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“It seems, therefore, that a general theory of systems would be a useful tool
providing, on the one hand, models that can be used in, and transferred to,
different fields, and safeguarding, on the other hand, from vague analogies which
often have marred the progress in these fields.”

Ludwig von Bertalanffy
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Abstract

Cameron Beebe

Knowledge Transfer in Cognitive Systems Theory:
Models, Computation, and Explanation

Knowledge transfer in cognitive systems can be explicated in terms of struc-
ture mapping and control. The structure of an effective model enables adaptive
control for the system’s intended domain of application. Knowledge is trans-
ferred by a system when control of a new domain is enabled by mapping the
structure of a previously effective model. I advocate for a model-based view of
computation which recognizes effective structure mapping at a low level. Ar-
tificial neural network systems are furthermore viewed as model-based, where
effective models are learned through feedback. Thus, many of the most popular
artificial neural network systems are best understood in light of the cybernetic
tradition as error-controlled regulators. Knowledge transfer with pre-trained
networks (transfer learning) can, when automated like other machine learning
methods, be seen as an advancement towards artificial general intelligence. I
argue this is convincing because it is akin to automating a general systems
methodology of knowledge transfer in scientific reasoning. Analogical reasoning
is typical in such a methodology, and some accounts view analogical cognition as
the core of cognition which provides adaptive benefits through efficient knowl-
edge transfer. I then discuss one modern example of analogical reasoning in
physics, and how an extended Bayesian view might model confirmation given
a structural mapping between two systems. In light of my account of knowl-
edge transfer, I finally assess the case of quantum-like models in cognition, and
whether the transfer of quantum principles is appropriate. I conclude by throw-
ing my support behind a general systems philosophy of science framework which
emphasizes the importance of structure, and which rejects a controversial view
of scientific explanation in favor of a view of explanation as enabling control.
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Chapter 1

Introduction

Without the criterion of ‘control’ we have no objective reason for
rejecting witchcraft, or astrology, or dianetics, or any other system
that claims to be ‘real knowledge’. Ashby, 2008, p. 4303

Knowledge transfer in cognitive systems can be explicated through the ef-
fective mapping of structure from a model, which enables control in a target. I
argue this from the point of view of a systems theorist, which is consistent with
a mechanistic philosophy of science. However, I have one crucial objection to
mechanists like Craver, 2007, who combines a systems theory perspective with
what I think is an untenable notion of explanation. It is an objection in good
faith, since I believe there to be much more agreement than disagreement over-
all. However, the notion of explanation which is found in the ‘neo-mechanist’
picture is unnecessary (or worse, mistaken). Additionally, if neo-mechanists
wish to explain knowledge transfer in cognitive systems like I do, then I believe
further amendments must be made towards the structural view of mechanisms
I offer here.

Craver in particular advocates for an ontological approach to mechanistic
explanations in science. This is at odds with what I take to be the received
view. The received view of what an explanation is contends that it is some kind
of communicable, linguistic-argumentative structure. This structure provides a
meaningful connection between some parts (explicit or implicit) of a scientific
representation, or multiple scientific representations, and ideally increases an
agent’s understanding when the explanation is communicated. That is, under
the received view, an explanation is a function of some kind of representation
for a purpose. If explanations in such a view are objects, they are formal or
structural objects. They are certainly not the kinds of objects that scientists
normally investigate. They are a kind of dependent object, formally related in
some way to mechanisms in the world, which are the objects of study.

The causal-mechanical view of ontic explanations offered by Craver—
primarily in neuroscientific explanations—seems to identify explanations (es-
pecially the good ones) with causal mechanisms in the world. Craver claims
to get his ontic notion of explanation from Salmon, making the distinction be-
tween explanations in the world (identified with multi-level causal mechanisms)
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and explanatory texts (some kind of logico-argumentative representations). For
Craver, locating a causal mechanism in the world is identical to locating an
explanation. The mechanism produces a behavior or phenomenon, and the cor-
responding explanation (identified with or as the mechanism itself) explains the
behavior. In a slogan, one might say Craver’s position advocates for Explana-
tion Without Representation. This is Craver’s ontic notion of explanation, and
he maintains its distinctiveness (and the usefulness of the distinction).

Salmon’s most penetrating insight was to abandon the idea—explicit
in the [covering law account of explanation] and Kitcher’s [unifica-
tory account]—that explanations are arguments. Instead, he de-
fended an ontic view, according to which explanations are objective
features of the world. This idea can be brought out by considering
an ambiguity in the term, explanation. Sometimes explanations are
texts—descriptions, models, or representations of any sort that are
used to convey information from one person to another. Explana-
tory texts are the kinds of things that can be more or less complete
and more or less accurate. They are representations. Other times,
the term explanation refers to an objective portion of the causal
structure of the world, to the set of factors that bring about or
sustain a phenomenon (call them objective explanations). [. . . ] Ob-
jective explanations are not texts; they are full-bodied things. They
are facts, not representations. They are the kinds of things that are
discovered and described. There is no question of objective expla-
nations being “right” or “wrong,” or “good” or “bad.” They just
are.
Objective explanations, the causes and mechanisms in the world,
are the correct starting point in thinking about the criteria for eval-
uating explanatory texts in neuroscience. Craver, 2007, p. 27

One might think that these two sorts of explanation—texts and ontic—can
live harmoniously in a mechanistic philosophy of science. It is my impression
that this is not Craver’s intention, nor do I find the ontic notion at all plausible.
Rather, his account of mechanisms goes hand-in-hand with the ontic notion of
explanations. It is anti-representational, objective, and identified with mecha-
nisms in the world. Unfortunately, I think this is unnecessary and a self-inflicted
wound. I advocate for an alternative, which is just to drop the ontic notion and
focus on ‘explanatory texts’ as enabling control, which is stated many times over
by Craver as the purpose of explanation. I just don’t think ontic explanations
achieve this purpose if they aren’t represented and communicable.

It is worth noting now that Craver’s position has furthermore influenced a
view that Piccinini, 2015 espouses regarding computational mechanisms and
computational explanations, embodied in the slogan: Computation Without
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Representation. More on this later in chapters 2 and 3. Continuing with Craver
for now, he reconstructs a view of Cummins as follows:

On his view, the explanandum is some capacity ψ of a system S. S’s
ψ-ing is explained by analyzing it into subcapacities {φ1,φ2, . . . ,φn}
and showing that ψ is produced through the programmed exercise
of the subcapacities. To show that ψ can be produced, in this sense,
through the programmed exercise of the subcapacities, one specifies
a box-and-arrow diagram showing how the subcomponents work to-
gether such that they ψ. For example, the capacity of the neuron
(S) to generate action potentials (ψ) would presumably be explained
by a box-and-arrow diagram that exhibits the programmed exercise
of such capacities as rotating, changing conformation, and diffusing.
Craver, 2007, p. 110

Craver continues with some notes on reductive explanation, and then com-
ments that

[. . . ] the systems tradition rejects the idea that explanations are
arguments. All that matters is that the phenomenon is realized
by some underlying mechanism. Furthermore, systems explanations
are not peripheral to the practice of neuroscience; they are much
more accurate descriptions of neuroscientific explanations than the
reduction model supplies. Craver, 2007, p. 110

I am not concerned here with whether Craver has accurately reconstructed
Cummins’s view of systems explanations. Rather, I wish to object to the asser-
tion that the “systems tradition” generally rejects the idea that explanations
are arguments. I show that there is an alternative systems theory framework in
which explanations are arguments or representations of some kind. This frame-
work is based on the general systems theory (GST) picture of Bertalanffy, 1969
and the closely related cybernetics developed by Ashby, 1958. The methodol-
ogy these authors outline produces explanations that rely on formal structural
properties common across representations in various domains of (complex) sys-
tems.

It may be that there are competing schools of thought within the systems
tradition itself, but I want to emphasize here that at the very least there is
support for an alternative perspective from systems theory—one in which ex-
planations are arguments. Oddly, it seems plausible to take from Craver’s own
reconstruction of Cummins’s view that there are systems tradition proponents
who think explanations are arguments. The representation of a mechanism,
and its analysis into components and a program of organized behavior, seems
very much like an argumentative structure is being identified as an explanation.



4 Chapter 1. Introduction

Showing how something works just is an argument, however implicit it may be.
We should maintain the distinction between how something works and showing
how something works.

In general, it is my opinion that Craver conflates many times what are
properties of complex systems (and multi-level mechanisms) with properties
of explanations. This should be unsurprising given the focus on a notion of
explanation that is ontological (and objective). This notion of explanation is
incorrect at worst, and at best does not advance a useful new kind of expla-
nation since we will always require the explanatory text anyways when trying
to explain something to someone. Wright appears to have addressed similar
worries (Wright (2015) and Wright (2012)), finding the ontic conception of ex-
planation going back to Salmon to be at best a misconception. At the very least,
we can state a pragmatic objection to ontic explanations. This consists simply
of the observation that no ontic explanation is an intersubjective explanation.
An ontic explanation is incommunicable, since it is not a representation of the
world but identified with an object in the world itself. I cannot use an ontic
explanation to explain.

