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Summary

A machine learning system, including when used in reinforcement learning, is usually fed
with only limited data, while aimed at training a model with good predictive performance
that can generalize to an underlying data distribution. Within certain hypothesis classes,
model selection chooses a model based on selection criteria calculated from available data,
which usually serve as estimators of generalization performance of the model.

One major challenge for model selection that has drawn increasing attention is the
discrepancy between the data distribution where training data is sampled from and the
data distribution at deployment. The model can over-fit in the training distribution, and fail
to extrapolate in unseen deployment distributions, which can greatly harm the reliability
of a machine learning system. Such a distribution shift challenge can become even more
pronounced in high-dimensional data types like gene expression data, functional data and
image data, especially in a decentralized learning scenario. Another challenge for model
selection is efficient search in the hypothesis space. Since training a machine learning model
usually takes a fair amount of resources, searching for an appropriate model with favorable
configurations is by inheritance an expensive process, thus calling for efficient optimization
algorithms.

To tackle the challenge of distribution shift, novel resampling methods for the eva-
luation of robustness of neural network was proposed, as well as a domain generalization
method using multi-objective bayesian optimization in decentralized learning scenario and
variational inference in a domain unsupervised manner.

To tackle the expensive model search problem, combining bayesian optimization and
reinforcement learning in an interleaved manner was proposed for efficient search in a
hierarchical conditional configuration space. Additionally, the effectiveness of using multi-
objective bayesian optimization for model search in a decentralized learning scenarios was
proposed and verified.

A model selection perspective to reinforcement learning was proposed with associated
contributions in tackling the problem of exploration in high dimensional state action spaces
and sparse reward. Connections between statistical inference and control was summarized.

Additionally, contributions in open source software development in related machine
learning sub-topics like feature selection and functional data analysis with advanced tuning
method and abundant benchmarking were also made.



Zusammenfassung

Ein Machine Learning System, auch in der Anwendung in Reinforcement Learning, wird
in der Regel nur mit begrenzten Daten angereichert. Ziel ist das Lernen eines Modells
mit guter Vorhersageleistung, das zugleich auf der zugrundeliegenden Datenverteilung ver-
allgemeinern kann. Modellwahl in Machine Learning sucht ein Modell auf der Grundlage
bestimmter Auswahlkriterien aus, die aus den verfügbaren Daten berechnet werden und
normalerweise als Schätzer der Generalisierungsleistung des Modells dienen.

Eine große Herausforderung für Modellwahlverfahren, welche zunehmend an Aufmerk-
samkeit gewinnen, ist die Diskrepanz zwischen der Datenverteilung der Trainingsdaten der
Verteilung beim späteren Einsatz des Modells. Ein potenzielles Problem ist die Überan-
passung des Modells auf der Trainingsverteilung, die zu ungenügender Extrapolation auf
ungesehenen Daten führt. Dies beinflusst die Zuverlässigkeit eines maschinellen Lernsy-
stems stark. Eine solche Herausforderung manifestiert sich besonders bei hochdimensio-
nalen Daten, wie Genexpressionsdaten, funktionalen Daten oder Bilddaten. Eine weitere
Herausforderung für die Modellwahl ist die effiziente Suche im Hypothesenraum. Da das
Trainieren solcher Verfahren in der Regel eine beträchtliche Menge an Ressourcen in An-
spruch nimmt, ist die Suche nach einem geeigneten Modell mit günstigen Konfigurationen
von Natur aus ein teurer Prozess und erfordert daher effiziente Optimierungsalgorithmen.

Um die Herausforderung der Verteilungsverschiebung zu bewältigen, werden eine neu-
artige Resampling-Methode zur Bewertung der Robustheit eines neuronalen Netzes vor-
geschlagen, sowie eine Domänengeneralisierungsmethode unter Verwendung von bayesia-
nischer multikriterieller Optimierung in einem dezentralen Lernszenario und approximate
Bayesianische Inferenz in einer nicht überwachten Domäne.

Um das computational teure Problem der Modellsuche zu lösen, wird die Kombination
von Bayesianischer Optimierung und Reinforcement Learning aufverschachtelte Weise für
eine effiziente Suche in einem hierarchischen bedingten Konfigurationsraum vorgeschlagen.
Zusätzlich wird die Effektivität des Einsatzes von multi-objektiver bayesianischer Optimie-
rung für die Modellsuche in einem dezentralen Lernszenario vorgeschlagen und verifiziert.

Weiterhin präsentiert die vorliegende Arbeit eine neue Perspektive zur Modellauswahl
in Reinforcement Learning mit zugehörigen Beiträgen zur Bewältigung von Exploration in
hochdimensionalen Zustandsaktionsräumen und spärlicher Belohnung, sowie der Verbin-
dungen zwischen statistischer Inferenz und Steuerung.

Zuletzt beinhaltet die Dissertation Beiträge zur Entwicklung von Open-Source-Software
in verwandten Unterthemen des maschinellen Lernens, wie der Feature-Auswahl und Ma-



Zusammenfassung xiii

chine Learning mit funktionalen Daten mithilfe fortschrittlicher Tuning-Methoden und
Bewertung auf Basis umfangreicher Benchmarks.
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Chapter 1

Outline

The dissertation is organized as follows. Chapter2 introduces statistical learning theo-
ry and cross validation based model selection criteria. From the model selection aspect,
conventional model selection criteria calculated based on cross validation resampling, as
introduced in Chapter 2, mostly split the dataset into similar distributions as shown in
Appendix A and the model selection criteria calculated thereof can hardly meet the re-
quirements of a good generalization estimator under distribution shift. To alleviate this
problem, in Sun et al. (2019b) in Appendix A, we proposed novel resampling methods by
using artificially created distribution shift (mixture shift) using expectation maximization
and variational inference methods, as introduced in Chapter 3. The proposed method is a
potential candidate for evaluating robustness and reliability of a machine learning system
under distribution shift, including bayesian convolutional neural network. In Sun et al.
(2019a) in Appendix B, we proposed multi-objective model selection criteria and a novel
learning framework of sending models to remote data sites and get the feedback signal to
tune models using multi-objective bayesian optimization and showed its effectiveness for
model selection under distribution shift. This algorithm also partially tackles the emerging
challenge of data privacy and practical limitations in biomedical data transmission. Addi-
tionally, we developed novel domain generalization algorithms in Appendix C to tackle the
distribution shift problem when data from several domains are available.

Training a function approximator in deep reinforcement learning also requires appro-
priate model selection criteria and Chapter 4 explains in detail a model selection perspective
to deep reinforcement learning. In Zhao et al. (2019) in Appendix D, we proposed using
an approximation to weighted entropy as surrogate to realize transitions replay buffer dis-
tribution manipulation to improve the training efficiency of the continuous action space
agent on robot manipulation tasks. In Sun and Bischl (2019) in Appendix E, we summari-
zed surrogate methods based on optimizing Evidence Lower Bound (ELBO) with respect
to policies, dynamics, state space, etc.

From the model search aspect, model selection can be achieved through configuring the
learning algorithm, including the composition of a pipeline which potentially consists of
different stages of computations or data flows, as well as the hyper-parameter configurati-
on for each computation stage as introduced in Chapter 5. When considering all available
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configurations of several hypothesis classes together for each stage, the combined configu-
ration search space is hierarchical and conditional. Inspired by hierarchical reinforcement
learning, in Sun et al. (2019c) in Appendix F, we proposed a novel pipeline tuning methods
by combing bayesian optimization and reinforcement learning which showed favorable re-
sults compared to several competitor methods. Additionally, in Appendix B, we showed
the effectiveness of multi-objective model selection in distribution shift under decentralized
learning scenario.

Additionally, efforts and contributions in the development of open source software with
abundant benchmarking and advanced tuning methods for machine learning were also
made. For example, many emerging data types like gene expression data and functional
data are characterized by their high dimensionality, which calls for specific learning and
model selection methods. In Chapter 6, several spline based Functional Data Analysis
(FDA) methods are introduced to tackle the high dimensionality in time series data and
how the smooth selection is conducted for model selection. In Pfisterer et al. (2019) in
Appendix G, we compared FDA methods and non-functional machine learning methods in
terms of predicative performance and the effectiveness of bayesian optimization in model
selection of functional data. Besides, we designed and implemented mlrFDA, an extension of
mlr for functional data classification and regression, as well as the tuning and benchmark of
the incorporated algorithms, in comparison with recently published time series classification
benchmark results. For vector valued high dimensional data types like gene expression data
from micro array, one way to deal with high dimensionality is feature selection. In Bommert
et al. (2020) in Appendix H, we introduced extension to mlr with several information
theoretic feature filtering algorithms as explained in Chapter 7 and the benchmark of their
performance on 16 high dimensional datasets with respect to other filtering based methods.



Chapter 2

Machine Learning and Model Selection

2.1 Introduction

Given a dataset {xi, yi}ni=1, where xi is the covariate for observation i and yi is the cor-
responding response, pragmatically, a machine learning model is usually trained by opti-
mizing an objective function on a training split and evaluated with some measures on a
hold-out split. The optimization usually comes with configurations, the so called hyper-
parameters, that are not explicit in the prediction rule ŷi = f̂(xi), where f̂ is the trained
model and ŷi is the predicted value corresponding to xi. However, f̂ itself depends on these
hyper-parameters. These hyper-parameters give a leverage to control or select the behavior
of the trained model f̂ . The task of model selection is to estimate these hyper-parameters
based on the data itself.

Section 2.2 introduces concepts from statistical learning theory and the use of cross va-
lidation for the computation of model selection criteria. Section 2.3 further explains some
properties of Ordinary Cross Validation (OCV) from a regression perspective used in Func-
tional Data Analysis in Chapter 6. Section 2.4 connects the chapter with the contributing
articles of the dissertation.

2.2 Model Selection from Learning Theory

2.2.1 PAC Learning Theory and VC-dimension

Let X represent the domain of a machine learning algorithm and Y represent a correspon-
ding concept space. The joint distribution Dx,y(x, y) over X × Y can be decomposed to
Dx and Dy|x. Training set S of size m1 consists of {(x1, y1), (x2, y2), · · · , (xm, ym)}, whe-
re (xi, yi) ∼ Dx,y(x, y). A machine learning algorithm A takes a training set S as input
and outputs a hypothesis h : X → Y . H represent the hypothesis class, or the space of
hypothesis to be searched for. Use Z = X ×Y to represent a general domain concept space,

1In this section, m instead of n is used to denote sample size to keep it consistent with other learning
theory literatures.
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the generalization error of a hypothesis h can be defined LZD(h) = Ez∼D [l(h, z)] where l is
the instance wise loss function. Empirical Risk Minimization (ERM) searches arg max

h∈H
LS,

where LS is the risk (loss) evaluated upon the Training Set S Vapnik (2013),Von Luxburg
and Schölkopf (2011), Shalev-Shwartz and Ben-David (2014). Realizable Learning supposes
x ∈ X contains all features required to decide y ∈ Y , so ∃h ∈ H such that LS(h) = 0. In
the agnostic case, due to lack of features, the concept value y is not deterministic, instead,
a probability of P (y | x) characterizes the statistical relationship between feature vector x
and concept y Shalev-Shwartz and Ben-David (2014). Bayesian Optimal Classifier Cawley
and Talbot (2010); Von Luxburg and Schölkopf (2011) with b(x) = I

(
P (y = 1 | x) > 1

2

)

has minimal generlization error in the agnostic case, where I is the indicator function.
Since I (h(x) 6= y) = |h(x)− y|, we have

LD(h) = EX,Y [I(h(x) 6= y) | x] (2.1)
= EX,Y [|h(x)− y| | x] (2.2)
= EX [|h(x)− 0|P (y = 0 | x) + |h(x)− 1|P (y = 1 | x)] (2.3)

≥ EX

[
min

(
P (y = 0 | x), 1− P (y = 0 | x)

)]
(2.4)

= EXEY |X

[
I

(
P (y = 1 | x) >=

1

2

)
6= y

]
(2.5)

= EXEY |X [b(x) 6= y] = LD(b) (2.6)

For a learning algorithm A with hypothesis class H. Given confidence parameter δ and er-
ror tolerance ε, define sample complexity mH(δ, ε) with respect to hypothesis class H. H is
Probably Approximately Correct (PAC) learnable Shalev-Shwartz and Ben-David (2014)
when upon training set S with sample size m >= mH(δ, ε), algorithm A returns hS = A(S)

satisfying P

(
LZD

(
hS = A(S) = arg min

h′′∈H
LZS (h

′′
)

)
> min

h′∈H
LZD(h

′
) + ε

)
< δ. PAC learnabili-

ty ensures that, the two optimal hypothesis arg min
h′′∈H

LS(h
′′
) and arg min

h′∈H
LD(h

′
) correspond

to similar LD with tolerance ε and confidence δ if sample size exceeds mH(δ, ε). Further-
more, to compare how approximate LD and LS is with respect to arbitrary h ∈ H based
on a choice of set S, define set S is ε representative Shalev-Shwartz and Ben-David (2014)
when

∀h ∈ H, |LS(h)− LD(h)| <= ε (2.7)

To connect this ε representative concept as a property of a set S, with PAC Learnability:
If sample size of S exceed mUC

H (ε/2, δ), then with δ confidence, the training set becomes
ε/2 representative, then hypothesis class H is defined to have Uniform Convergence pro-
perty Vapnik (2013) and is mH(ε, δ) PAC learnable since

LD(hS) ≤ LS(hS) + ε/2 ≤ LS(h) + ε/2 ≤ LD(h) + ε/2 + ε/2 = LD(h) + ε

The first inequality is due to definition of ε representative, the second inequality is due to
the empirical optimization of the hypothesis, the third inequality is due to the definition
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of ε representation again. Finite Hypothesis classes have uniform convergence property
hence PAC learnability. For an infinite hypothesis class H, there are only a finite number
of behaviors inside a set Sm of finite size m, to the maximum of 2m. Effectively, within the
scope of Sm, it looks like there are less candidates of H since some candidates behave the
same inside Sm although they have a different behavior outside Sm, so the effective size
of H being restricted to Sm Shalev-Shwartz and Ben-David (2014), denoted by |HSm|, is
smaller than |H|. When sample size m of Sm grows, HSm grows accordingly. The Growth
function Shalev-Shwartz and Ben-David (2014) τH(m) = max

|Sm|=m
|HSm | characterizes the

maximum number of within set behaviors of H, or effective size of H, restricted by a set
Sm of size m. If |HSm| = 2m then H shatters Sm Vapnik (2013). Note that it can be
possible that H can not shatter another set of the same size m, when this happens, H
has a finite Vapnik-Chervonenkis (VC) dimension. The Vapnik-Chervonenkis dimension
(VC-dim) Vapnik (2013) of a function class H defined over an instance space or domain
X is the largest size m of arbitrary subset Sm ∈ X of size m shattered by H.When set
size m grows, there are more combinatorial possibilities of the sample labels in total 2m, If
m > V Cdim(H), then H covers only a portion of the combinatorial possibilities for any
realization of Sm, and H could not shatter the set.

2.2.2 Model Selection via Risk Estimation through Validation

Given a learning task and a corresponding dataset Sm as a sample of size m from a dis-
tribution D, model selection chooses among the available or considered hypothesis classes
h ∈ ∪lHl a favored model based on the data itself in terms of the risk or loss of the model
LD(h) with respect to the distribution D. Since LD(h) is intractable, an estimation is nee-
ded as a selection criteria. One solution is the Structural Risk Minimization (SRM) Vapnik
(2013), where the empirical risk term based on the sampled data LS(h) is augmented with
a complexity penalty which is usually utilized in the model training phase. Another solu-
tion is to estimate LD(h) through validation on an independent hold-out set V , where the
loss LV (h) is used as a criteria to choose a hypothesis. In practice, to make full use of data,
Cross Validation (CV) is used to aggregate performance through folds.

2.3 Cross Validation from a Regression Perspective

Since cross validation played such a big role in model selection, some properties are discus-
sed further in the context Generalized Additive Model which is playing an essential role in
Chapter 6 when Functional Data Analysis is discussed.

2.3.1 Generalized Additive Model

This dissertation considers linear smoother Hastie and Tibshirani (1990) based Generalized
Additive Model (GAM) Wood (2017) in Equation 2.8, which plays an important role in
Functional Data Analysis (FDA) in Chapter 6 and Appendix G. The corresponding model
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selection criteria like Ordinary Cross Validation (OCV) and Generalized Cross Validation
(GCV) are associated with nice theoretical insights and using cross validation for perfor-
mance estimation is also pragmatic in general machine learning. A general expression for
GAM can be formulated as in Equation 2.8.

yi ∼ EF (µi, φ)

g(µi) := fi = Xp
i
~βp +

∑

v

Fi,v[f
v(xiv)] = Xp

i
~βp +

∑

v

Xv
i
~βv = Xi

~β (2.8)

In Equation 2.8, yi is response of the ith observation corresponding to independent variable
xiv with v indexing its components, EF (µi, φ) represent exponential family distribution
with mean µi and scale parameter φ for observation i. Xp

i is the ith row of a parametric
design matrix Xp, corresponding to global parametric coefficient vector ~βp. For simplicity
of notation, we assume that xiv and Xp

i disjunct. With v indexing the covariates, f v is the
corresponding smooth for xiv and Fi,v[f v(xiv)] is a functional of the smooth f v(xiv) which
can simply be f v(xiv) Wood (2017). Xi is the ith row of the design matrix X concatnating
the parametric design matrix Xp and the smooth design matrix Xv. β is the concatenation
of parametric coefficient βp and the smooth counterpart βv. See Chapter 6 for concrete
expressions of GAM for functional data.

Estimation of Equation 2.8 comes with penalty terms for controlling the smoothness
of the smoothers with a continuously valued hyper-parameter λv corresponding to f v(xiv).
With Penalized Iterated Reweighted Least Squares (PIRLS) Wood (2017), fitting the cor-
responding working model Wood (2017) is equivalent to minimization of the objective
function shown in Equation 2.9, where z(r) is the pseudo data Wood (2017) vector from
the rth iteration, W (r) is the corresponding weight matrix from the r-th iteration, λv
controlls the smoothness of the smoother through penalty matrix Sv for xiv.

||z(r) −Xβ||W (r) +
∑

λvβ
T
v Svβv (2.9)

2.3.2 Ordinary Cross Validation (OCV) as Performance Estimator

Ordinary Linear Regression and Genearlized Linear Regression are special forms of GAM.
Suppose a sample {xi, yi}ni=1 generated by yi = f(xi) + εi for each observation i with i.i.d
εi ∼ N(0, σ2) and f̂i = f̂(xi) is the estimated hypothesis for observation i with linear
smoother Hastie and Tibshirani (1990). The Mean Squared Error (MSE) between the
estimated hypothesis f̂ and true f is

MSE(f̂) =
1

n
E[

n∑

i=1

(f̂i − fi)2] (2.10)
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Since fi as well as εi are not observable, MSE(f̂) has to be estimated. If f̂i = Ayi, where
A is the hat matrix or influcnce matrix of a linear smoother, the following holds:

E[MSE(f̂)] = E[
1

n

n∑

i=1

(f̂i − yi − εi)2] (2.11)

= E[MPE(f̂)]− σ2 + 2 tr(A)σ2/n (2.12)

, whereMPE(f̂) = E[ 1
n

∑n
i=1(f̂i−yi)2, tr(A) is the trace of matrix A. When σ2 is unknown,

a first ReML estimate of σ2 substituted into 2.12 will result in a model selection criteria
that over-smooths the model. A better estimator is to estimate E[MSE(f̂)] + σ2 based on
Ordinary Cross Validation (OCV) score.

Use f̂ [−i]
i to represent the i-th estimated hypothesis without taking obsevation i into

consideration, the OCV score Vo can be defined as

Vo =
1

n

n∑

i=1

(f̂
[−i]
i − yi)2 (2.13)

so

E(Vo) =
1

n
E(

n∑

i=1

[f̂
[−i]
i − fi)2] + σ2 (2.14)

In the large sample approximation, f̂ [−i]
i ≈ f̂i for any observation index i, so

E(Vo) =
1

n
E(

n∑

i=1

[f̂
[−i]
i − fi)2] + σ2 (2.15)

≈ 1

n
E[

n∑

i=1

(f̂i − fi)2] + σ2 (2.16)

= E[MSE(f̂)] + σ2 = E[MPE(f̂)]− 2 tr(A)σ2/n (2.17)

so V0 can be used as an estimator for E[MSE(f̂)] + σ2 Wood (2017).

2.3.3 Computation of OCV and Generalized Cross Validation

Computation of OCV of Linear Smoother based Regression

If the response follows Gaussian distribution with identity link g(µi) = µi, the influence
matrix (or hat matrix) A corresponding to Equation 2.9 at convergence only depends on
the design matrix X with penalty

∑
λvβ

T
v Svβ. According to Wood (2017),

f̂
[−i]
i = f̂i − Aiiyi + Aiif̂

[−i]
i (2.18)

so

Vo =
1

n

n∑

i=1

(f̂
[−i]
i − yi)2 =

1

n

n∑

i=1

(yi − µ̂i)2

(1− A
ii
)2

(2.19)
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Generalized Cross Validation (GCV) of Linear Smooother

To make OCV score invariant to orthogonal transformation of the design matrix and avoid
too much leverage of individual observations Aii, reparameterization (Wood, 2017) using
orthogonal matrix can be carried out, and the OCV expression in Equation 2.19 becomes
the GCV score in Equation 2.20.

GCV =
n||~y − A~y||2
(n− tr(A))2

(2.20)

2.4 Contributions and Prospects

This chapter introduces concepts from statistical learning theory and the commonly used
validation set and cross validation as model selection criteria, which is also widely used in
the community and the contributing articles Sun et al. (2019a,c); Pfisterer et al. (2019);
Bommert et al. (2020); Sun et al. (2019b). Yet challenges from shifted distribution has
recently drawn increasing attention in the research community Nalisnick et al. (2018); Ren
et al. (2019); Sastry and Oore (2020). At deployment time, the data fed into a machine
learning system can come from a different distribution from the training one. As showed
empirically in the contributing articles Sun et al. (2019a), Sun et al. (2019b) and Gossmann
et al. (2019), Ordinary Cross Validation (OCV) on the same dataset is not able to well
characterize the train-test behavior under distribution shift.

In the contributing article Sun et al. (2019b), inspired by mixture shift Quionero-
Candela et al. (2009), variational inference is used to create mixture component, and a
leave one component out cross validation is developed as a criteria to access the robustness
of neural networks against such artificially created distribution shift. The proposed mix-
ture shift based performance estimation methods we coined vgmm-vae in the contributing
article Sun et al. (2019b) acts as a within dataset near-worst-case estimation of out of dis-
tribution performance, and can potentially be used as benchmark methods for evaluating
model robustness against distribution shift and out-of-distribution detection.

For future research, it is interesting to see a concrete use case of vgmm-vae resamp-
ling Sun et al. (2019b) as a benchmark criteria to compare different domain generalizati-
on Li et al. (2017) and domain adaptation Quiñonero-Candela et al. (2009); Hoffman et al.
(2018) methods under mixture shift. Furthermore, it will also be of great interest to test if
the new resampling method can be used to derive new domain adaptation or domain gene-
ralization methods. For example, if pre-training the resampled dataset with vgmm-vae using
domain generalization techniques can improve out-of-distribution prediction performance.

Additionally, in the contributing article Sun et al. (2019a), although we tried to sol-
ve decentralized learning scenario under distribution shift, our multi-objective bayesian
optimization solution can also be seen as optimizing a new multi-objective model selecti-
on criteria of considering predicative performance on all data sites. In Sun and Buettner
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(2021), we proposed unsupervised domain generalization where model selection is carried
out using extended Evidence Lower Bound (ELBO).

In Chapter 4, we offer a model selection perspective to reinforcement learning.



Chapter 3

Evidence based Model Selection

3.1 Introduction

Bayesian evidence and its lower bound optimization methods serve as alternative model
selection criteria to cross validation based performance estimation methods Cawley and
Talbot (2010).

The field of variational inference is still ongoing research Blei et al. (2017) and has been
recently utilized in the deep learning community Kingma and Welling (2013), the basic idea
of Variational Inference is introduced in this chapter, with EM algorithm being explained
as a special case of Evidence Lower Bound optimization method. Then contributions of
the dissertation in this area is summarized in Section 3.4.

3.2 Expectation Maximization

Given observation x, adding unobserved latent variable z enables more complex distri-
butions. While the latent variable is not observed, it is possible to use the conditional
distribution p(x|z, θ) and the prior p(z|θ) as a leverage, in an iterative method, each ite-
ration leads to better assignment to the z variable and θ, with the likelihood increases.

p(x|θ) =
∑

z

p(x, z, θ) =
∑

z

p(z|θ)p(x|z, θ) (3.1)

Our goal is maximum likelihood of observable probability with θ∗ = argmax
θ

log p(x|θ),
which can in principle be done by gradient decent or newton method. Since it can be
difficult to get analytical form of log(p(x|θ)) = `(θ) and ∂`(θ)

∂θ
. Now we seek an alternative

method that does not accent in the gradient direction or newton direction directly but goes
in a less steeper way but ensures that each time it moves to a better place in an iterative
way θnew ← θold which leads to better likelihood with `(θold) < `(θnew).

The complete data likelihood ln p(x, z, θ) can be decomposed as the product of marginal
likelihood (the objective to be optimized) and posterior distribution of latent variable. Take
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θ

−Q(θ, θold) = −`(θ, θold)− C(θ, θold)

−`(x|θ, θold)
−Q(θ, θold)

C(θold, θold) = 0

θoldθ∗

Figure 3.1: illustration of EM algorithm

the log likelihood of the complete data likelihood,

ln p(x, z, θ) = ln{p(x|θ)}+ ln{p(z|x, θ)} (3.2)

Since z as a latent random variable is not observed, the solution is to integrate out z in
an expectation calculation with respect to the current iteration posterior with p(z|x, θold).
Starting from θold, with tractable posterior p(z|x; θold), multiply both sides of Equation 3.2
by p(z|x, θold) and integrate with respect to z we have

ˆ
z

ln{p(x, z, θ)}p(z|x, θold)dz =

ˆ
z

ln{p(x|θ)}p(z|x, θold)dz +

ˆ
z

ln{p(z|x, θ)}p(z|x, θold)dz
(3.3)

or

Q(θ, θold) = `(θ, θold) + C(θ, θold) = `(θ) + C(θ, θold) (3.4)

where Q(θ, θold) =
´
z

ln p(x, z, θ)p(z|x, θold)dz is pivoted on θold in the parameter space
as a surrogate to `(θ|x), C(θ, θold) =

´
z

ln{p(z|x, θ)}p(z|x, θold)dz < 0 are two functio-
nal component of `(θ|x). Note our objective is to optimize p(x|θ), multiply the objecti-
ve p(x|θ) by a constant

´
z
p(z|x, θold)dz = 1 will not affect our goal Ep(z|x,θold)p(x|θ) =´

z
p(x|θ)p(z|x, θold)dz = p(x|θ)

´
z
p(z|x, θold)dz = p(x|θ). So `(θ, θold) = p(x|θ) can be de-

noted as `(θ) as well.
If we have Q(θnew, θold) ≥ Q(θ

′
, θold) for any θ

′ , equivalently we have `(θnew, θold) +
C(θnew, θold) ≥ `(θ

′
, θold) + C(θ

′
, θold), to ensure the likelihood increases, it has to be
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C(θnew, θold) < C(θ, θold), which can be shown by Jensen inequality.

C(θnew, θold)− C(θold, θold) =

ˆ
z

ln{p(z|x, θ
new)

p(z|x, θold }p(z|x, θ
old)dz (3.5)

= −KL(p(z|x; θold)||p(z|x; θnew)) (3.6)

= Eθold [ln{
p(z|x, θnew)

p(z|x, θold }] < lnEθold(
p(z|x, θnew)

p(z|x, θold ) (3.7)

= ln

ˆ
z

{p(z|x, θ
new)

p(z|x, θold }p(z|x, θ
old)dz = ln1 = 0 (3.8)

EM algorithm is illustrated in Figure 3.1, where the E step is to compute the Q(θ
′
, θold)

surrogate, and the M step is to maximize the surrogate with respect to θ′ . E step and M
step are conducted iteratively, where θold serve as a pivot as shown in Figure 3.1.

3.3 Variational Inference

The core of EM algorithm is the calculation of

Q(θ, θold) =

ˆ
z

ln p(x, z, θ)p(z|x, θold)dz =

ˆ
z

ln[p(z, θ)p(x|z; θ)]
p(z, θold)p(x|z; θold)´

z
p(x, z′ ; θ)dz′

dz

(3.9)
However, the posterior distribution p(z|x, θold) = p(z,θold)p(x|z;θold)´

z
′ p(x,z′ ;θ)dz′

can be intractable due

to the intractable partition function 1
Z = 1´

z p(x,z
′ ;θ)dz′

= 1
p(x)

, the solution is to replace
the intractable posterior p(z|x, θ) with a proposal posterior q(z|φ) governed by variational
parameter φ. When the partition function 1

p(x)
is intractable, maximizing ln p(x) directly

is not possible. The solution is to find a lower bound for ln p(x) as a surrogate to be
optimized. But a tight bound like Q(θ, θold) =

´
z

ln p(x, z, θ)p(z|x, θold)dz is not possible
since the posterior p(z|x, θold) is intractable due to intractable partition function.

To measure the closeness of the proposal posterior distribution q(z|x, φ) to the true
posterior p(z|x, θ), KL divergence can be utilized. Use plus one term and minus one term
trick to the p(x, z, θ) decomposition with the term being q(z|x, φ) to form KL divergence
term, one gets

ln p(x, z, θ) = ln{p(x|θ)}+ ln{q(z|x, φ)} − ln{q(z|x, φ)}+ ln{p(z|x, θ)} (3.10)

Express the marginal distribution of observables in terms of others

ln{p(x|θ)} = ln{p(x, z, θ)} − ln{q(z|x, φ)}+ ln{q(z|x, θ)} − ln{p(z|x, θ)} (3.11)

= ln
p(x, z, θ)

q(z|x, φ)
+ (−1) ln

p(z|x, θ)
q(z|x, φ)

(3.12)
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Take expectation of both sides with respect to q(z|x, θ), with
´
z

q(z|x, θ)dz = 1.

ln{p(x|θ)} · 1 =

ˆ

z

q(z|x, θ) ln
p(x, z, θ)

q(z|x, θ) dz + (−1)

ˆ

z

q(z|x, θ) ln
p(z|x, θ)
q(z|x, θ)dz (3.13)

= −KL (q(z|x, θ)||p(x, z, θ)) +KL (q(z|x, θ)||p(z|x, θ)) (3.14)
= ELBO(x, φ, θ) +KL (q(z|x, θ)||p(z|x, θ)) (3.15)

Thus, ELBO(x, φ, θ) as a lower bound for the evidence ln p(x|θ) can be used as a surrogate
to be optimized and has been recently extended to the stochastic optimization case Hoffman
et al. (2013).

3.4 Contributions and Prospects

As explained in the contributing article Sun et al. (2019b), variational inference can be
applied to weight distribution in bayesian neural networks. As explained in the contributing
article Sun and Bischl (2019) variational inference can assist efficient exploration in high
dimensional state and action spaces with sparse rewards, which can be seen as a special
model selection method, as explained in Chapter 4. In the contributing article Sun et al.
(2019a), a special case of Expectation Maximization (EM) algorithm Bishop (2006) was
used to infer Mixture of Gaussian (MOG) distributions of a dataset. In the contributing
article Sun et al. (2019b), variational inference was used to infer distributions of a dataset.
Both methods were used to artificially create Mixture Shift Quionero-Candela et al. (2009)
to further construct novel resampling methods in Sun et al. (2019a,b). In the contributing
article Zhao et al. (2019), variational inference of MOG distributions was used for density
estimation. In the contributing article Sun and Buettner (2021), variational inference was
used to build novel algorithm for domain generalization.



Chapter 4

A Model Selection Perspective to
Reinforcement Learning

4.1 Introduction: Challenges of High-Dimensionality
and Sparse Reward

Many reinforcement learning scenarios are characterized with high dimensional state action
spaces Zhao et al. (2019); Sun and Bischl (2019) including high dimensional state spaces
like images Mnih et al. (2015), other high dimensional sensor data like data from tactile
sensor Van Hoof et al. (2016) and continuous action spaces Silver et al. (2014). Additionally,
in occasions like robot manipulation tasks it is natural and beneficial to design reward
only based on if the agent accomplished the task or not Plappert et al. (2018), resulting
in sparse reward Riedmiller et al. (2018). In deep reinforcement learning , deep neural
networks are used as function approximators Sutton and Barto (2018). However, the high-
dimensionality in both state and action spaces concerted with sparse rewards poses great
challenges in robust behavior and efficient exploration in the environment, which greatly
obviate the successful application of reinforcement learning algorithms Houthooft et al.
(2016). Additionally, it is favorable for the learned policy to generalize across different
goals Plappert et al. (2018).

In this chapter, a model selection perspective to reinforcement learning is given from
different scopes to tackle the above mentioned challenges. A top level scope is evidence ba-
sed model selection method introduced in Chapter 3 by optimizing Evidence Lower Bound
(ELBO) for reinforcement learning, via connecting inference and control as explained in
Section 4.2 and the contributing article Sun and Bischl (2019). The idea is to unroll the
state action reward transitions into the whole trajectory, a probabilistic graphical model
along the trajectory with latent variables is imposed and variational inference is used to
infer the latent variable.

A lower level scope is choosing loss function for the value function estimation discussed
in Section 4.3 and shifting training data distribution elaborated in Section 4.4.
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4.2 Model Selection by Probabilistic Inference for Con-
trol

Deep reinforcement learning solves the optimal control Boudarel et al. (1971) objective in
Equation 4.1.

θ∗ = arg max
θ

ET (·|E,πθ)

∞∑

t=0

R(St, A
c
t ∼ πθ(·|St)) (4.1)

In Equation 4.1, T (·|E , πθ) is the trajectory distribution under the environment E and
policy πθ parameterized by θ. The policy distribution πθ(·|St)) is responsible for taking
the sequential decision conditioned on current state St. Each trajectory is supposed to
start at t = 0 and Rt is the per step reward conditioned on the current state St and
action Act . In case of presence of discounted factor γ = e1/Tc characterizing a characteristic
horizon Tc to ensure finite return in infinite horizon problem, Rt = γtR

′
t can be defined

with R′ being the undiscounted reward. The optimal control problem in Equation 4.1 can
be unrolled into a Probabilistic Graphical Model (PGM) and transformed into an inference
problem of infering optimal action Act under current state St Levine (2018); Sun and Bischl
(2019). Accordingly, the optimal control objective in Equation 4.1 can be augmented by
the entropy of policy H(π(·|St)), as in Equation 4.2 Levine (2018); Sun and Bischl (2019).

θ∗ = arg max
θ

ET (·|E,πθ)

∞∑

t=0

R(St, A
c
t ∼ πθ(·|St)) +H(π(·|St)) (4.2)

In the contributing article Sun and Bischl (2019), some further derivations about the
connection between optimal control and probabilistic inference are given. Additionally, we
introduced extra PGMs modeling other aspects of the reinforcement learning problem to
deal with the high-dimensional state-action spaces and sparse reward problem discussed
in Section 4.1. For example, the use of undirected graph Sallans and Hinton (2004) for
policy inference. Using variational inference for inferring the dynamics of the environment
can augment exploration encouraging pseudo rewards to alleviate the sparse reward chal-
lenge Houthooft et al. (2016). Dimensionality reduction using variational inference is also
explained in the contributing article Sun and Bischl (2019), see detail in Appendix E.

4.3 Model Selection for Value Function Estimator

Dynamic programming Boudarel et al. (1971) can be used to optimize the objectives in
Equation 4.1 and 4.2 which requires the value function. In deep reinforcement learning ,
an estimator to state value function Qπ(s, a) with respect to policy π is required for both
value function based methods Mnih et al. (2015); Van Hasselt et al. (2016); Haarnoja et al.
(2017) and policy gradient based methods Degris et al. (2012); Schulman et al. (2015);
Lillicrap et al. (2015); Haarnoja et al. (2018); Zhao et al. (2019). The estimator Q̂π

w(s, a)
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is usually represented as a deep neural networks parameterized by w. The estimation of w
is usually converted to a regression problem with loss function in Equation 4.3.

w∗ = arg min
w

Es,a,s′∼D `(Qπ(s, a), Q̂w(s, a)) (4.3)

, where Qπ(St = s, Act = a) = ES,A,S′,R∼E,π[R(s, a) +
∑∞

j=1 R(St+j, At+j)] is approximated
by Q̂w(s, a) according to loss function ` under the transition sample distribution D and the
model selection problem lies in selecting the transition distribution D and the loss function
`.

For example, the on-policy method chooses D to be rolled out transition samples from
the policy π to be optimized, while the off-policy method chooses D to be generated from
a behavior policy β and D is materialized by sampling from a replay memory to reuse the
samples to increase sample efficiency Lin (1991).

Since the true state action value function Qπ(s, a) is only partially observable through
reward R, the loss function ` is constructed by taking a surrogate using the Bellmann
operator `

(
Qπ(st, at), Q̂w(st, at)

)
≈ (Γst+1Q̂w(st, at)−Q̂w(st, at))

2. The Bellmann operator
Γst+1 is a contraction satisfying ||Γst+1Q1(·, ·) − Γst+1Q2(·, ·)|| ≤ γ||Q1(·, ·) − Q2(·, ·)||, so
a fixed point solution Γst+1Q̂w(st, at)) = Q̂w(st, at) can be approximated. So the choice of
loss function ` can be reduced to the choice of Bellmann operator Γ as explained below.

For Deep Q learning Mnih et al. (2015), Γst+1Q̂w(st, at) = rt + maxa γQ̂w̄(st+1, a)
is the Bellman operator with w̄ being the weight for the target network. For Double

DQN Van Hasselt et al. (2016), Γst+1Q̂w(st, at) = rt + γQ̂w̄

(
st+1, arg max

a
Q̂w(st+1, a)

)
,

where value maximization is done by the update network w and evaluation is do-
ne by the target network w̄. For Clipped Double Q Learning Fujimoto et al. (2018),
as well as in Batch Constrained Q Learning Fujimoto et al. (2019). Γst+1Q̂w(st, at) =
rt + γmax

a
[λmin
w1,w2

Q̂w∈{w1,w2}(st+1, a) + (1− λ)max
w1,w2

Q̂w∈{w1,w2}(st+1, a)] where w1 and w2 are

two networks updated interchangeably.
In terms of continuous action space, we use Γπ to represent the Bellmann operator.

Soft Q learning Haarnoja et al. (2017) is an implicit actor-critic algorithm Haarnoja
et al. (2017, 2018); Schulman et al. (2017). The Bellmann operator is ΓπQ̂w(st, at) =
rt+γESt+1∼Dα log

´
a

exp 1
α
Q̂w̄(St+1, a)da. α log

´
a

exp 1
α
Q̂w̄(St+1, a)da can be seen as taking

log of a continuous softmax denominator, which is dominated by the maximum of action a,
with α tuning the approximation level, also controlling the degree of the maximum entropy
objective in Equation 4.2. For Deep Deterministic Policy Gradient (DDPG) Lillicrap et al.
(2015), ΓπQ̂w(st, at) = rt+γQ̂w̄(St+1, π(St+1)) with St+1 ∼ D. For soft actor critic Haarnoja
et al. (2018), ΓπQ̂w(st, at) = rt + γESt+1∼D,Act+1∼π[Q̂w̄(St+1, A

c
t+1)− log π(Act+1|St+1)].

4.4 Model Selection with respect to Shifted Distribution

The distribution D in Equation 4.1 and 4.2 depends on the evolved policy π and the
environment E . For off-policy reinforcement learning, when using uniform sampling, D
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corresponds to a mixture distribution of the evolved policies.
The training makes the neural network agree with these samples in terms of Equa-

tion 4.3, thus imposing the risk of over-fitting Q to the current state action transitions
distribution D. In low dimensional reinforcement learning with dense reward carried on-
line, overfitting of the value function Q is not a pernicious problem since if the value
function approximator has over optimistic extrapolation, the agent will be guided to ex-
plore these over optimistic regions and the dense reward will guide the agent learn new
behavior to adapt to the new experiences Kumar et al. (2019); Fujimoto et al. (2019).
Besides, strategies like the ε exploration Sutton and Barto (2018), Boltzmann exploration,
Gibbs exploration and other noise injection methods Lillicrap et al. (2015) can also help
the agent balance the exploration-exploitation trade off to gather diverse experiences that
can better reflect a global picture of the transitions distribution under the current policy.
However, it will be difficult for these exploration mechanisms to function well enough in
case of high-dimensional state-action spaces, especially when continuous action and sparse
reward is also present Zhao et al. (2019).

Note for sparse reward and continuous actions, Q parameterized by neural network in
the non-reward region is just a smoothed flat surface and even with rewarded transitions,
the reward may fail to be propagated Matheron et al. (2019). Taking DDPG Lillicrap et al.
(2015) as an example, it is an off-policy algorithm for continuous action spaces. The too
early overfitting of the critic Q imposes the risk that the agent can not optimize its policy
so the agent will always be constrained in a sub-optimal region by a deadlock of saturation
of Q and π Matheron et al. (2019), in consequence the agent has difficulty to explore to a
wider region of the state-action space and fails to accomplish the task.

To alleviate the problem, a conjecture can be made in the language of distribution shift.
Suppose an oracle can gather transition samples in the whole state-action space, forming
a wider behavior policy βoracle for the current policy π to be optimized, corresponding
to a global transition distribution Doracle with bigger entropy. Doracle might slow down
the over-fitting of the function approximator Qβoracle thus obviates the deadlock proposed
in Matheron et al. (2019).

The contributing article Zhao et al. (2019) can be seen to simulate this conjecture.
To select a better model for multi-goal reinforcement learning under the sparse reward, a
weighted entropy objective is proposed to encourage both exploration and task accomplis-
hment. A lower bound approximation as an optimization surrogate given the state action
reward transitions in the replay buffer corresponds to using density prioritized sampling
to artificially create distribution shift for the replay buffer of off-policy DDPG algorithm,
leading to an improved entropy of the D, which is similar to the effect of an oracle. This
sampling leads to improved performance of DDPG. For future work, more theoretical and
empirical evidences are needed to support this conjecture.



Chapter 5

Bayesian Optimization and
Reinforcement Learning for Model
Selection

5.1 Introduction

This chapter takes a algorithm configuration Bischl et al. (2016) point of view for model
selection. A machine learning algorithm is taken as it is with available configurations as
hyper-parameters which affect the behavior of the model. The model selection problem
then becomes an algorithm configuration problem to search for configurations or hyper-
parameters to optimize performance.

Models are often optimized not alone, but as part of a machine learning pipeline. Steps
in a pipeline are often configurable resulting in a hierarchical configuration space with op-
tions depending on the chosen pipeline step. In this dissertation, bayesian optimization is
used to efficiently search the hyper-parameter space, which is extended to multi-objective
bayesian optimization when there are multiple criteria to assess the performances. Com-
bined with reinforcement learning , the pipeline with hierarchical configurations can also
be efficiently searched, see detail in the contributing article Sun et al. (2019c) in Appen-
dix F. Section 5.2 explains bayesian optimization with Gaussian Process, which offers both
mean and variance prediction. Multi-objective optimization is introduced in Section 5.3
and optimization on hierarchical parameter spaces is introduced in Section 5.4.

5.2 Bayesian Optimization with Gaussian Process

Evaluation of a configuration of a hyper-parameter set requires training a machine lear-
ning model which is usually expensive. To save cost, based on some initial design, subse-
quent proposals of hyper-parameters can be evaluated sequentially based on a sequential
decision mechanism Mockus (2012). Constrained by computational resources, it is favora-
ble to build a predictive model, the so called response surface Jones et al. (1998), on the
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perspective performance in unknown regions. For simplicity, hyper-parameters are also re-
ferred to as covariates to the response surface in the following texts, while the corresponding
performance like classification error are referred to as response. Minimization of objective
is taken as the default optimization goal. The search of favorable hyper-parameters purely
based on the response surface can lead to local minima Jones et al. (1998), and there is a
need to balance exploiting the response prediction and exploring uncertainties in unknown
regions. Thus, to build the response surface, both the mean prediction and uncertainty
prediction are needed and a stochastic process approach is favored, by regressing on the
function behavior conditioned on the available observations, while the conditioned distri-
bution of functions offers uncertainty estimation. From a regression perspective, the error
terms corresponding to a response surface should have a correlation structure dependent
on the distance of the covariates to the response surface Jones et al. (1998). This section
introduces Gaussian Process regression to build response surfaces with mean and variance
prediction and construct infill criteria like Expected Improvement accordingly.

5.2.1 Gaussian Process

A direct view of Gaussian Process can be seen as a collection of response variables f(x)
corresponding to covariate x (hyper-parameters for example) which follow a joint Gaussian
distribution denoted as

f(x) ∼ GP (m(x), k(x, ·)) (5.1)

, where the mean response m(x) and covariance of response k(x, x′) are

m(x) = E[f(x)] (5.2)
k(x, x′) = E[(f(x)−m(x)) (f(x′)−m(x′))] (5.3)

Gaussian Process as a non-parametric model can be viewed as Bayesian linear regression
and a detailed derivation is given in Appendix I.1, where the prior probability of “parame-
ters/weights” over basis functions is implicitly defined by kernels. A simple case of kernel
matrix would be a quadratic form like the inner product with respect to the covariance
matrix of the weight distribution, see Equation (I.23). From the Bayesian linear regression
perspective in Appendix I.1, Let f(x) = wTφ(x), and w ∼ N (0,Σp), the corresponding
mean and covariance function of the response f(x) is

E[f(x)] = E[wTφ(x)] = E[φ(x)Tw] = 0 (5.4)

E [f(x)− E[f(x)]]
[
f(x

′
)− E[f(x

′
)]
]

= E[φ(x)TwwTφ(x)] (5.5)

= φ(x)TE[wwT ]φ(x) = φ(x)TΣpφ(x) = k(x, x
′
) (5.6)

Gaussian process can also be seen as penalized regression where the penalty is the
Reproducing Kernel Hibert Space (RKHS) norm of the fitting function Rasmussen (2003).
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For example, when taking second derivative as the RKHS normWood (2017), the minimizer
to

n∑

i=1

{yi − f(xi)}2 + λ

ˆ
f
′′
(x)2dx (5.7)

where n is the number of observations, can be written as

f̂(x) = β0 + β1x+
n∑

i=1

δik(xi, x) (5.8)

, where δi = (K + σ2
nI)−1yi with σ2

n being the noise estimator and k is the reproducing
kernel Wood (2017), K is the matrix of k(xi, xj) for observations xi, xj. When ignoring the
linear regression part, for a new data point x∗, the posterior uncertainty of the response
f̂(x∗) is

V [f̂(x∗)] = k(x∗, x∗)− [k(x1, x∗), . . . , k(xn, x∗)](K+σ2
nI)−1[k(x1, x∗), . . . , k(xn, x∗)]

T (5.9)

5.2.2 Expected Improvement and Efficient Global Optimization

Having built the response surface, proposal on new point can be made based on an in-
fill criteria Bischl et al. (2014) to balance local exploitation and global exploration. One
commonly used infill criteria is the Expected Improvement in Equation 5.10, where fmin is
the current minimum observed response value, Y is a random variable characterizing the
posterior response distribution, where Y ∼ N (µ(x), s2(x)), with mean response µ(x) and
posterior variance of the response s2(x).

EI(x) = EY∼N (µ(x),s2(x)])[max(fmin − Y, 0)] (5.10)

With Gaussian Process response surface, the Expected Improvement can be written as
Equation 5.11 Jones et al. (1998)

EI(x) = (fmin − µ(x))Φ(
fmin − µ(x)

s(x)
) + s(x)φ(

fmin − µ(x)

s(x)
) (5.11)

, where Φ is the cumulative distribution function and φ is the probability density function
of the standard Gaussian distribution. The mean prediction u(x) can correspond to Equati-
on 5.8 without the linear regression term and the variance prediction s2(x) can correspond
to Equation 5.9. The Efficient Global Optimization (EGO) iterates between maximizing
the Expected Improvement using branch and bound algorithm Jones et al. (1998), sampling
new points and re-estimate the response surface until convergence.
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5.3 Multi-Objective Optimization

5.3.1 Pareto Dominance

Consider the multi-objective optimization problem with map T : X → {Y l}Ll=1, where X
is the space of configuration, corresponding to different objectives Y l indexed by l.

A point A ∈ X is said to dominate point B ∈ X if for each objective Y l(A) it is not
worse than Y l(B) and for at least one objective, it is better than B. If in a set, none
of the points can dominate any other point, this set is called a non dominating set. If
a point X ∈ X can not be dominated by any other point, it is called Pareto optimal.
The set of points represented in X configuration space that can not be dominated by any
other points are called Pareto set. Pareto front is the Y space of Pareto Set. The goal of
multi-objective optimization is to search in the space of X and to find a Pareto Set. To
compare between different Pareto fronts, a popular indicator is to compute the volume of
the dominated part of the objective space with respect to a chosen reference point, which
is the dominated hyper-volume.

To solve multi-objective optimization problem, Deb et al. (2002) proposed a fast eli-
tist non-dominated sorting Genetic Algorithm for Multi-Objective Optimization called
NSGA2. The basic idea is a rank could be pertained by non-dominated sorting, so elite
points could be obtained, new generation could be spawned using Evolutionary Algorithm.
The ranking is first computed based on non-dominance. In the whole population, the non-
dominating set is computed and assigned rank 1. From the remaining points, it is again
possible to get a non-dominating set and so on. To assign fine ranking to each point, crowd
distance sorting is used which assigns more score to points that is more diverse from the
rest of the points. The diverse score is calculated based on the summed up distance to the
nearest neighbors.

5.3.2 Model Based Multi-Objective Optimization

This dissertation uses bayesian optimization for multi-objective problems. Multi-objective
Bayesian Optimization is model based multi-objective optimization Horn et al. (2015) with
the following categories in accordance with the taxonomy in Horn et al. (2015).

Scalarization based methods

Scalarization based methods transform multi-objective optimization problem into sin-
gle objective optimization through the augmented weighted Tchebycheff norm Dächert
et al. (2010); Knowles (2006); Horn et al. (2015) ||~f − ~r||~wρ = max

k=1,··· ,K
wk|fk(x) − rk| +

ρ
∑K

k=1 wk|fk(x)− rk|, where ~r consisting of {rk}Kk=1 is the reference vector with respect to
the K objectives, ~f consisting of {fk}Kk=1 is the objective vector, ~w consisting of {wk} is
the weight vector, ρ balances the first term which is the most significant weighted objective
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and the second term which is the average weighted objective. Pareto Efficient Global Opti-
mization (ParEGO) Knowles (2006) samples the weight vector uniformly in each iteration.

Pareto based method and Direct Indicator based method

MultiEGO Jeong and Obayashi (2005) compute the Expected Improvment for each objec-
tive function and optimize multiple Expected Improvements with MultiObjective Genetic
Algorithm (MOGA). Direct indicator based method transforms the multi-objective op-
timization problem to single objective using S-metric instead of a linear combination of
different objectives. S-metric is defined to be the hyper-volume of a Pareto set (instead of
a simple point) with regard to a reference point. For example, in Ponweiser et al. (2008),
separate models are fitted with respect to each objective to surrogate the expensive evalua-
tion and conditioned on the current Pareto front approximation, a new point is judged by
its contribution to the change of hyper-volume based on the separate surrogate evaluations
of each objective as infill criteria. Additionally, penalty terms are added to the infill criteria
if a new point falls into dominated area.

5.4 Challgenges of Hierarchical Conditional Configura-
tion Space

When combining several preprocessors and learners into a joint space, a union of hypothesis
classes are formed. Yet the corresponding configuration space is not flat anymore, but
conditional and hierarchical, which brings challenges to efficient model search. Table 5.1
is an example of a sample of such a combined configuration space of a random forest
with hyper-parameter n_tree and a support vector machine with hyper-parameter C and
kernel. Note when the kernel is poly representing polynomial kernel, there is an additional
hyper-parameter n specifying the degree of the polynomial. When the kernel is rbf, there is
an additional hyper-parameter gamma. Such a hierarchical conditional configuration space
poses challenges for the bayesian optimization based hyper-parameter search algorithm.

5.5 Contributions and Prospects

Regarding the challenges of Section 5.4, inspired by hierarchical reinforcement learning Di-
etterich (2000); Kulkarni et al. (2016); Co-Reyes et al. (2018), in the contributing article Sun
et al. (2019c), we use bayesian optimization to handle hyper-parameter tuning sub-tasks
of a particular pipeline and let reinforcement learning act as a meta-controller to choose
between different sub-tasks or pipelines, which we coined ReinBo and generated favora-
ble results compared to competitor algorithms, see details in Appendix F. To our best
knowledge, our ReinBo method Sun et al. (2019c) was the first to combine bayesian opti-
mization and reinforcement learning for efficient model search in a hierarchical conditional
configuration space and our method showed favorable performance.
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## model C n_tree kernel n gamma
## 1: RF NA 100 <NA> NA NA
## 2: RF NA 90 <NA> NA NA
## 3: SVM 10.4 NA poly 2 NA
## 4: RF NA 50 <NA> NA NA
## 5: RF NA 60 <NA> NA NA
## 6: SVM 89.9 NA rbf NA 4.2
## 7: SVM 95.4 NA poly 7 NA
## 8: RF NA 500 <NA> NA NA
## 9: RF NA 80 <NA> NA NA
## 10: SVM 0.01 NA rbf NA 10.0

Tabelle 5.1: A random sample of size 10 from the hierarchical conditional configuration
space of a random forest(RF) with hyper-parameter n_tree and a support vector machine
(SVM) with hyper-parameter C and kernel type. NA means not applicable. Note when
the kernel is poly representing polynomial kernel, there is an additional hyper-parameter
n specifying the degree of the polynomial. When the kernel is rbf, there is an additional
hyper-parameter gamma.

