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Summary

The scientific approach to understanding the laws of nature is based on the comparison
between theory and experiment. In laypersons’ terms, a theory is a set of rules which
describe mathematically how we think things work. We use these rules to predict the
outcome of a certain experiment, and the comparison against the actual results of the
experiment may disprove or uphold the theory.

Particle physics is concerned with the tiniest building blocks of the universe — the
fundamental particles — and the way they interact. Our best description of funda-
mental particles is given by the Standard Model of particle physics (SM), which treats
particles as oscillations of “quantum fields” permeating the space-time. The spectacu-
lar success of the SM at describing the microscopic world is one of humanity’s greatest
intellectual feats. Yet, this theory fails to address a variety of theoretical concerns and
observed phenomena — gravity, to say the most obvious. Understanding the limitations
of the SM and constraining its extensions is of primary importance.

Scattering amplitudes are the bridge between theory and experiments in Quantum
Field Theories (QFTs). Roughly speaking, the amplitude of a scattering process en-
codes its probability distribution: for a given initial state — say two colliding protons —
the scattering amplitude tells us how likely the production of certain other particles
is according to the theory. The rules of QFT are however complicated, and scattering
amplitudes can only be computed approximately as series in the coupling constants
which weigh the interactions. We know — at least in principle — how to compute each
term of the series, and including more terms makes the prediction more accurate. The
computation however becomes more and more difficult as the order in the couplings
— also called the “loop order” — or the number of particles increase. In practice, we
need as many terms as is necessary to make the theoretical uncertainty comparable
with the experimental one, so that the comparison is statistically significant.

Exploiting fully the physics potential of CERN’s Large Hadron Collider requires
predictions at the Next-to-Next-to-Leading Order (NNLO) in the coupling of the strong
interactions. This goal has already been reached for many 2 — 1 and 2 — 2 processes.
Processes with three particles in the final state are however of great interest, as they
would allow for precise measurements of the strong coupling constant and of its scaling,
in-depth studies of the Higgs couplings, better background estimates for yet unknown
phenomena, and more. The main bottleneck towards NNLO predictions for 2 — 3
processes is the analytic computation of two-loop five-particle scattering amplitudes.

The most difficult part of computing a scattering amplitude is the computation of the
Feynman integrals appearing in it. My collaborators and I computed the missing and
most complicated set of massless two-loop five-particle Feynman integrals. This opened
the doors to the computation of the amplitude for any process involving five massless
particles at two-loop order. Such processes feature prominently in the LHC physics
program. Cases in point are three-jet, three-photon, and di-photon + jet production. In
order to compute these integrals we made use of cutting-edge mathematical techniques,
and proposed a new strategy which has already been applied to other difficult problems.

Armed with analytic expressions for the Feynman integrals, we tackled the ampli-



tudes. The challenge is one of enormous algebraic complexity. We developed a workflow
based on the recent idea of evaluating the rational functions in the intermediate ex-
pressions numerically over finite fields. The analytic expression of the final result is
then reconstructed by “bootstrapping” an Ansatz or through reconstruction algorithms.
Before considering the SM, we tested our approach on the amplitudes in two supersym-
metric theories: N' = 4 super Yang-Mills theory and N = 8 supergravity. These were
the very first complete five-particle scattering amplitudes to be computed analytically
at two loops. Although these models do not seek to describe physical particles and
forces, they are of great interest. They give precious insights into hidden structures of
QFT in general and — thanks to their simplicity and elegance — they are a perfect
testing ground for new techniques and ideas which can be later applied to the SM.

The successful computation of the supersymmetric amplitudes showed that our tech-
nology was mature enough to face the SM. We therefore computed the two-loop am-
plitude describing the scattering of five positive-helicity gluons in Quantum Chromo-
dynamics (QCD), the part of the SM which describes the strong interactions. Despite
the leap in complexity with respect to the supersymmetric theories, we managed to
find an extremely compact and elegant analytic expression. Having compact results
for the amplitudes is not only a theorist’s delight, but is crucial for their use in phe-
nomenology. The simplicity of the expression allowed us to notice that certain parts
of the amplitude enjoy an unexpected property: they are invariant under conformal
symmetry. We identified the origin of this property in the conformal invariance of the
gluonic amplitudes in QCD at one loop, which we proved for any number of gluons.

After the publication of the results presented in this thesis there has been a dramatic
progress. Several other two-loop five-particle amplitudes have become available ana-
lytically, and this has already led to the first theoretical prediction at NNLO in QCD,
for three-photon production. Partly using methods similar to those presented in this
thesis, many more results are sure to follow in the near future.
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Zusammenfassung

Der wissenschaftliche Ansatz zum Versténdnis der Naturgesetze basiert auf dem Ver-
gleich zwischen Theorie und Experiment. Laienhaft ausgedriickt ist eine Theorie eine
Reihe von Regeln, die mathematisch beschreiben, wie wir denken, dass etwas funktio-
niert. Wir verwenden diese Regeln, um das Ergebnis eines bestimmten Experiments
vorherzusagen, und der Vergleich mit den tatséchlichen Ergebnissen des Experiments
kann die Theorie widerlegen oder bekraftigen.

Die Teilchenphysik beschéftigt sich mit den kleinsten Bausteinen des Universums —
den Elementarteilchen — und der Art und Weise, wie sie miteinander wechselwirken.
Unsere beste Beschreibung der Elementarteilchen ist das Standardmodell der Teilchen-
physik (SM) gegeben, das Teilchen als Schwingungen von “Quantenfeldern” behandelt,
die die Raumzeit durchdringen. Der spektakulidre Erfolg des SM bei der Beschreibung
der mikroskopischen Welt ist eine der gréfiten intellektuellen Leistungen der Mensch-
heit. Dennoch versagt diese Theorie bei einer Vielzahl von theoretischen Uberlegungen
und beobachteten Phinomenen, wobei die Gravitation vermutlich das offensichtlichste
Beispiel darstellt. Es ist von grofiter Bedeutung, die Grenzen des SM zu verstehen und
dessen mogliche Erweiterungen einzuschrénken.

Streuamplituden sind die Briicke zwischen Theorie und Experiment in Quanten-
feldtheorien (QFTs). Grob gesagt, kodiert die Amplitude eines Streuprozesses dessen
Wahrscheinlichkeitsverteilung: fiir einen gegebenen Anfangszustand — z.B. zwei kolli-
dierende Protonen — gibt die Streuamplitude an, wie wahrscheinlich die Produktion
bestimmter anderer Teilchen gem#fl der Theorie ist. Die Regeln der QFT sind jedoch
kompliziert, und Streuamplituden kénnen nur ndherungsweise als Reihen in den Kopp-
lungskonstanten berechnet werden, die die Wechselwirkungen gewichten. Wir wissen —
zumindest im Prinzip — wie man jeden Term der Reihe berechnen kann, und je mehr
Terme miteinbezogen werden, desto genauer ist die Vorhersage. Die Berechnung wird
jedoch immer schwieriger, wenn die Ordnung in den Kopplungen — auch “Schleifen-
Ordnung” genannt — oder die Anzahl der Teilchen zunimmt. In der Praxis benétigen
wir so viele Terme, wie notig sind, um die theoretische Unsicherheit mit der experi-
mentellen vergleichbar zu machen, so dass der Vergleich statistisch signifikant ist.

Um das physikalische Potenzial des Large Hadron Collider am CERN voll aus-
zuschopfen, sind Vorhersagen in der zweiten Ordnung nach der dominanten (Next-
to-Next-to-Leading Order, NNLO) in der Kopplung der starken Wechselwirkungen er-
forderlich. Dieses Ziel wurde bereits fiir viele 2 — 1 und 2 — 2 Prozesse erreicht.
Prozesse mit drei Teilchen im Endzustand sind jedoch von groflem Interesse, da sie
prézise Messungen der starken Kopplungskonstante und ihrer Skalierung, tiefgreifen-
de Studien der Higgs-Kopplungen, bessere Hintergrundabschétzungen fiir noch unbe-
kannte Ph&nomene und mehr ermdéglichen wiirden. Der grofite Engpass auf dem Weg
zu NNLO-Vorhersagen fiir 2 — 3 Prozesse ist die analytische Berechnung der zwei-
Schleifen fiinf-Teilchen-Streuamplituden.

Der schwierigste Teil der Berechnung einer Streuamplitude ist die Berechnung der
darin vorkommenden Feynman-Integrale. Meine Koautoren und ich haben den fehlen-
den und kompliziertesten Satz von masselosen zwei-Schleifen fiinf-Teilchen Feynman-
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Integralen berechnet. Dies ermdglichte die Berechnung der Amplitude fiir jeden Pro-
zess mit fiinf masselosen Teilchen in zwei-Schleifen-Ordnung. Solche Prozesse spielen
eine wichtige Rolle im LHC-Physikprogramm. Beispiele dafiir sind die drei-Jet-, drei-
Photonen- und zwei-Photon + Jet Produktion. Um diese Integrale zu berechnen, nutz-
ten wir modernste mathematische Techniken und schlugen eine neue Strategie vor, die
bereits auf mehrere andere Problemstellungen angewendet wurde.

Bewaffnet mit analytischen Ausdriicken fiir die Feynman-Integrale nahmen wir die
Amplituden in Angriff. Die Herausforderung besteht in der enormen algebraischen
Komplexitdt. Wir entwickelten einen Arbeitsablauf, der auf der modernen Idee ba-
siert, die rationalen Funktionen in den Zwischenausdriicken numerisch iiber endlichen
Feldern auszuwerten. Der analytische Ausdruck des Endergebnisses wird dann durch
“Bootstrapping” eines Ansatzes oder durch speziell entwickelte Algorithmen rekon-
struiert. Bevor wir das SM betrachten, haben wir unseren Ansatz an den Amplitu-
den in zwei supersymmetrischen Theorien getestet: N = 4 Super-Yang-Mills-Theorie
und N = 8 Supergravitation. Dies waren die allerersten vollstéindigen fiinf-Teilchen-
Streuamplituden, die analytisch in zwei-Schleifen-Ordnung berechnet wurden. Obwohl
diese Modelle nicht darauf abzielen, physikalische Teilchen und Kréfte zu beschreiben,
sind sie von groflem Interesse. Sie geben wertvolle Einblicke in verborgene Strukturen
der QFT im Allgemeinen und — dank ihrer Einfachheit und Eleganz — sind sie ein
perfektes Testfeld fiir neue Techniken und Ideen, die spéter auf das SM angewendet
werden konnen.

Die erfolgreiche Berechnung der supersymmetrischen Amplituden zeigte, dass un-
sere Technologie reif genug war, um sich dem SM zu stellen. Wir berechneten daher
die zwei-Schleifen-Amplitude, die die Streuung von fiinf Gluonen mit positiver He-
lizitdt in der Quantenchromodynamik (QCD) beschreibt, dem Teil des SM, der die
starke Wechselwirkung beschreibt. Trotz des Komplexititssprungs im Vergleich zu
den supersymmetrischen Theorien ist es uns gelungen, einen extrem kompakten und
eleganten analytischen Ausdruck zu finden. Kompakte Ergebnisse sind nicht nur ein
Vergniigen fiir Theoretiker, sondern sind auch entscheidend fiir ihre Verwendung in
der Phianomenologie. Die Einfachheit des Ausdrucks ermdoglichte uns zu erkennen, be-
stimmte Teile der Amplitude eine unerwartete Eigenschaft besitzen: sie sind invariant
unter konformer Symmetrie. Wir identifizierten den Ursprung dieser Eigenschaft in der
konformen Invarianz der gluonischen Amplituden in der QCD bei einer Schleife, die wir
fiir eine beliebige Anzahl von Gluonen nachgewiesen haben.

Nach der Verdffentlichung der in dieser Arbeit vorgestellten Ergebnisse hat es einen
dramatischen Fortschritt gegeben. Mehrere andere zwei-Schleifen fiinf-Teilchen- Ampli-
tuden sind analytisch verfiigbar geworden, und dies hat bereits zur ersten theoretischen
Vorhersage bei NNLO in QCD gefiihrt, fiir die drei-Photonen-Produktion. Ohne Zwei-
fel werden mit wie in dieser Dissertation vorgestellten Methoden in naher Zukunft viele
weitere Ergebnisse folgen.
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1 Introduction

Do I dare
Disturb the Universe?!

What are the fundamental laws of the universe? Is it even possible for us to know
them? After all, what we have is just our experience of things, the way they appear
to us as observers. To put it in philosophical terms — the phenomenon [1]. We have
no direct access to things in themselves, the noumenon. So how dare we “disturb the
Universe”?

After thousands of years of philosophical and scientific inquiry, the noumenon remains
impenetrable. Still, I think we can safely claim that our understanding of the universe
is better than it used to be, say, when Thales of Miletus — one of the first western
philosophers — argued with confidence that everything is made of water. What has
allowed this progress is the scientific method, a powerful practical approach which
by-passes the inaccessibility of the noumenon. Based on our imagination and our
experience, we make guesses for the form of the noumenon, which we call models.
Necessary condition for a model to be acceptable is that it must allow us to make
quantitative predictions which can be tested. We can then rule out the wrong models
by comparing predictions based on them against the phenomenon. Theories can thus
be falsified, never verified.? In the truest sense, we learn from our mistakes. While
this approach might be unsatisfactory to some from the philosophical point of view, it
has taken us very far. Our entire civilisation is built upon the technological progress
stemmed from it.

Particle physics is concerned with the tiniest building blocks of the Universe —
the fundamental particles — and their interactions. Our best description (so far)
is given by the Standard Model of particle physics, a Quantum Field Theory (QFT)
where fundamental particles are viewed as excitations of quantum fields which permeate
a four-dimensional Minkowski space-time. The current formulation of the Standard
Model dates back to the mid-Seventies. Ever since, it has been throughly scrutinised.
Although a few tensions between theoretical predictions and experimental data do
exist (e.g. see Ref. [4, 5]), none has reached sufficient statistical significance to claim
a discovery. For example, the value of the electron magnetic moment predicted by
the Standard Model agrees with the experimental measure to an astonishing part in
a trillion [6, 7]! The fact that it is even possible to describe the Universe down to

'From “The Love Song of J. Alfred Prufrock,” by T. S. Eliot.

2See Ref. [2] for the first systematic treatment of this methodology based on falsifiability, and Bertrand
Russell’s “inductivist turkey” for the dangers that reside in the idea of verifying models with re-
peated observations [3].



1 Introduction

its (supposedly) fundamental constituents and to such a high accuracy continues to
amaze me. In case you are not amazed yet — although you should — I will give you
another — perhaps the most well-known — example of the success of the Standard
Model: the Higgs boson. This particle and its properties were speculated in the Sixties
to introduce masses in the model without spoiling its symmetry, and was first detected
at CERN’s Large Hadron Collider (LHC) in 2012. It took almost fifty years to develop
the technology and the expertise to observe experimentally a particle whose existence
had been suggested by the mathematical elegance and self-consistency of the Standard
Model. To me, this is one of the supreme examples of “the unreasonable effectiveness
of mathematics in the natural sciences” [8].

Ironically, the triumph of the Standard Model is reason not only for delight, but also
for growing frustration. While none of its predictions has been clearly falsified yet,
there are things it does not account for at all. Some of them are of a theoretical nature.
For example, one concerns the sector of the Standard Model which describes the strong
interaction: Quantum Chromodynamics (QCD). The symmetries of QCD would in
principle allow a kind of interaction which breaks CP symmetry (the combination of
charge and parity symmetry). There is no theoretical reason to rule it out, and yet this
phenomenon has never been observed experimentally, thus requiring a fine tuning of a
parameter of the model which many consider as “unnatural.” This issue, referred to
as strong CP problem, is not a problem per se, but the necessity for fine tuning often
signals a lack of understanding. There are other theoretical issues of similar kind, such
as the hierarchy problem and the Landau pole, but the most apparent shortcoming of
the Standard Model is of a much more concrete nature: it does not explain gravity.
Our best description of gravity so far is given by General Relativity, which has proven
as successful at explaining the Universe on macroscopic scales as the Standard Model
is with the microscopic world. Fitting the two descriptions in a unique framework is
definitely one of the most important open problems in fundamental physics. The effects
of gravity at the scales relevant for particle physics are however negligible, so that the
Standard Model’s accuracy in describing particle interactions in the experiments we can
currently carry out is not affected. Another prominent and concrete issue not addressed
by the Standard Model is the existence and nature of dark matter and dark energy.
The Standard Model in fact accounts only for ordinary matter, which we know from
cosmological observations to constitute just about five percent of the total energy of the
Universe. And even within this five percent that is described by the Standard Model
there are issues. For instance, what we observe of the Universe is disproportionately
made of matter, while, comparatively, there is not much anti-matter to be seen. This
observed asymmetry cannot be explained by the Standard Model alone. Moreover, the
Standard Model neutrinos are massless particles, whereas the observation of neutrino
oscillations indicates that neutrinos do have small but non-vanishing masses. The list of
issues with the Standard Model continues, but I think I have made my point: we have
an amazing model, mathematically elegant and astonishingly accurate, which however
fails to address a wide variety of theoretical concerns and observed phenomena. Can
we do better?

In order to go “beyond” the Standard Model, it is of primary importance to deter-



mine its range of validity, and to constrain its possible extensions. Our best probe into
the microscopic world of fundamental particles is CERN’s LHC, where two beams of
protons are accelerated to nearly the speed of light and smashed against each other
to observe the products of their interaction. Originally intended as a “discovery” ma-
chine, after the discovery of the Higgs boson the LHC has revealed a great potential for
“precision” measurements as well. So far, the observations at the LHC, as well as in
the other particle colliders, have revealed only small tensions with the Standard Model,
not considered to be statistically significant. However, not all hope is lost: we have
only seen about one tenth of the total data that the full LHC programme is expected to
deliver [9]! This stunning wealth of present and future precise measurements becomes
however useless if it is not matched by a comparable accuracy in the theoretical pre-
dictions. It is in fact not possible to achieve an exact theoretical description of particle
collisions. The current model consists of several very distinct parts, each associated
with difficult challenges and sources of uncertainty. I will give a brief review of this
“picture” in Section 2.1, but I must anticipate that in this thesis I focus on the high-
energy (or equivalently short-distance) effects, captured by the scattering amplitudes.
These objects, which I define in Section 2.1, are computed in perturbation theory,
namely as power series in the coupling constants. Fach coefficient of the series can in
principle be determined systematically, e.g. using Feynman diagrams. The complexity
of the computation however escalates very rapidly with the order in the couplings, so
that scattering amplitudes in the Standard Model and candidate extensions can only
be computed up to some finite order. The theoretical uncertainty reflects this trunca-
tion of the infinite perturbative series (see e.g. [10, 11] for some recent work on this
topic). Clearly, the smaller are the values of the coupling constants, the better is the
convergence of the perturbative series.

Among the coupling constants of the Standard Model, the one that takes the largest
value at the energy scales relevant for the LHC — while still being in a perturbative
regime — is that of the strong interactions, aqcp. The higher orders in aqcep are
thus generally expected to give the most important corrections in a generic process
at the LHC. Indeed, theoretical predictions truncated at the Leading Order (LO) in
QCD typically provide only estimates of the order of magnitude, and are thus insuf-
ficient for precision studies. In order to exploit fully the enormous scientific potential
of the LHC it is necessary to push the theoretical predictions for a number of phe-
nomenologically relevant processes to the Next-to-Next-to-Leading Order (NNLO) in
QCD. NNLO predictions for 2 — 2 processes have by now become the state of the
art (see e.g. Refs. [12, 13] for comprehensive reviews of the current status of precision
collider physics). There is however great interest in higher-multiplicity processes as
well. In this regard, the NNLO description of 2 — 3 processes represents the cur-
rent challenge. Only very recently this was achieved for the first process, three-photon
production [14, 15, 16], in the leading colour approximation (see Section 4.3.1 for the
definition of this approximation).®> Many other 2 — 3 processes feature in the so-called
“precision wish-list,” updated every two years in the workshop series “Physics at TeV

3The neglected contributions are estimated to be phenomenologically irrelevant for this process.
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Colliders” held in Les Houches [12]: pp — 3j,pp — 2y + j,pp = V + 2j,pp — H + 27,
where p, 7,7,V and H stand for proton, jet, photon, vector bosons (W and Z) and
Higgs boson, respectively, just to name a few. One of the main bottlenecks is the com-
putation and evaluation of the required two-loop five-particle scattering amplitudes.
The last few years have seen tremendous progress in this direction by several groups
and approaches. I have had the pleasure and the luck to take part in this endeavour,
and in this thesis I am going to present my contribution.

This thesis is addressed to readers with a basic knowledge of QFT, and who have
already some familiarity with scattering amplitudes and their computation using Feyn-
man diagrams. Chapter 2 is an attempt to provide a smooth and quick transition from
a standard QFT course to the modern techniques presented in Chapters 3 and 4. I
discuss what, at first, I found most bewildering about scattering amplitudes beyond the
tree level, namely that they diverge. I show where the divergences come from, where
they go, and why they are there in the first place. Once we have made peace with
the divergences, we focus on the analytic structure of scattering amplitudes viewed as
functions of the momenta of the external particles, whose understanding plays a cru-
cial role in the modern techniques presented in the following chapters. In particular,
I discuss the most distinctive analytic features of scattering amplitudes, namely their
singularities and their discontinuities, and relate them to the fundamental principles of
locality and unitarity.

The main bottleneck in computing scattering amplitudes beyond the tree level is the
loop integration. While Feynman diagrams allow us to write down the amplitude of any
process and at any loop order in a completely algorithmic way,* the computation of the
relevant loop integrals beyond one loop is still far from being systematic. In Chapter 3 1
present one of the most powerful methods for the analytic computation of loop integrals:
the method of the differential equations in the canonical form [18, 19, 20, 21]. T give
a (hopefully) pedagogical and self-contained discussion, with a particular emphasis on
the special functions which appear in the solution of the differential equations.

Finally, in Chapter 4 I put the techniques and ideas introduced in the previous chap-
ter at the service of the two-loop five-particle cause, and present my and my collabora-
tors’ contributions. In Section 4.2 I discuss the analytic computation of the last missing
“family” of massless two-loop five-particle Feynman integrals. In order to achieve it,
we also developed a novel method to put the differential equations satisfied by the in-
tegrals in the so-called “canonical form,” which we expect will be useful also in future
applications. Together with the results already available in the literature, this work
opened the door to the analytic computation of any massless five-particle amplitude
at two loops, in any theory. Indeed, this allowed us to provide the very first analytic
results for complete two-loop five-particle amplitudes. In Section 4.3 I present the
computation of the (super) amplitudes in N/ = 4 super Yang-Mills theory and N = 8

40f course there are practical limitations, as the number of diagrams grows very rapidly with the
number of external legs and of loops. For instance, the number of Feynman diagrams contributing
to the tree-level amplitude for the process gg — ng grows factorially with n [17]. For this reason
alternative approaches have been and are being developed. See e.g. Section 2.4.2 for a few words
about unitarity-based methods.



supergravity. Moreover, I show how the method of the differential equations can be
used very effectively to expand Feynman integrals and scattering amplitudes asymp-
totically in any kinematic limit. In particular, I discuss in detail how we computed
the asymptotic expansion of the two supersymmetric amplitudes in the multi-Regge
kinematics. After warming up with the super-symmetric amplitudes, we tackle Yang-
Mills theory in Section 4.5, and compute analytically the complete two-loop five-gluon
amplitude in the all-plus helicity configuration. Remarkable cancellations lead to an
extremely compact expression, which exhibits intriguing signs of conformal symmetry.
We expect that the integrals we computed and the workflow we developed will enable
the computation of all the two-loop five-particle amplitudes required in the theoretical
predictions for processes of great phenomenological interest, such as three-jet produc-
tion and di-photon + jet production, at NNLO in QCD. I draw my conclusions and
discuss the outlook of the work presented here in Chapter 5.






2 Scattering Amplitudes

In an attempt of making things more original, I will begin by telling you what this
chapter is not about. I do not wish to introduce the complete theoretical framework
of QFT. That has already been done elsewhere, and in a much better way than I
could possibly do (see the many great textbooks, e.g. [22, 23, 24]). This thesis is
aimed at people who have already some familiarity with QFT, and who can (at least
in principle) write down the expression of a scattering amplitude using Feynman rules
or whatever technique they are most comfortable with. I will also not introduce any
specific theory. The techniques presented in Chapters 3 and 4 are in fact very general
and can be applied to the computation of scattering amplitudes in any QFT. In this
chapter I content myself with discussing a few aspects of scattering amplitudes in
general, with the goal of providing a smooth transition from a basic knowledge of QF T
to the recent developments in the computation of scattering amplitudes presented in
the next chapters. In this regard, I wish to point out the very useful textbooks [25, 26],
which give a pedagogical and modern discussion of scattering amplitudes.

Since scattering amplitudes are the main character of this play, I feel like I should
at least define them properly. This I do in Section 2.1, where I also discuss how these
seemingly abstract mathematical constructs are related to actual scattering experi-
ments. The interest in scattering amplitudes is however not solely due to their role
in phenomenology. In Section 2.2 I motivate a more “pure” and formal study of scat-
tering amplitudes in themselves, even in theories which have no pretence of describing
the universe we live in. In doing so, I touch upon some of the inspiring ideas stemmed
from the study of scattering amplitudes in the last few years, with the main intent of
intriguing the reader and giving references. Then I move on to what is perhaps the
most prominent and (at first) disconcerting feature of scattering amplitudes beyond
the tree level, namely that they diverge. In Section 2.3 I discuss the origin of these
divergences along with their underlying physical principles, how they are dealt with,
and how they actually make sense and do not affect the theoretical predictions for
physical observables. Once we have made peace with their divergent nature, I dis-
cuss the analytic structure of generic scattering amplitudes viewed as functions of the
external momenta. Section 2.4 is devoted to their most important analytic features,
namely where they blow up (the poles) and where they are discontinuous (the branch
cuts). As we will see, these properties are deeply connected to fundamental postulates
of quantum mechanics: locality and unitarity.



2 Scattering Amplitudes

2.1 Scattering Amplitudes and the Phenomenon

In this section I define what scattering amplitudes are, and discuss briefly where they
stand in the scientific process of understanding the laws of Nature. The rest of this
thesis will be much more “theory oriented”. Chapter 3 is about the mathematics of loop
integrals, and most of the applications discussed in Chapter 4 deal with supersymmetric
theories. It is however good to remember one’s ties to reality from time to time. That
is the purpose of this section.

Our goal is to understand the laws of nature. Having no direct access to things
in themselves, the noumenon, we can only pursue this objective by looking at the
phenomenon, namely how things appear to us as observers [1]. The keystone in the
scientific approach to this problem is the possibility of falsifying a theoretical model
of the noumenon by comparing quantitative predictions based on it against the data
measured in an experiment. In order to proceed with this programme, we first need to
understand what can actually be measured experimentally.

The typical particle-physics experiment is particle collision. Consider a bunch of N,
particles of type a colliding against a bunch of N particles of type b. If no black hole
is created and swallows up the Earth [27], we expect the number of observed scattering
events of a desired kind, say the detection of a certain final state ¢, to be proportional
to the numbers of incoming particles N, and Ny, and to the transverse area A common
to the two bunches. The coefficient of proportionality defines the total cross section o
for the production of ¢ from the collision of a and b,

o Number of events . (2.1)
NyNyA
This simple formula (refined to take into account all the subtleties of a real-life experi-
ment) has taken us very far. In fact, we can do much more than just counting the total
number of events. We can count how many times an outgoing particle falls in a certain
bin of energy, scattering angle, transverse momentum... leading to the definition of a
differential cross section do. This is what our experimentalist friends give us. How do
we, theorists, make contact with that? This is where scattering amplitudes enter the
game.
In order to define what a scattering amplitude is, we need to refresh our quantum
mechanics. I adopt the interaction picture. We split the Hamiltonian of the theory H
into a free-field part Hg, and an interaction part V,

H=Hy+V. (2.2)

The operators behave as free-field operators, while the states evolve with the time-
evolution operator associated with the interacting part of the Hamiltonian,

Ult,tg) = Texp (—z’/tt dt’VI(t’)> : (2.3)

0

where T is Dyson’s time-ordering operator, and

Vi(t) = U0y (1) iHo=to) (2:4)
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is the interacting part of the Hamiltonian, evolving freely — as prescribed by the
interaction picture — from an arbitrary reference time ¢y. From the theoretical point
of view, the scattering process is idealised as follows. The initial state |pq, py; Ti)*
is made of two freely-evolving wave-packets constructed at the asymptotically past
time T; — —oo, concentrated about the definite momenta p, and pp, respectively.
The interaction is assumed to take place during a finite time interval, so that in the
asymptotically far future, Ty — oo, the final state (p1,...,pn;Ty| again consists of n
non-interacting wave-packets, each concentrated about a momentum p;. The initial
state evolves from T; to T with the time-evolution operator U given by Eq. (2.3). The
overlap between the two states defines the S matriz elements,

(P1,- - PnlS|Pas Po) = Tlim im (p1,...,pn; THU(Tt, T3) |Pas 2o; Ti) - (2.5)

i — 00 Tf*)OO

The S matrix therefore is a unitary operator which encodes the probability amplitude
that a given asymptotic state will evolve into some other state in the distant future.
Even if the theory is interacting, there is always some probability that the colliding
particles miss one another and do not interact at all. This implies that the S matrix
has a term which is simply the identity. This is not particularly interesting, and we
isolate the part which is due to interactions as

S=1+iT. (2.6)

Finally, we can define the scattering amplitude A for this process,

(p1, ... pnliT|pa, po) = (2m)*6™) (pa +pp— Zm) iA PPy = Pro--ypn) s (2.7)
=1

where we factored out the overall momentum-conservation § function. The scattering
amplitude for any given process can be computed in perturbation theory using Feynman
diagrams and Feynman rules. I assume the readers have some familiarity with this.

The absolute square of a scattering amplitude gives the probability that the initial
state will evolve to the desired final state. It must be proportional to the cross section.
The precise relation is given by

d®, -
do = v |AI? (2m) 6 (Pa + 1y — sz) ; (2.8)
i=1

where d®,, is the volume element of the n-body phase space,

n

dgpi 1
d®,, = —. 2.9
1;[1 (2m)3 2F; (29)

LOf course the particle states can be labelled by other quantum numbers in general. I will keep the
notation minimal, as the generalisation is straightforward.
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and ¢ is a flux factor,
¢ =2E.2Ep|v, — vy, (2.10)

with |v, —vp| being the relative velocity of the beams as seen from the laboratory frame.
Scattering amplitudes therefore offer a very concrete point of contact between theory
and experiments.

Things get slightly more complicated when the scattering particles are bound states,
rather than elementary fields. This is the case of QCD. The elementary fields are quarks
and gluons but, because of colour confinement, we can only observe hadrons, i.e. colour-
neutral composite states of quarks and gluons. In order to describe quantitatively the
scattering of composite objects, therefore, one needs to supply some information about
their structure in terms of elementary particles. Unfortunately, from the point of
view of the elementary particles, this structure is a long distance effect. QCD is an
asymptotically free theory, meaning that the coupling constant becomes weaker and
weaker at high energy or, equivalently, at small distances. At large distances or low
energies (roughly below the scale Aqcp ~ 1 GeV), the coupling becomes too large
for a perturbative approach to be legitimate. The hadron states therefore cannot be
described perturbatively.

As you might guess, it is not yet game over. Long and short distance effects do not
talk to each other (up to power-suppressed terms), roughly speaking because they take
place at such different scales. They can thus be disentangled, and the parton model [28]
tells us how. Consider the scattering of two hadrons h, and hy, with momenta p, and
Py, and center-of-mass energy s = (p, + pp)2. We want to detect a certain final state
X. The differential cross section of this process is given by the following convolution:

1 R A
dghahbaX = E / dxldngi(h“)(xl,,u,%)f;hb)(xg,/ﬁ;)daij_,x + O <2CD> . (2.11)
— JO
,L’]

The non-perturbative information about the structure of the hadron A is encoded in
the Parton Distribution Function (PDF) fi(h) (z,u%). Roughly speaking, it gives the
probability of finding a parton i (either a quark or a gluon) in h carrying a fraction
x of the momentum of A. The PDFs are non-perturbative and, as such, they need to
be extrapolated from experimental data. On the other hand, since the structure of the
hadrons does not depend on the specific process under consideration, the PDFs are
universal. In other words, we can determine them by measuring a set of particularly
suitable processes, and then use them to make predictions about any other process. The
PDFs are “renormalised” in order to absorb the divergent contributions from the emis-
sion of soft and collinear partons in the initial state (more about this in Section 2.3.3).
This introduces the factorisation scale pp. The evolution of the PDFs with pp is gov-
erned by the DGLAP equations [29, 30, 31]. The perturbative information about the
high-energy (often referred to as “hard”) part interaction is instead encoded in the
partonic cross-section 0;j—x, i.e. the cross-section for the production of the desired
final state X from the interaction of two partons ¢ and j, carrying momenta z;p, and
xjpy, respectively. I stress that the interference between long and short-distance effects

10



2.1 Scattering Amplitudes and the Phenomenon

is power-suppressed by the energy scale Aqcp below which the QCD coupling becomes
non-perturbative, but it is not zero. Eventually, as the experimental accuracy keeps
increasing, it will become relevant.

The complications are not yet over. The final state of the hard interaction is in fact
a collection of elementary particles. Quarks or gluons cannot be detected individually.
Further non-perturbative information has thus to be supplied, describing the evolution
of the final state of the hard interaction into physical states that can be detected in
an actual collider experiment. The final state evolution is a combination of several
ingredients: how the final-state partons radiate further partons (parton showers), how
they combine into hadrons (hadronisation), and how the hadrons collimate into jets
(jet algorithms). Similarly to the PDFs, these final-state ingredients are universal, and
can usually be implemented in a process-independent way.

Each and every ingredient of this complicated recipe is crucial in order to produce
a meaningful theoretical prediction that can be compared against the experimental
data. In this picture, the scattering amplitude of the hard process is the main process-
dependent and perturbative part. Increasing the accuracy of a theoretical prediction
requires a joint effort to improve the entire theoretical description of the scattering
process. From the point of view of scattering amplitudes, this means increasing the
perturbative order. One should however keep in mind all the other steps that take from
the elegant analytic expression of a scattering amplitude to the plots with error bands
being compared against the experimental data. The impact of adding one more loop
order to a partonic scattering amplitude might in fact be negligible if, say, the final-
state evolution is described at a lower accuracy. A close cooperation between physicists
working on the different aspects of theoretical predictions, and experimentalists, is
fundamental.

There is one last comment I would like to make about the role of scattering am-
plitudes in the theoretical description of the universe. Our current understanding of
fundamental physics is broken into two theories: quantum mechanics and general rela-
tivity. Scattering amplitudes were “born” in the former context and that is where they
have been conventionally used, but recently they have started playing an increasingly
important role in the latter as well. In 2016 the LIGO and Virgo collaboration de-
tected the first gravitational wave signal, coming from a binary black hole merger [32].
This spectacular achievement heralded the dawn of a new exciting era for astronomy
and physics in general. Several other gravitational-wave signals have been observed
ever since, and the detectors will become increasingly sensitive in the future. There is
therefore urgency to produce accurate theoretical predictions to interpret the data. In
a somewhat surprising twist of events, it is possible to compute perturbative contribu-
tions of classical General Relativity using the loop expansion of QFT. The amplitude
techniques developed over the last decades for particle physics can now be put at the
service of gravitational-wave physics as well. I refer the interested reader e.g. to Ref. [33]
for an outline of this exciting program, and Ref. [34] for a recent review. This very
exciting avenue calls for an even more invigorated effort to improve the technology to
compute scattering amplitudes.

11
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2.2 Scattering Amplitudes and the Noumenon

After such a “pheno-oriented” section, I feel like I should stress that computing theoret-
ical predictions for collider or gravitational-wave physics is not at all the only reason of
interest for scattering amplitudes. Their privileged position as bridge between theory
and experiments makes them invaluable for phenomenology, but this direct computa-
tional access to the underlying theory is extremely precious in itself, even when the
considered theory has no pretence of describing Nature. In a sense, scattering ampli-
tudes give us an insight in the noumenon — the thing in itself — of quantum field
theory, even without any reference to the phenomenon. In other words, the analytic
computation of scattering amplitudes may allow us to discover properties of the under-
lying quantum field theory that are not visible in the traditional Lagrangian formula-
tion. In this view, since computing multi-loop and multi-particle scattering amplitudes
remains a formidable problem, it is useful to look at theories which are simpler than
the Standard Model.

The best playground for “amplitudeologists” is N' = 4 super Yang-Mills theory.? Its
elegance and simplicity makes it easier to spot patterns. It is the perfect testing ground
for new techniques and ideas. Indeed, the study of scattering amplitudes in this theory
has brought about many conceptual and technical advances, which have boosted the
computation of quantities of phenomenological interest as well (see Ref. [35] for a recent
review). My thesis fits in perfectly in this story. We begin by computing analytically
the N' = 4 super Yang-Mills amplitude, and then gradually increase the complexity,
passing through N = 8 supergravity and finally arriving at Yang-Mills theory (with no
supersymmetry), the core of the Standard Model. In doing so, we make use of several
ideas and techniques that stemmed from N = 4 super Yang-Mills theory.

The analytic computation of scattering amplitudes has revealed many remarkable
properties of quantum field theory. We will encounter some of them later on in this
thesis, but I will make a few examples here, in the hope of convincing those readers who
are more interested in the fundamental aspects of quantum field theory rather than in
phenomenology to continue further.

Dual (super)conformal symmetry is a hidden symmetry of planar NV = 4 super
Yang-Mills theory. By “hidden” I mean that it is nowhere to be seen in the Lagrangian.
Nonetheless, it emerges spectacularly at the level of the scattering amplitudes, imposing
very tight constraints on their analytic structure [36, 37, 38, 39, 40]. Dual conformal
symmetry was instrumental for many developments in planar N’ = 4 super Yang-Mills
theory, but its importance goes beyond that theory and the planar limit. For instance,
certain non-planar Feynman integrals,® in generic quantum field theories, were only
recently discovered to be invariant under a subset of dual conformal transformations [41,
42, 43)].

Another fundamental property of quantum field theory which cannot be appreciated
in the Lagrangian is the factorisation of the infrared singularities [44, 45, 46, 47, 48, 49].

2] refer the readers to the textbooks [25, 26] for an introduction to N' = 4 super Yang-Mills theory in
the context of scattering amplitudes.
3The difference between Feynman integrals and Feynman diagrams is clarified in Section 3.1.1.
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Scattering amplitudes in quantum field theories involving massless particles are affected
by singularities which arise from the infrared regions of loop integration. Remarkably,
these singularities factorise and the operator which captures them satisfies renormali-
sation group evolution equations, whose solution can be written down in closed form.
The treatment of infrared singularities is of crucial importance in the computation of
scattering amplitudes, and is therefore treated in some detail in this thesis, starting
from Section 2.3.3.

A fascinating relation between gauge and gravity theories stems from the so-called
colour/kinematics duality of scattering amplitudes [50, 51] (see Ref. [52] for a recent
review). To understand this, consider a scattering amplitude in a gauge theory written
as a sum of Feynman diagrams. The analytic expression of each diagram can be factored
in a kinematic factor and a colour one. The colour factors obey algebraic relations such
as Jacobi and commutation identities. Remarkably, it is possible to rearrange the
scattering amplitudes so that the kinematic factors obey the same algebraic relations
as the corresponding colour factors. Once the amplitudes are in this form — dubbed
the Bern, Carrasco and Johansson (BCJ) form — replacing the colour factors with
kinematic ones produces scattering amplitudes in a gravity theory. Which gravity
theory depends on which gauge theories we take the kinematic factors from. In this
sense, we may say that gravity is a double-copy of gauge theories. In Section 4.3, for
instance, we will see how the two-loop five-particle amplitude in N = 8 supergravity is
obtained through a double-copy of its N' = 4 super Yang-Mills counterpart. Although
formal proofs of this construction are so far limited to tree level, there is solid evidence
that it holds for a variety of theories also at loop level.

The rising role of mathematical structures in our understanding of quantum field the-
ories is also driven by the study of scattering amplitudes. Some of them will play a lead
role in this thesis: the notions of leading singularities, dlog forms, and transcendental
weight — to mention the most relevant here, but this is just the tip of an ever growing
iceberg. A rich variety of unexpected geometric constructions have been discovered in
scattering amplitudes. The best known instance is perhaps the “amplituhedron” [53],
a Grassmannian generalisation of polygons and polytopes whose geometry captures the
scattering amplitudes in planar N/ = 4 super Yang-Mills. In this formulation there is no
reference to space-time or Hilbert space, and the fundamental properties of locality and
unitarity emerge as consequences of the geometry. The amplituhedron is just the first
of several fascinating constructions which reformulate scattering amplitudes in terms
of geometry (see e.g. [54] for a recent review).

Another mathematical concept for which there is growing interesting in the context
of scattering amplitudes is that of cluster algebras [55, 56, 57, 58]. For example, it
is well known that the branch-cut structure of scattering amplitudes is constrained
by physical constraints called Steinmann relations [59, 60]. In planar N = 4 super
Yang-Mills theory, the Steinmann relations have been found to be a special case of a
cluster algebra property called cluster adjacency [61, 62, 63], which puts even tighter
constraints on scattering amplitudes. This allowed to bootstrap — i.e. to fix from first
principles — certain amplitudes to astonishing loop orders [64, 65] (see Ref. [66] for
a review). On the whole, there is mounting evidence that cluster algebras play an
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important role for scattering amplitudes both at the level of the loop “integrand” [67]
— 1.e. prior to carrying out the loop integration — and for the special function which
arise upon loop integration [68].

Determining which special functions are allowed to appear in scattering amplitudes
in general is still an open problem, and a very inspiring one. It has led to a fruitful
interplay between physicists and mathematicians from which both the disciplines are
profiting enormously. As we will see in Section 2.4.2, unitarity implies that scattering
amplitudes must have discontinuities. They must thus contain special functions with
a non-trivial branch-cut structure, such as the logarithm. In Section 3.3 I will talk
profusely about the multiple polylogarithms, a class of functions that covers most of
the scattering amplitudes computed so far, but there is much more. Elliptic multiple
polylogarithms [69, 70, 71, 72, 73, 74, 75], and iterated integrals of 1-forms defined on
even more complicated geometries — e.g. hyperelliptic curves [76, 77] and Calabi-Yau
geometries [78, 79, 80, 81, 82] — become relevant as we look to higher numbers of loops
and variables.

The special functions appearing in scattering amplitudes have extremely rich alge-
braic structures. The multiple polylogarithms, in particular, are endowed with a Hopf
algebra coaction [83, 84, 85, 86|, of which we will encounter the maximal iteration,
called the symbol [87] (see Section 3.3.6). Some of these structures emerge also at the
level of the loop integrals. We now know that one-loop Feynman integrals can also
be endowed with a coaction [88, 89], which encodes their analytic properties [90, 91].
While a higher-loop generalisation is under study [92], the idea of a “coaction princi-
ple” [93, 94, 95] has already been used to bootstrap certain amplitudes [96, 97]. Another
branch of mathematics that has recently started playing a role is that of intersection
theory [98, 99, 100], where Feynman integrals are thought of as elements of a vector
space over which it is possible to define a notion of “scalar product.”

This list could be made almost arbitrarily long and I am probably doing wrong to
many by cutting it here. I make amends by inviting the interested reader to have a
look at the talks of the last “Amplitudes” conference [101] to get a sense of how many
exciting research directions are being explored in this field.

2.3 Loop Scattering Amplitudes

In Sections 2.1 and 2.2 I have stressed the importance of scattering amplitudes from
both a phenomenological and a theoretical point of view. Whether we aim at computing
theoretical predictions or at unveiling a new geometrical principle underlying quantum
field theory, restricting ourselves to tree-level amplitudes only is unacceptable. The
main difference of loop amplitudes with respect to their tree-level counterparts is the
appearance of Feynman integrals. The entire Chapter 3 is devoted to the computation
of the latter. In preparation for that, I now want to talk about what is perhaps their
most uncomfortable feature for a beginner in this field: the Feynman integrals, as they
come out of the Feynman rules, may not converge. Scattering amplitudes are therefore
typically divergent at loop level, a rather awkward feature for an object which encodes
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2.3 Loop Scattering Amplitudes

the probability distribution of a physical particle scattering experiment. In this section
I discuss how these divergences can be regularised by analytically continuing the space-
time to a generic number of dimensions. I distinguish two regions — ultraviolet and
infrared — where the loop integration may not converge, and touch upon the deeper
physical reason behind the appearance of such divergences. Finally, I outline briefly
how the physically-relevant cross-sections manage to be finite, and preserve the physical
interpretation I presented in Section 2.1.

2.3.1 Dimensional Regularisation

Quantum field theories are defined in some integer number of space-time dimensions
do. For the Standard Model dy = 4, but it is sometimes interesting to study theories
in other dimensions. We regularise the loop integrations by analytically continuing the
number of space-time dimensions from dy to d = dg — 2¢, and use the parameter € as a
regulator [102]. The loop integration measure is modified as

Cddog; i Ak
/ 1 Gme = o / W Semrd 212

where 4 is an arbitrary mass scale which we need to introduce in order to preserve the
dimensionality of the coupling constants. Scattering amplitudes and Feynman integrals
are then computed as Laurent series around € = 0, and the loop-integration divergences
show up as poles in €. The Laurent series is typically truncated to the finite term, of
order €°, or to some low power of €. In Section 4.3.4 we will see explicitly one reason
why the first few orders in € may sometimes be needed.

Dimensional regularisation is particularly convenient because it preserves gauge and
Lorentz invariance, and allows to regularise at the same time both ultraviolet and
infrared divergences. As we will see in the next sections, the ultraviolet divergences
are regularised by assuming that € > 0, whereas € < 0 regularises the infrared ones. In
practice, we can keep € generic and regularise both simultaneously.

Dimensional regularisation however has drawbacks as well. For instance, it fails to
regularise chiral theories consistently [103, 104, 105, 106, 107, 108]. The source of
contradictions is the Dirac matrix 5. The latter is defined in d = 4 dimensions as

Y5 = ieuwwsMVMVM’YM'YM : (2.13)
Its continuation to generic d dimensions is however not uniquely defined. One could
assume that Eq. (2.13) holds as-is also in d dimensions, but this would result in a
breakdown of all Ward identities relying on {v5,7*} = 0. Dimensional regularisation
can still be used in such cases, but some manual intervention may be required. The
theories considered in this thesis are not affected by this problem.
Similarly, it is not uniquely defined how to continue the Dirac algebra to d dimensions.
Several variants have been proposed, which share the continuation of the loop momenta
to d dimensions, but differ in how the external states and the spin degrees of freedom are
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handled. Ilist here the most popular. In the original dimensional regularisation scheme,
known as the “’t Hooft-Veltman” (HV) scheme [102], the external states are treated
as dop-dimensional, while the internal states are in d dimensions. In the “conventional
dimensional regularisation” (CDR) scheme [109], all states are treated in d dimensions.
In the “four-dimensional helicity” (FDH) scheme [110, 111], instead, only the internal
momenta are d-dimensional, whereas the external states and the internal polarisation
vectors are to be treated in dyp dimensions. This is particularly convenient for the
unitarity-based approaches, where the loop amplitudes are constructed by “gluing”
together tree-level ones (more about unitarity in Section 2.4.2). It is therefore useful
that both the internal and the external states have the same spin degrees of freedom.
Furthermore, the FDH scheme preserves supersymmetry. I will therefore adopt the
FDH scheme in the supersymmetric applications discussed in Section 4.3. In the Yang-
Mills computation presented in Section 4.5, instead, I will not commit to any specific
scheme, and keep the spin-dimension of the internal gluon generic.

In the next two sections I will show how divergences in the loop integration may arise
from two distinct regions, the ultraviolet and the infrared, and how both are regularised
by dimensional regularisation.

2.3.2 Ultraviolet Divergences and Renormalisation

Ultraviolet (UV) divergences arise when the integration does not converge in the large
loop momentum region. Consider a generic one-loop integral with p propagators (which
we assume to be quadratic) and a generic numerator N. At large loop-momentum £,

it behaves as
N (k) L
d%k ~ [ d|k| k|12 2.14
[ s ~ [ alix , (214)

where r, also known as rank, counts the powers of loop momentum k in the numerator
N. If d+r —2p > 0, the integration does not converge and the integral exhibits a UV
divergence. This combination of numerator rank and number of propagators takes the
name of (superficial) degree of divergence,

w=d+r—2p. (2.15)

Ifw=0,1,2,... the integral is logarithmically, linearly, quadratically... divergent in the
UV region. If it is negative, the integral is UV finite. The multi-loop generalisation is
almost straightforward. In order to ensure a complete absence of UV divergences, one
must check the convergence in all the possible regions where the loop momenta become
large. In other words, we need to check the power-counting for every sub-graph. Note
that this counting does not take into account potential cancellations of terms. These
may reduce — never increase — the degree of divergence. That is the reason for the
attribute “superficial” to this degree of divergence.

Dimensional regularisation is sensitive only to logarithmic divergences, which mani-
fest themselves as poles in the regulator e. Power-like divergences instead vanish (I will
discuss this in Section 3.1.1). Clearly, an integral with degree of divergence w = 0 in
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2.3 Loop Scattering Amplitudes

dy dimensions has w = —2¢ in d = dy — 2¢ dimensions. UV divergences are therefore
regulated by assuming that € > 0, so that the degree of divergence is negative.

The Standard Model and the theories considered in this thesis are renormalisable.
This means that the UV divergences can be absorbed in a re-definition of the La-
grangian parameters: fields, coupling constants and masses. I expect that, if you are
reading this thesis, you have already encountered this procedure called renormalisation.
Still, T find a quick refresher always useful. Consider the coupling constant. There is
a distinction between the “bare” coupling constant that appears in the Lagrangian,
and the “physical” coupling constant. Of course we need to define what we mean by
“physical” coupling constant, e.g. by relating it to some measured quantity, which is
definitely not divergent. We can compute this quantity in terms of the bare parameters
up to a certain order in perturbation theory, this way relating the physical to the bare
coupling constant. The relation may contain UV divergences, but the physical coupling
constant is by definition finite. We can then use this relation to substitute the bare
with the physical, renormalised coupling constant in any other computation. In this
way we absorb the UV divergences in the definition of an unobservable quantity — the
bare coupling — in terms of a finite and observable one — the renormalised coupling.
Doing this for all the parameters of the Lagrangian removes the UV divergences alto-
gether (provided that the theory can be renormalised). The renormalised quantities
are defined at a specific value ug of the mass scale u introduced by dimensional reg-
ularisation. This renormalisation scale is unphysical, and physical quantities do not
depend on it. This translates into renormalisation group equations, which govern the
evolution of the renormalised parameters with respect to the renormalisation scale. In
Section 4.5 I will discuss in some detail the renormalisation of Yang-Mills theory. I
refer to the standard QFT textbooks (e.g. [109, 22]) for a thorough discussion.