While I do find Craver’s discussion of normativity for systems explanations
productive, I do not see the motivation for abandoning the logico-mathematical
foundations that must be present to understand just what an explanation is.
It simply cannot be just identified with a mechanism, nor just a superfluous
reference to a physical mechanism in the world. There are practical functions
of explanations, they need to be described or written down or represented in
some way in order to achieve these functions. One function is, of course, to
be communicable between agents such as to facilitate understanding of why a
phenomenon occurs.

Explanations facilitate knowledge, and as I argue in chapter 2, knowledge
can be seen in terms of prediction, control, and regulatory capacities. Control is
not possible without a representative vehicle to transfer this knowledge from the
explainer to the explainee. This of course does not mean that the mechanism
must be transparent—and indeed one issue I discuss in chapter 4 in depth is
the notion of epistemic opacity in artificial neural networks. It seems hardly
productive (or even accurate) to say that the causal mechanisms in a network
are an ontic explanation (...of the network).

I think a reasonable way forward is to save the progress Craver made with
respect to multi-level causal-mechanistic explanation, and drop anything which
does not fit in a general systems theory which also handles the object of this
dissertation: knowledge transfer. Knowledge transfer in cognitive systems re-
volves around the transfer of control capacity in model-based systems. These
systems can be understood as having an effective structural mapping between
the model and a target operation. The structural view of systems as well as sys-
tems theory, and the methodology of GST and cybernetics, is opposed to both
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Craver and Piccinini’s slogans. Rejecting representations in systems theory ex-
planations would be just as incompatible with the methodology as rejecting
representations (however minimal) in the systems of study. Thus, my approach
leaves behind the anti-representationalism evident in Craver’s ontic notion of
explanation and in Piccinini’s notion of computation. I will show that there is
sufficient motivation from within systems theory to maintain a notion of repre-
sentation for explanations as well as a minimal notion for natural and artificial
systems of interest.

In the following chapters, I argue that computational systems can be un-
derstood as model-based, where a pragmatic definition of physical computation
depends on a structural mapping a user imparts to the system. We can likewise
understand artificial neural networks as systems which learn an effective map-
ping (whether it strongly ‘represents’ or not) which establishes control for in-
tended data distributions. Transfer learning in artificial neural networks means
transferring a system’s capacity to control to a new distribution. Finally, in
high-level model-based cognition like that of analogical reasoning, knowledge
is transferred from a source domain—the model—to a target domain. This is
what we do when we apply models to target problems in scientific reasoning,
in cognition, and in machine learning. This dissertation looks at this subject of
transfer by examining examples in these contexts.

The examples I discuss are tied together by a loose philosophy of systems,
or systems theory, which I refine based on the presented content of this work. I
start with what I consider to be conceptually useful foundation found in Ludwig
von Bertalanffy’s General System Theory (Bertalanffy, 1969). Systems theories
are theories concerned with systems broadly construed—physical systems, bio-
logical systems, neural systems, sociological systems, etc. Dialing into a more
refined view, what is important is the formal representations involved in the
analysis of systems, and so a systems theory can be understood as a formal
methodology employed for study in systems sciences. I will draw attention
throughout this dissertation to Ashby’s cybernetics (Ashby, 1958), and I find
it plausible to rebrand the associated systems framework as structural systems
theory.

Typical systems we are interested in are those whose organization and re-
lationship between parts are relevant for the behavior of the whole system.
Complex systems theory studies systems where the behaviors and interactions
of parts become unintuitive and convoluted. We might not be able to easily
understand or predict how the system as a whole will behave under any given
circumstances. On the other hand, so-called “heaps” are trivial systems whose
behavior can be considered summative:

We may define summativity by saying that a complex can be built
up, step by step, by putting together the first separate elements;
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conversely, the characteristics of the complex can be analyzed com-
pletely into those of the separate elements. This is true for those
complexes which we may call “heaps,” such as a heap of bricks or
odds and ends, or for mechanical forces acting according to the par-
allelogram of forces. It does not apply to those systems which were
called Gestalten in German. Take the most simple example: three
electrical conductors have a certain charge which can be measured
in each conductor separately. But if they are connected by wires,
the charge in each conductor depends on the total constellation, and
is different from its charge when insulated. Bertalanffy, 1969, p. 67

Heaps are uninteresting systems, but they help contextualize the kinds of
systems we are interested in. Perhaps systems theory can be better understood
as a system framework. It is a framework of thought underlying a methodol-
ogy concerned with identifying, describing, and understanding the properties
and behaviors of systems. Particular systems have associated theories, but the
method in which systems science is done is best thought of as a framework.
Furthermore, general systems theory is a more general method aiming to tie
together seemingly disparate systems for potential efficiency, explanation, and
unification.

That is, we might define an ideal systems theorist as not limited to one
domain of science like atomic physics or molecular biology. The agent might
try to transfer models from one domain to another. There are arguably real
benefits pedagogically for learning transferable complex systems principles in
hands-on methods (like programming models, see Goldstone andWilensky, 2008
for example). Promoting the learning of generally applicable principles is aided
by the study of concrete (although idealized) model systems. Scientists and
philosophers alike also find models (of various kinds) to be indispensable tools.

A general system theory (like that outlined by Bertalanffy) is about a
methodology for managing inter-system models and relations. A particular
system theory may have broad application, in which case it might also make
sense to discuss it as a general system theory for the applicable classes of sys-
tems. Bertalanffy, 1969, p. 84 distinguishes three ‘levels’ of the description of
systems and the phenomena they produce. The first is that of analogy, or what
he calls “[. . . ] superficial similarities of phenomena which correspond neither in
their causal factors nor in their relevant laws.” Considerably more important
for scientific modeling, according to him, is a second level concerning homolo-
gies where “[. . . ] the efficient factors [between systems] are different, but the
respective laws are formally identical.” Importantly, he considers the ‘hydraulic’
relationship between electrical current and fluid flow—a classic example in the
philosophy of science—to be a homology, not an analogy. This is a formal
distinction based on relations between structures in representations.
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The third level of description is that of explanation, “[. . . ] the statement
of specific conditions and laws that are valid for an individual object or for a
class of objects.” I am primarily concerned with cybernetics which is, following
Bertalanffy, a general system theory concerned with certain classes of regulatory
systems which effectively control inputs in apparent goal-directed or purpose-
driven behavior. That we can describe these systems in such a way is at the very
least convenient, if not actually suggestive of teleological mechanisms. This was
an important stepping stone towards cybernetic systems theory as argued by
Rosenblueth, Wiener, and Bigelow (1943). Cognitive systems like the human
nervous system and artificial neural networks are classes of regulatory systems.
Bertalanffy continues on the notion of explanation:

Any scientific explanation necessitates the knowledge of these spe-
cific laws as, for example, the laws of chemical equilibrium, of growth
of an organism, the development of a population, etc. It is possible
that also specific laws present formal correspondence or homologies
in the sense discussed; but the structure of individual laws may, of
course, be different in the individual cases. Bertalanffy, 1969, p. 85

Just as a systems theorist might regulate the application of a model to a
novel domain, a cognitive system might transfer knowledge in a similar way. So
what is knowledge transfer? Transfer is generally taken to be a procedure for
taking or moving some thing from one place to another. Knowledge transfer is
the transfer of some known or believed facts from one place to another. Or, it is
the transfer of information of some sort relevant for a cognitive system. At a low
level, for example in a neural system, this might be the transfer (or application)
of an adaptive mechanism to an input which is outside the typical distribution of
environmental stimuli. In the case of a computational device which simulates
or is a model of another system, the behavior or output of the device itself
may represent information gained via an assumed mapping. Loosely, we might
characterize the first sense being about controlling novel input, whereas the
second is perhaps more about predicting. These might not be exclusive senses
of transfer, in fact it seems reasonable to suppose that the transfer of control
and predictive capacities go hand in hand.

At a high level, for example analogical reasoning, we might again notice two
distinct ways in which model-based knowledge transfer takes place. There is the
way in which a new property or behavior in a target domain is asserted to exist,
because it exists in the source (model) domain. In contrast, there is reasoning
which is done with a ‘complete’ analogical correspondence (mapping) between
the domains. We could say that the first stage is concerned with establishing the
relationship between the two domains, building a mapping. The second stage
has already granted a mapping, and transfer proceeds along rather deductive
rails. These two methods are characteristic of knowledge transfer at both high
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and low levels, not just particular to higher level analogical transfer. The first
stage is perhaps of greater interest primarily because it appears to involve some
sort of non-deductive leap or discovery.

For the purposes of this dissertation, knowledge is best thought of in terms of
control, as Wheeler (2016, p. 322) notes for a machine epistemology in a world
of big data: “Knowledge is a means of control, not a special state of mind.”
Knowledge is demonstrated by the ability to control a system. This idea stems
from Ashby and is thoroughly outlined in chapter 2. Knowledge transfer, then,
is the transfer of the ability to control a system. Control is fundamental to
the field of cybernetics, which was founded by Wiener (1948), and significantly
developed by Ashby (1958). The Greek root κυβερνητική is also where the term
govern derives from.

Again, the notion of control goes hand in hand with that of prediction, and
so we might alternately think of knowledge as demonstrated by the ability to
predict. In this case, knowledge transfer could be thought of as the transfer of
predictive capacity from source to target. Ashby also considered control and
prediction to be forms of regulation, and so knowledge is seen as the capacity to
regulate. (Ashby, 2008, p. 4438-4439) In this case, we can wrap up the notions
of prediction and control and consider knowledge transfer as the transfer of
regulatory capacity. Later in chapter 4, I discuss the example of a thermostat
as a cybernetic regulator, and how artificial neural networks can be thought of
along similar lines.