In terms of conventional hyper-parameter tuning, we showed in several contributi-
ons, Pfisterer et al. (2019); Sun et al. (2019a,c), the effectiveness of Bayesian Optimization
on choice of hyper-parameters of machine learning algorithms. Specifically, in Sun et al.
(2019a), we showed multi-objective bayesian optimization is effective in decentralized lear-
ning with distribution shift, where we set different objectives to be the performance of
the machine learning model on different data sites and we coined the learning scenario
Restrictive Federated Model Selection (RFMS).

For future work, it is interesting to extend RFMS Sun et al. (2019a) to multiple data
types including images data, refinement of the R package for the ReinBo Sun et al. (2019c)
algorithm. It is also interesting to see how different multi-objective optimization algorithms
will perform for RFMS learning scenario. Learning theories can also be developed for
RFMS.



Chapter 6

Functional Data Analysis and Model
Selection

Functional Data Analysis (FDA) works on data with function structure as the unit of
observation. The function structure can occur both in the covariates (the so called fun-
citonal covariates) and the response. This dissertation mostly deals with scalar response
Functional Data.

From an ordinary linear regression perspective, Functional Data is characterized in
its high dimensionality. The number of variables in one functional covariate, which are
considered measurement grids in FDA literature, are usually more than the number of
observations. This high dimensionality problem can be solved by projecting the functional
covariate to basis functions like B-splines, which are both more computationally favora-
ble and more interpretable compared to classical regularization approaches that can deal
with high-dimensional data such as ridge regression. The basis functions encode our prior
knowledge about the structure of the linear regression coefficient with respect to the func-
tional covariate observation grids, the coordinate of the functional covariate now becomes
low dimensional. Another characteristic of Functional Data is its correlation structure of
measured values along the direction of the measurement grids. This correlation problem
can be alleviated by enforcing a coefficient vector based on a smooth basis as a template
to weigh different locations of the functional covariate Marx and Eilers (1999).

Both the high dimensionality and the correlation problems can be solved with basis
functions like B-splines with controllable smoothness. In Section 6.1, the Functional Linear
Model as an example to basic principles of solving the functional data regression problem
is introduced. In Section 6.2, B-splines and a corresponding smoothness control method
are covered. In Section 6.3, some selected FDA algorithms used in the contributing artic-
le Pfisterer et al. (2019) in Appendix 6 are summarized. Section 6.4 conclude the chapter
and highlight some contributions to the community we made in the contributing article in
Appendix G.
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6.1 Functional Linear Model for Scalar on Function Re-
gression

Consider a functional data sample {xi(t), yi}ni=1 where signal xi(t) as functional covariate
for the ith observation, consisting measurement grids of size Ji, corresponds to scalar
response yi. A Functional Linear Model (FLM) Ramsay (2004) assumes

yi = a+

ˆ
t

β(t)xi(t)dt (6.1)

, where both the regression function β(t) and the functional covariate xi(t) can be projected
into some low dimensional spaces spanned by basis functions. Let β(t) =

∑Kβ
kb=1 bkb(t)θkb ,

and xi(t) =
∑Kx

kx=1 ci,kxφk(t), we have

yi = a+

ˆ
t

β(t)xi(t)dt (6.2)

= a+

ˆ
t




Kβ∑

kb=1

θkbbkb(t)



(

Kx∑

kx=1

ci,kxφkx(t)

)
dt (6.3)

= a+

ˆ
t

〈→
b (t),

→
θ
〉〈→

φ(t), Ci

〉
dt (6.4)

= a+ CiΦ
→
θ (6.5)

, where Φkx,kb =
´
t
φkx(t)bkb(t)dt and

→
b (t) = [b1(t), · · · , bKβ(t)]T .

→
θ = [θ1, · · · , θKβ ]T and

Ci = [ci,1, · · · , ci,KX ] is the i-th row of matrix C in Equation 6.6.
Taking n observations into consideration, the corresponding linear system for the low

dimensional regression problem can be written as

Y = [1n, CΦ][a,
→
θ
T

]T (6.6)

FLM is a good example to the principles mentioned in the beginning of the chapter, yet
in terms of Model Selection, Kβ and Kx have to be chosen to specify the dimension of the
subspaces. In the following section, B-splines are introduced as a basis system and how to
control the effective dimension continuously for model selection is discussed.

6.2 Model Selection with Spline Smoother

6.2.1 B-splines

Let τ := {τk}Kk=1 be a non-decreasing sequence of knots of length K (consider K →∞ for
simplicity). B-splines bd,τk (t) as basis functions in a domain indexed by t, with degree d,
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indexed at knot k of {τk}Kk=1 can be computed recursively with respect to shift k + 1 and
lower degree d− 1 in Equation 6.7 De Boor et al. (1978).

bd,τk (t) =





t−τk
τk+d−τk b

d−1,τ
k (t) + (1− t−τk+1

τk+d+1−τk+1
)bd−1,τ
k+1 (t) d > 0 (divide by zero default to 0)

I(τk ≤ t ≤ τk+1) d = 0, τk < τk+1

0 d = 0, τk = τk+1

(6.7)
bd,τk (t) consist of d+1 piece-wise polynomials, positively supported over d+2 knots or d+1
knot intervals. d + 1 pieces join at d knots, so that the resulting spline is smooth up to
its derivative of order d. At fixed t, only d + 1 number of basis functions are nonzero and∑

k b
d,τ
k (t) = 1.

B-splines span the linear space of splines. An arbitrary spline fd,{ck′ }
K
′

k
′
=1
,{τk}K

′
+d

k=2 (t) of
degree d interpolating K ′ control points {ck′}K

′

k′=1
with K ′ + d − 1 knots {τk}K

′
+d

k=2 can be
represented via linear combination of B-splines as

fd,{ck′ }
K
′

k=1,{τk}
K
′
+d

k=2 (t) =
K
′∑

k′=1

αk′ b
d,τ

k′
(t) (6.8)

Consider fitting or interpolating J points {tj, yj}Jj=1, with an arbitrary spline function
fd,τ (t) of degree d without control point specification, over knot sequence τ with lower
boundary knot τl ≤ t1 and upper boundary knot τu ≥ tJ , where τl ≤ τj ≤ τu. fd,τ (t)
as a piece-wise function where each piece is a degree d polynomial has to join at each
interior knot τl < τj < τu with continuous derivative of order up to d. Counting piece-
wise, a unconstrained spline piece has d + 1 Degrees of Freedom (DoF), passing at each
internal knot, there are d constraints, so subsequent pieces each only have 1 remaining
DoF, the total number of DoF is (d + 1) + (K − 2) = K + d − 1 where K − 2 is the
number of interior knots. The DoF has to be bigger or equal to the number of observations
in case of interpolation. In fitting or smoothing, the DoF can be smaller than the number
of observations. The bigger the DoF, the more flexible fd,τ (t) can be in approximating the
data.

If we were to use B-splines to represent fd,τ (t), since bd,τk (t) in Equation 6.7 is recursively
defined with one knot shift per degree, there has to be extra d knots added to the left side
of τl to define B-spline basis starting at τl. At arbitrary fixed t, including τl and τu, d + 1
number of bd,τj (t) are nonzero, and

∑k+d

k′=k b
d,τ
k′ (t) = 1. An extra d knots can be added to

the right side of τu so that B-spline is also defined at τu+d to make the sum to 1 possible
also at τu so the sum to 1 applies everywhere in the internal knots interval. If we divide
the range of {tj} with K ′′ interior knots, in total 2d + K

′′ knots are needed to define the
B-spline basis. Thus a projection of t on the B-spline basis can be calculated.

Given observations {tj, sj}Jj=1, where sj is the corresponding response to tj, design
matrix Bd,τ can be formed with Bd,τ

j,k = bd,τk (tj). Using α = {αk} to represent the coordi-
nate of fd,τ (t) with respect to the B-spline basis bd,τk (t), we have ŝj(tj) :=

∑
k αkb

d,τ
k (tj)
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and a likelihood function `(ŝj, sj) can be defined. In case of Gaussian likelihood, the B-
spline coordinate α = {αk} can be calculated as α̂ = arg min

α
(Bd,τα − S)T (Bd,τα − S) =

(BTB)−1
J×KBSJ×1 where S = [s1, s2, · · · , sJ ]T and B is the design matrix made of the

B-splines basis.

6.2.2 Smoothness Selection

In Eilers and Marx (1996), the authors assume an equidistant knot sequence with h =
tk+1− tk, so the second derivative (use D(2) as the second derivative operator) of the spline
smooth can be represented as

D(2)fd,τ (t) =
∑

k

αkD(2)bd,τk (t) =
1

h2

∑

k

(∆(2)αk)b
d−2,τ
k (t) (6.9)

with ∆(2)αk = αk− 2αk−1 +αk−2. Thus, the square of the second derivative as smoothness

penalty integrated over the t domain λ′
´ τu
τl

(
D(2)fd,τ (t)

)2
dt = λ

′ ´ τu
τl

(∑
j αjD(2)bd,τj (t)

)2

dt

can be approximated with c1
h2
λ
′∑

k(∆
(2)αk)

2, where c1 =
´ τu
τl

(
b1,τ
j (t)

)2
dt when using

cubic splines and can be absorbed into the λ
′ . Cross terms with respect to shift

c2

∑
j ∆(2)αj∆

(2)αk+1, where c2 =
´ τu
τl
b1,τ
k (t)b1,τ

k−1(t)dt are dropped. The objective functi-
on to be optimized then becomes

L = `({tj, sj}Jj=1; {αk}Kk=1, τ)− λ/2
K∑

k=d+1

(∆(2)αk)
2 (6.10)

{∆(2)αk}Kk=d+1 can be represented by a (m−2)×m upper triangular band matrixD with
Dk,k = 1, Dk,k+1 = −2, Dk,k+2 = 1 and zero elsewhere, so

∑m
k=d+1(∆(2)αk)

2 = (Dα)T (Dα),
and in the Gaussian likelihood case, the optimization reduces to a linear system of

BTY = (BTB + λDTD)α (6.11)

The smoother matrix (hat matrix) is

A = B(BTB + λDTD)−1BT (6.12)

The trace tr(A) of the smoother matrix A, as sum of its eigenvalues can be used to represent
the effective dimensions Hastie and Tibshirani (1990). So model selection criteria like AIC
can be used to balance the trade off between deviance and model dimension (DoF).

6.3 Spline based models for Functional Data

6.3.1 Functional Generalized Additive Model (FGAM)

Functional Generalized Additive Model (FGAM) McLean et al. (2014) is defined as

g{E(Yi|X̃i)} = θ0 +

ˆ
F{Xi(t), t}dt (6.13)
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, where i is the observation index, X̃i is the functional covariate of the ith observation,
measured in grids indexed by t with value Xi(t) at measurement grid t. Yi is the scalar
response of the ith observation, with global link function g transforming the conditional
mean of response Yi to be addition of the intercept θ0 with additive effect F{Xi(t), t} along
measurement grids.

A special case of FGAM is when

F{Xi(t), t} = Xi(t)β(t) (6.14)

, where β(t) defines a constant coefficient at time t with respect to any Xi(t) value,
which correspond to the Functional Linear Model (FLM). In practice, F{Xi(t), t} is
estimated using tensor-product B-splines, with KX basis functions in the X(t) direc-
tion marginal B-spline, and KT basis functions in the t direction marginal B-spline.
F (x, t) =

∑KX
kx=1

∑KT
kt=1 θkx,ktB

X
kx

(Xi(t))B
T
kt

(t), which maps the measurement value Xi(t)
at the measurement grid t to the additive effect F{Xi(t), t} through Xi(t) → BX

kx
(Xi(t))

and t→ BT
kt

(t), wth θkx,kt being the coefficient. The integral in Equation 6.13 thus becomes

ˆ
F{Xi(t), t}dt =

KX∑

kx=1

KT∑

kt=1

θkx,kt

ˆ
BX
kx(Xi(t))B

T
kt(t)dt =

KX∑

kx=1

KT∑

kt=1

θkx,ktZ
kx,kt(Xi(t), t)

(6.15)

, where Zkx,kt(Xi(t), t) =
´
BX
kx

(x)BT
kt

(t)dt. Therefore, g{E(Yi|X̃i)} is θ0 plus a path integral
of X̃i along surface F{Xi(t), t}. Roughly speaking, in the language of FLM, at measurement
grid t, the β(t) equivalent of FGAM in Equation 6.14 is not constant with respect to every
measurement value Xi(t), thus enabling flexibility and non-linearity.

However, this flexibility of FGAM over FLM also comes with expenses. Since mea-
surement value Xi(t) has different ranges at different measurement grid t, a single knot
sequence corresponding to basis dimension KX spanning the largest range in the Xi(t)
direction can result in zero columns in the tensor product design matrix composed of
Zkx,kt(Xi(t)) =

´
BX
kx

(Xi(t))B
T
kt

(t)dt. Note B-spline basis of degree d is only supported on
d+1 knot intervals, thus for some (kx, kt) combination, Zkx,kt(Xi(t)) =

´
BX
kx

(Xi(t))B
T
kt

(t)dt
will always be zero since it can be that Xi(t) for any observation i has no value at the
interval supporting BX

kx
. The solution is to transform the functional covariate X̃ to have

equal range at each measurement grid t. Then BX
j (X(t)) : kx = 1, · · · , KX are spline basis

on [0, 1].
For calculation of the design matrix entry, Zkx,kt(Xi(t)) =

´
BX
kx

(X(t))BT
kt

(t)dt can
be approximated by Simpson’s rule in the form based on available measurement grids in
Equation 6.16.

Zkx,kt(Xi(t)) =

ˆ
BX
kx(X(t))BT

kt(t)dt ≈
Ji∑

j=1

BX
kx(Xi(tij))B

T
kt(tij)δij (6.16)
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, where δij is the Simpson integration weight for the measurement grid tij of observation i,
Ji is the size of the measurement grids for observation i. Therefore, Equation 6.13 becomes
a low dimensional regression problem

g{E(Yi|X̃i)} = [1,Zi]
[
θ0

θ

]
(6.17)

6.3.2 Model Selection with Boosting: Funtional Linear Array Mo-
del (FLAM)

Functional Linear Array Model (FLAM) Brockhaus et al. (2015) models the conditional
relationship of the ith functional response ỹi with respect to the ith functional covariate
x̃i as an additive model of base learners hl(x̃) in Equation 6.18, where l is the base learner
index of in total L base learners, i is the observation index.

ζ(ỹi|x̃i) =
L∑

l=1

hl(x̃i)(t) (6.18)

x̃i ∈ X comes from the space of functional covariate X , response ỹ ∈ Y ⊂ L2(T , µ), with
T representing a time interval, µ representing the measure defined on it and L2(T , µ)
represent the space of square integrable functions. For scalar on function regression, T
reduces to a single point and µ becomes dirac measure. In Generalized Linear Model
terminology, the transform ζ can be the concatenation of a link function g and expectation:
ζ = g ◦ Ex̃,ỹ. The base learner hl(x̃i)(t) in FLAM is defined as Kronecker Product of
functional covariate effect and response effect as

hl(x̃i)(t) =
(
[bl(x̃i)]

T ⊗ [blY (t)]T
)
θl (6.19)

When considering scalar on function regression, [blY (t)]T = [1], an example of [bl(x̃j)
T ]θl

can be

hl(x̃i) = [bl(x̃i)]
T~θl '

ˆ
s

xi(s)β
l(s)ds ≈ [δj(s1)xi(s1), · · · , δj(sR)xi(sR)]ΦR×Kl

l
~θl (6.20)

, where the effect [bl(x̃i)]
T = [δl(s1)xi(s1), · · · , δl(sR)xi(sR)]ΦR×Kl

l , taken inner product
with ~θ, is an Riemann integration approximation to

´
s
xi(s)β

l(s)ds with δ(sr) being the
integration weight. The linear coefficient functional βl(s) is taken to be a linear combination
of the B-spline basis of dimension Kl, with ΦR×Kl

l being the B-spline basis evaluated at
the observation grids of length R.

FLAM is estimated via component wise gradient boosting, which is an alternative
method to estimate (generalized) additive models. At each boosting iteration, all base
learners representing different functional effects as different components are fitted to the
gradient of the dedicated loss, with respect to which the best base learner is selected and
the fitted θ is being incremented.
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In fitting of the base learners to the gradient of the dedicated loss, FLAM extends
Generalized Linear Array Model (GLAM) Currie et al. (2006) to functional data.

Estimation with component wise boosting enables FLAM to deal with mixed data
type and datasets of less observations than covariates. Additionally, the capability from
component wise boosting to do variable selection and model selection is also inherited.

6.4 Contributions and Prospects

In Pfisterer et al. (2019) in Appendix G, we integrated many Functional Data Analysis
methods into the mlr package, and benchmarked their performance. Our work aims at
building a bridge between the Functional Data Analysis community and the time series
analysis community. We showed the effectiveness of tuning algorithm hyper-parameters for
Functional Data.

For future work, it is interesting to see a deeper and interpretable analysis of how
different Functional Data Analysis methods work, and in which scenario they work better.



Chapter 7

Information Theory for Reinforcement
Learning and Feature Filtering

7.1 Introduction

This chapter introduces basic concepts and properties of information theory and how to
use it for feature filtering in the contributing article Bommert et al. (2020). Information
theory is also used in efficient exploration in deep reinforcement learning in the contribu-
ting articles Sun and Bischl (2019), in constructing objective function in the contributing
article Zhao et al. (2019). In Appendix I.2, basic information theory is introduced.

7.2 Mutual Information and Empowerment in Reinfor-
cement Learning

The definition of mutual information can be written as in Equation 7.1, which depends on
p(x) and p(y|x).

I(X, Y ) = Ep(x,y) log
p(x, y)

p(x)p(y)
= Ep(x),p(y|x) log

p(x)p(y|x)

p(x)
∑

x p(x)p(y|x)
(7.1)

When modeling random variable X as information sender and random variable Y as in-
formation receiver through a communication channel, the capacity of the communication
channel is defined to be the biggest possible mutual information between the sender and
the receiver as in Equation 7.2.

C(X → Y ) = max
p(x)

I(X, Y ) (7.2)

Such a capacity definition can be used as a measure of causal influence of X to Y Klyubin
et al. (2005). In reinforcement learning , the vital causal influence is the effects of a series of
actions taken to the future state distribution, which is defined to be the empowerment using
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the capacity formula in Equation 7.2 Klyubin et al. (2005). Let ÃJt = {At, · · · , At+J−1}
be a series of actions of length J , with its lower case counterpart ÃJt be the realization of
the capitalized version. Let St+J be the state random variable after J actions with its lower
case counterpart st+J be the realization, empowerment is defined to be the channel capacity
of sending information from the series of actions of length J to the state distribution after
J steps as in Equation 7.3.

Empowerment(t, J) = C(ÃJt → St+J) (7.3)

Additionally, as introduced in the contributing article Sun and Bischl (2019), mutual in-
formation can also be used to augment intrinsic reward signals to encourage exploration
in the sparse reward scenario Houthooft et al. (2016).

7.3 Mutual Information based Feature Filtering

In Brown et al. (2012), a systematic perspective on feature selection is given by modeling the
joint distribution of covariate x and response y in a likelihood function `(y|x) = log p(y|x)
and uses a k-dimensional binary vector θ indicating if the feature is selected or not, so xθ is
the features selected and xθ̃ is the unselected features. Then the feature selection problem is
connected to maximizing the conditional likelihood p(y|x), θ∗ = argmax

θ
`(y|xθ). p(y|x) can

be approximated by hypothetical predicative model q(y|x, τ) with τ represent predicative
parameters, which can be represented by the same graphical model or in other words, they
have the same conditional independence structure.

Use the minus one term and plus one term trick twice, one gets

` =
1

N

∑
log q(yi|xiθ, τ) (7.4)

=
1

N

∑
log

q(yi|xiθ, τ)

p(yi|xiθ)
+

1

N

∑
log p(yi|xiθ) (7.5)

=
1

N

∑

i

log
q(yi|xiθ, τ)

p(yi|xiθ)
+

1

N

∑

i

log
p(yi|xiθ)
p(yi|xi)

+
1

N

∑

i

log p(yi|xi) (7.6)

≈ Ex,y
q(yi|xiθ, τ)

p(yi|xiθ)
+ Ex,y log

p(y|xθ)
p(y|x)

+ Ex,yH(Y |X) (7.7)

where the sum in Equation 7.6 approximate the expectation with respect to p(x, y) in
Equation 7.7. The first term can be viewed as the KL divergence between q(yi|xiθ, τ) and
p(yi|xiθ) when θ is optimal and the third term is the constant which is the irreducible since
x could not fully explain y.
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The second term in Equation 7.7 can be further expanded.

1

N

∑
log

p(yi|xiθ)
p(yi|xi)

≈ Exy log
p(y|xθ)
p(y|x)

=
1

N

∑
pxy log

p(y|xθ)
p(y|x)

p(xθ̃|xθ)
p(xθ̃|xθ)

(7.8)

=
1

N

∑
pxy log

p(y|xθ)
1

p(xθ̃|xθ)
p(y;xθ̃|xθ)

(7.9)

= −I(xθ̃; y|xθ) (7.10)

where I(xθ̃; y|xθ) =
∑
p(xθ̃; y) log

p(y;xθ̃|xθ)

p(xθ̃|xθ)p(y|xθ)
which is the conditional mutual information

between the irrelevant feature xθ̃ and the label, conditional on the selected features xθ and
Equation 7.9 is because p(y|x)p(xθ̃|xθ) = p(y|xθ̃, xθ)p(xθ̃|xθ) =

p(xθ̃,y,xθ)

p(xθ)
= p(xθ̃, y|xθ)

θ∗ = argmax
θ

`(y|xθ) can be done by retrofitting features conditioned on the selected

features θ(r) in the rth iteration. For example, retrofitting feature selection can be based on
Conditional Mutual Information (CMI) Jcmi(xk) = I(xk, y|xθ(r)) = I(Xk, xθ|y)−I(Xk, xθ)+
I(Xk, y) due to the identity I(X, Y |Z)− I(X, Y ) = I(X,Z|Y )− I(X,Z) in Equation I.50.

For continuous features, estimation of the mutual information is done through feature
discretization using the entropy minimization split with respect to the class label Fayyad
and Irani (1993) following the Minimal Description Length (MDL) Shalev-Shwartz and
Ben-David (2014).

7.4 Contributions and Prospects

In the contributing article Bommert et al. (2020) we provide a comprehensive benchmark
study across several families of filtering based methods as feature selection methods. For
future work, more recently proposed non-filtering based methods can be added to the
benchmarks. In the contributing article Zhao et al. (2019), we used weighted entropy as
optimization objective in deep reinforcement learning, and proposed its lower bound ap-
proximation. The entropy improvement is also proved. In the contributing article Sun and
Bischl (2019), we summarized several use cases of information and entropy in deep rein-
forcement learning.



Chapter 8

References

Bagnall, A., Lines, J., Bostrom, A., Large, J., and Keogh, E. (2017). The great time
series classification bake off: a review and experimental evaluation of recent algorithmic
advances. Data Mining and Knowledge Discovery, 31(3):606–660.

Bischl, B., Kerschke, P., Kotthoff, L., Lindauer, M., Malitsky, Y., Fréchette, A., Hoos, H.,
Hutter, F., Leyton-Brown, K., Tierney, K., et al. (2016). Aslib: A benchmark library for
algorithm selection. Artificial Intelligence, 237:41–58.

Bischl, B., Wessing, S., Bauer, N., Friedrichs, K., and Weihs, C. (2014). Moi-mbo: mul-
tiobjective infill for parallel model-based optimization. In International Conference on
Learning and Intelligent Optimization, pages 173–186. Springer.

Bishop, C. M. (2006). Pattern recognition and machine learning.

Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. (2017). Variational inference: A review
for statisticians. Journal of the American statistical Association, 112(518):859–877.

Bommert, A., Sun, X., Bischl, B., Rahnenfuehrer, J., and Lang, M. (2020). Benchmark for
filter methods for feature selection in high-dimensional classification data. Computational
Statistics & Data Analysis, 143:106839.

Boudarel, R., Delmas, J., and Guichet, P. (1971). Dynamic programming and its application
to optimal control. Elsevier.

Brockhaus, S., Scheipl, F., Hothorn, T., and Greven, S. (2015). The functional linear array
model. Statistical Modelling, 15(3):279–300.

Brown, G., Pocock, A., Zhao, M.-J., and Luján, M. (2012). Conditional likelihood maxi-
misation: a unifying framework for information theoretic feature selection. The journal
of machine learning research, 13(1):27–66.

Cawley, G. C. and Talbot, N. L. (2010). On over-fitting in model selection and subsequent
selection bias in performance evaluation. The Journal of Machine Learning Research,
11:2079–2107.



35

Co-Reyes, J. D., Liu, Y., Gupta, A., Eysenbach, B., Abbeel, P., and Levine, S. (2018). Self-
consistent trajectory autoencoder: Hierarchical reinforcement learning with trajectory
embeddings. arXiv preprint arXiv:1806.02813.

Currie, I. D., Durban, M., and Eilers, P. H. (2006). Generalized linear array models with
applications to multidimensional smoothing. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 68(2):259–280.

Dächert, K., Gorski, J., and Klamroth, K. (2010). An adaptive augmented weighted tche-
bycheff method to solve discrete, integer-valued bicriteria optimization problems. Tech-
nical report, Technical Report BUWAMNA-OPAP 10/06, University of Wuppertal, FB
Mathematik.

De Boor, C., De Boor, C., Mathématicien, E.-U., De Boor, C., and De Boor, C. (1978). A
practical guide to splines, volume 27. springer-verlag New York.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist multi-
objective genetic algorithm: Nsga-ii. IEEE transactions on evolutionary computation,
6(2):182–197.

Degris, T., White, M., and Sutton, R. S. (2012). Off-policy actor-critic. arXiv preprint
arXiv:1205.4839.

Dietterich, T. G. (2000). Hierarchical reinforcement learning with the maxq value function
decomposition. Journal of artificial intelligence research, 13:227–303.

Eilers, P. H. and Marx, B. D. (1996). Flexible smoothing with b-splines and penalties.
Statistical science, pages 89–102.

Fayyad, U. and Irani, K. (1993). Multi-interval discretization of continuous-valued attri-
butes for classification learning.

Fujimoto, S., Meger, D., and Precup, D. (2019). Off-policy deep reinforcement learning
without exploration. In International Conference on Machine Learning, pages 2052–
2062. PMLR.

Fujimoto, S., Van Hoof, H., and Meger, D. (2018). Addressing function approximation
error in actor-critic methods. arXiv preprint arXiv:1802.09477.

Gossmann, A., Cha, K. H., and Sun, X. (2019). Variational inference based assessment
of mammographic lesion classification algorithms under distribution shift. In NeurIPS
2019 workshop: Medical Imaging meets NeurIPS 2019.

Haarnoja, T., Tang, H., Abbeel, P., and Levine, S. (2017). Reinforcement learning with
deep energy-based policies. arXiv preprint arXiv:1702.08165.



36 8. References

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018). Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. arXiv preprint
arXiv:1801.01290.

Hastie, T. J. and Tibshirani, R. J. (1990). Generalized additive models, volume 43. CRC
press.

Hoffman, J., Tzeng, E., Park, T., Zhu, J.-Y., Isola, P., Saenko, K., Efros, A., and Darrell,
T. (2018). Cycada: Cycle-consistent adversarial domain adaptation. In International
conference on machine learning, pages 1989–1998. PMLR.

Hoffman, M. D., Blei, D. M., Wang, C., and Paisley, J. (2013). Stochastic variational
inference. The Journal of Machine Learning Research, 14(1):1303–1347.

Horn, D., Wagner, T., Biermann, D., Weihs, C., and Bischl, B. (2015). Model-based multi-
objective optimization: taxonomy, multi-point proposal, toolbox and benchmark. In
International Conference on Evolutionary Multi-Criterion Optimization, pages 64–78.
Springer.

Houthooft, R., Chen, X., Duan, Y., Schulman, J., De Turck, F., and Abbeel, P. (2016).
Vime: Variational information maximizing exploration. Advances in neural information
processing systems, 29:1109–1117.

Jeong, S. and Obayashi, S. (2005). Efficient global optimization (ego) for multi-objective
problem and data mining. In 2005 IEEE congress on evolutionary computation, volume 3,
pages 2138–2145. IEEE.

Jones, D. R., Schonlau, M., and Welch, W. J. (1998). Efficient global optimization of
expensive black-box functions. Journal of Global optimization, 13(4):455–492.

Kingma, D. P. and Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114.

Klyubin, A. S., Polani, D., and Nehaniv, C. L. (2005). Empowerment: A universal agent-
centric measure of control. In 2005 IEEE Congress on Evolutionary Computation, volu-
me 1, pages 128–135. IEEE.

Knowles, J. (2006). Parego: a hybrid algorithm with on-line landscape approximation for
expensive multiobjective optimization problems. IEEE Transactions on Evolutionary
Computation, 10(1):50–66.

Kulkarni, T. D., Narasimhan, K., Saeedi, A., and Tenenbaum, J. (2016). Hierarchical
deep reinforcement learning: Integrating temporal abstraction and intrinsic motivation.
Advances in neural information processing systems, 29:3675–3683.



37

Kumar, A., Fu, J., Soh, M., Tucker, G., and Levine, S. (2019). Stabilizing off-policy
q-learning via bootstrapping error reduction. In Advances in Neural Information Pro-
cessing Systems, pages 11784–11794.

Levine, S. (2018). Reinforcement learning and control as probabilistic inference: Tutorial
and review. arXiv preprint arXiv:1805.00909.

Li, D., Yang, Y., Song, Y.-Z., and Hospedales, T. M. (2017). Deeper, broader and artier
domain generalization. In Proceedings of the IEEE international conference on computer
vision, pages 5542–5550.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and
Wierstra, D. (2015). Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971.

Lin, L.-J. (1991). Self-improvement based on reinforcement learning, planning and teaching.
In Machine Learning Proceedings 1991, pages 323–327. Elsevier.

Marx, B. D. and Eilers, P. H. (1999). Generalized linear regression on sampled signals and
curves: a p-spline approach. Technometrics, 41(1):1–13.

Matheron, G., Perrin, N., and Sigaud, O. (2019). The problem with ddpg: understan-
ding failures in deterministic environments with sparse rewards. arXiv preprint ar-
Xiv:1911.11679.

McLean, M. W., Hooker, G., Staicu, A.-M., Scheipl, F., and Ruppert, D. (2014). Func-
tional generalized additive models. Journal of Computational and Graphical Statistics,
23(1):249–269.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves,
A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level control
through deep reinforcement learning. Nature, 518(7540):529.

Mockus, J. (2012). Bayesian approach to global optimization: theory and applications,
volume 37. Springer Science & Business Media.

Nalisnick, E., Matsukawa, A., Teh, Y. W., Gorur, D., and Lakshminarayanan, B. (2018). Do
deep generative models know what they don’t know? arXiv preprint arXiv:1810.09136.

Pfisterer, F., Beggel, L., Sun, X., Scheipl, F., and Bischl, B. (2019). Benchmarking ti-
me series classification–functional data vs machine learning approaches. arXiv preprint
arXiv:1911.07511.

Plappert, M., Andrychowicz, M., Ray, A., McGrew, B., Baker, B., Powell, G., Schnei-
der, J., Tobin, J., Chociej, M., Welinder, P., et al. (2018). Multi-goal reinforcement
learning: Challenging robotics environments and request for research. arXiv preprint
arXiv:1802.09464.



38 8. References

Ponweiser, W., Wagner, T., Biermann, D., and Vincze, M. (2008). Multiobjective op-
timization on a limited budget of evaluations using model-assisted s-metric selection.
In International Conference on Parallel Problem Solving from Nature, pages 784–794.
Springer.

Quiñonero-Candela, J., Sugiyama, M., Schwaighofer, A., and Lawrence, N. D. (2009). On
the training/test distributions gap: A data representation learning framework.

Quionero-Candela, J., Sugiyama, M., Schwaighofer, A., and Lawrence, N. D. (2009). Da-
taset shift in machine learning. The MIT Press.

Ramsay, J. O. (2004). Functional data analysis. Encyclopedia of Statistical Sciences, 4.

Rasmussen, C. E. (2003). Gaussian processes in machine learning. In Summer school on
machine learning, pages 63–71. Springer.

Ren, J., Liu, P. J., Fertig, E., Snoek, J., Poplin, R., Depristo, M., Dillon, J., and Lakshmi-
narayanan, B. (2019). Likelihood ratios for out-of-distribution detection. In Advances
in Neural Information Processing Systems, pages 14707–14718.

Riedmiller, M., Hafner, R., Lampe, T., Neunert, M., Degrave, J., Van de Wiele, T., Mnih,
V., Heess, N., and Springenberg, J. T. (2018). Learning by playing-solving sparse reward
tasks from scratch. arXiv preprint arXiv:1802.10567.

Sallans, B. and Hinton, G. E. (2004). Reinforcement learning with factored states and
actions. Journal of Machine Learning Research, 5(Aug):1063–1088.

Sastry, C. S. and Oore, S. (2020). Detecting out-of-distribution examples with gram ma-
trices. In International Conference on Machine Learning, pages 8491–8501. PMLR.

Schulman, J., Chen, X., and Abbeel, P. (2017). Equivalence between policy gradients and
soft q-learning. arXiv preprint arXiv:1704.06440.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P. (2015). Trust region policy
optimization. In International conference on machine learning, pages 1889–1897.

Shalev-Shwartz, S. and Ben-David, S. (2014). Understanding machine learning: From
theory to algorithms. Cambridge university press.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and Riedmiller, M. (2014). De-
terministic policy gradient algorithms.

Sun, X. and Bischl, B. (2019). Tutorial and survey on probabilistic graphical model and
variational inference in deep reinforcement learning. In 2019 IEEE Symposium Series
on Computational Intelligence (SSCI), number 1908.09381.



39

Sun, X., Bommert, A., Pfisterer, F., Rahnenführer, J., Lang, M., and Bischl, B. (2019a).
High dimensional restrictive federated model selection with multi-objective bayesian op-
timization over shifted distributions. In Intelligent Systems and Applications, pages
629–647. Springer International Publishing, Cham.

Sun, X. and Buettner, F. (2021). Hierarchical variational auto-encoding for unsupervised
domain generalization.

Sun, X., Gossmann, A., Wang, Y., and Bischl, B. (2019b). Variational resampling based
assessment of deep neural networks under distribution shift. In 2019 IEEE Symposium
Series on Computational Intelligence (SSCI), number 1906.02972.

Sun, X., Lin, J., and Bischl, B. (2019c). Reinbo: Machine learning pipeline conditional
hierarchy search and configuration with bayesian optimization embedded reinforcement
learning. In Joint European Conference on Machine Learning and Knowledge Discovery
in Databases, pages 68–84. Springer, Cham.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT
press.

Van Hasselt, H., Guez, A., and Silver, D. (2016). Deep reinforcement learning with double
q-learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30.

Van Hoof, H., Chen, N., Karl, M., van der Smagt, P., and Peters, J. (2016). Stable re-
inforcement learning with autoencoders for tactile and visual data. In 2016 IEEE/RSJ
international conference on intelligent robots and systems (IROS), pages 3928–3934. IE-
EE.

Vapnik, V. (2013). The nature of statistical learning theory. Springer science & business
media.

Von Luxburg, U. and Schölkopf, B. (2011). Statistical learning theory: Models, concepts,
and results. In Handbook of the History of Logic, volume 10, pages 651–706. Elsevier.

Wood, S. N. (2017). Generalized additive models: an introduction with R. Chapman and
Hall/CRC.

Zhao, R., Sun, X., and Tresp, V. (2019). Maximum entropy-regularized multi-goal rein-
forcement learning. In Proceedings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learning Research, pages 7553–7562,
Long Beach, California, USA. PMLR.



Appendix A

Variational Resampling Based
Assessment of Deep Neural Networks
under Distribution Shift

Contributing Article Sun, Xudong; Gossmann, Alexej; Wang, Yu; Bischl, Bernd; Va-
riational Resampling Based Assessment of Deep Neural Networks under Distribution Shift,
2019 IEEE Symposium Series on Computational Intelligence (SSCI), 1906.02972, 2019.

Copyright c©2019 IEEE. Reprinted, with permission, from Xudong Sun et.al., Varia-
tional Resampling Based Assessment of Deep Neural Networks under Distribution Shift,
2019.

Only the accepted version of an IEEE copyrighted paper can be used when posting
the paper or your thesis on-line. In reference to IEEE copyrighted material which is used
with permission in this thesis, the IEEE does not endorse any of LMU’s products or
services. Internal or personal use of this material is permitted. If interested in reprin-
ting/republishing IEEE copyrighted material for advertising or promotional purposes or for
creating new collective works for resale or redistribution, please go to http://www.ieee.
org/publications_standards/publications/rights/rights_link.html to learn how
to obtain a License from RightsLink.

Author Contributions Xudong Sun initiated the idea, designed the algorithm and
workflow. He wrote the first version of the manuscript. He refactored codes for the Bayesian
CNN and implemented wasserstein distance calculation, maintained and refactored the
whole code base. Alexej Gossmann generated most of the experimental results with plots
and tables used in the paper independently. He contributed most of the experimental
parts of the paper, discussed core ideas and mathematical expressions in the paper with
Xudong Sun, and elaborated intensively on the manuscript. Xudong Sun and Alexej jointly
resolved several vital implementation bugs in the code base. Yu Wang implemented cluster
labeling, cross validation with merge and tnse visualization, refactored the code of VAE,

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html


41

while Xudong Sun iterated on the same codes and refined Yu’s work for usability.

Follow-up study Gossmann, Alexej; Cha, Kenny Heekon; Sun, Xudong; Variational
inference based assessment of mammographic lesion classification algorithms under distri-
bution shift, NeurIPS 2019 workshop: Medical Imaging meets NeurIPS 2019.



Variational Resampling Based Assessment of Deep
Neural Networks under Distribution Shift

1st Xudong Sun∗, 1st Alexej Gossmann†, 3nd Yu Wang‡, and 4th Bernd Bischl§
∗ Department of Statistics

Ludwig Maximillian University of Munich, Munich, Germany
smilesun.east@gmail.com

† Center for Devices and Radiological Health
U.S. Food and Drug Administration, Silver Spring, MD, USA

alexej.gossmann@fda.hhs.gov
‡ Technical University of Munich, Munich, Germany

§ Department of Statistics
Ludwig Maximillian University of Munich, Munich, Germany

bernd.bischl@stat.uni-muenchen.de

Abstract—A novel variational inference based resampling
framework is proposed to evaluate the robustness and generaliza-
tion capability of deep learning models with respect to distribu-
tion shift. We use Auto Encoding Variational Bayes to find a latent
representation of the data, on which a Variational Gaussian Mix-
ture Model is applied to deliberately create distribution shift by
dividing the dataset into different clusters. Wasserstein distance
is used to characterize the extent of distribution shift between
the generated data splits. In experiments using the Fashion-
MNIST data, we assess several popular image classification
Convolutional Neural Network (CNN) architectures and Bayesian
CNN models with respect to their robustness and generalization
behavior under the deliberately created distribution shift, which
is analyzed in contrast to random Cross Validation. Our method
of creating artificial domain splits of a single dataset may also be
used to establish novel model selection criteria and assessment
tools in machine learning, as well as for benchmark methods in
the areas of domain adaptation and domain generalization.

Keywords—Bayesian CNN, Variational Inference, Resampling,
Distribution Shift, Wasserstein Distance, Domain Adaptation,
Domain Generalization, Transfer Learning, Model Selection,
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I. INTRODUCTION

Recent studies have shown that deep learning methods may
not generalize well beyond the training data distribution. For
instance, deep learning models are vulnerable to adversarial
perturbations [1], are prone to biases and unfairness [2], or may
significantly but unknowingly depend on confounding variables
resulting from the training data collection process [3]. In this
work we focus on distribution shift, which is another important
phenomenon that can have a significant negative impact on
the performance of deep learning models [4]. Addressing the
problems related to distribution shift is especially crucial for
medical applications of machine learning [5], [6], and other
high-risk application areas.

Areas of machine learning research related to distribution
shift include Transfer learning, which is the process of
improving the predictive performance on a target domain
by using related information from the source domain [7].

Domain Adaptation adapts the source domain distribution to
the target domain distribution to improve the performance of
a target learner in transfer learning . In contrast to domain
adaptation, Domain Generalization is the process of utilizing
data from several domains to train a system that will generalize
to previously unseen domains [8].

Although several domain adaptation and domain general-
ization benchmark datasets exist [9], they are either curated
by human experts as combinations of multiple datasets with
distribution shifts available a priori, or obtained through specific
data manipulation techniques such as rotations [8]. Therefore,
these datasets depend on domain knowledge and are restricted
to specific tasks. For new applications, collecting datasets with
distribution shift for evaluation of algorithms may be expensive
or even intractable. Thus, to facilitate the study of distribution
shift, as well as domain adaptation and domain generalization,
there is a need for a general and efficient method to create
benchmark datasets for evaluation of these approaches.

Furthermore, the robustness of machine learning models
to distribution shift between subsets of the same dataset
or subdomains of a single domain seems to not have been
studied to a sufficient extent in the past. For the various
practical applications of machine learning these subsets or
subdomains may also represent different sources of data,
subpopulations within the target population, as well as other
types of stratification, and the variability in performance of
machine learning systems between them is often not considered
although it is substantial in many cases.

While Cross Validation is a widely used resampling tech-
nique for model selection in Machine Learning [10], [11]
which generates random splits on a datasets, a resampling
technique that can generate splits with distribution shift to
evaluate a machine learning model does not seem to be
known. Thus, inspired by the resampling technique used in
Restrictive Federated Model Selection over shifted distribution
[5] we propose a resampling technique to artificially create
pseudo subdomains, which can serve as a benchmark method
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to evaluate distribution shift related problems and potential
solutions.

Specifically, in this work we are interested in characterizing
changes in model test performance under distribution shift over
different subsets of the same dataset, i.e., when the feature
distribution (but not the label distribution) of the test data is
shifted relative to the distribution of features in the training
data although both are subsets of the same dataset.

Our major contributions are:
• We propose a resampling framework, operating on a given

dataset, which creates splits corresponding to different
distributions by estimating the pseudo domain label of
each instance using variational inference. We use the
Wasserstein distance to quantify the amount of distribution
shift created by our method. Our method can be used for
the creation of benchmark datasets for domain adaptation
and domain generalization.

• We assess the robustness and generalization behavior of
several image classification CNN architectures, including
their corresponding Bayesian versions, under the distribu-
tion shift artificially created by our resampling method.
Comparisons with random Cross Validation show that
our method can efficiently create distribution shift. The
proposed resampling approach can be used to aid in model
selection, where it targets robustness and generalizability.

II. PREREQUISITE

Auto-encoding Variational Bayes, and Variational Au-
toencoder (VAE) [12]: To model the likelihood of data
p(x), a latent variable model, characterized by the posterior
p(z|x), is approximated by a variational posterior distribution
qφ(z|x), where the latent variable in the variational posterior
is reparameterized as z = g(ε, x) with an auxiliary random
variable ε ∼ p(ε) following an appropriate distribution. The
conditional distribution pθ(x|z) can be modeled as a Gaussian
distribution with mean and variance parameters computed
from z by a decoder neural network. Evidence lower bound
(ELBO) of the likelihood is optimized with respect to θ and φ
using stochastic gradient descent (SGD) over the Monte Carlo
estimation. As in an Auto Encoder [13] the auxiliary variable
z also serves as a latent representation of an instance.

Bayesian Neural Network [14]: Different from generative
representation learning methods such as VAE, which model a
variational approximator to the model posterior on the hidden
units, a Bayesian Neural Network builds variational models
on the weights of the network, which can also be used for
exploration in Reinforcement Learning [14], [15]. The negative
of ELBO, which is the variational free energy F (D,φ), is
optimized. In particular, F (D,φ) = KL(q(w|φ)||p(w)) −
Eq [log p(D | w)], where D is the data, w is the vector
of weights, φ represents the variational mean and variance
parameters for the weight distribution, KL(q(w|φ)||p(w))
is the KL-divergence between the prior distribution p(w)
and the variational posterior qφ(w|D), and Eq [log p(D | w)]
is the expectation of log-likelihood under the distributional
distribution. With the variational free energy F (D,φ) as loss

function, where weights w are implicitly represented by φ,
backpropagation with respect to the weights could be translated
to variational parameter. Like Auto-encoding Variational Bayes,
Bayes by Backprop [14] also starts from an independent noise
distribution, but instead of transforming the noise together with
observation data to latent units, Bayes By Backprop associates
each weight with a variational mean and scale parameter to mix
with the noise. Bayesian Convolutional Neural Network with
Variational Inference (Bayesian CNN) [16] extends the Bayes
By Backprop approach [14] to CNNs and utilize the local
reparameterization trick [17]–[19] which we will elaborate in
the method section.

Variational Gaussian Mixture Model: Variational Learn-
ing of Gaussian Mixture Models (VGMM) [20] uses joint
Normal-Wishart distributions for the means and inverse co-
variance matrices in a mixture of Gaussians, and a Dirichlet
distribution for the mixing parameters. Instead of a point
estimate of the mean vector, VGMM uses a Normal distribution
characterized by the hypermean. VGMM result in a superior
data estimation compared to simple Gaussian Mixtures.

Distribution Shift: Let the random vector x represent the
features and let the random variable y be the class label. In
this work, we investigate the conditional distribution shift over
p(x|y) between datasets (e.g., between the training and the test
data), while the marginal distribution p(y) is shared across all
datasets (cf. [21]).

Wasserstein Distance: Wasserstein distance between two
distributions px and py can be defined as φW (px, py) =

inf
γ∈∏(px,py)

E
(x,y)∼γ(x,y)

[c(x, y)] [22]–[24], where γ ∈∏(px, py)

is the transportation plan or joint distribution of (x, y), with
marginal distributions px and py respectively, and c(x, y) is the
cost of moving x to y. The Wasserstein distance is calculated
by taking the infimum with respect to the transportation plan
γ ∈∏(px, py). Wasserstein distance can be approximated to
optimize Generative Adversarial Networks [25]. Compared to
KL divergence, Wasserstein distance experiences no numerical
problems even when the two distributions have no overlap.
Hence, we use the Wasserstein distance to measure the
distribution shift between two subsets of data on the latent
space.

t-SNE: Stochastic Neighborhood Embedding [26] uses a
Gaussian density to model the conditional similarity between
two points in a high dimensional space and a corresponding
low dimensional embedding. The KL-divergence between the
conditional similarity distributions is used as objective and
is optimized with stochastic gradient descent. The t-SNE
algorithm [27] extends the conditional similarity to a symmetric
version by adding the conditional similarity of both directions.
Furthermore, it uses a Student-t distribution instead of a
Gaussian distribution in the embedding.

III. METHODS

A. Motivation

Image data from different sources can come from different
distributions, even when the same data collection process is
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Fig. 1. Data generation process from domains

meticulously followed [28]. This phenomenon can be modeled
by a directed probabilistic graphical model [29] shown in Figure
1, where the source or domain label d generates the latent
representation z, which further generates the observed image
x. Given an observation x, we infer the latent representation
z and the domain label d as described below and given in
Algorithms 1 and 2. The proposed resampling method can be
regarded as a worst case analysis aiming to identify the largest
possible distribution shifts that can occur when a single dataset
is split into multiple folds.

B. VGMM-VAE-CV resampling scheme

In the deep learning field a given dataset D is typically split
into disjoint subsets as D = Dtrain

⋃
Dval

⋃
Dtest, where

the training dataset Dtrain is used for model training, the
validation dataset Dval aids with model selection (e.g., along
the epochs), and the test dataset Dtest is used to evaluate the
performance of the final model. Many deep learning papers
benchmark the performance of different models relying on the
train-test split provided along with the dataset.

Another popular approach is k-fold cross validation, which
splits the data randomly into k disjoint subsets (folds or splits)
of equal size, and which therefore should result in subsets with
the same distribution. Similarly to k-fold cross validation in
this work we split the data into k subsets. However, we aim
to split the dataset such that each subset follows a different
conditional distribution p(x|y) of the features x given a label
y, as discussed in the following.

Since high dimensional clustering is challenging, we first
train a representation of the dataset using a VAE (see Section
II). Instead of the observed distribution of x, for clustering
we use the distribution of the latent space representation z of
x, denoted by qφ(z|x). We apply a VGMM (see Section II)
on the latent representation space to assign each instance to a
cluster. When we cluster within subsets defined by each class
label y separately, our procedure corresponds to the conditional
distribution shift, which refers to a change in p(x|y), while
p(y) remains shared among the clusters.

Among the resulting clusters, one is used for testing and
the remaining clusters are used for training and validation. We
use random splitting to form the training and validation sets,
which therefore share the same distribution. Analogously to
conventional cross validation, the train-test process is repeated
with each cluster playing the role of the test dataset once. The
combination of assignments to (Dtrain

⋃
Dval)

⋃
Dtest yields

a variation estimate on how good a model could generalize
to Dtest, similar to cross validation. However, compared to
conventional cross validation, our method provides a way to
characterize the deep learning model’s ability to generalize
under distribution shift.

Algorithm 1 VGMM-VAE-CV
Input: dataset D, number of classes C, number of folds K
for c = 1 to C do
zc = vae(Dc) # train VAE on data belonging to class c
dc1, ..., d

c
K = vgmm(zc)

end for
D1, ..., DK = merge({dck}, repeat = 1)
for k = 1 to K do
Dtest = Dk

TrainV alSet = D \Dk

Dtrain, Dval = randomSplit(TrainV alSet)
mk = model init()
for epoch = 1, 2, . . . do
PerfTraink,mk = train(Dtrain,mk)
PerfV alk = test(Dval,mk)

end for
PerfTestk = test(Dtest,mk)

end for

Algorithm 2 merge
Input: repeat ∈ {1, 2, . . .}, dck for c = 1 to C and k = 1
to K
for i = 1 to repeat do

if repeat > 1 then
for c = 1 to C do
dc1, ..., d

c
K = Shuffle(dc1, ..., d

c
K)

end for
end if
for k = 1 to K do
Dk =

⋃C
c=1 d

c
k

end for
yield D1, D2, ..., DK

end for

The whole process is summarized in Algorithm 1, along
with Algorithm 2. Algorithm 2 has an input argument repeat,
which we set to 1 in Algorithm 1 for simplicity. We also only
use repeat = 1 in the experiments in this work due to the
limited computational resources available to us. In larger scale
benchmarks the modification repeat = m > 1 in our method
would be analogous to how simple k-fold cross validation
compares to m-times repeated k-fold cross validation.

C. Architecture of the VAE

Following [30], given a single-channel input image of size
28 × 28 (see Sec. V), as the first layer the encoder uses
convolution filters of size 4 × 4 with stride 2 and 64 output
channels followed by a leaky ReLU activation function. The
resulting activation maps go into another convolutional layer
with a 128 channel output using the same filter and stride as
well as batch normalization and leaky ReLU. Subsequently the
results are fed into a fully connected 1024-dimensional layer
followed by batch normalization and leaky ReLU. The latent
variational parameter vector is chosen to be 62-dimensional
and connects linearly with the layer before. After z is sampled,
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the decoder maps it to a fully connected layer with output
dimension 1024 followed by a batch normalization layer and
a ReLU activation function. It is followed by another fully
connected layer with output dimensions 7 × 7 × 128, also
using batch normalization and ReLU. Then a deconvolution
(or transpose convolution) operation is applied resulting in
a 14 × 14 × 64 dimensional output, again followed by
batch normalization and ReLU. Finally, another deconvolution
produces a 28 × 28 × 1 output that is followed by sigmoid
activation function.

D. Bayesian Neural Network

Suppose that the predictive function of a classification neural
network is solely determined by its weight vector w. If based
on training data X and Y we got a posterior distribution over
the weights p(w | X,Y ) = p(Y |X,w)p(w)∫

w
′ p(Y |X,w′ )p(w′ )dw′ , then for a

new input x∗ we have that

p(y∗ | x∗;X,Y ) =

∫

w

p(y | x∗, w)p(w | X,Y )dw. (1)

To deal with the intractable posterior distribution p(w | X,Y ),
a variational posterior qφ(w), characterized by a parameter
vector φ, is used to approximate it. We have that

log p(y|x) = Eq(w) log p(y | w, x)−DKL(qφ(w)||p(w))
+DKL(qφ(w)||p(w | x, y))

= ELBO(φ) +DKL(qφ(w)||p(w | x, y)), (2)

where we define

ELBO(φ) = Eq(w) log p(y | w, x)−DKL(qφ(w)||p(w)).
(3)

Optimization of ELBO(φ) with respect to φ is equivalent to
optimizing the KL divergence between the variational posterior
qφ(w) and the posterior p(w | x, y).

