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 Summary I 

Summary 
An extensive network of RNA-binding proteins (RBPs) is at the center of posttranscriptional 

gene regulation. Importantly, different RBPs – including microRNA-loaded Argonaute (Ago) 

– can bind to a single mRNA resulting in antagonistic or cooperative mode of actions, thereby 

determining the fate and function of an mRNA. Here, I investigated the impact of two different 

RBPs, HuR and Staufen2 (Stau2), on microRNA/Ago-dependent gene expression 

homeostasis. The results of my thesis allow me to present a working model how these three 

RBPs might control neuronal function in a novel RNA-structure dependent manner. 

HuR protein binds to AU-rich elements within mRNAs. In the case of Regulator of G-protein 

signaling (Rgs4) mRNA, I find that HuR binding occurs close to a miR-26/RISC binding site, 

resulting in Rgs4 destabilization. As both binding sites are in close proximity within a predicted 

RNA hairpin structure, only synergistic action of HuR and miR-26 results in Rgs4 repression. 

I propose a novel mechanism involving the trifold combination of HuR, miR-26-loaded Ago 

and RNA secondary structure in governing functional regulation of Rgs4 mRNA in neurons. 

Certain RBPs such as Stau2 protein bind to double-stranded RNAs (dsRNAs), thereby shaping 

local and global secondary structures of mRNAs. Based on preliminary data linking Stau2 and 

the miRNA pathway, I investigated Stau2-dependent expression, localization and function of 

the miRNA-induced silencing complex (RISC) in neurons. Proteome and small RNA 

transcriptome analysis in Stau2 deficient primary neurons revealed significant upregulation of 

several RISC associated proteins, including Ago1/2, while global miRNA levels were 

unaffected. This upregulation was accompanied by decreased global translation and 

translocation of Ago2 from Processing-bodies, sites of mRNA storage, to translating 

polysomes. Phenotypically, depletion of Ago1/2 reduced dendritic branching. This effect could 

be rescued by simultaneous knockdown of Stau2, suggesting that Ago1/2 and Stau2 

functionally counterbalance each other in neurons. I hypothesize that Stau2’s ability to bind to 

dsRNA stabilizes defined mRNA structures thereby governing association of RISC and 

mRNAs. Based on Stau2 hiCLIP experiments by our collaborator Jernej Ule, I was able to 

define a long-range RNA duplex in the 3’-untranslated region of Rgs4 mRNA bound by Stau2 

in vivo. This RNA duplex is necessary and sufficient to drive Stau2-dependent 

ribonucleoprotein particle (RNP) assembly as well as dendritic RNA localization in neurons. 



 Summary II 

Together, the data presented in my thesis support a model, in which balanced expression and 

interdependent action of RBPs, RISC and RNA structure shapes RNP assembly and gene 

expression homeostasis, important for neuronal function. 
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There is nothing more wonderful than being a scientist, nowhere I would rather be than in 

my lab, staining up my clothes and getting paid to play. – Marie Curie 

 
 
 
 
 
 
 
 
 
 

1 Introduction 

1.1 Neuronal RNA granules and the mRNP code 
Posttranscriptional gene regulation represents one important cellular mechanism to ensure 

neuronal development and synaptic function (Gebauer et al., 2020; Schieweck et al., 2020; 

Wang et al., 2016). This is warranted by a network of thousands of RNA-binding proteins 

(RBPs) (Hentze et al., 2018; Schieweck et al., 2020). RBPs regulate many processes in the 

complex life of an RNA, mostly through binding to the 3’-untranslated region (3’-UTR) of the 

mRNA (Andreassi and Riccio, 2009). Intron retention, alternative splicing and alternative 

polyadenylation (APA) are co-transcriptionally governed by RBPs, resulting in a significant 

expansion of the proteome (Fernández-Moya et al., 2017; Schieweck et al., 2020; Schreiner et 

al., 2014). In addition to generating alternative proteins isoforms, this also leads to lengthening 

of 3’-UTRs particularly in the brain, thereby increasing the regulatory potential through RBPs 

(Di Giammartino et al., 2011; Miura et al., 2013; Tushev et al., 2018; Wang and Yi, 2014; Wei 

et al., 2020). Combinatorial binding of RBPs to a given mRNA results in formation of 

ribonucleoprotein particles (RNPs) that determine the fate of the mRNA (Iadevaia and Gerber, 

2015). Recent evidence suggests that initial RNP assembly takes place in the nucleus (Duss et 

al., 2019; Kress et al., 2004; Rodgers and Woodson, 2019). Once exported from the nucleus 

RNP composition is dynamically altered to ensure controlled localization, translation and 

degradation of mRNAs (Heraud-Farlow and Kiebler, 2014; Kiebler and Bassell, 2006; Tauber 

et al., 2020). 
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In neurons, several distinct cytoplasmic RNPs exist that differ in their molecular composition 

and function. These include translationally repressed processing-bodies (P-bodies) and 

transport RNPs (Kiebler and Bassell, 2006). P-bodies are sites of RNA and RBP storage that 

are found both in the soma and in distal dendrites of neurons (Cougot et al., 2008; 

Hubstenberger et al., 2017; Standart and Weil, 2018). They contain proteins, mainly RBPs, 

that are involved in microRNA (miRNA) mediated gene silencing, deadenylation and 

decapping; and their homeostasis is governed by the translational repressor DEAD-box helicase 

6 (Ddx6) (Hubstenberger et al., 2017; Di Stefano et al., 2019). In human cell lines and 

progenitor cells, mRNAs enriched in P-bodies are AU-rich and code for regulatory proteins, 

such as chromatin modifiers or RBPs (Courel et al., 2019; Di Stefano et al., 2019). Neuronal 

dendritic P-bodies are responsive to neuronal activity (Cougot et al., 2008) and they transiently 

interact with transport RNPs (Zeitelhofer et al., 2008). Transport RNPs are microtubule 

associated RNA granules that move bidirectionally along dendrites (Bauer et al., 2019; Doyle 

and Kiebler, 2011; Köhrmann et al., 1999). The directed transport along cellular processes 

ensures delivery of mRNAs to the sites of local translation, e.g. at synapses, axonal growth cones 

and endfeet of radial glia cells (Bauer et al., 2019; Holt et al., 2019; Pilaz et al., 2016; Shigeoka 

et al., 2016). Transport RNPs share a subset of protein components with P-bodies that ensure 

translational repression during RNA transport (Fritzsche et al., 2013; Kiebler and Bassell, 

2006). However, in comparison to the larger P-bodies, they contain only few mRNAs (Doyle 

and Kiebler, 2011; Mikl et al., 2011; Tauber et al., 2020). 

The cellular localization of the mRNA is regulated through assembly of RBPs into distinct 

RNA granules (Heraud-Farlow and Kiebler, 2014; Meer et al., 2012). The interdependent 

expression, activity and localization of these RBPs therefore determines the ultimate fate and 

function of the mRNA (Dassi, 2017; Schieweck et al., 2020). However, assembly of RBPs and 

mRNAs is also dependent on the presence and accessibility of RBP binding sites on the mRNA, 

termed the RNA signature (Doyle and Kiebler, 2011). Further, the RNA itself is a critical 

element for RNP condensation (Garcia-Jove Navarro et al., 2019) and this process can be 

regulated by RNA structure that determines accessibility of RBP binding sites (Langdon et al., 

2018; Sanchez de Groot et al., 2019). The individual combination of RBP binding sites on the 

mRNA can result in synergistic or antagonistic actions of RBPs (Iadevaia and Gerber, 2015). 

Association of miRNAs with target mRNAs for example is highly regulated by other RBPs 

(Kosik, 2006), as it has been shown in cell lines for Pumilio2 (Pum2), Mov10, FMRP and HuR 
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(Iadevaia and Gerber, 2015; Kenny et al., 2014; Li et al., 2018; Sternburg et al., 2018). How 

these interdependent RBP networks and their influence on miRNA mediated gene silencing 

contribute to gene expression homeostasis in neurons is still largely unknown and are the main 

aim of this thesis (Heraud-Farlow and Kiebler, 2014; Kosik, 2006). 

1.2 RNA interference 
Following initial observations in plants (Napoli et al., 1990), the discovery of double-stranded 

RNA (dsRNA) at the center of a process called RNA interference (RNAi) 1998 in C. elegans 

opened an entirely new and important chapter in research of gene regulation (Fire et al., 1998). 

By now, we know that RNAi is highly conserved in eukaryotes and the processing of such 

dsRNA results in formation of small non-coding RNAs (ncRNAs) that mediate gene 

repression through hybridization with the cognate target RNA (Bartel, 2018). In mammals, 

miRNAs are the predominant form of short ncRNAs with 19 – 22 nt in length. Prediction 

shows that each human miRNA binds hundreds of different target mRNAs resulting in the 

miRNA pathway to target ~60% of protein-coding transcripts (Agarwal et al., 2015; Friedman 

et al., 2009). This makes miRNAs key regulators of all cellular processes, from embryonic 

development to refinement of synaptic plasticity during learning and memory formation 

(Nawalpuri et al., 2020). 

Canonical miRNAs originate from endogenously transcribed stem loop regions from longer 

primary miRNA (pri-miRNA) transcripts. Specifically, pri-miRNA is cleaved by the 

Microprocessor, consisting of the endonuclease Drosha and its partner dsRBP, DGCR8, to 

produce the ~70 precursor miRNA (pre-miRNA) stem-loop (Lee et al., 2002, 2003). The pre-

miRNA is subsequently  exported from the nucleus via the Exportin5 pathway (Lund et al., 

2004). In the cytosol, cleavage of the pre-miRNA stem-loop into a miRNA duplex is achieved 

by the RNase III enzyme Dicer under assistance of the dsRBPs TRBP and PACT (Fareh et 

al., 2016; Lee et al., 2013, 2006). The miRNA duplex is loaded into an Argonaute (Ago1-4) 

protein and the passenger strand (miRNA*) is expelled. This results in formation of the 

minimal RNA induced silencing complex (RISC), consisting of the miRNA guide strand and 

Ago protein. Generally, complementarity of the seed-region at position 2-8 of the miRNA 

confers target specificity of RISC. Through extended base-pairing towards the 3’-end of the 

miRNA the association of RISC at the target RNA and therefore gene repression can be further 
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strengthened (McGeary et al., 2019). For a detailed review on biogenesis and function of 

metazoan miRNAs see (Bartel, 2018). 

1.2.1 The RNA induced silencing complex 

The silencing of target RNAs by RISC is generally performed via two distinct pathways. In 

cases, where perfectly complementary base-pairing between the miRNA and its target takes 

place, endonucleolytically active Ago proteins directly slice the target transcript (Meister et al., 

2004; Peters and Meister, 2007). In contrast, the prevalent pathway in animals is activated 

through imperfect base-pairing of the miRNA to the target, precluding catalytic activity of Ago. 

Here, silencing of target RNAs is achieved through recruitment of protein partners, that 

mediate translational repression, deadenylation, decapping and mRNA degradation (Jonas and 

Izaurralde, 2015). The default pathway in most post-embryonic cells involves miRNA mediated 

inhibition of translation, followed by prominent RNA degradation (Djuranovic et al., 2011). 

The flexible adaptor protein GW182/Tnrc6 interacts with the poly-A binding protein (PABP) 

and recruits cytoplasmic deadenylase complexes (CCR4-NOT and PAN2-PAN3), resulting in 

deadenylation of the mRNA. A network of direct physical interactions then results in decapping 

of the deadenylated mRNA through Dcp2 (Chen et al., 2014; Jonas and Izaurralde, 2015). The 

decapping process is supported by several cofactors, including the RNA helicase Ddx6 and the 

enhancers of decapping Edc3 and 4 (Chen et al., 2014; Mathys et al., 2014; Rouya et al., 2014). 

Finally, the major cytoplasmic 5‘-3‘-exoribonuclease 1 (Xrn1) degrades decapped and 

deadenylated mRNAs. Interestingly, exonucleolytic mRNA degradation can also performed 

co-translationally in polysomes (Tat et al., 2016). However, the miRNA mediated gene 

silencing can be stalled and reversed at multiple steps. This includes uncoupling of Ddx6-

mediated translational repression from mRNA degradation (Freimer et al., 2018). Further, 

translational repression seems to be preferred over irreversible mRNA degradation in oogenesis, 

early embryogenesis and, interestingly, in neurons (Nawalpuri et al., 2020). In neurons, 

reversible translation repression is a central concept hypothesized to enable fast 

spatiotemporally controlled gene expression through local translation, ensuring synaptic 

plasticity (Kiebler and Bassell, 2006). 

1.2.2 Regulation of neuronal RISC 

The activity of RISC can be modulated through external signals, such as neuronal activity, at 

several levels. This includes changes in expression levels, posttranslational modification and 

localization of on ore more RISC components. For instance, increased expression of Ago2, 
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GW182 and Ddx6 has been observed in injured axons (Wu et al., 2013). In dendrites, neuronal 

activity driven phosphorylation of Ago2 at residue S387 strengthens its interaction with 

GW182 (Rajgor et al., 2018). This results in increased miRNA-mediated gene silencing and 

dendritic spine shrinkage. It has further been shown that RNAi components Dicer and GW182 

are required for dendritic arborization (Davis et al., 2008; Nawalpuri and Muddashetty, 2020). 

In addition to changes in RISC protein components, altered miRNA levels also play an 

important role in neuronal physiology. The maintenance of neuronal long-term potentiation 

(LTP) and dendritic spine enlargement for example are dependent on the expression of miR-

26a and miR-384-5p (Gu et al., 2015). By now several miRNAs have been shown to localize 

to synapses, where they impact dendritic growth and spine morphology (Antoniou et al., 2018; 

Rajgor et al., 2018; Schratt et al., 2006). Recent evidence suggests that maturation of some of 

these miRNAs occurs locally in dendrites and that this may be regulated by neuronal activity 

(Antoniou et al., 2018; Bicker et al., 2013; Sambandan et al., 2017; Zampa et al., 2018). A 

prominent example here is the brain-specific miR-134, that represses expression of LIM 

domain kinase 1 (Limk1) (Rajgor et al., 2018; Schratt et al., 2006). Limk1 is important for 

activity-dependent dendritic spine homeostasis. Excitingly, the RBP required for dendritic 

localization and proper function of the pre-miR-134 has been identified, the DEAH-box 

helicase DHX36 (Bicker et al., 2013). This opens the question, whether transport and 

maturation of other miRNAs is regulated by RBPs. For a detailed review of the function and 

regulation of neuronal RISC please see (Nawalpuri et al., 2020). 

Silencing of gene expression by RISC is also dependent on interactions with other RBPs. As 

introduced in the beginning, mRNAs are bound and regulated by multiple RBPs in a 

competitive or cooperative manner (Iadevaia and Gerber, 2015). For example FMRP and 

Mov10 collectively regulate accessibility of miRNA binding sites (Kenny et al., 2014). 

Furthermore, RISC recruitment to the mRNA target (Kim et al., 2009) and miRNA biogenesis 

itself can be regulated by RBPs (Treiber et al., 2017). For instance processing of synaptic pre-

miR-138 can be regulated by the RBP Matrin3 (Weiss et al., 2019). Most of the known 

interactions between RBP and RISC have been generated in cell lines. However, neuronal 

RISC differs from cell lines, e.g. translational repression is generally preferred over RNA 

degradation. It is therefore important to understand how RISC integrates into the neuronal 

RBP network. The following two paragraphs focus on two key RBPs that are expressed in 

neurons and have been partially linked to miRNA-mediated gene silencing. 
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1.3 The Staufen protein family 
The family of Staufen (Stau) proteins are multifunctional trans-acting factors that specifically 

bind to double-stranded RNA via five dsRNA-binding domains (dsRBDs) (Lazzaretti et al., 

2018; Masliah et al., 2013; Ramos et al., 2000) (Fig. 1.3). Stau was first described as essential 

localization factor for maternal RNAs in the Drosophila oocyte (St Johnston et al., 1991). The 

function in RNA localization and the Stau protein itself are both highly conserved across species 

(Allison et al., 2004; Bauer et al., 2019; Köhrmann et al., 1999; LeGendre et al., 2013; Liu, 

2006; Ramasamy et al., 2006; Sharangdhar et al., 2017; St Johnston et al., 1991). Vertebrates 

carry two paralogs of Stau, Stau1 and Stau2, that both give rise to several splice isoforms 

(Duchaîne et al., 2002; Mallardo et al., 2003). There are important differences regarding the 

two Stau paralogs, that also localize to distinct dendritic particles in neurons (Duchaîne et al., 

2002): (i) while Stau1 is ubiquitously expressed, Stau2 expression is highly enriched in neuronal 

tissue (Duchaîne et al., 2002) in comparison to the Drosophila ortholog; (ii) dsRBD1 is missing 

in Stau1; and (iii) dsRBD5 is inverted in mammalian Stau2, but not Stau1, in comparison to 

the Drosophila ortholog. The dsRBD5 is reported to have compromised RNA-binding 

capability and is not involved in Stau mediated oskar RNA transport in Drosophila oocytes. 

However, Stau contributes to oskar translation initiation at the posterior pole (Micklem et al., 

2000). Interestingly, dsRBD5 is both necessary and sufficient to bind the Drosophila scaffold 

protein Miranda (Irion and St Johnston, 2007; Jia et al., 2015). Functionally, this protein-

protein interaction is responsible for asymmetric localization of Stau during asymmetric division 

of Drosophila neuroblasts. 

The contribution of the different dsRBDs to RNA-binding and in particular the specificity of 

Stau’s ability in RNA binding has been a long-standing question. It has now been consistently 

shown that the conserved αβββα	structures	in	dsRBD3 and dsRBD4 are sufficient for RNA-

binding (Bycroft et al., 1995; Duchaîne et al., 2002; Lazzaretti et al., 2018; Ramos et al., 2000; 

Wickham et al., 1999). Additional contributions to RNA-binding by combinatorial binding of 

dsRBD1 and dsRBD2 have been recently implicated for mouse Stau2 (Heber et al., 2019). 

Previous data from Drosophila, however, only observed RNA-binding by dsRBD2, once the 

insertion was removed (Micklem et al., 2000). While dsRBPs clearly bind to RNA structures, 

it was not well understood if and how sequence-dependent RNA recognition would indeed 

contribute to RNA target specificity (Masliah et al., 2013). Similar to the combined shape and 

sequence-specific readout detected for RNA-binding of the dsRBP ADAR1 (Stefl et al., 2010), 
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the base-directed contact of Stau1 to ARF1 dsRNA has been recently described (Lazzaretti et 

al., 2018; Yadav et al., 2020). Here, in addition to RNA backbone interactions, dsRBD3 and 

dsRBD4 are both in direct contact with guanines and cytosines in the minor grove of the A-

form RNA. The overall structure of full length Stau1 has only been recently resolved (Visentin 

et al., 2020). The different dsRBDs of Stau1 are organized like beads on a string, connected by 

flexible linkers that enable structural plasticity. The possibility for Stau1 to adapt to multiple 

conformations may explain its diverse and sometimes contradicting functionality in vivo. 

 

Figure 1.1: The Staufen protein family. (A) The double-stranded RNA-binding protein Staufen has 
two mammalian orthologs, Stau1 and Stau2 (shown here mus musculus). Both orthologs harbor a nuclear 
localization signal (NLS) and a tubulin binding domain (TBD). Stau2 contains five double-stranded 
RNA-binding domains (dsRBD), with dsRBD5 being inverted and incapable of RNA binding. By 
comparison, Stau1 is lacking dsRBD1, but contains correctly orientated dsRBD5. Alternative splicing 
at the 5'- and/or 3'-end produces shortened isoforms. (B) Stau1 dsRBD3 and 4 interact with the sugar-
phosphate backbone and specific RNA bases (highlighted as blue boxes) of the target RNA duplex. 
Schematic representation of the ARF1 RNA duplex bound by dimerized human Stau1 from (Lazzaretti 
et al., 2018). (C) The dsRBDs of Stau1 are connected via flexible linkers forming a beads-on-a-string 
structure. Conformational rearrangements of dsRBD3 (orange) and 4 (turquoise) may explain target 
RNA binding plasticity of Staufen proteins. Structure model of the full length human Stau1 55 kDa 
isoform based on small-angle X-ray scattering and Ensemble Optimization Method from (Visentin et 
al., 2020). 
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The profound lack of knowledge about the primary sequence specificity of Stau RNA-binding 

seriously complicated target prediction for Stau. Here, in silico modelling of Staufen recognition 

sites (SRS) based on biochemically detected Stau target RNAs have given first insight into 

characteristics of bound RNA structures (Heraud-Farlow et al., 2013; Laver et al., 2013). Stau2 

targets show an enrichment of SRSs in the 3’-UTRs and those 3’-UTRs are also significantly 

longer compared to unbound 3’-UTRs. The development of the hiCLIP (RNA hybrid and 

individual-nucleotide resolution UV cross-linking and immunoprecipitation) technology 

enabled the first real breakthrough in elucidating Stau target binding on the molecular level 

(Sugimoto et al., 2015). Using hiCLIP, RNA duplexes bound by Stau1 in the physiological in 

vivo environment could be defined (Sugimoto et al., 2015). Consistent with the results before, 

the majority of RNA duplexes was detected in the 3’-UTRs of target mRNAs with loop lengths 

even longer than 500 nucleotides (20%). These long intramolecular duplexes suggest that Stau1 

plays a role in compacting the 3’-UTR, possibly enabling interaction of proteins bound to distal 

parts of the mRNA. Further, Stau-bound RNA duplexes can also be formed intermolecularly 

(Sugimoto et al., 2015). One interesting example here is base pairing of an Alu element in the 

3’-UTR of an mRNA with a long non-coding RNA (lncRNA), preceding Stau1-mediated 

RNA decay (Gong and Maquat, 2011). Even with the recent technical advances in RNA 

structure elucidation, the flexible structure of Stau and its limited sequence specificity still make 

it somewhat hard to delineate and predict a consensus RNA motif for Stau binding. 

Mammalian Stau1 and Stau2 differ from Drosophila Stau as they harbor an additional tubulin-

binding domain (TBD) and a nuclear localization sequence (NLS) (Macchi et al., 2004; Martel 

et al., 2006; Wickham et al., 1999). Further, alternative splicing of Stau2 at both the C-and N-

terminus generates two additional isoforms (59 kDa and 52 kDa) that carry truncated versions 

of dsRBD1 and dsRBD5 and harbor an additional nuclear export sequence (NES) (Miki and 

Yoneda, 2004). This leads to isoform specific nuclear localization of Stau2 and distinct export 

mechanisms. The nuclear export of all isoforms depends on the RNA-binding capability of 

dsRBD3, as an RNA-binding mutant resulted in accumulation of Stau2 in the nucleolus 

(Macchi et al., 2004). In addition, the nuclear export of the Stau2 62 kDa isoform requires 

RNA-dependent interaction with the miRNA-export factor Exportin5 (Macchi et al., 2004), 

whereas the 59 kDa isoform is exported via Exportin1/Crm1 (Miki and Yoneda, 2004). It is 

hypothesized that the NLS is concealed upon RNA-binding by dsRBD3 and dsRBD4 (Macchi 

et al., 2004). Therefore, RNA-binding would promote nuclear export and prevent reimport 
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into the nucleus. This suggests that Stau2 RNP assembly starts in the nucleus, as it has been 

described for other RBPs (Giorgi and Moore, 2007; Kiebler et al., 2005). 

