) and neurons used in artificial
neural networks (lower schematic): If a weighted sum of input values reaches a certain
threshold (modelled by the bias b), a nonlinear activation function produces a high output
in analogy to the “firing” of a biological neuron. Learning occurs by modification of the
input weights to produce a desired behaviour of the overall neural network.
Upper schematic reproduced from Ref. [57]

Consistently, the present success of deep neural networks in a growing number of practical
tasks was partly enabled by advances in available training strategies for deep networks
from around 2006 on [58, 59]. Furthermore, the wide availability of graphics processing
units (GPUs), which are optimized towards fast matrix and vector operations important
in neural network training, has helped the popularity of deep neural networks [56]. Image
classification has emerged as one of the most successful applications of deep neural net-
works since 2012, when a contribution by Krizhevsky and coworkers that used a deep
convolutional neural network (CNN) won the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) by a large margin, beating other approaches that relied on a hand-
crafted feature extraction strategy (cf. Fig. 1.7) [60]. Some of the hidden layers of CNNs
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are convolutional layers, which leads to a shift invariant classification behaviour [55]. In
addition to this success in natural image recognition tasks, deep neural networks showed
similar success in medical imaging, such as the detection of mitoses in histological images
[61]. Since then, a number of key medical image classification tasks have been addressed
using CNNs, including classification of skin lesions [62], retinal fundus photographs [63, 64]
and mammographic images [65].
In the intervening years, deep neural network-based models have been consistently dom-
inating the list of best-performing image classification algorithms, and have dramatically
increased the overall success rate of automated image classification. This development is
consistently witnessed e.g. by the results of the ILSVRC competition (cf. Fig. 1.7).

1.4 Scope of the project
In this thesis, a project is described that aims to develop a diagnostic support system for
cytomorphologic classification based on the use of state-of the art Convolutional Neural
Networks (CNNs). As is common for neural network-based approaches, successful training
and evaluation of a neural network for classification tasks typically requires a large amount
of annotated data. In this work, a digital leukocyte image database is compiled based on
the peripheral blood smears of 100 AML patients and 100 persons without morphological
signs of malignancy. This database is then used for both training and evaluation of several
neural networks. The quality of the underlying image dataset is extensively evaluated
using re-annotation. Furthermore, the networks trained are analysed as to which parts of
the classified images are relevant in producing the classification result.
As a result of the scanning and labelling process, a database of more than 18,000 single-cell
leukocyte images is set up in this work, which is the largest publicly available morphological
image database available to date. Furthermore, testing of the networks trained using
this dataset shows that these algorithms reach human-level performance at the task of
morphologically classifying individual leukocytes, hence making the power of deep learning
models accessible to an important area of hematological diagnosis.
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Figure 1.7: Structure and performance of modern CNNs:
Upper panel: Typical structure of a modern deep neural network. Several hidden layers
lie between the input and output nodes, and contain increasingly abstract representations
of the input signal. In the final layer, this leads to a classification (in this case, the first
name of the pictured person). Figure reproduced from Ref. [66].
Lower panel: Classification accuracy of algorithms submitted to the ILSVRC contest since
2011. Note the steep increase in accuracy in 2012 due to AlexNet by Krizhevsky et
al. [60]. First submission of the ResNeXt model used in this work is shown in bold. Figure
modified from Ref. [67])
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Chapter 2

Materials and Methods

A prerequisite for the use of computational analysis methods for image-based single-cell
classification is high-quality sample digitization using appropriate microscopic imaging
devices. As the gold standard for morphological classification is defined by the trained
human cytologist, the next step in developing an automated classification system consists of
annotation of the acquired material. The result is a comprehensive dataset of microscopic
images annotated on the single-cell level that can be used to train and evaluate neural
network models.
This chapter gives an characterization of the cohort of patients whose blood smears were
included into the study. Then, the digitization and annotation process is described. Finally,
the network structures and main training and analysis tools are introduced.

2.1 Cohort selection and properties
For much of classical statistical modelling, the size of the dataset included in the devel-
opment of a model plays an important part in the ability to derive robust statements.
In a data-driven method such as deep learning, the aim is to train a model that can be
successfully applied to previously unseen data, i.e. a model which possesses favourable gen-
eralization properties. Overall, the intuitive expectation is that models trained on larger
training datasets tend to generalise better [55, 68]. At the same time, it has been shown
that fewer but carefully chosen training samples covering the information necessary to
build models may suffice for certain networks and datasets [69]. Presently, no general,
precise way of estimating the number of samples needed for training a neural network with
a desired performance is known. For single cell classification, it might however be expected
that the training data should at least cover the range of observed morphologies with several
independent cases. While in this work, models are trained to classify single cells rather
than the entire blood smear of a patient, collecting cell images from several patients for
each class is expected to aid generalisability. At the same time, certain cell populations are
rare, even in a large patient cohort. Ultimately, the number of patients and cells included
reflects a tradeoff between scan and annotation time against the aim of creating a dataset
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that covers the range of possible appearances morphological classes considered reasonably
well.
For the present work, peripheral blood smears from 100 patients diagnosed with AML at the
Laboratory of Leukemia Diagnostics at LMU Klinikum were selected. The patient group
covered most morphological classes of the FAB scheme (cf. Tab. 1.2). The distribution of
FAB classes in the AML patient cohort is shown in Fig. 2.1.

Figure 2.1: FAB class distribution of patients included in the AML cohort.
Figure adapted from Ref. [70].

To avoid bias for the cytomorphology in blood smears of AML patients, 100 control blood
smears were also included. While the control smears were taken from patients at the LMU
Klinikum rather than healthy controls, they were found not to exhibit morphological signs
of malignancy before inclusion into the study. All blood smears included were evaluated
within the routine workflow of LMU Klinikum between 2014 and 2017. The study set-
up was reviewed by the ethics committee of the LMU medical faculty, and consent was
obtained under reference number 17–349.
A distribution of age and gender of the AML patients and controls included in the study
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Figure 2.2: Distribution of age and sex in the AML patient and control group.
Upper panels: Age distributions, showing a similar median age for AML and control pa-
tients with 58.3 and 59.8 years respectively.
Lower panels: Sex distributions in both cohorts. Figure reproduced from Ref. [70].

is given in Fig. 2.2. Age properties of the AML and control groups were comparable, with
a median age of 58.3 for the AML group and 59.8 years for the control patient group. The
AML group showed a female/male ratio of 48/52, and the control group of 39/61. An
outline of the data acquisition and processing workflow is shown schematically in Fig. 2.3.

2.2 Digitization process
Morphological evaluation of blood smears for AML diagnostics is done by primarily evaluat-
ing leukocyte cytomorphology. Evaluation is normally restricted to the so-called monolayer
area of the blood smear, which is the region in which single blood cells lie densely, but
without overlapping [5]. Digitization of a large enough part of the monolayer region is
therefore sufficient for annotation of cells from a blood smear.
Reduction of the area to be scanned is important, as the scan parameters required for cy-
tomorphology, i.e., 100-fold magnification and immersion oil use, lead to much higher scan
times than in the case of histopathology, where 40-fold magnification is more frequently
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Blood smears 200 scans @ ~1GB:Digital scan: ~ 20mm2 AOI
100x + oil immersion

Human examiner 
annotation &
classification of
~ 100 cells/scan

Data set of
~ 18,000 single-cell 
images at 400 x 400 px

CNN training & evaluation

Figure 2.3: Schematic depiction of the workflow used in this study. In order to estimate
intra- and inter-rater variability of annotation, single-cell patches were re-annotated up to
two times after initial annotation from the AOI scan.
Figure reproduced from Ref. [71].

used [72, 73]. This effect is due not only to the increased number of fields of view (FOVs)
to be imaged by the scanner, but also due to the necessity to refocus more frequently due
to a shallow depth of field, as presented in Sec. 1.2.1. Additionally, high-resolution scans
of large areas of interest (AOIs) can lead to prohibitively large file sizes, providing further
motivation for scanning only relevant areas of the blood smear.
All slides included in the present study were digitized using the M8 digital microscope-
scanner manufactured by Precipoint GmbH, Freising, Germany (cf. Fig. 2.5). In the scan-
ning process, a low-magnification overview image of the smear was first produced, from
which an AOI of approximately 20 mm2 was manually selected in the monolayer region
and then scanned at 100-fold magnification. Immersion oil was applied manually. Scan
times depended on a variety of hardware settings, but normally ranged between 30 and 60
minutes per AOI. The scanner produced files in the vendor-specific .vmic format, which
typically leads to file sizes of approximately 1 GB.