In summary, the UV divergences are just an artefact of computing the S-matrix ele-
ments using unphysical fields and in terms of unphysical (bare) parameters. Computing
the S-matrix elements with physical — i.e. renormalised — fields in terms of physical
parameters removes the UV divergences.

2.3.3 Infrared Divergences

Whenever the scattering process involves massless particles, the loop integral may de-
velop infrared (IR) divergences, stemming from regions of the loop integration where
sufficiently many propagators go on shell simultaneously. This may occur when the
loop momentum becomes soft, or when it becomes collinear to the momentum of an
external massless particle. In the next subsections I discuss these two mechanisms
separately, and then show how IR divergences cancel out in any “legitimate” physical
observable.

Soft Divergences

The loop momentum k is said to become soft when all its components become small,
k* — 0. A toy example to understand this is given by the scalar loop diagram shown
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Figure 2.1: Example of loop Feynman diagram to illustrate the origin of IR divergences. The
arrows denote momentum flow.

in Figure 2.1. The particles are massless and the external momenta p; and ps are on
shell, p% = 0. The integrand has the form

a'k P (k)
/ (2m)d (k — p1)2k2(k + p2)?”’ (2.16)

where I have made explicit only the part that is relevant in the soft region, and F
denotes the rest of the diagram. We rescale the loop momentum as

k* = NkM (2.17)

The soft region then corresponds to the small-\ region, while k is kept fixed. The
propagators scale as

k2 ~ A2, (k—p1)? ~ A\, (k+p2)? ~ A, (2.18)
so that the relevant part of the integrand scales as

d’k dA
~ =2 2.19
(b= pr)?R20E+ pa)? ™ ) (219

Assuming that the rest of the diagram stays finite in the soft region, the integral has
a clear logarithmic divergence if d = 4. In dimensional regularisation around four
dimensions, d = 4 — 2¢, the integration converges for ¢ < 0, and produces a pole 1/e.
The integration instead converges in six dimensions. As we will see, the same is true
also in the collinear region. It is therefore sometimes interesting to look at Feynman
integrals in six dimensions, as they are free of IR divergences.

Collinear Divergences

Collinear divergences may instead occur when the loop momentum becomes collinear
to the on-shell momentum of an external massless particle. Let us consider once again
the diagram shown in Figure 2.1, and let us study the region of the loop integration
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2.3 Loop Scattering Amplitudes

where the loop momentum k becomes collinear to the external momentum p;. It is
convenient to parameterise the loop momentum as
k' = onpl + coph + K, (2.20)
such that
kl-plz():kzl-pg. (221)

We control the collinear limit with a parameter, p, such that the collinear region & || p1
corresponds to p = 0. The new integration variables (al, g, kﬁ) scale as

a; ~0O(1), s ~ O(p?), K~ O(p). (2.22)
In the small p region the relevant part of the integrand behaves as

d'k dp 44
(k —p1)?k2(k 4 p2)? P '

The same considerations we have made for the soft limit hold here as well. The integral
diverges logarithmically in d = 4, and is regulated by analytically continuing to d =
4 — 2¢ dimensions with € < 0. In d = 6, instead, the integral converges in the collinear
region. It is important to stress that, in order to assess the presence of collinear
singularities in a loop integral, one should check systematically all the regions where
one or more loop momenta become collinear to some of the external momenta.

(2.23)

Factorisation of the Infrared Divergences

In the previous sections we have seen that the IR divergences in loop scattering ampli-
tudes arise from the soft and collinear regions of the loop integration. In general, soft
and collinear divergences may occur simultaneously. In this thesis we will be concerned
with massless gauge and gravity theories in d = 4 — 2¢. The leading IR pole in a ¢-loop
amplitude or integral in d = 4 — 2¢ is typically of order 1/¢2. Remarkably, the IR
divergences of a renormalised scattering amplitude A factorise, schematically as

2
o o o
A ( : %g(u%),e) _z ( : %g(u%),e) A ( i J,g,gw%»e) (224
K MR MR

where {p;}? , are the external momenta, g is the renormalised coupling, pp is the
renormalisation scale and up is a factorisation scale. Most importantly, Z is an operator
which captures all the IR divergences, i.e. all the 1/e poles, so that Ay is finite at € = 0.
We can thus define a four-dimensional object called hard or remainder function by
letting € = 0 in the finite amplitude,

H = lim A (2.25)

The precise form of the IR pole operator Z depends on the specific theory. In Sec-
tions 4.3.4 and 4.5.2 I discuss in some detail how IR divergences factorise in massless
gauge theories and in gravity theories.
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Cancellation of the Infrared Divergences

Just like UV divergences, also the appearance of IR divergences in massless theories
is not a “bug,” but the manifestation of a deep physical principle. We have seen in
Section 2.1 that, in order to define a scattering amplitude, one must have a well-defined
notion of asymptotic states, which correspond to the scattering particles in the idealised
collision. States with a fixed number of massless particles are however not well defined:
it is in fact impossible to distinguish between a single particle with a definite light-
like momentum p (p* = 0) from a bunch of particles with collinear momenta which
sum up to p, or from the same particle surrounded by a cloud of soft particles. These
states are degenerate, and this ambiguity is the source of the IR divergences in the loop
integration, as well as of the singularities exhibited by the amplitudes as the external
momenta become soft or collinear (see Section 2.4.1).

The most common way of dealing with IR divergences is referred to as the cross-
section method [112, 113]. The basic idea is that the S-matrix elements are not observ-
able quantities, and we can therefore live with the fact that they have IR divergences.
What is important is that observable quantities are instead finite. This seemingly in-
nocent statement puts strong constraints on what we can call “observables”: they must
be infrared safe, i.e. they must be insensitive to the addition of soft particles, and to the
exchange of a massless particle with momentum p with a bunch of collinear particles
whose momenta sum up to p. An example of infrared-safe observable is the cross sec-
tion for jet production defined by Sterman and Weinberg [114]. This makes very much
sense from the experimental point of view: the detectors have a finite energy resolu-
tion, and cannot detect a particle with arbitrarily small momentum or distinguish two
particles moving in the same direction. What guarantees that this actually works out
also from the theoretical point of view is the fundamental theorem by Kinoshita, Lee
and Nauenberg (KLN) [115, 116]. In its original formulation, the KLN theorem states
that, for any given process, the IR divergences cancel out in the cross section order by
order in perturbation theory when summing over all the degenerate initial and final
states. The theorem was later gradually revisited and made stronger, so as to prove
that a more general class of infrared-safe observables are finite (see e.g. Weinberg’s
classic textbook [23], and Ref. [117] for recent developments). In practice, the can-
cellation of IR, divergences in physical observables takes place because of a conspiracy
between the “virtual” divergences, i.e. those coming from the loop integrations, and
the “real-emission” divergences, which instead arise from the phase space integration
of squared amplitudes with fewer loops but extra radiation in the final state. This dis-
tinction makes it very challenging to rearrange the terms so that they can be integrated
numerically.

When considering the scattering of composite objects there is one further subtlety.
Consider the (QCD-improved) parton model, which I briefly presented in Section 2.1.
The initial state of the hard scattering is precisely defined: there is exactly one parton
coming from each of the incoming hadrons, and it is not possible to accommodate other
degenerate states. This results in un-cancelled collinear divergences, which arise from
the radiation of massless partons from the incoming partons taking part in the hard
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2.4 Analytic Structure of Scattering Amplitudes

scattering process. The careful readers might recall that I have already hinted at the
solution to this problem in Section 2.1 (below Eq. (2.11)). Similarly to renormalisation,
the initial state singularities can be absorbed into the “bare” PDFs to obtain the
physical ones. The latter depend on an unphysical factorisation scale pr, of which the
physical observables must be independent. This dictates the evolution of the PDFs
according to the DGLAP equations [29, 30, 31].

The appearance of IR divergences in the scattering amplitudes therefore does not
pose an obstacle for computing physical observables (although it is certainly a compli-
cation). From the formal point of view it is however disturbing that the S-matrix is
not well defined in presence of massless particles, and the search for more satisfactory
formulations is an active area of research. See e.g. Refs. [118, 119] for recent work on
this topic.

2.4 Analytic Structure of Scattering Amplitudes

In this section I discuss some of the most salient analytic features of scattering ampli-
tudes viewed as functions of the external momenta, and show how they are related to
fundamental physical principles. Once again I want to keep the discussion as general
as possible, without specialising to a specific theory. We start in section 2.4.1 with
the singularity structure of scattering amplitudes, tightly connected to the postulate
of locality. Then, in Section 2.4.2 I discuss how the non-trivial branch-cut structure
of scattering amplitudes follows from the unitarity of the S matrix. Indeed, it is the
dream of many to construct explicit expressions for scattering amplitudes based solely
on physical principles and a precise knowledge of their analytic structure. This is
a long-standing goal of the so-called “S-matrix program,” initiated in the early Six-
ties [120, 121, 122] and recently revived. The interplay between the “old” ideas of the S-
matrix program with perturbation theory, especially in N' = 4 super Yang-Mills theory,
has led to major advances in our understanding of quantum field theory and scattering
amplitudes: generalised unitarity [123, 124], the Britto-Cachazo-Feng-Witten recursion
relations [125, 126, 127], and on-shell diagrams [67], just to name a few. My goal in
this thesis is more modest, but a thorough understanding of the analytic structure of
scattering amplitudes is at the basis of the techniques presented in Chapters 3 and 4.

2.4.1 Poles and Locality

The structure of the poles in scattering amplitudes as functions of the external momenta
is tightly connected to the fundamental principle of locality. Loosely speaking, locality
means that an object can be influenced only by its immediate surroundings. More
rigorously, locality implies that the Lagrangian density, defined in position space, can
only be a function of fields and of their derivatives at a single point in spacetime.
In momentum space, this means that the interaction vertices are either constant or
polynomial in the momenta. Only the propagators contribute in the denominator.

At tree level, locality implies that the only poles with non-vanishing residues arise
from the propagators of physical particles going on shell, i.e. from the exchanges of
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Figure 2.2: Factorisation of a n-particle tree-level amplitude. The arrows denote momentum
flow, pij.x = pi +pj + ...+ D, and m is the mass of any one-particle state
of the theory (including m = 0) that can couple to the states with momenta
DisDj, - - -»Dk. The sum runs over all the possible intermediate states.

physical particles. Tree-level amplitudes therefore may have poles only where the sum
of a subset of the momenta of the external particles goes on shell. More explicitly, a n-
particle tree-level amplitude with external momenta p1, ..., pp, such that > | p; =0,
may only have poles of the form

1
(Ziezpi)2 —m?

where Z C {1,...,n}, and m is the mass of any one-particle state of the theory (in-
cluding the case m = 0) which can couple to the external particles with momenta in
the subset Z. Poles of the form given by Eq. (2.26) are called multi-particle poles in
the literature. Certain representations of a scattering amplitude or separate parts of an
amplitude (e.g. individual Feynman diagrams with obscure field redefinitions or gauge
choices) may contain poles of a different form, but they are spurious, and the corre-
sponding residues in the complete amplitude must vanish. The residues of the poles
associated with the exchange of physical particles instead factorise into lower-point
amplitudes, as shown in Fig. 2.2. This can be understood easily from Feynman dia-
grams: the propagator going on shell splits the Feynman diagrams into two parts, each
containing all the Feynman diagrams required to compute a scattering amplitude. The
fact that the residues of a tree amplitude at all its poles are products of lower-point
amplitudes allows to set up recursive relations to compute higher-point amplitudes
without using Feynman diagrams. The Britto-Cachazo-Feng-Witten (BCFW) on-shell
recursion relations [126, 127] are the most notable example of such a technique. I refer
the interested readers e.g. to the textbooks [25, 26].

In massive quantum field theories the factorisation on the multi-particle poles repre-
sented in Fig. 2.2 can be shown to hold beyond the tree level, non-perturbatively [23].
This is a generalisation of the well known Lehmann-Symanzik-Zimmermann (LSZ) re-
duction formula [128] for the correlation functions, which corresponds to the special
case where only one of the external momenta is put on shell (see e.g. the standard text-
book [22] for a pedagogical discussion). The mass appearing in this non-perturbative
factorisation must be a physical, renormalised mass, not the bare one appearing in the
Lagrangian.

As for quantum field theories with massless particles, the standard theory of scatter-
ing needs to be modified because the states with a fixed number of massless particles

, (2.26)
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are not well defined. As we have seen in Section 2.3.3, this implies the existence of
infrared divergences in the S-matrix elements, but does not prevent us from computing
physical observables. Generalisations of the LSZ formula to accommodate massless
particles as well are being explored (see e.g. Refs. [129, 130] for recent work on this
topic). The presence of IR divergences make the factorisation of scattering amplitudes
with massless particles substantially more complicated than in the massive case. Even
in the case of IR-finite loop amplitudes, the factorisation is made more complicated
by the presence of special functions, necessary because of unitarity (see Section 2.4.2).
Nonetheless, on-shell recursion methods similar to those used at tree-level can be used
to compute finite loop amplitudes (see e.g. Refs. [131, 132, 133]). The special case
where the sum of the momenta of exactly two particles goes on shell is of particular
interest. In the massless case, the two external momenta become collinear in the limit,
and the universal factorisation of the residue is well understood also at loop level. In
Sections 4.3.5 and 4.5.6 I discuss in some detail the factorisation in the collinear limit
of the amplitudes in gauge and gravity theories at two-loop order. Another limit where
the amplitudes exhibit a universal factorisation that is understood beyond the tree
level is the soft limit, in which one of the momenta of the external particles vanishes.
I discuss the factorisation of gravity amplitudes in the soft limit at two-loop order in
Section 4.3.5.

The complications for loop amplitudes are of course due to the loop integration,
which is responsible for the appearance of both special functions and divergences. The
problem of integrating — to which Chapter 3 is devoted — is however separate from
that of constructing an un-integrated expression for a loop amplitude. We can strip off
the integral sign from an ¢-loop amplitude A®),

¢
A (p1, .. pn) —/ (Hddki> IO k1, .. ke, iy pn) (2.27)
=1

this way defining a loop integrand Z®). Setting aside the issue that such an object is not
uniquely defined, the loop integrand is just a rational function. Indeed, its properties
are very similar to those of tree-level amplitudes, the only difference being that the
topology of the associated Feynman graphs is more general, including also loops. On-
shell methods based on the factorisation in terms of lower-point objects can therefore
be used to compute the loops integrands, by-passing the Feynman diagrams. Perhaps
the most notable result of this approach is the explicit recursive formula for the (four-
dimensional) integrands of scattering amplitudes in planar N' = 4 super Yang-Mills
theory at any loop order [134] (see also Ref. [135]).

As for the integrated amplitudes, it is known that for individual Feynman integrals
(whose integrands have only local propagators in the denominator) the loci where they
may potentially be singular are determined by the solution of the Landau equations [136,
137, 122] (see also Refs. [138, 139] for some recent work). The latter however offer a
necessary condition, not a sufficient one. Moreover, the singularities of the individual
Feynman diagrams may cancel out in the complete amplitude, which ultimately is the
physical object of interest. In Section 4.2.4 I give an interesting example of a non-trivial
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hypersurface in kinematic space where some of the Feynman integrals are singular,
whereas the amplitudes they contribute to are finite. Understanding the singularity
structure of the integrated amplitudes remains an important and ambitious goal.

2.4.2 Discontinuities and Unitarity

Another important feature of the analytic structure of scattering amplitudes is the
presence of branch cuts. Their appearance follows from a fundamental postulate of
quantum mechanics: the unitarity of the S matrix,

SST =1, (2.28)
or
Tt =i (TT —T) : (2.29)

in terms of the interacting part of the S matrix. In other words, the probability is
conserved in the scattering process. This observation seems innocent, but has far-
reaching implications for scattering amplitudes. In order to spell them out, we take
the matrix element of both sides of Eq. (2.29) between two generic states |i) and |f),
with total momenta p; and py, respectively. Next, we insert in the left-hand side the
resolution of the identity in Fock space,

1= Y [ alpah ), (2.30)

n>0

where |{n}) denotes loosely a n-particle state, with total momentum py,;, and d®,, is
the n-body phase space defined by Eq. (2.9). Strictly speaking, the sum in Eq. (2.30)
runs over the particle species and polarisations as well, but the generalisation is straight-
forward and I prefer to keep the notation simple. Then, recalling the definition of a
scattering amplitude (2.7) and appealing to invariance under time reversal gives

2ImA; ;= Z/ <H dCI)i) (27?)45(4) (pf — p{n}) A{n}%fA?n}aiv (2.31)
=1

n>0

where the overall conservation of momentum, p; = py, is understood. This result,
known as the optical theorem, has profound consequences. Let us consider the ampli-
tude A;_, s as a function of some kinematic variable s, e.g. s = p%. For real momenta s
is real, but allowing it to take complex values, although unphysical, leads to important
insights. Schwarz’s reflection principle,

j*)f(s) = -Ai—>f(3*) ) (2.32)

relates the imaginary part of the amplitude to its discontinuity as s crosses the real
axis,

DiscAiﬁf(s) = 61_1}1})& [Aisf(s+10) — Aisp(s —i0)] = 2iImA; ¢ (s) . (2.33)
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For instance, the discontinuity of a logarithm is given by
Disclog (s) = 2mi©(—s), (2.34)
S

where O is the Heaviside step function. The optical theorem then implies that scattering
amplitude have branch points in the thresholds, i.e. where intermediate physical states
become kinematically accessible. By convention we take the branch cuts to lie along
the real axes.

These discontinuities may be traced back to the regions of the loop integration where
some virtual particles go on shell. The only source of non-vanishing imaginary parts
in a Feynman integral (for real kinematics) is the Feynman “+i0"” prescription in the
propagators,

1

—_ 2.
k2 —m?2 440t (2.35)

where 0% is an infinitesimal positive real number.* This prescription becomes relevant
only where the momentum flowing in the internal propagator goes on shell, k? = m?,
and the propagator becomes purely imaginary. This also suggests a way of comput-
ing the discontinuities across the branch cuts of a scattering amplitude through an

operation called unitarity cut [140]. The Sokhotski-Plemelj theorem implies that

lim Im (1) = —76 (k* —m?) , (2.36)

a0+ k2 —m?2 +in

to be understood in a distributional sense. A more careful derivation shows that causal-
ity requires the virtual particles put on shell to have positive energies, so that the §
function on the right-hand side of Eq. (2.36) has to be traded for

8 (k2 —m?) =6 (k> —m?) e (k%) , (2.37)

where kY is the energy component of k*. The discontinuity of an amplitude across a
branch cut can then be computed by “cutting,” in all the relevant Feynman diagrams,
the propagators in a given channel, i.e. by replacing them with ¢ functions which put
the corresponding momenta on shell [140].

The fact that the relation given by Eq. (2.31) is non-linear in the scattering am-
plitudes grants unitarity an extraordinary predictive power. In order to simplify the
notation, let us focus for a moment on a generic theory with trivalent vertices of or-
der g. The n-particle scattering amplitude A,, can be series-expanded in the coupling
constant g as

An=g"2> g AD. (2.38)

£>0

4The infinitesimal positive real number 07 in the Feynman prescription for the propagators is often
denoted by € in the literature. I use 0 to avoid confusion with the dimensional regulator e.
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Substituting this expansion into the optical theorem given by Eq. (2.31), it becomes
clear that the discontinuity of the /-loop amplitude is entirely determined by lower-loop
information. In particular, tree-level amplitudes have no discontinuity, as expected,
whereas the discontinuities of one-loop amplitudes, or equivalently their unitarity cuts,
are given by a product of tree-level amplitudes integrated over the remaining internal
degrees of freedom. This is graphically represented in Fig. 2.3. The same result can be
shown to hold for a generic theory. If the ¢-loop amplitudes are known, then unitarity

: ) = Z/d”%ém (k) 6D ((k+p)?)

Figure 2.3: Pictorial representation of the optical theorem for a generic one-loop amplitude in
a massless theory. The dashed line denotes that we are computing the discontinu-
ity in the p?-channel, i.e. across the branch cut along the real p? axis. The arrows
indicate the momentum flow. The sum runs over all the possible physical on-shell
two-particle intermediate states. The constant overall prefactors are omitted.

gives a strong handle over the (¢ + 1)-loop ones. The branch cuts of the integrated
amplitude are in fact constrained by unitarity in terms of lower loop information. The
unitarity cuts on the other hand relate the branch cut structure of the integrated
amplitude to the pole structure of its un-integrated expression, its integrand. We can
therefore make a generic ansatz for the integrand of an amplitude, which is just a ratio-
nal function, and fix the coefficients by analysing different sets of unitarity cuts. This
unitarity-based method to construct the amplitude integrands has proven extremely
useful, but can be made even more powerful by generalising the concept of unitarity
cut. Cutkosky’s rules to compute the discontinuity of a one-loop amplitude in a given
channel prescribe to cut the two propagators in that channel [140]. Nothing prevents
us from cutting more than two propagators. For instance, at one-loop and treating the
loop momentum as four dimensional, we can cut up to four propagators. This quadru-
ple cut localises entirely the internal degrees of freedom, and the result factorises in
terms of tree amplitudes, as shown in Fig. 2.4. Strictly speaking, the factorisation of
the generalised unitarity cuts in terms of lower-loop amplitudes does not follow directly
from unitarity, but can be shown to hold e.g. by analysing the contributing Feynman
diagrams [122]. For this reason we talk of generalised unitarity [123, 124, 125] (see e.g.
Refs. [141, 142] for a review). One subtlety of generalised unitarity cuts is that the
solution of the cuts is in general complex. If any number of propagators is substituted
by & functions and the loop integration is carried out in Minkowski space R, the
result may vanish, because the support of the § function may be complex. Generalised
unitarity cuts should therefore be viewed as the deformation of the integration contour
around the poles of the cut propagators, rather than the substitution of the latter with

26



2.4 Analytic Structure of Scattering Amplitudes
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Figure 2.4: Factorisation of a massless one-loop amplitude on the quadruple cut lﬂ okt =
0,Vi=1,...,4, withly =k, lo =k+p1,l3=k+p1+p2, l4 =k—p4s. The arrows
denote momentum flow, and the dashed lines denote the cut propagators. The
sum runs over all the possible intermediate states, which carry momenta {I;}%_,
evaluated in one of the two solutions k* of the quadruple cut.

0 functions. In order to understand this point, consider the following toy example:

flz) = /_Z d2'f ()6 (2= 2) , (2.39)

1) = 5§ TEL

2 Jop 2

(2.40)

where D is a closed disk around z € C, and f is holomorphic in D. While Eq. (2.39)
works only if z € R, Cauchy’s integral formula (2.40) makes sense for z € C. Comput-
ing generalised unitarity cuts therefore amounts to computing (possibly multivariate)
residues. From this point of view, a Feynman integral and its cuts differ only in the inte-
gration contour, and it is thus reasonable to expect that they share common properties.
Since computing the cuts is easier than computing the original integral, generalised uni-
tarity cuts can be useful to anticipate certain properties of the integrated expressions.
In fact, we will see in Section 3.6.1 that a further generalisation of the concept of uni-
tarity cut — the leading singularity — plays a central role in the method to compute
Feynman integrals presented in the next chapter.
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3 The Art of Integrating by Differentiating

The good, old Feynman rules offer a completely algorithmic way of writing down the
expression of any scattering amplitude. The number of Feynman diagrams grows badly
with the number of loops and of external particles, and the search of alternative methods
is an exciting area of research. However, it is fair to say that, given a Lagrangian and
an arbitrary amount of computing power, it is no mystery how to write down some
expression of the scattering amplitude for a certain process at a certain loop order.
Yet, even once such an expression is available and properly massaged, one has to face
the hard truth that she is still quite far from the finishing line. The main obstacle
standing in the way are the Feynman integrals. Despite tremendous progress in the
last decades, the computation of Feynman integrals beyond one loop is far from being
an algorithmic process. In this chapter I will discuss the analytic strategy which I
am convinced is the most systematic at our disposal: the method of the differential
equations [18, 143, 19, 20, 21].

Before doing so, I feel that I owe the reader some words of persuasion on the necessity
of computing Feynman integrals analytically. 1 invite those who need no persuasion to
skip the following paragraphs.

First of all, there is a practical reason. Scattering amplitudes are the ultimate gauge-
invariant building blocks of cross sections. In order to compute a cross section, however,
the scattering amplitudes have to be integrated over the phase space. This means
evaluating them hundreds of thousands of times. Speed and numerical stability are
crucial. Despite the enormous progress in numerical integration, which has given us
extremely powerful tools such as FIESTA [144] and PYSECDEC [145], this approach is
still no match for a fully analytic result in the case of multi-loop integrals, in particular
if evaluated in the region of the kinematic space which is of interest for phenomenology.

Yet, even if it were possible to evaluate numerically any Feynman integral in such
a way that our phenomenologist friends would be entirely satisfied, I argue that it
would still be worth pursuing a fully analytic computation. Scattering amplitudes and
Feynman integrals are more than numbers. Their analytic structure contains much
more information than it is possible to read off from plots, and gives extremely precious
insights in the underlying theory. I have given a few examples in Section 2.2.

Finally, it is worth mentioning that hybrid analytic/numeric approaches are also
being explored [146], and have already lead to several promising applications [147, 148,
149, 150, 149, 151].

Hopefully galvanised by this motivation, we can now move on to discussing the
method of the differential equation for the analytic computation of Feynman integrals.
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3 The Art of Integrating by Differentiating

I wish to make the presentation rather pedagogical and self-contained.! For this reason
I complement the presentation of each technique and idea with its application to an
explicit case, the so-called “three-mass triangle” integral family, which we will compute
together step by step throughout this chapter. I begin in Section 3.1.1 by defining the
fundamental notion of integral family, roughly speaking the set of all integrals with the
same propagator structure and any numerator. I show that an integral family admits
a basis, and that the latter satisfies a system of first-order linear differential equations.
The choice of basis is arbitrary and the differential equations can in general be very
complicated. In Section 3.2 I argue that a natural choice of basis exists, for which the
differential equations simplify dramatically and take the so-called “canonical form.” In
order to write down the solution of the differential equations, in Section 3.3 I define
and discuss the analytic properties of the multiple polylogarithms, and introduce some
technology to work with them. In Section 3.4 I show three different approaches to
write down the solution of the canonical differential equations, and discuss the benefits
and the limitations of each of them. The differential equations are also an extremely
convenient tool to compute the asymptotic expansion of the Feynman integrals in any
kinematic limit. I show how to do this systematically in Section 3.5. Finally, in
Section 3.6 I show how certain properties of the loop integrands, prior to integration,
can be used to construct canonical bases systematically.

3.1 Feynman Integrals and Differential Equations

In this section I introduce the important concept of “family” of Feynman integrals
associated with a given loop Feynman diagram. Although an integral family contains
infinite Feynman integrals, only a finite number of them are actually independent,
which naturally implies the notion of an integral basis. I discuss how the Integration-
by-Parts (IBP) relations can be used to rewrite any integral of the family in terms of
elements of the basis. The computation of the entire integral family therefore reduces
to that of the basis integrals, often called master integrals in the literature. I then show
that the basis integrals satisfy a system of first-order linear differential equations.

3.1.1 Integral Families and Integration-by-Parts Identities

Depending on the theory and on the process under consideration, a loop Feynman
diagram may have a non-trivial spinor structure. While the denominator is always
given by a product of scalar propagators of the form k? — m? because of locality (see
Section 2.4.1),2 the numerator can carry several Lorentz or Weyl indices in the loop
momenta kf. With some manipulations — called tensor reduction — it is possible
to rewrite any tensor quantity as a combination of tensor monomials in the external
momenta p!’ with scalar coefficients. As a result, we can restrict our analysis to scalar

'For an even more thorough discussion of this method I recommend the notes [152].
2The propagators can also be linear in the loop momenta, e.g. in the context of Wilson lines. In this
thesis I focus on quadratic propagators. The treatment of the linear ones follows analogously.
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3.1 Feynman Integrals and Differential Equations

Feynman integrals. Through the tensor reduction, however, a given Feynman diagram
can generate various scalar Feynman integrals with the same propagator structure, but
with different powers of propagators. For example, certain powers may be negative,
originating from a polynomial in the numerator of the original expression. This suggests
to generalise the idea of Feynman integral by allowing arbitrary integer powers of the
propagators. The resulting object is called integral family.

In general the propagators of the representative Feynman diagram may not be suffi-
cient in order to express any possible numerator. In other words, it may not be possible
to rewrite certain scalar products of the momenta in terms of propagators. We talk
in this case of Irreducible Scalar Products (ISPs). The standard procedure to handle
them is to add a minimal set of ISPs as auxiliary propagators. We will see an example
of this in the next chapter, when discussing the two-loop five-particle integral families.

D2

D1 k D3

Figure 3.1: Graph representing the propagator-structure of the three-mass triangle integral
family defined by Eq. (3.1). The arrows denote momentum flow.

In order to be more explicit and to define the notation, let me give an explicit
example. Let us consider the integral family corresponding to the one-loop three-
particle graph with massless propagators shown in Figure 3.1 [153],

dPk 1
I L= €TE 3 "
a2, = C / irs (K2 4+100)" (k4 p1)? 4+ i07)" ((k + p1 + p2)? +i0+)*

(3.1)

The overall prefactor of e is conventional, and serves the purpose of removing Eu-
ler’s constant yg = —I"(1) from the results. We take the external momenta p;, with
1 = 1,2,3, to be all incoming. They satisfy the on-shell conditions and momentum
conservation,

pZ=mi, Vi=1,2,3, (3.2)

1

p1+p2+p3=0. (3.3)

The loop momentum k& lives in D = 4 — 2¢ dimensions in order to regulate the di-
vergences, while the external momenta can be chosen to lie either in a four- or in a
D—dimensional space. The choice has no effect in this case, but it is in general impor-
tant (see Section 2.3.1). The Feynman prescription +i0" in the propagators specifies
how to perform the Wick rotation from Minkowski space with metric + — ... — to Eu-
clidean space. In most of the following we will omit it in order to simplify the notation.
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3 The Art of Integrating by Differentiating

Poincaré invariance and momentum conservation imply that the integrals of this family
depend only on three kinematic variables, which we choose as the external masses m?,
Vi = 1,2,3, and on the dimensional regulator €. In order to simplify the notation, I
denote the kinematic variables cumulatively by m,

m = (m%,m%,m%) . (3.4)
It is important to stress that it is not necessary to specify the underlying theory and
Feynman rules. The propagators are in fact always the same, and the integral family
is defined by allowing arbitrary powers of the propagators so as to accommodate any
numerator. The graph in Figure 3.1, therefore, is not to be mistaken for a Feynman
diagram. It is a pictorial representation of the propagator structure of the integral
family we are considering. Once the integral family has been computed, the results
can be used for the calculation of scattering amplitudes or correlation functions in any
theory.
We started off with the goal of computing a Feynman integral and we ended up with
a family of infinite integrals. At first glance it might seem like we did not make a
particularly good deal. However, the integrals in a given family are in general not inde-
pendent. They satisfy linear relations called Integration-by-Parts relations (IBPs) [154].
They originate from the fact that total derivatives vanish in dimensional regularisation.
Given the important role played by this theorem in the method of the differential equa-
tions, it is worth trying to understand why it holds — at least qualitatively. Let f(k)
be the integrand of a Feynman integral [ dPkf(k). The Poincaré invariance of the
integrand allows us to translate the loop momentum k by some external momentum p,

/de:f(k:) = /de:f(k: +p). (3.5)

Assuming that p is infinitesimally small, the following series expansion holds,

/ dPkf (k) = / Ak f (k) + / deaf)uf(kan) o) o

:/def(ka“/deaiu (k) +0 (") ,

which implies that total derivatives vanish in dimensional regularisation,

d
/d%ak“ (k)=0. (3.7)

In order to perform all these manipulations the integral must be well defined. This is
why dimensional regularisation is crucial. Similarly, one can also prove that scaleless
integrals vanish in dimensional regularisation,

/de; (k*)" =0. (3.8)
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3.1 Feynman Integrals and Differential Equations

This is often referred to as Veltman’s formula in the literature [155, 156].
Going back to the three-mass triangle integral family (3.1), we have that

d°k 0 q" B
[ om (wm@emrarmrame) = 09

for any momentum ¢. In this case there are three independent choices, ¢ € {p1,p2, k}.
It is sufficient to perform a bit of algebra to show that the action of the differential
operator on the rest of the integrand in Eq. (3.9) can be rewritten in terms of members
of the integral family with different powers of the propagators {a;, as, as}. For instance,
choosing ¢ = k gives the IBP relation

(D - 2&1 — a2 — a3)Ia1,a2,a3 - a3Ia1—1,a2,a3+1 - a2Ia1—1,a2+1,a3+ (3 10)
2 2 :
+ m3a31a1,a2,a3+1 + m1a2la1,a2+1,a3 =0.

The IBPs therefore relate integrals with different powers of the propagators a;. As
already anticipated, only a finite number of them are independent [157]. The members
of an integral family therefore form a finite-dimensional vector space. As we will see
in the next section, the choice of the basis of such a vector space is crucial. In the
three-mass triangle case, the basis or master integrals can be chosen for instance as

f={h10. L1 loga.Tiaats (3.11)

corresponding pictorially to bubble-graphs in the three different channels, and a trian-
gle, as shown in Figure 3.2.

O OGO A

Figure 3.2: Integral basis of the three-mass triangle family given by Eq. (3.11).

It is then possible to make use of the IBPs iteratively to expand any integral of the
family in the chosen basis, with rational prefactors in the kinematic variables and the
spacetime dimension D. For example,

D—3 m2 — m2 4 m2
Iy =—5—5 {o11— 1101 —I1,10) — (D —4) 1 22 3 it (3.12)
mims 2mims

This procedure is called IBP reduction. Although in principle straightforward, this task
is rather tedious to do by hand, and can become very heavy from the computational
point of view. Several algorithms have been devised to perform it in an automatic
and efficient way, notably Laporta’s algorithm [158, 159]. Various implementations are
publicly available [160, 161, 162, 163, 164].
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3 The Art of Integrating by Differentiating

3.1.2 Differential Equations

Thanks to the IBPs the computation of all the integrals of a given family reduces to
that of the basis integrals. We will now see how we can compute these integrals — quite
ironically — by differentiating them.

We want to compute the basis integrals as functions of the kinematic invariants, but
their defining expression (3.1) is written in terms of momenta. The first step is thus to
construct differential operators d/9m? that can act on the integral representation (3.1).
This can be easily done by writing down ansiitze for them, e.g. for 9/0m?

0 0 0
gz = (ormt + aatomiaf ) g+ (ol + a3 (319

Imposing that the operator behaves as expected, namely that

0 o 0 5 0 9
-1 =0, _— + =0, 3.14
om? b1 ’ om? P2 om? (Pt +p2) ( )

fixes three of the free coefficients,

—142a1 m?
m%—i—m% —mg ’
2 2 2 2

by = 2m3 . (m1_m2_m3) — al) , (3.15)

P 2 2 2
mi+mi—m3 \ A(m}m3,m3

a9 =

2 2 2
b2 = T My aq
)\(m%,mg,mg) ’

where A denotes the Kéllen function,

Mz,y,2) = 2% +y? + 2% — 20y — 202 — 2yz. (3.16)
The remaining freedom can be used to simplify the expression. For instance, by choos-
ing a1 = (m3 —m3 —m3)/A(m3, m3, m3), we obtain

0 :(m%—m%—m%)p’f+(m%—m%erg)pgi (3.17)
om? A (m?,m3, m3) opl '

The other operators can be constructed the same way, using the remaining freedom to
ensure that they all commute,

0 0
—5,75| =0, Vi,j=1,2,3. 3.18
lamgaam?] ’ 2Wi < ( )

Now that we have differential operators at our disposal, we can differentiate the basis
integrals f (3.11). Tt takes just a little amount of algebra to show that one obtains
integrals within the same family. We can thus re-express the result of the differentiation
as a linear combination of basis integrals using IBPs. To put it differently, the fact that
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3.1 Feynman Integrals and Differential Equations

a family of Feynman integrals admits an integral basis implies that the latter satisfy a
system of first-order linear homogeneous differential equations,

8877{2 - Bl(mve) : f
1
of .
GWJ:% = Ba(m,€e)- f (3.19)
of .
oy = Bs(m. ) ]

where we stress that B; is a 4 x 4 matrix function of both the kinematics and e. For
example, the derivative with respect to m? gives

-5 0 0 0
my
0 0 0 0
Bi=1 o 0 0 0 )
4e—2 (1-20) m%—m%—i—m% (1-20) m%-l—m%—mg m%(m%-{-m%—m%)—f—e(m%—(m%—mg 2)
A miA m3\ m3\

(3.20)

where we denote A = A\(m?, m3, m3) for simplicity.
A few comments on the matrices of the differential equations B; are in order. First
of all, Euler’s theorem on homogeneous functions implies that

3
> miB; = diag(—¢,—€,—¢,~1—¢) , (3.21)
=1

where on the diagonal are the scaling dimensions of the integrals. We can set them
to zero by normalising the integrals with appropriate dimensional factors, so that they
only depend on two non-trivial dimensionless variables.

Secondly, the matrices B; must satisfy certain integrability conditions,

0B; 0B;

2 2
om;  Om;

= [B;,Bi], Vi,j=12,3. (3.22)

They follow through the differential equations (3.19) from the requirement that partial
derivatives of the basis integrals commute,

[a 8] f=o0. (3.23)

In practice, the scaling dimensions (3.21) and the integrability conditions (3.22) offer a
very precious opportunity to check one’s implementation of the differential equations.
Such an opportunity should never be missed.
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3 The Art of Integrating by Differentiating

The differential equations for the bubble integrals are trivial, as can be seen e.g.
for f; from Eq. (3.20). Since they depend only on one scale, m? for fi, their func-
tional dependence is entirely fixed by dimensional analysis. We can thus read off from
Eq. (3.21) that f; o< (m?)~¢ for i = 1,2,3. The overall kinematic-independent nor-
malisation cannot be determined from the differential equations. Its full expression
is rather easy to compute in closed-form, e.g. by straightforward integration of the
Feynman parametrisation,

f; = e (-m3) " = % +2 —log (—m?) + O(e), Vi=1,2,3.

(3.24)

The expression for the bubble integrals given by Eq. (3.24) is well defined in the so-
called Euclidean region, where m? < 0Vi=1,2,3. I postpone the discussion of the
kinematic regions and of how to analytically continue away from the FEuclidean region
to Section 3.4.1.

Finally, the differential equations exhibit manifestly the loci of the potential singu-
larities of the integrals. By looking at Eq. (3.20) and at the corresponding expressions
for By and Bs, it is clear that the basis integrals can diverge when one of the external
masses vanishes, m? = 0, or on the hypersurface A\(m?,m3, m3) = 0. The latter singu-
larity may sound surprising. It has no physical meaning and therefore must not appear
in the Feynman integrals. The presence of such spurious singularities in the differential
equations is actually valuable: imposing their absence provides us with constraints to
fix the boundary constants, as discussed in Section 3.4.2.

To summarise, we have seen that any integral family admits an integral basis, and
that the latter satisfies a linear system of first-order differential equations (3.19), whose
expression can be computed in a completely algorithmic way. Their solution is however
not systematic, in general. Moreover, the choice of basis is arbitrary. We are always
free to switch to a different basis g,

g=T- 1, (3.25)

for some invertible matrix 7. The new basis integrals g satisfy a system of differential
equations equivalent to Egs. (3.19),

;)nzg — A (m,e) -G,  Vi=1,2,3, (3.26)
where
Ai:T-Bi-T_lJra—Tz-T_l. (3.27)
om;

In the next section we will see that there is a natural choice of basis for which the
differential equations simplify dramatically.
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3.2 Differential Equations in the Canonical Form

3.2 Differential Equations in the Canonical Form

In Section 3.1.2 we have seen that the basis of an integral family satisfies a linear system
of first-order differential equations. The latter can be rather complicated for a generic
choice of basis, so that its solution remains a difficult problem. In Ref. [21] it was
conjectured that there exist special choices of basis for which the differential equations
take a certain “canonical” form. The canonical form of the differential equations is
dramatically simpler, so that the solution can be simply read off in terms of special
functions. In this section I discuss the main features of the canonical form by working
out explicitly the case of the three-mass triangle family (3.1).

Let us make the following educated choice of integral basis,

g1=emilyo,
2
g2 = emylpo 1,

: (3.28)
gs = emzlio2,
ga =V

The corresponding transformation matrix in Eq. (3.25) simply amounts to changing
the normalisation of the integrals,

T = diag (6(26 ~1),e(2e — 1), e(2e — 1), ezﬁ) . (3.29)
For the bubble integrals this can be seen e.g. by setting a; = a2 = 1 and a3 = 0 in
Eq. (3.10), which yields the relation
2¢ —1

127170 = 5 117170 . (330)
m

Analogous relations for the other bubbles, Iy 1 1 and I o 1, can be deduced from Eq. (3.30)
by symmetry or determined using other IBP relations.

The basis defined by Eq. (3.28) might look more complicated than the one given by
Eq. (3.11), since we have introduced a square root. This is a fair price to pay for the
drastic simplification we achieve. The new integral basis {gi}glzl satisfies the system of
differential equations (3.26). The matrices of the differential equations A; can either
be obtained from those of the previous basis through Eq. (3.27) or computed following
the procedure outlined in Section 3.1.2. Let us take a look for instance at A,

- 0 0 0

m

0 0 0 0

o) mimmiomd  md—md-md  (mitmi—md)(mi—m3+m3)
VX m2vx m2vx A

The first striking simplification is that the dependence on ¢ is factorised. The system
of differential equations can therefore be rewritten as
ag

5 s=¢€d;(m)-g, Vi=1,2,3, (3.32)
m;
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3 The Art of Integrating by Differentiating

where we stress that the matrices fli = A;/e depend only on the kinematic variables.
As a result, the two sides of the integrability conditions, given by Eq. (3.22) with B;
traded for A;, have a different order in €. Since they must hold for any value of €, they
split into

0A;  0A;
3@? ) omi Vi, j=1,2,3. (3.33)
[Ai,A]} —0,

Moreover, the integrals of the new basis {gi}le all have the same scaling dimensions,
Zm A; = diag (—1,—1,—1,-1) . (3.34)

One could therefore extract a factor of, say, (m%) ~¢ from the integrals g;, leaving a
non-trivial dependence on two dimensionless variables only.

The kinematic dependence simplifies enormously as well. In order to appreciate this
in full glory, it is convenient to combine the differential equations (3.26) and write the
full system in differential form,

dj =edA(m) -7, (3.35)
where
oA - .
W :Ai, VZ:1,2,3. (336)

1

The matrix A can be obtained from the A, by solving algorithmically the Egs. (3.36)

— see for instance Ref. [147] — or bootstrapped as I discuss below. It takes the form
—log oy 0 0 0
A- 0 —log ag 0 0
- 0 0 —log a3 0 ’
—logay —logas logay+logas —loga; —logas —logas+ 2logag
(3.37)

where {;}$_, are algebraic functions of the kinematics,

{ai}y_, = { mi,m3, m3, ; 2 M5 = : 3 1=VA s (3.38)
m? —m3 —m3 + f m32 — it 7

The differential equations (3.35) with A given by Eq. (3.37) make beautifully manifest
not only the loci of the (physical and spurious) singularities, but also their regular
nature. It is worth spending a few words to clarify this concept. It is possible to
prove, e.g. by analysing the Feynman parameterisation, that a Feynman integral is
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always bounded in a limit by a power with a certain exponent (see e.g. Ref. [152]).
This means that Feynman integrals can only have regular singularities in the kinematic
variables. In other words, it is not possible for a Feynman integral to develop an
essential singularity, such as e/% at 2 = 0. This observation has strong implications
for the differential equations. In order to appreciate this, let h(z) be a Feynman integral
depending on a kinematic variable x. Let x; # oo be a singular point of h(z).> There
exists a constant a such that h(x) ~ (x — x4)® in the limit x — 25. This means that
h(zx) satisfies a first-order differential equation which exhibits a simple pole at = = x4,
Oh(z) a

D o 1 . h(z) . (3.39)
A differential equation which exhibits this behaviour around all its singular points is
called fuchsian. Higher poles would lead to essential singularities, absent in Feynman
integrals. In the case of an integral basis, the matrix nature of the differential equations
they satisfy may obscure the fuchsian property with spurious higher poles. However,
the fact that Feynman integrals can have only regular singularities implies the existence
of a basis whose differential equations are in fuchsian form. The matrix A in Eq. (3.37)
makes the system of differential equations (3.35) manifestly fuchsian.

Equation (3.35) with a manifestly fuchsian matrix A is called the canonical form of
the differential equations [21]. The integral basis for which the differential equations
takes this form is dubbed canonical basis.

Once the differential equations are cast into the canonical form, the problem of
solving them for the basis integrals as Laurent expansions around € = 0 is essentially
solved. Formally, the solution can be written down straightforwardly as

-

G(m,e) =Pexp (e [, dil) -b(e), (3.40)

where P denotes the path ordering, -y is a path in the kinematic space going from some
boundary point m(®) to m, and b(e) = Jo(¢) are the values of the basis integrals at m(®).
Equation (3.40) is to be understood in a Laurent expansion around e = 0,
o
Gim,e) = 3 ) (m) (3.41)
k=0

and similarly for the boundary values g(e) Note that it is always possible to rescale
the basis integrals such that they are finite as ¢ — 0, since the differential equation
is not affected by any overall kinematic-independent normalisation of the integrals.
This motivates the overall factor of € in the definition of the canonical basis given by
Eq. (3.28). The k-th term in the expansion is then given by a k-fold iterated integral
along the contour 7 of the matrix differential form dA,

k
g@m:Z/meMWﬁ, (3.42)
3=0"7 j

3Singularities at infinity, s — 0o, can be analysed in the same way by first doing a variable transfor-
mation z — z = 1/z and then studying the singular point zs = 0.
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with the empty iterated integral defined to be 1. I postpone to Section 3.3.1 the
precise definition of iterated integral. For now it suffices to understand that, once the
differential equations are cast into the canonical form, the problem of solving them
can be considered as solved, at least formally. The 1-forms appearing in the matrix dA
constitute the integration kernels in the iterated-integral solution, and therefore encode
which class of special functions is required to write down the solution.

In the three-mass triangle case, we see from Eq. (3.37) that all the integration kernels
are logarithmic,

6
dA = Z a;dlog a; , (3.43)
i=1

where a; are constant rational matrices and «; are algebraic functions given by Eq. (3.38).
This is the most well understood case and it covers a great number of applications.

The 1-forms {dlog ai}?zl are called letters, and the set of linearly independent letters

is dubbed alphabet. If the alphabet can be rationalised with an appropriate change of
kinematic variables, then it is possible to express the result algorithmically in terms of
Multiple Polylogarithms (MPLs) [165, 166, 83, 167, 168]. I discuss how to do that in
Section 3.4.3. This is often possible even in the presence of non-rational letters (see e.g.

Ref. [169]), although it is not true in general. Reference [170], for instance, provides an

explicit example of an iterated integral with logarithmic kernels which cannot be written
as a linear combination of MPLs. In such a case, and whenever the integration kernels

in Eq. (3.42) are not logarithmic, more complicated functions may be required. One

practical way of assessing this is the analysis of the maximal cuts, i.e. the generalised

unitarity cuts where all propagators are cut. If all maximal cuts of a Feynman integral

and of its sub-topologies are algebraic, for instance, it is typically possible to express it

in terms of MPLs. Maximal cuts that evaluate to elliptic integrals, on the other hand,

are the smoking gun of Elliptic Multiple Polylogarithms [69, 70, 71, 72, 73, 74, 75].

Iterated integrals of 1-forms defined on even more complicated geometries — e.g. hy-

perelliptic curves [76, 77] and Calabi-Yau geometries [78, 79, 80, 81, 82] — become

relevant as we keep increasing the number of loops and of variables.

For the work presented in this thesis it suffices to consider logarithmic 1-forms only.
From now on I will thus specialise in this case and, for simplicity, I will refer to the argu-
ments of the logarithms {a;}%_; as letters, rather than to the full 1-forms {dlog a;}%_;.
I will therefore assume that the matrix A in the canonical differential equations (3.35)
has the form given by Eq. (3.43). Since the alphabet {a;}%_; can be determined by look-
ing at the A; matrices, A can be computed by writing down an ansatz of the form (3.43),
and fixing the constant matrices a; by imposing that it satisfies the differential equa-
tions (3.36). This can be done numerically, which often makes it advantageous with
respect to integrating the Eqs. (3.36) analytically.

3.2.1 A Note on the Choice of the Letters

Of course there is freedom in the specific expression of the letters, and finding the
simplest alphabet is an art. For instance, one might as well choose the letters ay and
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as in Eq. (3.38) to have only the numerator or the denominator, since

o ] den ] = dazas. o
num [a5] den [as] = 4oz, .

where den [z] and num [z] denote the denominator and the numerator of x, respec-
tively. I prefer the choice made in Eq. (3.38) because, in the kinematic region where
)\(m%,m%,mg) < 0, all the letters have a well-defined transformation under complex

conjugation. They are either even,
dloga; = dlog a; , 1=1,2,3,6, (3.45)
or odd,
dloga; = —dlog a; , i=4,5. (3.46)

This property gives a useful criterion of classification of the functions appearing in the
solution.

In general, thus, whenever the alphabet contains a square root v/, it is convenient
that the letters depending on it have the form

P—V\
P+v)’

where P is a polynomial in the kinematic variables. While it is typically easy to identify
a square root in the alphabet by looking at the differential equations even in a form
that is not canonical (see e.g. Eq. (3.31)), finding the corresponding polynomials P to
construct letters of the form (3.47) may be non-trivial, especially in the presence of
multiple square roots. This can be done algorithmically as follows. If a letter of the
form (3.47) belongs to the alphabet, it must be possible to factorise both numerator
and denominator separately in the alphabet. This implies that their product is given
by a product of letters which are even under the exchange VA < —v/),

(3.47)

PP-x=c [ of (3.48)

where ¢, e; € Q. Since the left-hand side of Eq. (3.48) is polynomial, the right-hand side
must be polynomial as well. There is therefore only a finite number of combinations of
exponents {e;} such that the right-hand side of the equation is a polynomial with the
right dimensions. We can therefore make an ansatz for P and look for a solution for its
free coefficients and for the constant ¢ in Eq. (3.48) by scanning systematically over all
the allowed products of even letters. In the three-mass triangle case, for instance, with
A given by Eq. (3.16), one solution is given by P = m} —m3 —m3, for which Eq. (3.48)
becomes

P? -\ = dazas. (3.49)
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In this Section I have introduced the canonical form of the differential equations for
an integral basis, and praised its many virtues. It encodes in a minimal way all the
information about the basis integrals: the alphabet defines which class of special func-
tions is needed to write down the answer, and the coefficient matrices a; in Eq. (3.43)
specify which linear combinations of those functions are required. It is now high time
we take a look at what these special functions look like. I collect their definitions and
main properties in Section 3.3. After this mathematical interlude, I will discuss a few
approaches to write down the explicit solution in practice in Section 3.4, and in Sec-
tion 3.5 I will show how even the asymptotic expansion in a limit can be computed
systematically using the differential equations. The problem of computing a family of
Feynman integrals therefore reduces to the task of finding a canonical basis. I will
tackle this issue in Section 3.6.