1.3.1 Neuronal Staufen2 

Much information about the molecular characteristics of Stau were gathered from studies on 

either mammalian Stau1 or orthologs from other species. I, however, am interested in the 

mechanism of action and function of the neuronally enriched Stau2. These are most likely 

distinct, since both, Stau1 and Stau2, are present in separate dendritic particles (Duchaîne et 

al., 2002), bind to distinct RNA target sets (Furic et al., 2007) and vary in their dsRBD 

composition (Macchi et al., 2004). 

In addition to Stau2 function in early neurogenesis, a growing suit of evidence implicates Stau2 

function in the mature nervous system, including neuronal maturation, synaptic plasticity and 

memory formation (Heraud-Farlow and Kiebler, 2014; Schieweck et al., 2020). For instance, 

in primary neuronal cultures deficiency for Stau2 results in transport and localization defects 

for Regulator of G-protein signaling 4 (Rgs 4), the intron-retained Calmodulin 3 (Calm3) and, as 

shown by others, Microtubule-associated protein 1b (Map1b) mRNA via their 3’-UTRs (Bauer et 

al., 2019; Lebeau et al., 2011; Sharangdhar et al., 2017). In the case of Map1b, this results in 

reduction of the encoded protein regulating metabotropic Glutamate receptor (mGluR)-

dependent long-term depression (LTD), a process important for learning and memory (Lebeau 

et al., 2011). This goes in line with a recent in vivo study observing impaired LTD and preferred 

LTP, thereby misbalancing synaptic plasticity in a transgenic rat model with forebrain specific 

depletion of Stau2 (Berger et al., 2017). Behavioral tests in Stau2 deficient rats and mice 

complemented these electrophysiological phenotypes. These animals show reduced locomotion 

and deficits in (spatial) novel object identification, spatial working memory and associative 

learning and memory (Berger et al., 2017; Popper et al., 2018). On the morphological level, 

Stau2 has been implicated in dendritic spine formation. In primary hippocampal rat cultures, 

selective downregulation of Stau2 resulted in rearrangement of the dendritic actin cytoskeleton 

network and reduction and malformation of dendritic spines (Goetze et al., 2006). Together, 

these findings strongly link Stau2 to proper nervous system function and highlight the 

importance for understanding the molecular function of Stau2 in gene expression homeostasis 

(Schieweck et al., 2020). 
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The identification of protein and RNA interactors of Stau2 from embryonic day 17 (E17) rat 

brain by the Kiebler lab in 2013 prepared the grounds for dissecting the molecular function of 

Stau2 in neurons (Fritzsche et al., 2013; Heraud-Farlow et al., 2013). Among other RNAs, 

Stau2 bound to (Heraud-Farlow et al., 2013; Sharangdhar et al., 2017), stabilized RNA levels 

(Heraud-Farlow et al., 2013) and mediated directed dendritic transport (Bauer et al., 2019) of 

Rgs4 mRNA. Rgs4 mRNA localizes to distal dendrites (Ehses et al., 2020; Heraud-Farlow et 

al., 2013), where the encoded protein shortens G-protein coupled receptor (GPCR) signaling 

by acting as a GTPase activating protein resulting in faster GTP hydrolysis on the Gα-protein 

(Gerber et al., 2016). Rgs4 is therefore a prime candidate for dissecting RNA recognition of 

Stau2 and to understand how Stau2 orchestrates molecular mechanisms such as RNP assembly. 

Interestingly, seven other RNAs involved in the GPCR signaling pathway were also bound by 

Stau2 (Heraud-Farlow et al., 2013). This includes Calm3 mRNA. More yet, Stau2-dependent 

regulation of dendritic localization (and nuclear export) of Calm3 was mediated by a retained 

intron within the 3’-UTR (Sharangdhar et al., 2017). It is interesting to note that certain pre-

miRNAs were also enriched in Stau2 immunoprecipitations from E17 rat brain (Heraud-

Farlow et al., 2013), including pre-miR-26a. Further, unpublished preliminary data by Jacki 

Heraud-Farlow show a repressive function of Stau2 on pre-miR-26a maturation (J. Heraud-

Farlow, PhD thesis, University of Vienna). Together, these data imply that the dsRBP Stau2 

is able to bind to the short stem-loop structure formed by pre-miRNAs and potentially regulate 

their maturation, as it has been observed for other dsRBPs (Treiber et al., 2017). 

The second study performed in parallel by the Kiebler lab focused on the identification of 

potential protein interactors present in Stau2 particles from E17 rat brains (Fritzsche et al., 

2013). Here, several translational repressors co-precipitated with Stau2, including the well-

known RBPs Pum2 and FMRP. Among these repressors were also proteins involved in RISC 

or RISC associated proteins. Specifically, Ago2, Ddx6 and Mov10 were enriched in Stau2 

RNPs. The interaction between Stau2 and those RISC components was, however, mostly RNA 

dependent. Interestingly, Stau2 interacted with interferon-inducible double-stranded RNA-

dependent protein kinase activator A (Prkra/PACT) protein in a manner independent of 

RNase treatment. In a complex together with TRBP and Dicer, PACT is required for small 

ncRNA biogenesis (Lee et al., 2006; Pullagura et al., 2018). Collectively these data indicate 

that the mRNA in Stau2 RNPs is translationally repressed, which might (at least in part) be 

achieved through RNAi. This is interesting, as Stau2 has been shown to associate with 
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ribosomes and the (rough) endoplasmic reticulum (Graber et al., 2017; Heraud-Farlow and 

Kiebler, 2014; Luo et al., 2002) and, further, Stau1-RNA binding has been linked to increased 

polysome association (Zheng et al., 2020). In addition, Stau2 target RNA levels decrease rather 

than increase upon knockdown of Stau2 (Heraud-Farlow et al., 2013). As Stau2 itself seems to 

promote expression of target genes, it is plausible that in addition to its function in RNA 

transport, Stau2 rather prevents strong activity of translational repressors and, therefore, 

balances gene expression. During transport, Stau2 RNPs are hypothesized to be translationally 

repressed and this repression is reversed upon arrival at the destination, e.g. the activated 

synapse, to enable local translation (Doyle and Kiebler, 2011; Kiebler and Bassell, 2006; 

Schieweck et al., 2020). 

1.4 HuR/ELAVL1 
Another group of protein interactors identified in the proteomic analysis of Stau2 granules 

consists of the Human-antigen (Hu) protein family (Fritzsche et al., 2013). While these 

proteins were also detected in the negative controls, Hu CLIP sites were found to be enriched 

in proximity to Stau1 binding sites determined by combined iCLIP and hiCLIP experiments 

(personal communication, A. Chakrabarti and J. Ule, Crick Institute, London; (Sugimoto et 

al., 2015)). 

The mammalian family of Hu RBPs consists of four homologs of the Drosophila embryonic 

lethal abnormal vision (ELAV) protein, namely HuR (ELAVL1), HuB (ELAVL2), HuC 

(ELAVL3), and HuD (ELAVL4). These RBPs contain three RNA recognition motifs 

(RRMs) and bind to uracil-rich sequences interspersed with guanines and adenosines 

(Ravanidis et al., 2018). Whereas HuR is ubiquitously expressed, HuB-D protein expression is 

highly enriched in neurons and their binding to HuR 3’-UTR has been implicated in decreased 

expression of HuR in mature neurons (Mansfield and Keene, 2012; Zhao et al., 2020). 

Homozygous knockout of HuR is embryonically lethal and HuR depletion in adult mice results 

in lethality within ten days (Ghosh et al., 2009; Katsanou et al., 2009), highlighting the 

importance of HuR for cellular function. HuR has a neuroprotective function as illustrated by 

conditional loss-of-function studies. Specifically, neuron-specific knockout of HuR leads to 

increased inflammation and apoptosis, resulting in phenotypes resembling motor neuron and 

neurodegenerative diseases (Skliris et al., 2015; Sun et al., 2018). 
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Although HuR is predominantly found in the nucleus, it can shuttle to the cytoplasm and this 

translocation is required for adult neurogenesis in mice (Wang et al., 2019). In the nucleus, 

HuR participates in splicing regulation and alternative polyadenylation (Ravanidis et al., 2018). 

Interestingly, collective RNA-binding by the Hu family members in central nervous system 

underlies the extension of neuronal 3’-UTR isoforms by promotion of alternative 

polyadenylation (Wei et al., 2020). In the cytoplasm, HuR has been found to be enriched in 

cytoplasmic P-bodies, where predominantly AU-rich RNAs are found (Hubstenberger et al., 

2017). It is, however, also present in Stau2 transport particles (Fritzsche et al., 2013). It was 

long thought that the main function of HuR would be the stabilization of RNAs by competing 

with RNA decay factors (such as AUF1/hnRNPD) for binding to AU-rich elements (Brennan 

and Steitz, 2001; Lal et al., 2004). Recent studies, however, suggest that this picture is more 

complex as HuR is also implicated in RNA destabilization and translational control through 

distinct cooperative and antagonistic mechanisms (Chang et al., 2010; Ehses et al., 2020; Kim 

et al., 2009; Li et al., 2018). In addition, HuR has been shown to facilitate membrane 

localization of newly-translated CD47 (leukocyte surface antigen CD47) protein by binding to 

the 3’-UTR of the translated CD47 mRNA, thereby promoting cell survival  (Berkovits and 

Mayr, 2015). This mechanism depends on alternative polyadenylation of CD47 mRNA that 

acts as a scaffold for protein-protein interactions proposing a truly novel mechanism of protein 

localization. Together, this data places HuR as a major regulator of post-transcriptional gene 

regulation and show the importance to further dissect its role in neuronal physiology. It will be 

intriguingly to further elucidate its interactions with other RBPs in gene expression homeostasis 

and see how HuR promotes neuronal health and survival. 
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2 Aims 
The overall goal of my PhD thesis was to investigate the influence of RBPs on the function of 

the RNA induced silencing complex in neurons. I decided to tackle this objective by choosing 

two complementary strategies, on one hand the exploration of a single target RNA, and on the 

other hand a genome-wide approach from the RBP direction. Based on previous data by the 

Kiebler Lab, I chose the Stau2 target RNA Rgs4 for the target-based project and studied how 

its regulation by miRNA/RISC is controlled through other RBPs, in this case AU-rich element 

binding protein HuR (Chapter A). In the second project, I exploited quantitative mass 

spectrometry (by R. Schieweck) in combination with RNA sequencing data from Stau2 

deficient neurons to study the global interdependency of RBPs with a focus on the miRNA 

pathway. Specifically, I aimed at defining the molecular interaction of Stau2 and Ago2 and the 

role of this interaction for neuronal physiology (Chapter B). In order to understand how Stau2 

might regulate RNA structure and therefore accessibility of miRNA binding sites, I 

collaborated with S. M. Fernández Moya, to unravel the underlying RNA characteristics 

important for Stau2 binding (Chapter C). Ultimately, the insights from the two complementary 

approaches were combined to get a better understanding of the role of RNA structure and 

miRNA-loaded Ago in the neuronal RBP network. 

Overall, I tried to address the following key questions in my thesis: 

(i) How do RBPs interact with each other on a single target RNA? 

(ii) How is RNAi regulated in the neuronal RBP network? 

(iii) How does the RNA structure contribute to neuronal RNP assembly? 
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This chapter contains the research article published in RNA Biology (2020) with the title 

Synergistic regulation of Rgs4 mRNA by HuR and miR-26/RISC in neurons 

by 

Janina Ehses, Sandra M. Fernández-Moya, Luise Schröger and Michael A. Kiebler* 

* corresponding author 

Author contributions: 

Janina Ehses, Sandra M. Fernández-Moya and Michael A. Kiebler designed the study. Janina 

Ehses performed and analyzed experiments. Luise Schröger contributed to in vitro RNA 

affinity purification experiments. Janina Ehses prepared all figures. Janina Ehses and Michael 

A. Kiebler wrote the manuscript. 
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Synergistic regulation of Rgs4 mRNA by HuR and miR-26/RISC in neurons
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BioMedical Center, Medical Faculty, Ludwig Maximilians University of Munich, Martinsried, Germany

ABSTRACT
The negative regulator of G-protein signalling 4 (Rgs4) is linked to several neurologic diseases, e.g. schizo-
phrenia, addiction, seizure and pain perception. Consequently, Rgs4 expression is tightly regulated, resulting 
in high mRNA and protein turnover. The post-transcriptional control of gene expression is mediated via RNA- 
binding proteins (RBPs) that interact with mRNAs in a combinatorial fashion. Here, we show that in neurons 
the RBP HuR reduces endogenous Rgs4 expression by destabilizing Rgs4 mRNA. Interestingly, in smooth 
muscle cells, Rgs4 is stabilized by HuR, indicating tissue-dependent differences in HuR function. Using in vitro 
RNA-based pulldown experiments, we identify the functional AU-rich element (ARE) within the Rgs4 3ʹ-UTR 
that is recognized and bound by HuR. Bioinformatic analysis uncovered that this ARE lies within a highly 
conserved area next to a miR-26 binding site. We find that the neuronal-enriched miR-26 negatively 
influences Rgs4 expression in neurons. Further, HuR and miR-26 act synergistically in fluorescent reporter 
assays. Together, our data suggest a regulatory mechanism, in which an RBP selectively destabilizes a target 
mRNA in cooperation with a miRNA and the RISC machinery.
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Introduction

The negative regulator of G-protein signalling 4 (Rgs4) plays an 
important role in synaptic plasticity as well as in many diseases of 
the nervous system, including schizophrenia, addiction, seizure, 
pain and neurodegenerative disorders [1–5]. Rgs4 encodes 
a GTPase-activating protein of the G protein-coupled receptor 
(GPCR) pathway, modulating receptor-mediated neuronal signal-
ling at the synapse [5,6]. Both Rgs4 protein as well as Rgs4 mRNA 
show a high turnover rate, suggesting extensive post- 
transcriptional and post-translational regulation [7,8]. In contrast 
to the protein level, where Rgs4 regulation has been studied 
extensively [5], knowledge about the regulation of Rgs4 mRNA 
in neurons is scarce. Post-transcriptional gene regulation enables 
spatially and temporally fine-tuned protein production and is key 
in the nervous system, where targeted local protein synthesis at 
single synapses can take place [9,10]. The control of this process is 
likely to be mediated by the combinatory binding of sequence- or 
structure-specific RNA-binding proteins (RBPs) and microRNAs 
(miRNAs) [11] preferentially to the 3ʹ-untranslated region (3ʹ- 
UTR) of target mRNAs. miRNAs are small noncoding RNAs that 
complementary bind and repress target mRNAs by associating 
with Argonaute (Ago) proteins [11] and recruiting the RNA 
induced silencing complex (RISC). In neurons, Rgs4 is post- 
transcriptionally regulated by the double-stranded RBP 
Staufen2. Endogenous Rgs4 mRNA is reduced upon silencing of 
Staufen2 both in vitro [12] and in vivo [13], suggesting a role of 
Staufen2 in the regulation of Rgs4 mRNA levels. In addition, Stau2 
regulates dendritic transport of an Rgs4 3ʹ-UTR reporter in pri-
mary hippocampal neurons [14].

While certain RBPs are enriched in nervous tissue, e.g. FMRP, 
Staufen2 or Pumillio2 [15], the vast majority of RBPs are ubi-
quitously expressed. HuR/ELAVL1 is a ubiquitously expressed 
RBP with a crucial role in the nervous system [16–19] as well as 
in muscle [7,20,21]. Rgs4 mRNA is a physiological target of HuR 
[7]. Overexpression of Rgs4 can rescue vascular phenotypes 
observed in smooth muscle cells deficient for HuR [21]. In 
those cells, HuR stabilizes Rgs4 mRNA [7]. HuR binds to tran-
scripts containing AU-rich elements (AREs), thereby mainly 
stabilizing the mRNA. There are cases, however, where HuR 
exerts the opposite effect [22,23]. Depending on its mode of 
action, it might act in a cooperative or competitive manner. 
Competition for binding with miRNAs due to steric hindrance 
or RNA structure-mediated effects has been reported [22,24,25].

To evaluate the role of HuR in the regulation of Rgs4 
mRNA expression in neurons, we used RNA interference by 
expressing a short hairpin RNA (shRNA) against HuR. The 
resulting downregulation of endogenous HuR expression in 
mature neurons caused an upregulation of Rgs4 mRNA. 
Fluorescent reporter assays and in vitro RNA affinity purifica-
tion allowed us to define the binding sites for both miR-26 
and HuR in the Rgs4 3ʹ-UTR, which are both located within 
the same predicted, highly conserved RNA hairpin structure. 
Detailed analysis of both factors allowed us to unravel 
a synergistic action of the RBP HuR together with the miR- 
26/RISC complex in the regulation of Rgs4 mRNA in mature 
neurons. Our proposed mechanism highlights the fine-tuned 
interplay between trans-acting factors, e.g. the RBP and the 
miRNA/RISC, depending on the RNA target structure.
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Results

HuR destabilizes Rgs4 mRNA

We tested the influence of HuR expression on Rgs4 mRNA 
levels in primary cortical neurons through knock-down (KD) 
of endogenous HuR by shRNA. The shRNA against HuR 
enables specific knock-down of HuR (Fig. 1A, Sup. Fig. 1B) 
but not of the neuron-specific Hu proteins, HuB/C/D (Sup. 
Fig. 1A). Contrary to published data from smooth muscle cells 
[7], Rgs4 mRNA levels increased twofold upon knock-down of 
HuR (Fig. 1B). Downregulation of a different RBP, Pumilio2, 
did not result in altered Rgs4 mRNA levels (Sup. Fig. 1C,D). 
We further determined if the Rgs4 mRNA upregulation is due 
to effects of HuR on mRNA stability rather than transcription 
or splicing. As shown in Fig. 1C, treating neurons with the 
transcription inhibitor Actinomycin D resulted in a strong 
drop of Rgs4 mRNA. This effect, however, could be rescued 
when HuR was knocked down (Fig. 1C, Sup. Fig. 1E). In 
order to rule out a major effect of HuR on Rgs4 splicing, we 
tested whether a different isoform is detected upon HuR 
knock-down by RT-PCR. We only detected the major 

annotated isoform mmuRgs4-201 (Sup. Fig. 1F). Together, 
this data suggests that Rgs4 mRNA is rapidly degraded, result-
ing in a high turnover rate and that HuR is important for Rgs4 
destabilization in neurons. Therefore, we decided to investi-
gate whether this relation is also reflected by the expression 
pattern of HuR protein and Rgs4 mRNA.

HuR protein and Rgs4 mRNA show divergent expression 
with neuronal maturation

We tested the expression pattern of HuR protein and Rgs4 
mRNA during neuronal maturation in cell culture. During 
maturation of neurons, neuronal processes grow out, build 
synaptic protrusions and finally connect to each other 
through fully functioning synapses [26]. Expression of the 
Hu proteins HuB/C/D has been well described in neurons 
[27,28]. The neuronal role of HuR, however, has only been 
recently investigated [16,17]. HuR protein expression 
decreased with neuronal maturation in our primary cortical 
neuron culture (Fig. 1D). In contrast to HuR protein, we 
found that Rgs4 mRNA levels increased with neuronal 

Figure 1. HuR destabilizes Rgs4 mRNA in primary neurons. (A) Transduction of cortical neurons with shNTC or shHuR for 5 days. Left panel, experimental outline and 
Western blot against HuR of 14 DIV rat cortical neurons transduced at 9 + 5 DIV with lentiviruses expressing shNTC or shHuR. Right panel, quantification of HuR 
Western blot signal, normalized to shNTC. Paired Student’s t-test. (B) Quantification of endogenous Rgs4 mRNA by qRT-PCR in 14 DIV cortical neurons transduced at 
9 + 5 DIV with lentiviruses expressing shNTC or shHuR, normalized to shNTC. Paired Student’s t-test. (C) Analysis of Rgs4 mRNA stability in 14 DIV cortical neurons 
transduced at 9 + 5 DIV with lentiviruses expressing shNTC or shHuR and treated with DMSO or ActD for 90 min at 14 DIV. Rgs4 mRNA levels were quantified by qRT- 
PCR and normalized to DMSO+shNTC. Paired Student’s t-test. (D) Quantification of Western blot HuR protein signal of rat cortical neurons at different DIV, normalized 
to 0 DIV. Unpaired Student’s t-test. (E) Quantification of Rgs4 mRNA qRT-PCR signal of rat hippocampal neurons at different DIV, normalized to 0 DIV. Unpaired 
Student’s t-test. (F) Representative phase-contrast and pseudo-coloured fluorescence images of cortical neurons at 9 DIV and 16 DIV showing Rgs4 FISH signal 
(magenta), staining for Map2 (green) and DAPI (blue). Scale bar 10 µm. All error bars are SEM from ≥ 3 independent biological replicates; asterisks represent p-values 
(*p < 0.05, **p < 0.01, ***p < 0.001). NTC non-targeting control; ActD Actinomycin D; DIV days in vitro; FISH fluorescent in situ hybridization.
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maturation, measured both by qRT-PCR in hippocampal 
neurons (Fig. 1E) and by fluorescent in situ hybridization 
(FISH) against Rgs4 in cortical neurons (Fig. 1F). Having 
established the relation between HuR and Rgs4 mRNA in 
the endogenous context, we set out to define a possible HuR 
binding site in Rgs4 mRNA.

HuR represses Rgs4 expression through the Rgs4 3ʹ-UTR

The coding sequence (CDS) of Rgs4 consists of 618 bases; the 
3ʹ-UTR of 2,200 bases. We used the AREsite2 web database 
(http://rna.tbi.univie.ac.at/) to predict possible binding sites of 
HuR (Fig. 2A). Next, we used a fluorescent reporter assay 
consisting of eGFP only (Ctrl), a fusion protein of eGFP and 
Rgs4 CDS and eGFP with the Rgs4 3ʹ-UTR to define whether 
HuR affects Rgs4 CDS reporter or 3ʹ-UTR reporter expression 
(Fig. 2B). As shown in Fig. 2C, overexpression of tagRFP-HuR 
led to a decrease of Rgs4 3ʹ-UTR reporter, but not Ctrl or CDS 
reporter expression. Consistent with this, knock-down of HuR 
by shRNAs resulted in the opposite effect, an increase of Rgs4 
3ʹ-UTR reporter, but not Ctrl or CDS reporter expression 
(Fig. 2D). Next, we defined the binding region of HuR in 
the Rgs4 3ʹ-UTR using either full-length (FL) or three differ-
ent fragments of the Rgs4 3ʹ-UTR in an in vitro RNA purifica-
tion experiment (trapping by RNA in vitro affinity 

purification; TRAP). For TRAP, the RNA of interest is tagged 
with two MS2 stem loops (2MS2) and transcribed in vitro. 
After immobilizing the RNA on amylose beads via a maltose 
binding and MS2 coat fusion protein (MBP-MCP), beads 
were incubated with lysate from adult rat cortices (Fig. 2E). 
Here, HuR protein was fourfold enriched when using the Rgs4 
3ʹ-UTR FL RNA, but not by either CDS or MS2 only control 
RNA (Fig. 2F,G). Furthermore, the enrichment of HuR seems 
to be due to the binding of HuR to fragment 3, since fragment 
1 and 2 did not show strong enrichment of HuR. Please note 
that binding of HuR was stronger in fragment 3 compared to 
Rgs4 FL 3ʹ-UTR. This could be due to altered RNA folding or 
binding of additional RBPs. The RBP Ago2 yielded a different 
enrichment pattern in the TRAP assay with prominent 
enrichment in fragment 2 (Fig. 2F). Quantification of the 
signals of neuron-specific Hu proteins HuB/C/D, which all 
run slower than HuR, showed slight enrichment (1.4-fold) 
with the Rgs4 FL 3ʹ-UTR as well as with fragment 1 and 3 
(Sup. Fig. 2A,B). Together, we were able to show that binding 
of HuR takes place in the 3ʹ-end of the Rgs4 3ʹ- 
UTR; however, several AREs were predicted to be present in 
this fragment. Therefore, we decided to analyse the 3ʹ-UTR 
for additional predictable features, e.g. miRNA binding sites 
and sequence conservation.

