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Zusammenfassung

In dieser Doktorarbeit werden wir verschiedene neue Methoden entwickeln, um Symme-
trien, mit Hilfe von maschinellem Lernen, zu erkennen und auf Probleme der theoretischen
Physik, insbesondere der Stringtheorie, anzuwenden.

Diese Arbeit ist in zwei Teile unterteilt. Im ersten Teil konzentrieren wir uns auf die
Entwicklung von, auf maschinelles Lernen gestützte, Werkzeuge zur Symmetrie-Erkennung,
während wir uns im zweiten darauf fokussieren, die Effekte bereits bekannter Symmetrien
der Stringtheorie zu untersuchen.

Im ersten Abschnitt dieser Arbeit geben wir eine kurze Einführung in die wichtigsten
Bereiche und Methoden des maschinellen Lernens. Im Anschluss an diesen Review stellen
wir die verschiedenen von uns entwickelten Tools vor. Die erste Idee verwendet Strukturen
in den verborgenen Schichten des neuronalen Netzwerkes, die bei dem Trainieren des Neu-
ronalen Netzwerkes entstehen. Datenpunkte, die durch eine Symmetrie verbunden sind,
werden in den verborgenen Schichten gruppiert und können dadurch benutzt werden, um
zusammengehörige Punkte zu finden. Der zweite Ansatz ist die direkte Suche von Erhal-
tungsgrößen eines Systems durch eine Koordinatentransformation zu „teilweise“ zyklischen
Koordinaten und damit die direkte Bestimmung von Erhaltungsgrößen. Die dritte Idee ist
die Konstruktion von Lax-Paaren für verschiedene Systeme. Durch die Definition einer
geeigneten Verlustfunktion können wir ein neuronales Netz konstruieren, das analytische
Formeln für Lax-Paare bestimmen kann. Lax-Paare sind die definierende Eigenschaft in-
tegrierbarer Systeme. Diese Operatoren-Paare ermöglichen es uns, Erhaltungsgrößen zu
berechnen und Informationen über die Stabilität eines Systems zu erhalten.

Im zweiten Teil dieser Arbeit untersuchen wir die Effekte von Dualitäten in der String-
theorie. Wir geben einen Überblick über die Symmetrie-Gruppen der S-Dualität und der
T-Dualität, sowie ihre Vereinigung, der U-Dualität. Im nächsten Schritt betrachten wir
die exzeptionelle Feldtheorie, die manifest invariant unter der U-Dualität ist. Durch diese
finden wir neue lokal nicht-geometrische Räume der M-Theorie, die bisher unbekannte lokal
nicht-geometrischer R-Flüsse enthalten. Im Folgenden konstruieren wir Dualitätsketten,
die Informationen über jene neuen Räume enthalten, die fehlende Impulse in Verbindung
mit den neuen nicht-geometrischen R-Flüssen aufweisen. Im letzten Kapitel untersuchen
wir den Phasenraum offener String-Endpunkte. Für einen lokal nicht-geometrische String-
Hintergrund zeigen wir, dass der Phasenraum nicht-assoziativ ist.
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Abstract

In this thesis, we will develop new machine learning based methods to detect symmetries
and use these tools on different problem settings in theoretical physics, specifically in string
theory.

This work is divided into two main parts. One is focused on the development of machine
learning tools for symmetries, whereas in the second part we focus on examining the effects
of already known symmetries of string theory.

In the first part, we give a light introduction to the most important areas and methods
of machine learning. Following this review, we present the different tools we developed.
The first idea uses structures in the hidden layers of a neural network. Data points linked
by symmetries are clustered in the training process of the neural network and therefore can
be used to find points connected by a symmetry when examining the representation of the
data points in the hidden layers. The second approach is the direct search for conserved
quantities of a system through a coordinate transformation to “partially” cyclic coordinates
and thus, the direct search of conserved quantities. The third mechanism constructs Lax
pairs for various systems. By defining a suitable loss function, we can construct a neural
network which gives us an analytical formula for a Lax pair. Lax pairs are the defining
property of integrable systems. These pairs of operators allow us to compute conserved
quantities and provide information on the stability of a system.

In the second part, we investigate the effects of dualities in string theory. We give
an overview of the symmetry groups of the S-duality and the T-duality, as well as their
unification, the U-duality. In the next step we introduce exceptional field theory, which
is manifestly invariant under the U-duality. Through this theory we find new locally non-
geometric spaces of M-theory, which contain previously unknown locally non-geometric
R-fluxes. In the following we construct duality chains that provide information about those
new spaces that have missing momentum modes in connection with the new non-geometric
R-fluxes. In the last chapter we examine the phase space of open string endpoints. For
locally non-geometric string backgrounds we show that the phase space is non-associative.
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Chapter 1

Motivation

Before outlining the main ideas of this thesis, let us motivate the central idea of the thesis:
Using machine learning techniques to discover symmetries within datasets. We give an
overview on the recent success of machine learning showing above human performance
in many different fields. Then, we motivate the focus on symmetries due to the large
impact these had in the development of modern high energy physics, and conclude with an
overview on string theory, the leading candidate for a unification of gravity and particle
physics. We will conclude with the outline of this thesis.

1.1 The Success of Machine Learning
The idea to create a computer with a kind of intelligence comparable to humans is an old
dream of computer scientists. For this reason, Alan Turing created the Turing test in 1948
to classify what artificial intelligence is [1]: A computer has to be able to convince a human
that it is a human and not a computer. The first definition of a neuron was already given
in 1943 [2], and lead to the development of the first perceptrons [3]. In combination with
the first back-propagation algorithms [4], which were applied to multi-layer perceptrons
in 1980 [5], they lead to the development of different tools for image recognition and
natural language processing. One of the biggest break-throughs was the development of
convolutional neural network by AT&T Bell Laboratories for digit recognition [6]: Applied
at the US Postal service, it was the beginning of the wide spread use of deep neural
networks. After this success, the interest from computer scientists increased with the
availability of computing power and in 2006, the Netflix prize was launched to improve
the recommendation algorithm from Netflix [7]. The release of the database “ImageNet”
in 2009 led to an increasing publicity and further accelerated research [8]. In 2016, it
was the first time a computer program – the program AlphaGo – was able to beat an
unhandicapped human player in the game of Go [9]. Together with the development of
the package TensorFlow, machine learning approaches became common. They improved
existing solutions in the fields like natural language processing, face recognition as well as
image and video generation, and showed above human-level performances in all of these
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fields. After the success in computer science, machine learning provided the tools for many
problems in natural sciences, specifically in physics. A good overview over the recent
progress in the different fields of physics can be found in [10].

In this thesis, we focus on the development of methods to detect and identify symmetries
because they play a crucial role not only in string theory but all over physics.

1.2 Symmetries as General Guideline in Physics
Solving problems in physics is often connected to finding a symmetry of the system and
therefore, using redundancies of the problem. A typical example is the use of spherical
coordinates which simplifies the notion of many systems.

The idea of using symmetries to improve the understanding of nature drives the era
of modern physics from the beginning. Galileo Galilei can be seen as the founder of this
approach. He realized first that physical laws should be the same, independent of the
reference frame, as long as they differ only by a constant relative motion. Transformations
between such two reference frames, together with spatial rotations and translations, are
known as Galilean transformation. The insights in moving reference frames led to a first
notion of a basic principle of relativity and allowed him to understand the physical laws
of nature and resulting for example in the development of the laws of the free fall. This
principle of no absolute motion or absolute rest provided the framework for Newton to find
“Newton’s laws of motion”. Additionally, his idea of equivalence of the gravitational forces
on earth and between planets and the sun can be viewed as an extension of the idea that
laws should be generalizable over different physical systems that are related by symmetries.

The next important step towards a modern physical understanding of the world was the
unification of electrodynamics and magnetism. They are described by Maxwell’s equations
and show the symmetry between the two different forces (up to sources of the fields).
This symmetry led to the claim of the existence of magnetic monopoles. Those monopoles
would explain for example the quantization of charges as shown by Dirac [11] and are a
good example of the power of symmetries to conjecture new phenomena, even though they
have not been discovered as real particles.

An extension to Galilei’s basic principle of relativity led to the next big step in the
development of modern physics: At the end of the 19th century, it was known that light
has a finite speed. Albert Einstein combined this knowledge with conjecturing the basic
principle of relativity, namely that the speed of light should be the same, independent of
the reference frame [12]. As a consequence, time and space were no longer independent
from each other, but merged into a single entity called space-time described by the Lorentz
symmetry group. This resulted in the theory of special relativity.

Again, we notice a close connection between unification and symmetry group. A uni-
fication is often physically motivated. To describe them properly and understand the
consequences of it, it is necessary to find the underlying symmetry of a unified system.

The next idea of unification was to include gravity to the basic principle of relativity.
Inspired by the Eötvös experiment [13], which measured the correlation between the inertial
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mass and the gravitational mass, Einstein included the gravitational force to the basic
principle of relativity and developed the “Gedankenexperiment” of a free-falling elevator in
a gravitational field. Assuming the equivalence of vacuum and the free fall in a gravitational
field, nowadays called (strong) equivalence principle, this “Gedankenexperiment” led to the
development of general relativity [14].

The theory is the key building block to explain many phenomena of gravity in the
universe, and an important starting point to build new theories.

The second building block of modern physics is quantum mechanics. Here, every force
is mediated by particle interactions. Max Planck noticed that energy of the radiation
emitted by a black body takes discrete values [15]. Albert Einstein understood that these
can be understood as particles [16]. The development in the field of quantum mechanics
and the understanding of the interaction between photons and electrons eventually resulted
in the first example of a so called quantum field theory – quantum electrodynamics – with
the symmetry group U(1)Q. In these theories classical fields and particles are combined
into a single fundamental object, namely a quantum field. In the following decades the
theoretical background of gauge theories and the other fundamental forces was developed.
It turned out that all of them can be described by quantum field theories where each
is based upon a certain symmetry group. For the electroweak force, a combination of
electromagnetism and the weak force, the underlying symmetry is U(1)Y ×SU(2)L, for the
strong force it is the symmetry group SU(3)c. As a result, we find the symmetry group of
the U(1)×SU(2)×SU(3) for the Standard Model of particle physics. After the discovery
of the Higgs boson in 2012, all particles of the Standard Model are now found [17].

Parallel to the search for the remaining particles, physicists tried to further unify the
electroweak and strong interaction while also focusing on a top-down approach to unify
gravity with the other forces.

For the unification, a sufficiently large symmetry group has to be chosen which then
gets spontaneously broken to the symmetry group of the Standard Model. These theories
are called Grand Unified Theories (GUT). The simplest symmetry group for a GUT is
SU(5). It is the smallest group which contains the symmetry group of the Standard Model.
Unfortunately, these theories predict an instability of the proton which requires the scale
of symmetry breaking to be very high, i.e. at 1015 - 1016 GeV, way out of the observable
range of today’s colliders [18].

The top-down approach, namely string theory, is described in more detail in the next
section. In string theory, the fundamental element are strings, one-dimensional objects
which exist in ten dimensions and therefore the additional dimensions have to be “removed”
which leads to many different low energy theories.

Overall, we hope this short review of the history of modern particle physics shows the
importance of symmetries in theories in the development of modern physics. It is not
only important in the development of modern physics, but also the key building block to
examine new theories. Therefore, it is a necessity to develop the new tools to find such
symmetries easier and faster.
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1.3 String Theory
Let us give an introduction into String theory (we follow the textbook material of [19]):
Originally an idea to explain quantum-chromodynamics, it soon turned out that it contains
not only additional massless particles leading to other forces within the theory but also
spin-2 particles which lead to a graviton within the theory.

Therefore, a good candidate was found which connected the two main building blocks
of high energy physics: general relativity and the Standard Model of particle physics.

The general idea is quite straight forward: we expand the zero-dimensional point par-
ticles to one-dimensional strings. In contrast to the one-dimensional world line of a point
particle (the trajectory within the spacetime), strings have a two-dimensional worldsheet
described by the Nambu-Goto action:

SNG = −T
∫

Σ
dA ,

= −T
∫

Σ
d2σ

(
− det αβ

(
∂Xµ

∂σα
∂Xν

∂σβ
ηµν

))1/2

,
(1.1)

with Σ being the worldsheet and σα = (σ, τ) are the coordinates parameterizing the world-
sheet. The fields Xµ = Xµ (σ, τ) embeds the worldsheet into the flat target space with
metric ηµν . T = 1

2πα′ is the string tension, a constant of mass dimension two. α′ is the
so-called Regge slope and connects the string tension with the string length scale and the
string mass scale:

`s = 2π
√
α′ and Ms =

(
α
′)−1/2

. (1.2)
To remove the square-root in the action and quantize it, we introduce the Polyakov action
in conformal gauge:

SP = − T

2

∫
d2σ ηαβ∂αX

µ∂βXµ

= 2 T
∫
dσ+dσ− ∂+X · ∂−X .

(1.3)

In the second line, we use the light cone gauge with left and right moving coordinates
σ± = τ ± σ.

The Polyakov action and the corresponding string solutions can be canonical quantized.
An important consequence of the quantization is that the bosonic string has a critical
dimension of D = 26 for the target space making it necessary to find a mechanism to
reduce the number of dimensions. With this number of dimensions, the proposed graviton
becomes massless and is therefore a valid candidate. Additionally, the bosonic string theory
contains scalar tachyons, objects with negative mass-squared which lead to an unstable
theory.

The next step towards a consistent theory is to construct a string containing bosonic but
also fermionic fields. This leads to the superstring action. Quantizing the superstring leads
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Figure 1.1: Connection between the different string theories by different dualities. S-duality
is an inversion of the string coupling gs, T-duality is an inversion of the radius of one of the
compactified directions, and compact. on I/ or S1 is the compactification over an interval
or respectively a circle (in the section 7.3 we explain the details of these dualities ). Taken
from [21].

to an interesting effect on the spectrum of the string: We get two different sectors of the
string for left movers and right movers, namely the NS-sector and the R-sector. It can be
shown that a string theory containing all combinations is inconsistent. Therefore, we have
to truncate the spectrum to find a consistent supersymmetric theory. The GSO (Gliozzi-
Scherk-Olive) projection [20] ensures that while demanding supersymmetry the tachyonic
states get truncated, and we end up with two consistent, supersymmetric tachyon-free
string theories: the Type IIA and Type IIB string theory. For those theories the critical
dimension is D = 10.

Additionally to the two Type II string theories, we can construct other string theories
in ten dimensions.

• Type I string theory describes an unoriented string in 10 dimensions. It not only
contains closed strings but also necessarily open strings. It is an N = 1 supergravity
which couples to SO(32) supersymmetric Yang-Mills theory.

• Heterotic string theory couples a superstring in D = 10 dimensions as right mover
to a bosonic string withD = 26 dimensions as left mover. To couple those, we have to
compactify 16 dimensions of the bosonic string to match the number of dimensions.
For the compactification two symmetry groups are possible, the SO(16) symmetry
group as well as the E8 × E8-group resulting in two additional symmetry groups.
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• Type 0A and Type 0B string theory describes two non-supersymmetric and un-
stable theories. Therefore, they are not consistent and therefore, cannot used to
construct a suitable theory containing the Standard Model of particle physics and
general relativity.

In 1995 Witten suggested in a talk that these string theories are all connected to each other
by dualities between the theories. Including the eleven-dimensional supergravity theory,
which is a classical description of a supersymmetric theory in the maximal allowed number
of spacetime dimensions, we find a web of theories which are connected to each other.
The underlying eleven-dimensional theory is called M-theory. Unfortunately, there does
not exist a complete non-perturbative formulation of it. Therefore, it is object of current
research to better understand the structure and the phase space. Figure 1.1 shows the
different theories and how they are connected to each other. A detailed description of the
different dualities can be found in section 7.3. Note that from the perspective of M-theory
those dualities would be symmetries within the theory. In part III, we examine the effects
of those symmetries on the phase space.



Chapter 2

Outline and Summary

In this thesis, we focus on both sides of symmetries: In part II, we focus on the identification
of symmetries in different physical systems using machine learning to develop different
frameworks. In part III, we examine the effect of symmetries and dualities in string theory.
We are able to identify consequences for the phase space only detectable using duality
chains to examine non-geometric spaces. We conclude in part IV with an outlook.

The results are based on the author’s publications [22, 23, 24, 25, 26], the individual
chapters are organized as follows:

• We start with an review of the basic ideas and methods from machine learning.
At first, we start with a general overview of the different concepts within machine
learning and continue with the most important ingredients which are necessary to
define neural networks. Here, we focus on the parts of machine learning which are
necessary to understand the other chapters of this thesis.

• In the third chapter, we present a method which is able to identify symmetries and
other similar structures within a dataset. When training a neural network on a clas-
sification task, the hidden layers of the neural network encode structure information
of the dataset. This knowledge is used to identify the presence of a symmetry and
find invariant points under those symmetries. We present applications on different
potentials, as well as a class of Calabi-Yau manifolds. In a second step, we develop
an algorithm to explicitly identify the symmetry group.

• Next, we construct a neural network which automatically finds conserved quantities
from trajectories of particles. As a prerequisite we describe how to find the Hamil-
tonian, then we build a neural network which provides coordinate transformation to
cyclic coordinates. In these coordinate systems, the generalized momenta are con-
served. Identifying conserved quantities allows us to understand the symmetries of
such systems by Noether’s theorem.

• After identifying conserved quantities in classical mechanics, chapter 6 is dedicated
to integrability of field theories and, as a direct effect, their conserved quantities. In



10 2. Outline and Summary

field theories, we focus on computing Lax Pairs, which are necessary to compute the
infinite tower of conserved quantities of such theories. We are able to distinguish be-
tween integrable and non-integrable perturbations of integrable systems and provide
a framework to scan over different types of perturbations. In general, the frame-
work provides a method for the search of highly constrained systems of differential
equations.

• In the third part, we start in chapter 7 with a review of the different types of du-
alities between the different string theories and their mathematical formulation as
symmetry groups. Following the idea of making theories invariant under symmetry
transformation we review the construction of exceptional field theory, an extended
theory which is invariant under S- and T-dualities. We describe the construction of
the transformation laws of U-duality, the analogue to the Buscher rules of T-duality.
We conclude with the known duality chains for non-geometric backgrounds in double
field theory and in four-dimensional exceptional field theory.

• Chapter 8 is based on the results of [25]. We focus on the construction of high-
dimensional duality chains and find previously unknown non-geometric fluxes using
exceptional field theory. Lying in the R-R sector of string theory these non-geometric
fluxes go beyond the previously known R-fluxes from the NS-NS sector. Constructing
those non-geometric backgrounds from twisted tori, we find missing momenta modes
in the phase space associated to the non-geometric R-fluxes.

• In the last chapter of part 3, we focus on the phase space of the open string. Previ-
ously, it was only known for closed strings that their phase space is non-associative in
non-geometric spaces. Starting from a D0-brane on a three-dimensional torus with
H-flux, we compute the commutation relations for the end points along the T-duality
chain. For non-geometric R-flux backgrounds, we find a non-associative phase space
for the end points as well.

We also want to point out the author’s recent publication [27]. Although not part of
this thesis, it yields additional methods how to examine the structure of the string vacua
landscape and can therefore provide additional methods to search for suitable string vacua.
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Chapter 3

Introduction to Machine Learning

In this section, we give an overview over the different techniques of machine learning and
the components necessary when training a neural network. For an extensive review, we
refer to the text books [28, 29] for a general introduction and to the reviews [30, 31] for an
introduction for physicists.

This section is organized as follows: First, we give an overview over the different seg-
ments of machine learning. Then we describe the different parts of a neural network as
well as optimizers and loss functions, and end up with the example of convolutional neural
networks in section 3.5.

3.1 Basics of Machine Learning
Machine learning can be broadly categorized into three concepts: supervised learning,
unsupervised learning and reinforcement learning. They differ in the underlying ideas and
it depends on the type of problem setting which one to use and how the model has to be
trained. A characterization of each of them is given below, later, we are going to focus on
unsupervised learning to find unknown structure in data.

• Supervised Learning: The model is trained on examples where the output is
known. The goal of the training process is to learn a map which finds the correct
output for the different inputs and should be as general as possible. The performance
is measured on an unseen test set. We distinguish between regression, where the
target is a number (or a vector), and classification learning. Here, a typical example
is image classification, for example MNIST (see figure 3.1 for more information).

• Unsupervised Learning: The model is trained purely on input data, and no output
labels are given leaving the neural network the task to structure the data. Typical
tasks are discovering patterns in data, but also finding meaningful features in feature
learning.

• Reinforcement Learning: The model interacts with an environment and performs
different actions while trying to achieve a goal (e.g. playing a video game, driving
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a car etc.) The model navigates through a (usually) high dimensional phase space,
while it gets rewards from the environment. It is a mixture of supervised and un-
supervised learning: the goal is known, but it is unclear how to achieve it. A good
introduction to this method is [32].1

In this section, we give an example how to train a neural network using supervised learning
in a linear regression task – to detect symmetries, we are mainly using unsupervised learn-
ing. In most physical problem settings the symmetries are a-priori unknown and have to
be found by the neural network itself. Therefore unsupervised learning is the best choice,
but compared to supervised learning the main building blocks remain the same. The only
exception is chapter 4: Here, we use a side effect of the supervised learning in a neural
network to find symmetries in a neural network.

Let’s start with the rough idea of the training procedure in the case of supervised
learning, where we will get in touch with all important components which will be explained
in detail in section 3.2.

• We start with the dataset: Every data point (typically denoted by x) we want to
classify comes with a label ŷ. The label ŷ is the target value. A typical example is
MNIST, where x are images of hand-written digits, the label ŷ is then the number
represented on the pictures. Such a data set usually has between 104 and 105 pairs
of input data and labels. Due to the fact that this is too large to use them in a
network all at once, we divide the data sets into shuffled batches of a fixed size and
use the batches instead of all inputs for the training. One period is a training run
with all batches. After each period, the batches are re-shuffled. Typically, we split
the data set into two parts: the training set, on which the neural network is trained,
and the test set, which the network does not use for training, but only to measure
the performance of the neural network.

• These batches are fed into the neural network. We will later explain how these
networks are constructed, and which ingredients play a role. For the moment, it is
important that they are functions fθ(x), which map the input x to the output space.
The computation of fθ(x) is called the forward pass because the information is going
forward through the neural network. These functions fθ(x) depend on a high number
of (depending on the problem 103 - 109) parameters denoted by θ. The goal is to
optimize these parameters such that the neural network is able to predict the right
class labels as output.

• After the forward pass, we calculate the error between the predicted class and the
true value (i.e. the label). A typical loss function for regression tasks is the Mean
Squared Error (MSE):

LMSE = 1 1
nbatch

∑
i∈batch

‖fθ(xi)− ŷi‖2
2 , (3.1)

1It is typically used for games or robots, but the author along with others showed in [33] that it can
also be used in the context of string theory to navigate through the string vacua landscape.
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Figure 3.1: Examples of the MNIST dataset [34]. It contains 70,000 images of hand-written
digits and was one of the first benchmark datasets for image recognition.

where nbatches denotes the number of samples per batch. Other typical choices are
the mean absolute error for regression tasks and binary/categorical cross-entropy for
classification tasks.

• After computing the prediction error of the neural network, we have to optimize the
weights of the neural network to improve the results. The simplest ansatz for the
optimizer is gradient descent: we compute the derivative of the loss with respect to
the weights itself and change their values in this direction:

θ
′

i = θi − η∇θi
L , (3.2)

where η is the learning rate which defines the step size of the gradient descent. As
a hyper parameter the value of η has to be fixed before training. There are many
improvements for the optimizer such as using momentum or an adaptive learning rate.
The whole process is called back-propagation due to the fact that the information
is now going backwards through the neural network. The last three steps describe
one complete training step. For one episode, we have to repeat these three steps for
every batch of the data set.

• After the training process is completed (or even between two episodes) we have to
test the performance of the neural network. Therefore, we compute the output of the
neural network on the test data set and compares it to the true labels. The difference
gives you the performance of the neural network.

This general framework can be also used for unsupervised learning. Here, one has to use
an abstract definition of the loss function. Let us demonstrate this procedure with a simple
example.

Note that in general two different types of problems exist when fitting a neural network.
One is called underfitting. In this case, the neural network is not able to find the right



16 3. Introduction to Machine Learning

function because the number of weights is too small or because of other reasons (wrong
activation function, wrong layers or a badly designed loss function). In this case, the
training loss is a good guidance, and it should go to zero in the training process (or at
least become very small). A typical example from statistics is trying to fit a third order
polynomial with only a second order polynomial. We won’t be able to find a suitable fit
because we used the wrong function. The opposite problem is overfitting. When fitting a
polynomial with little noise andN data points, we are able to find a degreeN−1 polynomial
which passes every data point, but the generalization would be quite bad because of the
oscillation between the data points. This problem exists for neural networks as well: when
the neural network has too many free weights, it might be able to fit the training dataset
with perfect accuracy, but shows a bad performance on the test dataset. For this thesis, we
deal with this problem in two different ways: In chapter 4, we have to solve this problem of
finding the right number of generators. Here, we use a principle component analysis to find
the right number of generators. In the chapters 5 and 6, we are using a synthetic dataset
with an arbitrarily large amount of data to avoid this problem. Additionally, we start
there with a small number of free parameters and take more parameters into account up
to the point where the error converges to zero. This slow raising in the number of degrees
of freedom is possible because we are actually looking for analytical solutions, which is not
expected to be a high order polynomial.

3.1.1 Linear regression
We apply the presented procedure to a simple example of linear regression. The goal is to
fit the function

f(x) = 2 x+ 1 . (3.3)

As data points we use all integers 0 ≤ x ≤ 10. Therefore, we have the dataset with the
points:

x 0 1 2 3 4 5 6 7 8 9 10
ŷ 1 3 5 7 9 11 13 15 17 19 21

Because the dataset is quite small, we use the whole dataset as one batch. As toy neural
network we take a neural network with two parameters θ = (w, b) and perform a linear
regression on the equation

fθ (xinput) = w xinput + b . (3.4)

The weights are chosen from a normal distributions N (0, 1). As loss function we take
the mean-squared error (3.1), and use gradient descent (3.2) to update the weights with
η = 0.01.

We can now start the training. Note that every training looks different because we
draw the weights from a normal distribution. The function fθ before the training is shown
in the picture below as a solid line, the points represent our data points:
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After 10 steps, we can see a clear improvement of the function fθ:
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After 100 steps, the function is pretty accurate:
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To get a higher precision of the numbers, we have to increase the number of epochs. With
gradient descent we get a nearly perfect result after 1000 epochs:
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The formula we found is

fθ (xinput) = 2.0006 xinput + 0.9956 . (3.5)

In this simple example, the run time per episode is short, but for larger networks and
data it becomes unfeasible to use such a high number of training epochs. We have to
improve the efficiency of the algorithms by choosing appropriate layer structure, adjusted
learning rates and activation functions (see the next chapters). Gradient descent becomes
inefficient at points close to a local minimum of the function because here the gradient
becomes really small. Later in section 3.4, we present more sophisticated optimizers to
avoid this problem. After this short example to present the basic concept, we move on to
the different components used nowadays in machine learning.

3.2 Network Architecture
As previously mentioned, neural networks are highly-parameterized functions and the chal-
lenge is how to construct those functions. It turned out that the human brain is a good role
model to abstract certain properties and construct neural networks from those. In brains,
synapses and neurons are the smallest building blocks. They get information from previous
neurons, combine it linearly, and then perform a non-linear operation (called activation
function or non-linearity) on the value of the function. Finally, the information is passed
on to the next row of neurons.

Feed-forward neural networks are the most common type, where the information is only
passed in one direction in the neural network. Feed-forward neural networks consist of a
set of layers, where each layer has multiple neurons and they only take information from
the previous layer and pass it to the next layer. Therefore, no information between neurons
can be exchanged within one layers. We distinguish between the input layer, the hidden
layer and the output layer (see Figure 3.2 for an example of a neural network with labeled
layers).

• The input layer is the first layer of the neural network. Here, no computation is
performed - it is used to pass on the information to the hidden layers.
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• Hidden layers are all layers inside the neural network. The values of the nodes are
not visible from outside. In these layers he neural network extracts the essential
information and passes them from the input layer to the output layer.

• The output layer is the final layer of the neural network. It depicts the results of the
computation from the neural network and passes it to the user.

The simplest layer is the linear layer. It is also known as fully-connected layer or dense-
layer. As the name indicates in this layer any neuron is connected with all neurons in the
previous one. All the weights of the connections are independent, which allows us to write
the value of the µ-th neuron of the i-th layer in the following way:

z(i)
µ =

ni−1∑
ν=1

w(i)
µνy

(i−1)
ν + b(i)

µ (3.6)

Here, w(i)
µν and b(i)

µ are trainable weights of the neural network, and ni is the number of
neurons in the i-th layer. Afterwards, we have to apply the activation function σi to each
neuron:

y(i)
µ = σi

(
z(i)
µ

)
for all i and µ . (3.7)

Note that the activation function might be different for every layer, but we do not use
different activation functions within the same layer as this leads to different scales in the
back-propagation. Additionally, we define the “zero-th” layer as the input and the final
layer as the output of the network function fθ. Therefore, the defining equations for a
neural network with s layers are:

y(0) = xinput ,

z(i)
µ = σi

(ni−1∑
ν=1

w(i)
µνy

(i−1)
ν + b(i)

µ

)
,

fθ (xinput) = y(s) .

(3.8)

In Figure 3.2 we can see a simple example of such a feed-forward neural network. Com-
bining equations (3.8), we get the complete output function of the neural network with
parameters w(i)

µν and b(i)
µ . We might think of this network function as some interesting

basis for the function with complicated weight constraints. In this thesis all of the neural
networks are constructed using linear layers, but there exist a vast range of different neu-
ral networks, such as Convolutional layers and Pooling layers (described in 3.5) for image
classification and long short-term memory layers (LSTM-layer) and transformer layers for
natural language processing. We will continue defining the different activation function.

3.2.1 Activation Functions
Typically, a layer consists of linear transformation. If we would only use such linear trans-
formations, the whole network could be represented by a single linear transformation and
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Figure 3.2: A simple schematic Multi-layer Perceptron (MLP) with the different layers.
Here, we have one input, one output and three hidden layers. Image from [31]

no hidden layer would be necessary. Therefore, it is necessary to add non-linear functions.
There exists a rich variety of non-linearities. It can be shown that all non-polynomial func-
tions are sufficient for approximations within a neural network [35]. Typically, one uses
unary function (functions with only one input value) which acts on each neuron individually
to speed up the computations within a neural network (except for the softmax-activation).
Typical choices are:
• ReLU: σ : R 7→ R+ , σ (x) = max (0, x)

• Leaky ReLU: σ : R 7→ R , σ (x) = max (cx, x) with c > 0

• Logistic sigmoid: σ : R 7→ (0, 1) , σ (x) = 1
1+e−x

• Tanh: σ : R 7→ (−1, 1) , σ (x) = tanh(x)

• softmax: σ : Rn 7→ (0, 1) , σ (xi) = exi∑
j
exj

The softmax function is used to normalize the output with respect to the other neurons.
Due to this normalization the neurons sum up to one, which is used for classification. The
value of the neurons gives the probability for the individual class. We give now a more
detailed descriptions for the different activation functions.

• (Leaky) ReLU: ReLU stands for Rectified Linear Unit. Nowadays, it is the most
popular activation function due to its easy computation of the function itself, as well
as the derivative which speeds up the calculations. One disadvantage of the ReLU
activation is that for negative values no information is passed at all and therefore,
important information might get lost. This can be solved by using the Leaky ReLU-
activation: It is the same for positive numbers, but instead of being 0 for all negative
numbers it has a small constant slope (usually smaller then 0.01). Note that the
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ReLU-activation is only non-zero for first order derivatives. Higher derivatives, often
required in physics, always vanish.

• Logistic sigmoid: One of the first activation functions and the typical representative
of the sigmoid activation functions: It maps the input in the interval between 0 and
1 and is monotonically increasing. The advantage of the logistic sigmoid is that the
derivative can be represented using the logistic sigmoid function as well:

d

dx
σ (x) = σ (x) (1− σ (x)) . (3.9)

It is not only used as an activation function, but also often used for binary classifica-
tion due to the fact that it maps to values between 0 and 1 which can be interpreted
as probabilities.

• Tanh: The tanh-activation function is a shifted and rescaled sigmoid function, and
therefore, has similar properties as the logistic sigmoid function.

• Softmax: The softmax-function is usually not used within a neural network. It is
mainly used to normalize the values of the output layers in such a way that they are
summed up to 1 and can be interpreted as probabilities. Therefore, it is commonly
used in neural networks for classification and can be viewed as a “multi-dimensional
sigmoid function”.

3.2.2 Multi-Layer perceptron
One of the basic neural networks is the Perceptron [3]. In its most simple form it has no
hidden layers and takes an n-dimensional input xi. Then the output value oj is defined by:

oj =

1, ∑
iwijxi + b > 0 ,

0, else .
(3.10)

Here, the activation function is defined using a threshold b. Such a perceptron is actually
able to learn the functions AND, OR and NOT, but for example it cannot represent the
function XOR. Replacing the threshold by a sigmoid function, and using 0.5 as threshold,
we can represent the one-layer perceptron using a combination of a linear layer and the ac-
tivation function sigmoid. Extending this idea to multiple hidden linear layers of arbitrary
size with activation functions, we call it a multi-layer perceptron which is represented
by the function (3.8). Such multi-layer perceptrons are now able to learn functions like
XOR. A mathematically interesting property is that already a multi-layer perceptron with
one hidden layer and an infinite number of neurons can fit any function [35], which makes
neural networks universal approximators. This theoretical result can be extended to an
network with arbitrary depth [36]. These results give a theoretical understanding of the
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power of neural networks. We are going to use multi-layer perceptrons in most of our appli-
cations (with a finite number of hidden layers and neurons). Even though they are one of
the simplest neural networks, multi-layer perceptrons have the advantage of not assuming
any bias for the the input data, unlike convolutional neural networks for example do (see
section 3.5).