Once we have a concrete notion of knowledge transfer, it becomes something
which is the subject of regulation itself. Much of modern science has become
primarily concerned with modeling—the identity of scientists becomes increas-
ingly one of a modeler. Philosophers of science have spent plenty of effort on
detailing examples of modeling in science, as well as characterizing the general
procedure of model-based reasoning which transfers knowledge from source to
target domains. One issue these modelers must face is when it is appropriate
to apply one model over another, and determine what are ‘good’ and what are
‘bad’ models, ‘good’ analogies and ‘bad’ analogies. How might a methodology
of science attack this problem? Can it prescribe some clear guidelines, or will
the modeling process always remain messy?

Well, if we take the literature on analogical reasoning to be any indication,
one might get the impression that there is no principled and coherent account
that prevails—but our intuition is that we know analogy when we see it. Simi-
lar to Bartha (2010), we might proceed to try to build an overarching account
of analogy by an analysis of seemingly good cases of analogical reasoning. We
should look to examples of scientific reasoning to find these examples. Even
though bad analogies have been made by scientists of the past, scientific rea-
soning on the whole is more rigorous and if we are to find examples of good
analogical reasoning, it will probably be by scientists. But how do we evaluate
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these examples, which ones are ‘good’? Perhaps analogical reasoning is more
about efficiency and effectiveness as a methodology than it is about agreeing
in which cases an analogy (or the application of a model) is philosophically
justified.

As Bartha (2013) notes, there is a difference between philosophical ac-
counts of analogy (based on some normative principles), and computational
approaches. I will follow the computational route to analyzing analogical and
model-based reasoning, and see how far we can get. What might a computa-
tional system look like if it could ‘reason’ by transferring previously learned
knowledge from one domain into another new (and perhaps previously un-
encountered) domain? I offer an account in chapter 5 based on techniques
for transfer learning with artificial neural networks developed in the machine
learning community. I argue it contributes to the philosophical discussion on
analogical reasoning, providing a formally rigorous characterization of good ana-
logical reasoning as positive transfer learning (and vice versa). This account is
rigorous because there are clear quantities, like accuracy or time, which we can
measure to say what we mean by good and bad. Efficiency is a value when
survival is the goal, in stark contrast to traditional philosophical analyses.

That is, perhaps we should not look to judge good analogical reasoning by
some a priori principle. Instead, we can look to the performance of a protocol
that allows model transfer. Transfer is positive when a new task is aided (i.e.
takes less time, or more accurately classifies or predicts data), and negative
when the transferred structure hinders problem performance. Importantly, in
the machine cases I am aware of, the relation between domains is asserted by
external means. The data scientist augments the learned ANN and chooses a
target problem based on a perceived similarity (by the scientist) or analogy with
the previous information. For artificial general intelligence, I argue that these
tasks must be automated. This automation constitutes a second feedback loop
as discussed in the foundations of cybernetic systems theory. The important
take away for philosophers is that artificial general intelligence using transfer
learning will require some robust structure mapping engine and a way to manage
model-based inferences among many models.

Some form of Bertalanffy’s general systems theory (GST) is arguably a
ready-made framework for discussing knowledge transfer between various do-
mains. GST is intended to be applied to scientific reasoning, but it also pro-
vides a conceptual framework to discuss what an artificial inference environment
should look like in which the relations (or informational links) that transfer
knowledge (or learned parameters of a more abstract nature) are not exter-
nally determined. In loose terms, the idea is to use GST to provide a working
framework to outline what must be achieved for an artificial intelligence to au-
tomatically transfer between appropriate domains—to reason analogically like
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humans do. The systems theory perspective will thus tie together this disserta-
tion in an interesting way, since GST was originally developed as a philosophy
of science framework yet I argue it contributes, via cybernetics, to the theory
of artificial general intelligence.

I take control theory, and cybernetics (at least Ashby’s brand), to provide
a philosophical underpinning for causal mechanistic explanations for compu-
tational and cognitive systems. In particular, I advocate a structural view of
mechanistic explanation which I think Ashby has provided. My approach is
also I think generally consistent with another modern cybernetic view by Seth
(2015) as an underpinning of so-called Bayesian brain and predictive processing
approaches. A structural approach is warranted for an analysis of knowledge
transfer, and is consistent with the influential work of Gentner (1983) on a
structural mapping account of analogies.

So, in addition to discussing knowledge transfer specifically, this disserta-
tion in my view provides an imperative to suggest an alternative foundation
for a neo-mechanist view in philosophy of science. The currently received neo-
mechanist view put forth perhaps most prominently in the present context by
Craver (2007) has been rightly criticized by Colombo, Hartmann, and Iersel
(2014) as unecessarily presupposing a realist view, as well as holding a contro-
versial view of explanation. This view of explanation identifies a mechanistic
explanation with a causal mechanism in the world, distinguishing this from so-
called explanatory texts. I find this view to be untenable not just because it is
unnecessarily realist, but because explanations require representation. This is a
pragmatic response motivated also in part by what I consider to be the spiritual
successor to Craver’s book by Piccinini (2015) concerned with the metaphysics
of computational systems. While Colombo, Hartmann, and Iersel (2014) sug-
gest an anti-realist view, I would like to try to split the difference by proposing
a structural mechanist, or structural systems view.

1.1 Overview
Each chapter in this dissertation was written to be as self contained as possible,
although I have tried to reduce any redundancies. The order in which they
appear tries to weave together the most coherent story about knowledge transfer
in cognitive systems theory. I have also added transitions, where appropriate,
to chapters that were originally written as stand-alone papers.

Chapter 2 provides important background on systems theory, cybernetics,
and an associated view of explanation. I relate these to prominent mechanistic
views in recent philosophy of science, noting how their ontic notion of expla-
nation differs. Most crucial to an analysis of cognitive systems is arguably the
characterization of a cognitive system as computational.
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Chapter 3 outlines a model-based view of computation. A brief analysis of
analog computation is presented, taking into account both historical and more
modern statements. I show that two very different concepts are tangled to-
gether in some of the literature—namely continuous valued computation and
analogy machines. I argue that a more general concept, that of model-based
computation, can help us untangle this misconception. A two-dimensional view
of computational devices is offered, in which this model-based dimension is
orthogonal to the dimension concerning the type of variables represented by
components. The model-based dimension measures the structural relation a
device has to a computational problem. I argue that this is a useful frame-
work for assessing alternative computing devices and computational claims in
an expanding landscape of computation. Under this view, the structure of a
representation of the system is relevant for the use of a computational device
by a user.

A model-based view is also natural for artificial neural networks (ANNs),
discussed in chapter 4. ANNs can be understood as cybernetic regulators, where
models are adaptively learned by these systems as they adjust their internal or-
ganization via feedback. Ashby’s Law of Requisite Variety provides a simple
game-theoretic foundation for understanding the power and potential of regula-
tors. This regulatory game, augmented with the Good Regulator Theorem and
the crucial concept of feedback, are sufficient to provide the concepts necessary
to understand why ANNs are so effective for tasks like classification. Under this
reconstruction, justification for belief in the effectiveness of ANNs is the same
kind of justification we have for believing that a thermostat will regulate the
temperature in a room. I argue this effectively reduces the epistemic opacity of
ANN methods, at least for a wide range of interested non-experts. Even so, it
isn’t clear that epistemic opacity of ANNs is an in-principle worry for experts.

Following this, chapter 5 goes into detail on what is called transfer learning.
Transfer learning with pre-trained artificial neural networks is a state-of-the-art
technique which may aid in the quest for more general machine intelligence.
Data scientists successfully apply neural network models to novel tasks con-
sidered to be outside the initial training domain, efficiently transferring their
predictive power. It is straightforward to see how robust automation of transfer
learning techniques could justify expectations of a notion of artificial general
intelligence (AGI). I analyze this potential in an associationist framework, com-
paring transfer learning to a view of analogical reasoning in humans. This view
characterizes analogical reasoning as an inductive logic of discovery, which is
surprisingly akin to perception, and therefore central to general cognition among
diverse domains. I argue this helps justify a philosophical approach for char-
acterizing analogy as effective structure mapping. As a high-level conceptual
tool, a general systems framework is suited for analyses of robust inter-domain
transfer of models, and therefore is suited to characterize AGI.
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In chapter 6, Roland Poellinger and I look at how one might characterize
knowledge transfer under a Bayesian philosophy of science. We look at an exam-
ple of analogical reasoning, and sketch what an extended Bayesian network looks
like in order to communicate confirmatory information between model and tar-
get systems (specifically, the structural representation of these systems). Analog
models can be used to investigate aspects of a target system we might not have
easy empirical access to. Evidence from an analog model has been used to argue
for the confirmation of a target theory. (Unruh, 2008, Dardashti, Thébault, and
Winsberg, 2017) We investigate another example, a water-wave analog system
of the quantum Casimir effect, and argue that analogical reasoning in this case
cannot be sufficiently expressed by traditional Bayesian networks. Our formal-
ization of the concept of analogy provides a novel reconstruction of Bayesian
confirmation from analog models, which preserves the epistemic information
between model and target system representations.