Figure 2. HuR represses Rgs4 expression by binding to the 3ʹ end of Rgs4 3ʹ-UTR. (A) Scheme of rnoRgs4 mRNA with predicted ARE sites and 3ʹ-UTR fragments used 
in (F,G). (B) Scheme of fluorescence reporter constructs used in (C,D). (C) Quantification of eGFP fluorescence intensity in the cell body of hippocampal neurons at 15 
DIV co-transfected at 14 + 1 DIV with eGFP-reporter and tagRFP or tagRFP-HuR. Ratio of eGFP-reporter intensity between tagRFP-HuR and tagRFP condition is shown. 
Paired Student’s t-test. (D) Quantification of eGFP fluorescence intensity in the cell body of hippocampal neurons at 15 DIV transduced at 10 + 5 DIV with lentiviruses 
expressing shNTC or shHuR and transfected at 14 + 1 DIV with eGFP-reporter. Ratio of eGFP-reporter intensity between shHuR and shNTC condition is shown. Paired 
Student’s t-test. (E) Scheme of in vitro RNA affinity purification (TRAP) of RBPs based on immobilization of in vitro transcribed RNA via 2xMS2 stem loops. (F,G) 
Representative Western blot against HuR and Ago2 (F) and quantification (G) of HuR enrichment from adult rat cortex lysate in TRAP using 2xMS2 only, 2xMS2+ Rgs4 
CDS, 2xMS2+ Rgs4 3ʹ-UTR and different 2xMS2+ Rgs4 3ʹ-UTR fragments as depicted in (A) as bait RNA, normalized to input. Paired Student’s t-test. All error bars are 
SEM from ≥ 3 independent biological replicates; asterisks represent p-values (*p < 0.05). KD knock-down; NTC non-targeting control; DIV days in vitro; ARE AU-rich 
element.
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miR-26 represses Rgs4 by interacting with a conserved 
region

In order to narrow down the HuR binding site(s), we analysed 
the sequence conservation in the Rgs4 3ʹ-UTR of over 46 differ-
ent mammalian genomes. As shown in Fig. 3A, a highly con-
served region in the third fragment was standing out, containing 
two conserved possible AREs, ARE6 (UAUUUAU) and 7 
(UUUUA). Mainly positive effects of HuR on target expression 
levels have been previously reported [29]. In an interdependent 
mechanism together with the miRNA let-7, Gorospe et al. 
reported HuR to have a repressive effect on c-myc [22]. We 
asked whether the repressive effect of HuR on Rgs4 mRNA was 
caused by other factors that associated with Rgs4 mRNA. Using 

the prediction software TargetScanMouse7.2, we analysed Rgs4 
for predicted miRNA binding sites. Interestingly, the webserver 
found a conserved miR-26 8mer binding site within the con-
served region of the Rgs4 3ʹ-UTR, in close proximity to the 
predicted ARE6 (Fig. 3B). miR-26 is a family of neuronal- 
enriched miRNAs [30,31], consisting of miR-26a and miR-26b, 
both shown to be important for neurogenesis [31], maintenance 
of long-term potentiation and dendritic spine enlargement [32]. 
As shown in Fig. 3C, miR-26a/b exhibit extended predicted 
binding to Rgs4 mRNA in extension to the 8mer binding site, 
proposedly further strengthening the interaction. Introduction 
of two point mutations in the miR-26 binding site in Rgs4 
reduces complementarity and should abrogate miR-26 binding 
(Fig. 3C). We used a fluorescent reporter assay with tagRFP only 
(Ctrl), tagRFP fused to Rgs4 3ʹ-UTR, or the Rgs4 3ʹ-UTR miR-26 
mutant to investigate the effect of miR-26 on Rgs4 expression. 
Coexpression of a miR-26a/b sponge construct fused to eGFP 
depleted the levels of free miR-26. As depicted in Fig. 3D, 
depletion of miR-26 led to an upregulation of the WT Rgs4 3ʹ- 
UTR reporter, but not the miR-26 mutant reporter, suggesting 
that miR-26 negatively regulates Rgs4 expression by binding to 
the conserved region. We next tested whether this effect could 
also be reproduced for endogenous Rgs4. Indeed, overexpression 
of miR-26a in cortical neurons led to a reduction of Rgs4 mRNA 
levels, as measured by qRT-PCR (Fig. 3E). Furthermore, knock- 
down of Ago2, an essential RISC component, resulted in Rgs4 
mRNA upregulation (Fig. 3F). Overexpression of miR-26a or 
knock-down of Ago2 did not alter HuR mRNA levels (Sup. Fig. 
3A,B). In sum, miR-26 is repressing Rgs4 expression through 
interaction with a binding site within a conserved region of the 
Rgs4 3ʹ-UTR. This opens the question whether HuR and miR-26 
synergistically act in reducing Rgs4 mRNA levels.

HuR and miR-26 show an interdependent mechanism of 
Rgs4 regulation

To explore the working model that HuR destabilized Rgs4 
mRNA by an interdependent effect with miR-26, we exam-
ined the conserved region for predicted secondary structures. 
Using thermodynamic structure prediction (RNAfold), we 
found the HuR and the miR-26 binding site to be in close 
proximity within the same RNA hairpin structure (Fig. 4A, 
Sup. Fig. 4A). We hypothesize a model where both miR-26 
and HuR association with the RNA are needed to open the 
hairpin structure and enable sufficient repression of Rgs4. 
Using the TRAP assay, we evaluated the binding of HuR to 
WT, ARE6 mutant or miR-26 mutant Rgs4 3ʹ-UTR RNAs. 
Neither of the mutants led to major changes of the predicted 
hairpin structures or significantly changed the minimal free 
energy of miR-26 binding to Rgs4 mRNA (Fig. 4A, Sup. Fig. 
4A,B). As shown in Fig. 4B, both mutating the HuR binding 
site (ARE6 mut) and the miR-26 binding site (miR-26 mut) 
significantly reduced HuR association with Rgs4 3ʹ-UTR sup-
porting our hypothesis of an interdependent mechanism. 
Binding of HuB/C/D to Rgs4 3ʹ-UTR was unaffected by the 
mutations (Sup. Fig. 4C). Finally, we aimed at validating our 
results from the in vitro binding assay in hippocampal neu-
rons using fluorescent reporter assays. Fig. 4D shows that 
overexpression of tagRFP-HuR led to a significant reduction 

Figure 3. miR-26 represses Rgs4 expression by binding to a conserved region. 
(A) Scheme of Rgs4 3ʹ-UTR with predicted AREs and miR-26 binding site (orange) 
and 46x mammalian sequence conservation of the Rgs4 3ʹ-UTR. (B) Comparison 
of rat, mouse and human RNA sequence of the conserved region depicted in (A). 
Predicted AREs are underlined, conserved ARE6 is highlighted in blue and miR- 
26a/b binding site is highlighted in orange. (C) Complementarity of rno-miR-26a 
and rno-miR-26b to WT rnoRgs4 and miR-26 binding site mutant of Rgs4 mRNA. 
(D) Quantification of tagRFP fluorescence intensity in the cell body of hippo-
campal neurons at 15 DIV transduced at 11 + 4 DIV with lentiviruses expressing 
eGFP or eGFP-miR-26 sponge (16x bulged miR-26a/b binding sites) and trans-
fected at 14 + 1 DIV with tagRFP-reporter. Ratio of tagRFP-reporter intensity 
between eGFP-miR-26 sponge and eGFP condition is shown. Paired Student’s 
t-test. (E) Quantification of endogenous Rgs4 mRNA by qRT-PCR in 14 DIV 
cortical neurons transduced at 11 + 3 DIV with lentiviruses expressing miR-scr 
or miR-26a, normalized to miR-scr. Paired Student’s t-test. (F) Quantification of 
endogenous Rgs4 (left) and Ago2 (right) mRNA by qRT-PCR in 14 DIV cortical 
neurons transduced at 9 + 5 DIV with lentiviruses expressing shNTC or shAgo2, 
normalized to shNTC. Paired Student’s t-test. All error bars are SEM from ≥ 3 
independent biological replicates; asterisks represent p-values (*p < 0.05). KD 
knock-down; WT wild type; NTC non-targeting control; scr scrambled; ARE AU- 
rich element.
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of WT Rgs4 3ʹ-UTR eGFP-reporter expression, but not of 
Rgs4 3ʹ-UTR eGFP-reporter containing either HuR or miR- 
26 binding site mutants. Complementing this experiment, we 
used the tagRFP-reporter assay to test for the effect of miR- 
26a overexpression on WT, ARE6 and miR-26 Rgs4 3ʹ-UTR 
tagRFP-reporter expression. Overexpression of miR-26a 
resulted in significant downregulation of WT Rgs4 3ʹ-UTR 
tagRFP-reporter expression, but not of the Rgs4 3ʹ-UTR 
tagRFP-reporter containing the HuR or miR-26 binding site 
mutants (Fig. 4E).

HuR is necessary for the repressive effect of miR-26a on 
Rgs4 mRNA

To substantiate the observed interdependent mechanism from 
the mutation studies, we tested whether miR-26a represses 
Rgs4 3ʹ-UTR reporter, when HuR protein has been depleted. 
While sole overexpression of miR-26a led to reduction of 
eGFP-Rgs4 3ʹ-UTR reporter expression, the effect was 

abolished when HuR levels were depleted (Fig. 4F). 
Furthermore, we investigated, whether the effects of HuR 
and miR-26a are additive using the eGFP reporter assay. In 
this case overexpression of both HuR and miR-26a would 
result in stronger repression of Rgs4 3ʹ-UTR reporter expres-
sion, compared to overexpression of either HuR or miR-26a. 
However, we did not detect further repression, when both 
HuR and miR-26a were overexpressed (Sup. Fig. 4D). 
Together, our results from the mutation and the HuR/miR- 
26a combination studies substantiate the model of an inter-
dependent mechanism of HuR and miR-26 in repressing Rgs4 
mRNA expression.

Mutation of miR-26 and HuR binding sites increases 
dendritic Rgs4 mRNA levels

We finally aimed to investigate whether miR-26 and HuR 
could affect dendritic Rgs4 mRNA levels. For this, we used 
the MS2 reporter system, previously applied to study live 

Figure 4. HuR and miR-26 synergistically repress Rgs4 mRNA. (A) Predicted in silico folding of Rgs4 conserved region (upper panel). The miR-26 binding site (orange) 
and the ARE6 (blue) are highlighted, with mutated sites marked by black arrows. (B,C) Representative Western blot against HuR and Ago2 (B) and quantification (C) 
of HuR enrichment from adult rat cortex lysate in in vitro RNA affinity purification using 2xMS2 only, 2xMS2+ Rgs4 3ʹ-UTR WT, 2xMS2+ Rgs4 3ʹ-UTR ARE6 mut and 
2xMS2+ Rgs4 3ʹ-UTR miR-26 mut as bait RNA, normalized to input. Paired Student’s t-test. (D) Quantification of eGFP fluorescence intensity in the cell body of 
hippocampal neurons at 15 DIV co-transfected at 14 + 1 DIV with eGFP-reporter and tagRFP or tagRFP-HuR. Ratio of eGFP-reporter intensity between tagRFP-HuR 
and tagRFP condition is shown. Paired Student’s t-test. (E) Quantification of tagRFP fluorescence intensity in the cell body of hippocampal neurons at 15 DIV co- 
transfected at 14 + 1 DIV with tagRFP-reporter and miR-scr or miR-26a. Ratio of tagRFP-reporter intensity between miR-26a and miR-scr condition is shown. Paired 
Student’s t-test. (F) Quantification of eGFP fluorescence intensity in the cell body of hippocampal neurons at 15 DIV transduced at 10 + 5 DIV with lentiviruses 
expressing shNTC or shHuR and co-transfected at 14 + 1 DIV with eGFP-reporter and miR-scr or miR-26a. Ratio of eGFP-reporter intensity between Rgs4 3ʹUTR WT 
and Ctrl reporter is shown. Paired Student’s t-test. All error bars are SEM from ≥ 3 independent biological replicates; asterisks represent p-values (*p < 0.05, 
**p < 0.01). ARE AU-rich element; WT wild type; KD knock-down; Scr scrambled.
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dynamics of Rgs4 3ʹ-UTR [14]. The system is based on 
a reporter containing a LacZ open reading frame and 
a repetition of 128xMS2 stem loops in front of a 3ʹ-UTR of 
interest. Hippocampal neurons were co-transfected with the 
128xMS2 reporter and tandem MS2 coat protein-GFP 

(tdMCP-GFP) (Fig. 5A). Binding of the tdMCP-GFP to the 
MS2 stem loops in the 128xMS2 reporter visualized the RNA 
reporter and allowed the quantification of dendritic MS2 
particles (Fig. 5B). We measured the distance of dendritic 
MS2 particles from the cell body and counted the total 

Figure 5. Mutation of miR-26 and HuR binding sites increases dendritic Rgs4 RNA levels. (A) Phase contrast and 128xMS2 GFP reporter fluorescence in a rat 
hippocampal neuron at 14 + 1 DIV expressing both tdMCP-GFP and 128xMS2+ Rgs4 3ʹ-UTR reporter RNA (left panel). Scheme of tdMCP-GFP bound to MS2 
+ Rgs4 reporter RNA (right panel). (B) Deconvolved and straightened images of dendrites expressing both tdMCP-GFP and 128xMS2+ Rgs4 3ʹ-UTR WT, ARE6 mut or 
miR-26 mut reporter mRNA. Straightened images are cropped to 80 µm for better particle visibility. (C) Histogram displaying MS2 particle distance to cell body and 
total number of MS2 particles from hippocampal neurons transfected with tdMCP-GFP and 128xMS2+ Ctrl, 128xMS2+ Rgs4 3ʹ-UTR WT, ARE6 mut or miR-26 mut 
reporter mRNA at 14 + 1 DIV. Binning on x-axis is 5 µm. (D) Boxplot of the average number of MS2 particles per dendrite. Unpaired Student’s t-test. (E) Boxplot of the 
average distance of MS2 particles per dendrite. Unpaired Student’s t-test. Data are obtained from 3 independent biological replicates; Dendrites: Ctrl n = 54, WT 
n = 73, ARE6 mut n = 71, miR-26 mut n = 72; scale bar 10 µm. ARE AU-rich element; WT wild type; tdMCP-GFP tandem MS2 coat protein fused to GFP; DIV days 
in vitro.
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number of dendritic MS2 particles for 128xMS2 reporter with 
either no 3ʹ-UTR (Ctrl), WT, ARE6 mutant and miR-26 
mutant Rgs4 3ʹ-UTR (Fig. 5C). As visualized in Fig. 5D, the 
average particle number per dendrite was significantly higher 
for the Rgs4 3ʹ-UTR mutant reporters compared to WT. 
However, the distribution of MS2 particles along the dendrite 
was not affected by mutating either the ARE6 or the miR-26 
binding site (Fig. 5E, Sup. Fig. 5A). This data on Rsg4 3ʹ-UTR 
RNA reporter expression and localization suggests that HuR 
and miR-26 destabilize dendritic Rgs4 mRNA, while not 
directly affecting Rgs4 localization. This was important, as 
HuR is predominantly located in the nucleus under basal 
conditions, with scarce localization to dendrites [33,34].

In conclusion, our data suggest that miR-26/RISC and 
HuR co-regulate Rgs4 3ʹ-UTR, resulting in destabilization of 
the mRNA. This is consistent with our working model of 
a dynamic RNA conformation, where binding of miR-26/ 
RISC and HuR acts as a switch in opening an RNA hairpin 
structure. This enables a strong repression of Rgs4 mRNA by 
downstream effectors. In mature neurons, however, the 
absence of HuR together with the binding of additional 
RBPs could favour the hairpin structure (‘closed conforma-
tion’), thereby preventing miR-26/RISC binding. This, in turn, 
results in increased mRNA levels of Rgs4, coding for a protein 
that plays a critical role in the regulation of synaptic plasticity.

Discussion

In our study, we provide strong experimental evidence that miR- 
26 and HuR destabilize Rgs4 mRNA in a synergistic manner. In 
contrast to previous studies in smooth muscle cells, where Rgs4 
mRNA was stabilized by HuR [7] and Rgs4 overexpression res-
cued the phenotype observed in HuR knock-down cells [21], we 
find the opposite effect of HuR on Rgs4 mRNA in neurons (Fig. 
1). Furthermore, we identified the ARE bound by HuR to be 
within a conserved region in the 3ʹ end of the Rgs4 3ʹ-UTR 
(Figs. 2 and 4). Analysis of the conserved region revealed 

a functional miR-26a/b binding site in close proximity to the 
ARE (Fig. 3). So far, HuR mainly exerts a stabilizing effect on 
target mRNAs, often by competing with miRNA binding [23,25]. 
There is, however, also evidence that HuR can destabilize mRNAs 
by cohesive action with miRNAs [24]. Based on the data presented 
in Fig. 4, we conclude that there is indeed evidence for synergism 
of miR-26 and HuR in repressing Rgs4 mRNA. Mutation of both 
the miR-26 binding site and the ARE results in reduced binding of 
HuR in the TRAP assay. Further, we show that the miR-26 
binding site mutant abolishes HuR and the ARE mutant abolishes 
miR-26 repressive effect on the Rgs4 3ʹ-UTR reporter expression. 
Finally, in an experiment independent of mutations in the 3ʹ-UTR 
sequence, we show that HuR is necessary for miR-26 to repress the 
Rgs4 3ʹ-UTR reporter (Fig. 4F). Our data support a model, where 
both miR-26 and HuR can bind to the Rgs4 3ʹ-UTR in order to 
facilitate repression of Rgs4 mRNA. We, therefore, hypothesize 
that reduced HuR levels in mature neurons (Fig. 1) lead to dereg-
ulation of Rgs4 mRNA by both miR-26 and HuR. This would 
result in increased Rgs4 expression, important for proper neuro-
nal function [5]. However, we cannot (yet) reliably define an order 
of events. In our presented model, the synergistic repressive effect 
of HuR and miR-26 on Rgs4 mRNA arises from binding to an 
RNA sequence predicted to form a hairpin structure (Fig. 6). This 
assumption is based on RNA folding prediction, as we cannot yet 
provide experimental support for the predicted secondary RNA 
structure. Extensive future work is therefore needed to experi-
mentally validate the change in RNA structure. An elegant study 
by Kim et al. (2009) illustrated a similar interaction mode of HuR 
and let-7 loaded Ago/RISC on c-myc mRNA [22].

Further support of our model comes from a genome-wide 
study by Li et al. (2018), which recently showed both antag-
onistic and agonistic interaction modes between HuR and the 
miRNA machinery [24]. They used high throughput sequen-
cing of RNA after crosslinking and immunoprecipitation 
(CLIP) to map HuR or Ago2 binding sites and studied the 
effect of HuR knock-down on mRNA occupancy of Ago2 in 
human embryonic kidney cells. In addition to future studies 
addressing the combinatorial function of different RBPs as 
well as the miRNA/RISC machinery in brain through CLIP, it 
will be intriguing to get insight into the RBP-dependent 
dynamics of RNA structures in living cells [35]. To our 
current knowledge, the regulation of the AU-rich transcrip-
tome in the brain has been studied solely through the neuron- 
specific Hu proteins HuB/C/D [36–39]. Only recently, the 
neuronal function of the ubiquitously expressed HuR has 
been explored [17–19,40,41]. It will, therefore, be interesting 
to see in the future, whether the data on post-transcriptional 
regulation by HuR from non-neuronal cells and tissues hold 
true for the complex nervous system. As our data show, there 
is no uniform mechanism of mRNA regulation by HuR, high-
lighting the importance of mechanistic studies on the single 
target level.