3.3 Special Functions

The canonical form of the differential equations (3.158) makes it manifest that the solu-
tion can be written down perturbatively in terms of iterated integrals with logarithmic
integration kernels. In Section 3.3.1 I give a precise mathematical definition of what
we call iterated integrals, and discuss some of their salient properties. For a thorough
discussion I refer to the notes by F. Brown [171]. While iterated integrals can be very
convenient to work with, it is often desirable to have expressions in terms of more spe-
cific special functions, which for instance allow for a more efficient numerical evaluation.
We know that the unitarity of the S-matrix demands the presence of special functions
with branch cuts in its matrix elements. The simplest example is of course the loga-
rithm, but much wilder functions show up in scattering amplitudes. In Sections 3.3.2
and 3.3.3 I present the classical polylogarithms and the multiple polylogarithms. These
generalisations of the logarithm play a prominent role in the computation of scattering
amplitudes. Their importance stems from the fact that, whenever the letters of an
alphabet are dlogs with rational arguments, the iterated integrals can be expressed in
terms of multiple polylogarithms. This is often true even in the presence of square
roots, as we will see. Having defined these special functions is however not particularly
useful unless we can work with them comfortably. To this end, I first define some
vocabulary in Section 3.3.4, where I introduce the notions of transcendental weight
and of pure functions. Next, I argue that any pure function generates a system of
differential equations in the canonical form, and that the latter can be used very conve-
niently to manipulate the multiple polylogarithms. Finally, in Section 3.3.6 I introduce
our most powerful weapon to simply expressions containing multiple polylogarithms
— the symbol — and show how it encodes in a minimal and elegant way the analytic
information.

3.3.1 Chen'’s Iterated Integrals

Let wy, ..., w, be smooth 1-forms on a smooth manifold M, and let v : [0,1] — M be a
piecewise smooth path on M. In the context of Feynman integrals, M is the kinematic
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space and {w;}7_; is the alphabet. The (Chen) iterated integral of wy, ..., wy along 7y
is defined by [172]

/w1 o = / Rt fult)dtn, ¥ >0, (3.50)
Y 0<t1<...<tp <1

where the functions f; are defined by pulling back the 1-forms w; to the interval [0, 1],
fi(t)dt = v*w; . (3.51)

For an exact 1-form d€)(z) the pull-back with the contour ~ is given by

89‘217(15)
(v*dQY) (t) = ——————=dt. (3.52)
ot
The empty iterated integral, namely the case n = 0, is defined to be the constant 1. In
general, we will consider Q-linear combinations of iterated integrals of the form (3.50).
In this thesis we will be interested in logarithmic 1-forms only, w; = dlog ;.

Let us look at a few basic properties. The iterated integrals are independent on
the parameterisation of the path ~. Given two paths «,5 : [0,1] — M such that
a(l) = B(0), let af denote the composed path obtained by integrating first along «
and next along 8. Then,

n
/ Ldl...wn:Z/w1...Wi/Wi+1...wn. (3.53)
af i=0 Y& B

The iterated integrals satisfy the shuffle relations

/wal...was/wbl...wbt— Z /wcl...wCHt, (3.54)
g v =y

cealllb

where @ = (a1, ...,as), and similarly for b and & The sum runs over the shuffle product
of the lists @ and b, namely the set of the lists which contain all the elements of @ and
b, for which the ordering of the elements of @ and b is preserved.

Integrability Conditions

Let us now consider a contour v from a fixed base point zy = v(0) € M to a generic
point z = y(1) € M. We would like the iterated integral fv w1 ...wy to be a (multi-
valued) function of z. In general, this is not the case, because the iterated integrals
depend on the choice of v. Since there is an infinite continuum of contours from zy to
z, the iterated integral does not evaluate to a (multi-valued) function. In order for this
to be the case, the iterated integral must be a homotopy functional. In other words,
given two contours with the same endpoints that can be deformed continuously into
each other, the value of the integral along the two must be the same. As a result, if
the manifold M is contractible, the iterated integral depends only on the end-point z
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3 The Art of Integrating by Differentiating

(we consider the base point zp as fixed) and is thus a single-valued function. If the
manifold M has punctures, the iterated integral is a multi-valued function of z, since
it also depends on the homotopy class of the contour 7, namely on how it wiggles
around the punctures to reach to end-point. This defines the choice of the branch of
the multi-valued function. This requirement imposes constraints on the set of 1-forms
{witisg-

Let us consider the 1-fold iterated integral I} = fﬁ/w. It is a homotopy functional if
and only if w is closed, namely if dw = 0. This is a consequence of Stokes’ theorem,

fiw _ /de, (3.55)

where v is a closed loop encircling the disk D C M. If we assume that I; is a homotopy
functional, then the integral on the left-hand side of Eq. (3.55) vanishes for any closed
loop. The integral on the right-hand side thus vanishes for every small disk D centered
in any point of M. This implies that dw = 0 everywhere in M. On the other hand,
any closed form is locally exact by Poincaré’s lemma, namely there exists a potential
function « such that w = da locally. Therefore, dw = 0 implies that the integral around
any small loop vanishes. As a result, the first constraint is that the 1-forms are closed,

dw; =0, Vi=1,...,n. (3.56)

Let us now consider the 2-fold iterated integral f7 wiwse. The constraint (3.56) implies
that there exists a function Fy(z) = fv wy. The 2-fold iterated integral can thus be

expressed as a 1-fold one,
/LL)1LL)2 = /Fgwl, (357)
¥ ¥

and we know that this is a homotopy functional if and only if d(Fhw;) = 0. Since
dwi = 0 and dF5 = wo, f7 wiws is a homotopy functional if and only if w; Awy = 0. We
see therefore that, for generic 1-forms w; and we, the iterated integral f,y wiws is not a
homotopy functional, but the symmetric combination

/ (W1WQ + wgwl) (3.58)

is. In general we are therefore interested in Q-linear combinations of integrals of the
form (3.50).

By iterating this procedure one can work out the constraints for a generic Q-linear
combination of n-fold iterated integrals. Given a set of closed 1-forms {w1,...,wy}, the
iterated integral

> crwi . wi, (c1 €Q) (3.59)

T I=(i1,...,in)
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is a homotopy functional if and only if [172, 84]

Y quwi,®... Qwi Awi,, ®... 0w, =0, Vk=1,...,n—1. (3.60)
I=(i1,....in)

These constraints are referred to as integrability conditions.

In this thesis we will be concerned with iterated integrals of logarithmic forms, or
dlog forms, w; = dlog a; on the kinematic space. In this case it is customary to label the
dlog form dlog o; by its argument «; only. Denoting by {x,}7, the set of independent
kinematic variables, the integrability conditions (3.60) become

dlog oy, Olog o
— b
Z . CI( 0z, al'b (a « )
I=(i1,..yin)

(3.61)
Ozil®...®@ik/\dik+1®...®ain:0,

forall k =1,...,n—1, and for all pairs of kinematic variables (z,, z5). The hat denotes
omission as usual. Clearly, if the kinematic space is described by only one variable the
integrability conditions are automatically satisfied.

Therefore, an integrable iterated integral with fixed base point 7(0) = zy and variable
end-point (1) = z defines a multivalued function of z. This motivates the following
notation

[, am] (z):/dlogal...dlogan, Vn>1, (3.62)
vy

and [],,(2) = 1. Note that such a function vanishes by definition at the base point,
[a1, ..., 0]z (20) = 0. The differential is given by

dlai,...,an], (2) = dlogan(z) ai,...,an-1],, (2). (3.63)

The definition (3.62) and the differential rule (3.63) generalise to Q-linear combinations
of iterated integrals in the obvious way. A function which can be expressed as a linear
combination of integrable iterated integrals of dlog forms is assigned a transcendental
weight, which is loosely defined as the number of iterated integrations. For now it will
play the role of a useful label for the functions and constants presented in Sections 3.3.2
and 3.3.3. The precise definition and its importance will be discussed in full glory in
Section 3.3.4.

Linear Independence of the Iterated Integrals

If we consider a set of linearly independent dlog forms {dloga;}" ;, namely if

n
> cdloga; =0 < ¢;=0Vi=1...,n, (3.64)
i=1

then (integrable) iterated integrals [aq, ..., an)s (%) with the same argument z but

different entries drawn from {a;}7; give rise to linearly independent functions. This
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3 The Art of Integrating by Differentiating

means that all the complicated functional relations satisfied by transcendental functions
— we will see many examples in the next sections — are automatically implemented
when they are expressed in terms of iterated integrals. In the context of scattering am-
plitudes, this means that we can check all sorts of cancellations, e.g. when subtracting
UV/IR poles, at the level of the iterated integrals. This is a great advantage, since
solving the differential equations for the basis integrals in terms of iterated integrals is
completely straightforward, as we will see in Section 3.4.4. In general, the non-trivial
aspect remains how to express a given function in terms of iterated integrals with let-
ters drawn from a given alphabet. In Sections 3.3.5 and 3.3.6 I discuss how to do this
using the canonical differential equations and the symbol associated with an iterated
integral.

Tangential Base Points

It is sometimes convenient to integrate starting from a pole of the integrand or, in other
words, from a point which does not belong to the space M where the differential form
is defined. We talk in this case of a tangential base point. For instance, consider the
1-form dlog z. It is defined on M = C\{0}, but it is possible to define the iterated
integral [dlog z]p with base point at z = 0 in a regulated sense. Let v : [0,1] — M be
a smooth path from 0 to some point z € M. Let us make an educated choice,

)=t +t2(z—1). (3.65)

We can regulate the divergence by integrating on the interval [4, 1], with § small and
positive (0 < § < 1),

1
/ (v*dlog z) =logz — log (1 + d(2 — 1)) — log ¥ . (3.66)
0

In general, one has the expansion

1
/ (v*dlog z) (v w2) ... (v 'wn) = ao(z,0) + a1(z,0)logd + ... + an(z,0)log" §, (3.67)
§

where the functions a;(z,d) are analytic at 6 = 0. The regularised value is defined by
formally setting logd to 0, and letting § = 0 in the remaining, e.g.

Reg[dlog z,wa, ..., wn], (2) = a(z,0). (3.68)
From Eq. (3.66) we therefore see that
Reg[dlog z]p(z) = log = . (3.69)

This definition is of course not unique. If we integrate along a straight line from 0 to
z, p(t) = tz, then

1
/ (p*dlog z) = —log ¢’ . (3.70)
é

!
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which in turn results in an awkward

Reg[dlog z]p(z) = 0. (3.71)

This is where the tangential nature of the base point becomes relevant. Consider a

generic change of the regularisation parameter 8 = c¢16 + 02 + ..., where ¢; # 0.
Then,

log &’ =logd + loger + O(9). (3.72)

This means that the result of the regularisation depends on ¢; = 94’/9§ only. The
difference between Egs. (3.69) and (3.71) is therefore due to a different regulator, with
c1 = 1/z. This is related to the derivative of the path at the base point, hence the
adjective “tangential.” We see in fact that 7/(0) = 1, whereas p’(0) = z. Therefore, an
iterated integral with a tangential base point depends not only on the end-points of
the integration path v, but also on the tangent 7/(0). One can define a corresponding
notion of homotopy for paths v with the same values of v(0), v(1) and +/(0).

3.3.2 Classical Polylogarithms

The classical polylogarithm Li,, is defined by the power series

Lin(z) =Y =
k=1

which converges to a holomorphic function in the unit circle |z| < 1. The first poly-
logarithm is simply the ordinary logarithm, Lij(z) = —In(1 — z). The second, called
dilogarithm, was defined and studied by Landen and Euler more than two centuries
ago. The higher polylogarithms were defined in Ref. [173]. The definition (3.73) can
be analytically continued to a multivalued holomorphic function on C/{0,1} through
the differential relation

k
~,  VneN, (3.73)

o

d . 1.
@Lln(z) = ;Lln_1(z) , Vn > 1, (3.74)

or equivalently through the iterated integration
: “dt .
Li,(2) = 7L1n_1(t) , Vn>1, (3.75)
0

with the recursion starting from the logarithm. Equation (3.73) defines the principal
branch for |z| < 1. Tt is straightforward to verify that the classical polylogarithm Li,
can be expressed as a Chen iterated integral of dlog forms,

Lin(z) = —[1—2,2,...,2 o(2)- (3.76)

n—1
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3 The Art of Integrating by Differentiating

The points 0 and 1 are special. The monodromies around them are given respectively
by [171]

MoLiy(2) = Lin(2), (3.77)
2
(n—1)!
This result has important consequences. First of all, we see that it still makes sense to

talk about the value of the classical polylogarithm at 0 and 1,

Lin(0) =0, Lin(1) = C(n) (Re(n) > 1). (3.79)

Secondly, z = 1 is a branch point. We take the branch cut to lie along the interval [1, 00).
Finally, although the principal branch of Li, (z) defined by Eq. (3.73) is holomorphic at
the origin z = 0, its Riemann surface is ramified there. Analytically continuing around
z =1 in fact brings in a term log”fl(z)7 which is singular at the origin.

The knowledge of the monodromies of the classical polylogarithm can be used to
construct a single-valued version of it, by combining classical polylogarithms in z and
its complex conjugate z in such a way that all the discontinuities cancel. One way to
do so is [174]

MiLi,(2) = Lin(2) + log"1(2). (3.78)

n—1 5k
2k B ,
k'klogk\zlLln,k(z) , (3.80)

k=0

D,(z) =R, [

where ‘R,, denotes

2Re(f), ifn odd,
%, (f) = elf) (3.81)
2iIm(f), if n even,
and By are the Bernoulli numbers
1 1
Bo—l, Bl——§7 B2_67 (382)

The single-valued classical polylogarithms D, (z) are real-analytic functions on the
punctured complex plane C\{0, 1}, namely they are infinitely smooth and their Taylor
series around any point has a finite radius of convergence. In 0 and 1 they are contin-
uous but not differentiable, due to singularities of the type xlogx there. For n = 2,
Eq. (3.80) reproduces the well-known Bloch-Wigner dilogarithm [175],

Ds(2) = Lis(2) — Lin(3) + % (log(1 — 2) — log(1 — 2)) log(23) , (3.83)

where Z is the complex conjugate of z.
The classical polylogarithms satisfy a plethora of functional identities. The classic
example are the two reflection rules of the dilogarithm,

Lis | — | = —Lia(2) — = log*(—2) — —, Vz € Dy, (3.84)
z 2 6
2
Lio(1 — 2) = —Lia(2) — log(2) log(1 — 2) + % . VzeDs, (3.85)
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valid in the domains D; = C\[0,00) and Dy = C\{(—00,0] U [1,00)}, respectively.
Much more complicated relations exist, even for the dilogarithm. For instance, the
exotic two-variable five-term relation,

1- 1-
Lis(z) + Lis(y) + Lis ( < > + Lig(1 — zy) + Lis ( Y )
1—ay 1—ay
2 (3.86)
=T log(a) log(1 — x) — log(y) log(1 — y) + log [ — ) log [ ~——Y
= 5 —log(x)log By)log(1 —y) +log { T Jlog { T— )

for x,y € C\{(—00,0] U [1,00)}, which provides an intriguing link to cluster algebras
discussed in Section 3.3.6. While the reflection rules are rather easy to prove by differ-
entiating, the five-term relation is already more cumbersome. The complexity escalates
quickly as we go to higher n. This can be a serious concern if we want to use the clas-
sical polylogarithms to express scattering amplitudes and Feynman integrals. Indeed,
finding compact expressions is not only a matter of aesthetic elegance, which of course
is indispensable. From the theoretical point of view, elegant formulae allow to highlight
properties and spot patterns otherwise obscured. From the phenomenological point of
view, we want to be able to evaluate the scattering amplitudes numerically in a fast
and reliable way. Expressions containing very complicated zeros due to unresolved
functional identities are no good. In Section 3.3.6 I will discuss a method to derive and
implement these relations in a simple and systematic way.

3.3.3 Goncharov polylogarithms

The Goncharov Polylogarithms (GPLs) (or multiple polylogarithms) constitute a par-
ticularly important representative of Chen iterated integrals of logarithmic 1-forms
dlog a;. We refer to any function which can be expressed in terms of GPLs as ‘poly-
logarithmic.” The reason of this importance is that, if the arguments «; are rational
functions and the base point is algebraic, it is always possible to express an integrable
iterated integral in terms of GPLs evaluated at algebraic arguments. What is more,
this can be done algorithmically. If the «; are not rational, however, this is no longer
possible in general. No algorithm exists and we know at least one explicit example
of iterated integral of dlog forms with arguments that cannot be rationalised which
evaluates to non-polylogarithmic functions [170]. Nevertheless, we also know of many
examples of iterated integrals of non-rational dlog forms which can be evaluated in
terms of GPLs (see e.g. Ref. [169]).
The GPLs can be defined recursively through the iterated integral [168, 176]

dt
t—al

G(ay,az,...,an;T) ::/ G(ag,...,an;t), YneN,a, #0, (3.87)
0

with the recursion starting from

Glia) = {0’ ifz=0, (3.88)

1, otherwise.
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It is customary to refer to @ = (ay,...,a,) and to z as the indices and the argument
of G(ay,...,an;x), respectively, although we will consider it to be a function of the
indices as well. The number of iterated integrations, or equivalently the number of
indices, is called the transcendental weight of a GPL.

Trailing zeros, namely zeros on the right-most side of the index vector (e.g. a, =
an-1 = ... = a, = 0 for some p, 1 < p < n), are special, because the integral
in Eq. (3.87) diverges. One can however define the GPLs with trailing zeros in a
regularised sense as Chen iterated integrals with a tangential base point with unit
tangent. In fact, this is exactly what we have done in Eq. (3.69) for the weight-1 case.
In practice, GPLs with trailing zeros are allowed through the definition

1
G(Op;x) := Hlog”x, (3.89)

where we have introduced the short-hand notation @, = (a,...,a), with a repeated n
times.

The GPLs have an extremely rich structure, and enjoy a variety of interesting math-
ematical properties. I will content myself with mentioning those which are useful in the
applications presented in this thesis. A useful reference for a more complete discussion
is Ref. [177], where the authors also present the useful MATHEMATICA package POLY-
LoGcTooLs to work with the GPLs. The more demanding reader is invited to take on
the original papers [168, 176].

First of all, GPLs satisfy a shuffle algebra [178]: any product of two GPLs of weights
wy and wsy can be expressed as a linear combination with integer coefficients of GPLs
of weight wy + we through the shuffle product relation

G(@z)Gbz) = Y G(@u), (3.90)

Zealb

where @ LLb denotes the shuffle product of the lists @ and b.
If there are no trailing zeros, the Goncharov polylogarithms are invariant under the
rescaling of all their arguments,

G(ka, ..., kap;kz) = G(ai,...,an;x), Vke C\{0} (an,#0), (3.91)

In the presence of trailing zeros, it is possible to shuffle them away through Eq. (3.90)
and rescale the arguments in the separate terms (see Refs. [166, 167] for an explicit
algorithm). Only if all the indices a; are zero this is not possible, but then Eq. (3.89)
holds. In practice, one can study G(aq, ..., a,;1) without loss of generality.

The GPLs can have a very rich branch cut structure. Let us focus on GPLs of the form
G(ai,...,an;1) to simplify the discussion. As can be seen from the definition (3.87),
G(aq,...,an;1) is in general not well defined whenever one of the indices a; lies along
the integration contour, namely whenever a; € [0,1] for some i = 1,...,n. In fact,
there is a discontinuity whenever some index a; crosses the real axis between 0 and 1.
These segments define all the branch cuts of the GPLs. Therefore, if one of the indices
a; € [0,1], it is necessary to choose which branch of the function we are interested in.
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In practice, this is done by perturbing slightly the indices lying on the integration path
with the addition of a small positive or negative imaginary part.

The GPLs of the form G(ay,...,ay;1) have an end-point singularity if the left-most
indices are 1 (a1 = as = ... =a, = 1 for some p, 0 < p < n). We can regularise them
by introducing a small positive cutoff 0 < 6 < 1 as G(ay,...,an;1 —0). This defines a
tangential end-point (see the discussion of the tangential base points in Section 3.3.1),
which depends on the tangent at the end-point 7/(1). The logarithmic divergences log §
can then be extracted easily using the shuffle algebra (3.90). E.g., for a # 1,

G(l,a;1—-6) =G(a,1;1-6) —G(a;1 = 9)G(1;1 —6) =

=G(a,1;1) — G(a;1)logd + O(6) . (8.92)

If more than one of the left-most indices is equal to 1, the GPL can be expanded as

P
G(1p, api1y- - ran; 1 —0) = Z "R (5) logh 8, apr1 # 1, (3.93)
k=0

where the coefficients ¢(®) are given by weight-w GPLs with indices drawn from the set
{1,ap41,...,an} and are finite in the limit 6 — 0. They can be determined by applying
the shuffle algebra iteratively, in the very same way one can shuffle the trailing zeros
away. The regularised value is then defined by formally setting logd to 0, but it is
often useful to keep track of the logarithmic divergences as well. It is worth stressing
one more time that the result of the end-point regularisation depends on the tangent
at the end-point, 7/(1).

The GPLs, seen as functions of all the arguments, satisfy the first-order differential
equation [176]

n—1
dG(ap—1,...,a1;a,) = » Glapn—1,-..,0i,...,01;0
( n—1 1 n) ; ( n—1 1 1 n) (394)

x (dlog (a; — aiy1) — dlog (a; — a;—1)) ,

where the hatted indices are removed. This formula is valid in the generic case where
all the arguments are mutually different and do not take particular values.

An important subset of the Goncharov polylogarithms are the Harmonic Polyloga-
rithms (HPLs) H(ay,...,an;x) [166], corresponding to the case where all the indices a;
are 0 or 1. The harmonic polylogarithms are equal to the Goncharov polylogarithms
up to the sign,

H(ay,...,apn;2) = (=1)PG(aq,...,an;x), a; € {0,£1} Vi=1,....,n, (3.95)

where p is the number of indices a; equal to +1. A vast collection of useful routines to
work with the HPLs is implemented in the MATHEMATICA package HPL [179].

It is also worth mentioning that the GPLs are equivalent to another class of functions
often used in the physics literature, the MPLs [168]. The latter are defined by gener-
alising the sum which defines the classical polylogarithms (3.73) to the multi-variate
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case,*
0 k1 kn,
: x x
Limyomn (21, ) 5= Y kﬁzl R (3.96)
0<ki<--<kn 1 "
for |z;| <1Vi=1,...,n. The two classes of functions are related by
. ko [ = 1 - 1
Limy,.om (15, 26) = (=1)"G { Opp—1, — -+, Oy 1, ———3 1) . (3.97)
Tk Ir1...Tk

This formula provides the analytic continuation of the nested-sum definition of the
MPLs by Eq. (3.96).

While the iterated integral definition (3.87) induces on the GPLs the shuffle algebra
structure thanks to the shuffle product (3.90), the nested sum definition (3.96) leads
to another algebra structure, called the stuffle algebra. Since this will not play a role
in the applications presented in this thesis, I will content myself with an example,

Likhkz ((L‘, y) + LikQ,kl (y7 l’) = Likl (x)Likz (y) - Lik1 +ko (CEy) . (398)

The connection between classical polylogarithms and the values of the Riemann zeta
function ((n) at positive integers n given by Eq. (3.79) generalises to the MPLs. Just
like the values at 1 of the classical polylogarithms define the ordinary zeta values ((n),
the values at 1 of the MPLs define the Multiple Zeta Values (MZVs),

C(ma,...,my) =Lin, m (1,...,1), my,...mg € N. (3.99)

It is conjectured that all the relations among the MZVs follow from the shuffle and
stuffle algebras. This implies that no relation among MZVs of different weight exists.
Moreover, writing down and solving all the shuffle and stuffle relations systematically
allows to construct an explicit basis of the MZVs at each weight [180, 181, 182]. Re-
markably, the first MZV that cannot be written as a polynomial in ordinary zeta
values appears only at weight eight. In this thesis we will content ourselves with using
functions with transcendental weight up to four. The corresponding MZVs can all be
written in terms of (2) = 72/6 and ((3) only.

In a few special cases, the GPLs can be rewritten for arbitrary weight in terms of
classical polylogarithms. We have already seen one such a case in Eq. (3.89). Other
examples are

G(p;x) = %log” (1 - g) , G(ﬁn_l,a; x) = —Li, (g) . (3.100)

Moreover, all GPLs up to weight 3 can be rewritten in terms of classical polyloga-
rithms [176, 183, 184]. For instance,

. (b= . b x r—a
G(a,b;x) = Lig <b—a> — Liy <b—a> + log (1 — 5) log <b—a> , (3.101)

4Note that the reverse summation convention is sometimes used.
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valid for [Im(a/x)| > [Im(b/z)| [185]. Only starting from weight 4 we can see a genuine
MPL, Lis 5, that cannot be expressed in terms of classical polylogarithms. Ref. [185]
provides the relations to rewrite any GPL up to weight 4 in terms of classical polylog-
arithms and Lig ».

Let me finish this excursus with a practical note. Routines for the numerical evalu-
ations of the GPLs without any restrictions on the weight and the number of variables
are implemented with arbitrary precision arithmetic in C++ within the GINAC frame-
work [186]. Therefore, once a result is written in terms of GPLs, it can be evaluated
easily and reliably. However, expressions in terms of GPLs are in general not the most
compact, due to the abundance of functional equations between them. I discuss how
find and implement the latter systematically in Section 3.3.6.

3.3.4 The Transcendental Weight

Given a polylogarithmic function f that can be expressed as a Q-linear combination of
integrable iterated integrals of dlog forms with an algebraic base point zy,

f) = D> erlong, . ail, (2), (c;r €Q), (3.102)

I=(i1,-yiw)

its transcendental weight (or transcendentality) 7 is defined as the number of iterated
integrations,

T()=W. (3.103)

Clearly, T (fif2) = T(f1)+ T (f2). On the other hand, 7 (f1 + f2) is well defined only if
T(f1) = T(f2). The transcendental weights of the special functions introduced in the
previous sections are

T (logz)=1, T (Lin(2)) = n, T (G(ay,...,an;2)) =n. (3.104)

This definition generalises straightforwardly to any constant that can be expressed as
a Q-linear combination of integrable iterated integrals of dlog forms with algebraic
end-points. For instance, 7 (7) = 1, since log (—1) = +im, and ¢ and —1 are algebraic.
Similarly, one can show that

T(loge) =1, T((n)) =n, T(C(my,...,mE))=mqg+...+myg. (3.105)

for any algebraic constant ¢ # 0, 1.

The rigorous mathematician might rightfully feel uneasy. Not much is known about
the transcendentality of the polylogarithms and of the MZVs. For instance, we know
that 7, e, and log ¢ for any algebraic q # 0,1 are transcendental. It follows that the
even zeta values ((2n) are also transcendental, since

(_1)n+len (27‘1’)2”
2(2n)!

((2n) = (3.106)
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For the odd zeta values, we basically only know that ((3) is irrational [187]. Even less
is known about the transcendentality of the classical polylogarithms at values other
than 1, or of the more general GPLs. Nonetheless, it proves useful to adopt the widely-
accepted conjecture that all polylogarithmic functions and MZVs are transcendental.
The careful reader might have noticed that all the relations I presented are uniform
in the transcendental weight. Whether there exist relations among polylogarithms
or zeta values of different weight is an extremely interesting and still open problem.
As we conjecture that the polylogarithms are transcendental, it is also convenient to
conjecture that relations which are not uniform in the transcendental weight are not
possible. This has very strong implications. Let P, be the vector space over Q spanned
by all the weight-n GPLs and their values at algebraic arguments. We set Py = Q. The
conjecture implies that the vector space of all GPLs, P, is the direct sum of all the P,

P=EPPn. (3.107)
n=0

The vector space P can be equipped with a product, e.g. the shuffle product (3.90),
thus becoming a commutative algebra. Since the shuffle product preserves the weight,
the GPLs form a graded algebra. One could go very far along this road. The algebra
P can in fact be equipped also with a coproduct as well [188], leading to the conclusion
that the GPLs form a Hopf algebra. Clearly there are a lot of interesting aspects to be
discussed here, but this would take us too far. The purpose of this paragraph is to get
the mathematically-inclined readers interested in the topic. In the hope I succeeded, I
refer them to Ref. [86] for a thorough and pedagogical discussion.

The notion of transcendental weight is very tightly related to the differential equa-
tions in the canonical form. In order to see this, we need to introduce two more
concepts. A function f which is given by a sum of terms with the same transcendental
degree is said to have a uniform transcendental degree. An ever stronger property with
respect to the transcendentality is that of purity. A function f is pure if its transcen-
dental weight is lowered by differentiation, i.e. if 7(df) = T (f) — 1. While the uniform
transcendentality can accommodate algebraic factors, the latter spoil the purity of a
function, as they are “seen” by the differential operators (unless they are constant,
of course). The canonical differential equations (3.35) imply that the canonical basis
integrals § have uniform transcendental weight at each order in €.> This becomes clear
e.g. in Eq. (3.42): the k-th term in the Laurent expansion around € = 0 is given by a
Q-linear combination of weight-k iterated integrals. There is more. It is conventional to
assign transcendental weight —1 to the dimensional regulator e = (4 — d)/2. One way
to justify this is to think of the poles in € as logarithms in some cut-off A, 1/e ~ log A.
Then, it follows from the canonical differential equations that

T(d§) = T(dA) +T(3) —1. (3.108)

In the cases we are interested in, dA is a logarithmic 1-form, as in Eq. (3.43), and
therefore it has transcendental weight 0. As a result, 7(dg) = T(g) — 1, namely the

5Of course I am assuming that the base point is algebraic. It would be unreasonable to do differently.
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canonical basis integrals are pure functions. This is not just a mathematical fun fact.
The idea that the transcendental purity is marred by algebraic factors, for instance,
gives us a precious hint on how to find a canonical basis of integrals, as I discuss in
Section 3.6.

The transcendental weight is also related to a very fascinating conjecture about
scattering amplitudes. Let us consider an ¢-loop scattering amplitude A® computed
in dimensional regularisation in D = Dy — 2¢ dimensions for some even positive integer
Dy,

AO = 3" kAl (3.109)

k>ko

where ky € Z. If the coefficients of the series Ag) can be written in terms of iterated
integrals of logarithmic 1-forms, the empirical observation leads to the conjecture that

T (A,(f)) < % +k. (3.110)

For instance, if we are interested in computing a two-loop amplitude for Dy = 4 up
to the finite part, we need functions with transcendental weight up to four. A lot of
empirical evidence suggests that this bound is exactly saturated in N' = 4 super Yang-
Mills theory. This conjecture, apart from being of great theoretical interest, has also
very important practical consequences. It opens the door to bootstrap approaches for
computing scattering amplitudes or Feynman integrals. For instance, the k-th term in
the e-expansion of the ¢-loop amplitude A®) has the generic form

£Dg/2+k
A= S N eyRriE™, (3.111)
w=0 1,7

where ¢;; € Q, R; are algebraic functions, and Fj(w) are weight-w integrable iterated
integrals (eventually allowing also for special values). Given an alphabet, the integra-
bility conditions imply there is only a finite number of integrable iterated integrals at
each transcendental weight. Constructing them explicitly can be reduced to a linear
algebra problem, and can thus be done very efficiently (see e.g. [189, 190]). It is some-
times possible to make a guess for the algebraic functions R; as well. For instance, the
notion of leading singularity discussed in Section 3.6.1 gives a handle on them. Then,
only the rational constants c;; remain the be fixed. The problem of computing .A,(f)
therefore reduces to finding a sufficient number of constraints to determine the constant
coefficients (e.g. collinear and soft limits, symmetries...). In Ref. [191], for instance, I
bootstrap a two-loop five-particle integral using conformal symmetry.

3.3.5 On the Naturalness of the Canonical Form

We have seen that the differential equations in the canonical form imply that the
canonical integral bases are given by transcendental pure functions. The reverse is true
as well. Any pure function satisfies a differential equation in the canonical form.
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3 The Art of Integrating by Differentiating

Consider a weight-w (integrable) iterated integral s(®) Since it is a pure function,
its differential is expressed in terms of weight-(w — 1) iterated integrals. Choose a
set of linearly independent ones, §(®~1 and differentiate them too. Their differential
involves weight-(w — 2) iterated integrals, out of which we extract a basis §(®=2),
Continue differentiating until we reach the bottom, weight zero, where by definition
we have the constant 1. Then, it is convenient to introduce a parameter, €, to which
we assign transcendental weight 7 (e) = —1. This auxiliary parameter merely serves
to package all the iterated integrals together in a vector with a uniform transcendental
weight,

= T
§— <ews(w) ewlgw=1) () ,1) . (3.112)

In Feynman integral computations this role is played by the dimensional regulator. It
is easy to see that the vector S satisfies a differential equation in the canonical form,

dS=¢dB-S. (3.113)

In particular, since the differential lowers strictly by 1 the transcendental weight of
a pure symbol, the matrix B is strictly block upper triangular. It is thus nilpotent,
Bwtl = . If it were not nilpotent, the solution of the differential equation would in
general be non-zero at orders in € higher than w. This is the norm in the case of a
Feynman integral, but here it would be absurd, since we know exactly the dependence
on € of S, given by Eq. (3.112).

For example, let us consider the weight-2 iterated integral

s = —[1-z 2]y (2) . (3.114)

Upon differentiation it generates the vector

S(z,6) = (€21 — 2, 2Jo(2), €[1 = 2Jo(2),1) " . (3.115)
The corresponding differential equation is
0 —dlogz 0
dS=¢€|0 0 dlog(l1—2) | -S. (3.116)
0 0 0

Thanks to its (strictly) upper triangular form, this equation is very easy to solve by
hand (and even easier using MATHEMATICA’s DSOLVE). Since we know the expression
of S in terms of iterated integrals, given by Eq. (3.115), we can just read off the
boundary values at the base point z = 0,

5(0,¢) = (0,0,1)T . (3.117)

The solution for z < 1 is then given by

—

§ = (Lis(2), elog(1 — 2),1)" . (3.118)
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Once we are able to solve the differential equations in the canonical form, the proce-
dure I just outlined can also be used to switch from one representation of a function to
another. In this case we started off with an iterated integral and solved the associated
differential equation in terms of classical polylogarithms. We could have solved it in
terms of GPLs or HPLs as well. Similarly, we could have started from Liz(z) and solved
the differential equation in terms of iterated integrals. I will give a more interesting
example in Section 3.4.4.

This simple argument shows that the canonical form (3.113) is the natural form of
the differential equations for any family of Feynman integrals which can be expressed in
terms of polylogarithmic functions. An arbitrary choice of integral basis may obscure
the underlying elegance of the differential equations and it may be very difficult to
unveil it, but we must have faith that it is there.

3.3.6 The Symbol

The story of the first application of the symbol in theoretical physics is a very inspiring
one. A heroic computation — in its own inspiring! — lead to a 17-page expression in
terms of thousands of GPLs for a quantity called the six-point remainder function in
N = 4 super Yang-Mills theory [192, 193]. Strongly motivated by a firm belief in the
beauty of that theory, the authors of Ref. [87] took a rather abstract mathematical
construct, the symbol [188, 194], and used it to simplify the known expression for the
six-point remainder function. The result was astonishingly simple: just a few lines
of classical polylogarithms. Since then, the symbol has been used in many successful
applications, and has by now become a standard weapon in multi-loop computations.

The reason for its success is that the symbol is an extremely simple tool that manages
to capture the main analytical and combinatorial properties of the polylogarithmic
functions. In particular, all functional equations among MPLs are conjectured to be
in the kernel of the symbol. In other words, a necessary condition for two expressions
written in terms of MPLs to be equal is that they have the same symbol. As we will
see, this is much simpler to check. Going back from symbol to function is a much
harder problem, for which no algorithm that works in general is known. The methods
presented in Sections 3.3.6, 3.4.3 and 3.4.5 can be used for this purpose. I refer to
Ref. [85] for a complete discussion.

The symbol map can be defined by its action on the Chen iterated integrals of
logarithmic 1-forms. It maps linearly a k-fold iterated integral to the k-fold tensor
product of its 1-forms,

S </dloga1...dlogan) =dloga1 ®...0dloga, =1 ® ... R ay . (3.119)
¥

This definition generalises to all functions of uniform transcendental weight by linearity.
It is customary to omit the dlog sign to simplify the notation, but really we should
keep in mind that each entry a of a symbol actually stands for the 1-form dlog«. The
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3 The Art of Integrating by Differentiating

symbol in fact inherits from the dlog differential a number of basic properties,

AR(axb)®B=A®a®B+A®bR B, (3.120)
A®(%>®B:A®a®B7A®b®B, (3.121)

where A and B denote elementary tensors of arbitrary length, and a and b are algebraic
functions. Consequently,

ARad"®@B=n(A®a® B), (3.122)

where we stress that, on the right-hand side, n is a coefficient in front of the symbol
in the parenthesis, rather than part of the first entry. Moreover, any symbol with a
constant entry vanishes,

ARc®@ B =0, if ¢ constant . (3.123)

This follows trivially from the fact that the differential of any constant is zero, in other
words dlog ¢ = 0 for any constant c¢. Of course part of the information is lost as a result
of this. It is possible to extend the notion of symbol so as to accommodate rational
numbers in the entries as well, this way recovering part of the information [85]. This is
not necessary for the work presented here, and I therefore adopt the original convention
of Ref. [87] given by Eq. (3.123).

The symbol inherits straightforwardly many properties from the iterated integrals as
well. The symbols satisfy the shuffle product relations (3.54),

(g, ® ... Q@ ag,) X (ap, ®...Q ap,) = Z ey @ .. @ ey, - (3.124)

Furthermore, a Q-linear combination of tensors,

= Z crag, ...y, (cr €Q), (3.125)

represents a function if and only if it satisfies the integrability conditions given by
Eq. (3.61). As a result, given an alphabet, there is only a finite number of integrable
symbols at each transcendental weight.

Despite its simplicity, the symbol retains most of the analytic information of the
corresponding function. From the formula for the differential of the (integrable) iterated
integrals (3.63) it follows that

dla1®...0ap) =dlogan (01 ® ... @ an_1). (3.126)

The last entry of an (integrable) symbol therefore encodes its differential information.
The first entry, on the other hand, captures the branch cut structure in a beautifully
manifest way. A function f(z) whose symbol has the schematic form

S[f(z)]=a1(2) ®... @ an(2), (3.127)
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has branch cuts (in its canonical sheet) starting at the points z; such that ai(z;) =0
or aq(z;) = co. The symbol of the discontinuity across the branch cut is given by

S [Discf(z)] = Disc (log a1(2)) a2(2) @ ... Q@ an(z). (3.128)

If f(2) is a Feynman integral or a scattering amplitude, its discontinuities are deter-
mined by the Cutkosky’s rules. As a result, the first entries are subject to constraints.
I address this and other important aspects of the symbol more in detail in the next few
sections.

How to Compute the Symbol

The differential rule given by Eq. (3.126) can be seen as an iterative definition of the
symbol. If the differential of a weight-w function F®) has the form

dF® =3¢, 7V dlog a, (3.129)
i
where ¢; € Q, Fi(w_l) are weight-(w — 1) functions and «; are algebraic functions, then

S (ﬂw)) =Y as (ff“’*”) ® ;. (3.130)

The recursion starts with S (log ) = («), understood as a 1-fold tensor product. Com-
puting the symbol of a function can therefore be done systematically by taking deriva-
tives. For instance, let us consider the classical polylogarithm. From

dLiy,(z) = Lip—1(2)dlog z Vn e N, (3.131)

together with the starting point of the recursion Lij(z) = —log(1 — z), one can imme-
diately read off the symbol,

SLi2)=—-(1-2)®z28...0 2. (3.132)
n—1

This is in manifest agreement with the iterated integral representation given in Eq. (3.76).
The symbol of the GPLs can be computed iteratively using the differentiation for-
mula (3.94).

Beyond the Symbol

The iterative definition of the symbol makes it clear that the symbol captures the leading
functional transcendentality part of a function. Any term given by a transcendental
constant times a lower-weight function is annihilated by the symbol map. It can be
useful to be pedantic once in a while, so consider for example the dummy expression

a = Liy(z) +irlogz + 72 (3.133)
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Differentiating removes the constant piece,
da = —log(1 — z)dlog z + imdlog z . (3.134)
By applying the iterative definition the symbol we obtain
S(a)=-8S(log(1—2))®@z+S(in)®z. (3.135)
Since symbols with constant entries vanish, we can conclude that
S (Lis(z) +imlogz + m°) = S (Lia(2)) , (3.136)

namely only the leading functional transcendentality part of the function is captured
by the symbol. The terms which are in the kernel of the symbol map are referred to as
“beyond-the-symbol” terms.

This is not a tragic loss. The symbol in fact keeps track of the most complicated part
of the function. What is lost has a lower transcendental weight, from the functional
point of view, and it is therefore easier to recover a posteriori. From this very simple
example we understand that what we lose when taking the symbol are the “i7”-terms,
which encode the information on the branch of the function, and the constant terms,
related to the boundary constants of the iterated integrals. In this sense, the symbol is
equivalent to an iterated integral stripped of the information on the integration contour,

Q... Qay =og,...,q], (3.137)

where I intentionally omit the argument and the base point in the iterated integral on
the right-hand side. In order to obtain a function corresponding to a given symbol,
therefore, it is sufficient to upgrade the latter to iterated integral by making a physi-
cally motivated choice of the branch, and an arbitrary choice of the base point. This
straightforwardly produces a legitimate function with the correct symbol. Nonetheless,
one might not be satisfied with an iterated integral, and would like to have a more
explicit expression in terms of standard functions.

One way to do so is offered by the differential equations in the canonical form. The
symbol in fact retains all the differential information of the corresponding iterated
integral. Given a symbol S, we may want to find a function f such that S(f) = S.
We can write down a canonical differential equation for a vector of functions which
contains f together with a tower of lower-weight functions, the very same way we did
in Section 3.3.5 for the iterated integrals. Starting from the symbol of the iterated
integral in Eq. (3.115), for example, we can write down the same differential equation
shown in Eq. (3.116). The only difference is that we can no longer fix the boundary
values (except for the weight-0 function, which is always 1 by definition). This freedom
reflects the freedom of the terms beyond the symbol. For example, the solution of
Eq. (3.116) with no boundary values fixed for the symbols has the form

—

T
S = (62 (Lia(z) — c1log(z) + c2) ,e(log(l —x) +¢1) , 1) , (3.138)
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where ¢; and co are arbitrary weight-1 and 2 constants. The problem of associating a
function to a symbol therefore is equivalent to that of solving the differential equations
in the canonical form. Section 3.4 is devoted to discussing several approaches to do so.

The take-home message of this section is that the symbol encodes all the information
on the branch cuts of the function and on how to differentiate it, and captures entirely
its most complicated part. Considering what a simple object the symbol is, that is
pretty good.

Proving Functional Relations With the Symbol

In the previous sections we have seen many functional identities relating polylogarithmic
functions. All these complicated relations simply reduce to the algebraic rules given
by Egs. (3.120), (3.121) and (3.123) at the symbol level. Proving a relation among
polylogarithmic functions using the symbol is therefore straightforward. First, one
computes the symbol of both sides of the equation, either iteratively using Eq. (3.130)
or by applying known rules such as the one for the classical polylogarithms given by
Eq. (3.132). For example, for the dilogarithm relation (3.84) this gives

—(1—i>®i—(1—z)®z—z®z. (3.139)

Next, the separate symbols have to be expanded out by factorising their entries and
then applying Egs. (3.120), (3.121) and (3.123) until all the entries are simple factors.
This makes the cancellations apparent. From Eq. (3.139) we get

(z-1)®z—202=(1-2)2—2Q %. (3.140)
Note that Egs. (3.120) and (3.123) imply that
AR (—a)® B=A®a® B, (3.141)

for any elementary tensors A and B. The two sides of Eq. (3.140) are thus the same,
which proves that the most complicated part of the relation is correct. Finally, one has
to fix the terms beyond the symbol. This can be done using various arguments, such as
analiticity at some point, differentiation and numerical evaluations. In this case, we can
miss terms of the generic form “m xlog” and “7%”, where log and 7 denote generically a
weight-1 function and constant, respectively. One way to constrain the “m x log”-terms
is by differentiating. This in fact produces a strictly-lower weight relation, which is
simpler to prove than the original one. In the case at hand we immediately see that no
“m x log” is needed. The constant can be determined with a single evaluation of both
sides of the relation, this way completing the proof of Eq. (3.84). It is important to
stress that any relation has a precise domain of validity, to which the point where we
decide to evaluate must belong. The domain of validity of the relation also suggests a
heuristic but faster way of ruling out the “m x log”-terms. Since the arguments of the
functions in the relation (3.84) do not involve constants other than £1, it is reasonable
to assume that the only weight-1 constant that can potentially show up is éw, which
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typically comes from the analytic continuations. For z < 0 the weight-2 functions
captured by the symbol are manifestly real, so that no i7 is needed. If we traded
log(—z) for log(z) on the right-hand side of Eq. (3.84), the symbol would still vanish,
but there would be no domain where all the functions are well-defined. As a result, the
analytic continuation would be required, together with factors of ix.

This first example was almost trivial. Let us look at the much more interesting
five-term identity (3.86). A theorem states that all the relations among dilogarithms
follow from the five-term identity [195]. Moreover, it has a hidden Z5 symmetry, and a
fascinating connection with cluster algebras. In order to unveil these two aspects, it is
convenient to introduce the Rogers L-function,

L(z) = Lis(x) + %loga;log(l —x). (3.142)

It captures the part of the dilogarithm whose symbol is anti-symmetric,

S[L(z)] = —%(l—m)/\x, (3.143)

where the factor of 1/2 is a prefactor of the tensor, and a Ab:= a®b—b®a. Note that
the symmetric part of a weight-2 symbol can always be written in terms of products
through the shuffle relations (3.124),

a®b+b®a=S(logalogh). (3.144)

The logarithms on the right-hand side of Eq. (3.86) can then be absorbed in the defi-
nition of the Rogers L-function, so that the five-term identity takes a tidier form,

L)+ L)+ L (225 ) 0 —ay) + L [ ==Y ”2 (3.145)
T -z = —. .
4 1 -2y 4 1 -2y 2
Next, consider the recursive sequence
1— a; = Qj—1Q441 - (3146)

It is easy to prove that it has periodicity 5, namely that a;15 = a;. This recursion is
(a slightly modified version of) the cluster coordinate mutation of the cluster algebra
Ay [196]. The five-term identity can then be expressed as

5
7T2

> Lla) = 5 (3.147)

=1

which makes manifest the Z5 symmetry. The choice a1 = z, ag = (1 —2)/(1 — zy)
produces the identity as in Eq. (3.145). In order to prove Eq. (3.147), let us compute
the symbol of the right-hand side,

5 5
ZL(ai)] _ —;Z(l—ai)/\ai. (3.148)

i=1

S
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Using the definition of the sequence in Eq. (3.146) and the multi-linearity of the sym-
bol (3.120) gives

(ai_l Na;+ aj+1 A ai) . (3.149)

5
=1

> 1
S !Z L(a,-)] =—3
i=1

Next, we use the periodicity of the sequence to shift the indices in the first term of the
summand,

]

(ai N Qit1 + aj41 A CLZ‘) . (3150)

5
=1

7

° 1
S [Z L(ai)] =—3
i=1

Finally, the anti-symmetry implies that the symbol vanishes,

5
S [Z L(ai)] =0. (3.151)
=1

The beyond-the-symbol terms can only be of the generic form “m x log” and “m%”,

where log and 7 denote generically a weight-1 function and constant, respectively. It
is easy to see that the derivatives of E?Zl L(a;) vanish, so that there is no “m x log”
term. Also in this case, these terms could be excluded heuristically by noting that all
the functions are real in the region 0 < x,y < 1. The remaining weight-2 constant can
be determined with a single evaluation, e.g. at = 0,y = 0. Using that L(0) = 0 and
L(1) = 7%/6 gives the complete functional identity,

7T2
ZL(ai) =5 (3.152)

Symbols and Branch Cuts

We have seen that the first entry of a symbol encodes its branch cut structure. In
particular, a function has branch cuts starting where the first entry of its symbol
vanishes or diverges. This means that the first entries of the symbol of a Feynman
integral or a scattering amplitude are constrained by physics through the Cutkosky’s
rules. For Feynman integrals with massless propagators, this implies that the first entry
in the symbol can only be a Mandelstam invariant, i.e. of the form (p; +...+px)? [197].

One might naively expect that only the functions which satisfy the first-entry condi-
tion appear in the result for a scattering amplitude or a Feynman integral. For instance,
consider the scattering of four massless particles. The kinematics is described by two
independent Mandelstam invariants, say s and ¢, and a third one is related to them
by momentum conservation, © = —s — t. Only the functions log s, logt and logu are
allowed by the first-entry condition at weight 1. The hasty physicist might conclude
that no other logarithm can appear. Let us make an explicit example to see why this
expectation is wrong.
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The function
. t
Liy <1 - S) (3.153)

is well-defined in the region t/s € C\(—o0, 0], and it satisfies the first-entry condition,

S[Lig <1—Z>}:—t®(1—i)+s®<1—i>. (3.154)

Our goal is to analytically continue it from the Euclidean region {s < 0,¢ < 0} to the
s-channel {s > 0,t < 0}.
One simple way to do it is through Euler’s inversion formula (3.85),

t t t t 2
Lis <1 - ) — Liy <> ~log <> log (1 - ) + T (3.155)
s s s s 6

which is valid in the region t/s € C\{(—o00,0] U [1,00)}. Of the functions on the
right-hand side, only log(¢/s) is problematic for s > 0,¢ < 0. Analytically continuing
a logarithm is however very simple. The Feynman prescription for the propagators
instructs us to add a small, positive imaginary part to each Mandelstam invariant, i.e.
s — s+ 40" and similarly for ¢. As a result, the analytic continuation of the function
in Eq. (3.153) to the s-channel is given by

_ 2
—Lis <t> —log <t) log <1 - t> —imlog (1 — t> + T (3.156)
s S s S 6

This expression has the same symbol as the original function (3.153), and therefore
it satisfies the first entry condition. The “iw”-term at first sight does not. It has a
branch cut along ¢ > s. The latter, however, does not lie in the s-channel, where s > 0
and ¢ < 0. In order to access it, e.g. to compute the discontinuity, one would therefore
have to analytically continue to a region where ¢ can be greater than s, e.g. the original
Euclidean region. There, we know that the function is given by Eq. (3.153), which is
clearly well-defined for t > s. In summary,

_ 2
Lis <1 _ t) - —Liy (t> —log (t> log <1 _ t) _inlog <1 - t) +.
S s s S S 6
N———

5<0,t<0 5>0,t<0

(3.157)

So we see that, in order to represent the result in a certain region, e.g. {s > 0,¢t < 0},
it may be necessary to use functions which do not satisfy the first entry condition on
their own, such as log(1 — t/s) on the right-hand side of Eq. (3.157).