As a final case in motivating a structural systems theory for cognitive sys-
tems, chapter 7 discusses one of the most controversial trends in cognitive sys-
tems modeling. This trend considers the human cognitive system as quantum-
like, utilizing the mathematical structure of quantum mechanics to model judge-
ments and decision making. I consider how the mathematical structure is ap-
plied, and why it represents an interesting case of improper knowledge transfer.
Decoherence in quantum theory explains why an agent should, when possible,
have belief states which are classically compatible. Incompatible belief states,
used by quantum-like modeling proponents to explain mistakes in human judge-
ment and decision making, illustrate why these models cannot supplant well-
justified computational level frameworks like Bayesianism. Such a framework
provides a set of normative constraints which are built on classical logic, not
quantum logic. The fact that the world is ultimately quantum has little-to-no
bearing on the typical distribution of cognitive problems human agents have
encountered in our evolutionary past, and are adapted to deal with. Just as a
physicist should use classical physics to describe and solve typical macroscopic
problems, a human agent should have classical computational goals for oper-
ating on beliefs. A regulatory system based on quantum control principles is
not effective for survival. In particular, if quantum-like belief states do not
decohere, prediction and control capacity of the regulator is compromised.

In the concluding chapter 8, I cement what takeaways I think are justified in
the scope of this dissertation. I advocate for a structural systems theory view
going forward, a view which I think Ashby made quite explicit. In particular,
the emphasis on transformations or transitions of states is, I think, the correct
level of structural analysis of systems. I also think the view of communicable
explanations as enabling control is a compelling alternative to the ontic view
proposed by neo-mechanists. These points were thoroughly brought to the
surface by analysis of knowledge transfer in cognitive systems.
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Chapter 2

Cybernetic Systems,
Representation, and Explanation

[There] is no such thing as an ‘absolute system’ in the ‘objective’
world, i.e. one devoid of an observer or experimenter: there is only
a vast mass of That Which Is, behaving. [. . . ]
We can also see that the essence of absoluteness is not that it is
something that I discovered in the world, as Curie discovered ra-
dium, but that it is a way by which information can be got out of a
machine, or control exerted over it (the two mean the same). Ashby,
2008, p. 4043

The class of systems of most interest presently is one in which we assume
some computational purpose determined by a user. In many cases, for ex-
ample the embodied human nervous system, the user is presumed to be the
system itself. Cybernetics offers us a mechanistic framework to explain the
survival or effective use of a system as successful regulation of environmental
disturbances. The apparent teleological behavior of these systems is not to be
discarded lightly in our descriptions of them, if we follow the influential ar-
guments made by Rosenblueth, Wiener, and Bigelow (1943). The history of
cybernetics and adjacent fields in Cordeschi (2002, §4) shows how serious the
issue has been, for useful descriptions of systems as well as for explanations of
their behavior. This should not be confused with the false claim that evolution
occurs in a purposeful direction.

These systems are also computational in the sense that we characterize many
of the most important operations which occur in the system as computations.
Computational operations are formally described by abstract machines, follow-
ing transition rules from state to state. These computational operations will be
a subset of the overall regulatory mechanisms, and are distinguished from non-
computational mechanisms in that they are legitimately interpreted as having
representations (however minimal) which stand in a modeling relationship to
the target disturbances in the environment.

For the kinds of systems I am discussing, I will utilize the general systems
framework of cybernetics. Cybernetics is a particularly wide framework that
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can be classified under the notion of a GST. That is, it will exhibit the sorts of
reasoning and methodology of a GST. I take my cue from Bertalanffy:

Cybernetics, as the theory of control mechanisms in technology and
nature and founded on the concepts of information and feedback, is
but a part of a general theory of systems; cybernetic systems are a
special case, however important, of systems showing self-regulation.
(Bertalanffy, 1969, p. 17)

A cybernetic regulator aims at mitigating disturbances from the environ-
ment, with respect to a regulatory goal. Ashby, 1958

2.1 Structure Mapping
Structural systems theory (SST) is a minor refinement on the ideas already
present in Bertalanffy’s GST and Ashby’s cybernetics. At the risk of oversim-
plification, I can offer a slogan and hasty summary of the premises I take to
be central to regulatory systems in SST: A Machine is a Mapping. There are
perhaps historically three ways to cash out this slogan, or three filters to inter-
pret it through, which are unlikely to be exclusive of each other. First, a filter
of Shannon’s communication theory, where states are put into and come out of
a communication channel. A description of the system at this level is a map-
ping of probabilities and information (entropy). (Shannon, 1948) Second, there
is the filter of Turing’s abstract notion of computation. The mapping here is
characterizing state transitions among abstract computational states. Finally,
the filter of dynamical systems analysis, particularly high level descriptions of
systems. A mapping would here correspond to transitions between states in
phase space. Which filters to use would likely depend on the individual scien-
tist’s goals, and the class of systems of interest. Ashby, for example, seemed
to prefer the first and third methods of description. (See e.g. Asaro (2011),
Pickering, 2010, p. 148-149, and Ashby (1962).) Regardless, I take this to be
the first order notion of structure involved in SST. Already there is an obvious
trouble for neo-mechanists (Piccinini in particular) to bolt onto SST without
dropping the anti-representational stance.

As mentioned, it will be important for structural systems theory to distin-
guish between superficial analogies in the function of a system, and mechanisms
which are structurally similar or homologous. This aspect of the methodology
operates at a second order level: mapping a structure (which is itself perhaps
best characterized as a mapping). An influential account of analogical reason-
ing in cognitive science is that of Gentner (1983), where it is characterized as
structural mapping. The structure of a representation (of a model or a problem)
in a source domain is mapped onto a target domain. Hesse (1966) distinguishes
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further between lateral relations in analogical reasoning, based on perceived
similarities between representations, and vertical relations that are based on
causal relationships between the entities represented. These analyses provide
an account of the of scientific reasoning that is relevant for example in the case
study of chapter 6. Scientists perceive some similarity in tasks, and apply the
structure that they think is a good analysis of a source task and map that
structure onto the new target problem. If successful, there will be a structural
relationship between the models used in the different domains.

Homologies are like analogies, but where perceived similarities are actually
structurally similar and not just superficially similar. The distinction between
an analogy and homology may not always be clear cut, but we should be aware
of the spectrum of similarity relations, and how we might characterize the re-
lationships between classes of systems. A popular example is the case of wings
in both bats and birds. Is this an analogy or a homology? Bat wings and
bird wings are functionally similar, in that they enable the flight of each animal
through the air, but the similarity between them is arguably superficial. If we
tried to learn about the individual mechanisms of one organism (feathers cre-
ating a surface for lift) by ‘applying’ the analogy or what we know of the other
(skin membrane forming a patagium), perhaps we would consider the endeavor
relatively unproductive aside from characterizing the basic aerodynamics. The
individual parts and mechanisms (feathers, skin) do not share causal factors
or relevant laws to achieve flight. Or, if they do, they might be ‘superficial’
aerodynamic laws of lift.

In that case, what we learn might be applicable to create airplanes, whose
wings are even more superficially similar to the wings of bats and birds than
bat wings are compared to bird wings. If a scientist, engineer, or philosopher is
trying to gain knowledge, control, or practical insight about aerodynamics, then
perhaps the general aspects of surface area, lift, and weight which bat wings
and bird wings both satisfy could be construed as homologous. This would
only be because, for the particular use case, the level of description found in
the representations of the systems abstracts away from the irrelevant (for this
use case) aspects of the lower level mechanisms (cells, bones, etc.). But this
seems to me to be what Bertalanffy is trying to define away: a homology should
present relevant similarities at a deeper structural level. Otherwise it is just an
analogy if the similarity of representations between systems abstracts away from
what would be relevant causal factors or laws on a deeper analysis.

If the objective is to learn about the components and mechanisms of the
wings and the winged organism, the fact that both organisms can achieve aero-
dynamic lift with sufficient surface area is a functional similarity which is su-
perficial. It is just a background assumption which determines a base cate-
gory for filtering the investigator’s attention. The kinds of mechanisms which
are present in the feathers or skin membrane are relatively irrelevant to the
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aerospace engineer’s representation, but might be essential to the comparative
biologist. In this case, there are higher standards for the establishment of a
homology among mechanisms which enable a functional wing in the organism.
The organization, development, or behavior of parts in the respective organ-
isms would need to follow formally identical laws. Even if the parts themselves
are different in important material respects, the point is that there are deeper
structural similarities in a homology compared to an analogy.

A GST methodology should guard against superficial similarities between
domains, while also finding meaningful common models applicable to a wide
class of systems because of some shared structural properties. It makes sense
that the methodology is formulated in structural terms, along the structuralist
lines discussed by Ashby (1958, §6) for cybernetic systems theory. The distinc-
tion between analogy and homology, for Bertalanffy, stems from discussions in
biology and zoology:

Analogies are scientifically worthless. Homologies, in contrast, often
present valuable models, and therefore are widely applied in physics.
Similarly, general system theory can serve as a regulatory device to
distinguish analogies and homologies, meaningless similarities and
meaningful transfer of models. [. . . ]

The homology of system characteristics does not imply reduction of
one realm to another and lower one. But neither is it mere metaphor
or analogy; rather, it is a formal correspondence founded in reality
inasmuch as it can be considered as constituted of “systems” of
whatever kind. (Bertalanffy, 1969, p. 85)

We could say that the difference between analogy and homology is under-
stood along structural lines. An analogous organ in an organism has a similar
function to another organ (in another organism) but is unrelated in a structural
or causal way. In this case, a shared structure could be a shared evolutionary
path. One might follow the lines of (Jardine, 1967) in identifying the structure
with representations of mechanisms among parts in complex systems. An evolu-
tionary homologous organ has more structural similarities to another organism’s
organ due to shared evolutionary ancestors. Mechanistically, a homology be-
tween systems is when the relevant parts are causally effective for a similar
function.