3.3 Loss Functions
Another key element is the loss function: This function defines the punishment of the
neural network in the training process. It is usually defined in such a way that for a
perfectly correct answer the loss function is zero. Note, that negative values as reward are
also possible, but not common in supervised learning in contrast to deep reinforcement
learning. Therefore, in most cases we could simply use a mean-squared error (MSE), but
it turns out that often there exist much more efficient choices. We will present the most
common choices for loss functions in supervised learning. In the formulae we are going to
use ŷi as target value and yi = f(xi) as the output of the neural network. The index i
labels the sample in the batch, nbatch refers to the batch size.

• Mean-Squared Error (MSE): The most simple choice which can be used in nearly
every situation. Typically, it is used in regression tasks. The loss is given by

LMSE (y, ŷ) = 1
nbatch

nbatch∑
i=1

(yi − ŷi)2 . (3.11)

It has the advantage that it tries to minimize outliers and is therefore a good loss
function for a clean data set where it is known that there are no mistakes within the
data set.

• Another loss is the Mean-Absolute Error (MAE). It is computed by

LMAE (y, ŷ) = 1
nbatch

nbatch∑
i=1
|yi − ŷi| . (3.12)

It has the advantage that it is more robust to outliers and tries to minimize the
error of as many points as possible rather than minimizing outliers. One of the
disadvantages is that the norm of the gradient does not correspond to the distance
to the minimum, but it always has the same size. Therefore, using MAE as a loss
function often leads to an oscillating behavior around the minimum. One alternative
is the Huber loss. It uses for small values of the loss a quadratic loss term, whereas
it is linear for higher values.

• Cross entropy losses are typically used for classification problems: Both the target
value and the output value are seen as probability distribution. Therefore, the target
is usually encoded as a one-hot vector (zeros everywhere except for a single one which
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labels the correct class). The output probabilities describe how certain the neural
network is regarding a specific class label. In general, the cross entropy between
two probability distributions P and Q can be computed as

S(P,Q) = EX∼P [− log2Q(x)] , (3.13)

where x ∼ P denotes that x is drawn from probability distribution P. In the discrete
case, this reduces to

S(P,Q) =
∑
i

pi ln (qi) , (3.14)

where pi and qi are the probabilities for the discrete class i. In the case of a binary
classification where y ∈ {0, 1} (a yes or no answer) we can use binary cross entropy
(BCE) as loss function

LBCE (y, ŷ) = − (y ln (ŷ) + (1− y) ln (1− ŷ)) . (3.15)

Note that one of the terms always vanishes for a specific choice of y. This notion can
be extended for multi-class classification to the categorical cross-entropy, given
by

LCCE (y, ŷ) = −
∑
a

yca,x ln ŷca,x , (3.16)

where yca,x denotes the probability value ca for a given input x, whereas ŷca,x is the
network output (usually normalized using a softmax layer). Also for the categorical
cross-entropy all terms except for one vanish due to the one-hot encoding.

Modifying loss functions allows us to restrict the output of the neural network and to define
abstract properties within the set of solutions. Therefore, we are going to define specific
loss functions in section 5 and 6 to find symmetries.

3.4 Optimizer
After introducing the most important layers and defining typical loss functions for neural
networks, let us introduce the last part of the training algorithm: The optimizer. In
the beginning the weights of the neural network are randomly initialized. To learn a
good approximation function fθ (xinput), the weights have to be updated in the right way.
Optimizers provide a mathematical algorithm how to update the weights and find a solution
to the given problem in a finite amount of time. In total, we can think of the problem as a
high-dimensional landscape in the parameter space where we try to find the minimum in a
fast and reliable manner. Here, we will describe the basic and most used ways to navigate
through this landscape.

• The most straight forward method is the gradient descent. The idea is to go always
in the steepest direction downhill with finite step size, so going along ∇L where L
is the total loss. The free parameter is the learning rate η which is the proportional
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constant of the step size. Mathematically, the change for parameter θi with learning
rate η is

∆ωt = ∇θtL (θt, x(i), y(i)) ,
θt+1 = θt − η ∆ωt .

(3.17)

The loss L depends on all parameters at step t as well as input values x(i) and target
values y(i). Challenging problems are the existence of local minima and saddle
points where the algorithm might get stuck. One solution for these problems is the
stochastic gradient descent (SGD): Due to the usage of randomized batches of
samples, where the composition of samples changes per episode, the derivative is
always computed for different samples. Therefore the exact position for local minima
and saddle points changes. This avoids getting stuck over multiple time steps.

• Another problem are slopes with a small gradient. The SGD might need too long to
traverse through such a slope. The solution is to add a momentum term to the SGD.
This allows the optimizer to get some speed when multiple steps are going in the
same direction. It also helps not getting stuck in local minima or at saddle points,
even though it does not avoid this problem in every case. The mathematical notation
for the stochastic gradient descent with momentum is

∆ωt = β ∆ωt−1 +∇θtL (θt, x(i), y(i))
θt+1 = θt − η ∆ωt .

(3.18)

η is again the learning rate, while β controls the influence of the the momentum.
Typical choices are β ≈ 0.9 and ∆ω0 = 0.

• Another option is to adapt the learning rate for the individual parameters depending
on the properties of the parameters. For flat directions, we want to use a large
learning rate whereas for steep direction a smaller one is better. A way of enableing
this is to use higher momenta and to normalize the learning rate accordingly. There
exist multiple optimizers using this method. The most well known are AdaGrad [37],
AdaDelta [38] and RMS-Prob [39]. The mathematical notation for RMS-Prob is:

gt = ∇θtL (θt, x(i), y(i)) ,
st = β st−1 + (1− β)g2

t ,

θt+1 = θt − η
gt

st + ε
with ε ≈ 10−8 .

(3.19)

β is usually around 0.9 and controls the averaging time of the second momentum
whereas ε prevents divergence.

• Nowadays, the most common optimizer is Adam (Adaptive Moment Estima-
tion): it combines the two approaches above and uses first and second momentum
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to optimize the weights [40]:

gt = ∇θtL (θt, x(i), y(i)) ,
mt = β1 mt−1 + (1− β1)gt ,

m̂t = mt

1− (β1)t ,

st = β2 st−1 + (1− β2)g2
t ,

ŝt = st
1− (β2)t ,

θt+1 = θt − η
m̂t

ŝt + ε
with ε ≈ 10−8 .

(3.20)

β1 and β2 are the control factors for the averaing over time of the gradients and
the second moments of the gradients, respectively. Typical values are β1 = 0.9 and
β2 = 0.999.

3.5 Example: The CNN
In this thesis we are going to use the previously presented multi-layer perceptron, but we
want to give an impression over another type of neural network.

Convolutional Neural Networks (CNNs) [41] are widely used for image recognition.
Even though more elaborated neural networks exist nowadays, such as ResNet, CNNs are
an interesting starting point to get an understanding of the development of neural networks.

When applying simple feed-forward neural networks to images with 28×28 = 784 input
neurons, we run into the problem that the neural networks generalize pretty badly because
even shifting the image by one pixel results in a completely different situation for the neural
network. An alternative here are Convolutional Neural Networks. Here, the structure uses
the spatial information of the input data (e.g. which pixels are close to each other) as
well as the shift symmetry of images. Generally, it consists of two parts: a convolutional
layer, followed by a pooling layer. The idea is to move a two-dimensional kernel with
weights over the input, performing locally a matrix multiplication (See Figure 3.3 for a
graphical example). This keeps the structure of the input after the convolution intact
while we are moving to more abstract features of the picture. Using the same weights on
every position of the image ensures that a feature only needs to be learned at one position
and can be generalized to any other. Afterwards, we apply an activation function to each
neuron.

Pooling layers on the other hand reduce the number of existing neurons. For example, a
2×2 Pooling layer takes the maximum or the average sum of each 2×2-cluster, and there-
fore, helps to filter out specific features from the image, while reducing the computational
cost.

After several layers of alternating convolutional and pooling layers, one uses linear
layers combined with activation functions to find the right classes for each picture. A
sample architecture can be seen in Figure 3.4.
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Figure 3.3: Left: The operation mode of a convolutional layer. The filter is moved over the
input image and is trainable. There exist several ways how to pad the boundary regions.
The visualisation is taken from [42]

We stop here with the review of the fundamental components of machine learning,
however the interested reader is encouraged to find more explanations and examples of the
vast variety of different neural network architectures in [28, 29, 30, 31]. We will conclude
with an example of the training of such a convolutional neural network.

3.5.1 Training of an exemplary network

As next step, we train a sample neural network to classify MNIST to see the simplicity of
the structure which is necessary to construct an accurate image classifier. The first layer
is a two dimensional convolutional layer with 10 kernels, each of size 5 × 5 with a ReLU-
activation. Then, we use a MaxPooling layer with a pooling size of 2 × 2. The second
block is again a convolutional layer with 20 kernels with size 5×5 with a ReLU-activation,
followed by a MaxPooling layer (again, with pooling size of 2 × 2). After this, we use
two fully connected layers, the first one with 50 neurons and ReLU-activation, the second
one with 10 neurons and softmax-Activation. This is the output layer used to classify the
images. As loss, we used categorical cross entropy, and trained the network using stochastic
gradient descent with momentum and a learning rate of 0.01. As performance on the test
set we find an accuracy of 98.5 percent. The loss can be seen in this graph:

Figure 3.4: Right: A sample architecture for CNNs. The visualisation is taken from [31]



3.5 Example: The CNN 27

0 100000 200000 300000 400000 500000 600000
number of training examples seen

0.0

0.5

1.0

1.5

2.0

ne
ga

tiv
e 

lo
g 

lik
el

ih
oo

d 
lo

ss

Train Loss
Test Loss

In each epoch the neural network is trained on 60,000 images. Therefore, after 3 epochs
it already reaches an accuracy of 97.7 percent. This small example explains the success
of neural network: With this simple structure and fast training neural networks solve
complicated problems which would be hard to implement using classical algorithms. For
our problem settings, finding the right definition of the loss function might be much harder
in the beginning, but once they are defined it should be straightforward to apply them to
more difficult systems.



28 3. Introduction to Machine Learning



Chapter 4

Detecting Symmetries with Neural
Networks

In this chapter, we describe a general method how we can find symmetries and identify
them using neural networks. In the first part, we describe how we are able to identify
orbits connected by a symmetry. The idea is to train the neural network on a classification
task and use the structure of the data within the embedding layers of the neural network.
Data points connected by a symmetry are mapped together in the embedding space. This
allows us to identify the orbits of the points under the symmetry transformation. In the
second part we present an algorithm how to identify the generators using the points from
the orbits found in the first section. Knowing the generators enables us to identify the
symmetry group itself. We are going to present several examples on the rotation group
SO(n), as well as SU(2). Additionally, we use the method presented in the first section to
classify Complete Intersection Calabi-Yau manifolds. This section is based on the results
of [22].
This chapter gives a first way to identify symmetrical structure within datasets. It is based
on the idea that similar points are mapped together in the embedding space and that we
can utilize this structure.

4.1 Finding Symmetries
As first step, we present the method how to identify previously “unknown” symmetries
within a dataset by examining the clustering behavior in the embedding layer. Our tech-
nique is suitable for data questions where we have an input point xinput which is linked to
a fixed target f (xinput). The presence of a symmetry denotes that we have a map S which
maps

S : x 7→ S(x) , (4.1)

which leaves the value of the function f invariant, e.g.

f (xinput) = f (S (xinput)) . (4.2)
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The key idea which we utilize to find symmetries is the property of neural networks that
the embedding structures in the hidden layers often possess meaningful representations.
The most well known example is described in the word2vec-paper [43], where it was shown
that the neural networks learn meaningful relations between different words, so for example
it was able to learn the equations

~vemb (“king”)− ~vemb (“man”) = ~vemb (“queen”)− ~vemb (“woman”) ,
~vemb (“Germany”)− ~vemb (“Berlin”) = ~vemb (“France”)− ~vemb (“Paris”) ,

(4.3)

where ~vemb (“word”) denotes the embedding vector of the word “word”. An anologous idea
was used in [44] to find similarities between chemical elements. The authors were able to
rediscover the periodic table of chemical elements by training the neural network to predict
the binding energy of chemical compounds. As a result elements of the same group are
clustered together.

We are going to use a similar approach to detect symmetries: We train a neural network
on a supervised learning task to predict the value of the potential at a given position. Our
key finding is that neural networks map points together which are linked by a symmetry.
Such points are clustered together in the embedding space (i.e. the second to last layer in
our neural networks). Points with the same value in the classification but not connected
by a symmetry are not clustered together. This is a first step to identify the presence
of a symmetry. We are going to discuss two types of symmetries here: at first, we are
going to examine two problems with underlying continuous symmetries, namely the Mexi-
can hat potential (which has an SO(2)-symmetry) and an SU(2)-invariant superpotential.
Then, as an additional example, we study discrete symmetries in the context of Complete
Intersection Calabi-Yau manifolds (CICYs). The procedure is in both cases the same:

• We construct a classification problem for the given problem setting.

– For the potentials, we define classes which are defined by a respective value
(plus a certain width of the class). Note, that the distance between the classes
should be larger than the width of the classes.

– For the CICYs, we use the Hodge numbers h1,1 and h1,2 as classification targets.

In our experiments we find that this technique functions only in classification tasks,
but not in regression tasks.

• We are going to sample points for the different classes from a uniform distribution.
A balanced dataset is preferred.

• As next step, we train a neural network for the given classification task. Here, the
neural network needs the capacity to train up to a reasonable accuracy (above 95
percent). In our examples, we use multi-layer perceptrons as neural networks.

• As last step, we analyze the representation of the data points the neural network is
trained on. In all of the examples we find a gap between the data points connected by
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a symmetry and points not connected by one. Note, that we use different strategies
to find those clusters. For the potentials, we are using a dimensional reduction like
t-SNE [45] to visually find the structures, whereas for the CICYs this is not possible
due to the large number of different classes. Here, we analyze the structure given by
the distances between the individual clusters.

4.1.1 Continuous Symmetries
Mexican Hat Potential

The first problem we look at is a two-dimensional Mexican hat potential which has an
underlying SO(2)-symmetry:

V (x, y) = −a · (x2 + y2) + (x2 + y2)2 = −a · r2 + r4 , (4.4)

where we use a = 2.3 for our numerical experiments. Here, two types of points with the
same value of the potential (4.4) appear: points, which are connected by a symmetry, but
also points which belong to a different cluster and are not connected to the first type of
points by a symmetry. A visualization can be found on the right of Figure 4.1.

The next step is to formulate a classification problem for the potential. We define
eleven classes for the value of the potential. The values of these classes are defined by[

k

5 − 10−3,
k

5 + 10−3
]

k = −5, ..., 5 . (4.5)

Note the ratio between the width of the potential and the distance between the classes.
This enables a well converging training process. The larger the width of the classes is the
more complicated is the training process.

The sampling process can be implemented in a straight forward way: We randomly pick
points (x, y) and check the values of the potential, whether they belong to one of the classes.
We construct a balanced training set with ∼ 1000 representatives per class. We use a multi-
layer perceptron with 7 linear layers each consisting of 80 neurons with ReLU-activation
and a final layer with 11 output neurons with a softmax activation function. We train the
weights using the Adam optimizer, as a loss function we use categorical crossentropy. Note
that the neural network is rather oversized but this enables a fast convergence. We train
the network to an accuracy above 95 percent on the training set. For our analyses we are
only interested in correct classified points and therefore, we do not use a test or validation
set.

Using only correct classified data points, we analyze the representation of these points
in the 80-dimensional representation space. This space can be visualized using t-SNE [45]
which is a method to find local structure in high dimensional spaces. Therefore, we are
able to project the structure of the space in a two-dimensional plane. See Figure 4.1 for
the projection of the representation.

Comparing specific classes, we find only one specific cluster for values larger than 0 (the
yellow points) . Therefore, all of these points are connected by a symmetry. This is exactly
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Figure 4.1: Left: Structure of the embedding layer using t-SNE representation (perplexity
of 50). Some of these classes (indicated by the same color) have two distinct point clouds.
Right: The Mexican hat potential with the different classes. The classes have the same
color scheme as in the left picture. Using this color scheme we can match the classes with
two distinct point clouds on the left to the classes on the right with two types of points.

what we expected: Looking at the right side of Figure 4.1 we only have data points of the
same class for large values of the potential. For classes with values smaller or equal than
zero we find a different picture: For those points we find two distinct clusters, separated
by the norm of the points. This point can be made very precise: points bigger than the
norm of the minimum of the potential are separated from points with a norm smaller than
r =

√
a/2. Comparing the left and the right side of Figure 4.1, one can clearly see this

split.

SU(2)-invariant Superpotential

After demonstrating this technique for the well-known Mexican hat potential, we demon-
strate the method to find symmetries on an example with an SU(2)-symmetry. For this,
we use the function

W (x, y) = (x1y2 − x2y1) + 1
2(x1y2 − x2y1)2 , (4.6)

where x = (x1, x2), y = (y1, y2) ∈ C2 and transform in the fundamental representation and
the anti-fundamental representation of SU(2). Such holomorphic functions for instance
appear in supersymmetric field theories and are used in many places in theoretical physics.
Note, that we have two scaling symmetries in the dataset which are an additional symmetry
of our system

x1 → a x1

y2 →
1
a
y2

x2 → b x2

y1 →
1
b
y1 ,

(4.7)

where a, b 6= 0.
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Figure 4.2: Left: The t-SNE representation (perplexity of 40) of the 60-dimensional em-
bedding space. The colored clusters in the plot highlight the same classes as in the plot on
the right. Gray dots mark the other points in the embedding space. Note that due to the
large number of different clusters the structure is less explicit than in Figure 4.1. Right:
Plot of the SU(2) invariant quantity x1 · y2 − x2 · y1. Some of the classes have only one
distinct representative (for example the yellow and the light orange class), others have two
distinct classes (the dark blue/violet classes). This structure is revealed in the embedding
space as we can see on the left.

The procedure is similar as for the Mexican hat potential: We start by defining classes
for the values of the potential. Because the potential (4.6) is complex, whereas most neural
networks are built only with real numbers we work with the real and the imaginary part
independently (so basically working rather with R2 than with C) and define classes for
both parts. Our classes are distributed symmetrically around zero:[

k − 10−2, k + 10−2
]

k = −5, ..., 5 . (4.8)

Note, that the ratio between width and distance between the classes is of the same order
as for the Mexican hat potential.

The next step is the sampling process. Again, we use a uniform distribution to sample
values for x1, x2, y1 and y2, compute the values of the potential and check whether they
belong to one of the classes. We sample ∼ 1000 representatives per class to have a balanced
data set as well. The neural network consists of 7 dense layers with ReLu activation with 60
neurons each, followed by two independent output layers with a softmax activation which
are trained to find the class labels. The second to last layer (which both output layers
share) is the embedding layer of the neural network. We again use the Adam optimizer
combined with a categorical crossentropy on both outputs. We trained the neural network
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to a precision above 95 percent. To analyze the structure in the embedding space we used
the t-SNE framework to reduce the 60 dimensional embedding space to a two dimensional
plane which we can analyze visually. In Figure 4.2 we can see the results of the experiment:
In this case we have 121 distinct classes which makes it tough to see the structure completely
such as for the Mexican hat potential. Therefore, we highlighted only some of the classes.
In the picture on the right we plotted the real and the imaginary part of the SU(2) invariant
quantity x1 · y2 − x2 · y1 of the different points from the dataset. The colors display the
value for the potential. We can see that some data points share the value of the potential,
even though they have a different value of x1 · y2− x2 · y1 (and therefore are not connected
under a SU(2) transformation). On the left hand side, we see the t-SNE projection. We
colored the same classes as on the right. Comparing the two pictures we can see that the
structure in the embedding layers reveals the symmetry structure of the problem. Note
that we performed this check for all the different classes (not only the colored ones). We
are able to find the conserved quantity of the dataset and therefore of the potential.

As a consistency check we applied also the t-SNE projection on the input space to check
whether such structures exist already there, but we are not able to find those in the input
space.

4.1.2 Discrete Case: Identifying distinct string theory vacua

After these two continuous examples we now discuss a discrete problem arising from string
theory: finding relations between string vacua and whether they are physically the same.

In this section we examine a broad class of Calabi-Yaus, so called Complete Intersec-
tion Calabi-Yaus (CICYs). These manifolds have been already classified in three dimen-
sions [46], as well as in four dimensions [47]. Even though they have been classified it is
unclear how to generalize these results to higher dimensions. It took roughly one hour
to classify all three-dimensional CICYs, whereas the time needed for four dimensions was
7487 hours (roughly 312 days). Therefore, it is unfeasible to classify the five-dimensional
CICYs using such classical algorithms. Here, we use the three-dimensional CICYs to test
our method and show that we can extend this method from continuous potentials to much
more challenging discrete problem setting. Let us start to give a short review on CICYs
with the basic information we need for our analyses. Note, that we do not need a deep un-
derstanding of the exact structure, therefore it can be skipped while still understanding the
purpose of this part. A much longer review can be found in [48] with more mathematical
details.

Configuration matrices of CICYs

CICYs are described using configuration matrices. They describe classes of polynomials in
projective spaces where the manifolds itself are the zeros of those polynomials. To give a
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basic introduction on them we follow [47]. An example of such a configuration matrix is 1 1 1
2 1 2
3 0 4

 . (4.9)

The first column denotes the dimensions of the projective spaces. Here, in this example the
equations are in the product space P1×P2×P3. Each of the other columns denotes the multi-
degree of one polynomial in these projective spaces, and the zeros of these polynomials
define hypersurfaces in the projective spaces. To write the polynomials explicitly, we use
the following definitions: P1 is denoted with xa, were a = 0, 1, the P2 coordinates by yi
with i = 0, 1, 2, and for P3 we have zm with m = 0, 1, 2, 3. Then, the two polynomials are

p1 =
∑
a=0,1
i=0,1,2

caix
ayi = c00x

0y0 + c01x
0y1 + c02x

0y2 + c10x
1y0 + c11x

1y1 + c12x
1y2 ,

p2 =
∑
a=0,1

i,j=0,1,2
m,...,q=0,...,3

daijmnpqx
ayiyjzmznzpzq ,

(4.10)

where cai and daijmnpq are complex coefficients. Therefore, the configuration matrices
themselves do not describe explicit spaces but rather families of projective spaces, which
share some features. The strength of the notation of the configuration matrices is that
the most important features are independent of the prefactors, so for example the Euler
numbers, the Hodge number, intersection numbers etc. Therefore, we are only interested
in finding equivalent configuration matrices than looking on explicit polynomials. (Note
that the configuration matrices are independently of permutations of columns (except the
first one) and rows.)

There are various constraints on the coefficients of such a configuration matrix: To be
a Calabi-Yau manifold each row has to satisfy the relation

n+ 1 =
∑
α

qαn , (4.11)

where we use the general description of the configuration matrix as
n1 q1

1 . . . q1
K

... ... . . . ...
nm qm1 . . . qmK

 . (4.12)

The condition (4.11) is equivalent to a vanishing second chern class and therefore crucial
for any Complete Intersection Calabi-Yau manifold.

Additionally, we want to fix the dimensionality of our manifold to d dimensions. To
reduce the number of freedom given by the sum over the dimensions of the projective
spaces we find the constrain: ∑

r

nr = k + d , (4.13)
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where k denotes the number of equations. In [49], it was shown that there can only exist a
finite number of independent configuration matrices within this set of rules. Additionally to
those constraints, there exists a set of identities which link different configuration matrices
to each other. These connected CICYs are equivalent to each other and therefore, they
have to be singled out when classifying the CICYs. A summary of the identities, along
with explanations, can be found in [47]. In our problem setting we use them as symmetry
transformations our method has to find.

Identities – discrete symmetries

As stated above, the simplest transformation which leaves the manifold itself invariant are
permutations of rows and columns. Additionally, there are five identities where it was
mathematically proven that they leave the manifold invariant. These five identities are:

[
2 2 a
n 0 q

]
=
[

1 2a
n q

]
,

 1 1 a
1 1 b
n 0 q

 =
[

1 a + b
n q

]
,

[
3 2 c
n 0 q

]
=

 1 c
1 c
n q

 ,
 1 2 0

2 1 c
n 0 q

 =

 1 c
1 c
n q

 ,
 2 2 1 0

2 1 1 a
n 0 0 q

 =

 1 2 0
2 2 a
n 0 q

 .

(4.14)

The vectors a and b are vectors, with zeros everywhere, expect for one entry, the vectors n
and c are arbitrary vectors, whereas q is a matrix. Note, that these vectors and matrices
have to be chosen in an appropriate way to fulfill the defining properties of a configuration
matrix in d dimensions.

CICYs as graphs

To simplify the training process we used a permutation invariant representation of those
configuration matrices. Therefore, we use a graph representation of the configuration
matrices. Using graph representations has shown great success in many applications of
machine learning, so for example in classifying properties of moleculs (c.f. [50]). Here, we
are going to use a simpler approach: We rewrite each configuration matrix as a graph,
where we mapped the right side of the configuration matrix to a graph (which is sufficient
to reconstruct the whole matrix). In Figure 4.3, there is an example of such a map. We
assign different weights to the connections corresponding to rows and columns to make
them distinguishable. After this step, we have a representation of the CICYs which is
invariant under permutation. As next step, we have to manipulate the data in such a
way that we can feed them into the neural network. Therefore, we look at the different
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Configuration matrix Graph representation Next neighbors

 1 1 1
2 1 2
3 0 4
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Figure 4.3: Example for one CICY and the different representation we used. Left: The
configuration matrix of the CICY. Middle: A graph visualisation of the CICY. Note the
different weights for horizontal and vertical edges. Right: The nearest neighbours of each
node of the the graph in the middle.

types of nodes, how they are connected and what kind of neighbors they have. This gives
us 285 different types of nodes, and therefore, we can construct a dictionary of types of
nodes. Now, we can construct a 285 dimensional feature vector for each configuration
matrix. Additionally, we compute the eigenvalues of the adjacency matrix of the graph for
each configuration matrix which leads to an additional 30 dimensional vector (for smaller
matrices we padded the vectors with zeros. These information are together sufficient as
input for the neural network.1

Training of the network

For the neural networks, we need to find a suitable training task which can be computed in
a straightforward way from the configuration matrix. We use the topological invariants h1,1

and h1,2 which were obtained in [51]. From here on, we can pursuit just as in the previous
examples: We start constructing 500 representatives of each class by randomly applying
permutations and identities (4.14) to the known representatives of the different classes. As
next step, we compute the feature vector and the the eigenvalues of the adjacency matrix
to get the 315-dimensional input vector. Note that the number of possible representatives
might differ, depending on the number of identities applicable. In general, we obtain
between 100 and 300 different representatives per configuration matrices, but there are
examples where only one representative exists (e.g. the so called quintic hypersurface). The
structure of the neural network can be found in Table 4.1, it is a multi-layer perceptron
with two distinct output layers which enables the neural network to learn both Hodge
numbers. (This is analogous to the example of the superpotential where we learned the
classes for the real and the imaginary part.) As in the cases before, we trained the neural
network with an Adam-optimizer and a categorical crossentropy loss. After reaching a
training accurancy above 95 percent we stopped the training process.

1Nowadays, we would be able to feed the graph directly to the neural network, but at the time of the
project it was unfeasible to construct a graph neural network because no accessible framework existed.
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Type Dimension Activation Initializer Regularization
Input 315
Dense 315 ReLU glorot_uniform
Dense 315 ReLU glorot_uniform l2(10−5)
BatchNormalization
Dense 100 ReLU glorot_uniform
Dense 100 glorot_uniform l2(10−3)
Output 1: Dense 102 softmax
Output 2: Dense 20 softmax

Table 4.1: The architecture of the neural network architecture for Hodge number classifi-
cation. The last layer before the output layer is called the embedding layer.

Analysis of the results

For the analysis, we only use distinct representatives of each data point. This leaves us
with ∼ 600,000 data points to compare. As we have to compare 7890 different classes it is
unfeasible to analyze the structures using t-SNE. Instead, we analyze the distance of the
nearest neighbors in the embedding layer.

For each data point, we find the 250 nearest neighbors (with respect to their Euclidean
distance). All of these plots of these distances show a similar structures. We presented
two examples in the plots in Figure 4.4. Those lines always have several plateaus in the
distance curve and several big jumps between two points which are shown in yellow. We
are going to use the biggest jump as a threshold, which appears as a natural choice to us.
CICYs which are closer to the original data point are assumed to be of the same class as
the original data point. Our requirement is that we always at least consider the closest
point as a neighbor. This prediction is pretty successful, given the fact that we are only
able to decide whether two configuration matrices are the same by comparing them with
the full list of classified CICYs. We want to point out the fact that the neural network is
only trained on the Hodge numbers (which are often the same), and not on the class labels
of the matrices. A quantitative analysis of the performance can be found in Figure 4.5: We
can see that the method is able to correctly classify most of the CICYs correctly. We reach
an accuracy rate above 95 percent for 86.6 percent of the CICYs without any additional
input, for example, that we do not removed any data points which are prone to fail (such
as the quintic) or used any other biases we would normally use.

As next step, we analyze only data points which share the same Hodge number h1,1 = 10
and h1,2 = 20, there are 292 distinct CICYs. The analysis works in this regime as well,
as one can see on the right side of Figure 4.5: The majority of CICYs – 80.6 percent – is
correctly classified. Such a small drop of performance is expected because the complete
dataset consists of many classes where the combination of the Hodge numbers is unique,
and therefore, the presented method should perfectly work for those CICYs.
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CICY: 829 (h11 = 10, h12 = 20)
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CICY: 3170 (h11 = 9, h12 = 27)



1 1 1 0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0 0
1 0 0 0 0 1 1 0 0 0 0
1 0 0 0 0 1 0 1 0 0 0
2 0 0 0 0 0 0 0 1 1 1
2 0 0 0 0 1 0 0 1 1 0
2 1 0 1 0 0 0 0 0 0 1
3 0 1 0 1 0 1 1 0 0 0





1 1 1 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 1 0 0
1 0 0 0 1 0 0 1 0 0 0
1 0 0 0 0 1 1 0 0 0 0
1 0 0 0 0 0 0 0 0 2 0
2 0 0 0 0 0 1 0 1 1 0
2 1 0 0 0 0 0 1 0 1 0
2 0 1 0 0 1 0 0 0 0 1
2 0 0 1 1 0 0 0 0 0 1


Figure 4.4: Two examples of the method used to define a cluster in the embedding space.
We plot in blue the Euclidean distance in the embedding layer of the 250 nearest neighbours
to the two fixed CICYs displayed below. The difference between the distances for the points
i and i + 1 is plotted in yellow. The red line highlights the largest difference and defines
the threshold for the cluster. Below are the configuration matrices for the representatives
of the CICYs as they have been classified.

Interpretation

To ensure that two CICYs are mathematically equivalent, we have to compare several
topological quantities, such as Euler number and the Hodge number, as well as the inter-
section number. Due to the basis dependence of the intersection number, we cannot tell
whether two CICYs are distinct, unless we compare it to the full list of classified CICYs.
It is unclear how the neural network is able to map different representatives of the same
class together in the embedding space. A deeper understanding would help to understand
Wall’s theorem [48], and finally lead to a calculation rule how to construct a sufficient basis
for each CICY.

4.2 Finding Generators
After we presented a way how to detect the existence of a symmetry, we continue in
describing an algorithm how to find the generators and therefore we are able to identify the
underlying symmetry. Our starting point is a point cloud, like for example the coordinates
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Figure 4.5: Accuracy of our method on the CICY dataset. Left: We plotted the distribu-
tion of the accuracy for all 686,464 data points. Right: Examining the subset of CICYs
with Hodge-numbers h1,1 = 10 and h1,2 = 20, we find the distribution for the accuracy in
the plot on the right. We still perform the analysis of finding nearest neighbours with all
data points.

used in the previous examples. We use general considerations how one would usually
compute the generators in theoretical settings, and develop an algorithm which is able to
identify those generators in points clouds. To demonstrate this method, we construct noisy
point clouds in various dimensions and apply the algorithm to these point clouds. After
presenting the detected generators, we apply the same method to images and note that a
modified method is able to find those in such high dimensional data as well. We conclude
with a few remarks on discrete symmetry groups.

4.2.1 Algorithm

The fundamental idea is to apply the methodology used to calculate infinitesimal generators
from continuous point cloud Pcon which is related by some symmetry group and generalize
it to discrete point clouds. Two infinitesimal close points p and p′ (from the point cloud
Pcon) are linked by a symmetry group as follows

p′ = p+ εaT
ap , (4.15)

where T a are the generators of the group, while εa is a vector consisting of small numbers
which lead to a connection of the two points. The symmetry group is specified from the
generators T a, therefore, finding them is enough to identify the symmetry group.

The prime example of demonstrating our idea is the case of SO(2), which describes a
perfect circle. We take two points pairs on the circle, namely

p1 =
(

1
0

)
, p′1 =

(
1
ε

)
and p2 =

(
0
1

)
, p′2 =

(
−ε
1

)
, (4.16)
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which are enough to completely restrict the generator. Applying the equation (4.15) to
those points we get an equation system and we find for the generator

T 1 =
(

0 −1
1 0

)
. (4.17)

This can be identified as the generator of SO(2). It is important to note that there are
several advantages working with a continuous point cloud compared to a discrete point
cloud:

• We are able to choose points which are in the same plane.

• We know a suitable basis to choose the correct points.

• We have chosen the points in such a way that the orientations of the transformation
is correct.

• Compared to a discrete point cloud we have an infinite number of data points, which
can be arbitrary close to each other.

Those points are the main reasons for complications when defining the algorithm for a
discrete point cloud. The goal is to take a suitable subset of points and their neighbors
which all lie in a plane. Then identify the correct orientation of the point pairs and use
them to constrain the generator of the subset. After finding one specific generator, we
repeat this process multiple times. It is more appropriate to look for arbitrary generators
rather then orthogonal ones. As last step, we find the “basis” for the generators which
then allows us to identify the symmetry group itself. The algorithm for a discrete point
cloud P itself is described in [22] in the following way:

1. As first step, we can remove redundant dimensions and center the dataset to the
origin. For this pre-processing we can for example use principle component analysis
(PCA). This can be also used to perform a dimensional reduction, and gives you
information on how many dimensions are necessary to keep.