This is a practical complication, but it does not mean that the full result has unphysi-
cal discontinuities. In fact, it is very important to highlight that dropping the “i7w”-term
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on the right-hand side of Eq. (3.157) would produce a function whose symbol still sat-
isfies the first entry condition, but which does have the unphysical discontinuity across
the surface s = t.

The take-home message here is that the absence of certain discontinuities implies first
entry conditions, but not vice versa. A function which satisfies a first entry condition
at symbol level may still exhibit the forbidden branch cut.

Deeper entries in the symbol contain valuable information on the branch cut struc-
ture as well. The first entry conditions imply that certain discontinuities, e.g. those
associated with letters that are not Mandelstam invariants, are not visible in the canon-
ical Riemann sheet of the Feynman integrals (or scattering amplitudes). It does not
mean that they are completely absent. They can in fact be exposed through analytic
continuation. Actually, we have already seen this for the classical polylogarithm Li, (z)
in Section 3.3.2. It is holomorphic at the origin z = 0, but its Riemann surface is
ramified there. We see from the monodromy around z = 1 (3.77) that the analytic
continuation across the branch cut [1,00) introduces a term with log” ! z, which has
a branch cut along the negative real axis (—oo,0]. This information is contained in
the second entry of the symbol, S[Li,(z)] = —(1 — 2) ® 2 ® ... ® z. The formula for
the discontinuity (3.128) can in fact be iterated: as the first entry encodes the discon-
tinuity of the principal sheet of the function, the second entry does the same for the
discontinuity of the discontinuity, and so on deeper into the symbol.

Physics can therefore impose constraints also on the second entries. An important
example of this is given by the Steinmann relations [59, 60, 198], which state that a
scattering amplitude cannot have double discontinuities in overlapping channels. This
constrains strongly the space of functions, and was in fact instrumental in pushing
the computations in planar N' = 4 super Yang-Mills to astonishing results: the 5-loop
six-particle amplitude [64], and the 3-loop NMHV and 4-loop MHV seven-particle am-
plitudes [65]. As we will see in the next chapter, certain pairs of letters never show up in
the first two entries of the massless two-loop five-particle integrals. This is an empirical
observation, but it is not outrageous to believe in a physical explanation along the lines
of the Steinmann relations. Moreover, other observations have lead to the conjecture
that the Steinmann relations actually hold to all depths in the symbol in planar N' = 4
super Yang-Mills [96]. Remarkably, the ensuing restrictions on multiple discontinuities
are equivalent to the conditions coming from the cluster algebra approach in the form
of the cluster adjacency property [61, 62]. Clearly this is a very active area of research.
The symbol has still a lot to offer.

3.4 Solving the Differential Equations

Our goal in this section is to solve the system of differential equations in the canonical
form,

dj = edA-§, (3.158)
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where

dA =" aidloga;(m). (3.159)

The «; are algebraic functions of the kinematic variables m called letters, and the a;
are constant rational matrices. We continue with the example of the three-mass tri-
angle integral family, for which the alphabet is shown in Eq. (3.38), and the vector
g is the (canonical) integral basis given by Eq. (3.28). It is worth stressing that this
system of differential equations has a much more general nature, tightly linked with
the polylogarithmic nature of the functions. As I argued in Section 3.3.5, the differ-
ential equations take the canonical form (3.158) for any set of pure functions g. The
parameter € plays the role of bookkeeper of the transcendental weight, and its factori-
sation is the hallmark of transcendental purity. Being able to solve such a system of
differential equations therefore also allows one to manipulate in a very powerful way
the polylogarithmic functions introduced in Section 3.3.

We have seen that the formal solution of the system (3.158) is given by the path-
ordered exponential in Eq. (3.40), which produces Q-linear combinations of iterated
integrals of dlog forms at each order in ¢, as can be seen in Eq. (3.42). In practice, it is
convenient to view the formal solution (3.40) as a neat iterative procedure to determine
each order in the e-expansion (3.41) in terms of the previous one,

7O (m) = 5,

7*(m) = / dA-G*D 4 p®  vE>o, (3-160)
gl

where v : [0,1] — M is an integration contour in the kinematic space M from some

boundary point 7(0) = m(® to a generic point v(1) = m. The details of how this

iterative integration is to be interpreted are given in Section 3.3.1. In Section 3.3 we

armed ourselves with a mathematical toolkit to handle such functions. It is time we

put it to good use.

Since the solution of the differential equations (3.158) is in general a vector of multi-
valued functions, it is crucial to define the domain of the kinematic variables m where
we want the result to be valid. I address this in Section 3.4.1. Next, in Section 3.4.2
I show how the boundary constants b*) can be determined straightforwardly from the
differential equations themselves by imposing certain physical constraints. Then, we
will finally be in a position to discuss how the solution of the differential equations can
be written down. In Sections 3.4.3, 3.4.4 and 3.4.5 I offer you three different approaches:
we can express the solution in terms of GPLs, iterated integrals/symbols or a tailored
basis of polylogarithmic functions, respectively. Each of these approaches has its pros
and cons, but they should all be in our arsenal.

3.4.1 Kinematic Region and Analytic Continuation

The integrability conditions of the differential equations (3.33) guarantee that the it-
erated integrals appearing in the solution at each order in € are homotopy functionals.
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In other words, the result of the integration depends only on the endpoints m(®) and
m, and on the homotopy class of the contour v. Since the dlog forms in the iterated
integrals have poles associated with the zeros of the letters, the kinematic space M is
punctured, and the basis integrals g are thus multi-valued functions. The choice of the
branch is dictated by the Feynman prescription in the propagators of Eq. (3.1).

This is a crucial point. It is thus worthwhile to be pedantic at least once. The readers
who are even just slightly familiar with the concept of analytic continuation are advised
to skip this paragraph, as we are going to make the simplest example possible. Consider
the iterated integral

h(m?) = [mﬂil (m3) = /dlogm%, (3.161)

with the integration contour 7 going from m? = —1 to a generic point m?. Here one

must not get confused between the m? in the square brackets, which defines the 1-
form dlogm? on the kinematic space, and the one on the parentheses, end-point of the
integration contour and argument of the function h. Integrating along a straight line,

y(t) = —1+t(mi+1), telo,1], (3.162)
gives
1 2
1
h(m?2) = / dt—— (3.163)
o —1+t(1+m7)

The integrand has a simple pole at t = 1/(1 +m3). If m? < 0, the pole lies outside of
the integration domain. The integral is thus well defined and evaluates to

h(m?) = log(—m?), (m? <0). (3.164)

If instead m? > 0, the pole lies right on the integration path. In this case, one has to
specify whether the contour v goes around the pole from above or from below. The
Feynman prescription tells us to add a small positive imaginary part “+i0™” to each
of the masses m?, so that

1 2
2 _ 2 0+ — (1 +mj)dt _ N 2
h(mﬁ—/ydbg (m7 + 10 )—/0 I (Lm0t = log(mi) —im, (mi>0).

(3.165)

This choice of branch of the logarithm differs from the canonical one, for which we
would have that log(—1) = +im. Getting the analytic continuation wrong is therefore
as easy as dangerous. In Section 3.4.1 we will see this is in fact the analytic continuation
of the logarithm from the so-called Euclidean region, in Eq. (3.164), to the physical
scattering region, in Eq. (3.165).

In summary, Feynman integrals evaluate to multi-valued functions, and it is therefore
crucial to specify the domain of the variables, which depends on the kinematics of the
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scattering process. The differential equations are then solved in a specific kinematic
region. Results valid in other regions can be obtained through analytic continuation
(see e.g. Ref. [199]).

The three-mass triangle integrals (3.1) are functions of the masses of the three exter-
nal legs, m = (m?2, m3, m%) The kinematic region of phenomenological interest is given
by m? > 0 Vi = 1,2,3, which describes the decay of the particle with greatest mass
into two lighter particles. Moreover, the triangle integrals in this region contribute also
to the scattering amplitude for the production of a pair of weak gauge bosons at higher
orders in perturbation theory [153]. I will refer to this region as the physical region.
The values of the kinematic invariants m in this region correspond to actual angles 0
between the particle trajectories (i.e., such that sinf € [—1, 1]) and positive energies.

There is a more convenient region to solve the differential equations in than the
physical one. In order to define it, let us take a look at the Feynman parameterisation
of a generic element of the three-mass triangle family,

3 a;—1
d /oo o
Inasas = (—1)T | a— = ||dai7’ ) 1—5 a; | x
1,a2,a3 ( ) < 2> 0 (i:1 F(ai)> J

= (3.166)

_ D/2—
(1 4+ g + a3)* P (—m%agag - m%oqozz — m%alag) [2-a

)
where a = a; + as + a3 and B is any non-empty subset of {1,2,3}. Since all the inte-
gration variables «; are non-negative, the entire integrand is manifestly non-negative
for m? < 0Vi =1,2,3. As a result, the integral in Eq. (3.166) is manifestly real, which
constitutes a useful simplification in the computation of a Feynman integral. The kine-
matic region where all the integrals® in a family are real is called Fuclidean region.
While all planar integrals have such a region, this is not true in general for non-planar
integrals.

In the three-mass triangle case there is an even simpler kinematic region. In order
to define it, let us consider the change of variables

mi =mizz, m3 =mi(1—2)(1-2). (3.167)
The inverse transformation is given by

L m? +m3 —m3 + /A(m)

m3 +m3 —mj — \/A(m)
2m? '

(3.168)

z =

2
2my

The new variables {m?, z, z} are extremely convenient. First of all, z and Z are dimen-
sionless. As a result, the dimensionality of the basis integrals g; is entirely given by an
overall factor of (m?)~¢. What remains are dimensionless functions of the two variables
only, z and z. Moreover, the change of variables given by Eq. (3.167) rationalises the

6Strictly speaking, here I mean only the scalar integrals of the form In; ay,45. One can always rescale
any real integral by some square root such that it becomes imaginary. In fact, this is what happens
with g4 (3.28).
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Figure 3.3: Subdivision of the Euclidean kinematic region for the three-mass triangle integrals.
All masses are negative, m? < 0 Vi = 1,2,3. The red line denotes the surface
A= A (3,3, m3) = .

square root of the Killen function, since A\(m) = mj(z — 2)?. The branch of the square

root corresponding to Eq. (3.168) is
Am) =m3(z —2). (3.169)
In terms of the new variables {m?, z, z}, the Euclidean region is defined by
mi<0, 22>0, (1-2)(1-2)>0. (3.170)

The presence of the square root of the Kéllen function divides the Euclidean region into
five sub-regions, shown in Figure 3.3. If A(m) > 0, Eq. (3.168) implies that z,z € R.
Eq. (3.170) then implies three sub-regions: 2,z < 0, 0 < 2,z < 1, and 2,z > 1. If
A(m) < 0, instead, we see from Eq. (3.168) that z and Z are complex conjugate to each
other. Finally, the boundary surface A(m) = 0 constitutes the fifth sub-region.

It is convenient to choose the region where A(m) < 0. There, in fact, the three-mass
triangle integrals are single valued [153]. The results can then be analytically continued
to any region. In particular, the analytic continuation to the physical scattering region
where mf > 0 Vi=1,2,3 is performed by adding a small positive imaginary part to
each invariant m?. For the logarithm we have seen that this yields

log(—m?) — log(—m? — i0) = log(m?) — ir. (3.171)
This operation is equivalent to the substitution
—m? — e "m?. (3.172)

7
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The analytic continuation of the three-mass triangle integrals is therefore straightfor-
ward. We single out an overall scale from the canonical basis integrals computed in the
FEuclidean region,

27
my mj

2 2
gi(m) = (—m?) "G <m2 mg) . withm?<0Vi=1,2,3, (3.173)

so that g; are dimensionless functions of two ratios. Then, the phase factor on the
right-hand side of Eq. (3.172) cancels out in the arguments of §;, and the analytic
continuation simply amounts to an overall phase factor,

. . 2,2
gi(m) = ™ (m3) " g, <Zz2 m3> . withm?>0Vi=1,2,3. (3.174)

In general, the analytic continuation of high transcendental weight functions of many
variables can be significantly involved. In such a situation, it may be more convenient
to by-pass the problem by solving the differential equations separately in each of the
kinematic regions we are interested in. In practice, we pick a different base point in
each of the kinematic regions and fix the boundary constants there. Then we solve
the differential equations in such a way that the integration contour -+ never leaves the
region the base point lies in. In this way the analytic continuation is avoided altogether,
and we obtain separate and reliable expressions for the solution in each of the relevant
kinematic regions. In give an example of this strategy in Section 4.2.3.

Now that we have decided which region of the kinematic space we want to solve the
differential equations in, we need to choose a base point in it. It is convenient to choose
a point with as few and as simple numbers as possible. The boundary constants are
the values of the basis integrals at the base point. If the latter contains complicated
numbers, the resulting expressions for the integrals are polluted by a proliferation of
awful constants. See Eq. (3.186) for an example of this. A rather good choice in this
case is

m©® = (-1,-1,-1) . (3.175)

Since the problem involves a square root and we are interested in the kinematic region
where its argument is negative, the kinematics is not entirely specified by the values of
the three kinematic invariants mf One must also choose a branch of the square root.

My choice is
A/ AmM©) = i3, (3.176)

which corresponds through Eq. (3.169) to
20 = mim/3 0 — /3 (3.177)

Since no letter of the alphabet (3.38) vanishes at m(?) (3.175), the basis integrals are
finite there. It may sometimes be convenient to choose a singular point as base point.
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We talk in this case of tangential base point (see Section 3.3.1). I show in Section 3.5
how to integrate the differential equations starting from a singular base point. Having
one or more of the kinematic variables set to 0 can in fact simplify dramatically the
constants appearing in the expressions of the integrals. I present an example of this in
Section 4.4.2.

To summarise, we have chosen to solve the differential equations (3.158) in the kine-
matic region defined by

m:<0Vi=1,2,3, Am)<O0, (3.178)

where the integrals are single valued. Results valid outside of this region can be ob-
tained through analytic continuation. However, as long as the base point m(9) and the
integration contour v in Egs. (3.40) or (3.160) stay within the region (3.178), we do
not need to worry about the analytic continuation at all.

3.4.2 Boundary Constants

The goal of this section is to determine the boundary constants E(e), namely the values
of the basis integrals § at the base point m(® given by Eqs. (3.175) and (3.176). One
approach consists in evaluating the integrals numerically, e.g. using PYSECDEC [145]
or FIESTA [144]. At two or more loops, this is very challenging, and even in the
best-case scenario gives only a limited accuracy. The approach we are going to follow
is instead completely analytical. The basic idea is quite simple. The generic solution
of the differential equations in the canonical form (3.158) has singularities on all the
hypersurfaces where one of the letters vanishes. Some of these singularities are however
unphysical, and must be absent in the solution of the differential equations which corre-
sponds to Feynman integrals. This gives constraints on the boundary constants, which
are “fine-tuned” in such a way that the unphysical divergences cancel out. Solving
the physical constraints allows one to relate the boundary constants to a small set of
values of the simplest integrals in the family. Typically, only one trivial integral — e.g.
a bubble or a product of bubbles in the multi-loop case — has to be computed in some
other way to fix entirely the boundary constants. The differential equations are in fact
homogeneous, and it is thus inevitable that the overall normalisation is given by some
external input.

The three-mass triangle integral family at one loop is particularly simple, as the three
single-scale integrals can be easily computed in closed-form,

I2(1—e)l(1+¢)
(1 — 2e)

gi = —eE (-m)™°, Vi=1,23. (3.179)
This result is obtained by rescaling the bubble integral (3.24) according to Eq. (3.25),
with the transformation matrix given by Eq. (3.29). From Eq. (3.179) we can immedi-

ately read off the boundary values,

2

bi:—1+€€2+0(63) 5 VZ:17273 (3180)
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The boundary value of the genuine triangle integral g4 is determined in terms of
the previous ones from physical constraints. For arbitrary boundary constants b the
solution of the differential equations (3.158) is singular on the hypersurface A(m) = 0
because of the letter ag = y/A(m). This singularity is spurious and the solution of the
differential equations which corresponds to Feynman integrals must be free of it. We
can thus tune the boundary values in such a way that this singularity drops out from
the solution.

In practice, we integrate the differential equation (3.158) from m(® to some point on
the hypersurface A\(m) = 0. The result diverges logarithmically for arbitrary values of
the missing constants bik). We fix the latter by requiring that the divergences cancel
out. The integration can be performed easily in terms of GPLs or simpler subsets of
them. One choice of integration contour is particularly convenient. We keep m% fixed
to its value at the boundary point, and vary m2 and mg together going to the point
m* = (—=1,—1/4,—1/4) such that A(m*) = 0. A convenient parameterisation which
rationalises the square root of the Kéllen function is given by

7(t)—<—1, (t—l{lx(t+1)’(t—1)4(t+1)> | 5.18)

where the parameter ¢ is purely imaginary and ranges from iv/3 to 0, so that v(iv/3) =
m(® and v(0) = m*. This is just a straight line in terms of z and Z (3.167). The unusual
range of the parameter ¢ makes it possible to perform the integration straightforwardly
in terms of HPLs, a special subset of the GPLs where the indices are drawn from
{0, £1} (see Eq. (3.95)). Pulling the letters of the three-mass triangle alphabet (3.38)
back with v (3.181) in fact gives

(v*dlog o) (t) = span(dlogt,dlog(t —1),dlog(t + 1)) , Vi=1,...,6, (3.182)
Q

which is the alphabet of the HPLs. Moreover, the path (3.181) never leaves the kine-
matic region A\(m) < 0, since A(y(t)) = t? and t is purely imaginary. No analytic
continuation is thus required, and the integration can be straightforwardly performed
by simply implementing the rules defining the HPLs, given by Egs. (3.87) and (3.89)
with a; € {0,+1}.

As expected, the result of the integration for g4 diverges. We regulate the diver-
gences by truncating the integration before it reaches the end-point, as discussed in
Section 3.3.3. In practice, this simply amounts to giving them a name,

L :=lim H(0;¢) = lim logt. (3.183)
t—0 t—0

Up to order €2, for instance, we have

ga (m*) = bflo) +e (26510)L +.. ) +

: (3.184)
w12 + (Qbff) — dlog <“/§) b§°)> L+...

+ €2 1 +O(€3) )

72



3.4 Solving the Differential Equations

where the dots denote finite terms. Requiring that the integrals are finite at the point
m* thus fixes bflo) =0= bz(f).

From this very simple example we can already infer one important feature of this
approach: we need to integrate the differential equations up to weight w + 1 in order
to fix the weight-w boundary constants. Up to which weight to integrate thus depends
on which order in € the boundary values are needed at. For instance, let us say we are
interested in the expression for the triangle integral I 11 up to the finite part, namely
up to order €. We see from the transformation matrix in Eq. (3.29) that

I = g4
e 62\/X’

so that we need the boundary value of g4 up to order €. By integrating the differential
equations up to weight 3 and imposing finiteness we obtain

(3.185)

ba(e) = 4ifm [Liy (e77/*)] + 0 () . (3.186)

The constant appearing at order €2 might appear surprising. First, it is imaginary al-
though the boundary point is in the Euclidean region. All the scalar Feynman integrals
Iy, 45,05 Of the family are real in this region, but g4 has an overall factor of VA, which
is purely imaginary in the region of interest. Secondly, its value might look rather
unnatural. Why would a Feynman integral depend on e~"/3? Indeed this is just an
artefact of the representation we are using. Solving the differential equations forces
us to choose a boundary point. This point feeds into the intermediate expressions. In
fact, note that e~**/3 is just the value of z at the boundary point (3.177). Once the
full integral g4 is expressed in terms of functions, this constant drops out. We will see
this explicitly in Eq. (3.240).

The appearance of such complicated constants, satisfying highly non-trivial relations,
makes this approach unfeasible in the generic case, where the integration is carried out
in terms of GPLs. A good strategy consists in evaluating numerically the functions
appearing in the result of the integration. It is worth stressing that the integration is
carried out analytically in terms of GPLs or other classes of functions, and that only the
latter are evaluated numerically (e.g. using the C++ library GINAC [186]), if necessary
with an outrageous number of digits. In this way all the simplifications are immediate
and the expressions are as compact as they could possibly be. Once the boundary
constants are known numerically, their fully analytic expression can be recovered. In
fact, while the constants appearing in the integration depend on the arbitrary choice of
contour, the boundary values are strictly related to the alphabet and to the boundary
point. It is therefore possible to guess which constants might appear. The numerical
boundary constants can then be related to such analytic constants through the PSLQ
algorithm [200] or MATHEMATICA’s built-in function FINDINTEGERNULLVECTOR.

Finally, note that the approach here described for the three-mass triangle integrals
may not give enough constraints to fix all the boundary constants in more complicated
cases. For the applications presented in the next chapter, a more refined method was
used, based on the same idea of removing unphysical singularities. Applying it to the
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three-mass triangle case would be an overkill, to put it mildly. Therefore, I refer to
Ref. [201] for a thorough discussion.

3.4.3 Solution in Terms of Goncharov Polylogarithms

Whenever the alphabet is rational, the canonical differential equations can be integrated
algorithmically in terms of GPLs (or subsets thereof). Let us consider a rational letter
R, and let us assume that, on the integration contour ~, it is given by a degree-n
polynomial,

R(t):=R(m=~(t) =Y _ ct". (3.187)
k=0

We do not lose generality, since any rational letter can be expressed in terms of poly-
nomial letters through dlog(N/D) = dlog N — dlog D. The pull-back of R with the
contour « can then be partial fractioned over C as

(v'dlog R)(1) = ) a (3.188)

te:R(ts)=0  °

As a result, the iterated integrations given by Eq. (3.160) can be performed straight-
forwardly in terms of GPLs by simply implementing their defining formulae (3.87)
and (3.89). Loosely speaking, the roots t5 in Eq. (3.188) are added as new indices in
the GPLs of the previous order in e.

Clearly there is a practical limitation: if the degree of the polynomial is too high, it
might not be possible to express its roots in a closed form. Physics has been gracious
enough not to put me in such an uncomfortable situation so far. The letters of the
alphabets discussed in this thesis, pulled back with the relevant contours, have at most
degree 2. The choice of the contour is however crucial. We want it to rationalise the
square roots in the alphabet (at least those which appear simultaneously in a given
integration). If possible, we want it to lie within a chosen region of analyticity, to avoid
the worry of analytic continuation. And now we see that we also want it to be simple
enough that the numerators and denominators of the letters do not have prohibitive
polynomial degrees. While the rationalisation of the square roots — if possible — is
algorithmic to some extent (see e.g. Refs. [202, 203, 204, 205]), finding a good contour
which satisfies all the criteria is an art.

The three-mass triangle alphabet (3.38) becomes rational in the variables (m3, z, z)
defined by Eq. (3.167). In terms of the latter, the letters simplify significantly,

{mi, z,2,1—21—-z22—2}. (3.189)

As a result, we can straightforwardly integrate the differential equation along a straight
line v in these variables from the base point (3.175) to a generic point (m3, 2, 2),

~(t) = <m§(0), 20, z(o)) +t (m% - mf(o), z—20 7z - 2(0)> , (3.190)
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where m?(o) = —1, and 29 and 2 are given by Eq. (3.177). I do not spell them out
to keep the expressions tidier. It is worth stressing that, as long as the entire contour
~ lies in the same kinematic region, no analytic continuation is needed. Moreover, I
recall that, thanks to the homotopy invariance, we can choose the path arbitrarily.
Sometimes it is more convenient to vary one variable at a time, effectively integrating
along a zig-zag path. Different paths can lead to substantially different, although
equivalent, expressions.

Pulling back dA (3.37) with ~ (3.190) gives

6
~ dt
*dA)(t) = ; , 3.191
rad0 =@, (3.191)
where the @); are constant rational matrices and
6 mf(o) 1-20 20 130 30 z—Z
laitiza = m?(0) _ m%’ 2 —20)7 5 20"z _30)" 7 _ 3(0)’ 1= 20 —z(0) [~

(3.192)

Substituting the pulled-back dA into the iterative solution of the canonical differential
equations (3.160) we immediately recognise the definition of the GPLs (3.87), with
argument 1 and indices drawn from the set {g;}%_;. The constant matrices Q; tell
us which combinations of GPLs are required. A potentially complicated integration
therefore reduces to a very basic task of pattern recognition, easy to implement in a
computer algebra system.

The differential equations can now be algorithmically solved to any order in e (pro-
vided that the boundary constants are available). The solution, however, looks awfully
complicated. For example, let us take a look at go. It is a bubble, and its closed-
form expression is given by Eq. (3.179). It is the archetypical simple integral. Yet,
its expression in terms of GPLs coming from the differential equations obscures this

simplicity,
2(0) (0) =(0)
m z z
Gl —~+—1|+G| ——1|+G | ——:1
(m%(o) — m% ) <Z(0) -z ) <Z(O) -z )

The first GPL at order € is single valued for m} < 0, but the other two GPLs each
have a branch cut for Re(z) < 0 AIm(z) = —v/3Re(z). This is spurious, of course,
and the discontinuity cancels out between the two. Using Eq. (3.100) to rewrite the
weight-1 GPLs in terms of logarithms, massaging the result, and going back to the
original variables via Eq. (3.168) then gives

g2=—1+¢€ +O(€2)'

(3.193)

g2 = —1+e€log (—m%) +0 (62) , (3.194)
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as expected. Clearly these manipulations become more and more complicated at higher
orders in e. For instance, the expression we obtain for g4 using this approach reads

g4 =€ q2,93; 1) — G(g3, q2; 92,955 1) — G(g3, q4; iIm | Lig (2
2[(0( 1) — Glgs, a2; 1) + G(az, a5: 1) — Glgs, qu; 1) + 2i1 [L ((°>)D

— (complex conjugate) | + O (63) :
(3.195)

This expression is manifestly anti-symmetric under complex conjugation, i.e. under
the exchange z <+ Z or equivalently VA <+ —V/\. This property was expected. The
pure integral g4 is in fact defined by normalising the scalar triangle integral by the
square root of the Kéllen function (see Eq. (3.28)). Since the prefactor is odd and
the scalar integral is even under this transformation, it follows that g4 is odd. All the
other features of g4 are however obscured. This representation in fact exhibits several
spurious branch cuts and a spurious dependence on the base point. We must be able
to do better than this.

Whenever one is handed over a polylogarithmic function which looks more com-
plicated than it needs to be, the first thing to do is to compute its symbol. Let us
define

g1=€EG+0(&), (3.196)

and focus on the function g4. Using the technique discussed in Section 3.3.6, it is rather
easy to show that the symbol of g, is given by

S(@)=(z,1—2]—-[1—2z,2]|+[1—2,2—[2,1=2]) — (2 ¢+ 2) . (3.197)

This formula unveils a lot properties. The dependence on the base point has disap-
peared, as it should, and the anti-symmetry under the exchange z <> Z is even more
manifest. A few easy algebraic manipulations allow one to rewrite it as

Z

=i+ [a-20-2.7], (3.198)

8(ga) = [25,

which manifestly satisfies the first-entry condition, since we recognise that only the
Mandelstam invariants m? appear in the first entries (see Eq. (3.167)). There is even
more. The symbol in Eq. (3.198) appears to have branch cuts in the complex plane
starting at z = 0, z = 1 or 2z = oco. The discontinuities across these branch cuts
however cancel out. The discontinuity across the branch cut starting at z = 0, for
instance, receives contributions from the part of the symbol which has first entry z and
the one which has first entry Zz,

Disc,—o [S (g4)] = Disc,= [log 2] (1_'2> + Disc. = [log 2] (i — Z) , (3.199)

-z
where the parenthesis denote 1-fold symbols. The two terms cancel out, because — in
the kinematic region we are considering — z and z are complex conjugate to each other,

Disc.—o [S (74)] = 0. (3.200)
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The same holds for the other branch cuts. The symbol-level analysis thus suggests
that g is single valued. I stress that this is just a hint, not a proof. As I argued in
Section 3.3.6, the absence of a certain discontinuity in a function implies a first-entry
condition in its symbol, but the reverse is more subtle due to the terms beyond the
symbol. A more careful analysis based on the Hopf algebra of the MPLs can legitimately
extend this conclusion to function level [153].

In conclusion, we have seen that it is very simple to solve the differential equations in
the canonical form in terms of GPLs if the alphabet is rational. Although the resulting
expressions may sometimes be rather complicated, they can be straightforwardly eval-
uated numerically with arbitrary accuracy (e.g. using GINAC [186]). This is extremely
valuable. In the context of the differential equations, the solution in terms of GPLs
plays a particularly important role in determining the boundary constants, as we have
seen in Section 3.4.2. Extracting the logarithmic divergences from the GPLs is in fact
made extremely simple by the shuffle algebra (3.90).

Before moving on to the other approaches, I want to stress that a surprisingly —
for someone who has mainly used the differential equation method like I did — large
number of Feynman integrals can actually be integrated directly in terms of GPLs
starting from a suitable parametrisation (e.g. the Feynman parameterisation), thanks
to powerful algorithms for the symbol integration of GPLs [206, 207]. The three-mass
triangle integral g4 considered here in fact provides a very simple example of this [153].
These algorithms are implemented in the MAPLE package HYPERINT [207].

3.4.4 Solution in Terms of Chen'’s Iterated Integrals

In the previous section we have seen that, if the alphabet can be rationalised, the so-
lution of the canonical differential equations can be written down in terms of GPLs
algorithmically. This approach has the advantage that the result can be straight-
forwardly evaluated numerically, but the need to rationalise the square roots in the
alphabet is a serious limitation. Even when that is possible, the new variables might
make the expressions of the integrals rather complicated. Moreover, the separate func-
tions appearing in the results satisfy a multitude of complicated functional identities.
Writing the solution of the differential equations in terms of Chen’s iterated integrals,
on the other hand, is straightforward regardless of how many square roots are present
in the alphabet. Moreover, if the alphabet has been chosen so that the letters {«;} are
linearly independent — as it should always be — the separate “words” [ay, ... ,a,] are
guaranteed to be independent as well. The functional identities are thus automatically
implemented, and the expression in terms of iterated integrals is uniquely determined
by the choice of letters and of the base point. As a result, even though they can-
not be evaluated numerically directly, the iterated integrals are very useful to check
cancellations and to study the analytic properties of the result.

In practice, solving the canonical differential equations in terms of iterated integrals
is as easy as it could possibly be. Because of the differentiation formula given by
Eq. (3.63), each integration in the iterative solution (3.160) just adds one of the letters
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3 The Art of Integrating by Differentiating

at the right end of the iterated integrals in the previous order in e,

/dlog oy [ail, e aik—l}m(o) = [ail, e ozikfl,a,-k]m(o) . (3.201)
.

If one is interested only in the symbol of the solution, it is sufficient to solve the
differential equations with the weight-0 boundary constants 5(0), neglecting the higher-
weight ones, namely b®) for k > 1. The latter produce terms beyond the symbol. The
procedure is then identical to the one for the iterated integrals.

Let us make some explicit examples for the three-mass triangle integrals. The pure
bubbles are given by

7T2

gi = —1l+e [ai]m(o) + 62 <12 - [aia ai]m(0)> +0 (63) ’ Vi = 17 27 3. (3202)
Since they involve iterated integrals with only one entry, it is trivial to upgrade these
expressions to explicit functions. At weight one we only have logarithms,

(il (m) =log (—m?) ,  Vi=1,2,3. (3.203)
Through the shuffle product (3.54) this implies that

1
m?,...,m? (o (M) = Hlogk (-m3) . (3.204)

79"

k times

Plugging this into Eq. (3.202), it is easy to check that it matches the closed-form
formula given by Eq. (3.179).
More interesting is the expression of g4 in terms of iterated integrals,

g1 = 62{ [, a4l 00 + a3, as),,00 — [0, a0 — (02, as],,0)
(3.205)
+ 4iTm |Liz (771} | } +0(8) .

This expression satisfies manifestly the first entry condition. Moreover, it is clear its
symbol is odd, since the letters ay and as are odd, while a;, ay and a3 are even (see
Eqs. (3.45) and (3.46)). Applying the change of variables given by Eq. (3.167) to the
letters in Eq. (3.205) and doing some easy algebraic manipulations, it is straightforward
to check that the symbol of g4 is in agreement with Eq. (3.197). Proving that Eq. (3.205)
is equivalent to Eq. (3.195) also beyond the symbol is left as an exercise to the reader.

3.4.5 Solution in Terms of a Basis of Functions

The two approaches presented in Sections 3.4.3 and 3.4.4 are extremely valuable, but
have both some limitations. The iterated integrals offer an elegant and unique way
of expressing the solution, well suited for analytic studies, whereas the GPLs may
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3.4 Solving the Differential Equations

be messy — especially if the contour of integration is chosen poorly — but can be
evaluated numerically with arbitrary accuracy. In this sense they complement each
other. However, it is of course preferable to have a representation which enjoys the
advantages of both iterated integrals and GPLs, but is exempt from their limitations.
In this section I suggest an approach to achieve this. The main idea is to construct a
basis of pure functions that have all the properties we would like to see manifestly in
the integrals or the scattering amplitudes, e.g. absence spurious dependence on the base
point of the integrals and absence of spurious singularities and branch cuts. The fact
that it is a basis guarantees that no functional identities are left, so that the expression
is unique. Moreover, the basis is made of explicit functions, which can be evaluated
numerically directly. The price to pay for all this is that constructing such a basis is not
algorithmic, and definitely requires more effort than the other approaches I presented.
It is however an effort worth doing.

The goal therefore is to construct a basis that spans all the functions produced by a
given alphabet up to a certain transcendental weight. The key observation is that only a
small number of elementary functions is needed to express any polylogarithmic function.
They are shown in Table 3.1 up to weight four. Up to weight three only classical
polylogarithms are required, and the first genuine multiple polylogarithm appears at
weight four. What remains to be understood is which arguments to use for these
elementary functions so that their symbol belongs to the given alphabet and that they
form a basis. On top of these necessary requirements, the more demanding physicists
may also want the resulting functions to satisfy certain constraints, such as the first-
entry condition, and to be “simple,” e.g. to be well-defined in a certain kinematic
region. This is in general a complicated problem, and there is no completely algorithmic
approach. Nonetheless, a systematic strategy [85] combined with enough will power
has proven successful even in highly non-trivial cases, such as the massless two-loop
five-particle alphabet discussed in Refs. [208, 209].

Transcendental weight | Pure function types
1 log
2 Lig (:c)
4 Li4(.%'), Ligg (1’, y)

Table 3.1: Basic functions needed to express any polylogarithmic function up to weight four.

In this section I show how to construct a basis of polylogarithmic functions for the
one-loop three-mass triangle integrals. For simplicity let us work with the variables
(m?, 2,%) defined by Eq. (3.167), so that the square root rationalises. In particular,
we are interested in the kinematic region where m? < 0, and z and z are complex

conjugate. The alphabet can be chosen as

(838, = {mf, 22 (1= 2)(1 - 2), g 1me z} , (3.206)
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so that each letter has a well-defined transformation under complex conjugation: the
letters B; with ¢ = 1,2, 3,6 are even, while 84 and S5 are odd. The Cutkosky rules imply
that, for Feynman integrals with massless propagators, the first entry in the symbol
can only be a Mandelstam invariant [197], in this case m? for i = 1,2,3. Through
the change of variables (3.167), this means that only the letters 3; with i = 1,2,3 are
allowed as first entries in the symbol.

The integrability conditions for the iterated integrals or the symbols given by Eq. (3.61)
inform us about how many linearly independent functions are produced by an alphabet
at each transcendental weight. Solving them is a linear algebra problem and can thus
be done very efficiently using e.g. the method described in Ref. [190], or the ad hoc
MATHEMATICA package SYMBUILD [189]. The results up to weight 4 are presented in
Table 3.2. It is possible to write down explicitly the integrable symbols, which is very
valuable in view of a bootstrap approach, but for now we are only interested in their
number.

Transcendental weight | 1 2 3 4
Total 310 6|1 12|14 24|13
Irreducible 310 01 2)1 24

Table 3.2: Number of integrable symbols in the three-mass triangle alphabet (3.206) with the
first-entry condition, divided into even|odd under the exchange z <» z. A symbol is
said to be irreducible if it cannot be expressed as product of lower-weight symbols.

At one loop we only need functions up to weight two, because of the conjecture on
the transcendental weight shown in Eq. (3.110). I will therefore discuss explicitly the
construction of the basis at weights one and two, and only make some comments about
the higher weights.

Weight-1 Functions

At weight one the number of integrable symbols is clearly equal to the number of letters
of the alphabet. Moreover, since the only possible elementary function is the logarithm,
the basis is simply given by the logarithms of the letters. Only three satisfy the first-
entry condition. We just need to make sure that they are well defined in the kinematic
region of interest. The most obvious choice is given by

wgl) =log (—m3) , wél) = log (z2) , wél) =log((1—2)(1—2)). (3.207)

These functions are manifestly well defined in the region m? < 0, z € C\{0, 1}, with z
complex conjugate of z.

As I argued in Section 3.3.6, it is possible that weight-one functions which do not
satisfy the first-entry condition on their own are needed to express the terms beyond
the symbol at weight two. They can be chosen as

1—
wil) = log (g) , wél) = log <1 — ;) , wél) =log(z—2) . (3.208)
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Some extra work is required to make these functions well defined. For wil),
parametrise z using polar coordinates as z = |z]e!® with ¢ € [0,7] for Im(z) > 0,
and as z = |z|e”* with ¢ € [0, 7] for Im(z) < 0. Then,

a {2i¢, if Im(z) > 0,

we

wi = 70 (3.209)
—2i¢, ifIm(z) <0.

The function wil) is thus well defined in both the upper and the lower half of the
complex plane, but has a branch cut along the negative real axis. Similarly for wél) we
parametrise z as z = 1 + re'® for Im(z) > 0, and as z = 1 + re~* for Im(z) < 0. In

both cases ¢ € [0, 7] and r > 0. Then,

a {m, if Tm(2) > 0,

w) =70 (3.210)
—2i¢, ifIm(z) <0,

so that wél) has a branch cut along the real axis for Re(z) < 1. Finally, for wél) we

have that

W) {zg +log (2[Im(2)]) ,  if Im(z) >0, (3:211)

—ig +log (2|Im(z)|) , if Im(z) <O,

and there is a branch cut along the entire real axis.

Weight-2 Functions

At weight two there are seven iterated integrals which satisfy the integrability and
the first-entry conditions. Six of them are even under complex conjugation, one is
odd. Clearly we can construct six even weight-2 functions by multiplying together
the three even weight-1 functions shown in Eq. (3.207). In principle we could also
multiply together two odd weight-1 functions, but there is none which satisfies the
first-entry condition. The resulting functions are by construction linearly independent,
and therefore span the entire even part of the weight-2 function space. We call the
functions which can be expressed as products of lower-weight functions reducible. The
shuffle product (3.54) implies that the reducible weight-2 iterated integrals or symbols
are symmetric under the exchange of the entries,

axb=a®b+b®a. (3.212)

Given a generic weight-2 iterated integral it therefore possible to separate the reducible
and the irreducible parts by simply symmetrising and anti-symmetrising the entries.
This allows to identify the genuine weight-2 part of the expression by projecting away
the products of logarithms. This operation can be generalised to higher weight through
the operator [210, 211, 212]

Pw (A1 ® ... @ ay) = puw—1(a1 ® ... Qay—1) ® ay — py—1 (A2 X ... R ay) Day,
(3.213)
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for w > 2, with the recursion starting from p; = 1. This operator annihilates all shuffle
products,

Pwi+ws <(a1 ® . @y, L ®...® bw2)> =0, (3.214)

and can therefore be used to extract the irreducible part of a symbol. Other useful
projectors in this context can be found in Ref. [85].

The weight-2 basis lacks only one irreducible function. Since it is a genuine weight-2
function, its expression must contain dilogarithms. We must then understand which
arguments are allowed for a dilogarithm in the alphabet given by Eq. (3.206). We know
that the symbol of a dilogarithm is

S[Lis(R)] = —-(1-R)®R, (3.215)

where R is a rational — in general algebraic — function of the kinematic variables.
The argument R is allowed only if both R and 1 — R factorise in terms of letters of the
alphabet {$;}%_,, namely if there exist ¢, e;, €; € Q such that

6 6
R=c]]B5, 1-R=C]]58" (3.216)
i=1 i=1

Requiring that the argument R is dimensionless imposes a constraint on the exponents
e; and e}, which depends on the dimensions of the letters. In our case only 3; = m? is
dimensionful, and we can thus immediately deduce that e; = €] = 0. More formally,
following Ref. [85], we define the group of all the functions which factorise into letters
of the alphabet as

6
R = {cHﬁfﬂei,ceQ} . (3.217)

i=1
The allowed arguments of the dilogarithm are then given by the subset
RW ={ReR|1-ReR}. (3.218)

The constraints in Eq. (3.216) cannot be solved in an algorithmic way, but it is straight-
forward to verify whether they are satisfied for a given R. A typical strategy consists in
making a list of “reasonable” candidate arguments R of the form given by Eq. (3.216)
and in selecting those for which also 1 — R factorises in the alphabet. This constraint
can be checked numerically in a very efficient way, as it is equivalent to asking whether
the linear system of rational (or algebraic) equations

6

dlog(1—R) =) ejdlog f; (3.219)
i=1
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admits a solution for the constant parameters e,. If enough arguments are found one
can move on to the next step, otherwise she needs to enlarge to set of candidates
for R and hope to be luckier. This procedure typically converges, because, for the
applications we are interested in, we do not expect to see functions whose arguments
are given by very high powers of the letters.

The alphabet of the three-mass triangle integrals is rather simple, and a quick search
returns

11 1 11 1z
R(l):{z,l—z,,l—  _z1-z= 1-2, == } (3.220)
z z

2’1 —2’ 2z z—1’ "1-2Z’ "z -1

It looks like we have found many arguments, but it is too early to celebrate. The
reflection identities of the dilogarithm, given by Egs. (3.84) and (3.85), imply that
Lis(R), Li2(1 — R) and Lis(1/R) are equivalent up to powers of logarithms. The space
of the allowed arguments R of the dilogarithm is therefore closed under the action of
the operators

o3(R)=1-R, o3(R) = — . (3.221)

This simple observation has important implications. The two operators in Eq. (3.221)

in fact generate a group of transformations {o; 16 J=1> with
(R)=R. oiB)= . os(R)=1-1. o(R)= ",  (3222)
01 - y 04 71—R7 2 - R’ g6 7R—].7 .

which is isomorphic to the permutation group S3. So what we should be looking for is
not R, but R(M /S5. Looking at Eq. (3.220) we can see that all the elements belong
to two equivalence classes. The choice of the representatives can make a significant
difference. Arguments in the same equivalence class may in fact produce branch cuts
in different locations of the kinematic space. The choice must thus be pondered with
special attention to the kinematic region under consideration. For the three-mass tri-
angle case, we have chosen a region where the integrals are single-valued. Any branch
cut will therefore cancel out, and we can choose the arguments which look simpler,

RW /Sy = {z,7} . (3.223)

We now have at our disposal two dilogarithms: Lis(z) and Liz(z). We need only
one function, which must be odd under complex conjugation and must obey the first-
entry condition. The former constraint is simple. We just need to consider the odd
combination Liz(z) — Liz(Z). In order to obtain a function which satisfies the first-
entry condition, we need to use products of lower-weight functions to “correct” the
branch-cut structure. We can do so by making an ansatz,

Winkaty = Lia(2) = Lia(2) + 1 log (£ ) log(22) + ez log () log (1 = 2)(1 - 2))

+ e3log G ) log(27) + ¢4 log G ) log (1 — 2)(1— %)) |
(3.224)
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where we included only the odd products of logarithms. One could also consider the
logarithm of z—Z, but it is simple to argue that it cannot help this cause. In general one
should also include products involving transcendental constants, but we have seen in
Section 3.4.2 that the one-loop three-mass triangle integrals do not involve any weight-1
constant in this kinematic region. Finally, we compute the symbol of the ansatz and
fix the free coeflicients so that it satisfies the first-entry condition. There is only one
solution,

—z

which — perhaps unsurprisingly — coincides with the Bloch-Wigner dilogarithm given
by Eq. (3.83), wgz) = Ds(z). This completes the basis of functions required to express
the three-mass triangle integrals up to transcendental weight two.

It is worth stressing that in no point of this procedure the alphabet is required to
be rational. The absence of square roots of course helps a lot, but it is not necessary.
Armed with some more resolution, we can construct the genuine weight-2 function
w§2) also in terms of the original variables m?. The search for allowed arguments for
the dilogarithm is made slower by the presence of the square root, but it nonetheless

returns several possibilities. For instance, we can choose

—2m3 —2m}3
To(m) = , T3(Mm) = 3.226
2(m) m? —m3 —m3 — \/A(m) 3(m) m3 —m3 —m3 — \/A(m) ( )

It is easy to check a posteriori that these functions belong to the set R() for the
alphabet (3.38). For 7, for instance, we have

1 1
dlog 7z = 5dlog < a2 ) . dlog(l—7) = ;dlog <a10‘5> . (3.227)

Q30 a3

Repeating the procedure described above we arrive at”

T

wél)— —LIQ(TQ)—LIQ(T:),)—F
Lo (Ve (25 Mg (o ton(my (3.228)
2og p og T 2og 79) log (—73) .

The equivalence between Egs. (3.225) and (3.228) can be proven using the symbol.

Higher-Weight Functions

The construction discussed in the previous section is conceptually straightforward to
extend to higher weights. The functions in the set R(Y) defined by Eq. (3.218) are in fact
allowed arguments of the classical polylogarithms at any transcendental weight, since

"I thank Dmitry Chicherin for showing me this expression of the Bloch-Wigner dilogarithm.

84



3.4 Solving the Differential Equations

the symbol of Li, (R) involves only the entries R and 1 — R for any n. The difference is
that we can no longer mod out the action of the permutation group S3. Polylogarithms
with weight higher than two still satisfy identities which relate the different arguments
in Eq. (3.220), but they become increasingly complicated. For instance, at weight three
we have the identity

2

1 1 1
Liz(z) + Li3(1 — 2z) + Lis <1 - > =((3) + 6 log® z + Flogz - §log2210g(1 —z),
2
(3.229)

so that only two out of the arguments {z,1 — 2,1 — 1/z} are inequivalent. In fact, one
can choose D3(z) and D3(1 — z), defined by Eq. (3.80), as the independent irreducible
functions which, together with products of lower-weight functions, span the even part
of three-mass triangle function space at weight three. The complete function basis up
to weight four is discussed in Ref. [153].

Starting from weight four, genuine multiple polylogarithms become necessary. The
search for allowed arguments for the multiple polylogarithms is the natural generalisa-
tion of what we have seen for the classical polylogarithms, and I will not go into any
detail of it. I refer the interested reader to Ref. [85] for a thorough discussion.

I prefer to present here a different approach. The explicit polylogarithmic expressions
at low transcendental weights offer important advantages, from both the analytical and
the numerical point of view. In particular, fast and reliable implementations of the
basic functions are immediately available. As we go to higher weights, however, the
polylogarithmic expressions become increasingly bulkier and more difficult to construct.
Moreover, although the separate terms can be evaluated numerically efficiently, their
proliferation may lead to a significant slowdown and to a loss in accuracy. For these
reasons, the following hybrid approach suggested in Ref. [213] is sometimes preferable.

Suppose we have an explicit representation in terms of polylogarithmic functions for
any weight-n iterated integral in a given alphabet {«;},

fa(m) = [d],,© (m), (3.230)

where I introduced the short-hand notation & = «;,, ..., a;,. Consider a generic weight-
(n + 2) (integrable) iterated integral

(@, o, ],y 0) (M) = /dlog aj, - ..dlog oy, dlog agdlog oy , (3.231)
v

where ~ is a piece-wise smooth path from a fixed base point v(0) = m(©) to a generic
end point (1) = m. Since we have an explicit polylogarithmic expression for the first
n integrations, only two remain to be performed,

1dt810g Wy ((t)) /t dt,@logWa (V(t/))f& (ry(t/)) . (3.232)
0

[O_Zv Qgq, ab]m(o) (m) = /(; ot ot!
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If we exchange the order of integration over the variables ¢ and t, the integration over
t can be immediately done in terms of logarithms,

! ! oga og a !
@, 6 ). 0 (m):/o dt//t/ 19! gabt(v(t))@l g (v(t)) (v()
1

ot

= [ drltog s (m) — tog s () 2% g ()

0

Care must be taken that the logarithms in the integrand are evaluated on the right
Riemann sheet and that the appropriate analytic continuation is performed if the con-
tour + leaves the region of analiticity where the base point m(9 lies. If we have control
over the weight-n functions, this simple trick gives us a one-fold integral representa-
tion for the weight-(n + 2) iterated integrals. The latter might not look particularly
elegant, but it is often rather convenient for numerical evaluations. From the compu-
tational point of view, the explicit polylogarithmic expressions at high transcendental
weight are often outperformed by the one-fold integral representations [213, 208, 209].
Therefore, having an explicit basis of functions up to weight two allows us to evaluate
numerically in an efficient way all the functions up to weight four, which is the highest
transcendental weight required in two-loop computations in D = 4 — 2¢ dimensions.

How to Express the Solution in the Function Basis

Once a basis of functions is available, one may wish to use it. In this section I discuss a
way to express the solution of the differential equations in the canonical form in terms
of a function basis.

The starting point is the observation that the solution in terms of Chen’s iterated
integrals can always be written down with no effort, even in the presence of multiple
square roots. A practical strategy therefore consists in first solving the canonical dif-
ferential equations in terms of iterated integrals, and then rewriting the latter in terms
of the function basis. The only extra step we need to take is to rewrite the function
basis in terms of iterated integrals. Once that is done, it becomes a mere linear algebra
problem to translate an expression written in terms of iterated integrals to the function
basis.