2.2 From Cause to Control
As a recap of the neo-mechanist picture, Craver (2007) puts forward a causal-
mechanistic account of multi-level causal explanation in neuroscience. Multi-
level causal mechanisms are constrained by parts and behaviors in each level,
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and our explanations are mosaics of these mechanisms. Importantly, explana-
tions for Craver are ontic in the sense that they are identified with the causal
mechanism in the world and are not represented in any way formally or linguis-
tically. Explanations represented so are deemed by Craver to be explanatory
texts and not of primary concern to explanatory analyses for systems in neuro-
science. Similarly, Piccinini (2015) argues for a notion of computation without
representation. I believe these anti-representational accounts significantly clash
with the historical foundations of systems theory, computation, and cybernetics.

That said, one reason I do not want to completely disregard Craver and
Piccinini is I believe they have made some significant and detailed philosophi-
cal progress in the direction of systems theory explanations. I do not want to
throw out the baby with the bathwater. I would rather part out the pieces of
their accounts I do not believe fit to the overall picture of GST, and replace
them with more appropriate notions. There are however significant areas of
overlap to be found in the foundational literature, in my opinion, which Pic-
cinini, Craver and others may not be aware of. Particularly important is the
account of causation relied upon by Craver (and subsequently Piccinini). This
is the account of causation referred to as interventionist or manipulationist. See
Woodward (2016) for an overview.

Arguably, Ashby (1958, p. 55) has already provided an interventionist pic-
ture couched in cybernetic and systems theoretic terms:

Suppose we are testing whether part or variable i has an immediate
effect on part or variable j. Roughly, we let the system show its
behaviour, and we notice whether the behaviour of part j is changed
when part i’s value is changed. If part j’s behaviour is just the same,
whatever i’s value, then we say, in general, that i has no effect on j.
To be more precise, we pick on some one state S (of the whole
system) first. With i at some value we notice the transition that
occurs in part j (ignoring those of other variables). We compare
this transition with those that occur when states S1, S2, etc.—other
than S—are used, in which S1, S2, etc. differ from S only in the
value of the i-th component. If S1, S2, etc., give the same transition
in part j as S, then we say that i has no immediate effect on j, and
vice versa. Ashby, 1958, p. 55

Ashby develops and utilizes this interventionist or manipulability notion
without much reference to causes at all, but does continue to use the notion of
a change in variable yielding an immediate effect. Causal arrow diagrams are
instead “diagrams of immediate effects”. What is important is again the control
of the system.

This is not to say that this is historically the first such use of interventionist
ideas. Rather, I want to draw the attention of the neo-mechanists to such
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statements since cybernetic systems theory is (at least according to Bertalanffy)
a paradigm example of systems theory. It is therefore significant in the history
of systems thinking, and in particular for computational and cognitive systems
theory.

The boundaries of what constitute a particular system must be determined
by some User and a representation of the relevant factors for control. Absent
this representation, I do not see how the methodology of systems science can
operate. Thus, at least for mechanists, it can provide no explanations without
identifying those parts of a mechanism that can be controlled to produce the
phenomena in question.

In the concepts of cybernetics, a system’s “largeness” must refer to
the number of distinctions made: either to the number of states
available or, if its states are defined by a vector, to the number of
components in the vector (i.e. to the number of its variables or of its
degrees of freedom). The two measures are correlated, for if other
things are equal, the addition of extra variables will make possible
extra states. A system may also be made larger from our functional
point of view if, the number of variables being fixed, each is measured
more precisely, so as to make it show more distinguishable states.
We shall not, however, be much interested in any exact measure of
largeness on some particular definition; rather we shall refer to a
relation between the system and some definite, given, observer who
is going to try to study or control it. Ashby, 1958, p. 61

I think this is still in good enough agreement with the neo-mechanist picture
of Craver, except for the notion that representation is not a part of explanation.
Representation is also important just to get a grip on just what the system
consists of (i.e. what a point in phase space represents). Furthermore, it will
have a bearing on what is considered typical environmental input to the system.
For example, if we are studying a system, and want to know whether the system
will be stable, we need to define the class of what we expect the system to be
capable of regulating.

A system can be said to be in stable equilibrium only if some suf-
ficiently definite set of displacements D is specified. If the speci-
fication is explicit, then D is fully defined. Often D is not given
explicitly but is understood; thus if a radio circuit is said to be “sta-
ble”, one understands that D means any of the commonly occurring
voltage fluctuations, but it would usually be understood to exclude
the stroke of lightning. Often the system is understood to be sta-
ble provided the disturbance lies within a certain range. What is
important here is that in unusual cases, in biological systems for in-
stance, precise specification of the disturbances D, and of the state
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of equilibrium under discussion a, may be necessary if the discussion
is to have exactness. Ashby, 1958, p. 79

I argue that this is correct, but clearly at odds with the recent attempts
to do without representation in mechanistic explanations. Throwing out rep-
resentations is a fatal error: we need them to specify the phase space of part
behaviors in the causal mechanism. The phase space changes depending on
what we represent. Foregoing a representation in a mechanistic explanation is
not something that can just be done casually on metaphysical grounds, since
the explanation depends on the representation of what is causally relevant (and
therefore relevant for control) in the mechanism. It cannot be any other way,
representation is necessary for explanation. Or, at least it is necessary for useful
explanations.

Explanation is done with purpose, just like computation. This purpose, to
be achieved, must be formally specified.

2.2.1 Computation with Representation
A spiritual successor to Craver’s project is Piccinini’s book Physical Compu-
tation. (Piccinini, 2015) Comparing slogans again: if Craver says explanation
does not require representation, then Piccinini says computation does not re-
quire representation. The idea is that there is some way to metaphysically
distinguish computation (and computational systems), by pointing to causal
mechanisms. An earlier paper by Trenholme (1994) also attempts to dispense
with representations, in what seems to me to be a similar metaphysical at-
tempt to define “naturalistic” analog simulation. I disagree with Piccinini and
Trenholme for similar reasons to why I have dismissed Craver’s ontic notion of
explanation without representation.

The kinds of systems we are concerned with have to represent, at least in
a minimal pragmatic sense. Otherwise we run into difficulty just trying to
convince ourselves that a computational system is computational. We have to
presume that the system has an aim, falling in line with Rosenblueth, Wiener,
and Bigelow (1943), and that the mechanisms which it uses to achieve this
aim have a non-random relationship with the challenges and stimuli it faces
while trying to achieve this aim. Presuming the aim itself already presupposes
some way of specifying this aim, for if we could not do this then we cannot
communicate amongst ourselves that the system is acting so as to fulfill the aim.
In other words, the system might be computing but if we cannot specify what
it is trying to do and why it is trying to do it, then the fact that it is computing
is irrelevant and uninformative. If this is the metaphysics of computation, then
it is wholly uninteresting. Similarly, if there exists some explanation for a novel
phenomenon but nobody can explain it, then for all practical purposes there
is no explanation existing. The important point is that there is a user-relative



20 Chapter 2. Cybernetic Systems, Representation, and Explanation

functional role to computation and explanation. The pragmatic view gets you
everything you need, unless you want to do metaphysics in the realm of ideas.

We need representations, otherwise we would look at a computational device
like the slide rule and cannot explain why it implements multiplication. It is
designed to represent or encode a specific set of transitions corresponding to
the mathematical relationship of log scales which, when used properly, can be
used by an agent to compute multiplication. The distance slid corresponds to
‘addition’, and the log scales allow the user to read off the functional output of
‘multiplication’. I slide it one unit to the right and it multiplies a number by two.
The truth of this statement is vacuous, however, if there is no representation or
model of what multiplication is (in this case it is related via logarithmic rules).
I cannot determine whether the slide rule actually computes multiplication if I
do not specify what multiplication is and how (a description of) the slide rule
can realize or implement the given model.

The network of knowledge and inferences enabled by a non-representational
account is not productive. We, as agents, are not able to “plug into” the net-
work. It is running parallel to the scientific method and the practice of scien-
tists. If no information (literal bits) can be extracted from the non-represented
computation or explanation, we cannot construct a model or know where to
intervene in a causal mechanism. If we cannot intervene to demonstrate con-
trol, it makes no practical difference whether the physical computation exists.
I find similar issues with the case of Trenholme (1994), who rejects represen-
tations and asserts that there are natural or physical isomorphisms that hold
between causal structures of an analog simulation and the target. I do not see
the scientific use provided by positing metaphysical isomorphisms between sys-
tems, if they are not somehow grounded in a correspondence with at least some
practically realized isomorphism among representations. It seems to me to be
an unnecessary journey into Platonism. I will return to Trenholme in the next
chapter, but want to note here that, like Piccinini, I still do find a lot to agree
with.