2. As next step, we generate an orthonormal basis (b1, . . . , bn): We pick two arbitrary
points p1, p2 ∈ P from the dataset. Then, we normalize the vector p1 and use the
normalized vector as first basis vector b1 = p1/||p1||. The second basis vector is in
the direction of the orthogonal components of the vector p2, given by the normalized
version of vector p2 − (p2 · b1)b1. Then, we can add arbitrary orthonormal vectors to
complete the basis of the space.

3. We have to filter out points which are close to the hyperplane H spanned by b1 and
b2. We want to find the generator which acts in this hyperplane. As condition we
use

|p · bi| < δ for 2 < i ≤ n , (4.18)
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where δ > 0 is a hyperparameter we have to choose by hand. The larger δ the
more points are included, but then it also becomes harder to find appropriate gen-
erators. Note that in this ‘thick’ hyperplane points might possess also neighbors
which are orthogonal to the plane of interest. Those contribution are removed using
condition (4.22).

4. As next step, we want to find point pairs p, p′ ∈ H which are close enough to each
other to be usable as neighbors. The condition we use is

||p− p′|| < ε for ∀ p, p′ ∈ H , (4.19)

with ε > 0 being a hyperparameter as well. Note that we do not only include next
neighbors but also other points which are close enough.

5. These point pairs (p, p′) are now used to find constraints on the generators in equa-
tion (4.15). This equation becomes

p′ − p = σH(p, p′)
‖p‖

‖p′ − p‖ Tp , (4.20)

where T denotes the generator we determine. The distance ‖p′ − p‖ is the same as
the εa in equation (4.15). The normalization factor 1/‖p‖ generalizes the results to
point clouds with points p where ‖p‖ 6= 1. σH(p, p′) denotes the correct direction
between the points (p, p′) within the hyperplane. It is defined as:

σH(p, p′) = sign ((p · b1)(p′ · b2)− (p · b2)(p′ · b1)) . (4.21)

All components of T which are perpendicular to the hyperplane are constrained using

T bi = 0 for i > 2 . (4.22)

This condition removes also false directional information arising from point pairs
which would actually point in the wrong direction (perpendicular to the hyperplane).

6. The equations (4.21) and (4.22) give us a well defined system of equations, we can
solve using linear regression. Note that we weigh the constraints (4.22) higher then
the constraints from equation (4.21), and do not enforce it as a hard condition.

7. By applying the steps 2-5 multiple times, we find different generators for ’all’ present
directional combinations. To filter out the main components of this generator space,
we can apply a PCA on all generators. As next step, we analyze the standard
deviation in these components. This gives us the right number of present generators
of the underlying dataset. Additionally, the PCA also gives us also a basis for the
generator space, allowing us to identify the underlying symmetry group.
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Figure 4.6: We show three examples of point clouds for SO(2). To display the performance
of the algorithm for different difficulties, we vary the number of points and use different
noise. The respective parameters are shown in the plot title. In the scatter plots, we also
display the generator corresponding to the first PCA component which is found by our
algorithm.

8. Finally, we have to make a remark on distinguishing unitary from orthogonal groups,
so for example between SU(2) and SO(4). The problem is that the orbits are not
necessarily distinguishable: Considering the orbit of a point on a unit sphere S3, it
might by generated by both symmetries, because every point of the sphere S3 can
be mapped to the point (1, 0, 0, 0), with SU(2) as well as SO(4) transformations.
To distinguish them, we always have to use a pair of point pairs to see a difference
between the two transformations. In realistic physical situations, we usually have
such point pairs (for example the SU(2) superpotential in section 4.1.1) and we can
use these point pairs to distinguish between the symmetry groups. To use the upper
example of an S3: When an SU(2) symmetry is present all generators are fixed when
one of the points is moved to the north pole (1, 0, 0, 0), whereas when we use an
SO(4) symmetry half of the generators is not fixed yet.

Let us now discuss several experiments for this algorithm. Here, we mainly focus on SO(n)
as well as SU(2), but also other symmetry groups are suitable for this algorithm.

4.2.2 Examples
We start our experiments with the most simple example: the already known SO(2). Here,
we perform several stability checks and vary the number of points as well as the noise. We
construct our noisy point clouds in the following way: We randomly sample distributed
points on the circle with radius r = N (1, σ). Results are shown in Figure 4.6. Even for
a small point clouds which one would not necessarily identify as a circle the algorithm is
able to identify a matrix which is recognizable as the generator of SO(2). The analysis is
performed with δ = 0.5. Note the large difference in the standard deviation of the PCA.
This clearly indicates that only one generator is present. This holds even in the case with
only 20 data points. We continue with higher dimensional problems.
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Figure 4.7: Left: We display the standard deviation of the PCA components for different
examples of SO(3) point clouds. Right: The standard deviation of the PCA components
of the SO(4) example.

As next steps, we discuss examples in three and four dimensions. We use our algorithm
on different point clouds modeling a noisy S3 and S4. The results for SO(3) and SO(4) are
displayed in figure 4.7. In both setups, we see a steep drop of the standard deviation of the
PCA independently of the specific choice of hyperparameters. Note that with increasing
dimensions the number of points needed increases because the hyperplane used becomes
relatively smaller compared to the total volume of Sd. In three dimensions, we find three
generators whereas in four dimensions, we find six. Our numerical results for the generators
of SO(3) using 1000 points (red curve in Figure 4.7) are:

G1 =

 −0.00 0.04 0.59
−0.06 0.01 0.78
−0.59 −0.82 −0.01

 , G2 =

 −0.01 −0.98 −0.13
0.98 0.04 0.14
0.16 −0.18 0.01

 ,

G3 =

 0.00 0.21 −0.81
−0.21 0.00 0.55
0.78 −0.61 −0.03

 .

(4.23)

From the red curve in four dimensions, we get for the generators of SO(4) the formulae
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G1 =


0.02 0.50 −0.11 0.25
−0.52 −0.00 0.39 0.60
0.10 −0.41 −0.00 −0.38
−0.28 −0.59 0.38 −0.02

 , G2 =


0.00 0.08 0.41 −0.07
−0.09 −0.00 −0.31 −0.29
−0.48 0.24 −0.02 −0.78
0.06 0.29 0.81 0.02

 ,

G3 =


0.02 0.13 0.42 −0.29
−0.09 0.04 0.78 −0.32
−0.45 −0.76 −0.02 0.13
0.31 0.33 −0.13 −0.03

 , G4 =


0.03 0.55 0.50 0.42
−0.57 −0.00 −0.30 −0.08
−0.45 0.31 0.02 0.44
−0.40 0.12 −0.43 −0.03

 , (4.24)

G5 =


0.01 0.63 −0.48 −0.50
−0.64 0.01 −0.16 −0.29
0.48 0.14 −0.00 0.03
0.51 0.32 0.02 −0.01

 , G6 =


−0.02 −0.01 −0.37 0.62
0.01 0.02 0.24 −0.61
0.40 −0.24 −0.03 −0.13
−0.67 0.59 0.14 0.02

 .

For the next steps, we focus on the four dimensional space and discuss subgroups of the
SO(4), namely SU(2) and SO(2) × SO(2). Our method is able to identify the subset of
generators of SO(4) which defines the searched symmetry group. Again we tested our
method on different hyperparameters. The results can be found in Figure 4.8. For SU(2),
we find the following generators for the red curve (5000 points):

G1 =


−0.01 0.52 0.47 −0.11
−0.52 0.00 0.08 0.49
−0.47 −0.08 0.01 −0.50
0.12 −0.48 0.50 0.00

 , G2 =


−0.00 −0.24 0.43 0.46
0.26 0.00 −0.52 0.39
−0.43 0.51 −0.00 0.35
−0.45 −0.39 −0.34 −0.01

 ,

G3 =


0.00 −0.39 0.30 −0.50
0.37 0.01 0.51 0.32
−0.31 −0.50 0.01 0.39
0.49 −0.31 −0.40 0.00

 . (4.25)

Note that it was necessary to use point pairs (x, y) to distinguish SU(2) from SO(4). This
is described in bullet 8 in section 4.2.1 in more detail. For SO(2)× SO(2) we find for 100
points (black curve in Figure 4.8) the generators:

G1 =


−0.03 0.14 0.03 −0.01
−0.31 0.01 0.03 0.01
0.04 0.01 −0.01 0.95
−0.1 −0.06 −0.98 0.04

 , G2 =


0.00 −1.13 0.09 0.01
0.78 −0.04 −0.03 −0.03
0.03 0.04 −0.02 0.19
0.08 −0.02 −0.23 −0.00

 . (4.26)

4.2.3 Applications to the Mexican hat Potential and the Super-
potential

To connect the algorithm to section 4.1, we apply our presented algorithm to the point
clouds resulting from the analysis of the embedding layer for both problems, the Mexican
hat potential (4.4) and the superpotential (4.6).

For the Mexican hat potential we use the radius r = 1.45. This class has 497 point
clouds and can be seen in Figure 4.9 on the left. This point cloud has nearly no noise and
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Figure 4.8: Left: We display the standard deviation of the PCA components for different
examples of SU(2) point clouds. Right: The standard deviation of the PCA components
of the SO(2)× SO(2) example.
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Figure 4.9: The analysis for the Mexican hat potential in section 4.1.1. Left: The point-
cloud found in section 4.1.1. Middle: The standard deviation of the PCA components of
the Mexican hat example. Right: The standard deviation of the PCA components of the
superpotential example.

therefore, the algorithm is able to find one dominant generator for this data set (see Figure
4.9 in the middle).

We proceed with the superpotential and apply the same analysis here. In contrast to
the Mexican hat potential, we use every class (each with ∼ 1000 representatives) found
by our analysis of the embedding layer and apply the described algorithm on these clases.
The results can be found in Figure 4.9. As we can see, we get the same structure as for
the SU(2) point clouds. Therefore, we conclude that the combination of both parts gives
us a good method to find the underlying symmetries of a potential.

4.2.4 Rotated MNIST
The final application of our algorithm is connected to the well-known dataset of hand-
written digits MNIST. The goal is to rotate the images and find the generator of SO(2).
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Figure 4.10: Left: Point cloud of the first three PCA components of the rotated MNIST
dataset. In orange, we highlighted the orbits of multiple images of the digit eight. Gray
points correspond to the other digits. Right: The results of the standard deviation for
the generators for the digit eight. Those have been identified from the point cloud.

Therefore, we apply rotations on the 28×28 images. However, due to the size of this space
(784 dimensions), we first apply a PCA on the dataset before we apply our algorithm and
identify the generator.

Let us describe the approach in detail:

1. We only pick MNIST-images of one digit, in our example the 8 and pick the first 20
images of it.

2. We rotate the images with random angles to get 2000 rotated versions in total of
different “eights”.

3. Applying PCA on the 784 dimensional space, we end up with a point cloud in three
dimensions. A visualization can be found in Figure 4.10 .

4. On this space, we apply our algorithm described in section 4.2.1 to the point cloud.

The algorithm finds as the dominant generator (see Figure 4.10 for the standard deviation)
of this point cloud the generator of SO(2) given by

G =

 −0.06 −0.00 −0.07
0.01 −0.01 1.00
0.08 −0.99 0.04

 . (4.27)

4.2.5 Discrete symmetries – CICYs
As last step, let us briefly comment on the example of CICYs discussed in Section 4.1.2.
For discrete symmetries our algorithm described in the beginning of this section, is not



48 4. Detecting Symmetries with Neural Networks

applicable because it is based on infinitesimal close point pairs. To identify underlying
symmetries here, we need to find identical transformations in different orbits on the input
space and recognize them as the same ones. Due to the construction of the dataset using
exactly such identities and the clustering in the embedding layer described in section 4.1.2,
our network is able to detect those symmetries. However, the search for possible new
identities within the dataset was beyond the scope of the project [22].



Chapter 5

Symmetry Control Neural Network

In this chapter, we describe a method how to find conserved quantities using machine
learning purely from observations of the trajectories of particles. As first step, we review the
construction of the Hamiltonian Neural Network (HNN) presented by Greydanus et al. [52].
As second step, we utilize this idea to find the conserved quantities of trajectories purely
using data from observation. In the second section, we demonstrate experimentally the
success of the idea of the Symmetry Control Neural Network (SCNN). As final step, we
propose an application for physical problems with known Hamiltonians. The main findings
of this chapter are based on the results in [23].

5.1 Reviewing Hamiltonian Neural Networks
In many problems in machine learning we have to take physical laws into account, whether
it is analyzing video sequences, training an reinforcement agent, or predicting the future
development of a system. One of the keys to achieve such good performances on physical
tasks is the use of suitable constructed neural networks. Therefore, the neural network
must be able to predict the changes of the investigated system. One way to predict the
change of the system is to compute the new phase space variables (qt,pt) after a finite
time step ∆. This is given by

fθ : (qt,pt)←→ (qt+∆t,pt+∆t) , (5.1)

where fθ is a function parameterized by trainable weights θ. It turns out that while this is
sufficient for simulation tasks [53] with a large number of particles, this does not provide
any information about conserved quantities or the physics behind the problem. For physics,
it turns out it is more suitable to predict

(
dq
dt
, dp
dt

)
≡ (q̇, ṗ) using position and momenta

(q,p) as input, so:
fθ : (q,p)←→ (q̇, ṗ) , (5.2)

where fθ is a function parameterized by trainable weights θ. This training can be done in
a completly supervised fashion, training the network to predict (q̇, ṗ) directly. Such an
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approach, combined with so called graph neural networks was used in [54] to find analytical
expressions of forces between particles.

To predict the state of the system at time t2 given the state at t1, we can integrate over
the time derivatives:

(qt2 ,pt2) = (qt1 ,pt1) +
∫ t2

t1
dt (q̇, ṗ)

= (qt1 ,pt1) +
∫ t2

t1
dtfθ (qt,pt) .

(5.3)

Using this approach and integrating over a period of time it turns out the neural network is
not able to conserve the energy of the system. It actually accumulates small errors leading
to the problem that the system gains (or looses) energy. This leads to an unphysical
behavior of the system we would like to avoid. The goal is to find an approach where the
energy is conserved.

A method to tackle this problem is the Hamiltonian Neural Network (HNN) [52]. The
basic idea is to the learn the Hamiltonian directly, and then using Hamilton’s equation to
find the time derivatives of position and momenta. Therefore, the goal is to learn a scalar
function Hφ (which is equivalent to the Hamiltonian in classical mechanics)

Hφ : (q,p) = Hφ (q,p) . (5.4)

This scalar function can be used to compute the time derivatives of position and momenta
using the equation for time evolution in classical mechanics, given by

dq
dt

= {q,H} = ∂H
dp

,
dp
dt

= {p,H} = −∂H
dq

, (5.5)

where {•, •} are Poisson brackets. They are defined as

{f, g} := ∂f

∂q
∂g

∂p
− ∂f

∂p
∂g

∂q
. (5.6)

Using those formulae the Network function Hφ can be trained to minimize the loss function

LHNN =
∥∥∥∥∥∂Hφ

∂p
− dq
dt

∥∥∥∥∥
2

+
∥∥∥∥∥∂Hφ

∂q
+ dp
dt

∥∥∥∥∥
2
. (5.7)

The function Hθ (q,p) can be modeled with a multi-layer perceptron giving only one
single output value, the derivations are computed using auto-differentiation. As a result,
the neural network returns a conserved quantity, a scalar, equivalent to the energy of the
system. Using the data points given to train the neural network, we can fit an analytical
function to this output function. As a result for a given dataset, we get he Hamiltonian
of the underlying physical system. For experimental results and more explanations on the
method, we refer the interested reader to the paper by Greydanus et al. [52].

As a next step, we move on to the Symmetry Control Neural Network (SCNN), which
enables us to learn conserved quantities, and as a consequence, symmetries directly [23].
Here we use the predictions of the HNN as benchmark for the SCNN to compare the two
directly.
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Figure 5.1: Effect of the additional components of the loss function: In gray,
we show the contours for the HNN-loss (5.11), and in red the contours of the Poisson
loss (5.12) using the angular momentum ‖{L,H}‖2) in the 2-body Hamiltonian (5.15).
Here we used the masses m1 and m2 of the two bodies as parameters of the system. The
data for the model corresponds to m1 = m2 = g = 1 (indicated with a star). We evaluate
the loss for our training set. The analytical constraints from evaluating the Poisson bracket
{L,H} ∼ (m1 − m2) is clearly visible as line for m1 = m2. This provides an additional
constraint on the parameters of the model.

5.2 Theory of the Symmetry Control Neural Network

Let us start by briefly defining the notation of Hamiltonian mechanics. We consider a
classical system with N particles in d spatial dimensions. Such a system can be described
by the variables (q,p), where q = (q1, ..., qN ·d) are typically the position coordinates for
each dimension of the particles and p = (p1, ..., pN ·d) are the corresponding momenta. As
mentioned in the previous chapter, we want to learn the time evolution of our system and
are therefore interested in (q̇, ṗ).

Additionally, we want to find the conserved quantities of the system for two reasons:

1. It was shown in [55] that utilizing conserved quantities of a Hamiltonian improves
the performance and reduces the risk of overfitting. A toy model with only two
parameters is described in Figure 5.1. Here, we can see the effect of the constrains
on the Hamiltonian.

2. Symmetries lead directly to conserved quantities (c.f. Noether’s theorem). Therefore,
when learning conserved quantities, we also learn the symmetries of a system. This
is interesting from a physical point of view as it allows to examine new systems.

To find the conserved quantities, we utilize the Poisson brackets (5.6), which enable us
to compute not only the time evolution of (q,p), but also the time evolution of all other
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quantities g(q,p) which does not explicitly depend on time:

dg(q,p)
dt

=
N ·d∑
i=1

∂g

∂qi

dqi
dt

+ ∂g

∂pi

dpi
dt

= {g,H} , (5.8)

where we have used the Hamiltonian equations (5.5) in the last step. Therefore, a vanishing
Poisson bracket ensures, that g(q,p) is a conserved quantity. Additionally, we are going to
need further restriction to find different, non-vanishing conserved quantities which differ
from each other.

To solve this problem, we are going to make use of cyclic coordinates. Cyclic coordi-
nates are a set of generalized coordinates for which the momenta are conserved. These
coordinates still have to fulfill the Poisson algebra as well as Hamiltonian’s equation. To
find such coordinates, we have to find a suitable diffeomorphic coordinate transformation
which leaves the structure of the phase space invariant. These constraints are given by

T : (q,p) 7→ (Q(q,p),P(q,p)) ,
{f, g}p,q = {f, g}P,Q ,

H(p,q) = H̃(P(p,q),Q(p,q)) .
(5.9)

We are interested in finding transformations T such that at least one coordinate satisfies

0 = Ṗi = − ∂H
∂Qi

= {Pi,H} . (5.10)

Such a coordinate Pi is conserved in the system and the Hamiltonian does not depend on
the associated Qi, i.e. it depends on fewer degrees of freedom and the motion in phase
space is restricted to a lower dimensional manifold. Therefore, we do not only learn the
conserved quantities, but also restrict the Hamiltonian (referring to Figure 5.1 again) to
improve its accuracy.

5.2.1 Structure of the SCNN
As we mentioned before, we are using two different neural networks to find both, the
conserved quantities as well as the Hamiltonian (which is a conserved quantity itself).

As first step, we define a network Tψ which performs the coordinates transformation,
and in the second step, using those generalized coordinates as input for the Hamiltonian
neural networkHφ. The structure of those networks can be found in Figure 5.2. We have to
translate the necessary conditions into loss functions in order to find the correct structure
of the coordinate transformations.

1. The first loss function ensures that our Hamiltonian satisfies Hamiltonian equa-
tions (5.5), which we can ensure using

LHNN =
N ·d∑
i=1

∥∥∥∥∥∂Hφ(P,Q)
∂pi

− dqi
dt

∥∥∥∥∥
2

+
∥∥∥∥∥∂Hφ(P,Q)

∂qi
+ dpi

dt

∥∥∥∥∥
2
. (5.11)
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Figure 5.2: The structure and the different parts of Symmetry Control Neural Networks:
The network Tψ corresponds to a coordinate transformation from the input coordinates
(p,q) to other (also canonical) coordinates. Some of those transformed coordinates are
forced to be cyclic. This is followed by the Hamiltonian network Hφ using the new coor-
dinates as input. The output of the Hamiltonian network corresponds to the Hamiltonian
function in theoretical physics and is used to calculate the time derivatives of the initial
coordinates.

The time derivatives are provided by the data and the derivatives of the Hamiltonian
with respect to the input variables can be obtained using auto-differentiation. This
is the same loss function as introduced in [52].

2. To ensure that our transformation Tψ are of the type we are interested in (cf. Eq. (5.9)),
i.e. our new coordinates fulfill the Poisson algebra, we use the loss function

LPoisson =
N ·d∑
i,j=1
‖{Qi, Pj} − δij‖2 +

N ·d∑
i,j>i

‖{Pi, Pj}‖2 + ‖{Qi, Qj}‖2 , (5.12)

where in practical applications we only enforce this loss function on n cyclic coordi-
nate pairs. The first part of this loss function ensures that a vanishing solution is
not allowed.

3. Hamilton’s equations have still to be satisfied with respect to the new coordinates.
For the cyclic coordinates we have enforced by the architecture thatHφ is independent
of Qi. However, to ensure that Pi is actually conserved, we require the following
additional loss function

L(n)
HQP =

n∑
i=1

∥∥∥∥∥dPidt
∥∥∥∥∥

2
+
∥∥∥∥∥dQi

dt
− ∂Hφ(P,Q)

∂Pi

∥∥∥∥∥
2

+ β
N ·d∑

i=n+1

∥∥∥∥∥dPidt + ∂Hφ(P,Q)
∂Qi

∥∥∥∥∥
2

+
∥∥∥∥∥dQi

dt
− ∂Hφ(P,Q)

∂Pi

∥∥∥∥∥
2
,

(5.13)

where n denotes the number of cyclic variables we are imposing and β denotes a
hyperparameter for our experiments. For the search for conserved quantities β = 0
is the best choice, when looking for coordinate transformations we have to choose
β 6= 0 and therefore, restrict the non-cyclic coordinates as well. The time derivatives
can be calculated using expressions in (5.8) or using the chain rule.



54 5. Symmetry Control Neural Network

Our total loss function is a weighted sum of these three components:

L = LHNN + α1LPoisson + α2L(n)
HQP , (5.14)

where the weights αi are tuned.
Note that for many physical problems we already know some of the conserved quantities,

such as total momentum conservation or angular momentum conservation.

5.2.2 Experiments
In the original paper [23] we used two different types of neural networks to show the success
of the Symmetry Control Neural Networks in predicting the time evolution of the system.
• SCNN-base: We compare the performance of Symmetry Control Neural Networks

with HNNs and baseline neural networks on the accuracy of integrated trajectories
for (p0,q0). We vary the number of conserved quantities up to the maximal allowed
number of independent conserved quantities.

• SCNN-constraint: We explore whether imposing domain knowledge about sym-
metries improves the performance. This is motivated by the fact that we often know
about the existence of certain conserved quantities we can already include by hand.

Here, we will only present the results of the conserved quantities, as well as the analytical
formula of the Hamiltonian, and therefore, we will not take the proper distinction of the
difference. For the results of the improvement of the accuracy in simulations, we refer the
interested reader to the papers [23, 56]. We tested several examples to show the framework
on classical mechanics.

Two-body problem

The first example is the two-body problem in two dimensions which is governed by the
Hamiltonian

H = p2
x1

2m1
+

p2
y1

2m1
+ p2

x2
2m2

+
p2
y2

2m2
− g

‖q1 − q2‖2
. (5.15)

To simplify the problem we set m1 = m2 = g = 1.
To analyze the conserved quantities, we fit polynomials in (q,p) to the output of the

cyclic coordinates. Picking the solution with the lowest degree and good accuracy1 we
recover known conserved quantities of this system in the SCNN-base-model:

Pc1 =− 4.21 px1 − 4.21 px2 − 1.26 py1 − 1.29 py2 ,

Pc2 =− 0.93 px1 − 0.92 px2 − 3.23 py1 − 3.22 py2 ,

L =− 1.07 qx1py1 + 0.88 qx1py2 + 0.93 qx2py1 − 1.03 qx2py2

+ 1.01 qy1px1 − 0.89 qy1px2 − 0.92 qy2px1 + 0.99 qy2px2 .

(5.16)

1We check that there is no significant change in the fit accuracy when including higher order polynomials.
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This are accurate fits of the exact conserved quantities

Px =px1 + px2 ,

Py =py1 + py2 ,

L = (px1 − px2) (qy1 − qy2)− (py1 − py2) (qx1 − qx2) .
(5.17)

Due to the structure of the Hamiltonian and the energy (which is a 1/r function) we have
not been able to find the accurate polynomial formula for the Hamiltonian.

Coupled harmonic oscillator

As next system, we are going to look at the n-dimensional coupled oscillator. The
Hamiltonian of this system is

H =
n∑
i=1

p2
i

2mi

+
n∑

i,j=1
qiAijqj , (5.18)

where we choose mi = 1/2 and the symmetric n × n dimensional coupling matrix Aij
with positive eigenvalues. We choose a non-diagonal matrix to get a coupling between the
particles and therefore, the potential energy of each oscillator depends on the position of
the other particles.

We look at the case where n = 2. We are able to find the energy of the decoupled
sub-system with the Symmetry Control network. The conserved quantities we find are the
energies of the two subsystem, e.g.:

P1 = 0.67 q2
1 − 3.6 q1q2 + 8.23 q2

2 + 0.46 p2
1 − 1.78 p1p2 + 4.2 p2

2 ,

P2 = −4.53 q2
1 − 1.74 q1q2 − 0.9 q2

2 − 4.5 p2
1 − 1.88 p1p2 − 0.57 p2

2 .
(5.19)

We neglect all terms with factors smaller than 0.05. The analytic formula of the Hamilto-
nian can also be found accurately given by

H = 1.02 q2
1 − 0.41 q1q2 + 1.89 q2

2 + 0.97 p2
1 + 0.99 p2

2 , (5.20)

neglecting terms smaller than 0.05.

Spherical Pendulum

The next system is the spherical pendulum with the Hamiltonian

H =
p2
x + p2

y

2m −m g
√
l2 − q2

x − q2
y , (5.21)

where we use as hyperparameters the mass m = 1
2 , the coupling g = 1

2 and the length
of pendulum l = 1. The spherical pendulum has two types of conserved quantities: the
angular momentum

L = qxpy − qypx , (5.22)
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and the energies of the subsystems as it can be viewed as a two-dimensional harmonic
oscillator with degenerate eigenvalues.

Using the same architecture as for the harmonic oscillator, we are able to find the
following conserved quantities:

P1 =1.19 q2
x + 0.4 qxqy + 0.72 q2

y + 1.77 p2
x

+ 0.51 pxpy + 1.09 p2
y − 0.83 qxpy + 0.84 qypx ,

P2 =− 0.65 q2
x + 0.58 qxqy − 1.38 q2

y − 0.96 p2
x

+ 0.77 pxpy − 1.92 p2
y − 1.18 qxpy + 1.18 qypx ,

(5.23)

with MSE of 0.003 and 0.002 and we omit terms below 0.05. Here, we are able to identify
the two different subsystems. The analytical formula for the Hamiltonian we found using
the SCNN is:

H = 0.68 q2
1 + 0.71 q2

2 + 1.02 p2
1 + 1.02 p2

2 . (5.24)

When comparing the result to the true Hamiltonian (5.21), we notice that we find a different
structure in the formula. An exact comparison shows that the two formulae only differ
slightly by a factor of 0.005 using a mean squared error for the comparison.

5.2.3 Application to physics
In physics, the Hamiltonian for many systems is already known. Therefore, we do not
have to learn it, but can insert the Hamiltonian itself by hand. As a result, we have to
learn only the conserved quantities, and not the Hamiltonian. Therefore, we can neglect
the second part of the Symmetry Control Neural Network and only look at the Coordinate
Transformation Neural Network. We also have to modify the loss functions. In this version
of the SCNN, we are interested in finding n conserved quantities. Therefore, we will only
have two terms in the loss function.

1. The first terms are the known Poisson loss. They are necessary to find distinct
conserved quantities:

LPoisson =
n∑

i,j=1
‖{Qi, Pj} − δij‖2 +

n∑
i,j>i

‖{Pi, Pj}‖2 + ‖{Qi, Qj}‖2 , (5.25)

2. Additionally, the new coordinates still have to fulfill Hamilton’s equation, but we
cannot directly reuse the third part of the loss function (5.13), because we already
have the Hamiltonian given here. A possible modification is:

L(n)
HQP =

n∑
i=1

∥∥∥∥∥dPidt
∥∥∥∥∥

2
+
∥∥∥∥∥dQi

dt
− {H, Qi}

∥∥∥∥∥
2

(5.26)



5.2 Theory of the Symmetry Control Neural Network 57

Note, that a pre-computation of the derivatives dH
dqi

and dH
dpi

speeds up the calculation.
This suggested neural network has not been applied to any physically challenging problem
settings and should only point out interesting perspectives for further research in this
direction.

For many problems in field theory the down side of this approach is that it can only
find a fixed number of conserved quantities. One might be able to raise the number of
those conserved quantities, but in field theoretical problem an infinite amount of conserved
quantities might occur. For those kinds of problems we will need a different approach to
find solution. A possible solution is presented in the next chapter.
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Chapter 6

Integrability ex Machina

In this chapter, we are going to discuss a third rather abstract method to find unknown
conserved quantities. The goal is to find a mathematical structure called Lax pair. If we are
able to find such a structure in a physical system, we know that this system is integrable
and therefore, has at least the same amount of conserved quantities as the number of
degrees of freedom. Additionally, when we find a Lax pair of a system we are able to
compute the conserved quantities of the system. This section is organized as follows: As
a first, we give a short introduction into integrability and conditions when a system is
integrable. In the second step, we introduce a method how we can translate such problems
into an optimization task which can be solved by machine learning algorithms. Third, we
are going to apply this algorithm on different systems. We will conclude with examining
perturbations of integrable systemd and whether those perturbations are integrable or not.
This section is mainly based on the publication [24].

6.1 Review of Integrability
We will start with an overview of the concepts and definitions of integrability. This part
is based on the review by Beisert [57]. Another notion of symmetries is the concept of
integrability. Roughly speaking, a system is called integrable, if it has at least as many
conserved quantities as degrees of freedom. Those conserved quantities have to be in
involution, meaning that {Fi, Fj} = 0 for all conserved quantities Fi and Fj. Typical
examples are:

• Harmonic oscillator in d dimensions: Here, the energy of the subsystems are the
conserved quantities.

• Two-body problem: It has the energy, the total momentum and one component of
the angular momentum as conserved quantities.

• Every one dimensional system with a Hamiltonian: Here, the energy is always a
conserved quantity.
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A typical counter-example is the double pendulum. It has two degrees of freedom, but
the only conserved quantity is the energy. Such a system is called chaotic. Looking at the
examples, one can recognize the advantage of integrable systems: Those systems can be
analytically solved quite nicely, and therefore, are prime text book examples.
To study integrability in more complex systems, it turns out that a useful notion is the
concept of Lax pairs. A Lax pair is a pair of squared matrices (in other words, they are
operators) which takes values in the phase space of the problem setting. Usually, they are
denoted by L and M , and depend on p and q in classical physics1. The defining property
is the equation

d
dtL = [L,M ] , (6.1)

which the matrix pair has to fulfill if and only if the equations of motions are fulfilled. It is
crucial to note that these matrices are not uniquely defined. For example, one can always
add an identity or scale the matrix L by an arbitrary factor (unequal to zero).

Additionally, one can introduce a spectral parameter λ on which the matrices depend
on. This factor is important in field theory to compute conserved quantities, and can
always be introduced by

L̃ = L+ λ 1 . (6.2)
This spectral parameter is used to construct an infinite tower of conserved quantities

Fk(λ) = trLk(λ) , (6.3)

where we can expand the result as a power series in λ. As we mentioned above, we have to
ensure, that those conserved quantities are actually in involution, so that {Fi, Fj} = 0 is
true. For this, we have to find the classical r-matrices of the system. They are defined
as

{L1, L2} = [r12, L1]− [r21, L2] , (6.4)

where L1 := L⊗1, L2 := 1⊗L and r21 = P (r12) with P (·) being the permutation operator
between the two spaces. It can be shown that all conserved quantities defined by (6.3)
commute when classical r-matrices exist.
An example is the harmonic oscillator. It has the equations of motion

q̇ = p , ṗ = −ω2q . (6.5)

For these equations of motion, two different families of Lax pairs can be defined by

L1 = a

(
p b ω q
ω
b
q −p

)
, M1 =

(
0 b

2ω
− 1

2 b
ω 0

)
,

L2 = a

(
q 1

b ω
p

b
w
p −q

)
, M2 =

(
0 − 1

2 b
ω

2
b
ω 0

)
,

(6.6)

1Note that it is also allowed that those matrices L and M depend on derivatives such as ∂p or ∂q. In
this thesis, we are only interested in solutions depending only on coordinates itself, and not on derivatives.
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where a, b ∈ R/{0}. The solution known from the literature is L1, M1 with a = b = 1. A
quick check shows that this exactly fulfills (6.1):

L̇1 =
(

ṗ ω q̇
ωq̇ −ṗ

)
=
(
−ω2q ω p
ωp ω2q

)
= [L1,M1] . (6.7)

Then, the classical R-matrix becomes

r12 = 1
q

(
0 1
0 0

)
⊗
(

0 0
1 0

)
− 1
q

(
0 0
1 0

)
⊗
(

0 1
0 0

)
. (6.8)

When we introduce the spectral parameter with L̃ = L+ λI, the conserved quantities are:

F1 = 2 λ ,
F2 = 2 λ2 + 4 H ,

F3 = 2 λ3 + 12 λ H ,

F4 = 2 λ4 + 24 λ H + 4 H2 .