One way to rewrite a given function in terms of iterated integrals with letters drawn
from a given alphabet makes use, one more time, of the differential equation in the
canonical form. In Section 3.3.5 we have seen that any polylogarithmic function satis-
fies, together with all its derivatives, a system of differential equations in the canonical
form. So if we want to rewrite a function in terms of iterated integrals, we just need to
write down the associated differential equation and solve the latter in terms of iterated
integrals. Since we already know from the start the solution written in at least one
form, we can also evaluate it in some point and immediately get the boundary values.
Moreover, since the matrix in the differential equation depends on the kinematics only
through dlog forms, it is very easy to change variables or letters of the alphabet at the
level of the differential equations.
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Let me show the explicit example of the Bloch-Wigner dilogarithm w§2) given by

Eq. (3.225). Differentiating it all the way down to weight zero produces a vector of
linearly independent functions,

b= (e2w§2>,ewgl>,ewgl>, 1) , (3.234)

which satisfies a differential equation in the canonical form,
dh=edB-h. (3.235)
The function we started from, w§2), is given by Eq. (3.225) in terms of the z-variables.
One may wish to write it in terms of iterated integrals in the alphabet of the physical

variables m?, given by Eq. (3.38). We can then change variables through Eq. (3.168)
in the dlog-forms contained in the matrix dB, obtaining

0 —% log a5 % log ay + % log a5 0

~ 0 0 0 log as — log g

B = 3.236
0 0 0 log az — log o ( )
0 0 0 0

Next, we evaluate the functions h at the base point m(®, given in terms of the z-
variables by Eq. (3.177),

>

(m©®, ¢) = (622¢1m [Li2 (e*”/?’)} 0,0, 1)T . (3.237)

Finally, we solve the differential equation (3.235) in terms of iterated integrals as dis-
cussed in Section 3.4.4. This way we obtain the expression of w§2) in terms of iterated

integrals in the alphabet (3.38),
1 ,
w§2) =5 ([ag, ay] + [as, as) — [a1, 4] — [, 5] + 4ilm [Lig (eilﬂ/?’)]) . (3.238)

where the subscript m(©) in the iterated integrals is omitted to simplify the expression.
As a bonus, we also obtain the expressions for the weight-1 functions that appear in

the differential of w§2)7

wi) = [az]yo — [a)mo » wS = [as],o — [ (3.239)

which are however trivial and can be written down without too much thinking.
By comparing Eq. (3.238) to Eq. (3.205), we can immediately rewrite the triangle
pure integral g4 as

g1 =20 + 0 (&) . (3.240)

The simplification in the expression of g4 from the GPLs of Eq. (3.195) to Eq. (3.240)
is dramatic. The latter is much more compact, and it is manifestly single valued in
the punctured complex plane C\{0,1} and anti-symmetric under the exchange z <> Z.
Moreover, the awful spurious dependence on the base point we see in Eq. (3.195) is
completely absent in Eq. (3.240).
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3.5 Asymptotic Solution of the Differential Equations

The differential equations in the canonical form (3.158) allow to determine the asymp-
totic behaviour of the solution close to any regular singular point. I first present the
general procedure, and then apply it to a soft limit of the one-loop three-mass triangle
integrals. A complete discussion of this technique can be found e.g. in Ref. [214].

3.5.1 General Procedure

Let us consider a generic singular point = 0, for some kinematic variable z. In order
to simplify the notation, I denote cumulatively by y the set of variables which are fixed
in the limit. The multi-variable generalisation can be recovered straightforwardly. By
definition, the canonical basis integrals § satisfy a system of differential equations of
the form

8739”(96, y,€) = eAx(2,9)d(2, y, €),

o . B (3.241)

%g($a Y, 6) = eAy(xa y)g(ar, Y, 6) .

As discussed in Section 3.2, this system is fuchsian. This implies that z = 0 is a regular
singular point for the matrix A;, namely that

A
Ag(z,y) = ?0 +Y aF A (y), (3.242)
k>0

where Ag is a matrix of rational numbers. The matrix A,, on the other hand, is regular
at x = 0.

The first step consists in performing a “gauge transformation” with a holomorphic
matrix T'(x,y, €),

Gz, y,€) =T(z,y,e)h(z,y,¢), (3.243)

so that the new basis h obeys a simplified differential equation with respect to x,

0 - Ag -
8—xh(az, Y, €) = e?h(:c, Y, €). (3.244)

For this to hold, T'(z,y, €) must satisfy the differential equation

7! <eAxT - 8T) Ao
xr

We can solve the latter for T'(z,y, €) as a series expansion around = = 0,

T(x,y,€) = Z 2" Ty, €) . (3.246)
k>0
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Substituting this formula into Eq. (3.245) and expanding both sides around z = 0
produces an equation at each order in z. The first, at order 1/z, implies that

[Ag, To] = 0. (3.247)
The simplest choice is given by

To(y,e) =1. (3.248)
This means that the transformation matrix becomes the identity at x = 0. The higher

orders in x give a system of contiguous relations,

k—1
eAw(y) + AgTu(y, ) — Tiu(y, ) Ao — KTk(y,€) + € 3 A (1) 5y, €) =0, Yk > 1.
j=1
(3.249)
These equations imply in particular that Ty (y,€) = O(e). Since we are interested in the
asymptotic solution as a Laurent expansion around ¢ = 0, it is convenient to further
series expand Ty (y, €) in €,

Ti(y,€) = > " Tom(y)- (3.250)

m>1

The contiguous relations (3.249) then take the form

Tos(y) = ~ Ax(y).

k
. k-1
Tym(y) = % ATy m—1(y) — Tkym—1(y) Ao + ZAkfj(y)Tj,m—l(y) , Vm>1,
=

(3.251)
which can be solved order by order in z and e, giving an explicit expression for T" as a
double series,

T(z,y,) =14+ Y a"e"Tim(y). (3.252)

k>1m>1

After the gauge transformation, the system of differential equations for h takes the
form

;ﬁ(aj,y, €) = e@i—i(az, Y, €)
5 . o B : (3.253)
a—yh(az,y, €) = B(x,y,e)h(z,y,¢€)
where
B(z,y,e) =T} <6AyT - aaT) . (3.254)
Yy
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3 The Art of Integrating by Differentiating

Our goal is to solve this system of differential equations using a boundary point in
the limit, namely at z = 0. We can achieve this by integrating the system along the
piecewise path

(‘T =0,y = yO) — (1‘ = an) — ($,y), (3255)

for some values yg of the other kinematic variables. In other words, we restore the
dependence first on y and then on z. Since

B($ =0,y, 6) = €Ay(07 y) ’ (3256)

the solution is

Y

h(z,y,€) = 24 Pexp [e / Ay(O,y’)dy’} ho(e) . (3.257)
Y

0

Finally, the solution of the initial system of differential equations (3.241) is given by
3 ,€) = T(a, ,€) 2 P exp [ [ it - o,yﬂ o), (325®)
gl

where I have also made the straightforward generalisation to the multi-variable case.
Note that dA has to be evaluated at z = 0 after the differentiation, as can be understood
from Eq. (3.256). This subtle point is very important, because differentiation and limit
do not commute in general. In Eq. (3.258), v is a path starting from a base-point in
the limit, (z = 0,y = yo), and ending in the generic point (z,y), while k() are the
boundary constants ﬁo(e) = E(y = 9o, €) for the equation

gyh(y, €) = eAy(0,y)h(y,€). (3.259)

The boundary constants ho (¢) can be computed by integrating the canonical differ-
ential equations (3.158) from a base point in the bulk of the kinematic space, where the
values of the integrals are known, to the point in the limit (x = 0,y = yg). This can be
done efficiently in terms of GPLs (if the alphabet is rationalised along the integration
contour). Of course the integrals develop logarithmic singularities at the end-point,
which is defined in a tangential sense (see Section 3.3.1). In particular, these logarith-
mic divergences as  — 0 conspire together to produce the matrix exponential z¢0 in
Eq. (3.258). It is therefore important that the regularisation procedure at the tangen-
tial end-point is compatible with the asymptotic solution given by Eq. (3.258). In other
words, we need to make sure that, when integrating from the bulk to the end-point
in the limit x — 0, we discard the same logarithmic divergences which are produced
by the matrix exponential 2¢40 in Eq. (3.258). I will stress this again in the explicit
example below.

This procedure allows to solve the differential equations in canonical form (3.158)
asymptotically starting from any regular singular point, say x = 0. The result contains
divergent logarithms stemming from the matrix exponential z¢4°. The path-ordered
exponential in Eq. (3.258), on the other hand, produces iterated integrals which depend
on the other kinematic variables. The gauge transformation matrix 7'(x, y, €) is instead
responsible for the power corrections in x.
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3.5.2 Soft Limit of the One-Loop Three-Mass Triangle Integrals

Let us now make an explicit example: the soft limit p§ — 0 of the one-loop three-mass
triangle integrals. At the level of the kinematic variables m this implies that both m3
and m3 go to zero, because of momentum conservation. The first step is to determine
the boundary constants hg(e) in Eq. (3.258). As base point in the limit we choose

Meoft := (Mf = —1,m3 =0,m3 = —1) . (3.260)

In order to reach it from the base point in the bulk m(®) (3.175) we only need to vary
m3. A convenient path is given by

A2
m=~(t) = (—1, (1 tt) ,—1> , (3.261)

with ¢ varying along the complex ray from ¢ = €/™/3 to t = 0. This path in fact
rationalises the square root,

@) = SLEDa Y (3.262)

t
The real parts of m3 and of A(m) are always negative along the path, so that no analytic
continuation is needed. Moreover, the alphabet pulled back with this path becomes
that of the HPLs. The result of the integration contains logarithmic divergences, which
we denote as L := limy_,; H(1;t). For instance,

92(Msofs, €) = —1 + e (2L + im) + O (€?) . (3.263)

Here comes a subtle point. We know that the result of the regularisation depends on an
arbitrary choice. Naively, one would regularise Eq. (3.263) by formally setting L = 0.
Another possibility consists in formally setting log(—m3) to 0 in the limit. Since

. 2 . _ .
}Eﬁ log (—m3 — 40) ‘mzw(t)_ 2L +im, (3.264)

this choice amounts to setting L = iw/2. Although perhaps counterintuitive, the second
choice is preferable. In the first regularisation scheme we are in fact setting to zero a
logarithmic divergence which depends strongly on the specific path given by Eq. (3.261).
In the second, instead, we are setting to zero a quantity which does not depend on the
specific path, namely log(—m32). This is the physical quantity that is vanishing in the
soft limit p4 — 0, and I therefore refer to this kind of regularisation as “physical.” The
values of the integrals at mg.s, in the physical regularisation scheme,

2
7
Reg [gi (msof; €)] = —1 + 62% +EHB)+O(Y), V=123,

Reg [gi(msoﬂn 6)] =0 (64) )

can be used as the boundary constants to write down the asymptotic solution in the
soft limit.

(3.265)
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In order to parameterise the soft limit, let us make the change of variables

m3 = miz?, mi =m? (1 — zy) <1 - ;) . (3.266)

The new variables x and y are related to z and z defined by Eq. (3.167) through z = zy
and z = x/y, and they also rationalise the square root,

S = e (3.267)
et .

The soft limit is then represented by the regular singular point = 0. The logarithmic
divergences are produced by the matrix exponential

2% = diag (1,272,1,1) . (3.268)

It is crucial to check that they are compatible with the regularisation used in the
computation of the boundary constants at mg.g. There, we have regularised by setting
log(—m3) to 0. The latter is related to logx by

log (—m3) = 2log(z) + log (—m3) . (3.269)

Since at mgo, we have m? = —1, setting log(—m3) = 0 there is equivalent to setting
log(x) = 0 in the new variables. No correction in the regularisation scheme is thus
needed. It would have been necessary if instead we had chosen the “unphysical” reg-
ularisation discussed above. The gauge transformation matrix 7" can be computed at
any order in x and e through the recursive relations given by Egs. (3.251). Up to the
first order in € and in «, for instance, it is given by

1 0 0 0
0 1 0 0
T= 0 0 14 6xy2y+1 0 +o(ex) . (3.270)
v -1 Pl Y241
€ry €ry 0 1+ ex ”

The last piece of the asymptotic solution is the path ordered exponential,
7' =Pexp (¢ [ it =0)) Reg glmon. )] (3211)
¥

with the boundary constants given by Egs. (3.265). I stress one more time that dA
has to be evaluated at © = 0 after the differentiation. The function space is particu-
larly simple. Up to order €3 — the order at which we have determined the boundary
constants — we only need iterated integrals of the form

9 1

m3,.. (m) = i log® (—m%) . (3.272)

> L Msoft

k times
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3.5 Asymptotic Solution of the Differential Equations

The result is given by

2

Q'I _ {—1 + elog (—m%) + €2 (7{—2 — %log2 (—m%)) +0 (63) , 1=1,2,3, (3.273)
0, i=4.

Substituting Egs. (3.268), (3.270) and (3.273) into Eq. (3.258) finally gives the asymp-

totic expansion of the canonical basis integrals in the soft limit. The first integral, g1,

is a bubble in the m? channel, and is thus unaffected by the limit p5 — 0. The second

integral, a bubble in the m3 channel, is given in the limit by

2 2
go=—1+ 6<log (—m%) + 2log :z) —é [; <log (—m%) + 2logac> — % +0 (63) .

(3.274)

No rational function appears. It is easy to check that this expression matches the
closed-form expression in Eq. (3.179) after the change of variables given by Eq. (3.266).
The bubble in m%, g3, is more interesting, as it features also rational functions

2
g3 = —1+e<1og(—m%)—xy +1+O($2)>

Y
(3.275)
1 y? 41
2 2 2
—€ (210g (—ml) -

log (—m%) - 7{; +0 (332)> +0 (63) .

Also this expansion is easy to check against the closed-form expression (3.179). In the
limit z — 0 it matches the bubble in m%, as expected since m% — m%. Finally, the

triangle integral g4 vanishes in the limit,

g1 = € [—Qxyzy_ ! (=1+4+logz)+ O (acQ)} +0 () . (3.276)

It is a nice exercise to check that this expansion is equal to that of the known solution
written in terms of the Bloch-Wigner function, given by Eq. (3.240). Since the square
root v/A vanishes too ~  in the soft limit, the infinitesimal power corrections in g4
become relevant for the triangle integral I 1 1, related to g4 through Eq. (3.185). We
find that it is divergent in the soft limit,

2
L= 3 (—14logz)+O(x)| + O (e) . (3.277)
1

This divergence corresponds to an infrared pole 1/e that would show up in the two-
mass triangle integral if we used dimensional regularisation to regularise the infrared
divergences as well.

In conclusion, it is worth stressing that this procedure can be applied to any basis of
functions which satisfies a system of differential equations in the canonical form. They
do not need to be Feynman integrals. This technique therefore offers a useful approach
to the series expansion of polylogarithmic functions in general.
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3 The Art of Integrating by Differentiating

3.6 How to Find a Canonical Basis

Throughout this chapter we have seen that, whenever the differential equations for a
basis of Feynman integrals are cast into the canonical form, the problem of solving
them can essentially be considered as solved. Finding a canonical basis is therefore
crucial. Several different approaches has been proposed. One may for instance simplify
systematically the differential equations until the canonical form is reached [215, 152,
216, 217, 218]. A recent method [219], based on previous work by Ref. [220], allows
one to construct a canonical basis starting from a single pure integral. This procedure
is completely algorithmic and is implemented in the public MATHEMATICA package
INITIAL [219]. Along with these systematic techniques, the literature is scattered
with heuristic rules, which often prove useful to find particularly simple pure integrals
(e.g. see Refs. [221, 152]). As I am writing this section, yet another approach has
stemmed from intersection theory [222], proof that this is a very active area of research.

I present here the approach which has had the greatest impact in my work, and to
which I have given a small contribution [223]. To understand it, let us start with the
simplest pure function,

1
2*=1+elogx + 562 log? z + O(€3). (3.278)

It is sufficient to introduce any non-constant algebraic factor n(x) to spoil this property.
The function n(z)z¢ has transcendental weight 0, but its differential does not have
uniform transcendental weight and the function is therefore not pure. So, given a loop
integral which evaluates to n(xz)z® — e.g. a bubble integral — we want to normalise it
so as to remove the overall algebraic factor n(z). The difficulty lies in the fact that we
want to identify the latter prior to performing the integration. Moreover, a Feynman
integral may have more than one algebraic factor. Following the conjecture on the
transcendental weight discussed in Section 3.3.4, a generic ¢-loop integral in D = 4 —2¢
dimensions has the form

IOz, ) %Zepan Zh (3.279)

where h;(;f;c) () is a weight-w pure function of the kinematic variables z, and ng(x)
is an algebraic function. Finally, the uniform transcendentality can be spoiled by e-
dependent factors as well. All things considered, the situation looks very intricate.
Two key ideas allow us to disentangle it: the notion of leading singularities, and the
conjecture that the so-called “dlog”-integrands having constant leading singularities
integrate to pure functions.

3.6.1 Leading Singularities

The loop integrand contains all the information about the rational factors ny in Eq. (3.279).
If the integrand has only simple poles in the integration variables, the rational factors
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can be extracted systematically by taking (multi-variate) residues. The “maximal”
residues, namely those which localise all the integrations, are called leading singular-
ities [122, 125, 224, 225].8 They give the rational factors arising upon integration.
The relationship can be understood qualitatively as follows. The computation of the
leading singularities is a generalisation of the unitarity cuts. The latter are related
to the discontinuities of the integral, e.g. through the optical theorem. Computing a
discontinuity of Eq. (3.279) isolates the rational factors ny, because only the transcen-
dental functions hl(:;c) (z) are multi valued. This establishes a link between the leading
singularities and the rational factors arising upon integration.

Let us consider for instance the bubble integral in D = 2 dimensions in the p;-

channel,
2
(D=2) d”k 1 1 / (D=2)
I = ——5=— |7 . 3.280
L,1,0 / it K2(k+p)? i 1,1,0 ( )

The careful readers might notice that I have set D = 2, although the integral is diver-
gent. They are right to be worried, but in many cases it turns out that this is actually
fine. After all, we are not going to integrate on the entire loop-momentum space, but
only take residues. I will comment on the D-dimensional subtleties below. In order to
compute the leading singularities, it is convenient to introduce a convenient parameter-
isation rather than work with the components of the loop momenta. In two dimensions

there are two independent degrees of freedom. We parametrise them as follows. We
introduce a basis made of two auxiliary light-like vectors n; and no, n? =0, so that

p1=n1+ng. (3.281)
Clearly, p? = 2n; - n3. We expand the loop momentum k in the basis,
k= ainy + asnsg. (3282)

The two-dimensional integrand then takes the form

(D=2) _ 1 dai N dag
1,10 ™ Qm% a1a2(1 + Cbl)(l + ag) '

(3.283)

Hereafter the wedge corresponds to the standard definition of a differential form, giving
rise to an oriented volume upon integration (e.g. daj A das = —dag Aday). Note that in
this context we only vary the integration variables, and consider the kinematic variables
as fixed. The integrand of the two-dimensional bubble has four multi-variate simple
poles. The residues are easy to compute. The resulting leading singularities are

D=2 1
LS (Iim )) et (3.284)

8Even in the presence of higher poles in the integration variables, the algebraic factors arising upon
integration are often called, by analogy, leading singularities, although the maximal residues of the
integrand are in this case not defined.
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The two-dimensional bubble integral normalised by a factor of m? has thus constant
leading singularities. The explicit computation in D = 2 — 2¢ shows that this integral
is in fact pure,
2

em% Ifgzz_%) = —2+ 2¢log (—m%) —¢2 (log2 (—m%) - 7;) + (9(63) , (3.285)
where I have also inserted a factor of € in order to make it weight zero. Using the
dimension shifting relations [226, 227], implemented e.g. in LITERED [162], it is possible
to rewrite the two-dimensional bubble in terms of four-dimensional integrals,

IiDle*QG) _ I§7Dlz4726) + 15234726) _ 2‘[2(?;4726)7 (3286)
where, in the last equality, I have used the graph symmetries. This simple calculation
motivates the choice of the three single-scale integrals g;, i = 1,2, 3, for the one-loop
three-mass triangle family given by Eq. (3.28).

At this point it is natural to ask what is wrong about the bubble integrals directly
in D = 4 — 2¢ dimensions. To see it, we need to parametrise four degrees of freedom.
We adopt the spinor-helicity parametrisation® for the auxiliary light-like momenta,
n; = )\Zj\i. The spinors can be used to construct two additional complex vectors,
)\1:\2 and /\25\1. Together with ny and ns, they form a basis. The loop momentum is
decomposed as

k= ainy + asng + ag)\15\2 + a4)\25\1 . (3.287)

Note that the two complex momenta are not helicity-free, and thus a3 and a4 carry
helicity as well. It is possible to normalise the momenta so as to work with scalar
parameters only, but it is not necessary. The integrand of the four-dimensional bubble
in the pi-channel is then given by

I(D:4) . 1 dai A das N dag A day

= . 3.288
11,0 4 (a1a2 — a3a4)(1 + a1+ a2+ ajag — a3a4) ( )

Since there are only two poles, one may naively think it is impossible to localise all
the four integrations. Taking residues, however, introduces jacobian factors which have
poles on their own. For instance, taking the following two residues sequentially

(D=4) _ ldaz Nday
f a2(1+02) f agay Ilvl’o - ZT ) (3289)
CLSZ—T (Zl:? 4

introduces a pole at a4 = 0 which was not present in the original integrand. We talk in
such a case of composite leading singularities. Taking also the residues at a4 = 0 brings
to light the problem,

(p=1) _ 1
ffMo £3_a2<1+a2> f;lw Iito" = pdaz. (3.290)
aq

a2

9See e.g. Refs.[228, 25, 26] for an introduction to the spinor helicity formalism.
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This differential form has a double pole at infinity. The latter can be exposed by the
change of variables as = 1/y,

dag = —d—:g, (3.291)
Yy
which has a double pole at y = 0, corresponding to ao — oco. Although higher poles
have well-defined residues too — in this case it would be zero — this appears to be
an obstruction for the uniform transcendentality of the integrated function. The four-
dimensional bubble, in fact, does not have uniform transcendentality. This can be fixed
only with an e-dependent prefactor, given by Egs. (3.25) and (3.29), which translates
the four-dimensional bubble into the two-dimensional one. The conjecture presented
in the next section sheds some light on the disruptive role of the double poles.

Before we move on to that, let us conclude the computation of the leading singu-
larities of the one-loop three-mass triangle basis integrals. In the four-dimensional

parameterisation used for the bubble, the triangle integrand becomes

day N das A das N dagy

(arag — azaq)(1 + a2 + a1 + ajag — azay)
1

(m%(ag + arag — agas) — m3(az + az) + m3(1 + a1 + a4)) ’

Ti1
(3.292)

where I omit for simplicity the irrelevant overall constant. There are three poles to
localise four integration variables. The fourth pole comes from a jacobian, as we have
seen in the case of the four-dimensional bubble. This is therefore a composite leading
singularity. This computation is significantly more involved than the previous ones.
The MATHEMATICA packages MULTIVARIATERESIDUES [229] and DroGBaAsis [230]
come to our help. The former uses algebraic geometry methods to compute multi-
variate residues in general, while the latter is specifically meant for a systematic analysis
of leading singularities. The readers who remember Eq. (3.28) will not be surprised to
see that the leading singularity of the triangle integral is given by

1
A(m)

LS (I1,11) = (3.293)

where X is the Kéllen function (3.16). Once again, we see that an integral whose
integrand has only simple poles and which is normalised so as to have constant lead-
ing singularities evaluates to a pure function. We have gathered enough evidence to
motivate the conjecture presented in the next section.

3.6.2 dlog Integrands

We have seen some evidence that two properties of the loop integrands are correlated
with the transcendental purity of the corresponding integrals: the absence of double
(or higher) poles in the integration variables, and the constant leading singularities.
These properties can be made beautifully manifest in the so called dlog forms. Let us
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consider an integrand Z with n integration variables, a; with ¢ = 1,...,n. We consider
the kinematic variables as fixed, and thus define the differential as

- d
d=>Y_ dai% . (3.294)
=1

An integrand admits a dlog form if it can be expressed as

I= Y edlogryA...Adlogr,, (3.295)
T=(i1,...in)

where the r; are algebraic functions of the kinematic and of the integration variables,
while the ¢; are algebraic functions of the kinematic variables only. The dlog forms
clearly behave as dx/x near any singularity z = 0, and thus have only simple poles.
The coefficients ¢y are the leading singularities. They can be computed — at least in
principle — by taking residues so as to localise all the n integrations, e.g. by integrating
along the contour encircling the poles r; = 0.

It is important to stress the difference between the dlog form of the loop inte-
grands (3.295) and the dlog forms in Chen’s iterated integrals discussed in Section 3.3.1:
the former are differential forms in the loop integration variables, while the latter are
differential forms in the kinematic variables. A study of the intriguing relation between
the two has been initiated in Ref. [231].

It is instructive to spell out at least one example of dlog form. Using the properties
of the wedge product it is rather easy to rewrite the integrand of the bubble in D = 2
dimensions given by Eq. (3.283) as

9 (D=2) 1 a1 as
Z = —dl 1 . 2
miZi1g 2d 0g<1+a1>/\d 0g<1+a2> (3.296)

With some more algebraic manipulations, it is possible to express this dlog form in
terms of the loop momentum,

2 2
2 7(D=2) _ 1 k (k+p1)
mq ILLO = §d10g <(k — kj*)2> VAN dlog <(l{;—k*)2 y (3297)
where k£* is one of the two solutions of the maximal cut,

{ (k7)* =0, (3.298)

which in the parameterisation given by Eq. (3.282) are k* = —ny and k* = —ny. An
analogous but lengthier dlog form can also be worked out for the triangle integrand in
four dimensions, but not for the bubble, because of the double pole at infinity.

The conjecture underlying this method states that integrands which admit a dlog
form with constant leading singularities integrate to pure functions [225, 232]. A lot of
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3.6 How to Find a Canonical Basis

evidence has been collected over the years in support of this statement, and important
steps towards a deeper understanding have been made in Ref. [231].

Apart from the mere theoretical interest, this observation has important implica-
tions for the search of pure integrals. The reason is that it is possible to construct
algorithmically all the dlog forms with constant leading singularities associated with a
given integral family. The algorithm, first proposed in Ref. [233] and then refined in
Ref. [230], has also been implemented in the public MATHEMATICA package DLOGBA-
s1s. The systematic nature of this method and the particular simplicity of the resulting
pure integrals with respect to other techniques have made this approach extremely
successful. As we will see in the next chapter, it played a crucial role in the state-of-
the-art computation of all the Feynman integrals required for the massless five-particle
scattering amplitudes at two loops. Before moving on to that, however, it is fair to
mention also the limitations of this method.

First of all, the presence of double poles in the integrand does not imply that the
integral does not have a uniform transcendental weight in general. For example, the
two-dimensional bubble, shifted to D = 4 — 2¢ dimensions, has a double propagator
and thus a clear double pole, as can be seen in Eq. (3.286). Nonetheless, it has uniform
transcendental weight. Clearly, the dlog integrands do not cover the entire space of
integrands which evaluate to uniformly transcendental functions. The algorithm pro-
posed in Ref. [219] does not have this limitation, but it requires one pure integral (which
couples to all the integrals of the family) to start with, and the resulting canonical bases
typically have much more complicated expressions than the dlog ones. For this reason
I see the two methods as complementary.

Another limitation is the integer-dimensional nature of the analysis of the leading
singularities presented in this section. We are typically interested in loop integrals in
D = Dy — 2¢ dimensions, for some integer Dy, whereas we have mostly considered the
Dy-dimensional part of the integrands only. While this is sufficient for many highly
non-trivial applications, it is in general not enough. It is in fact possible to write down
integrands which vanish identically in Dy dimensions, but yield a finite result upon
integration. The contribution of these “evanescent” terms are clearly missed by the
Dy-dimensional analysis, and may sometimes be relevant. In Ref. [223], my collabo-
rators and I proposed a refined leading singularity analysis based on a D-dimensional
parameterisation, which allows to control such evanescent terms as well. I postpone
the discussion of this to Section 4.2.1.

This topic concludes a long and hopefully not too tedious chapter, where I have
presented all the tools necessary to face an analytic multi-loop computation using the
method of the differential equations. Now I owe you, relentless reader who made it to
this point, a proof that it is really worthwhile to learn all of this. In the next chapter
I discuss the application of these techniques to the computation of several five-particle
integrals and scattering amplitudes at two-loop order.
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4 Two-Loop Five-Particle Scattering
Amplitudes

In this chapter I present the first results for complete two-loop five-particle scatter-
ing amplitudes. By “complete” I mean that the computation takes into account both
the planar and the non-planar Feynman diagrams. In case you are not familiar with
this distinction, bear with me until Section 4.3.1, where I define it properly. For
now it suffices to know that the non-planar contributions are substantially more com-
plicated than their planar counterparts, both in the reduction to basis integrals and
in the evaluation of the latter. Indeed, a lot is known about the scattering of five
massless particles at two-loop order in the planar limit. The planar integral fam-
ily and all the five-parton amplitudes in QCD! have been computed analytically, in
Refs. [234, 235, 208] and [234, 236, 237, 238, 239, 240], respectively. Even a full-
fledged NNLO theoretical prediction is already available in the planar limit, for three-
photon production [14, 15, 16]. There has even been important progress towards the
computation of the planar two-loop five-particle integrals with one massive external
leg [235, 241, 149, 242]. In this chapter I outline the recent progress towards including
the non-planar corrections in massless two-loop five-particle scattering amplitudes.

I begin in Section 4.1 by discussing the kinematics of the scattering of five massless
particles. Then, I move on to the Feynman integrals in Section 4.2. There are two
non-planar integral families. One was computed previously in Ref. [201] (see also [243,
244, 43, 245]). 1 took part in the computation of the last non-planar integral family,
the so-called “double-pentagon” [246, 223]. I first discuss a D-dimensional extension of
the four-dimensional leading-singularity technique introduced in Section 3.6.2. I show
how we use it to construct a basis of pure integrals for the double-pentagon family, and
how we compute the latter in terms of Chen’s iterated integrals through the canonical
differential equations. Finally, I discuss the resulting function space and highlight
certain non-trivial analytic properties.

In Section 4.3 1 present in parallel the computation of the two-loop five-particle
amplitudes in V' = 4 super Yang-Mills theory and A/ = 8 supergravity. Historically, we
first computed them at symbol level [246, 247, 248, 249], starting from the integrands of
Ref. [250]. These were the very first analytic results for complete two-loop five-particle
amplitudes. Later, we lifted the results to function level [251]. Here I present directly
the final result. First I show that a lot of precious information can be extracted from the
integrand prior to integration. This allows us to write down rather restrictive ansatze

IThe available results for the two-loop five-parton amplitudes in the planar limit are valid in the
Euclidean region only. Further effort is required to analytically continue them to the physical
scattering region, in view of phenomenological applications.
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4 Two-Loop Five-Particle Scattering Amplitudes

for the amplitudes, in terms of leading singularities and pure functions. Using the
results for the integrals discussed in Section 4.2 we can then fix the coefficients of the
ansatze, and in this way obtain explicit analytic expressions of the amplitudes which
have manifestly uniform transcendental weight. I discuss how their infrared singularities
factorise, and extract finite hard functions. To further validate our results, I present
several other checks, including the behaviour in collinear and soft limits. Finally, I
discuss throughly the asymptotic expansion of the hard functions in the multi-Regge
limit.

After warming up with the maximally supersymmetric theories, we raise the stake
and tackle Yang-Mills theory. Section 4.5 is devoted to the computation of the two-loop
five-gluon all-plus helicity amplitude in pure Yang-Mills theory [252, 253]. Despite the
substantial increase in complexity, I show that it is nonetheless possible to make an
educated guess for the form of the two-loop hard function. I discuss the renormalisation
of ultraviolet divergences and the factorisation of the infrared ones, and define a finite
hard function. The fact that the tree-level amplitude vanishes and that the one-loop
amplitude is finite and rational (at order €”) allows us to use four-dimensional unitarity
and leading singularities to constrain the form of the two-loop hard function. Then I
move on to the actual computation. I show how to rewrite the integrand from Ref. [254]
in a form that is suitable for IBP reduction. After this is achieved, IBP reduction to
pure basis integrals, substitution of the latter with their analytic expressions in terms
of Chen’s iterated integrals, and subtraction of the singularities are performed using
the finite field method. Remarkable cancellations take place. The final formula fits in
just two lines and involves logarithms and dilogarithms only. The rational prefactors
of the latter are conformally invariant, which we proved to be related to the conformal
invariance of the one-loop all-plus amplitudes [133].

4.1 Kinematics

We study the scattering of five massless particles. The five light-like momenta p; are
subject to on-shell and momentum conservation conditions,

5
p; =0, > pi=0. (4.1)
=1

They give rise to five independent parity-even Lorentz invariants, which can be chosen
as the scalar products of adjacent momenta,

5= (512,523,534, 545, 551) , (4.2)

with s;; = 2p; - pj. We take the external momenta p; to lie in four-dimensional
Minkowski space, while the loop momenta live in D = 4 — 2¢ dimensions to regulate
the infrared and ultraviolet divergences.

Starting from n = 5 particles, the kinematics depends also on parity-odd Lorentz
invariants. Since there are four independent momenta, they can be contracted with the
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Levi-Civita pseudo-tensor. It is therefore possible to construct a parity-odd Lorentz
invariant,

trs := tr(Vsp, popap,) = i€y popspa P P P D" - (4.3)

Space-time parity in fact acts by inverting all the spatial momentum components,

which induces a change of sign in trs, while leaving the scalar products s;; invariant.
Clearly it is not possible to build a parity-odd invariant if fewer than five particles
scatter, which makes five-particle scattering particularly interesting. It is convenient to
introduce the usual spinor-helicity parameterisation of the external light-like momenta,
D = A\, In terms of spinor brackets, the parity-odd invariant can be expressed as

trs = [12](23)[34](41) — (12)[23](34)[41] . (4.5)

The square of trs is a scalar quantity, and can thus be expressed in terms of the scalar
invariants s;;. In order to do so, we introduce the so-called Gram determinants. Given
a set of momenta {¢;}?" ;, the Gram matrix G(qu, ..., ¢gn) is defined by

(G(aq1s- - aqn)li; = 26i - g5, Vi,j=1,...,n, (4.6)

where the factor of 2 is conventional. The Gram determinant of a set of momenta is
the determinant of the corresponding Gram matrix. The Gram determinant vanishes if
the momenta ¢; are linearly dependent and, as a consequence, it is invariant under the
shift of any g; by any of the other momenta. In particular, if the momenta ¢; are four-
dimensional, the Gram determinant vanishes for any set of n momenta with n > 4. This
has important implications for the evanescent integrands discussed in Section 3.6.2. 1
will address this in Section 4.2.1. Using the properties of the Levi-Civita symbol, it is
possible to show that

tri=A, (4.7)

where A is the determinant of the Gram matrix constructed with four independent
external momenta,

A = detG (p17p2)p37p4) ) (48)
which is a degree-four polynomial in the s;;,
A = (512893 + 593534 — 534545 + 545551 — S51512)° — 4512523534(523 — S45 — 551) . (4.9)

The parity-odd invariant trs thus introduces an algebraic dependence on the kinematics
through Eq. (4.7). We choose the positive branch of the square root,

trs = VA (4.10)

103
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The cautious readers might feel quite uneasy looking at this equation: the left-hand
side has odd parity, whereas the right-hand side is a function of parity-even invariants.
They might fear that this choice washes away the information about parity. In practice,
it is sufficient to recall that parity acts on helicity-free functions by flipping the sign of
VA, which plays the role of parity label.

In Section 3.4.1 we have seen that, since the Feynman integrals are multi-valued
functions, it is crucial to specify the domain of the variables, namely the kinematic
region. The double-pentagon integrals discussed in Section 4.2 do not have a Euclidean
region. Moreover, we are ultimately interested in phenomenological applications. For
these reasons, we work in the 2 — 3 physical scattering kinematics. Since any pair of
momenta (p;,pj) can be incoming, the physical region in Minkowski space consists of
ten distinct regions. They are referred to as channels, and are labelled by their initial-
state s;; invariant. The different channels are related by permutations of the external
momenta. Without any loss of generality, we can take the particles with momenta pq
and po to be incoming. In other words, we work in the s12 channel. The kinematic
variables in the sj2 channel are delimited by requiring that all s-channel invariants are
positive,

$12 >0, s34 >0, s35 >0, S45 >0, (4.11)
all t-channel invariants are negative,
515 <0, 595 <0, Vi=3,4,5, (4.12)
and by the negativity of the Gram determinant,
A<O0, (4.13)

which follows from the real-valuedness of all momenta. This constraint might sound
unusual, and can be understood as follows. The Gram matrix of the external momenta
can be written as

G(p1,p2,p3,pa) = 2M " (p1, p2, p3,pa)gM (p1,p2, P3, pa) , (4.14)
where M (p1,p2,ps3,p4) is a 4 X 4 matrix whose columns are the four-dimensional mo-
menta {p;}_;, and g is the metric tensor. Since detg = —1,

A = —2'det? [M (p1,p2, p3,p1)) - (4.15)

It follows that, if all the external momenta p; are real, A must be negative.

4.2 Feynman Integrals

The scattering amplitudes for five massless particles at two loops contain Feynman
integrals of the three families shown in Fig. 4.1. The planar “pentagon-box” family
in Fig. 4.1a and the nonplanar “hexagon-box” family in Fig. 4.1b were computed in
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4 3 2 4
2
2 5 3
5 k1 ko
1 1 1 5
(a) (b) (c)
Pentagon-box Hexagon-box Double-pentagon

Figure 4.1: Integral topologies for massless five-particle scattering at two loops.

Refs. [234, 235, 208] and [201] (see also [243, 244, 43, 245]), respectively. The last family,
dubbed “double-pentagon” and shown in Fig. 4.1c, was computed at symbol level in
Ref. [246], and in terms of Chen’s iterated integrals by my collaborators and I [223].
In this section I cover the latter work. I first present a refinement of the technique
described in Section 3.6, which allowed us to construct a basis of pure master integrals.
Then I discuss the ensuing function space.

4.2.1 Pure Integrals From D-Dimensional Leading Singularities

We define the integrals of the double-pentagon family shown in Fig. 4.1c as

D D 11
Ios az,.an = €77 / Gy y P (4.16)

""" . D . D J
T2 T2

j=1

The inverse propagators D; are given by

Dy = k2, D7 = (k1 — k2)?,

Dy = (k1 —p1)?, Dgs = (k1 — ko + p3)?,

D3 = (k1 —p1 —p2)*, Dy = (k1 +ps)?, (4.17)
Dy = k3, Dy = (ko —p1)?, '

Ds = (ka+ps+ps5)?,  Di1= (ks —p1 —p2)?,
Dg = (ks + ps)?,

where Dg, D1y and D11 are ISPs. The IBPs relations indicate that there are 108 inde-
pendent integrals. Of these, 9 are in the top sector, namely they have all 8 propagators.
The integrals with fewer propagators are already known. Some are sub-topologies of
the pentagon-box [234, 208] and of the hexagon-box [201] families. Others have less
than five, but possibly massive, external momenta [255, 256]. Our goal is therefore to
find 9 independent pure integrals in the top sector.

We adopt the approach discussed in Section 3.6, and construct all the four-dimensional
dlog integrands with constant leading singularities using the algorithm of Refs. [233]
(further refined in Ref. [230]). In order to perform the loop integration in D dimension,
however, one needs to specify how such d log integrands are to be defined away from four
dimensions. The easiest way to do so is to simply “upgrade” the loop momenta from
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4 Two-Loop Five-Particle Scattering Amplitudes

four to D dimensions. For obvious reasons, we dubbed this the “naive upgrade” of a
four-dimensional integrand. Despite its name, this method has been successful in many
cases. In particular, it is sufficient to construct canonical bases for the other massless
two-loop five-particle integral families. Nonetheless, one should expect the freedom
involved in the upgrade to strike back, eventually. Indeed, this is what happens for the
double-pentagon family.

The naive upgrade of a four-dimensional d log integrand of the double-pentagon fam-
ily in general does not integrate to a pure function. Let us make an explicit example.
Table 3 of Ref. [257] offers a list of massless two-loop five-particle integrals whose four-
dimensional integrands admit a d log form and have constant leading singularities. The
sum of the first and the fifth numerators for the double-pentagon diagram (labelled (a)
there), which we denote by By + Bs, does not produce a pure integral after the naive
upgrade. This can be assessed by computing the differential equation.

The obstruction to the naive upgrade must be related to missing evanescent terms
in the integrands, namely terms which vanish in four dimensions at the integrand
level, but which yield finite contributions upon D-dimensional integration. We found
a convenient way to construct such terms using the Gram determinants. In Eq. (4.6) I
have defined the Gram matrix of a set of vectors. We need to generalise it further to
two distinct sets of vectors {¢;}1~; and {r;}]",

qis---50qn S
[G <’I“1a...,’f'n>:|ij_2% - (19

In four dimensions, the determinant of the Gram matrix of any set or any pair of sets
of five momenta is zero, because the latter are linearly dependent. If the five momenta
involve also loop momenta, the Gram determinant gives a non-trivial integrand term
which vanishes in the D — 4 limit. For instance, consider the Gram determinants

g” — detG (k:’ivplap27p3ap4> (419)
Y kj,p1,p2:p3,P1)

with 4,5 € {1,2}. An integrand whose numerator is proportional to any combination
of G;; vanishes identically in four dimensions. Whenever such terms are relevant for
an integrand to integrate to a pure function, the four-dimensional analysis discussed
in Section 3.6 may be inaccurate. In particular, the conjectured criterion that four-
dimensional dlog integrands with constant leading singularities produce pure functions
can in such a case fail.

We developed a novel D-dimensional criterion for pure integrals, based on the study
of the leading singularities in Baikov representation [258, 259], which captures the
D-dimensional features of the integrand as well. For a given four-dimensional dlog in-
tegrand of the generic form N/(D; ... Dy), the new criterion generates a D-dimensional
integrand of the form

I SR — (4.20)
Di...Dy  Di...Dy
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which is conjectured to integrate to a pure function. The tilde sign here denotes the
naive upgrade, and S is proportional to evanescent Gram determinants. We name
Eq. (4.20) the “refined upgrade” of the four-dimensional dlog integrand N/(D; ... Dy).

In order to understand how this works it is not necessary to go into the details
of the Baikov parameterisation. It is sufficient to recall the key idea: the inverse
propagators D; of a D-dimensional Feynman integrand are taken as the integration
variables. I refer e.g. to [260] for a thorough discussion of how to write down the Baikov
representation of an integral. The new integration variables, called Baikov variables
for obvious reasons, capture also the D-dimensional features of the integrand. One
can thus define D-dimensional leading singularities as the maximal residues computed
in the Baikov variables. This can be done just as we did for the four-dimensional
parameterisations discussed in Section 3.6. Then, our new D-dimensional criterion for
a pure integral is to require that its integrand in the Baikov parameterisation admits a
dlog form and that all its leading singularities are constant. In practice, one can feed
manually the Baikov parameterisation to the MATHEMATICA package DLOGBASISs [230],
and execute its algorithm to construct all the D-dimensional dlog forms with constant
leading singularities.

There is however a technical complication. For the double-pentagon family, the
standard Baikov analysis of the maximal cut [261, 262], based on the two-loop Baikov
parameterisation, involves complicated three-fold integrals in the ISPs which are not
cut. We by-pass this computational difficulty by adopting the loop-by-loop Baikov cut
analysis [260]. Consider a generic double-pentagon integral with numerator N,

dPky dPky N
I4,[N] := 62%/ ) 4.21

The analysis is analogous if the propagators are raised to some integer power. The
integration can be separated loop by loop as

ey [Py 1 Pk, N
Idp [N] =e D D .
inz D4DsDg | ;75 D1D2D3D7Dg

The two-loop integral Iq,[N] can thus be written as the composition of a pentagon
integral with loop momentum k; and a triangle integral with loop momentum ko.
The idea is then to apply the Baikov parameterisation loop by loop, namely first for
the pentagon integral with numerator N and next for the triangle. Unfortunately,
here comes another technical subtlety. The four independent external momenta of the
pentagon integral are pi, p2, ps and —ks. The numerator N may in general contain
scalar products between the loop momentum of the pentagon, k1, and external momenta
which do not flow into the pentagon, i.e. k1 - py or k1 - p5s. We refer to the latter as
crossed terms. They cannot be Baikov-parameterised straightforwardly in the loop-by-
loop approach, because they do not appear as propagators nor as ISPs of the pentagon
integral. In other words, the pentagon integral offers no Baikov variables to express
them. In such a case, we perform a one-loop integral reduction, i.e. we expand the

(4.22)
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pentagon integral with numerator k' in its four independent external momenta,

d7ky il = TWph 4 1Dl 4+ 1)l — D 4.23

/m’i D\DyDsDeDy - VLT PR 2 (429
By contracting the two sides of this equations with the external momenta of the pen-
tagon we can construct a linear system, whose solution gives the coefficients I of
the expansion. This way we can remove the crossed terms.? As a consequence, Dy
drops out from the integrand. We are thus left with 10 Baikov variables, z; = D;,
ie{l,...,11}\{9}, as opposed to the 11 we would have had in the standard two-loop
Baikov representation. Once this parameterisation is complete, we can explore the
D-dimensional residues.

Let us consider, for example, a double-pentagon integral with an evanescent numera-
tor, e.g. Iqp[Gi12]. The entire integrand, and thus also its leading singularities, vanishes
in four dimensions. The method presented in Section 3.6 cannot establish whether this
integral is expected to be pure or not. The loop-by-loop Baikov representation de-
scribed above, on the other hand, does not vanish, and depends on 10 Baikov variables
zi. Using the package DLOGBASIS [230] we can compute systematically all leading
singularities. In practice, it is convenient to simplify the calculation by working on the
cut integral. So we take the residues in z; = 0 Vi € C for all the subsets of propagators
C C{1,...,8}, we compute the residues of these integrands in the remaining variables,
and we make sure that there are no double poles. We find that the leading singularities,
computed on different cuts, all evaluate to either dtrs/(s12 — s45) or zero. We therefore
conclude that the integral

212 5 1[Gl (4.24)
tI‘5

fulfills our D-dimensional criterion. Other integrals with purely Gram-determinant
numerators satisfy our D-dimensional criterion, for instance

%(Gn - Gi2), %(Gm - Gr2). (4.25)
The explicit computation of the differential equations proves that those given by Eqs. (4.24)
and (4.25) are indeed pure integrals.
This D-dimensional analysis of the leading singularities also allows to determine the
refined upgrade of the double-pentagon four-dimensional dlog integrals in Ref. [257].
For instance, the refined upgrade of (By + Bs) is given by

16545G12

B+ B
(1+ 5)+ trg

(s12823 — S12515 + 2512534 + 523534 + S15545 — 534545) . (4.26)

We verified that the refined upgrades of the dlog integrands of Ref. [257] are indeed
pure.

2Technically, we have solved the problem only for a linear dependence of the numerator on the crossed
scalar products. The integral reduction on a quadratic crossed term, e.g. (k1 -p4)2, would involve
the metric tensor ¢g"”, thus introducing a dependence on € in the integrand. We did not need to
address this issue for our purposes, but this remains an interesting open problem.
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Finally, we can go back to the original goal: finding a canonical basis for the top
sector of the double-pentagon integral family. The four-dimensional dlogs in Ref. [257],
upgraded in the refined sense, together with the Gram-determinant integrals given in
Eqgs. (4.24) and (4.25), span a 8-dimensional linear space. Only one integral is missing
to form a basis.

The last integral was found using computational algebraic geometry. We consider
generic ansatze for the numerators,

Neven = Z CaMa (4.27)
o
1

Noad = E za: CaMq (428)

where it is convenient to separate even and odd parity. Each ¢, is a polynomial in
the Mandelstam invariants s;;, while m, denotes a monomial in the ISPs. We re-
quire the four-dimensional leading singularities of the ansétze to match a given list of
rational numbers. The polynomials ¢, can then be computed using the module lift
techniques [263] in computational algebraic geometry, implemented in the computer
algebra system SINGULAR [264]. This produces another linearly independent integral
satisfying our D-dimensional criterion.

Putting together all the candidate pure integrals which satisfy our novel D-dimensional
criterion for uniform transcendentality gives a basis for the double-pentagon on the top
sector. Sub-sector pure integrals are found either via the method described in Sec-
tion 3.6, or taken from the literature [234, 208, 201]. The explicit computation of the
differential equations proves that the resulting integral basis is indeed canonical.

4.2.2 Pentagon Functions

The method described in the previous section leads to a basis of 108 pure integrals for
the double-pentagon family. We denote it by g. They satisfy a system of differential
equations in the canonical form,

dj = edAg, (4.29)
with
~ 31
dA =" adlogW;, (4.30)
i=1

where a; are constant 108 x 108 matrices, and {W; §i1 are the letters of the so-called
pentagon alphabet [243]. The latter describes not only the double-pentagon family, but
all massless five-particle integrals at two loops. This was first conjectured in Ref. [243],
based on the results for the planar integrals [234, 235, 208], and later proven by ex-
haustion [201, 245, 246, 223]. Let us break it down.
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First there is a large group of parity-even letters, {Wz}ﬁl, which are simply given
by scalar products of the external momenta,

Wi =2p; - pit1, (4.31)
Wsti = 2pivs - (Pit+2 + pi-1) , (4.32)
Wioti = 2piya - (Piv3 +Ppi-1) (4.33)
Wist+i = —2pi - piva, (4.34)
Waoti = 2pite - (Pi + Dit3) (4.35)
with ¢ =1,...,5. Here and in the following, the index that labels the external momenta

p; is understood modulo 5 (p;+5 = p;). These letters are clearly related to the collinear
and soft singularities of the integrals. Therefore, they could have been anticipated
by an analysis of the Landau equations. This block of letters is closed under the 5!
permutations of the external momenta. Moreover, it is clearly structured into orbits
of the cyclic permutation group, which is apparent from the presentation given by
Egs. (4.31)—(4.35). The letters {W;}?,, are purely nonplanar, as they do not appear
in the planar pentagon-box integrals. This set of letters was conjectured in Ref. [243]
by completing in a minimal way the planar alphabet so as to make it closed under all
permutations of the external legs. Finally, only the letters {W;} with i € {1,...,5} U
{16,...,20} (only for ¢ € {1,...,5} in the planar case) are allowed as first entries
of the symbol. See Section 3.3.6 for an explanation. On top of this well understood
first-entry condition, a mysterious second-entry condition was conjectured in Ref. [243],
based on the results available at the time. Iterated integrals of the form [Wy, Wy, .. ],
[W5, Ws, . ..] and their permutations appear to be forbidden. Since all the massless two-
loop five-particle integrals have now been computed, we can claim that this conjecture
is in fact correct, but an understanding of the underlying physical principle is still
missing. It is not unreasonable to fantasise about a connection with the Steinmann
relations [59, 60, 198] discussed in Section 3.3.6.
One last even letters is

W3 = VA, (4.36)

or, equivalently,

War = tr (159, o1, ) (437)

Although VA changes sign under parity, we must remember that the letter really
is dlog W31, so that the sign of Wjy is irrelevant. For the same reason, this letter
is invariant under any permutations of the external momenta. We recall that A is
defined by Eq. (4.8) as the determinant of the Gram matrix constructed with four of
the external momenta. This means that, if restrict the momenta to D < 4 dimensions,
the four momenta become linearly dependent and the Gram determinant vanishes. The
letter W3y is thus related to spurious singularities of the integrals in a lower-dimensional
subspace.
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4.2 Feynman Integrals

The letter W3y alone does not imply an algebraic dependence of the alphabet on the
Mandelstam invariants, since

dlog VA = %dlog A. (4.38)

The algebraic nature is introduced by the five parity-odd letters,

@iit1,i42,43 — VA

Wosri = , (4.39)
@iit1,i42,43 + VA
with 7 = 1,...,5, where a;;41,42,+3 is a degree-two polynomial in the Mandelstam
invariants defined by
aj234 = tr (}7?41255%?2) = 512823 — $23534 + S34545 — S12551 — S45551 , (4.40)

and similarly for the other indices. Because of the dependence on v/A, these letters are
genuine to five-particle kinematics. They form a set which is closed under permutations
of the external momenta. We recall that parity acts by flipping the sign of v/A. These
letters are therefore manifestly odd, i.e. dlogW; — —dlogW; under parity for all
i = 26,...,30. In fact, they have exactly the form advocated around Eq. (3.47),
and the polynomial a;;41,i42,i+3 can be easily anticipated from A and from the even
letters via the procedure described in Section 3.2.1. In the physical scattering region
A < 0 and these odd letters are therefore complex phases, namely |W;| = 1 for all
i = 26,...,30. Their form might look rather complicated, but, as pointed out in
Ref. [234], an underlying simplicity emerges when we rewrite them as ratios of traces,

e (= 5)pp.0.8,) )

[t

and similarly for the others.