2.3 Annotation
As the classifiers based on convolutional neural networks (CNNs) in this work are trained
and tested using expert-annotated data, size and quality of data annotation are key to
classifier validity. In some use cases of CNN-bases classifiers, the ground truth of an image
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annotation can be provided by an underlying gold-standard method. For example, the
dignity of photographic images of skin lesions can be decided by histopathological exam-
ination [62]. In the case of leukocyte cytomorphology however, no obvious independent
parameter exists which could definitively determine the morphological class of a given cell.
For this reason, ground-truth image labels have to be provided by a human examiner.
In order to annotate the image data in a standardized way that allows estimation of intra-
and inter-examiner variability, up to three annotations of individual leukocytes were per-
formed. A first annotator used the entire AOI that was scanned from the monolayer region
of the blood smear as described in Sec. 2.2. The examiner was asked to proceed as in the
normal case of evaluating a blood smear as far as possible, and flag approximately 100
leukocytes per smear in the scanned AOI, and classify them into the morphological classi-
fication scheme shown in Fig. 2.4. The classification scheme is based on the scheme used in
clinical routine, and at this stage included several subcategories that are characteristic for
some subtypes of AML, such as faggot cells and bilobed promyelocyted for AML M3v [9].
During annotation, the examiner used a custom-written deep-zoom viewer described in
Appendix A (cf. Fig. 2.5). The first annotator could access the whole scanned AOI and
compare different cells.
Based on the first annotation, single-cell image patches of size 400 x 400 pixels around the
positions flagged by the annotator were extracted from the AOI. When the point flagged
by the first annotator lay closer than 200 pixels from the edge of the scanned AOI, the
part of the patch outside the AOI was filled with transparent pixels, i.e. pixels with a zero
alpha value. From the dataset obtained in this way, patches containing more than one
leukocyte were removed to ensure that labels of single-cell patches were unique. Overall,
this yielded a set of 18,365 single-cell images.
In order to estimate interrater variability of leukocyte annotation, a second, independent
cytologist was asked to re-annotate a subsample of 1,905 single-cell images which contained
all morphological classes of our classification scheme. During re-annotation sessions, the
re-annotator only had access to single-cell patches, and, unlike the first examiner, could
not access the whole AOI scan. This setup was chosen in order to mimick the single-
cell classification task of the neural network. For an estimate of intra-rater variability
of single-cell classification results, re-annotation of the same subsample was repeated 11
months after the first re-annotation by the same cytologist.
The results of the first annotation are expected to be of higher consistency, as the first
examiner has access to the whole AOI, potentially providing contextual information un-
available to the second examiner when performing the re-annotations based on single-cell
images. For this reason, results of the first annotation are treated gold-standard labels
against which results of re-annotation and algorithmic classification will be compared.

2.3.1 Data augmentation
As morphological types of leukocytes occur with different frequencies on the blood smears
digitised, the distribution of cell types in the single-cell database is intrinsically imbal-
anced. For example, segmented neutrophils are expected to be the most frequently en-
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Figure 2.4: Taxonomy used for gold-standard annotation. The 19 classes corresponding to
the leaves of the scheme are derived from the routinely used scheme [9], with some addi-
tional divisions to enable subclassification of promyelocytes and myeloblasts according to
the presence of Auer rods and presence of a bilobed nucleus, and subclassify erythroblasts
according to their staining behaviour.
Figure modified from Ref. [71].

countered leukocyte type under physiological conditions. In contrast, some cell types, such
as monoblasts, are relatively infrequent and only few cases were classified in the gold stan-
dard annotation used in this work. Class imbalance in the training data can lead to poor
generalization properties of the resulting model [55]. One of the common strategies to
counteract this effect is data augmentation, which is based on the idea of upsampling the
minority class by producing additional, “artificial” data through transformations of exist-
ing data. In the context of image classification, this strategy has been shown to increase
model quality in many cases, even in the absence of class imbalance [55, 74].
For the present study, minority classes in the training data were augmented using horizontal
and vertical flips, as well as random rotations in the range of 0◦− 359◦. Scaling operations
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Figure 2.5: Equipment for blood-smear digitization and annotation. Left panel: The M8
microscope/scanner used for digitization of all slides included. Right: Custom-written
annotation tool for annotation of single cells during the gold-standard annotation, as de-
scribed in more detail in Appendix A.

were not used, in order to maintain cell size as a morphological criterion. Examples of the
image augmentations used are shown in Fig. 2.6. The augmented dataset was saved and
used for training all networks. Training data augmentation was performed after splitting
the data into a test and a training set, in order to avoid contamination of the test set with
augmented data from the training set. No augmentation was performed on the test set.

2.4 Computational methods

2.4.1 Hardware and software tools

Over the past few years, a number of frameworks have been developed for deep learning ap-
plications that allow a standardized setup, training and evaluation of neural networks [75],
including the Microsoft Cognitive Toolkit (CNTK) [76], Theano [77] and Tensorflow [78].
These framework enable fast implementation and training of neural networks while encap-
sulating the underlying extensive matrix operations, making neural network development
faster and less error-prone. Execution of code on GPUs is also supported, which is key
to significantly speeding up neural network computations, which heavily rely on the use
of matrix algebra. Throughout this work, the Keras library [79] encapsulating Tensorflow
for the Python programming language was used for network implementation. All network
training and evaluation for this work was performed on Nvidia GeForce GTX Titan X
GPUs.
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Figure 2.6: In order to counter class imbalance in the single-cell image dataset, data aug-
mentation techniques were used in order to upsample underrepresented classes. Specifically,
flips and random rotations were performed. Here, three images generated from the original
single-cell patch annotated as a myeloblast (upper left panel) are shown.

2.4.2 Network architectures

In the context of image classification tasks, CNNs with a large variety of different network
architectures and layer designs can be used [55, 80]. Choosing the best network struc-
ture in general and optimizing its hyperparameters in particular is generally a complex
and resource-intensive problem [81]. The approach taken in this work is to use network
structures that have proven successful in the context of natural image classification, and
adapt them for the single-cell classification problem studied here. Systematic optimization
of CNN hyperparameters is generally a complex and computationally costly problem [82],
and was not attempted in the context of this work, which is a reasonable strategy for two
reasons. Firstly, a number of highly optimised networks exist that have been used with
increasing success for natural image classification in recent years [67]. As technically, cyto-
morphological classification fulfills a comparable task, these networks offer a good starting
point. Secondly, the size of the image dataset studied in the context of the present project
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is relatively small with approximately 18,000 images compared e.g. to ImageNet [83], the
database used in the ILSVRC competition, which contains over 15 million labelled im-
ages [60]. Due to small dataset size, random effects due to sample noise are expected to
be potentially more important than the gains of an improved network structure. In order
to estimate sample noise, results in this work are stated as means and standard deviation
obtained using k-fold cross-validation, as discussed in Sec. 2.4.3. In this work, a sequential
network inspired by the VGG structure introduced by Simonyan and Zisserman of the
Visual Geometry Group (University of Oxford), and the ResNeXt scheme [84] introduced
by Xie et al. were used, and are described in the following.

Sequential network

This CNN follows the design philosophy of the VGG network [85], which was introduced
in 2015 as an improvement of the seminal work by Krizhevsky and co-workers [60]. The
network is built from stacked layers, which is termed a sequential model in the Keras
environment. It contains four consecutive building blocks, which each consist of two 2d-
convolutional layers, followed by a max-pooling layer. The final two layers are dense layers,
after which the output is produced. After the first 2d-convolutional layer in each of the
four building blocks, a so-called batch-normalization layer was introduced, which is used
to increase the training stability of the neural network [86]. Activation layers following the
2d-convolutions use the so-called rectified linear unit (“ReLU”) activation function defined
as

fReLU(x) = max(0, x), (2.1)

which is a commonly used choice for a non-saturating activation function, showing better
training performance than other options in the context of image classification [60]. Kernel
sizes of the 2d-convolutional layers were chosen as (3,3) in the first two blocks, and (6,6)
in the second blocks, and are hence fairly small as in the VGG network [85]. A schematic
overview of structure and parameters used for the sequential model in this work is shown
in Fig. 2.7. Overall, the sequential network set up in this way contains 433,656 parameters,
of which 433,224 are trainable. Networks with a structure similar to the sequential network
used here represented the state of the art of image classification around 2015, with many
improvements suggested since.