Rather than dispensing with representations at all, we might just try to
have a watered down or less loaded notion of representation. This is obviously
a very controversial area of study, and an area which no doubt my account
of SST would benefit from further work on. I offer only a brief comment at
this point. Perhaps for SST, we can get by with using the word representation
(in the kinds of systems we are concerned with) to refer to something like an
effective encoding of an effective mapping.

2.3 Knowledge as Control
The conception of knowledge most relevant to the topic of this dissertation is
that of control. Knowledge is nothing more than the ability to control a system.
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While there might be some other sense of knowledge which doesn’t need to
exhibit control, it may be of little use for scientists. Demonstrating control is
a part of experimentation, explanation, and a scientific methodology. I outline
this view by citing specific passages in W. Ross Ashby’s journal compilation,
where he makes it explicitly clear. As I find these passages to be not only
informative on the subject of the dissertation as well as historically interesting,
I quote these passages at length here, and occasionally throughout.1

‘Knowing’ a system means, ultimately, being able to control it. This
means that the ‘knower’ [K] has within his brains the organization
that will convert an actual state Si (of the system), given to K via
his sensory receptors, into that set of parameter values α as will lead
to system S going to an assigned state Sj . Ashby, 2008, p. 4292

Ashby then discusses roughly three aspects of the system to focus on solving
for control. We need to know the state desired, the current state of the system,
as well as what to set any internal parameters to. Ashby continues:

K thus becomes a transducer with two inputs, one of which, the
‘goal’, can be taken for granted. Then ‘state desired’ being given,
[K] codes correctly, if he ‘knows’, all the Si’s into corresponding α’s.
Ashby, 2008, p. 4292

To verify or test knowledge of a system, we can disturb or manipulate the
system by ‘kicking’ it into some state Sk (instead of Si) and observe subse-
quent responses. Assuming the overall system S has some means of adjusting
itself to achieve the goal state Sj , it will be able to demonstrate knowledge by
demonstrating control or mitigation of the disturbing kick.

K will promptly re-code [Sk] to a new value of α, which brings about
the transition Sk → Sj . And if K knows all about the system S,
the whole [system S +K] will bring Sk to Sj whatever the kicks do.
Ashby, 2008, p. 4293

Control can be thought of in a concrete sense as managing effective state
transitions.2 Knowledge is then understood as a mapping of state transitions
which enable control.

1Ashby’s digital journal collection is extensively cross-referenced by keywords. It could
be that some of these quotes are found (their meaning or word-for-word) in Ashby’s other
writings, but as the digital journal collection is extensively linked it is arguably easier to work
with.

2As an aside, this is relevant also for subsequent discussions in this dissertation regarding
the nature of computational devices. The theory of abstract machines, by Turing and others,
is precisely about specifying a transition of a system under any situation.
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If there is a parameter P that can inform K of which state of S is
to be the resting state, and if K, given Si and Sj , can convert Si to
that α as will make Si pass over to Sj , then K can be said to know
S completely. Ashby, 2008, p. 4293

An essential point for systems of the kind we are concerned with here, and
central to cybernetics, is that the whole system (S +K = Σ) is equipped with
feedback. Information from the output is allowed to flow back in. The idea
is that such a system can learn to ‘know’ a state transition mapping which is
effective for control. An ineffective mapping displaying ‘ignorance’ can, through
feedback, become effective.

K’s ‘getting to know’ will then correspond to ‘changing K’s organi-
zation until all the fields [of Σ] have the desired property’.

This implies that under the drive of the feedback, K cannot stop
until it ‘knows’ S. (And it implies that ‘difficulty of getting to know’
is not merely equal to but identical with ‘difficulty of getting stable’.)

This seems to settle the ‘epistemological’ question pretty thoroughly.

Notice that this method regards ‘control’ as the basic form, or test,
of knowledge. Ashby, 2008, p. 4293

Ashby continues in a later journal entry, outlining what I argue is a clear
account of knowledge transfer:

For if knowledge is control, and if K knows how to control S, K has
the ‘correct’ code for turning information about S’s state Si into
the appropriate action α, the ‘goal’ being given. If K is to pass this
knowledge on to another scientistK ′ he can pass on nothing but this
coding. He must [therefore] pass on a substitution or transformation;
thus, the goal being given he passes on [a] transformation.

This seems to me to be more realistic and fundamental than Edding-
ton’s ‘all communicable knowledge is knowledge of group structure’.
Clearly, groups will soon enter, but they do not come in primarily.
Ashby, 2008, p. 4311

Ashby characterizes such transformations here from states to actions, Si →
αj . In a footnote, he also assumes “[. . . ] that ‘scientific’ knowledge is communi-
cable knowledge.” That scientific knowledge is communicable means, for Ashby,
that the principles of communication theory apply. He summarizes the entry by
stating (emphasis mine): Scientific knowledge is knowledge of a transformation.
This means it is knowledge of a relation between states of a system in the world,
which can be used to predict and control. Scientists make predictions, and test
them by demonstrating control.
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Whether this notion of knowledge as control provides us with a definitive
philosophical account is, of course, up for debate. It is definitely interesting
and useful for the purposes of this present work, as well as historically. In this
author’s opinion, it is a significant account that should be explored further. It
could be, for example, that a control theory account of knowledge is necessary,
but not sufficient, for a philosophically satisfying account of scientific knowledge
or understanding. I proceed under the assumption that what I have shown so
far warrants further exploration and the comparison I have made with other
relevant philosophical accounts.

2.3.1 The Foundation for Structural Mechanists
We start by finding a curious object, a so-called ‘brain’, and we apply
scientific methods to find out how it works. When we have succeeded
in laying bare the mechanism and the principles of its working we
find, as we are bound to find, that these ‘objectively discovered’
principles are intimately related to the scientific methods that we
have used for its study. Ashby, 2008, p. 4306

Ashby was influenced by Eddington’s philosophy of science, including his
essay on The Concept of Structure, and the idea of scientific knowledge as
structural knowledge (e.g. group structures). See for example the dated sec-
tions of his journal in Ashby (2008, p. 0345-0351,0371-0377). Another crucial
development for Ashby in laying out a structural picture of systems was the
mathematical writings of the Bourbaki group, as referenced in his chapter The
Black Box in Ashby (1958, §6). Likewise, Claude Shannon’s theory of communi-
cation (Shannon, 1948) is frequently cited throughout Ashby’s An Introduction
to Cybernetics. The role of Shannon’s communication (and information) the-
ory is not just used to outline the interactions between a regulatory system
and the environment it aims to control for survival, but also in characterizing
the organization and structure of the system itself. For example, the design of
an effective artificial system will encode some structure which, in information
theoretic terms, will be non-random. This is naturally consistent with a no-
tion of model-based computation, or of a system which learns a model through
processing ordered data.

It is also worth noting at this point that Ashby had also read Erwin
Schrödinger’s What is Life? (Ashby, 2008, p. 1910-1916) which includes the
physical conception of biological systems in terms of open systems which locally
reduce entropy. Ashby interprets the work as explaining “how an organism lives,
metabolically, by extracting orderliness from the environment, putting back the
disorder, and keeping some of the orderliness for itself.”. It is not an exaggera-
tion to say that this view interprets living systems as effectively ‘metabolizing’
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information, as absorbing structure. If the system is not successfully digesting
order, its survival is compromised.

Under this view, the study of such systems will thus need to express how
this structure is absorbed. This will be in terms of the study and discovery
of mechanisms, and corresponding mechanistic explanations. Like Eddington
suggested, the study and discovery of mechanisms will be the discovery of some
robust structural relations that hold in experiments among entities in the world.
Explanations need to be communicated to other scientists, and this explanation
consists of descriptions and expressions of the structural relations which appear
to hold. Furthermore, and this is the most crucial point, these explanations
and the structural relations they encode must enable control over the studied
systems. Such a view has the potential to save what progress has been made by
the neo-mechanists, at least for cognitive and computational systems of interest.

To be clear, I am not arguing about the particulars of structuralism in the
philosophy of mathematics. See for example Reck and Schiemer (2019) for an
overview of debates on the topic. My view, in agreement with what I will
present from Ashby on the topic, is related to structuralism in mathematics
in the sense that structure in systems must be represented somehow. What is
more important than sets or groups is the organization and information—the
structure—of a system. Whether computational, biological, or physical, how we
represent the system is less important than that the system must be represented.

It is my view that at least some structuralists of one variety or another can
find agreement with the picture suggested here. I also want to be clear from
the outset that I do not claim to be the originator of the structuralist ideas
I think underpin the ideas discussed. Rather, the ideas were already present
in the so-called systems tradition. If anything, I am just providing a synthesis
of ideas which I think are harmonious, and noticing that a structural systems
theory (a structural theory of mechanisms) seems to be warranted for study of
knowledge transfer in cognitive systems.