(6.9)

As result, we find that the system has only one independent conserved quantity, the Hamil-
tonian.
As next step we extend this idea from classical mechanics to field theories. In those theories,
an infinite amount of conserved quantities might be present. Therefore, we extend the
concept of Lax pairs to the concept of a local Lax connection A (λ) which is a matrix
valued one-form. In 1 + 1-dimensions, this one-form can be written as:

A (λ) = Ax (λ) dx+ At (λ) dt . (6.10)

This can be viewed as a connection and the Lax pair equation (6.1) becomes the flatness
condition dA = A ∧ A, e.g.

Ȧx (λ)− A′t (λ) + [Ax (λ) , At (λ)] , (6.11)

which has to be fulfilled if and only if the equations of motion are fulfilled. Here, we can
reintroduce the spectral parameter again (if it is not present yet) by the formula:

Ãx = Ax + λ 1 ,

Ãt = At + λ 1 .
(6.12)

To find the Lax pair L and M from the Lax connection, we can use the definitions

L (λ) = ~P exp
∫ R

0
dxAx (λ) , M (λ) = At (λ)|x=0 , (6.13)

where we defined the Lax pair for a compact space with length R, ~P being the path
ordering operator. The conserved quantities can be found using the expansion of (6.3).
For completeness, we also have to show that the conserved quantities are in involution.
The defining condition here is

{L1 (λ1) , L2 (λ2)} = [r12 (λ1, λ2) , L1 (λ1)⊗ L2 (λ2)] . (6.14)
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6.2 Integrability Structures from Optimization
In this section, we are going to describe how to find the Lax pair, respectively the Lax
connection, for different physical system as an optimization problem using the equations
of motion. As we will see, we are going to need some additional input about the symmetry
structure of our problem. To find such matrices, we are going to describe the search as an
optimization problem and solve it with an suitable ansatz for L, M and the r-matrices.
The framework is the same for the Lax pair and the Lax connection:

1. We start by sampling data points which fulfill the equations of motion. Note, that we
do not need an analytical solution we can directly compute the time derivatives with
the equations of motion: For the harmonic oscillator, we can sample q and p from a
distribution, i.e. p, q ∼ N (0, 1), and then use the equations of motion to compute q̇
and ṗ. This procedure has the advantage over using analytical formula that we do
not have any unwanted correlations between coordinates. In our experiments, we use
∼ 105 − 106 data points which can be easily extended to sampling new samples for
every epoch.

2. As next step, we choose an ansatz for the Lax pair L, M . We usually start with the
idea of having polynomials up to first order, and if the network does not converge
we choose higher order polynomials. Another good guidance is the degree of the
equations of motion. In general, we can use an arbitrary neural network which
corresponds to approximating non-polynomial functions. Due to the fact that we
are looking at standard examples of integrability in this proof of concept study and
we are interested in finding analytical expressions, we decided to focus on simple
ansätze. Given an ansatz we then optimize our network subject to the integrability
loss described below.

3. Finally, we check the analytic results, whether they are actually equivalent to the
differential equations. At this stage we can compute the conserved quantities as
powers of tr Lk.

4. Additionally, we can find a solution for the r-matrices using the methods of 6.2.3.
This can also be done in parallel to the search for the Lax pair, if the challenging
part is to find a Lax pair where the conserved quantities are in involution.

As next step, we have to design our loss function. It has to ensure that the neural network
is forced to find solutions to the problem in such a way that the following two conditions
holds:

1. The equation
d
dtL (λ)− [L (λ) ,M (λ)] = 0 or Ȧx (λ)− A′t (λ) + [Ax (λ) , At (λ)] = 0

(6.15)

must hold for all sampled data points.
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2. The system of equation, given by (6.15), must be equivalent to the defining equation
of motions of the physical system.

To compute the derivatives, we can use the chain rules, and use the fact that, we control the
dataset and manipulate it in any way, so for example we can evaluate the time derivative
of L as follows

d
dtL = ∂L

∂p
ṗ+ ∂L

∂q
q̇ , (6.16)

where derivatives ∂L
∂p

and ∂L
∂q

are evaluated using auto-differentiation. The values q̇ and ṗ
are part of the dataset.

6.2.1 Lax Pair
Let us start defining the loss functions. One central element is the Lax pair condition (6.1).
To formulate that equation has a loss, we take the difference between left and right side,
and take the absolute value of the components. Our choice here is mean-squared error,
but it has the disadvantage of resulting in high loss numbers. Therefore, an other suitable
choice would be the Huber loss function. We use

LLax =
∣∣∣∣∣∣L̇− [L,M ]

∣∣∣∣∣∣2 , (6.17)

where this norm is applied to each matrix component.
To fulfill the second part, we use a suitable ansatz: All equations of motion can be rewritten
as

ẋi = fi (xi, ∂xi, ...) , (6.18)
where xi is any quantity with a time derivative. Knowing that any time derivation of a
variable originates from dL

dt
, we can assume three things:

1. L must be linear in the variables xk, e.g. L = Akxk +B.

2. The individual components of L̇ have to be proportional to one of the ẋk or has to
vanish.

3. Each of the ẋk must be proportional to at least one of the components of L̇.
The first point defines the structure of our network making it only necessary to fit linear
functions for L, the latter two points give us the structure of the loss function, leading to

LL =
∑
i,j

min
k

(
||cijkL̇− ẋk||2, ||L̇ij||2

)
+
∑
k

min
i,j

(
||cijkL̇ij − ẋk||2

)
, (6.19)

where cijk =
∑

batch L̇ij∑
batch ẋk

are the constants of proportionality. We use the same procedure for
the right side of the equation, so for [L,M ]:

LLM =
∑
i,j

min
k

(
||c̃ijk [L,M ]ij − fk||

2, || [L,M ]ij ||
2
)

+
∑
k

min
i,j

(
||c̃ijk [L,M ]ij − fk||

2
)
,

(6.20)
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where c̃ijk =
∑

batch[L,M ]ij∑
batch fk

. Note the redundancies in the loss term LLM, a combination of
LLax and LL would be sufficient, but the additional term facilitates training.

The last term of the loss exists to prevent mode collapse. Our solution here is to set a
lower limit (in this example 1) on the sum of absolute values of the all components of Ak:

LMC = max
(
1−

∑
|Aij| , 0

)
. (6.21)

The exact structure of the loss LMC can be varied and we can use this to favor specific
solutions of the neural network. The total loss is

LLax-Pair = α1LLax + α2LL + α3LLM + α4LMC , (6.22)

where in our experiments we set α1 = α2 = 1, α4 = 10 and α3 to 1 or 0.

6.2.2 Lax connection
The same approach can be used for the problem of finding Lax connections: We have to
replace every L with an Ax, every M with an At. Additionally, we have to take the ∂xAt
into account. This results in the loss components

LLax =
∑
ij

∣∣∣∣∣∣Ȧx − A′t + [Ax, At]
∣∣∣∣∣∣2

LAx =
∑
i,j

min
k

(
||cijȦx,ij − ẋk||2, ||Ȧx,ij||2

)
+
∑
k

min
i,j

(
||cijkȦx,ij − ẋk||2

)
LAt =

∑
i,j

min
k

(
||cijk

[
−A′t + [Ax, At]

]
ij
− fk||2, ||

[
−A′t + [Ax, At]

]
ij
||2,

)

+
∑
k

min
i,j

(
||cijk

[
−A′t + [Ax, At]

]
ij
− fk||2

)
LMC = max

(
1−

∑
|Ak| , 0

)
.

(6.23)

The total loss for the Lax connection is

LLax-Connection = α1LLax + α2LAx + α3LAt + α4LMC . (6.24)

For complex-valued matrices, we interpret the complex space as R2, and therefore, use it
as an additional dimension for the summations and the minima.

6.2.3 Classical R-matrices
We use a similar approach for the r-matrices as for the Lax pair. For a given Lax pair, we
can learn the r-matrices directly using

LR = ‖{L1, L2} − [r12, L1] + [r21, L2] ‖2 . (6.25)
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6.2.4 Linear combinations within the equations of motion
In the descriptions above, we assumed that linear combinations of the equations of motion
do not occur. For most systems, it is possible, to find a suitable Lax pair, but not for
all of them. One way of extending the frame work is to focus on the loss term LL, while
ignoring LLM (setting α3 = 0. We compute the loss term LL for each equation of motion
individually, so when having several equations of motion:

ẋ1 = f1 (x1, x2) ,
ẋ2 = f2 (x1, x2) ,
ẋ3 = . . . ,

(6.26)

we first set all ẋi = 0, except for ẋ1, compute the loss term LL, and then move on to the
next equations of motion etc. This method avoids linear combinations in the equations of
motion, and therefore, the presented framework still works. Even though this workaround
is not suitable for LLM, the right hand side still results in the correct linear combination
of the equations of motion due to the loss component LLax.

6.3 Experiments
After presenting the optimization algorithm, we discuss several examples of the method.
We start with the harmonic oscillator as an example of classical mechanics. Then, we
continue with the Korteweg–de Vries equation (KdV) (which model shallow water waves) as
first field theoretical example, and continue with two important examples from theoretical
physics: the Heisenberg model and the principal chiral model.

6.3.1 Architecture of the Networks
We start with a short description of suitable neural networks. In general, we can use any
neural network architecture and train the weight using gradient-based optimization of the
neural network. There are two general ideas, we can use to build a neural network:

1. We can use standard multi-layer perceptrons to model the matrices. The advantage is
that it should be straightforward to train, their training behavior is well understood
and therefore, we should be able to learn the functions. The problem is, that we
would learn a general function, we might be able to learn new Lax pairs, but the
functions used by the neural network is too complicated to fit. Additionally, we are
using for the matrix L the ansatz L = Akxk + B. To model such a function, we
would have to use a neural network with zero hidden layer, which contradicts the
advantages described above.

2. We can fit polynomials as solutions, using every prefactor as a trainable weight. It
turned out that such approaches only have a rather small number of weights. Due
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to the complicated constrains the solution has to fulfill, the neural network depends
heavily on the initialization.

To avoid those limitations, we use a combination of the two approaches which gives us
on the one hand side enough weights to be less initialization dependent, but also gives us
directly analytic formulae. For each prefactor a of the polynomial, we fit a vector ~a with
dimension 2 n + 1. Then, the prefactor a is calculated using a softmax on the weights,
multiplied with a vector of fixed numbers, i.e.

a = softmax (~a) · ~v with ~v =


n
...
−n

 . (6.27)

Using such an ansatz, the neural network is able to change the value of the prefactors
much faster compared to only one trainable weight. It is also important to note that for
the matrix M we should always start with the lowest possible degree in the polynomial to
support the neural network in the training process. Note, that the training process is still
depending on the initialization, and therefore, one should start the same neural network
using a different initialization. To support the convergence of the neural network and to
avoid finding linear combinations of the equations of motion, we can use the values ~a to
redefine the prefactors within L. Assuming, we have multiple x1, . . . , xn, we can define the
prefactor ak as

ak = σ

∑
i

ak,i −
∑
j 6=k

∑
i

aj,i

 softmax ( ~ak) · ~v , (6.28)

with σ being the sigmoid function. This sigmoid function has the effect that the neural
network automatically singles out one xk. Note, that this is one way of improving the
performance of the neural network. For many systems, it is more suitable to check the
structure of the equations of motion and look for the symmetry group of them. In many
cases (for example the Heisenberg model), we have an underlying SU(2)-symmetry, and
therefore, it is expected that the Lax pair contains factors of Pauli matrices within the
neural network. This speeds up training due to the fact that the structure of L is already
constrained. For the training, we use an Adam optimizer with a learning rate of 0.01 if not
otherwise stated. We trained our parameters for 50 000 steps with a batch size of 2000. In
each step, we trained the network for L and M separately.

6.3.2 Harmonic Oscillator
We start with the example of the harmonic oscillator. The Hamiltonian is

H = 1
2 p2 + ω2

2 q2 , (6.29)

where we used ω = 2. In general, we can use an arbitrary ω, but this would lead to a
more complicated structure of the problem due to higher degrees of the polynomials. The
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equations of motion for this problem are

q̇ = p , ṗ = −ω2q , (6.30)

which we used to sample 105 data points with p, q ∼ N (0, 1). As ansatz for L and M , we
use

Lij (p, q) = aij + bijq + cijp ,

Mij (p, q) = dij + eijq + fijp ,
(6.31)

with i, j = {1, 2} (so for 2 × 2-matrices). We restrict the sum over the absolute value of
bij and cij to avoid mode collapse

2∑
i,j=1
|bij| ≥

1
2 and

2∑
i,j=1
|cij| ≥

1
2 , (6.32)

using the loss component LMC. We find with this ansatz the Lax pair given by

L =
(

0.437 q −0.073 p
−0.666 p −0.437 q

)
, M =

(
0.001 0.329
−3.043 −0.001

)
, (6.33)

where we do not allow linear combinations of the differential equations. A check shows
that both sides of the Lax pair condition (6.1) match accurately

dL

dt
=
(

0.437 q̇ −0.073 ṗ
−0.666 ṗ −0.437 q̇

)
=
(

0.441 p 0.288 q
2.660 q −0.441 p

)
= [L,M ] (6.34)

We check that trL2 ∼ H:

L2 =
(

0.048618p2 + 0.190969q2 0
0 0.048618p2 + 0.190969q2

)
⇒ trL2 ≈ 0.1 H . (6.35)

Therefore, we can see that our method is perfectly able to reproduce the Lax pair in the
literature.

We train also for the corresponding R-matrices and find as a result

r12 =
(

0 0.92− 0.42
p

−1 0

)
⊗
(

0 0.92
−1 0

)
−
(

0 0.92
−1 0

)
⊗
(

0 0.92− 0.42
p

−1 0

)
, (6.36)

which solves perfectly equation (6.14).
We also want to mention, that this training process is heavily instable and we used

several runs with different initialization to find this solution. Most of the training processes
where not converging at all. Comparing the harmonic oscillator to the other examples, it
turns out that this is one of the more complicated examples due to the independence of p
and q, while in the other examples, we were able to restrict L using a symmetry analysis of
the example. We suggest a work around for this problem: one possibility here is to simply
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use a different approach using only a constant for M . This corresponds to the most simple
ansatz for the Lax pair but leads to a bit more stable convergence (and is suitable in this
case). Additionally, we also test a standard multi-layer perceptron as neural network for
M with two hidden layers with 200 neurons and a tanh-activation, and a 2×2-dimensional
output layer. In this case, the training process converges in every case. Here, we are also
able to fit an analytical solution to M due to the simple structure of the analytic solution.

6.3.3 Korteweg-de Vries equation
We examine the Korteweg–de Vries equation as second system. It is used to describe waves
on shallow water surfaces. The equation of motion is given by

φ̇+ φ
′′′ − 6 φ φ′ = 0 . (6.37)

It is an one-dimensional realization of a classical field theory and a good first example to
find Lax connections. For the sampling process, we sample φ , φ′ , φ′′ , φ′′′ ≈ N (0, 2) and
compute φ̇ using equation (6.37).

The ansatz we use is determined by the structure of the problem: We expect the matrix
Ax to be linear in φ(x), while the matrix At should be a polynomial up to second order.
Computing dAt

dx
in the defining equation of the Lax connection, we expect that M depends

only on the terms φ, φ′ and φ′′ , and not on φ′′′ . Using a 2× 2-matrix as ansatz, we find

Ax =
(

1.6φ− 0.2 −0.8
0.2 1.7φ+ 0.2

)
,

At =
(
−4.9φ2 − 1.6φ′′ − 0.1 0.1φ2 − 0.3

0.1 −5.0φ2 − 1.7φ′′ + 0.1

)
,

(6.38)

where we rounded entries to 10−1. This result shows, that even a 1 × 1-matrix would be
enough to model equation (6.37).

To force the neural network to use the off-diagonals as well, we change the loss term
LMC in such a way that only off-diagonal elements enter this loss term. As a result, we
find:

Ax =
(
−1.7φ 1.7φ+ 1.0

1.7φ+ 1.0 −1.7φ

)
,

At =
(

5.0φ2 + 1.7φ′′ −5.0φ2 − 1.7φ′′ − 0.5
−5.0φ2 − 1.7φ′′ − 0.5 5.0φ2 + 1.7φ′′

)
,

(6.39)

which is now much closer to the literature and again provides a pair which fulfills the
required conditions, i.e.

∂Ax
∂t
− ∂At

∂x
+ [Ax, At] =

=
(
−1.7φ̇ 1.7φ̇
1.7φ̇ −1.7φ̇

)
−
(

10.0φ′φ+ 1.7φ′′′ −10.0φ′φ− 1.7φ′′′

−10.0φ′φ− 1.7φ′′′ 10.0φ′φ+ 1.7φ′′′
)

+O (0.1) ≈ 0
(6.40)
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6.3.4 Heisenberg Magnet
Let us start with the Heisenberg magnet for a ferromagnet with an SO(3)-symmetry group,
one of the important field theoretical examples. The Hamiltonian of the Heisenberg magnet
is

H = 1
2

∫
dx ~S2 (x) , (6.41)

where ~S2 = 1 and the components satisfy as an additional constraint

{Sa (x) , Sb (y)} = εabcSc (x) δ (x− y) . (6.42)

The equations of motion read

~̇S = {H, ~S} = −~S(x)× ~S
′′(x) . (6.43)

As we can see, we have an SO(3) ≈ SU(2) invariant structure in the equations, we can
utilize to find the Lax connection. Assuming that the Lax connection must be invariant
under an SU(2) transformation on the ~S we use as ansatz for Ax:

Ax = a ~σ~S +B , with a ∈ C , B ∈ C(2×2) . (6.44)

For the matrix At, we use a polynomial ansatz up to second order in Si and S
′
i , the second

derivative should be irrelevant, it would turn to a third order derivative in Lax connection
equation (6.11). Therefore, the ansatz is

At = C Si +D S
′

i +E Si Sj + F Si S
′

j +G S
′

i S
′

j , with C , D , E , F , G ∈ C(2×2) .
(6.45)

Using this ansatz (which looks reasonable) we find the following formulae for the Lax
connection Ax and At:

Ax =− i ~σ~S + 0.3
(

1 0
0 1

)

At =
(

2 i Sz 2 i Sx + 2Sy
2 i Sx − 2Sy − i Sz

)

+
(

i S ′ySx − i S ′xSy −S ′zSx + S
′
xSz + i (S ′zSy − S

′
ySx)

+S ′zSx − S
′
xSz + i (S ′zSy − S

′
ySx) − i S ′ySx + i S ′xSy

)
=2 i ~σ~S + i εijkσiSjS

′

k ,

(6.46)

where we rounded at the least shown digit. Comparing this with the literature, we find
exactly the same results as in [57].

Here, we can see the advantages, as well as the disadvantage of the method: The neural
network is perfectly able to find the correct structure within At, but we also have to use
our physical intuition on Ax. Starting the search without this restriction, we have not been
able to find a solution.
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6.3.5 Non-linear sigma model
The next important class of integrable field theory models is given by non-linear sigma
models in 1 + 1 dimensions. We are interested in O(N) sigma models with fields in SN−1.
The Lagrangian of these models is:

L = −Tr (JµJµ) , Jµ = (∂µg)g−1 , µ = 0, 1 (6.47)

This system obeys the following equations:

∂µJ
µ = 0 ,

∂µJν − ∂νJµ − [Jµ, Jν ] = 0 ,
(6.48)

with µ = 0, 1, corresponding to the spatial and time like directions.
In the following, we study the two special cases N = 3 and N =. The case N = 3

is related to the Sine-Gordon model which can be seen by appropriately re-writing the
equations of motion (cf. Chapter 6.3 of [58] and [59]), whereas the case N = 4 is related
to the principal chiral model.

Sine-Gordon equation

The Sine-Gordon equation is given by

∂2

∂x∂t
φ− sin (φ) = 0 . (6.49)

For this equation, we use a known solution of the Sine-Gordon equation to sample data
points

φ (x, t) = 4 arctan (exp (γ (x+ t− v (x− t)) + δ)) , with γ2 = 1
1− v2 , (6.50)

where we sample v ∼ U (−0.9, 0.9) and δ ∼ N (1, 1).
As ansatz for the Lax connection, we use a similar approach as before. For the matrix

Ax, we are able to see that it should only depend on ∂φ
∂x
:

Ax,ij = aijφ
′ + bij , (6.51)

while for the matrix At, we expect a dependence on either sin or cosine:

At,ij = cijφ+ dij
∂φ

∂x
+ eij cosφ+ fij sinφ . (6.52)

Using complex coefficients, we find for this ansatz

Ax =
(

0.5φ′ − 0.7− 0.6 i 0.9φ′ + 0.2 i φ′

−0.5φ′ + 0.1 i φ′ + 0.8 + 0.4 i −0.5φ′ + 0.7 + 0.6 i

)
, (6.53)

At =
(
−0.2 cosφ+ 0.2 i cosφ+ 0.2 sinφ− 0.2 i sinφ 0.5 sinφ− 0.2 i sinφ

0.2 cosφ− 0.2 i cosφ 0.2 cosφ− 0.2 i cosφ− 0.2 sinφ+ 0.2 i sinφ

)
.
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The Lax connection is satisfied for these matrices

dAx
dt

=
(

0.5 d2φ
dxdt

0.9 d2φ
dxdt

+ 0.2 i d2φ
dxdt

−0.5 d2φ
dxdt

+ 0.1 i d2φ
dxdt

−0.5 d2φ
dxdt

i

)
=

=
(

0.5 sinφ 0.9 sinφ+ 0.2 i sinφ
−0.5 sinφ+ 0.1 i sinφ −0.5 sinφ

)
= dAt

dx
− [Ax, At] .

(6.54)

As we can see, the equation is only fulfilled iff the Sine-Gordon equation is fulfilled as well.

Principal chiral model

For the case N = 4, the equations of motion are given by (6.48), which corresponds to an
SO(4) symmetry. Typically, this system is examined using the split SO(4) ≈ SU(2)×SU(2),
which we are using as well. Then, we can use the SU(2) symmetry, and use an ansatz which
is proportional to the Pauli-matrices:

Ax = a ~σ ~Jx + b ~σ ~Jt , with a, b ∈ C , (6.55)

whereas the matrix At a polynomial of second order, and is otherwise unconstrained. Note,
that with this ansatz it is expected that we are going to find linear equations between the
different equations of motion and we therefore, have to change the loss function as described
in 6.2.4. We sample all variables usingN (0, 2) for the sampling and the equations of motion
(cf. Equation (6.48)) for 106 samples. As solutions we find for the Lax connection:

Ax = (0.295 + i 0.205)~σ ~Jx + (−0.512 + i 0.165)~σ ~Jt ,
At = (0.515− i 0.162)~σ ~Jx + (−0.283− i 0.193)~σ ~Jt ,

(6.56)

where the matrix At has perfectly the shape of the Pauli-matrices. We check that our
solution is equivalent to the equations of motion

Ȧx − A
′

t + [Ax, At] =

= (0.295 + i 0.205)~σ ~̇Jx + (−0.512 + i 0.165)~σ ~̇Jt
+ (0.515− i 0.162)~σ ~Jx

′ − (0.283 + i 0.193)~σ ~Jt
′

− (0.295 + i 0.205) (0.283 + i 0.193) 2 εabcJ bt J cx
+ (0.515− i 0.162) (−0.512 + i 0.165) i 2 εabcJ bt J cx
≈ (−0.512 + i 0.165)~σ

(
~̇Jt − ~Jx

′
)

+ (0.283 + i 0.193)~σ
(
~̇Jx − ~Jt

′
)
− 2 (0.283 + i 0.193) εabcσaJ bt J

c
x ,

(6.57)

The solution we found can be matched to the known solution presented in [60].
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6.4 Integrable vs Non-Integrable Perturbations
An important field of research for integrable systems is the examination of perturbations
of an integrable system. In this section, we focus on two integrable systems, the two
dimensional harmonic oscillator and the Heisenberg model, and examine different types
of perturbations. The magnitude of the perturbation here is controlled by the parameter
ε. We start with the unperturbed system with a correctly initialized neural network and
then increase the parameter ε. When comparing the trend of the training loss between the
perturbed and the unperturbed system, we are able to see whether the neural network is
able to compensate the perturbation and still find a true Lax pair. Here, we allow linear
combinations between the different equations of motion.

6.4.1 Two-dimensional harmonic oscillator
We start with the harmonic oscillator in two dimensions2. Here, we are comparing a
quadratic perturbation with a fourth order perturbation. The Hamiltonian is

H1 =1
2
(
p2
x + p2

y + x2 + y2 + εxy
)
,

H2 =1
2
(
p2
x + p2

y + x2 + y2 + εx2y2
)
.

(6.58)

In both Hamiltonians, the parameter ε scales the perturbation. The Hamiltonian H1 is
integrable because it describes a coupled harmonic oscillator, whereas the Hamiltonian H2
is not integrable.

To initialize the neural network on a known solution, we use a 4 × 4-dimensional Lax
pair with two separated systems in the upper-left and lower-right part of the matrices.
We use the same structure as before for L (see eq. (6.27)), while modeling M as a neural
network with two hidden layers with 200 neurons each and tanh-activation on the hidden
layer, followed by an output layer.

We draw 100000 samples of x, y, px and py from N (0, 1), and compute ẋ, ẏ, ṗx and ṗy
using:

ẋ = px , ẏ = py , ṗx = −x− εy , ṗy = −y − εx ,
ẋ = px , ẏ = py , ṗx = −x− ε x y2 , ṗy = −y − ε y x2 .

(6.59)

Note that, for each value of ε we have to either recompute the time derivatives or sample
a new dataset.

We start the training process with ε = 0 and increased ε every 1000 steps for 0.05 until
it reaches εfinal. We train the neural networks for εfinal = (0, 0.001, 0.01, 0.1, 0.5, 1) using
the Adam optimizer with learning rate 10−3. In total, we train each neural network for
80 000 steps. The evolution of the training loss, and therefore the violations of the Lax

2Note that the harmonic oscillator as an one dimensional system is integrable with any kind of pertur-
bation because it always has one conserved quantity (the energy), and only one degree of freedom.
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pair constraints, can be seen in Figure 6.1 at the top. For the integrable perturbation,
the neural networks can adapt the values for L and M , and have similar losses as for the
unperturbed system. In contrast to that, the neural networks are not able to adapt to the
non-integrable perturbation and the training does no longer converge, i.e. hierarchically
larger loss values are encountered compared to the unperturbed system. In the figure, we
show the median of 10 runs for each ε and perturbation type, the curves are smoothed
using a Gaussian filter with σ = 10.

Finally, we want to point out that such an increase of the loss is only a hint for a
non-integrable perturbation. It might also be the consequence of a too simple ansatz for
the Lax pair or due to a too high or too low learning rate.

6.4.2 Heisenberg Model
As second example for an integrable system with perturbations, we present the Heisenberg
model as in section 6.3.4. Here, we compare two different quadratic perturbations: The
integrable one is known from the Landau-Lifschitz equation (S ∧ JS) as

~̇S = −~S(x)× ~S
′′(x)− ~S × J ~S with J =

−ε 0 0
0 ε 0
0 0 0

 , (6.60)

while the second system has a different quadratic perturbation, i.e.

~̇S = −~S(x)× ~S
′′(x) +

 ε S2
x

−ε S2
y

0

 . (6.61)

The procedure is similar as for the Hamiltonian oscillator: We start with a correctly initial-
ized neural network for the unperturbed Heisenberg model, and increase the parameter ε
with small steps of 0.05 until we reach εfinal. Again, we use εfinal = (0, 0.001, 0.01, 0.1, 0.5, 1).

We use a 4 × 4-dimensional ansatz for the Lax connection, initializing the neural net-
work with a correct solution in the upper-left part of the matrices. For Ax, we use a linear
approach as before. At consists of two parts: one polynomial which is used for the initial-
ization, whereas we add a multi-layer perceptron with two hidden layer, with 200 neurons
each and tanh-activation on the hidden layers.

Again, we trained the neural network for 80 000 steps, with Adam optimizer with a
learning rate of 0.001. The results are presented in the bottom of Figure 6.1. We can see,
as for the harmonic oscillator, that the neural network is able to adapt the Lax connection
to the integrable perturbation and converge to the same value as the non-perturbed Lax
connection. For the non-integrable perturbation, this is not the case. Therefore, with our
method we are able to distinguish between integrable and non-integrable systems.



74 6. Integrability ex Machina

0 10000 20000 30000 40000 50000 60000 70000 80000
steps

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100
tra

in
 lo

ss
1.0
0.5
0.1
0.01
0.001
0.0

0 10000 20000 30000 40000 50000 60000 70000 80000
steps

10 6

10 5

10 4

10 3

10 2

tra
in

 lo
ss

1.0
0.5
0.1
0.01
0.001
0.0

Figure 6.1: In these two plots we compare the different behavior of the training loss
for integrable (solid lines) and non-integrable (dotted lines) perturbations for the two-
dimensional harmonic oscillator and the Heisenberg model. In the upper graphic the
results for two-dimensional harmonic oscillator is displayed, whereas in the lower one we
can see the results for the Heisenberg model. In both cases, we start with no perturbation
and it grows linearly with εstep = 0.05 every 1000 steps. The raise of the perturbation
parameter ε can be seen in the beginning for large values of ε as steps in the graph.
For integrable perturbations, the neural network is able to adapt the Lax pair to the
perturbation, therefore, after some time, the training error corresponds to the unperturbed
system (displayed in black). For non-integrable perturbations, the neural network is not
able to compensate. The training error grows proportional to the perturbation (note the
log scale of the y-axis). After many epochs, the neural network finds a different minima
which still leaves the training error multiple orders of magnitude above the unperturbed
system.
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Chapter 7

Basics of Dualities and Exceptional
Field Theory

After presenting in the last part different methods how to find structures, symmetries and
conserved quantities in physical systems, we are going to focus in this part of the thesis on
the effects of symmetries in string theory and their impact on the phase space of this theory.
In the first chapter of the this part, we review T-duality and its mathematical implications
to find the symmetry group, followed by the extension to the S- and U-duality. Afterwards,
we introduce the general idea of exceptional field theory (based on the review [61]) and
conclude with the construction of duality chains of T- and U-dualities. In the next two
chapters, we focus on our recent research projects, published in [25] and [26]: In chapter 8,
we use exceptional field theory to find previously unknown non-geometric fluxes and their
consequences, whereas in chapter 9, we exploit the duality chains to find the commutativity
behavior of open strings in non-geometric backgrounds.

7.1 Dualities
In the introduction 1.3, we already introduced the main concepts and notations of string
theory. Here, we are now going to focus on the dualities, which connect the different string
theories. In figure 1.1, we can see the connections by the T- and S-dualities. We show T-
duality explicitly on the level of the mass formula to find the underlying symmetry group.
In the next step, we focus on the symmetry group of S-duality and extend the concept to
the symmetry groups of U-dualities. During all of these chapters we will set α′ = 2. We
are going to follow the text book [19] where more details of the derivations are given.

7.1.1 T-Duality
We start this review on T-duality by looking at a one-dimensional compactification of a
closed bosonic string with the world-sheet coordinates X i. We start our example by com-
pactifying the bosonic string over a circle with radius R in dimension 25. The coordinate
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for this circle is denoted by x. Then, we can identify the points accordingly as

x ∼ x+ 2πR , L ∈ Z . (7.1)

This identification also has implications on the coordinate X25 leading to the constraint
that

X25(σ + 2π, τ) = X25(σ, τ) + 2πRL . (7.2)

In this equation L counts how often the string is winded around the compactified dimension
and is called winding number. A string with winding number cannot be “unwinded” or
shrinked to a point, and therefore, the winding number is a conserved quantity of each
string state.

Using condition (7.2), we are able to find the mode expansion for the string in the
compactified dimension,

X25(σ, τ) =x25 + α
′
p25τ + LRσ

+ i

√
α′

2
∑
n6=0

1
n

(
α25
n e
−in(τ−σ) + ᾱ25

n e
−in(τ+σ)

)
,

(7.3)

which can be split into left and right movers X25(σ, τ) = X25
L (σ− τ) +X25

R (σ+ τ). x25 and
p25 obey the usual commutation relations[

x25, p25
]

= i . (7.4)

Because p25 is the generator of translations of x25, one consequence of the quantization
of the winding number is the quantization of the momentum mode pi. This leads to the
condition pi = M

R
, M ∈ Z. M is then called the momentum number. Additionally, we

compute the mass formula

m2 = M2

R2 + L2R2

4 + (NL +NR − 2) , (7.5)

where NL and NR count the number of oscillator modes. The first two components arise
here from the compactified dimensions. Additionally, the compactified string has to ful-
fill the reparameterization condition (as the uncompactified string). This gives us the
condition

NR −NL = M · L (7.6)

for the compactified string. Examining equation (7.5), we can see there exists a symmetry
when exchanging winding modes L and momentum modesM . This transformation in total
is given by

R→ 2
R
, L↔M . (7.7)

This transformation leaves the level-matching condition and the mass spectrum unchanged.
It can be shown that those two settings are indistinguishable not only on the level of the
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mass spectrum but on all levels and therefore, we can look at either a large or a small
radius for the internal sector. Focusing on the massless sector of the compactified theory
with NL +NR = 2, we find, due to equation (7.6), that NR = NL = 1, otherwise the string
would not be massless. As a result the spectrum contains only a symmetric metric gij, an
anti-symmetric two-form Bij and a dilaton φ [62].