The variational parameter φ characterizes a Gaussian distri-
bution on the weights by qφ(wij) = N (µij , σ

2
ij), where i is the

input index and j is the output index. With more complicated
index conventions the following analysis can be generalized to
convolution operations as well.

1) Local reparameterization: Suppose that the weights W
connecting two layers follow an isotropic Gaussian distribution,
i.e., q(wij) = N (µij , σ

2
ij) as mentioned above. Given an

input A the pre-activations B = AW have elements bmj =∑
i amiwij , where bmj is the jth output for the mth instance

in the minibatch. Each bmj follows a Gaussian distribution
with mean and variance given by

E(bmj) =
∑

i

amiµij , (4)

var(bmj) =
∑

i

a2miσ
2
ij , (5)

So instead of sampling noise variables to reparameterize
the weights, a computational graph could directly connect
variational parameter of the weight to pre-activations, and
sample pre-activations by bmj =

∑
i amiµij+ζm

√∑
i a

2
miσ

2
ij ,

where ζm ∼ N (0, 1). As pointed out in [17] the minibatch
variance of the ELBO estimator depends on the covariance
of the ELBO estimator across instances in a minibatch. Local
reparameterization on the pre-activations, separately for each
instance, makes the covariance zero, which could reduce
the variance of the ELBO estimator, compared to global
reparamerization on the weights. Further arguments on how
local reparameterization reduces the variance on the gradients
of ELBO with respect to σij are presented in [17].

2) Connection with dropout and variational dropout: With
dropout the pre-activations are given by B = (A � Dp

1−p )W ,
where � represent element wise product, Dp is the corre-
sponding dropout variable, and p is the dropout rate of input.
Suppose that dpmi is the dropout variable for the mth instance,
corresponding to input position i, then bmj =

∑
i ami

dpmi

1−pwij .
If dpmi ∼ Bernoulli(1 − p), then E(bmj | W ) =

∑
i amiwij

and var(bmj | W ) =
∑
i a

2
miw

2
ij

p
1−p Thus, approximately

bmj | W ∼ N (
∑
i amiwij ,

∑
i a

2
miw

2
ij

p
1−p ), which is equiva-

lent to a Gaussian dropout with dropout noise N (1, α) and
α = p

1−p . Comparing with Equation (4) and (5), this is
equivalent to parametrizing the variational distribution of the
weights as q(wij) = N (µij , αµ

2
ij), where σij is replaced with

αµ2
ij . To make it fully consistent with Gaussian Dropout, the

prior p(w) in Equation (3) has to be an improper log-uniform
prior so that the second term in Equation(3) does not depend
on µij . However, in this paper, we use a Gaussian proper prior
to make it a more general Bayesian neural network. For the
calculation of KL divergence instead of using an approximation
formula for the improper prior, we simply use the variational
Monte Carlo samples as in [14] to calculate the KL divergence
as an expectation problem of the log of the likelihood ratio. In
terms of architecture, we replace the ReLU to be the softplus
activation function in the original CNN architecture.

IV. RELATED WORK

Transfer Learning, Domain Adaptation, Domain Gener-
alization. As mentioned in Section I, many domain adaptation
and domain generalization benchmark datasets are curated by
human experts or are combinations of multiple datasets. Our
proposed technique, however, offers the possibility to create
alternative benchmark datasets based on only one dataset.

Robustness and Generalization of Neural Networks.
Much attention has recently been paid to the robustness of
neural networks. For example, Adversarial examples, which
are created by distorting clean images only slightly, have been
shown to confuse classifiers. Adversarial robustness measures
the worst case performance, while corruption robustness mea-
sures the classifier’s average performance on image corruptions,
and perturbation robustness measures the prediction stability
and consistency under perturbations [31]. Benchmark datasets
have been created [31] for robustness of neural networks under
corruptions and perturbations. One way to address robustness
to distribution shift, where models may silently fail on out-
of-distribution samples, is to predict whether samples are out-
of-distribution at test time [32]. In [33], it is reported that
an out-of-distribution dataset was assigned higher confidence,
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when training flow based generative models. In the above
works, however, distribution shift arises from either changing
data or the use of multiple datasets, while the proposed
resampling technique uses only one dataset to deliberately
generate distribution shifted splits, and the data itself are left
intact.

To quantify generalization, measures such as the margin
distribution as a predictor for the generalization gap is studied
[34]. It would be interesting to evaluate similar measures on
data splits created by our resampling technique.

Disentanglement. Disentanglement tries to find a latent
representation of data that aligns with independent data
generalization factors for interpretation and robust classification
[35]. Our method does not aim at achieving disentanglement,
i.e., the inferred subdomain labels do not necessarily correspond
to any independent data generalization factors. However, our
method could potentially testify if disentangled representations
can help to overcome model performance deterioration caused
by distribution shift.

V. EXPERIMENTS

We use the Fashion-MNIST [36] data for the initial
examples. Fashion-MNIST consists of 70, 000 grayscale
fashion product images of size 28 × 28 pixels, which
fall into 10 classes (7000 images per class). The original
60, 000 training and 10, 000 test images are combined be-
fore the application of cross validation and our resampling
method discussed below. Source code and further datasets
can be found at https://github.com/compstat-lmu/paper 2019
variationalResampleDistributionShift.

We compare our resampling method with 5-fold cross
validation to demonstrate empirically that distribution shift
is indeed a problem, and we investigate how different CNN
models are affected by distribution shift.

A. Data Splitting with Distribution Shift

We purposefully obtain data splits with distribution shift
using the transformed latent representation from the trained
VAE model by methods described in Section III (see Algorithm
1). In order to visualize the distribution shift we apply the t-SNE
algorithm to the total data from all classes latent representation
by training a separate VAE, then color data from each cluster
from our method to represent the split, as shown in Figure
2. As a quantitative assessment we calculate the Wasserstein
distances shown in Section V-E, from which it is apparent
that distances between the splits resulting from our resampling
technique are much larger compared to random splitting.

B. Assessment of Performance Deterioration of CNN Models
due to Distribution Shift

For the first experiment we use the well known AlexNet
[37] and LeNet [38] CNN architectures to perform an image
classification task on the Fashion-MNIST data as described in
Section III. We also use a simple neural network with three
convolutional and three fully connected layers, denoted by
3conv3fc.

The goal of this experiment is two-fold. (1) We show that
we can indeed deliberately subsample a given dataset to create
several subsets, which are affected by distribution shift with
respect to p(x|y) but roughly share a common distribution p(y)
among the clusters (we confirmed this post-hoc empirically). (2)
We demonstrate that distribution shift between the training and
the test data substantially reduces the classification accuracy
of CNN models on the test data, and it furthermore largely
increases the variability in the reported accuracy values.

Both the conventional 5-fold cross validation and the
approach of Algorithm 1 yield five (train-validation)-test
configurations each, where validation takes 20 percent of the
train-validation splits randomly. Thus, each considered CNN is
trained and tested five times using conventional cross-validation
for data splitting, and five times using our proposed approach.
All models are trained for 100 epochs, and we record the
training, validation, and test accuracies. Figures 3a, 4a, and
5a show line plots of accuracy by epoch for AlexNet, LeNet,
and 3conv3fc respectively, which are separated into individual
panels according to the data split (training, validation, test)
and data splitting procedure (conventional cross-validation
and Algorithm 1). In particular, the first row of the panels
in each figure shows the results from using conventional cross
validation for data splitting (i.e., no distribution shift), where
we see that the test accuracy is almost identical to the validation
accuracy (as one would expect). The second row of the panels in
each figure, however, shows that the test accuracy curves behave
wildly different than the validation accuracy curves. Specifically,
the test accuracy is on average substantially reduced when the
data are split according to Algorithm 1, i.e., when there is a
shift in the conditional feature distribution p(x|y) between the
training and the test splits. Furthermore, we see that distribution
shift in p(x|y) also leads to a large increase in the variance
of the obtained test accuracy values. These results are also
summarized in Table I.

Thus, the comparison between conventional cross validation
results (where all training and test distributions are equal) and
our resampling approach for data splitting clearly shows that
a shift in the conditional feature distributions p(x|y) can lead
to a massive deterioration in test data performance, even when
the label distributions p(y) are equal.

C. Bayesian CNNs under Distribution Shift

The Bayesian approach to deep learning uses distributions
over parameters instead of point estimates to represent the
model. This makes Bayesian deep neural networks more robust
to overfitting [16], and suggests that they may be less affected
by distribution shift. In our second experiment we investigate
whether Bayesian CNNs are more robust to distribution shift
introduced by our proposed resampling strategy, compared to
the conventional CNNs considered in Section V-B.

We use the Bayesian counterparts of the same CNN archi-
tectures as considered in Section V-B, such as the Bayesian
versions of AlexNet [37] and LeNet [38] introduced by [16].
Apart from the substitution of the Bayesian CNN models in
place of the frequentist CNN architectures, the experiments
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are identical to those described in Section V-B. Figures 3b, 4b,
and 5b as well as Table I show the results in the same format
as described in Section V-B. While it is apparent from Figures
3b and 4b that Bayesian CNNs are less prone to overfitting
to the training data than their conventional CNN counterparts,
their vulnerability with respect to distribution shift seems to
be about the same.

Although the Bayesian Neural Network is trained with
respect to the variational free energy objective, which shows bet-
ter generalization to data from the same distribution compared
to the frequentist approach [14], the gradients with respect to
the variational parameters are still only based on the training
data distribution. In future work, it would also be interesting to
investigate if the expressive power of the variational distribution
on the weights would be a potential factor to improve.

D. Comparison of CNN models with respect to their robustness
to distribution shift

Because under our proposed resampling approach the vali-
dation and the training data share the same distribution but the
conditional feature distribution p(x|y) of the test data is shifted,
the robustness of a CNN to distribution shift can be quantified
by comparing the test accuracy curves to the validation accuracy
curves in our experiments (see Figures 3, 4, and 5). There are
different approaches to carry out such a comparison. However,
for simplicity in this work we compare only the empirical
mean and standard deviation values at the last epoch. Table I
summarizes these values. We see that the classification accuracy
on the test data reduces by about 26.0 points on average due
to distribution shift. In addition, in the presence of distribution
shift the standard deviation of the reported test accuracy values
is about 14 times larger than the standard deviation of the
accuracy values on the validation data.

While the degree of performance deterioration as measured
by these analyses seems to be about the same between all
considered CNN models, it is conceivable that some models
will be more or less affected by distribution shift, which will
be reflected in the values and accuracy curves as analyzed
above. Hence, our framework provides a way to quantitatively
compare the robustness to distribution shift between different
models.

As an additional point of reference, Table II contains the
classification accuracies after 100 training epochs for the same
CNN architectures on the original train-test split provided in
the Fashion-MNIST [36] data. Note that there is no distribution
shift between the training and the testing data in this case, and
the training dataset is larger than in the experiments of Sections
V-B and V-C.

E. Computed pairwise Wasserstein distances

With the python package POT [24] one can compute the
pairwise Wasserstein distance between two clusters of data.
In Table III we computed the pairwise Wasserstein distances
across the 5 clusters created based on VGMM as described
in Section III, which correspond to a conditional distribution
shift in p(x|y). In Table IV the pairwise Wassserstein distances

MODEL TRAIN. ACC. VAL. ACC. TEST ACC

ALEXNET 98.97 (0.13) 90.93 (0.43) 66.51 (4.88)

BAYESIAN
ALEXNET

96.33 (0.29) 91.58 (0.25) 64.21 (5.67)

LENET 98.03 (0.25) 91.44 (0.29) 65.43 (5.00)

BAYESIAN
LENET

94.04 (0.27) 90.54 (0.82) 63.18 (4.72)

3CONV3FC 97.97 (0.13) 91.91 (0.28) 67.92 (5.18)

BAYESIAN
3CONV3FC

98.69 (0.19) 91.26 (0.43) 64.44 (4.19)

TABLE I
AVERAGE CLASSIFICATION ACCURACIES ON THE TRAINING, VALIDATION,
AND TESTING DATA SPLITS AFTER 100 TRAINING EPOCHS FOR SEVERAL

CNN MODELS. EMPIRICAL MEAN VALUES WITH STANDARD DEVIATION IN
PARENTHESES ARE COMPUTED ACROSS THE FIVE DATA SPLITS WHICH ARE

OBTAINED BY ALGORITHM 1.

Fig. 2. Scatter plot of t-SNE transformed 2-d values from joint data latent
representations. Colors indicate different clusters from VGMM-VAE-CV.

are computed based on random splits as in conventional cross
validation. It can be clearly seen that the VGMM variant creates
larger pairwise Wasserstein distances, which testifies that our
proposed method generates splits of data with significant
distribution shift, as intended.

VI. SUMMARY AND CONCLUSION

We propose a new resampling technique to create pseudo
subdomains over one dataset. Our resampling strategy purpose-
fully identifies data splits with distribution shift with respect
to the conditional distribution p(x|y) of features x given the
label y by utilizing the latent representation of data through
generative models. Variational methods are used to assign
instances to the pseudo subdomains, which are represented as
clusters in the latent space.

We use our new resampling technique to assess the ro-
bustness of deep neural networks in terms of generalization
ability to distribution shift. We show that CNN models display
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(b) Bayesian AlexNet

Fig. 3. (a) AlexNet [37] and (b) Bayesian AlexNet [16] classification accuracies on the Fashion-MNIST data are shown by epoch (1-100), data split (training,
validation, test), and data splitting procedure (“CV” and “VGMM-CV”). In the first row of panels, entitled “CV”, the data are split randomly (conventional
cross validation). In the second row of panels, entitled “VGMM-CV”, the data are split as in Algorithm 1 leading to a conditional shift in p(x|y) between the
training and the test splits. The thicker black line represents the average value across the data splits. We see that a shift in the conditional feature distribution
p(x|y) of the test data leads to a reduced accuracy as well as an increased variance.

substantial reductions in performance and an increase in
variability under the proposed resampling technique compared
to conventional cross validation. This demonstrates the severe
problem that the performance of CNN models is strongly
affected by changes in the conditional distribution p(x|y) even
when the label distribution p(y) remains unchanged and all
data originate from the same domain. In addition, we observe
that this problem persists for Bayesian CNNs considered in
this work, even though Bayesian CNNs otherwise are known
to possess superior generalization properties at least for data
from the same distribution. Possibly since the gradients with
respect to the variational parameters are also based on data

from the training distribution, it makes it difficult to generalize
to another distribution.

Our approach can be used for the evaluation of the generaliza-
tion ability of deep learning models and inform model selection,
alongside conventional performance evaluation approaches such
as cross validation and testing on holdout data. For instance,
Automatic Machine Learning (AutoML) [39] methods should
also take distribution shift into account when searching for a
model, where our method could easily create splits to serve
within an objective function to be optimized during the AutoML
process.

There remain some open questions and potential drawbacks
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(b) Bayesian LeNet

Fig. 4. (a) LeNet [38] and (b) Bayesian LeNet [16] classification accuracies on the Fashion-MNIST data are shown by epoch (1-100), data split (training,
validation, test), and data splitting procedure (“CV” and “VGMM-CV”). In the first row of panels, entitled “CV”, the data are split randomly (conventional
cross validation). In the second row of panels, entitled “VGMM-CV”, the data are split as in Algorithm 1 leading to a conditional shift in p(x|y) between the
training and the test splits. The thicker black line represents the average value across the data splits. We see that a shift in the conditional feature distribution
p(x|y) of the test data leads to a reduced accuracy as well as an increased variance.

of our method. It is yet unknown what model architecture or
choice of hyperparameters will affect the created subdomains.
Additionally, our artificially created pseudo subdomains do
not necessarily correspond to real world (sub)domains, and it
is not clear to what extent the artificially created distribution
shift is comparable to the types of distribution shift observed
between different (sub)domains in the real world.

In future work, methods similar to Restrictive Federated
Model Selection [5] could be used to adapt to the distribution
shift generated by the methods proposed in this work. In
addition, it would be interesting to see new methods that not
only create distribution shift, but also allow to control the extent

of distribution shift by use of appropriate hyperparameters, as
well as methods which could create pseudo subdomains on tasks
other than classification, such as recommendation systems [40].
Furthermore, it would be interesting to see how our approach
would serve as a benchmark method to evaluate different
domain adaptation and domain generalization algorithms.
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1 Introduction

1.1 Background

Federated Learning [20,24] has drawn increasing attention recently due to over-
whelmingly growing data volume and an emerging request for privacy protection
from the perspective of individuals, as well as the perspective of data owners,
e.g. due to GDPR [26]. Usually in federated learning, a server moderates several
data sites to carry out optimization iterations, like gradient descent updates, on
each data site. Each data site then sends an intermediate result to the server.
The server side aggregates the results and distributes it, so that each data site
obtains an updated model. This distributed model training process circumvents
the bottleneck of data transmission and prevents private data from leaving the
data center. To further increase privacy security against attacks [26], differential
private federated learning algorithms have been proposed [19,37].

Current federated learning algorithms rely on an efficient and synchronized
communication protocol [20,25] across the server and different data sites as well
as the availability that data on each data site can be used for training. How-
ever, it might also be expensive to meet the technical requirements to have a
synchronized communication framework needed by federated learning.

From a privacy protection perspective, several attacks and defenses that
undermine privacy in a federated learning context have been proposed [3,27,32].
Differential private federated learning algorithms [12,26,37] are based on stan-
dard Federated Learning algorithms, with some detail being tailored to fit the
need for differential privacy.

However, there might be restrictions that the data from the remote data site
can not be used for training at all. Especially when there is no established trust
between parties, privacy protection and attack becomes an arm race, in which
case, data owners might want to restrict the access of the data to a maximum
extent but still want to participate in the community to build a predictive model
that could benefit all sides. To the best of our knowledge, this is a problem that
current differential private federated learning algorithms do not address yet.

In both restricted cases, sending a model to the remote data sites and asking
for how good the sent model performs on the remote data sites comes at a certain
cost (transmission cost and prediction computation cost for instance). This is
comparably acceptable, as only aggregated statistics (typically a single number)
need to be reported back.

We coin this new learning scenario Restrictive Federated Learning, empha-
sizing the point that only data situated locally could be used for model training,
while data on the other data sites are partially observed in the sense that the
analyst could only observe a scalar performance measure of a sent model on the
remote data site, which is restrictive.

In this restrictive learning scenario, we could only access limited data locally
for training a machine learning model, but still want to have a model that could
generalize well across the data sites. Therefore, how to do model selection in this
special restricted federated learning scenario is of significant interest.
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Bayesian Optimization has proved to be really successful in optimizing
machine learning hyper-parameters [34]. In this work, we want to investigate
how it works under the RFMS scenario.

1.2 Challenges

A critical challenge in federated learning is unevenly distributed data. For exam-
ple, there are situations where most features are not available on all data sites [19]
or the class distribution is extremely unbalanced across different computation
nodes [43].

In RFMS, there is also the challenge that data can be differently distributed
on each data site. Specifically, in this work we consider the challenge that dis-
tribution of features from one data site might be considerably different from
another, due to different sub-populations frequenting a given clinic for example.

Furthermore, the number of observations in clinical research is usually rel-
atively small, while with the inclusion of genetic data, the number of features
can be rather large. This makes model selection [6,14] quite challenging. Find-
ing stable predictive models that could generalize well to data collected from
different clinical studies or cohorts is difficult.

2 Problem Statement

2.1 Terminology and Notation

To clearly address the problem, at the first step, terminologies and notations
used throughout the remainder of this paper are explained.

Data Site: Data of a specific domain, clinical research for example, could
be located in different places and it is expensive to carry data from one site to
another due to technical or privacy concerns. We denote one of such a integrated
data unity as a data site. There is a need to train a specific machine learning
model for the domain, which requires collaboration across data sites. We consider
data sites of following types.

Openbox Data Site Dob: On the openbox data site, the analyst has full
access to the data. A machine learning model can be trained locally using the
data situated on openbox data site.

Curator Data Site Dcu: From the openbox side, curator data site can be
queried for model performance, which can assist the analyst on the openbox
data site to get a better model that might generalize across data sites. The
curator data site Dcu can only be queried with respect to predictive performance,
i.e. a single aggregate statistic, but the analyst from the openbox side can not
access the data in any other way. This name stems from the field of differential
privacy [9] where there is a curator that controls the data flow which acts like
a firewall to Dcu. The curator has full access to Dcu but decides on its strategy
w.r.t. which feedback value to give to the statistical query by actively perturbing
and coordinating the answers given to the queries. In this work, we assume a
honest answer to the query except otherwise specified.
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Lockbox Data Site Dlb: Lockbox [13] data site refers to data sites which the
analyst from the openbox side can not access by any means. In practice, lockbox
correspond to data sites that could not contribute in the process of building
a machine learning model due to various reasons, but are likely to participate
in the future or simply benefit from the model built. From a model evaluation
perspective, Dlb on the other hand could measure how good a machine learning
model generalizes to completely unseen data.

Inbag and Outbag: For evaluation purposes, we hold out a fraction (say
20%) of the curator and openbox data which we call outbag, denoted by Dog

cu

and Dog
ob , the leftover is called inbag, which is Dig

cu and Dig
ob. For simplicity, we

use Dob to represent Dig
ob when the context is about learning and use Dob to

represent Dog
ob when the context is about evaluating how good a method is. Also,

we define the inbag and outbag of lockbox to be identical to lockbox itself, i.e.
Dlb = Dig

lb = Dog
lb .

Model Parameter θ and Hyper-parameter φ: A machine learning algo-
rithm, given a dataset Dl, where l means “learn” or “local”, Dl = Dig

ob, for
example, and a set of hyperparameters φ, learns a model specified by a set of
model parameters θ = L(Dl | φ) where L represent the learning process to map
a dataset Dl associated with a set of hyper-parameter φ to a machine learning
model parameter θ.

Model Performance and Loss: The performance of a model characterized
by θ to a data site D is given by

F (D | θ = L(Dl | φ))

where F computes an estimate of predictive performance on D, under model
parameter θ trained from dataset Dl, based on hyper-parameter φ. By conven-
tion, we use J to represent a regret that need to be minimized, which could be
1 − accuracy for example.

Restricted Federated Model Selection (RFMS) Scenario: The ana-
lyst from the openbox side want to initiate a study to a specific domain (clinical
studies like cancer research for example). A machine learning model that fits
the data well on the openbox side, as well as one that could generalize to a cer-
tain extent across the other data sites is required. Due to privacy sensitivity or
technical difficulty, some data sites could only collaborate in a model selection
process in the form of curators. Each query to the curator from the openbox side
is at a certain cost. Note that all forms of data sites including openbox, curator
and lockbox should be used to evaluate the selected model whenever possible.

2.2 An Example of RFMS on High Dimensional Unevenly
Distributed Data

Gene Expression Omnibous (GEO) is a public available functional genomics data
repository with array and sequence based data that researchers from around
the world could contribute to. Although the data in GEO is publicly available
instead of privacy sensitive, the origin that the datasets in GEO comes from
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different sources makes it a perfect example of RFMS. We use the breast cancer
datasets GSE16446, GSE20194, GSE20271, GSE32646, and GSE6861 from the
GEO database [8,23]. Each dataset we consider here could be regarded as a
data site due to the fact that they come from different sources, by different
contributors.

The publicly available microarray gene expression datasets were accessed via
tools provided by the Gene Expression Omnibus (GEO) data repository. Frozen
robust multiarray analysis (fRMA) [23] was used for normalization. All breast
cancer datasets were checked for duplicates and a pair of patients was consid-
ered duplicate when the correlation of their expression values was at least 0.999.
Duplicates were removed. The response variable is binary (classes “pathological
complete response” and “residual disease”) for all datasets. The six observa-
tions with a missing value for the response variable are omitted. The resulting
numbers of observations per dataset are displayed in Table 1. The datasets con-
tain clinical and gene expression data. We do not consider the clinical variables
because many values are missing. The gene expression data has been measured
on three different types of microarray chips (HG-U133-Plus2 for GSE16446 and
GSE32646, HG-U133-A for GSE20194 and GSE20271, and HG-U133-X3P for
GSE6861). As the measured genes differ between the three chips, we only con-
sider the genes that are measured on all of the chips. Out of these 1965 genes,
we only use the 1000 genes with the highest variances across all patients and
datasets.

Table 1. Number of observations per GEO dataset

GEO-ID 16446 20194 20271 32646 6861

Observations 114 211 178 115 161

It can be assumed that the relation between the response variable and the
covariates is not identical across the datasets and the features distribution also
varies from data site to data site. This is typical for gene expression data, espe-
cially if it has been measured on different chips, at different times, at different
places and after different times until the tissue was frozen. A T-SNE [22] plot by
pooling the feature part of the data together from these data sites can be found
in Fig. 1 where the colors indicate different data sites. From Fig. 1, it is obvious
that the data sites lie on different locations in the low dimension embedding,
which is a clear indicator of distribution shift across data sites. We will use this
example as a major case in this paper.

2.3 Evaluation Criteria

To further explain the problem, before discussing any potential solution, we first
address the question of how to evaluate model performance, which will help
deeper understanding of the problem.
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Fig. 1. T-SNE plot for the GEO datasets over data sites.

In RFMS, we want to obtain a model that generalize well for the openbox,
curator and hopefully for the lockbox as well, which is a multi-objective problem.
Accordingly, the selected model should also be evaluated with method that could
take different objectives into consideration.

Dominated Hypervolume: A natural criterion is to measure the Domi-
nated Hypervolume [2] of the model performance on the outbag part of openbox
and curator site, as well as the lockbox, as in Eq. (1)

Jhv(φ | Dog
ob , Dog

cu, Dlb) = H [fog
ob , fog

cu , flb] ,

fog
ob = F

(
Dog

ob | θ = L(Dig
ob | φ)

)
,

fog
cu = F

(
Dog

cu | θ = L(Dig
ob | φ)

)
,

flb = F
(
Dlb | θ = L(Dig

ob | φ)
)

. (1)

where, H represent the calculation of the Dominated Hypervolume, and the per-
formance on each data site outbag part is represented as fog

ob , fog
cu , flb respec-

tively. Dominated Hypervolume Indicator is also known as Lebesgue Measure or
S-Metric which is the hypervolume between a non-dominated front and a refer-
ence point. Due to space limit, we invite readers who are not familiar with these
multi-objective concepts to refer to the references.

3 Related Work

In this section, we review recent works that has connections with RFMS.
Nested Cross Validation (NCV): NCV [14] uses an outer loop cross

validation to safe guard the risk of overfitting during the hyper-parameter tuning
process. However, RFMS does not allow cross validation due to the constraint
that remote data site can not be used for training.
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Federated Learning: Federated learning [24] also consider situations where
data is distributed non-i.i.d. across several data sites and possibly unbalanced,
but they assume scenarios where data is fully accessible over a huge amounts
of data sites compared to a smaller number of data points available at each
site. This is different from RFMS, where we consider data can only be accessed
through prediction. Moreover, in RFMS, we consider a relatively small amount
of data sites with less instances but high dimensional data.

Distribution Shift: Distribution Shift refers to a mismatch in distribution
between the data an algorithm was trained on, and data used for model vali-
dation or prediction. Detecting and characterizing such shift remains an open
problem [29,42]. In this work, we do not drive deeper in theory of the data shift
problem, but provides an empirical study which partially addresses the data shift
problem, especially when feature distribution varies across data sites.

Train On Validation: In [36] the authors use parts of the validation dataset
for training to generate a stable algorithm. In [41], a progressive resampling
process is used. However, both works assume that all the data in question is
available for training, which is not possible in RFMS.

Thresholdout Family: The author in [7] shows that differential privacy
is deeply associated with model generalization and propose the Thresholdout
algorithm to avoid overfitting on the validation set due to repetitive usage. [13]
extends the instance wise Thresholdout to AUC measures. However, these meth-
ods rely on the i.i.d assumption of data which does not fit our scenario here.

Adaptive Regularization: In [30], the author proposed an alternative
update method for model parameter θ and hyper-parameter φ = λ of a recom-
mendation system [21], where the λ is the regularization parameter. In adaptive
regularization, the update for the λ is based on the “future” value of performance
which is also similar to the EM algorithm update process. However, adaptive
regularization only works with gradient based algorithms. Especially, it is only
implemented for Factorization Machine in libFM. So in general it does not work
for non-gradient based optimization typed machine learning models.

Model Agnostic Meta Learning (MAML): Model Agnostic Meta Learn-
ing [10] originates from few shot learning. It aims at adapting to new instances,
in which sense is similar to RFMS. However, MAML works only with gradient
based method and pre-assumes that the algorithm could see the full subsequent
dataset which is not possible in RFMS problem setting.

4 Methods

In this section, we first describe the general RFMS process in Sect. 4.1, then
in Sect. 4.2, we propose how to handle the RFMS process with Bayesian
Optimization.

4.1 Restrictive Federated Model Selection

The general process of RFMS is illustrated in Fig. 2, which depicts an asyn-
chronous communication process during optimization. At step i, based on hyper-
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parameter φi, the machine learning model is trained on Dob to get the model
parameter θi = L(Dob | φi).

Fig. 2. Restrictive Federated Model Selection starting from step i

With the same hyper-parameter φi, a 10-fold cross validation is carried out
on the openbox inbag part Dob, which gives us one loss function in Eq. (2).

J l
i (φi | Dig

ob) = cv(Dig
ob | φi) (2)

where cv(Dig
ob | φi) represent the average loss of the cross validation and J l

i means
local loss at the ith step.

Another loss function is obtained by sending the model parameters θi to the
remote side as shown in Eq. (3)

Jr
i (φi | Dig

cu) = F(Dig
cu | θi = L(Dig

ob | φi)) (3)

Here Jr
i means loss on the remote curator at the ith step.

At the next step, a decision process β (see Algorithm 1) based on all historical
observations will propose a new hyper-parameter to be tried out for a potential
better performance. This process is repeated until budget reached. The process
should return the optimal hyper-parameters. The complete procedure is listed
in Algorithm 1, where the decision process β to generate the proposal is approx-
imately greedily taking the optimal of a Gaussian Process originated surrogate
μ(φ | R, Φ), Expected Improvement [33], for instance. We use Φ (with an initial
design sized nini) to represent the hyper-parameter buffer and R to represent
the corresponding objective(s) buffer.
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4.2 Bayesian Optimization and Baselines

Bayesian optimization tries to solve the problem of optimizing (often expensive-
to-evaluate) black-box functions by using an internal empirical performance
model which learns a surrogate model of the objective function while optimizing
it. A widely used application for Bayesian Optimization [16] is the optimization
of hyperparameters [1,33] of machine learning algorithms. Its aim is to find an
optimal configuration φ� from the feasible region. The choice of hyperparameters
for a machine learning model influences the learned model and can thus result
in different performances (cf. [28,31]).

Since the distribution of the data across different data sites is unknown,
we propose to treat the model selection approach as a black box optimization
problem. Specifically, we use Bayesian Optimization in Algorithm 1 to solve the
Restrictive Federated Model Selection problem with the following variants.

Local Single Objective (lso) Bayesian Optimization: In local single
objective (lso) Bayesian Optimization, we set objective function as cross vali-
dation performance on the local openbox data site, hyper-parameters are tuned
based on J lso(φ) = J l = cv

(
Dig

ob | φ
)

where J l is defined in Eq. (2).
Federated Single Objective (fso) Bayesian Optimization: In Feder-

ated Single Objective Bayesian Optimization, we combine the openbox cross
validation aggregated results in Eq. (2) and curator performance in Eq. (3) lin-
early as objective function, hyper-parameters are tuned based on

Jfso(φ) = α J l(φ | Dig
ob) + (1 − α) Jr(φ | Dig

cu)
α ∈ [0, 1] . (4)

Specifically, we use fso2 to represent α = 0.2 and fso8 to represent α = 0.8 and
so on. Note that α = 1 corresponds to lso. We use different α to check if there
is an obvious effects by changing α.

Federated Multiobjective Objective (fmo) Bayesian Optimization:
Multiobjective Bayesian Optimization [15] optimizes multiple objectives simul-
taneously, by random linear combination or optimization a S-metric based objec-
tive, which avoid deciding which linear combination parameter α to choose. In
this work, we use the Parego algorithm [18] to optimize the local objective in
Eq. (2) and remote objective in Eq. (3) jointly.

Random Search Multiobjective (rand mo): To evaluate whether
Bayesian optimization makes sense, we randomly search the hyper-parameter
space and select the pareto front [38] as final output, which we call random
search multi-objective.

4.3 Semi-simulation of Data Sites

Publicly available datasets which could fit into the RFMS scenario intrinsically
are rare. To get data from a diversified source aside from the Gene Expression
Ominbus, we turn to approximate the RFMS scenario by splitting an existing
dataset into different parts as if each part sits on a different data site. In practice,
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Algorithm 1. RFMS with Bayesian Optimization (RFMS-BO)
1: procedure RFMS-BO � data site notation here refer to the inbag part
2: Φ1:nini = {φ1, . . . , φnini} � initial design as hyper-parameter buffer
3: R0 = ∅ � objective buffer
4: for i in 1 : nini, φi in Φ1:nini do
5: J l

i (φi | Dob) = cv(Dob | φi) � Cross validation performance aggregation as
loss

6: θi = L(Dob | φi) � training on Dob with φi

7: Jr
i (φi | Dcu, Dob) = F(Dcu | θi) � test on curator

8: Ri = Ri−1‖
[
J l
i , J

r
i

]
� populate objective buffer

9: end for
10: fit μ(φ | Ri, Φ1:nini) � train Surrogate Function
11: j = i + 1
12: while budget not reached do
13: φj = β(μ(φ | Rj−1, Φ1:j−1)) � propose new hyper-parameter
14: Φ1:j = Φ1:j−1‖ [φj ] � populate hyper-parameter buffer
15: J l

j(φj | Dob) = cv(Dob | φj)
16: θj = L(Dob | φj)
17: Jr

j (φj | Dcu) = F(Dcu | θj)
18: Rj = Rj−1‖

[
J l
j , Jr

j

]
� populate objective buffer

19: j ← j + 1
20: update μ(φ | Rj , Φ1:j) � update surrogate
21: end while
22: i∗ = arg maxi(R)
23: {φ∗} = Φi∗
24: {θ∗} = L(Dob; φ

∗)
25: return φ∗, θ∗

26: end procedure

we always split an existing dataset into 5 parts to keep consistence with our GEO
datasets.

Since we use real data, but kind of simulate to split the dataset into different
data sites to fit into the RFMS scenario, we call this semi-simulation of data
sites. We propose the following strategy to semi-simulate the data sites.

Stratified Random Split (SRS): First, split the dataset into two parts
according to a factor column. Specifically, we use the target column in a clas-
sification dataset. Then, each factor part is randomly split into 5 buckets. The
positive class part got bp

1, . . . , b
p
5 and the negative class part got bn

1 , . . . , bn
5 , where

bn
i and bp

i represent the ith bucket in the negative part and positive part respec-
tively. Lastly, sort the buckets in each factor part according to the number of
instances and combine the buckets in reversing order to form each data site, i.e.,
di = bn

sn(i)‖bp
sp(6−i), where di represents the ith combined data site, sn and sp

are the sorted index vector of each part. We use ‖ to denote pooling two data
buckets.

Dimension Reduction and Clustering (DRC): First, carry out a dimen-
sion reduction technique on the dataset like Principal Component Analysis. Then
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split the dataset into positive class part and negative class part. Cluster each
part into 5 clusters, i.e. cn

1 , . . . , cn
5 for the negative class part and cp

1, . . . , cp
5

for the positive class part. Sort the clusters with respect to the cluster size
in each part and combine them in reversed order to form each data site, i.e.,
di = cn

sn(i)‖cp
sp(6−i), where di represent the ith combined data site, sn and sp

are the sorted index vector of each part. We use ‖ to denote pooling two data
together.

We choose Mixture of Gaussian Model (MOG) for the clustering, due to
consideration that MOG could also serve as a density estimator.

p(X) = Σ5
k=1ckN (X|µk,Σk) (5)

In MOG, each cluster is represented by a Gaussian distribution N (X|µk,Σk)
with its own parameters µk(mean) and Σk(covariance), as shown in Eq. (5), ck is
the mixing coefficient of each cluster. For each of the chosen datasets in Table 2,
we model the data distribution as p(X) in Eq. (5) and approximately, each cluster
resulted data site represent a different distribution. For simplicity, we assume all
clusters are with different mean vectors but share the same covariance matrix
to assemble a distribution shift. The T-SNE plot is done to the SRS scenario
(Fig. 3) and the DRC scenario. In DRC, we use PCA as dimension reduction,
keeping 10% (Fig. 4) and 50% (Fig. 5) of the total variance to tell if the reduced
dimension makes a big difference in generating an unevenly distributed data
sites scenario). From these figures, we do not observe a big difference between
different percentage of variance to reserve in PCA, but observe a big difference
between SRS and DRC where SRS generates a more evenly distributed data
sites, while DRC generates more uneven distributions across different clusters
(data sites).

−40

−20

0

20

−2
0 0 20

V1

V2

data sites
ds1
ds2
ds3
ds4
ds5

Fig. 3. Stratified random
split (SRS)
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Fig. 4. DRC with PCA
and keep 10% variance
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Fig. 5. DRC with PCA
and keep 50% variance
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5 Experiment

5.1 Settings

Since we have selected 5 datasets from the Gene Expression Ominibus to repre-
sent 5 data sites, we will consider the exemplary problem of 5 data sites for the
remainder of the paper.

In the experiment, one of the 5 data sites is used as openbox Dob, another
one as lockbox Dlb and the three left over are used as curators Dcu. We choose
to have only one openbox to simulate the scenario, that usually only local data
at the current data sites are fully available to the analyst. We choose to have 3
curators and only 1 lockbox to simulate the scenario that more data sites want
to collaborate with the openbox data site. Curator data site losses are weighted
by the size of the each curator data site during optimization. With this strategy,
there are in total 5 × 4 = 20 combinations of openbox-curator-lockbox on the
5 datasets. Each openbox and lockbox combination defines one scenario. Each
scenario is repeated 10 times (10 replications) where we call each replication one
experiment. We sequentially run all RFMS methods, described in Sect. 4.2, with
3 machine learning algorithms (kernel support vector machine, random forest
and elastic net). Thus, we have in total 20 × 10 × 3 = 600 experiments given a
RFMS problem with 5 data sites. All Bayesian Optimization procedures share
the same initial design of 20 randomly selected configurations, and are then run
for another 40 iterations. Thus in total we have a budget of 60 evaluations. To
have a fair comparison, Random Search use the same number of evaluations.

In order to evaluate our method, we randomly partition openbox and the
curator into two parts, namely an inbag part (80%) and an outbag part (20%).
Replications mentioned above could average out the random splits and other
stochastic factors. We use Dig

ob for training a model, and use Dig
cu as well as

Dig
ob for model selection. The outbag parts of openbox and curator are reserved

for post-hoc analysis. This allows us to assess, whether our methods overfit in
each of the two boxes. Additionally, performance is also recorded on the lockbox
site for another aspect of evaluation. We then compare the different methods
described in Sect. 4.2 on the outbag portion of the respective boxes (as noted in
Sect. 2.1, all data of lockbox belongs to outbag).1

5.2 Selection of Dataset for Semi-simulation

In order to validate our results on different data sources, we obtain additional
data sets from OpenML [39]. As no datasets with an intrinsic splitting mech-
anism such as the GEO dataset (where each dataset comes from a particular
source) are available, we simulate the RFMS scenario according to the strategies
described in Sect. 4.3.

Model generalization becomes more difficult when there are comparatively
more features than instances. Therefore, we restrict ourselves to datasets with a

1 source code in https://github.com/compstat-lmu/paper 2019 multiobjective rfms
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relatively high-dimension characteristics: Since we intend to split a dataset into 5
parts as 5 data sites, the number or instances in each data site is approximately
reduced by 5 times compared to the original dataset (we rebalanced cluster
results which generate too small clusters but adding instances to the smallest
cluster from the biggest cluster until the smallest cluster reaches 10% of the total
number of instances), but the number of features over the number of instances
get to be approximately 5 times of the original ratio, so a p (number of features)
over n (number of instances) ratio of more than 0.2 in the original dataset
corresponds to p

n = 1 in each data site, thus we consider datasets with p
n ratio

around 0.2 to be high-dimensional.
Too few instances is more prone to problems in data resampling processes

like cross validation. For example, one fold of the cross validation might contain
no instance from the underrepresented class. Thus we do not want too extremely
unbalanced classification datasets. In order to have a sufficient amount of data
in each of the 5 boxes, we select only data sets with more than 500 instances.
For the purpose of simplicity, we additionally restrict our data set selection to
data sets that are (i) binary class, (ii) do not have missing values. As a result,
we use the data sets in Table 2 to provide additional validation of the proposed
methods.

Table 2. List of datasets from OpenML

Name n p p/n Class ratio

gina agnostic 3468 970 0.28 0.97

Bioresponse 3751 1776 0.47 0.84

fri c4 500 100a 500 100 0.2 0.77
ahttps://www.openml.org/d/742

Since close or even identical predicative performance values on a problem
can occur for varying machine learning hyperparameters, when the predicative
performance is used as the target for Gaussian Process regression, it can cre-
ate numerical difficulties, so hyperparameter tuning might fail for a particular
algorithm, even though we use a nugget value of 1e − 6. Therefore, to get fair
comparison, all algorithms are run sequentially over a problem on the same
computing node. Only those experiments with all algorithms finished are used
for analysis, where in practice, we only get neglectable number of experiments
(around 100 out of 1800 experiments, which is 5 percent) within which at least
one algorithm is not finished, see Fig. 9 and Fig. 11. The Winner-vs-Loser plots
are more effective than carrying out statistical tests.

5.3 Machine Learning Algorithms and Hyper-Parameters

We choose 3 machine learning algorithms (which we call learner) based on the
consideration that the learners should be representative to different mechanisms
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of various machine learning algorithms. Elastic net logistic regression (imple-
mented in R package glmnet [11]) is a good representative for linear classi-
fier which could deal with high dimensional data (classif.glmnet), thus chosen
because according to [35], one should not rule out simple models prematurely.
R package ranger [40] implements a random forest (classif.ranger) which is a
state of art non-linear learner that has shown outstanding performance. Kernel
support vector machine (ksvm) (classif.ksvm) implemented in [17], is a nonlin-
ear classifier which could deal with high dimensional data. The hyper-parameters
to be optimized with their ranges are shown in Table 3. Hyper-parameter tuning
is done with mlr[4] and mlrMBO[5]. Meaning of hyper-parameters can be found
in respective packages.2

Table 3. List of hyperparameters

Classifier Hyperparameter Type Range

glmnet alpha numeric (0, 1)

glmnet s numeric (2−10, 210)

ksvm C numeric (2−15, 215)

ksvm sigma numeric (2−15, 215)

random forest num.trees integer (100, 5000)

random forest min.node.size integer (1, 50)

random forest sample.fraction numeric (0.1, 1)

5.4 Results and Discussion

In this section, we compare different candidates of RMFS methods proposed
in Sect. 2.3 with respect to their predictive performance. Our aim is to obtain
machine learning models, that generalize well across data sites. As an aggregate
measure, we choose the dominated hypervolume of the data kept out-of-bag
in the openbox Dog

ob , curator Dog
cu and lockbox Dlb respectively as shown in

Eq. (1). We consider the average performance on the curators for calculating
the hypervolume. Lockbox data measures how our methods generalize to sub-
populations not considered at all during the training and model selection process.
Using hypervolume results in a comprehensive overview of them.

Results on the GEO Datasets. As shown in Fig. 6, we compare the mean
dominated hypervolume from Eq. (1) of 3 machine learning algorithms (corre-
sponding to the 3 panels in the plot) and several RFMS methods. We aggregate

2 https://github.com/mlr-org/mlr/blob/3edac9f65ed5c157a3d868fe8d2908eaa2a09e
bd/R/RLearner classif glmnet.R\#L7.
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Fig. 6. Dominated hypervolume on
GEO datasets

Fig. 7. Comparison of wins and losses
on GEO dataset

over 10 replications and 20 combinations of possible openbox-lockbox combina-
tions.

From Fig. 6, we can observe that lso performs the worst among other can-
didates, showing that in the RFMS scenario, solely tuning hyper-parameters on
the local openbox data site will usually not lead to a model that generalizes well
across data sites, which is in accordance with intuition. The other candidates
methods including fmo and several fso variants, that predicting on the data
of the curator and using this performance as a feedback performs better, show-
ing that the feedback could help in arriving at models which generalize better.
However, the considered Bayesian Optimization approaches do not overrate the
multi-objective random search rand mo, nor do we observe any effect of chang-
ing α in the performance of fso. In order to make a more precise comparison,
we compare the pairwise wins and losses of all the RFMS methods in terms
of dominated hypervolume. For each experiment, we build a 0 − 1 matrix to
compare the win and loss of each algorithm pair (when method A is compared
against method B, we take 0 for loss, 1 for win, and 0.5 for tie) and aggregate the
matrix across all 600 experiments. Results are shown in Fig. 7, where the hor-
izontal axis corresponds to winners and the vertical axis correspond to losers.
The elements in the matrix correspond to how many times the winner has won
against the loser. It is easily observable that both bi-criteria methods (fmo and
rand mo) are slightly better than other candidates, as they win more than half
of the experiments.

Results on the Semi-simulated RFMS Scenario. To avoid single dataset
bias, we also analyze how the same algorithms compare under our semi-simulated
RFMS scenario described in Sect. 4.3 over data of various sources.

Dimension Reduction and Clustering (DRC): We first simulate the
RFMS scenario with DRC explained in Sect. 4.3, which could result in a situation
that data from different data sites are differently distributed, where we keep 10
percent variance in the PCA step.
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Fig. 8. Aggregated mean dominated hyper-
volume under DRC scenarios obtained over
OpenML datasets

Fig. 9. Aggregated wins and losses
on the DRC scenarios obtained over
OpenML datasets

Figure 8 shows the dominated hypervolume by aggregating across all the
datasets in Table 2. Compared to Fig. 6, it is more obvious here that the multi-
objective methods work better than the single objective Bayesian optimization
methods. In Fig. 9, we have the Winner-vs-Loser plot for the aggregated results
on the OpenML datasets listed in Table 2, where the multi-objective candidates
outperform the rest by a large margin. Furthermore, fmo wins rand mo by
a considerable margin, giving confidence that Bayesian Optimization make a
difference compared to random search.

Stratified Random Split (SRS): To answer the question if a different
data splitting technique affects the comparison, we use the stratified technique
described in Sect. 4.3 which corresponds to the situation that data being more
evenly distributed across data sites. Figure 10 shows the hypervolume plot, from
which we can still observe the pattern that the multi-objective candidates per-
form better in terms of hypervolume, while compared to Fig. 8, all methods show
increased performance under this evenly distributed data scenario across data
sites, possibly due to the bonus of evenly distributed data scenario. In Fig. 11, we
compare the wins and losses for each pair of candidates, where in this case, the
fmo wins rand mo by a larger margin, maybe because the generate a simpler
RFMS scenario for the Bayesian Optimization.

6 Summary

We introduce a novel learning scenario, Restrictive Federated Model Selection
(RFMS), which could play an important role in clinical research, where privacy
sensitive immobile high dimensional data is differently distributed among vari-
ous data sites, in which case federated learning is not applicable due to a lack
of access to data from all data sites to be used for training. RFMS is a model
selection process in this scenario, with the aim to obtain a model that gener-
alizes comparably well across data sites with potential different distributions.
Compared to Federated Learning, RFMS can be carried out in an asynchronous
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fashion, which is not communication hungry compared to standard federated
learning and much easier to be deployed. Additionally, the amount of informa-
tion that needs to be transferred for each query is comparatively small which
takes less efforts to be deployed.

As an initial investigation, we compare various methods for model selec-
tion and hyper-parameter tuning using Bayesian Optimization. Empirical results
from various data sources indicate that Federated Multi-objective Bayesian Opti-
mization compares favorably against other single objective candidates as well as
multi-objective random search, in terms of better generalization across data sites.
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Hierarchical Variational Auto-Encoding for Unsupervised Domain
Generalization

Xudong Sun∗ Florian Buettner†

Abstract
We address the task of domain generalization, where the goal
is to train a predictive model such that it is able to generalize
to a new, previously unseen domain. We choose a generative
approach within the framework of variational autoencoders
and propose an unsupervised algorithm that is able to gen-
eralize to new domains without supervision. We show that
our method is able to learn representations that disentangle
domain-specific information from class-label specific infor-
mation even in complex settings where domain structure is
not observed during training. Our interpretable method out-
performs previously proposed generative algorithms for do-
main generalization and achieves competitive performance
compared to state-of-the-art approaches, which rely on ob-
serving domain-specific information during training, on the
standard domain generalization benchmark dataset PACS.
Additionally, we proposed weak domain supervision which
can further increase the performance of our algorithm in the
PACS dataset.

1 Background and Motivation

One big challenge of deploying a neural network model
in real world use-cases is domain shift. In many real
world applications, data seen by a deployed model is
drawn from a distribution that is different from the
training distribution and often unknown at train time.
Domain Generalization aims at training a model from a
set of domains (i.e. related distributions) such that the
model is able to generalize to a new, unseen domain at
test time.

Domain generalization is relevant for a variety of
tasks, ranging from personalized medicine, where each
patient corresponds to a domain, to predictive mainte-
nance in the context of industrial AI. In the latter use-
case, domains can represent different factories where an
industrial asset (e.g. a tool machine or a turbine) is
operated, or different workers operating the asset. In
addition to these discrete domains, domain shift can
manifest itself in a continuous manner, where for ex-
ample the data distribution seen by an industrial asset
can change due to wear and tear or due to maintenance
procedures. Similarly, domain sub-structures are not
always observable during training due to data privacy
concerns (in particular when patient data is used). In

∗LMU Munich, smilesun.east@gmail.com, work partially done

during intern at Siemens AG.
†Siemens AG, buettner.florian@siemens.com

these latter scenarios, it is difficult to train standard do-
main generalization algorithms since they are based on
the notion of clearly separable domains that are observ-
able during model training.

In many of these use cases, interpretability and hu-
man oversight of machine learning models is key. Gener-
ative models allow for learning disentangled representa-
tions that correspond to specific and interpretable fac-
tors of variation, thereby facilitating transparent pre-
dictions.

We propose a new generative model that solves do-
main generalization problems in an interpretable man-
ner without requiring domain labels during training. We
build on previous work using autoencoder-based models
for domain generalization [Kingma and Welling, 2013,
Ilse et al., 2019] and propose a Hierarchical Domain Un-
supervised Variational Auto-encoding that we refer to as
HDUVA. Our major contributions include:

• We present an unsupervised algorithm for do-
main generalization that is able to learn in set-
ting with incomplete or hierarchical domain infor-
mation. Our algorithm only need to use extended
ELBO as model selection criteria, instead of relying
on the validation set for early stopping.

• Our method is able to learn representations that
disentangle domain-specific information from class-
label specific information without domain supervi-
sion even in complex settings.

• Our algorithm generates interpretable domain pre-
dictions that reveal connections between domains.

• We constructed several hierarchical and sequential
domain generalization benchmark datasets with
doubly colored mnist for the domain generalization
community.

2 Related work

In this section, we provide a taxonomy of existing solu-
tions in domain generalization. In general, domain gen-
eralisation approaches can be divided into the following
main categories, that we describe below.
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Invariant Feature Learning While observations
from different domains follow different distributions,
Invariant Feature Learning approaches try to map the
observations from different domains into a common
feature space, where domain information is minimized
[Xie et al., 2017, Akuzawa et al., 2018]. The method
works in a mini-max game fashion in that there is a
domain classifier trying to classify domains from the
common feature space, while a feature extractor tries
to fool this domain classifier and help the target label
classifier to classify class label correctly. Li et al.
[2017] presented a related approach and used tensor
decomposition to learn a low rank embedding for a
set of domain specific models as well as a base model.
We classify this method into invariant feature learning
because the base model is domain-invariant.

Image Processing Based Method Carlucci
et al. [2019] divided the image into small patches and
generated permutations of those small patches. They
then used a deep classifier to predict the predefined per-
mutation index so that the model learned the global
structure of an image instead of local textures. Wang
et al. [2019] used a gray level co-occurence matrix to
extract superficial statistics. They presented two meth-
ods to encourage the model to ignore the superficial
statistics and thereby learn robust representations. This
group of methods has been developed for image classifi-
cation tasks, and it is not clear how it can be extended
to other data types.

Adversarial Training Based Data Augmenta-
tion Volpi and Murino [2019] optimized a procedure to
search for worst case adversarial examples to augment
the training domain. Volpi et al. [2018] used Wasser-
stein distance to infer adversarial images that were close
to the current training domain, and trained an ensem-
ble of models with different search radius in terms of
Wasserstein distance.

Meta Learning Based Method Meta learning
based domain generalization method (MLDG) uses
model agnostic training to tackle domain generalization
as a zero-shot problem, by creating virtual train and
test domains and letting the meta-optimizer choose a
model with good performance on both virtual train and
virtual test domains [Li et al., 2018]. Balaji et al. [2018]
improved upon MLDG by concatenating a fixed feature
network with task specific networks. They parameter-
ized a learnable regularizer with a neural network and
trained with a meta-train and a meta-test set .