ResNeXt

After the initial success of CNNs in the realm of natural image classification in 2012, a
large variety of more complex, refined networks have been developed [87]. One of the
key methods to outperform initial sequential models of the type described in the previous
section are so-called residual networks (ResNets). The reason for their initial development
was the observation that networks of increasing depth turned out to yield higher training
errors, an effect known as the degradation problem [88, 89]. As a solution to this problem,
He et al. proposed the ResNet structure, which won the ILSVRC classification task in
2015 [89]. The basic structural idea of ResNets is the introduction of skip connections
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conv2d_1_input: InputLayer
input:
output:

(None, 400, 400, 3)
(None, 400, 400, 3)

conv2d_1: Conv2D
input:
output:

(None, 400, 400, 3)
(None, 400, 400, 8)

activation_1: Activation
input:
output:

(None, 400, 400, 8)
(None, 400, 400, 8)

conv2d_2: Conv2D
input:
output:

(None, 400, 400, 8)
(None, 400, 400, 8)

activation_2: Activation
input:
output:

(None, 400, 400, 8)
(None, 400, 400, 8)

max_pooling2d_1: MaxPooling2D
input:

output:
(None, 400, 400, 8)
(None, 100, 100, 8)

conv2d_3: Conv2D
input:

output:
(None, 100, 100, 8)
(None, 100, 100, 16)

activation_3: Activation
input:

output:
(None, 100, 100, 16)
(None, 100, 100, 16)

conv2d_4: Conv2D
input:

output:
(None, 100, 100, 16)
(None, 100, 100, 16)

activation_4: Activation
input:

output:
(None, 100, 100, 16)
(None, 100, 100, 16)

max_pooling2d_2: MaxPooling2D
input:
output:

(None, 100, 100, 16)
(None, 25, 25, 16)

conv2d_5: Conv2D
input:
output:

(None, 25, 25, 16)
(None, 25, 25, 32)

activation_5: Activation
input:
output:

(None, 25, 25, 32)
(None, 25, 25, 32)

conv2d_6: Conv2D
input:
output:

(None, 25, 25, 32)
(None, 25, 25, 32)

activation_6: Activation
input:
output:

(None, 25, 25, 32)
(None, 25, 25, 32)

max_pooling2d_3: MaxPooling2D
input:
output:

(None, 25, 25, 32)
(None, 6, 6, 32)

conv2d_7: Conv2D
input:
output:

(None, 6, 6, 32)
(None, 6, 6, 64)

activation_7: Activation
input:

output:
(None, 6, 6, 64)
(None, 6, 6, 64)

conv2d_8: Conv2D
input:
output:

(None, 6, 6, 64)
(None, 6, 6, 64)

activation_8: Activation
input:

output:
(None, 6, 6, 64)
(None, 6, 6, 64)

max_pooling2d_4: MaxPooling2D
input:
output:

(None, 6, 6, 64)
(None, 3, 3, 64)

flatten_1: Flatten
input:
output:

(None, 3, 3, 64)
(None, 576)

dense_1: Dense
input:
output:

(None, 576)
(None, 256)

activation_9: Activation
input:
output:

(None, 256)
(None, 256)

dense_2: Dense
input:
output:

(None, 256)
(None, 16)

activation_10: Activation
input:
output:

(None, 16)
(None, 16)

Figure 2.7: Detailed structure of the sequential model used in this work. In parallel to the
seminal work published by Krizhevsky et al. in 2012 [60], the network contains several
stacked convolutional layers with intervening max-pooling lavers. The convolutional layers
are followed by two dense layers, which then produce the network output. Convolution
parameters and network depth are inspired by the VGG network [85]. Analogous convo-
lutional blocks are shaded blue, and the blocks containing the dense layers red.
Figure modified from Ref. [71].
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that pass on input data via a shortcut consisting of an identity function, as is shown
schematically in Fig. 2.8. Residual units hence split the transformations taking place in a
layer into the form H (x) = x+F (x), i.e. the sum of an identity function and a residual F .
Addition of layers in this structure can be trivially obtained by setting F = 0, which might
be expected to be easier to learn than building up an identity function from an additional
stack of nonlinear layers [89].
After the success of ResNet, ideas have been proposed to further improve on that net-
work in recent years, including Inception-ResNet [90], Wide Residual Networks [91] and
ResNeXt [84], which achieved a second place in the classification task of ILSVRC 2016.
The ResNeXt structure is used in this work as an example of an advanced, highly optimised
network structure. The basic idea of ResNeXt as an improvement over the original ResNet
structure is the decomposition of the residual function F(x) into aggregate transformations
of the structure [84]

F (x) =
C∑

i=1
Ti (x) , (2.2)

where the Ti are functions of the same topology. The parameter C is called the cardinality
of the ResNeXt block, and represents the number of parallel transformations in the block. A
value C = 32 is used in Ref. [84], and maintained throughout this work. Overall, the core of
ResNeXt consists of 16 stacked blocks of the kind described here [84]. The structure of both
the ResNet and the ResNeXt blocks is shown in Fig. 2.8. In this work, an implementation
of ResNeXt for Keras was used [92]. It is an attractive feature of the ResNeXt scheme
as used in the context of the present work that it does not require fine-tuning of model
hyperparameters. Rather, apart from adapting the input and output channels of ResNeXt,
the hyperparameters used in Ref. [84] were maintained. As is expected for ResNeXt [87],
the resulting model is big compared to the sequential model presented in the previous
section, with an overall of 23,115,024 parameters, out of which 23,046,800 are trainable,
leading to a relatively high computational cost.

2.4.3 Network training and evaluation
Following the strategy usually taken in machine learning, data was split into a training set
and a test set at a ratio of approximately 80% to 20% [55]. All classes were split individually
approximately according to that ratio, amounting to a so-called stratified split, in order to
populate training and test sets with equal relative class compositions. After the split, only
the training set was augmented as described in Sec. 2.3.1, and used to train the network,
hence avoiding contamination of the test set with data related to the training set via an
augmentation procedure.
As some classes contain only a relatively small number of single-cell images, the corre-
sponding test sets for the classes involved can be small. For this reason, the test error
estimate in particular is expected to be fraught with significant statistical uncertainty. In
order to counteract this problem, the strategy of k-fold cross-validation was developed [55].
It consists of splitting the total dataset into k folds in a stratified way, and then training k
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Figure 2.8: Schematic structure of blocks in ResNet and ResNeXt:
Upper panel: Basic building block of the ResNet, showing a decomposition of the network
transformation into an identity and a residual function F . Figure reproduced from Ref. [89].
Lower panel: Basic structure of the ResNeXt blocks, further dividing the residual function
into C different parallel transformations.
Figure reproduced from Ref. [84].

models, in which one different fold is used for testing and the remaining folds for validation
in each case (cf. Fig. 2.9). In the present work, this strategy was followed with k = 5, and
results are given as mean ± standard deviation whenever possible, allowing an estimate of
the statistical uncertainty of model evaluation introduced by the train-test split.
Supervised training is usually performed by feeding training data through the network,
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Fold 1

S
p

lit
s

Test fold

Results:
mean ± s.d.
across splits

Training folds

Fold 2 Fold 3 Fold 4 Fold 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Figure 2.9: Schematic depiction of 5-fold cross-validation as used in this work. The overall
data is split into 5 folds in a stratified way. Based on the splits, 5 networks are trained
where each one has a different test set, and a modified training set. Results are then given
as mean ± standard deviation across all 5 splits.

generating a prediction. A loss function, which measures the difference between network
prediction and ground truth, is then calculated based on this prediction. Minimizing
this loss function, i.e. bringing the model as close as possible to the ground truth, is the
aim of training. Model parameters are usually initiated in a random fashion, and then
iteratively refined to yield a lower loss. This is normally done by calculating a gradient
with respect to the loss function in weight space through backpropagation [55]. Several
optimizer methods exist, which are typically a variation of stochastic gradient descent [93].
Throughout this work, the Adam optimizer was used [94], together with the categorical
cross-entropy loss function as implemented in the Keras framework [79]. Categorical cross-
entropy is a frequently used loss function, which is defined as

Lcrossentropy(k1, ...,kN ; p1, ...,pN) = − 1
N

N∑
i=1

C∑
c=1

ki
c ln pi

c, (2.3)

where C is the number of classes in the classification problem, and N the number of obser-
vations. K and p are the normalized ground-truth and network output vectors respectively.
The number of components in both vectors equals the number of output categories of the
network. Typically, only one component of the ground-truth vector k is one, and all the
other components are set to zero, while the vector p contains the network output which
sums to 1.
A full training cycle using the whole training dataset is usually referred to as an epoch. At
the end of each epoch, the resulting model was tested on the test dataset by calculating
a test loss, in order to estimate its quality on unseen data. Usually, the test loss stops
decreasing or even increases again after a certain number of epochs. From this point
onwards, the model is said to start over-fitting the data, i.e. learning features particular to
the training set that do not improve its performance (cf. Fig. 2.10). For the ResNeXt model
developed in this work, it was found that the training loss stopped decreasing significantly
after approximately 15 epochs. Early stopping was used beyond that number of epochs
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in order to prevent over-fitting, in accordance with common practice [95]. An analogous
strategy was pursued for the sequential model.

epochs

loss

training set

test set

Figure 2.10: Schematic course of a typical training process of a CNN as a function of the
number of training epochs. From a certain number of epochs onwards, the loss on the test
set (blue line) starts to increase again, while the training loss continues to decrease. In
this situation, the model is said to over-fit, i.e. learn features that do not generalize well
to unseen data.