Focusing on the superstring and the type II string theories, we have to take additional
effects into account. Here, T-dualities act as an anti-symmetric reflection of the right-
moving sector and therefore the effect of on the Ramond sector, combined with the GSO-
projections leads to a duality between Type IIA and Type IIB theory:

Type IIB on S1
R

T−duality←−−−−→ Type IIA on S1
2/R . (7.8)

This equivalency is true for higher-dimensional compactifications as well.
We restrict our attention on the bosonic sector of the theory, compactified on a d-

dimensional torus with metric gij. We have to quantize the winding modes ni and the
momentum modes mi in all compactified directions. For such a compactified string we find
the mass formula [19]

m2 = (NL +NR − 2) +
d∑

i,j=1

(
mig

ijmj + 1
4n

igijn
j
)
, (7.9)

and as the level-matching condition

NR −NL =
d∑
i=1

min
i . (7.10)

As next step, we can add a Kalb-Ramond B-field b. This shifts the mass momentum of
the string and we get for the mass formula

m2 =(NL +NR − 2) + mTg−1m + 1
4n

(
g− bg−1b

)
n + nTbg−1m± nTm . (7.11)

Introducing a generalized momentum PM and a generalized metric HMN

PM =
(
mi

nj

)
, HMN =

(
gij −gikbkj

bjkg
kj gij − bikgklblj

)
, (7.12)

we can rewrite the mass formula and the level matching condition

m2 = (NL +NR − 2) + PMHMNPN ,

NR −NL = 1
2PMP

M .
(7.13)

Here, we use as convention that M,N = 1, . . . , 2d and i, j = 1, . . . , d. Indices are raised
and lower with the O(d, d)-metric ηMN :

ηMN =
(

0 δij
δi
j 0

)
, ηMN =

(
0 δi

j

δij 0

)
, ηMPηPN = δMN . (7.14)



80 7. Basics of Dualities and Exceptional Field Theory

The generalized metric HMN fulfills the properties of the O(d, d) group, and therefore, the
following identities hold:

HMNHNP = ηMP , HTηH = η , HMN = ηMPηNQHPQ . (7.15)

Because of the underlying O(d, d)-symmetry, we can generalize the T-duality from (7.7) to
the formulae

HMN ↔ hM
PHPQhN

Q , PM ↔ hMNPN , h ∈ O(d, dZ) . (7.16)

Note, that the element h must be an element of O(d, d,Z), and not of O(d, d,R) because
the generalized momenta must be still quantized after a T-duality transformation.

The basis of O(d, d) consists of three different basis elements:

• diffeomorphisms (basis transformations of the torus), which only act on ni and pi
separately given by:

hM
N =

(
Ei

j 0
0 Ei

j

)
, E ∈ GL(d) (7.17)

• shifts given by

hM
N =

(
δij 0
nij δi

j

)
, nij = −nji (7.18)

• and the T-duality transformations in the k-th direction

hM
N =

(
δij − tij tij

tij δi
j − tij

)
, tij = diag (0, . . . 0, 1, 0 . . . 0) (7.19)

The transformation rules for the T-duality transformation for the metric gij and for the
two-form bij are called Buscher rules [63, 64]:

gkk →
1
gkk

, gki →
bki
gkk

, gij → gij −
gkigkj − bkibkj

gkk
,

bki →
gki
gkk

, bij → bij −
gkibkj − bkigkj

gkk
.

(7.20)

Having such an underlying duality in string theory motivated the construction of double
field theory (DFT), a supergravity theory which is manifestly invariant under T-duality.
For a review of double field theory, we refer to [62]. In chapter 9, we are going to use DFT
implicitly, but the section can be understood without any knowledge of DFT.



7.1 Dualities 81

7.1.2 S-duality
Another important duality in string theory is the S-duality of Type IIB string theory, and
is therefore also a duality of M-theory as we can see in Figure 1.1. We are going to look
at the bosonic part of Type IIB string theory. The NS-NS sector is defined by the dilaton
φ, the metric gij and the Kalb-Ramond field B, the R-R sector contains the C0-form, the
C2-form and the self-dual C4-form. The basic idea of the duality is the map

gs → 1/gs . (7.21)

This duality acts as a SL(2,Z) transformation on the R-R sector of the type IIB string, the
p-forms C0, C2 and C4, as well as on the NS-NS sector. Combining the dilaton (which is
connected to the string coupling via gs = eφ) and the scalar C0, we find that it transforms
as a complex scalar under a modular transformation:

τ = C0 + ie−φ , τ → aτ + b

cτ + d
. (7.22)

We can organize the SL(2) parameters into a matrix with unit determinant:

U =
(
a b
c d

)
, det U = ad− bc = 1 . (7.23)

This SL(2)-transformation acts on the matrix as

M = 1
Imτ

(
‖τ‖2 Reτ
Reτ 1

)
= eφ

(
C2

0 + e−2φ C0
C0τ 1

)
, (7.24)

the transformation itself can be written as M → UMUT . Setting a = d = 0 and
b = −c = 1, we end up with the inversion of the string coupling.

The two two-forms C2 and B transforming as a doublet under(
C2
B

)
→ U

(
C2
B

)
, (7.25)

while the four-form C4 is invariant, as well the Einstein frame, which is connected to the
string frame by the formula gstring

ij = eφ/2gEinstein
ij .

7.1.3 U-duality
As next step, we want to combine T- and S-duality, as it is suggested by Figure 1.1 that both
should be underlying symmetries to a possible formulation of M-theory. This unification
is called U-duality. We can combine these two dualities in the framework of Type II string
theories. The basic idea is to combine two T-dualities with one S-duality as

Type IIA T-duality←−−−−→ Type IIB S-duality←−−−−→ Type IIB T-duality←−−−−→ Type IIA . (7.26)
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To unify the notation of those dimensions it is suitable to decompactify the Type IIA string
theory on a circle and relate the radius R11 and the Planck length `p to the string coupling
gs and the string length `s as

R11 = `sgs , `p = g1/3
s `s . (7.27)

Then, the 11-dimensional metric can be written as

ds2
11 = R2

11

(
dx11 + A

)2
+ ds2

10 , (7.28)

where A is a 10-dimensional one-form. Using the connection between the string coupling
gs and the dilaton eφ at asymptotic infinity, we find the general ansatz

1
`2
p

ds2
11 = e4φ/3

(
dx11 + A

)2
+ e−2φ/3 1

`2
s

ds2
10 . (7.29)

To generate 11-dimensional U-dualities, we have to rewrite the T-dualities and S-dualities
in terms of 11-dimensional quantities. Using these uplifts, we find the following symmetrical
U-duality acting in three different directions

UIJK : RI →
`3
p

RJRK

, `p →
`2
p

3
√
RIRJRK

, (7.30)

where I, J and K are distinct and can be any of (i, j, 11). This transformation is an
inversion of the volume V = RIRJRK , for the dimensionless quantity V/`3

p and we find
V/`3

p = Ṽ / ˜̀3
p.

The transformation can be rephrased in terms of dimensionless quantities by

UIJK : RI

`p
→ `pR

1/3
I

(RJRK)2/3 . (7.31)

This allows us to set `p = 1 and therefore we can use (7.31) to define the U-duality
transformation in the absense of any other fields. Then, the volume transformation become
Ṽ = 1/V , where Ṽ is the transformed volume. More general transformations involving all
possible fields are presented in section 7.2.3.

We are now going to look at some explicit low-dimensional examples, and assume the
extension to higher-dimensional U-duality groups. Let us start looking at M-theory1 on a
two-dimensional torus. Symmetries of the equations of motion are groups which preserves
the torus itself, but are allowed to change the complex structure parameter τ . Therefore,
the symmetry is SL(2,R). Additionally, global scaling symmetries are allowed as well.
In two dimension this corresponds to R+. Therefore, the complete symmetry group is
SL(2,R)× R+.

For M-theory on a three-dimensional torus, we described a subset of possible transfor-
mations in (7.31). In general, one would expect the full SL(3,R), including shift symmetries

1or rather eleven-dimensional supergravity
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of the the three-form CIJK → CIJK + `3
pΛIJK with ΛIJK integer-valued. Additionally, we

have a scaling symmetry. This transformation acts on the volume of the torus as well as
the single component of the background three-form C123. We can introduce an additional
complex structure constant with

τ = C123

`3
p

+ i

√
det g
`3
p

, (7.32)

where gij is the metric. In this transformation also the shift of the three-form is included,
when taking a = d = b = 1 and c = 0.

Therefore, the complete symmetry group of the 3-dimensional symmetry group is
SL(3,R) × SL(2,R). In classical supergravity theory these groups are real-valued, but
it is expected that they are integer-valued in a full quantum theory. We can write down
the matrices explicitly where the transformation acts on. The transformation SL(3) acts
on

Mij = 1
(det g)1/3 gij , (7.33)

which can be interpreted as coset elementsMij ∈ SL(3)/SO(3) where i, j = 1, 2, 3. The
second part can be written as

Mαβ = 1
(det g)1/2

(
`−3
p (C2

123 + det g) C123
C123 `3

p

)
, (7.34)

where α, β = 1, 2 and Mαβ is a coset element of SL(2)/SO(2). Combining these two
matrices we get a single six-by-six matrix

MMN ≡Miα,jβ =MijMαβ , (7.35)

where we split the indexM = iα. In higher dimensions, more shift symmetries are possible
and has to be included. In the papers [65, 66, 67] it was shown that the dimensional reduc-
tion of eleven-dimensional supergravity on a d-dimensional torus leads to the symmetry
group Ed(d). The different groups and some of their properties can be found in table 7.1.

7.2 Exceptional Field Theory
After an in-depth analyses of the different dualities and their symmetry groups, we will give
a short review on exceptional field theory (EFT) which is manifestly invariant under U-
duality. To construct such a theory, we have to find the generalized diffeomorphisms which
generate infinitesimal gauge transformations. With these generalized diffeomorphisms we
can construct the generalized metric (and the generalized vielbein) and then find the action
from this metric. As last step, we are going to compute the transformation behaviour under
general U-dualities for the different fields and construct duality chains to find non-geometric
backgrounds.



84 7. Basics of Dualities and Exceptional Field Theory

d Ed(d) Hd R1 adj.

3 SL(3)× SL(2)+ SO(3)× SO(2) (3,2) (8,1)⊕ (1,3)

4 SL(5) SO(5) 10 24

5 SO(5, 5) SO(5)× SO(5) 16 45

6 E6(6) USp (8) 27 78

7 E7(7) SU(8) 56 133

8 E8(8) SO(16) 248 1⊕ 3875

Figure 7.1: The exceptional groups in the dimensions 3 ≤ d ≤ 8, their maximal compact
subgroups (ignoring discrete factors) and their R1 representation together with the adjoint.
Note that the generalized vectors transform in R1, while the generalized derivatives trans-
forms in R1 = R8−d. This is not well defined for d = 8, and therefore the dimension d = 8
is not accessible by the presented framework.

7.2.1 Generalized Diffeomorphisms
We are interested in the local symmetries of our system. Therefore, we are going to de-
fine generalized diffeomorphisms which include diffeomorphisms and gauge transformation
which are realized as a local Ed(d) action on the fields by the generalised Lie derivative.
As a first step, we start to introduce generalized vectors. In general, they have the same
dimensionality as the fundamental group of the exceptional fields and, comparing to (7.5)
label the momentum and the different wrapping modes of the membranes. These general-
ized vectors are in generalized geometry seen as a section of exceptional tangent bundles

R1 ' TMd ⊕ Λ2T ∗Md ⊕ Λ5T ∗Md⊕ (7.36)
where Md is the internal space. Therefore, generalized vectors are split under these repre-
sentation into

V M =
(
vi, vij, vijklm

)
, (7.37)

with i, j, ... = 1, ..., d for d < 7. For d = 7, we have to take additionally mixed-symmetry
terms into account

R1 ' TMd ⊕ Λ2T ∗Md ⊕ Λ5T ∗Md ⊕
(
T ∗Md ⊗ Λ7T ∗Md

)
. (7.38)

This additional section is a consequence of the four remaining non-compactified dimensions.
Due to the self-duality of one-forms we get a “dual graviton”, which then leads to an
additional gauge parameter
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Those generalized vectors lead to corresponding generalized derivatives ∂M with respect
to a generalized set of coordinates Y M ∈ R1, we can write them as:

∂M =
(
∂i, ∂

ij, ∂ijklm, ∂ijklmno,p
)
,

Y M =
(
xi, wij, wijklm, wijklmno,p

)
,

(7.39)

with i, j, ... = 1, ..., d. Here, all indices are anti-symmetric. Viewing xi as position in
the compactified space, the coordinate wij, wijklm, wijklmno,p corresponds to the wrapping
modes of different types of branes: the coordinate wi corresponds to M2-branes, wijklm
to M5-branes and wijklmno,p to KKM-wrapping modes. Therefore, the new appearance in
the exceptional tangent bundles corresponds to additional allowed wrapping modes in the
internal sector of exceptional field theory.
The action on a vector field in the R1 representation, V ∈ Γ (R1) with weight λV is

LΛV
M = ΛN∂NV

M − V N∂NΛM + Y MP
NQ V N∂PΛQ + (λV + ωd)V M∂NΛN . (7.40)

Here, ∂M = ∂
∂XM are the derivatives corresponding to the generalized coordinates, and the

Y -tensor is defined using a projector on the adjoint representation:

Y MN
PQ = −αdPMQ

N
P + δMP δ

N
Q − ωdδMQδ

N
P . (7.41)

The constant ωd is given by
ωd = − 1

9− d , (7.42)

and αd is a numerical constant. The exact structure of Y -tensors for any dimension d
was computed in [68], and corresponds to the invariants of each symmetry group. The
structure for the individual dimensions can be found in appendix A.1.

For the weights of the objects, we have to pick a convention. We are going to use
the convention that a vielbein should have determinant one, and should be an unweighted
tensor, meaning that

EM̄
MLVEM̄M = LV |E| = 0 . (7.43)

Therefore, the metric is an unweighted tensor as well, using the definition

MMN = EM̄
ME

N̄
NδM̄N̄ . (7.44)

Additionally, we choose the weights of a generalized vector V M to be λ = −ω, and therefore,
the last term in (7.40) vanishes.

Demanding the closure of the algebra, i.e.

[LU ,LV ]W = L[U,V ]EW , [U, V ] ≡ 1
2 (LUV − LVU) , (7.45)

where U , V and W are generalized vectors of weight −w, we find that we have to impose
the condition

Y MN
PQ∂M ⊗ ∂N = Y MN

PQ∂M∂N = 0 , (7.46)
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where ⊗ represents the action of the derivatives on two independent fields. This condition
is called the section condition of Exceptional Field Theory. From a physical point of view
this condition can be seen as an extension of level matching condition to neglect additional
degrees of freedom, arising from the extended theory.

7.2.2 Action of EFT

After defining the generalized diffeomorphisms, we are going to define the action in d =
4. Actions behave like a space time scalars under generalized diffeomorphisms and are
quadratic in the derivatives. To construct such an action, we write the generalized metric
in four dimensions:

MMN =
(
mi,k mi,kl

mij,k mij,kl

)
= |g| 15

(
gik + 1

2CimnCk
mn 1

2Ci
mnεklmn

1
2Ck

mnεijmn |g|gi[kgl]j]

)
. (7.47)

We can now construct the action using where ∆ is the determinant of the seven-dimensional
external metric. Then, the action is

S =
∫
d10X e−2∆

( 1
12M

MN∂MMKL∂NMKL −
1
2M

MN∂MMKL∂KMLN

+ 24
7
(
∂MMMN∂N∆−MMN∂M∆∂N∆

)
−∂M∂NMMN

)
.

(7.48)

Using the section condition ∂ij = 0, this action truncates to the bosonic part of eleven-
dimensional supergravity assuming that all fields depend only on the four internal co-
ordinates. Therefore, we have been able to successfully construct an action with an
underlying U-duality. This action has been found in [69]. The complete action for
Exceptional Field Theory was computed for every dimension individually in the papers
[70, 71, 72, 73, 74, 75, 76, 77].

7.2.3 U-dualities

Later, we have to compute the effect of U-dualities explicitly on twisted tori and back-
grounds with three-forms and six-forms. Those were computed in [78].

We are not only going to have a geometric three-form Cijk and a geometric six-form
Cijklmn, but also non-geometric three-forms Ωijk and non-geometric six-forms Ωijklmn.
These two types of forms arise from generalized geometry, and are two different types
of descriptions for the background. For many backgrounds, one of these descriptions might
be ill-defined, as long as the other is well-defined the background can be viewed as a
well-defined background. In four dimensions, the transformation between the two param-
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eterizations are given by

ĝij =
(
1 + V 2

)−1/3 [(
1 + V 2

)
gij − ViVj

]
,

Ωijk =
(
1 + V 2

)−1
gilgjmgknClmn ,

d̂s2
7 =

(
1 + V 2

)−1/3
ds2

7 .

(7.49)

Here, the V i = 1
3!|e|ε

ijklCjkl with εijkl = ±1 is the tensor density and V 2 = V iV jgij.
To describe backgrounds, we use the already introduced generalized vielbeins Note that

there exist a geometric vielbein EC and a non-geometric vielbein EΩ. For d = 4 they are

EC
ā
a =

(
|e|−2/5eīi

1
3! |e|

−2/5εījklCjkl
0 |e|3/5

)
, EΩ

ā
a =

(
|e|−2/5eīi 0

1
3! |e|

3/5εijklΩjkl |e|3/5

)
, (7.50)

where εijkl is the four-dimensional Levi-Civita symbol such that ε1234 = 1. Using those
vielbein, we can now construct rules for U-dualities using

U = EΩ EC EΩ . (7.51)

For U-dualities in the three directions i, j and k, we define the anti-symmetric combinations

ωijk = ωijk = ±1 , (7.52)
which only have non-vanishing components along the three directions being dualized. Then,
we construct the generalized vielbein with the (non)-geometric three-form using

Ωijk = −ωijk , Cijk = ωijk . (7.53)

We find the analogous case for the U-dualities in six dimensions. For a U-duality in the
direction i, j, k, l, m and n, we define the anti-symmetric quantity

ωijklmn = ωijklmn = ±1 , (7.54)

and define the (non-)geometric vielbein with the three-forms

Ωijklmn = −ωijklmn , Cijklmn = ωijklmn . (7.55)

Using those transformation matrices, we can compute the new three-forms and six-forms as
well as the exchanged coordinates, momenta and wrapping modes. The explicit formulae
can be found in appendix A.2.

7.3 Duality Chains
As final step, we are going to review duality chains, one with applying T-dualities, the other
with U-dualities. In the following chapter 8, we are going to use those to obtain information
on the phase space of non-geometric backgrounds. Note that here in this section we focus
only on toy models with only one type of flux present, but more complicated backgrounds
can be constructed (see for instance [79]).
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7.3.1 Duality chains for T-dualities
In [80], the concept of duality chains leading to non-geometric background fields was first
examined. Starting from geometric background with a T 3 with H-flux, we use the Buscher
rules (7.20) to compute the dual backgrounds.
T 3 with H-flux: The metric of the T and the H-flux H123 = 3∂[1B23] can be written as

ds2 =
(
dx1

)2
+
(
dx2

)2
+
(
dx3

)2
,

Bxy = Nx3 ,
(7.56)

where N ∈ Z due to quantization conditions on the torus.
Twisted torus: Applying the Buscher rules described in the x1-direction, we obtain a
nilmanifold with

ds2 =
(
dx1 −Nx3dx2

)2
+
(
dx2

)2
+
(
dx3

)2
,

B = 0 .
(7.57)

Therefore, this background has the “geometric flux” T 23
1 = N . More details on this type of

space can be found in section 8.2.1. This configuration is also called twisted torus because
of the identification

(x1, x2, x3) ∼ (x1 + 1, x2, x3) ∼ (x1, x2 + 1, x3) ∼ (x1 +Nx2, x2, x3 + 1) . (7.58)

Q-flux background: The first duality was along the x1 direction, which is an isometry
because the map x1 → x1 + 1 is a map onto itself. The next direction to dualize is the x2

direction. After this duality we get an ill-defined background given by

ds2 = (dx1)2 + (dx2)2

1 + (Nx3)2 +
(
dx3

)2
,

Bx̃1x̃2 = − Nx3

1 + (Nx3)2 .

(7.59)

Both of these fields are not-well defined under the transformation x3 → x3 + 1 in con-
ventional geometry but can be patched by an SO(3, 3) element. Such a background is
called T-fold. Because it is not accessible with ordinary geometry, the background is non-
geometric whereas in generalized geometry or double field theory this is well-defined. Here,
we express the background in terms of the bi-vector βij which is well-defined. To derive
this, we use the redefinition known from[81, 82, 83, 84, 85, 86, 87]

βij = 1
2
(
(g −B)−1 − (g +B)−1

)
,

ĝ = 1
2
(
(g −B)−1 + (g +B)−1

)−1
.

(7.60)
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As in exceptional field theory, this non-geometric description can be viewed as a different
parameterization of the generalized vielbein. The resulting background is

ds2 =
(
dx1

)2
+
(
dx2

)2
+
(
dx3

)2
,

β12 = Nx3 .
(7.61)

This non-geometric background is classified by the Q-flux, which is given by

Qi
jk = ∂iβ

jk . (7.62)

For the given background the only non-zero component is

Q3
12 = N (7.63)

R-flux background: As last step, we perform a T-duality in the x3-direction. Even
though this is no isometry direction, we can use it from a double field theory point of view
and directly apply the Buscher rules applying the generalized transformation. This results
in an exchange of the coordinate x3 by its dual mode x̃3 which corresponds to an exchange
between winding and momentum modes. This results in the background:

ds2 =
(
dx1

)2
+
(
dx2

)2
+
(
dx3

)2
,

β12 = Nx̃3 .
(7.64)

The R-flux which is given by
Rijk = 3∂[iβjk] , (7.65)

which results in the given background in the R-flux

R123 = N . (7.66)

This is a realization of a non-geometric background. In the following, we find similar results
in exceptional field theory.

7.3.2 Duality chains for U-dualities

As next step, we uplift the duality chain to M-theory, as we did before to perform U-
dualities. Because we always have to perform two T-dualities (and a corresponding S-
duality in another direction), we are going to split the duality chain into two parts, namely

H1234
U124−−→ Q3

124 and T 1
23

U234−−→ R4,1234 (7.67)
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Duality chain H1234
U124−−→ Q3

124

We start with a three-dimensional torus times a circle T 3×S1. The additional circle is the
circle for the M-theory. Compactifying this direction leads to the known fluxes in string
theory. We start with the configuration:

ds2 =
(
dx1

)2
+
(
dx2

)2
+
(
dx3

)2
+
(
dx4

)2
,

C124 =Nx3 .
(7.68)

Therefore, we have the fluxH1234 = 4∂[1C234] = N . Performing a U-duality in the directions
1, 2 and 4, and using the equations in appendix A.2, we find

ds2 =
(
dx1

)2
+
(
dx2

)2
+
(
dx3

)2
+
(
dx4

)2
,

Ω124 =Nx3 .
(7.69)

This background has the flux Q3
124 = ∂3Ω124 = N , which is a spacetime tensor as we later

show in the next chapter 8.
Note that those formulae enable us to directly find the correct background description

(geometric or non-geometric) compared to the previous section, where we performed the
dualities explicitly and find a ill-defined background, which had to be patched by a change
of the used description.

Compactifying the forth dimension leads us directly to the string theory fluxes:

C124 → B12

H1234 → H123
(7.70)

The same is true for the Q-flux background:

Ω124 → β12

Q3
124 → Q3

12 .
(7.71)

Therefore, this duality chain is a true uplift of the duality chain from string theory.

Duality chain T23
U234−−→ R4,1234

For this duality chain, we have to start with a twisted torus. We use a twisted torus (as
in string theory) times a circle as T̃ 3 × S1. Here, we have the background

ds2 =
(
dx1 −Nx3

)2
+
(
dx2

)2
+
(
dx3

)2
+
(
dx4

)2
,

Cijk =0 .
(7.72)

Performing a U-duality in the directions x2, x3 and x4, we find for the background

ds2 =
(
dx1

)2
+
(
dx2

)2
+
(
dx3

)2
+
(
dx4

)2
,

Ω134 =Nw24, .
(7.73)
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This background has the non-geometric R-flux R4,1234 = 4∂̂4,[1Ω234] = N , known from [88],
where we used that ∂̂ij = ∂ij + Ωijk∂k. Again, we compactify along the x4-direction and
find the known string fluxes. In chapter 8 we are going to extend these duality chains
in exceptional field theory to construct backgrounds with other non-geometric fluxes. We
are going to use the framework of generalized diffeomorphisms to be able to find their
structure.
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Chapter 8

Locally Non-Geometric Fluxes and
Missing Momenta in M-theory

This chapter focuses on the results of paper [25]. We use the framework of exceptional
field theory to describe geometric and globally/locally non-geometric fluxes of M-theory.
These fluxes can be found using the decomposition of the fundamental groups. Analyzing
them leads to mixed symmetry tensors which describe new R-R fluxes in the weak coupling
regime. We examine the structure of the decompositions of the symmetry groups of the
embedding tensor of SUGRA and find the structure of the fluxes. This will provide us
insight which we can utilize to study scenarios beyond the NS-NS case, while showcasing
the power of analyzing symmetry groups in string theory. Finally, we are going to focus
on the construction of duality chains which lead to these new non-geometric backgrounds
and show that certain momenta associated with the non-geometric fluxes vanish.

8.1 Fluxes in M-Theory

8.1.1 Review of four-dimensional backgrounds
We start our analysis of the four-dimensional case reviewing and extending the results
from [88]. Here, the exceptional group is the SL(5)-group. As we know from the re-
view in section 7.1.3, the R1-representation is ten-dimensional (see table 7.1). A canon-
ical labeling of the coordinates within this ten-dimensional space is XM = X [ab] ≡ Xab,
with a, b = 1, . . . , 5, which can be further split into the four-dimensional representation
Xab = (X i5, X ij) =

(
xi, 1

2ε
ijklwij

)
with i, j, · · · = 1, . . . , 4. Here, xi describes the spacetime

coordinates, whereas x̃ij are the wrapping coordinates of the M2-brane. This can be also
seen using the decomposition of 10 under SL(4)× R+ ⊂ SL(5)

10 −→ 43 ⊕ 6−2 . (8.1)

Here, we can identify the coordinates from the representation

xi ∈ 43 , wij ∈ 6−2 , (8.2)
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and therefore, also their derivatives contained in 10

∂i ∈ 4−3 , ∂ij ∈ 62 . (8.3)

Using the decomposition of the adjoint representation

24 −→ 150 ⊕ 45 ⊕ 4−5 ⊕ 10 , (8.4)

we can directly identify the fields appearing in the generalized non-geometric vielbein of
the SL(5) theory:

eī
i ∈ 150 ⊕ 10 , Cijk ∈ 4−5 , Ωijk ∈ 45 . (8.5)

Let us note that the R+-charge gives us a measure of the “non-geometricness” of an object.
Furthermore, the total R+-charge of a product of two fields is the sum of each individual
R+-charge of each field.

Having defined the field content we continue with the generalized vielbein

E ā
a =

(
|e|−2/5eīi 0

1
3! |e|

3/5εijklΩjkl |e|3/5

)
, (8.6)

where εijkl is the four-dimensional Levi-Civita symbol such that ε1234 = 1 and |e| = det eīi.
The weights are determined by the generalized diffeomorphisms of the vielbein. All exam-
ples in this chapter are backgrounds which are generalized parallelisable, hence the inverse
of the generalized vielbein defines a set of globally well-defined generalized vector fields. It
will be straight forward to decide which parameterization leads to a globally well-defined
vielbein. For a change of the description, we can use the formulae given in (7.49).

Construction of non-geometric fluxes

In this thesis, we want to give insights in how to find new fluxes and how to check the
corresponding fluxes whether they are spacetime tensors. Therefore, we present the case of
SL(5) exceptional field theory with many details to give insights in how to find the correct
fluxes, the generalization to higher dimensions is shorter and focus only on new arising
problems.

To start the search, we are first going to identify the transformation behavior of the
individual fields and derivatives under generalized diffeomorphisms and afterwards con-
struct the different fluxes. Note, that we are interested in spacetime tensors, and therefore
restrict the generalized diffeomorpisms of section 7.2.1, that only the spacetime diffeomor-
phism generator is non-zero

V ab =
(
V i5, V ij

)
−→

(
ξi, 0

)
, (8.7)

which leads to a simplification of the generalized diffeomorphism

LV →δξ . (8.8)
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Applying this on the generalized vielbein we find for the non-geometric three-form

δξΩijk = ξl∂lΩijk − 3Ωl[ij∂lξ
k] − 3∂[ijξk] ,

= LξΩijjk − 3∂[ijξk] ,
(8.9)

where Lξ is the usual spacetime Lie derivative acting on a tensor. Additionally, we find
that the metric gij = eīieī j is a spacetime tensor

δξgij = Lξgij = ξk∂kgij + 2gk(i∂j)ξ
k , (8.10)

which is expected from the definition of the generalized diffeomorphism. The three-form
Cijk also transforms as a spacetime tensor, i.e.

δξCijk = LξCijk . (8.11)

As next step, we examine the transformation behavior of the derivatives (acting on a
scalar). The ordinary derivative ∂i transforms as a spacetime tensor, whereas the derivative
of the winding modes does not, i.e.

δξ (∂iφ) =L̂ξ (∂iφ) ,
δξ
(
∂ijφ

)
=L̂ξ

(
∂ijφ

)
− 3∂[ijξk] .

(8.12)

To counter this, we introduce an improved derivative ∂̂ for the winding modes such that
it becomes a spacetime tensor. This improved derivative is given by

∂̂ij = ∂ij + Ωijk∂k . (8.13)

We notice that this improved derivative transforms as a spacetime tensor, i.e.

δξ
(
∂̂ijφ

)
= L̂ξ

(
∂̂ijφ

)
+ ∂ikφ∂kξ

j + ∂ikξj∂kφ− ∂jkφ∂kξi − ∂jkξi∂kφ = L̂ξ
(
∂̂ijφ

)
. (8.14)

In the previous computation we have to use the section condition, which in four dimensions
reads as

∂i ⊗ ∂ij + ∂ij ⊗ ∂i = ∂i∂
ij =0 ,

∂[ij ⊗ ∂jk] = ∂[ij∂jk] =0 ,
(8.15)

Alternatively, the structure of (8.13) can be found using the flat derivatives

Dīj̄ ≡ Eī
aEj̄

b∂ab . (8.16)

To unflatten them, we have to use the vielbeins eiī again which results in

∂̂i = |e|−4/5ei
īEī

a∂a = ∂i

∂̂ij = 1
2 |e|

−4/5eī
iej̄

jεīj̄k̄l̄Ek̄
aEl̄

b∂ab .
(8.17)
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These formulae are general and can be used in higher dimensions. Additionally, they give
us a good double check for the vielbein. Note that the prefactor depends on the convention
and cancels the prefactors from the vielbein.

After finding the right ingredients we can move on to find the right fluxes. Therefore, we
have to decompose the fundamental group of the the embedding tensor of maximal gauged
supergravities [89] under SL(5) −→ SL(4)× R+. The fundamental group is 15⊕ 40⊕ 10
of SL(5) and the decomposition is given by

15 −→ 102 ⊕ 4−3 ⊕ 1−8 ,

40 −→ 20−3 ⊕ 102 ⊕ 62 ⊕ 47 ,

10 −→ 4−3 ⊕ 62 .

(8.18)

This strategy is similar to the encoding of the different fields, each of the components on
the right hand side is an existing flux, and we have to find the correct combinations of the
fields to construct them. As a general guideline, we have two hints from the decomposition
how to find the correct form:

• We can use the R+-charge, which points towards possible combinations between the
different fields and the different derivatives.

• We can use the representation itself to gain an idea on the degrees of freedom of
the flux. For instance, a 1 denotes a scalar, so no free indices, a 4 denotes in
four dimensions a vector (one free index), etc. Note that we have to distinguish
between symmetric and anti-symmetric parts of the tensors for mixed symmetry
fluxes. Additionally, for most mixed tensors, we will find a trace and a trace-free
part which are different elements in the decomposition.

Having these ideas in mind, we can start with the most geometric flux, 1−8. The only
(simple) combination to reach such a low R+-charge, is Gijkl = 4∂[iCjkl], which corresponds
to the four-form flux in M-theory.

The next fluxes to look at arises from the elements with R+-charge −3, i.e. 20−3 and
2 · 4−3. Looking at the R+-charges, we can see that the fluxes should depend on the
spacetime derivative ∂i plus an element with no R+-charge. This leads to two different
possible fluxes.

• The first one is the spacetime derivative of the determinant of the seven-dimensional
metric of the uncompactified dimensions, i.e. ∂i∆, [88].

• The remaining two fluxes are the trace and the trace-free part of the geometric flux
known from double field theory which combines the spacetime derivative acting on
the vielbein

Tij
k = 2eīk∂[ie

ī
j] ∈ 4−3 ⊕ 20−3 . (8.19)
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The geometric flux can also be expressed in terms of connections which can be introduced
for both derivatives, defined as

Γijk = eī
k∂ie

ī
j ,

Γ̂ijkl = eī
l∂̂ijeīk .

(8.20)

Under spacetime diffeomorphisms, they transform as

δξΓijk = LξΓijk + ∂i∂jξ
k ,

δξΓ̂ijkl = LξΓ̂ijkl + ∂̂ij∂kξ
l .

(8.21)

Note, that using these connections the geometric flux can be expressed as Tijk = Γ[ij]
k.