Auto-Encoder Based Method DIVA [Ilse et al.,
2019] builds on variational auto-encoders and splits
the latent representation into three latent variables
capturing different sources of variation, namely class
specific information (zy), domain specific information

(zd) and residual variance (zx). Disentanglement is
encouraged via conditional priors, where the domain-
specific latent variable zd is condition on an observed,
one-hot-encoded domain d. As auxiliary components,
DIVA adds a domain classifier based on zd, as well
as a target class label classifier based on zy. Hou
et al. [2018] encoded images from different domains
in a common content latent code and domain-specific
latent code, while the two types of encoders share
layers. Corresponding discriminators are used to predict
whether the input is drawn from a prior distribution or
generated from encoder.

Causality based Method Recently, Mahajan
et al. [2020] proposed MatchDG with that approxi-
mates base object similarity by using a contrastive
loss formulation adapted for multiple domains. The
algorithm then match inputs that are similar under the
invariant representation.

Comparing these families of approaches, we can
see that only probabilistic auto-encoder based mod-
els inherit advantageous properties like semi-supervised
learning, density estimation and variance decomposition
naturally. While autoencoder-based approaches such as
DIVA have a better interpretability than all other ap-
proaches, a main drawback is that explicit domain labels
are required during training.This can be problematic in
a number of settings. In particular, a one-hot encoding
of domains does not reflect scenarios where a continuous
domain shift can occur. In this case, without knowledge
of the causal factor that causes the domain shift, it is
not clear how such continuous shifts can be one-hot en-
coded in a meaningful manner. In addition,

• Domains can have a hierarchical structure reflected
by related sub-domains (e.g. country > factory
> machine). One-hot encodings as used in exist-
ing autoencoder-based approaches are not able to
model such hierarchical domain structures.

• In some applications, domains are not necessar-
ily well-separated, but significant overlap between
domains can occur (e.g. a cartoon might look
more similar to a pop-art painting than a photogra-
phy). One-hot encoding such overlapping domains
encourages separated representations, which may
harm model performance.

• A one-hot encoding of domains mapping to the
prior distribution of zd may limit the generalization
power of neural networks, especially when we deal
with continuous domain shift.

2
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Figure 1: HDUVA: Hierarchical Domain Unsu-
pervised Variational Auto-encoding

3 Methods and Technical Solution

3.1 Problem statement and notation Domain
generalization aims to generalize models to unseen do-
mains without knowledge about the target distribution
during training. A domain d consists of a joint distribu-
tion p(x, y) on X ×Y, with X being the input space and
Y being the output space [Muandet et al., 2013]. For
our modelling approach, we employ the framework of
variational autoencoders (VAEs) [Kingma and Welling,
2013]. We use z to represent the latent representation
of a VAE and use three independent latent represen-
tations to disentangle variability in inputs X related to
domain-specific sources, label-specific sources and resid-
ual variation. We use probabilistic graphical models to
illustrate the conditional dependecies of random vari-
ables, observables and hyperparameters in Figure 1. In
the graphical model of Figure 1, solid circles represent
observations and white circles represent latent variables.
We use half-shaded circles to represent a variable can ei-
ther be observed or act as latent variable, which is typ-
ical in semi-supervised learning. Small solid circles in
Figure 1 represent fixed hyper-parameters. Subscripts
represent components of a variable, while we use super-
script to index samples and domains. We use solid ar-
rows to represent generative path, and dashed arrows
to represent variational inference part. Plates represent
repetitions of random variables. We use θ to represent
learnable parameters of priors/decoders and φ to rep-
resent learnable parameters of variational posterior dis-
tributions/encoders.

3.2 HDUVA overview To overcome the limita-
tions of current autoencoder-based ethods, we pro-
pose a hierarchical probabilistic graphical model called
Hierarchical Domain Unsupervised Variational Auto-

encoding(HDUVA). Our model is based on three latent
variables are used to model distinct sources of variation
that are denoted as zy, zd and zx. zy represents class
specific information, zd represents domain specific in-
formation and zx models residual variance of the input.
We introduce an additional hierarchical level and use
a continuous latent representation s to model (poten-
tially unobserved) domain structure. This means that
we can encourage disentanglement of the latent vari-
ables through conditional priors without the need of
conditioning on a one-hot-encoded, observed domain la-
bel.
More specifically, we first place a Dirichlet prior on s
such that it can be interpreted as a soft, topic-like, ver-
sion of the standard one-hot encoded domain d. We
then use zd to capture domain-specific variation by con-
ditioning its prior on s. Note that in our model this
domain s is not an observable but instead a latent vari-
able to be inferred from data. For clarity, we refer to an
observed domain as nominal domain. Borrowing from
topic models in NLP [Srivastava and Sutton, 2017], we
refer to s as topic. We illustrate HDUVA in form of
a graphical model in Figure 1, where we form a hi-
erarchical path Klushyn et al. [2019] from topic s to
zd to observation x. We use K to denote the dimen-
sion of the domain representation or topic vector s, i.e.
dim(s) = K. We use k to index each component of

s, i.e. s(l) = [s
(l)
1 , s

(l)
2 , · · · , s(l)K ], with l indexing a do-

main. Note that in our case, K can be either greater,
smaller or equal to the number of domains L, while in
supervised approaches, the one-hot encoded domain la-
bel is always the size of L. This is beneficial not only in
setting with unobserved domain observation, but also
for problems with a large number of domains which lie
on a lower-dimensional manifold (e.g. thousands assets
in an predictive maintenance task). In this case, when
choosing the topic dimension K to be smaller than the
number of training domains, our algorithm can be in-
terpreted as an eigen-domain decomposition algorithm.
We use stochastic gradient descent to train our model.
Accordingly, in Figure 1, the batch size is denoted by
M (l) for the lth domain, with a total of N (l) batches
for domain l. We use i to index a batch and j to index
a sample. For simplicity, i and j are omitted whenever
convenient and not causing confusion. We also provide
details on extensions for weak supervision to our model
in the supplement.

Taken together, we present a novel approach for
probabilistic domain generalization without the need for
observed domain labels.

3.3 Model implementation In this section, we first
describe the generative model with prior distributions,
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followed by a discussion on model inference.

3.3.1 Prior Distributions for zx, zy and zs We
chose a standard isotropic Gaussian prior with zero
mean and unit variance for zx and conditional priors
for for zy and zd. More specifically, we chose a normal
prior for zy that is conditioned on the target class label
y:

pθy (z(l,i)y |y(l,i)) = N
(
·|µθy (y(l,i)), σθy (y(l,i))

)
(3.1)

with µθy and σθy being learnable parameterizations of
the mean and standard deviation in form of neural
networks. Similarly, we choose a normal prior for zd
and condition it on s:

pθd(z
(l,i)
d |s(l,i)) = N

(
·|µθd(s(l,i)), σθd(s(l,i))

)
(3.2)

where again µθd and σθd parameterize mean and vari-
ance of zd.

3.3.2 Prior Distribution for s We would like for
s to display topic-like characteristics, facilitating inter-
pretable domain representations. Consequently, we use
a Dirichlet prior on s, which is a natural prior for topic
modeling [Srivastava and Sutton, 2017, Joo et al., 2020,
Zhao et al., 2019].

Let α be the Dirichlet concentration parameter
α = [α1, α2, · · · , αK ], then the prior distribution of s
can be written as:

(3.3) p(s(l,i)|αl) = Dir(s(l,i)|αl1:K) =

∏
k(s

(l,i)
k )α

l
k−1

Z(αl1:K)

where we use Z(α1:K) to represent the partition func-
tion.

We do not learn the distribution parameter α, but
instead, leave it as a hyper-parameter. By default, we
set α to be a vector of ones, which corresponds to a
uniform distribution of topics. We refer to this prior
setting as flat prior. If more prior knowledge about
the relation between training domains is available, an
informative prior can be used instead.

3.3.3 Inference for HDUVA Since exact inference
is intractable in such an autoencoder, we perform vari-
ational inference and introduce three separate encoders
as follows:

qφ(s(l,i), z
(l,i)
d , z(l,i)x , z(l,i)y |x(l,i))

=qφs(s
(l,i)|x(l,i))qφd(z

(l,i)
d |s(l,i), x(l,i))qφ(z(l,i)x , z(l,i)y |x(l,i))

(3.4)

For the approximate posterior distributions of zx and zy,
we assume fully factorized Gaussians with parameters

given as a function of their input:

qφ(z(l,i)x , z(l,i)y |x(l,i)) = qφx(z(l,i)x |x(l,i))qφy (z(l,i)y |x(l,i))
(3.5)

Encoders qφs , qφd , qφy , and qφx are parameterized by
φs, φd, φy, and φx using separate neural networks to
model respective means and variances as function of x.

For the form of the approximate posterior distribu-
tion of the topic s we chose a Dirichlet distribution:

qφs(s
(l,i)|x(l,i)) = Dir

(
s(l,i)|φs(x(l,i))

)
(3.6)

where φs parameterizes the concentration parameter
based on x, using a neural network.

3.3.4 ELBO for HDUVA Given the priors and
factorization described above, we can optimize the
model parameters by maximizing the evidence lower
bound (ELBO). We can write the ELBO for a given
input-output tupel (x, y) as:

ELBO(x, y) = Eq(zd,s|x),q(zx|x),q(zy|x) log pθ(x|s, zd, zx, zy)

− βxKL(qφx(zx|x)||pθx(zx))− βyKL(qφy (zy|x)||pθy
(zy|y))− βdEqφs (s|x),qφd (zd|x,s) log

qφd(zd|x, s)
pθd(zd|s)

− βsEqφs (s|x)KL(qφs(s|x)||pθs(s|α))
(3.7)

where we use β to represent the multiplier in the Beta-
VAE setting [Higgins et al., 2016], further encouraging
disentanglement of the latent representations.

Finally, we add an auxiliary classifier qω(y|z), which
is parameterized by ω, to encourage separation of classes
y in zy. The HDUVA objective then becomes:

F(x, y) = ELBO(x, y) + γyEqφy (zy|x)[log qω(y|zy)]
(3.8)

The whole process is described in Algorithm 1. The ob-
jective function in Equation 3.8 which we coin extended
ELBO can also be used as a model selection criteria,
thus our method does not need validation set at all, as
we empirically evaluated in the experimental section in
section 4.

4 Empirical Evaluation

We conduct experiments, trying to answer the following
questions:

• Could HDUVA mitigate the limitations of standard
supervised approaches for domain generalization in
terms of domain-substructure or overlap between
nominal domains? We conduct experiments in
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Algorithm 1 HDUVA

1: while not converged or maximum epochs not
reached do

2: warm up β defined in Equation 3.7, as in
Sønderby et al. [2016]

3: fetch mini-batch {x, y} ={x(l,i), y(l,i)}
4: compute parameters for qφx(zx|x), qφy (zy|x),

qφs(s|x), qφd(zd|s, x)
5: sample latent variable zqx, zqy, sq, zqd and compute

[log qω(y|zy)].
6: compute prior distribution for zd using s
7: compute pθ(x|zx, zy, zd, s) using sampled s, zqx, zqy,

zqd
8: compute KL divergence for zd, zx and zy, s.
9: aggregate loss according to Equation 3.8 and

update model
10: end while

Section 4.1, Section 4.2 and Section 4.4 to address
these issues.

• In complex scenarios with domain substruc-
ture, can HDUVA still robustly disentangle
domain-specific variation from class-label specific
variation? See details in Section 4.1.

• We visualize topics from overlapping nominal
domains to illustrate why HDUVA improves upon
supervised approaches in Section 4.4.

• How does HDUVA perform under standard do-
main generalization benchmarks where information
on clearly separated domain is available, compared
with other state-of-the-art algorithms? See Sec-
tion 4.5.

4.1 Hierarchical Domains To simulate domains
with sub-structures (hierarchical domains), we create
sub-domains within nominal domains. All sub-domains
within one nominal domain share the same domain la-
bel. We adapt color-mnist [Metz et al., 2016, Rezende
and Viola, 2018] with the modification that both its
foreground and background are colored as sub-domain,
as shown in Figure 2. We constructed 3 nominal do-
mains with sub-structures as indicated in Figure 2. For
baseline algorithms, we use a one-hot encoded nomi-
nal domain label as explicit domain label, since these
methods require a domain label during training. For
HDUVA, we do not use domain label and we only use
extended ELBO in Equation 3.8 as model selection cri-

teria, further experimental details can be found in sup-
plement C.

(a) 1st domain (b) 2nd domain (c) 3rd domain

Figure 2: Random combination of Color-Mnist as
Hierarchical Domains. Mnist has both its foreground
and background colored, each color combination repre-
sent one sub-domain. Each nominal domains include 2
sub-domains.

We are interested in evaluating how our unsuper-
vised approach and supervised generative domain gen-
eralization algorithms like DIVA Ilse et al. [2019] for
domain generalization would behave under this sub-
domain scenario, in terms of out-of-domain prediction
accuracy and disentanglement performance. We per-
form a leave-one-domain-out evaluation [Li et al., 2017],
where each test domain is repeated 10 times with 10 dif-
ferent random seeds. We report the out of domain test
accuracy in Table 1. Table 1 shows that HDUVA out-
performs DIVA in terms of out of domain performance
on all three test domains, while retaining a very small
variance compared to DIVA.

To explain such a performance difference, we further
evaluate how robustly DIVA and HDUVA are able
to disentangle different sources of variation under this
scenario with incomplete sub-domain information.

We sample seed images from different sub-domains
as shown in the first row of Figure 3. We then generate
new images by scanning the class label from 0 to 9
by sampling from the conditional prior distribution of
zy (i.e. pθy (zy|y), eq. 3.1). We keep the domain
representation the same as in the seed image, set the
noise component zx to zero and then use the decoder
network pθ(x|zd, zx, zy) to generate an image based on
the three latent representations. If the models are able
to disentangle domain-specific variation from class-label
specific variation in zy and zd, we expect that the
generated images have the same domain information
as the seed image (foreground and background color)
while generating different class labels (numbers from 0
to 9). In Figure 3 we compare DIVA and HDUVA’s
generative performance. Due to the sub-structure inside
the nominal domains, DIVA could only reconstruct a
blur of colors for the first 3 columns in Figure 3a, while
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Table 1: Out of Domain Accuracy on Color-Mnist Composed Subdomain inside Nominal Domains

Color-Mnist (Figure 2) Test Domain 1 Test Domain 2 Test Domain 3

HDUVA 0.93 ± 0.02 0.69 ± 0.12 0.55 ± 0.03
DIVA [Ilse et al., 2019] 0.88 ± 0.05 0.56 ± 0.19 0.50 ± 0.08

(a) DIVA (b) HDUVA

Figure 3: Comparison of Conditional Image Gen-
eration under Incomplete Domain Knowledge.
The domain composition is shown in Figure 2.

HDUVA could generate different numbers for 2 of the
three seed images. For the last seed image, both DIVA
and HDUVA could conditionally generate numbers, but
DIVA did not retain the domain information (since
the background color, which is dark blue in the seed
image, is light blue in the generated images). This
indicates that DIVA is not able to disentangle the
different sources of variation and domain information
is captured by zy as well. In contrast, HDUVA was
able to separate domain information from class-label
information.

4.2 Generalization under domain-drift scenar-
ios In some occasions, the boundaries between differ-
ent domains can be ambiguous. For example, consider
continuous domain drift in industry applications, some
physical parameters of the same type of machine in dif-
ferent factories might change continuously and between
two factories there can be overlap.

To simulate such a behavior, we consider a domain-
drift scenario with Color-Mnist in Figure 4. By dividing
a smooth color palette into 7 sub-domains (with each
color corresponding to a sub-domain), we simulate a
near continuous domain shift. We use this scenario to
evaluate how robust our algorithm is in domain drift
scenarios.

Following leave-one-domain out setting as in other
experiments, we report the out-of-domain classifica-
tion accuracy in Table 2, illustrating that our unsu-
pervised approach is better able to account for continu-
ous domain drift scenarios than standard supervised ap-
proaches that artificially categorize the gradually shift-
ing into distinct nominal domains. For HDUVA, we only
use extended ELBO in Equation 3.8 as model selection
criteria, further experimental details can be found in
supplement C.

4.3 Domain Generalization to Medical Image
Classification Trustworthy prediction is essential for
biomedical data where domain generalization poses a
great challenge [Gossmann et al., 2019, 2020]. For ex-
ample, medical imaging datasets usually come from a
multitude of patients and devices where both the pa-
tient and devices can form domains. In this study,
as suggested by Ilse et al. [2019], we consider hospital
as domains, which consist of patients as sub-domains.
This correspond to hierarchical domains and has prac-
tical implications. Since there can be thousands of pa-
tients, and having thousands of domain labels can be
impractical and many patients can share common fea-
tures, e.g. coming from nearby areas, but it can also
be true that two hospitals can have similar patients.
To simulate such a setting, we construct virtual hospi-
tals by using the Malaria dataset as described in Ta-
ble 4. The Malaria dataset [Rajaraman et al., 2018]
consist of thin blood smear slide images of segmented
cells from Malaria patients. We group patients by their
IDs for form hospitals. Table 4 shows the out of do-
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(a) 1st domain (b) 2nd domain (c) 3rd domain

Figure 4: Sequential Color-Mnist (VLAG
Palette). Background color taking 7 hue values
spanning the VLAG hue ranges sequentially, with fixed
saturation and lightning, foreground color takes equally
spaced hue value in the complete hue circle with fixed
saturation and lightning. Background and foreground
colors are zipped. The first 3 color schemes representing
3 sub-domains compose the first nominal domain in
Figure 4a, the 2nd nominal domain in Figure 4b takes
the middle 3 color schemes with one color scheme
overlap with the 1st and one color scheme overlap
with 3rd nominal domain in Figure 4c. The 2nd
nominal domain serves as a bridge between the other
two nominal domains. Out of domain test accuracy is
reported in Table 2.

main classification accuracy across different algorithms.
Our approach is able to implicitly learn the unobserved
domain substructure of the data, resulting is substan-
tially better accuracy on unseen test domains (i.e. a
new hospital) compared to state-of-the-art approaches
DIVA and MatchDG. The latter require explicit domain
labels during training and fail to perform well in sce-
narios with domain substructure. Our approach also
performs substantially better than a standard baseline
where information across all domains is pooled together.
Additionally, we only use the ELBO in Equation 3.8 as
our model selection criteria, without using the valida-
tion set.

4.4 Domain Embedding Here, we investigate the
ability of our approach to generate meaningful domain
embeddings. To this end, we adapt the standard rotated
MNIST benchmark [Ilse et al., 2019] by introducing
an overlap between three nominal domains: for the
first nominal domain, we use 1000 samples of MNIST
and rotate them by 15, 30 and 45 degrees respectively.
Thus, the first domain contains 3000 instances and each
rotation angle constitutes one sub-domain. For the
second domain nominal domain, we rotate the same

Table 2: Out of Domain Accuracy for Color-
Mnist (VLAG Palette) in Figure 4. Each sub-
domain in Figure 4 contains a random sample of 1000
mnist images. Random seed is shared for the different
sub-domains of a nominal domain but different across
nominal domains. Each repetition is with different
starting random seed, 10 repetitions are done. The sub-
domains are combined to form one nominal domain and
50 percent is used for training, the rest for validation.
Comparison algorithms are DIVA [Ilse et al., 2019] and
Match-DG [Mahajan et al., 2020], while Deep-All is used
as baseline by pooling all training domain s together.
The 2nd domain is a bridge domain that connect the
1st and 3rd domain, so it is not used as test domain at
all.

Color-
Mnist
(Figure 4)

Test Domain 1 Test Domain 3

DIVA 0.63 ± 0.05 0.68 ± 0.03
HDUVA 0.69 ± 0.05 0.71 ± 0.03
Deep-All 0.60 ± 0.05 0.68 ± 0.04
Match-DG 0.67 ± 0.06 0.70 ± 0.03

Table 3: Out of Domain Test Accuracy for Se-
quential Color-Mnist (Red Diverging Palette)
from Figure 5. Each sub-domain in Figure 5 con-
tains a random sample of 1000 mnist images. Random
seed is shared for the different sub-domains of a nominal
domain but different across nominal domains. Each rep-
etition is with different starting random seed, 10 repeti-
tions are done. The sub-domains are combined to form
one nominal domain and 50 percent is used for train-
ing, the rest for validation. Comparison algorithms are
DIVA [Ilse et al., 2019] and Match-DG [Mahajan et al.,
2020], while Deep-All by pooling all training domains
together is used as baseline. The 2nd domain is a bridge
domain that connect the 1st and 3rd domain, so it is not
used as test domain at all.

Color-
Mnist
(Figure 5 )

Test Domain 1 Test Domain 3

DIVA 0.53 ± 0.05 0.63 ± 0.05
HDUVA 0.56 ± 0.05 0.68 ± 0.05
Deep-All 0.53 ± 0.06 0.61 ± 0.06
Match-DG 0.44 ± 0.04 0.67 ± 0.10

subset of MNIST, by 30, 45 and 60 degrees respectively.
In this way, each nominal domains has two rotation
degrees of overlap corresponding to 2000 instances that
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(a) 1st domain (b) 2nd domain (c) 3rd domain

Figure 5: Sequential Color-Mnist (Red Diverging
Palette). Background color taking 7 hue values span-
ning in the area between 0 and 350 hue degrees (red
spectrum) sequentially, with fixed saturation and light-
ning, foreground color takes equally spaced hue value in
the complete hue circle with fixed saturation and light-
ning. Background and foreground colors are zipped.
The first 3 color schemes representing 3 sub-domains
compose the first nominal domain in Fig. 5a, the 2nd
nominal domain take the middle 3 color schemes with
one color scheme overlap with the 1st and another color
scheme overlap with the 3rd nominal domain in Fig. 5b.
The 2nd nominal domain serves as a bridge between the
other two nominal domains. Out of domain test accu-
racy is reported in Table 3.

have the same rotation. We use these 2 nominal
domains for training, and simulate a sequential domain
shift for testing with rotation angles of 0, 22 and 75
degrees. We sampled images from both nominal training
domains as well the continuously shifted test domain
and plot their topic distributions in Figure 6. We
expect the topics of the training domains to overlap
substantially, due to the shared rotation angles. We
further expect for the topics of the test domain to span
the entire range of topics from both training domains.
Figure 6 illustrates that HDUVA indeed assigns similar
domain topics to many instances from both training
domains, while samples from the test domain span the
entire range of topics.

4.5 State of the art Domain Generalization
benchmark We finally compare HDUVA to state-of-
the-art domain generalization algorithms for a standard
domain generalization task, where domain information
is available on largely different domains. Table 5
shows algorithm performance on the PACS dataset [Li
et al., 2017] which is a popular domain generalization
benchmark.We use AlexNet [Krizhevsky et al., 2012,
2017] as the neural network architecture for qφy (zy|x)

Figure 6: Topic plot of overlapped domains

and qω(y|zy)] in our model in Equation 3.8. For fair
comparison, the rest of the algorithms also use AlexNet
as classifier.

Table 5 shows that the performance of HDUVA
is comparable to state-of-the-art performances on the
PACS dataset. Notably, HDUVA without using do-
main label ties DIVA, and with weak domain super-
vision variant introduced in Appendix B which we coin
WHDUVA, the performance improves over DIVA. With
the contrastive pretrain phase of Mahajan et al. [2020]
as the initialization for the AlexNet of HDUVA, the per-
formance over the sketch test domain further improves
by 3 percent. Deep-All by pooling all training domain
together remain a strong baseline where we outperform
Deep-All in 3 out of 4 test domains and ties the other
one. While overall performance of methods such as JIG-
SAW is consistently better than HDUVA, it is based on
complex image manipulations. In contrast, HDUVA is
an interpretable model that can be used for different
data modalities and a larger number of tasks including
domain prediction and sample generation. Importantly,
HDUVA achieves competitive performance without us-
ing domain labels during training and without using val-
idation set (we conduct model selection using extended
ELBO in Equation 3.8, see supplement C). This en-
ables domain generalization for a much wider range of
use-cases than standard algorithms.

5 Conclusion

We proposed an Hierarchical Domain Invariant Varia-
tional Autoencoder, with the following improvements:

• Our approach does not require observed domain
labels during training, facilitating domain gener-
alization for a much wider range of applications.
Additionally, our approach does not need valida-
tion set for model selection but only use extended
ELBO for model selection.

• In the presence of domain-substructure, our al-
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Table 4: Malaria Virtual Hospital from Malaria
Dataset. Patients with ID starting with C1, C6, C8,
C9 are grouped to form 4 virtual hospitals as 4 nominal
domains. Virtual hospital C6 has 10 patients with 1061
infected cell images (in total 1748 images). Virtual
hospital C8 has 10 patients with 957 infected cell images
(in total 1638 images). Virtual hospital C9 has 10
patients with 1284 infected cell images (in total 1964
images). Virtual hospital C1 has 90 patients with 8023
infected cell images (in total 14190 images). Each time,
we combine the C6, C8, C9 virtual hospital domain
as 3 training domains and sample 20 percent of the
images for training. 20 random repetitions are done.
We report result on the test domain corresponding to
virtual hospital C1. Comparison algorithms are DIVA
[Ilse et al., 2019] and Match-DG [Mahajan et al., 2020],
while Deep-All is used as baseline by pooling all training
domains together.
Data source: [Rajaraman et al., 2018]

Malaria Cell Classification Test Accuracy

DIVA 0.83 ± 0.06
HDUVA 0.87 ± 0.05
Deep-All 0.84 ± 0.05
MatchDG 0.85 ± 0.09

gorithm is able to robustly disentangle domain-
specific variation from class-label specific variation.

• Our algorithm is able to model domain overlap via
interpretable topics and generalize to settings with
continuous domain shift.

• Our algorithm has a competitive performance even
in standard domain generalization tasks, where
observed domain information is available on clearly
separated domains.

• We proposed evaluation dataset for benchmarking
hierarchical and sequential domain shift.

Supplemental Materials

In the supplementary material, to facilitate easy refer-
ence, we use consecutive Figure and Table numbering
following the main article. In section A we explain an
alternative inference algorithm inspired by Ladder-VAE
[Sønderby et al., 2016] for our proposed model. In sec-
tion B, we introduce weak domain supervision methods
for both inference algorithms. In section C, we list fur-
ther details on experimental settings.

α
s zd

zx
N0,1

y zy

X

classifier

N (l)
M (l)

L

Figure 7: LHDUVA: Ladder Hierarchical Domain Un-
supervised Variational Auto-encoding

A Alternative Inference Method for HDUVA

We propose an alternative inference algorithm for our
model. The graphical model for the Ladder-VAE ver-
sion of our model is shown in Figure 7 which we coind
LHDUVA. The corresponding variational posterior and
ELBO is explained below. We summarize this alterna-
tive algorithm in Algorithm 2.

A.1 Inference for LHDUVA In Figure 7, we fac-
torize the approximate posterior as follows:

qφ(s(l,i), z
(l,i)
d , z(l,i)x , z(l,i)y |x(l,i))

=qφ(s|z(l,i)d )qφ(z
(l,i)
d , z(l,i)x , z(l,i)y |x(l,i))(A.1)

For the approximate posterior distributions of zx,
zd and zy, we follow Ilse et al. [2019] and assume
fully factorized Gaussians with parameters given as a
function of their input:

qφ(z
(l,i)
d , z(l,i)x , z(l,i)y |x(l,i))

=qφd(z
(l,i)
d |x(l,i))qφx(z(l,i)x |x(l,i))qφy (z(l,i)y |x(l,i))(A.2)

Encoders qφy , qφd and qφx are parameterized by φy,
φd and φx using separate neural networks to model
respective means and variances as function of x.

For the form of the approximate posterior distribu-
tion of the topic s we chose a Dirichlet distribution:

qφs(s
(l,i)|z(l,i)dj

) = Dir
(
s(l,i)|φs(z(l,i)dj

)
)

(A.3)

where φs parameterizes the concentration parameter
based on zd, using a neural network.

A.2 ELBO for LHDUVA Given the priors and
factorization described above, we can optimize the
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Table 5: Domain Generalization in PACS Dataset with AlexNet Classifier

Methods Art Painting Cartoon Photo Sketch Ave.

Factorization [Li et al., 2017] 0.63 0.67 0.90 0.58 0.69
MLDG [Li et al., 2018] 0.66 0.67 0.88 0.59 0.70
SourceCombo [Mancini et al., 2018] 0.64 0.67 0.90 0.60 0.70
MetaReg [Balaji et al., 2018] 0.70 0.70 0.91 0.59 0.73
GLCM [Wang et al., 2019] 0.67 0.70 0.88 0.56 0.70
Jigsaw [Carlucci et al., 2019] 0.68 0.72 0.89 0.65 0.74
AFLAC [Akuzawa et al., 2018] 0.61 0.64 0.83 0.59 0.67
MatchDG [Mahajan et al., 2020] 0.67 ±0.01 0.69 ± 0.01 0.89 ± 0.01 0.63 ± 0.02 0.72
DIVA [Ilse et al., 2019] 0.64 ± 0.02 0.66 ± 0.003 0.87 ± 0.01 0.58 ± 0.03 0.69
Deep-All 0.64 ± 0.01 0.67 ± 0.02 0.85 ± 0.02 0.56 ± 0.02 0.68
HDUVA 0.65 ± 0.01 0.66 ± 0.01 0.87 ± 0.01 0.58 ± 0.01 0.69
WHDUVA∗ 0.64 ± 0.01 0.67 ± 0.02 0.88 ± 0.01 0.60 ± 0.02 0.70
LHDUVA∗∗ 0.65 ± 0.003 0.69 ± 0.02 0.87 ± 0.004 0.55 ± 0.002 0.69
HDUVA-CTR∗∗∗ 0.65 ± 0.01 0.66 ± 0.02 0.88 ± 0.01 0.63 ± 0.003 0.71

∗ WHDUVA: weak domain-supervision added to HDUVA as explained in Appendix B.
∗∗LHDUVA: Ladder Hierarchical Domain Unsupervised Variational Auto-encodingexplained in Appendix A.
∗∗∗HDUVA-CTR: Use the contrastive learning phase (pretrain phase) of Mahajan et al. [2020] as initialization for
AlexNet of HDUVA.
Part of the table is adapted from https://domaingeneralization.github.io/.

model parameters by maximizing the evidence lower
bound (ELBO). We can write the ELBO for a given
input-output tuple (x, y) as:

ELBO(x, y) = Eq(zd|x),q(zx|x),q(zy|x) log pθ(x|zd, zx, zy)

− βxKL(qφx(zx|x)||pθx(zx))− βyKL(qφy (zy|x)||pθy
(zy|y))− βdEqφs (s|x,zd),qφd (zd|x) log

qφd(zd|x)

pθd(zd|s)

− βsEqφd (zd|x)KL(qφs(s|zd)||pθs(s|α))
(A.4)

where we use β to represent the multiplier in the Beta-
VAE setting [Higgins et al., 2016], further encouraging
disentanglement of the latent representations.

We add an auxiliary classifier qω(y|z), which is
parameterized by ω, to encourage separation of classes
y in zy. The LHDUVA objective then becomes:

F(x, y) = ELBO(x, y) + γyEqφy (zy|x)[log qω(y|zy)]
(A.5)

To efficiently perform inference with the dependent
stochastic variables zd and s, we follow Sønderby et al.
[2016] and adapt the ELBO using the Ladder VAE
approach as detailed in the next section.

A.2.1 Dealing with Dependent Stochastic Vari-
ables The joint posterior q(zd, s|x) can be written as:

q(zd, s|x) =
q(zd, s, x)

q(x)
=
q(zd, s, x)

q(zd, x)

q(zd, x)

q(x)

= q(s|zd, x)q(zd|x) = q(s|zd)q(zd|x)(A.6)

where conditional independence of s from x is assumed.
As pointed out by Chen et al. [2016], Tomczak and
Welling [2018], this can lead to inactive stochastic
units. We follow Sønderby et al. [2016] and recursively
correct the generative distribution by a data dependent
approximate likelihood. Additionally, we implement a
deterministic warm-up period of β following Sønderby
et al. [2016], Ilse et al. [2019], in order to prevent the
posterior of the latent representation from aligning too
quickly to its prior distribution.

B Weak Supervision on domains

In many scenarios only incomplete domain information
is available. For example, due to privacy concerns, data
from from different customers within a region may be
pooled so that information on the nominal domain at
customer-level is lost and only higher-level domain in-
formation is available. In other settings, substantial
heterogeneity may exist in a domain and various un-
observed sub-domains may be present. We introduce
two techniques for weak supervision on domains, allow-
ing the model to infer such lower-level domains or sub-
domain information in the form of a topic s.
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B.1 Topic Distribution Aggregation To indicate
that a group of samples ”weakly” belong to one domain,
we aggregate the concentration parameter of the poste-
rior distribution of s for all samples in a minibatch (note
that all samples in a minibatch have the same nominal
domain):

φaggs (z
(l,i)
d1:M

) = 1/M
∑

j=1:M

(
φs(z

(l,i)
dj

)
)

(B.7)

We then use the aggregated concentration parame-
ter to sample a topic from a Dirichlet distribution:

qagg(s(l,i)|z(l,i)d1:M
) = Dir

(
·|φaggs (z

(l,i)
d1:M

)
)

(B.8)

The conditional prior of z
(l,i)
d (equation 3.2) then shares

this same topic for all samples in the ith mini-batch. We
interpret this topic-sharing across samples in a mini-
batch as a form of regularized weak supervision. In
one-hot encoded approaches, all samples from the same
nominal domain would share the same topic. In con-
trast, sharing a topic in the conditional prior of the la-
tent representation across samples in a mini-batch pro-
vides a weak supervision, whilst allowing for an efficient
optimisation via SGD. Note that concentration param-
eters for a mini-batch are only aggregated during train-
ing, at test time sample-specific posterior concentration
parameters are used.

B.2 Weak domain distribution supervision
with MMD DIVA encourages separation of nominal
domains in the latent space zd by fitting an explicit do-
main classifier which might limit model performance in
the case of incomplete domain information. To miti-
gate these limitations but still weakly encourage sepa-
ration between different nominal domains, we constrain
the HDUVA objective based on the Maximum-Mean-
Discrepancy (MMD) [Gretton et al., 2012] between pair-
wise domains.

Denoting Cdmmd as the minimal distance computed
by MMD as an inequality constraint, we can write the
constraint optimization of equation A.5 as follows:

argmax
θ,φ,ω

∑

l,i

F(x(l,i), y(l,i))

s.t. MMD(q(l,i)zd
(·)|q(l

′
,i)

zd
(·)) ≥ C(l,l

′
)

mmd(B.9)

B.3 Practical considerations In practice, we
transform the constrained optimization in Equation B.9
with a Langrange Multiplier. This leads to the final loss

in Equation B.10, where γ
(l)
d denotes the Lagrange mul-

tiplier for Cdmmd (c.f. Equation B.9):

L =
∑

l,i

−F (agg,ladder)(x(l,i), y(l,i))

− γ(l)d
∑

i,l,l′

MMD(q(l,i)zd
(·)|q(l

′
,i)(·)

zd
)(B.10)

Superscript agg and ladder in Equation B.10 refer to
batch-wise aggregation of the concentration parameter
and the ladder approach described above.

Algorithm 2 LHDUVA

1: while not converged or maximum epochs not
reached do

2: warm up β defined in Equation A.4, as in
[Sønderby et al., 2016]

3: fetch mini-batch {x, y} ={x(l,i), y(l,i)}
4: compute parameters for qφx(zx|x), qφy (zy|x),

qφd(zd|x)
5: sample latent variable zqx, zqy and compute

[log qω(y|zy)] in equation A.5
6: sample zqd, infer concentration parameter φs(zd)

and aggregate according to Equation B.7
7: sample topic s from aggregated φaggs (zd1:M ) ac-

cording to Equation B.8.
8: compute prior distribution for zd using s
9: adapt posterior of qφd(zd) with ladder-vae method

[Sønderby et al., 2016]
10: sample zqd from adapted qφd(zd)
11: compute pθ(x|zx, zy, zd) using sampled zqx, zqy, zqd
12: compute KL divergence for zd, zx and zy, s in

Equation A.4
13: compute pair wise MMD of the nominal domains

14: aggregate loss according to B.10 and update
model

15: end while

C Other experiment details

For comparing algorithms, we implemented DIVA [Ilse
et al., 2019] and MatchDG [Mahajan et al., 2020], and
use the same hyper-parameters suggested by the original
paper. For HDUVA, we match the hyper-parameters in
[Ilse et al., 2019], where we take the latent dimension
for each latent code is taken to be 64, i.e. zx = zy =
zd = 64. The classifier is taken to be a one layer neural
network with Relu activation. For all experiments, γy
in equation 3.8 is taken to be 1e5, while the β values
are taken to be 1, warm-up of KL divergence loss in
Equation 3.7 is taken to be 100 epochs. We use topic
dimension of 3 for HDUVA.
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For the malaria experiment, we run with maxi-
mum 1000 epochs, with early stopping tolerance of 100
epochs. For HDUVA, we use ELBO directly as model
selection criteria, for the rest of the algorithms, we use
validation accuracy as model selection criteria. That
means, we do not use the validation set at all.

The mnist related experiments are run with
maximum 500 epochs with early stopping tolerance
of 100 epochs. For HDUVA, we use ELBO directly
as model selection criteria, for the rest of the algo-
rithms, we use validation accuracy as model selection
criteria. That means, we do not use the validation
set at all. We use a learning rate of 1e-4 for DIVA
and HDUVA, a learning rate of 1e-5 (better than
1e-4) for Deep-All and the suggested learning rate
for MatchDG. For experiments regarding MNIST,
including MNIST rotation overlap 4.4, colored mnist
combination 4.1, and domain overlapped color-mnist
in 4.2, we use random sub-samples (each contains
1000 instances) pre-sampled from https://github.

com/AMLab-Amsterdam/DIVA/tree/master/paper_

experiments/rotated_mnist/dataset with commit
hash tag ab590b4c95b5f667e7b5a7730a797356d124.

For the PACS experiment, we run with maximum
500 epochs, with early stopping criteria of 5 epochs
to save computation resources. For HDUVA, we use
ELBO directly as model selection criteria, for the rest
of the algorithms, we use validation accuracy as model
selection criteria. That means, we do not use the
validation set at all. We use a learning rate of 1e-5
for HDUVA, DIVA, Deep-All and use default learning
rate of MatchDG.
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Maximum Entropy-Regularized Multi-Goal Reinforcement Learning

Rui Zhao 1 2 Xudong Sun 1 Volker Tresp 1 2

Abstract

In Multi-Goal Reinforcement Learning, an agent
learns to achieve multiple goals with a goal-
conditioned policy. During learning, the agent
first collects the trajectories into a replay buffer,
and later these trajectories are selected randomly
for replay. However, the achieved goals in the re-
play buffer are often biased towards the behavior
policies. From a Bayesian perspective, when there
is no prior knowledge about the target goal dis-
tribution, the agent should learn uniformly from
diverse achieved goals. Therefore, we first pro-
pose a novel multi-goal RL objective based on
weighted entropy. This objective encourages the
agent to maximize the expected return, as well
as to achieve more diverse goals. Secondly, we
developed a maximum entropy-based prioritiza-
tion framework to optimize the proposed objec-
tive. For evaluation of this framework, we com-
bine it with Deep Deterministic Policy Gradient,
both with or without Hindsight Experience Re-
play. On a set of multi-goal robotic tasks of Ope-
nAI Gym, we compare our method with other
baselines and show promising improvements in
both performance and sample-efficiency.

1. Introduction
Reinforcement Learning (RL) (Sutton & Barto, 1998) com-
bined with Deep Learning (DL) (Goodfellow et al., 2016)
has led to great successes in various tasks, such as playing
video games (Mnih et al., 2015), challenging the World Go
Champion (Silver et al., 2016), and learning autonomously
to accomplish different robotic tasks (Ng et al., 2006; Peters
& Schaal, 2008; Levine et al., 2016; Chebotar et al., 2017;
Andrychowicz et al., 2017).

1Faculty of Mathematics, Informatics and Statistics, Ludwig
Maximilian University of Munich, Munich, Bavaria, Germany
2Siemens AG, Munich, Bavaria, Germany. Correspondence to:
Rui Zhao <zhaorui.in.germany@gmail.com>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

One of the biggest challenges in RL is to make the agent
learn efficiently in applications with sparse rewards. To
tackle this challenge, Lillicrap et al. (2015) developed the
Deep Deterministic Policy Gradient (DDPG), which enables
the agent to learn continuous control, such as manipulation
and locomotion. Schaul et al. (2015a) proposed Universal
Value Function Approximators (UVFAs), which general-
ize not just over states, but also over goals, and extend
value functions to multiple goals. Furthermore, to make
the agent learn faster in sparse reward settings, Andrychow-
icz et al. (2017) introduced Hindsight Experience Replay
(HER), which encourages the agent to learn from the goal-
states it has achieved. The combined use of DDPG and
HER allows the agent to learn to accomplish more complex
robot manipulation tasks. However, there is still a huge gap
between the learning efficiency of humans and RL agents.
In most cases, an RL agent needs millions of samples before
it is able to solve the tasks, while humans only need a few
samples (Mnih et al., 2015).

In previous works, the concept of maximum entropy
has been used to encourage exploration during training
(Williams & Peng, 1991; Mnih et al., 2015; Wu & Tian,
2016). Recently, Haarnoja et al. (2017) introduced Soft-
Q Learning, which learns a deep energy-based policy by
evaluating the maximum entropy of actions for each state.
Soft-Q Learning encourages the agent to learn all the poli-
cies that lead to the optimum (Levine, 2018). Furthermore,
Soft Actor-Critic (Haarnoja et al., 2018c) demonstrated a
better performance while showing compositional ability
and robustness of the maximum entropy policy in locomo-
tion (Haarnoja et al., 2018a) and robot manipulation tasks
(Haarnoja et al., 2018b). The agent aims to maximize the ex-
pected reward while also maximizing the entropy to succeed
at the task while acting as randomly as possible. Based on
maximum entropy policies, Eysenbach et al. (2018) showed
that the agent is able to develop diverse skills solely by
maximizing an information theoretic objective without any
reward function. For multi-goal and multi-task learning
(Caruana, 1997), the diversity of training sets helps the
agent transfer skills to unseen goals and tasks (Pan et al.,
2010). The variability of training samples mitigates overfit-
ting and helps the model to better generalize (Goodfellow

This paper is based on our 2018 NeurIPS Deep RL workshop
paper (Zhao & Tresp, 2019).
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Figure 1. Robot arm Fetch and Shadow Dexterous hand environment: FetchPush, FetchPickAndPlace, FetchSlide,
HandManipulateEgg, HandManipulateBlock, and HandManipulatePen.

et al., 2016). In our approach, we combine maximum en-
tropy with multi-goal RL to help the agent to achieve unseen
goals by learning uniformly from diverse achieved goals
during training.

We observe that during experience replay the uniformly sam-
pled trajectories are biased towards the behavior policies,
with respect to the achieved goal-states. Consider train-
ing a robot arm to reach a certain point in a space. At the
beginning, the agent samples trajectories using a random
policy. The sampled trajectories are centered around the
initial position of the robot arm. Therefore, the distribution
of achieved goals, i.e., positions of the robot arm, is sim-
ilar to a Gaussian distribution around the initial position,
which is non-uniform. Sampling from such a distribution is
biased towards the current policies. From a Bayesian point
of view (Murphy, 2012), the agent should learn uniformly
from these achieved goals, when there is no prior knowledge
of the target goal distribution.

To correct this bias, we propose a new objective which com-
bines maximum entropy and the multi-goal RL objective.
This new objective uses entropy as a regularizer to encour-
age the agent to traverse diverse goal-states. Furthermore,
we derive a safe lower bound for optimization. To optimize
this surrogate objective, we implement maximum entropy-
based prioritization as a simple yet effective solution.

2. Preliminary
2.1. Settings

Environments: We consider multi-goal reinforcement
learning tasks, like the robotic simulation scenarios pro-
vided by OpenAI Gym (Plappert et al., 2018), where six
challenging tasks are used for evaluation, including push,
slide, pick & place with the robot arm, as well as hand ma-
nipulation of the block, egg, and pen, as shown in Figure 1.
Accordingly, we define the following terminologies for this
specific kind of multi-goal scenarios.

Goals: The goals g are the desired positions and the orienta-
tions of the object. Specifically, we use ge, with e standing
for environment, to denote the real goal which serves as the
input from the environment, in order to distinguish it from
the achieved goal used in Hindsight settings (Andrychowicz
et al., 2017). Note that in this paper we consider the case
where the goals can be represented by states, which leads

us to the concept of achieved goal-state gs, with details
explained below.

States, Goal-States and Achieved Goals: The state s con-
sists of two sub-vectors, the achieved goal-state sg, which
represents the position and orientation of the object being
manipulated, and the context state sc, i.e. s = (sg‖sc),
where ‖ denotes concatenation.

In our case, we define gs = sg to represent an achieved
goal that has the same dimension as the real goal ge from
the environment. The context state sc contains the rest
information about the state, including the linear and angular
velocities of all robot joints and of the object. The real goals
ge can be substituted by the achieved goals gs to facilitate
learning. This goal relabeling technique was proposed by
Andrychowicz et al. (2017) as Hindsight Experience Replay.

Achieved Goal Trajectory: A trajectory consisting solely
of goal-states is represented as τ g. We use τ g to de-
note all the achieved goals in the trajectory τ , i.e., τ g =
(gs0, ..., g

s
T ).

Rewards: We consider sparse rewards r. There is a toler-
ated range between the desired goal-states and the achieved
goal-states. If the object is not in the tolerated range of
the real goal, the agent receives a reward signal -1 for each
transition; otherwise, the agent receives a reward signal 0.

Goal-Conditioned Policy: In multi-goal settings, the agent
receives the environmental goal ge and the state input
s = (sg‖sc). We want to train a goal-conditioned policy to
effectively generalize its behavior to different environmental
goals ge.

2.2. Reinforcement Learning

We consider an agent interacting with an environment. We
assume the environment is fully observable, including a set
of state S, a set of action A, a distribution of initial states
p(s0), transition probabilities p(st+1 | st, at), a reward
function r: S ×A → R, and a discount factor γ ∈ [0, 1].

Deep Deterministic Policy Gradient: For continuous con-
trol tasks, the Deep Deterministic Policy Gradient (DDPG)
shows promising performance, which is essentially an off-
policy actor-critic method (Lillicrap et al., 2015).

Universal Value Function Approximators: For multi-
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goal continuous control tasks, DDPG can be extended by
Universal Value Function Approximators (UVFA) (Schaul
et al., 2015a). UVFA essentially generalizes the Q-function
to multiple goal-states, where the Q-value depends not only
on the state-action pairs, but also on the goals.

Hindsight Experience Replay: For robotic tasks, if the
goal is challenging and the reward is sparse, the agent could
perform badly for a long time before learning anything.
Hindsight Experience Replay (HER) encourages the agent to
learn from whatever goal-states it has achieved. Andrychow-
icz et al. (2017) show that HER makes training possible in
challenging robotic tasks via goal relabeling, i.e., randomly
substituting real goals with achieved goals.

2.3. Weighted Entropy

Guiaşu (1971) proposed weighted entropy, which is an ex-
tension of Shannon entropy. The definition of weighted
entropy is given as

Hw
p = −

K∑

k=1

wkpk log pk, (1)

where wk is the weight of the elementary event and pk is
the probability of the elementary event.

3. Method
In this section, we formally describe our method, includ-
ing the mathematical derivation of the Maximum Entropy-
Regularized Multi-Goal RL objective and the Maximum
Entropy-based Prioritization framework.

3.1. Multi-Goal RL

In this paper, we consider multi-goal RL as goal-conditioned
policy learning (Schaul et al., 2015a; Andrychowicz et al.,
2017; Rauber et al., 2017; Plappert et al., 2018). We denote
random variables by upper case letters and the values of
random variables by corresponding lower case letters. For
example, let Val(X) denote the set of valid values to a
random variable X , and let p(x) denote the probability
function of random variable X .

Consider that an agent receives a goal ge ∈ Val(Ge) at
the beginning of the episode. The agent interacts with the
environment for T timesteps. At each timestep t, the agent
observes a state st ∈ Val(St) and performs an action at ∈
Val(At). The agent also receives a reward conditioned on
the input goal r(st, ge) ∈ R.

We use τ = s1, a1, s2, a2, . . . , sT−1, aT−1, sT to denote a
trajectory, where τ ∈ Val(T ). We assume that the probabil-
ity p(τ | ge,θ) of trajectory τ , given goal ge and a policy

parameterized by θ ∈ Val(Θ), is given as

p(τ | ge,θ) = p(s1)
T−1∏

t=1

p(at | st, ge,θ)p(st+1 | st, at).

The transition probability p(st+1 | st, at) states that the
probability of a state transition given an action is indepen-
dent of the goal, and we denote it with St+1 ⊥⊥ Ge | St, At.
For every τ , ge, and θ, we also assume that p(τ | ge,θ) is
non-zero. The expected return of a policy parameterized by
θ is given as

η(θ) = E

[
T∑

t=1

r(St, G
e) | θ

]

=
∑

ge

p(ge)
∑

τ

p(τ | ge,θ)
T∑

t=1

r(st, g
e).

(2)

Off-policy RL methods use experience replay (Lin, 1992;
Mnih et al., 2015) to leverage bias over variance and poten-
tially improve sample-efficiency. In the off-policy case, the
objective, Equation (2), is given as

ηR(θ) =
∑

τ , ge

pR(τ , ge | θ)
T∑

t=1

r(st, g
e), (3)

whereR denotes the replay buffer. Normally, the trajecto-
ries τ are randomly sampled from the buffer. However, we
observe that the trajectories in the replay buffer are often
imbalanced with respect to the achieved goals τ g . Thus, we
propose Maximum Entropy-Regularized Multi-Goal RL to
improve performance.

3.2. Maximum Entropy-Regularized Multi-Goal RL

In multi-goal RL, we want to encourage the agent to tra-
verse diverse goal-state trajectories, and at the same time,
maximize the expected return. This is like maximizing the
empowerment (Mohamed & Rezende, 2015) of an agent at-
tempting to achieve multiple goals. We propose the reward-
weighted entropy objective for multi-goal RL, which is
given as

ηH(θ) = Hw
p (T g)

= Ep

[
log

1

p(τ g)

T∑

t=1

r(St, G
e) | θ

]
. (4)

For simplicity, we use p(τ g) to represent
∑

ge pR(τ g, ge |
θ), which is the occurrence probability of the goal-state
trajectory τ g . The expectation is calculated based on p(τ g)
as well, so the proposed objective is the weighted entropy
(Guiaşu, 1971; Kelbert et al., 2017) of τ g , which we denote
asHw

p (T g), where the weight w is the accumulated reward∑T
t=1 r(st, g

e) in our case.
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The objective function, Equation (4), has two interpretations.
The first interpretation is to maximize the weighted expected
return, where the rare trajectories have larger weights. Note
that when all trajectories occur uniformly, this weighting
mechanism has no effect. The second interpretation is to
maximize a reward-weighted entropy, where the more re-
warded trajectories have higher weights. This objective
encourages the agent to learn how to achieve diverse goal-
states, as well as to maximize the expected return.

In Equation (4), the weight, log (1/p(τ g)), is unbounded,
which makes the training of the universal function approx-
imator unstable. Therefore, we propose a safe surrogate
objective, ηL, which is essentially a lower bound of the
original objective.

3.3. Surrogate Objective

To construct the safe surrogate objective, we sample the
trajectories from the replay buffer with a proposal distribu-
tion, q(τ g) = 1

Z p(τ
g) (1− p(τ g)). p(τ g) represents the

distribution of the goal trajectories in the replay buffer. The
surrogate objective is given in Theorem 1, which is proved
to be a lower bound of the original objective, Equation (4).

Theorem 1. The surrogate ηL(θ) is a lower bound of the
objective function ηH(θ), i.e., ηL(θ) < ηH(θ), where

ηH(θ) = Hw
p (T g)

= Ep

[
log

1

p(τ g)

T∑

t=1

r(St, G
e) | θ

]
(5)

ηL(θ) = Z · Eq

[
T∑

t=1

r(St, G
e) | θ

]
(6)

q(τ g) =
1

Z
p(τ g) (1− p(τ g)) (7)

Z is the normalization factor for q(τ g). Hw
p (T g) is the

weighted entropy (Guiaşu, 1971; Kelbert et al., 2017), where
the weight is the accumulated reward

∑T
t=1 r(St, G

e), in
our case.

Proof. See Appendix.

3.4. Prioritized Sampling

To optimize the surrogate objective, Equation (6), we cast
the optimization process into a prioritized sampling frame-
work. At each iteration, we first construct the proposal
distribution q(τ g), which has a higher entropy than p(τ g).
This ensures that the agent learns from a more diverse goal-
state distribution. In Theorem 2, we prove that the entropy

with respect to q(τ g) is higher than the entropy with respect
to p(τ g).

Theorem 2. Let the probability density function of goals in
the replay buffer be

p(τ g),where p(τ g
i ) ∈ (0, 1) and

N∑

i=1

p(τ g
i ) = 1. (8)

Let the proposal probability density function be defined as

q(τ g
i ) =

1

Z
p(τ g

i ) (1− p(τ g
i )) , where

N∑

i=1

q(τ g
i ) = 1.