Materials and methods

Plasmids

The expression plasmid for MBP-MS2BP (Addgene 11,246) 
[42,43] and the pUBC-NLS-ha-tdMCP-GFP [14] and pRSV- 

Figure 6. Proposed model of synergistic action of HuR and miR-26/RISC in 
neurons. Both, miR-26/RISC and HuR, are needed to open up the hairpin 
structure in Rgs4 3ʹ-UTR and enable stable binding of both factors. This results 
in destabilization of Rgs4 mRNA. The decrease of HuR protein with neuronal 
maturation or binding of additional RBPs to the mRNA favours the hairpin 
structure and miR-26/RISC can no longer bind. This results in increased mRNA 
levels of Rgs4, coding for a protein important for regulation of neuronal activity. 
See text for further details.
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LacZ-128xMS2 [14] plasmids have been described. Generation of 
pRSV-LacZ-128xMS2, pCMV-tagRFP-STOP (ptagRFP-C, 
Evrogen) or pCMV-eGFP-STOP [44] (pEGFP-C1, Clontech) 
reporter plasmids was performed by insertion of the CDS (posi-
tion 110–727 nt) or 3ʹ-UTR (position 728–2919 nt) of rat Rgs4 
mRNA (NM_017214.1) in between the stop codon of the respec-
tive open reading frame of Lacz, tagRFP or eGFP and the poly 
A signal. Fragments of the Rgs4 3ʹ-UTR were cloned by insertion 
of fragments of rat Rgs4 mRNA (NM_017214.1), corresponding 
to position 728–1602 nt (F1), 1698–2153 nt (F2), 2152–2919 nt 
(F3), into pCMV-eGFP-STOP reporter as described above. Site- 
directed mutagenesis was performed on pRSV-LacZ-128xMS2- 
Rgs4 3ʹ-UTR, pCMV-tagRFP-Rgs4 3ʹ-UTR and pCMV-eGFP- 
Rgs4 3ʹ-UTR reporter plasmids to generate Rgs4 3ʹ-UTR ARE6 
and Rgs4 3ʹ-UTR miR-26 mutant reporter plasmids using the 
following primers (5′–3′): Rgs4_ARE6_F: ctcatttgtgttatGtat 
gttgttttg; Rgs4_ARE6_R: caaaacaacataCataacacaa-atgag; 
Rgs4_miR-26_F: cacgtgaaatacttACaaatttctc; Rgs4_miR-26_R: 
gagaaatttGTa-agtatttcacgtg. The in vitro RNA transcription plas-
mid pcDNA3-T7-Ctrl-2xMS2 has been previously described [43]. 
The plasmids pcDNA3-T7-2xMS2 containing Rgs4 CDS, 3ʹ-UTR, 
3ʹ-UTR fragments and mutants were generated by subcloning the 
insert from respective above mentioned pCMV-eGFP-STOP 
reporter plasmids in between the T7-promotor and the 2xMS2 
sequence by EcoRV/BamHI. pCMV-tagRFP-HuR was generated 
by inserting the coding sequence of HuR, corresponding to posi-
tion 153–1133 nt of rat HuR mRNA (NM_001108848), into 
ptagRFP-C (evrogen). The plasmid pSup-eGFP-H1-pri-miR-26a 
used in the tagRFP-assay was generated by PCR-amplification and 
cloning of the primary rno-miR-26a sequence after the H1 pro-
motor into the pSuperior.neo+GFP (oligo engine) using primer 
annealing 60 nt up- and downstream of the genomic locus of the 
rno-miR-26a stem-loop. Generation of pSup-eGFP-H1-miR-scr 
was performed by annealing and direct ligation of the following 
phosphorylated oligos after the H1 promotor into pSuperior.neo 
+GFP: miR-scr_F: gatccccgtgtaacacgtctatacgcccattcaagagatgggcg-
tatagacgtgttacacttttta; miR-scr_R: ag-cttaaaaagtgtaacacgtctat 
acgcccatctcttgaatgggcgtatagacgtgttacacggg. For combining HuR 
and miR-26a overexpression in eGFP-reporter assays, the follow-
ing expression plasmids were generated: pSup-tagBFP-H1-miR- 
scr and pSup-tagBFP-H1-pri-miR-26a, by exchanging the eGFP 
open reading frame by tagBFP in the above-described pSup-eGFP 
plasmids. For generation of the lentiviral plasmids pFu3a-H1-pri- 
miR-26a-pCamK2a-tagRFP and pFu3a-H1-miR-scr-pCamK2a- 
tagRFP, the H1-shNTC sequence of the previously described 
pFu3a-H1-shNTC-pCamK2a-tagRFP [14] was exchanged by the 
H1-pri-miR-26a or H1-miR-scr sequence from above described 
pSup-eGFP-H1. Generation of the lentiviral plasmids pFu3a- 
pCamK2a-eGFP-STOP and pFu3a-pCamK2a-eGFP-STOP 
-16xmiR-26sponge was performed by first exchanging the H1- 
shNTC-pCamK2a-tagRFP by pCamK2a-eGFP-STOP. For 
pFu3a-pCamK2a-eGFP-STOP-16xmiR-26sponge, the following 
phosphorylated oligos were annealed, ligated and separated by 
2% agarose gel electrophoresis (5′–3′): miR26a_sponge_F: 
ccggcagcctatcctCCttacttgaac; miR26a_sponge_R: ccgggttcaag 
taaGGaggataggctg; 5ʹlinker_sponge_F: agat-ctcgagctcaagcttcg 
aattcc; 5ʹlinker_sponge_R: ccggggaattcgaagcttgagctcgagatct, 
3ʹlinker_sponge_F: ccggcgtcgacggtaccgcgggcccgggatcc; 3ʹlinker_ 
sponge_R: ggatcc-cgggcccgcggtaccgtcgacg. A band of ~500 bp 

was excised, gel purified and pasted into the 3ʹ-UTR of eGFP 
into pFu3a-pCamK2a-eGFP-STOP via BamH/XhoI. To generate 
the lentiviral shRNA plasmids pFu3a-H1-shHuR-pCamK2a- 
tagRFP, pFu3a-H1-shAgo2-pCamK2a-tagRFP and pFu3a-H1- 
shPum2-pCamK2a-tagRFP, the H1-shNTC sequence of pFu3a- 
H1-shNTC-pCamK2a-tagRFP was exchanged by H1-shHuR, H1- 
shAgo2 or H1-shPum2 after subcloning the shRNAs into 
pSuperior.neo+GFP. The oligo sequences for shRNA generation 
were (5′–3′): shHuR_F: gatccccgaagaggcaatta-ccagtttcattcaagagat-
gaaactggtaattgcctcttctttttc; shHuR_R: tcgagaaaaagaagaggcaatta- 
ccagtttcatctcttgaatgaaactggtaattgcctcttcggg; shAgo2_F: gatcccctgt 
tcgtgaatttgggatcat-tgtacaatgatcccaaattcacgaacatttttc; shAgo2_R: tc 
gagaaaaatgttcgtgaatttgggatcattgtac-aatgatcccaaattcacgaacaggg; sh 
Pum2_F: gatccccaccaagttggtctggattcttcaagagagaatc-cagaccaacttggt 
tttttc; shPum2_R: gaaaaaaccaagttggtctggattctctcttgaagaatccagac-
caa-cttggtggggatc. The lentiviral packaging plasmids, psPAX2 
and pcDNA3.1-VSV-G, have previously been described [12].

Lentivirus production

Lentiviral particles for shNTC, shHuR, shAgo2, miR-scr, miR- 
26a, eGFP-Stop and eGFP-miR-26-sponge were generated 
from HEK-293 T cells co-transfected with psPAX2, 
pcDNA3.1-VSV-G and the respective pFu3a plasmids using 
calcium phosphate coprecipitation. After 48 h virus produc-
tion, supernatants were filtered (0.45 µm PVDF Millex-HV; 
Millipore), concentrated by ultracentrifugation (65,000xg, 
140 min, SW 32 Ti rotor; Beckman Coulter) and resuspended 
in Opti-MEM™ (Life Technologies) [12].

Neuronal cell culture, treatment, transduction and 
transfection

All animals in this study were used according to the German 
Welfare for Experimental Animals (LMU Munich, Regierung 
von Oberbayern). Rat hippocampal neuron cell cultures from 
embryos at day 17 (E17) of timed pregnant Sprague-Dawley 
rats (Charles River Laboratories) were generated as described 
previously [45]. Briefly, E17 hippocampi were dissected, tryp-
sinized and cells dissociated and plated on poly-L-lysine- 
coated coverslips and cultured in NMEM+B27 medium 
(Invitrogen) with 5% CO2 at 37°C. For cortical cultures, E17 
cortices were trypsinized and dissociated, the cell suspension 
sequentially filtered through 100-, 70- and 40-μm cell strai-
ners and then plated at a density of 100,000 cells/cm2 on poly- 
L-lysine coated 60 mm dishes. For protein and RNA analysis, 
cortical neurons were transduced with lentiviral suspension at 
9 days in vitro (DIV) and lysed at 14 DIV. Analysis of RNA 
stability was performed by incubation of lentivirus-treated 
cortical neurons at 14 DIV with 2 µM Actinomycin 
D (ActD; Sigma) or an equivalent amount of DMSO in 
NMEM+B27 for 90 min. Hippocampal neurons were trans-
duced with lentiviral suspension at 10–11 DIV, followed by 
transient transfection by calcium phosphate coprecipitation 
[46] at 14 DIV and fixation with 4% paraformaldehyde 
(PFA) at 15 DIV. Transient co-transfection of hippocampal 
neurons by calcium phosphate precipitation was performed at 
14 DIV, followed by fixation with 4% PFA at 15 DIV.
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Fluorescent reporter assays

For fluorescent reporter assays with mere overexpression of miR- 
26a, HuR or both, hippocampal neurons grown on coverslips were 
transiently co-transfected at 14 DIV with the respective overexpres-
sion plasmids and the fluorescent reporter constructs. Neurons 
were fixed with 4% PFA 24 h post-transfection at 15 DIV. For 
fluorescent reporter assays with knock-down of HuR or depletion 
of miR-26, hippocampal neurons grown on coverslips were trans-
duced with lentiviruses at 10 DIV for HuR knock-down and at 11 
DIV for miR-26a depletion. At 14 DIV, neurons were transfected 
with the fluorescent reporter constructs (and miR-26a overexpres-
sion constructs to combine shHuR and miR-26a overexpression) 
followed by fixation with 4% PFA 24 h post-transfection at 15 DIV. 
Coverslips were mounted on microscope slides with Fluoromount™ 
Aqueous Mounting Medium (Sigma), imaged and analysed as 
described in the microscopy and image analysis section.

Protein purification

The MBP-MCP fusion protein was affinity purified as 
described [42] using amylose resin (New England Biolabs) 
in MBP-buffer (20 mM Tris at pH 7.2, 50 mM NaCl; 1 mM 
EDTA) and step elution with 10 mM maltose. Further pur-
ification was performed by linear NaCl elution from a heparin 
column using an Äkta purifier (GE Healthcare). Eluted frac-
tions were combined, concentrated and washed with binding 
buffer (BB: 20 mM Tris, pH 7.5, 150 mM NaCl, 1.5 mM 
MgCl2, 8.7% glycerol and 0.05% NP40) using Amicon Ultra 
centrifugal filters (Merck).

In vitro RNA affinity purification

In vitro RNA affinity purification was performed as previously 
described [43] with minor variations. Briefly, RNA containing 
2xSM2 stem loops was in vitro transcribed by run-off transcription 
from linearized (XhoI) pcDNA3.1-T7-MS2 plasmids using the T7 
RiboMAX Express Large-Scale RNA Production System (Promega). 
Synthesized RNAs were purified using NucAway spin columns 
(Invitrogen). Twenty microlitres of amylose resin (New England 
Biolabs) was washed four times with BB and incubated with 100 
pmol recombinant MBP-MCP in 1 ml BB for 30 min. The resin 
was blocked with 0.5 mg/ml bovine serum albumin in 1 ml BB for 
30 min and washed three times with binding buffer (BB). Twenty 
picomoles in vitro transcribed bait RNA was heated to 65°C for 
10 min, let cool to room temperature over 10 min and immobilized 
on the resin 1 ml BB + 11 mg/mL heparin (Sigma) for 1 h. One adult 
rat cortex was lysed in 1 ml BB + cOmplete Protease Inhibitor Cocktail 
Tablets (Roche) using bead homogenization on a FastPrep-24 instru-
ment (MP Biomedicals) with lysing matrix D (MP Biomedicals). The 
lysate was diluted to 1:20 with BB + cOmplete Protease Inhibitor and 
cleared twice by centrifugation at 15.600xg and 4°C for 10 min. The 
RNA loaded resin was washed once with BB + 11 mg/ml heparin, 
before the resin was incubated for 30 min with 500 µl lysate and 500 µl 
BB + 22 mg/ml heparin, 2 mM dithiothreitol and 40 U/ml murine 
RNase Inhibitor (New England Biolabs). The resin was washed four 
times with BB + 11 mg/ml heparin. Proteins were eluted by incubation 
with 15 µl 3x SDS sample buffer at 65°C for 12 min. All steps, except 

lysis, RNA folding and elution, were conducted at room temperature 
and constant agitation.

Western blotting

Neurons were washed twice with warm Hanks′ Balanced Salt 
Solution (HBSS, Gibco) and then lysed in 3x SDS sample buffer. 
Samples were treated with 50 U Benzonase Nuclease (Merck) for 
10 min and heated to 65°C for 12 min. Proteins of equivalent 
number of neurons were resolved on 10% SDS-PAGE and sub-
jected to immunoblotting with mouse anti-HuR (3A2) (1:500, sc- 
5261, Santa Cruz), mouse anti-Ago2 (2E12-1 C9) (1:500, 
WH0027161M1, Sigma) goat anti-Vinculin (1:500, sc-7649, Santa 
Cruz). After incubation with IRDye labelled secondary donkey 
anti-mouse (IRDye 800CW) and donkey anti-goat (IRDye 
680RD) (both 1:15,000, Li-Cor), membranes were imaged on an 
Odyssey CLx Imaging System (Li-Cor) and quantified using Image 
Studio Lite software (Li-Cor).

RNA extraction, cDNA synthesis and qRT-PCR

Neurons were washed twice with warm HBSS (Gibco), before 
total RNA from cortical neurons was extracted using TRIzol 
(Invitrogen) and total RNA from hippocampal neurons grown 
on coverslips was extracted using RNeasy Mini Kit (Qiagen). 
cDNA was generated from 1 µg of DNase treated total RNA, 
using Superscript III reverse transcriptase (Invitrogen) 
according to the manufacturer’s instructions with a minor 
variation. A mixture of 1.5 µM random primer mix (New 
England Biolabs) and 2.5 μM (dT)20 was used during cDNA 
synthesis. Quantitative real-time PCR (qRT-PCR) was per-
formed in duplicates from a 1:50 dilution of the stock 
cDNA using a home-made SYBR Green Master Mix [44], 
with the LightCycler 96 System (Roche). Only primers with 
an optimized efficiency of 95–105% were used. The 2−ΔΔCt 

method implemented in the LightCycler Software (Roche) was 
used to calculate differences in RNA levels relative to pepti-
dylprolyl isomerase A (PPIA) mRNA. The sequences of the 
qRT-PCR primers were (5′–3′): Ppia_F: gtcaaccccaccgtgttctt; 
Ppia_R: ctgctgtctttggaactttg; Rgs4_F: agtcccaaggccaagaagat; 
Rgs4_R: aacatgttccggcttgtctc; HuR_F: tcggtttgggcgaatcatca; 
HuR_R: ctagcaggcgagtggtacag; Ago2_F: acaagctggttttgcgctac; 
Ago2_R: ttgctgatctcct-cttgccg; Pum2_F: atgggagcagctctttgact; 
Pum2_R: gatgagccaaatccactgagag. Reverse transcription PCR 
(RT-PCR) was performed from a 1:50 dilution of the cDNA 
using Taq DNA Polymerase (NEB) according to the manu-
facturer instructions. The sequences of the RT-PCR primers 
were (5′–3′): Rgs4_RT_F: aatagaaaccaccgttgctc; Rgs4_RT_R: 
aacatgttccggcttgtctc.

FISH and immunostaining

For FISH and immunostaining neurons were washed twice 
with warm HBSS and then fixed with warm 4% PFA in HBSS 
for 10 min. The fluorescence in situ hybridization (FISH) 
against Rgs4 mRNA using Cy5-tyramide signal amplification 
was performed as described [12,47]. For immunostaining, 
fixed cells were washed with HBSS and permeabilized with 
0.1% Triton X-100 in DPBS for 5 min. The following primary 
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antibodies were used: mouse anti-HuR (3A2) (1:500, sc-5261, 
Santa Cruz Biotechnology) and mouse anti-Map2 (HM-2) 
(1:500, M4403, Sigma). The following secondary antibodies 
were used: donkey anti-mouse AF488- or AF647-conjugated 
antibodies (both Invitrogen). Coverslips were mounted on 
microscope slides with Prolong Diamond antifade mounting 
medium (Invitrogen).

Microscopy and image analysis

Images were acquired using Zeiss Zen software on a Zeiss 
Z1 Axio Observer microscope including a 63x Plan- 
Apochromat oil immersion objective (1.40 NA), 
a COLIBRI.2 LED and an HXP 120 C light source and 
the Axiocam 506 mono camera. Neurons were selected for 
cell morphology and viability as well as for expression of 
plasmids and images were taken of the dendritic plane. For 
FISH experiments, z-stacks of neurons were acquired (50 
images with 0.26 µm step-size), and a z-projection of the 
maximum intensity was performed in ImageJ. For cell 
body, fluorescence intensity quantification of eGFP- or 
tagRFP-reporter signal, the measure function in the Zeiss 
Zen software was used and a region of interest was drawn 
by hand based on the phase-contrast image. The mean 
intensity of each condition was calculated and normalized 
to the fluorescent reporter levels in the control conditions 
(miR-scr or tagRFP) with one exception. For experiments 
with overexpression or knock-down of both miR-26a and 
HuR, the mean intensity of the reporter fluorescence was 
normalized to the control eGFP reporter. For 128xMS2 
experiments, z-stacks of neurons were acquired (30 images 
with 0.26 µm step-size). Images were then deconvoluted 
using the Zeiss Zen software deconvolution module, with 
default settings of the constrained iterative method and 
analysed in ImageJ. A z-projection of the maximum inten-
sity was performed in ImageJ, and for 128xMS2 particle 
quantification, one dendrite per cell was selected and 
straightened using the segmented line tool with 40-pixel 
width. Particles were manually detected using the multi-
point tool and the ROI manager. The distance was mea-
sured by extracting the x position for each particle in µm. 
The average number and average distance of particles per 
dendrite were calculated. For all experiments, ≥20 dendrites 
or cell bodies per condition from at least three independent 
experiments were selected for quantification.

RNA structure and binding site predictions

The thermodynamic structure prediction of the conserved 
region corresponding to nucleotide position 1442 to 1631 of 
the 3ʹ-UTR sequence of rat Rgs4 mRNA (NM_017214.1) was 
predicted using the RNAfold server within the ViennaRNA web 
services (http://rna.tbi.univie.ac.at/) [48]. Standard options were 
used, but no GU pairs at the end of helices were allowed. 
Accessibility of the miRNA interaction site within Rgs4 3ʹ- 
UTR conserved region was predicted with IntaRNA web inter-
face within the Freiburg RNA tools (http://rna.informatik.uni- 
freiburg.de/IntaRNA) [49]. Prediction of ARE in the mouse 

Rgs4 3ʹ-UTR was performed using AREsite2 within the 
ViennaRNA web services (http://rna.tbi.univie.ac.at/) [50].

Statistical analysis

Microsoft Excel and R software were used for data processing, 
plotting and statistical analysis [51,52]. Figures represent 
mean ± standard error of the mean (SEM) of at least three 
independent biological replicates. Asterisks represent p-values 
obtained by one-way ANOVA and either paired or unpaired 
two-sided Student’s t-test using the mean values per experi-
ment (*p < 0.05, **p < 0.01, ***p < 0.001), as indicated.
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Supplementary Figure 1. Increase of Rgs4 mRNA upon HuR knock-down is HuR
specific. (A) Quantification of HuB/C/D western blot signal from 14 DIV cortical neurons
transduced at 9+5 DIV with lentiviruses expressing shNTC or shHuR, normalized to shNTC.
Paired Student’s t-test. (B) Quantification of endogenous HuR mRNA by qRT-PCR from
14 DIV cortical neurons transduced at 9+5 DIV with lentiviruses expressing shNTC or
shHuR, normalized to shNTC. Paired Student’s t-test. (C) Quantification of endogenous
Rgs4 mRNA by qRT-PCR from 14 DIV cortical neurons transduced at 9+5 DIV with
lentiviruses expressing shNTC or shPum2, normalized to shNTC. Paired Student’s t-test.
(D) Quantification of endogenous Pum2 mRNA by qRT-PCR from 14 DIV cortical neurons
transduced at 9+5 DIV with lentiviruses expressing shNTC or shPum2, normalized to
shNTC. Paired Student’s t-test. (E) Analysis of HuR mRNA stability in 14 DIV cortical
neurons transduced at 9+5 DIV with lentiviruses expressing shNTC or shHuR and treated
with DMSO or ActD for 90 min at 14 DIV. HuR mRNA levels were quantified by qRT-PCR
and normalized to DMSO+shNTC. Paired Student’s t-test. (F) RT-PCR with cDNA from
14 DIV rat cortical neurons transduced at 9+5 DIV with lentiviruses expressing shNTC or
shHuR using primers detecting both annotated mmuRgs4 splice isoforms (Ensemble,
mm10). All error bars are SEM from ≥ 3 independent biological replicates; asterisks
represent p-values (*p < 0.05). KD knock-down; NTC non-targeting control; ActD
Actinomycin D; bp base pair; DIV days in vitro.
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Supplementary Figure 3. HuR mRNA is not affected by miR-26 overexpression or
Ago2 KD. (A) qRT-PCR analysis of endogenous HuR mRNA in 14 DIV cortical neurons
transduced at 11+3 DIV with lentiviruses expressing miR-scr or miR-26a, normalized to
miR-scr. (B) qRT-PCR analysis of endogenous HuR mRNA in 14 DIV cortical neurons
transduced at 9+5 DIV with lentiviruses expressing shNTC or shAgo2, normalized to
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Supplementary Figure 4. HuB/C/D binding in Rgs4 in vitro RNA purification is not
affected by ARE6 or miR-26 mutations. (A) Minimal free energies of predicted folding
(RNAfold) of the conserved region of WT Rgs4-3’-UTR and ARE6 and miR-26 binding
site mutants. (B) Minimal free energy of bound miR-26a to Rgs4 conserved region
calculated by IntaRNA for the Rgs4 WT conserved region, and ARE6 and miR-26
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Student’s t-test. All error bars are SEM from ≥ 3 independent biological replicates;
asterisks represent p-values (*p < 0.05). WT wild type; ARE AU-rich element; DIV days
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Supplementary Figure 5. Mutation of miR-26 and HuR binding sites does not
change dendritic Rgs4 RNAdistribution. (A) Density plot of the total number of MS2
particles over distance from cell body from hippocampal neurons transfected with
tdMCP-GFP and 128xMS2+Ctrl, 128xMS2+Rgs4 3’-UTR WT, ARE6 mut or miR-26
mut reporter mRNA at 14+1 DIV. ARE AU-rich element; WT wild type; tdMCP-GFP
tandem MS2 coat protein fused to GFP; DIV days in vitro.
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Highlights 

• Ago1/2 and RISC effector proteins are upregulated upon Stau2 KD 

• Stau2 regulates Ago1/2 assembly with polysomes and P-bodies 

• Upregulation and relocalization of Ago1/2 correlates with global downregulation 

of translation 

• Stau2 and Ago1/2 counterbalance neuronal branching 
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Abstract (190 words) 

Mature microRNAs are bound by a member of the Argonaute (Ago1-4) protein family, 

forming the core of the RNA induced silencing complex (RISC). Association of RISC 

with target mRNA results in translational silencing or RNA degradation depending on 

the recruitment of downstream effector proteins. Ago proteins also exist in other types 

of ribonucleoprotein particles (RNPs). However, both the dynamics of RNP assembly 

and the underlying functional implications are largely unknown. Here, we are 

characterizing the role the double-stranded RNA-binding protein Staufen2, a potential 

Ago interactor, in Ago1/2-RNP formation. Stau2 depletion resulted in the upregulation 

of Ago1/2 and the RISC effector proteins Ddx6 and Dcp1a. This upregulation caused 

displacement of Ago2 from processing bodies, large RNPs implicated in RNA storage, 

and subsequent association with translating polysomes suggesting an impact of Stau2 

in Ago1/2-RNP assembly. Consequently, Stau2 deficiency yielded decreased global 

translation and increased neuronal branching. As these phenotypes can be rescued 

by Ago1/2 knockdown, we are proposing a working model in which both RNA binding 

proteins, Stau2 and Ago, critically depend on each other and play a key role in neuronal 

homeostasis with direct phenotypic consequences if brought out of balance.  
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Introduction 

 

Posttranscriptional gene regulation is an important cellular mechanism, which is 

mediated through a network of thousands of RNA-binding proteins (RBPs)1,2. It is the 

RNA that serves as platform for the combinatorial assembly of different RBPs. Their 

intertwined action actually determines the RNA fate1,3. The association of RNAs and 

proteins results in formation of RNA granules, called ribonucleoprotein particles 

(RNPs), that show large heterogeneity in composition, size and function4. Depending 

on the composition and condensation grade of RNA and protein components within 

the particles, the dynamic of RNP assembly differs5. While transport RNPs have been 

shown to contain only few transcripts and mediate RNA localization and local 

translation6–8, larger assemblies such as stress granules or cytosolic processing (P-) 

bodies are thought to rather serve in RNA and RBP storage4,9. 