2.4 The Taxonomy Problem
The taxonomy problem for computational systems is the problem of distin-
guishing true computational systems from non-computational ones. We are
pretty sure that calculators are systems which perform computations, and not
rocks. How do we do this? Piccinini (2015) has a very good discussion on
the history of this problem in the foundations of computation, the issues with
previous attempts at solving the problem. In his take he ultimately appeals to
a mechanistic account of computation (similar of course to Craver (2007)) for
individuating computational systems by their functional properties. The details
of this account are plenty, and cannot be gone into here.
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In my opinion the details largely distract from a much simpler pragmatic
solution of the taxonomy problem—which we are liable to accept if we do not
wish to follow Piccinini’s slogan of computation without representation. That
is, if one subscribes to the slogan then of course one has a lot of explaining
to do on how exactly some physical system computes and another doesn’t. He
is, in a sense, looking for a way to metaphysically distinguish between kinds of
systems. On the other hand, if we are allowed representations, we can simply
rule out rocks and other trivial systems as non-computational because they are
not used as computational systems.

Any practical taxonomy relies on our respective representation of the sys-
tem at hand, its boundaries, the model of computation supposedly being im-
plemented, and the kinds of values capable of being usefully represented in the
system. Our taxonomy of computational systems will be influenced by our so-
lution to the boundary conditions. That is, we must first represent what parts
are relevant parts of the system, and what parts are not (or are superfluous).
For example, a calculator with and without dirt on it represents the same com-
putational system. It is composed of the plastic and silicon elements, as well as
a liquid crystal display, etc.

My argument is that it is also relevant how we represent the boundaries of
the system and what the system is attempting to do. We cannot just point
to the physical system, for obvious reasons that it is ambiguous what is being
pointed to without some assumptions. A basic level of description, like a phase
space where each point represents the state of each component of the system,
and the space represents all possible states of all components, crucially depends
on where the system stops and the environment starts. The ‘act’ of defining the
boundaries of the system is an act of representation. It changes what a point in
phase space represents or indexes. Determining the boundaries of a computa-
tional system is an act of representation in the sense that the state transitions
in phase space look different for different boundaries. Once we accept that
representation is unavoidable in defining what are (and are not) computational
systems, we might look to what systems theory could say towards these issues.

A similar taxonomy problem arises in the foundational literature on bio-
logical systems theory, where we wish to distinguish genuine living organisms
from non-living organisms. Bertalanffy (1969) identifies the core difference with
living biological organisms being characterized thermodynamically as open sys-
tems. This is in opposition to closed systems as the traditional object of ther-
modynamics. Closed systems are required by the second law to tend towards
equilibrium—there is no import or export from the system that can produce
a steady state at a distance from equilibrium. An open system can allow (or
import) material from the environment, such that the system nets negative en-
tropy or a positive amount of free energy. The open system can ‘spend’ this
excess energy to do work, and maintain a state at a distance from equilibrium.
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We can see this particular taxonomy problem as being solved by a rep-
resentational choice. This representation is not about the particulars of the
internal mechanisms and components of the system, but about where we draw
the boundaries between the system and the rest of the world.

Computational systems are cybernetic systems in the sense that they are
regulators (which may be static or unlearning). At a fundamental level, they
are controlling the flow of information from inputs and squeezing the possi-
ble transitions into a well-defined output subset of states of the world which
would otherwise be physically possible. However, not every cybernetic system
is a computational system. I think this is one of the critical missing pieces to
previous analyses which encounter taxonomy problems in the foundations of
computation, e.g. Piccinini (2015). For example, there has been a traditional
worry about accounts of computation trivializing the behavior of some systems
like the brain since under some accounts it seems like any system can be con-
sidered computational. These pan-computational worries can be avoided by
focusing on the use of a given system.

Additionally, now, we can consider cybernetics as adding further refinement
to the taxonomy of natural systems. Rocks are not only non-computational due
to lack of computational use, they are poor regulators. The fact that they are
poor at regulating disturbances from the environment, for example temperature
disturbances, means that the rock is not good at maintaining itself at a steady
state at a distance from equilibrium. Temperature information flowing from
the environment into the rock will not be controlled, just delayed by a material
factor. For it to be a cybernetic system, it must be able to regulate typical
environmental disturbances well, meaning it reduces the entropy (information)
one would gain by observing the rock’s state after a random disturbance. We
might say that any typical disturbance in the rock’s existence knocks atoms and
molecules out of position, and they will never return. The rock as a system will
only monotonically tend towards equilibrium, towards sand. It will also not
heat up internally of its own accord, it will not “flip its own bits”. At best, the
system would be a rather useless model of a rock, or a thermal delayer in an
expanded system with the rock as a boundary which slows down the transfer
of heat information into another system. A magical thermostat rock system,
which had the ability to maintain a constant temperature of 20◦C no matter
the thermal disturbances, would be a regulator precisely because we would
know with certainty after a random disturbance that it would be the same
temperature. The useful information gained about the state of the system is
zero, compared to a random coin toss (where we would learn 1 bit). More on
the information theoretic properties of regulators later.

Additionally, the ordinary rock system does not have an internal model
(or an effective encoding of an effective mapping, which as I mentioned earlier
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we might just call a representation) of the environment. Or, we are unjus-
tified in concluding that if it does, that it enables any successful regulation
of environmental disturbances since the rock system monotonically approaches
equilibrium. The rock clearly fails the criteria given in what is called the good
regulator theorem. (Conant and Ashby, 1970) While stomachs are regulatory
systems3, we still might wonder why they do not qualify as good regulators un-
der the theorem, and why we think they are not computational systems. More
on the good regulator theorem in chapter 4.

Computational systems are also open systems. They must consume, or
import, or be provided with, energy from an external source. Not only this, but
as noted in Landauer (1961) there will be a non-zero thermodynamic transport
of energy (heat) imparted to the environment. This is important to distinguish
a computational system from, for example, crystals, plants, and other systems
which are in a state at a distance from equilibrium yet we do not think they are
computational systems. Crystals have organization, but they do not consume
energy by themselves and they do not have a thermodynamic cost associated
with certain tasks.

This brings us to an important problem discussed in the philosophical lit-
erature for decades: do systems such as crystals or waterfalls (or even rocks)
compute a class of functions (or perhaps any arbitrary function)? Well, is the
rock (by itself) an open system? No. When it is supposedly implementing some
function, does it heat up? No. Then, it is not a computational system. But,
lets say that we observe a rock heating up. Is this evidence of computations
taking place? Perhaps.

Then we can check our other condition. Is the rock an open system? It is
not. If we put the rock in a controlled environment, it will not by itself heat
up. In fact, it will remain or approach equilibrium with its environment. The
other way around, if the system under consideration is not just a rock, but
involves transport of energy in an open system, then perhaps it is performing
computations. If, when we suppose computations might be taking place, the
system also heated up—then we would be in a position to potentially classify
the system as a computational system.

We see, though, that this crucially depends on aspects of representation.
An open system might be closed under a different description, under different
boundary conditions. This is arguably a positive outcome of the two conditions
account of computational systems offered here. It should be easy to rule out
certain systems, and if these conditions are fulfilled then further study of the
system is warranted. These are necessary conditions, not sufficient. It shouldn’t
be easy to decide, given the fulfillment of these conditions, whether computation
is taking place. We only have that the system might be a computational system,
given a suitable interpretation.

3See also the discussion in Shagrir (2010).
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Chapter 3

Model-Based Computation

Thus the act of “designing” or “making” a machine is essentially
an act of communication from Maker to Made, and the principles
of communication theory apply to it. Ashby, 1958, p. 253

This chapter attempts to outline a remedy to what I view as a confusion
in the conceptual framework used to characterize computational devices.1 This
confusion is present in some influential literature concerning analog computa-
tion, where analog devices are taken to be synonymous with devices which com-
pute using continuous valued variables. Through an analysis of this confusion
and the wider computational landscape, I hope to contribute to our understand-
ing of some recent claims by introducing what I call model-based computation.
Model-based computation can be seen as a distinct ‘dimension’ with which to
evaluate devices in a wider computational landscape, and it allows us to see
the flaws in the confused argumentation present in the literature cited. This di-
mension can be considered orthogonal to the variable types (e.g. binary valued
or continuous) represented by components in a device. Furthermore, I argue
that this two-dimensional view is a natural extension for current notions of
computation, and is well-motivated from the analysis provided.

A first step in this project is to provide evidence that there is a conceptual
confusion present in discussions of analog computation. This helps establish
what analog computation is not, and motivate the discussion in subsequent
sections of what it is—and how a more general two-dimensional notion of com-
putation accommodates it. We begin with two statements from Nielsen and
Chuang’s textbook of quantum information theory, which I quote at length for
the unfamiliar reader:

In the years since Turing, many different teams of researchers have
noticed that certain types of analog computers can efficiently solve
problems believed to have no efficient solution on a Turing machine.