(9)
Then, the proposal goal distribution has an equal or higher
entropy

Hq(T g)−Hp(T g) ≥ 0. (10)

Proof. See Appendix.

3.5. Estimation of Distribution

To optimize the surrogate objective with prioritized sam-
pling, we need to know the probability distribution of a
goal-state trajectory p(τ g). We use a Latent Variable Model
(LVM) (Murphy, 2012) to model the underlying distribu-
tion of p(τ g), since LVM is suitable for modeling complex
distributions.

Specifically, we use p(τ g | zk) to denote the latent-variable-
conditioned goal-state trajectory distribution, which we as-
sume to be Gaussians. zk is the k-th latent variable, where
k ∈ {1, ...,K} and K is the number of the latent variables.
The resulting model is a Mixture of Gaussians(MoG), math-
ematically,

p(τ g | φ) =
1

Z

K∑

i=k

ckN (τ g|µk,Σk), (11)

where each Gaussian,N (τ g|µk,Σk), has its own mean µk

and covariance Σk, ck represents the mixing coefficients,
and Z is the partition function. The model parameter φ in-
cludes all mean µi, covariance Σi, and mixing coefficients
ck.

In prioritized sampling, we use the complementary pre-
dictive density of a goal-state trajectory τ g as the priority,
which is given as

p̄(τ g | φ) ∝ 1− p(τ g | φ). (12)

The complementary density describes the likelihood that a
goal-state trajectory τ g occurs in the replay buffer. A high
complementary density corresponds to a rare occurrence
of the goal trajectory. We want to over-sample these rare
goal-state trajectories during replay to increase the entropy
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Algorithm 1 Maximum Entropy-based Prioritization (MEP)
while not converged do

Sample goal ge ∼ p(ge) and initial state s0 ∼ p(s0)
for steps per epoch do

for steps per episode do
Sample action at ∼ p(at | st, ge,θ) from behavior policy.
Step environment: st+1 ∼ p(st+1 | st, at).
Update replay bufferR.
Construct prioritized sampling distribution:
q(τ g) ∝ (1− p(τ g | φ))p(τ g) with higherHq(T g).
Sample trajectories τ ∼ q(τ g | φ)
Update policy (θ) to max. Eq [r(S,G)] via DDPG, HER.

Update density model (φ).

Figure 2. MEP Algorithm: We update the density model to construct a higher entropy distribution of achieved goals and update the agent
with the more diversified training distribution.

of the training distribution. Therefore, we use the comple-
mentary density to construct the proposal distribution as a
joint distribution

q(τ g) ∝ p̄(τ g | φ)p(τ g)

∝ (1− p(τ g | φ))p(τ g)

≈ p(τ g)− p(τ g)2.

(13)

3.6. Maximum Entropy-Based Prioritization

With prioritized sampling, the agent learns to maximize the
return of a more diverse goal distribution. When the agent
replays the samples, it first ranks all the trajectories with
respect to their proposal distribution q(τ g), and then uses
the ranking number directly as the probability for sampling.
This means that rare goals have high ranking numbers and,
equivalently, have higher priorities to be replayed. Here, we
use the ranking instead of the density. The reason is that the
rank-based variant is more robust since it is neither affected
by outliers nor by density magnitudes. Furthermore, its
heavy-tail property also guarantees that samples will be di-
verse (Schaul et al., 2015b). Mathematically, the probability
of a trajectory to be replayed after the prioritization is:

q(τ g
i ) =

rank(q(τ g
i ))

∑N
n=1 rank(q(τ g

n))
, (14)

where N is the total number of trajectories in the replay
buffer and rank(·) is the ranking function.

We summarize the complete training algorithm in Algo-
rithm 1 and in Figure 2. In short, we propose Maximum
Entropy-Regularized Multi-Goal RL (Section 3.2) to enable
RL agents to learn more efficiently in multi-goal tasks (Sec-
tion 3.1). We integrate a goal entropy term into the normal
expected return objective. To maximize the objective, Equa-
tion (4), we derive a surrogate objective in Theorem 1, i.e.,
a lower bound of the original objective. We use prioritized

sampling based on a higher entropy proposal distribution
at each iteration and utilize off-policy RL methods to maxi-
mize the expected return. This framework is implemented
as Maximum Entropy-based Prioritization (MEP).

4. Experiments
We test the proposed method on a variety of simulated
robotic tasks, see Section 2.1, and compare it to strong
baselines, including DDPG and HER. To the best of our
knowledge, the most similar method to MEP is Prioritized
Experience Replay (PER) (Schaul et al., 2015b). In the
experiments, we first compare the performance improve-
ment of MEP and PER. Afterwards, we compare the time-
complexity of the two methods. We show that MEP im-
proves performance with much less computational time
than PER. Furthermore, the motivations of PER and MEP
are different. The former uses TD-errors, while the latter is
based on an entropy-regularized objective function.

In this section, we investigate the following questions:

1. Does incorporating goal entropy via MEP bring ben-
efits to off-policy RL algorithms, such as DDPG or
DDPG+HER?

2. Does MEP improve sample-efficiency of state-of-the-
art RL approaches in robotic manipulation tasks?

3. How does MEP influence the entropy of the achieved
goal distribution during training?

Our code is available online at https://github.com/
ruizhaogit/mep.git. The implementation uses Ope-
nAI Baselines (Dhariwal et al., 2017) with a backend of
TensorFlow (Abadi et al., 2016).
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Figure 3. Mean success rate with standard deviation in all six robot environments

Table 1. Mean success rate (%) and training time (hour) for all six environments

Push Pick & Place Slide

Method success time success time success time

DDPG 99.90% 5.52h 39.34% 5.61h 75.67% 5.47h
DDPG+PER 99.94% 30.66h 67.19% 25.73h 66.33% 25.85h
DDPG+MEP 99.96% 6.76h 76.02% 6.92h 76.77% 6.66h

Egg Block Pen

Method success time success time success time

DDPG+HER 76.19% 7.33h 20.32% 8.47h 27.28% 7.55h
DDPG+HER+PER 75.46% 79.86h 18.95% 80.72h 27.74% 81.17h
DDPG+HER+MEP 81.30% 17.00h 25.00% 19.88h 31.88% 25.36h

4.1. Performance

To test the performance difference among methods includ-
ing DDPG, DDPG+PER, and DDPG+MEP, we run the
experiment in the three robot arm environments. We use
the DDPG as the baseline here because the robot arm en-
vironment is relatively simple. In the more challenging
robot hand environments, we use DDPG+HER as the base-
line method and test the performance among DDPG+HER,
DDPG+HER+PER, and DDPG+HER+MEP. To combine
PER with HER, we calculate the TD-error of each transition
based on the randomly selected achieved goals. Then we
prioritize the transitions with higher TD-errors for replay.

Now, we compare the mean success rates. Each experiment
is carried out with 5 random seeds and the shaded area repre-
sents the standard deviation. The learning curve with respect
to training epochs is shown in Figure 3. For all experiments,

we use 19 CPUs and train the agent for 200 epochs. After
training, we use the best-learned policy for evaluation and
test it in the environment. The testing results are the mean
success rates. A comparison of the performances along with
the training time is shown in Table 1.

From Figure 3, we can see that MEP converges faster in all
six tasks than both the baseline and PER. The agent trained
with MEP also shows a better performance at the end of the
training, as shown in Table 1. In Table 1, we can also see that
the training time of MEP lies in between the baseline and
PER. It is known that PER can become very time-consuming
(Schaul et al., 2015b), especially when the memory size N
is very large. The reason is that PER uses TD-errors for
prioritization. After each update of the model, the agent
needs to update the priorities of the transitions in the replay
buffer, which is O(logN). In our experiments, we use
the efficient implementation based on the “sum-tree” data
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Figure 4. Number of training samples needed with respect to mean success rate for all six environments (the lower the better)

structure, which can be relatively efficiently updated and
sampled from (Schaul et al., 2015b). To be more specific,
MEP consumes much less computational time than PER.
For example in the robot arm environments, on average,
DDPG+MEP consumes about 1.2 times the training time
of DDPG. In comparison, DDPG+PER consumes about 5
times the training time as DDPG. In this case, MEP is 4
times faster than PER. MEP is faster because it only updates
the trajectory density once per epoch and can easily be
combined with any multi-goal RL methods, such as DDPG
and HER.

Table 1 shows that baseline methods with MEP result in
better performance in all six tasks. The improvement in-
creases by up to 39.34 percentage points compared to the
baseline methods. The average improvement over the six
tasks is 9.15 percentage points. We can see that MEP is a
simple, yet effective method and it improves state-of-the-art
methods.

4.2. Sample-Efficiency

To compare sample-efficiency of the baseline and MEP, we
compare the number of training samples needed for a certain
mean success rate. The comparison is shown in Figure
4. From Figure 4, in the FetchPush-v0 environment,
we can see that for the same 99% mean success rate, the
baseline DDPG needs 273,600 samples for training, while
DDPG+MEP only needs 112,100 samples. In this case,
DDPG+MEP is more than twice (2.44) as sample-efficient
as DDPG. Similarly, in the other five environments, MEP
improves sample-efficiency by factors around one to three.
In conclusion, for all six environments, MEP is able to

improve sample-efficiency by an average factor of two (1.95)
over the baseline’s sample-efficiency.

4.3. Goal Entropy

To verify that the overall MEP procedure works as expected,
we calculated the entropy value of the achieved goal distri-
bution Hp(T g) with respect to the epoch of training. The
experimental results are averaged over 5 different random
seeds. Figure 5 shows the mean entropy values with its
standard deviation in three different environments. From
Figure 5, we can see that the implemented MEP algorithm
indeed increases the entropy of the goal distribution. This
affirms the consistency of the stated theory with the imple-
mented MEP framework.

5. Related Work
Maximum entropy was used in RL by Williams & Peng
(1991) as an additional term in the loss function to encour-
age exploration and avoid local minimums (Mnih et al.,
2016; Wu & Tian, 2016; Nachum et al., 2016; Asadi &
Littman, 2016). A similar idea has also been utilized in the
deep learning community, where entropy loss was used as a
regularization technique to penalize over-confident output
distributions (Pereyra et al., 2017). In RL, the entropy loss
adds more cost to actions that dominate quickly. A higher
entropy loss favors more exploration (Mnih et al., 2016).
Neu et al. (2017) gave a unified view on entropy-regularized
Markov Decision Processes (MDP) and discussed the con-
vergence properties of entropy-regularized RL, including
TRPO (Schulman et al., 2015) and A3C (Mnih et al., 2016).
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Figure 5. Entropy values of the achieved goal distributionHp(T g) during training

More recently, Haarnoja et al. (2017) and Levine (2018)
proposed deep energy-based policies with state conditioned
entropy-based regularization, which is known as Soft-Q
Learning. They showed that maximum entropy policies
emerge as the solution when optimal control is cast as prob-
abilistic inference. Concurrently, Schulman et al. (2017)
showed the connection and the equivalence between Soft-Q
Learning and policy gradients. Maximum entropy policies
are shown to be robust and lead to better initializations for
RL agents (Haarnoja et al., 2018a;b). Based on maximum
entropy polices, Eysenbach et al. (2018) developed an in-
formation theoretic objective, which enables the agent to
automatically discover different sets of skills.

Unlike aforementioned works (Williams & Peng, 1991;
Mnih et al., 2016; Haarnoja et al., 2017), the information
theoretic objective (Eysenbach et al., 2018) uses state, not
actions, to calculate the entropy for distinguishing different
skills. Our work is similar to this previous work (Eysen-
bach et al., 2018) in the sense that we also use the states,
instead of actions, to calculate the entropy term and encour-
age the trained agent to cover a variety of goal-states. Our
method generalizes to multi-goal and multi-task RL (Kael-
bling, 1993; Sutton et al., 1999; Bakker & Schmidhuber,
2004; Sutton et al., 2011; Szepesvari et al., 2014; Schaul
et al., 2015a; Pinto & Gupta, 2017; Plappert et al., 2018).

The entropy term that we used in the multi-goal RL objec-
tive is maximized over goal-states. We use maximum goal
entropy as a regularization for multi-goal RL, which en-
courages the agent to learn uniformly with respect to goals
instead of experienced transitions. This corrects the bias
introduced by the agent’s behavior policies. For example,
the more easily achievable goals are generally dominant in
the replay buffer. The goal entropy-regularized objective
allows the agent to learn to achieve the unknown real goals,
as well as various virtual goals.

We implemented the maximum entropy regularization via
prioritized sampling based on achieved goal-states. We
believe that the most similar framework is prioritized experi-
ence replay (Schaul et al., 2015b). Prioritized experience re-
play was introduced by Schaul et al. (2015b) as an improve-

ment to the experience replay in DQN (Mnih et al., 2015).
It prioritizes the transitions with higher TD-error in the re-
play buffer to speed up training. The prioritized experience
replay is motivated by TD-errors. However, the motivation
of our method comes from information theory–maximum
entropy. Compared to prioritized experience replay, our
method performs superior empirically and consumes much
less computational time.

The intuition behind our method is to assign priority to those
under-represented goals, which are relatively more valuable
to learn from (see Appendix). Essentially, our method sam-
ples goals from an entropy-regularized distribution, rather
than from a true replay buffer distribution, which is biased
towards the behavior policies. Similar to recent work on
goal sampling methods (Forestier et al., 2017; Péré et al.,
2018; Florensa et al., 2018; Zhao & Tresp, 2018; Nair et al.,
2018; Warde-Farley et al., 2018), our aim is to model a goal-
conditioned MDP. In the future, we want to further explore
the role of goal entropy in multi-goal RL.

6. Conclusion
This paper makes three contributions. First, we propose
the idea of Maximum Entropy-Regularized Multi-Goal RL,
which is essentially a reward-weighted entropy objective.
Secondly, we derive a safe surrogate objective, i.e., a lower
bound of the original objective, to achieve stable optimiza-
tion. Thirdly, we implement a novel Maximum Entropy-
based Prioritization framework for optimizing the surrogate
objective. Overall, our approach encourages the agent to
achieve a diverse set of goals while maximizing the expected
return.

We evaluated our approach in multi-goal robotic simulations.
The experimental results showed that our approach improves
performance and sample-efficiency of the agent while keep-
ing computational time under control. More precisely, the
results showed that our method improves performance by 9
percentage points and sample-efficiency by a factor of two
compared to state-of-the-art methods.
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Maximum Entropy-Regularized Multi-Goal Reinforcement Learning
(Appendix)

Rui Zhao 1 2 Xudong Sun 1 Volker Tresp 1 2

A. Proof of Theorem 1
Theorem 1. The surrogate ηL(θ) is a lower bound of the objective function ηH(θ), i.e., ηL(θ) < ηH(θ), where

ηH(θ) = Hw
p (T g) = Ep

[
log

1

p(τ g)

T∑

t=1

r(St, G
e) | θ

]
(1)

ηL(θ) = Z · Eq

[
T∑

t=1

r(St, G
e) | θ

]
(2)

q(τ g) =
1

Z
p(τ g) (1− p(τ g)) (3)

Z is the normalization factor for q(τ g). Hw
p (T g) is the weighted entropy (Guiaşu, 1971; Kelbert et al., 2017), where the

weight is the accumulated reward
∑T

t=1 r(St, G
e) in our case.

Proof.

ηL(θ) = Z · Eq

[
T∑

t=1

r(St, G
e) | θ

]
(4)

=
∑

τg

Z · q(τ g)
T∑

t=1

r(st, g
e) (5)

=
∑

τg

Z

Z
p(τ g)(1− p(τ g))

T∑

t=1

r(st, g
e) (6)

<
∑

τg

−p(τ g) log p(τ g)
T∑

t=1

r(st, g
e) (7)

= Ep

[
log

1

p(τ g)

T∑

t=1

r(St, G
e) | θ

]
(8)

= Hw
p (T g) (9)

= ηH(θ) (10)

In the inequality, we use the property log x < x− 1.
1Faculty of Mathematics, Informatics and Statistics, Ludwig Maximilian University of Munich, Munich, Bavaria, Germany 2Siemens

AG, Munich, Bavaria, Germany. Correspondence to: Rui Zhao <zhaorui.in.germany@gmail.com>.
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B. Proof of Theorem 2
Theorem 2. Let the probability density function of goals in the replay buffer be

p(τ g),where p(τ g
i ) ∈ (0, 1) and

N∑

i=1

p(τ g
i ) = 1. (11)

Let the proposal probability density function be defined as

q(τ g
i ) =

1

Z
p(τ g

i ) (1− p(τ g
i )) , where

N∑

i=1

q(τ g
i ) = 1. (12)

Then, the proposal goal distribution has an equal or higher entropy

Hq(T g)−Hp(T g) ≥ 0. (13)

Proof. For clarity, we define the notations in this proof as pi = p(τ g
i ) and qi = q(τ g

i ).

Note that the definition of Entropy is
Hp =

∑

i

−pi log(pi), (14)

where the ith summand is pi log(pi), which is a concave function. Since the goal distribution has a finite support I , we have
the real-valued vector (p1, . . . , pN ) and ( 1

Z q1, . . . ,
1
Z qN ).

We use Karamata’s inequality (Kadelburg et al., 2005), which states that if the vector (p1, . . . , pN ) majorizes
( 1
Z q1, . . . ,

1
Z qN ) then the summation of the concave transformation of the first vector is smaller than the concave transfor-

mation of the second vector.

In our case, the concave transformation is the weighted information at the ith position -pi log(pi), where the weight is
the probability pi (entropy is the expectation of information). Therefore, the proof of the theorem is also a proof of the
majorizing property of p over q (Petrov).

We denote the proposal goal distribution as

qi = f(pi) =
1

Z
pi(1− pi). (15)

Note that in our case, the partition function Z is a constant.

Majorizing has three requirements (Marshall et al., 1979).

The first requirement is that both vectors must sum up to one. This requirement is already met because
∑

i

pi =
∑

i

qi = 1. (16)

The second requirement is that monotonicity exits. Without loss of generality, we assume the probabilities are sorted:

p1 ≥ p2 ≥ . . . ≥ pN (17)

Thus, if i > j then

f(pi)− f(pj) =
1

Z
pi(1− pi)−

1

Z
pj(1− pj) (18)

=
1

Z
[(pi − pj)− (pi + pj)(pi − pj)] (19)

=
1

Z
(pi − pj)(1− pi − pj) (20)

≥ 0. (21)
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which means that if the original goal probabilities are sorted, the transformed goal probabilities are also sorted,

f(p1) ≥ f(p2) ≥ . . . ≥ f(pN ). (22)

The third requirement is that for an arbitrary cutoff index k, there is

p1 + . . . pk < q1 + . . .+ qk. (23)

To prove this, we have

p1 + . . .+ pk =
p1 + . . .+ pk

1
(24)

=
p1 + . . .+ pk
p1 + . . .+ pN

(25)

≥ f(p1) + ...+ f(pk) (26)

=
1

Z
[p1(1− p1) + ...+ pk(1− pk)] (27)

=
1

Z
[p1 + . . .+ pk − (p21 + . . .+ p2k)] (28)

Note that, we multiply Z ∗ 1 to each side of

Z = p1(1− p1) + . . .+ pN (1− pN ). (29)

Then we have
(p1 + . . .+ pk)Z ∗ 1 ≥ p1 + . . .+ pk − (p21 + . . .+ p2k) ∗ 1. (30)

Now, we substitute the expression of Z and then have

(p1 + . . .+ pk)[p1(1− p1) + . . .+ pN (1− pN )] ≥ [p1 + . . .+ pk − (p21 + . . .+ p2k)] ∗ 1. (31)

We express 1 as a series of terms
∑

i pi, we have

(p1+. . .+pk)[p1(1−p1)+. . .+pN (1−pN )] ≥ [p1+. . .+pk−(p21+. . .+p2k)]∗[(p1+. . .+pk)+(pk+1+. . . pN )]. (32)

We use the distributive law to the right side and have

(p1 + . . .+ pk)[p1(1− p1) + . . .+ pN (1− pN )]

≥[p1 + . . .+ pk] ∗ [(p1 + . . .+ pk) + (pk+1 + . . . pN )]− [(p21 + . . .+ p2k)] ∗ [(p1 + . . .+ pk) + (pk+1 + . . . pN )].
(33)

We move the first term on the right side to the left and use the distributive law then have

(p1 + . . .+ pk)[−1 ∗ (p21 + . . .+ p2N ))] ≥ −[(p21 + . . .+ p2k)] ∗ [(p1 + . . .+ pk) + (pk+1 + . . . pN )]. (34)

We use the distributive law again on the right side and move the first term to the left and use the distributive law then have

(p1 + . . .+ pk)[−1 ∗ (p2k+1 + . . .+ p2N ))] ≥ −[(p21 + . . .+ p2k)] ∗ [(pk+1 + . . . pN )]. (35)

We remove the minus sign then have

(p1 + . . .+ pk)[(p2k+1 + . . .+ p2N ))] ≤ [(p21 + . . .+ p2k)] ∗ [(pk+1 + . . . pN )]. (36)

To prove the inequality above, it suffices to show that the inequality holds true for each associated term of the multiplication
on each side of the inequality.
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Suppose that
i ≤ k < j (37)

then we have
pi > pj . (38)

As mentioned above, the probabilities are sorted in descending order. We have

pip
2
j − p2i pj = pipj(pj − pi) < 0 (39)

then
pip

2
j < p2i pj . (40)

Therefore, we have proved that the inequality holds true for an arbitrary associated term, which also applies when they are
added up.

C. Insights

T
D

-E
rr

o
rs

Complementary Trajectory Density

Figure 1. Pearson correlation between the complementary density p̄(τ g) and TD-errors in the middle of training

To further understand why maximum entropy in goal space facilitates learning, we look into the TD-errors during training.
We investigate the correlation between the complementary predictive density p̄(τ g | φ) and the TD-errors of the trajectory.
The Pearson correlation coefficients, i.e., Pearson’s r (Benesty et al., 2009), between the density p̄(τ g | φ) and the TD-errors
of the trajectory are 0.63, 0.76, and 0.73, for the hand manipulation of egg, block, and pen tasks, respectively. The plot
of the Pearson correlation is shown in Figure 1. The value of Pearson’s r is between 1 and -1, where 1 is total positive
linear correlation, 0 is no linear correlation, and -1 is total negative linear correlation. We can see that the complementary
predictive density is correlated with the TD-errors of the trajectory with an average Pearson’s r of 0.7. This proves that
the agent learns faster from a more diverse goal distribution. Under-represented goals often have higher TD-errors, and
thus are relatively more valuable to learn from. Therefore, it is helpful to maximize the goal entropy and prioritize the
under-represented goals during training.
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Abstract—Aiming at a comprehensive and concise tutorial
survey, recap of variational inference and reinforcement learning
with Probabilistic Graphical Models are given with detailed
derivations. Reviews and comparisons on recent advances in deep
reinforcement learning are made from various aspects. We offer
detailed derivations to a taxonomy of Probabilistic Graphical
Model and Variational Inference methods in deep reinforcement
learning, which serves as a complementary material on top of
the original contributions.

Keywords—Probabilistic Graphical Models; Variational Infer-
ence; Deep Reinforcement Learning

I. INTRODUCTION

Despite the recent successes of Reinforcement Learning,
powered by Deep Neural Networks, in complicated tasks like
games [1] and robot locomotion [2], as well as optimization
tasks like Automatic Machine Learning [3]. The field still
faces many challenges including expressing high dimensional
state and policy, exploration in sparse reward, etc. Probabilistic
Graphical Model and Variational Inference offers a great tool
to express a wide spectrum of trajectory distributions as well as
conducting inference which can serve as a control method. Due
to the emerging popularity, we present a comprehensive and
concise tutorial survey paper with the following contributions:

• We provide Probabilistic Graphical Models for many
basic concepts of Reinforcement Learning, which is
rarely covered in literature. We also provide Probabilistic
Graphical Models to some recent works on Deep Rein-
forcement Learning [4], [5] which does not exist in the
original contributions.

• We cover a taxonomy of Probabilistic Graphical Model
and Variational Inference [6] methods used in Deep
Reinforcement Learning and give detailed derivations to
many of the critical equations, which is not given in
the original contributions. Together with the recap of
variational inference and deep reinforcement learning, the
paper serves as a self-inclusive tutorial to both beginner
and advanced readers.

A. Organization of the paper

In section I-B, we first introduce the fundamentals of
Probabilistic Graphical Models and Variational Inference, then
we review the basics about reinforcement learning by con-
necting probabilistic graphical models (PGM) in section II-A,
II-B, II-C, as well as an overview about deep reinforcement
learning, accompanied with a comparison of different methods
in section II-D. In section III-A, we discuss how undirected
graph could be used in modeling both the value function and
the policy, which works well on high dimensional discrete state
and action spaces. In section III-B, we introduce the directed
acyclic graph framework on how to treat the policy as posterior
on actions, while adding many proofs that does not exist
in the original contributions. In section III-C, we introduce
works on how to use variational inference to approximate the
environment model, while adding graphical models and proofs
which does not exist in the original contributions.

B. Prerequisite on Probabilistic Graphical Models and Vari-
ational Inference, Terminologies and Conventions

We use capital letter to denote a Random Variable (RV),
while using the lower case letter to represent the realization.
To avoid symbol collision of using A to represent advantage in
many RL literature, we use Aact explicitly to represent action.
We use (B ⊥⊥ C) | A to represent B is conditionally indepen-
dent from C, given A, or equivalently p(B|A,C) = p(B|A)
or p(BC|A) = P (B|A)P (C|A). Directed Acyclic Graphs
(DAG) [7] as a PGM offers an instinctive way of defining fac-
torized joint distributions of RV by assuming the conditional
independence [7] through d-separation [7]. Undirected Graph
including Markov Random Fields also specifies the conditional
independence with local Markov property and global Markov
property [8].

Variational Inference (VI) approximates intractable posterior
distribution p(z | x) = 1∫

z
′ p(z′ )p(x|z′ )dz′ p(z)p(x | z) with

latent variable z specified in a probabilistic graphical model,
by a variational proposal posterior distribution qφ(z | x),
characterized by variational parameter φ. By optimizing the
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log p(x)

=Eq [log p(x | z)]− Eq
[
log

qφ(z | x)

p(z)

]
+ Eq

[
log

qφ(z | x)

p(z | x)

]

=−DKL(qφ(z|x)||p(x, z))− Eq [log p(z|x)] +

Eq log qφ(z|x)

=− F (φ, θ) +Hq(p)−H(q)

=ELBO(φ, θ) +DKL(qφ(z | x)||p(z | x)) (1)

Evidence Lower Bound (ELBO) [6], VI assigns the values to
observed and latent variables at the same time. VI is widely
used in Deep Learning Community like variational resampling
[9]. VI is also used in approximating the posterior on the
weights distribution of neural networks for Thompson Sam-
pling to tackle the exploration-exploitation trade off in bandit
problems [10], as well as approximating on the activations
distribution like Variational AutoEncoder [11].

As a contribution of this paper, we summarize the relation-
ship of evidence log p(x), KL divergence DKL, cross entropy
Hq(p), entropy H(q), free energy F (φ, θ) and ELBO(φ, θ)
in Equation (1).

II. REINFORCEMENT LEARNING AND DEEP
REINFORCEMENT LEARNING

A. Basics about Reinforcement Learning with graphical model

Agent at St

Environment

Action at ∼ π(a|St)State St+1 Reward Rt

Fig. 1. Concept of Reinforcement Learning

1) RL Concepts, Terminology and Convention: As shown
in Figure 1, Reinforcement Learning (RL) involves optimizing
the behavior of an agent via interaction with the environment.
At time t, the agent lives on state St, By executing an action at
according to a policy [12] π(a|St), the agent jumps to another
state St+1, while receiving a reward Rt. Let discount factor γ
decides how much the immediate reward is favored compared
to longer term return, with which one could also allow
tractability in infinite horizon reinforcement learning [12], as
well as reducing variance in Monte Carlo setting [13]. The
goal is to maximize the accumulated rewards, G =

∑T
t=0 γ

tRt
which is usually termed return in RL literature.

For simplicity, we interchangeably use two conventions
whenever convenient: Suppose an episode last from t = 0 : T ,
with T →∞ correspond to continuous non-episodic reinforce-
ment learning. We use another convention of t ∈ {0, · · · ,∞}
by assuming when episode ends, the agent stays at a self
absorbing state with a null action, while receiving null reward.

By unrolling Figure 1, we get a sequence of state, action and
reward tuples {(St, Aactt , Rt)} in an episode, which is coined

trajectory τ [14]. Figure 2 illustrates part of a trajectory in one
rollout. The state space S and action space A, which can be
either discrete or continuous and multi-dimensional, are each
represented with one continuous dimension in Figure 2 and
plotted in an orthogonal way with different colors, while we
use the thickness of the plate to represent the reward space R.

t

St

at ∼ π(a|st)

S

rt = 0

R

at+N

st+N

rt+N 6= 0

rt+2N = 0

A

Fig. 2. Illustration of State, Action and Reward Trajectory

2) DAGs for (Partially Observed ) Markov Decision Pro-
cess: Reinforcement Learning is a stochastic decision process,
which usually comes with three folds of uncertainty. That is,
under a particular stochastic policy characterized by π(a|s) =
p(a|s), within a particular environment characterized by state
transition probability p(st+1|st, a) and reward distribution
function p(rt|st, at), a learning agent could observe different
trajectories with different unrolling realizations. This is usually
modeled as a Markov Decision Process [12], with its graphical
model shown in Figure 3, where we could define a joint
probability distribution over the trajectory of state , action and
reward RVs. In Figure 3, we use dashed arrows connecting
state and action to represent the policy, upon fixed policy π,
we have the trajectory likelihood in Equation (2)

p(τ) = p(s0)
T∏

t=0

p(st+1|st, at)p(rt|st, at)π(at|st) (2)

Upon observation of a state st in Figure 3, the action at the
time step in question is conditionally independent with the
state and action history Et = {S0, A

act
0 , · · · , St−1}, which

could be denoted as (Aactt ⊥⊥ Et) | St. A more realistic model,

Aact
t

Rt Rt+1 Rt+2

Aact
t+1

St St+1 St+2

Aact
t+2

p(at|st)

p(rt|st, at)

p(st+1|st, at)

Fig. 3. Directed Acyclic Graph For Markov Decision Process

however, is the Partially Observable Markov Decision process
[15], with its DAG representation shown in Figure 4, where
the agent could only observe the state partially by observing
Ot through a non invertible function of the next state St+1 and
the action at, as indicated the Figure by p(ot|st+1, at), while
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the distributions on other edges are omitted since they are the
same as in Figure 3. Under the graph specification of Figure
4, the observable Ot is no longer Markov, but depends on the
whole history, however, the latent state St is still Markov. For
POMDP, belief state bt is defined at time t, which is associated
with a probability distribution bt(st) over the hidden state
St, with

∑
S b(St) = 1, where state S takes value in latent

state space S [15]. The latent state distribution associated with

Aact
t−1Ot−1

Ot

Ot+1

Aact
t

St−1

St

St+1Aact
t+1

Rt−1

Rt

Rt+1

p(ot|st+1, at)

Fig. 4. Probabilistic Graphical Model for POMDP

belief state can be updated in a Bayesian way in Equation (6).

B. Value Function, Bellman Equation, Policy Iteration

Define state value function of state s ∈ S in Equation
(7), where the corresponding Bellman Equation is derived in
Equation (8).

V π(s) = Eπ,ε[

∞∑

i=0

γiRt+i(St+i, A
act
t+i) | ∀St = s] (7)

=Eπ,ε[Rt(St, A
act
t ) + γ

∞∑

i=1

γ(i−1)Rt+i(St+i, A
act
t+i)]

=Eπ,ε[Rt(St, A
act
t ) + γ

∞∑

i′=0

γi
′
Rt+1+i′ (St+1+i′ , A

act
t+1+i′ )]

=Eπ,ε[Rt(St, A
act
t ) + γV π(St+1)] (8)

where St+i ∼ p(st+i+1|st+i, at+i) takes value from S,
Aactt+i ∼ π(a|St+i+1) taking value from A, and we have used
the π and ε in the subscript of the expectation E operation
to represent the probability distribution of the policy and the

bt+1(st+1)

=p(st+1 | ot, at, bt)

=
p(st+1, ot, at, bt)

p(ot, at, bt)

p(st+1, at, bt)

p(st+1, at, bt)

=p(ot | at, st+1, bt)
p(st+1 | at, bt)
p(ot | at, bt)

(3)

=p(ot | st+1, at)

∑
st
p(st, st+1 | at, bt)
p(ot | at, bt)

(4)

=p(ot | st+1, at)

∑
st
p(st+1 | st, at, bt)p(st | at, bt)

p(ot | at, bt)
(5)

=p(ot | st+1, at)

∑
st
p(st+1 | st, at)p(st | at, bt)

p(ot | at, bt)
(6)

environment (including transition probability and reward prob-
ability) respectively. State action value function [12] is defined
in Equation (9), where in Equation (10), its relationship to the
state value function is stated.

Qπ(s, a) (∀St = s,Aactt = a)

=Eπ,ε[Rt(St = s,Aactt = a) +

∞∑

i=1

γiRt+i(St+i, A
act
t+i)] (9)

=Eπ,ε[Rt(St = s,Aactt = a) + γV π(St+1)] (10)

Combining Equation (8) and Equation (9), we have

V (s) =
∑

a

π(a|s)Q(s, a) (11)

Define optimal policy [12] to be

π∗ = argmax
π

V π(s),∀s ∈ S

= argmax
π

Eπ[Rt + γV π(St+1)] (12)

Taking the optimal policy π∗ into the Bellman Equation in
Equation (8), we have

V π
∗
(s) = Eπ∗,ε

[
Rt(s,A

act
t ) + γV π

∗
(St+1)

]
(13)

Taking the optimal policy π∗ into Equation (9), we have

Qπ
∗
(s, a) = Eπ∗,ε[Rt(s, a) +

∞∑

i=1

γiRt+i(St+i, A
act
t+i)] (14)

Based on Equation (14) and Equation (13), we get

V π
∗
(s) = max

a
Qπ
∗
(s, a) (15)

and

Qπ
∗
(s, a) = Eε,π∗

[
Rt(s, a) + γmax

ā
Qπ
∗
(St+1, ā)

]
(16)

For learning the optimal policy and value function, General
Policy Iteration [12] can be conducted, as shown in Figure
5, where a contracting process [12] is drawn. Starting from
initial policy π0, the corresponding value function V π0 could
be estimated, which could result in improved policy π1 by
greedy maximization over actions. The contracting process is
supposed to converge to the optimal policy π∗.

As theoretically fundamentals of learning algorithms, Dy-
namic programming and Monte Carlo learning serve as two ex-
tremities of complete knowledge of environment and complete
model free [12], while time difference learning [12] is more
ubiquitously used, like a bridge connecting the two extremities.
Time difference learning is based on the Bellman update error
δt = Q(st, at)−

(
Rt(s, a) + γmax

a
Q(st+1, a)

)
.

C. Policy Gradient and Actor Critic

Reinforcement Learning could be viewed as a functional op-
timization process. We could define an objective function over
a policy πθ(a|s), as a functional, characterized by parameter
θ, which could correspond to the neural network weights, for
example.
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Fig. 5. General Policy Iteration

η(s) =
∑

k=0

γkPπ(s0 → s, k + 1) (17)

= h(s) +
∑

s̄,a

γη(s̄)πθ(a|s̄)P (s|s̄, a) (18)

Suppose all episodes start from an auxiliary initial state s0,
which with probability h(s), jumps to different state s ∈ S
without reward. h(s) characterizes the initial state distribution
which only depends on the environment. Let η(s) represent
the expected number of steps spent on state s, which can
be calculated by summing up the γ discounted probability
Pπ(s0 → s, k + 1) of entering state s with k + 1 steps
from auxiliary state s0, as stated in Equation (17), which
can be thought of as the expectation of γk conditional on
state s. In Equation (18), the quantity is calculated by either
directly starting from state s, which correspond to k = 0 in
Equation (17), or entering state s from state s̄ with one step,
corresponding to k + 1 ≥ 2 in Equation (17).

For an arbitrary state s ∈ S, using s
′

and s
′′

to repre-
sent subsequent states as dummy index, the terms in square
brackets in Equation (22) are simply Equation (21) with a and
s
′

replaced by a
′

and s
′′

. Since ∇θV π(θ)(s∞) = 0, Equation
(22) could be written as Equation (23), where sk represent the
state of k steps after s and Pπ(s → sk, k) already includes
integration of intermediate state sk−1, . . . s1 before reaching
state sk.

∇θV π(θ)(s) =
∑

a

∇θπθ(a|s)Qπ(θ)(s, a)+

∑

k=1

∑

sk

∑

ak

γkPπ(s→ sk, k)∇θπθ(ak|sk)Qπ(θ)(sk, ak)

(23)

Let objective function with respect to policy be defined to
be the value function starting from auxiliary state s0 as in
Equation (24).

J(πθ) = V π(s0) = Eπ,ε

∞∑

t=0

γtRt(S0 = s) (24)

The optimal policy could be obtained by gradient accent
optimization, leading to the policy gradient algorithm [12],

∇θV π(θ)(s) = ∇θ
[∑

a

Qπ(θ)(s, a)πθ(a|s)
]

(19)

=
∑

a

[
∇θQπ(θ)(s, a)πθ(a|s) +∇θπθ(a|s)Qπ(θ)(s, a)

]

=
∑

a

∇θ


∑

s′ ,R

P (s
′
, R|s, a)

(
R+ γV π(θ)(s

′
)
)

πθ(a|s)

+
∑

a

∇θπθ(a|s)Qπ(θ)(s, a) (20)

=
∑

a

∑

s′

γP (s
′ |s, a)∇θV π(θ)(s

′
)πθ(a|s)+

∑

a

∇θπθ(a|s)Qπ(θ)(s, a) (21)

=
∑

a

∇θπθ(a|s)Qπ(θ)(s, a) +
∑

a

∑

s′

γP (s
′ |s, a)πθ(a|s)


∑

a′

∑

s′′

γP (s
′′ |s′ , a′)∇θV π(θ)(s

′′
)πθ(a

′ |s′)+

∑

a′

∇θπθ(a
′ |s′)Qπ(θ)(s

′
, a
′
)


 (22)

as in Equation (29).

∇θJ(πθ) = ∇θV π(s0)

=
∑

k=0

∑

sk

∑

ak

γkPπ(s0 → sk, k)∇θπθ(ak|sk)Qπ(θ)(sk, ak)

=
∑

s

∑

a

η(s)∇θπθ(a|s)Qπ(θ)(s, a) (25)

=

∑
s η(s)∑
s η(s)

∑

s

∑

a

η(s)∇θπθ(a|s)Qπ(θ)(s, a) (26)

=
∑

s̄

η(s̄)
∑

s

∑

a

µ(s)∇θπθ(a|s)Qπ(θ)(s, a) (27)

=
∑

s̄

η(s̄)
∑

s

∑

a

µ(s)
πθ(a|s)
πθ(a|s)

∇θπθ(a|s)Qπ(θ)(s, a) (28)

∝Eπ
[∇θπθ(A|S)

πθ(A|S)
Q̂π(θ)(S,A)

]
(29)

The policy gradient could be augmented to include zero
gradient baseline b(s), with respect to objective function J(πθ)
in Equation (28), as a function of state s, which does not
include parameters for policy θ, since

∑
a∇θπθ(a|s) = 0. To

reduce variance of the gradient, the baseline is usually chosen
to be the state value function estimator V̂w(s) to smooth out
the variation of Q(s, a) at each state, while V̂w(s) is updated
in a Monte Carlo way by comparing with Q̂πθ (S,A) = Gt.

The actor-critic algorithm [12] decomposes Gt− Vw(st) to
be Rt + γVw(st+1)− Vw(st), so bootstrap is used instead of
Monte Carlo.
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D. Basics of Deep Reinforcement Learning

Deep Q learning [1] makes a breakthrough in using neural
network as the functional approximator for value function on
complicated tasks. It solves the transition correlation problem
by random sampling from a replay memory. Specifically, the
reinforcement learning is transformed in a supervised learning
task by fitting on the target Rt + γmax

a
Q(st+1, a) from the

replay memory with state st as input. However, the target
can get drifted easily which leads to unstable learning. In
[1], a target network is used to provide a stable target for
the updating network to be learned before getting updated
occasionally. Double Deep Q learning [16], however, solves
the problem by having two Q network and update the param-
eters in a alternating way. We review some state of art deep
reinforcement learning algorithms from different aspects:

1) Off Policy methods: Except for Deep Q Learning [1]
mentioned above, DDPG [17] extends Deterministic Policy
Gradient (DPG) [18] with deep neural network functional
approximator, which is an actor-critic algorithm and works
well in continuous action spaces.

2) On Policy methods: A3C [19] stands out in the asyn-
chronous methods in deep learning [19] which can be run
in parallel on a single multi-core CPU. Trust Region Pol-
icy Optimization [2] and Proximal Policy Optimization [20]
assimilates the natural policy gradient, which use a local
approximation to the expected return. The local approxima-
tion could serve as a lower bound for the expected return,
which can be optimized safely subject to the KL divergence
constraint between two subsequent policies, while in practice,
the constraint is relaxed to be a regularization.

3) Goal based Reinforcement Learning: In robot manipu-
lation tasks, the goal could be represented with state in some
cases [14]. Universal Value Function Approximator (UVFA)
[21] incorporate the goal into the deep neural network, which
let the neural network functional approximator also generalize
to goal changes in tasks, similar to Recommendation System
[22]. Work of this direction include [23], [14], for example.

4) Replay Memory Manipulation based Method: Replay
memory is a critical component in Deep Reinforcement Learn-
ing, which solves the problem of correlated transition in one
episode. Beyond the uniform sampling of replay memory in
Deep Q Network [1], Prioritized Experience Replay [24] im-
proves the performance by giving priority to those transitions
with bigger TD error, while Hindsight Experience Replay
(HER) [23] manipulate the replay memory with changing
goals to transition so as to change reward to promote explo-
ration. Maximum entropy regularized multi goal reinforcement
learning [14] gives priority to those rarely occurred trajectory
in sampling, which has been shown to improve over HER [14].

5) Surrogate policy optimization: Like surrogate model
used in Bayesian Optimization [25], lower bound surrogate
is also used in Reinforcement Learning. Trust Region Policy
Optimization (TRPO) [2] is built on the identity from [26]
in Equation (30), where ηπnew(s) means the state visitation
frequency under policy πnew and advantage Aπ

old

(at, st) =

J(πnew) = J(πold) +
∑

s

ηπnew(s)
∑

a

πnew(a|s)Aπold(a, s)

(30)

Lπold(πnew)

=J(πold) +
∑

s

ηπold(s)
∑

a

πnew(a|s)Aπold(at, st) (31)

Qπ
old

(at, st) − V π
old

(st). Based on Policy Advantage [26]
Aπold,ηold(πnew) =

∑
s ηπold(s)

∑
a π

new(a|s)Aπold(a, s),
a local approximation Lπold(πnew) to Equation (30) can
be defined in Equation (31), based on which, a surrogate
function M(πnew, πold) is defined in Equation (32) that
minorizes J(πnew) at πold, where Dmax

KL (πold, πnew) =
max
s
DKL(πold(a|s), πnew(a|s)) is the maximum KL diver-

gence, so MM [2] algorithm could be used to improve the
policy, leading to the trust region method [2].

TABLE I
COMPARISON OF DEEP REINFORCEMENT LEARNING METHODS: ”S”

MEANS STATE AND ”A” MEANS ACTION, WHERE ”C” MEANS
CONTINUOUS, ”D” MEANS DISCRETE. ”STANDALONE” MEANS WHETHER

THE ALGORITHM WORK INDEPENDENTLY OR NEEDS TO BE COMBINED
WITH ANOTHER LEARNING ALGORITHM. ”VAR” MEANS WHICH

PROBABILITY THE VARIATIONAL INFERENCE IS APPROXIMATING, ”P”
MEANS WHETHER THE METHOD IS ON POLICY OR OFF POLICY. ”NA”

MEANS NOT APPLICABLE

Algorithm S A standalone var p
Deep Q c d y na off
A3C c c/d y na on
TRPO/PPO c c/d y na on
DDPG c c y na off
Boltzmann d d y na on
VIME c c n pθ(st+1|st, at) na
VAST c d n p(st|ot−k) na
SoftQ c c/d y p(at|st) on

III. TAXONOMY OF PGM AND VI IN DEEP
REINFORCEMENT LEARNING

Despite the success of deep reinforcement learning in many
talks, the field still faces some critical challenges. One prob-
lem is exploration with sparse reward. In complicated real
environment, an agent has to explore for a long trajectory
before it can get any reward as feedback. Due to lack of
enough rewards, traditional Reinforcement Learning methods

M(πnew, πold)

=Lπold(πnew)−
4max
a,s
|Aπold(s, a)|γ
1− γ2

Dmax
KL (πold, πnew)

(32)
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performs poorly, which lead to a lot of recent contributions in
the exploration methods. Another challenge is how to represent
policy in extremely large state and action spaces. Furthermore,
sometimes it is beneficial to have multimodal behavior for
a agent when some trajectory might be equivalent to other
trajectories and we want to learn all of them.

In this section, we give detailed explanation on how graph-
ical model and variational inference could be used to model
and optimize the reinforcement learning process under these
challenges and form a taxonomy of these methods.

Together with the deep reinforcement learning methods
mentioned in section II-D, we make a comparison of them
in Table I.

A. Policy and value function with undirected graphs

We first discuss the application of undirected graphs in
deep reinforcement learning, which models joint distribution
of variables with cliques [7]. In [27], the authors use Restricted
Boltzmann Machine (RBM) [8], which has nice property
of tractable factorized posterior distribution over the latent
variables conditioned on observed variables. To deal with
MDPs of large state and action spaces, they model the state-
action value function with the negative free energy of a
Restricted Boltzmann Machine. Specifically, the visible states
of the Restricted Boltzmann Machine [27] consists of both
state s and action a binary variables, as shown in Figure 6,
where the hidden nodes consist of L binary variables, while
state variables si are dark colored to represent it can be
observed and actions aj are light colored to represent it need
to be sampled. Together with the auxiliary hidden variables,
the undirected graph defines a joint probability distribution
over state and action pairs, which defines a stochastic policy
network that could sample actions out for on policy learning.
Since it is pretty easy to calculate the derivative of the
free energy F (s, a) with respect to the coefficient wk,j of
the network, one could use temporal difference learning to
update the coefficients in the network. Thanks to properties
of Boltzmann Machine, the conditional distribution of action
over state p(a|s), which could be used as a policy, is still
Boltzmann distributed as in Equation (33), governed by the
free energy F (a, s), where Z(s) is the partition function [7]
and the negative free energy to approximate the state action
value function Q(s, a). By adjusting the temperature T , one
could also change between different exploration strength.

si si+1 aj aj+1 s,a ∈ {0, 1}D

hk+1 hk+2 hk+3 h ∈ {0, 1}L

F (s, a)w
i,
1

w
j+

1
,3

Fig. 6. Restricted Boltzmann Machine Value and Policy

p(a|s) = 1/Z(s)e−F (s,a)/T = 1/Z(s)eQ(s,a)/T (33)

A few steps of MCMC sampling [7] could be used to sample
actions, as an approximation of the policy, which can be fed
into a time difference learning method like SARSA [12], to

Aact
t−1

Ot−1 Ot Ot+1

Aact
t

St−1 St St+1

Aact
t+1

exp (r(st−1, at−1)) p(Ot = 1|st, at)

p(st+1|st, at)

Fig. 7. Optimal Policy as posterior on actions: p(at|st, Ot:T = 1)

update the state value function Q(s, a)’s estimation. Such an
on-policy process has been shown to be empirically effective
in the large state actions spaces [27].

B. Variational Inference on ”optimal” Policies

1) policy as ”optimal” posterior: The Boltzmann Machine
defined Product of Expert Model in [27] works well for large
state and action spaces, but are limited to discrete specifically
binary state and action variables. For continuous state and
action spaces, in [28], the author proposed deep energy based
models with Directed Acyclic Graphs (DAG) [7], which we
re-organize in a different form in Figure 7 with annotations
added. The difference with respect to Figure 3 is that, in Figure
7, the reward is not explicit expressed in the directed graphical
model. Instead, an auxilliary binary Observable O is used to
define whether the corresponding action at the current step
is optimal or not. The conditional probability of the action
being optimal is p(Ot = 1|st, at) = exp(r(st, at)), which
connects conditional optimality with the amount of award
received by encouraging the agent to take highly rewarded
actions in an exponential manner. Note that the reward here
must be negative to ensure the validity of probability, which
does not hurt generality since reward range can be translated
[13].

The Graphical Model in Figure 7 in total defines the
trajectory likelihood or the evidence in Equation (34):

p(τ) =

[
p(s1)

∏

t

p(st+1|st, at)
]

exp

(∑

t

r(st, at)

)
(34)

.
By doing so, the author is forcing a form of functional

expression on top of the conditional independence structure of
the graph by assigning a likelihood. In this way, calculating the
optimal policy of actions distributions becomes an inference
problem of calculating the posterior p(at|st, Ot:T = 1), which
reads as, conditional on optimality from current time step
until end of episode, and the current current state to be st,
the distribution of action at, and this posterior corresponds to
the optimal policy. Observing the d-separation from Figure 7,
O1:t−1 is conditionally independent of at given st, (O1:t−1 ⊥⊥
Aactt ) | St, so p(at|st, O1:t−1, Ot:T ) = p(at|st, Ot:T )

2) Message passing for exact inference on the posterior:
In this section, we give detailed derivation on conducting
exact inference on the policy posterior which is not given

107



p(at|st, Ot:T = 1)

=
p(at, st, Ot:T = 1)

p(st, Ot:T = 1)

=
p(Ot:T = 1|at, st)p(at, st)

p(st, Ot:T = 1)

=
p(Ot:T = 1|at, st)p(at|st)p(st)∫
at′
p(st, a

′
t, Ot:T = 1)d{a′t}

=
p(Ot:T = 1|at, st)p(at|st)p(st)∫

a
′
t
p(Ot:T = 1|at′, st)p(at′|st)p(st)d{a′t}

=
p(Ot:T = 1|at, st)p(at|st)∫

a
′
t
p(Ot:T = 1|at′, st)p(at′|st)d{a′t}

=
β(at, st)∫

a
′
t
β(a

′
t, st)d{a

′
t}

=
β(at, st)

β(st)
(35)

in [13]. Similar to the forward-backward message passing
algorithm [7] in Hidden Markov Models [7], the posterior
p(at|st, Ot:T = 1) could also be calculated by passing
messages. We offer a detailed derivation of the decomposi-
tion of the posterior p(at|st, Ot:T = 1) in Equation (35),
which is not available in [13]. In Equation (35), we define
message β(at, st) = p(Ot:T = 1|at, st)p(at|st) and message
β(st) =

∫
a
′
t
β(a

′
t, st)d{a

′
t}. If we consider p(at|st) as a prior

with a trivial form of uniform distribution [13], the only policy
related term becomes p(Ot:T = 1|at, st).

In contrast to HMM, here, only the backward messages are
relevant. Additionally, the backward message β(at, st) here
is not a probability distribution as in HMM, instead, is just a
probability. In Figure 7, the backward message β(at, st) could
be decomposed recursively. Since in [13] the author only give
the conclusion without derivation, we give a detailed derivaion
of this recursion in Equation (36). The recursion in Equation
(36) start from the last time point T of an episode.

3) Connection between Message Passing and Bellman
equation: If we define Q function in Equation (37) and V
function in Equation (38)

Q(st, at) = log(β(at, st)) (37)

then the corresponding policy could be written as Equation
(39).

π(at|st) = p(at|st, Ot:T = 1) = exp(Q(st, at)− V (st))
(39)

Taking the logrithm of Equation (36), we get Equation (40)
which reduces to the risk seeking backup in Equation (41) as
mentioned in [13]:

Q(st, at) = r(st, at) + logEst+1∼p(st+1|st,at)[exp(V (st+1))]
(41)

β(st, at)

=p(Ot = 1, Ot+1:T = 1|st, at)

=

∫
p(Ot = 1, Ot+1:T = 1, st, at, st+1, at+1)d{st+1, at+1}

p(st, at)

=

∫
p(Ot+1:T = 1, st+1, at+1, Ot = 1|st, at)d{st+1, at+1}

=

∫
p(Ot+1:T = 1, st+1, at+1|st, at)p(Ot = 1|st, at)

d{st+1, at+1} ((Ot+1:T , St+1, At+1 ⊥⊥ Ot) | St, At)

=

∫
p(Ot+1:T = 1, st+1, at+1)

p(st+1, at+1)

p(st+1, st, at)

p(st, at)

p(Ot = 1|st, at)d{st+1, at+1}

=

∫
p(Ot+1:T = 1|st+1, at+1)p(st+1|st, at)p(Ot = 1|st, at)

d{st+1, at+1}

=

∫
β(st+1)p(st+1|st, at)p(Ot = 1|st, at)dst+1 (36)

V (st) = log β(st) = log

∫
β(st, at)dat

= log

∫
exp(Q(st, at))dat ≈ max

at
Q(st, at) (38)

The mathematical insight here is that if we define the
messages passed on the Directed Acyclic Graph in Figure 7,
then message passing correspond to a peculiar version Bellman
Equation like backup, which lead to an unwanted risk seeking
behavior [13]: when compared to Equation (10), the Q function
here is taking a softmax instead of expectation over the next
state.