The possibility of the rewriting given by Eqgs. (4.37) and (4.41) has important impli-
cations. As discussed in Section 3.2.1, one could equally well choose the numerators (or
denominators) of the odd letters as independent letters. We choose to use the ratios
because they have simple transformation properties under parity, but numerators and
denominators, separately, have another virtue: they are linear in the momenta. It is
therefore possible to express the entire alphabet in a way that is linear in all the exter-
nal momenta. This suggests immediate parameterisations that are rational in a given
variable. Any BCFW-like shift of the momenta [127] would in fact lead to a parameter-
isation of the alphabet that is linear in the shift parameter. The latter therefore gives
a “direction” along which we can very the letters in a rational way. This is in general
a very precious property, but in this case we can do even better. We can in fact define
changes of variables that completely rationalise the alphabet. One way to see that this
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4 Two-Loop Five-Particle Scattering Amplitudes
is possible, is by noting that all the letters are rational in the spinor-helicity invariants.
For example,

(45)[51](12)[24]
[45](51)[12](24) °

Was = (4.42)

Any parameterisation in terms of momentum twistors [265] therefore rationalises the
alphabet. See e.g. Refs. [266, 267] for explicit parameterisations of this kind. The
possibility of rationalising globally the pentagon alphabet implies that it is possible
to solve the differential equations systematically in terms of GPLs (see Section 3.4.3).
A basis of functions for the pentagon alphabet up to weight four together with fast
numerical routines for their evaluation was provided first in Ref. [208] for the planar
subset of letters, and then in Ref. [209] for the complete alphabet. They are dubbed
pentagon functions.

4.2.3 Boundary Values

Once the function space is well under control, the last missing ingredient to write down
the solution of the differential equations are the boundary values. As base point, we
choose

so=(3,-1,1,1,-1) , trs|, = V3. (4.43)

This is the most symmetric point lying in the s12 channel. In particular, it is symmetric
under the exchange of the incoming momenta, p; <> p2, and under any permutation
of the outgoing momenta, {ps,ps,p5}. To determine the values of the integrals at
so we exploit the transparent singularity structure of the canonical form (4.29). The
method is a refinement of the one discussed in Section 3.4.2. I will content myself
with describing the procedure. For the technical details I refer to Refs. [208, 201, 199].
The dlog basis integrals are by construction ultraviolet-finite. This can be proven e.g.
by power counting [230]. We can therefore assign to € a negative value, small enough
that we do not spoil the ultraviolet behaviour. For such a value of ¢, all divergences
are regulated, and the integrals are therefore finite. The differential equations however
bring into the solution spurious singularities everywhere one of the letters vanishes, even
for a small negative value of €. So we solve the differential equations asymptotically
close to the hypersurface where one of the letters vanishes, and require the result to be
finite for € small and negative. This imposes constraints on the values of the integrals
on that hypersurface, which we transport back to the base point using the differential
equations. Repeating this procedure for all the letters of the alphabet relates all the
boundary values to a few simple integrals. The latter can be computed in closed-form,
or found in the literature [255, 256].

There is an important caveat. The fact that the integrals are finite everywhere for a
small and negative value of € is a conjecture, and should be taken with great caution.
In fact, during the computation we realised that the hypersurface A = 0, boundary
of the physical scattering region, is a very dangerous place. Although it looks like a
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rather unphysical locus, some of the integrals diverge there. I discuss this interesting
phenomenon in the next section. For now, it suffices to say that we do not require the
integrals to be finite at A = 0, even for a small negative value of e. We only impose a
matching between the full and the asymptotic solution.

Although it might sound slightly intricate, this procedure is very systematic and can
be implemented in an automatic way. This allowed us to overcome another technical
complication. In previous work, the pentagon-box integrals were computed in all kine-
matic regions [234, 235, 208], whereas the hexagon-box integrals were computed only
in the Euclidean region [201]. Similarly, we computed the double-pentagon integrals
initially only in the sj2 channel [223]. We will see in the next sections that the integrals
enter the amplitudes in all the orientations of the external momenta. In other words,
we need to know them in all the kinematic regions. For instance, imagine that one of
the double-pentagon integrals we computed in the s;5 channel evaluates to

Iqummy (5, tr5) = 1 + €log s12 + O(e?). (4.44)

The amplitude might contain this integral in another orientation. For instance, we may
need to trade {p1, p2, p3, pa, p5} as in Fig. 4.1c for {p2, p3, p4, p5, p1}. Let me denote this
cyclic permutation by o1, with o1 o p; = p;41. If we do this naively, we get

[01 © Idummy] (37 tl‘5) = Idummy (01 ©S§,010 tl"5) =1+ elogsas + 0(62) ’ (445)

which is not well defined in the sio scattering region, where so3 < 0. In principle
this can be fixed via analytic continuation (see Section 3.4.1). I find this approach to
be cumbersome at high transcendental weight, and very error-prone. In Ref. [252] we
adopted a different strategy. Consider now the differential equation satisfied by Iqummy,

dIdummy =€ leg S12 Idummy . (446)
The permuted integral satisfies the permuted differential equation,

d (U ° Idummy) = edlogsag (00 Idummy) . (4'47)

Permuting the differential equation is however trivial and completely safe, since only
algebraic functions are involved. Given a systematic way of fixing the boundary values
for the differential equations in a given base point, the expression of the permuted
integral can be obtained by solving the permuted differential equations directly in the
kinematic region of interest. No analytic continuation is needed.

Since we do have a systematic procedure to fix the boundary values at a given base
point starting from the differential equations, our strategy is the following. We consider
each permutation of all the integral families shown in Fig. 4.1 as a distinct integral
family. We derive the differential equations and fix the boundary constants for each
of them directly at the base point in the si2 channel, given by Eq. (4.43). Moreover,
to reduce the number of independent integrals and streamline the calculation, we also
derived the relations between integrals of different families and in different orientations.
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This approach is completely automatic and less error-prone, since we never need to
continue analytically.

We verified the boundary values numerically for two orientations of the double-
pentagon integrals, and for selected integrals of the hexagon-box family. This was
done by computing the integrals numerically using PYSECDEC [268, 269] at the base
point sg. To simplify this computation, we performed it in D = 6 — 2¢ dimensions, and
used the dimension shifting relations [226, 227] to relate the results to the integrals in
D = 4 — 2¢ dimensions. The values of the planar integrals were checked against the
program provided with Ref. [208].

In conclusion, we computed analytically the values at the si2-channel base point (4.43)
of the basis integrals of the integral families shown in Fig. 4.1 in all the 5! orientations
of the external momenta, up to transcendental weight four. This opened up the door to
the computation of the first complete — i.e. including the non-planar contributions —
five-particle scattering amplitudes at two-loop order. Sections 4.3 and 4.5 are devoted
to this topic.

4.2.4 Non-trivial Analytic Behaviour at the Boundary

In this section I present examples of Feynman integrals to illustrate the analytic be-
haviour near the hypersurface trs; = 0, boundary of the physical scattering region.
Specifically, we consider the nonplanar two-loop five-particle integrals shown in Fig. 4.2,

[ — 2 / dPky dPksy trs
¢ iwD/2imDI2 k3 (k. — pa)2k3 (k2 — p1)? (k1 + k2 + p3) (k1 + k2 + p3 +p5)?
(4.48)
and similarly for I,. The factor of trs in the numerator makes these integrals pure and
parity-odd. We study them in the physical s1o scattering region. There, A < 0 and trs
is purely imaginary. We assume that Im|trs] > 0.

Given the factor of trs in the numerator, one might naively expect the integrals I,
and I to vanish at trs5 = 0. As a matter of fact, I does vanish, but I, does not. As we
will see later, because of the odd parity, the non-zero value at trs = 0 has interesting
implications for the analytic behaviour of the integrals. I stress that the two integrals
are related by a permutation of the external legs. Nonetheless, they exhibit a completely
different behaviour at trs = 0.

Let us start with I, shown in Fig. 4.2b. Using the method of the differential equations
one can show that, in the s19 channel, it takes the form

1 1
=87+ -1+ 17 +0(). (4.49)

For our purposes, it is sufficient to look at the weight-two part. It can be expressed
explicitly in terms of dilogarithms,

(2) . . 1 . . 1
=3|L —Lip(—— ) +L CLio[
h ’ [ N (W27) = < W27> Tl (WQB) N < Was >

f (4.50)
4 Liy( ———— | — Lig [ WarWas ) | .
2 (W27W28 ) 2 < 27 28):|
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4 4

, 5 1 ! 5 3
3 2
(a) (b)

Figure 4.2: Feynman integrals to illustrate the analytic properties near the hypersurface tr; =
0. The scalar integrals shown here are multiplied by a factor of tr;. As a result,
they are pure and parity-odd. The integral (a) does not vanish on the hypersurface
trs = 0 (approached from within the s scattering region), the integral (b) does.

This function is single valued in the s;5 channel. This can be shown by rewriting it in
terms of Bloch-Wigner dilogarithms (3.83) with arguments Way, Wag and WarWag. To
this end, I recall that in the sjo channel these arguments are pure phases, and their
complex conjugation is given by their inverse. Since the odd letters {W;}3%,s become

1 at tr5 = 0, fl§2) vanishes on the whole hypersurface trs = 0, in agreement with the
naive expectations.

The integral I,, shown in Fig. 4.2a, has a more interesting behaviour. Its Laurent
expansion reads

I, = %ff) + 150 1 0 1+ 0(e). (4.51)
€ €

The weight-two part f,gz) has a much more complicated expression than that of I. A
very careful analysis shows that it is given by

1P = 3Py + Girhg, (4.52)

1
Lig | WogW- — Lig[ =————
+ 12< 26 27) 12<W26W27>’

he = log(ng)@(agg) + (log(ng) — 2z'7r)@(—a28) — iﬂ'éws
— log(W26)@(a26) — (log(Wgﬁ) — 2i7T)@(—CL26) + i7‘(‘5a26 (4.54)
— 10g(W30)@(—a30) — (log(Wgo) + 2i7r)@(a30) — i7r6a30 .

and
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Here, I introduced the short-hand notation a; := a; +1,42,+3 for the polynomial ap-
pearing in the odd letters (see Eq. (4.39)), © is the Heaviside function (with ©(0) = 0),

and
1, ifz=0
§,=4 0 "ET (4.55)
0, otherwise.

Both P, and h, are single valued in the sjo channel. While P, vanishes identically
like fb(2) if tr5 = 0, h, does not vanish in a generic point where trs5 = 0. Therefore, in
contrast to Iy, I, does not vanish on the whole hypersurface trs = 0.

The analytic expressions given by Egs. (4.53) and (4.54) were checked against nu-
merical evaluations performed with PYSECDEC [268]. In particular, we integrated
numerically the convenient integral representation given in Ref. [243],

F3 —aT(2 9 1 1 1
Ia = —656267}3 ( — ( 6) ( + 6)) / dOél / da2 / dOég F_2_2€ 5 (456)
['(—3¢) 0 0 0

where

F = (—s93)ag+(—s13)as+ (—s35)a1 + (—s25)a1aa+ (—s15)anas + (—s12)asas , (4.57)

and similarly for I,. The analytic expressions are in agreement with the numerical
evaluations within the error estimates.

Finally, we can appreciate the interesting analytic consequences of the seemingly
innocuous fact that I, does not vanish on the entire hypersurface tr5 = 0. The key
point is that I, is a parity-odd integral. As such, it changes sign under parity, which
acts by flipping the sign of tr;. Approaching a point on the hypersurface trs = 0 from
within the scattering region but with different sigs of Im[trs] therefore gives values with
opposite signs,

£ = +12n2 (@(—ags) — O(—ax) + @(a30)> : (4.58)
Im[trs]=0%

Here, the superscript + indicates whether the offending hypersurface is reached along
a path with Im[trs] > 0 or Im[trs] < 0, respectively. In other words, any parity-odd
integral which does not vanish on the entire hypersurface trs = 0 has a discontinuity
across the latter, even though the scattering region is never left. We can therefore
think of the scattering region as composed of two copies, one with Im[trs] > 0 and one
with Im[trs] < 0. I stress however that this is a feature of the individual Feynman in-
tegrals. The scattering amplitudes are expected to be analytic throughout the physical
scattering region. While this is obvious for the two-loop five-gluon all-plus helicity am-
plitude presented in Section 4.5, we checked numerically that also the supersymmetric
amplitudes discussed in Section 4.3 are continuous at the point

s = (3,—1+\f,1,1,—1> , tr5 = 0, (4.59)

where some of the contributing Feynman integrals are discontinuous and even divergent.
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4.3 Maximally Supersymmetric Amplitudes

In this section I discuss the two-loop five-particle (super) amplitudes in NV = 4 su-
per Yang-Mills theory and N = 8 supergravity.® Since they share many properties, I
treat them in parallel. My collaborators and I, alongside another group of researchers,
computed them first at symbol level [246, 247, 248, 249]. Later, we supplied the infor-
mation about the boundary constants of the Feynman integrals, and lifted the results
to function level [251]. In the same work we also investigated the multi-Regge limit
of the amplitudes. The discussion is structured as follows. First, in Section 4.3.1, I
introduce the two amplitudes and define the notation. A lot of information on the
form of the amplitudes can be inferred from the integrands even prior to integration.
In particular, both amplitudes are expected to have uniform transcendental weight.
This allows us to make anséitze for the amplitudes in terms of a finite set of rational
factors and pure pentagon integrals, which I discuss in Section 4.3.2. Then I move on
to the actual computation. In Section 4.3.3 I use the known analytic expressions of the
pentagon integrals to integrate the integrands computed in Ref. [250], this way fixing
the coefficients in the ansitze and confirming the expected structure. In Section 4.3.4
I show how the infrared singularities of the amplitudes factorise, and define finite hard
functions (or remainder functions), for which I provide the numerical values at a refer-
ence point. Our results are further validated in Section 4.3.5, where I present several
checks, such as the behaviour in collinear and soft limits. Section 4.4 is devoted to
discussing the multi-Regge limit of the hard functions. After defining the multi-Regge
kinematics in Section 4.4.1, I show how we computed the asymptotic expansions in
the limit using the procedure presented in Section 3.5. A basis of the transcendental
functions appearing in the Regge limit up to two loops is presented in Section 4.4.3.
In Sections 4.4.4 and 4.4.5 I present and discuss the asymptotic expansion of the hard
functions in A/ = 4 super Yang-Mills and N = 8 supergravity, respectively. I comment
on the results in Section 4.4.6.

4.3.1 Notation

It is convenient to expand the amplitude in N' = 4 super Yang-Mills theory in a modified
coupling constant,

6_€’YE

=Y g%, (4.60)

a =

where ¢ is the coupling of the Lagrangian. This way we absorb in the new coupling a
the factor of e’ introduced in the normalisation of the integrals to remove Euler’s con-
stant from the expressions, and the different loop integration measure of the Feynman
diagrams, dPk/(2m)P, with respect to the Feynman integrals, d”k/7”/2. We expand

31 refer the readers who are not familiar with these theories e.g. to the textbooks [25, 26].
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the five-gluon super-amplitude as

As = 5@ (p1 +p2 + D3+ pa+ps) 5( 3Za€A (4.61)
>0

extracting the overall momentum and super-momentum () conservation delta func-
tions. The latter implements all the supersymmetric Ward identities and packages the
information on how to extract from the super-amplitude the various amplitudes for the
states in the super-multiplet (see e.g. Refs. [25, 26] for an introduction to the super-field
formalism).

We make the SU(N,) colour dependence explicit by further decomposing the ampli-
tudes Aé) up to £ =2 as

12
0) _ Z A0, (4.62)
ZNAIOTJFZA“TA, (4.63)
A=13
12
AP =% (NQA(QO) +AP? >ﬂ+ Z (NA21)>n, (4.64)
A=1 A=13

where {T,}32, is a colour basis introduced in Ref. [270]. It is composed of 12 single
traces,

= Tr(12345) — Tr(15432), = Tr(14325) — Tr(15234),
= Tr(13425) — Tr(15243), ’71 = Tr(12435) — Tr(15342) ,
= Tr(14235) — Tr(15324), Tr(13245) — Tr(15423), (4.65)
7} = Tr(12543) — Tr(13452), Tr(14523) — Tr(13254) '
To = Tr(13524) — Tr(14253), 7'10 = Tr(12534) — Tr(14352),
Ti1 = Tr(14532) — Tr(12354) Tio = Tr(13542) — Tr(12453),
and 10 double traces,
Tis = Tr(12)[Tr(345) — Tr(543)], Tia = Tr(23)[Tr(451) — Tr(154)],
Tis = Tr(34)[Tr(512) — Tr(215)], Tie = Tr(45)[Tr(123) — Tr(321)],
Ti7 = Tr(51)[Tr(234) — Tr(432)], Tis = Tr(13)[Tr(245) — Tr(542)], (4.66)
Ti9 = Tr(24)[Tr(351) — Tr(153)], Tao = Tr(35)[Tr(412) — Tr(214)],
To1 = Tr(41)[Tr(523) — Tr(325)], To1 = Tr(52)[Tr(134) — Tr(431)]
Here I introduced the short-hand notation
Tr(ij...) = Te(T%T% ...), (4.67)

where T% = /2T and T are generators of the symmetry group S U(N.) in the fun-
damental representation, normalised so that Tr(TT?) = 1/25%.
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The components Ag 9 in this decomposition dominate in the large N, limit, and they

are therefore referred to as leading-colour components. From the diagrammatic point of
view, they receive contributions only from planar Feynman diagrams with the external
legs ordered as the generators in the corresponding trace. In this sense they constitute
the planar part of the amplitude. Conversely, the subleading-colour components are
dubbed nonplanar.

The partial amplitudes AE\M) are related by group-theoretic identities [271, 270]. As

a result, the one-loop double-trace components Ag\l’l) are entirely determined by the

)

planar ones AE\I’O . At two loops, the colour-subleading single-trace components Ag\2’2)

are given by linear combinations of the planar AE\2’O) and of the double-trace AE\Q’I)
components. Moreover, the complete amplitude is symmetric under any permutation
of the external legs. This symmetry interplays with the transformation properties
of the colour structures 7y, inducing relations among the different partial amplitudes
Ag\z’k). Two components AE\M) and Af\é’k) are related by the permutation of the external
legs which maps 7y into Ty,. Therefore, there is only one independent component at

tree level and at one loop, say Ago) and Agl’o), and only two at two loops, e.g. AgQ’O)

and A§2’1). However, because of the complicated interplay between permutations and
analytic continuation (see the discussion in Section 4.2.3), we prefer to compute all the
components, and to use these relations as checks.

At tree level, the amplitude is given by the famous Parke-Taylor formula [272, 273],

1
(12)(23)(34)(45) (51)

AL = (4.68)
The Parke-Taylor factors play an important role in the following, and it is thus conve-
nient to define the short-hand notation

1

Piniatsiais) = G Ty iaia) liata) (i) 6%

The integrands of the amplitude at one and two loops can be found e.g. in Refs. [274,
250].

For the five-graviton amplitude in N' = 8 supergravity we adopt a similar expansion
in the gravitational coupling constant x, with x? = 327G,

—em ]
] e oo

3
Ms =6 (p1 + pa + ps + pa + p5) 19(Q) (;) >,
>0

As in the super Yang-Mills case, we have absorbed in the coupling the conventional
normalisation of the Feynman integrals, and we have extracted the momentum and
super-momentum () conservation delta functions. There are important differences with
respect to the N' = 4 super Yang-Mills amplitude. The gravitational coupling x has
the dimension of an inverse energy, 1/E. Moreover, there is no concept of colour in

supergravity. All the partial amplitudes M, 5(6) are thus intrinsically nonplanar. Similarly
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to the super Yang-Mills amplitude, on the other hand, also the supergravity amplitude
is invariant under any permutation of the external legs. The explicit representation of
the amplitude may however obscure this symmetry. An example of this is the following
expression for the amplitude at tree level [275],

Méo) = 812834PT(12345)PT(21435) + 813824PT(13245)PT(31425) . (4.71)

It is instructive for the following to investigate how this formula actually manages to
be permutation invariant. The rational factors appearing in Eq. (4.71) have the generic
form

sijsPT(0)PT(p), (4.72)

where the Greek letters ¢ and p denote arbitrary permutations of the external mo-
menta. There are many relations among these factors, and only 146 of them are linearly
independent. These relations are responsible for the permutation symmetry of the ex-
pression given by Eq. (4.71). Through them, we can rewrite the tree-level amplitude
in a manifestly symmetric form,
MY = % 3" 00 [~s12834PT(12345)PT(21435)] , (4.73)
oESs
where the sum runs over all the permutations of the external momenta. These re-
lations among the rational functions play an even more important role at loop level.
Unintegrated expressions of the one and two-loop five-graviton amplitudes are given
for instance in Refs. [276, 250].

4.3.2 Expected Structure of the Two-Loop Amplitudes

The computation of a scattering amplitude can be simplified dramatically by having
an insight into its final structure. For the two amplitudes under consideration, it turns
out that we can actually write down rather constrained ansétze before even starting to
integrate the known integrands [250].

We know from the explicit computation discussed in Section 4.2 that all the Feynman
integrals which contribute to the massless two-loop five-particle amplitudes can be
expressed as linear combinations of pure integrals. It follows that a generic (partial)

amplitude fé2) has the form

FD =3 R\ TP, (4.74)

where Ii@)pure are pure two-loop integrals, and the factors R; depend rationally on
both the external spinors and the dimensional regulator €. In the special case in which
the rational factors R; do not depend on ¢, the (partial) amplitude .7-}52) has uniform

transcendental weight. We have seen in Section 3.6.2 that this property of the amplitude
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is conjecturally related to its integrand admitting a dlog form. We recall that a dlog
form by definition has only simple poles in the integration variables. The study of the
poles of the integrands can therefore lead to reasonable expectations about whether an
amplitude has uniform transcendental weight or not [225, 21, 233, 230)].

The absence of double poles in AN/ = 4 super Yang-Mills has been shown for several
amplitude integrands [277, 232]. In particular, a lot is known about the Maximally-
Helicity-Violating amplitudes, such as the one we are now considering. Not only they
are all conjectured to have uniform transcendental weight [48, 278, 277, 279], but their
leading singularities are in fact known [280]: they are given by permutations of the
Parke-Taylor tree-level amplitudes (4.69) only.* In the five-particle case, only six of
them are linearly independent. We choose

PT, = PT(12345), PT, = PT(12354)
PT; = PT(12453) PT4 = PT(12534) (4.75)
PT; = PT(13425) PTg = PT(15423) .

Therefore, the partial amplitudes in Eq. (4.64) are expected to have the form

6
APD =35GB P PP (4.76)
i=1 j
where ag\kg ; are constant rational numbers and I](Q)pure are pure two-loop integrals.

The amplitude integrands in N' = 8 supergravity in general exhibit double or higher
poles. However, the two-loop five-graviton amplitude is free of double poles at least at
infinity [281, 282]. This is a convincing hint that the integrated amplitude has uniform
transcendentality, which was in fact confirmed by the explicit computations. For the
leading singularities, we can make a guess based on the known expressions for the
tree-level and one-loop five-graviton amplitudes. Since the gravitational coupling x is
dimensionful, the leading singularities must have a different dimension at each order in
k2. At tree level we have already seen that the rational factors building blocks of the
amplitude (4.71) have the form (4.72). The naive one-loop generalisation of the latter
is

$ijskiSmnPT(0)PT(p) . (4.77)

The extra factor of s;; with respect to the tree-level case compensates the dimensionality
of the gravitational coupling k. These objects form a 290-dimensional space over Q. In
order to assess the validity of this guess, we look at the one-loop amplitude. It can be
expressed as [276]

[12][23][34][45][51]
(12)(23)(34) (45)(51)

M=% [345s§25§3PT(12345)PT(12354)Z§45) + 2
Ss

Igﬁe] ,

(4.78)

4For the two-loop five-gluon amplitude, these properties are made manifest in the representation of
the four-dimensional integrand given by Ref. [257].
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where Ii%) is the one-mass box integral with external momenta pi,ps,ps and py +

ps in D = 4 — 2¢ dimensions, while 156_2E denotes the massless pentagon integral in
D = 6 — 2¢ dimensions. It suffices to know that these two integrals evaluate to pure
functions, with overall leading singularity 1/(s12s23) and 1/trs, respectively. The one-
loop amplitude therefore contains two classes of rational factors. As we expected, there
is the generalisation of the tree-level factors, given by Eq. (4.77). In particular, the
leading singularities of this form are spanned by 15 Q-linearly independent permutations
of

r{) = 515505554 PT(34125)PT(43215) . (4.79)

In addition, the six-dimensional pentagon integral introduces

W 1 (122834 a5)51
716 = ey 12) (25)(34) (85) (1) (450)

which is independent of the factors in Eq. (4.77) and, quite remarkably, is invariant
under permutations of the external momenta.

A few observations are in order. First, the new one-loop factor in Eq. (4.80) enters the
amplitude only at order ¢, as it is manifest in Eq. (4.78). This “D > 4”-dimensional
nature — spoiler alert — is confirmed at two loops: the two-loop generalisation of
Eq. (4.80) in fact drops out of the infrared-finite hard function. Secondly, it is a good
moment to highlight the wealth of non-trivial relations existing among these rational
functions. For instance, the prefactor of the one-mass box in the one-loop amplitude
given by Eq. (4.78) vanishes upon summing over all its S5 permutations

S 0 o [s12523545 PT(12345)PT(12354)] = 0. (4.81)
og€ESs

Interestingly, the same remains true even if we multiply it by any function of x €
{34, 835, 814, 815}

3" 00 [s12523505 PT(12345)PT(12354) f ()] = 0. (4.82)
o€ESs

This identity follows from the interplay between the permutation symmetries of the
rational factor and of the argument of f. It does not imply any non-trivial functional
identity for the latter. These examples indicate that the study of the relations among
the leading singularities is crucial in order to find a “good” — according to more or less
subjective criteria of elegance and compactness — expression for the amplitude. In this
view, I highlight that both the tree-level and the one-loop amplitude, can be expressed
in a fairly elegant way by summing over the permutations of a compact “seed” function
(see Egs. (4.73) and (4.78)).

We can draw inspiration from the information collected at tree level and one loop to
make an ansatz for the leading singularities of the two-loop amplitude. The minimal
expectation is that the following two classes of rational factors are required,

$ijSkiSmnSopP T ()P T (p), (4.83)

122



4.3 Maximally Supersymmetric Amplitudes

and
[12][23](34][45][51]

trs (12)(23) (31) (15) (51) 48

Of the two sets, 510 and 5 are linearly independent, respectively. While this guess is
correct, it is convenient — in order to simplify the notation — to anticipate that only
45 of them actually appears in the amplitude. They are spanned by 40 independent
permutations of

r®) = 519593534545 PT(12345)PT(21435) (4.85)

and by

) _ Skk+1 [12][23][34][45][51]
ok T T (12)(23)(34) (45) (51)

fork=1,...,5, (4.86)

where the indices of the Mandelstam invariants are understood modulo 5. The rational
factors {rl(z)}?il, like the tree-level and one-loop ones, have the property of having
at most simple poles at all locations where (ij) = 0. This set of rational factors
can be further motivated by studying the leading singularities of the integrand using
the method discussed in Section 3.6.1 [249]. Also in this approach the factors given by
Eq. (4.84) remain slightly elusive, and can be caught only by employing a D-dimensional
parameterisation, as proposed in Section 4.2.1. In conclusion, we arrive at the following
ansatz for the two-loop five-graviton amplitude in N' = 8 supergravity,

45
M =375 D (4.87)
i=1 j
where mg) are constant rational numbers and I}Q)pure are pure two-loop integrals.

4.3.3 Integrating the Integrands

In this section I describe how explicit results for the amplitudes in the form given by
Egs. (4.76) and (4.87) are obtained starting from known un-integrated expressions. The
latter were computed in Ref. [250] using D-dimensional unitarity and colour-kinematics
duality [50].

The integrand of the N' = 4 super-Yang-Mills amplitude can be expressed as

1 a 1 b 1 c 1 d 1 € 1
Aé2) = Z oo <21-( ):4 + Z ( ):4 + ZI/(\/):4 + 51_/(\/'):4 + ZI( ):4 + 41-](\;)4) ’ (488)
0€Ss

where I(I): 4 With x = a,b, ..., f, denotes a Feynman integral whose propagator struc-
ture is given by the graph (x) in Fig. 4.3. Each of the integrals in Eq. (4.88) has the
form

D D (x) N (=)

(gc) _ 2evm d kl d kz C o

Tyyg=c¢ /iwD/2 "D @ @’ for x =a,b,..., f. (4.89)
1. Dyg
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Figure 4.3: Graphs representing the integrals appearing in the two-loop five-particle inte-
grands given by Egs. (4.88) and (4.90).

The inverse propagators Dl@ can be read off from the graph (z) in Fig. 4.3 (for x =

d,e, f one of the inverse propagators is given by sj2). The colour factor ¢®) is given
by a product of Lie-algebra structure constants. We find it convenient to write it as
a vector in the colour basis {75}32, given by Egs. (4.65) and (4.66). Finally, N@)
is a kinematic factor. For the explicit expressions I refer to Egs. (4.15) and Table I
of the original work [250]. Note that the numerator factors there contain the super-
momentum conservation delta function, which we have extracted from the definition of
the two-loop amplitude Aé2) (see Eq. (4.61)).

The N = 4 super Yang-Mills integrand given by Eq. (4.88) is in the so-called Bern-
Carrasco-Johansson form [50, 51]: the kinematic factors N®) in the numerator appear
on equal footing with the colour factors ¢(®), i.e. they satisfy same algebraic relations as
the colour factors. This is a manifestation of the colour-kinematics duality [50]. There-
fore, the integrand of the N' = 8 supergravity amplitude can be obtained by “squaring”
the N' = 4 super Yang-Mills one as dictated by the double-copy mechanism [50, 51].
In practice, one trades the colour factors ¢(®) for copies of the kinematic factors N,
Such copies, which we denote by N (#) are identical to the original factors IV (@) from the
kinematic point of view, but have shifted R-symmetry indices for a correct bookkeeping
of the individual states. We delegate this bookkeeping to the overall super-momentum
conservation delta function, which we have extracted from the two-loop amplitude M, éz)
(see Eq. (4.70)). We thus keep only the purely kinematic part of the numerator factors,
which is identical between the two copies N®) and N®). The resulting expression for
the N = 8 supergravity amplitude is

2 1 _(a b c d e 1
M =3 o0 (21&):8 + 41( ) 41( ) 21( ) 41( L+ T 8) (4.90)
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where the integrals are double-copies of the N' = 4 ones given by Eq. (4.89),

D D (x)12

@ _ sew [ 4%k dPky  [NW] _

Tyig=c¢ /i?TD/2i7TD/2 0@ @’ for x =a,b,...,f. (4.91)
7. Dy

As discussed in Section 4.2, all massless two-loop five-particle integrals have been
computed. Integrating the integrands given by Eqgs. (4.88) and (4.90) therefore amounts
to rewriting them in terms of the known pure basis integrals. Our workflow is the
following. First, we rewrite the numerator factors N*) in terms of inverse propagators
Dl(w) and ISPs, and map the integrals I/(\i): 4 and Ij(\g/f)zg to (permutations of) the three
integral families discussed in Section 4.2 (see Fig. 4.1). Then, we use IBP relations
to express the summands of Eqs. (4.88) and (4.90) for the first orientation of the
external momenta in terms of basis integrals. I stress that at this stage we are focusing
on one specific orientation of the external legs, and postpone the sum over the 5!
permutations. Thanks to the recent advances in the IBP-reduction techniques, this
step no longer represents a bottleneck. The numerators are in fact rather simple: they
depend at most linearly (quadratically) on the loop momenta in the N' =4 (N = 8)
case. Therefore, the IBP reduction can be performed using either the public IBP
packages like FIRE6 [164], Kira [283] and Reduze2 [161], or private IBP solvers with
novel approaches [284, 238, 285, 286]. The resulting form of the N' = 4 super Yang-Mills
amplitude is

22 61 73 108
AP =500 Y c(;j; 19+ cg’g "+ c(;;. 197 . (4.92)
o€Ss A=1 \j=1 j=1 j=1

where {I (@) o {I 3, and {I }108 denote the integral bases for the pentagon-box,
for the hexagon-box, and for the double-pentagon integral family, respectively, in the
orientation of the external legs given by Fig. 4.3. The choice of these integral bases
depends on the specific IBP solver used. In general, they are not pure integrals. The
factors CE\QZ) in Eq. (4.92) depend on N, on the spinor products of the external momenta,
and on €. An analogous expression holds for the supergravity amplitude.

Next we change the integral bases to the known canonical bases, which we denote by
{fi(a =1s {I }731 and {I }108 See Section 4.2 for the relevant references. In order
to perform this change of basis, we first reduce the canonical bases to those chosen by
the IBP solver. This gives the transformation matrices T*) such that

[@ =@ . @ (4.93)

The inverse transformation matrices (T(”"))_l are computed using the sparse linear
algebra method of Ref. [285]. They allow us to rewrite the summands of the amplitudes
in terms of pure integrals,

108

A= e |3 Z*;f;“)@c”” DI LR

0€ESs A=1 \j=1
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4 Two-Loop Five-Particle Scattering Amplitudes

and similarly for the N/ = 8 supergravity amplitude. It is interesting that also at
this stage the prefactors of the integrals Eg\x; are functions not only of the kinematics
and of N, but also of €. In other words, these expressions for the amplitudes do not
exhibit uniform transcendentality. The sum over the permutations of the external legs
therefore appears to play a crucial role in making this property manifest.

To permute the integrals, we follow the strategy introduced in Ref. [252] and outlined
in Section 4.2.3. We do not compute the integrals for one orientation of the external
legs and then permute the result, which would require a careful analytic continuation.
Instead, we treat every permutation of each integral family as a different family, for
which we write down the differential equations and compute the boundary values at the
base point in the s15 channel given by Eq. (4.43). This way, we can express all permu-
tations of any basis integral in terms of iterated integrals or of the basis of functions of
Ref. [209] straightforwardly and directly in the sj2 channel. In addition, we construct
the relations between integrals of different families and in different orientations, so that
the remaining pure integrals are linearly independent.

The rational factors, on the other hand, come with a different issue. Although they
are trivial from the analytic point of view, their proliferation in the sum over the
permutations causes an uncontrolled growth in size of the expression. We can tame
this easily because we have a very precise idea of which leading singularities should
appear in the amplitudes. The latter, in fact, should ultimately take the forms given
by Egs. (4.76) and (4.87). Our strategy then is to evaluate the prefactors of the pure
integrals in random kinematic points, leaving the integrals as symbolic expressions.
In particular, we use rational rather than floating-point numbers to avoid any loss in
accuracy. This way, the intermediate expressions are as compact as they could possibly
be. Using just 6 (45) independent random evaluations we can easily fit the expected
form of the NV = 4 super Yang-Mills (N = 8 supergravity) amplitude. A few more
evaluations are used to validate the result. At this stage it is important that only a set
of independent pure integrals are left. Unresolved identities among the pure integrals
could in fact lead to spurious terms which do not have the expected form.

Finally, after summing up all the permutations, the dependence on € in the ratio-
nal factors drops out, and the amplitudes exhibit uniform transcendentality in full
glory. We obtain expressions for the two amplitudes with the expected form, given by
Egs. (4.76) and (4.87). The leading singularities are those discussed in Section 4.3.2,
and the pure integrals are the independent canonical basis integrals which span all the
permutations of the three relevant integral families. These expressions give us full an-
alytical and numerical control over the amplitudes. Using the differential equations we
can in fact rewrite them in terms of iterated integrals, Goncharov polylogarithms or the
basis of functions of Ref. [209], and evaluate them anywhere in the physical scattering
regions. The expressions are however too bulky for me to write them out here. They
can be found in ancillary files of the original papers [247, 248, 251]. The remarkable
cancellations that ultimately lead to uniformly transcendent amplitudes with precisely
the expected leading singularities are on their own a compelling sign that the compu-
tation is correct. Nonetheless, we carried out a number of tests to validate our results,
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which I present in the next two sections.

4.3.4 Divergence Structure and Hard Functions

In Section 2.3 I have shown how the divergences in loop scattering amplitudes stem
from either the infrared or the ultraviolet region of the loop integration. Ultraviolet
divergences can be removed through renormalisation, but we do not need to worry
about them in the present case. N = 4 super Yang-Mills theory is in fact known to be
ultraviolet finite [287, 288, 289]. The potential UV finiteness of N' = 8 supergravity is
still an extremely intriguing open problem. Various arguments rule out UV divergences
in supergravity amplitudes up to at least seven loops [290, 291, 292, 293, 294, 295, 296].
Therefore, the two-loop five-particle amplitudes in N/ = 4 super Yang-Mills and N' = 8
supergravity have infrared divergences only.

The infrared divergences of scattering amplitudes in gauge and gravity theories
factorise in well understood ways. Through the infrared factorisation theorems, the
infrared-divergent part of a loop amplitude is determined entirely by information of
lower loop order. This provides a precious check on amplitude computations. More-
over, it means that the infrared divergences can be subtracted, this way defining an
infrared-safe hard (or remainder) function where the regulator e can be removed. The
hard functions are interesting objects for several reasons. Because the infrared diver-
gences are determined by lower-loop information, the hard functions contain the truly
new piece of information. Moreover, the Kinoshita-Lee-Nauenberg theorem [115, 116]
implies that infrared divergences of virtual amplitudes cancel out against corresponding
divergences from real emissions in any physical observable. The hard functions thus
capture the physically most relevant part of the amplitudes. Finally, there is also a
practical reason. Experience shows that the hard functions are substantially simpler
than the corresponding amplitudes, and they typically allow for much more compact
expressions.

In the next section I review the infrared factorisation of massless amplitudes in gauge
and gravity theories, and then present our results for the A/ = 4 super Yang-Mills and
N = 8 supergravity hard functions.

Infrared Factorisation in N/ = 4 Super Yang-Mills Theory

The IR divergences of (renormalised) massless amplitudes in gauge theories factorise
to all perturbative orders as [297, 298, 299, 300, 49]

2
Sis Siq Sij M 2
./45 (”7@(H2)76> - Z5 <U7a(:u2 )a€> Af <Z]7 7,&(,& )?€> ’ (495)
u? py AN

where Zs is an operator which captures all the poles in €, and the amplitude Ag is
thus finite in the € — 0 limit. Treating the amplitudes as vectors in colour space, Zs
is a matrix. I denote matrices in colour space in bold face. In Eq. (4.95) p and pp
are the renormalisation and factorisation scale. For simplicity we choose them to be
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equal, u = pp, and eventually set 4 = 1. The explicit dependence can be recovered a
posteriori.

The hard (or remainder) function is then defined by letting letting € — 0 in the finite
amplitude,

Hs = lim A . (4.96)
e—0

This definition is of course ambiguous, as different choices for the finite part of the pole
operator Zs can be made. We adopt the MS scheme, i.e. we keep only the pure pole
part in Zs. The latter may then be expressed as the path-ordered exponential of an
anomalous dimension, which up to two loops is given by the elegant “dipole” form,

5 5
ey
s = —Yeusp E (T; - T;)log ( ”) + g Ye s (4.97)
i=1

2
1<j p

where the operator T¢ inserts a SU(N.) generator in the adjoint representation on
the i*" leg. For convenience of the reader I spell out the action of the colour-insertion
operator on the SU(N,) generators 7%,

0 i
T 0 T% = 7 (4.98)
—ifbucire . j=i.

Keeping into account the vanishing of the (four-dimensional part of the) S-function in
N = 4 super Yang-Mills, the pole operator Zs takes the form [300]

F/(l) I\(l) F/(Q) I\(Z)
log Z= = 25 4 5 225 4 25 3 4.
0845 =4 ( 4¢€2 + 2¢ ta 16€2 + 4e +0(a%), (4.99)
where I‘g) is the coefficient of o’ in T's and
P 5
11/5 = Marfy = 2r)/cusp Z (Tz ' T]) = _SCA/YCUSP y (4100)

1<j

with C4 = N.. Finally, in Eq. (4.97) ycusp is the cusp anomalous dimension normalised
by the quadratic Casimir in the adjoint representation C'4 [301, 302, 303, 304, 305, 306,
307],

472 9 3
Yeusp = 4a — = Caa®+0(a”), (4.101)
and 7. is the collinear anomalous dimension,

Ye = 2¢3C%a” 4+ O(a®) . (4.102)
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The logarithms in I'; (4.97) need to be analytically continued to the kinematic region
of interest. This can be achieved by adding a small positive imaginary part to each
Mandelstam invariant s;;, and results in

log (—S" _ i0+) _ logsij —qm, if Sij > 0, (4 103)
“ log (—Sij) , if Sij < 0. .

(0)

Denoting by Aél% the order-e* term of ¢-loop amplitude Az, the one and two-loop

hard functions in the MS scheme are explicitly given by
HM = ALY, (4.104)

5
H :Ag?())+5CA A&%JFQZ(TZ..TJ‘)IOJ :;J> AL (4.105)

k)
1<J

We see in Eq. (4.105) that the two-loop hard function depends on the coefficients of
the one-loop amplitude up to order €2. We computed the latter starting from the
integrand given in Ref. [250] and following the same strategy presented in Section 4.3.3
for the two-loop amplitude. The result has uniform transcendental weight, with the

same leading singularities of the two-loop amplitude,

6

A =SS P, (1109

i=1 j
(17

where a M?) € Q and IJ(-I)pmre are pure one-loop integrals.

Infrared Factorisation in N' = 8 Supergravity

The IR structure of perturbative gravity is much simpler as compared to gauge theories.
Graviton amplitudes are in fact free of collinear divergences [308]. As a result, they
have only a single pole in € per loop order, associated with soft graviton exchanges,
rather than a double pole as in gauge theories. The soft divergences exponentiate in a
strikingly simple way [308, 309, 310, 311, 312, 313, 314],

Ms =S ML (4.107)

The gravitational soft function Ss is the analogue of the pole operator Zs in Eq. (4.95)
for the Yang-Mills case: it captures all the singularities, leaving a finite amplitude Mg .
Thanks to the absence of colour, S is not an operator, and it is given by a simple
exponential, as opposed to the path-ordered exponential in the Yang-Mills IR-pole
operator Zs. In particular, the gravitational soft function S5 is given to all orders in
the coupling by

Ss = exp [05} : (4.108)

€
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where o5 /€ is the infrared-divergent part of the one-loop amplitude,

o5 = ( ) ZZSW log ( S”) (4.109)

J=1 1<y

Here p is a factorisation scale, which we set to 1 for simplicity. In this sense the
divergences of graviton amplitudes are said to be one-loop exact. The logarithms in
Eq. (4.109) are analytically continued to the desired scattering region according to
Eq. (4.103).

In complete analogy with the Yang-Mills case, we let ¢ — 0 in the finite amplitude
/\/lg , and define an infrared-safe hard function,

=i f
F5 = lgl(l)/\/lg) . (4.110)
The one and two-loop contributions are given explicitly by
Y =My, (4.111)
F& = ME) — o5 MY, (4.112)

where Méelz denotes the order-e* term of the ¢-loop amplitude Mée).

Computing the two-loop hard function requires the knowledge of the one-loop am-
plitude up to order e. We obtained the latter by applying the workflow discussed in
Section 4.3.3 to the integrand given in Ref. [250]. The result exhibits uniform tran-
scendental weight,

= 5" miPrieee (4.113)

where m ) ¢ Q, r;7/ are the one-loop leading singularities discussed in Section 4.3.2,

and I](- )pure are pure one-loop integrals.

The Two-Loop Hard Functions

In this section I present our results for the hard functions. We begin with A/ = 4 super
Yang-Mills theory. We adopt for the hard functions the same colour decomposition
used for the amplitudes, given for the latter by Egs. (4.63) and (4.64). The results
for the one and two-loop amplitudes have the form given by Eqs. (4.106) and (4.76),
respectively. Substituting them into Egs. (4.104) and (4.105) gives expressions for the
hard functions of the form

ZZbA PP, PP (4.114)

zl]

ZZbA 2P, P! (4.115)

=1 7
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where bgf’i];) € Q and Pj(w) are weight-w pentagon functions. We observe that the
letter W3, defined in Eq. (4.36) and present in the amplitudes, drops out of the hard
function, as it was already noted at symbol level [246, 247]. We have full analytical and
numerical control over the hard functions in the form given by Eqgs. (4.114) and (4.115).
For instance, this allows us to compute their asymptotic behaviour in any kinematic
limit. I give an explicit example of this in Section 4.4, where I discuss the multi-Regge
limit. Moreover, we can evaluate the hard functions anywhere in the physical scattering
region. To prove this and to facilitate future cross-checks, we provide in Table 4.1 the

numerical values of the two-loop hard function at the randomly-chosen kinematic point

13 9 33 2 V222767
SR=< SR 3), with try = i~ . (4.116)

4011 264
We find it interesting to note that the planar and the non-planar colour components of
the two-loop hard function are numerically of the same order of magnitude, as can be
seen in Table 4.1. We stress however that the impact of the non-planar corrections on
the theory predictions can be assessed systematically only at the level of the physical
observable. We provide the explicit expressions of the one- and two-loop hard function
in terms of the pentagon functions defined in Ref. [209] at

pentagonfunctions.hepforge.org/downloads/21_5pt_hardfunctions_ N=4_N=8.tar.gz.

The one and two-loop hard functions in N' = 8 supergravity are given by Eqgs. (4.111)
and (4.112) in terms of the finite part of the two-loop amplitude M, 5(2) and of the one-

loop amplitude M5(1) up to order e. Substituting our results for the amplitudes, which
have the form given by Eqs. (4.113) and (4.87), gives

15

f5(1) _ Z ch)ﬁmpj@ ’ (4.117)
=1 7
40

]_-5(2) _ Z Z Cg-)?“z@) Pj(4) 7 (4.118)
=1 7

where cl(f) € Q and Pj(w) are weight-w pentagon functions. It is very interesting that

the rational factors 7“%) at one loop and rﬁlk, with £ = 1,...,5, at two loops drop

out of the hard function. At one loop this is already obvious from the integrand given
by Eq. (4.78). There, in fact, it is clear that the factor r%) appears only at order e,
which does not enter the one-loop hard function. Its absence at two loops is instead
non-trivial. In this regards it is interesting to note that, while the other factors can be
computed using the four-dimensional analysis of the leading singularities, r%) and its
two-loop versions can be caught only with a D-dimensional analysis (e.g. using Baikov
representation, as suggested in Section 4.2.1) [249]. In this sense the hard function,
which is a four-dimensional object, appears to contain only the four-dimensional leading

singularities. Another interesting observation is that the letter W3; in the supergravity
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N? N, NY

Ti | 74.92986 — 61.83635i 0 —617.3565 + 294.79867
T2 | 92.3051 + 108.9834i 0 —1024.0932 + 532.1760i
Ts | —49.51614 + 73.37582i 0 258.3246 + 558.5523i
Ta | 7.50918 + 52.48750i 0 427.1264 + 340.3532i
Ts | —95.8105 — 124.8597i 0 —73.4024 — 741.5020i
To | —134.93821 + 4.43862i 0 853.1018 — 590.6476i
Tr | —12.39259 + 33.13533: 0 494.0699 + 262.70331
Ts | 37.35506 + 120.680544 0 87.3332 + 500.0807:
Ty | 80.04433 + 33.19817i 0 —839.1711 + 349.2263i
Tio | 50.71731 — 21.09889i 0 —670.3692 + 131.02714
Ti1 | —39.34196 — 85.68420i 0 —263.6325 — 106.3503i
Ti2 | —27.72786 + 22.45736i 0 662.8718 + 44.5041i

Tiz 0 —125.2669 + 216.94341 0
T4 0 —696.3813 — 209.4301% 0
Tis 0 —344.4732 + 447.83761 0
Ti6 0 —127.9880 + 116.6798% 0
Tiz 0 —444.5692 — 325.76557 0
Tis 0 —510.7351 — 321.1812% 0
Tio 0 459.3389 + 210.4025¢ 0
T20 0 —120.7437 + 267.29537 0
T21 0 711.4669 + 60.16167 0
T22 0 —460.7431 — 329.60701¢ 0

Table 4.1: Numerical values of the two-loop five-particle hard function in N' = 4 super Yang-
Mills theory normalised by the Parke-Taylor factor PT; (4.75), ’Hf;)/ PT1, at the
kinematic point sp (4.116). The rows correspond to the colour decomposition in
the basis defined by Egs. (4.65) and (4.66), and the columns to the power of N..

case is absent not only in the hard function, but also in the amplitude. I complete this
section by providing the value of the two-loop hard function at the kinematic point sg
defined in Eq. (4.116),

= —1211.9365 — 215.60877 , (4.119)

where the normalisation was chosen so as to cancel the helicity weight. The explicit
expressions of the one- and two-loop hard functions in terms of the pentagon functions
defined in Ref. [209] can be downloaded at

pentagonfunctions.hepforge.org/downloads/2l_5pt_hardfunctions N=4 N=8.tar.gz.
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4.3.5 Further Validation of the Results

We verified that our results for the two-loop five-particle amplitudes in N' = 4 super
Yang-Mills theory and N = 8 supergravity satisfy several highly non-trivial constraints,
in addition to having the correct infrared structure. All the checks discussed in this
section have been carried out at symbol level, where we also successfully cross-check
with the results of Refs. [246, 249].