Specific RNA structures rather than primary binding sequences are preferentially 

recognized by double-stranded RBPs (dsRBPs), thereby regulating RNA condensation 

grade and RNA accessibility for other RBPs. The neuron-enriched Staufen2 (Stau2) 

protein is an dsRBP that binds to the 3’-UTR of target RNAs10 and, as a part of 

transport RNPs, enables their directed dendritic transport11,12. Stau2 regulates activity-

dependent dendritic mRNA localization10 and is required for maintenance of general 

dendritic RNA content13. A large subset of Stau2 targets encodes for synaptic proteins, 

with a prominent enrichment of the G protein-coupled receptor pathway and dopamine 

and serotonin receptors14. Finally, in vivo and in vitro studies showed that defective or 

missing Stau2 might yield abnormal dendritic spines15 and deficits in long-term 

depression16. On the protein site, Stau2 has been shown to interact with several other 

RBPs, including some involved in RNA interference (RNAi) and translation repression, 

mainly in an RNA-dependent manner17. One core component of RNAi is the 

ubiquitously expressed RBP Argonaute (Ago1-4). During this process, small RNAs, 

such as microRNAs (miRNAs), are transcribed, processed and loaded onto Ago, 

where they serve as a guide strand to recognize a set of target mRNAs18. This RNA 

induced silencing complex (RISC) then leads to translation repression and/or RNA 

degradation of the target mRNA. On the mechanistic level, this is achieved by 

recruitment of downstream effector proteins such as GW182/Tnrc6, Ddx6 and CCR4-

NOT19. In addition, direct RNA degradation can be achieved by the intrinsic slicer 

activity of Ago220. The importance of Ago2 and RISC is highlighted by the findings that 
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loss of Ago2 in mice leads to embryonic lethality and Ago2 germline mutants to central 

nervous system abnormalities in humans20,21. Both Ago and RISC effector proteins are 

enriched in P-bodies9, but also exist in the cytosol. Certain members even localize to 

distal dendrites, where they exert neuronal activity dependent functions, such as Ago2, 

Dicer or TRBP22,23. 

Proteins involved in RNAi have been shown to exist in neuronal Stau2 RNPs17,24. Here, 

we aimed at unraveling the underlying network of Stau2 and RBPs involved in RNAi. 

The synergistic or antagonistic mechanisms between different RBPs have been 

extensively studied on the single target level25. Cellular RNP remodeling, however, 

upon alteration of single RBP concentrations has rarely been looked at so far. We 

provide strong experimental evidence for the neuronal dsRBP Stau2 to regulate RISC 

protein expression, while global miRNA abundance is unaffected by Stau2. Further, 

Stau2 deficiency resulted in altered Ago1/2 RNP assembly, shifting Ago1/2 association 

from P-bodies to actively translating polysomes. Finally, analysis of global translation, 

mRNA levels and branching complexity in neurons, led us to speculate that Ago and 

Stau2 need to be properly balanced in order to ensure neuronal function and 

homeostasis. Importantly, our biochemical and cell biological study reveals a 

compensatory loop between two key RBPs providing new functional and mechanistic 

insight into neuronal Ago RNP assembly and RNAi. 

 

Results 

 

Ago1/2 and RISC effector proteins are upregulated in Stau2 depleted neurons 

Recently, we have performed label-free quantitative mass spectrometry to 

characterize of proteome changes in primary cortical neurons upon depletion of Stau2 

(Schieweck et al., under revision). This allowed us to analyze in detail possible 

changes of RBP levels, which would give us first insights into the underlying dynamics 

of RNP remodeling2. Using gene ontology (GO) analysis, we found a statistically 

significant enrichment of miRNA associated biological processes in the proteome of 

neurons deficient for Stau2 (Fig. 1A). Rewardingly, proteins significantly 

downregulated in Stau2 depleted neurons showed an overrepresentation for actin, 

neuronal and transport related biological processes (EV Fig. 1A), which is in line with 

previous findings (Schieweck et al., under revision). The overrepresentation of miRNA 

related biological processes was caused by the concerted upregulation of the RISC 
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effector proteins Ddx6, Dcp1a and Edc4 and especially Ago1 and Ago2 protein upon 

Stau2 depletion (Fig. 1B). As implicated by the GO analysis, those significantly 

upregulated RBPs are functionally connected with each other (Fig. 1B). This 

upregulation seemed to be predominantly regulated at the protein level, as a significant 

increase of Ago1 and Ago2 mRNA levels was not detected in cortical neurons deficient 

for Stau2 (Fig. 1C). Next, we asked the question if Stau2 possibly altered expression 

or translation of the upregulated miRNA associated genes via direct RNA binding. We 

compared the list of upregulated proteins with published Stau2 target RNA datasets 

from RNA-immunprecipitation14 and individual-nucleotide resolution UV crosslinking 

and immunoprecipitation (iCLIP)10 experiments (both from embryonic neuronal tissue). 

Notably, the mRNAs coding for Ago1, Ago2, Ddx6, Dcp1a and Edc4 were not detected 

in those datasets, suggesting that Stau2 does not regulate their expression through 

direct RNA-binding (Fig. 1D). However, several lines of evidence suggest a possible 

link between Stau2 and the miRNA machinery: (i) Staufen has been linked to 

processing of small interfering RNAs in coleopteran insects26; (ii) nuclear export of the 

Stau2 62kDa isoform is dependent on the miRNA-export factor Exportin527; and (iii) 

mRNAs of miRNA processing factors Drosha and Dicer were upregulated in Stau2 

deficient neurons (EV Fig. 1C). 

To test whether Stau2 indeed regulates mature miRNA levels, we performed small 

RNA sequencing from Stau2 deficient cortical neurons (EV Fig. 1D). Of the total 

detected miRNA population, 43 miRNAs (8 %) were differentially regulated with a 

majority being downregulated (EV Fig. 1E,F). Interestingly, comparison of the mean 

expression levels of those significantly altered miRNAs revealed no total net change 

of miRNA abundance between Stau2 depleted and control neurons (EV Fig. 1G). This 

is in accordance with previous results from C. elegans deficient for Staufen28. Based 

on these results, we conclude that the upregulation of Ago1/2 and its effector proteins 

is not caused by changes in global miRNA abundance. 

Next, we investigated the coexistence of Stau2, Ago2 and Ddx6 in the same RNA 

granules, based on previous reports9,17,29. In HEK-293 cells, Stau2 as well as the 

upregulated miRNA associated proteins are found to be enriched in LSM14-positive 

P-bodies9 (Fig. 1E). Furthermore, we analyzed the association between endogenous 

Stau2, Ago and Ddx6 in proximal and distal dendritic segments (Fig. 1F). In the 

proximal segment, Ago2 showed strong colocalization with Ddx6 (90 ± 5 %) while 

colocalization with Stau2 was subtler (23 ± 5 %) (Fig. 1G). These results are 



4 The dsRBP Staufen2 governs RNP assembly of neuronal Argonaute … 37 

 

 Ehses et.al., Regulation of RISC by Stau2  

 6 

comparable to previous colocalization analysis and live cell imaging data showing 

transient interactions between Stau2 and Ago224. Interestingly, in distal dendrites this 

pattern changed and colocalization of Ago2 with Stau2 increased significantly to 45 ± 

6 %, while colocalization with Ddx6 remained high with a downwards trend (74 ± 4 %). 

This suggests that the interaction between Stau2 and Ago2 is localization-dependent 

and rather takes place in dendritic RNPs than in P-bodies in the soma. 

 

Stau2 selectively regulates Ago1/2 localization to P-bodies 

Next, we investigated whether Stau2 might affect Ago2 protein localization in primary 

hippocampal neurons. Since the interaction of Stau2 and Ago seemed to be 

localization-specific, we hypothesized that Stau2 deficiency could selectively affect 

Ago2 RNP assembly. Similar to endogenous Ago2, eGFP-Ago2 predominantly yielded 

a granular pattern and colocalized with endogenous Dcp1a and Ddx6 in control 

conditions (shNTC) in mature neurons (Fig. 2A, EV Fig. 2A). Upon depletion of Stau2 

by RNA interference using an shRNA against Stau2 (EV Fig. 2B)14, eGFP-Ago2 

disassembled from P-bodies and yielded a diffuse expression pattern. Quantification 

of the granule number per cell revealed a statistically significant shift from 46 ± 7 to 

10 ± 4 eGFP-Ago2 particles per cell (Fig. 2B,C). Importantly, localization of the P-body 

markers Dcp1a and Ddx6 was not affected by Stau2 depletion (Fig. 2D, EV Fig. 2C). 

Together, these data suggest that Stau2 selectively regulates the disassembly of Ago2 

RNPs, but not of other P-body enriched proteins. 

Quantification of the eGFP-Ago2 intensity in the cell body (Fig. 2E) revealed a similar 

increase as detected for endogenous Ago2 in the mass spectrometry and Western Blot 

analyses (Fig. 1A, EV Fig. 1B), thereby further substantiating the posttranscriptional 

upregulation of Ago2. Another Ago protein family member, Ago1, was equally 

upregulated in Stau2 depleted neurons (Fig. 1B). Therefore, we also characterized 

Ago1 localization in dependence of Stau2 and detected a similar localization pattern 

for eGFP-Ago1 as for eGFP-Ago2 (Fig. 2F,G). This indicates that the regulation is not 

Ago2 specific, but possibly common for all Ago proteins. In addition, we examined the 

Stau2 dependent localization of the Ago2 interacting protein and translational 

repressor Mov10 (EV Fig. 2D). Mov10 is an RBP that has been reported to colocalize 

with Stau217 and to regulate the association of Ago2 with miRNA binding sites30. We 

did not, however, detect any changes in eGFP-Mov10 particle numbers upon Stau2 

depletion. Together, these results tempted us to speculate that Stau2 regulates 
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specifically the assembly of Ago1/2 into miRNA containing RNPs, but not of other 

RISC-associated proteins. 

In order to ensure that the observed relocalization is not caused by mere 

overexpression of an exogenous Ago-dependent shRNA, we repeated the experiment 

by coexpressing shRNAs against the RBPs Pum2 and HuR, respectively (EV Fig. 2E-

H). Rewardingly, there was no effect on eGFP-Ago1/2 localization. We next 

investigated whether the observed disassembly of Ago2 from P-bodies can also be 

reversed upon rescue of Stau2 protein levels (Fig. 2 H, I). First, overexpression of 

tagRFP-Stau2 significantly increased the average number of eGFP-Ago2 particles per 

cell (60 particles), compared to the control condition with untagged tagRFP (38 

particles). Furthermore, overexpression of an sh-resistant tagRFP-Stau2R 15 in the 

presence of shStau2 was sufficient to partially rescue eGFP-Ago2 localization to P-

bodies. 

 

Ago2 associates with translating polysomes upon Stau2 depletion 

Ago proteins have been linked to RNA degradation and translation inhibition. While P-

bodies are thought to be places of RNA storage31, RNAi mediated translation control 

seems to be independent of these granules32. In this context it is interesting to note 

that Ago2 can associate with polysomes at the endoplasmic reticulum and in the 

cytosol33, where it inhibits34 or promotes translation35, respectively. As we observed 

disassembly of Ago2 from P-bodies upon Stau2 depletion, we were interested if 

cytoplasmic Ago2 would associate with polysomes. Therefore, we performed 

polysome profiling, a method where translating ribosomes are frozen on the mRNA by 

incubating neurons with the translation inhibitor cycloheximide, followed by lysis and 

fractionation on a sucrose gradient (Fig. 3A). Western Blot analysis of the profiling 

fractions revealed that both eGFP-Ago2 and Stau2 comigrate with polysomes (Fig. 

3B). Interestingly, eGFP-Ago2 comigration significantly increased in Stau2 deficient 

neurons (Fig. 3C), while the ribosomal marker Rpl7a was not affected. Ribosome run-

off of actively translating polysomes by pretreatment of neurons with the translation 

initiation inhibitor harringtonine resulted in a shift of Rpl7a as well as eGFP-Ago2 

towards monosomes (Fig. 3D,E), compared to cycloheximide-treated neurons (Fig. 

3B,C). This indicates that eGFP-Ago2 migration indeed depends on actively 

translating polysomes. Together, our data suggest that Stau2 depletion results in an 

increased association of Ago2 with actively translating polysomes. This observation 
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matches the disassembly of Ago2 from P-bodies upon Stau2 depletion, since P-bodies 

are reported to be polysome-free9. 

 

Ago1/2 and Stau2 act antagonistically on global translation 

Ago1/2 and RISC inhibit translation18, however, in some cases they can also promote 

translation35,36. Here we wanted to test, if increased association of Ago with polysomes 

upon Stau2 depletion would result in inhibition or rather in promotion of global 

translation. Therefore, we designed lentiviruses harboring shRNAs against Ago1 and 

Ago2 and tested the effect of Ago1/2 depletion, as well as Stau2 depletion (EV Fig. 

4A), on global translation in cortical and hippocampal neurons using the puromycin 

assay37. Puromycin binds to actively translating ribosomes, resulting in termination of 

translation and release of a puromycin labelled peptide that can be detected by 

puromycin antibodies. Downregulation of Ago1/2 protein levels resulted in upregulated 

global translation in hippocampal neurons detected by immunostaining against 

puromycin (Fig. 4A,B). On the contrary, depletion of Stau2 resulted in a decrease of 

global translation, measured by puromycin incorporation. Finally, coexpression of 

shAgo1/2 and shStau2 resulted in the rescue of control (shNTC) translation levels. 

These effects could also be reproduced in cortical neurons by Western Blot analysis 

(EV Fig. 4B). It is important to note that pretreatment of neurons with the translation 

inhibitor cycloheximide prevented puromycin incorporation (Fig. 4C, EV Fig. 4C), 

indicating that puromycylation depends on actively translating ribosomes. Together, 

we show the opposing action of Ago1/2 and Stau2 on global translation. 

 

mRNA levels are oppositely affected by Ago1/2 and Stau2 depletion 

A series of Stau2 mRNA targets contain miRNA binding sites, and are potentially 

regulated by Stau2 and Ago on the mRNA level. Here, we show that the effects of 

Stau2 and Ago1/2 can be opposite for different Stau2 target mRNAs, while GC content, 

ORF and UTR lengths were all comparable. RNA levels from cortical neurons 

transduced with the respective lentiviruses were measured by qRT-PCR. Rgs4 mRNA 

levels were decreased upon depletion of Stau2 and increased in Ago1/2 depleted 

neurons (Fig. 4D). On the contrary, Rhoa mRNA levels were increased in Stau2 

depleted neurons (Fig. 4E). Rgs4 as well as Rhoa mRNA levels were rescued by 

double-knockdown of both Stau2 and Ago1/2. Interestingly, Rgs4 mRNA has been 

found to be enriched in P-bodies, while Rhoa mRNA was depleted from P-bodies in 
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HEK293T cells9. We conclude that, independent of the direction, the effect of the RBPs 

Stau2 and Ago1/2 on mRNA expression is contrary. Finally, we tested if Stau2 alone 

promoted gene expression when tethered to a luciferase reporter. Here, we used the 

well-established MS2 system38 to tether a fusion protein of Stau2 and MS2-coat 

binding protein to a luciferase RNA by incorporation of two MS2 stem loop structures. 

Interestingly, tethering of Stau2 to the mRNA was sufficient to promote luciferase 

reporter expression (EV Fig. 4D). Overexpression of tagRFP-Stau2 did not result in 

changes of MS2 reporter expression, suggesting that the promoting effect is not 

mediated by unspecific binding to the MS2 stem loops. However, both tagRFP-Stau2 

and MCP-Stau2 were sufficient to promote Rgs4 3’-UTR reporter expression, a direct 

mRNA target of Stau214. Together, this provides additional experimental evidence for 

an opposing function of Stau2 and Ago1/2 in neuronal posttranscriptional gene 

expression. 

 

Stau2 and Ago balance neuronal branching 

Together, our data suggest that Stau2 and Ago1/2 act in opposite ways on RNA 

expression as well as translation. This tempted us to hypothesize that a balanced 

expression of Stau2 and Ago1/2 is ultimately important for proper neuronal physiology. 

According to our GO-term analysis biological processes associated to dendrite 

morphology, dendrite development and actin cytoskeleton, were enriched in proteins 

downregulated upon Stau2 depletion (EV Fig. 1A). In addition, the Ago1/2 regulated 

Stau2 target Rgs4 has been reported to negatively affect arborization complexity in 

primary cortical neurons39. We therefore tested the effects of Stau2 and Ago1/2 on 

neuronal morphology by analyzing the complexity of neuronal branching in fully 

developed hippocampal neurons at 14 DIV40, that were transfected with the respective 

shRNAs three days prior to analysis (Fig. 5A). We found neuronal branching to be 

drastically increased in Stau2 deficient neurons, while knockdown of Ago1/2 led to a 

reduction of branching complexity (Fig. 5B,C). These data fit to previous observations 

as knockdown of RNAi components GW182/Tnrc6 and Dicer similarly resulted in 

reduced dendritic arborization41,42. Double knockdown of both, Stau2 and Ago1/2, was 

sufficient to rescue control dendritic complexity. Interestingly, knockdown of Ago1 or 

Ago2 alone did not led to a reproducible effect compared to control conditions (EV Fig. 

5A,B). Either the knockdown efficiency of Ago1 or Ago2 alone was not sufficient to 

impact arborization complexity, or the proteins can compensate for each other. 
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Discussion 

  

It is now widely accepted in the field that RBPs do not act as separate players, but 

rather as interdependent factors jointly determining the fate of an RNA2,25. Depending 

on the combination of RNA sequence and structure elements that regulate RBP 

assembly, the action of individual RBPs can differ for different target RNAs. For 

example, the AU-rich binding protein family Elavl has been shown to act synergistically 

as well as antagonistically with miRNAs/Ago on target RNAs25,43,44. Here, we have 

taken an alternative approach by investigating the consequences of depletion of a 

single RBP, Stau2, on the RBPome. Specifically, Ago and RISC associated proteins 

were upregulated under those conditions. Together with our findings on the Stau2-

specific Ago disassembly from P-bodies and increased association with polysomes, 

our data suggest a Stau2 dependent regulation of miRNA containing RNP assembly 

and composition. We hypothesized whether this Stau2 dependent regulation could be 

caused by different molecular mechanisms, from (i) altered global miRNA abundance 

to (ii) changes in the phosphorylation state of Ago and (iii) altered accessibility of 

miRNA binding sites in Stau2 target RNAs. The expression of proteins involved in 

miRNA processing and RISC assembly is tightly coupled to global miRNA abundance. 

As Stau2 binds to dsRNA and especially complex, extended RNA structures10,45, 

potential binding to precursor miRNAs could therefore alter global miRNA processing. 

Furthermore, Stau2 has been previously connected to the small RNA processing 

pathway26,27. Secondly, it has been shown that phosphorylation of Ago2 regulates its 

affinity to RISC associated proteins (S387)46 and target mRNAs (S/T824:34)47,48, 

leading to a remodeling of miRNPs independent of direct Stau2 binding. Several 

phosphatases and kinases show altered expression levels upon Stau2 depletion 

(Schieweck et al., under revision). Using phosphomutants of the two major Ago2 

phosphorylation sites S387 and S/T824:34 (EV Fig. 2I-L) and by performing small RNA 

sequencing, we could exclude the first two proposed mechanisms. This led us to our 

third hypothesis, where Ago hijacks previously inaccessible miRNA binding sites in the 

Stau2 target RNA pool upon depletion of Stau2 (Fig. 6). In this model, Stau2 prevents 

RISC assembly on translating RNAs thereby modulating RNA fate, eventually resulting 

in increased translation and/or RNA stability. Our data on changes in global neuronal 

translation would support this hypothesis, as translation is decreased in Stau2 depleted 

neurons and could be rescued by knockdown of Ago1/2. Previously, Stau2 has been 
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shown to generally stabilize target mRNAs14. These observations, however, cannot be 

translated to single mRNAs, as Stau2 seems to occasionally also destabilize mRNAs, 

e.g. Rhoa mRNA. Interestingly, in all tested Stau2 target mRNAs the effect of Stau2 

and Ago1/2 knockdown was opposite and could be rescued by triple knockdown. We 

also observed this complementary pattern of Stau2 and Ago1/2 when examining 

neuronal branching, indicating that this complex RBP network is important for neuronal 

function. Possibly this antagonistic action also results in stabilization of the mRNA 

component in Stau2 containing transport RNPs, that are translationally silenced by 

Ago8. Our data showing increased colocalization of Ago2 and Stau2 in distal dendrites, 

where directed transport of RNAs is taking place, are supporting this model. Here, a 

finetuned equilibrium of Stau2 and Ago proteins would ensure spatiotemporal control 

of translation that critically contributes to neuronal function and synaptic plasticity. 

Together, our data suggest that Stau2 and Ago/RISC counterbalance each other on 

several levels: RNA stability, translation and neuronal morphology. Removing one 

layer of posttranscriptional gene regulation may therefore result in an unbalanced 

condition that is more prone to external perturbations. 
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Materials and Methods: 

 

Plasmids 

Plasmids expressing human Flag/HA-Ago1 (NM_012199.5, 214 – 2787 nt), Flag/HA-

Ago2 (NM_012154.5, 128 – 2070 nt), Flag/HA-Ago2-S387A and Flag/HA-Ago2-

824:34A were kindly provided by G. Meister47 and subcloned into pEGFP-C3 

(Clontech) or ptagRFP-C (Evrogen) under control of a CMV promotor. For luciferase 

assays 2x MS2 loops49 or the 3’-UTR of rat Rgs4 (position 728–2919 nt; 

NM_017214.1) were cloned 3’ of the renilla open reading frame of the psiCHECK2 

dual luciferase vector. The MS2 coat protein (MCP)49 was cloned into ptagRFP-C 

(Evrogen) by replacing the tagRFP open reading frame and mouse Stau2 62kDa 

isoform10 was inserted N-terminal to MCP. The plasmids expressing sh-resistant 

pCMV-tagRFP-Stau2 62kDa10, pCMV-eGFP-Mov10 (NM001107711, 159 – 3173 nt)17, 

psPAX214, and pcDNA3.1-VSV-G14 have been described previously. The 

pSUPERIOR.neo vector (oligoengine) was used for expression of shRNAs; plasmids 

expressing shStau250, shPum251, shAgo243, shHuR43 have been described previously. 