2.4.4 Network analysis
One of the strengths of CNNs is their ability to perform well on classification tasks without
the explicit extraction of features of the data, which differentiates deep learning models
from earlier approaches to image classification. In fact, deep learning-based algorithms
have outperformed humans in a variety of defined classification tasks such as the ILSVRC,
although the human performance has been found to be more robust against image degra-
dations in some circumstances [96, 97]. However, a problematic aspect of the way CNNs
produce their classification results is the difficulty to trace their predictions to particu-
lar features of the input. Hence, it is often difficult to understand and interpret network
predictions, and in particular to understand the reasons why predictions fail. This issue
has often been described as the “black box” property of neural networks [98]. It can be
particularly problematic in the medical context, where it is often crucial not only to be
able to explain and rationalise a decision, but also to assess the explanatory quality [99].
These issues have led to a whole line of research in recent years, often termed “explainable
AI”, which aims at better understanding and explaining the way in which machine learn-
ing algorithms reach their results [100]. In the context of image classification, a popular
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method is based on calculating the gradient of the class score with respect to the input
image, and was proposed by Simonyan et al. [101]. It allows creating co-called saliency
maps which represent the importance of individual pixels in the input image for the clas-
sification decision of the network. This approach was generally taken in the present work.
It should be mentioned that other approaches have been developed more recently that
follow other strategies at explaining network classification decisions, including CAM [102],
Grad-CAM [103], DeepLIFT [104], and LRP [105]. Comprehensive application of these
different approaches to the single-cell classification problem is beyond the scope of this
work. However, development of better strategies to analyse and understand neural net-
works, and ensure their outputs follow appropriate ethical and legal standards will be a
key prerequisite to their wider use in the context of medical practice [106].
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Chapter 3

Results

Evaluation of neural networks must be performed on data that has not been used in their
training. While a number of methods for the analysis of the internal structure of net-
works can be applied, it is the performance of the network on unseen data that ultimately
determines its quality as a classifier. In order to determine its practical utility, a direct
comparison to human performance is necessary. In this chapter, a detailed evaluation of the
trained ResNeXt and sequential networks is given in section 3.3 and 3.4. As a baseline com-
parison, human performance in single-cell classification as estimated using re-annotations
of the dataset is described in section 3.2. Some aspects of network analysis, in particular
using methods based on calculating saliency maps using the gradient of the class score, are
briefly described in Sec. 3.2.

3.1 Ground truth annotation

The ground-truth annotation process performed by the first examiner on the whole scanned
AOI yielded an overall database of 18,365 single-cell images of size 400 x 400 pixels, as
described in detail in Sec. 2.3. For illustration of the annotation images, a part of an AOI
used for ground truth annotation, as well as the resulting single-cell images are depicted in
Fig. 3.1. The population of individual morphological classes according to the classification
scheme used (cf. Fig. 2.4) is given in Tab. 3.1. Morphological subclasses which in the final
dataset comprised fewer than 10 images were merged with neighbouring classes of the tax-
onomy into an overarching higher-level class. Specifically, the classes for myeloblasts with
and without Auer rods were merged into a common myeloblast class, and faggot cells and
promyelocytes with and without Auer rods were combined into a common promyelocyte
class. Likewise, no distinction was made between polychromatic and orthochromatic ery-
throblasts. Merging hence resulted in a definitive structure of 15 classes for training and
evaluation of the model. The resulting dataset containing the single-cell images together
with ground truth annotations and re-annotations as described in Sec. 3.2 was reviewed
and made publicly available by The Cancer Imaging Archive (TCIA) under Ref. [107].
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Myeloblast

Lymphocyte
(typical)

Metamyelocyte

Figure 3.1: Samples of image data produced:
Left panel: Part of an area of interest (AOI) scanned from a blood smear. Leukocytes with
nuclear structures can be discerned between red blood cells which do not contain nuclei.
As for all samples involved in this work, the AOI scan was obtained from the monolayer of
the blood smear, where cells do not aggregate or overlap significantly. Scans like the one
shown here were used for the gold-standard annotation.
Figure modified from Ref. [71]
Right panels: Single-cell images extracted from the AOI scan using the ground-truth an-
notation given below.

3.2 Annotation quality evaluation
In order to estimate the quality of annotations, and directly compare the single-cell classifi-
cation performance of a human examiner to the analogous task performed by the network,
a second human examiner was asked to re-annotate a representative subsample of 1,905
single-cell images from the overall compiled dataset. Hence, the re-annotation task is pre-
cisely analogous to the classification task performed by the network. The second human
examiner completed two independent re-annotation sessions, with a time separation of 11
months, during which the examiner did not have access to the sample images in order
to minimise short-time memory effects. By following this strategy, two independent re-
annotations of the single-cell image data subset are produced, and can be used to assess
not only the agreement of the first and the second examiner, but also the consistency of a
single examiner at two different points in time.
The single-cell image re-annotation task is notably different from the task of annotating
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Class Number of images

M
at
ur
e
le
uk

oc
yt
es Neutrophil (segmented) 8,484

Neutrophil (band) 109
Lymphocyte (typical) 3,937
Lymphocyte (atypical) 11
Monocyte 1,789
Eosinophil 424
Basophil 79

Im
m
at
ur
e
le
uk

oc
yt
es

Myeloblast 3,259
Myeloblast with Auer rods 9
Promyelocyte 67
Promyelocyte with Auer rods 1
Faggot cell 2
Promyelocyte (bilobed) 18
Myelocyte 42
Metamyelocyte 15
Monoblast 26
Erythroblast 78
Smudge cell 15
Total 18,365

Table 3.1: Full class-wise statistics as annotated by the first examiner. To ensure a sufficient
number of images for training and testing, subclasses containing less than 10 cells were
merged as described in the main text (cf. Table 1 of the main text).
Table reproduced from Ref. [71].

individual cells on the whole scanned AOI, which is performed by the first examiner. While
in the re-annotation task, individual cell images are annotated out of context, the initial
AOI-based annotation task enables simultaneous assessment and comparison of all cells
on the AOI scanned. The annotations obtained from a whole-AOI scan include global
information of the smear, e.g. a comparison between different cell types present, and are
therefore expected to be more accurate. For this reason it seems appropriate to regard
the first annotation performed on the whole scan as a gold-standard, and use it as ground
truth when training and evaluating the networks as presented in this chapter. The second
examiner had the possibility to mark single-cell images for which a definite morphological
type could not be determined as “unclear” in both re-annotation sessions.

3.2.1 Inter-rater agreement

The results of the first and second re-annotation round are presented in the left column
of Fig. 3.2, as compared to the ground truth provided by the first human examiner. Both
re-annotations show a similar deviation pattern from the ground truth label, with signif-
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icant deviations mainly focussed within the consecutive steps of myelopoiesis. Normally,
deviations within these cell classes are considered tolerable and unproblematic, as no exact
morphological criterion exists that exactly delineates the consecutive substeps of myeloid
development. In fact, previous work by Krappe et al. suggested treating respective classes
as equivalent [108]. Further deviations of the re-annotations from the ground-truth anno-
tation concern myeloblasts confused with lymphocytes or monocytes, which seems mor-
phologically plausible.
A subset of 63 single-cell images (3.3% of the re-annotation dataset), and 208 single-cell
images (10.9% of the re-annotation dataset) could not be assigned a unique morphological
label by the second human cytologist during the first re-annotation and the second re-
annotation 11 months later respectively. The difference in the number of these unlabelled
single-cell images suggests that examiner confidence in classifying single-cell images may
vary over time. The right column of Fig. 3.2 shows the distribution of ground-truth labels
of single-cell images marked as “unclear” by the second examiner. While the number
of cells labelled “unclear” was substantially larger in the second re-annotation, we note
that similar cell types are affected in both re-annotations, namely myeloblasts, typical
lymphocytes, monocytes and segmented neutrophils, again reflecting cell types that are
prone to be confounded according to the confusion matrix. For a confident differentiation
of those morphological cell types, the contextual information on the whole AOI scan may
hence be particularly useful.
Within the group of images for which the second examiner did assign a unique morpho-
logical class, re-annotations showed excellent agreement with the ground-truth label. A
common metric for quantification of inter-rater agreement is Cohen’s kappa, which is
defined as [109]

κ = p0 − pe

1− pe

, (3.1)

where p0 represents the observed agreement between raters, and pe the overall proportion
of chance-expected agreement. Note that κ = 0 for totally coincidental agreement between
raters, and κ = 1 for perfect agreement. In practice, p0 is calculated from the elements of
the confusion matrix cij as the relative frequency of samples for which both raters agree
out of a total of N samples as

p0 =
∑

i cii

N
, (3.2)

while pe is determined as

pe = 1
N2 ·

∑
i

ci· · c·i, (3.3)

where the ci· = ∑
j cij and c·i = ∑

j cji are the marginal populations of the confusion matrix.
Specifically, the value of Cohen’s kappa for the re-annotation single-cell image labels
(excluding “unclear” cases) compared to the gold-standard was κ = 0.84 for the first,
and κ = 0.87 for the second re-annotation, indicating excellent agreement in both re-
annotations according to common interpretations of κ [109].
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Figure 3.2: Re-annotations of single-cell images performed by a second human examiner
compared to the ground truth provided by the first examiner with access to the whole AOI
scan.
(a) Confusion matrix between ground-truth label and first re-annotation label for uniquely
classified images (left), and ground-truth labels of the 63 images marked as “unclear” dur-
ing the first re-annotation round (right). Excellent agreement is observed with a value of
Cohen’s kappa of κ = 0.84.
(b) Confusion matrix (left) and distribution of ground-truth labels of the 208 images
marked “unclear” (right) in the second re-annotation round, performed with a time dis-
tance of 11 months from the first re-annotation shown in (a). Again, excellent agreement
is obtained with a value of Cohen’s kappa of κ = 0.87. In both re-annotations, note
similar deviations from the ground truth are observed, for example in classifying atypical
lymphocytes or promyelocytes as myeloblasts.
Figure reproduced from Ref. [71]
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3.2.2 Intra-rater agreement