4) Variational approximation to ”optimal” policy: Since
the exact inference lead to unexpected behavior, approximate
inference could be used. The optimization of the policy could
be considered as a variational inference problem, and we
use the variational policy of the action posterior distribution
q(at|st), which could be represented by a neural network, to
compose the proposal variational likelihood of the trajectory
as in Equation (42): where the initial state distribution p(s1)
and the environmental dynamics of state transmission is kept

log(β(st, at))

= log

∫
β(st+1)p(st+1|st, at)p(Ot = 1|st, at)dst+1

= log

∫
exp[r(st, at) + V (st+1)]p(st+1|st, at)dst+1

= r(st, at) + log

∫
exp(V (st+1))p(st+1|st, at)dst+1 (40)
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q(τ) = p(s1)
∏

t

[p(st+1|st, at)q(at|st)] (42)

log(p(O1:T ))

= log

∫
p(O1:T = 1, s1:T , a1:T )

q(s1:T , a1:T )

q(s1:T , a1:T )
ds1:T da1:T

= logEq(s1:T ,a1:T )
p(O1:T = 1, s1:T , a1:T )

q(s1:T , a1:T )

≥Eq(s1:T ,a1:T )[log p(O1:T = 1, s1:T , a1:T )− log q(s1:T , a1:T )]
(43)

=−DKL(q(τ)|p(τ)) (44)

=Eq(s1:T ,a1:T )[
∑

t=1:T

[r(st, at)− log q(at|st)]]

=
∑

t=1:T

Est,at [r(st, at) +H(π(at|st))] (45)

intact. Using the proposal trajectory as a pivot, we could derive
the Evidence Lower Bound (ELBO) of the optimal trajectory
as in Equation (43), which correspond to an interesting ob-
jective function of reward plus entropy return, as in Equation
(45).

5) Examples: In [28], the state action value function is
defined in Equation (46). and a soft version of Bellman update
similar to Q Learning [12] is carried out, which lead to policy
improvement with respect to the corresponding functional
objective in Equation (47). Setting policy as Equation (39)
lead to policy improvement. We offer a detailed proof for a
key formula in Equation (48), which is stated in Equation
(19) of [28] without proof. In Equation (48), we use π(·|s) to
implicitly represent π(a|s) to avoid symbol aliasing whenever
necessary. For the rest of the proof, we invite the reader to read
the appendix of [28]. Algorithms of the this kind of maximum
entropy family also include Soft Actor Critic [29].

Qπsoft(s, a) = r0 +Er∼π,s0=s,a0=a[

∞∑

t=1

γt(rt +αH(π(.|st)))]

(46)

J(π)

=
∑

t

E(st,at)∼ρπ

∞∑

l=t

γl−tE(sl,al)[r(sl, al)+

αH(π(.|sl))|st, at]]
=
∑

t

E(st,at)∼ρπ [Qπsoft(st, at) + αH(π(.|st))] (47)

H(π(·|s)) + Ea∼π[Qπsoft(s, a)]

=−
∫

a

π(a|s)[log π(a|s)−Qπsoft(s, a)]da

=−
∫

a

π(a|s)[log π(a|s)− log[exp(Qπsoft(s, a))]]da

=−
∫

a

π(a|s)[log π(a|s)− log[
exp(Qπsoft(s, a))∫

exp(Qπsoft(s, a
′))da′∫

exp(Qπsoft(s, a
′
))da

′
]]da

=−
∫

a

π(a|s)[log π(a|s)− log[π̃(a|s)]−

log

∫
exp(Qπsoft(s, a

′
))]da

′

=−DKL(π(·|s)||π̃(·|s)) + log

∫
exp(Qπsoft(s, a

′
))da

′

(48)

C. Variational Inference on the Environment

Another direction of using Variational Inference in Rein-
forcement Learning is to learn an environmental model, either
on the dynamics or the latent state space posterior.

1) Variational inference on transition model: In Variational
Information Maximizing Exploration (VIME) [4], where dy-
namic model pθ(st+1|st, at) for the agent’s interaction with
the environment is modeled using Bayesian Neural Network
[10]. The R.V. for θ is denoted by Θ, and is treated in a
Bayesian way by modeling the weight θ uncertainty of a
neural network. We represent this model with the graphical
model in Figure 8, which is not given in [4]. The belief
uncertainty about the environment is modeled as entropy of the
posterior distribution of the neural network weights H(Θ|ξt)
based on trajectory observations ξt = {s1:t, a1:t−1}. The
method encourages taking exploratory actions by alleviating
the average information gain of the agent’s belief about
the environment after observing a new state st+1, which
is Ep(st+1|ξt,at)DKL(p(θ|ξt+1)||p(θ|ξt)), and this is equiva-
lent to the entropy minus conditional entropy H(Θ|ξt, at) −
H(Θ|ξt, at, st+1) = H(Θ|ξt, at) − H(Θ|ξt+1). With the
help of Equation (49), as derived following the definition
of conditional mutual information, we derive in Equation
(50) that the conditional entropy difference is actually the
average information gain, which is equal to the conditional
mutual information I(Θ, St+1|ξt, at) between environmental
parameter Θ and the new state St+1. Such a derivation is not
given in [4]. Based on Equation (50), an intrinsic reward
can be augmented from the environmental reward function,
thus the method could be incorporated with any existing
reinforcement learning algorithms for exploration, TRPO [2],
for example. Upon additional observation of action at and
state st+1 pair on top of trajectory history ξt, the posterior
on the distribution of the environmental parameter θ, p(θ|ξt),
could be updated to be p(θ|ξt+1) in a Bayesian way as derived
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I(X;Y | Z) =

∫

x,y,z

p(z)p(x, y|z) log
p(x, y|z)

p(x|z)p(y|z)dxdydz

= −
∫

x,y,z

p(z)p(x, y|z) log p(x|z)dxdzdy+

+

∫

x,y,z

p(x, y, z) log p(x|y, z)dxdzdy

= H(X | Z)−H(X | Y,Z) (49)

in Equation (51), which is first proposed in [30]. In Equation
(51), the denominator can be written as Equation (52), so that
the dynamics of the environment modeled by neural network
weights θ, p(st+1|θ, at, ξt), could be used. The last step of
Equation (52) makes use of p(θ|ξt, at) = p(θ|ξt).

Since the integral in Equation (52) is not tractable, vari-
ational treatment over the neural network weights posterior
distribution p(θ|ξt) is used, characterized by variational pa-
rameter φ, as shown in the dotted line in Figure 8. The
variational posterior about the model parameter θ, updated at
each step, could than be used to calculate the intrinsic reward
in Equation (50).

2) Variational Inference on hidden state posterior: In Vari-
ational State Tabulation (VaST) [5], the author assume the high
dimensional observed state to be represented by Observable
O, while the transition happens at the latent state space
represented by S, which is finite and discrete. The author

H(Θ|ξt, at)−H(Θ|ξt, at, st+1) = I(Θ, St+1|ξt, at)

=Eξt,at

∫

Θ,S
p(st+1, θ|ξt, at) log[

p(st+1, θ|ξt, at)
p(θ|ξt)p(st+1|ξt, at)

]dθ

dst+1

=Eξt,at

∫

Θ,S
p(st+1|ξt, at)p(θ|ξt+1) log[

p(θ|ξt+1)

p(θ|ξt)
]dθdst+1

=Eξt,atEp(st+1|ξt,at)DKL(p(θ|ξt+1)||p(θ|ξt)) (50)

p(θ|ξt+1) =
p(θ, ξt, at, st+1)

p(ξt, at, st+1)

=
p(st+1|θ, ξt, at)p(θ, ξt, at)

p(ξt, at, st+1)

=
p(st+1|θ, ξt, at)p(θ, ξt, at)
p(at, ξt)p(st+1|at, ξt)

=
p(st+1|θ, ξt, at)p(θ|ξt, at)

p(st+1|at, ξt)

=
p(st+1|θ, ξt, at)p(θ|ξt)

p(st+1|at, ξt)
(51)

p(st+1|at, ξt)

=

∫

Θ

p(st+1, θ|at, ξt)dθ

=

∫

Θ

p(st+1, θ, at, ξt)

p(at, ξt)
dθ

=

∫

Θ

p(st+1|θ, at, ξt)p(θ, at, ξt)
p(at, ξt)

dθ

=

∫

Θ

p(st+1|θ, at, ξt)p(θ|ξt)dθ (52)

assume a factorized form of observation and latent space joint
probability, which we explicitly state in Equation (53).

p(O,S) = πθ0(s0)
T∏

t=0

pθR(ot|st)
T∏

t=1

pθT (st|st−1, at−1)

(53)

Additionally, we characterize Equation (53) with the prob-
abilistic graphical model in Figure 9 which does not exist
in [5]. Compared to Figure 7, here the latent state S is in
discrete space instead of high dimension, and the observation
is a high dimensional image instead of binary variable to
indicate optimal action. By assuming a factorized form of the
variational posterior in Equation (54),

q(S0:T |O0:T ) =
T∏

t=0

qφ(St|Ot−k:t) (54)

The author assume the episode length to be T , and default
frame prior observation to be blank frames. The Evidence
Lower Bound (ELBO) of the observed trajectory of Equation
(53) could be easily represented by a Varitional AutoEncoder
[31] like architecture, where the encoder qφ, together with
the reparametrization trick [31], maps the observed state O
into parameters for the Con-crete distribution [32], so back-
probagation could be used on deterministic variables to update
the weight of the network based on the ELBO, which is
decomposed into different parts of the reconstruction losses
of the variational autoencoder like architecture. Like VIME
[4], VaSt could be combined with other reinforcement learning
algorithms. Here prioritized sweeping [12] is carried out on the
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Fig. 9. Graphical Model for Variation State Tabulation

Heviside activation of the encoder output directly, by counting
the transition frequency, instead of waiting for the slowly
learned environmental transition model pθT (st|st−1, at−1) in
Equation (53). A potential problem of doing so is aliasing
between latent state s and observed state o. To alleviate
this problem, in [5], the author actively relabel the transition
history in the replay memory once found the observable has
been assigned a different latent discrete state.

IV. CONCLUSION

As a tutorial survey, we recap Reinforcement Learning with
Probabilistic Graphical Models, summarizes recent advances
of Deep Reinforcement Learning and offer a taxonomy of
Probabilistic Graphical Model and Variational Inference in
DRL with detailed derivations which are not included in the
original contributions.
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ReinBo: Machine Learning Pipeline
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Abstract. Machine learning pipeline potentially consists of several
stages of operations like data preprocessing, feature engineering and
machine learning model training. Each operation has a set of hyper-
parameters, which can become irrelevant for the pipeline when the
operation is not selected. This gives rise to a hierarchical conditional
hyper-parameter space. To optimize this mixed continuous and discrete
conditional hierarchical hyper-parameter space, we propose an efficient
pipeline search and configuration algorithm which combines the power
of Reinforcement Learning and Bayesian Optimization. Empirical results
show that our method performs favorably compared to state of the art
methods like Auto-sklearn, TPOT, Tree Parzen Window, and Random
Search.

Keywords: Bayesian Optimization · Reinforcement Learning ·
Conditional hierarchy search · AutoML

1 Introduction

Over the past years, Machine Learning (ML) has achieved remarkable success
in a wide range of application areas, which has greatly increased the demand
for machine learning systems. However, an efficient machine learning algorithm
crucially depends on a human expert, who has to carefully design the pipeline of
the machine learning system, potentially consisting of data preprocessing, feature
filtering, machine learning algorithm selection, as well as identifying a good set
of hyper-parameters. As there are a large number of possible alternatives of
models as well as hyper-parameters, the need for automated machine learning
(AutoML) has been growing, which is supposed to automatically generate a data
analysis pipeline with machine learning methods and parameter settings that

X. Sun and J. Lin—Equal contribution.

c© Springer Nature Switzerland AG 2020
P. Cellier and K. Driessens (Eds.): ECML PKDD 2019 Workshops, CCIS 1167, pp. 68–84, 2020.
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are optimized for a given data set, in order to make machine learning methods
available for non-expert users.

Since hyper-parameters of a machine learning model have a large influence
on the performance of the model, hyper-parameter optimization becomes a crit-
ical part of an AutoML system. Popular hyper-parameter optimization methods
include Sequential Bayesian Optimization, which iterates between fitting surro-
gate models that predict model performance, and using them to make choices
about which configurations to investigate.

However, the composition of the machine learning pipelines also plays a vital
role in the performance of AutoML systems. Choosing different data prepro-
cessing or feature engineering techniques as well as choosing different machine
learning models for a specific dataset could potentially result in considerable
performance differences. The joint optimization of the pipeline search and its
associated hyper-parameters configuration could essentially reside under the
umbrella of Combined Algorithm Selection and Hyperparameter optimization
(CASH) problem [31], where Algorithm corresponds to the pipeline and Config-
uration corresponds to the hyper-parameters associated with the pipeline. The
pipelines and hyper-parameters reside in a conditional hierarchical space, where
some hyper-parameters only become valid when the corresponding pipeline is
present. For example, Fig. 1 illustrates such a situation when the data prepro-
cessing and feature engineering operations are selected, which correspond to an
incomplete pipeline, one out of three machine learning algorithms need to be
chosen (indicated by dashed edges) to complete the pipeline, the corresponding
hyper-parameters (indicated by solid edges) of an algorithm only become valid
when the algorithm is selected.

Fig. 1. Example of conditional hierarchical space

To optimize the conditional hyper-parameters space jointly with the pipeline
it is attached to, we embed Bayesian Optimization in the Reinforcement Learning
process, and dub the method ReinBo, which means Machine Learning Pipeline
search and configuration with Reinforcement Learning and Bayesian Optimiza-
tion. Note that ReinBo can solve not only CASH problems, but also any mixed
discrete and continuous conditional hierarchical space optimization, which is left
for future work.
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Our major contributions are:

– Inspired by Hierarchical Reinforcement Learning [14], we transform the con-
ditional hierarchical hyper-parameter optimization problem into subtasks of
pipeline selection and hyper-parameter optimization, which circumvents the
conditional constraint and reduces the search dimension.

– To our best knowledge, we are the first to embed Bayesian Optimization (BO)
into Reinforcement learning, specifically Q Learning [32] for collaborative
joint search of pipelines and hyper-parameters, which is different from using
BO for policy optimization [12], and also different from using BO for hyper-
parameter fine tuning after an optimal pipeline is selected by a reinforcement
learning based AutoML framework [33].

– We provide an open source light weight R language implementation with
benchmark codes1 for the R Machine Learning community which could run
efficiently on a personal computer, and takes much less resources (IO, disk
space for example) compared to other AutoML softwares.

In the following section, we review related works and discuss the differences
to our method. In Sect. 3, we explain our method in detail and also shed light
to connections with Hyperband [22]. In Sect. 4, we benchmark our method by
comparing it with several state of the art methods.

2 Related Work

In this section, we try to classify the current popular AutoML solutions into a
taxonomy and discuss the differences of each individual work with ours.

Sequential Model Based Optimization Family. Auto-sklearn [16] and
Auto-Weka [31] both use Sequential Model-based Algorithm Configuration
(SMAC) [18] to solve the Combined Algorithm Selection and Hyperparameter
optimization (CASH) problem. SMAC [18] transforms the conditional hierarchi-
cal hyper-parameter space into a flat structure by instantiating inactive condi-
tional parameters to default values, which allows the random forest to focus on
active hyper-parameters [18]. A potential drawback for this method is that the
surrogate model needs to learn in a high dimensional hyper-parameter space,
which might need a large sample of observations to be sufficiently trained, while
in practice, running machine learning algorithm is usually very expensive. Tree
Parzen Window (TPE) [7], however, tackles the conditional hierarchical hyper-
parameter space using a tree like Parzen Window to construct two density esti-
mators on top of a tree like hyper-parameter set. Expected improvement induced
from lower and upper quantile density estimators is used to select new candidate
proposals from points generated by Ancestral Sampling.

1 https://github.com/compstat-lmu/paper 2019 ReinBo.
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Tree-Based Genetic Programming. TPOT [25] automatically designs and
optimizes machine learning pipelines with a genetic programming [3] algorithm.
The machine learning operators are used as genetic programming primitives,
which will be combined by tree-based pipelines and the Genetic Programming
algorithm is used to evolve tree-based pipelines until the best pipeline is found.
Similar methods also include Recipe [27]. However, this family of methods does
not scale well [24]. In this paper, we aim for an AutoML system that could give
a valuable configured pipeline within limited time.

Monte Carlo Tree Search Alike. ML-Plan [24] is an AutoML system, built
upon a Hierarchical Task Network, which uses a Monte Carlo Tree Search like
algorithm to search for pipelines and also configure the pipeline with hyper-
parameters. Task is expanded based on best-first search, where the score is esti-
mated by a randomized depth first search by randomly trying different subtree
possibilities on a Hierarchical Task Network. To ensure exploration, ML-Plan
gives equal possibility to the starting node in a Hierarchical Task Network and
then uses a best-first strategy for searching at the lower part of the network.
Potential drawback for this method is that the hyper-parameter space is dis-
cretized, which might essentially lose good candidates in continuous spaces since
large continuous hyper-parameter spaces would be essentially hard to discretize.

Reinforcement Learning Based Neural Network Architecture Search.
This family of methods are usually not termed as AutoML systems but rather
Neural Architecture Search. For instance, MetaQNN [2] uses Q-learning to search
convolutional neural network architectures. The learning agent is trained to
sequentially choose CNN layers using Q-learning with an ε-greedy exploration
strategy and the goal is to maximize the cross-validation accuracy. In [35], instead
of using Q-learning, the authors use Recurrent Neural Networks as the rein-
forcement learning policy approximator to generate variable strings to represent
various neural architecture forms. The reward-function is designed to be the
validation performance of the constructed network. The reinforcement learning
policy is trained with gradient descent algorithm, specifically REINFORCE. The
architecture elements being searched are very similar to MetaQNN. Inspired from
[35], we also assume the machine learning pipeline to be optimized could be rep-
resented by a variable length string, but our work is different from [35] in that we
use both Deep Q-learning and Tabular Q-learning. More importantly, compared
with both [2] and [35], which optimize the neural architecture, the elements of the
architecture are mostly factor variables like layer type or discretized elements like
filter size, while in this paper, we deal heavily with continuous hyper-parameters
(The C and σ for a rbf kernel Support Vector Machine). To jointly optimize the
discrete pipeline choice and associated continuous hyper-parameters, we embed
Bayesian Optimization inside our reinforcement learning agent.

Other Reinforcement Learning Based Methods. In [33], the authors also
combine pipeline search and hyper-parameter optimization in a reinforcement
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learning process based on the PEORL [34] framework, however, the hyper-
parameter is randomly sampled during the reinforcement learning process, an
extra stage is needed to sweep the hyper-parameters using hyper-parameter
optimization techniques, while in our work, hyper-parameter optimization is
embedded in the reinforcement learning process. Alpha3M [15] combined MCTS
and recurrent neural network in a self play [28] fashion, however, it seems that
Alpha3M does not perform better than the state of the art AutoML systems.
For example, out of all the 6 OpenML datasets they have used to compare with
state of the art AutoML systems, Alpha3M only shows a clear improvement on
1 dataset (spectf) against Auto-sklearn [16] and TPOT [25], according to Fig. 4
in [15]. Furthermore, it is not clear to us how the hyper-parameters are set and if
Bayesian Optimization is used. The implementation of Alpha3M takes advantage
of the GPUs [15] for the fast performance while our method has a light weight
implementation which efficiently runs with CPU and does not necessarily need
Neural Networks.

3 Method

3.1 Towards ReinBo

Fig. 2. Illustrative example of selected pipeline and associated hyper-parameters (Color
figure online)

As shown in Fig. 2, we assume that a machine learning pipeline potentially con-
sists of 3 stages (s1 through s3 in the figure), which include data preprocessing
(imputations, NA and more), feature engineering (Principal Component Anal-
ysis for feature transform, Anova for feature filtering and more), and machine
learning model selection (learner like SVM, Random Forest). Specifically, we
use operation “NA” to indicate that no operation would be done in the stage
in question. Figure 2 just serves as a toy but working example for ReinBo, in
practice, there are a lot more operations available. A particular operation has
associated hyper-parameters (for instance the percentage of selected features
in Anova feature filtering). In Fig. 2, dark color filled cells (NA, Anova, SVM)
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represent selected operations and their associated active hyper-parameters (per-
centage, sigma, C), while hyper-parameters for inactive operations are not drawn
in the figure.

Observing from Fig. 2, along with Fig. 1, we could think of the pipeline selec-
tion and configuration problem as a two-phase process. During the first phase,
a planning algorithm guides the agent to choose a path which corresponds to an
unconfigured pipeline. This is similar to a multi-armed bandit problem, where
each path corresponds to one arm, while difference lies in that the agent can not
directly pull a discrete arm but have to pull across several consecutive discrete
arm groups (each arm group corresponds to a stage in Fig. 2) and the agent only
gets reward after choosing one of arms from the last group. The second phase
is similar to contextual bandit with continuous action space (corresponding to
hyper-parameters), where the context is which path from the first phase has
been selected.

We model the first phase as a reinforcement learning episode, where a par-
ticular operation in stage i is treated as action ai, taken upon corresponding
state si. State si could be represented by actions taken up to the current stage
for example. The pipeline search problem is then to find an optimal policy π to
decide which operation (action) to take at a particular state. The action value
function Q(s, a) at each state tells us how favorable a particular operation is.
We use Asi to denote the space of legal actions at state si. Suppose a roll-out of
states trajectory for one composition (episode) is s1, . . . , sK , the corresponding
space of pipeline could be denoted by

∏K
i=1 Asi , where K is the total number of

stages and we use
∏

to denote the Cartesian Product. For a more general nota-
tion, we use A(Si,Φai

) to denote the space of actions, together with configurable
hyper-parameters when the state is Si at stage i.

We search for potentially better hyper-parameters in the second phase with
Bayesian Optimization. Aside from the pipeline itself, each concrete operation
(action ai) at stage i is configurable by a set of hyper-parameters Φai

. Φai
can

be hyper-parameters set for a preprocessor like the ratio of variance to keep in
PCA or hyper-parameters set for a machine learning model like the C and σ
hyper-parameter for SVM. Thus a configured pipeline search space would be∏K

i=1 A(Si; Φai
) where we use Φai

to denote the conditional hyper-parameter
space at stage i.

The connection point between reinforcement learning and Bayesian Opti-
mization lies in the reward function design in the reinforcement learning part.
During the composition process, there is no signal available to judge how good
a current uncompleted pipeline is until the final learner (classifier) is configured
with hyper-parameters and trained on the data. At the starting point, different
pipelines are tried out randomly, which corresponds to an untrained exploration
policy π. A completed pipeline with a joint non-conditional hyper-parameter
search space is optimized with Bayesian Optimization for a few steps. The best
negative loss is then used as a reward at the end of an episode to guide the rein-
forcement learning agent towards a better policy. The environment uncertainty
only comes with the stochastic reward, while the transition from current state
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to next state through action is deterministic. We choose to use Q-learning [32]
to optimize the policy where we have tried the Tabular Q-learning and Deep Q-
learning [23]. We find out that the Tabular Q-learning works better than Deep
Q-learning. For space constraint, the latter is not discussed in detail in this work.

We need Bayesian Optimization to optimize the hyper-parameters in a fine
grained level with limited budget, but also want to give budget preference to
those promising pipelines. To circumvent the complexity of conditional and
hierarchical relationship between hyper-parameters and pipeline, we use rein-
forcement learning to choose a pipeline and let Bayesian Optimization tune
the hyper-parameters. We model the variation of the same pipeline with dif-
ferent hyper-parameters as the environment uncertainty. By using separate sur-
rogate model for each pipeline, we circumvent the risk of mistakenly modeling
improper dependent structure between different hyper-parameters, at a minor
cost of maintaining those searched pipelines surrogate model as dictionary in
memory.

3.2 Connections to Hyperband

The idea of only using a few steps of Bayesian Optimization is inspired by
Hyperband [22], where the trade-off between aggressively exploring more config-
urations and giving each configuration more resources to be validated is solved
by grid searching. Instead, in this paper, we do not need the grid search, promis-
ing pipelines will get a higher probability to be selected by our reinforcement
learning agent which means these pipelines get more chances to be evaluated
by the Bayesian Optimization process. The trade-off between exploitation and
exploration is naturally resolved by an ε-greedy policy, and by annealing ε from
a large value to a small value, we encourage more exploration at the beginning.
Compared to Hyperband, our method selects the budgets allocated for a partic-
ular pipeline automatically, the effectiveness of our strategy could then rely on
the recent success of reinforcement learning in different areas.

3.3 Connection and Extension to Hierarchical Reinforcement
Learning

Hierarchical Reinforcement Learning (hrl) [4] is proposed to tackle the curse of
dimensionality in Reinforcement Learning [20]. Although the Option approach
[4] is more popular, our method has a close connection to the MAXQ subtask
approach [14], which divides a task recursively into subtasks and decompose
the value function accordingly. The current version of ReinBo can be treated as
a special case of the MAXQ task decomposition, where we have two tasks of
pipeline selection and hyper-parameter configuration. However, in the current
version, most states are not shared between these two tasks, so there is no
need to use MAXQ hrl algorithm to solve the problem. But our method can
be naturally extended to a hrl version when our design space of pipeline allow
shared state between the two subtasks. We leave it as future work to optimize
such complicated pipelines using Hierarchical Reinforcement Learning.
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3.4 Procedures of ReinBo

As shown in Algorithm 1, we first initialize a policy π for the agent which can
be represented by neural network or a Q-table initialized with certain strat-
egy, coupled with an exploration mechanism like the ε-greedy strategy. During
the roll-out, initial populations of pipelines get sampled, with the corresponding
hyper-parameter space Λ(

∏
ai) =

∏
i Φai

to be optimized by Bayesian Opti-
mization for several steps, where Λ means extracting the hyper-parameter set
from a pipeline. The corresponding surrogate model is stored in the dictionary
R for future episode if the same pipeline gets rolled out again. The performance
of the pipeline on validation data will be used to serve as feedback signal or
reward to the reinforcement learning agent to conduct policy iteration.

Algorithm 1. ML ReinBo
Require: dataset D, pipeline operators and hyper-parameters candidates

Initialize Policy π
Initialize Surrogate Dictionary R ← ∅ with pipeline as key
while Budget not reached do

Roll-out an unconfigured pipeline
∏

ai according to policy π
Extract hyper-parameters set for the ground pipeline Λ(

∏
ai) =

∏
i Φai

Reward R ← BO PROBE(
∏

ai, Λ, R)
Update Policy π with reinforcement learning algorithm with reward R

end while

Once an unconfigured pipeline is constructed at the end of the episode, run-
ning Bayesian Optimization could be beneficial in searching for a more favorable
hyper-parameter setting. However, Bayesian Hyperparameter Optimization with
large budgets could be rather expensive. Instead, we optimize hyper-parameters
for an unconfigured pipeline only for several iterations. For example, we take the
number of iterations to be 2 or 3 times the dimension of hyper-parameter space,
which means that hyper-parameter spaces with higher dimension will get more
sampling budgets. After each episode, the current best configuration’s perfor-
mance for this pipeline in question is used as reward. The next time the same
pipeline is sampled, the surrogate model could be retrieved from the dictionary
R to facilitate further search using Bayesian Optimization. We dub the hyper-
parameter search process as BO PROBE, with details shown in Algorithm2.2

If an unconfigured pipeline is not sampled yet, an initial design is generated to
facilitate an initial surrogate model.

2 To save budgets, when an unconfigured pipeline does not improve after a number of
trials of BO PROBE, it can also be suspended for future evaluation.
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Algorithm 2. BO PROBE(
∏

ai,Λ,R)
Require: Surrogate Dictionary R with pipeline as key

if R{∏
i ai} = ∅ then

generate initial design of size ninit hyper-parameter configurations {φj}1:ninit for
surrogate model with corresponding hyper-parameters set Λ(

∏
ai).

for j in 1 : ninit do
evaluate the pipeline with φj to get predicative accuracy yj

end for
initialize surrogate model R{∏

i ai} by fitting {(φj , 1 − yj)}1:ninit

end if
for k in 1 : nprobe do

propose new configuration φk according to surrogate model R{∏
ai}

evaluate new configuration to get accuracy yk to update model R{∏
ai}

end for
return y∗ ← best accuracy until now

4 Experiments

4.1 Implementation, Comparison Methods and Setups

Our initial implementation for ReinBo is based on R machine learning packages
mlr [10], mlrCPO [8] for pipeline construction and mlrMBO [11] for Bayesian
Optimization. The R package parabox 3 is implemented for this project to spec-
ify conditional hierarchical hyper-parameter space and provides the conditional
ancestral sampling (random search in conditional hyper-parameter space). The
R package rlR4 is implemented for reinforcement learning where the user could
implement a custom environment as input. All python packages are invoked with
the R-Python interface reticulate [1].

To evaluate the performance of our proposed method, we compare the per-
formance of ReinBo with several state of the art AutoML systems, as well as
several conditional hyper-parameter space tuning methods running on top of
our R implementation, in order to reduce implementation and search space con-
founding factors. We compare against Auto-sklearn [16] and TPOT [25] (TPOT
with two search spaces to reduce confounding5), both based on scikit-learn [26].
ML-Plan [24] is not included due to lack of detailed documentation and exam-
ples online when experiment is conducted. Additionally, we compare against
hyper-parameter optimization techniques which preserve the hierarchical con-
ditional structure, including Tree-structured Parzen Estimator (TPE) [7] used
in Hyperopt [6], and Random Search with conditional Ancestral Sampling (self
implemented in R package parabox ). Random Search remains a very strong base-
line in a lot of machine learning hyper-parameter optimization scenarios [5].

3 https://github.com/smilesun/parabox.
4 https://github.com/smilesun/rlR.
5 We also selected a matching search space of Autosklearn according to Table 1 but

still get worse results than Reinbo.
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Evaluation Criteria. As warned in [24], many state of the art AutoML systems
seem to have missed to deal with the risk of overfitting. Therefore, in the exper-
iment part, we focus on evaluating the generalization capability of the selected
pipeline empirically. To avoid any potential confusion from synonyms, we use
Dopt to represent the part of a dataset fed into a given AutoML system and
use Dtest to represent the locked out part [29] of the same dataset used to test
the generalization capacity. The split of Dopt and Dtest is done by Cross Vali-
dation, which means for a dataset D, D = Dopt

⋃
Dtest and Dopt

⋂
Dtest = ∅.

To create the Dopt and Dtest split, we use 5-fold cross-validation (CV5 ), which
corresponds to the outer loop of Nested Cross Validation (NCV ) [13]. We take
the aggregated mmce (mean miss-classification error) across the 5-fold iterations
over each Dtest as ultimate performance measure.

As of optimization on Dopt, instead of using running time as budget, we use
the number of configuration evaluations as the unit of budget, to circumvent
effects of hardware and network load variations, etc. For each Dopt, we assign
a budget of 1000 times of CV5 equivalents (5000 times model training) to each
AutoML algorithm, which corresponds to the inner loop of NCV [13].

Other Setups. To account for different AutoML systems data input format
incompatibility problem, we conduct dummy encoding to categorical features
beforehand. Aiming for a light weight implementation, in the experiment, we
limit our choice of pipeline components for ReinBo. We compose a pipeline
in 3 stages, with potential operations/actions at each stage listed in Table 1.
Associated hyper-parameters with an unconfigured pipeline are listed in Table 2.
We call the components and associated hyper-parameters the pipeline pool. The
same pipeline pool is used for ReinBo, TPE and Random Search.

For Auto-sklearn, Meta-learning and ensemble are disabled, the resampling
strategy is set to be CV5, stop criteria is changed to budget instead of time
and all other configurations are kept default. We have contacted the author of
Autosklearn through Github for the right use of the API to ensure the above
configuration is satisfied. For TPOT (version 0.9), the default configuration space
contains a lot of operators while the light version provides only fast models and
pre-processors. The light TPOT is therefore less time-consuming but it could
probably lead to lower accuracy in consequence. For this reason, we compare
ReinBo with both TPOT with the default configuration and TPOT with light
configuration, and we call them TPOT and TPOT-light respectively. TPOT is
configured to allow equal amount of budgets with all methods being compared
and other configurations are left to be default.

Datasets. We experimented on a set of standard benchmarking datasets of high
quality collected from OpenML-CC186 [9] and Auto-Weka [30], which are rather
well-curated from many thousands and have diverse numbers of classes, features,
observations, as well as various ratios of the minority and majority class size.
Summary of these datasets is listed in Table 3.
6 https://www.openml.org/s/99.
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Table 1. List of pipeline operations. An operation of “NA” here is used to indicate
that no operation would be taken in the corresponding stage. Please refer to mlrCPO
documentation for the detailed meaning of these operators.

Stage Operation/action

1 DataPreprocess Scale(default) Scale(center=FALSE) Scale(scale=FALSE) SpatialSign NA

2 Feature

engineering

Pca FilterKruskal FilterAnova FilterUnivariate NA

3Classifier kknn ksvm ranger xgboost naiveBayes

Table 2. List of hyper-parameters to the operations in Table 1. “p” in the column
“Range” indicates the number of features of the original dataset. We invite the user
to refer to the R packages mlrCPO and mlr documentations for the exact meaning of
operation, hyper-parameters, etc.

Operation Parameter Type Range

Anonva, Kruskal, Univariate perc numeric (0.1, 1)

Pca rank integer (p/10, p)

kknn k integer (1, 20)

ksvm C numeric (2−15, 215)

ksvm sigma numeric (2−15, 215)

ranger mtry integer (p/10, p/1.5)

ranger sample.fraction numeric (0.1, 1)

xgboost eta numeric (0.001, 0.3)

xgboost max depth integer (1, 15)

xgboost subsample numeric (0.5, 1)

xgboost colsample bytree numeric (0.5, 1)

xgboost min child weight numeric (0, 50)

naiveBayes laplace numeric (0.01, 100)

4.2 Experiment Results

In Fig. 3, we compare the mmce (1-Accuracy) of each method with boxplot over
the datasets listed in Table 3 across 10 statistical replications. Additionally, we
list numerical results in Table 4 with statistical test, where each numerical value
represents the aggregated mean mmce over the statistical replications. Underline
in each row indicates the smallest mean value over the corresponding dataset. The
bold-faced values indicate that the corresponding algorithm does not perform sig-
nificantly worse than the underlined algorithm on the corresponding dataset based
on Mann-Whitney U test. As shown in Table 4, ML-ReinBo has boldfaces for 8 of
10 datasets followed by much less boldfaces from other methods.

In Table 5, we compare win (significantly better), lose and tie (neither signifi-
cantly better nor worse) relationships according to the test. As shown in Table 5,
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Table 3. List of OpenML datasets for experiment. Columns are the OpenML task id
and name, the number of classes (nClass), features (nFeat) and observations (nObs),
as well as the ratio of the minority and majority class sizes (rMinMaj).

task id Name nClass nFeat nObs rMinMaj

14 mfeat-fourier 10 77 2000 1.00

23 cmc 3 10 1473 0.53

37 diabetes 2 9 768 0.54

53 vehicle 4 19 846 0.91

3917 kc1 2 22 2109 0.18

9946 wdbc 2 31 569 0.59

9952 phoneme 2 6 5404 0.42

9978 ozone-level-8hr 2 73 2534 0.07

146817 steel-plates-fault 7 28 1941 0.08

146820 wilt 2 6 4839 0.06

ReinBo has won TPOT on 5 datasets and performed worse than TPOT for only
one dataset. And not surprisingly, TPOT has performed considerably better than
TPOT-light in the empirical experiments since TPOT-light has smaller search
space with only fast models and preprocessors. ReinBo also performs much bet-
ter than Random Search and TPE, where ReinBo has significantly won them
on 5 and 6 tasks respectively and lost only on 1 task. Compared to ReinBo,
Auto-sklearn has won only once and behaved worse than ReinBo on 3 of 10
datasets.

Table 4. Average performance (mmce) of algorithms across 10 statistical replications
with different seeds. In each run the aggregated mmce based over the outer loop of
NCV is taken as performance measure for each algorithm. Each value in this table
is the mean value of the aggregated mmce values across 10 replications and the best
mean value for each dataset is underlined. The bold-faced values indicate that the
algorithm does not perform significantly worse than the underlined algorithm on the
corresponding dataset based on Mann-Whitney U test.

Dataset Auto-sklearn TPE TPOT TPOT-light Random ReinBo Underlined algorithm

mfeat-fourier 0.1412 0.1542 0.1451 0.1489 0.1580 0.1278 ReinBo

cmc 0.4470 0.4485 0.4457 0.4506 0.4500 0.4485 TPOT

diabetes 0.2483 0.2436 0.2452 0.2413 0.2455 0.2395 ReinBo

vehicle 0.1679 0.2117 0.1784 0.2057 0.2020 0.1621 ReinBo

kc1 0.1421 0.1351 0.1380 0.1438 0.1353 0.1387 TPE

wdbc 0.0299 0.0348 0.0353 0.0264 0.0341 0.0271 TPOT-light

phoneme 0.0902 0.0920 0.0893 0.1016 0.0912 0.0905 TPOT

ozone-level-8hr 0.0588 0.0601 0.0577 0.0603 0.0598 0.0578 TPOT

steel-plates-fault 0.2041 0.2330 0.1985 0.2601 0.2146 0.2141 TPOT

wilt 0.0132 0.0159 0.0141 0.0164 0.0161 0.0123 ReinBo

124 F. ReinBo



80 X. Sun et al.

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

phoneme steel−plates−fault vehicle wdbc wilt

cmc diabetes kc1 mfeat−fourier ozone−level−8hr

Au
to

sk
le

ar
n

Ra
nd

om
Se

ar
ch

Re
in

Bo
TP

E
TP

OT
TP

OT
−l

ig
ht

Au
to

sk
le

ar
n

Ra
nd

om
Se

ar
ch

Re
in

Bo
TP

E
TP

OT
TP

OT
−l

ig
ht

Au
to

sk
le

ar
n

Ra
nd

om
Se

ar
ch

Re
in

Bo
TP

E
TP

OT
TP

OT
−l

ig
ht

Au
to

sk
le

ar
n

Ra
nd

om
Se

ar
ch

Re
in

Bo
TP

E
TP

OT
TP

OT
−l

ig
ht

Au
to

sk
le

ar
n

Ra
nd

om
Se

ar
ch

Re
in

Bo
TP

E
TP

OT
TP

OT
−l

ig
ht

0.0550

0.0575

0.0600

0.0625

0.0650

0.013

0.015

0.017

0.12

0.13

0.14

0.15

0.16

0.17

0.02

0.03

0.04

0.130

0.135

0.140

0.145

0.150

0.14

0.16

0.18

0.20

0.22

0.23

0.24

0.25

0.26

0.200

0.225

0.250

0.275

0.44

0.45

0.46

0.47

0.085

0.090

0.095

0.100

0.105

algorithm

m
m

ce

algorithm
Autosklearn

RandomSearch

ReinBo

TPE

TPOT

TPOT−light

Fig. 3. Boxplots showing the distribution of aggregated mmce achieved by each algo-
rithm within 10 statistical replications.

Meanwhile, ReinBo has comparatively short box ranges in most cases as
shown in Fig. 3. Hence, we would conclude that ReinBo performed better and
more stably than other algorithms in our empirical experiments. Besides compar-
ing the final performance, it is also interesting to look into the machine learning
pipelines suggested by an AutoML system. The frequencies of the operators in
the pipelines suggested by ReinBo are listed in Table 6.

Running Time. Figure 4 shows the average running time each algorithm takes
to complete one experiment, which corresponds to a Nested Cross Validation
(NCV ) process. It can be seen that Auto-sklearn is the most time-consuming

Table 5. Win-Lose-Tie comparison between ReinBo and other algorithms on bench-
marking datasets based on Mann-Whitney U test (significance level α = 0.05).

Random search TPE Auto-sklearn TPOT-light TPOT

ReinBo Win 5 6 3 7 5

Tie 4 3 6 3 4

Lose 1 1 1 0 1
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Table 6. Frequency of operators suggested by ReinBo. During empirical experiments
there are 500 pipelines in total suggested by ReinBo at the end of optimization process.
The frequency (Freq.) and relative frequency (Relative freq.) of each operator selected
in best pipelines are shown here.

Preprocess Freq.Relative freq.Feature

engineering

Freq.Relative freq.Classifier Freq.Relative freq.

Scale(default) 259 51.8% FilterAnova 210 42.0% ksvm 276 55.2%

Scale(scale=FALSE) 106 21.2% FilterKruskal 139 27.8% ranger 201 40.2%

Scale(center=FALSE) 67 13.4% PCA 63 12.6% kknn 12 2.4%

NA 36 7.2% Univariate 46 9.2% xgboost 10 2.0%

SpatialSign 32 6.4% NA 42 8.4% naiveBayes 1 0.2%

algorithm in our empirical experiments. Although TPOT-light is the fastest algo-
rithm, it resulted in worse performance because it contains only fast operators.
Our proposed ReinBo algorithm spent less time than Random Search and state
of the art AutoML systems TPOT and Auto-sklearn in average.
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Fig. 4. Comparison of average running time of each algorithm per data set with NCV

5 Summary and Future Work

We present a new AutoML algorithm ReinBo by embedding Bayesian Opti-
mization into Reinforcement Learning. The Reinforcement Learning takes care
of pipeline composition, and Bayesian Optimization takes care of configuring the
hyper-parameters associated with the composed pipeline. ReinBo is inspired by
Hyperband and previous efforts in AutoML by considering the trade-off of assign-
ing resources to a particular configuration and exploring more configurations as
a reinforcement learning problem, where the learned policy solves the trade-off
automatically. Experiments show our method has a considerable improvement
compared to other state of the art systems and methods. For future work, it
would be interesting to include meta learning into our system, which does not
only learn how to construct a pipeline and configure it for a dataset in ques-
tion, but also how to generalize the learned policy to a wide range of datasets
by learning jointly on the meta features. Additionally, it would be nice to see
how ReinBo performs on jointly optimizing neural architecture and continuous
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hyper-parameters like learning rate and momentum, as well as applications like
Computer Vision [19] and semantic web based Recommendation Systems [21]
where pipeline might play a role. Multi-Objective Bayesian Optimization [17]
for hyper-parameter tuning would also be future direction.

Acknowledgement. Janek Thomas gave us many helpful suggestions, Martin Binder
and Florian Pfisterer helped us with mlrCPO and auto-sklearn setup.
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Abstract

Time series classification problems have drawn increasing attention in the ma-

chine learning and statistical community. Closely related is the field of func-

tional data analysis (FDA): it refers to the range of problems that deal with

the analysis of data that is continuously indexed over some domain. While of-

ten employing different methods, both fields strive to answer similar questions,

a common example being classification or regression problems with functional

covariates. We study methods from functional data analysis, such as functional

generalized additive models, as well as functionality to concatenate (functional)

feature extraction or basis representations with traditional machine learning al-

gorithms like support vector machines or classification trees. In order to assess

the methods and implementations, we run a benchmark on a wide variety of

representative (time series) data sets, with in-depth analysis of empirical re-

sults, and strive to provide a reference ranking for which method(s) to use for

non-expert practitioners. Additionally we provide a software framework in R

for functional data analysis for supervised learning, including machine learning

and more linear approaches from statistics. This allows convenient access, and

in connection with the machine-learning toolbox mlr, those methods can now

also be tuned and benchmarked.

Isource code available at https://github.com/mlr-org/mlr
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1. Introduction

The analysis of functional data is becoming more and more important in

many areas of application such as medicine, economics, or geology (cf. Ullah

and Finch [1], Wang et al. [2]), where this type of data occurs naturally. In

industry, functional data are often a by-product of continuous monitoring of

production processes, yielding great potential for data mining tasks. A common

type of functional data are time series, as time series can often be considered as

discretized functions over time.

Many researchers publish software implementations of their algorithms, there-

fore simplifying the access to already established methods. Even though such a

readily available, broad range of methods to choose from is desirable in general,

it also makes it harder for non-expert users to decide which method to apply

to a problem at hand and to figure out how to optimize their performance.

As a result, there is an increasing demand for automated model selection and

parameter tuning.

Furthermore, the functionality of available pipeline steps ranges from simple

data structures for functional data, to feature extraction methods and packages

offering direct modeling procedures for regression and classification. Users are

again faced with a multiplicity of software implementations to choose from and,

in many instances, combining several implementations may be required. This

can be difficult and time-consuming, since the various implementations utilize a

multiplicity of different workflows which the user needs to become familiar with

and synchronize in order to correctly carry out the desired analysis.

There is a wide variety of packages for functional data analysis in R [3] avail-

able that provide functionality for analyzing functional data. Examples range

from the fda [4] package which includes object types for functional data and

allows for smoothing and simple regression, to, e.g., boosted additive regression

models for functional data in FDboost [5]. For an extensive overview, see the

CRAN task view [6].

Many of those packages are designed to provide algorithmic solutions for one

3
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specific problem, and each of them requires the user to become familiar with

its user interface. Some of the packages, however, such as fda.usc [7] or refund

[8] are not designed for only one specific analysis task, but combine several

approaches. Nevertheless, these packages do not offer unified frameworks or

consistent user interfaces for their various methods, and most of the packages

can still only be applied separately.

A crucial advantage of providing several algorithms in one package with a

unified and principled user interface is that it becomes much easier to compare

the provided methods with the intention to find the best solution for a problem

at hand. But to determine the best alternative, one still has to be able to

compare the methods at their best performance on the considered data, which

requires hyperparameter search and, more preferably, efficient tuning methods.

While the different underlying packages are often difficult and sometimes

even impossible to extend to new methods, custom implementations and exten-

sions can be easily included in the accompanying software.

We want to stress that the focus of this paper does not lie in proposing new

algorithms for functional data analysis. Its added value lies in a large com-

parison of algorithms while providing a unified and easily accessible interface

for combining statistical methods for functional data with the broad range of

functions provided by mlr, most importantly benchmarking and tuning. Ad-

ditionally, the often overlooked possibility of extracting non-functional features

from functional data is integrated, which enables the user to apply classical ma-

chine learning algorithms such as support vector machines [9] to functional data

problems.

In a benchmark study similar to Bagnall et al. [10] and Fawaz et al. [11],

we explore the performance of implemented methods, and try to answer the

following questions:

1. Can functional data problems be solved with classical machine learning

methods ignoring the functional structure of the data as well as with more

elaborate methods designed for this type of data? Bagnall et al. [10]
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measure the performance of some non-functional-data-specific algorithms

such as the rotation forest [12], but this does not yield a complete picture.

2. Guidance on the wide range of available algorithms is often hard to obtain.

We aim to make some recommendations in order to simplify the choice of

learning algorithm.

3. Do statistical methods explicitly tailored to the analysis of functional data

[e.g. FDboost, 5] perform well on classical time series tasks? No bench-

mark results for these methods, which provide interpretable results, are

currently available.

4. Many methods that represent functional data in a non-functional domain

have been proposed and are also often applied in practice. Examples for

this include either hand crafted features [cf. 13], summary statistics [14],

or generally applicable methods such as wavelet decomposition [15].

5. Hyperparameter optimization is a very important step in many machine

learning applications. In our benchmark, we aim to quantify the impact

of hyperparameter optimization for a set of given algorithms on several

data sets.

Contributions. As contributions of this paper, we aim to answer the questions

posed above. Additionally, we provide a toolbox for the analysis of functional

data. It implements several methods for feature extraction and directly model-

ing functional data, including a thorough benchmark of those algorithms. This

toolbox also allows for full or partial replication of the conducted benchmark

comparison.

5

136
G. Benchmarking time series classification-Functional data vs machine

learning approaches



2. Related Work

In the remainder of the paper, we focus on comparing algorithms from the

functional data analysis and the machine learning domain. Functional data

analysis traditionally values interpretable results and valid statistical inference

over prediction quality. Therefore functional data algorithms are often not com-

pared with respect to their predictive performance in literature. We aim to close

this gap. On the other hand, machine learning algorithms often do not yield

interpretable results. While we consider both aspects to be important, we want

to focus on predictive performance in this paper.

2.1. Feature extraction and classical machine learning methods

In this work, we differentiate between machine learning algorithms that can

directly be applied to functional data, and algorithms intended for scalar fea-

tures, which we call classical machine learning methods.

A popular approach when dealing with functional data is to reduce the prob-

lem to a non-functional task by extracting relevant non-functional features [1].

Applying classical machine learning methods after extracting meaningful fea-

tures can then lead to competitive results [cf. 16, e.g.] or at least provide base-

lines, which are in general not covered by functional data frameworks. In our

framework, such functionality is easily available by combining feature extrac-

tion, e.g., based on extracting heuristic properties [cf. tsfeatures; 14] or wavelet

coefficients [17, 15] and analyzing these derived scalar features with classical

machine learning tools provided by mlr.

Based on some existing functionality of the listed packages, we adapt differ-

ent feature extraction methods. Along with different algorithms already pro-

posed in literature, we propose two new custom methods, DTWKernel and

MultiResFeatures:

tsfeatures [14] extracts scalar features, such as auto-correlation functions,

entropy and other heuristics from a time series.
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fourier transforms data from the time domain into the frequency domain

using the fast fourier transform [18]. Extracted features are either phase

or amplitude coefficients.

bsignal B-Spline representations from package FDboost [5] are used as

feature extractors. Given the knots vector and effective degree of freedom,

we extract the design matrix for the functional data using mboost.

wavelets [15] applies a discrete wavelet transform to time series or func-

tional data, e.g., with Haar or Daubechies wavelets. The extracted features

are wavelet coefficients at several resolution levels.

PCA projects the data on their principal component vectors. Only a

subset of the principal component scores representing a given proportion

of signal variance is retained.

DTWKernel computes the dynamic time warping distances of functional

or time series data to (a set of) reference data. We implement dynamic

time warping (DTW) based feature extraction. This method computes

the dynamic time warping distance of each observed function to a (user-

specified) set of reference curves. The distances of each observation to the

reference curves is then extracted as a vector-valued feature. The reference

curves can either be supplied by the user, e.g., they could be several typical

functions for the respective classes, or they can be obtained from the

training data. In order to compute dynamic time warping distances, we use

a fast dynamic time warping [19] implementation from package rucrdtw

[20].

MultiResFeatures extracts features, such as the mean at different levels

of resolution (zoom-in steps). Inspired by the image pyramid and wavelet

methods, we implement a feature extraction method, multi-resolution fea-

ture extraction where we extract features like mean and variance com-

puted over specified windows of varying widths. Starting from the full

sequence, the sequence is repeatedly divided into smaller pieces, where at

7
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each resolution level, a scalar value is extracted. All extracted features

are concatenated to form the final feature vector.

2.2. Methods for functional data

Without feature extraction, direct functional data modeling (both classifi-

cation and regression) methods incorporated in our package span two families:

The first family of semi-parametric approaches includes FGAM [8], FDboost [5],

and the functional generalized linear model [FGLM; 21], which are all structured

additive models. Those methods use (tensor product) spline basis functions or

functional principal components (FPCs) [22] to represent effects fitted in a gen-

eralized additive model. While FGAM and FGLM use the iterated weighted

least square (IWLS) method to generate maximum likelihood estimates, FD-

boost uses component-wise gradient boosting [23] to optimize the parameters.

Additionally, the estimated parameters can be penalized. A general formula for

this family of methods is ζ(Y |X = x) = h(x) =
∑J

j=1 hj(x), where ζ represents

a functional of the conditional response distribution (e.g., an expectation or a

quantile), x is a vector of (functional) covariates and hj(x) are partial additive

effects of subsets of x in basis function representation, cf. Greven and Scheipl

[24] for a general introduction.

The second family of methods are non-parametric methods as introduced

in Ferraty and Vieu [25], e.g., based on (semi-)metrics which quantify local or

global differences or distances across curves. For example, the distance between

two instances could be defined by the L2 distance of two curves d(xi(t), xj(t)) =√∫
(xi(t)− xj(t))2dt. Kernel functions are used to average over the training

instances and weigh their respective contributions based on the value of their

distance semi-metric to the predicted instance. Functional k-nearest neighbors

algorithms can also be defined based on such semi-metrics. Implementations

can be found in packages fda.usc [7] and classiFunc [26].

2.3. Toolboxes for functional data analysis

The package fda [4] contains several object types for functional data and

allows for smoothing and regression for functional data. Analogously, the R-
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package fda.usc [7] contains several classification algorithms that can be used

with functional data. In Python, scikit-fda [27] offers both representation of and

(pre-)processing methods for functional data, but only a very small set of ma-

chine learning methods for classification or regression problems is implemented

at the time of writing.

As a byproduct of the Time-Series Classification Bake-off [10], a wide variety

of algorithms were implemented and made available. But this implementation

emphasizes the benchmark over providing a data analysis toolbox for users, and

is therefore not easily usable for inexperienced users.

2.4. Benchmarks

The recently published benchmark analysis Time-Series Classification

Bake-off by Bagnall et al. [10] provides an overview of the performance of 18

state-of-the-art algorithms for time series classification. They re-implement (in

Java) and compare 18 algorithms designed especially for time series classification

on 85 benchmark time series data sets from Bagnall et al. [28]. In their analysis,

they also include results from several standard machine learning algorithms.