For lentivirus expression, pCMV-eGFP-Ago2, pCamk2a-tagRFP-H1-shRNA, or 

pCamk2a-tagBFP-H1-shRNA were subcloned into lentiviral vector Fu3a. The shRNA 

oligo sequences were (5′–3′): 

shNTC_F: tccaaagttcgaatggttttcaagagaaaccattcgaactttgga; 

shStau2_F: gatatgaaccaaccttcaattcaagagattgaaggttggttcatatc; 

shPum2_F: accaagttggtctggattcttcaagagagaatccagaccaacttggt; 

shHuR_F: gaagaggcaattaccagtttcattcaagagatgaaactggtaattgcctcttc; 

shAgo1_F: cgagaagaggtgctcaagaactgtgaagccacagatgggttcttgagcacctcttctcg; 

shAgo2_F: tgttcgtgaatttgggatcattgtacaatgatcccaaattcacgaaca. 

 

Lentivirus Production 

Lentiviral particles for shNTC, shStau2, shPum2, shAgo2, shAgo1 and eGFP-Ago2 

were generated from HEK-293T cells co-transfected with packaging plasmids psPAX2 

and pcDNA3.1-VSV-G and the respective lentiviral Fu3a plasmid using calcium 

phosphate coprecipitation. After 48 h virus production, supernatants were filtered 

(0.45 µm PVDF Millex-HV; Millipore), concentrated by ultracentrifugation (65,000 x g, 

140 min, SW 32 Ti rotor; Beckman Coulter) and resuspended in Opti-MEM™ (Life 

Technologies)14. 
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Neuronal Cell Culture, Transduction and Transfection 

All animals in this study were used according to the German Welfare legislation for 

Experimental Animals (LMU Munich, Regierung von Oberbayern). Rat hippocampal 

neuron cell cultures from embryos at day 17 (E17) of timed pregnant Sprague-Dawley 

rats (Charles River Laboratories) were generated as described previously15. Briefly, 

E17 hippocampi were dissected, trypsinized and cells dissociated and plated on poly-

L-lysine coated coverslips and cultured in NMEM+B27 medium (Invitrogen) with 5% 

CO2 at 37°C. For cortical cultures, E17 cortices were trypsinized and dissociated, the 

cell suspension sequentially filtered through 100-, 70-, and 40-μm cell strainers and 

then plated at a density of 100,000 cells/cm2 on poly-L-lysine coated 60 mm or 100 mm 

dishes. For protein and RNA analysis, cortical neurons were transduced with lentiviral 

suspension at 9-10 days in vitro (DIV) and lysed at 13–14 DIV. For protein localization 

experiments, transient co-transfection of hippocampal neurons by calcium phosphate 

precipitation52 was performed at 14 DIV, followed by fixation with 4 % PFA at 15 DIV. 

 

Polysome Profiling 

Cortical neurons grown (5 million cells per condition) in 100 mm dishes were co-

transduced at 10 DIV with eGFP-Ago2 and shNTC or shStau2, respectively. Fifty 

percent of the medium was refreshed at 11 DIV and 13 DIV. At 14 DIV, neurons were 

treated with 100 µg/mL cycloheximide (CHX, 355 µM) for 10 min, washed three times 

with warm HBSS supplemented with 100 µg/mL CHX and lysed in polysome buffer 

(50 mM Tris HCl pH 7.4, 150 mM NaCl, 5 mM MgCl2, 1% sodium deoxycholate, 1% 

NP-40 (IGEPAL CA-630), 355 µM CHX, 2 mM dithiothreitol) at 4°C. For analysis of 

active translating polysomes, neurons were pretreated with 2 µg/mL harringtonine 

(3.7 µM) for 10 min prior to washes, and lysis as described above. Lysates were 

cleared at 13,000 x g for 5 min at 4°C and the supernatant layered on top of a sucrose 

gradient (5 mL gradient volume; 18 %–50 % (w/v) sucrose in 100 mM KCl, 5 mM 

MgCl2, 20 mM Hepes KOH pH 7.4). Gradients were ultracentrifuged (35,000 rpm, 

90 min, 4°C, SW 55 Ti rotor, Beckman Coulter) before separated into 10x 500 µL 

fractions using an automated fractionator (Piston Fractionator, Biocomp) using RNA 

absorbance detection at 254 nm. Protein extraction of 300 µL per fraction was 

performed using methanol/chloroform extraction53, the proteins were resolubilized in 

SDS loading buffer and heated to 95°C for 3 min. 
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Ago1/2 and Mov10 protein localization 

Analysis of eGFP-Ago or eGFP-Mov10 localization in dependence of Stau2, Pum2 or 

HuR depletion was performed in hippocampal neurons grown on coverslips. Neurons 

were transiently co-transfected at 14 DIV with the respective overexpression plasmids 

and shNTC, shStau2, shPum2 or shHuR expressing plasmids using calcium 

phosphate precipitation. Neurons were fixed with 4 % PFA 16–20 h post transfection 

at 15 DIV. Coverslips were immunostained against Stau2 or Pum2, mounted on 

microscope slides with Fluoromount™ Aqueous Mounting Medium (Sigma), imaged 

and analyzed as described in the microscopy and image analysis section. 

 

Puromycylation assay 

Cortical neurons (2 millions per condition) grown in 60 mm dishes, or hippocampal 

neurons grown on coverslips were transduced with lentiviruses expressing shNTC, 

shStau2, shAgo1, and/or shAgo2 at 8–9 DIV. The medium was refreshed after two 

days of lentivirus transduction. At 13–14 DIV, neurons were treated with 1 µM 

puromycin for 5 min, washed 2x with warm HBSS and lysed in 3xSDS loading buffer 

(cortical neurons for Western Blot) or fixed with 4 % PFA for 10 min (hippocampal 

neurons for immunostaining). As a control, cells were pretreated with 100 µg/mL 

cycloheximide for 10 min prior to addition of puromycin. Western Blot, immunostaining 

against puromycin, microscopy and image analysis were performed as described in 

the respective sections. Quantification of the puromycin intensity from Western Blot 

was performed by measuring the whole lane intensity normalized to aTubulin, for each 

biological replicate two technical replicates were performed. For hippocampal neurons, 

the average cell body intensity was measured of ³ 30 healthy neurons per experiment 

and condition. 

 

Tethering assay 

HeLa cells were cultured in DMEM+FCS medium at 37°C and 5 % CO2. One day prior 

to transfection 4000 cells per well were plated in tissue culture treated 96-well plates. 

Cotransfection was performed in 3 technical replicates with MCP or tagRFP 

overexpression and psiCHECK™-2 dual luciferase vectors using Lipofectamine® 2000 

(Thermo) according to manufacturer’s instructions. 16 – 18 h after transfection, cells 

were washed once with prewarmed DPBS (Life Technologies) and lysed in 50 µL 
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passive lysis buffer (Promega) per well. Lysis was completed by incubation for 1 h at 

RT, before 10 µL lysate per well were transferred into a white 96-well plate (Greiner). 

Luciferase activity was assessed with freshly prepared firefly (4 mM Tricine, 534 µM 

MgSO4, 20 µM EDTA, 33.3 mM DTT, 530 µM ATP (PJK Biotech), 270 µM Coenzyme 

A (PJK Biotech), 470 µM D-luciferin (PJK Biotech), pH 7.8) and renilla luciferase buffer 

(550 mM NaCl, 1.1 mM EDTA, 110 mM KH2PO4, 440 µg/mL BSA (Sigma), 13 µM 

Coelenterazin (PJK Biotech), 0.5 mM NaN3, pH 5.0). Luminescence was measured in 

a Centro XS3 LB 960 High Sensitivity Microplate Luminometer (Berthold) using the 

following parameters: Per well measurement; 50 µL/well injection volume; 2 sec delay; 

repeated measurements; 10 sec integration time. Data were exported as raw files and 

the ratio of renilla to firefly luciferase activity was calculated. The empty psiCheck™-2 

vector was used as normalization control.  

 

Sholl analysis 

Hippocampal neurons grown on coverslips were transiently transfected with plasmids 

expressing fluorescent reporters and shNTC, shStau2, shAgo1, and/or shAgo2 at 

11 DIV. Three days after transfection, neurons were washed with warm HBSS and 

fixed with 4 % PFA for 10 min. Images were acquired according to Microscopy and 

image analysis section and the eGFP fluorescent reporter signal used as marker of 

dendritic branches of transfected neurons. Using ImageJ, the images were converted 

into 8 bit and a threshold was set for clear differentiation between dendrites and 

background. Unspecific background pixels were removed, a line between the center 

of the cell body and the furthest dendritic signal was drawn as basis for the Sholl 

analysis plugin in ImageJ (10 µm ring step size) that automatically counted 

intersections between dendritic branches and individual concentric rings. 

 

Western blotting 

Samples were treated with 50 U Benzonase Nuclease (Merck) for 10 min and 3xSDS 

loading buffer was added, prior to heating to 65°C for 12 min. Proteins of equivalent 

number of neurons were resolved on 10 % SDS-PAGE, transferred to nitrocellulose 

(pore size 0.2 µm) and subjected to immunoblotting with mouse anti-Ago2 (2E12-1C9) 

(1:500, WH0027161M1, Sigma), rabbit anti-Stau2 (1:500, selfmade), rabbit anti-

aTubulin (1:15,000, P1332Y, Abcam), rabbit anti-GFP (1:500, K3-184-2, A. Noegel), 

mouse anti-Puromycin (1:500, 12D10, Millipore), or rabbit anti-Rpl7a (1:1,000, Abcam) 
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diluted in blocking solution (2 % BSA, 0.1% Tween20, 0.1 % sodium azide in TBS pH 

7.5). After incubation with IRDye labelled secondary donkey anti-mouse, anti-rabbit, or 

anti-goat (IRDye 800CW or 680RD, Li-Cor), all diluted 1:15,000 in blocking solution, 

membranes were imaged on an Odyssey CLx Imaging System (Li-Cor). Band 

intensities were quantified using Image Studio Lite software (Li-Cor) and normalized 

to aTubulin signal intensity. 

 

RNA extraction, cDNA synthesis and qRT-PCR 

Total RNA from cortical neurons was extracted using TRIzol (Invitrogen) or miRNeasy 

Mini Kit (Qiagen). cDNA was generated from 1 µg of DNase treated total RNA, using 

Superscript III reverse transcriptase (Invitrogen) with minor variation to the 

manufacturer’s instructions. A mixture of 1.5 µM random primer mix (New England 

Biolabs) and 2.5 μM (dT)20 was used during cDNA synthesis. Quantitative real time 

PCR (qRT-PCR) was performed in duplicates from a 1:50 dilution of the stock cDNA 

using a home-made SYBR Green Master Mix10, with the LightCycler 96 System 

(Roche). Only primers with an optimized efficiency of 95 – 105% were used. The 2−ΔΔCt 

method implemented in the LightCycler Software (Roche) was used to calculate 

differences in RNA levels relative to peptidylprolyl isomerase A (Ppia) mRNA. The 

sequences of the qRT-PCR primers were (5′–3′): 

Ppia_F: gtcaaccccaccgtgttctt; Ppia_R: ctgctgtctttggaactttg; 

Rgs4_F: agtcccaaggccaagaagat; Rgs4_R: aacatgttccggcttgtctc; 

Rhoa_F: aaggaccagttcccagaggt; Rhoa_R: tgtccagctgtgtcccataa; 

Drosha_F: ctacacggtggccgtttact; Drosha_R: caatgaaccgcttctgatga; 

Dicer_F: gcaaggaatggactctgagc; Dicer_R: gtacacctgccagaccacct; 

Stau2_F: agttgcgactggaacaggac; Stau2_R: tggaccactccatcctttgt; 

Ago1_F: caacatcactcacccgtttg; Ago1_R: gcaggtgctgggatagagac; 

Ago2_F: acaagctggttttgcgctac; Ago2_R: ttgctgatctcctcttgccg; 

Pum2_F: atgggagcagctctttgact; Pum2_R: gatgagccaaatccactgagag. 

 

Small RNA sequencing and data analysis 

Cortical neurons (2 million cells per condition) were transduced at 10 DIV with 

lentiviruses expressing shNTC and shStau2, and the medium was refreshed two days 

after transduction. At 14 DIV, neurons were washed twice in warm HBSS, lysed in 

QIAzol (Qiagen) and stored at -80°C until total RNA was batch-isolated using 
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miRNeasy Mini kit (Qiagen). Only RNA with an RNA integrity number (RIN) ³ 9.5, 

determined on a Bioanalyzer 2100 (Agilent), was subjected to library preparation. 

Sequencing libraries were prepared at the Core Facility Genomics, Medical University 

of Vienna using the QIAgen smallRNA Library Prep Kit with Unique Molecular 

Identifiers (UMIs) according to manufacturer's protocols. Libraries were QC-checked 

on a Bioanalyzer 2100 (Agilent) using a High Sensitivity DNA Kit for correct insert size 

and quantified using Qubit dsDNA HS Assay (Invitrogen). Pooled libraries were 

sequenced on a NextSeq500 instrument (Illumina) in 1x75bp single-end sequencing 

mode. Approximately 10 million reads were generated per sample. 

Reads in fastq format were aligned to a database of rat miRNAs and quantified 

considering the UMIs using the QIAseq miRNA Library Kit-Primary Quantification 

analysis tool from QIAgen GeneGlobe (https://geneglobe.qiagen.com/at/analyze/); 

accessed: 2020/07/29. Raw counts were normalized and analyzed for differential 

miRNA abundance using DESeq254 version 1.22.2. 

 

Immunostaining 

For immunostaining neurons were washed twice with warm HBSS and then fixed with 

warm 4 % PFA in HBSS for 10 min. Fixed cells were washed thrice with HBSS and 

permeabilized with 0.1 % Triton X-100 in DPBS for 5 min and blocked for at least 

30 min in blocking solution (2 % FCS, 2 % BSA, 0.2 % fish gelatin (Sigma) in DPBS). 

The following primary antibodies were used overnight in 10vol% blocking solution in 

DPBS: mouse anti-Ago2 (2E12-1C9) (1:500, WH0027161M1, Sigma), rabbit anti-

Stau2 (1:500, selfmade), mouse anti-Stau2 (1:500, selfmade), mouse anti-Puromycin 

(1:500, 12D10, Millipore), mouse anti-Dcp1a (1:500, Sigma), rabbit anti-Ddx6 (1:500), 

mouse anti-Pum2 (1:10,000, Abcam). The following secondary antibodies were used 

for 2 h in 10vol% blocking solution in DPBS: donkey anti-mouse or rabbit AF488-, 

AF555- or AF647-conjugated antibodies (all Invitrogen). Coverslips were mounted on 

microscope slides with Fluoromount™ Aqueous Mounting Medium (Sigma). 

 

Microscopy and image analysis 

Images were acquired using Zeiss Zen software on a Zeiss Z1 Axio Observer 

microscope including a 63x Plan-Apochromat oil immersion objective (1.40 NA), a 

COLIBRI.2 LED and an HXP 120 C light source and the Axiocam 506 mono camera. 

Neurons were selected for cell morphology and viability as well as for expression of 
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plasmids or lentiviruses and images were taken in the dendritic plane. For eGFP-

Ago1/2 and eGFP-Mov10 protein localization experiments, z-stacks of whole neurons 

were acquired (30 planes with 0.26 µm step-size) and a z-projection of the maximum 

intensity was performed in ImageJ. The number of eGFP-Ago1/2, eGFP-Mov10, 

Dcp1a and Ddx6 particles per neuron were manually counted using the multipoint tool 

in ImageJ. For cell body fluorescence intensity quantification of eGFP-Ago2, or 

puromycin, Stau2 and Pum2 protein signal, the measure function in the Zeiss Zen 

software was used and a region of interest was drawn by hand based on the phase 

contrast image. Analysis of colocalization between endogenous Ago2, Stau2, Dcp1a 

and Ddx6 was performed by acquisition of z-stacks of whole neurons (35 planes with 

0.22 µm step-size), followed by deconvolution using the Zeiss Zen software 

deconvolution module, with default settings of the constrained iterative method. 

Colocalization analysis was performed blind using ImageJ. For all experiments, ≥ 15 

neurons per condition from at least three independent biological experiments were 

quantified. 

 

Dataset comparison and gene ontology analysis 

Gene ontology overrepresentation analysis was done using the statistical 

overrepresentation test of the PANTHER classification system 

(http://www.pantherdb.org)55. Protein network analysis was done using STRING 

database (https://string-db.org/)56. Comparison of Stau2 related MS datasets with P-

body enriched genes were performed using R studio based on the Gene names. 

 

Statistical analysis 

Microsoft Excel, Prism5, and R software were used for data processing, plotting and 

statistical analysis57,58. Figures represent mean ± standard error of the mean (SEM) of 

at least three independent biological replicates. Asterisks represent p-values obtained 

by one-way ANOVA and either paired or unpaired two-sided Student’s t-test using the 

mean values per experiment (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001), if not 

stated otherwise. 
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Figure 1. Stau2 depletion leads to upregulation of Ago1/2 and RISC effector 

proteins. (A) Gene ontology (GO) overrepresentation analysis (PANTHER, biological 

process) of all significantly upregulated proteins from primary rat cortical neurons 

deficient for Stau2 (Schieweck et al. under revision). (B) Volcano plot displaying protein 

levels measured by quantitative mass spectrometry and protein network analysis 

(STRING database) of highlighted significantly upregulated genes (orange). (C) 

Quantification of Stau2, Ago1 and Ago2 mRNA levels using qRT-PCR from cortical 

neurons at 14 DIV transduced with shNTC or shStau2 at 10 DIV, normalized to Ppia 

and shNTC. (D) Venn diagram comparing proteins significantly upregulated upon 

Stau2 KD, RNAs enriched in Stau2 RNA-IPs14, or Stau2 targets identified by iCLIP10. 

(E) Venn diagram comparing significantly altered proteins upon Stau2 KD (Schieweck 

et al. under revision) and proteins enriched in P-bodies9. (F) Representative phase 

contrast and pseudocolored deconvolved fluorescent images of hippocampal neurons 

at 15 DIV stained for Ago2, Ddx6 and Stau2. Scale bar is 10 µm and 5 µm for insets. 

(G) Quantification of colocalization between endogenous Ago2 particles and Ddx6 or 

Stau2 particles in proximal (first 15 µm) and distal (³ 20 µm from cell body) dendritic 

regions. Error bars are ± SEM from ³ 3 independent biological experiments and ³ 

20 cells per replicate; asterisks represent p-values (*p < 0.05). Paired two-tailed 

Student’s t-test. DIV days in vitro; NTC non-targeting control; TL translation; KD knock 

down; iCLIP individual-nucleotide resolution cross-linking and immunoprecipitation. 

 

Figure 2. Stau2 regulates Ago1/2 localization to P-bodies. (A-E) Representative 

phase contrast and fluorescent images and quantification of hippocampal neurons co-

transfected at 14+1 DIV with eGFP-Ago2 and shNTC or shStau2 constructs and 

immunostained against Dcp1a. (B) Histogram showing the frequency distribution of 

the number of eGFP-Ago2 particles per cells from four biological replicates. Bin center 

is displayed on X-axis. (C) Dot plot showing the average number of eGFP-Ago2 

particles per cell. (D) Quantification of the average number of Dcp1a particles per cell. 

(E) Quantification of the eGFP-Ago2 fluorescence intensity in the cell body. (F,G) 

Quantification of eGFP-Ago1 particles from hippocampal neurons co-transfected at 

14+1 DIV with eGFP-Ago1 and shNTC or shStau2 constructs as in B and C. (H,I) 

Representative fluorescent images and quantification of hippocampal neurons co-

transfected at 14+1 DIV with eGFP-Ago2, shNTC or shStau2, and tagRFP or sh-

resistant tagRFP-Stau2R constructs. (I) Dot plot showing the average number of eGFP-
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Ago2 particles per cell. Error bars are ± SEM from four independent biological 

experiments (shown as individual symbols) with ³ 15 cells per replicate and condition; 

asterisks and hash keys represent p-values (*p < 0.05, **p < 0.01). Paired two-tailed 

Student’s t-test. Scale bar is 5 µm. DIV days in vitro; NTC non-targeting control. 

 

Figure 3. Ago2 associates with translating polysomes in Stau2 depleted 

neurons. (A) Polysome profiles of post-nuclear lysates from cortical neurons treated 

with translation inhibitor cycloheximide (CHX) at 14 DIV and transduced at 10 DIV with 

lentiviruses expressing eGFP-Ago2 and shNTC or shStau2 and experiment outline. 

(B) Representative Western Blots of polysome profiles, immunoblotted for eGFP, 

Stau2 and Rpl7a (serving as ribosome marker). (C) Quantification of Western Blot 

eGFP-Ago2 protein intensities from three independent polysome profiling experiments, 

normalized to fraction 2 (F2). (D) Polysome profiles from cortical neurons transduced 

as in A pretreated with Harringtonine and experiment scheme. Harringtonine inhibits 

the first round of translation elongation after initiation. (E) Representative Western 

Blots of polysome profiles from cortical neurons treated with Harringtonine and 

transduced with shStau2 and eGFP-Ago2, immunoblots for eGFP and Rpl7a are 

shown. Error bars are ± SEM from 3 independent biological experiments; asterisks 

represent p-values (*p < 0.05). Paired two-tailed Student’s t-test. DIV days in vitro; 

NTC non-targeting control, CHX cycloheximide. 

 

Figure 4. Stau2 and Ago1/2 oppositely regulate posttranscriptional gene 

regulation. (A) Representative fluorescent images of hippocampal neurons 

transduced with lentiviruses expressing shNTC, shStau2, or shAgo1/2 at 9-8 DIV and 

treated with puromycin for 5 min prior to fixation at 13-14 DIV. Puromycin fluorescent 

intensity is shown as pseudocolored grey values. (D) Dot plot of the cell body 

puromycin signal intensity from four biological replicates (³ 40 cells per replicate and 

condition; cells shown as individual symbols). (C) Dot plot of the cell body puromycin 

signal intensity from two biological replicates treated with translation inhibitor CHX or 

with DMSO as control (³ 35 cells per replicate and condition; cells shown as individual 

symbols). (D,E) The mRNA levels from 14 DIV cortical neurons, transduced with 

lentiviruses expressing shNTC, shStau2, or/and shAgo1/2 for 5 days, were quantified 

by qRT-PCR. RNA levels are normalized to Ppia and shNTC. Error bars are ± SEM 

from independent biological experiments; asterisks represent p-values (*p < 0.05, **p 
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< 0.01, ***p < 0.001). Paired two-tailed Student’s t-test. Scale bar is 10 µm. DIV days 

in vitro; NTC non-targeting control; CHX cycloheximide. 

 

Figure 5. Balanced Stau2/Ago levels are important for neuronal branching. (A) 

Experiment outline and representative eGFP fluorescent images of hippocampal 

neurons transfected at 11 DIV with respective shRNA constructs and fixed at 14 DIV 

for Sholl analysis. (B) Quantification of intersections between neuronal branches and 

concentric rings. (C) Dot plot showing the sum of intersections over all concentric rings. 

Error bars are ± SEM from five independent biological experiments (shown as 

individual dots) with ³ 20 cells per replicate and condition; asterisks (to shNTC) and 

hash keys (to shStau2 + shAgo1/2) represent p-values (*p < 0.05, **p < 0.01, ***p < 

0.001). Paired two-tailed Student’s t-test. DIV days in vitro; NTC non-targeting control. 