Rather than comparing the results of the single-cell image re-annotations provided by
the second examiner to the ground-truth annotation of the first examiner as was done in
the previous section, both re-annotations can be directly compared in order to assess the
self-agreement of a single human examiner performing the analogous task of the neural
network. The two respective re-annotation sessions were carried out by the same examiner
and separated by a time gap of 11 months. This enables a direct comparison of both
annotations to estimate the intra-examiner variability of the single-cell image annotation
process. Intra-examiner variability may be taken as to estimate the day-to-day variability
of classification performance, which is known to potentially be a considerable source of
imprecision [110]
A comparison of both singe-cell annotations of the second examiner is given using a con-
fusion matrix in Fig. 3.3. With a Cohen’s κ = 0.77, results also for this measure lie in
the domain of excellent agreement [109], showing good consistency of second annotator
performance over time.

3.3 ResNeXt model evaluation

This section presents the ResNeXt model as trained and evaluated using the entire dataset,
and distributing it randomly to 5 folds in a stratified way, as described in Sec. 2.4.3.
The model is evaluated for two tasks, namely classification of images according to the
morphological scheme described in Sec. 2.3, and binary classification.

3.3.1 Classification performance

Performance of the ResNeXt network is evaluated by passing single-cell images through it,
and comparing the output prediction with the ground-truth labels assigned by the ground
truth examiner (cf. Sec. 2.3). In its final layer, the network outputs a vector of normalised
activation

P = (P1, ..., Pi, ..., P15), (3.4)

which can be interpreted as predicted probabilities for the input to belong to a respective
class. Here, the component Pi correspond to the predicted probability for the given image
to belong to class i out of the 15 overall classes. The network’s classification prediction is
the class m with the highest predicted probability Pm.
Class-wise predictions of the ResNeXt are shown in the confusion matrix of Fig. 3.4. Addi-
tionally, the class-wise performance of the model can be described using common metrics
for evaluation of diagnostic tests, namely precision, sensitivity and specificity, which are
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Figure 3.3: Excellent agreement between two annotations (82.3% overall, κ = 0.77) of a
subsample 1,905 single-cell images. Both re-annotations were produced by the same human
examiner with an intervening time of 11 months.
Figure reproduced from Ref. [71].

commonly defined as follows:

sensitivity = true positive
positive (3.5)

specificity = true negative
negative (3.6)

precision = true positive
true positive + false positive . (3.7)

In this context, “true positive” and “true negative” are the number of images correctly
ascribed or not ascribed to a given class by the network, respectively, “positive” and “neg-
ative” are the overall number of images belonging or not belonging to a certain class, and
“false positive” is the number of cell images wrongly ascribed to that class. Values of



38 3. Results

precision and sensitivity for all cell classes obtained by 5-fold cross-validation are given in
Tab. 3.2.
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Figure 3.4: Confusion matrix between network prediction and ground-truth label of the
human examiner obtained by 5-fold cross-validation. To the right of the matrix, the number
of single-cell images in the overall dataset is indicated on a logarithmic scale. For key cell
classes such as myeloblasts, the ResNeXt network shows very good performance, with
deviations from ground-truth similar to the human second examiner discussed in Sec. 3.2.
In Tab. 3.2 the class-wise performance is given using precision and sensitivity. Individual
results for all 5 folds are given in Appendix B.
Figure adapted from Ref. [71].

Network predictions agree very well with gold-standard annotations for the most common
physiological cell types, e.g. segmented neutrophils, typical lymphocytes, monocytes, and
eosinophils, achieving values above 90% in both precision and sensitivity in these classes
(cf. Tab. 3.2). Myeloblasts, whose presence in the peripheral blood is common in myeloid
leukemias [20], are also recognised with a very high precision and sensitivity of 94% (cf.
Tab. 3.2).
Rare classes are more challenging for the network to classify correctly, in particular the
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Class Precision Sensitivity Number of images
M
at
ur
e

le
uk

oc
yt
es

Neutrophil (segmented) 0.99± 0.00 0.96± 0.01 8, 484
Neutrophil (band) 0.25± 0.03 0.59± 0.16 109
Lymphocyte (typical) 0.96± 0.01 0.95± 0.02 3, 937
Lymphocyte (atypical) 0.20± 0.4 0.07± 0.13 11
Monocyte 0.90± 0.04 0.90± 0.05 1, 789
Eosinophil 0.95± 0.04 0.95± 0.01 424
Basophil 0.48± 0.16 0.82± 0.07 79

Im
m
at
ur
e

le
uk

oc
yt
es

Myeloblast 0.94± 0.01 0.94± 0.02 3, 268
Promyelocyte 0.63± 0.16 0.54± 0.20 70
Promyelocyte (bilobed) 0.45± 0.32 0.41± 0.37 18
Myelocyte 0.46± 0.19 0.43± 0.07 42
Metamyelocyte 0.07± 0.13 0.13± 0.27 15
Monoblast 0.52± 0.30 0.58± 0.26 26
Erythroblast 0.75± 0.20 0.87± 0.09 78
Smudge cell 0.53± 0.28 0.77± 0.20 15
Total 18, 365

Table 3.2: Class-wise precision and sensitivity of the network, determined by 5-fold cross-
validation. The model attains levels of precision and sensitivity above 0.9 for morphological
classes containing more than 400 images, such as segmented neutrophils, typical lympho-
cytes and myeloblasts. Larger deviations across folds occur for classes with small sample
number, e.g. metamyelocytes and promyelocytes.
Table reproduced from Ref. [71].

intermediate stages of granulopoiesis and erythropoiesis, and basophils, for which our test
and training dataset contains less than 100 images. Note that these mixups within gran-
ulopoiesis were also observed in the performance of the human re-annotator described in
Sec. 3.2. To some extent, this effect is due to the lacking precise morphological delineation
between the different maturation stages. Therefore, these mixups have been considered as
tolerable in the literature [111].
Due to the intrinsically unbalanced number of cells present in the scanned smears for
different cell types, the number of test and training images varies by up to two orders
of magnitude for different classes (cf. Tab. 3.2). As might be expected, the number of
single-cell images available in a particular class of the dataset correlates with network
performance. E.g., as inspection of Tab. 3.2 shows, the model attains values above 0.9 in
classes for which more than 400 single-cell images are present in the dataset.
As a further consequence of the high intrinsic class imbalance in the single-cell image
dataset, calculation of an overall accuracy score for our model is problematic, as it would
be biased towards the classes with a high number of samples [55], and is therefore not
evaluated here.
Values in Tab. 3.2 as well as the entries in the confusion matrix of Fig. 3.4 were obtained by
5-fold cross-validation as described in Sec. 2.4.3, in order to make results less dependent on
the random noise introduced by the allocation of cells into individual folds. A description
of the individual results of the 5 different models trained for cross-validation is given in
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Appendix B.
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3.3.2 Binary decision performance
From the classification of single-cell images into distinct morphological categories, coarser
classifications can be derived by summing up the activations for several categories. Specif-
ically, by taking the sum

Pblast = Pmyeloblast + Pmonoblast, (3.8)

the overall probability of a cell to possess blast character can be calculated from the network
output. The question whether myeloblasts or monoblasts are present on a blood smear
possesses key clinical importance, as these so-called blast equivalents are generally required
to be present in the peripheral blood for a diagnosis of AML [20]. Given the network output
of Pblast, a threshold probability t can then be chosen such that the binary prediction of
the network is given by

ŷ = Pblast ≥ t. (3.9)