The connections (8.20) prove to be useful when continuing with the identification of
new arising fluxes. Taking the trace of Γ̂ijkl the difference between ordinary Lie-derivative
and spacetime diffeomorphism vanish due to the section condition. The resulting flux is
known as τ -flux

τ i,j = Γ̂ikkj . (8.22)
Here, the symmetric and anti-symmetric part are the representation of 62 ⊕ 102.
Now, only three representations are left: 62, 102 and 47. Let us check whether these are
related to the non-geometric three form. By combining Ωijk and ∂i we see that we reach
a R+-charge equal to +2, which is exactly the correct charge. Computing the difference
between spacetime diffeomorphism and Lie-derivative we get

δξ
(
∂iΩjkl

)
=Lξ

(
∂iΩjkl

)
− 3∂i∂[jkξl] − Ωp[kl∂p∂iξ

j]

=Lξ
(
∂iΩjkl

)
− 3∂̂[jk∂iξ

l] .
(8.23)

which corresponds to the remaining parts of Γ̂[jk
i
l]. Therefore, we find as flux

Qi
jkl = ∂iΩjkl + 3Γ̂[jk

i
l] . (8.24)

This flux is known as “globally non-geometric flux” or as “Q-flux”. Splitting the flux into
trace and trace-free part we find as corresponding representation

Qi
jkl ∈ 62 ⊕ 102 . (8.25)

The remaining component of the representation is 47. The R+-charge corresponds to a
combination between ∂̂ij and Ωijk. Due to the representation 4 it is expected that we will
only have one free index, and have to anti-symmetrize over the remaining four as follows

δξ
(
∂̂i[jΩklm]

)
= Lξ

(
∂̂i[jΩklm]

)
− 3Ωp[lm∂̂|i|j∂pξ

k] − 3∂̂i[j∂klξm]

= Lξ
(
∂̂i[jΩklm]

)
− 3Ωp[lm∂|i|j∂pξ

k] − 3Ωpi[j∂p∂
klξm]

+ 3Ωp[lmΩj|io|∂o∂pξ
k] − 3∂i[j∂klξm] .

(8.26)

To show that this vanishes we can follow a fixed set of rules to check whether all terms on
the right side vanish:
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• Anti-symmetrizing over d + 1 indices in d dimensions always leads to a vanishing
quantity, since there will be always a pair of indices having the same index value.

• Using the section condition whenever possible.

• Summing over indices with an odd and an even part is also a typical trick to show
that certain terms vanish.

• In most cases it is necessary to split the improved derivatives. Thus, they only
simplify the notation of the fluxes but not necessarily the computations itself.

For clarity, let us consider a short example. Let us take the term ∂i[j∂klξm] and anti-
symmetrize in all of its indices as follows

0 = ∂[ij∂klξm] = 1
5
(
4∂i[j∂klξm] + ∂[jk∂lm]ξi]

)
= 4

5∂
i[j∂klξm] . (8.27)

The prefactor 1
5 arises from the used convention. It can be shown that the other terms in

equation (8.26) vanish in a similar fashion.1
As a result, we find for the representation 47 the locally non-geometric flux (also known

as R-flux):
Ri,jklm = 4∂̂i[jΩklm] ∈ 47 . (8.28)

This R-flux appears in the duality chain in section 7.3.2 as well and in string theory
it corresponds to the known NS-NS R-flux, provided that we reduce a suitable dimension
on a torus. Knowing the decomposition of the fundamental group we can ensure that we
found all fluxes in four dimensions. After reviewing the results of [88] (and showing the
key parts of the computations) we can move on to the cases where D = 5, 6, 7.

8.1.2 Five-dimensional backgrounds
We can now continue to use this framework to generalize the results to higher dimen-
sions. We start with the six-dimensional SUGRA which corresponds to the SO(5, 5) excep-
tional field theory in five dimensions, decompose its fundamental representation 16 under
SO(5, 5) −→ SL(5)× R+ as

16 −→ 101 ⊕ 5−3 ⊕ 15 . (8.29)

We can find directly the right notation of the derivatives, given by

∂i ∈ 5−3 , ∂ij ∈ 101 , ∂z ∈ 15 . (8.30)

Looking at the adjoint decomposition we find

45 −→ 240 ⊕ 10−4 ⊕ 104 ⊕ 10 , (8.31)
1In low dimensions such computation are quite simple, whereas in higher dimensions (specially for

d = 7) more and more terms have to be taken into account.
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and therefore, we can identify our fields as

eī
i ∈ 240 ⊕ 10 , Cijk ∈ 10−4 , Ωijk ∈ 104 . (8.32)

Knowing the field content, we can construct the vielbein and compute the transformation
behavior of the fields as well as defining the improved derivatives. In five-dimensional
exceptional field theory the vielbein in the non-geometric frame is defined as

EM̄
M ≡

 |e|−1/4eī
i 0 0

|e|−1/4Ωī1 ī2i |e|−1/4eī1 ī2i1i2 0
− 1

12 |e|
−1/4εk1k2k3k4k5Ωik1k2Ωk3k4k5 −1

6 |e|
−1/4εi1i2k1k2k3Ωk1k2k3 |e|3/4

 , (8.33)

where
eīj̄ij = e[̄i

ie
j̄]
j . (8.34)

Computing the generalized Lie-derivative of the generalized vielbein with a spacetime vec-
tor V M = (ξi, 0, 0) we find the same transformation behavior as in the four-dimensional
exceptional field theory, i.e.

δξeī
i = Lξeī

i .

δξCijk = LξCijk .

δξΩijk = LξΩijk − 3∂[ijξk] .

(8.35)

As in the four-dimensional exceptional field theory, we state the section conditions which
is given by

∂i ⊗ ∂ij + ∂ij ⊗ ∂i = ∂i∂
ij = 0 ,

∂i ⊗ ∂z + ∂z ⊗ ∂i + 1
2εijklm∂

jk ⊗ ∂lm = ∂i∂
zf + 1

4εijklm∂
jk∂lmf = 0 .

(8.36)

Note that the second section condition changed, while the first one stayed the same. We
will have to put special attention whenever we use the second section condition. Having
defined the section condition, we can now find the improved derivatives which are defined
as

∂̂i = |e|1/4eīiEbiīM∂M

= ∂i ,

∂̂ij = |e|1/4eīiej̄ jE īj̄ M∂M

= ∂ij + Ωijk∂k ,

∂̂z = |e|1/4E z̄ M∂M

= |e|∂z − 1
6εijklmΩijk∂lm − 1

12εjklmnΩijkΩlmn∂i ,

(8.37)

and satisfy

δξ∂̂jφ = Lξ∂̂jφ , δξ∂̂
ijφ = Lξ∂̂

ijφ , δξ∂̂
zφ = Lξ∂̂

zφ = ξi∂i∂̂
zφ . (8.38)
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Knowing the components of the fluxes, we can decompose the fundamental group 16⊕144
of SO(5, 5) under SL(5)× R+ ⊂ SO(5, 5) and find

16 −→ 101 ⊕ 5−3 ⊕ 15 ,

144 −→ 151 ⊕ 45−3 ⊕ 245 ⊕ 5−7 ⊕ 401 ⊕ 101 ⊕ 5−3 .
(8.39)

To simplify the notation of the fluxes, we introduce again the connections for the different
derivatives

Γijk = eī
k∂ie

ī
j ,

Γ̂ijkl = eī
l∂̂ijeīk ,

Γ̂zij = eī
i∂̂zeīj .

(8.40)

These objects transform under spacetime diffeomorphisms as in the SL(5) exceptional field
theory,

δξΓijk = LξΓijk + ∂i∂jξ
k ,

δξΓ̂ijkl = LξΓ̂ijkl + ∂̂ij∂kξ
l ,

δξΓ̂zij = LξΓ̂zij + ∂̂z∂iξ
j .

(8.41)

Comparing the five-dimensional case to the four-dimensional case, we realize that most
components and the fluxes stay the same (except for the second section condition) and
therefore, we can use the results from the four-dimensional case for most of the fluxes. The
list is given as

Qi
jkl = ∂iΩjkl + 3Γ̂[jk

i
l] ∈ 101 ⊕ 401 ,

τ i,j = Γ̂ippj ∈ 101 ⊕ 151 ,

Gijkl = 4∂[iCjkl] ∈ 5−7 ,

∂i∆ ∈ 5−3 ,

Tij
k = Γ[ij]

k ∈ 5−3 ⊕ 45−3 .

(8.42)

Therefore, when we change the dimension from four to five in exceptional field theory, the
more geometric fluxes stay the same and will reappear in higher dimensions. Therefore, we
focus on the non-geometric fluxes in higher dimensions, where we cannot simply uplift the
locally non-geometric R-flux due to the change in the section condition. After an involved
computation, we find the following combination for the flux

Ri,jklm = 4∂̂i[jΩklm] − 2eī[jεklm]in∂̂zeīn = 4∂̂i[jΩklm] + 2εin[jklΓ̂znl] . (8.43)

This flux involves also the new dual derivative which corresponds to the wrapping coor-
dinates of the M5-brane. As a consequence of the five-dimensional compactification, the
new R-flux contains a totally anti-symmetric part, which has to be viewed as a different
R-flux. This flux can be written as follows

Rijklm ≡ 5R[i,jklm] = 20∂̂[ijΩklm] − 2εijklm∂̂z|e| . (8.44)
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Comparing the degrees of freedom of the locally non-geometric R-fluxes Rijklm and Ri,jklm,
we see that the flux corresponds to different parts of the embedding tensor: While the new
total anti-symmetric R-flux Rijklm represents the 15 ∈ 16, the R-flux with mixed symmetry
structure Ri,jklm −R[i,jklm] belongs to the 245 ∈ 144. Comparing this knowledge with the
reduction from M-theory to string theory in section 7.3.2, we can see the consequences.
While the Ri,jklm reduces to the NS-NS R-flux in string theory when compactifying in
appropriate directions, the new R-flux Rijklm will necessarily involve the R-R sector of
string theory.

The symmetry group decomposition of the embedding tensor assures us that we have
found all existing non-geometric fluxes. In the next section we discuss the case for d = 6.

8.1.3 Six-dimensional backgrounds
Let us now apply the same strategy for the case with six compactified dimensions. We
start with the fundamental representation of five-dimensional SUGRA and decompose the
27 and the adjoint 78 under SL(6)× R+ ⊂ E6(6)

27 −→ 150 ⊕ 62 ⊕ 6−2 ,

78 −→ 350 ⊕ 202 ⊕ 20−2 ⊕ 14 ⊕ 10 ⊕ 1−4 .
(8.45)

Using these decompositions we find for the derivatives the structure

∂i ∈ 6−2 , ∂ij ∈ 150 , ∂ijklm ∈ 62 , (8.46)

which is the same as in SO(5, 5) EFT – we only switched the convention to not get confused
with a second derivative with only one lower index. The possible fields in E6(6) are

eī
i ∈ 350 ⊕ 10 , Cijk ∈ 20−4 , Cijklmn ∈ 1−4 ,

Ωijk ∈ 204 , Ωijklmn ∈ 14 .
(8.47)

As we can see, we have two additional new fields, namely, the geometric 6-form Cijklmn
and the non-geometric 6-form Ωijklmn. They appear because we now have six compact
dimensions and therefore all six legs of the six-form can lie in compactified directions. As
a consequence we can get additional fluxes.
Following the convention, we get for the non-geometric parameterization of the vielbein

EM̄
M =


|e|−1/3eī

i 0 0
|e|−1/3Ωī1 ī2i |e|−1/3eī1 ī2i1i2 0√

5
6 |e|

−1/3
(
Ωī1 ī2 ī3 ī4 ī5i + Ω[̄i1 ī2 ī3Ωī4 ī5]i

) √
10
3 |e|

−1/3e
[̄i1 ī2
i1i2 Ωī3 ī4 ī5] |e|−1/3eī1 ī2 ī3 ī4 ī5i1i2i3i4i5

 ,

(8.48)
where

eī1 ī2 ī3 ī4 ī5i1i2i3i4i5 = e[̄i1
i1e

ī2
i2e

ī3
i3e

ī4
i4e

ī5]
i5 . (8.49)
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For the transformation behavior under spacetime diffeomorphisms of the different fields,
we find that

δξeī
i = Lξeī

i ,

δξCijk = LξCijk ,

δξCijklmn = LξCijk ,

δξΩijk = LξΩijk − 3∂[ijξk] ,

δξΩijklmn = LξΩijklmn + 3
5∂

[ijklmξn] − 6Ω[ijk∂lmξn] .

(8.50)

As before, let us introduce the improved derivative operators

∂̂i = |e|1/3eīiEbiīM∂M

= ∂i ,

∂̂ij = |e|1/3eīiej̄ iE īj̄ M∂M = ∂ij + Ωijk∂k ,

∂̂ijklm = −
√

5! |e|1/3eīiej̄ jek̄kel̄ lem̄mE īj̄k̄l̄m̄M∂M

= ∂ijklm − 20Ω[ijk∂lm] − 10
(
Ωijklmn + Ω[ijkΩlm]n

)
∂n ,

(8.51)

where
∂M =

(
∂i, ∂

ij, − 1√
5!
∂ijklm

)
, (8.52)

so that ∂̂iφ ∂̂ijφ and ∂̂ijklmφ are spacetime tensors, where φ is a scalar. Additionally, we
state the section conditions which are

∂i ⊗ ∂ij + ∂ij ⊗ ∂ig = ∂i∂
ij = 0 ,

∂[ij ⊗ ∂kl] + 1
12
(
∂m ⊗ ∂ijklm + ∂ijklm ⊗ ∂m

)
= ∂[ij∂kl]f − 1

6∂m∂
ijklmf = 0 ,

∂i[j ⊗ ∂klmnp] − ∂[klmnp ⊗ ∂j]i = ∂i[j∂klmnp]f = 0 .

(8.53)

Before we start with the decomposition and the search for the non-geometric fluxes, we
state the notion of the connection-like objects

Γijk = eī
k∂ie

ī
j ,

Γ̂ijkl = eī
l∂̂ijeīk ,

Γ̂ijklmnp = eī
p∂̂ijklmeīn .

(8.54)

Their transformation behavior under spacetime diffeomorphisms can be found in section
8.1.2.

To ensure that we later find all possible fluxes we have to decompose the symmetry
group of the E6(6) embedding tensor under SL(6)× R+ ⊂ E6(6) which is given as

27→ 150 ⊕ 62 ⊕ 6−2 ,

351→ 210 ⊕ 842 ⊕ 84−2 ⊕ 1050 ⊕ 154 ⊕ 150 ⊕ 15−4 ⊕ 62 ⊕ 6−2 .
(8.55)
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First, we start with finding the geometric fluxes which are

Gijkl = 4∂[iCjkl] ∈ 15−4 ,

∂i∆ ∈ 6−2 ,

Tij
k = Γ[ij]

k ∈ 6−2 ⊕ 84−2 ,

τ i,j = Γ̂ippj ∈ 150 ⊕ 210 .

(8.56)

These fluxes are the same as in four and five dimensions. Note that the flux τ i,j technically
is a non-geometric flux due to the dual derivative ∂̂ij. Additionally, we find the Q-flux
associated with Ωijk in six dimensions

Qi
jkl = ∂iΩjkl + 3Γ̂[jk

i
l] ∈ 150 ⊕ 1050 . (8.57)

Due to the existence of the non-geometric 6-form Ωijklmn, we can find another Q-flux in
six dimensions as

Qi
jklmnp = ∂iΩjklmnp + 2Ω[jkl∂iΩmnp] − 3

5Γ̂[jklmn
i
p] ∈ 62 . (8.58)

Therefore, we are left with the “most non-geometric” representations of E6(6) → SL(6)×R+,
which are: 62 ⊕ 842⊕ ∈ 154.

The representation 62 ⊕ 842 belongs again to the local non-geometric R-flux known
from four and five dimensions,

Ri,jklm = 4∂̂i[jΩklm] + 2Γ̂in[jkl
n
m] , (8.59)

with the known split in totally anti-symmetric and mixed symmetric part of the flux.
Therefore, we are left to find the final 154 ⊂ 351 in the embedding tensor. The R+

can be constructed combining using ∂̂ijklm on Ωijk or ∂̂ij on Ωijklmn. To construct this new
R-flux we have to combine both possibilities. Then, the new flux is given by

Rij = 1
5!εklmnpq∂̂

klmnpΩqij + 1
72εklmnpq∂̂

ijΩklmnpq + 1
36εklmnpqΩ

klm∂̂ijΩnpq . (8.60)

One can notice that in all fluxes with an derivative acting on a non-geometric six-form
∂MΩijklmn we have to introduce a term with two non-geometric three-forms Ωijk∂̂MΩlmn.

8.1.4 Seven-dimensional backgrounds
Finally, we are going to apply this strategy to seven compactified dimensions. First, we
start decomposing the fundamental group 56 and the adjoint 133 under E7(7) → SL(8)→
SL(7)× R+

56 −→ 7−6 ⊕ 21−2 ⊕ 212 ⊕ 76 ,

133 −→ 35−4 ⊕ 7−8 ⊕ 480 ⊕ 10 ⊕ 354 ⊕ 78 .
(8.61)
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Again, we find the structure of the derivatives to be

∂i ∈ 7−6 , ∂ij ∈ 21−2 , ∂ij ∈ 212 , ∂i ∈ 76 , (8.62)

as well as the existing fields

eī
i ∈ 480 ⊕ 10 , Cijk ∈ 35−4 , Cijklmn ∈ 7−4 ,

Ωijk ∈ 354 , Ωijklmn ∈ 74 .
(8.63)

As next step we introduce the generalized vielbein. To shorten our notation, we introduce
dualized 3-forms and 6-forms as

Vijkl = εijklmnpΩmnp ,

Wij
k = VijlmΩklm ,

Xij
k = εijlmnpqΩlmnpqk .

(8.64)

Using them, the generalized vielbein of E7(7) in the non-geometric parameterization is given
by

EM̄
M =


|e|−1/2eī

i 0 0 0
|e|−1/2Ωī1 ī2i |e|−1/2eī1 ī2

i1i2
0 0

1
24 |e|

−1/2
(
Xī1 ī2

i +Wī1 ī2
i
)

1
12 |e|

−1/2Vī1 ī2i1i2 |e|1/2ei1i2
ī1 ī2

0
|e|−1/2 1

144

(
Wjk

iΩījk − 3Xjk
iΩījk

)
1
48 |e|

−1/2
(
Wi1i2

ī −Xi1i2
ī
)

1
2 |e|

1/2Ωīi1i2 |e|1/2eī
i

 .(8.65)

From the action of the generalized Lie derivative on the generalized vielbein we can deduce
the transformation laws of the 3-form and the 6-form under a spacetime diffeomorphism
with the vector field V M = (ξi, 0, 0, 0),

δξeī
i = Lξeī

i .

δξCijk = LξCijk .

δξCijklmn = LξCijk .

δξΩijk = LξΩijk − 3∂[ijξk] ,

δξΩijklmn = LξΩijklmn − 1
10ε

ijklmnp∂pqξ
q − 6Ω[ijk∂lmξn] .

(8.66)

Note that the different prefactors between the six and seven-dimensional case arise from
the different conventions of the dual derivative corresponding to the M5-brane.

Again, we are using the generalized vielbein to find improved derivatives which fulfill
the conditions

δξ∂̂iφ = Lξ∂̂iφ , δξ∂̂
ijφ = Lξ∂̂

ijφ , δξ∂̂ijφ = Lξ∂̂ijφ , δξ∂̂
iφ = Lξ∂̂

iφ . (8.67)
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In seven dimensions those derivatives are
∂̂ij = |e|1/2eīiej̄ iE īj̄ M∂M = ∂ij + Ωijk∂k ,

∂̂ij = −2 |e|1/2eīiej̄ jEīj̄M∂M

= |e|∂ij −
1
6εijklmnpΩ

klm∂np − 1
12εijklmnp

(
Ωklmnpq + ΩklmΩnpq

)
∂q ,

∂̂i = |e|1/2eīiE īM∂M

= |e|∂i − 1
4 |e|Ω

ijk∂jk + 1
48εjklmnpq

(
ΩjklΩimn − Ωjklmni

)
∂pq

+ 1
144εjklmnpqΩ

pqr
(
ΩjklΩimn − 3Ωjklmni

)
∂r ,

(8.68)

where
∂M =

(
∂i, ∂

ij, −1
2∂ij, ∂

i
)
. (8.69)

They fulfill the condition above up to the section conditions which are in seven dimensions
given as

∂i ⊗ ∂ij + ∂ij ⊗ ∂i = ∂i∂
ij = 0 ,

∂i ⊗ ∂ij + ∂ij ⊗ ∂ij = ∂i∂ij = 0 ,
∂i ⊗ ∂i = ∂i∂

i = 0 ,
∂ij ⊗ ∂ij = ∂ij∂

ijf = 0 ,

∂i ⊗ ∂j + ∂j ⊗ ∂i −
1
2∂ik ⊗ ∂

jk − 1
2∂

jk ⊗ ∂ik = ∂i∂
j − 1

2∂ik∂
jk = 0 ,

∂[ijf∂kl]g −
1
3εijklmnp (∂mnf∂pg + ∂pf∂mn) g = ∂[ij∂kl]f −

2
3εijklmnp∂

mn∂p = 0 ,

∂[ij ⊗ ∂k] + ∂[i ⊗ ∂jk] + 1
6εijklmnp∂

mn ⊗ ∂np = ∂[ij∂k] + 1
12εijklmnp∂

mn∂np = 0 .

(8.70)

As in the dimensions before, we first introduce the connection-like terms for ease of nota-
tion. They are given as

Γijk = eī
k∂ie

ī
j ,

Γ̂ijkl = eī
l∂̂ijeīk ,

Γ̂ijkp = eī
p∂̂ijeīk ,

Γ̂ij l = eī
l∂̂ieīj .

(8.71)

As before, we start with the decomposition of the embedding tensor of four-dimensional
maximal gauged SUGRA. Therefore, we have to decompose 56 ⊕ 912 of E7(7) under
E7(7) −→ SL(7)× R+, which is given by

56 −→7−6 ⊕ 21−2 ⊕ 212 ⊕ 76 ,

912 −→1−14 ⊕ 35−10 ⊕ 140−6 ⊕ 7−6 ⊕ 224−2 ⊕ 21−2 ⊕ 28−2

⊕ 282 ⊕ 212 ⊕ 2242 ⊕ 76 ⊕ 1406 ⊕ 3510 ⊕ 114 .

(8.72)
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As before, we start with the geometric fluxes
Gijkl = 4∂[iCjkl] ∈ 35−10 ,

Gijklmnp = 7∂[iCjklmnp − 35C[ijkGlmnp] ∈ 1−14 ,

∂i∆ ∈ 7−6 ,

Tij
k = Γ[ij]

k ∈ 7−6 ⊕ 140−6 ,

(8.73)

Here, the only new flux is Gijklmnp, which is known from SUGRA. Furthermore, the Q-
fluxes and the τ -fluxes are found to be seven-dimensional spacetime tensors

τ i,j = Γ̂ippj ∈ 21−2 ⊕ 28−2 ,

Qi
jkl = ∂iΩjkl + 3Γ̂[jk

i
l] ∈ 21−2 ⊕ 224−2 ,

Qi
jklmnp = ∂iΩjklmnp + 2Ω[jkl∂iΩmnp] − 3

5Γ̂[jklmn
i
p] ∈ 212 ⊕ 282 ,

(8.74)

The next step is to identify the different locally non-geometric R-fluxes. We identify the
following spacetime fluxes

Ri,jklm = 4∂̂i[jΩklm] − eī[jεklm]inpq∂̂pqe
ī
n ,

Rij
k = ∂̂klΩijl − 1

72εklmnpqr∂̂
ijΩlmnpqr − 1

36εklmnpqrΩ
lmn∂̂ijΩpqr

+ 4eī[i∂̂j]eīk + 4δ[i
k eī

j]∂̂leīl ,

Ri = ∂̂jkΩijk − 4∂̂i|e| − 8eīi∂̂jeīj ,
R = εijklmnp∂̂

iΩjklmnp − 2εijklmnpΩijk∂̂mΩlnp ,

Rijkl = 5
8 ∂̂

[iΩjkl] + 1
2 ∂̂pqΩ

pqijkl + 1
4Ω[ijk∂̂pqΩlpq] .

(8.75)

The first R-flux Ri,jklm is already known from the four-dimensional exceptional field theory,
the second R-flux arises first in the six-dimensional R-flux (without the connection terms).
The third R-flux is quite similar to the second R-flux, and one would be able to write down
here a different choice which can be combined with the second one, which results in the
following linear combination

R̃ij
k = Rij

k + αR[iδ
j]
k , (8.76)

where α can be any number. The last two fluxes are the actual new fluxes in seven
dimensions. This is a result of the mirrored structure of E7(7): The winding number of
the Kaluza-Klein monopole yi is structure-wise dual to the coordinates xi, as well as the
corresponding derivatives. The same is true for the 3-forms and the 6-forms. Therefore, the
locally non-geometric R-flux R mirrors the geometric G7 = Gijklmnp of SUGRA, whereas
Rijkl mirrors the flux G4.

To complete the analysis of the seven-dimensional fluxes we state the mapping of the
fluxes to the corresponding representations in the decomposed embedding tensor as

Ri,jklm ∈ 212 ⊕ 2242 , Rij
k ∈ 76 ⊕ 1406 , Ri ∈ 76 ,

Rijkl ∈ 3510 , R ∈ 114 .
(8.77)
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8.2 Duality Chains and Missing Momenta
In the following section, we are going to construct duality chains (as we did before in section
7.3) to find examples of backgrounds with non-geometric fluxes. To find these we have to
apply U-dualities on parallelisable spaces with geometric fluxes. Note that we will refer to
these spaces as “twisted tori”, even though some of those manifolds are non-compact and
therefore are not typical representatives of tori. After defining those spaces and showing
that they are well-defined, we will have a closer look on those twisted tori configurations
as well as their membrane content. We show that some wrapping modes cannot exist due
to the geometry of the space. We are going to refer to these modes as “missing wrapping
modes”. This has been shown before in [90] for the example of a direct product of the
Heisenberg nilmanifold with a circle. Here, we generalize this to higher dimensions and to
non-compact spaces. After investigating those product spaces we are going to apply U-
dualities in different directions to find backgrounds with the new non-geometric R-fluxes.
The missing wrapping modes in the Heisenberg nilmanifolds become, after the U-dualities,
missing momenta, which can be related to the locally non-geomertric R-fluxes.

8.2.1 Geometric flux
We start to investigate tori with geometric fluxes, also called twisted tori. Note that we
have to distinguish between the trace and the trace-free part of the geometric flux.

Nilmanifold

The first space we investigate is the Heisenberg nilmanifold N3. It can be defined as the
coset space [91]

N3 = GN(R)
GN(Z) , (8.78)

where GN(R) and GN(Z) are defined as

GN(F) =


1 c − 1

N
a

0 1 b
0 0 1


∣∣∣∣∣∣∣ a, b, c ∈ F

 , (8.79)

and F ∈ {R,Z}.
The name “Heisenberg nilmanifold” arises for two reasons: First, for fixed N the group

GN(R) is isomorphic to the Heisenberg group. Second the term “nilmanifold” mirrors the
property of the algebra of GN(R) which is a three-dimensional nilpotent algebra. Note
that G1(Z) is isomorphic to the discrete Heisenberg group, whereas GN(R) is isomorphic
to R3 for fixed N . Introducing coordinates x1, x2 and x3 on the space N3 instead of a, b
and c combined with the quotient, we find the identification

(
x1, x2, x3

)
∼
(
x1 + 1, x2, x3

)
∼
(
x1, x2, x3 + 1

)
∼
(
x1 −Nx3, x2 + 1, x3

)
. (8.80)
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A possible choice of well-defined 1-forms is given by

e1̄ = dx1 +Nx2dx3 ,

e2̄ = dx2 ,

e3̄ = dx3 .

(8.81)

Therefore, N3 is a parallelisable space and we can use it as a starting point for duality
chains in exceptional field theories. For the 1-forms we find that

de1̄ = Ne2̄ ∧ e3̄ , de2̄ = de3̄ = 0 . (8.82)

Using the definition of the geometric flux

deī = Tj̄k̄
īej̄ ∧ ek̄ , (8.83)

we can see by direct inspection that the description (8.81) results in the flux T23
1 = N .

Due to the definition of vector fields on the manifold, N3 is a paralellisable space.
In the upcoming discussions in this section, our spaces will be direct sums between

n-dimensional tori T n and the Heisenberg nilmanifold N3. We will denote these spaces as

N n
3 ≡ N3 × T n , (8.84)

the dimensionality of those spaces is dim (N n
3 ) = 3 + n. In the analysis of the spaces, we

are going to label the coordinates of N3 with the first coordinates x1, x2 and x3 as above,
whereas the labels of the tori T n will be labeled with (x4, . . . , xn+3). The metric is the
usual metric of the twisted torus plus the metric of the untwisted torus given by

ds2 =
(
dx1 +Nx2dx3

)2
+
(
dx2

)2
+
(
dx3

)2
+
(
dx4

)2
+ . . .+

(
dxn+3

)2
. (8.85)

This agrees with the definitions above and as in section 7.3.

Non-unimodular geometric flux

The second space relevant for the geometric flux is the two-dimensional space we are
denoting with N2. The space has the flux T12

1 = N , a possible choice of globally well-
defined 1-forms is

e1̄ = dx1 +Nx1dx2 ,

e2̄ = dx2 .
(8.86)

Their pullbacks are
de1̄ = Ne1̄ ∧ e2̄ , de2̄ = 0 , (8.87)

which results exactly in expected geometric flux T12
1 = N .



8.2 Duality Chains and Missing Momenta 109

Due to the fact that the only possible differential form of the second de Rham coho-
mology class is e1̄ ∧ e2̄ which is an exact form, the second de Rham cohomology vanishes,
i.e.

H2
dR (N2) = 0 . (8.88)

Using the theorem that for any d-dimensional, compact, oriented and connected mani-
fold M the d-th cohomology has to be

Hd (M) = R , (8.89)

we can assume that N2 is non-compact [92].2 One example of such a space is the solvmani-
fold

S2 = SN(R)
Λ , (8.90)

where SN(R) is the matrix group

SN(R) =
{(

ex
2
e(1+N)x2

x1

0 e(1+N)x2

)∣∣∣∣∣ (x1, x2
)
∈ R2

}
. (8.91)

The discrete subgroup Λ is defined as

Λ =
{(

1 b
0 1

)∣∣∣∣∣ b ∈ Z
}
, (8.92)

so that the right-quotient of SN(R) by Λ leads to the identifications(
x1, x2

)
∼
(
x1 + e−Nx

2
, x2

)
. (8.93)

This space is non-compact due to the fact that we do not have any restrictions or iden-
tifications in the x2 direction. The space itself is a cylinder with growing radius when x2

grows. Note that due to the non-compactness of the space we do not have any quantization
constrains on N , which motivates the name as non-unimodular geometric flux. This can be
also seen from a topological perspective: While for the geometric flux the value of N counts
the number of “twists” and therefore, different values of N can be distinguished topologi-
cally, this is not the case for the non-unimodular geometric flux. Any non-zero value of N
is topologically equivalent and can only be distinguished by introducing a length scale for
x1, for example by a metric. Later, we are going to use direct sums between the space N2
and tori T n. We are going to denote these spaces with

Nm
2 ≡ N2 × Tm . (8.94)

In here, the dimensionality of such spaces is dim (N n
2 ) = 2 + n. Again, the coordinates for

N2 are denoted by x1 and x2, whereas the coordinates of the torus T n are denoted with
(x3, . . . , xn+2). The metric of the space is

ds2 =
(
dx1 +Nx1dx2

)2
+
(
dx2

)2
+
(
dx3

)2
+ . . .+

(
dxm+2

)2
. (8.95)

2The space N2 is orientable and connected, therefore, the only assumption for the space which might
fail is the assumption of compactness.
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8.3 Wrapping States of Twisted Tori
In this section we will analyze the consequences of the geometrical fluxes for possible
wrapping modes. Those wrapping modes are classified by the homology classes of the
spaces. Therefore, we have to compute the second and the fifth homology group which
are linked to the M2 and to the M5-brane. “Missing” cylces in the homology imply that
a wrapping mode is not allowed. Missing wrapping modes will lead to missing momenta
modes in the dualized theory. We will compute the different cohomology classes, and use
the Poincaré duality to find the homology class.

Wrapping States of N 1
3

The first space we examine is the four-dimensional space N 1
3 = N3 × S1. Let us compute

all the de Rham cohomology classes to present the main calculations, in higher dimensions
we will leave out the details of the computations. We start with the possible 1-forms

e1̄ = dx1 +Nx2dx3 ,

e2̄ = dx2 ,

e3̄ = dx3 ,

e4̄ = dx4 .

(8.96)

As we can see, all of them are closed, but not all of them are exact:

de1̄ = Ndx2 ∧ x3 6= 0 , de2̄ = de3̄ = de4̄ = 0 . (8.97)

Therefore, the first de Rham cohomology is

H1
dR (N2) = R⊕ R⊕ R . (8.98)

For the second de Rham cohomology (which corresponds to the possible wrapping modes)
we have to analyze the different two-forms α, which are closed, but not exact.3 The two-
form e2̄ ∧ e3̄ is not exact because it holds that

1
N
de1̄ = e2̄ ∧ e3̄ . (8.99)

On the other hand the two-form e1̄ ∧ e4̄ is not closed

d
(
e1̄ ∧ e4̄

)
= Ne2̄ ∧ e3̄ ∧ e4̄ . (8.100)

Therefore, the de Rham cohomology is

H2
dR(N 1

3 ) = R⊕ R⊕ R⊕ R . (8.101)
3A form is closed if dα = 0 holds, whereas a form α is exact if there exist a form β such that α = dβ.
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Since we need to compute the homology, we could apply the Poincaré duality and get

H2(N 1
3 ) = R⊕ R⊕ R⊕ R . (8.102)

This is unfortunately a rather naive approach, since the wrapping modes are determined
by the integer homology groups. For the integer homology group we also have to take into
account the torsion subgroups generated by the (x2x3) and (x1x4) cycles. It was shown in
[91] that this leads to the integer homology groups

H2(N 1
3 ,Z) = Z⊕ Z⊕ Z⊕ Z⊕ Zk1 ⊕ Zk2 , (8.103)

with k1 and k2 are integers determining the rank of the torsion subgroup. However,
H2(N 1

3 ,Z) cannot have torsion becauseN 1
3 is closed and oriented. Therefore, no M2-branes

are allowed wrapping the two-cycles (x1x4) and (x2x3), which leads to w14 = w23 = 0.
Another possibility to understand the missing wrapping modes is to use the Freed-

Witten anomaly condition. The Freed-Witten anomaly states that in Type IIB string
theory we cannot have D3-branes on a three-dimensional torus with H-flux. Applying a
T-duality transformation in the x1 direction, and assuming that x4 is a vanishing cycle,
the missing D3-brane in Type IIB is dual to a missing M2-brane in M-theory, wrapping
the x2x3-directions.