They note that the rotation forest [12] and random forest [29] are competitive

with their time series classification baseline [1-nearest neighbor with dynamic

time warping distance; 30]. Their results show that ensemble methods such as

collection of transformation ensembles [COTE; 31] perform best, but for the

price of considerable runtime.

Deep learning methods applied to time series classification tasks have also

shown competitive prediction power. For example, [11] provide a comprehen-

sive review of state-of-the-art methods. The authors compared both generative

models and discriminative models, including fully connected neural networks,

convolutional neural networks, auto-encoders and echo state networks, whereas

only discriminative end-to-end approaches were incorporated in the benchmark

study.

The benchmark study conducted in this work does not aim to replicate or

compete with earlier studies like [10], but instead tries to extend their results.
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3. Functional Data

In contrast to non-functional data analysis, where the measurement of a

single observation is a vector of scalar components whose entries represent values

of the separate multidimensional features, functional data analysis treats and

analyses the features themselves as functions over their domain. By learning to

represent the underlying function, the carried out analysis is not just restricted

to the measured discrete values but it is possible to sample from (and analyze)

the entire domain space.

In this work, we focus on pairs of features and corresponding labels (x, y)

for supervised learning. In contrast to non-functional data analysis, where the

measurement of a single observation is a vector of scalar components, functional

features are function-valued over their domain. The features x = (x1, ..., xp)

can thus also be a function, i.e., xj = gj(t), g : T → R. In practice, functional

data comes in the form of observed values gj(t), t ∈ {1, ..., L}, where each t

corresponds to a discrete point on the continuum. Those observed values stem

from an underlying function f evaluated over a set of points. A frequent type

of functional data is time series data, i.e., measurements of a process measured

at discrete time-points.

For example, in some electrical engineering applications, signals are obtained

over time at a certain sampling rate, but other domains are possible as well.

Spectroscopic data, for example, are functional data recorded over certain parts

of the electromagnetic spectrum. One such example is depicted in Figure 1. It

shows spectroscopy data of fossil fuels [32] where the measured signal represents

reflected energies in the ultraviolet-visible (UV-VIS) and the near infrared spec-

trum (NIR). In the plot, different colors correspond to different instances. This

is a typical example of a scalar-on-function regression problem, where the inputs

are a collection of spectroscopic curves for a fuel, and the prediction target is

the heating value of the fossil fuel.

In Figure 2, we display two functional classification scenarios. The goal in

those scenarios is to distinguish the class type of the curve, which can also

10

141



be understood as a function-on-scalar problem. Figure 2a shows the vertical

position of an actor’s hand while either drawing a toy-gun and aiming at a

target, or just imitating the motion with the blank hand. This position is

measured over time. The two different types of classes of the curves can be

distinguished by the color scheme.

Figure 2b shows a data set built for distinguishing images of beetles from images

of flies based on their outlines. While following the outline, the distance to the

center of the object is measured which is then used for classification purposes.

The latter data sets are available from [28].
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Figure 1: Scalar-on-function regression: Spectral data for fossil fuels [32]

The interested reader is referred to Ramsay [21] and Kokoszka and Reimherr

[35] for more in-depth introductions to this topic.

4. Functional Data Analysis with mlrFDA

Along with the benchmark, we implement the software mlrFDA, which ex-

tends the popular machine learning framework mlr for the analysis of functional

data. As the implemented functionality is an extension of the mlr package, all

of the functionality available in mlr transfers to the newly added methods for
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Figure 2: Excerpts from two time series classification data sets. (a): Gunpoint data [33], (b):
BeetleFly Data [34].

functional data analysis. We include a brief overview of the implemented func-

tionality in Appendix A.1. A more in-detail overview and tutorial on mlr can

be found in the mlr tutorial [36].

mlr provides a unified framework for machine learning methods in R, cur-

rently supporting tasks from 4 main problem types: (multilabel-)classification,

regression, cluster analysis, and survival analysis. For each problem type, many

algorithms (called learners) are integrated. This yields an extensive set of mod-

eling options with a unified, simple interface. Moreover, advanced techniques

such as hyperparameter tuning, preprocessing and feature selection are also part

of the package. An additional focus lies on extensibility, allowing the user to in-

tegrate their own algorithms, performance measures and preprocessing methods.

As mlrMBO seamlessly integrates into the new software, many different tun-

ing procedures can be readily adapted by the user. Tuning of hyperparameters

is usually not integrated in software packages for functional data analysis and

thus would require the user to write additional, non-trivial code that handles

(nested) resampling, evaluation and optimization methods.

mlrFDA contains several functional data algorithms from several R pack-

ages, e.g., fda.usc, refund or FDboost. The algorithms’ functionality, however,
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remains unchanged, only their user interface is standardized for use with mlr.

For detailed insights into the respective algorithms, full documentation is avail-

able in the respective packages.

Since our toolbox is built on mlr’s extensible class system, our framework

is easily extensible to other methods that have not yet been integrated, and

the user can include his or her own methods which do not necessarily need

to be available as a packaged implementation. Additionally, mlrFDA inherits

mlr’s functionality for performance evaluation and benchmarking, along with

extensive and advanced (hyperparameter) tuning. This makes our platform

very attractive for evaluating which algorithm fits best to a problem at hand,

and even allows for large benchmark studies.

5. Benchmark Experiment

In order to enable a comparison of the different approaches, an extensive

benchmark study is conducted. This paper does not aim to replicate or repro-

duce results obtained by Bagnall et al. [10] or Fawaz et al. [11]. Instead we

focus on providing a benchmark complementary to previous benchmarks. This

is done because i) the experiments require large amounts of computational re-

sources, and ii) the added value of an exact replication of the experiments (with

open source code) is comparatively small. Nonetheless, we aim for results that

can be compared, and thus extend the results obtained by Bagnall et al. [10]

by staying close to their setup. The experiments were carried out on a high

performance computing cluster, supported by the Leibniz Rechenzentrum Mu-

nich. Individual runs were allowed up to 2.2 GB of RAM and 4 hours run-time

for each evaluation. We want to stress that this benchmark compares imple-

mentations, which does not always necessarily correspond to the performance of

the corresponding theoretical algorithm. Additionally, methods for functional

data analysis are traditionally more focused on valid statistical inference and

interpretable results, which does not necessarily coincide with high predictive

performance.
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5.1. Benchmark Setup

Data sets 51 Data sets, see table B.7

Algorithms Function (Package)
Machine Learning: - glmnet (glmnet)

- rpart (rpart)
- ksvm? (kernlab)
- ranger? (ranger)
- xgboost? (xgboost)

Functional Data - classif.knn(fda.usc)
- classif.glm (fda.usc)
- classif.np (fda.usc)
- classif.kernel(fda.usc)
- FDboost (FDboost)
- fgam (refund)
- knn with dtw (classiFunc)

Feature Extraction + ML - feature extraction: see table A.6
- in combination with ML algorithms marked with a ?.

Measures mean misclassification error, training time

Resampling 20-fold stratified sub-sampling;
class balances and train/test set size as in [10].

Tuning 100 iterations of Bayesian optimization (3-fold inner CV).
Corresponding hyperparameter-ranges can be obtained
from tables 3 and 5.

Table 1: Benchmark experiment setup

A benchmark experiment is defined by four important characteristics: The data

sets algorithms are tested on, the algorithms to be evaluated, the measures

used for evaluating predictive performance, and a resampling strategy used for

generating train and test splits of the data. A comprehensive overview of the

conducted benchmark setup can be obtained from Table 1.

These characteristics are briefly described subsequently before providing and

discussing the results. We use a subset of 51 data sets from the popular UCR

archive [28] in order to enable a comparison of results in [10] with the additional

methods described in this paper. The data sets stem from various application

types such as ECG measurements, sensor data, or image outlines, therefore

having varying training set sizes or measurement lengths. For more detailed

information about the data sets, see Bagnall et al. [28].

We selected data using the following criteria: In order to reduce the com-

putational resources we did i) not run data sets that have multiple versions,
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ii) exclude data sets with less then 3 examples in each class iii) remove data

sets with more than 10000 instances or time series longer than 750 measure-

ments. As some of the classifiers only work with multi-class targets via 1-vs-all

classification, we iv) additionally excluded data sets with more then 40 classes.

In essence, we benchmark small and medium sized data sets with a moderate

amount of different classes.

We add 7 new algorithms and 6 feature extraction methods which can be

combined with arbitrary machine learning methods for scalar features (c.f. Ta-

ble 1). Additionally we test 5 classical machine learning methods, in order to

obtain a broader perspective on expected performance if the functional nature

of the data is ignored. As we benchmark default settings as well as tuned algo-

rithms, in total 80 different algorithms are evaluated across all data sets. When

combining feature extraction and machine learning methods, we fuse the learn-

ing algorithm and the preprocessing, thus treating them as a pipeline where data

is internally transformed before applying the learner. This allows us to jointly

tune the hyperparameters of learning algorithm and preprocessing method. The

respective defaults and parameter ranges can be obtained from Table 3 (feature

extractors) and Table 5 (learning algorithms). More detailed description of the

hyperparameters can be obtained from the respective packages documentation.

In order to generate train/test splits, and thus obtain an unbiased estimate of

the algorithm’s performance, we use stratified sub-sampling. We use 20 different

train/test splits for each data set in order to reduce variance and report the

average. For tuned models, we use use nested cross-validation [37] to ensure

unbiased estimates, where the outer loop is again subsampling with 20 splits,

and the inner resampling for tuning is a 3-fold (stratified) cross-validation. All

compared 80 algorithms are presented exactly the same index sets for the 20

train-test outer subsampling splits.

Mean misclassification error (MMCE) is chosen as a measure of predictive

performance in order to stay consistent with Bagnall et al. [10]. Other measures,

such as area under the curve (AUC) require predicted probabilities and do not

trivially extend to multi-class settings.
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While Bagnall et al. [10] tune all algorithms across a carefully handcrafted

grid, we use Bayesian optimization [38]. In order to stay comparable, we anal-

ogously fix the amount of tuning iterations to 100.

We use mlrMBO [39] in order to perform Bayesian optimization of the hy-

perparameters of the respective algorithm. Additionally, in order to scale the

method to a larger amount of data sets and machines, the R-package batchtools

(Bischl et al. [40], Lang et al. [41]) is used. This enables running benchmark ex-

periments on high-performance clusters. For the benchmark experiment, a job

is defined as re-sampling of a single algorithm (or tuning thereof) on a single

version of a data set. This allows for parallelization to an arbitrary number of

CPU’s, while at the same time guaranteeing reproducibility. The code for the

benchmark is available from https://github.com/compstat-lmu/2019_fda_

benchmark for reproducibility.

5.2. Results

This Section tries to answer the questions posed in section 1. We evaluate i)

various machine learning algorithms in combination with feature extraction, ii)

classical time series classification approaches, iii) the effect of tuning hyperpa-

rameters for several methods, and iv) try to give recommendations with respect

to which algorithm(s) to choose for new classification problems.

Algorithms evaluated in this benchmark have been divided into three groups:

Algorithms specifically tailored to functional data, classical machine learning

algorithms without feature extraction and classical machine learning algorithms

in combination with feature extraction.

5.2.1. Algorithms for functional data

Performances of algorithms specifically tailored to functional data analysis

can be obtained from Figure 3. The k-nearest neighbors algorithm from package

classiFunc [26] in combination with dynamic time warping [19] distance seems to

perform best across data sets. It is also considered a strong baseline in Bagnall

et al. [10].
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Figure 3: Performances for functional data analysis algorithms in default settings (untuned)
across all 51 data sets.

5.2.2. Machine Learning algorithms with feature extraction

Performances of different machine learning algorithms in combination with

feature extraction with and without tuning can be obtained from Figure 4.
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Figure 4: Results for feature extraction-based machine learning algorithms with default and
tuned (MBO) hyperparameters across 51 data sets. Hyperparameters are tuned jointly for
learner and feature extraction method.

17

148
G. Benchmarking time series classification-Functional data vs machine

learning approaches



We conclude that feature extraction using splines (bsignal) and wavelets as

well as extracting dynamic time warping distances works well when combined

with conventional machine learning algorithms, even at their default hyper-

parameters. Among the learners, random forests, especially in combination with

bsignal show quite advantageous performance. In addition, we find an obvious

improvement from hyper-parameter tuning for the Fourier feature extraction.

In terms of learners, random forest and gradient boosted tree learners (xgboost)

perform better than support vector machines.

5.2.3. Machine Learning algorithms without feature extraction

Additionally, we aim to provide some insight with regards to the perfor-

mance of machine learning algorithms that ignore the functional nature of our

data. Figure 5 provides an overview over the performance of different machine

learning algorithms that are often used together with traditional tabular data.

Performances in this figure are obtained from algorithms directly applied to the

functional data without any additional feature extraction. The widely used gra-

dient boosting (xgboost) and random forest (ranger) implementations seem to

work reasonably well for functional data even without additional feature extrac-

tion.

5.2.4. The effect of tuning hyperparameters

From our experiments, we conclude, that tuning hyperparameters of machine

learning algorithms in general has a non-negligible effect on the performance.

Using Bayesian optimization in order to tune algorithm hyperparameters on

average yielded an absolute increase in accuracy of 5.4% across data sets and

learners.

Figure 6 displays the aggregated time over all data sets, taking into account

the time required for hyperparameter tuning. All experiments have been run

on equivalent hardware on high-performance computing infrastructure. Due to

fluctuations in server load, this does not allow for an exact comparison with

respect to computation time, but we hope to achieve comparable results as
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Figure 5: Performance of non-functional machine learning algorithms across 51 data sets
applied directly to functional data with and without tuning.

we repeatedly evaluate on sub-samples. Note that we restrict the tuning to 3

algorithms where tuning traditionally leads to higher performances.2

5.2.5. Top 10 Algorithms and recommendations

Table 2 showcases the top 10 algorithms from the benchmark in terms of

average rank in predictive accuracy across data sets. With this list, we aim to

provide some initial understanding of the performance of different algorithms

and feature extraction methods. Note that this list by no means reflects perfor-

mance on future data sets, but might serve as an indicator, of which algorithms

one might want to try first given computational constraints.

We observe that wavelet extraction in combination with either ranger or

xgboost seems to be very strong. They obtain an average rank of 12.90 and

14.45 (out of 80) respectively. Dynamic time warping distances for k-nearest

neighbors indeed seems to be a strong baseline, even without tuning. Another

strong feature extraction method seems to be the extraction of B-spline features.

2Additionally, we find significantly improved performance for tuned FDboost in Figure 3
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Figure 6: Comparison of running time for the different learner classes with default and tuned
hyperparameters across 51 data sets. A log transformation on the running time in seconds is
applied, and the mean running time is visualized for each stratification as a horizontal line
within the violin plot.

Using the 10 algorithms above allows us to obtain an accuracy within 5% of the

maximum on 49 of the 51 data sets.

If the only criterion for model selection is predictive performance, (tuned)

machine learning models in combination with feature extraction is a competitive

baseline. This class of methods achieves within 95% of the optimal performance

on 47 out of 51 data sets, while they include the best performing classifier in 35

cases.

5.2.6. Comparison to classical time series classification

Even though the main purpose of this paper is not a direct comparison with

the results from [10], we can use our results to show that applying functional

data approaches and classical machine learning approaches together with feature

extraction can still improve classification accuracy compared to current state-

of-the-art time series classification methods.

In the experiments we conducted, the methods described in this paper improved

accuracy on 9 out of the 51 data sets which is displayed in Figure 7. The 9 data
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Table 2: Top 10 algorithms by average rank across all data sets. Percent Accuracy describes
the fraction of the maximal accuracy reached for each task.

Algorithm Setting Accuracy % Average Rank
ranger wavelet tuned 0.92 12.90
xgboost wavelet tuned 0.92 14.45
ranger bsignal tuned 0.90 15.02
knn dtw tuned 0.92 15.22
ranger none default 0.90 15.59
ranger bsignal default 0.89 15.71
ranger wavelet default 0.90 16.33
knn dtw default 0.92 16.43
xgboost bsignal tuned 0.90 17.57
ranger none tuned 0.89 18.49

sets and the corresponding best learner are displayed in Table 4. For each data

set, only the best reached accuracy for both sets of algorithms is displayed.

Additionally, we evaluate how our learners rank in comparison to the in-

dividual bake-off algorithms from [10]. The algorithm which performs best on

a data set obtains the rank 1. The mean rank of the individual learners over

all 49 data sets (we take the intersection of the data sets from our benchmark

and the ones from [10]). The average sorted ranks for the top 50% algorithms

are displayed in Figure 8. We observe that the ensemble methods get the top

ranks, which is no surprise, as for instance the COTE algorithm [42] internally

combines several classifiers from 4 different time series domains.

However, compared to the classical time series algorithms from [10] with the

ensemble methods removed, our functional data algorithms obtain an overall

good rank in accuracy performance, interleaved with the algorithms from [10].

Note that the benchmarks are not exactly comparable due to minor differences

in the benchmark setup, and we instead only include their reported results.

6. Summary and Outlook

In this work, we provide a benchmark along with a software implementation

that integrates the functionality of a diverse set of R-packages into a single user

interface and API. Both contributions come with a multiplicity of benefits:
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id type values def. trafo

bsignal
bsignal.knots int {3,...,500} 10 -
bsignal.df int {1,...,10} 3 -
multires
res.level int {2,...,5} - -
shift num [0.01,1] - -
pca
rank. int {1,...,30} - -
wavelets
filter chr d4,d8,d20,la8,la20,bl14,bl20,c6,c24 - -
boundary chr periodic,reflection - -
fourier
trafo.coeff chr phase,amplitude - -
dtwkernel
ref.method chr random,all random -
n.refs num [0,1] - -
dtwwindow num [0,1] - -

Table 3: Parameter spaces and default settings for feature extraction methods.

• The user is not required to learn and deal with the vast complexity of the

different interfaces the underlying packages expose.

• All of the existing functionality (e.g., preprocessing, resampling, perfor-

mance measures, tuning, parallelization) of the mlr ecosystem can now be

used in conjunction with already existing algorithms for functional data.

• We expose functionality that allows us to work with functional data using

traditional machine learning methods via feature extraction methods.

• Integration of additional preprocessing methods or models is (fairly) trivial

and automatically benefits from the full mlr ecosystem.

In order to obtain a broader overview of the performance of the integrated

methods, we perform a large benchmark study. This allows users to get an initial

overview of potential performances of the different algorithms. Specifically,

• We open up new perspectives for time series classification tasks by incor-

porating methods from functional data analysis, as well as feature trans-
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Name Algorithm Setting Accuracy
Beef xgboost wavelet tuned 0.83
ChlorineConcentration ksvm none tuned 0.91
DistalPhalanxOutlineAgeGroup ranger none default 0.83
DistalPhalanxOutlineCorrect ranger dtwkernel default 0.83
DistalPhalanxTW ranger bsignal default 0.76
Earthquakes FDboost none default 0.80
Ham xgboost wavelet tuned 0.84
InsectWingbeatSound ranger wavelet default 0.65
SonyAIBORobotSurface1 ksvm wavelet default 0.94

Table 4: Data sets together with corresponding mlrFDA learner and accuracy for which our
learners were able to improve accuracy in the conducted experiments.

formations combined with conventional machine learning models.

• Based on the large scale benchmark, we conclude that many learners

have competitive performance (Figure 7) and additionally offer the inter-

pretability of many functional data analysis methods. Our toolbox serves

as a strong complement and alternative to other time series classification

software.

• The presented benchmark study uses state-of-the-art Bayesian optimiza-

tion for hyperparameter optimization, which results in significant improve-

ments over models that are not tuned. This kind of hyperparameter tuning

is easy to do with mlrFDA. Tuning, albeit heavily influencing performance

is often not investigated. Our benchmark closes this gap in existing liter-

ature.

• We find that extracting vector valued features and feeding them to a con-

ventional machine learning model can often form competitive learners.

• The pareto-optimal set in terms of performance on each data set contains

23 different algorithm−feature-extraction combinations. Our toolbox i)

offers the same API for all methods and ii) allows to automatically search

over this space, and thus allows users to obtain optimal models without

knowing all underlying methods.
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parameter type values default trafo

ksvm

C num [-15,15] - 2^x
sigma num [-15,10] - 2^x

ranger

mtry.power num [0,1] - px

min.node.size num [0,0.99] - 2^(log2(n) ∗ x)
sample.fraction num [0.1,1] - -

xgboost

nrounds int {1,...,5000} 100 -
eta num [-10,0] - 2^x
subsample num [0.1,1] - -
booster chr gbtree,gblinear - -
max depth int {1,...,15} - -
min child weight num [0,7] - 2^x
colsample bytree num [0,1] - -
colsample bylevel num [0,1] - -
lambda num [-10,10] - 2^x
alpha num [-10,10] - 2^x

FDboost

mstop int {1,...,5000} 100 -
nu num [0,1] 0.01 -
df num [1,5] 4 -
knots int {5,...,100} 10 -
degree int {1,...,4} 3 -

Table 5: Parameter spaces and defaults used for tuning machine learning and functional data
algorithms. In case no default is provided, package defaults are used. Additional information
can be found in the respective packages documentation.
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Figure 7: Comparing accuracy between our mlrFDA learners and the classical time series
classification algorithms in [10]. For each data set, only the best accuracy for each of the two
benchmarks is shown. We observe that for 9 of the evaluated data sets the classification per-
formance can directly be improved solely by applying our mlrFDA learners, while we perform
on par with the classical time series classification algorithms (when rounding to 3 decimal
digits) on two data sets.

Concerning the questions we proposed at the beginning of the paper, we draw

the following conclusions:

• Tuning only a subset of the presented learners and feature extractions, i.e.,

the methods listed in Table 2, is sufficient to achieve good performances

on almost all data sets in our benchmark.

• A simple random forest without any preprocessing can also be a reasonable

baseline for time series data. It achieves an average rank of 15.59 (top 4)

in our benchmark.

• Most algorithms for functional data (e.g., FDboost) do not perform well in

our benchmark study. As those algorithms are fully interpretable and offer

statistically valid coefficients, they can still be useful in some applications,

and should thus not be ruled out.

• Feature extraction techniques, such as b-spline representations (bsignal)
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and wavelet extraction work well in conjunction with machine learning

techniques for vector valued features such as xgboost and random forest.

• Tuning leads to an average reduction in absolute MMCE of 3.59% (ranger),

5.69% (xgboost), 7.78% (ksvm) (across feature extraction techniques) and

11% (FDboost). This holds for all feature extraction techniques, where

improvements range from 1.12% multires to 20.3% fourier.

In future work we will continue to expand the available toolbox along with

a benchmark of new methods, and provide the R community a wider range of

methods that can be used for the analysis of functional data. This includes

not only integrating many already available packages, and as a result to en-

able preprocessing operations such as smoothing (e.g., fda [4]) and alignment

(e.g., fdasrvf [43] or tidyfun [44]), but also to explore and integrate advanced

imputation methods for functional data. Further work will also extend the cur-

rent implementation to support data that is measured on unequal or irregular

grids. Additionally, we aim to implement some of the current state-of-the art

machine learning models from the time series classification bake-off [10], such as

the Collective of Transformation-Based Ensembles (COTE) [31]. This enables

researchers to use and compare with current state-of-the-art methods.
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Appendix A. API overview

For the interested reader, we introduce a brief overview of the API and

functionality.

Appendix A.1. Representing functional data in mlrFDA

A sketch of the data structure we use to represent functional data can be

found in the right part of Figure A.9. We assume a data set consists of data

for N observational units, organized in rows of features, where one row contains

all observed features for one observational unit, i.e., each row typically contains

several functional and/or scalar covariates. For a classical, non-functional data

set, the P features are single columns (as depicted in the left part of Figure

A.9). A functional data set, on the other hand, consists of single-column scalar

features as well as functional features of different length for each functional

covariate, each represented by multiple adjacent and connected columns. Each

of these columns contains the evaluations of the functional feature at a certain

argument value for all observational units (right part of Figure A.9).

As an example which will be used throughout the remainder of this paper,

we use the fuelSubset data set from package FDboost, see also Figure 1. It

contains a numeric target variable heatan, the fuel’s heating value, a scalar

feature h20, the fuel’s water content, and two functional features NIR and UVVIS,

measured at 231 and 129 wavelengths, respectively. To start with a clean sheet,

we create a data.frame containing all features as separate columns.

R> library(mlr)

R> library(FDboost)

R> df = data.frame(fuelSubset[c("heatan", "h2o", "UVVIS", "NIR")])

The first step when setting up an experiment in any analysis is to make

the data accessible for the specific algorithms that will be applied. In mlr, the

data itself, and additional information, such as which column corresponds to

the target variable is stored as a Task, requiring the input data to be of type
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data.frame.

The list of column positions of the functional features is then passed as argu-

ment fd.features to makeFunctionalData(), which returns an object of type

data.frame in which the columns corresponding to each functional feature are

combined into matrix columns. 3

R> fd.features = list("UVVIS" = 3:136, "NIR" = 137:367)

R> fdf = makeFunctionalData(df, fd.features = fd.features)

R> str(fdf)

’data.frame’: 129 obs. of 4 variables:

\$ heatan: num 26.8 27.5 23.8 18.2 17.5 ...

\$ h2o : num 2.3 3 2 1.85 2.39 ...

\$ UVVIS : num [1:129, 1:134] 0.145 -1.584 -0.814 -1.311 -1.373 ...

..- attr(*, "dimnames")=List of 2

.. ..\$ : NULL

.. ..\$ : chr "UVVIS.1" "UVVIS.2" "UVVIS.3" "UVVIS.4" ...

\$ NIR : num [1:129, 1:231] 0.2818 0.2916 -0.0042 -0.034 -0.1804 ...

..- attr(*, "dimnames")=List of 2

.. ..\$ : NULL

.. ..\$ : chr "NIR.1" "NIR.2" "NIR.3" "NIR.4" ...

We additionally specify the name "fuelsubset" and the target variable

"heatan". The structure of the functional Task object is rather similar to the

non-functional Task, with the additional information functionals, which states

how many functional features are present in the underlying data.

R> tsk1 = makeRegrTask("fuelsubset", data = fdf, target = "heatan")

R> print(tsk1)

3As an alternative, a list of the column names containing the functional features is also
valid as argument to fd.features, which is especially useful if columns are already labeled.
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Supervised task: fuelsubset

Type: regr

Target: heatan

Observations: 129

Features:

numerics factors ordered functionals

1 0 0 2

Missings: FALSE

Has weights: FALSE

Has blocking: FALSE

Has coordinates: FALSE

After defining the task, a learner is created by calling makeLearner. This

contains the algorithm that will be fitted on the data in order to obtain a

model. Currently, mlrFDA supports both functional regression and functional

classification. A list of supported learners can be found in Table 1

Appendix A.2. Machine Learning and Feature Extraction

Classical machine learning algorithms do not take into account the charac-

teristics of functional data and treat the input data as vector valued features.

Without additional preprocessing, this typically yields poor performance on, as

the models cannot exploit the lower intrinsic dimensionality of the functional

covariates nor the fact that they represent observations over a continuum.

In mlrFDA, classical algorithms can be applied to functional data, however,

a warning message will be displayed. In our example, we train a partitioning

tree on the functional data, while ignoring the functional structure.

R> rpart.lrn = makeLearner("regr.rpart")

R> m = train(learner = rpart.lrn, task = tsk1)

Functional features have been converted to numerics

For conventional learning algorithms to work well on functional data, infor-

mative scalar features need to be extracted from the functional features.
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Name Function Package
Discrete Wavelet Transform extractFDAWavelets() wavelets

Fast Fourier Transform extractFDAFourier() stats
Principal Component Analysis extractFDAPCA() stats

B-Spline Features extractFDABsignal() FDboost
Multi-Resolution Feature Extraction extractFDAMultiResFeatures() -

Time Series Features extractFDATsfeatures() tsfeatures
Dynamic Time-Warping Kernel extractFDADTWKernel() rucrdtw

Table A.6: Feature extraction methods currently implemented in mlrFDA and underlying
packages

Feature extraction is applied in practice for a multiplicity of reasons, as it

often not only reduces the dimensionality of the resulting problem, but also

allows researchers to make use of domain knowledge, for example by hand-

crafting features from measurements of continuous processes. Examples for this

include deriving features that allow for sleepiness detection [45], or by extracting

features from electro-cardiogram data in order to detect emotions [46]. The

resulting features often have a much lower dimensionality, which often improves

fitted models. Other preprocessing methods for functional or time series data

include extracting general purpose features such as wavelet coefficients [15, 47],

principal component scores or Fourier coefficients. The resulting scalar features

can then be used with different machine learning methods such as k-nearest

neighbors.

In the following section, we showcase the feature extraction procedure using

general purpose features as an example. We want to emphasize that it is also

easily possible to write custom feature extraction methods using the makeFea-

tureExtractionMethod function.

In our example, we extract the Fourier coefficients from the functional feature

UVVIS, and principal component scores from the second functional feature NIR

in order to transform the original task with functional data into a conventional

task.

R> feat.methods = list("UVVIS" = extractFDAFourier(),

"NIR" = extractFDAPCA())

R> extracted = extractFDAFeatures(tsk, feat.methods = feat.methods)
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R> extracted

$task

Supervised task: fuelsubset

Type: regr

Target: heatan

Observations: 129

Features:

numerics factors ordered functionals

137 0 0 0

Missings: FALSE

Has weights: FALSE

Has blocking: FALSE

Has coordinates: FALSE

$desc

Extraction of features from functional data:

Target: heatan

Functional Features: 2; Extracted features: 2

As an alternative, the feature extraction can be applied in a wrapper method

makeExtractFDAFeatsWrapper(). In general, a wrapper combines a learner

method with another method, thereby creating a new learner that can be han-

dled like any other learner. In our case, a classical machine learning method

is combined with the data preprocessing step of feature transformation from

functional to non-functional data.

R> wrapped.lrn = makeExtractFDAFeatsWrapper("regr.rpart",

feat.methods = feat.methods)

This is suitable for honest cross-validation of data-adaptive feature extrac-

tion methods like principal components. We can now cross-validate the learner

created above using mlr’s resample function with 10-fold cross-validation.
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R> res = resample(learner = wrapped.lrn, task = tsk1,

resampling = cv10)

In the same way, we can train and predict on data, or benchmark multiple

learners across multiple data sets. Additionally, we can apply a tuneWrapper to

our learner in order to automatically tune hyperparameters of the learner and

the preprocessing method during cross-validation.

Appendix B. Data sets used in the Benchmark

Table B.7 contains all data sets used in the benchmark along with additional

data properties.

Appendix C. Failed and missing experiments

Experiments for some algorithm / data set combinations failed due to im-

plementation details or algorithm properties. In order to increase transparency,

failed algorithms are listed here, and if available reasons for failure are provided.

At the time of the benchmark, the implementation in the tsfeatures package

was not stable enough to be included in the benchmark.

• classif.fgam

Data sets: BeetleFly, BirdChicken, Coffee, Computers, DistalPhalanx-

OutlineCorrect, Earthquakes, ECG200, ECGFiveDays, ElectricDeviceOn,

GunPoint, Ham, Herring, ItalyPowerDemand, Lightning2, MoteStrain,

ShapeletSim, SonyAIBORobotSurface1, Strawberry, ToeSegmentation1,

TwoLeadECG, Wafer, Wine, Yoga

Reason: Too few instances in some classes, such that p > n.

• classif.fdausc.kernel and .np Data sets: ElectricDeviceOn, Shapelet-

Sim

• classif.fdausc.knn

Data sets: DistalPhalanxTW, EpilepsyX
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Figure 8: Comparing sorted average performance ranks between our mlrFDA learners (algo-
rithm names in lower case) and the classical time series classification algorithms (algorithm
names in capital) in [10], The mean rank of each individual learner over all 49 data sets is
displayed. Only the first half of all algorithms being compared are displayed here. We observe
that the Ensemble Methods like HIVE.COTE, FLAT.COTE, ST, BOSS, EE occupy the top
tier, while the rest of the rank space are interleaved by our mlrFDA algorithms and algorithms
from [10]

Figure A.9: Schematic comparison of non-functional and functional data representation in
mlrFDA. The green feature is a functional feature spanning multiple columns.
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Name Obs. Classes Length Type Split

Adiac 781 37 176 IMAGE 0.50
ArrowHead 211 3 251 IMAGE 0.17
Beef 60 5 470 SPECTRO 0.50
BeetleFly 40 2 512 IMAGE 0.50
BirdChicken 40 2 512 IMAGE 0.50
Car 120 4 577 SENSOR 0.50
CBF 930 3 128 SIMULATED 0.03
ChlorineConcentration 4307 3 166 SIMULATED 0.11
Coffee 56 2 286 SPECTRO 0.50
Computers 500 2 720 DEVICE 0.50
CricketX 780 12 300 MOTION 0.50
DistalPhalanxOutlineAgeGroup 539 3 80 IMAGE 0.74
DistalPhalanxOutlineCorrect 876 2 80 IMAGE 0.68
DistalPhalanxTW 539 6 80 IMAGE 0.74
Earthquakes 461 2 512 SENSOR 0.70
ECG200 200 2 96 ECG 0.50
ECGFiveDays 884 2 136 ECG 0.03
ElectricDeviceOn 1008 2 360 DEVICE 0.63
EpilepsyX 275 4 208 HAR 0.61
FaceAll 2250 14 131 IMAGE 0.25
FacesUCR 2250 14 131 IMAGE 0.09
Fish 350 7 463 IMAGE 0.50
GunPoint 200 2 150 MOTION 0.25
Ham 214 2 431 SPECTRO 0.51
Herring 128 2 512 IMAGE 0.50
InsectWingbeatSound 2200 11 256 SENSOR 0.10
ItalyPowerDemand 1096 2 24 SENSOR 0.06
LargeKitchenAppliances 750 3 720 DEVICE 0.50
Lightning2 121 2 637 SENSOR 0.50
Lightning7 143 7 319 SENSOR 0.49
Meat 120 3 448 SPECTRO 0.50
MedicalImages 1141 10 99 IMAGE 0.33
MoteStrain 1272 2 84 SENSOR 0.02
OSULeaf 442 6 427 IMAGE 0.45
Plane 210 7 144 SENSOR 0.50
RefrigerationDevices 750 3 720 DEVICE 0.50
ScreenType 750 3 720 DEVICE 0.50
ShapeletSim 200 2 500 SIMULATED 0.10
SmallKitchenAppliances 750 3 720 DEVICE 0.50
SonyAIBORobotSurface1 621 2 70 SENSOR 0.03
Strawberry 983 2 235 SPECTRO 0.62
SwedishLeaf 1125 15 128 IMAGE 0.44
SyntheticControl 600 6 60 SIMULATED 0.50
ToeSegmentation1 268 2 277 MOTION 0.15
Trace 200 4 275 SENSOR 0.50
TwoLeadECG 1162 2 82 ECG 0.02
TwoPatterns 5000 4 128 SIMULATED 0.20
UWaveGestureLibraryX 4478 8 315 MOTION 0.20
Wafer 7164 2 152 SENSOR 0.14
Wine 111 2 234 SPECTRO 0.51
Yoga 3300 2 426 IMAGE 0.09

Table B.7: Data sets from the UCI Archive used in the benchmark.
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a b s t r a c t

Feature selection is one of the most fundamental problems in machine learning and has
drawn increasing attention due to high-dimensional data sets emerging from different
fields like bioinformatics. For feature selection, filter methods play an important role,
since they can be combined with any machine learning model and can heavily reduce
run time of machine learning algorithms. The aim of the analyses is to review how
different filter methods work, to compare their performance with respect to both run
time and predictive accuracy, and to provide guidance for applications. Based on 16 high-
dimensional classification data sets, 22 filter methods are analyzed with respect to run
time and accuracy when combined with a classification method. It is concluded that
there is no group of filter methods that always outperforms all other methods, but
recommendations on filter methods that perform well on many of the data sets are
made. Also, groups of filters that are similar with respect to the order in which they rank
the features are found. For the analyses, the R machine learning package mlr is used.
It provides a uniform programming API and therefore is a convenient tool to conduct
feature selection using filter methods.
©2019 TheAuthors. Published by Elsevier B.V. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Feature selection has become increasingly important for data analysis, machine learning, and data mining. Especially
for high-dimensional data sets, it is necessary to filter out the irrelevant and redundant features by choosing a suitable
subset of relevant features in order to avoid over-fitting and tackle the curse of dimensionality. With respect to data sets
from the bioinformatics domain, feature selection often allows identifying the features that are important for biological
processes of interest.

When fitting a statistical model for such high-dimensional data sets, one needs to decide first which feature selection
method to use. As many of them exist, this is not an easy decision. Regarding the comparison of different methods,
benchmark studies have gained increasing attention in the machine learning community (Fernández-Delgado et al., 2014).

In this paper, we benchmark state-of-the-art feature selection techniques on high-dimensional data sets. We compare
22 filter methods from different toolboxes on 16 high-dimensional classification data sets from various domains. We
investigate which methods select the features of a data set in a similar order. Additionally, we search for optimal methods

✩ The R source code for the analyses of this article is publicly available at https://github.com/bommert/filter-benchmark-paper.
∗ Corresponding author.

E-mail address: bommert@statistik.tu-dortmund.de (A. Bommert).

https://doi.org/10.1016/j.csda.2019.106839
0167-9473/© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/
licenses/by/4.0/).
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with respect to predictive accuracy and run time. The results of our analyses show three groups of similar filter methods
as well as several filter methods that are not very similar to any other filter method. Some of the filter methods seem to
work better than others, but which filter methods perform best depends on the data set. There is no one-fits-all solution,
but some recommendations can be made on the choice of filter methods.

In the past decades, many feature selection methods have been proposed. The methods can be categorized into three
classes (Guyon and Elisseeff, 2003): Filter methods rank features by calculating a score for each feature independent of a
model. Either the m features with the highest scores or all the features whose scores exceed a threshold τ are selected
(with m ∈ N or τ ∈ R being pre-specified). For many filter methods, the score calculation can be done in parallel. Lazar
et al. (2012) give an extensive overview of existing filter methods. Wrapper methods (Kohavi and John, 1997) consider
subsets of the set of all features. For each of the subsets, a supervised learning (e.g. classification) model is fitted. The
subsets are evaluated by a performance measure calculated on the resulting model (e.g. classification accuracy). Wrapper
methods include simple approaches like greedy sequential searches (Kittler, 1978), but also more elaborate algorithms
like recursive feature elimination (Huang et al., 2018) as well as evolutionary and swarm intelligence algorithms for
feature selection (Yang and Honavar, 1998; Xue et al., 2016; Brezočnik et al., 2018). Embedded methods include the feature
selection in the model fitting process. Examples for predictive methods that perform embedded feature selection are Lasso
regression (Tibshirani, 1996), tree based methods like classification and regression trees (Breiman et al., 1984) or random
forests (Breiman, 2001), and gradient boosting (Biau et al., 2019). There are many overview papers that describe in detail,
categorize, and suggest how to evaluate existing feature selection methods, e.g. Guyon and Elisseeff (2003), Liu and Yu
(2005), Saeys et al. (2007), Tang et al. (2014), Chandrashekar and Sahin (2014), Hira and Gillies (2015), Jović et al. (2015),
Li et al. (2018), Cai et al. (2018) and Venkatesh and Anuradha (2019).

There are also several papers in which feature selection methods are compared. In many of these, the feature selection
methods are combined with classification methods in order to assess the predictive performance of the selected features.
Liu et al. (2002) compare filter methods based on two gene expression data sets, counting the number of misclassified
samples. Bolón-Canedo et al. (2013) analyze the classification accuracy of different filter, wrapper, and embedded methods
on several artificial data sets. Bolón-Canedo et al. (2014) and Inza et al. (2004) compare filter methods with respect to
classification accuracy based on microarray data sets. Forman (2003) and Aphinyanaphongs et al. (2014) conduct extensive
comparisons based on text classification data sets. They analyze filter and wrapper methods, respectively. Darshan and
Jaidhar (2018) compare filter methods with respect to classification accuracy on malware detection data. Liu (2004)
and Peng et al. (2005) study filter methods on large data sets, analyzing the predictive accuracy with respect to the
number of features to be chosen. Dash and Liu (1997) and Sánchez-Maroño et al. (2007) use small artificial data sets
to assess whether the correct features are chosen. Dash and Liu (1997) compare different feature selection methods
while Sánchez-Maroño et al. (2007) consider filter methods only. Wah et al. (2018) compare filter and wrapper methods
on large simulated data sets with respect to the correctness of the chosen features. Additionally, they conduct comparisons
with respect to classification accuracy on real data sets. Xue et al. (2015) comprehensively compare filter and wrapper
methods with respect to classification accuracy and run time, considering each of the two objectives separately. Most of
the data sets on which the comparison is based contain a small or medium number of features.

In some papers, only filter methods whose scores are based on similar concepts are compared. Both Meyer et al. (2008)
and Brown et al. (2012) compare several filter methods that are based on mutual information. Meyer et al. (2008) analyze
the accuracy and the run time of the methods separately. Additionally, they take into account theoretical properties
and look at the percentages of correctly identified features on artificial data. Brown et al. (2012) assess the similarity
of the filter methods with respect to feature subsets of size 10. Moreover, they analyze the classification accuracy with
respect to the number of chosen features and search for Pareto optimal methods considering the accuracy and feature
selection stability. Hall (1999) conducts an extensive study of correlation based feature selection. The author analyzes the
classification accuracy based on real data sets as well as the choosing of relevant or irrelevant features based on artificial
data sets.

Several authors introduce new feature selection methods and compare them in a benchmark study to competing
approaches. Zhu et al. (2007) and Mohtashami and Eftekhari (2019) present new wrapper methods. The comparisons they
conduct for the new methods also include filter methods. The authors assess the classification accuracy of the methods
on several data sets. Zhu et al. (2007) also consider the number of features for which the best performance is achieved.
Yu and Liu (2004), Fleuret (2004), and Ke et al. (2018) present new filter methods and conduct a comparison of their
new methods with established feature selection methods. All of them consider the classification accuracy of the feature
selection methods and the run time separately. Hoque et al. (2018) develop an ensemble filter method that aggregates
the scores of several filter methods and compare it to the single filter methods. They compare the methods with respect
to classification accuracy considering both small and high-dimensional data sets. Ghosh et al. (2019) create an ensemble
filter method for guiding an evolutionary algorithm. This algorithm is compared to evolutionary algorithms guided by
single filter methods with respect to classification accuracy. The comparison is based on high-dimensional data sets and
small numbers of features to be chosen.

None of the above studies conduct an extensive comparison of feature selection methods on high-dimensional data
with respect to both accuracy and run time jointly. However, for the analysis of high-dimensional data sets it is crucial to
know which feature selection methods are suitable. For high-dimensional data, it is necessary to perform feature selection.
Also, it is more difficult to perform feature selection than for low-dimensional data. The decision on which features should
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be selected is more complicated due to the curse of dimensionality. Moreover, the feature selection method must be fast
to compute because of the large number of features.

In this work, we compare 22 filter methods on high-dimensional classification data sets. The filter methods compared
by us are representatives of the most prominent general concepts for filter methods. These classes of filter methods
are univariate statistical tests, univariate predictive performance indicators, feature variance, random forest importance
and information theoretic measures. We use the R package mlr as a basis for our experiments. mlr is a comprehensive
package for machine learning and a standard in the R community. It provides a unified platform that can also be used
to concatenate filter methods with predictive methods. All of the compared filter methods have been integrated into mlr
and are ready to use. We focus on the comparison of filter methods based on the following considerations. Most wrapper
methods, evolutionary feature selection algorithms and recursive feature elimination methods are computationally
infeasible for high-dimensional data sets. Embedded methods require that a certain predictive model is used. Most filter
methods, however, are fast to calculate and can be combined with any kind of predictive method, even methods with
embedded feature selection, see Bommert et al. (2017). We extensively compare different toolboxes with filter methods
available in R (R Core Team, 2017). To the best of our knowledge, our approaches of considering the accuracy and the run
time jointly as well as considering the similarity of the ranking of all features have not been analyzed yet by researchers
in a filter comparison study.

The remainder of this paper is organized as follows: In Section 2, we explain a variety of filter methods. In Section 3,
we describe the setup of the experiments we conduct to compare the filter methods and analyze their results. Section 3.3
investigates the similarity of the filter methods based on the feature ranking for several data sets and on their scaling
behavior. In Section 3.4, we search for optimal filter methods with respect to predictive accuracy and run time. Section 4
contains a summary and the conclusions of our work.

2. Filter methods

All filter methods described in this section are applicable for classification data sets with numeric features. Some of
the methods also work for categorical features. We present two kinds of filter methods: Most filter methods calculate a
score for all features and then select the features with the highest scores. Some filter methods, however, select features
iteratively in a greedy forward fashion. For these filters, in each iteration the feature with the maximal score is selected
but the scores of different iterations are not comparable. Notation-wise, we consider a data set with n instances of the
p features X1, . . . , Xp and class variable Y . The filter methods in Sections 2.1–2.3 are univariate, i.e. they do not consider
interactions between the p features. Most of the filter methods in Sections 2.4 and 2.5 are multivariate.

2.1. Univariate statistical tests

Filter anova.test performs for each feature an analysis of variance where the class variable is explained by the feature.
The value of the F statistic is used as the score. The higher the F statistic, the more different are the mean values of the
corresponding feature between the classes. For each feature Xk, the filter score is defined as

Janova.test(Xk) =

∑l
i=1 ni

(
x̄(k)i• − x̄(k)

••

)2
/(l − 1)∑l

i=1
∑ni

j=1

(
x(k)ij − x̄(k)i•

)2
/(n − l)

, (1)

where l denotes the number of classes of Y and x(k)ij , i ∈ {1, . . . , l}, j ∈ {1, . . . , ni}, denote the observed values of feature Xk

for instances of class i. x̄(k)i• =
1
ni

∑ni
j=1 x

(k)
ij is the mean value of Xk in class i and x̄(k)

••
=

1
n

∑l
i=1
∑ni

j=1 x
(k)
ij is the mean value

of Xk of all instances in the data set (Rasch et al., 2011, pp. 241 ff.).
Both filters limma and sam perform a moderated version of the F test. The basic idea of both approaches is to stabilize

the estimation of the variance by using information about the variation of all features. For limma, this is done with a linear
regression model (Smyth, 2004). For sam, the observed statistics are compared to the expected values of the statistics
based on permutations (Tusher et al., 2001). Both methods are popular for gene expression data analysis. For more details
about the two methods, the interested reader is referred to Smyth (2004) and Tusher et al. (2001).

Filter kruskal.test applies for each feature a Kruskal–Wallis rank sum test which is the non-parametric equivalent of
the analysis of variance. Analogously, the test statistic is used as the filter score and higher values of this test statistic
mean that the values of the corresponding feature differ more between the classes. The filter score for feature Xk is

Jkruskal.test(Xk) =
12

n(n + 1)

l∑
i=1

1
ni

(
R(k)
i −

ni(n + 1)
2

)2

, (2)

where ni denotes the number of instances in class i, i ∈ {1, . . . , l}, and R(k)
i =

∑ni
j=1 rank

(
x(k)ij

)
is the sum of the ranks of

the observations of Xk belonging to class i among all observed values for Xk (Kruskal and Wallis, 1952).
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Filter chi.squared performs for each feature a χ2 test of independence between a dichotomized transformation of this
feature and the class variable. The value of the χ2 statistic is used as the score

Jchi.squared(Xk) =

l∑
i=1

s∑
j=1

(
o(k)ij − e(k)ij

)2
e(k)ij

. (3)

o(k)ij denotes the observed number of instances with class i, i ∈ {1, . . . , l}, and a value of Xk of the jth category, j ∈ {1, . . . , s}.
e(k)ij =

1
n ·
∑l

i=1 o
(k)
ij ·

∑s
j=1 o

(k)
ij is the expected number of instances with class i and a value of Xk of the jth category under

the assumption of independence (Rasch et al., 2011, pp. 221). The higher the value of the χ2 statistic, the higher the
dependency between the corresponding feature and the class variable. To calculate this test, continuous features have to
be discretized. For the implementation in the toolbox FSelector (Romanski and Kotthoff, 2016), this is done with the MDL
method, see Section 2.6.

2.2. Univariate predictive performance

The score of the auc filter represents the classification accuracy when each feature is used directly and separately for
class prediction. For each feature Xk, the following prediction rule for the class variable Y is used: Ŷ = I[c,∞)(Xk), with
I denoting the indicator function. The receiver operating curve displays the sensitivity and specificity of a classification
rule for all choices of a threshold c , see Sammut and Webb (2011). The area under the receiver operating curve (AUC)
of the classification rule Ŷ = I[c,∞)(Xk) is used to measure how well Xk separates the target variable. An AUC value of 1
means that there is a threshold c for which the prediction rule is perfectly accurate. The value 0 indicates that there is
a threshold c for which the rule predicts all labels wrongly which implies that Xk can achieve perfect classification with
the rule Ŷ = I(−∞,c)(Xk). A value of 0.5 is the worst possible in this application. The value 0.5 is attained, e.g. when the
feature and the class variable are independent. Therefore,

Jauc(Xk) = |0.5 − AUC| , (4)

where AUC is calculated for the classification rule Ŷ = I[c,∞)(Xk), is used as the AUC filter score. This filter is only applicable
for two-class data sets.

The idea of the simple association rule filter oneR (Romanski and Kotthoff, 2016) is to predict the class based on the
value of a single feature. For this, continuous features have to be discretized in advance. For the implementation in the
toolbox FSelector (Romanski and Kotthoff, 2016), this is done using the MDL method, see Section 2.6. The score of a feature
Xk is calculated in the following way: Let V (k) denote the set of possible values for feature Xk. Also, for each value v ∈ V (k),
let n(k)

vi denote the number of instances with Xk = v and class i, i ∈ {1, . . . , l}. A simple classification rule for instances
with Xk = v is predicting the class i with the highest count n(k)

vi . The proportion of correctly classified instances by this
rule without conducting any resampling is used as filter score:

JoneR(Xk) =
1
n

∑
v∈V (k)

max
i∈{1,...,l}

n(k)
vi . (5)

The higher the accuracy of the rule, the more the feature Xk is considered as suitable for univariate class prediction.
Filter univariate.model.score (Bischl et al., 2016) fits a model for each feature in which only this feature is used to predict

the class variable. Based on these models, the predictive performance of all features is assessed and the resulting filter
score is

Junivariate.model.score(Xk) = accuracy of univariate predictive model that only uses Xk. (6)

The implementation in mlr (Bischl et al., 2016) uses per default a classification tree with default hyper parameters
(Therneau et al., 2017), measures the predictive performance by the accuracy (see Section 2.9) and performs a train–test
split with ratio 2:1 in order to avoid overestimation of the accuracy. These specifications can be changed.

2.3. Variance

The variance filter uses the variance of a feature as its score

Jvariance(Xk) =
1

n − 1

(
x(k)i −

1
n

n∑
i=1

x(k)i

)2

. (7)

x(k)i , i ∈ 1, . . . , n, denote the observed values of feature Xk. The idea of this filter is to get rid of features that only consist
of noise and therefore have very little variation. This filter only makes sense for data where the features are measured on
the same scale and have not been scaled to unit variance.
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2.4. Random forest importance

Random forests are bagging ensembles with trees as base learners (Izenman, 2013, pp. 536 ff.). There are two popular
ways of measuring feature importance based on a random forest: permutation importance and impurity importance.
To calculate the permutation importance, the out of bag (oob) instances for each tree, i.e. the instances that were not
used for fitting this tree, are considered. For the oob instances of each tree, feature Xk is permuted. Then the permuted
instances are classified by the corresponding trees. The resulting classification accuracy (see Section 2.9) is compared to
the classification accuracy without permuting feature Xk. The score of a permutation importance filter is the decrease
in classification accuracy from original oob instances to permuted instances (Izenman, 2013, pp. 542 ff.). Features that
are important for class prediction cause a large decrease in accuracy as their relevant information is not available when
the feature is permuted. Filter cforest.importance is a permutation importance filter of a random forest with conditional
inference trees as base learners. Filter permutation is a permutation importance filter for a forest of classification trees.

Jpermutation(Xk) = Jcforest.importance(Xk) = accuracy for original oob instances

− accuracy for oob instances with permuted values of Xk. (8)

Filter impurity considers the node impurities of the trees. A node containing only instances of one class is called pure,
a node with many instances of different classes is considered as impure. For each node in each tree of the forest, the
impurity – before and after the split is made – is measured. This can be done for example with the Gini index. The filter
score of feature Xk is the mean decrease in impurity due to the splits based on Xk (Izenman, 2013, pp. 542 ff.)

Jimpurity(Xk) =

∑
i∈N(k) (impurity before node i − impurity after node i)⏐⏐N (k)

⏐⏐ , (9)

with N (k) denoting the set of nodes in the random forest in which a split based on Xk is made. A feature that is important
for class prediction causes on average large decreases in impurity.