The receiver operating characteristic (ROC) curve is the result of sweeping t between 0
and 1, and is shown in the upper panels of Fig. 3.5.
Averaging across the 5 folds trained, the area under the ROC curve is obtained as AUC-
ROC = 0.992 ± 0.001. Hence, ResNeXt provides a test of the blast character of a given
single-cell image that fulfills the criteria of outstanding tests using the usual criteria of
test assessment [112, 113]. To relate the network’s performance with the human examiner,
sensitivity and specificity of single-cell re-annotation can be assessed by considering if the
re-annotator classified an image as either myeloblast or monoblast. Human performance
exhibits a sensitivity of 95.7% and 90.7%, and a specificity of 91.1% and 95.2% for the
first and second re-annotation respectively (cf. upper panels of Fig. 3.5). Results of
both independent, human re-annotations lie close to but somewhat below the network
ROC curve. This indicates that the network achieves a comparable and slightly superior
performance compared to the human examiner in deciding if a given single-cell image
contains a blast-like cell or not.
In analogy to the blast vs. non-blast decision, another clinically important binary decision
on individual leukocytes is whether a given cell belongs to one of the typical cell types
present in peripheral blood under normal circumstances, or to atypical cell types that
occur in pathological situations. In this context, atypical cells are myeloblasts, monoblasts,
myelocytes, metamyelocytes, promyelocytes, erythroblasts and atypical lymphocytes. In
this test, the overall probability Patypical for a given cell to be classified as atypical is
obtained by summing up the output probabilities of all individual atypical cell classes.
Again, the ROC is determined by sweeping through threshold values t for the atypicality
test as given Eq. 3.9 for the blast test.
The ResNeXt network yields an ROC-AUC of 0.991±0.002 when testing for atypicality of
a cell, which again indicates outstanding performance [112, 113]. In comparison, human re-
annotation attains a sensitivity of 95.9% and 91.7% and a specificity of 91.0% and 95.3%
for the first and second re-annotation respectively (lower panels of Fig. 3.5). It can be
observed that the sensitivity–specificity point of the human examiner lies slightly below
the ROC curve produced by the network. Hence performance by the ResNeXt model is
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Figure 3.5: Comparison of ResNeXt model and human performance on binary tasks. The
morphological classes for which the respective binary parameter is positive are highlighted
red in the taxonomy schematic in the left column (cf. Fig. 2.4).
Upper panels: Model ROC for the binary test for blast character of a given single-cell
image. The network performs very well with an area under the curve (AUC) of 0.992 ±
0.001, measured by averaging across five folds. Indicated by indicated by ‘x’ and ‘+’ are
performances of the human second examiner during two independent re-annotations of
single-cell images at different times, which are slightly outperformed by the network.
Lower panels: ROC of the ResNeXt network in the binary task of recognising atypical
cells. Also in this task, the network performs very well (AUC: 0.991± 0.002) and slightly
outperforms the human second examiner.
Figure adapted from Ref. [71].

close to and slightly better than the human examiner’s performance in both re-annotation
rounds on the single-cell annotation task relative to the ground truth on our test subset
containing 1,905 images. This observation holds true for both the blast character and
atypicality tests, as can be seen from Fig. 3.5.
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3.3.3 Alternative training regime
For the training process of the network in Secs. 3.3.1 and 3.3.2, all annotated single-cell
images from the dataset were pooled prior to performing the class-wise, stratified split
described in Sec. 2.4.3, which assigned approximately 20% of the images in a specific class
for testing and the remaining 80% for training in each fold. All images used as in the test
set were excluded from the training process and not seen by the network before testing.
This method of dividing train and test samples allows distributing the available image
pool evenly between test and training sets. However, different single-cell images from the
same blood smear can be assigned to the training and test classes in the same split. Hence
a priori, one might worry if this method could introduce a bias into the test set due to
correlations between images of different single cells stemming from the blood smear of the
same patient, e.g. by stain or focus effects shared amongst images that come from the same
slide.
In order to test the importance of possible correlations of this kind, the model was re-
trained, this time splitting the training and the test sets according to patient-of-origin
rather than cell type. Specifically, all cells from 10 patients with AML diagnoses and 10
patients without pathological peripheral blood smears were set aside for testing. No data
from these patients was used in the training process of the alternative network model. This
procedure restricts possibilities of an even split within the individual cell classes, which is
particularly problematic for classes for which only few sample images exits. If a patient
who contributes many samples of a rare cell type gets selected into the test or training
set, this implies a substantial decrease in the number of available images in the other set,
making it difficult to train or test the network for that particular class reliably.
Despite this complication, the network trained by the patient-wise train-test split performs
well for all major classes, as can be seen from Fig. 3.6, which shows evaluations of the
alternative model analogous to Figs. 3.4 and 3.5. The AUC values of the case-wise model
for the binary tasks of distinguishing blasts from non-blasts and typical from atypical cells
are 0.992 and 0.986 respectively. Good agreement between the class-wise and the patient-
wise data splitting regime indicates that correlations between different leukocytes on a slide
are not significant enough to determine training performance. Leukocytes so not appear
to carry “hidden name tags” that indicate which slide they are imaged from. However,
class-wise splitting in test and training set allows making maximal use of the dataset, as
it does not introduce conditions on single-cell distribution.
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Figure 3.6: Predictions of a ResNeXt model trained by splitting between training and test
set according to patient-of-origin rather than morphological class.
Upper panel: Confusion matrix of the ResNeXt-model trained on a patient-wise split of
test and training data. Classification results are similar to the model trained based on a
stratified class-based split (cf. Figs. 3.3.1). However, for classes containing only a small
number of single-cell images, deviations occur due to the difficulty of separating them into
test and training set on a case-wise basis. Notably, all monoblast cells in the dataset stem
from a single case, so that no case-wise split into training and test sample is possible.
Lower panels: Left: ROCs of the case-wise model when testing for blasts. At this task,
the model achieves an AUC of 0.992, just as the model presented in Sec. 3.3 that was
trained based on a class-based split. Right: ROC of the ResNeXt model trained on a
patient-based split when distinguishing typical from atypical cells. The model achieves an
AUC of 0.986 for this task. Insets schematically depict the classification taxonomy, with
the classes contributing to the respective binary decisions coloured red.
Figure adapted from Ref. [71].



3.4 Sequential model evaluation 45

3.4 Sequential model evaluation
Neural networks typically possess a large number of hyperparameters, which have to be
adjusted according to the problem at hand. Finding their optimal values is generally a
difficult problem, which in many cases can only be done in an iterative way or by trial
and error, as systematic optimization, e.g. by grid search, is often too computationally
expensive. In order to show the robustness of the results obtained using the ResNeXt
model, a second network is trained here with a different architecture. Namely, a sequential
model is used, which is inspired by the VGG model [85]. Details on architecture and
hyperparameter choice in this second network are described in Sec. 2.4.2.
The sequential model is trained to perform precisely the same image classification task using
exactly the same split of the data into 5 folds as for the ResNeXt model (cf. Sec. 3.3). Hence,
a direct comparison of the results of both networks is possible, with differences in prediction
performance entirely due to differences in network architecture. Note that the sequential
model possesses only 433,224 trainable parameters, which compares to 23,046,800 trainable
parameters for the ResNeXt model and hence differs by a factor of more than 50. In
the sequential network, a 16-class classification was originally performed, with a further
differentiation of orthochromatic and polychromatic erythroblasts. For consistency with
the results of ResNeXt model, these two classes are lumped into one common erythroblast
class.

3.4.1 Classification performance
Performance of the sequential model in the classification task compared to the ground-
truth annotation is shown in Fig. 3.7. The confusion matrix was obtained using 5-fold
cross-validation also for this model. The general deviation pattern is similar to what
was observed in the ResNeXt model (cf. Fig. 3.4). In particular, similar mixing between
the individual stages of granulopoiesis is apparent, which as discussed for the ResNeXt
model in Sec. 3.3 is intrinsic to the morphological classification process and also present
in the results of human re-annotation (cf. Fig. 3.2). The class-wise values of precision and
sensitivity obtained by the sequential model are listed in Tab. 3.3.

3.4.2 Binary decision performance
For the two binary questions considered in this work, namely discerning blasts from non-
blasts and typical from atypical cell morphologies, performance of the sequential model is
depicted in Fig. 3.8. Also the sequential model performs very well, with an ROC-AUC of
0.983± 0.003 and 0.990± 0.001 for recognition of blast cells and atypical cells respectively.
Again, performance of two re-annotations by the second human examiner is close to, but
somewhat below the ROC, indicating that also the sequential model performs at least on
a par with the human performance. Hence, as far as blast recognition and the recognition
of atypical cell types is concerned, the sequential model is only very slightly inferior to
ResNeXt. This fact is remarkable given the much higher model size of ResNext, and
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Class Precision Sensitivity Number of images
M
at
ur
e

le
uk

oc
yt
es

Neutrophil (segmented) 0.99± 0.04 0.94± 0.01 8, 484
Neutrophil (band) 0.16± 0.06 0.60± 0.17 109
Lymphocyte (typical) 0.97± 0.02 0.93± 0.02 3, 937
Lymphocyte (atypical) 0.11± 0.11 0.11± 0.27 11
Monocyte 0.88± 0.02 0.90± 0.03 1, 789
Eosinophil 0.91± 0.08 0.94± 0.02 424
Basophil 0.45± 0.14 0.75± 0.06 79