Wrapping States of N 1
3

The five-dimensional space N 2
3 = N3 × T 2 is analogous to the space N 1

3 . The set of
well-defined one-forms is given as

e1̄ = dx1 +Nx2dx3 ,

e2̄ = dx2 ,

e3̄ = dx3 ,

e4̄ = dx4 ,

e5̄ = dx5 .

(8.104)

Here, we can see that the forms e2̄ ∧ e3̄, e1̄ ∧ e4̄ and e1̄ ∧ e5̄ are not part of the de Rham
cohomology since they satisfy

1
N
de1̄ = e2̄∧ e3̄ , d

(
e1̄ ∧ e4̄

)
= Ne2̄∧ e3̄∧ e4̄ , d

(
e1̄ ∧ e5̄

)
= Ne2̄∧ e3̄∧ e5̄ . (8.105)

Therefore, the integer homology group becomes

H2(N 2
3 ,Z) = Z7 ⊕ Zk1 ⊕ Zk2 ⊕ Zk3 , (8.106)

and therefore, the wrapping modes w23 = w14 = w15 = 0 vanish. In five compact dimen-
sions we also have to look at the fifth cohomology group because we are interested in wrap-
ping modes of the M5-brane. The only existing component is the five-form e1̄∧e2̄∧e3̄∧e4̄∧e5̄.
This form is closed because

d
(
e1̄ ∧ e2̄ ∧ e3̄ ∧ e4̄ ∧ e5̄

)
= Ne2̄ ∧ e3̄ ∧ e2̄ ∧ e3̄ ∧ e4̄ ∧ e5̄ = 0 . (8.107)
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Here, we cannot construct any four-form which might lead to this five-form. Therefore,
the fifth de Rham cohomology is H5

dR(N 2
3 ) = R, and therefore, the fifth integer homology

group becomes H5(N 2
3 ,Z) = Z which leads to w12345 6= 0.

Wrapping States of N 3
3

In six dimensions we are mainly interested in the space N 3
3 = N3 × T 3. Therefore, we

are interested on the consequences of the geometry on the allowed wrapping modes of the
M2-brane and the M5-brane. From the four-dimensional space N 1

3 we already know that
it is sufficient to compute the de Rham cohomolgy - the integer homology group is the
same up to torsion group elements. To find the de Rham cohomology group let us use the
well-defined one-forms from (8.81). Additionally, we use

e4̄ = dx4 , e5̄ = dx5 , e6̄ = dx6 . (8.108)

Most important for the cohomology group is the relation

de1̄ = Ne2̄ ∧ e3̄ . (8.109)

Using this relation, we can directly show that the two-forms e1̄ ∧ e4̄, e1̄ ∧ e5̄ and e1̄ ∧ e6̄ are
not closed

d
(
e1̄ ∧ e4̄

)
= Ne2̄ ∧ e3̄ ∧ e4̄ 6= 0 ,

d
(
e1̄ ∧ e5̄

)
= Ne2̄ ∧ e3̄ ∧ e5̄ 6= 0 ,

d
(
e1̄ ∧ e6̄

)
= Ne2̄ ∧ e3̄ ∧ e6̄ 6= 0 .

(8.110)

As a consequence of the equations above, the two-cycles (x2x3), (x1x4), (x1x5) and (x1x6)
are not part of the homology H2 (N 3

3 ) or are generated from a torsion subgroup. In here,
there are no wrapping modes of the M2-brane w23 = w14 = w15 = w16 = 0. Additionally,
we are interested in the fifth homology group. From the relation (8.110), we can deduce
that

d
(
e1̄ ∧ e4̄ ∧ e5̄ ∧ e6̄

)
= Ne2̄ ∧ e3̄ ∧ e4̄ ∧ e5̄ ∧ e6̄ 6= 0 . (8.111)

As a result, the five-form e2̄∧e3̄∧e4̄∧e5̄∧e6̄ is exact and therefore not part of the homology
(at least not of the torsion free part). All other elements are part of the homology, the
only vanishing wrapping state of the M5-brane is the state w23456 = 0.

Let us note that the missing momenta modes w23 = w23456 = 0 can be understood from
the Freed-Witten duality, performing T-dualities in x1 or x1, x4 and x5 respectively, while
using the direction x6 as M-theory direction.

Wrapping States of N 4
3

We now consider the seven-dimensional manifold N 4
3 = N3 × T 4. Using the notation

e1̄ = dx1 +Nx2dx3 , e2̄ = dx2 , e3̄ = dx3 ,

e4̄ = dx4 , e5̄ = dx5 , e6̄ = dx6 , e7̄ = dx7 ,
(8.112)



8.3 Wrapping States of Twisted Tori 113

we find the relations

e2̄ ∧ e3̄ = 1
N
de1̄ ,

d
(
e1̄ ∧ eµ̄

)
6= 0 ,

e2̄ ∧ e3̄ ∧ eµ̄ ∧ eν̄ ∧ eρ̄ = 1
N
d
(
e1̄ ∧ eµ̄ ∧ eν̄ ∧ eρ̄

)
,

d
(
e1̄ ∧ e4̄ ∧ e5̄ ∧ e6̄ ∧ e7̄

)
= Ne2̄ ∧ e3̄ ∧ e4̄ ∧ e5̄ ∧ e6̄ ∧ e7̄ ,

(8.113)

between the different forms, where µ, ν, ρ = 4, . . . , 7. The relations above show that all
the two-forms and the five-forms above are not part of the de Rham cohomology because
they are either not closed or are exact. The associated cycles must vanish in the integer
homology of N 4

3 or generate torsion subgroups. We deduce that the two-cycles (x2x3) and
all the five-cycles listed cannot generate torsion and therefore must vanish in the homology.
This means that the M2- and M5-brane wrapping modes

w23 = w23456 = w23457 = w23567 = w23467 = w14567 = 0 (8.114)

must vanish. Again, we can understand such missing modes from the Freed-Witten
anomaly in the IIB background obtained by dualizing along x1 and x7. Due to the fact
the N 4

3 is seven-dimensional, we also have to take a look at the wrapping modes from
Kaluza-Klein monopoles. For our purposes it is enough to show that the wrapping modes
w2
KK = w3

KK = 0 vanish.
As we showed above the wrapping state w23567 ' w14 = 0 vanishes. When we perform

a U-duality transformation in the x1, x3 and x4 direction the states w23567 and w3
KK are

exchanged (using the relations A.38) as

w23567 U134−−→ w3
KK , (8.115)

but under the map U134 the background stays the same. Therefore, the fact that w23567 = 0
vanishes implies that w3

KK = 0 must vanish as well, otherwise the background would
change. Using the symmetry of the direction x2 and x3 of the space N 4

3 and changing
the definitions of the 1-forms accordingly, we can perform the same trick to show that the
wrapping mode w2

KK = 0 must vanish as well.

Wrapping States of N 3
2

We are interested in the five-dimensional spaceN 3
2 = N2×T 3. We will construct the totally

anti-symmetric locally non-geometric R-flux Rijklm from this background. For this, let us
examine the missing wrapping states in this space. We can directly argue that there are
no possible wrapping modes in the x2 direction allowed due to the fact that the direction
is non-compact. Therefore, the wrapping modes for the M2-branes and the M5-branes
w12 = w23 = w24 = w25 = w12345 = 0 must vanish.
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Wrapping States of N 5
2

The last space we examine is the spaceN 5
2 = N2×T 5. Once again, we are using the fact that

the space in the x2 direction is not compact and therefore, we cannot have any wrapping
modes in this direction. In particular, the wrapping modes w12 = w12µνρ = w2

KK = 0 must
vanish with µ, ν, ρ = 3, . . . , 7.

8.4 Duality Chains

8.4.1 Review of the four-dimensional duality chain

We reviewed the duality chain in four dimensions already in section 7.3.2. Let us focus on
the effect of U-duality transformations on the missing wrapping modes of the membranes.
The duality chain we are using is

T23
1 U234−−→ R4,1234 , (8.116)

where U234 denotes the U-duality transformation along x2, x3 and x4.
In section 8.3, we showed that in background with T23

1 the wrapping modes satisfy
w23 = w14 = 0. The proposed U-duality transformation U234 exchanges wrapping modes
and momenta modes in the following way:

w23 → p4 , w24 → p2 , w34 → p2 . (8.117)

The missing wrapping mode w23 = 0 in the background with geometric flux T23
1 = N

becomes a missing momenta mode p4 = 0 in the background with R4,1234 = N . It was
conjectured in [90] that this can be written as

Ri,jklmpi = 0 . (8.118)

In the following sections we describe the different duality chains necessary to find the
different R-fluxes in higher-dimensional compactified spaces. We will see that similar
conjectures can be found for all mixed-symmetry R-fluxes.

8.4.2 Five-dimensional duality chain

In the five-dimensional space, we were able to find two different types of R-fluxes: the R-
flux Ri,jklm which is the same R-flux as in four dimensions, and the totally anti-symmetric
R-flux:

Rijklm = 20∂̂[ijΩklm] − 2εijklm∂̂z|e| . (8.119)
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Duality chain for Ri,jklm

In five dimensions, we are able to construct the R-flux R4,1234 = N in the same way as
in four dimensions. For completeness, will show that the same conjecture (8.118) can be
applied in higher dimensions for an R-flux Ri,123i = N as well (with i = 4, . . . d).

Starting from the background with geometric flux T23
1 = N given by

ds2 =
(
dx1 +Nx2dx3

)2
+
(
dx2

)2
+
(
dx3

)2
+
(
dx4

)2
+
(
dx5

)2
,

Cijk =Ωijk = 0 with i, j, k = 1, . . . , 5 ,
(8.120)

we apply a U-duality transformation in the directions x2, x3 and xi with i = 4, . . . d
(in this case d = 5, but this is true in higher dimensions as well). Using the U-duality
transformation rules A.2, we find that

ds2 =
(
dx1

)2
+
(
dx2

)2
+
(
dx3

)2
+
(
dx4

)2
+
(
dx4

)2
+ (dx)5 ,

Ω12i = −Nx̃3i ,
(8.121)

where we used
x2 U23i−−→ x̃3i . (8.122)

This background has a locally non-geometric R-flux Ri,123i = N . As last step, we check
that the missing wrapping modes transform in the right way and become missing momenta
modes. As we saw in the previous section the cycle (x2x3) vanished independently of the
dimension d of the space N d−3

3 . Therefore, under the U-duality transformation U23i we
always find that the corresponding wrapping mode w23 becomes

w23 U23i−−→ pi , (8.123)

and as a a result, pi = 0. Therefore, the conjecture (8.118) is in arbitrary dimensions true
as long as the space N d−3

3 is well defined.

Duality chain for Rijklm

For the totally anti-symmetric R-flux Rijklm we have to use a different duality chain: The
flux lies in the 16-representation of the embedding tensor while the flux Ri,jklm is part of
the 144. Therefore, we use the non-unimodular space N 3

2 as a starting point which is in
the 16 as well. This space is described by

ds2 =
(
dx1 +Nx1dx2

)2
+
(
dx2

)2
+
(
dx3

)2
+
(
dx4

)2
+ +

(
dx5

)2
,

Cijk =Ωijk = 0 with i, j, k = 1, . . . , 5 ,
(8.124)

which contains a geometric flux
T12

1 = N . (8.125)
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We begin with a U-duality in the x1, x2 and the x3 direction. Using the formulae (A.37)
we find that the non-geometric three-form gets one non-zero component

e1̄
2 = Nx1 −→ Ω134 = Nx1 , (8.126)

and therefore we find for the background

ds2 = dx1 +
(
dx2

)2
+
(
dx3

)2
+
(
dx4

)2
+ +

(
dx5

)2
,

Ω134 = Nx1 .
(8.127)

As a result, we have the background with a globally non-geometric Q-flux Q1
134 = N . To

find the locally non-geometric R-flux, we have to dualize the coordinate x1. This can be
done via a U-duality transformation along the x1, x4 and x5 directions. We can check that
this changes x1 → x̃45, while leaving the metric and the non-geometric 3-form invariant:

ds2 =
(
dx1

)2
+
(
dx2

)2
+
(
dx3

)2
+
(
dx4

)2
+
(
dx5

)2
,

Ω134 = Nx̃25 .
(8.128)

As a result, we have a background with the a non-vanishing R-flux with components

R2,1345 = −N ,

R5,1234 = N .
(8.129)

Due to the minus sign the totally anti-symmetric component does not vanish and we find

R12345 = 2N . (8.130)

Therefore, we find the duality chain which results in a background with non-vanishing
R-flux Rijklm:

T12
1 U234−−→ Q1

134 U125−−→ R2,3145 = −R5,1234 . (8.131)
To finish the analysis of the duality chain, we examine the transformation behavior of the
missing wrapping states. As we showed in 8.3, the wrapping modes w12 = w12345 = 0
vanish in particular. Using the U-duality transformation law in appendix A.2, we find for
momenta in the duality chain

w12 U234−−→ w12 U125−−→ p5 ,

w12345 U234−−→ w15 U125−−→ p2 .
(8.132)

Thus, we find two missing momenta modes p2 = p5 = 0, which shows that also in this case
the conjecture

Ri,jklmpi = 0 , (8.133)
is fulfilled. This duality chain also gives a hint for the appearance of the flux in five
dimensions. To find such a background, we have to perform two U-dualities which only
share one direction. Therefore, we need to have at least five dimensions to construct this
kind of R-flux.
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8.4.3 Six-dimensional duality chain
As we saw in section 8.1.3 we get a new non-geometric R-flux in six dimensions with mixed
symmetries given by

Rij,klmnpq = 6∂̂[klmnpΩq]ij + 10∂̂ijΩklmnpq + 20Ω[klm∂̂|ij|Ωnpq] . (8.134)

We are now going to construct a background which has this new R-flux. As we saw in the
last section, it is crucial to start in the right part of the embedding tensor. Because the
flux Rij,klmnpq is part of the 351 we start again with a background which has the geometric
flux T23

1. Therefore, we start with the six-dimensional twisted torus N 3
3 which is described

by

ds2 =
(
dx1 +Nx2dx3

)2
+
(
dx2

)2
+
(
dx3

)2
+
(
dx4

)2
+ +

(
dx5

)2
+
(
dx6

)2
,

Cijk = Ωijk = Cijklmn = Ωijklmn = 0 for i, j, . . . = 1, . . . , 6 .
(8.135)

To find a background with the right non-geometric R-flux, we perform two U-duality
transformations, each in three dimensions. Note that duality chains are not unique and we
are not providing here a framework how to find such duality chains. We have to choose a
suitable ansatz to find the correct transformation behavior. Let us start with performing
a U-duality transformation along the directions x2, x3 and x4. This is the same duality
transformation we used in the four-dimensional case and therefore, we find the background

ds2 =
(
dx1

)2
+
(
dx2

)2
+
(
dx3

)2
+
(
dx4

)2
+
(
dx5

)2
+
(
dx6

)2
,

Ω124 = −Nx̃34 ,
(8.136)

with the non-geometric R-flux R4,1234 = N . Looking at the structure of the flux Rij,klmnpq, a
straightforward way to find the right background is to perform a U-duality in the directions
x1, x5 and x6 which takes

x̃34 −→ x̃13456 , (8.137)
while leaving the metric and the three-form invariant. Therefore, we find for the back-
ground

ds2 =
(
dx1

)2
+
(
dx2

)2
+
(
dx3

)2
+
(
dx4

)2
+
(
dx5

)2
+
(
dx6

)2
,

Ω124 = −Nx̃13456 ,
(8.138)

which has now become a background carrying the new R-flux

R14,123456 = 6∂[12345Ω6]14 = N . (8.139)

We find thus a duality chain which results in the new six-dimensional R-flux

T23
1 U234−−→ R4,1234 U156−−→ R14,123456 . (8.140)
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To complete the analysis of the transformation behaviour of the space N 3
3 , we recall that

in particular the wrapping modes of the M2-brane and of the M5-brane vanish, i.e. w23 =
w23456 = 0. These wrapping modes are exchanged under the U-duality transformation with
corresponding momenta

w23 U234−−→ p4
U156−−→ p4 ,

w23456 U234−−→ w56 U156−−→ p1 ,
(8.141)

and therefore, we have two missing momenta, namely p4 = 0 and p1 = 0. We find then a
natural extension of the conjecture (8.118), which is

Rij,klmnpqpi = 0 . (8.142)

Note that after the first U-duality transformation, we again find the already known R-flux
conjecture

Ri,jklmpi = 0 . (8.143)

8.4.4 Seven-dimensional duality chain
Finally, we conclude with the seven-dimensional duality chains. The exceptional field
theory E7(7) has several new R-fluxes

Rij
k = ∂̂klΩijl − 1

72εklmnpqr∂̂
ijΩlmnpqr − 1

36εklmnpqrΩ
lmn∂̂ijΩpqr

+ 4eī[i∂̂j]eīk + 4δ[i
k eī

j]∂̂leīl ,

Ri = ∂̂jkΩijk − 4eīj ∂̂ieīj − 8eīi∂̂jeīj ,
R = εijklmnp∂̂

iΩjklmnp − 2εijklmnpΩijk∂̂mΩlnp ,

Rijkl = ∂̂[iΩjkl] + 4
5 ∂̂pqΩ

pqijkl + 2
5Ω[ijk∂̂pqΩl]pq .

(8.144)

Note that the first flux can be redefined as a linear combination of the first and the second
flux as

R̃ij
k = Rij

k + αR[iδ
j]
k . (8.145)

Using the conjectures and assuming they must also hold in seven dimensions, we will find
that α = −2. We present two different duality chains which lead to two new conjectures
on missing momenta.

Duality chain for Rij
j and Ri

First, we are going to present a duality chain which results in a flux with Rij
j 6= 0 or

Ri 6= 0. Again, we start with the space N 5
2 which has a non-unimodular flux T12

1 = N .
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The background is given by

ds2 =
(
dx1 +Nx1dx2

)2
+
(
dx2

)2
+
(
dx3

)2
+
(
dx4

)2
+
(
dx5

)2
+
(
dx6

)2
+
(
dx7

)2
,

Cijk =Ωijk = Cijklmn = Ωijklmn = 0 ,
(8.146)

with i, j, k, l,m, n = 1, . . . , 7. As before, we start by performing two U-duality transfor-
mations. The first one along the directions x2, x3 and x4, and the second one along the
directions x1, x2 and x5. This leads to the non-geometric background

ds2 =
(
dx1

)2
+
(
dx2

)2
+
(
dx3

)2
+ +

(
dx5

)2
+
(
dx6

)2
+
(
dx7

)2
,

Ω134 = Nx̃25 .
(8.147)

As we already showed in section 8.4.2, this space has the non-geometric R-flux R5,1234 =
−R2,1345 = N and is missing the corresponding momentum modes

Ri,jklmpi = 0 . (8.148)

As a next step, we perform a U-duality transformation along the directions x2, x6 and x7.
Using again the transformation laws for U-duality transformations, we find the background

ds2 =
(
dx1

)2
+
(
dx2

)2
+
(
dx3

)2
+
(
dx5

)2
+
(
dx6

)2
+
(
dx7

)2
,

Ω123467 = Nx̃25 .
(8.149)

Using the definitions of the R-flux (8.144), we find that this background has the flux

R25
5 = N . (8.150)

Analyzing the transformation of the missing wrapping modes w12 = w2
KK = 0 of the space

N 5
2 , we see that this leads to missing momenta modes p2 = p5 = 0 which can be seen in

w12 U234−−→ w12 U125−−→ p5
U267−−→ p5 ,

w2
KK

U234−−→ w34 ' w12567 U125−−→ w67
U267−−→ p2 .

(8.151)

We find thus for the non-geometric R-flux Rij
k the conjecture

Rij
kpi = R̃ij

kpi = 0 . (8.152)

As a next step, let us perform a U-duality transformation along the directions x1, x3 and
x4. This duality transformation maps the coordinate x̃25 → x̃12345 ' x̃67, and therefore,
we get the background

ds2 =
(
dx1

)2
+
(
dx2

)2
+
(
dx3

)2
+ . . .+

(
dx7

)2
,

Ω123467 = Nx̃67 .
(8.153)
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This background has two non-vanishing R-fluxes, namely Ri and Rij
k:

R2 = N , R26
6 = R27

7 = N . (8.154)

Using the linear combination of the R-fluxes (8.145) we find

R̃2i
i = −N for i = 1, . . . , 5 ,

R̃26
6 = R̃27

7 = 0 .
(8.155)

Our duality chain is now given by

T12
1 U234−−→ Q2

234 U125−−→ R5,1234 = −R2,1345 U267−−→ R25
5
U134−−→ R2 = R26

6 = R27
7 . (8.156)

As in the cases before, we have to analyze the transformation behavior of the missing wrap-
ping modes w2

KK = w12 = w12567 = w12467 = w12367 = 0 under the duality transformations.
These are given by

w12567 U234−−→ w12567 U125−−→ w12567 U267−−→ w34 U134−−→ p1 ,

w2
KK

U234−−→ w34 ' w12567 U125−−→ w67
U267−−→ p2

U134−−→ p2 ,

w12467 U234−−→ w12467 U125−−→ w12467 U267−−→ w14 U134−−→ p3 ,

w12367 U234−−→ w12367 U125−−→ w12367 U267−−→ w13 U134−−→ p4 ,

w12 U234−−→ w12 U125−−→ p5
U267−−→ p5

U134−−→ p5 .

(8.157)

For this non-geometric background, we find that our conjecture still holds, namely

R̃ij
kpi = 0 . (8.158)

Duality chain for Rijkl and R

To construct the fluxes Rijkl and R, we start with the space N 4
3 . This background is given

by

ds2 =
(
dx1 +Nx2dx3

)2
+
(
dx2

)2
+
(
dx3

)2
+
(
dx4

)2
+
(
dx5

)2
+
(
dx6

)2
+
(
dx7

)2
,

Cijk =Ωijk = Cijklmn = Ωijklmn = 0 ,
(8.159)

with i, j, k, l,m, n = 1, . . . , 7. The geometric flux is given as

T23
1 = N . (8.160)

We perform a U-duality transformation along the six directions x2, x3, x4, x5, x6, x7. We
find the background

ds2 =
(
dx1

)2
+
(
dx2

)2
+
(
dx3

)2
+
(
dx4

)2
+
(
dx5

)2
+
(
dx6

)2
+
(
dx7

)2
,

Ω124567 = Nx̃34567 .
(8.161)
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This background yields a new non-geometric R-flux, namely

R4567 = N . (8.162)

To find a similar conjecture as in the previous sections, we have to track the transformation
behavior from the missing wrapping modes. We find that

w23567 −→ p4 , w23467 −→ p5 , w23457 −→ p6 , w23456 −→ p7 , (8.163)

so after the U-duality transformation U234567 we find four missing momenta p4 = p5 = p6 =
p7 = 0. This corresponds exactly to

Rijklpl = 0 . (8.164)

To find the last R-flux, we perform a U-duality transformation along the directions x1, x2

and x3. Under this duality only the coordinates x̃34567 −→ x̃3 are exchanged, leaving the
metric and the six-form invariant, and therefore, we find the background

ds2 =
(
dx1

)2
+
(
dx2

)2
+
(
dx3

)2
+
(
dx4

)2
+
(
dx5

)2
+
(
dx6

)2
+
(
dx7

)2
,

Ω124567 = −Nx̃3 .
(8.165)

This space has the flux
R = N . (8.166)

Summarizing the duality chain, we find

T23
1 U234567−−−−→ R4567 U123−−→ R1234567 = R . (8.167)

After the U-duality transformation U123, the momenta p4 = p5 = p6 = p7 = 0 still vanish.
Looking at the vanishing wrapping modes of the M2-brane w23 = 0 and the vanishing of
the KK-monopole w2

KK = w3
KK = 0, they also become missing momenta

w23 U234567−−−−→ w23 U123−−→ p1 ,

w2
KK

U234567−−−−→ w13 U123−−→ p2 ,

w3
KK

U234567−−−−→ w12 U123−−→ p3 .

(8.168)

Therefore, all momenta modes are now missing p1 = p2 = p3 = p4 = p5 = p6 = p7 = 0.
This can be summarized with the conjecture

Rpi = 0 . (8.169)
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8.5 Summary of R-Flux Backgrounds
Let us conclude with a short summary of the possible R-fluxes in seven dimensions and
their consequences. We have seen that in seven dimensions, we have a large variety of
different R-fluxes

Ri,jklm = 4∂̂i[jΩklm] − eī[jεklm]inpq∂̂pqe
ī
n ,

Rij
k = ∂̂klΩijl − 1

72εklmnpqr∂̂
ijΩlmnpqr − 1

36εklmnpqrΩ
lmn∂̂ijΩpqr

+ 4eī[i∂̂j]eīk + 4δ[i
k eī

j]∂̂leīl ,

Ri = ∂̂jkΩijk − 4eīj ∂̂ieīj − 8eīi∂̂jeīj ,
R = εijklmnp∂̂

iΩjklmnp − 2εijklmnpΩijk∂̂mΩlnp ,

Rijkl = 5
8 ∂̂

[iΩjkl] + 1
2 ∂̂pqΩ

pqijkl + 1
4Ω[ijk∂̂pqΩl]pq .

(8.170)

The first R-flux Ri,jklm reduces to the R-flux Rijk in the NS-NS sector of string theory, if
one reduces the SUGRA notation to Type IIA string theory. Each of the other R-fluxes
involves dual coordinates and therefore, has to involve wrapping modes of D-branes, or
must include non-geometric field associated to the R-R sector of string theory. As far as
we know, their string theory notation is not yet known.

We also presented a way how to construct background which contain these R-fluxes
using U-duality transformations on product spaces of nil/solvmanifolds with tori. These
can be summarized as

T12
1 U234−−→ Q2

234 U125−−→ R5,1234 = −R2,1345 U267−−→ R25
5
U134−−→ R2 = R26

6 = R27
7 ,

T23
1 U234−−→ R4,1234 U156−−→ R14

7 ,

T23
1 U234567−−−−→ R4567 U123−−→ R1234567 .

(8.171)

In those product spaces, we can identify wrapping modes which must vanish due to the
topology of the spaces. After applying duality transformations in such spaces, those missing
wrapping modes of branes might become missing momenta depending on the type of R-flux.
Those missing momenta are governed by the conjectures,

Ri,jklm pi = 0 ,(
Rij

k − 2R[iδ
j]
k

)
pi = 0 ,

Rijkl pi = 0 ,
R pi = 0 .

(8.172)



Chapter 9

Non-Associativity in an R-Flux
Background

In this chapter we focus on an interesting consequence of compactifications on higher-
dimensional tori and having T-duality as a symmetry: Having a string compactified (open
or closed) on a three-dimensional torus in combination with an H-flux and performing two
T-dualities leads to non-commutativity in the coordinates of the system. It was known
before for the closed sting that an additional T-duality leads to a non-associative phase
space. Here, we extend the result to open strings and see the same effect on the phase
space of the open string endpoint: Using symmetries we are able to show that the phase
space becomes non-associative.

The chapter is organized as follows: We first review the commutation relations for
the closed string in the Q-flux backgrounds as well as in the R-flux background. Then,
we introduce the Seiberg-Witten map for the open string which gives us an description
without a B-field but with a non-commutative spacetime. Afterwards, we compute the
commutation relations for the open string in geometric and non-geometric background
fields. The computations are based on the paper [26].

9.1 String Non-Associativity for Closed Strings
In the papers [93, 94, 95, 96, 97, 98] it was shown that in certain NS-NS background
configurations the behavior of closed strings is non-commutative or even non-associative.

Starting from a closed string on a three-dimensional torus withH-flux, the commutation
relations for the closed string coordinates have been computed in a world-sheet calculation.
For the Q-flux background, it was shown in [94, 99, 100, 101, 102] that the commutator
between two-closed string coordinates depends on the winding number as[

X i, Xj
]

closed
= iQk

ijnk . (9.1)

As a consequence of the non-locality of the winding number nk, the closed string non-
commutativity is a non-local effect and is only consistent in string theory. Its non-locality



124 9. Non-Associativity in an R-Flux Background

arises from the way the Q-flux is defined: it can be viewed as a combination of metric and
B-field background which is globally patched in a consistent way by a T-duality.

Going the duality chain 7.3.1 one step further, we find the non-geometric R-flux back-
ground. This non-geometric flux is proportional to the Jacobinator, which measures the
violation of the Jacobi-identity and is therefore also a measure of the non-associativity.
The commutation relations in the R-flux background are given by[

X i, Xj
]

closed
= iRijkpk . (9.2)

Here, pk is the momentum operator. This can be interpreted that the R-flux background
is not even locally a well-defined manifold and needs a T-duality transformation at every
point to be correctly patched. Using the non-vanishing canonical commutation relations
of position and momentum operator, we find a non-vanishing three-bracket and therefore
a non-associative behavior given by[

Xk, pk
]

= i ,[
X i, Xj, Xj

]
closed

:=
[
[X i, Xj], Xj

]
closed

± perm. ' Rijk .
(9.3)

Such a structure in the phase space is known as twisted Poisson structure. A similar result
was derived in [103] by quantization an associated membrane sigma model. For a more
mathematical discussion, we refer to [104, 105, 106, 107] where fibrations were used to
characterize non-geometric backgrounds with D-branes and B-fields.

Note that the closed-string coordinates X i and their T-dual coordinates X̃i are not
analogous to position and momentum and therefore do not obey canonical commutation
relation of this form. Instead their commutator vanishes[

X i, X̃j

]
closed

= 0 6= iδij . (9.4)

For deeper insights, we refer to the papers [108, 109].

9.2 Open Strings in B-Field Backgrounds
We find a similar result for the open string. For this computation, we introduce the
Seiberg-Witten map which enables us to map an open string with a B-field to an open
string without a B-field but within a non-commutative spacetime. Seiberg and Witten
studied the case for a constant B-field first, and later it was generalized to the case for a
non-constant B-field. We will briefly mention their arguments for the case with constant
B-field. For the non-constant B-field, we refer to the argumentation in [110, 111].

For the constant B-field we start with the world-sheet action

S = 1
4πα′

∫
Σ
d2σ gij ∂aXi∂aXj − i

4πα′
∫
∂Σ
dσ BijXi∂tXj , (9.5)
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where Σ is the string world-sheet with Euclidean signature, ∂Σ denotes the corresponding
boundary with the top-form dσ, and d2σ denotes the top-form on Σ. As a consequence of
the B-field the boundary conditions of the X i-direction on the p-brane change to

gij∂nXj +Bij∂tXj
∣∣∣
∂Σ

= 0 , (9.6)

where ∂n is the derivative orthogonal to the boundary ∂Σ. Using the conformal map and
introducing the variables z and z̄, we end up in the upper half plane with the boundary
condition

gij
(
∂ − ∂̄

)
Xj +Bij

(
∂ + ∂̄

)
Xj
∣∣∣
∂Σ

= 0 , (9.7)

where ∂ = ∂
∂z

and ∂̄ = ∂
∂z̄
. The boundary of the string ∂Σ is mapped to the real line. The

propagator of the string with these boundary conditions is [112, 113, 114]〈
Xi(z)Xj(z′)

〉
=− α′

(
gij log |z − z′| − gij log |z − z̄′|

+ Gij log |z − z̄′|2 + θij log z − z̄
′

z̄ − z′
+Dij

)
,

(9.8)

where

Gij =
[
g −Bg−1B

]
ij
,

Gij =
[
(g +B)−1

]ij
S

= +
[
(g +B)−1g (g −B)−1

]ij
,

θij =
[
(g +B)−1

]ij
A

= −
[
(g +B)−1B (g −B)−1

]ij
.

(9.9)

Here, ()A and ()S denote the anti-symmetric and the symmetric part of the matrix. The
constants Dij in (9.8) can be neglected since they are independent of z or z′.

For the purpose of our later analysis, we restrict ourselves to the boundary points of
the string with z = τ and z′ = τ ′. A careful computation shows that for the boundary
points we end up with〈

Xi (τ) Xj (τ ′)
〉

= −α′Gij log (τ − τ ′)2 + iα′πθijε (τ − τ ′) . (9.10)

Therefore, the commutator for the open string endpoints becomes[
Xi(τ),Xj(τ)

]
= T

(
Xi (τ) Xj

(
τ−
)
− Xi (τ) Xj

(
τ+
))

= 2πα′iθij . (9.11)

As we can see from this equation, the anti-symmetric quantity θ measures the anti-
commutativity, whereas Gij is the metric on the brane of the endpoints of the open strings.

Therefore, we can summarize the map from an open string with B-field Bij to an open
string in an anti-commutative spacetime with parameter θij by

(g +B)−1 = G+ θ (9.12)
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As next step, we are going to compute the commutation relation for the open string
endpoints of an open string with Neumann-Neumann boundary condition XNN (z, z̄) and
an open string with the Dirichlet-Dirichlet boundary condition XDD (z, z̄). Note that these
two strings are T-dual to each other. As a convention, we are going to denote the Neumann-
Neumann string as open string X (z, z̄) = XNN (z, z̄), and the Dirichlet-Dirichlet string as
the T-dual one X̃ (z, z̄) = XDD (z, z̄). The mode expansions are

X(z, z̄) = q − iα′p log |z|2 + i

√
α′

2
∑
n6=0

1
n
αn(z−n + z̄−n) ,

X̃(z, z̄) = q0 + 1
2πi(q1 − q0) log

(
z

z̄

)
+ i

√
α′

2
∑
n6=0

1
n
αn(z−n − z̄−n) ,

(9.13)

with q and p the center of mass position and momentum for the Neumann-Neumann string,
and q0 and q1 the endpoints of the open strings on the branes. The two-point function can
be directly computed and is

〈X(z, z̄)X̃(w, w̄)〉 = −α
′

2

log
(
z − w
z̄ − w̄

)
+ log

(
z̄ − w
z − w̄

) . (9.14)

Using the Seiberg-Witten notation one can directly deduce that the computation relation
for the open string and its dual is [

X(τ), X̃(τ)
]

= πα′i . (9.15)

Here, we can already see a qualitative difference between open and closed string: Whereas
the equal-time commutator vanishes for the closed string and its dual, it is non-zero for
the open string.