Soft Limit of the Supergravity Amplitude

The leading term in the asymptotic expansion of a n-graviton amplitude as one of the
gravitons becomes soft factorises into a (n—1)-graviton amplitude times a universal soft
factor [276]. The latter does not receive quantum corrections [308, 315], which explains
the much simpler soft structure of supergravity amplitudes discussed in Section 4.3.4
as compared to their super Yang-Mills counterparts. Since the four-graviton amplitude
in A/ = 8 supergravity is known up to two loops [316, 310, 317], we can check that our
result for the two-loop five-graviton amplitude has the correct leading behaviour in the
soft limit. I stress that here we consider the leading soft behaviour only. The sublead-
ing soft operators are substantially more complicated: they are realised as differential
operators in the spinor variables and they do receive quantum corrections [318].

Recall that we are actually working with a super-amplitude, which comprises differ-
ent component amplitudes related by supersymmetry. It is convenient to focus on a
specific component, without any loss of generality. In particular, we choose the com-
ponent amplitude describing the scattering of five gravitons with helicity configuration
(17,27,37,4%,57). As one of the external momenta becomes soft, say ps — 0, the
five-point amplitude factorises as [276]

1im0M§‘5)(1—,2—,3+,4+,5+) ~ 8B x MP (17,27, 3% 47 (4.120)
p5—

where all subleading terms are omitted. The leading soft factor for a positive-helicity
graviton is given at all orders by [308, 315]

1 (2405 (13)(34)[35)
S = ~mEm |t (12

We use momentum twistor variables Z; to parameterise the kinematics in the limit. In
particular, we find it convenient to use the Poincaré dual of the standard momentum
twistors [265],

Z; = ( X?w) , (4.122)

Li e )\Z'
where

Ty — Tj4+1 = )\15\1 = Di, (4.123)
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and the subscript of z; is defined modulo 5. Swapping the helicity spinors A < A in
Eq. (4.122) gives the standard momentum twistors. In momentum twistor space, the
soft limit p5 — 0 can be parameterised as [319]

Zs — Zy+a1Z1+ 9 (CLQZQ + ang) R (4.124)

where 6 — 0 controls the limit, and the parameters a1, az, ag are fixed. It follows from
the parameterisation given by Eq. (4.124) that A\s ~ O(§) and A5 ~ O(1) as § — 0.
The soft factor (4.121) thus diverges as S(51) ~ 1/§%. The Mandelstam invariants are
given by

s
12 = y1 1y |’
140 |4+ (1+1) 1]
Sz =t=sx,
s
534 = )
1+6 (14 1) ya(1+ys)
Y180
5 = y1 1y |’
140 |4+ (1+1) 1]
t)o
s15 = ve (s +1) (4.125)

T+6ys (1+ 1) (14y3)

where the fixed parameters y1,y2 and ys specify how the soft limit is approached.
The ratio = t/s is also introduced to simplify the expressions. Letting ps = 0 or
equivalently § = 0, the five-particle invariants reduce to the usual Mandelstam variables
s and t describing four-point scattering,

S12 — S, So3 — 1, S34 — S, 545—)0, si5 — 0. (4.126)

Substituting the parameterisation given by Eq. (4.125) into the pentagon alphabet
{Wi}3L, (see Section 4.2.2 for the definitions), and expanding the letters up to the
leading order in §, produces a much simpler 15-letter alphabet. As expected, it contains
the sub-alphabet {x,1+ z, s}, which describes the scattering of four massless particles.
Only they can appear in the right-hand side of Eq. (4.120). The remaining 12 letters
— 0 and other functions of the non-universal parameters y1, y2, y3 — must drop out in
the limit. This alone is already a highly non-trivial check of our result. Working out
the soft asymptotics of the symbol of the two-loop amplitudes we can also match the
leading terms — of order 1/8% — on both sides of Eq. (4.120), finding agreement.

Collinear Limit of the Supergravity Amplitude

The leading behaviour of gravity amplitudes in the asymptotic limit as two gravitons
become collinear is also very well understood. The leading term in the limit of a
n-graviton amplitude factorises into a (n — 1)-graviton amplitude times a universal
collinear splitting amplitude [276]. Just like the soft factor regulating the leading
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soft behaviour, also the leading collinear splitting amplitude does not receive quantum
corrections [308, 315]. Without any loss of generality, we consider the collinear limit of
particles 4 and 5, i.e.

limpy = 2P, limp; = (1 —2)P, (4.127)
4115 4|5
with P = py + ps to preserve momentum conservation. Moreover, we focus on the am-
plitude component corresponding to the helicity configuration (17,27,3%,4% 57). The
leading term in the asymptotic expansion of the five-particle amplitude then factorises
as

EﬁMg)(r,zisﬂﬂ,m ~ Split D (z;4% 5%y x MO (17,27, 3%, P, (4.128)

(0)

where Split™’ is the universal tree-level splitting amplitude,

Split ¥ (2347, 51) = _7,(11—2)53 : (4.129)

Mgg)(l_,Q_,3+,P+) is the four-graviton amplitude with external momenta pi, po,
ps and P [276, 320], and the subleading terms are omitted. Once again we find it
convenient to use momentum-twistor variables to parameterise the kinematics in this
limit [321, 322],

s — Zy+0 (a1Z1 + CL3Z3) + (SQCLQZQ R (4.130)

where § approaches 0 in the limit, while the parameters a1, as, ag are fixed. The Man-
delstam invariants take the form

S
145143 +02(1+ 1)

Sz =1l=sx,

512

)

s . Sz
BT v syl +a)(1—2)
(s +1)0?
S45 = N 1 2 i
L+o(1+3), +62(1+3)
1—
s15 = t1 = 2) (4.131)

1+0y(l+x)(1—2)’

where the fixed parameter y specifies how the limit is approached. In the limit, they
reduce to the Mandelstam invariants s and ¢ of the four-point amplitude,

S12 — S, S93 — T, 834 — 28, S45 — 0, 815—>(1—Z)t. (4.132)

Substituting the parameterisation given by Eq. (4.131) into the letters of the pen-
tagon alphabet, and keeping up to the leading order in d, produces a 14-letter alphabet.
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The right-hand side of Eq. (4.128) can contain the letters {s,z,1 + x} only, which de-
scribe the scattering of four massless particles. The remaining 11 letters have to cancel
out in the limit, making this test very stringent. The symbol of our expression for the
two-loop five-point supergravity amplitude passes this test as well, and exhibits the
expected leading collinear behaviour given by Eq. (4.128).

Collinear Limit of the Super Yang-Mills Amplitude

Scattering amplitudes in (super) Yang-Mills theory factorise in the collinear limit, but
their behaviour is more complicated as compared to supergravity. Colour in fact gives
additional structure, and the leading collinear splitting amplitudes receive quantum
corrections. Nonetheless, the leading behaviour in the collinear limit is well known.
Without loss of generality, we consider the collinear limit of particles 4 and 5, which
we choose to be positive-helicity gluons. The two-loop five-particle amplitude then
factorises as

Eﬁg <Aé2))aha2’a3’a47a5 ~ foaasb [Split(_o)(z; 4% 5%) Af) + N, Split(_l)(z; 4% 5%) Afll)
+ N2 Split® (2,4, 5%) Aio)} et ;

(4.133)
where Split(f)(z;4+,5+) and Ay) are the f-loop splitting amplitude, and the four-
particle amplitude with external momenta p1, p2, ps, and ps+ps. For the sake of clarity
I have spelled out the colour indices in Eq. (4.133). We adopt the same momentum-
twistor inspired parameterisation introduced in Section 4.3.5. The alphabet is also the
same as in the supergravity case, and simplifies in the limit to the same 14 letters.
Because of the quantum corrections to the splitting amplitudes, the right-hand side
of Eq. (4.133) contains also the letters {z,1 — z}, on top of the massless four-particle
alphabet {s,z,1 + x}. Still, most of the letters have to drop out in the limit, making
this check very constraining. Using the two-loop splitting amplitudes given in Ref. [323]
and the four-point amplitude up to O(e?) from Ref. [324] we find that our result for

the two-loop five-particle amplitude exhibits the expected collinear factorisation, given
by Eq. (4.133).

Other Checks of the Super Yang-Mills Amplitude

Thanks to the SU(N.) symmetry, the super Yang-Mills amplitude has more structure
than its supergravity counterpart, and thus offers more checks. The partial amplitudes
AE\M) are related by group-theoretic identities [271, 270]. We checked that our result
satisfies these relations, which are spelled out explicitly for the five-particle case up to
two loops in Ref. [270]. More than an actual check on the calculation of the amplitude,
these identities should be viewed as checks on the implementation of the colour algebra.
In fact, they follow automatically from rearranging the colour structure of the amplitude
in the basis defined by Eqs. (4.65) and (4.66).
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The notion of colour also allows to separate a planar amplitude, corresponding to
the leading-colour partial amplitudes Ag\Q’O). In Refs. [325, 48], the authors proposed
a formula expressing the planar amplitude in A/ = 4 super Yang-Mills theory to all
orders in the coupling in terms of the one-loop amplitude and other known ingredients.
This prediction, known as the ABDK/BDS ansatz from the names of the authors,
was confirmed numerically for the two-loop five-particle amplitude in Refs. [326, 327],
and was later shown to follow from a dual conformal Ward identity [328]. The planar
component of our result is in perfect agreement with the ABDK/BDS ansatz.

A stringent check on the non-planar part of the amplitude comes from the multi-
Regge limit. In Ref. [251] we computed the asymptotic behaviour of the N' = 4 super
Yang-Mills amplitude (and of the supergravity amplitude as well). Section 4.4 is de-
voted to this topic. What matters here is that, in the same work, a completely inde-
pendent computation of the multi-Regge limit for certain non-planar colour structures
is performed using the BFKL effective theory. Needless to say, the results agree. 1
stress that this check is performed at function level, including the terms beyond the
symbol.

4.4 Multi-Regge Limit of the Maximally Supersymmetric
Amplitudes

The expressions for the amplitudes in A/ = 4 super Yang-Mills theory and N' = 8
supergravity in terms of rational factors and pure integrals allow us to study their
asymptotic behaviour in any kinematic limit. The rational factors are in fact trivial
in this context, and the asymptotics of the pure integrals can be studied in a very
systematic and straightforward way through the canonical differential equations they
satisfy. To some extent we have already done this in the previous section, where the
soft and the collinear limits of the amplitudes were computed to validate our results.
The analysis there was however simplified: we worked at symbol level and focused on
the leading terms in the limit. Two classes of contributions were thus omitted: the
terms beyond the symbol and the power-suppressed terms in the asymptotic expansion
of the integrals. In this section I present the computation of another kinematic limit,
the so-called multi-Regge limit [329, 330]. We perform it at function level, and do not
restrict ourselves to the leading behaviour only, but rather we omit only the terms which
vanish in the limit. The technique presented in Section 3.5 to compute the asymptotic
expansion of pure integrals is therefore employed in full glory.

Loosely speaking, in the Regge limit the interacting objects are highly boosted and
have a fixed transverse profile. There is therefore a hierarchy between transverse and
longitudinal momenta, which allows to expand the scattering amplitudes in powers and
logarithms of a small parameter. The leading-logarithmic terms in this expansion are
universal. They are controlled by the gluon Regge trajectory and are related to light-
like cusp anomalous dimension. Much less is known about the subleading-logarithmic
and power-suppressed terms. They are substantially more complicated, but they can
be numerically relevant and thus important for phenomenology. Understanding these
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subleading contributions in the Regge limit, as well as in other kinematic limits, is an
active area of research.

The interest in the Regge kinematics initially arose from the goal of interpreting data
from high-energy experiments. One of the aims is therefore to describe better certain
phase space regions of collider experiments. The Regge limit is however also a very
useful probe into the structure of scattering amplitudes in quantum field theory. One
of the most interesting questions in this field is to what extent scattering amplitudes
are determined by general principles and properties. The Regge limit sheds some light
into the answer. For example, studies of this limit gave the first hints that planar
N = 4 super Yang-Mills theory is integrable [331, 332]. More recently, it played
an important role in studying multi-particle amplitudes in the context of the Wilson
loop/scattering amplitude duality. While it is difficult to formulate crossing symmetry
for multi-particle amplitudes in general, it is relatively well understood in the Regge
kinematics. Moreover, the absence of certain “overlapping” discontinuities in the Regge
limit gave early hints that the ABDK/BDS ansatz mentioned in Section 4.3.5 was
incomplete [333], and helps to constrain the form of the required corrections [64]. Such
constraints are an example of how the Regge limit can be useful in a bootstrap approach
to amplitudes, where an ansatz based on certain assumptions is made, and the free
coefficients are fixed using various conditions [278, 97]. The Regge limit can be used
as an input in such a procedure, but whenever the ansatz can be constrained by other
means, it gives a prediction. See also Ref. [334] for recent work on multi-particle
amplitudes in the Regge limit. Although most studies in Regge theory are restricted
to the scattering of massless particles, an intriguing pattern of exponentiation was
observed also for certain massive amplitudes [335]. There, also the subleading-power
terms were found to be governed by the anomalous dimension of a certain Wilson
line operator. Relatedly, the power corrections to energy-energy correlators have also
revealed a surprisingly simple pattern [336].

Another restrictions of most studies of the Regge limit in A/ = 4 super Yang-Mills is
that of planarity. In the limit of large 't Hooft coupling, scattering amplitudes in N' = 4
super Yang-Mills enjoy a dual conformal symmetry [36], which restricts substantially
their variable dependence and the transcendental functions appearing. This is very
interesting and helpful, but it is natural to wonder how universal the structures found
in this limit are. An answer to this question can be found only by considering non-planar
amplitudes as well. The latter are important for several reasons. For phenomenology, it
is unclear whether the non-planar terms are numerically negligible with respect to the
planar ones, especially in QCD, where N. = 3. Non-planar results are necessary also
in order to understand if it is possible, and eventually how, to make use of integrability
in A/ =4 super Yang-Mills [41, 42, 43, 337] beyond the planar limit. Moreover, it is
in itself interesting to investigate how the Regge limit interplays with the much richer
non-planar colour structures. Finally, (super)gravity theories have no notion of colour.
Any attempt to understand scattering amplitudes in these theories necessarily includes
also the terms which in a Yang-Mills theory would count as non planar.

Conceptual advances in understanding the Regge limit in quantum field theory [338,
339, 340] have led to predictions that were successfully compared against the explicit
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computation of the full-colour four-gluon amplitudes in N' = 4 super Yang-Mills the-
ory [324] at three loops. Furthermore, there are recent efforts in understanding cer-
tain terms in the Regge limit in supergravity theories [341, 342, 343, 344, 345], and
perturbative results for the four-graviton amplitudes are available up to three-loop
order [310, 316, 317, 199].

Non-planar studies at two-loop order have been limited to the scattering of four
massless particles until recently, because of the technical difficulty of computing full-
colour higher-point Feynman integrals and amplitudes. As I discussed in the previous
sections, for massless five-particle scattering this bottleneck has been overcome. All the
required integral families have been computed [243, 245, 201, 246, 223], a number of full-
colour amplitudes are now available [246, 247, 248, 249, 252, 251], and my collaborators
and I computed the Regge limit of the two-loop five-particle amplitudes in N' = 4
super Yang-Mills theory and N/ = 8 supergravity [251]. In the same work we have also
extended to the five-particle case the ideas of Ref. [340]. This allowed us to predict the
Regge limit of certain non-planar colour structures of the super Yang-Mills amplitude,
which we found to be in perfect agreement with the perturbative computation. Here I
content myself with discussing the latter.

I start in Section 4.4.1 by introducing the multi-Regge kinematics and showing how
we parameterise it. Next, in Section 4.4.2 I discuss how we compute the asymptotic
behaviour of the pure five-particle integrals, which we describe using the basis of tran-
scendental functions given in Section 4.4.3. I present our results for the multi-Regge
limit of the five-particle hard functions up to two loops in Sections 4.4.4 and 4.4.5,
respectively. I give a summary of our conclusions in Section 4.4.6.

4.4.1 Multi-Regge Kinematics

The multi-Regge kinematics [329, 330] is defined as a scattering process in which the
outgoing particles have strongly ordered rapidities and comparable transverse momenta.
Without any loss of generality we take the particles with momenta p; and py to be
incoming, and assume that they travel along the z-axis. In order to define quantitatively
the multi-Regge kinematics, we introduce the light-cone coordinates for the external
momenta,

pj= (pf,p},pj) : (4.134)
with
p; =p)+p], p; =p) +ip3. (4.135)
The multi-Regge kinematics is then defined by

s> pfl > pdl,  Ipsl<lpil <lIps|,  |psl =[P4l = |psl- (4.136)

We can implement the constraints given by Eq. (4.136) by introducing a parameter x
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Figure 4.4: Pictorial representation of the multi-Regge kinematics in the s15 channel.

to regulate the size of the light-cone components as

_ _ 1
il ~ 1051~ 931 ~ 51~ 0 (1)

lpf| ~ Ipy | ~ P3| ~ P4l ~ [pPs| ~ O (1) ,
lpf| ~ |p5| ~O(x) .

(4.137)

The limit  — 0" gives the multi-Regge kinematics.

Scattering amplitudes and Feynman integrals are functions of Lorentz invariants.
It is therefore convenient to implement the scalings in Eq. (4.137) at the level of the
Mandelstam invariants. This can be done by parameterising the latter as

S S1 52
S12=—75, Sw3=t1, Su=—, Si5=—, Si5=la, (4.138)
X X X

where t1,t2 < 0 and s, s1, so > 0 are fixed in the limit. One way to see the equivalence
between Eqs. (4.138) and (4.137) is by rewriting the Mandelstam invariants in terms
of light-cone components,

_ _ S
Slzzplp;:p;{% E?v
823=—|p3|25t1,

2 _

s15 = —|ps|” =t2, (4.139)
34 3 4—xa

+,— = 52
S = = — .
45 = Py P5 -
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In order to express the transverse momenta, we introduce the complex variables z and
Z, defined by

t
1-2)(1-2)=-—22 (4.140)

5182 ’ 5152 '

tls

2Z = —

The transverse momenta then are given by

5152 _ _ /S182 5152 _ _ 5152
P3| 24/ P P3| Z\/ s Ips| = ( Z)\/ s P5| = ( Z)\/ g
(4.141)

and p; = p, = 0. In the s;2 physical scattering region, z and z are complex-conjugate
to each other. I give a pictorial representation of the multi-Regge kinematics in Fig. 4.4.

4.4.2 Multi-Regge Limit of the Pentagon Functions

The starting point of the computation of the multi-Regge limit are the expressions of
the amplitudes in terms of rational factors and pure integrals. They have the form given
by Egs. (4.76) and (4.87) for the super Yang-Mills and for the supergravity amplitude,
respectively. The asymptotic expansion in the multi-Regge limit of the rational factors
is trivial. The pure integrals are a subset of the ensemble of the canonical bases of all
the permutations of the three integral families shown in Fig. 4.1. In order to work out
their asymptotic expansion, we apply the procedure discussed in Section 3.5 to each
canonical basis.

We parameterise the kinematics according to Eq. (4.138). We denote cumulatively
by

Yy = (87817827Z72) (4142)

the set of kinematic variables which stay fixed in the limit. Let § be the canonical
basis of one of the two-loop five-particle integral families with a given orientation of
the external legs. It satisfies a system of differential equations in the canonical form,

dgi(z, y, €) = edA(w, y)g(a,y,€) (4.143)

The matrix of 1-forms dA has the form given by Eq. (4.30). The alphabet is presented
in Section 4.2.2.

From the differential equations (4.143), following Section 3.5, we can systematically
derive an asymptotic expansion in the multi-Regge limit £ — 0 of the form

Gz, y,€) = T(x,y,e) 2 Pexp |:€/d.é:| ho(e) . (4.144)
g

Let us us break this down piece by piece. The matrix T is a transformation matrix
defined by

7! (eaAT - aT) _ o : (4.145)
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where Ag is a matrix of constant rational numbers, defined as the residue of 8121/ Oz at
z =0,

0 - A
%A(fﬂvy) = ?O +) aF A (y). (4.146)
k>0

The matrix A is guaranteed to have such a form because Feynman integrals can only
have regular singularities (see Section 3.2). The transformation matrix 7" admits the
expansion

T(z,y,e) =1+ Z Z 2P T m () (4.147)
k>1m>1

from which it is clear that it is responsible for the power corrections in x. If one is
interested only in the leading behaviour of the integrals, she can simply let "= 1. The
asymptotic expression given by Eq. (4.144) then contains divergent logarithms of z,
produced by the matrix exponential z¢40 and governed by the matrix Ag. The path-
ordered exponential produces the polylogarithmic functions. The contour v goes from
a base point gy in the multi-Regge kinematics to a generic point y. We choose

y():<8:1,51:1,82:1,226?,526_?>, (4.148)
which corresponds to t; = to = —1. The matrix B is obtained from the original A
through
oA 0B
= , Yy €y. 4.149

Finally, Eo(e) denotes the boundary values at yq for the auxiliary system of differential
equations

dh(y,€) = eB(y)h(y,e). (4.150)

The letters appearing in the matrix B are obtained from the original pentagon alphabet
by expanding it in z and keeping only the leading terms in the limit.

The alphabet in the limit is substantially simpler. First of all, it is rational, because
the Gram determinant is given by a perfect square at the leading order,

2.2/ 2\2
A ~ 8182('22)+0<1>. (4.151)

x—0 1,‘4 333

We choose the branch of the square root as

g ~ 152G =2 g (1> . (4.152)
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Since z and Z are complex conjugate to each other in the physical scattering region,
trs is purely imaginary. This guarantees that A < 0, i.e. that the momenta are real.
On top of becoming rational, the pentagon alphabet in the multi-Regge limit reduces
to just 12 letters, factorised into four independent sub-alphabets:

{z},
{%} ’ (4.153)

{s1,52,51 — s2,51 + s2},

{2,2,1—2,1-2,z—2,1—2—2Z}.

The function space of massless two-loop five-particle amplitudes therefore becomes re-
markably simple in the multi-Regge limit. The alphabets in the first two lines simply
correspond to logarithms, while the third and the fourth lines encode the harmonic
polylogarithms [166] and the two-dimensional harmonic polylogarithms [346], respec-
tively. Istress that the logarithms of « are produced exclusively by the matrix exponen-
tial in Eq. (4.144), whereas the remaining 11 letters appear through the path-ordered
exponential. A functional basis to express the latter is presented in Section 4.4.3.

We compute the boundary values hg(e) in Eq. (4.144) by integrating the canonical
differential equation along a path going from the base point sy (4.43) in the bulk of
the s12 channel, where the values of the integrals are already known, to a tangential
end-point in the multi-Regge limit, (x = 0,y = yp). The power corrections in x are
not relevant for this purpose, and the transformation matrix T can thus be ignored.
At the end-point the integrals develop logarithmic divergences. Since the end-point
is defined in a tangential sense (see Section 3.3.1), it is important to make sure that
the divergent logarithms which are formally set to zero match those produced by the
matrix exponential z¢4° in Eq. (4.144). After the divergent logarithms are moved,
what is left are the boundary values ﬁo (e) at yo. This procedure has to be repeated for
all the permutations of the relevant integral families. Thanks to the simple functional
dependence in the multi-Regge limit, implied by the alphabet shown in Eq. (4.153),
the transcendental constants appearing in the values of the integrals at yg can be an-
ticipated to be harmonic polylogarithms of argument 1, and two-dimensional harmonic
polylogarithms of arguments z and Z as given by Eq. (4.148). It is therefore relatively
simple to fit to analytic transcendental numbers the numerical values obtained by inte-
grating the differential equation in terms of GPLs and evaluating the latter at very high
precision with GINAC [186]. For this purpose we use MATHEMATICA’s built-in function
FINDINTEGERNULLVECTOR. I present in Table 4.2 a basis of independent transcen-
dental constants which spans the values of all the integrals at yp up to weight 4. We
could achieve an even greater simplification in the constants by going to z =z = 0 (or
equivalently ¢; = t3 = 0), but we find yp more convenient as it is less singular.

Before moving on to presenting the basis of polylogarithmic functions required for the
asymptotic expansion of the integrals, I should warn the readers about a treacherous
subtlety, related to the non-trivial analytic behaviour at the hypersurface trs = 0
discussed in Section 4.2.4. The multi-Regge base point yo (4.148) is in the upper
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Weight Real Imaginary
1 0 s
2 w2 iImLis(e3)
3 | ¢, 7ImLis(eF), 7% log(3) in, imlog?(3) — 48iIm Lis (%>
i 2 i i
A t, (ImLig(e?)> .| inGs, in?ImLiz(e%), i Im Lig(e3), i3 log(3),
7210g2(3), 7 Tm Liy <%> im log3(3) + 288i Im Liy (ﬁ>

Table 4.2: Basis of transcendental constants appearing in the values of the pentagon integrals
at the base point in the multi-Regge kinematics yq (4.148).

half of the complex z plane, namely Im[z] > 0. The physical scattering region in the
multi-Regge kinematics is defined by

>0, 51 >0, 52> 0. (4.154)

The transverse variables z and z are complex conjugate to each other, and span the
whole complex plane. However, it is highly non-trivial to analytically continue from
the upper half of the complex plane, where the base point yg lies, to the lower half. In
Section 4.2.4, in fact, we have seen that certain non-planar integrals contributing to the
amplitudes have discontinuities across the hypersurface trs = 0. The latter corresponds
to z = z, or equivalently Im[z] = 0, in the multi-Regge kinematics.

We prefer to avoid this perilous analytic continuation, and follow a less error-prone
strategy. We work in the two halves of the complex z plane separately. In both
we choose the branch of the square root for trs as in Eq. (4.152). We integrate the
canonical differential equations for the pure integrals from yy and obtain expressions
valid for Im[z] > 0. We then take the conjugate of yy as base point in the lower half of
the complex plane,

yo_(3_1,81_1782_1,2_€i37’r72 ei;). (4.155)

Since we have chosen the pure basis integrals in such a way that they have definite
parity, the boundary values at 7y can be obtained by those at yo by flipping the sign
of the odd integrals. Integrating the differential equations starting from gy then gives
expressions of the amplitudes valid for Im[z] < 0.

An equivalent approach to construct representations of the amplitudes valid in the
lower half of the complex plane consists in keeping Im[z] > 0 and choosing the opposite
branch of trs with respect to Eq. (4.152). This affects the boundary values at yo by
flipping both the sign of the odd integrals and of the odd letters. We followed both
approaches and found agreement between the two.
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4.4.3 Basis of Transcendental Functions in the Multi-Regge Limit

In this section I present a basis of the transcendental functions appearing in the multi-
Regge limit of the five-particle hard functions in N' = 4 super Yang-Mills theory and
N = 8 supergravity up to two loops. I recall that we neglect all terms which vanish
in the limit. The functions have transcendental weight up to four. The basis functions
at weight three and, in particular, at weight four are rather bulky, and do not add
anything conceptually to the presentation. For this reason, I prefer to discuss here the
basis only up to weight two. The remaining functions can be found explicitly in our
paper [251].

The transcendental functions in the multi-Regge limit have two sources, manifest
in Eq. (4.144). The matrix exponential z4° produces logarithms of 2 up to power
four, which correspond to the alphabet in the first line of Eq. (4.153). The path-
ordered exponential, on the other hand, produces non-trivial transcendental functions
of 5,517,592,z and Z. They belong to the sub-alphabets given by the other three lines of
Eq. (4.153). From the latter we can anticipate the loci of all singularities. Some are
physical,

z2=0, z=1, s1=0, s9 =0, s=0. (4.156)
Others are spurious,
z+z=1, z=2z, $1 = So. (4.157)

The latter manifest themselves in the representation of the basis functions, but drop
out in the hard functions. We construct a basis of functions that are well defined and
real analytic in both the upper and the lower half of the complex z plane. Some of
the functions are however discontinuous across the real z axis, corresponding to the
dangerous hypersurface where trs = 0.

The presentation is organised by transcendental weight. Starting from transcendental
weight two, the supergravity hard function appears to be richer in the multi-Regge
limit than its super Yang-Mills counterpart. It involves more independent functions,
including several genuine weight-four functions. The weight-four part of the super
Yang-Mills hard function in the Regge limit, instead, is reducible. In other words, it
can be expressed in terms of products of lower weight functions.

Weight 1. The hard functions in both N’ = 4 super Yang-Mills theory and N = 8
supergravity contain five manifestly single-valued logarithms,

g = log(s1),
g = log(s2),

(M) —jog [ —— 4.1
g3’ =log <8182> : (4.158)
g = log(22),
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and two more logarithms whose analytic structure requires some attention,

g8 =log(z) — log(2)

" ) (4.159)
g7 =log(l —z) —log(l —2).

We can express gél) and ggl) in a way that is manifestly well defined in both halves

of the complex plane. For gél), we parametrise z using polar coordinates as z = re’?,
with ¢ € [0, 7] for Im[2] > 0, and as z = re™* with ¢ € [0, 7] for Im[z] < 0. Then gél)
is given by

2 for I
(1) _ { ip, or Im[z] > 0, (4.160)

e —2ip, forIm[z] <O0.
Similarly, for ggl) we parametrise z as z = 1 + re® for Im[z] > 0, and as z = 1 +re”
for Im[z] < 0. In both cases, ¢ € [0,7]. Then ggl) becomes

gél) _ {—.2i7r +-2i<p, for Im[z] > 0, (4.161)
2im + 2ip,  for Im[z] <O0.
It is thus clear that gél) and ggl) are well defined in the entire complex z plane except
for the real axis, across which they have a discontinuity for Re[z] < 0 and for Re[z] > 1,
respectively.
Weight 2. The N = 4 super Yang-Mills amplitude depends on just two weight-two
irreducible functions:

ot = Lin(2) — Lin(2) + 5 (log(1 — =) ~ log(1 — 2)) log(=2) (4.162)
95" = Lin(2) + Lin(3). (4.163)

We have already encountered the first one several times. It is the Bloch-Wigner dilog-
arithm defined by Eq. (3.83). Therefore, g§2) is manifestly single-valued in the entire
punctured complex plane z € C\{0,1}. As for 952), it is continuous, but not real
analytic along the real axis Im[z] = 0 for Re[z] > 1.

Two more weight-two functions need to be introduced in order the describe the

multi-Regge asymptotics of the N' = 8 supergravity hard function:

¢ = Liy <Z _> + Liy <z > + g2,
1—-2Z 1—=z
(4.164)

2 z 2
2 =0a () 4l

where Dy denotes the Bloch-Wigner dilogarithm defined by Eq. (3.83), and g/3(3) and
"2)

g4~ are corrections to make the functions real-analytic away from the real axis. The
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4.4 Multi-Regge Limit of the Maximally Supersymmetric Amplitudes

correction terms involve only logarithms and step functions. In order to express them,
it is convenient to introduce the short-hand notations

t=0(1-2—-2)log(l-—2—-2)+0(z+2—1)log(z+2—-1)=log(|l —2—2%|),

(4.165)
and
1
0 = sign (Im[z]) © (Re[z] - 2) . (4.166)
Then,
"2 _ ( (1) _ (1) : (1) (1)
g3 = <g4 g ) 0+ (96 + 9 > 0, (4167

g = (" + 4V .
(2)

The function g5~ is real valued. The arguments of the dilogarithms cross the real
axis as z varies in either the lower or the upper half of the complex plane. Away
from the real axis, i.e. for Im[z] # 0, the arguments become real only on the line
Re[z] = 1/2, where the letter 1 + z + Z of the alphabet vanishes. There, however, the
arguments of the dilogarithms in g§2) evaluate to 1. As a result, the branch cut of the
dilogarithm is never crossed as z ranges in the upper or the lower half of the complex
plane. Eq. (4.164) thus defines an unambiguous function away from the real axis. The
function gf) is manifestly single valued everywhere in the complex plane. The Bloch-
Wigner dilogarithm contains logarithms which are singular at 1 + z + Z = 0, but the
correction term gf) is constructed so as to cancel them. It is interesting to note that
the two additional weight-two functions required in N' = 8 supergravity are actually
derivatives of certain weight-three functions present in the N’ = 4 super Yang-Mills

hard function.

4.4.4 Multi-Regge Limit of the N=4 Super Yang-Mills Amplitude

In this section I present the asymptotic expansion in the multi-Regge limit of the five-
particle hard function in AN/ = 4 super Yang-Mills theory up to two-loop order. We
compute explicit analytic expressions for all the divergent and finite contributions of
the full-colour hard function, neglecting terms which vanish as zlog(x) in the limit
xz— 0.

The planar part has already been investigated in Ref. [333], where the ABDK/BDS
formula [325, 48, 328] was shown to be Regge-exact at five points. My collaborators
and I extended the analysis to the full-colour amplitude first at symbol level [247].
There, the double-trace colour structures given by Eq. (4.66) were found to vanish in
the limit x — 0, and the leading-logarithmic part of the subleading-power terms was
provided analytically. Later we lifted the computation to function level [251].

The starting point of our computation are the expressions of the amplitudes in terms
of rational factors of the spinor-helicity variables, and of pure pentagon integrals. They
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have the form given by Eq. (4.76) for the two-loop amplitude, and similarly for the
one-loop one. I have discussed how to work out the asymptotic expansion of the pure
integrals in the previous two sections. It is now time to talk about the rational factors.
They have an extremely simple behaviour in the limit. In order to see it, we have to
normalise the rational factors, because we defined the multi-Regge limit for helicity-free
quantities only. We choose to normalise them by the Parke-Taylor factor PT;, defined
in Eq. (4.75), which also gives the tree-level amplitude. Then, all but two of the six
rational factors vanish, with the remaining ones becoming 1 (up to power corrections):

PT;
=T 4.1
PT, ri +O(x), (4.168)
with
{ri}o—; ={1,0,0,0,0,1}. (4.169)

It is particularly important that the rational factors do not exhibit any pole in z. As
a result, we can neglect the power corrections to the pure integrals, produced by the
transformation matrix 7" in Eq. (4.144). This also implies that the expressions for the
Regge asymptotics of the hard function do not contain any rational function, and that
the uniform transcendental weight is preserved. This constitutes a major simplification
in both the computation and the presentation of the results. In contrast, they are
relevant in the N' = 8 supergravity case. Putting together Eq. (4.168) for the rational
factors and computing the asymptotics of the pure pentagon integrals according to
Eq. (4.144) gives the asymptotic expansion of the amplitudes. Finally, we assemble
them in the hard function according to Egs. (4.104) and (4.105).

In order to present our results in a more meaningful way, it is convenient to first
introduce a colour decomposition based on the colour flowing in the ¢ channels. This
emphasises certain properties of the Regge regime, and yields more compact expres-
sions. Then I discuss the asymptotic expansion of the one and two-loop hard function.
All the explicit expressions can be found in ancillary files of our paper [251].

Colour Flow in the Multi-Regge Limit

We treat the super Yang-Mills amplitude as a vector in colour space. In Section 4.3.1
I have defined a basis of this vector space made of certain traces of generators of
SU(N.) in the fundamental representation. This choice of basis is convenient because
it highlights the distinction between planar and non-planar components, as well as the
permutation symmetries. A different colour basis is more meaningful when discussing
the Regge limit. We decompose the ¢-loop five-particle amplitude Af—f) into a colour
basis {S;} where each element corresponds to a definite exchange in the t-channels,

AP =5"a0s;. (4.170)
J
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Here, the sum runs over all possible pairs J = (r1,72), where r; (r2) denotes an irre-
ducible representation of the state propagating in the ¢; (¢2) channel. These representa-
tions are obtained by reducing the tensor products of the representations corresponding
to the particles 2 and 3, and 1 and 5,

Ry® Ry =P, Ry ®Rs =P, (4.171)

71 T2

where R; labels the irreducible representation of the i-th particle. Multiple occur-
rences of equivalent representations are counted as distinct. In the case of two adjoint
representations, the decomposition is given by

8,98, =1®8,58,510010527¢ 0, (4.172)

where the subscripts a and s are used to distinguish the anti-symmetric adjoint repre-
sentation 8, from the 8-dimensional symmetric representation 8,. We label the repre-
sentations of SU(N,) with their SU(3) dimensions, but all the expressions are valid for
generic N.. We thus keep also the “null” representation 0, which does not contribute
for N, = 3 since its dimension vanishes,

N2(N.—3)(N, + 1)

dim[0] = = : . (4.173)

In order to understand better the decomposition into t-channel colour structures
given by Eq. (4.170), we introduce colour operators associated with the colour flowing
in the ¢t-channels [347, 348],

T, =Ty + T3, (4.174)
Ty, =Toe+Ts+Ty=-T; —Ts, (4.175)
where we used colour conservation, i.e. 2521 T, = 0, and T; denotes the colour in-

sertion operator introduced in Section 4.3.4 and defined by Eq. (4.98) for the adjoint
representation. Clearly, the Casimir operators Tt21 and T?Q commute,

k¥

19

T} =0, (4.176)

and can thus be diagonalised simultaneously. The colour structures S; are by definition
their simultaneous eigenvectors:

T} oSy =C, Sy, (4.177)

for k = 1,2. I recall that J = (r1,72), where 7 is the representation of the state
propagating in the t; channel.
We then expand the hard function as

22
1 =pT, Y HPS,, (4.178)
a=1

149



4 Two-Loop Five-Particle Scattering Amplitudes

Sa (7“1, 1"2) Crl CTQ Sa (7“1, 7“2) Cm CTQ
1| (1,8,) 0 2N, 12 (0,0) [2(N.—1)[2(N.—1)
2 | (8,,1) N, 0 13| (0,10) | 2(N,—1) 2N,
3 | (84,84) N, . 14 | (27,8,) | 2(N,+1) N,
4 | (8,,8,) N, N, 15 | (27,27) | 2(N.+1) | 2(Ne+1)
5| (84,0) N, 2(N, — 1) 16 | (27,10) | 2(N.+1) 2N,
6 | (84,27) N, 2(N, +1) 17 | (10,8,) 2N, N,
7 | (84,10) N, 2N, 18 | (10,8,) 2N, N,
8 | (8,84) N, N, 19 | (10,0) 2N, 2(N, — 1)
9 | (8s8;) N, N, 20 | (10,27) N, | 2(N.+1)
10 | (8,,10) N, 2N, 21 | (10,10); 2N, 2N,
11| (0,8,) | 2(N.—1) N, 22 | (10,10); 2N, 2N,

Table 4.3: Characterisation of the colour basis {S,}?2,. The first column refers to the ele-
ment in the basis. The second shows the pairs (r1,73), where 7; is the irreducible
representation corresponding to the state flowing in the ¢;-channel, labelled by its
SU(3) dimensions (with 1 being the singlet). The last two columns contain the
associated Casimirs. The 10 stand for certain combinations of 10 and 10. The last
two structures denote two invariant tensors between 10,10 and the central gluon’s
8 (for N, > 4).

where the factor of PT; is extracted so that the coefficient functions Hg) are helicity-
free. Table 4.3 shows our explicit choice for the eigenvectors of the t-channel operators,

{Sa}as

This choice of basis greatly simplifies the analysis of the Regge limit, since it is
controlled by the quantum numbers propagating in the ¢; channels. For example,
(84, 8,) is the only non-vanishing colour structure at tree level,

(4.179)

and the only structure at leading-logarithmic order (LL) to all loop orders.

For convenience of the readers, I write here in terms of the trace-based basis defined
by Eqgs. (4.65) and (4.66) the eigenvectors of the ¢-channel operators which are of
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particular interest for this presentation:

S3=T+T2—T5—7Ts, (4.180)
So=Tr—Ta—=Ts+7Ts, (4.181)
Sio=Ti—Ta—Ts+Ts — (Ne —2) (Tr — To — Tio + Tz + Tiz + Tig + T20 + T22) ,
(4.182)
Ss5=Ti—T2a—Ts+Te + (Ne+2)(Tr — To— Tio+ Tiz — Tis — Tig — T20 — T22) ,
(4.183)
N
So1 :?(7?)_7—7“‘7-12_7-10)_7-13+7-15+7-16+7-18_7-19_7-20_7-21"‘7527
(4.184)
Soo=Ti+T2—Ts—Te+ Nc(Tig — Tiz + T22 — T20) - (4.185)
The transformation matrix F relating the two colour bases as
22
Sa = ZEabn (4186)
b=1

is provided in an ancillary file of Ref. [251].

One-Loop Hard Function

Thanks to the simple behaviour of the rational factors, the uniform transcendental
weight property of the hard function is preserved in the multi-Regge limit. The one-
loop hard function is therefore simply given by a weight-two function. We organise it
in powers of log(x),

1
HY = Z hELl])C (Ne, s, 51,82, 2 %) logh () + o(1) (4.187)
k=0

where the coefficient h((zll)c has transcendental weight (2—k). Although the hard function

has weight 2, it exhibits70nly a single power of log x. In fact, this observation generalises:
there is at most one power of logx per loop order. This is a well-known result of the
BFKL formalism [349, 329] (see e.g. Ref. [340] for a recent discussion in the scattering
amplitudes context), related to the fact that boosting a projectile does not introduce
new collinear singularities.

There is only one non-vanishing component at order log x,

S

h{!) = —2N, [2 log (

h) =0, Va#3.

) “log (1 - 2)(1 - 2)) — log (27)] .
51592

(4.188)

The non-trivial colour structure corresponds to the pair of ¢-channel representations
(84,8,). This is also well known. The leading logarithmic (LL) terms, of order
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(9%)¢1log’ x at £ loops, have the same colour structure as the tree-level amplitude. The
underlying reason is that only a single elementary excitation (the reggeised gluon)
propagates in each channel at LL order. The other colour structures are suppressed
kinematically: either they have a lower power of log x, or they are suppressed by powers
of x [349, 329]. There are similar selection rules also at Next-to-LL (NLL) order, where
a (symmetrical) pair of adjoint excitations can be exchanged as well. Since such a pair
cannot carry the colour representation 10, many components vanish at order log" z
too. We find

() =0, Vae{7,10,13,16,17,18,19,20,21,22} . (4.189)

The non-vanishing components are expressed in terms of the function basis presented
in Section 4.4.3. In particular, only functions which are single-valued in the whole s12
scattering region appear at one loop. The explicit expressions are provided in ancillary
files of Ref. [251].

Two-Loop Hard Function

At two loops the hard function is given by a weight-4 function. We expand it in powers
of logx as
2
H? = Z hf]l (Ne, s, 51, 52, 2, 2) logk () + o(1) , (4.190)
k=0

where the coeflicient hf,l has transcendental weight 4 — k. Two colour components are

particularly simple, and we can spell them out. They are the eigenvectors corresponding
to the representation (10,10). One vanishes,

HY = 0(x). (4.191)

Interestingly, this follows from the behaviour of the rational factors alone, given by
Eq. (4.168). The transcendental functions are irrelevant here. The second eigenvector
of (10,10) is finite in the limit  — 0,

Hg) =272 [log2 (:51832> —2log <31832) log (22(1 — 2)(1 — 2)) + log?(22)
+1log? (1 — 2)(1 — 2)) +log (1 — 2)(1 — 2)) log(22) (4.192)

— 2(Lig(z) — Lig(2) — % (log(1 — 2z) —log(1 — 2)) log(zz))} +O(z).

This function is manifestly single valued in the entire s physical scattering region. In
particular, we recognise the Bloch-Wigner dilogarithm in the third line.

Let us now discuss the separate orders in logx. As anticipated at weight one, only
the colour structure associated with (8,,8,) contains the leading logarithm log? z,

h) = 2N? (2 log (S> —log (22) — log (1 — 2)(1 — z))>2 :

5152

(4.193)
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Many components vanish at order log x too,

3 =0 Vae{7,10,13,16,17,18,19,20, 21,22} . (4.194)

a,

Comparing this with Eq. (4.189), it is clear that these are the same components which
vanish at order log? z at one loop (4.189). This is a general feature: only the colour
representations with non-vanishing coefficients at the previous loop order can exhibit a
logarithm of z. The non-vanishing two-loop components at order log x are very simple.
They contain manifestly single-valued logarithms and dilogarithms only. Moreover,
they are all proportional to ¢w and thus vanish at symbol level, except for hg. The
latter is non-zero at symbol level, but does not contain any genuine weight-3 function.

The finite terms, i.e. hg()), have transcendental weight 4, but only hg& is non-zero at
symbol level. Nonetheless, the latter is rather simple: it involves only logarithms and
the Bloch-Wigner dilogarithm. The other colour components are proportional to either
im or m2. Three vanish, hg()) = 0 for a = 10,18,21. Some contain genuine weight-3

functions.

The N = 4 super Yang-Mills hard function in the multi-Regge limit contains several
functions which are not real-analytic in the entire complex z plane. They appear only
in the order-log’ z components h(2[)) with @ € {1,2,5,6,11,12,14,15}. Among these,

a?
hg22),0 and h%),o are particularly simple, as they involve — of the functions which are
not real-analytic — only the logarithms given by Eq. (4.159). For instance,

@ _ [\ N L2 ) ) .
hiso = 6 [(97 ) (96 ) ]4-3 <g7 96 )—I—(analytlc). (4.195)

The other components, hg[)) with a € {1,2,5,6,11, 14}, involve also weight-2 and 3
functions which are not real analytic. Interestingly, we observe that the latter appear
in a specific combination. Nonetheless, we introduced them separately, as they enter
the hard function in AN/ = 8 supergravity.

Although the hard function is continuous in the entire complex z plane, certain colour
components are not analytic across the real z axis. In particular, the second derivatives
of certain components have discontinuities: at Re[z] > 0 for components 1, 11 and 14; at
Re[z] < 1 for components 2, 5 and 6; and at Re[z] < 0 and Re[z] > 1 for components 12
and 15. Such a non-analyticity of the non-planar amplitudes in the multi-Regge limit,
while absent in the planar limit, is not a new phenomenon. It was already observed, for
instance, in the computation of the non-planar impact factor at one loop [350]. In our
work [251] we also use the latter to compute in the BFKL framework the non-analytic

terms. We find agreement with the results of the computation discussed here.

We provide the explicit expressions of the coefficients hff,l of the asymptotic expan-

sion given by Eq. (4.190) in both the upper and lower half of the complex z plane in
ancillary files of Ref. [251].
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4.4.5 Multi-Regge Limit of the N=8 Supergravity Amplitude

In this section I discuss the multi-Regge asymptotics of the five-graviton amplitude
in N/ = 8 supergravity up to two-loop order. My collaborators and I initiated this
analysis at symbol level in Ref. [248], and then lifted it to function level in Ref. [251].
There are several novel features with respect to the corresponding N’ = 4 super Yang-
Mills case. First of all, the behaviour of the rational factors of supergravity amplitude
is substantially more complicated. In order to see this, we need to normalise the
amplitudes and the hard functions so as to cancel the helicity. We choose to extract a
factor of PT?,

- () _ (0)
MO M om0 T (4.196)
PT? PTY

With this normalisation, the tree-level amplitude given by Eq. (4.71) is finite in the
multi-Regge limit,

N 2.2
MY = —%z(l —2)(z—2) +O(). (4.197)
The rational factors of the supergravity amplitude however diverge in general as 1/2?
at one loop and as 1/x* at two loops. As a result, the asymptotic expansion of the
hard function is a double series of terms of the form =~ log*(z). Moreover, in order
to compute the leading contributions in the limit z — 0, the power corrections to
the asymptotic expansion of the pentagon integrals have to be taken into account.
They are given by the transformation matrix 7" in Eq. (4.144). This implies a drop
in transcendentality: the asymptotics of the hard function does not have uniform and
maximal weight, but contains lower-weight functions and rational factors.

At first it is natural to suspect that these complications are consequences of the
chosen normalisation, but they are in fact inevitable. We want a common normalisation
factor at all loop orders. The dimensionality of the gravitational coupling x however
implies that the dimension of the rational factors depends on the loop order. We know
that the latter diverge in the limit z — 0 as 1/22 at one loop and as 1/z* at two loops
with the normalisation given by Eq. (4.196). Therefore, any correction to the latter
which makes the two-loop rational factors finite also makes the one-loop ones vanish,
and does not cure the three-loop ones. Moreover, the normalisation given by Eq. (4.196)
is motivated. The minimal choice of normalisation factor to cancel the helicity is given
by a product of two Parke-Taylor factors. Among all possible combinations, the one
chosen in Eq. (4.196) is particularly good. In fact, most other pairs of Parke-Taylor
factors develop even higher poles in the limit. No product of two Parke-Taylor factors
leads to a less divergent behaviour of the rational factors with respect to Eq. (4.196).

The rational factors are also related to another new feature. Some of them become
singular at z = Z in the multi-Regge limit, namely on the hypersurface where trs
vanishes. This property is a consequence of the power corrections in the pentagon inte-
grals. We have seen in Section 4.2.4 that certain non-planar integrals are discontinuous

154



4.4 Multi-Regge Limit of the Maximally Supersymmetric Amplitudes

across the hypersurface trs; = 0. Moreover, the Regge asymptotics of the five-gluon
hard function in N' = 4 super Yang-Mills theory is not real analytic there, as its second
derivatives are discontinuous. If we were to look at the subleading power corrections,
we would encounter rational factors singular at z = Zz in the super Yang-Mills hard
function as well. Again, we cannot remove this uncomfortable feature by changing the
normalisation. The only way to cancel to poles at z = Z in the Regge asymptotics of
the supergravity hard function is the trivial one, i.e. to multiply it by an appropriate
power of (z — z). Higher poles at z = Z would however show up in the higher power
corrections, so that there is no overall fixed power of (z — z) that would remove this
singularity altogether.

In the next two sections I present our results for the multi-Regge asymptotics of the
hard function at one and two-loop order. All the explicit expressions, written in terms
of the transcendental functions presented in Section 4.4.3, are provided in ancillary files

of Ref. [251].

One-Loop Hard Function
(1)

The one-loop rational factors r;
multi-Regge limit as

, normalised by PT?%, are in general divergent in the

r; (’)< ! ) . (4.198)

~ =
PT? 2—0 ~ \ 22

Therefore, in order to compute the asymptotics of the one-loop hard function up to
infinitesimal terms, we have to take into account power corrections up to z2 in the
asymptotic expansion of the pentagon integrals (4.144). We organise the asymptotic
expansion in the multi-Regge limit of the (normalised) one-loop hard function as

2 2
~ 1
]:5(1) - E — logk(:c) le}g(sh S2,8,2,%2) +o(1). (4.199)
m=0 k=0

The infinitesimal terms, i.e. those of the form z™log*(z) with m > 0 and k > 0,
are neglected, but may be computed following the same procedure. The coefficients
F T(nl,)k contain a mixture of rational and transcendental functions with up to weight two.
The latter can be expressed entirely in terms of the single-valued logarithms given by
Eq. (4.158). The expression of the one-loop hard function in the multi-Regge limit is
thus straightforwardly valid in the whole s15 physical scattering region. As an example,
I spell out the leading power term,

_ s2822(1 -z B
iy = 2”12(3) (087 + 2 (68 = o) + 2 (o = o)) (4.200)

I comment on the other terms proceeding by powers of log x.
Unlike the Yang-Mills theory case, the hard function in supergravity does exhibit
the maximal logarithms compatible with its transcendental weight. At one loop this
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means log?z. It is present only at power-suppressed order (O(z)), so F2(12) = 0 and
F1(12) = 0, and is multiplied by the rational function

PO _ 253532(1 — 2)(32 — 322 — 2+ 4222 4 22 — 423?%)
02 = :

= (4.201)

Also log! & appears only at order O(zV), i.e. F2(,11) =0 and Fl(,ll) = 0. Its coefficient,

Fo(}l), contains a rational and a weight-1 part.