Im
m
at
ur
e

le
uk

oc
yt
es

Myeloblast 0.94± 0.03 0.92± 0.03 3, 268
Promyelocyte 0.49± 0.12 0.50± 0.17 70
Promyelocyte (bilobed) 0.21± 0.07 0.69± 0.30 18
Myelocyte 0.50± 0.19 0.62± 0.20 42
Metamyelocyte 0.14± 0.13 0.40± 0.44 15
Monoblast 0.37± 0.14 0.67± 0.33 26
Erythroblast 0.59± 0.20 0.88± 0.09 78
Smudge cell 0.53± 0.33 0.67± 0.21 15
Total 18, 365

Table 3.3: Class-wise precision and sensitivity of the sequential network, determined using
5-fold cross-validation.
Also the sequential model achieves precision and sensitivity above 90% for most of the
key diagnostic cell classes, including segmented neutrophils, typical lymphocytes and
myeloblasts. As in the case of the the ResNeXt model, deviations across folds occur
for classes with small sample number, e.g. metamyelocytes and promyelocytes.
Table reproduced from Ref. [71].

suggests that, as suspected in Sec. 2.4.2, model performance is limited by the size of the
dataset and internal annotation consistency, rather than model size.
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Figure 3.7: Classification performance of a sequential model trained and tested on the
same dataset as the ResNeXt model (cf. Sec. 3.3 and Fig. 3.3). The confusion matrix for
the morphology classification task was obtained by 5-fold cross-validation.
Figure modified from Ref. [71].
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Figure 3.8: Performance of the sequential model in binary decisions. Insets show schematic
classification taxonomy, with positively contributing classes labelled red. Left panel: ROC
of the network when distinguishing blasts from non-blasts. This binary classification is
only slightly inferior to the performance of the ResNeXt network, achieving an AUC of
0.983 ± 0.003. Left panel: ROC of the sequential network distinguishing typical from
atypical cells. Also for this task, performance is good with an AUC of 0.990± 0.001.
Figure modified from Ref. [71].
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3.5 Model analysis
To determine if the network focusses on relevant parts of the single-cell images, saliency
maps were calculated for both models following the gradinent-based procedure outlined by
Simonyan et al. [101]. With the help of that method, it is possible to track and visualise
how important each pixel is individually for the output of the respective network, i.e. the
classification decision. Saliency maps for several test-set images are shown in Fig. 3.9 for
the ResNeXt model and in Fig. 3.10 for the sequential model, which were both trained
using precisely the same dataset.
From these maps, it can be inferred that pixels within the leukocyte classified are of key
importance for the network’s classification decision. This observation suggests that the
network has learned to focus on the areas of the single-cell image that are known to be
relevant for differentiating leukocytes, e.g. nuclear shape and the staining behaviour of the
cytoplasm, which emulates the known criteria for morphological differentiation [9].
No obvious correlation could be discerned between the saliency maps and the result of the
classifications as compared to the ground truth, suggesting that both correct and incorrect
classifications were obtained by the network by focussing on the single-cell image region
which contains the leukocyte. Hence, errors do not solely occur by the network focussing on
a background aspect of the single-cell image patch. This overall behaviour appears for both
networks, which is compatible with their observed similar performance on the respective
test sets. In the ResNeXt case, cell boundaries appear to show a slightly sharper delineation
in the saliency maps, which may indicate that this model possesses a better edge detection
capacity.
Observations of the pixel-wise classification behaviour of images as depicted using saliency
maps help illustrating the network’s behavior, and may can be regarded as a “sanity check”
on the trained network. An illustration that the model decisions rest on similar parts of
the input as human decisions would may increase trust in the model output. However,
these visualizations do not offer a proof of model behaviour, and cannot be used to predict
the general performance of the network on unseen data.
As discussed in more detail in Sec. 2.4.4, a variety of alternative methods have been pro-
posed in recent years aimed at allowing an “anatomy of neural networks” and analyse the
way in which network output is produced from the inputCAM [102, 103, 104, 105]. These
methods allow gaining a better understanding of the inner structure of the model. Addi-
tionally, methods have been developed that aim at making the comparison between saliency
maps more quantitative and rigorous [114]. Systematic application of these different tech-
niques is beyond the scope of this work. However, this direction of research continues to
be an active and important complement to the development of neural networks, with the
potential of building trust in the decision making process of networks by offering a glimpse
at their inner workings, and suggesting improvements to existing schemes. In particular,
analysis of the way in which network reach arrive at their output predictions can help to
make sure that these are not generated by biases or random associations in the training
data. Finally, this set of methods may also be able to show which parts of the input data
enable the network to reach the high level of performance it exhibits in the image classifi-
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cation task. Knowledge of these “criteria” applied by the neural network may enable the
human examiner to learn about so-far ignored aspects of the dataset, and generate new
hypotheses on it.

Neutrophil (segmented)

Lymphocyte (typical)

Monocyte

Eosinophil

MyeloblastMonoblast

Figure 3.9: Saliency maps illustrate the gradient of a pixel with respect to the ResNeXt
model’s loss function. Brighter pixels have a higher influence on the network’s classification
decision. Maps suggest that the network learns to focus on the leukocyte and map out
its internal structures, such as nuclear shape and cytoplasmatic content, while giving less
weight to background content.
Figure modified from Ref. [71].
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Neutrophil (segmented)

Lymphocyte (typical)

Monocyte

Eosinophil

MyeloblastMonoblast

Figure 3.10: Saliency maps of the sequential model trained and evaluated on the same
images as the ones shown in Fig. 3.9. Also for the sequential model presented in this work,
the highest-weight regions of the saliency maps lie within the leukocyte, indicating again
that the model focusses on relevant regions also in this network. Saliency maps for the
sequential model seem to map out the cell boundaries less sharply, which might indicate a
higher edge detection capacity in the much more complex ResNeXt model.



Chapter 4

Discussion and Outlook

4.1 Implications of the present work

In the present thesis, an annotated dataset of leukocyte cytomorphologies was compiled.
To the author’s knowledge, it is presently the largest publicly available dataset on leukocyte
morphologies in leukemias. Images contained in the dataset were annotated up to three
times, which allowed for a careful analysis of examiner performance and annotation quality.
The dataset has been made publicly available in order to serve as a reference for future
endeavours in the field of leukocyte image analysis.
In the context of the present work, the dataset proved large enough to allow application
of neural networks, a highly data-driven machine learning method. The trained networks
are able to classify images of single leukocytes into a standard morphological classification
scheme. Specifically, the two CNNs presented in this thesis exhibit very good performance
at identifying the most important morphological white blood cell types present in peripheral
blood without morphologic signs of malignancy. Both network structures also perform very
well at identifying pathological cell types which are key in the diagnosis of acute myeloid
leukemia. For the most common physiological leukocyte classes as well as for myeloblasts,
the networks attain precision and sensitivity above 90% when probed on test datasets.
Hence, these cell types can be identified with a very high accuracy, outperforming other
classifiers developed so far in the literature by a significant margin [115, 111]. Classification
predictions of the networks have been used to answer clinically relevant binary questions,
in particular if a given cell possesses blast character or if it is atypical and normally absent
under physiological conditions. It was found that in these two binary decision tasks, the
networks both reach the performance of human examiners classifying individual leukocytes.
Analysis of the trained networks using saliency maps hints that the networks have learned
to reach their classification decision by focussing on parts of the image which are also
being examined by human cytologists. While this observation does not in it self validate
the model, it might be taken as additional, positive check of its properties.
Given this level of performance and the fact that the method is easily scalable and fast, the
algorithm can be used to quickly screen thousands of cells on a blood smear scan, helping
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cytologists to find suspicious cells more readily. Rapid, automated pre-screening might be
particularly helpful in situations where the number of malignant cells is expected to be
small, such as in the early stages of hematological diseases, or at the beginning of relapse.
For fully automatic screening of all leukocytes on a blood smear, the single-cell classification
method developed here can be combined with a segmentation tool that selects single cells.
For this task, a large number of algorithms are available, which could be combined with
the cell classifier [116, 117, 118, 119]. As developed in this work, the network hence has
the potential to act as a rapid pre-screening and quantitatively informed decision tool for
cytological examiners which is based on the expertise of experienced examiners and can
speed up routine diagnostics.

4.2 Challenges for deep learning models in leukemia
diagnostics

The model developed in this work has shown very good performance on the single-cell
image classification task, showing human-level results in recognising blast-like and atypical
cells and outperforming other approaches to this problem used so far. Nevertheless, further
tests and evaluations of the model are necessary.

First, as might be expected for a data-driven classification method, a correlation was found
between the number of images available for a specific class in the training data set and the
performance of the network on that class. The single-cell image dataset presented in this
work containing over 18,000 single-cell images from 200 patients is considerably larger both
in terms of images and of patients included than other datasets available so far. However,
compared to databases like ImageNet, the dataset is still relatively small. This may also
be inferred from the fact, that the much simpler sequential model performs almost on the
same level as the much more complex ResNeXt model, which might be able to play out
its relative strengths only when used on a large dataset. Hence, from experience with the
general behaviour of neural networks, one can anticipate that further enlarging the dataset
will further improve the networks’ classification performances, in particular for cell types
which are rare in the present dataset.