 

Figure 6. Proposed model of Stau2 governed Ago1/2 RNP assembly. In wild type 

neurons, Ago proteins in the cell body colocalize with Ddx6 and Dcp1a in prominent 

particles, possibly processing bodies (P-bodies). Stau2 binds to structured elements 

in the 3’-UTR of neuronal mRNAs, that can be translationally silenced or active. In 

distal dendrites, colocalization of Ago and Stau2 is strong, possibly in translationally 

silenced transport RNPs. Stau2 depletion leads to mislocalization and destabilization 

of transported RNAs and remodeling of mRNPs. This in turn enables hijacking of Ago 

to previously inaccessible miRNA binding sites in actively translated mRNAs. The 

mRNA mislocalization together with altered mRNP formation possibly results in 

uncontrolled neuronal branching.  
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EV Figure 1. Stau2 KD does not affect global miRNA abundance. (A) Gene 

ontology (GO) overrepresentation analysis (PANTHER, biological process) of proteins 

significantly downregulated in primary cortical neurons depleted for Stau2. (B) 

Representative Western Blots and quantification of protein signal normalized to 

aTubulin from cortical neurons transduced with shNTC or shStau2. (C) Quantification 

of Drosha and Dicer mRNA levels using qRT-PCR from cortical neurons at 14 DIV 

transduced with shNTC or shStau2 at 10 DIV, normalized to Ppia and shNTC. (D) Dot 

plot comparing miRNA expression levels (BaseMean) and fold change of small RNA 

Sequencing from 14 DIV cortical neurons transduced at 10 DIV with shNTC or 

shStau2. (E) Volcano plot highlighting differentially expressed miRNAs. (F) Bar graph 

displaying number of differentially regulated miRNAs categorized in groups based on 

up- or downregulation upon Stau2 depletion. (G) Box plot comparing the total miRNA 

abundance of all differentially regulated miRNAs in between shNTC and shStau2. Error 

bars are ± SEM from ³ 3 independent biological experiments; asterisks represent p-

values (*p < 0.05). Paired two-tailed Student’s t-test. DIV days in vitro; NTC non-

targeting control. 

 

EV Figure 2. Ago1/2 localization is Stau2 specific. (A-C) Hippocampal neurons co-

transfected at 14+1 DIV with eGFP-Ago2 and shNTC or shStau2 constructs were 

immunostained against Stau2, Ddx6 and Dcp1a. (A) Quantification of colocalization 

between eGFP-Ago2 particles and endogenous Ddx6 or Dcp1a. (B) Quantification of 

the average Stau2 protein signal per cell body. (C) Histogram showing the frequency 

of number of endogenous Dcp1a particles per cell over four biological replicates. Bin 

center is displayed on X-axis. (D) Quantification of the number of eGFP-Mov10 

particles per cell from cells co-transfected with shNTC or shStau2 at 14+1 DIV. (E-F) 

Quantification of Pum2 protein signal in the cell body (E) and eGFP-Ago particles per 

cell (F, G) from hippocampal neurons co-transfected at 14+1 DIV with eGFP-Ago2 or 

eGFP-Ago1 and shNTC or shPum2. (H) Quantification of the number of eGFP-Ago2 

particles per cell from hippocampal neurons co-transfected with shNTC or shHuR at 

14+1 DIV. (I-L) Quantification of the number of phosphomutant eGFP-Ago2-

S/T824:34A (I, J) und eGFP-Ago2-S387A (K, L) particles per cell from hippocampal 

neurons co-transfected with shNTC or shStau2 at 14+1 DIV. Error bars are ± SEM 

from ³ 3 independent biological experiments (shown as individual symbols) with ³ 15 
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cells per replicate and condition; asterisks represent p-values (*p < 0.05). Paired two-

tailed Student’s t-test. DIV days in vitro; NTC non-targeting control. 

 

EV Figure 4. Stau2 tethering to mRNA promotes gene expression. (A) RNA levels 

from 14 DIV cortical neurons transduced at 9 DIV with shNTC, shStau2, shAgo1, 

shAgo2 or a combination were quantified by qRT-PCR and normalized to Ppia and 

shNTC. (B) Representative Western Blot and quantification of cortical neurons 

transduced with lentiviruses expressing shNTC, shStau2, and/or shAgo1/2 at 9 DIV 

and treated with puromycin for 5 min prior to lysis at 14 DIV. As control neurons were 

treated with cycloheximide (CHX) prior to addition of puromycin. (C) Representative 

fluorescent images of hippocampal neurons treated with cycloheximide (CHX) or 

DMSO (Ctrl) for 5 min prior to treatment with puromycin for 5 min and fixation at 

14 DIV. Puromycin fluorescent intensity is shown as pseudocolored grey values. (D) 

Luciferase activity in HeLa cells cotransfected with luciferase reporters and tagRFP or 

MCP proteins was quantified. Normalization to ctrl luciferase reporter levels and 

tagRFP condition was performed. Error bars are ± SEM from ³ 3 independent 

biological replicates; asterisks represent p-values (*p < 0.05, **p < 0.01, ***p < 0.001, 

****p < 0.0001). Paired two-tailed Student’s t-test. Scale bar is 20 µm. DIV days in vitro; 

CHX cycloheximide; NTC non-targeting control; MCP MS2 coat protein. 

 

EV Figure 5. Depletion of Ago1 or Ago2 alone is not sufficient to reduce branch 

complexity. (A) Quantification of intersections between neuronal branches and Sholl 

rings from hippocampal neurons transfected at 11 DIV with respective shRNA 

constructs and fixed at 14 DIV for Sholl analysis. (B) Dot plot showing the sum of 

intersections over all Sholl rings. Error bars are ± SEM from five independent biological 

experiments (shown as individual dots in B) with ³ 20 cells per replicate and condition; 

asterisks represent p-values (*p < 0.05). Paired two-tailed Student’s t-test. DIV days in 

vitro; NTC non-targeting control. 
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Figure 1: Stau2 depletion leads to upregulation of Ago1/2 and
RISC effector proteins
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Figure 2: Stau2 regulates Ago1/2 localization to P-bodies
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Figure 3: Ago2 associates with translating polysomes in Stau2
depleted neurons
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Figure 4: Stau2 and Ago1/2 oppositely affect
posttranscriptional gene regulation
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EV Figure 1: Stau2 KD does not affect global miRNA abundance
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EV Figure 2: Ago1/2 localization is Stau2 specific
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EV Figure 4: Stau2 tethering to mRNA promotes gene expression
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EV Figure 5: Depletion of Ago1 or Ago2 alone is not sufficient to
reduce dendritic complexity
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5.1 Introduction 
The assembly of RNPs is an essential cellular process that influences posttranscriptional gene 

regulation of the sequestered RNA. Recent evidence shows how the RNA component is one 

driving force for this process (Garcia-Jove Navarro et al., 2019; Tauber et al., 2020). It is 

therefore crucial to understand the processes underlying the recruitment of RBPs through cis 

regulatory RNA elements. Several different types of RNA elements regulating RBP binding 

have been described by now, from single-stranded sequence motifs to G-quadruplex helices 

(Kenny et al., 2014). Here, the invention of techniques based on high-throughput sequencing, 

such as individual-nucleotide resolution UV crosslinking and immunoprecipitation (iCLIP), 

revolutionized the detection and subsequent prediction of RNA binding sites for RBPs (Lee 

and Ule, 2018). The iCLIP technique uses UV light to crosslink RBP and RNA in intact cells 

or tissues. The unprotected RNA is then digested by RNase, followed by immunoprecipitation 

of the desired RBP, RNA extraction and high-throughput sequencing. This technique 

revolutionized the definition of RNA recognition sites for RBPs binding to single-stranded 

RNA elements. Such elements are defined through a specific binding sequence or base 

composition. iCLIP represents a major improvement compared to classical 

immunoprecipitation experiments, as the RBP-RNA interaction is trapped in physiological 

conditions, by crosslinking in vivo. In addition, more stringent washing and purification 

conditions can be applied to eliminate non-specific RNA binding. 

In collaboration with Jernej Ule and colleagues, we were able to define RNA binding regions 

of the dsRBP Stau2 in embryonic mouse cortex exploiting the iCLIP technique (Sharangdhar 

et al., 2017). While we could show that Stau2 binding to an intron in the 3’-UTR of Calm3 

mRNA was important for activity driven dendritic localization of the RNA, we could not define 

the exact RNA structure Stau2 bound to. Deletion- and mutation-studies of areas defined by 

the Stau2 iCLIP dataset (Sharangdhar et al., 2017) and computational prediction of Stau2 

recognition sites (Heraud-Farlow et al., 2013) did not result in detailed molecular insight into 

Stau2 RNA recognition (data not shown). Stau2 as an dsRBP binds to RNA secondary 

structures that are defined through two hybrid arms that can originate from different RNAs 

(intermolecular) or the same RNA (intramolecular). Further, the two hybrid arms from 

intramolecular RNA structures can be close or distal, resulting in short-rang to long-range 

RNA hybrids. During the RNA preparation for downstream analysis in the iCLIP protocol 

this information on RNA structure gets lost. Now, the development of the RNA-hybrid and 
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individual-nucleotide resolution (hi)CLIP technique enables the detection of both strands 

bound by dsRBPs, as shown for Stau1 (Sugimoto et al., 2015). The introduction of sequential 

ligation of specific adaptors and adaptor-linkage of both hybrid strands, made the detection and 

assignment of both RBP bound RNA-hybrid strands possible (Fig. 5.1 A). However, sensitivity 

remained low due to inefficient adapter ligation and linkage. With recent improvements of the 

hiCLIP technology by the lab from Jernej Ule, they are now able to detect Stau2-bound RNA 

structures in depth (Chakrabarti A et al., manuscript in preparation). These hiCLIP and 

additional iCLIP experiments were performed with cortices from rat brains at different 

developmental stages. Collaborative analysis of these data led to detection of a functionally 

relevant and Stau2-responsive long-range RNA structure in Rgs4 RNA (Fig. 5.1 A-C). 

Deletion of one arm of the RNA hybrid in the first fragment of Rgs4 3’-UTR (Rgs4 F1) resulted 

in the identification of a specific RNA structure important for Stau2-dependent RNP assembly 

and necessary for dendritic localization of Rgs4 mRNA (Fernández-Moya SM, Ehses J, et al., 

manuscript in preparation). 
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Figure 5.1: RNA structure detected by Stau2 hiCLIP. (A) Image from IGV genome browser depicting 
sequence conservation and Stau2 iCLIP and hiCLIP reads (black boxes) of Rgs4 3’-UTR from rat cortex 
at different postnatal (P) days. Cumulative hiCLIP reads over all timepoints are depicted in merge. 
Specific hiCLIP reads defining the Stau2-dependent functional RNA structure within the Rgs4 
fragment 1 (Rgs4 F1) are highlighted in magenta. (B) Predicted folding (RNAfold web server) of the 
hiCLIP read highlighted in A. The loop region is depicted as (N)nucleotides, numbers refer to nucleotide 
position in Rgs4 3’-UTR. (C) Predicted folding (RNAfold web server) of wildtype Rgs4 F1 and with 
deletion of the second arm from the hiCLIP defined RNA structure (black arrow). Figure adapted from 
(Fernández-Moya SM, Ehses J, et al., manuscript in preparation). 

In this chapter, I present colocalization studies performed on Stau2 protein and MS2-RNA 

reporters fused to Rgs4 RNA. These experiments revealed that the Stau2-dependent effects are 

indeed mediated by direct interaction of Stau2 and the RNA hybrid structure in fragment 1 of 

Rgs4 mRNA. Further, this is the first time that deletion of an RNA hybrid structure was 

sufficient to abolish Stau2-RNA association. 
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5.2 Results and discussion 
I decided to use colocalization-analysis between Rgs4 RNA and Stau2 protein in neurons as a 

readout to measure Stau2-RNA association under physiological conditions. Visualization of the 

RNA was achieved through the well-established MS2-RNA reporter system (Bauer et al., 

2019). Here, the RNA of interest is fused to an array of 128x MS2 RNA stem loops in 

combination with a LacZ open reading frame. Coexpression of a tandem MS2 coat protein 

(tdMCP) that is fused to GFP enables the visualization of the MS2-RNA reporter through 

specific binding of the tdMCP-GFP protein to the MS2-RNA stem loops (Fig. 5.2 A). 

Subsequently, quantification of colocalization between MS2-RNA reporter particles with 

tagRFP-Stau2 was performed in distal dendrites (Fig. 5.2 B). A strong and significant increase 

of colocalization with Stau2 was observed for the full-length Rgs4 3’-UTR (Rgs4 FL) MS2 

reporter compared to control MS2, indicating that the system is suitable to asses Stau2-RNA 

association (Fig. 5.2 C, D). Further, the level of Stau2-colocalization for Rgs4 FL and Rgs4 F1 

MS2 reporter were comparable, with a minor yet not significant decrease in colocalization for 

Rgs4 F1. This suggests that fragment 1 is sufficient to mediate the association between Rgs4 

3’-UTR and Stau2 protein. Finally, I tested if the RNA-hybrid structure detected by Stau2 

hiCLIP (Fig. 5.1) in Rgs4 F1 was responsible for the association with Stau2. Indeed, 

colocalization between Stau2 and the Rgs4 F1 MS2-RNA reporter with deletion of one RNA-

hybrid arm was reduced to levels detected for the control reporter. This finding is important 

since it is the first time that (i) the RNA-structures detected by hiCLIP technique could be 

validated and (ii) destruction of an RNA-hybrid structure in a complex environment of a Stau2 

target RNA is sufficient to eliminate Stau2 association. This is crucial as previous in vitro 

analysis of RNA characteristics important for Stau2-RNA association failed due to unspecific 

binding of Stau2 to control RNAs. While the hiCLIP data suggest that the investigated RNA-

hybrid structure is indeed formed and bound by Stau2 in vivo, I cannot prove that this structure 

is also formed in our Rgs4 F1 reporter RNA. In future, I will generate Rgs4 F1 constructs 

containing single nucleotide insertions leading to RNA structure disruption followed by a 

construct with complementary insertions resulting in rescue of the RNA structure and test their 

capacity to regulate Stau2-dependent behavior. 
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Figure 5.2: RNA structure in F1 of Rgs4 3'-UTR recruits Stau2. (A) Scheme of the MS2-RNA reporter 
system, plasmid design and experimental workflow of colocalization analysis. (B) Representative phase 
contrast and deconvolved fluorescent maximum z-projection images of hippocampal neurons transfected 
at 14 DIV with tagRFP-Stau2, tdMCP-eGFP and the indicated MS2-RNA reporters for 16 h. Scale 
bar, 20 µm. Magnified images of dendrites are single z-planes; scale bar, 5 µm. (C) Quantification of 
the colocalization between tagRFP-Stau2 and MS2 particles in entire dendrites, starting from 40 µm 
away from cell body. Mean ± SEM over all dendrites (shown as individual dots) from three independent 
biological replicates. (D) Quantification as in C with mean ± SEM from three independent biological 
replicates (shown as individual dots). One-way ANOVA and paired students t-test; *** p<0.001. DIV 
days in vitro; tdMCP tandem MS2 coat protein. 
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In addition to the long-range RNA-hybrid structure, we investigated a second short-range 

RNA-hybrid detected in Rgs4 F1 by Stau2 hiCLIP with a total of 21 merged reads (Fig. 5.1 

A). Interestingly, deletion of this RNA structure, originally predicted and termed as Staufen 

recognition site 3 (SRS3) (Heraud-Farlow et al., 2013), was not sufficient to prevent Stau2-

dependent regulation of the RNA. Possibly, Stau2 binding to Rgs4 happens first through the 

RNA-hybrid structure in F1 and subsequently non-functional association with SRS3 by 

another Stau2 RBD might takes place. Ultimately, the discovery of the Stau2 regulated RNA-

hybrid structure will enable us to investigate the consequences of Stau2 binding for RNA 

structure and miRNA/RISC recruitment. 

5.3 Materials and Methods 
Plasmids 

Plasmids expressing pUBC-NLS-ha-tdMCP-GFP and pRSV-LacZ-128xMS2 (control and 

rat Rgs4 3’-UTR (NM_017214.1)) have been described previously (Bauer et al., 2019). 

Generation of pRSV-LacZ-128xMS2 plasmids containing Rgs4 3’-UTR fragment 1 (Rgs4 F1; 

bases 336 – 807 in Rgs4 3’-UTR) and Rgs4 3’-UTR fragment 1 hairpin deletion (Rgs4 F1 

deletion; bases 336 – 782 in Rgs4 3’-UTR) were performed by PCR amplification from pRSV-

LacZ-128xMS2-Rgs4 3’-UTR plasmid and insertion into the pRSV-LacZ-128xMS2-Ctrl 

plasmid via SalI. Generation of plasmid overexpressing mouse Stau2 62kDa isoform was 

performed by blunt-end cloning of pCMV-tagRFP-Stau2 (Sharangdhar et al., 2017) into the 

FUW lentiviral expression vector (Heraud-Farlow et al., 2013) via EcoRV and NheI. It is 

important to note that the lentiviral pCMV-tagRFP-Stau2 plasmid does not contain a poly-A 

signal associated with the tagRFP-Stau2 ORF resulting in reduced overexpression levels. 

Neuronal cell culture and transfection 

Hippocampal neuronal cell cultures were generated from dissected hippocampal tissue of E17 

embryos of timed pregnant rats (Sprague-Dawley, Charles River Laboratories) as published 

(Goetze et al., 2003). Briefly, cells were dissociated with 2.5% trypsin, plated on poly-L-lysine 

coated coverslips and cultured in NMEM+B27 medium (Invitrogen) at 37°C and 5 % CO2. 

Transient transfection of neurons was performed after 14 days in vitro (DIV) by calcium 

phosphate coprecipitation (Goetze et al., 2004). For each transfection condition the following 

DNA mixture was used: 2 μg of pUBC-NLS-ha-tdMCP-GFP, 3 μg of pRSV-LacZ-

128xMS2 and 1 µg of pCMV-tagRFP-Stau2. After 16 h of expression, neurons were washed 
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with prewarmed HBSS (Invitrogen), fixed in 4% paraformaldehyde and coverslips were 

mounted using Prolong Gold antifade mounting medium (Invitrogen). 

Microscopy and image analysis 

Images were acquired on a Zeiss Z1 Axio Observer microscope including a 63x Plan-

Apochromat oil immersion objective (1.40 NA), an HXP 120 C light source and the Axiocam 

506 mono camera using Zeiss Zen software. Overview images, including phase contrast, were 

taken at the dendritic plane and a z-stack was acquired of the whole cell for fluorescent channels 

(30 planes with 0.26 µm step-size). The z-stack images were deconvolved using Zeiss Zen 

software deconvolution module with default settings of the constrained iterative method. Using 

ImageJ software, one dendrite per cell was selected for colocalization analysis. Regions of 

interest along the whole dendrite, 40 µm away from the cell body, were selected using the 

segmented line tool (40 pixel line-width). The total number of MS2 particles per dendrite was 

manually counted using the multipoint tool, followed by manual assessment of colocalization 

with tagRFP-Stau2 signal. The ratio of tagRFP-Stau2 positive MS2 particles over total number 

of MS2 particles per dendrite was calculated. For each condition and biological replicate 15 – 

30 cells were analyzed and image analysis was performed blind. Data processing was performed 

in Excel (Microsoft) and statistical analysis was performed using Prism5 software (GraphPad). 

Figures represent mean ± standard error of the mean (SEM) from three independent biological 

replicates. One-way ANOVA was performed followed by either paired or unpaired two-sided 

Student’s t-test (***p < 0.001), as indicated. 
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6 Discussion and outlook 
The three individual projects of my PhD thesis presented here address the contribution of RNA 

characteristics and RBPs in neuronal granule assembly and gene regulation. The individual 

findings have been discussed separately in previous chapters (see chapters A-C). This discussion 

aims to provide a more general integration of my findings into the research field and to outline 

the novel findings and implications of my work. This enables me to propose a detailed new 

model of how Stau2 governs RNP assembly and RNAi function in neurons. 

6.1 How is RNAi regulated by the neuronal RBP network? 
The RNAi pathway depends on RBPs in multiple ways: (i) the biogenesis of miRNAs is 

dependent on the activity of a series of distinct RBPs, the canonical miRNA processing factors 

Drosha, DGCR8, TRBP, PACT and Dicer (Ha and Kim, 2014); (ii) Ago proteins as well as 

the downstream effectors of RISC, including the scaffolding protein TNRC6, the RNA 

helicase Ddx6, the CCR4/NOT complex, and the decapping enzymes Dcp1a and Dcp2, all of 

them are RBPs whose assembly and function being tightly controlled in cells (Nawalpuri et al., 

2020); (iii) RNA binding of RISC and its function in gene expression, which is modulated by 

cooperative or competitive action of other RBPs (Loffreda et al., 2015). Here, I will discuss the 

influence of other RBPs on this RNAi protein network, with a specific focus on HuR and the 

neuronally enriched dsRBP Stau2. 

6.1.1 miRNA biogenesis 

The biogenesis of miRNAs can be influenced by several RBPs, as recently been shown in an 

unbiased biochemical approach (Treiber et al., 2017). For instance, DEAD-box helicases Ddx5 

and Ddx17 are important for unwinding and processing of the pri-miRNA transcript, while 

other RBPs regulate recruitment of Dicer to the pre-miRNA (Connerty et al., 2015). Nuclear 

export of the largest Stau2 isoform of 62 kDa is coupled to the miRNA export factor Xpo5 

(Lund et al., 2004; Macchi et al., 2004) and has been linked functionally to siRNA biogenesis 

(Yoon et al., 2018). Further, pre-miRNAs, specifically pre-miR-26a, co-immunoprecipitate 

with Stau2 from embryonic brain tissue (Fritzsche et al., 2013). This suggests, that Stau2 is 

potentially involved in regulating miRNA biogenesis in neurons. In the presented small RNA-

Sequencing study (Chapter B) selected miRNAs were indeed differentially expressed upon 

depletion of Stau2, including miR-26a/b, while the overall abundance of miRNAs was 
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unchanged. The increased expression of miR-26 suggests a repressive effect of Stau2 on 

maturation of selected pre-miRNAs. Alternatively, elevated miR-26 levels could be explained 

by an increased processing by Dicer in a Stau2 dependent manner. Bose and Bhattacharyya 

proposed a mechanism, where miRNA biogenesis mediated by Dicer is enhanced by their target 

RNAs (Bose and Bhattacharyya, 2016). Opposite to the mechanisms described for HuR 

(Chapter A), Stau2 could compete with miR-26/Ago2 for target RNA binding. Increased 

accessibility of miRNA sites in Stau2-deficient neurons may therefore enhance miR-26 

processing. The majority of differentially regulated miRNAs, however, was downregulated in 

Stau2 deficient neurons. Noteworthy, all members of the miR-29 family were downregulated. 