The order-log® z part is the most complicated. Equation (4.200) shows the leading-
)

power term, F2(0 We find that Fj (1) and Fl(lo) contain a mixture of terms of transcen-
dentalities ranging from 0 to 2. The expressions are too bulky to be given explicitly
here. Nonetheless, I can present them in a schematic way which highlights their tran-
scendentality structure:

1 1 1
FY =0, Fij =0, F0(2)_QO2’
Y=o, FY=o, FY) = ol +i Q(O) +of
Py im0y, P - i)+ im0l KLY - O+ im0l + 0L +imall)+ O

(4. 202)
where Q( denotes a uniform weight-w function, possibly containing rational factors.
These formulae show which components vanish and what transcendental weights the
others have. The explicit expressions are given in ancillary files of Ref. [251].

As I anticipated in the introduction of this section, the hard function becomes sin-
gular for z = Z in the multi-Regge limit, because of its rational factors. In particular,
at one loop, Fl(lo) and Fo(ylo) are divergent. Q% and Qé}g] exhibit a simple pole at z = Z,
and Q&)] has a third-order pole. I stress that these poles do not cancel out upon series
expansion of the transcendental functions around z = Zz.

Two-Loop Hard Function
@)

The two-loop rational factors r;”" in general diverge as 1/ 2% in the multi-Regge limit,

(@)
LN O(l) . (4.203)

PT? o—0 ~ \z*

The soft factor o5 is singular as well,

2ims 25182
— -

(1 —2z—2+4222)log(z)+0O(1). (4.204)

o5 — —
x s
Therefore, computing the multi-Regge asymptotics of the two-loop hard function up

2)

to infinitesimal terms requires the knowledge of the two-loop rational factors ;™ up
(1)

to order z°, while the one-loop rational factors r;’ and the soft factor o5 are needed
up to order z2. As for the pentagon integrals, the power corrections in the asymptotic
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4.4 Multi-Regge Limit of the Maximally Supersymmetric Amplitudes

expansion given by Eq. (4.144) have to computed up to order z* at both one and two
loops.

We arrange the multi-Regge asymptotics of the (normalised) hard function at two-
loop order as

4
1
Z Z —m Fni)k(sl, S2,8,2,2) +o(1). (4.205)
0 k=0

The coefficients .7-"552) have mixed transcendentality up to weight (4 — k). The leading-
power contribution is compact enough that I can present it here explicitly,

2 2
Fiy = - 2m°s{s3z(~1 + 2) <—Z (657 = 9) 2 (5" — o) + 20" gV

— 95" gl - (gél)) + 29(2)) :

I discuss the remaining terms order by order in logx, adopting the same schematic
notation of Eq. (4.202) to emphasise the transcendentality structure.

The leading logarithm, 10g4(:v), is associated with the simplest part of the hard
function. As at one loop, in fact, it appears only at order z°,

(4.206)

FY =0, Fl=0, Fl=0, Fl=0 F}=0f). (1207

where Q(()?i is a weight-0, i.e. rational, function. It is interesting to point out that the
power corrections of the pentagon integrals and of the soft factor o5 do not contribute
at LL order.

At order log®(z) we find

F4(’23):0, F?E,Zs)zov 3—@ ng?z’ Fl(??)):iﬂgg?%v 03—9(1)4'1 Qo3+Q(()O:>)’,v
(4. 208)
where the apostrophe is simply meant to distinguish different functions. Q&% involves
only the manifestly single-valued logarithms given by Eq. (4.158), together with rational
factors. The appearance of a rational term Q(()??))/ in F(%) is a clear manifestation of the
transcendentality drop. Some rational functions, Qg??), and Q[()??Z, have poles at z = Zz,

of order 1 and 3, respectively.
At order log?(x) we find

F{) =0,
2
Fy3 =
F2(22) = iﬂQgg QQ 5+ ZWQgE/ , (4.209)
F) =indl) +72Q0) +irQl")

El
"

= off + im ¢ wial+ O+ ir ) + O
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4 Two-Loop Five-Particle Scattering Amplitudes

The transcendental part of the previous expressions can be entirely expressed in terms
of (products of) the single-valued logarithms in Eq. (4.158). Some rational functions
have poles at z = z with order up to three.

At order log(x) we find

F4(,1 =0,

F?S,21) =0,

F2(21) - ng + Qg% +ir? Qg,)% + iWQS%I + 7T2Q(0 + wrQ;OlN ;

Fl(?l) = mgﬂ 2le£ n Z-W3Q§0% " iWlel Q L Z7TQ§01N | (4.210)

FO(,21) QE) +l7TQ01+7T Q01+Z7T3Q01 +C Q + QO,l +Z7TQ07%
2Q01 +Q01 + i Q(O) +Q(()(R .
Almost all the weight-1 and 2 functions in these expressions involve only the single-
valued logarithms (4.158) and dilogarithm (4.162). The coefficient Fé 1) alone has a

more complicated functional structure, especially at weight two and three.
Finally, at order log®(z) we find

£ = 220
F(20 — 2Q(2) Qle()),

F2(20) - ”TQ Q(Q) +in° Q) 0 TimGs o) + 0 4Qg,)(%l +7 QS{%/
+Z7T3Q20 +Z on + 2Q(0 " +Z QQ 0////7
F1(20) = mQLO + Q(Q) +am Ql ot zwgng 0T 7T4Q1 o ti 7791 0 (4.211)

QQ(l)l +im* Q) 0 "+ inQlY) 0 - 7TQQLOI + “TQLOW ;
Fyg = Qo +imQfp +n° QG +im* Qfg + (sQpg + 7' Qg + imCsQhy

+ Q070 + ,”TQO,O + 7T2 QO,U + iﬂ-g Qé?()) + €3 Qé?(% + Qé?%
o)/

+irQiy +mQyy +Qg +irQyp  + Qg

The leading-power coefficient F fg is given explicitly in Eq. (4.206). Both F, 4(720) and Fézo)
are non-zero only at this order in logx, where they are rather simple. They involve
only the single-valued logarithms (4.158) and the dilogarithm (4.162). The structure
of the coefficients F2(?()), F1(20) and Fé%) is more complicated. In particular, F2(20) and F1(20)
contain functions with geﬁuine wei}ght three, while genuine weight-4 functions appear
in Fé?g.

We can now make a few general observations. All the transcendental functions ap-
pearing in the multi-Regge asymptotics of the hard function up to two loops are real-
analytic in both the upper and lower half of the complex z plane. In particular, I stress
that the hard function is real analytic across the line 1 — z — 2z = 0. The rational factors
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4.4 Multi-Regge Limit of the Maximally Supersymmetric Amplitudes

bring in singularities on the real axis, i.e. for z — Z = 0. It is thus impossible to check
the continuity of the full hard function across the real axis. The coefficients which are
not singular there — Fo(i), F2(23), F2(22) , F2(21) and F 4(’20) — do match at Im[z] = 0, although
their derivatives are discontinuous. The coefficients F1(23), Fé%), F1(22)’ FéQQ), F1(21), F?EQO)
are instead singular at z = Z, but contain only functions which are éingle—’valuea in the
entire complex plane. In particular, F1(23) is purely rational. Fé?l) diverges at z = Zz,
and involves also functions which are defined separately in the two halves of the com-
plex plane. The singular rational factors however multiply single-valued functions only,
while the part which is finite at z = Z is continuous across the real axis. This separation

(2)

is impossible for F(E,Qo) and Fy, in which singular rational factors appear alongside with

)

non-single-valued functions. The coefficient Fé?o is the most complicated, and contains
the highest pole at z = z, of order 7.

4.4.6 Discussion

The two-loop five-particle hard function in A/ = 4 super Yang-Mills theory has a sub-
stantially simpler multi-Regge asymptotics as compared to its supergravity counter-
part. The extremely simpler behaviour of the rational factors allows the hard function
to maintain the uniform transcendental weight in the limit. The transcendental func-
tions appearing in the limit are also very simple: they can be expressed in terms of
classical polylogarithms of at most weight three. Nonetheless, the result exhibits a very
non-trivial analytic property, related to the pseudo-scalar invariant tr5. The kinematics
of the physical scattering constrains trs to be pure imaginary. Its sign distinguishes
two copies of the scattering region, separated by the hypersurface trs = 0. The Regge
asymptotics of the super Yang-Mills hard function is continuous across this hypersur-
face, but not real-analytic, as the second derivatives of certain colour structures have
discontinuities. This non-trivial analytic property stems from the discontinuity of cer-
tain individual non-planar integrals, which I discussed in Section 4.2.4. The sum over
all Feynman integrals smoothens this discontinuity, but leaves a trace in the second
derivatives of the hard function. In Ref. [251] we independently reproduced this non-
analyticity using the BFKL effective theory. Using the latter we also computed the
multi-Regge limit of certain colour structures of the super Yang-Mills hard function,
finding agreement with the direct computation discussed here.

The N = 8 supergravity hard function has a much richer structure. The main
reason is that the rational factors develop poles in the Regge limit. This forces one
to include also power corrections in the asymptotic expansion of the integrals. As
a result, the Regge asymptotics of the hard function contains a mixture of terms of
different transcendental weight (up to four) and rational functions. Unlike the N = 4
super Yang-Mills case, some of the rational factors become singular on the hypersurface
where trs = 0. The transcendental functions are more complicated as well: they involve
genuine weight-four functions and multiple polylogarithms.
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4 Two-Loop Five-Particle Scattering Amplitudes

4.5 The All-Plus Amplitude in Pure Yang-Mills

In this Section I present the computation of the amplitude describing the scattering
of five positive-helicity gluons at two-loop order in pure Yang-Mills theory [252]. This
constituted the very first fully-analytic result for a two-loop five-particle amplitude
including the non-planar contributions. We achieved it by employing the knowledge
of the massless two-loop five-particle integral families discussed in Section 4.2, start-
ing from the integrand constructed in Ref. [254]. The same result was independently
reached also in Ref. [253]. In the latter, the authors make a very smart use of the par-
ticularly simple structure of the all-plus gluonic amplitudes, and adopt a completely
different approach based on four-dimensional unitarity and recursion methods. Our
goal, on the other hand, was not to compute this specific amplitude, but to prepare
for the computation of all two-loop five-parton amplitudes in QCD. For this reason
we did not take advantage of the simplicity of the all-plus helicity configuration, and
tackled head-on a fully-fledged two-loop five-particle computation. The success of our
computation shows that the doors are now open for the analytic computation of all the
two-loop amplitudes entering the virtual corrections to processes with three particles
in the final state at NNLO in QCD. Ultimately, this will enable the computation of
NNLO theoretical predictions for several processes of great phenomenological interest,
such as the production of three hadronic jets, of two photons and a jet, and of one
photon and two jets.

Moreover, the result presented in this section gives one more example of why col-
lecting analytic “data” is not only important for phenomenology, but is also crucial
to the advance of our theoretical understanding. It allows to uncover structures and
patterns which may lead to deeper insights in the underlying theory, and to test new
ideas. Discovering patterns and structures is of course simpler if the expressions are
compact. This is why we put a lot of effort in simplifying our result for the all-plus
hard function, until it eventually fit in just two lines. This effort was rewarded. It
allowed us to notice that certain pieces of the hard function are conformally invariant,
i.e. they are annihilated by the generator of (special) conformal transformations [351],

5 82
koo = —_— . 4.212
2 oox (4212

The pure Yang-Mills Lagrangian is conformally invariant at the classical level. This
symmetry is however obscured by quantum corrections, due to the introduction of scales
to regularise the divergences. Finding signs of it at loop level is intriguing. Indeed,
another work stemmed from this observation. My collaborators and I proved that the
one-loop all-plus amplitude is conformally invariant for any number of external gluons,
which also explains the signs of conformal symmetry observed at two loops [133].

I begin in Section 4.5.1 by defining the notation and discussing the tree-level and
one-loop amplitudes. Section 4.5.2 is devoted to the divergence structure of the two-
loop amplitude: I show how the UV divergences are removed via renormalisation,
and how the IR divergences factorise and can be subtracted to define a finite hard
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4.5 The All-Plus Amplitude in Pure Yang-Mills

function. Anticipating the form of the latter is much more complicated than in the
supersymmetric cases discussed in Section 4.3. Nonetheless, in Section 4.5.3 I show how,
using four-dimensional unitarity and making a guess for the rational factors based on
the known planar part of the amplitude, we can write down a rather constrained ansatz
for the two-loop hard function. Having set our expectations, we can proceed with the
actual computation. The workflow is similar to the one adopted for the supersymmetric
amplitudes in Section 4.3, but requires some additional work at the beginning. The
expression for the integrand in the literature [254] is written in a form which cannot
be directly fed into the IBP reductions. I show in Section 4.5.4 how we can rewrite
it in a suitable form, i.e. in terms of inverse propagators. This procedure introduces
numerators which depend on the loop momenta with a much higher degree with respect
to the supersymmetric cases. The IBP reduction to canonical basis integrals is therefore
substantially more involved. In Section 4.5.5 I show how this bottleneck is overcome
thanks to the finite field approach. I present and validate the result for the two-loop
hard function in Section 4.5.6. The expression is remarkably compact, agrees with
the expectations formulated in Section 4.5.3 and shows intriguing signs of conformal
symmetry. Finally, I comment on the result in Section 4.5.7.

4.5.1 Notation

We study the scattering of five gluons with positive helicity. The kinematics is discussed
in Section 4.1. I recall that the loop momenta are D-dimensional, whereas we take
the external momenta p; to lie in four-dimensional Minkowski space. The algebra in
the numerators of the integrand introduces the spin dimension of the gluon, D, =
g, We keep the dependence on the latter explicit. Results in the Four-Dimensional-
Helicity [111] and t’Hooft-Veltman [102] schemes are obtained by setting Dy = 4 and
D, = 4—2¢, respectively. In order the make the expressions more compact, we introduce
the short-hand notation

(4.213)

We absorb the difference between the loop-integration measure of Feynman diagrams
and of Feynman integrals in the coupling,

9 6_5’YE
a=yg = (4.214)
We expand the five-gluon all-plus amplitude in a as
As = ig® 8O (1 + .. +ps) Y af AL (4.215)

>0

Thanks to the particular helicity configuration, the amplitude enjoys a symmetry under
any permutation of the external gluons. Moreover, the amplitude vanishes at tree-
level [352, 17], and is thus finite at one loop.
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4 Two-Loop Five-Particle Scattering Amplitudes

We treat the amplitude as a vector in colour space. We use the trace-based ba-
sis {TA}32, defined by Egs.(4.65) and (4.66), and decompose the one and two-loop
amplitudes as

12 22

AD =37 N AL 4 3 AR, (4216)
A=1 A=13
12 22

AP =3 (N2 + APP) T 30 NeAPDTs (4217)
=1 A=13

The partial amplitudes Ag\e’k) satisfy the same group-theoretic identities [271, 270] which

I discuss in Section 4.3.1 for the N' = 4 super Yang-Mills amplitude.
)

)

The one-loop partial amplitudes Ag\l’k can be expressed in terms of permutations of

one leading-colour component, say Agl’o . An expression for the latter can be found in

Ref. [266],

+ 593834 + S34845 + S45551 + S51512 + tr5
A0 _ E 512523 O(e) . 4.218
1 2 (12)(23) (34) (45 (51) +0(¢) (4218)

The rationality of the one-loop all-plus amplitude at order " follows from the vanish-
ing of the all-plus and single-minus tree-level amplitudes through cutting rules. For
similar reasons the only allowed singularities are those where two colour-adjacent mo-
menta become collinear. The expression given by Eq. (4.218) makes manifest both the
permutation symmetry and the absence of spurious poles. We can sacrifice the appar-
ent expression of these two properties to highlight another: conformal symmetry. The
four-dimensional part of the one-loop all-plus amplitude is in fact annihilated by the
generator of special conformal transformations given by Eq. (4.212),°

kaa ANF) = O(e) . (4.219)

This property is not at all obvious from Eq. (4.218), but becomes apparent if we rewrite
it as [252, 133]

A(LO):F&( [45]° [23* (52
! (12)(23)(31) * (45)(51)(14)  (41)(13)(34)

) +O(e). (4.220)

Conformal symmetry is now manifest term by term. Each addend is trivially annihi-
lated by the generator kqa, due to the form of the latter. See Ref. [133] for a thorough
discussion of the conformal properties of the n-gluon all-plus amplitudes. Note that
the higher orders in € of the one-loop all-plus amplitude are substantially more com-
plicated, and involve functions with transcendental weight up to 4 at order €2. In fact,

SWe are interested in generic configurations of the external momenta, and we therefore neglect contact
terms arising from differentiation [351, 353, 354, 355, 356]. Moreover, the complete amplitude also
contains an overall momentum conservation § function. Thanks to Lorentz and dilatation invariance,
the generator koq commutes with the § function [351, 357].
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4.5 The All-Plus Amplitude in Pure Yang-Mills

they play a crucial role in simplifying the expression of the two-loop hard function by
cancelling out the most complicated part of the two-loop amplitude.

Thanks to the complete permutation symmetry, the two-loop amplitude can be ex-
pressed in terms permutations of just three partial amplitudes, e.g. as

A= 3 oo [(MAPT+APY) T4 3T oo [NART| L 22

0655/57-1 0'655/57-13

where the sums run over the permutations of the external legs, S5, modulo the subsets
ST, of permutations that leave 7, invariant. The two-loop planar partial amplitude

)

A(lg’o) was computed in Refs. [234, 236]. The most sub-leading colour component, A§2’2 ,
can be expressed in terms of planar and double-trace components through colour rela-
tions [270]. The truly new piece of information that my collaborators and I computed

in Ref. [252] is thus the double-trace component A%l).

4.5.2 Divergence Structure and Hard Function

The divergence structure of the five-gluon all-plus amplitude in pure Yang-Mills the-
ory is very similar to that of the MHV amplitude in N' = 4 super Yang-Mills theory
discussed in Section 4.3.4. The main difference is that the former has ultraviolet di-
vergences as well. Before we subtract the infrared divergences, therefore, we need to
renormalise the amplitude. The ultraviolet divergences in pure Yang-Mills amplitudes
can be universally absorbed into a renormalisation of the coupling. In other words, we
need to replace the bare coupling a with the running coupling ar(u),

a = Z(uwagr(p)p*, (4.222)

where 1 and Z are the renormalisation scale and the coupling renormalisation factor,
respectively. The running of the coupling is governed by the g function,

Blar) = —2apB0 + O(ag) ., (4.223)
through
VR _ _geq + B(ar) (4.224)
legIU, - €aR R) - .

Differentiating both sides of Eq. (4.222) gives an evolution equation for the renormali-
sation factor Z,

dlog Z _ _ Blar)

4.225
dlog 1 ar ( )
whose solution is given up to order ar by
— Bo 2
Z=1——ar+ 0O(ay). (4.226)
€
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Substituting the bare with the running coupling in the expansion of the amplitude (4.215)
and series expanding in the running coupling agr gives the renormalised amplitudes,

AL = ALY, (4.227)
5
AL, = AD - 266 S A (4.228)

Hereafter I will often set the renormalisation scale to 1. The explicit dependence can
be recovered by dimensional analysis. The renormalised amplitudes inherit the colour
decomposition from the bare amplitudes.

The infrared singularities of the renormalised amplitude then factorise according to
the same dipole formula (4.95) discussed in Section 4.3.4 for the ' = 4 super Yang-Mills
case. The cusp and collinear anomalous dimensions are in this case given by [358]

Yeusp = Z r}/cuspa’]?rl = 4aR + O(a%) y (4.229)

Yo = Z%’“) B = —Boag + O(a%) . (4.230)

The specific value of Gy is irrelevant here, as we are about to see. Since the tree-level
amplitude vanishes, we need the infrared pole operator Zs only up to order a,

Zs =1+aZ" + 0(a?). (4.231)
Putting together Egs. (4.97), (4.99), and (4.100) gives

1 1 —Siq 5
z{" = 559 ZT T, —EZ(Tz"Tj>10g <u2j> + 70, (4.232)

2e
1<j 1<j

where I recall that T; is the colour-insertion operator defined by Eq. (4.98), and that the
logarithms have to be analytically continued to the s;2 channel according to Eq. (4.103).
The finite two-loop amplitude is then given by

Ag{?’mite = A(z) B Z( )‘A( )

5,ren. 5,ren.
5 (4.233)
:Aéz) ﬂoAu (1)Aé1).

Thanks to the specific value of the collinear anomalous dimension, given by Eq. (4.230),
a nice simplification occurs. The contribution coming from the ultraviolet renormalisa-
tion cancels out with the contribution proportional to the collinear anomalous dimen-
sion in the infrared pole operator, given by Eq. (4.232). As a result, the finite two-loop
amplitude is simply given by

5

5
2 2 1 —8ij
Aé,ginite = 'Aé ) ?f}/c(?%p Z T; - Tj — € Z (Tz : Tj) IOg ( ng) Aél) : (4234)

1<j 1<j
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I recall that we are currently working in the MS subtraction scheme of infrared
singularities, namely that the infrared pole operator contains only the pure pole part.
We are however free to modify the finite part of Zgl), this way defining a different
scheme. In the square brackets on the right-hand side of Eq. (4.234) we recognise the
first two terms of a series expansion. We find it convenient to lift the latter to the

complete series,

A N (1) : o1 () 4.235
5 @’Ycuspz ] . ( )

— —Sij
1<) Y

We observe that a further simplification in the hard function can be achieved by mul-
tiplying the infrared pole operator by a constant,
e€TE 7T262

— = 1-— 40, 4.236

T(1— e i tOE) (4.236)
which affects only the finite part. In fact, this constant factor is present in Catani’s
original subtraction operators [297]. Finally, we define the two-loop five-gluon all-plus
hard function as

; 2) /) 40
H = lim A - 250 A] (4.237)
with
(0) EVE 5 2 €
5(1)  Yeusp e . m
% =79 ara_o ;T T (_Sl) : (4.238)

We decompose the hard function in colour space similarly to the amplitudes. Renor-
malisation and infrared factorisation scales are set to 1.

4.5.3 Expected Structure of the Hard Function

We have seen in Section 4.3 that having a prior insight into the structure of the inte-
grated amplitude can simplify dramatically its computation. Things are however much
more complicated in Yang-Mills theory than in the maximally supersymmetric theories.
The two-loop five-particle amplitudes in N/ = 4 super Yang-Mills theory and N' = 8
supergravity could in fact be constrained significantly before actually computing them.
They were both expected to have uniform transcendental weight and, thanks to the
absence of double poles in the integrands, the rational factors can be computed using
the leading singularity technique discussed in Sections 3.6.1 and 4.2.1. The Yang-Mills
amplitude is instead a mixture of functions with different weight, bounded from the
conjecture expressed by Eq. (3.110). Moreover, the integrand has double poles and
the analysis of the leading singularities allows to determine only a small subset of the
potential rational factors. The all-plus helicity configuration is however special, and we
can actually say quite a lot about the hard function.
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We start by separating the two-loop hard function into a transcendental P2 and a
rational part R(?),

12 = p2 L RO (4.239)

The hard function is a four dimensional object, and we can thus compute its transcen-
dental part P® using four-dimensional unitarity methods [124, 123]. The one-loop
all-plus amplitude is rational in four dimensions, and can effectively be used as an
additional on-shell vertex. The four-dimensional cuts of the two-loop amplitude this
way become one-loop cuts with an insertion of this effective vertex [253]. In this spirit,
the one and two-loop all-plus amplitudes are treated as tree-level and one-loop, respec-
tively. This implies that the functions appearing in the two-loop all-plus amplitude
have at most transcendental weight two. We can go even further. The analysis carried
out in Ref. [253] shows that only the quadruple cuts contribute to the hard function. In
other words, the polylogarithmic part of the two-loop hard function can be expressed in
terms of box integrals. In particular, box integrals with one massive leg, since they have
to accommodate five external particles. The finite part of the one-mass box integral
with external momenta {p1, p2, p3, p4 + ps} is given by

. 512 . $23 o [(s12) | 7
Iiogus =Lig (1 — — ) +Lip (1 — — | +log” | — | + —. (4.240)
845 845 823 6

Permuting in all possible ways the external legs produces 30 linearly-independent one-
mass box functions. We introduce an arbitrary basis, {IP>*}3%,. Thanks to their
simplicity, they can be analytically continued to the sj2 channel by simply adding a
small positive imaginary part to each two-particle Mandelstam invariant, s;; — s;; +
i0T. The leading singularities associated with the quadruple cuts can be computed
e.g. using the method of the on-shell diagrams [67] (see Ref. [26] for a pedagogical
introduction). They are given by permutations of the finite part of the one-loop all-
plus amplitude. Thanks to our new formula for the latter, Eq. (4.220), we can express
these leading singularities as permutations of the basic conformally invariant object,

[45]2

"= e

(4.241)

The permutations of the latter span a six-dimensional space. We introduce an arbitrary
basis, {Ri}gzi. As a result, the transcendental part of the two-loop hard function has
a very constrained form,

6 30
P =55 R 1, (4.242)
i=1 k=1

)

where ¢;; are rational numbers. Indeed, the planar hard function, previously com-
puted in Refs. [234, 236], perfectly matches the form given by Eq. (4.242). In order to
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emphasise this, we rewrite it as

) _ [45]2
EREDILE {_“ (12)(23)(31) 1124t

75T (4.243)
o B P e WMS)]
where
e (igk1) = o (U 20)pp,p,) = 1] GR ) (4.244)

and S7; is the set of all permutations of the external legs which leave the trace 77 —
defined in Eq. (4.65) — invariant. In other words, S7; contains the cyclic permutations
of the external legs.

The rational part of the two-loop hard function, R(®, is more elusive. The authors
of Ref. [253] computed it using recursive methods. For our purpose, we just want to
constrain it so as to simplify the assembly of amplitude. We adopt a heuristic but very
easy and quick approach. We assume that the rational functions appearing in the non-
planar amplitude are just non-cyclic permutations of the ones appearing in the planar
one. The rational factors in the planar hard function given by Eq. (4.243), permuted
in all possible ways, generate a 76-dimensional vector space over Q. We extract an
arbitrary basis, {ri}zgp preferring the most compact functions. If our guess is correct,
then the rational part of the two-loop hard function is simply given by

76
RE\Q) = Z cg)‘)ri , (4.245)
i=1

(M)

for some rational numbers ¢;”’. As we will see, this is correct.

One might argue that such a guess is a bit far-fetched. The choice of which rational
functions we consider as separate in the planar hard function, for instance, is completely
arbitrary, and highly depends on the specific expression of the result. Different people
may have different tastes in this regard, and might thus come up with different guesses
for the basis of rational functions. Even so, it would still be convenient to attempt this
approach. Constructing such a simple ansatz costs no effort and is very quick. If it is
incorrect, there is no solution for the constant coefficients. There is no risk of ending
up with a wrong result, and no reason to despair (typically). In fact, even without
having any idea about the form of the result, we can still reconstruct it analytically
from the evaluation in a finite number of random points. This idea reaches its peak of
performance in the combination of finite field arithmetics (also known as modular arith-
metics) and multivariate functional reconstruction algorithms [359, 360], implemented
in the extremely flexible framework FINITEFLOW [190]. Moreover, even when a full-
fledged finite field reconstruction is needed, having a basis that covers a good portion
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Figure 4.5: Pictorial representation of the two-loop five-gluon all-plus amplitude in pure Yang-
Mills theory as presented in Ref. [254], where this picture is taken from.

of the functions appearing in the result can reduce the complexity of the problem.% If
the ansatz is correct, on the other hand, the result is reconstructed from just as many
evaluations as the number of unfixed constants, which is typically much smaller than
the number of evaluations required by even the most efficient reconstruction algorithm.

4.5.4 How to Express the Integrand in Terms of Inverse Propagators

Our starting point is the integrand computed in Ref. [254] using modern generalised
unitarity techniques. I show it in a pictorial way in Fig. 4.5. It is given as a sum over all
the permutations of the external legs of a summand, written in terms of colour factors
and integrals of the families shown in Fig. 4.1.7 In the figure, I indicates loop integration
and C(X) stands for the colour factor of the diagram X, which we express as a vector
in the colour basis {7,}32, defined in Egs. (4.65) and (4.66). Finally, A(X) indicates
that the Feynman integral X is decorated with a numerator dependent on the loop
momenta. For the explicit expressions of the latter I refer to the original paper [254].
What matters here is that the numerators are written in terms of the D > 4-dimensional
part of the loop momenta, the so-called “u terms.” A loop momentum k; in D = 4 —2¢

5The idea is to first reconstruct only the linear relations among the functions that need to be re-
constructed — e.g. the rational prefactors of the iterated integrals or of a transcendental function
basis — together with the ones we guessed. This typically requires fewer evaluations than the full
reconstruction. We can then use the linear relations to express the most complicated functions
in terms of simpler ones and of functions we guessed, which do not need to be reconstructed at
all. Note that this pays off only if the functions which remain to be reconstructed require fewer
evaluations than the original ones. For this reason having a good guess can be crucial.

"This picture is taken from Ref. [254]. T thank Simon Badger for allowing me to use it here.
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dimensions can be decomposed as

26]

ki = Kkl (4.246)

4]

lives in the same four-dimensional subspace as the external momenta p;, and

[—2€]

all the extra dimensionality is contained in k;
four-dimensional subspace,

where k:l[

. The latter is perpendicular to the

K7k 0=k p vi=12,vi=1,...,5. (4.247)

In the regularisation scheme we adopted, therefore, only the scalar products involving
two loop momenta receive contribution from the extra dimensions,

= k[T gl (4.248)
In other words, the extra dimensionality of a loop integrand can be entirely described
by of these p terms. At two loops there are three of them: w11, p12, and pos. In order
to employ the IBP machinery, we need to rewrite them in terms of inverse propagators
and kinematic variables.

In Section 4.2.1 we have seen another way of capturing the extra dimensionality of
the loop integrands, namely through Gram determinants involving the loop momenta.
Clearly the Gram determinants must be related to the p terms, and indeed offer one
way to rewrite the latter in terms of inverse propagators,

1 ki, p1,p2, p3 p4>
= det@ | 0 FL 2 , 4.249
Hij 2A <kj7p17p2)p3ap4 ( )

where I recall that the Gram matrix of two sets of momenta is defined by Eq. (4.18).
The Gram determinant in this relation evaluates to a polynomial in the scalar products
of loop and external momenta, which can then expressed in terms of inverse propagators
using simple linear algebra. Proving Eq. (4.249) is rather easy. First, note that only
the extra-dimensional part of the loop momenta give a non-vanishing contribution to
the Gram determinant on the right-hand side of Eq. (4.249),

—2
det@ (kiaplap27p3)p4> = detG kl{ 261’p1’p2’p3,p4 (4250)
kjap17p27p3ap4 kj_ ¢ y D1, P2, D3, P4

because the four-dimensional parts of the loop momenta are linearly dependent on the

[—2€]

external momenta {p; le. Since k; is perpendicular to the external momenta, the

only term which survives in the determinant is the one proportional to kl[-_m . k:][._Qd,
-2
detG kl[ 26]7p17p27p3>p4 (k[ 2¢] k[ 26])d tG <p17p27p37p4> (4251)
k‘g‘_ €]7p17p27p37p4 P1,P2,P3,P4

Putting together Egs. (4.250) and (4.251) and recalling the definitions of the Gram
determinant of the external legs A and of the p terms then gives Eq. (4.249).
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Having dealt with the p terms, there is one last ingredient of the integrand of
Ref. [254] which requires some work to be expressed in terms of inverse propagators:
the spinor chains involving a loop momentum k;, such as

(il ;| K] (kD) (L] (4.252)

where k; is understood as the double spinor kjne = kipu(0")aa, with o = (1,5)
being the four-vector of the Pauli matrices o; (see e.g. any of Refs. [228, 25, 26] for a
pedagogical discussion of the spinor-helicity formalism). In order to deal with spinor
chains such as the one given by Eq. (4.252), let us take one step back and trade k; for
an external momentum p;. Then, the trace in the SU(2) indices can be turned into a
trace in the Dirac indices through the well-known relation

(i) FRRD ] = tr [1 ;”%mam} - (4.253)

This identity actually holds also if one of the light-like momenta, say p;, is substituted
by an off-shell momentum £;,

(il k) (D) 1] = tr [T’pikjpkpl} . (4.254)

Since the external momenta p; lie in the four-dimensional subspace, also any complex
vector \;\; does, so that — because of Eq. (4.247) — the left-hand side of Eq. (4.254)
only sees the four-dimensional component of the off-shell momentum, k:][.4]. The latter
can always be decomposed into two auxiliary four-dimensional light-like momenta n(®,

2
K =3 "n@, (4.255)
a=1

For each of the light-like momenta n(* Eq. (4.253) holds, and the linearity of the trace
then implies Eq. (4.254). The use of Eq. (4.254) produces e-contractions involving loop
momenta,

tr (755?’@'%]'%?1) = —die (pi, kj, pe, o) (4.256)

which also need to be rewritten in terms of scalar products and trs. In order to do
this, consider the identity relating the product of two Levi-Civita symbols to the metric
tensor g"”,

Rl VIV2VSVE — (et (gHiVi) | (4.257)

where the factor of —1 comes from the Minkowskian signature, and on the right-hand
side there is the determinant of the matrix whose entries are g**i, with i,5 = 1,... 4.
It follows that an e-contraction involving one loop momentum k; can be rewritten as

7 kﬁp‘;pk)pl)
(ki po e, — " getq [ FioPi ’ 4.258
( i Pj, Pk pl) 4tI‘5 <p17p27p37p4 ( )
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where we used that trs = —4ie(p1, p2, ps, pa), and the Gram determinant is defined
by Eq. (4.18). On the right-hand side of Eq. (4.258) the loop momentum k; appears
only in scalar products, and thus in inverse propagators. There is however a subtlety.
The identity (4.257) is four-dimensional, whereas the Gram determinant is defined for
D-dimensional vectors. One has thus to be careful when using Eq. (4.258). On the
left-hand side, the loop momentum k; is projected onto the four-dimensional subspace
by the Levi-Civita symbol. On the right-hand side, the loop momentum k; always
appears in scalar products with the external momenta p;, and is thus projected on the
four-dimensional subspace as well. Only the four-dimensional component of k; thus
contributes on both sides. This happens because we have chosen the auxiliary set
of momenta in the Gram determinant — i.e. the lower one — to be made by four-
dimensional momenta only. For this reason, Eq. (4.258) holds also if there is more
than one loop momentum in the e-contraction on the left-hand side, but fails if a loop
momentum is present in the auxiliary set of vectors, too. Let us consider, for instance,
a product of two e-contractions both containing a loop momentum, e.g.

e(ki,plaPZaPB)G(kj,pl»P%PS) . (4259)

One might naively use Eq. (4.257) to rewrite this product as

1 kﬁ y P25
E(k;iaplap27p3)€(kjaplap27p3) = 7EdetG (k’; zi I;)Z iz) . (4260)

This is wrong, because Eq. (4.257) holds only in D = 4 dimensions. On the right-hand
side there are contributions from the extra-dimensional components k:l[-_%] and kj[-_2€],
which are instead absent on the left-hand side. Equation (4.260) therefore needs to be

corrected by some p-terms (4.248),

1 k'a ) )
€(ki, p1, p2, p3)e(kj, p1,p2, p3) = —1—6detG (kl zi ZZ 22) + (p terms) . (4.261)
7M1y P2,

On the other hand, it is straightforward to rewrite correctly a product of two e-
contractions containing loop momenta such as Eq. (4.259) by applying Eq. (4.258)
to each of the e-contractions separately, so that the loop momenta are everywhere
projected onto the four-dimensional subspace, as they should. By comparing the out-
come of the two different procedures, we can also fix the u-terms needed to correct
Eq. (4.260),

S12823(812 + $23 — S45)
2

(1 terms) = 12 - (4.262)

Using Eqs. (4.249) and (4.254) we can express the integrand of Ref. [254] in terms of
inverse propagators, and feed it into the IBP machinery. I discuss all the steps which
take us from the integrand to the fully-analytic result for the hard function in the next
section.
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4.5.5 Computation of the Hard Function

The procedure discussed in the previous section returns a form of the integrand which
can be immediately fed into the usual IBP workflow. Conceptually there is no differ-
ence in the next steps with respect to what we have already done for the maximally
supersymmetric amplitudes in Section 4.3. There is however an important practi-
cal difference. The integrand of the two-loop five-particle all-plus amplitude in pure
Yang-Mills theory features numerators with up to degree five for the eight-propagator
integrals shown in Fig. 4.1, and six for some of the one-loop squared sectors. This is
substantially higher as compared to the A' = 4 super Yang-Mills and A/ = 8 supergrav-
ity amplitudes, whose integrands have numerators with up to degree one and two in the
loop momenta, respectively. This means that the IBPs identities required to reduce
the all-plus amplitude to basis integrals are dramatically more complicated. Recent
conceptual and technical advances have finally brought the solution of IBP systems of
such a complexity within reach. In particular, what was crucial in our computation
was the finite-field method [359, 360, 190].

In the maximally supersymmetric theories discussed in Section 4.3 we have simplified
the sums over the permutations of the external legs in the amplitudes by performing
them “numerically,” i.e. we evaluated the rational functions in random rational kine-
matic points. The analytic results were recovered from a small number of evaluations
by fitting well-motivated ansétze. The basic idea of finite fields is similar: the rational
functions are evaluated in random rational kinematic points modulo some (big) prime
number. This ensures that there is no loss of accuracy, which would occur using floating
point numbers, and no overflow, which could instead occur if arbitrarily large integers
were allowed to appear. Note that also € can be evaluated numerically. The fully
analytic result can then be recovered from a finite number of evaluations using very
efficient multi-variate functional reconstruction algorithms. The different evaluations
are independent and can therefore be carried out in parallel on a computing cluster.
We used the framework FINITEFLOW [190], which combines the “speed” of C++ with
the flexibility and user-friendliness of a MATHEMATICA interface.

One important advantage of using finite fields is that we can really target what we
are interested in, namely the amplitude or hard function, and treat all the intermediate
steps numerically. In particular, one is in general not interested in the solution of the
IBP system on its own. It is typically more complicated than the amplitude itself, and
its purpose is usually only to express the un-integrated amplitude in terms of basis
integrals. Determining the solution of the IBP system analytically may often be a
waste of time. All the steps from the integrand® to the integrated hard function can
be performed numerically over finite fields, including the solution of the IBP system.
Only the final expression for the hard function is then reconstructed analytically. This
strategy has by now become the state of the art, and several cutting-edge computations
have benefited from it. Just to mention one example, see the computation of all the two-
loop five-parton amplitudes in planar QCD in the Euclidean scattering region [238, 240].
More recently there have been even further advances in simplifying the system of IBP

8Even the integrand can be constructed using finite fields.
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relations [361] and the coefficients of the IBP reductions [362].

In Section 4.5.3 we made a reasonable ansatz for the two-loop five-gluon all-plus
amplitude. In such a case it is not necessary to perform a full-fledged functional recon-
struction. We just need to “fit” the constants in the ansatz. However, one of our main
goals is to assess the feasibility of the computation of non-planar five-parton amplitudes
at two loops in general. For this reason, we also carried out the computation ignoring
the ansatz. We set up a system of IBPs identities with the help of LITERED [162]. We
solve it over finite fields to express the one and two-loop integrands in terms of pure
basis integrals (see Section 4.2). We use the differential equations in the canonical form
and the boundary constants discussed in Section 4.2 to rewrite all the pure integrals
in terms of Chen’s iterated integrals. We assemble the two amplitudes in the hard
function as shown in Eq. (4.237). In order to have a common notation, we express also
the infrared pole operator Zs in terms of iterated integrals. At every step the rational
functions are evaluated in a random (rational) kinematic point (including €) modulo
some prime number. Finally, we reconstruct analytically the rational factors of the
iterated integrals and of the transcendental constants. The workflow is implemented
in the framework FINITEFLOW [190].

4.5.6 Result

Expressing all the ingredients of the hard function in terms of Chen’s iterated integrals
offers a useful practical advantage: all the simplifications due to functional relations
among the transcendental functions are automatically implemented. Before carrying
out the functional reconstruction we can already see marvellous simplifications: all the
weight one, three and four iterated integrals cancel out altogether. Only the weight-
two iterated integrals survive, which can be easily expressed in terms of (products of)
logarithms and dilogarithms, e.g.

[Wilg, (s) = log <%) , (4.263)
{MWE Wwf/l;] . (s) = —Lis <1 — jz;) : (4.264)

All the relevant functions are manifestly real valued in the sjo-channel. The imaginary
parts appear explicitly through the boundary values. Moreover, all logarithms and
dilogarithms, including their imaginary parts, can be absorbed into permutations of the
one-mass box functions defined in Eq. (4.240). Finally, the functional reconstruction
shows that the two-loop hard function has precisely the form we guessed in Section 4.5.3.
After some effort to simplify the expression, the result fits in just two lines,

(2,1) _ 3 [12]7 s93 tr_ (1345)
His = ) ”O{GKQ [2 (34)(45)(53) s34 <12><23><34><45><51>}+

0’657*13

[15]2

R 93)(34) (42)

[-7234;15 + I243.15 — I324;15 — 4 1345.12 — 4 I354;12 — 4—7435;12] } )

(4.265)
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where
tr_(ijkl) = %tr (= w)pppp,) = GHLRIRDL] (4.266)

All the other partial amplitudes can be obtained from Eqgs. (4.243) and (4.265) through
permutations of the external legs and colour relations (see Eq. (4.221) and below).
Thanks to the simplicity of the special functions involved, the resulting expressions for
the independent partial amplitudes can be analytically continued to any other region
by simply adding a small positive imaginary part to each two-particle Mandelstam
invariant.

A number of non-trivial checks proves the validity of our result. The planar part
agrees with the previous computations [234, 236]. The ultraviolet poles of the ampli-
tudes cancel out upon renormalisation, and the infrared poles factorise as they should
(see Section 4.5.2). The agreement of the hard function with the expected form argued
in Section 4.5.3 based on four-dimensional unitarity and leading singularities, with the
enormous cancellations involved in the intermediate steps, is also a strong indication
that the result is correct. Furthermore, we also verified that our expression for the
two-loop amplitude exhibits the correct leading behaviour in the collinear limit. In
particular, we checked the limits p; || p2, p2 || ps and ps || psa of the double trace
term 713. In the first one, for instance, the two-loop all-plus amplitude is expected to
factorise as

hﬁn AR 1t 2t 3% 4t 57) ~Split()(— P71t 21) AR (P 3T 4t 5T+
p1||p2

+ SplitM (—P; 1+, 27) AW (P, 3T 4 51) 4 (4.267)
+ Split M (—=p+; 1+ 27) AL (P~ 3% 4t 57,

where we must sum over the colour index of the intermediate gluon labelled by “P.”
After inserting the expressions of the splitting amplitudes Split(¥ [363, 364, 365, 124]
and of the four-gluon amplitudes [110, 366], we decompose the collinear limit in the
basis {T)}32, defined by Eqgs. (4.65) and (4.66). The component of the two-loop hard
function corresponding to the double trace 713 vanishes in the limits p; || p2 and p2 || ps,
but has a non-trivial structure in the limit p3 || ps4. Finally, there is agreement with
the independent computation of Ref. [253].

4.5.7 Discussion

In this section I have presented the analytic computation of the five-gluon all-plus
helicity amplitude at two loops in pure Yang-Mills theory. This was the very first fully-
analytic result for a full-colour two-loop five-particle amplitude. The hard function
has a remarkably simple form, which we could anticipate based on four-dimensional
unitarity and leading singularities. The polylogarithmic part can be entirely expressed
in terms of the finite part of the one-mass box integral. Intriguingly, the rational
prefactors of the latter are conformally invariant. In another work, which I do not
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discuss in this thesis, my collaborators and I showed this to be related to the conformal
invariance of the one-loop all-plus amplitude [133].

The work presented in this chapter has opened the door for the analytic computation
of all two-loop five-parton amplitudes in QCD. The complete information on all the
relevant Feynman integrals integrals is now available in the physical scattering region.
Furthermore, the IBP reductions carried out in this computation are of comparable
complexity as to what is expected to be required for other helicity amplitudes, or
amplitudes including fermions.
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Scattering amplitudes play a crucial role in the way we study the fundamental laws of
the universe. Their importance is at least two-fold. On the one hand, they connect
theory and experiment, allowing us to submit our theoretical understanding to the
judgement of the experimental data. On the other hand, they often unveil unexpected
properties of the underlying theory, which are nowhere to be seen in the usual La-
grangian formulation of QFT. To both ends, truncating the perturbative expansion of
scattering amplitudes to the tree level is unacceptable, and we must endeavour to com-
pute higher corrections to the perturbative series. This is made difficult by the necessity
of integrating over the degrees of freedom associated with the virtual particles.

Among the current challenges in this field, I have taken up that of computing the
scattering amplitudes for processes involving five massless particles at two-loop order.
There is growing demand to obtain these amplitudes due to their phenomenological
relevance. They are the main bottleneck towards a theoretical description of processes
of great interest, such as three-jet and di-photon + jet production, at the next-to-next-
to-leading order in QCD. Reaching such a level of accuracy is imperative in order to
match the corresponding experimental precision and exploit fully the LHC’s enormous
physics potential. In the last few years there has been tremendous progress in this
direction, thanks to the work of several groups. I have joined this endeavour, and in
this thesis I have presented my contributions to it.

Firstly, my collaborators and I computed all the required two-loop five-particle Feyn-
man integrals [223, 252]. We used the method of the differential equations in the canon-
ical form. Our results are fully analytic and valid in the physical scattering region. In
order to reach this end, we refined the technique of the leading singularities used to
put the differential equations in the canonical form. This approach typically relies on
the computation of the leading singularities in four dimensions. In this way, all terms
which vanish in four dimensions at the integrand level but give non-vanishing contri-
butions upon D-dimensional integration are missed. Such “evanescent” terms may be
fundamental in constructing integrands which integrate to pure functions and satisfy a
system of differential equations in the canonical form. We showed how to parametrise
the evanescent terms using Gram determinants and proposed a notion of D-dimensional
leading singularities based on the Baikov parameterisation of the integrals. We expect
this approach to be useful also in future computations. The functions needed to write
down the analytic expressions of all massless two-loop five-particle integrals have later
been systematically classified and implemented [209], and are therefore ready for phe-
nomenology applications.

Making use of our results for the Feynman integrals, we provided the first analytic
results for two-loop five-particle scattering amplitudes including the contributions from
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the non-planar diagrams. We started by computing the (super) amplitudes in N' =
4 super Yang-Mills theory [247] and N' = 8 supergravity [248] at symbol level. In
Ref. [251] we lifted these results to functions, and computed their asymptotic expansion
in the multi-Regge limit. The computations in the maximally supersymmetric theories
served two purposes. They provided precious analytic data to study the properties of
these theories in a particle configuration never-before investigated beyond the planar
limit. This is particularly important for supergravity, where no notion of colour exists
and the amplitudes are therefore intrinsically non-planar. We highlighted a non-trivial
analytic property of certain non-planar Feynman integrals that it is not possible to
have if fewer than five particles scatter: they exhibit a discontinuity within the physical
scattering region. This feature disappears from the complete amplitudes, but manifests
itself in their multi-Regge asymptotics. Our results may help shedding light on very
interesting open problems, such as — just to name a couple — whether it is possible
to make use of integrability in N’ = 4 super Yang-Mills theory beyond the planar limit,
and whether it is possible to formulate an effective theory to explain the Regge limit
of supergravity as the BFKL theory explains that of Yang-Mills theory. On a more
practical note, the computations in the supersymmetric theories served us to test and
improve our workflow in view of the computation of the amplitudes in QCD required
for the phenomenological predictions.

We took one further step in this direction by computing the two-loop amplitude
for the scattering of five positive-helicity gluons in pure Yang-Mills theory [252]. This
amplitude is not required in any NNLO QCD prediction because it interferes with a
vanishing tree-level amplitude, but its computation is substantially more complicated
than those in the supersymmetric theories. Therefore, it allows us to better assess
the feasibility of the computation of the MHV helicity amplitudes which are needed
for phenomenology. Our formula for the two-loop all-plus five-gluon amplitude is re-
markably compact. It contains only logarithms and dilogarithms, and can therefore be
analytically continued to any kinematic region with little or no effort. Interestingly,
the rational factors of the transcendental functions are conformally invariant, and we
managed to write them in a form that makes this symmetry beautifully manifest. In a
spin-off devoted to conformal symmetry, my collaborators and I showed that this fol-
lows from the conformal invariance of the one-loop all-plus amplitude for any number
of external gluons [133].

The ultimate goal of this program is to compute analytically all the massless five-
particle amplitudes required to produce predictions for the processes of phenomeno-
logical interest — three-jet and di-photon + jet production in primis — at NNLO
accuracy in QCD. With the state-of-the-art workflow based on finite fields, the typical
bottlenecks of such amplitude computations are: achieving suitable expressions for the
Feynman integrals, IBP-reducing the amplitudes, and reconstructing the rational func-
tions in the amplitudes. Thanks to the recent progress, which I have partly presented
in this thesis, the bottleneck of the Feynman integrals is completely removed. The
IBP reductions we performed for the all-plus amplitude are of comparable complexity
to what is required for other helicity amplitudes or for amplitudes including fermions.
Our computation has therefore shown that such IBP reductions are now accessible.
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The remaining obstacle is time. The plain reconstruction of the rational factors may
require the evaluation of the IBP-reduced amplitude millions of times. If we want to
achieve our goals within a reasonable timeframe, further work is necessary to optimise
all the steps in the workflow and reduce the evaluation time. Moreover, a refined re-
construction strategy is desirable. Several approaches are being pursued in this sense:
choosing carefully the kinematic variables, making use of the linear relations among
the rational functions, guessing frequent factors, constructing good ansétze... Some
of these or other ideas may reduce dramatically the complexity of the computation.
I have no doubt that the amplitude community — hopefully with some contribution
from me — will soon be able to overcome these challenges.
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certain combinations of 10 and 10. The last two structures denote two
invariant tensors between 10,10 and the central gluon’s 8 (for N, > 4).
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