Secondly, as neural networks learn from the input data in an end-to-end way, they are
known to be prone to picking up biases present in the training data. The dataset pre-
sented in this work contains a large number of patients compared to other datasets, which
is expected to mitigate possible biases in the data. Still, all samples were obtained from a
single center, so that sample processing and staining was done in the same way for all input
data. Additionally, the dataset used in this work was collected using the same scanning
hardware and data formats.

While this setup ensures that the dataset produced in this work is internally consistent,
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enlargement of the data basis by including images obtained using different staining, illumi-
nation and scanning equipment would likely increase the generalisability of the networks’
predictions. Likewise, inclusion of blood smears from other centers or re-training of the
network with local data might help the model to generalise better or be adapted to the
diagnostic environment of a different center. Compiling such a multi-sourced dataset and
correcting for possible batch effects remains a challenge with a significant material and
time cost.

Ultimately, a method of computer-aided diagnostics has to be tested in a routine ap-
plication environment, in order to prospectively evaluate its performance in a prospective
way. Scientific, regulatory and legal standards of the application of artificial intelligence
models in a medical context are still rapidly evolving at the time of writing. Presently, a
practicable application scenario seems to be using a network as a pre-sorting system that
suggests classifications of leukocytes which then have to be validated by a human observer.
Ultimately, networks could then be re-trained and learn from corrections made by the su-
pervising human, although this would include the possibility to “learn mistakes”, and is
therefore not usually used in the medical context to guarantee model stability.

4.3 Perspectives
The present work led to two direct follow-up questions which have been worked on by
the author, but are not included in this thesis. Firstly, the observation that the number
of images present in the dataset is highly correlated with the success of network training
leads to the question if there is an ideal number of training images to enable training of
a successful single-cell classifier. At the time of writing of this thesis, no general answer
to that question is known. However, dependence of classifier accuracy on sample number
could be studied by systematically varying the size of the training set.

Secondly, it seems desirable to extend the approach taken in the present work to the mor-
phology of bone marrow cells, whose examination typically follows upon appearance of a
suspicious finding in the peripheral blood and represents the gold standard of diagnosis
for many hematological disorders. However, as was the case so far for peripheral blood,
publicly accessible databases for images of these cells are lacking at the time of writing.

In the present work, a dataset of over 18,000 single-cell leukocyte images was compiled and
annotated, which formed the basis for developing neural networks that are able to classify
leukocytes with a significantly better performance than previous approaches. The strategy
used in this project was similar to the procedure often taken in natural image classification,
where the software is trained to recover a label assigned by a human annotator. In the
context of the present project, it was necessary to follow that strategy in particular due to
the fact that the well-known morphological classes conventionally used in cytomorphologic
reports are the product of long-running human classification efforts that do not perfectly
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correlate with other diagnostic modalities. It is a drawback of this strategy that ultimately,
there is no independent gold standard that could be used to decide the correctness of a
cell classification independently of a human label. Therefore, the perfect algorithm is the
one that reproduces the labels of the best available examiner, whose classification cannot
be exceeded by definition.

This limitation could be overcome by compiling an imaging dataset that combines light-
microscopic data as used in the context of the present work with labels obtained from
additional, independent data, e.g. immunophenotypic or genetic information on a single-
cell level. While building up such a database comes at a significantly higher cost, it would
enable to make predictions from the microscopic data and go beyond the knowledge of
a gold-standard annotator, potentially pointing towards correlations between the different
diagnostic modalities that are hitherto unknown. For example, a network trained on such a
dataset might be able to predict genetic properties of a cell from the microscopic image, and
hence suggest associations between its genotype and phenotype, of which only relatively
few are known today. Investigating the way in which networks make these predictions
could point to subtle, so far unknown properties of light microscopic images. Neural
networks as they are used today cannot themselves provide causal explanations of such
phenomena, which remains the domain of human investigation. When trained on high-
quality data, they can however be trained to become powerful aides, both in accurately
emulating human tasks and pointing towards properties of the data that are difficult for
humans to capture. The hope is that these properties will lead to a better understanding
of human disease and a more reliable and accurate diagnostic procedures, which both will
eventually work to the benefit of patients.



Appendix A

Annotation software

For the different stages of annotation in the present work, two independent annotation
tools were developed, one for the gold-standard annotation of the whole AOI scan, and
another one for re-annotation of single cell patches.

The first tool was developed based on JavaScript and jQuery, based on the open-source
tool OpenSeadragon [120], a web-based viewer for display of high-resolution, zoomable
images. It was designed to allow annotation of single leukocytes in an ergonomic and fast
way, emulating the workflow of microscopic cell differentiation as closely as possible while
building on experience with other commonly used applications, e.g. for the display of
maps. For display with OpenSeadragon, scanned AOIs were first converted into the .dzi
format. The tool shows the freely zoomable scanned AOI to the annotator, as well as the
number of cells annotated so far on the right of the viewer region. Upon right mouse click
into the display area, a dropdown menu offers the annotator all possible cell categories for
annotation (cf. Fig. A.1). All annotations can be deleted and changed. When annotation
is complete, all marked mouse positions are saved to an XML file, together with their pixel
coordinates relative to the original image. These can then be used to extract the single-cell
patches from the scanned AOI.

The second annotation tool was developed for efficient and ergonomic re-annotation of
extracted single-cell images. Images are loaded from the re-annotation set in random
order. The re-annotator can see the full-resolution single-cell image, and choose the mor-
phological class of the image from a set of buttons displayed to the right of the image
(cf. Fig. A.2). After completion of annotation, a full list of filename and re-annotation is
output.
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Figure A.1: Annotation of the scanned AOI using a deep-zoomable scan image.
Upper panel: Overview of the scanned AOI.
Middle panel: Selected cell area (blue bounding box) with dropdown selection of possible
morphological classes.
Lower panel: Annotated single cell (green bounding box with annotated class visible).
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Figure A.2: Software tool for re-annotations.
A single-cell image is displayed in full resolution, allowing the re-annotator to choose the
morphological class from a set of buttons to the right.
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Appendix B

Result for individual training folds

The results reported in Secs. 3.3 and 3.4 were obtained using 5-fold cross-validation. Hence,
the corresponding confusion matrices were calculated by averaging across the individual
confusion matrices of the 5 folds for which the ResNeXt and sequential networks were
trained and tested. As detailed in Sec. 2.4.3, 80% of the overall single-cell image dataset
was used for training, and the remaining 20% for testing the network trained for the re-
spective fold. Test sets for the different folds are constructed to be mutually disjoint, so
that each single-cell image is used for testing in only one of the 5 folds.

Confusion matrices of the individual folds are depicted in Fig. B.1 for the ResNeXt model,
and in Fig. B.2 for the sequential model described in Sec. 2.4.2. Given within the individual
entries of the confusion matrices is the number of images with the indicated classification
behaviour.

For classes containing a sufficient number of single-cell images, sample noise is small and
there is only minor variation between folds. Overall, the deviation of network prediction
from the ground truth is similar to the deviation of a human examiner from the ground
truth, as described in Sec. 3.2. As may be expected, inter-fold variability is higher for
classes with small population due to sample noise.
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Figure B.1: Confusion matrices of individual folds used for 5-fold cross-validation of the
ResNeXt network. Note that the prediction quality is good in all folds individually. Dif-
ferences arise mostly for classes populated by few single-cell images through small size of
test samples, corresponding to increased noise due to random sampling.
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Figure B.2: Confusion matrices of individual folds used for 5-fold cross-validation of the
sequential network. Also this network structure shows good prediction quality in all folds
individually.
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Appendix C

Structure of image dataset and code
repository

The image dataset compiled in this work has been made publicly available through the
TCIA database under https://doi.org/10.7937/tcia.2019.36f5o9ld [107].
For publication, images were sorted in a folder structure representing the ground-truth
annotation provided by the first examiner. Within the morphological classes, the cell
images were randomised, so that it cannot be inferred from file names which smear the cell
images were taken from. Second and third annotations were additionally deposited in the
file annotations.dat. A list of abbreviations used in the database is given in Tab. C.1.
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abbreviation description
BAS Basophil
EBO Erythroblast
EOS Eosinophil
KSC Smudge cell
LYA Lymphocyte (atypical)
LYT Lymphocyte (typical)
MMZ Metamyelocyte
MOB Monoblast
MON Monocyte
MYB Myelocyte
MYO Myeloblast
NGB Neutrophil (band)
NGS Neutrophil (segmented)
PMB Promyelocyte (bilobled)
PMO Promyelocyte
UNC Image that could not be assigned a class during re-annotation
nan no re-annotation

Table C.1: Abbreviations used in TCIA deposition.
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