Since all members originate from the same gene locus, this effect could be caused by altered 

transcription. It will be interesting to see, in future, whether Stau2 indeed regulates biogenesis 

of specific miRNAs or whether the observed changes in miRNA expression are due to 

compensatory effects in the complex mRNA and RBP network of neurons. 

In neurons, precursor miRNAs as well as some miRNA processing factors localize to distal 

dendrites, where synaptic stimulation leads to locally and spatially controlled miRNA 

maturation (Antoniou et al., 2018; Bicker et al., 2013; Sambandan et al., 2017). A prerequisite 

for local miRNA maturation is the regulated transport of specific pre-miRNAs, mediated by 

RBPs. The function of Stau2 in RNA transport is well-established (Bauer et al., 2019; 

Köhrmann et al., 1999; Sharangdhar et al., 2017). In addition, the long isoform of Stau2 

(62 kDa, see above) indeed interacts with Exportin-5 (Macchi et al., 2004)(Stau2 proximity 

biotinylation assay; Fernández-Moya SM and Kiebler MA, unpublished data), the nuclear 

export factor for the majority of miRNAs (Bohnsack et al., 2004; Lund et al., 2004). Therefore, 

Stau2 could mediate nuclear export and/or dendritic transport of specific pre-miRNAs. This 

would also be supported by enrichment of specific pre-miRNAs in Stau2 RNA 

immunoprecipitation, e.g. of pre-miR-26a (Heraud-Farlow et al., 2013). Using microscopy 

approaches with labelled pre-miRNAs (Corradi et al., 2020), it will be interesting to see in 

future studies, if Stau2 indeed mediates pre-miRNA localization in neurons. 

6.1.2 RISC assembly and localization 

Aside from miRNA biogenesis itself, RNAi can be regulated at the level of the RISC proteins. 

Expression levels, posttranslational modification and localization of RISC associated proteins 

matter for RNAi function (Nawalpuri et al., 2020). I found a large proportion of RNAi 

associated proteins, e.g. Ago1, Ago2, Edc4, Dcp1a, Ddx6, to be upregulated in Stau2 deficient 
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primary neurons (Chapter B). Such increase suggests a gain of function for RNAi. This 

interpretation goes in line with previous data on Staufen in C. elegans (LeGendre et al., 2013; 

Ren et al., 2016), in which RNAi was enhanced by overexpression of Staufen mutants. The 

increase of RNAi protein expression is likely not being regulated by Stau2 directly but rather 

on the level of transcription, translation and/or protein stability. The expression levels itself, 

however, do not necessarily translate into increased RISC activity. Protein localization and 

posttranslational modifications influence RNAi activity. For instance, decapping activity is 

reduced upon assembly of Dcp1:Dcp2 and Edc3 into P-bodies or larger protein condensates 

(Schutz et al., 2017). This supports the idea of P-bodies as sites for RNA storage, than RNA 

degradation (Horvathova et al., 2017; Standart and Weil, 2018). It is imaginable that 

localization of RNAi components in P-bodies rather contributes to translational silencing. 

Stau2 has been proposed to be part of such P-bodies (Barbee et al., 2006; Hubstenberger et al., 

2017), but I did not detect strong colocalization between Stau2 and P-body marker Ddx6 in 

neurons. Together with previous live imaging data from our lab, I rather propose a model in 

which Stau2 – as part of transport RNPs – delivers RNA to P-bodies, thereby shaping P-body 

composition (Zeitelhofer et al., 2008). This model agrees with our data showing increased 

colocalization of Ago2 and Stau2 in distal dendrites, where active transport takes place. During 

dendritic RNA transport, transcripts are thought to be translationally repressed until cue-

dependent local translation at the synapse takes place (Doyle and Kiebler, 2011). Here, co-

assembly of miRNA/Ago in Stau2-containing transport RNPs could mediate temporary and 

reversible translational repression (Kiebler and Bassell, 2006). The ultimate proof for this 

transport-dependent interaction would be two-color live imaging experiments of Ago2-Stau2 

co-transport together with the mRNA, possibly by utilizing the MS2 system. 

As discussed above, the interaction between Ago2 and Stau2 seems to be dependent on their 

dendritic localization in neurons. Interestingly, Stau2 and Ago2 both partially associate with 

actively translating polysomes (Höck et al., 2007) and the polysome-association of Ago2 is 

dependent on Stau2 (Chapter B). While the role of Stau2 in translation is largely unknown, 

several roles for miRNA/Ago2 polysome association have been proposed. These mechanisms 

range from translation-activation of Tumor necrosis factor a (TNFa) RNA (Vasudevan and 

Steitz, 2007) and enhancement of mitochondrial translation (Zhang et al., 2014) to protein 

production block by let-7a and Ago2, where the nascent chains are possibly destructed (Nottrott 

et al., 2006). In our hands, Stau2 depletion, and therefore Ago2 upregulation and association 
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with polysomes, coincides with a reduction in global translation, suggesting a rather repressive 

effect of Ago2 on translation in neurons. One alternative explanation for the association of 

Ago2 with translating polysomes would reside in the co-translational degradation of miRNA 

targeted mRNAs (Tat et al., 2016). Here, co-translational deadenylation is followed by 

decapping and 5’- to 3’-nucleolytic decay of the RNA. Detailed analysis of our RNA sequencing 

dataset for uridylation of the polyA tail and a 3’-read bias will yield first experimental indication 

whether this Ago-dependent mechanism is indeed enhanced in Stau2 deficient neurons. In 

future, it will be crucial to better understand the function and underlying mechanisms of Ago2 

polysome association. 

The RNP/RISC assembly itself often depends on posttranslational modifications and especially 

phosphorylation (Nosella and Forman-Kay, 2021), as it has been shown for Ago2 

phosphorylation at residues S387 and S824:34 and Ago2 to Ago3 switching upon Limd1 

knockdown (Bridge et al., 2017; Quévillon Huberdeau et al., 2017; Rajgor et al., 2018). In our 

hands, association of Ago2 with P-bodies was phospho-site dependent in neurons. Upon 

introduction of phosphomimic mutants at residues S824:34 of Ago2, localization to P-bodies 

was disrupted in neurons, but not in HEK-293T cells. Phosphorylation at residues S824:34 

leads to reduced mRNA binding of miRNA-loaded Ago2 (Quévillon Huberdeau et al., 2017). 

This suggests that Ago2 association with P-bodies is in part mediated by RNA binding in 

neurons. However, mutation of Ago2 phosphorylation sites did not alter Ago2 localization 

behavior compared to wildtype Ago2 in Stau2-deficient neurons. It is therefore unlikely that 

Stau2 affects RNAi through regulation of Ago2 phosphorylation. 

6.1.3 Combinatorial binding of RBPs and RISC to mRNAs 

RNA binding of RISC and its function in gene expression are modulated by cooperative or 

competitive action of other RBPs. Specifically, RBPs can modulate RISC recruitment to RNA 

(Kim et al., 2009) or, alternatively, the accessibility of miRNA binding sites (Ehses et al., 2020; 

Kenny et al., 2014; Sternburg et al., 2018). I and others have shown that the AU-rich element 

binding protein HuR exerts such functions (Chapter A). HuR regulates RISC effectiveness 

with a contrary outcome for individual RNAs. HuR can promote miRNA-mediated gene 

silencing by recruiting the a let-7/Ago2 complex to c-Myc RNA (Kim et al., 2009) or, as I have 

shown, by enabling binding of miR-26 to a previously hidden miRNA-binding site (Ehses et 

al., 2020). HuR, however, can also prevent RISC assembly to RNAs by competition for 

binding, if binding sites for HuR and the miRNA overlap (Li et al., 2018). This bidirectional 
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interaction between an RBP, here HuR, and RISC highlights the diversity of RBP function in 

the context of individual RNAs. Finally, the unique arrangement of RBP and miRNA binding 

sites on an RNA defines the RNA fate. This network depends on the local concentrations of 

miRNA/RISC and RBP components, resulting eventually in the dynamic rearrangement of the 

bound RBP. Together with transcription, these dynamics enable the regulation of gene 

expression levels in development, such as neurogenesis and neuronal maturation. Whereas miR-

26 expression is high in mature neurons, HuR levels decrease with maturation, resulting in 

relief of Rgs4 mRNA repression with neuronal development. 

This two-dimensional interaction of miRNA/RISC and the RBP on the target mRNA fate 

can be further complexed by integration into the existing cellular RBP/RNA network 

(Schieweck et al., 2020). Such a mechanism has been beautifully shown by Sosanya et al. for 

the neuron-specific AU-rich element binding protein HuD (Sosanya et al., 2013). In this case, 

HuD competes with miR-129 for binding to voltage-gated potassium channel subunit Kv1.1 

(Kv1.1) mRNA, thereby promoting Kv1.1 translation. Interestingly, this competition depends 

on the concentration of other high-affinity HuD target RNAs. Upon reduction of local 

dendritic mammalian target of rapamycin complex 1 (mTORC1) signaling, high-affinity HuD 

target RNAs are degraded and the freed HuD can subsequently bind to Kv1.1 mRNA. It is 

therefore crucial to understand how RBPs integrate into the RBP-RNA network present in 

neurons. 

The identification of such interdependencies in between Stau2 and other RBPs by an unbiased 

genome-wide approach was the aim of the second project (Chapter B). As discussed in 6.1.1 

and 6.1.2, I detected increased expression of RNAi pathway components upon Stau2 

downregulation in neurons and especially a relocation of Ago2 from P-bodies to polysomes. I 

excluded changes in global miRNA abundance or altered phosphorylation of Ago2 S387 or 

S824:34 as the molecular mechanism behind the Stau2-dependent Ago2 localization behavior 

in neurons. This led us to hypothesize that altered miRNA binding site availability in Stau2 

target RNAs might be the underlying cause. In this case, Stau2 would prevent interaction of 

miRNA/Ago2 with actively translated mRNA targets thereby promoting translation, similar to 

the mechanism observed for HuD and miR-129 (Nawalpuri et al., 2020; Sosanya et al., 2013). 

Such an mechanism has been previously proposed for Staufen protein in C. elegans (LeGendre 

et al., 2013; Ren et al., 2016). Further, this mechanism would go in line with the observation 

that Stau2 target RNAs have longer 3’-UTRs (Heraud-Farlow et al., 2013) with potentially 
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more miRNA binding sites (Wehrspaun et al., 2014). Deep analysis of our RNA sequencing 

data from Stau2 deficient neurons for differential expression in combination with enrichment 

of miRNA binding sites will enable us to test our hypothesis. These analyses could be 

complemented by Ago2 proximity RNA biotinylation experiments (APEX2 (Fazal et al., 

2019)) in order to identify Ago2-bound transcripts in the presence and absence of Stau2 in vivo 

in primary neurons. Here, a fusion protein of the engineered ascorbate peroxidase APEX2 and 

the protein of interest is overexpressed and the cells are incubated with biotinphenol. 

Subsequently, the biotinylation of RNAs or proteins in close proximity of the fusion protein 

occurs upon addition of hydrogen peroxide followed by enrichment and detection of the 

biotinylated molecules. I recently established RNA biotinylation using APEX2 in primary 

neurons in our lab. Ultimately, identification of polysome associated mRNAs and miRNAs 

upon Stau2 depletion will complete our understanding of the role of Stau2 in Ago association 

with polysomes. 

6.2 How does the RNA structure contribute to RNP 
assembly? 

Until recently the driving force of RNA granule assembly was thought to mainly originate from 

the condensation of RBPs. An increasing number of studies now corrects this picture by 

highlighting the importance of the RNA on granule formation (Langdon et al., 2018; Sanchez 

de Groot et al., 2019; Tauber et al., 2020). The concentration as well as intrinsic RNA 

characteristics, such as AU-richness (Courel et al., 2019), together with the accessibility of 

binding sites for RBPs all crucially contribute to RNP assembly (Tauber et al., 2020). One key 

finding of this thesis is that HuR and miR26/Ago2 can cooperatively bind to and act on Rgs4 

mRNA, possibly through remodeling of a specific local RNA structure found in the 3’-UTR of 

Rgs4. Cooperative and competitive action of RBPs on single mRNAs have been shown before 

(Iadevaia and Gerber, 2015). In our case, however, the RNA structure seems to serve as a 

regulatory element to control accessibility to the respective binding sites. This interpretation is 

based on binding site mutation studies in neurons, limiting the evidence for actual RNA 

structure changes. In future, in vivo RNA structure probing experiments, such as in vivo 

SHAPE (Spitale et al., 2013) or PARIS (Lu et al., 2016), should shed more light into the 

underlying mechanism. Such experiments would also be helpful to understand the contribution 

of dsRBPs to the transcriptome wide RNA architecture, by analyzing differentially folded 

RNAs or altered RNA-RNA interactions upon depletion of the dsRBP. In collaboration with 
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Jernej Ule (Crick Institute, London), we already determined Stau2-bound RNA duplexes in rat 

brain using the hiCLIP technology (Chapter C). These data show that a long-range RNA 

duplex (150 nt) in the 3’-UTR of Rgs4 is necessary to drive Stau2 RNP assembly, thereby 

promoting Rgs4 localization to distal dendrites. Interestingly, this RNA duplex is not merely 

necessary, but also sufficient to drive RNP formation (Fernández-Moya SM, Ehses J, et al., 

manuscript in preparation). Previously, we have shown that Stau2 is important for directed Rgs4 

transport in dendrites (Bauer et al., 2019). Together, these data suggest a reciprocal relationship 

between RNA structure and RBP in RNP assembly. This link seems to be especially important 

in the brain, as neuron-enriched mRNAs harbor longer 3’-UTRs (Heraud-Farlow et al., 2013; 

Miura et al., 2013) that are more structured if the mRNA is bound by Stau2 (Fernández-Moya 

SM, Ehses J, et al., manuscript in preparation). Using the above described genome-wide 

techniques, it should be possible in future to reveal the molecular contributions of Stau2 to 

RNP assembly. Does Stau2 mainly function in packaging mRNAs for transport, storage and 

protection from degradation by compacting the 3’-UTR or does Stau2 regulate RNA-RNA 

interactions to govern RNA granule assembly and size? 

6.3 How does the RBP network contribute to neuronal 
physiology? 

RBPs are the central effectors of posttranscriptional gene expression. Consequently, their 

malfunctioning has been connected to many central nervous system diseases (Gebauer et al., 

2020; Schieweck et al., 2020). As discussed before (6.1 and 6.2), increasing evidence points 

towards an extensive interdependent regulatory network of RBPs that helps to maintain 

neuronal gene expression homeostasis (Schieweck et al., 2020). Stau2 is a known mediator of 

RNA localization in both stem cells (Kusek et al., 2012; Vessey et al., 2012) and neurons (Bauer 

et al., 2019; Sharangdhar et al., 2017). Its deficiency in neurons results in general reduction of 

RNA content in dendrites and RNA mislocalization (Goetze et al., 2006; Sharangdhar et al., 

2017; Tang et al., 2001). This can possibly lead to abrogation of local translation in dendrites. 

Stau2 target mRNAs are enriched for synaptic proteins and converge in the GPCR signaling 

pathway, including the key signaling molecule Rgs4. On the one hand, we have shown that 

Stau2 regulates granule assembly, dendritic transport and RNA stability of Rgs4 mRNA (Bauer 

et al., 2019; Heraud-Farlow et al., 2013). On the other hand, neuronal Rgs4 expression is also 

negatively regulated through synergistic binding of HuR and miR-26/RISC (Chapter A). 

While it remains to be solved whether Stau2 and HuR/miR-26 can bind to Rgs4 at the same 
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time, they functionally counteract each other in determining the fate of Rgs4 mRNA. 

Interestingly, double knockout of Rgs4 and fragile X mental retardation 1 (FMR1) rescues 

several molecular and behavior phenotypes observed in FMR1 knockout mice (Pacey et al., 

2011). FMRP localizes to synapses and contributes to RNA localization and translation control 

(Dictenberg et al., 2008; Pilaz et al., 2016; Wang et al., 2016). Furthermore, FMRP has been 

shown to be part of neuronal Stau2 particles (Fritzsche et al., 2013), in which it possibly 

contributes to translation repression of transport RNPs (Bolduc et al., 2008; Darnell et al., 

2011). Both FMRP and Stau2, regulate the synaptic actin cytoskeleton and control dendritic 

spine maturation of neurons (Dictenberg et al., 2008; Goetze et al., 2006). Such changes in 

dendritic spine morphology upon knockdown of RBPs often come along with higher 

susceptibility for epileptic seizures, as it has been shown for FMRP (Contractor et al., 2015), 

Pum2 (Follwaczny et al., 2017) or Hu proteins (Ince-Dunn et al., 2012). Here, it is interesting 

to note that inhibition of Rgs4 has been shown to promote the anti-seizure effect of endogenous 

adenosine (Chen et al., 2012) and Rgs4 knockout rescued the epileptic and dendritic spine 

phenotypes observed in FMR1 knockout mice (Pacey et al., 2011). Together, these data place 

Stau2, FMRP, HuR, miR-26/Ago2 and Rgs4 in one central pathway regulating dendritic spine 

maturation and, ultimately, seizure susceptibility. The molecular mechanisms, however, 

underlying these phenotypes are only beginning to be unraveled. FMRP-mediated translational 

control of cofilin-1, an F-actin stabilizer, (Feuge et al., 2019) and FMRP interaction with 

Cytoplasmic FMR1 Interacting Protein 1 (Cyfip1) (DeRubeis et al., 2013) have been proposed 

to mediate dendritic spine regulation in dependence of FMRP. In case of Stau2, no molecular 

mechanism underlying the dendritic spine phenotype could be determined until now. Previous 

data from our lab by Goetze et al. indicated that Stau2 dependent b-actin mRNA misregulation 

could be responsible (Goetze et al., 2006), but it cannot be excluded that the observation was 

rather a consequence of changes in actin cytoskeleton than mediated by direct Stau2 binding to 

b-actin mRNA. Here, also Stau2-dependent regulation of Rhoa or g-actin expression, both 

direct Stau2 targets (Heraud-Farlow et al., 2013; Sharangdhar et al., 2017), or altered Cofilin-

1/2 protein expression (Schieweck R et al., Mol Cell, under revision) could explain the impact 

on dendritic spine maturity. 

In addition to formation of dendritic spines and synapses, the overall dendritic or axonal 

outgrowth of neurons is regulated by RBPs (Antonacci et al., 2015; Nawalpuri et al., 2020; 

Rehfeld et al., 2018; Vessey et al., 2010). Several proteins involved in the RNAi pathway have 
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been shown to promote dendritic outgrowth. Conditional loss of Dicer in excitatory neurons, 

and subsequent reduced miRNA levels, resulted in dendritic branching deficits in mice (Davis 

et al., 2008). Similar results were obtained from C. elegans deficient for dcr-1 (Dicer) (Antonacci 

et al., 2015) suggesting that this mechanism is indeed conserved. Furthermore, knockdown of 

the RISC scaffolding protein GW182/Tnrc6 results in reduced dendritic arborization in 

developing neurons (Nawalpuri and Muddashetty, 2020). I have now shown that Stau2 

depletion leads to increased dendritic arborization in mature neurons and downregulation of 

Ago1/2 was able to rescue this effect (Chapter B). Dicer, GW182/Tnrc6 and Ago1/2 are all 

part of the RNAi pathway (Bartel, 2018). Together these data suggest that miRNA mediated 

gene silencing promotes dendritic arborization through a mechanism that is yet largely 

unknown. Stau2, on the contrary represses dendritic branching, which fits with the opposing 

functions of Ago1/2 and Stau2 on global translation (Chapter B). Several mechanisms could 

possibly explain the arborization phenotype, starting from (i) uncontrolled branching induced 

by RNA mislocalization and general reduction of dendritic RNA content to (ii) specific changes 

of the actin cytoskeleton involved in neurite outgrowth as discussed in the previous paragraph 

for spine maturation, and finally (iii) reduction of functioning synapses due to dendritic spine 

deficits resulting in compensatory dendritic overgrowth. Further, the RNAi pathway is 

upregulated in Stau2 depleted neurons as shown by us (Chapter B) and LeGendre et al. for 

Staufen in C. elegans (LeGendre et al., 2013). This opens the possibility that the increased 

dendritic complexity in Stau2 deficient neurons is actually mediated by elevated RISC activity 

(LeGendre et al., 2013). 

In conclusion, these examples of RBP function in dendritic spine morphogenesis and 

arborization support the idea that different RBPs converge on similar biological pathways or 

even on the same RNA target (here Rgs4). Further, those RBPs do not seem to act 

independently of each other, but rather in an interdependent network that shapes neuronal 

physiology and, ultimately, cognitive functions. The emerging association of nervous diseases 

to RBPs highlights the importance to understand the impact of balanced RBP expression for 

neuronal gene expression homeostasis. In addition, the rising field of RNA-based gene therapy, 

recently boosted by the development of RNA vaccinations against SARS-CoV-2, will be 

relying on our knowledge of RBP and RNAi function in gene expression homeostasis. 
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Appendices 
List of Abbreviations 

Ago Argonaute 

APA alternative polyadenylation 

APEX2 L-ascorbate peroxidase 

ARF1 ADP-ribosylation factor 1 

Calm3 Calmodulin 3 

CLIP crosslinking and immunoprecipitation 

CMV cytomegalovirus 

Ctrl control 

Dcp mRNA-decapping enzyme 

Ddx DEAD-box RNA helicase 

DIV days in vitro 

dsRNA double-stranded RNA 

Edc enhancer of decapping 

ELAVL embryonic lethal abnormal vision like 

FMRP Fragile X mental retardation protein 

GFP green fluorescent protein 

GPCR G-protein coupled receptor 

GTP guanosine triphosphate 

h hours 

HEK-293T Human embryonic kidney cells 293T 

hiCLIP RNA hybrid and individual-nucleotide resolution ultraviolet 
crosslinking and immunoprecipitation 

Hu Human antigen 

kDa kilodalton 

Kv1.1 potassium voltage-gated channel subfamily A member 1 

LTD long-term depression 

LTP long-term potentiation 

min minutes 

miRNA microRNA 
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mRNA messenger RNA 

ncRNA non-coding RNA 

NES nuclear export signal 

NLS nuclear localization signal 

NTC non-targeting control 

ORF open reading frame 

P-body Processing body 

pre precursor 

pri primary 

Pum2 Pumilio 2 

qRT-PCR quantitative real-time polymerase chain reaction 

RBD RNA-binding domain 

RBP RNA-binding protein 

Rgs4 Regulator of G-protein signaling 4 

RISC RNA induced silencing complex 

RNA ribonucleic acid 

RNAi RNA intereference 

RNP ribonucleoprotein particle 

RRM RNA recognition motif 

RSV Rous Sarcoma Virus 

sec seconds 

shRNA short hairpin RNA 

SRS Staufen recognition structures 

ssRNA single-stranded RNA 

Stau Staufen 

tagRFP monomeric red fluorescent protein 

TBD tubulin-binding domain 

tdMCP tandem MS2 coat protein 

Tnrc6 trinucleotide repeat-containing gene 6 protein 

TRBP Trans-activation-responsive RNA-binding protein 

UBC Ubiquitin C 

UTR untranslated region 

Xrn1 5’-3’ exoribonuclease 1 
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