9.3 Open Strings on a Three-Dimensional Torus with
Fluxes

In this section, we are going to demonstrate the behavior of a closed and an open string
in a non-geometric background. Therefore, we are using the T-duality chain:

Hijk
Tk−−−−→ Fij

k Tj−−−−→ Qi
jk Ti−−−−→ Rijk . (9.16)

These strings are only toy-examples for strings. In physical examples one would have to
add additional fluxes, and not just have one at a time.

For the open string-computation we have to choose a configuration for the D-branes.
We are going to start from a point-like D0-brane with an H-flux. Performing a T-duality
transformation perpendicular to an arbitrary brane will raise the dimensionality of the
brane, whereas a T-duality in the direction of the brane will lower the dimension. There-
fore, we will end with a space-time filling D3-brane on the T 3-torus. For the world-sheet
computation which are necessary to find the results, we refer to the Appendix B and to
the original paper [26].
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9.3.1 T 3 with H-Flux and D0-branes
As background we have a three-torus T3 with a non-vanishingH-flux with valuesH123 = N .
Note that the B-field depends on the closed string coordinate X3

cl:

B12 =NX3
cl (9.17)

In this setting we start with a single point-like D0-brane, and therefore, we are going to
have only strings with Dirichlet-Dirichlet boundary conditions. The commutator for the
open string endpoints vanishes,[

X̃i, X̃j
]
≡ [XiDD,Xj DD] = 0 , i, j = 1, 2, 3 , (9.18)

and therefore commute with each other.

9.3.2 Twisted T 3 and D1-branes
As next step, we perform a T-duality transformation along the x1-direction and find a
twisted torus as background. As a result of the T-duality in the X1-direction the D0-
brane turns into a D1-brane in the x1-direction. One consequence of having a geometric
flux is that the geometry of the torus is twisted and therefore the D1-brane has an angle
depending on the value of the geometric flux (see for example [79]). The open string
coordinates commute in each direction, i.e.[

X1, X̃i
]
≡
[
X1

NN,XiDD
]

= 0 with i = 2, 3 ,[
X̃2, X̃3

]
≡
[
X2DD,X3DD

]
= 0 .

(9.19)

9.3.3 T3 with Q-Flux and D2-branes
We perform a T-duality transformation along the x2-direction to end up with a D2-brane
in a T-fold in the directions x1 and z2. The background has a non-geometric Q-flux with
value Q = N .

We can apply the Seiberg-Witten mapping (9.9) to this configuration and find for the
non-commutative space the following metric and the non-commutativity parameter:

dŝ2 =r2
1

(
dX1

)2
+ r2

2

(
dX2

)2
+ 1
r2

3

(
dX3

)2
,

θ12 =−NX3
cl .

(9.20)

Therefore, we find for the endpoints of the open string a non-zero commutator[
X1,X2

]
≡
[
X1

NN,X2
NN

]
= 2πα′iθ12 = −2πα′iQX3

cl . (9.21)

This is analogue to the closed-string commutation relation in theQ-flux setting described in
(9.1). The difference is that we do not have a winding mode proportional to the commutator
but to the closed string coordinate of the background.
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9.3.4 T3 with R-Flux and D3-branes
Finally, we perform a T-duality transformation along the x3-direction on the torus. As we
have argued in section 7.3.1, this is in double field theory allowed and thus we perform
such transformation formally. Therefore, the closed string coordinate X3 becomes the dual
coordinate X̃3 and we find the expected R-flux in this situation.

Thus, the commutation relations for the open-string endpoints become[
X1,X2

]
≡
[
X1

NN,X2
NN

]
= −2πα′iRX̃cl,3 . (9.22)

To show the equivalence between open and closed string sector we have to calculate the
three-bracket for the open strings in the R-flux background. Evaluating the three bracket
we find that [

X1
NN,X2

NN,X3
NN

]
= −2πα′iR

[
X̃cl,3,X3

NN

]
. (9.23)

As final step we have to compute the commutator between an open-string coordinate and
the dual closed-string coordinate. The mode expansion for the dual closed string is

X̃closed(z, z̄) = q0 + p0

2πi log z
z̄

+ i

√
α′

2
∑
n6=0

1
n

(αnz−n − ᾱnz̄−n) . (9.24)

Then, the commutator between the open and the dual closed coordinate becomes
[
XNN(τ, σ), X̃closed(τ ′, σ′)

]
= α′

2
∑
n6=0

1
n

(
z−n + z̄−n

)
(z′n − z̄′n) . (9.25)

Evaluating the infinite sum at the endpoint of the string we find that

[
XNN(τ, 0), X̃closed(τ ′, 0)

]
=
{+iπα′ if τ > 0 ,
−iπα′ if τ < 0 .

(9.26)

Using this result for equation (9.23), we find for the three-bracket the same result as for
the closed string case, namely[

X1
NN,X2

NN,X3
NN

]
= −2πα′iR

[
X̃3,X3

NN

]
= −2π2α′2R . (9.27)

Therefore, we have been able to successfully find the commutation relation for the open
string coordiantes in the R-flux background. As expected the Jacobinator is proportional
to the R-flux and therefore not vanishing in non-geometric backgrounds.
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Chapter 10

Summary and Outlook

Summary

After an introduction in part I, we started part II on the basic ideas of machine learning
(ML) and presented here the main concepts such as the idea of neural networks and back
propagation in chapter 3. Additionally, we presented a convolutional neural network, one
of the prime examples for the recent success of machine learning, to give an insight on the
simplicity of those methods allowing simple approaches for complicated problems.

In the next chapters, we presented our machine learning based methods to discover
different types of symmetries. We hope that these tools will allow others to understand
their problem settings better and help them to discover underlying symmetries and dualities
and allow them to answer their open questions.

In chapter 4, we showed how one can use the representation in hidden layers to find
symmetries in a dataset. For this, we trained the neural network on a classification task.
The training process clusters points linked by a symmetry in the hidden layers of the neural
network which enables us to find such classes within our dataset. We used these clusters in
a second step to identify the underlying symmetry group by an automated algorithm. The
true strength of this method is the broad scope of the method: it can be applied to different
kinds of problem settings to investigate datasets without any previous understanding of
the structure, and therefore allows us to get a first understanding of a complicated physical
question.

In chapter 5, we focused on learning conserved quantities of classical physical systems.
We modified the described Hamiltonian Neural Network and extended it to the Symmetry
Control Neural Network. For the Symmetry Control Neural Network, we combined the
idea of coordinate transformations with the idea of the Hamiltonian Neural Network. This
allowed us to find a coordinate transformation to a coordinate system with conserved quan-
tities as generalized momenta. Reading out those conserved quantities allowed us to get
analytical formulae for the conserved quantities. We also suggested a modification which
would allow us to learn conserved quantities in physical systems with known Hamiltonian.

Finally, in chapter 6, we presented a method how to learn Lax pairs, respectively Lax
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connection of physical systems. As in the chapter before, we constructed a suitable loss
function to force the neural network to find solutions to the Lax pair condition. In the
second part, we focused on the integrability of perturbations: Knowing a suitable Lax pair
for the unperturbed system we developed a method to check whether a perturbation is
integrable or not.

The methods of chapters 5 and 6 can be seen as two examples of the idea to constrain the
output of the neural network by physical equations. The neural network is going to search
for solutions to fulfill the given constraints and allowing us to tackle highly complicated
problem settings.

In contrast to this is the third part of this thesis focused on the exploitation of al-
ready known dualities in string theories. Chapter 7 begins with a short repetition of the
different dualities and their underlying symmetry groups in string theory, followed by an
introduction to exceptional field theory, the generalized diffeomorphisms as well as the
transformation behavior of the fields and the coordinates under U-dualities.

In the following two chapters we examined the effects of those U-dualities on twisted tori
and the consequences of such geometries on the phase space. In chapter 8, we constructed
the complete flux content of exceptional field theories for the dimensions d = 4, 5, 6, 7.
In the second step, we presented duality chains to examine the impact of non-geometric
backgrounds. Forbidden wrapping modes for the twisted tori, the starting point of the
duality chains, resulted in missing momenta modes within non-geometric backgrounds –
for the most „non-geomtric“ flux no momenta modes are allowed.

In the last chapter, we were able to construct a duality chain which reveals non-
associativity for the end-points of open strings in the locally non-geometric space. This
non-vanishing Jacobinator leads to a deformation of the phase-space.

Outlook
In this thesis, we presented several ways how to find symmetries using neural network. We
hope that these methods will be utilized in the future to detect unknown symmetries in
physical problem settings extending our understanding of the phenomena in our world and
hopefully will lead to a unified conception of our universe.

Along this course of this thesis, we presented several ways to implement a functional
bias to neural networks. The idea to constrain the functions of the neural network using
equations from the theoretical understanding of the problem. This can be used to improve
previous results of machine learning, as well as to apply machine Learning to additional
areas of physics using machine learning as a tool to find new structures hidden in the
physical theory.

Here, we will collect some ideas for applications for the presented tools in this thesis.
In general, there are many possible applications of machine learning in theoretical physics,
especially in string theory. The challenge for many cases is to find the right question
and frame the problem in the right way to make it accessible with machine learning.
Then, machine learning is able to provide necessary tools to improve the understanding of
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problems in string theory and theoretical physics in general.

• An interesting research direction is the understanding of the clustering in chapter
4 for the Complete Intersection Calabi-Yau manifolds. The observation that the
neural network is able to “identify” classes of the dataset depending on topological
invariants it is not aware of leads to the conclusion that the neural network has some
kind of understanding how to find a suitable basis to compute those invariants. Such
a formula is yet unknown but would yield a deeper understanding of the Complete
Intersection Calabi-Yau manifolds.

• The methodology to find a Lax-Pair has not been applied to systems where a Lax
pair is not known yet. The given framework can be used to search for integrable
deformations in sigma models, as it is presented in [115, 116] or to search for integrable
sectors in the Ω deformation. To extend this framework to quantum integrability,
one has to include the Yang-Baxter equations in the formalism, but this seems fairly
accessible by defining a suitable loss function.

• We already mentioned the idea to use reinforcement learning to examine the string
landscape. In [33], the author of this thesis, along with others, looked for stable
string vacua in the type IIB flux landscape. Extending this approach to spaces with
more moduli might be an approach to find suitable string theory vacua to solve the
problems arising from KKLT [117]. Here, reinforcement learning is a suitable tool to
examine the space of possible string vacua and help to improve the understanding of
the structure of string vacua.

• Further applications of the Symmetry Control Neural Network do not lie necessarily
in the context of mathematical physics, but might be applicable to many problems
for simulations in Machine Learning. An interesting application is the current de-
velopment to use Hamiltonian flows for a faster sampling of SU(N) gauge theories
[118]. Here, the idea of Symmetry Control Neural Network should help to improve
the results, speed up the sampling process and make it more stable.

• It would be interesting to understand the non-geometric fluxes found in 8 from the
string theory perspective as R-R fluxes. In [88] the fluxes of the SL(5) exceptional
field theory have been understood from the Type IIB perspective. A similar analysis
for the previously unknown non-geometric R-fluxes should mix the R-R sector with
the NS-NS sector in a similar fashion.

• The results of chpater 9 are currently only for the perturbative regime of a low flux
density which is a appropriate approach when choosing suitable values for the radii
of the three-torus. For a proper string-background it would be interesting to check
the non-associativity also in the non-perturbative regime as it was already done for
the closed string [102].
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Part V

Appendix





Appendix A

Mathematical details of Exceptional
Field Theory

In this part of the appendix, we present the details for the different dimensions of excep-
tional field theory which are used in the chapters 7 and 8.

A.1 Details of Decomposition of Ed(d) EFT to SL(d)×R+

A.1.1 SL(5) EFT
The generalized diffeomorphism acting on the generalized vielbein EM̄M is given by

LVEM̄M = V N∂NEM̄
M − V N∂NΛM + Y MP

NQ V N∂PΛQ + ωdV
M∂NΛN

= V N∂NEM̄
M − EM̄N∂NV

M + ηαMPηαNQEM̄
N∂PV

Q − 1
5EM̄

M∂NV
N ,

(A.1)

where M,N = 1, . . . , 10 labels the spinor and α = 1, . . . , 5 the fundamental representation
of SL(5), Y MP

NQ = ηαMPηαNQ is the Y-tensor defined in section 7.2. Here, the weight of
the vielbein is already set to 0. Note that we have used this generalized diffeomorphism to
calculate the exact structure of the generalized vielbein demanding that

EM̄
MLVEM̄M = LV |E| = 0 , (A.2)

and as a consequence we can take EM̄M to have unit determinant. The section condition
is

ηαMN∂M ⊗ ∂N = ηαMN∂M∂N = 0 . (A.3)

Using the decomposition SL(5) −→ SL(4) × R+, generalized vectors in the 10 and 5 of
SL(5) decompose as follows

V M =
(
V i, Vij

)
, V α =

(
V i, V 5

)
. (A.4)
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In the SL(4)× R+ basis, we find the following η-matrices to be non-zero:

ηαMN : ηi jkl = 2δijkl , ηi jk lm = 1√
2
εijklm ,

ηαMN : etakli j = 2δklij , ηi jk lm = 1√
2
εijklm .

(A.5)

Note that the η-matrices are symmetric in the M,N indices, i.e. ηαMN = ηαNM . Using
(A.5), we obtain the section condition in d = 4, which has been stated in (8.15). Further-
more, using (A.5) and (A.1) we find as transformation behavior of the vielbein under the
generalized Lie derivative corresponding to a spacetime diffeomorphism V M = (ξi, 0, 0) the
following relations

LξEM̄ i = ξj∂jEM̄
i − EM̄ j∂jξ

i − 2EM̄ jk∂
jiξk − 2

5EM̄
i∂jξ

j ,

LξEM̄ ij = ξk∂kEM̄ ij − 2EM̄k[i∂j]ξ
k + 3

5EM̄ ij∂kξ
k ,

(A.6)

From this, we can find the correct weights of the columns of the vielbein. Additionally, we
can easily recover the transformation law for Ωijk given in equation (8.9).

A.1.2 SO(5, 5) EFT
The generalised diffeomorphism acting on the generalised vielbein EM̄M is given by [119, 68]

LVEM̄M = V N∂NEM̄
M − V N∂NΛM + Y MP

NQ V N∂PΛQ + ωdV
M∂NΛN

= V N∂NEM̄
M − EM̄N∂NV

M + 1
2
(
γI
)MP

(γI)NQEM̄
N∂PV

Q − 1
4EM̄

M∂NV
N ,

(A.7)

whereM,N = 1, . . . , 16 labels the spinor and I = 1, . . . , 10 the fundamental representation
of SO(5, 5), Y MP

NQ = 1
2

(
γI
)MP

(γI)NQ is Y-tensor product defined in section 7.2. Here, the
weight of the vielbein is already set to 0. Here (γI)MN are SO(5, 5) γ-matrices, satisfying

(
γ(I
)MP (

γJ)
)
NP

= ηIJδ
M
N , (A.8)

where ηIJ is the SO(5, 5) invariant metric. Note that we have used the generalized dif-
feomorphism to calculate the exact structure of the generalized vielbein demanding that

EM̄
MLVEM̄M = LV |E| = 0 , (A.9)

and as a consequence we can define EM̄M in such a way that it has unit determinant. The
section condition is

(γI)MN ∂M ⊗ ∂N = (γI)MN ∂M∂N = 0 . (A.10)
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Using the decomposition SO(5, 5) −→ SL(5) × R+, generalized vectors in the 16 and 10
of SO(5, 5) decompose as

V M =
(
V i, Vij, Vz

)
, V I =

(
V i, Vi

)
. (A.11)

In the SL(5)× R+ basis, we find the following γ-matrices to be non-zero:

(γI)MN :
(
γi
)j

kl = 2δijkl , (γi)j z =
√

2δji , (γi)jk lm = 1√
2
εijklm ,

(γI)MN : (γi)j
kl = 2δklij ,

(
γi
)
j

z =
√

2δij ,
(
γi
)jk lm

= 1√
2
εijklm .

(A.12)

Note that the γ-matrices are symmetric in the indices M , N , i.e. (γI)MN = (γI)NM . Using
(A.12), we obtain the section condition in d = 5, which have been stated in (8.36). Fur-
thermore, using (A.12) and (A.7) we find as transformation behavior under the generalized
Lie derivative corresponding to a spacetime diffeomorphism V M = (ξi, 0, 0) the following
relations

LξEM̄ i = ξj∂jEM̄
i − EM̄M∂Mξ

i − 2EM̄ jk∂
jiξk + EM̄ z∂

zξi − 1
4EM̄

i∂jξ
j ,

LξEM̄ ij = ξk∂kEM̄ ij − 2EM̄k[i∂j]ξ
k + 1

2εijklmEM̄ z∂
klξm − 1

4EM̄ ij∂kξ
k ,

LξEM̄ z = ξi∂iEM̄ z + 3
4EM̄ z∂kξ

k .

(A.13)

From this, we can find the correct weights of the columns of the vielbein. Additionally, we
can easily recover the transformation law for Ωijk given in equation (8.35).

A.1.3 E6(6) EFT
The generalized diffeomorphism acting on the generalized vielbein EM̄M is given by

LVEM̄M = V N∂NEM̄
M − V N∂NΛM + Y MP

NQ V N∂PΛQ + ωdV
M∂NΛN

= V N∂NEM̄
M − EM̄N∂NV

M + 10dMNPdPQREM̄
Q∂NV

R − 1
3EM̄

M∂NV
N ,

(A.14)

where M,N = 1, . . . , 27 label the fundamental representation of E6(6),
Y MP
NQ = 10 dMNP dPQR is Y-tensor product defined in section 7.2 and dMNP and dMNP are

the symmetric cubic E6(6) invariant tensors. Here, the weight of the vielbein is already set
to 0. Here (γI)MN are SO(5, 5) γ-matrices, satisfying

dMPQdNPQ = δMN , (A.15)

where ηIJ is the SO(5, 5) invariant metric. Note that we have used this generalized dif-
feomorphism to calculate the exact structure of the generalized vielbein demanding that

EM̄
MLVEM̄M = LV |E| = 0 , (A.16)
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and as a consequence we can take EM̄M to have unit determinant. The section condition
is

dMNP∂M ⊗ ∂N = dMNP∂M∂N = 0 , (A.17)
Using the decomposition E6(6) −→ SL(6) × SL(2) −→ SL(6) × R+, generalized vectors of
E6(6) decompose as

V M =
(
V i, Vij, Vijklm

)
. (A.18)

The only non-zero components of cubic invariants are given by

dMNP : dijk lmnpq = 1
10
√

6
δi[jεk]lmnpq , dij klmn = 1

4
√

5
εijklm ,

dMNP : di
jk lmnpq = 1

10
√

6
δ

[j
i ε

k]lmnpq , dij klmn = 1
4
√

5
εijklmn .

(A.19)

Using (A.19), we obtain the section condition in d = 6, which have been stated in (8.53).
Furthermore, using (A.19) and (A.14) we find as transformation behavior under the gen-
eralized Lie derivative corresponding to a spacetime diffeomorphism V M = (ξi, 0, 0) the
relations

LξEM̄ i =ξj∂jEM̄ i − EM̄ j∂jξ
i − 6

5!EM̄ j1j2j3j4j5∂
[ij1j2j3j4ξj5]

− 3EM̄ jk∂
[jkξi] − 1

3EM̄
i∂jξ

j ,

LξEM̄ ij =ξk∂kEM̄ ij + 2EM̄ k[j∂i]ξ
k + EM̄ ik∂jξ

k

−
√

30EM̄ ijklm∂
klξm − 1

3EM̄ ij∂kξ
k ,

LξEM̄ i1i2i3i4i5 =ξj∂jEM̄ i1i2i3i4i5 + 5EM̄ j[i1i2i3i4∂i5]ξ
j − 1

3EM̄ i1i2i3i4i5∂jξ
j .

(A.20)

From this, we can find the correct weights of the columns of the vielbein. Additionally, we
can easily recover the transformation law for Ωijk and for Ωijklmn given in equation (8.50).

A.1.4 E7(7) EFT
Let us conclude with the E7(7) exceptional field theory. For the generalized Lie derivative
of the generalized vielbein EM̄M we find

LVEM̄M = V N∂NEM̄
M − V N∂NΛM + Y MP

NQ V N∂PΛQ + ωdV
M∂NΛN

= V N∂NEM̄
M − EM̄N∂NV

M − 12 (tα)MP (tα)NQEM̄
N∂PV

Q

+ 1
2ΩMPΩNQEM̄

N∂PV
Q − 1

2EM̄
M∂NV

N ,

(A.21)

where M,N = 1, . . . , 56 label the fundamental and α, β = 1, . . . , 133 label the adjoint
representations of E7(7).

Y MP
NQ = 1

24δ
M
N δ

P
Q + 1

12δ
M
Q δ

P
Q + (tα)MP (tα)NQ −

1
24ΩMPΩNQ , (A.22)
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is the Y-tensor of E7(7), with (tα)MN the generators of E7(7) in the fundamental represen-
tations. For raising and lowering of the indices M,N, . . ., we use the symplectic invariant
ΩMN of Sp(56) ⊃ E7(7), which we defined using the north-west south-east convention, i.e.

V M = ΩMNVN , VM = V NΩMN , (A.23)

and
ΩMPΩNP = δMN , (A.24)

while the E7(7) adjoint indices α, β are raised and lowered with the Killing metric

καβ = (tα)M N (tβ)N M . (A.25)

For the section condition we find [68, 76]

(tα)MN ∂M ⊗ ∂N = (tα)MN ∂M∂N = 0 , ΩMN∂M ⊗ ∂N = 0 . (A.26)

Under the decomposition E7(7) −→ SL(8), we have

56 −→ 28⊕ 28 , (A.27)

and therefore a generalized vector V M can be written as

V M =
(
V IJ , VIJ

)
, (A.28)

where I, J = 1, . . . , 8 labels the fundamental of SL(8) and V IJ = V [IJ ] and VIJ = V[IJ ]
transform in the 28 and 28 of SL(8). We can further decompose SL(8) −→ SL(7)×R+ so
that

V IJ =
(
V i, V ij = 1

5!ε
ijklmnpVklmnp

)
,

VIJ = (Vi, Vij) ,
(A.29)

and the coordinate derivatives become

∂M =
(
∂i, ∂

ij, −1
2∂ij, ∂

i
)
. (A.30)

Similarly, the adjoint representation of E7(7) decomposes under SL(8) as

133 −→ 63⊕ 70 . (A.31)

In the SL(8) basis, the only non-zero components of the generators (tα)M N are
(
tI
J
)
KL

MN = − 1√
3
δJ[Kδ

MN
L]I −

1
8
√

3
δJI δ

MN
KL = −

(
tJI
)MN

KL ,

(tIJKL)MNPQ = 1
24
√

2
εIJKLMNPQ, , (tIJKL)MNPQ = 1√

2
δMNPQ
IJKL .

(A.32)
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The only non-zero components of the symplectic invariant ΩMN are given by

ΩIJ
KL = δIJKL = −ΩKL

IJ . (A.33)

As a result, we find for the section condition the result (8.70). For the generalized Lie
derivative (A.21) corresponding to a spacetime diffeomorphism V M = V i8 = (ξi, 0, 0, 0),
we find for the generalized vielbein

LξEM̄ i = ξj∂jEM̄
i − EM̄ j∂jξ

i − 3EM̄ jk∂
[jkξi] − 1

2EM̄
i∂kξ

k − EM̄ ij∂jkξ
k ,

LξEM̄ ij = ξk∂kEM̄ ij + 2EM̄ k[j∂i]ξ
k − 1

2EM̄ [j∂i]kξ
k − 1

4εijklmnpEM̄
kl∂mnξp

− 1
2EM̄ ij∂kξ

k ,

LξEM̄ ij = ξk∂kEM̄
ij − 2EM̄ k[j∂kξ

i] − 3
2EM̄ k∂

[ijξk] + 1
2EM̄

ij∂kξ
k ,

LξEM̄ i = ξj∂jEM̄ i + EM̄ j∂iξ
j + 1

2EM̄ i∂jξ
j .

(A.34)

A.2 U-Dualities
We gave the derivation of the formulae for the U-dualities in section 7.2.3. Here, we state
those formulae. Note that all transformations can be read in both direction – depending
on what kind of fields are present.

A.2.1 U-duality along three directions
In this thesis we use parallelisable backgrounds such as the N k

3 and N k
2 spaces in sections

8.3 – 8.3 with metric
ds2 =

(
e1̄
)2

+
(
e2̄
)2

+ . . .+
(
e7̄
)2
, (A.35)

where eī = eīidx
i are globally well-defined 1-forms.

In those spaces, we always have a triangular vielbein

eīj = δ īj +N ī
j , eij̄ = δij̄ −N i

j̄ . (A.36)

As a result, we can describe U-dualities in the three directions i, j and k by the totally
anti-symmetric combination ωijk = ωijk = ±1. As a result we get the background

N ī
j −→


Ω′ijk = 3N [i

l̄ ω
jk]l ,

C ′ijk = −3N l̄
[iωjk]l̄ ,

N ′̄ij = N ī
j + 3

2N
[i
m̄ω

kl]m̄ωjkl − 3
2N

m̄
[jωkl]m̄ω

īkl .

(A.37)
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The new coordinates are given by

x′i = 1
2ω

ijkx̃jk ,

x̃′ij = ωijkx
k + 1

3!ω
klmx̃ijklm ,

x̃′ijklm = ω[ijkx̃lm] + 1
2ω

npqεijklmnpx̃q ,

x̃′i = 1
5!2ωijkε

jklmnpqx̃lmnpq .

(A.38)

If the non-geometric and the geometric 3-form in (A.37) vanish, we will not get any change
of twisted torus by the U-duality, up to the transformations of the coordinates (A.38).

We can act with another U-duality on a space which yields a non-geometric three-form
(with flat metric). As a result we find

Ωijk −→
{

Ω′ijklmn = 20Ω[ijk ωlmn] ,

C ′ijk =
(

1
3!ωlmnΩlmn

)
ωijk .

(A.39)

In the case, that both of these vanish, the space is either left unchanged, up to the coor-
dinate transformation (A.38), becomes the original twisted torus by the formulae (A.37).

Additionally, we have to exchange the momenta and wrapping modes according to the
rules

p′i = 1
2ωijkw

jk ,

w′ij = ωijkpk + 1
3!ωklmw

ijklm ,

w′ijklm = ω[ijkwlm] + 1
2ωnpqε

ijklmnpwq ,

w′i = 1
5!2ω

ijkεijklmnpqw
lmnpq ,

(A.40)

which mirror the behavior of the positions in (A.38).

A.2.2 U-duality along six directions
Similar rules apply for U-dualities in six dimensions. Starting from a twisted torus with
the triangular vielbein

eīj = δ īj +N ī
j , eij̄ = δij̄ −N i

j̄ , (A.41)

and dualizing the background along ωijklmn = ωijklmn = ±1, we find the background

N ī
j −→


Ω′ijklmn = 6N [i

p̄ ω
jklmn]p̄ ,

C ′ijklmn = −6N p̄
[iωjklmn]p̄ ,

N ′̄ij = N ī
j + 6

5!N
[i
q̄ω

klmnp]q̄ωjklmnp − 6
5!N

q̄
[jωklmnp]q̄ω

īklmnp .

(A.42)
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with new coordinates

x′i = 1
5! ω

ijklmnx̃jklmn ,

x̃′ij = 1
5! ω

klmnpqεijklmnpx̃q ,

x̃′ijklm = ωijklmnx
n ,

x̃′i = 1
5! ωijklmnε

jklmnpqx̃pq .

(A.43)

The momenta and wrapping modes mirror the behavior of the positions

p′i = 1
5! ωijklmnw

jklmn ,

w′ij = 1
5! ωklmnpqε

ijklmnpwq ,

w′ijklm = ωijklmnpn ,

w′i = 1
5! ω

ijklmnεjklmnpqw
pq .

(A.44)

If the non-geometric and the geometric six-form in (A.42) vanish, we will not get any
change of twisted torus by the U-duality, up to the transformations of the coordinates
(A.44).

We can act with another U-duality on a space which yields a already a non-geometric
three-form (with flat metric). As a result we find

C ′ijk = 1
3! ωijklmnΩlmn . (A.45)

In the case, that the geometric three-form vanishes, the space is left unchanged, up to the
coordinate transformation (A.38).



Appendix B

Open-string computations

In this part of the appendix, we compute the results of the world-sheet computation used
in chapter 9. We are going to summarize some technical details of the computation for the
Seiberg-Witten mapping (9.9), as well perform the computations of two-point functions
and commutators for Neumann-Neumann (NN) and Dirichlet-Dirichlet (DD) open strings.

B.1 Two-Point Function I
In the beginning, we review the computations of andWitten [120] for the two-point function
of two NN open-string coordinates on the boundary. Note that the open-string coordinates
Xi

NN(z, z̄) are functions on the upper half-plane. We are going to parameterize them by
z ∈ C with Imz ≥ 0, then the boundary of the open-string world-sheet is given by Imz = 0.
As a starting point they use the open-string two-point function [112, 113, 114]

〈
Xi

NN(z, z̄)Xj
NN(z′, z̄′)

〉
=− α′

[
g ij log |z − z′| − g ij log |z − z̄′|

+G ij log |z − z̄′|2 + θ ij log z − z̄
′

z̄ − z′
+D ij

]

=− α′
[

1
2 g

ij log 1 + y2

1 + x2 +G ij log
(
1 + x2

)
+G ij log (τ − τ ′)2 + θ ij log 1 + ix

1− ix +D ij

]
,

(B.1)

where the matrices g ij, G ij, θ ij and D ij are introduced already in the mapping (9.9). We
define our complex coordinates as z = τ + iσ and z′ = τ ′ + iσ′ on the world-sheet and
introduce as useful combinations

x = σ + σ′

τ − τ ′
, y = σ − σ′

τ − τ ′
. (B.2)
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To compute the short-distance behavior of the two-point function (B.1), we have to evaluate
the equations at the boundaries σ = σ′ = 0:

σ = σ′→ 0
τ − τ ′ → 0 such that |x| = fixed� 1 ,

y = 0 . (B.3)

Using a convenient choice of D ij, the constant x-dependent terms in (B.1) proportional to
gij and Gij are canceled, whereas for large x, the θij-term become a step function depending
on the sign of x. Using

ε(τ − τ ′) =
{ +1 τ > τ ′

−1 τ < τ ′
(B.4)

we get for the two-point function (B.1) evaluated on the boundary ∂Σ of the world-sheet
the result

〈
Xi

NN(z, z̄)Xj
NN(z′, z̄′)

〉
∂Σ

= −α′G ij log (τ − τ ′)2 + iα′πθ ijε(τ − τ ′) . (B.5)

As next step, we can now compute the equal-time commutator for a free theory. Using the
two-point function on the boundary (B.5), the commutator of two open-string coordinates
on the boundary is [120][

Xi
NN(τ),Xj

NN(τ)
]

= T
(
Xi

NN(τ)Xj
NN(τ−)− Xi

NN(τ)Xj
NN(τ+)

)
= 2πα′iθ ij ,

(B.6)

where T (. . .) denotes time ordering.

B.2 Two-Point Function II
Using this method, we can compute the two-point function of open-string coordinates with
NN and DD boundary conditions. Let us start with the mode expansion for the open-string
coordinates:

NN XNN(z, z̄) = q − iα′p log |z|2 + i

√
α′

2
∑
n6=0

1
n
αn(z−n + z̄−n) ,

DD XDD(z, z̄) = q0 + q1 − q0

2πi log z
z̄

+ i

√
α′

2
∑
n6=0

1
n
αn(z−n − z̄−n) ,

(B.7)

where q and p are the center-of-mass position and momentum for the NN string, and q0
and q1 denote the position of the string-endpoints of the DD string. With the algebra
[αm, αn] = mδm+n, we get for the two-point function

〈
XNN(z, z̄)XDD(z′, z̄′)

〉
= −α

′

2

log z − z
′

z̄ − z̄′
+ log z̄ − z

z − z̄′

 . (B.8)
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Following the computations in section B.1, we are going to evaluate the two-point function
on the boundary by using Imz = 0:

〈
XNN(z, z̄)XDD(z′, z̄′)

〉
∂Σ

= −α
′

2

log 1 + iy

1− iy + log 1− ix
1 + ix

 . (B.9)

The result for the two-point function (B.8) on the boundary under the limit (B.3) is

〈
XNN(τ)XDD(τ ′)

〉
∂Σ

= πα′i

2 ε(τ − τ ′) . (B.10)

Then, for the free theory the equal-time commutator is

[XNN(τ),XDD(τ)] = T
(
XNN(τ)XDD(τ−)− XNN(τ)XDD(τ+)

)
= πα′ i . (B.11)

As a result, we find a non-vanishing commutator for the coordinates XNN and XDD.

B.3 Commutator for the String Coordinates
Using the mode expansions for the NN open string (B.7) and for the dual closed string

X̃closed(z, z̄) = q0 + p0

2πi log z
z̄

+ i

√
α′

2
∑
n6=0

1
n

(αnz−n − ᾱnz̄−n) , (B.12)

we can now compute the commutator between these two. Evaluating the algebra [αm, αn] =
mδm+n, we find for the commutator

[
XNN(τ, σ), X̃closed(τ ′, σ′)

]
= α′

2
∑
n6=0

1
n

(
z−n + z̄−n

)
(z′n − z̄′n) . (B.13)

A careful analysis of the correct limes, leads to result

[
XNN(τ, 0), X̃closed(τ ′, 0)

]
=
{+iπα′ if τ > 0 ,
−iπα′ if τ < 0 .

(B.14)
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