2.5. Mutual information

Let X and Y be two discrete variables with respective (empirical) probability mass function p. Then the entropy of Y
is defined as

H(Y ) = −

∑
y

p(y) log2 (p(y)) (10)

and the conditional entropy of Y given X is given by

H(Y |X) =

∑
x

p(x)H(Y |X = x) =

∑
x

p(x)

(
−

∑
y

p(y|x) log2 (p(y|x))

)
. (11)

The entropy measures the uncertainty of the variable. When all possible values occur with about the same probability,
the entropy is high. If the probabilities of occurrence are very different from each other, the entropy is low. The mutual
information of two variables is defined as

I(Y ; X) = H(Y ) − H(Y |X). (12)

It can be interpreted as the decrease in uncertainty about Y conditional on knowing X . Considering the symmetry
property I(Y ; X) = I(X; Y ) it can also be seen as the amount of information shared by X and Y . There exist several
filter methods that are based on this mutual information, see Hall (1999) and Brown et al. (2012) for more information.
Continuous features have to be discretized before applying these filters. In the following, we describe filters from two
different toolboxes, which calculate similar scores but differ in the way they discretize the features. The filters from the
toolbox FSelectorRcpp (Zawadzki and Kosinski, 2017) use the MDL method for discretization, while the filters from the
toolbox praznik (Kursa, 2018) perform a discretization into equally spaced intervals. For both discretization methods see
Section 2.6.

Filter info.gain (Zawadzki and Kosinski, 2017) uses

Jinfo.gain(Xk) = I(Y ; Xk), (13)

the reduction of uncertainty about the class variable Y due to feature Xk, as the score for this feature.
The score of filter gain.ratio (Zawadzki and Kosinski, 2017) is

Jgain.ratio(Xk) =
I(Y ; Xk)
H(Xk)

, (14)

the ratio of the mutual information and the entropy of feature Xk. Out of two features with the same information about
Y , this filter favors the feature with the smaller entropy, e.g. the feature that attains less different values. The reason for
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dividing by the entropy is to balance out the bias of the mutual information towards selecting features that take on many
different values like credit card numbers or similar.

For filter sym.uncert (Zawadzki and Kosinski, 2017), the score

Jsym.uncert(Xk) =
2 · I(Y ; Xk)

H(Xk) + H(Y )
(15)

is used. This score also reduces the bias towards features with many values and additionally normalizes it to the range
[0,1].

Filter MIM (Kursa, 2018) ranks all features according to the information they share with the target variable Y

JMIM(Xk) = I(Y ; Xk). (16)

This is the same score that filter info.gain uses as well. However, the filters differ in the way they discretize the features.
The following filter methods calculate the scores of all features iteratively. Thus, the features are selected in a greedy

forward manner. Let S denote the set of already chosen features. S is initialized as S = {Xk} with I(Y ; Xk) = max
j∈{1,...,p}

I(Y ; Xj).

In each iteration, the feature that maximizes the respective score is added to S.
Filter MRMR (Kursa, 2018) uses the score

JMRMR(Xk) = I(Y ; Xk) −
1
|S|

∑
Xj∈S

I(Xk; Xj). (17)

The term I(Y ; Xk) measures the relevance of the feature by the information this feature has about Y . The term
1
|S|

∑
Xj∈S

I(Xk; Xj) judges its redundancy by assessing the mean information that the feature shares with the features
in S. The idea is to find maximally relevant and minimally redundant (MRMR) features.

For filter JMI (Kursa, 2018), the score

JJMI(Xk) =

∑
Xj∈S

I(Y ; Xk, Xj) (18)

is employed. I(Y ; Xk, Xj) is the amount of information about Y that Xk and Xj provide jointly. This quantity can be calculated
by using the multivariate variable X = (Xk, Xj)′ in the definition of mutual information in Eq. (12). The idea of this score
is to include features that are complementary to the already chosen features.

Filter JMIM (Kursa, 2018) is a modification of filter JMI. The score

JJMIM(Xk) = min
Xj∈S

{
I(Y ; Xk, Xj)

}
(19)

considers the minimal joint information over all already selected features instead of the sum.
For filter DISR (Kursa, 2018), the score

JDISR(Xk) =

∑
Xj∈S

I(Y ; Xk, Xj)
H(Y , Xk, Xj)

(20)

is used. Like JMI, it uses the information about Y provided jointly by Xk and Xj. But additionally, this information is divided
by the joint entropy of Y , Xk and Xj. To obtain this entropy, consider the multivariate variable Ỹ = (Y , Xk, Xj)′ and plug it
into the above definition of the entropy in Eq. (10). The reason for dividing by the entropy is to avoid selecting features
that e.g. attain many different values, see filter gain.ratio.

Filter NJMIM (Kursa, 2018) is a modification of filter DISR. Its score

JNJMIM(Xk) = min
Xj∈S

{
I(Y ; Xk, Xj)
H(Y , Xk, Xj)

}
(21)

considers the minimal relative joint information over all already selected features instead of the sum.
Filter CMIM (Kursa, 2018) has the score

JCMIM(Xk) = min
Xj∈S

{
I(Y ; Xk|Xj)

}
. (22)

It uses the conditional mutual information

I(Y ; Xk|Xj) = H(Y |Xj) − H(Y |Xk, Xj) (23)

that can be interpreted as the difference in uncertainty about Y before and after Xk is known, while Xj is known anyway.
The idea is to select features that provide much information about the class variable, given the information of the already
selected features.
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2.6. Discretization

Fayyad and Irani (1993) define the minimal description length (MDL) discretization method for continuous features.
Their discretization method works recursively: A feature is split at an optimal cut point into two categories. Then, these
categories are split recursively until a stopping condition is reached. Let a1 < · · · < am denote the values of the feature
to be discretized. Then the points that are considered as cut points are 1

2 (a1 + a2) , . . . , 1
2 (am−1 + am). The criterion for

determining which of these cut points is optimal is the difference in entropy of the class variable before and after the
split. The cut point with the greatest decrease in entropy is considered the best cut point. However, this split is only
made if the decrease in entropy exceeds a boundary. This boundary is chosen such that the decrease in entropy is greater
than the boundary if and only if the costs of performing the split are lower than the costs of not performing it. The
costs are assessed by the minimal description length, which is an information theoretic measure. For details and formulas
see Fayyad and Irani (1993). Not carrying out a split because of falling below the boundary works as stopping condition.
When all recursions have stopped, some cut points ã1 < · · · < ãk are selected. The feature is then discretized into the
categories (−∞, ã1], (ã1, ã2], . . . , (ãk, ∞). Note that this method discretizes all values of a feature into one single category
if the best cut point does not cause enough decrease in entropy.

A different method to discretize a numeric feature is to simply cut the range of values into q equally spaced intervals
and use these intervals as categories. The number of intervals is determined as q = max

{
min

{ n
3 , 10

}
, 2
}
where n is the

number observations in the data set (Kursa, 2018).

2.7. Overview of all considered filter methods

Table 1 gives an overview of all considered filter methods. If the target variable can be of type multi-class, also
binary class variables are allowed. If categorical features are required, numeric features can be used as well. They are
automatically discretized by the filter methods. All filter methods are available in the machine learning R package
mlr (Bischl et al., 2016). If for the implementation in mlr other R packages are used, they are indicated.

2.8. Stability of feature selection

The stability of feature selection is defined as the robustness of the set of selected features with respect to different
training data sets drawn from the same distribution (Kalousis et al., 2007). To quantify stability, stability measures are
used. The stability measure that performs best both in theoretical (Nogueira and Brown, 2016) and in empirical (Bommert
et al., 2017) comparisons is the Pearson correlation SC:

Assume that there is a data set containing n observations of the p features X1, . . . , Xp. Resampling is used to split the
data set into m subsets. The feature selection method is then applied to each of the m subsets. Let Vi ⊂ {X1, . . . , Xp},
i = 1, . . . ,m, denote the set of chosen features for the ith subset of the data set. For each set of selected features Vi the
vector zi ∈ {0, 1}p is defined to indicate which features are chosen. The jth component of zi is equal to 1 iff Vi contains
Xj, i.e. zij = IVi (Xj), j = 1, . . . , p. The resulting stability measure is

SC =
2

m(m − 1)

m−1∑
i=1

m∑
j=i+1

Cor(zi, zj) (24)

with Cor(zi, zj) denoting the Pearson correlation between zi and zj (Nogueira and Brown, 2016). The Pearson correlation
measures the linear association between continuous variables. When applied to binary data like the vectors z1, . . . , zm,
the Pearson correlation is equivalent to the φ-coefficient for the contingency table of each two of these vectors (Rasch
et al., 2011, pp. 339 f.). SC takes on values in the interval [−1, 1]. A value of 1 means maximal stability, 0 indicates that
the feature selection method is as stable as a random feature selection.

2.9. Assessment of predictive performance

To evaluate the predictive performance of a classification method on a binary classification data set, the accuracy is
defined as

accuracy =
number of correctly classified instances

number of all classified instances
. (25)

The accuracy takes on values in the interval [0, 1]. The higher the accuracy, the better the predictive performance of the
classification method.
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Table 1
Names in this paper and in mlr and general concepts of the filter methods, requirements on the target variable and on the features, and R packages
in which the filter methods are implemented. If categorical features are required, numeric features are discretized.
Name Concept Target Features R package

anova.test
(anova.test)

univariate
statistical test

multi-class numeric or binary mlr (Bischl et al.,
2016)

limma
(available on GitHub)

univariate
statistical test

multi-class numeric or binary limma (Ritchie
et al., 2015)

sam
(available on GitHub)

univariate
statistical test

multi-class numeric or binary samr (Tibshirani
et al., 2011)

kruskal.test
(kruskal.test)

univariate
statistical test

multi-class numeric or binary mlr (Bischl et al.,
2016)

chi.squared
(FSelector_chi.squared)

univariate
statistical test

multi-class categorical FSelector
(Romanski and
Kotthoff, 2016)

auc
(auc)

univariate
predictive
performance

two-class numeric mlr (Bischl et al.,
2016)

oneR
(FSelector_oneR)

univariate
predictive
performance

multi-class categorical FSelector
(Romanski and
Kotthoff, 2016)

univariate.model.score
(univariate.model.score)

univariate
predictive
performance

depends on model,
here: multi-class

depends on model,
here: numeric or
categorical

depends on model,
here: rpart
(Therneau et al.,
2017)

variance
(variance)

feature
variance

arbitrary numeric mlr (Bischl et al.,
2016)

cforest.importance
(party_cforest.importance)

random forest
importance

multi-class numeric or
categorical

party (Strobl et al.,
2008)

permutation
(ranger_permutation)

random forest
importance

multi-class numeric or
categorical

ranger (Wright
and Ziegler, 2017)

impurity
(ranger_impurity)

random forest
importance

multi-class numeric or
categorical

ranger (Wright
and Ziegler, 2017)

info.gain
(FSelectorRcpp_
information.gain)

mutual
information

multi-class categorical FSelectorRcpp
(Zawadzki and
Kosinski, 2017)

gain.ratio
(FSelectorRcpp_ gain.ratio)

mutual
information

multi-class categorical FSelectorRcpp
(Zawadzki and
Kosinski, 2017)

sym.uncert
(FSelectorRcpp_
symmetrical.uncertainty)

mutual
information

multi-class categorical FSelectorRcpp
(Zawadzki and
Kosinski, 2017)

MIM
(praznik_MIM)

mutual
information

multi-class categorical praznik (Kursa,
2018)

MRMR
(praznik_MRMR)

mutual
information

multi-class categorical praznik (Kursa,
2018)

JMI
(praznik_JMI)

mutual
information

multi-class categorical praznik (Kursa,
2018)

JMIM
(praznik_JMIM)

mutual
information

multi-class categorical praznik (Kursa,
2018)

DISR
(praznik_DISR)

mutual
information

multi-class categorical praznik (Kursa,
2018)

NJMIM
(praznik_NJMIM)

mutual
information

multi-class categorical praznik (Kursa,
2018)

CMIM
(praznik_CMIM)

mutual
information

multi-class categorical praznik (Kursa,
2018)

3. Experiments and results

In this section, we conduct and evaluate experiments to compare and to benchmark the filter methods described
in Section 2. In Section 3.1, all data sets and their properties are given. Section 3.2 provides information about the
classification methods used in the experiments. In Sections 3.3 and 3.4, we explain the setup of the experiments and
analyze their results in detail. We perform two analyses. The first analysis in Section 3.3 aims to find out which filter
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Table 2
Name, number of features, number of instances, relative size of majority class and source of the data
sets, sorted by number of features. All data sets are binary classification data sets and contain only
numeric features.
Name p n Majority.perc Source

scene 299 2407 0.82 OpenML, ID 312

madelon 500 2600 0.50 OpenML, ID 1485

gina_prior 645 3468 0.51 OpenML, ID 1042

gina_agnostic 970 3468 0.51 OpenML, ID 1038

christensen 1413 198 0.57 datamicroarray

Internet-Advertisements 1 558 3279 0.86 OpenML, ID 40978

hiva_agnostic 1 617 4229 0.96 OpenML, ID 1039

Bioresponse 1776 3751 0.54 OpenML, ID 4134

gravier 2 905 168 0.66 datamicroarray

gisette 4 971 7000 0.50 OpenML, ID 41026

chiaretti 12 625 111 0.67 datamicroarray

tian 12625 173 0.79 datamicroarray

yeoh 12625 143 0.55 datamicroarray

chin 22215 118 0.64 datamicroarray

burczynski 22283 101 0.58 datamicroarray

chowdary 22283 104 0.60 datamicroarray

methods are similar with respect to feature ranking. We also compare the scaling behavior of the filter methods. In the
second analysis in Section 3.4, we investigate the performance of the filter methods with respect to classification accuracy
and run time.

3.1. Data sets

For our analyses, we use 16 large classification data sets from various domains. Information about these data sets is
displayed in Table 2. The selected data sets are from OpenML (Vanschoren et al., 2013; Casalicchio et al., 2017) and the R
package datamicroarray (Ramey, 2016). The data sets from OpenML have been selected according to the following criteria:
They have exactly two classes, at least 250 features, more instances than features and they have no missing values or
nominal features (binary features are converted to numeric features). Also, the smaller class should consist of at least 3%
of the instances. For run time reasons, the product of the number of features and the number of instances should not
exceed 100000000.

The data sets from the R package datamicroarray are high-dimensional data sets and contain more features than
instances. We use data sets with two classes and create two-class data sets out of the data sets with more classes by
selecting only the instances that belong to one of the two largest classes. We only take into account resulting data sets
with at least 100 instances and without missing values. For the data sets burczynski, chowdary, and tian we perform a
log(x+1) transformation to normalize the features. The other microarray data sets in Table 2 are already normalized. We
omit all data sets where a normalization seems to be necessary, but for which the usual log(x + 1) transformation is not
possible due to negative values. Constant features are removed from all data sets.

The data sets contain 299 to 22283 features and 101 to 7000 instances. The class imbalance reaches from 0.50 (perfect
balance) to 0.96 (data set consists almost only of instances of the larger class).

3.2. Classification methods

We employ three classification methods to determine the predictive performance of subsets of features selected by a
filter method. We choose specifically these classification methods because they are popular methods that do not perform
embedded feature selection. This is important for judging the direct impact of the filter on prediction performance, not in
combination with the subsequent classification algorithm that might perform an additional embedded feature selection.
There are other state-of-the-art methods for feature selection like Lasso regression, but in this study we focus on filter
methods. Also, for very high-dimensional data sets (several hundred thousand features) these methods may need to be
applied to a pre-filtered data set in order to achieve acceptable run time or memory consumption. Table 3 displays
the names of the methods, the corresponding hyper parameters that must be set and the R package from which the
implementation is taken.

k Nearest Neighbors classifies a new instance by a majority vote of the k closest instances (Larose and Larose, 2014,
pp. 149 ff.). In order to obtain an ordinary unweighted KNN method, we have to set the parameter kernel to rectangular.
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Table 3
Classification methods with corresponding hyper parameters and R package of which the implementation
is used.
Method R package Hyper parameters

k Nearest Neighbors (KNN) kknn (Schliep and Hechenbichler, 2016) k ∈ {1, 2, . . . , 20}
Logistic Ridge Regression (LRR) glmnet (Simon et al., 2011) λ ∈ {2x

: x ∈ [−15, 15]}
Support Vector Machine (SVM) kernlab (Karatzoglou et al., 2004) C, σ ∈ {2x

: x ∈ [−15, 15]}

Logistic Ridge Regression is logistic regression combined with a ridge penalty (Izenman, 2013, pp. 150 ff.). The ridge
parameter λ balances the goodness of fit (log likelihood) and the size of the regression parameters. For λ = 0 this is
ordinary logistic regression without the ridge penalty. If there are more features than instances in a data set or if there
is a hyperplane in feature space which perfectly separates the two classes, λ = 0 is not feasible. Large values of λ cause
all regression coefficients to be shrunken towards 0.

Support Vector Machines use the hyperplane in feature space that is optimal with respect to the maximum margin
principle as decision boundary. Kernel functions are used to change the shape of the hyperplane into something non-
linear (Izenman, 2013, pp. 369 ff.). We use Support Vector Machines with RBF kernel. There are two hyper parameters:
the regularization parameter C and the kernel width parameter σ .

3.3. Similarity of the filter methods

3.3.1. Feature ranking
The goal of this analysis is finding out which filter methods are similar with respect to feature ranking. The question

behind this analysis is if the filter methods can be grouped into sets with similar behavior and if these groups contain
redundant information such that some members of each group can be neglected. For each data set, we compute the filter
scores for all features. For the iterative praznik filters, we assess the selection order instead of the filter scores because
the scores of different iterations are not comparable.

To assess the similarity of the filter methods, we compare the orders in which they select features. For each data set
and each filter method, we determine the selection order of all features. Then we compute the rank correlation between
the orders of all pairs of filter methods. This calculation is performed separately for each data set. The results are displayed
in Section 1 of the supplementary material. To draw conclusions based on all data sets, we average the results for all data
sets with the arithmetic mean. Fig. 1 displays the mean rank correlations between all pairs of filter methods. The higher
the rank correlation between two filter methods, the more similar they are.

Fig. 1 shows three groups of similar filter methods. The first group consists of 6 out of the 7 praznik filters. The second
group is formed by the filters kruskal.test, auc, limma, anova.test, and sam. The third group contains the filters info.gain,
chi.squared, sym.uncert, oneR, and gain.ratio from the toolboxes FSelector and FSelectorRcpp. The other filter methods are
not similar to any other filter method.

The average similarity value in is 0.5028. The highest mean rank correlations are observed between anova.test and
limma (0.9998), info.gain and chi.squared (0.9989), info.gain and sym.uncert (0.9970), limma and sam (0.9954), chi.squared
and sym.uncert (0.9949), anova.test and sam (0.9946), kruskal.test and auc (0.9676), JMIM and JMI (0.9520), kruskal.test
and limma (0.9198), kruskal.test and anova.test (0.9195), and kruskal.test and sam (0.9148).

The similarity of the filters kruskal.test, auc, anova.test, limma, and sam is easy to understand. The Kruskal–Wallis test
can be seen as the non-parametric equivalent of the analysis of variance. The filters limma and sam perform a moderated
version of the F test conducted by filter anova.test. Also, there are strong links between the AUC and the Kruskal–Wallis
test (Hanley and McNeil, 1982).

Considering the group of similar praznik filters, it appears plausible that they select features in a similar order because
their scores are all based on mutual information. Within this group, JMI and JMIM as well as DISR and NJMIM are especially
similar to each other. This makes sense as the scores are modified versions of each other, see Section 2. The filter MRMR
comes from the same toolbox, but does not appear to be very similar to the other praznik filters. In contrast to the other
praznik filters, MRMR also considers mutual information between features, see Section 2.

MIM and info.gain use the same score. However, the different discretization methods used by the two toolboxes cause
an average rank correlation of only 0.6290 between the two filter methods. The filters from the toolboxes FSelector and
FSelectorRcpp use different filter criteria but all employ the same discretization method. This makes it seem likely that
the similarity of these filter methods is due to the same discretization method.

Considering the ranger toolbox, the filters impurity and permutation are not very similar (mean rank correlation 0.4582).
Although both of them use a random forest to assess the feature importances, the resulting feature rankings are quite
different on average.

All of the previous analyses are based on the aggregated rank correlations. A brief analysis of the plots in Section 1 of
the supplementary shows that the similarity structure displayed in Fig. 1 does not represent the similarity structure for
all single data sets. Instead, there are mainly two groups of data sets. The first group contains the high-dimensional data
sets from the R package datamicroarray and some other data sets. The second group is formed by data sets from various
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Fig. 1. Rank correlations between the selection order of all pairs of filter methods on all data sets, averaged by the arithmetic mean. The filter
methods are ordered by average linkage hierarchical clustering using the mean rank correlation as similarity measure.

domains. In the first group, the similarity structure strongly resembles the one in Fig. 1. In the other group, most filter
methods select the features in a similar order. There are only few filter methods that are not similar to the other methods,
and these methods differ between the data sets of the second group.

For deciding which of the filter methods in the groups of similar filters can be neglected, we refer to the analysis in
Section 3.4 where the filter methods are compared with respect to their performance.

3.3.2. Run times
A similarity analysis of the filter methods with respect to their run times and scaling behaviors can be found in Section 3

of the supplementary material.

3.4. Optimal filter methods

In this analysis, we investigate the performance of the filter methods with respect to predictive performance and run
time.

3.4.1. Setup
To determine the predictive performance of the features chosen by the filter methods, we combine each filter method

from Section 2 with a selected classification method from Section 3.2. The combined methods first apply the filter,
choosing a given percentage of features, and then learn the classification rule using only the remaining features.

To ensure a fair comparison of the filter methods, we compare the performances of the filters with the best classifier
and the best hyper parameter settings we found. More precisely, for each filter method and each data set, we tune the
classification part and the percentage of features to be chosen simultaneously. We consider the classification method as
a hyper parameter as well, which gives us a hierarchical search space. Possible configurations of this search space are for
example (12% of features, KNN, k = 7) or (94% of features, SVM, C = 2−1.3, σ = 213.28). We allow percentages of features
to be chosen in the range [0%, 100%]. The ranges of the classification hyper parameters are given in Table 3. To find the
best configuration, we conduct a random search with budget 100. To obtain unbiased estimates of the performances of
the filters, we perform nested cross-validation with 10 outer and 10 inner iterations (Bischl et al., 2012). We make sure
that the considered configurations are identical for all filter methods on the same data set in the same outer iteration, in
order not to favor any filter method because it happens to be evaluated in combination with better configurations. Also,
all filter methods use the same cross-validation splits. The experiments are conducted on a high performance compute
cluster in a randomized order using the R package batchtools (Lang et al., 2017).
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Table 4
Performance criteria and measures for evaluating the filter methods combined with a
classification method.
Performance criterion Performance measure Aggregation across

the 10 outer
cross-validation
iterations

Predictive Accuracy Accuracy (see Section 2.9) Arithmetic mean
Run time Time for filtering Median
Run time Time for training the

combined model (filter and
classification method)

Median

For each filter method and each data set, we do the following: In each outer iteration, 10% of the data set is used as
evaluation data. On the remaining 90% of the data, 10-fold cross-validation is conducted to estimate the performance of
100 randomly drawn configurations. We select the best configuration based on maximal mean accuracy. Ties are resolved
by selecting the configuration with the smallest run time (median time for training the combined model). We use the
median to aggregate the run times in order to obtain an estimate that is robust against variation caused by the high
performance compute cluster. This tuning procedure makes sense because in practice, one is interested in filter methods
that allow a good predictive performance, and among these methods, one is interested in methods with short run times.
The selected configuration is then evaluated on the evaluation data, calculating the accuracy and the time for training the
combined model. Additionally, we measure the time that is needed for filtering only. This way, for each data set and each
filter, we obtain 10 evaluations of the best methods from the 10 outer iterations. We aggregate these values by calculating
the mean accuracy and the median run times. In the end we have three performance values (mean accuracy, median
time for filtering, and median entire run time) per filter method and data set. The performance criteria and measures are
summarized in Table 4.

As an important baseline, we compare the results of the filters to results without filtering. Again, we perform a
random search with a budget of 100 evaluations and nested cross-validation with 10 outer as well as 10 inner iterations.
We calculate the same performance measures and select the best methods with respect to the same criteria. The only
difference is that there is no need for tuning a filter percentage and that the run time consists only of the time for training
the classification model because no filtering is done.

There are two configurations for which no results can be obtained. As all filters try the same configurations, this means
that for all filters the results for the corresponding configuration are missing. One of the configurations is tried on data
set gina_agnostic, the other one on madelon. The failing of both configurations is caused by the selection of less than two
features by the filters and the implementation of Logistic Ridge Regression in glmnet that requires at least two features.
We ignore the two configurations for which no results were obtained for the analyses.

3.4.2. Results
First, we compare the filter methods only with respect to the predictive performance. Fig. 2 shows for two data sets the

accuracies of the 10 best configurations corresponding to the 10 outer cross-validation iterations, separately for all filter
methods. Remember that the performances are evaluated on data that is not used for tuning. Therefore, the performance
values may be interpreted as unbiased estimates of the performances on new data from the data generating process that
created the respective data set. The results for the other 14 data sets are displayed in Section 2 of the supplementary
material.

The left plot in Fig. 2 shows that for data set gina_agnostic, some filters perform considerably better than others. The
filters JMIM, permutation, impurity, and cforest.importance perform quite well while the filters DISR, MRMR, and variance
perform comparably bad. All filters lead on average to a better predictive performance than not filtering at all. The right
plot in Fig. 2 demonstrates that for data set gravier there are only little differences in the central locations of the accuracies.

In Section 2 of the supplementary material, it can be observed that also for most of the other data sets there are only
little differences between the majority of the filter methods with respect to the location of the predictive performance
taking into account the spread. For the data sets scene, madelon, gina_prior, gisette, chiaretti, and burczynski, however,
some noticeable differences can be observed. The filter methods permutation, impurity, and cforest.importance, lead to
comparably high accuracy on several of these data sets. For the filters JMIM, JMI, MRMR, NJMIM, variance, and no filter a
comparably good performance is observed for at least one of them. Not filtering at all, MRMR, and DISR lead to comparably
low predictive accuracy on most of the data sets. The filters variance, oneR, and univariate.model.score perform bad on at
least one of them.

Fig. 3 shows the number of times that the filter methods outperform each other. The number displayed in the row of
filter A and the column of filter B indicates the number of data sets on which filter A is better than filter B with respect to
mean accuracy. Given that two filter methods are equally good but never have exactly the same performance, we expect
that each of the filters outperforms the other on approximately 8 of the 16 data sets.

We mark in red when a filter method is better than another filter method more often than 8 times and in blue when
this happens less than 8 times. Note that there are several ties with respect to the accuracy of the filter methods. It can
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Fig. 2. Boxplots of the accuracies of the best configurations in the 10 outer cross-validation iterations per filter method and data set.

Fig. 3. Number of data sets on which the filter method in the row has a higher mean accuracy than the filter method in the column. Ties are
counted as 0.5 for both filters. The filter methods are sorted decreasingly by row sums.

be observed that most filter methods are better than filter variance and not filtering at all on most data sets. Also, filter
MRMR is outperformed by most of the other filters on many data sets. Filters JMI, sam, anova.test, limma, permutation,
and cforest.importance are only outperformed by few other filter methods and they outperform many other filter methods
themselves on most data sets.

Concluding, there is no filter method that is better than all the other methods on all data sets. However, there are some
filters like permutation and cforest.importance that achieve high accuracy on some data sets and only have a comparably
poor performance on few data sets in the analysis.

Next, we compare the filter methods with respect to predictive performance and run time across data sets. For the
analysis presented in Fig. 3, we only looked at good or bad predictive performances in comparison to the other filter
methods. This analysis also takes into account how much the filter methods differ in performance. We aggregate the
performance values of the 10 outer cross-validation iterations into one value per performance measure. Remember that
we analyze the accuracy of the best configuration found and the time for fitting the best model. In the following, we
first investigate the run time for filtering only and later, we consider the entire run time for filtering and fitting the best
classification model.

Fig. 4 displays the mean accuracy and the median run time for filtering of the filter methods separately for all data sets.
Fig. 5 aggregates the information of Fig. 4 into one graphic. The right plot focuses on parts of the left plot. To compare the
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Fig. 4. Mean accuracy and median run time for filtering of filter methods with optimal configurations per data set.

predictive accuracy across data sets, relative accuracies are considered. More precisely, the differences between the mean
accuracies of all filter methods to the highest mean accuracy observed on the same data set are considered. Therefore,
the smaller the relative accuracy, the better the predictive performance of the filter method when combined with the
best configuration. The best filter method per data set always has relative mean accuracy 0. For the time for filtering,
the fastest run time (not filtering at all) is already 0 for all data sets. The (transformed) performance criteria are then
aggregated over the data sets by computing the median values as well as the upper and lower quartiles. The median
value provides information about the central location of the performance measures. The distance of the quartiles shows
the variation of the performances across data sets. Fig. 5 displays the median of the performance criteria values for each
filter method by a symbol. The quartiles are located at the respective ends of the horizontal and vertical lines. The longer
the lines, the greater the variation across data sets. The optimal filter method would be located in (0, 0)′.

The left plot in Fig. 5 shows that the relative accuracy of the filter methods and the time for filtering vary across data
sets. The interquartile range of the relative mean accuracy across data sets is around 0.02 for most filter methods. As this
is a small number, it means that the median value summarizes the central location well. However, the variation is too
large to draw conclusions about which filter methods perform best only based on the median. The left plot also shows
that filter cforest.importance needs much longer for filtering than the other filter methods and that its accuracy is among
the best, but not the single best.

The right plot shows the median relative accuracy values and the variation in accuracy for all filter methods except
for cforest.importance. The variation in time for filtering is omitted because only a small part of the y-axis is investigated.
Considering the median performances in both criteria, it can be seen that the filters JMIM, impurity, auc, limma, and
variance as well as not filtering at all are Pareto optimal. Pareto optimality means that there is no other method that
performs as good in all criteria and better in at least one criterion. Considering the non Pareto optimal filter methods
in Fig. 5, at least one of the Pareto optimal filters performs better in both criteria. Filter JMIM is Pareto optimal because
it has the best median accuracy among all filter methods. Filter methods impurity, auc, and limma have a good median
accuracy and a low median run time for filtering. The variance filter and not filtering at all are Pareto optimal because of
their fast run time. Applying no filter takes no time, which is always faster than applying any filter and therefore this is
always Pareto optimal, independent of its accuracy.

If we now consider the upper quartile of the relative mean accuracy, i.e. the right ends of the horizontal lines, as
measure of the predictive accuracy instead of the median value, we obtain a different set of Pareto optimal methods. In
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Fig. 5. Relative mean accuracy and median run time for filtering of the filter methods with optimal configurations aggregated over all data sets.
The median of both performance measures (relative mean accuracy and median filtering time) across all data sets is displayed by a symbol. The
upper and lower quartiles are located at the respective ends of the horizontal and vertical lines. The right plot is a part of the left plot: it focuses
on small run times. The optimal filter method would be located in (0, 0)′ .

this case, permutation, JMI, impurity, sym.uncert, info.gain, limma, and no filter are Pareto optimal. Especially permutation
but also JMI and impurity are Pareto optimal because of high accuracy. The others are Pareto optimal because of low
run times. Filter impurity seems to provide a good compromise of accuracy and run time for filtering. It should be noted
that we have selected the configurations based on accuracy. Because the run times of the filters from package praznik
depend on the number chosen features (see Section 3 of the supplementary material), it might be possible to make them
Pareto optimal by selecting fewer features. This would make them faster at the cost of predictive accuracy. As the run
times depend on the implementation, any filter method could potentially become Pareto optimal if it were implemented
efficiently enough.

Now we analyze the predictive accuracy in combination with the entire run time for filtering and fitting the best model.
Considering the entire run time makes sense because it also assesses how long it takes to fit the best classification model
with the features selected by the filter. As most filters rank all features and because there are groups of filters with very
similar run times (see Section 3 of the supplementary material), it is likely that many filters achieve similar run times
even if they choose different numbers of features. However, selecting more features may have a huge impact on the run
time for fitting the predictive model of interest.

Because we observe some very long run times in this analysis, we consider the logarithmic run times instead. To be
able to apply the logarithm, we have to add a small constant to all run times, as KNN without filtering can be so fast that
its run time is measured as 0. For comparing the predictive accuracy and run time across data sets, relative accuracies
and relative logarithmic run times are considered. A relative mean accuracy of x means that the mean accuracy of the
filter (with the best configuration found) is worse than the mean accuracy of the best filter on the same data set, by an
additive factor of x. A relative logarithmic median run time of x means that the median run time of the filter equals the
median run time of the best filter on the same data set multiplied with 10x.

Fig. 6 is an analogous plot to Fig. 5 but shows the logarithmic run time for fitting the best model instead of only the
run time for filtering. In comparison to Fig. 5, the relative run time for permutation is lower. For the filters variance and
anova.test and not filtering at all, the relative run time is higher than in Fig. 5. When considering only the median values
of the performance measures, the filter methods JMIM, impurity, auc, and limma are Pareto optimal. With respect to the
upper quartile of the relative mean accuracy and the median of the relative logarithmic run time, permutation, impurity,
sym.uncert, info.gain, and limma are Pareto optimal. The sets of Pareto optimal methods here are subsets of the Pareto
optimal methods in the analyses based on the run time for filtering only. The filter methods that are not Pareto optimal
any more when considering the entire run time are variance and no filter, which have a very short time for filtering, as
well as JMI, which is outperformed by permutation with respect to the time for model fitting.

Like in the discussion of Fig. 5, it also has to be mentioned that filter methods could become Pareto optimal by
sacrificing accuracy and thus saving run time. Here, this is possible for all filter methods by selecting a configuration
that is faster but provides less predictive accuracy. Also, the variation in the performance criteria should be taken into
account when interpreting the Pareto optimal methods: there is no subset of filter methods that is clearly better than
the others. Filter methods like permutation and impurity seem favorable because of a comparably good performance and
a comparably low variation.

187



16 A. Bommert, X. Sun, B. Bischl et al. / Computational Statistics and Data Analysis 143 (2020) 106839

Fig. 6. Relative mean accuracy and relative logarithmic median run time of the filter methods with optimal configurations aggregated over all data
sets. The median of both performance measures (relative mean accuracy and relative logarithmic median run time) across all data sets is displayed
by a symbol. The upper and lower quartiles are located at the respective ends of the horizontal and vertical lines. The optimal filter method would
be located in (0, 0)′ .

To sum up, there is no subset of filter methods that outperforms all other filter methods. Which filters work best
depends on the data set. The results are subject to variation within and across data sets. Nevertheless, some filter methods
like permutation, impurity, sym.uncert, info.gain, limma, auc, and JMIM seem to work well in many data situations.

Fig. 4 allows a comparison of the two studies in Sections 3.3 and 3.4. It shows for each data set the mean accuracy
and the run time for filtering for all filter methods combined with the best configurations. It can be observed that the
filter methods that are similar according to our analysis in Section 3.3.1 often have a similar predictive performance
when applied on the same data set. However, in some cases even very similar filter methods lead to models with quite
different predictive accuracy. This can be explained by the fact that the inclusion or omission of a single relevant feature
can already cause big differences in accuracy. Also, filters that needed a similar amount of time for filtering in Section 3 of
the supplementary material often have similar run times for filtering on the other data sets as well. Regarding the question
whether some of the filter methods can be neglected when searching for a good filter method, it seems reasonable to
limit the search space to permutation, impurity, sym.uncert, limma, and JMIM. With respect to the analyses in Section 3.3,
the filters JMIM, limma, sym.uncert can be interpreted as representatives of their groups.

3.4.3. Stability
Another aspect for the comparison of filter methods is their stability. In Section 3.4.2, we have conducted a random

search for a good configuration with respect to accuracy for each data set and each filter method. We have performed a
nested cross-validation with 10 outer iterations. For each outer iteration, we have chosen one best configuration, which
results in 10 configurations per data set and filter method.

Now, we analyze the stability of the feature selection for each filter method on each data set. To do so, we compare
the 10 respective sets of selected features and quantify the stability with the stability measure SC , see Section 2.8. For
comparability across data sets, we transform each stability value x into x+ 1−m where m is the maximal stability value
observed for any of the filters on the same data set. This sets the best stability value on each data set to 1. With respect to
stability, high values are desirable. When no filter is applied, no feature selection is performed and the stability of feature
selection cannot be assessed. SC is not defined in this situation.

Fig. 7 shows boxplots of the relative stability values of the filter methods. We observe that all filter methods from the
toolbox FSelectorRcpp as well as the filters chi.squared, auc, and sam achieve comparably high stability. From our analyses
in Section 3.4.2 we know that most of these filter methods are fast in computation. Filters permutation and impurity, which
showed good results in Section 3.4.2 with respect to predictive performance, attain comparably low stability values.

The comparably low stability of the random forest based filter methods and of filter univariate.model.score can be
explained with the stochasticity of these methods. When a random forest model is fitted to a data set, the output is not
deterministic, because the construction of each tree involves a random choice of observations and features. So, when
fitting a random forest several times to the same data set, the resulting models are generally a bit different from each
other. Now, when fitting random forest models to slightly different data sets, the resulting models are expected to vary
even more. With respect to filter univariate.model.score, the choice of train and test data is stochastic. When this filter
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Fig. 7. Relative stability of the filter methods with optimal configurations for all data sets, sorted by median relative stability.

is applied several times to the same data set, the results can be different due to different train–test splits. For slightly
different data sets, even larger differences are expected.

4. Summary and conclusions

Feature selection is a key part of data analysis, machine learning and data mining. There are many methods for feature
selection, but it is unclear which of these methods perform best. In this analysis we focused on the comparison of filter
methods for feature selection. We analyzed 22 filter methods based on 16 high-dimensional classification data sets from
various domains.

To find out which of the filter methods are similar with respect to the order in which they rank the features, we
computed rank correlations. We observed that for some data sets, especially the data sets containing gene expression
data with large number of features, there were three groups of similar filter methods and many filter methods that were
not similar to any other method. The filters that were similar to each other mostly came from the same toolboxes. For the
other data sets, most filter methods were very similar. Also, we investigated the scaling behavior of the filter methods,
identifying groups of filters that behave similarly with respect to run time.

Next, we analyzed the classification accuracy of the features selected by the filter methods and the run time needed for
feature selection and for building a good classification model based on the selected features. We found out that there is
no subset of filter methods that performs better than the rest of the filter methods on all data sets. Instead, the best
filter methods differed between the data sets. Nevertheless, on average all filter methods performed better than not
filtering at all. Also, even though there was no clear winner, the random forest importance filter methods permutation and
impurity, the information theoretic filter methods sym.uncert and JMIM, and the univariate statistical test filter method
limma performed well on most data sets, which makes them seem advisable. The filters sym.uncert, limma, and JMIM can
be seen as representatives of the three groups of similar filter methods. Filters impurity, sym.uncert, and limma achieved
very low run times. For filter permutation we observed comparably high run times but also very high predictive accuracy.

Choosing the best filter method for a new data set is a matter of available computational resources. Based on our
analyses, we come to the following conclusions. If the computational resources only allow trying one filter method, we
recommend permutation. This filter method allowed fitting classification models with high accuracy on most of the data
sets. If some computational resources are available for finding a suitable filter method, we recommend trying permutation,
impurity, sym.uncert, limma, and JMIM. If the resources allow trying all filter methods, we recommend doing this, because
only this way the very best filter method for a new data set can be found. Searching for the best filter method can be done
by considering it as a tuning parameter, just like we did with respect to the classification method in our experiments.

This paper serves as a reference to people who would like to conduct feature filtering. It can help them choose
appropriate filters according to their application scenario, computational resources, and so on. In the future, we will use
the results of our analyses to determine the search space for good models. Our analyses could be extended by additionally
considering other feature selection methods apart from pure filter methods, which was out of scope for this analysis. Also,
in this paper, we performed tuning with respect to predictive performance and then analyzed not only the predictive
performance but also the run time and the stability. In future analyses, one could perform multi-criteria tuning with
respect to all performance criteria at the drawback of a much more complicated aggregation of the results. Another
interesting aspect of research would be discovering data set characteristics that indicate which filter and classification
methods perform best. If such characteristics were available, much run time could be saved in the tuning process. Ideally,
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the characteristics should be cheap to compute in order to obtain a benefit in run time over trying different methods.
In the field of optimization, exploratory landscape analysis (Kerschke and Trautmann, 2019) is an approach for defining
characteristics of objective functions in order to automatically select the best optimization algorithm. In future research,
this approach could be transferred to model selection.
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Appendix I

Extra Methodology

I.1 Gaussian Process from the view of Bayesian Linear
Regression

Consider a space of dimension p spanned by the set of basis function φT (x) =
[φ1(x), . . . , φp(x)] with coefficients wT = [w1, . . . , wp] in the way y(x|w) = wTφ(x) + σyε,
where ε ∼ N (0, 1) and σy does not depend on x.

Consider data {xi, yi} with n observations, the likelihood function for w is

l(y;w) = p(y1:n|w, x1:n) =
∏

i

p(yi|w, xi) =
∏

i

N (wTφ(xi), σ
2
y) (I.1)

Define design matrix Φ =



φ1(x1) φ2(x1) . . . φp(x1)

...
...

...
...

φ1(xn) φ2(xn) . . . φp(xn)




T

and λy = 1
σ2
y
, then

l(y;w) =p(y1:n|w, x1:n) = N
(
wTΦ, Dn(σ2

y)
)

(I.2)

=
1

(2π)n/2|Dn(σ2
y)|1/2

exp−
1
2

(yT−wTΦ)D−1
n (σ2

y)(yT−wTΦ)T (I.3)

=
1

(2π)n/2Dn(σ2
y)|1/2

exp−
1
2
λyyT y+ 1

2
λyyTΦTw+ 1

2
λywTΦy− 1

2
λywTΦΦTw (I.4)

, where Dn(σ2
y) represent diagonal matrix with element σ2

y of size n.
Define a prior distribution over the coefficients as p(w), the posterior distribution of

coefficients w is

p(w|y1:n, x1:n) =
p(w)p(y1:n|w, x1:n)´
p(w)p(y1:n|w, x1:n)dw

=
p(w)p(y1:n|w, x1:n)

p(y1:n|x1:n)
∝ exps(w) (I.5)

where s(w) on the shoulder of the exponential can be computed by the complete the square
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trick by taking p(w) ∝ e−
1
2
wTΣ−1

p w in Equation I.6.

s(w) =− 1

2
λyy

Ty + λyy
TΦTw − 1

2
λyw

TΦΦTw − 1

2
wTΣ−1

p w (I.6)

=− 1

2
wT (λyΦΦT + Σ−1

p )w + λyy
TΦTw − 1

2
λyy

Ty (I.7)

Write s(w) as:

s(w) =− 1

2
(wT − uT )Λ(w − u) (I.8)

=− 1

2
wTΛw + wTΛu− 1

2
uTu (I.9)

Matching the second order term of equation (I.7) and equation (I.9), we have

Λ = λyΦΦT + Σ−1
p (I.10)

Matching the first order term of equation (I.7) and equation (I.9), we have λyyTΦTw =
wTΛu = uTΛTw, so

uT = λyy
TΦT (ΛT )−1 (I.11)

and
u = (uT )T = λyΛ

−1Φy (I.12)

.
So the final posterior distribution of w is p(w|y1:n, x1:n) =

N
(
w|λyΛ−1Φy, (λyΦΦT + Σ−1

p )−1
)
. Compared to the prior N (0,Σp), likelihood in-

formation is mixed in.

Predicative distribution Given test point x∗1:n∗ , we average the prediction of y∗1:n∗ with
the posterior distribution of w (learned from x1:n, y1:n):

p(y∗1:n∗|x∗1:n∗ , x1:n, y1:n) =

ˆ
w

p(y∗1:n∗ , w|x∗1:n, x1:n, y1:n)dw (I.13)

=

ˆ
w

p(y∗1:n∗|w, x∗1:n)p(w|x1:n, y1:n)dw (I.14)

(since w ⊥ x∗1:n∗|{x1:n, y1:n}, and y∗1:n∗ ⊥ {x1:n, y1:n}|{x∗1:n∗ , w})

According to Bishop (2006) of equation (2.113) till (2.115), if

p(w|x1:n, y1:n) = N (w|µ, P−1) (I.15)
= N

(
w|λyΛ−1Φy, (λyΦΦT + Σ−1

p )−1
)

(I.16)

and

p(y∗1:n∗|w;x∗1:n∗) = N (y∗1:n∗|Aw + b, L−1) with b = 0 (I.17)
= N ((φ∗)Tw, λ−1

y In) (I.18)



194 I. Extra Methodology

then

p(y∗1:n∗|x1:n, y1:n;x∗1:n∗) =

ˆ
w

p(y∗1:n∗|w, x∗1:n∗)p(w|x1:n, y1:n)dw (I.19)

=

ˆ
w

N (y∗|Aw + b, L−1)N (w|µ, P−1)dw (I.20)

= N (y|Aµ+ b, L−1 + AP−1AT ) (I.21)
= N (φT∗ λyΛ

−1Φy, λ−1
y In + φT∗Λ−1φ∗) (I.22)

, where P = Λ = λyΦΦT + Σ−1
p is defined by Equation (I.16) and (I.10).

As shown in Equation (I.22), the variance of the predictive distribution is partly a
quadratic form of the test input point with the scale decided by Λ = λyΦΦT + Σ−1

p .

Avoid matrix inversion on the high dimensional space To avoid computing matrix
inversion on the Λ = λyΦΦT + Σ−1

p in Equation (I.22), which is high dimensional in the
feature space, define

K = ΦTΣpΦ =< Σ
1
2
p Φ,Σ

1
2
p Φ > (I.23)

, then

σ−2
y Φ(K + σ2

yIn) = σ−2
y Φ(ΦTΣpΦ + σ2

yIn) (I.24)

= σ−2
y Φ(ΦTΣpΦ + σ2

yInΣ−1
p Σp) (I.25)

= σ−2
y ΦΦTΣpΦ + ΦΣ−1

p Σp (I.26)

= σ−2
y ΦΦTΣpΦ + Σ−1

p ΣpΦ (I.27)

= (σ−2
y ΦΦT + Σ−1

p )ΣpΦ (I.28)
= ΛΣpΦ (I.29)

Left multiply each side of equation (I.29) by Λ−1 and right multiply both sides by (K +
σ2
yI)−1, we have

Λ−1σ−2
y Φ = ΣpΦ(K + σ2

yI)−1 (I.30)

which shows the inversion of the high dimensional precision matrix Λ could be replaced
by the inversion of the low dimensional kernel matrix Kn×n. So φT∗ λyΛ−1Φy in Equation
(I.22) becomes φT∗ΣpΦ(K + σ2

yI)−1y.

General definition of kernels Let f(x) = wTφ(x),

E[f(x)] = E[wTφ(x)] = E[φ(x)Tw] = 0 (I.31)

E [f(x)− E[f(x)]]
[
f(x

′
)− E[f(x

′
)]
]

= E[φ(x)TwwTφ(x)] (I.32)

= φ(x)TE[wwT ]φ(x) = φ(x)TΣpφ(x) = k(x, x
′
) (I.33)
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Equation (I.31) and (I.33) defines the mean and covariance of any pair of ob-
servations f(x), f(x

′
) which can be extended any number of observations, then,

f(x) ∼ GP
(
m(x), k(x, x

′
)
)
.

Extending to non-linear Kernel Function The covariance function or kernel for
Bayesian Linear Regression is K = ΦTΣpΦ defined in Equation (I.23. Extending to arbi-
trary kernel function like k(x, x

′
) = exp(−1

2
|x − x′ |2) enables modeling more complicated

interactions.
Divide the data into observed pairs {(x1, y1), . . . , (xn, yn)} and test input {x∗, y∗} with

n∗ pairs, we are interested in the posterior distribution

p(y∗|x1, . . . , xn, y1, . . . , yn, x
∗) (I.34)

For Gaussian process, the response jointly follows Gaussian distribution with mean function
and covariance function dependent on the covariate.

I.2 Basic Information Theory

In this section, we use H to represent entropy and I to represent information. Capital
letter (e.g.X) represents a Random Variable, the corresponding lower case represents the
realization of the corresponding Random Variable. p and q are used to represent probabili-
stic distribution functions. For simplicity, H(X), H(p), where p(x) is the p.d.f of X, both
represent Entropy.

The Information of a random event X = x can be defined as I(X = x) = − log p(x).
Entropy H(X) =

´
−p(x) log p(x)dx = Ex∼p(x) [I(x)], where I(x) = − log p(x). Entropy

is always non-negative and measure the amount of uncertainty of a Random Variable,
following distribution p(x). Entropy as expected information H(X) = −∑ p(x) log p(x)
can be interpreted as the expected number of binary search needed to locate x (number of
bits).

H(Y |X = x) =
∑

y∈Y [−p(y|x) log(p(y|x))] is conditional expectation of information,
integrating over x ∈ X , results in Conditional Entropy defined as

H(Y |X) = Ex∼p(x) [H(Y |X = x)] (I.35)
= Ex∼p(x)

[
Ey∼p(y|x) − log p(y|x)

]
(I.36)

=
∑

x

∑

y

−p(y|x) log p(y|x) (I.37)

Conditional Entropy H(Y | X) measures the reduced uncertainty of Y given observation
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of X w.r.t. Joint Entropy H(X, Y ), defined as

H(X, Y ) =

ˆ ˆ
−p(x, y) log p(x, y)dxdy (I.38)

=

ˆ ˆ
−p(x)p(y | x) log[p(x)p(y | x)]dxdy (I.39)

=

ˆ ˆ
−p(x)p(y | x) log p(x)dxdy +

ˆ ˆ
−p(x)p(y | x) log p(y | x)dxdy (I.40)

= H(X) +H(Y | X) (I.41)

which is the chain rule of entropy: The joint entropy of X and Y is the entropy of X plus
the conditional entropy of Y |X.

Cross Entropy Hp(q) is defined between two distributions p and q as

Hp(q) =

ˆ
−p(x) log q(x)dx = Ep [Iq] (I.42)

Hp(q) is the expectation of the information of q with respect to p.
Mutual Information is defined as

I(X;Y ) =

ˆ ˆ
p(x, y) log

p(x, y)

p(x)p(y)
dxdy

=

ˆ ˆ
p(x)p(y | x) log

p(x)p(y | x)

p(x)p(y)
dxdy =

ˆ ˆ
p(x)p(y | x) log

p(y | x)

p(y)
dxdy

=

ˆ ˆ
p(x)p(y | x) log p(y | x)dxdy −

ˆ ˆ
p(x)p(y | x) log p(y)dxdy

= −H(Y | X) +H(Y ) ≥ 0 (I.43)

. KL Divergence measures the uncertainty change or average information gain, with respect
to H(p)

DKL(p, q) =

ˆ
p(x) log

p(x)

q(x)
dx = Hp(q)−H(p) ≥ 0 (I.44)

Relationship between KL Divergence and Mutual Information is

I(X;Y ) =

ˆ ˆ
p(x, y) log

[
p(x, y)

p(x)p(y)

]
dxdy =

ˆ ˆ
p(y)p(x|y) log

[
p(x, y)

p(x)p(y)

]
dxdy

=

ˆ ˆ
p(y)p(x|y) log

[
p(x | y)

p(x)

]
dxdy = EY

[
p(x|y) log

[
p(x | y)

p(x)

]]
(I.45)

=EY [DKL(p(x|y), p(x))] (I.46)
=EX [DKL(p(y|x), p(y))] (I.47)

Equation (I.46) is the average KL Divergence between p(x | y), the conditional proba-
bility of x, upon observation of variable y, and the original p(x). EX [DKL(p(y|x), p(y))]
is the information gain on Y once feature X is observed, which reduces the uncertainty
about Y.
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Chain Rule of Mutual Information

Take X,Z as a concatenated variable, one can calculate the mutual information between
X,Z and Y as

I(X,Z;Y )

=
∑

x,y,z

px,z,y(x, z, y) log
px,z,y(x, z, y)

px,z(x, z)py(y)
=
∑

x,y,z

px,y,z(x, y, z) log
pz(z)px,y|z(x, y|z)

px|z(x|z)pz(z)py(y)

=
∑

x,y,z

px,y,z(x, y, z) log
px,y|z(x, y|z)

px|z(x|z)py(y)
=
∑

x,y,z

px,y,z(x, y, z) log
px,y|z(x, y|z)

px|z(x|z)py|z(y|z)

py|z(y|z)

py(y)

=I(X, Y |Z) +
∑

x,y,z

p(x, y, z) log
py|z(y|z)

py(y)
= I(X, Y |Z) + I(Z, Y ) (I.48)

where the mutual information I(Z, Y ) =
∑

z

∑
y pz,y(z, y) log pz,y(z,y)

pz(z)py(y)
and the conditional

mutual information is

I(X, Y |Z) =
∑

z

p(z)
∑

x,y

px,y|z(x, y|z) log
px,y|z(x, y|z)

px(x|z)py(y|z)
=
∑

x,y,z

p(x, y, z) log
px,y|z(x, y|z)

px(x|z)py(y|z)

(I.49)

The chain rule of mutual information I(X,Z;Y ) = I(X, Y |Z) + I(Z, Y ) where Z is the
d-separation node. The conditional mutual information and I(z, y) are trade offs which
sum up to the total mutual information.

Due to the symmetry I(X, Y |Z) = I(X,Z;Y )− I(Y, Z) = I(Y, Z;X)− I(X,Z), there
is I(X, Y |Z)− I(X, Y ) = I(Y, Z;X)− I(X,Z)− I(X, Y ), which leads to the identity

I(X, Y |Z)− I(X, Y ) = I(X,Z|Y )− I(X,Z) (I.50)
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