1An earlier version of this paper originally appeared in Beebe, 2016, and was extended
in Natural Computing as Beebe, 2018. The present chapter is reproduced with permission,
and is extended and improved by incorporating several new references, updating definitions
and clarifying the argument structure, and by providing additional discussion of important
points.
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At first glance these analog computers appear to violate the strong
form of the Church-Turing thesis. Unfortunately for analog com-
putation, it turns out that when realistic assumptions about the
presence of noise in analog computers are made, their power disap-
pears in all known instances; they cannot efficiently solve problems
which are not efficiently solvable on a Turing machine. This lesson
— that the effects of realistic noise must be taken into account in
evaluating the efficiency of a computational model — was one of the
great early challenges of quantum computation and quantum infor-
mation, a challenge successfully met by the development of a theory
of quantum error-correcting codes and fault-tolerant quantum com-
putation. Thus, unlike analog computation, quantum computation
can in principle tolerate a finite amount of noise and still retain its
computational advantages. (Nielsen and Chuang, 2010, p. 5)

One might suspect that quantum computers are just analog comput-
ers, because of the use of continuous parameters in describing qubit
states; however, it turns out that the effects of noise on a quantum
computer can effectively be digitized. (Nielsen and Chuang, 2010,
p. 164)

There seems to be an assumed notion of analog computation as a delicate
and noise-intolerant business. Even discussions like those from Turing (1950,
§5) concerning the sensitivity of physics to variations in initial conditions might
be taken as supporting such a notion.2 A careful reading reveals that this state-
ment can only be understood in support of the noise tolerance of discrete state
machines, and not a statement claiming that any analog computation is noise
intolerant. It might be possible to infer something about noise intolerance in
some continuous variable computational devices, but that is a separate question
(and there might be practical ways of avoiding the problem we do not want to
close ourselves off to).

Do these statements about sensitivity to noise actually have relevance for
evaluating analog computation generally? I argue that an affirmative answer
stems from the core misconception that continuous valued ‘organs’ (that is,
components performing specialized functions) are not only essential to analog
computation (they are not) but that a device which has such organs is syn-
onymous with analog computation.3 This is simply not the case. Continuous
values are neither necessary nor sufficient to characterize analog computation.

2Indeed, Ashby and Turing diverged in the way they sought to build models of the brain
or intelligence. Ashby preferred cybernetic feedback models, whereas Turing preferred sim-
ulations on general purpose symbolic machines. See for example the discussion in Asaro
(2011).

3We will see shortly that von Neumann, among others, used the term ‘organ’ for compu-
tational components.
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The reader may also wish to see argument 6 from Scott Aaronson’s page
on skeptics of quantum computation, where he claims “We know that analog
computers are not that reliable, and can go haywire because of small errors.”
Aaronson proceeds to respond to the question of “why a quantum computer
should be any different, since you have these amplitudes which are continuously
varying quantities.” In his response, he makes the very conflation at question
here, namely that analog computation is synonymous with continuous value
computation.4

Additionally, there is not just one kind of physical system that can consti-
tute an analog device, meaning that such statements of an analog computer
“going haywire” could only be safely interpreted on this level as referring to a
particular architecture—but clearly it is meant as a general statement about
analog computation. We could take these statements to refer to some formal
generalization of the concept of analog computation, but we will see that such
conclusions about the weakness (or effectiveness) of an analog computer must
be evaluated with respect to a particular model.

These claims against analog computation are not supported by the analysis
of analog computation offered in section 3.1, where I introduce what I think is
a much clearer conception of analog computation. I then proceed in section 3.2
to outline some thoughts on what I call ‘model-based computation’ respecting
this conception. Afterwards, I evaluate two discussions in light of this notion
of model-based computation. The first includes computational claims about
the brain and the current notion of hierarchical generative models in cognitive
science. We will see in section 3.3 that hierarchical generative models seem to
describe model-based computation as outlined in this present work. The second
discussion in section 3.4 will focus on analog models in physics, in particular
the notion of analog simulation recently put forth in Dardashti, Thébault, and
Winsberg (2017).

Relevant aspects of the notion of model-based reasoning will be discussed in
section 3.5, where we see the relationship with ideas already present in cogni-
tive science. This relationship is arguably unsurprising, given that our notion
of computation has historically been informed by the inference capabilities of
an intelligent agent. A computer was, after all, initially a term used to re-
fer to a particular desk job for a human. In the concluding section 3.6 I will
draw attention to what I think is the importance of this discussion for the de-
veloping market place of alternative computing, and summarize the view of a
two-dimensional landscape of computation.

4http://www.scottaaronson.com/democritus/lec14.html

http://www.scottaaronson.com/democritus/lec14.html
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3.1 What is Analog Computation?
Rather than being defined by the continuity of parameters, an analog computer
can be defined through a literal treatment of the word analogy—and in fact
Neumann (1963, p. 293) among others even refers to two classes of computing
machines, analogy and digital machines. The term analogy machines sounds
much different to our modern ears than analog computer, but I argue it more
accurately represents this area in the landscape of computation. Particularly
in modern computer science where alternative or specialized computing devices
have become more common, it is arguably worthwhile to have a clearer concep-
tual overview of this landscape.

I argue that by clearing up the issues mentioned above, we can see two
dimensions characterizing the landscape. The first dimension has to do with
the types of variables processed by computational components (or organs). The
other is the extent to which the structure of a device models a target problem.
The first dimension is arguably uncontroversial, and I do not focus on justifying
its incorporation in the two-dimensional view. The second dimension about
models warrants significant discussion, and forms the bulk of the rest of this
present work.

Before going into model-based computation generally, it is helpful to first
analyze deeper the notion of analog computation. Bernd Ulmann, distilling
contributions from many previous authors on the subject, has provided us with
a clear assessment of what analog computation is. I quote at length:

First of all it should be noted that the common misconception that
the difference between digital computers on one side and analog
computers on the other is the fact that the former use discrete
values for computations while the latter work in the regime of
continuous values is wrong! In fact there were and still are analog
computers that are based on purely digital elements. In addition
to that even electronic analog computers are not working on
continuous values — eventually everything like the integration of a
current boils down to storing (i.e., counting) quantized electrons in
a capacitor.

If the type of values used in a computation — discrete versus
continuous — is not the distinguishing feature, what else could
be used to differentiate between digital and analog computers? It
turns out that the difference is to be found in the structure of these
two classes of machines: A digital computer in our modern sense of
the word has a fixed structure concerning its constituent elements
and solves problems by executing a sequence (or sequences) of
instructions that implement an algorithm. These instructions are
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read from some kind of memory, thus a better term for this kind
of computing machine would be stored-program digital computer
since this describes both features of such a machine: Its ability to
execute instructions fetched from a memory subsystem and working
with numbers that are represented as streams of digits.

An analog computer on the other hand is based on a completely
different paradigm: Its internal structure is not fixed — in fact, a
problem is solved on such a machine by changing its structure in a
suitable way to generate a model, a so-called analog of the problem.
This analog is then used to analyze or simulate the problem to be
solved. Thus the structure of an analog computer that has been set
up to tackle a specific problem represents the problem itself while
a stored-program digital computer keeps its structure and only its
controlling program changes. (Ulmann, 2013, p. 2)

It should be noted that the analysis here, attempting to clarify the confusion
of what analog computation is by disentangling continuous variables and anal-
ogy machines, departs from a related attempt by Trenholme (1994). Trenholme,
in order to characterize ‘naturalistic’ analog simulation (which I will return to
shortly) wants to resolve confusion over analog vs. digital in another direction:
to analog vs. symbolic. The discussion of this approach in Asaro (2011) is
worthwhile, but I do not find it as convincing or as clarifying as my present
approach, as there are too many commonalities with what I find disagreeable
in Piccinini (2015). It also does not appear to disentangle the variable value
dimension and the model-based dimension, which I think needs to happen in
any case. Though, as I note elsewhere, I do find Trenholme’s analysis of analog
simulation as defined by isomorphisms between causal structures to be in the
right direction.

Going back to von Neumann, we find the beginning of the next most essential
aspect of analog computation (and computation in general)—that computation
depends on the use of a system. Even though the components in a device might
be ultimately continuous, it depends on how we intend to use the system. We
also see evidence that the confusion concerning analog computers has been
around for quite some time:

The electromechanical relay, or the vacuum tube, when properly
used, are undoubtedly all-or-none organs. Indeed, they are the pro-
totypes of such organs. Yet both of them are in reality complicated
analogy mechanisms, which upon appropriately adjusted stimula-
tion respond continuously, linearly or non-linearly, and exhibit the
phenomena of “breakdown” or “all-or-none” response only under
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very particular conditions of operation. (Neumann, 1963, p. 297-
298)

We should be careful in parsing this particular quote, since von Neumann
uses ‘analogy’ and ‘continuously’ in the same sentence. It seems that here he
has also conflated analogy with continuity, although it is unclear whether he
means something more than continuous.5 In other places he seems to maintain
a clearer distinction, but in any case the issue has not gotten clearer in the more
modern statements quoted earlier. However, what we see is that ‘proper use’ is
essential to defining computation. The close relationship historically between
analog computation and modeling in science is also discussed by Care (2010) in
depth. These ideas will be discussed throughout the paper, but for now we can
state more accurately what we mean by an analog computer.

Definition 1 (Analog Computer). An analog computer is a device whose in-
ternal structure is malleable and can be set up to have similarities to aspects
of the class of problems it is used to solve. Additionally, these similarities by
themselves should be sufficient to form a model of the relevant class of prob-
lems. In our proper use of the device, the organs involved are interpreted by the
model to function in a way that is consistent with our understanding of what
would be required to solve the target problems.

While some analog computers under this definition can indeed be considered
as (ideally) implementing differential equations or having continuous organs
relevant to our purposes, this must be recognized as only a subset of potential
uses of such a computer. In other words, the definition does not explicitly
endorse smoothness or rule out digital systems. What is more important for
the notion of analog computation, and for developing a richer conception of
computation, is that the user and the architecture both play important roles in
their relationship to a model.6 The user has to develop a model, or recognize
similarities, or utilize analogical reasoning to set up the system in such a way
that it can solve the problems at hand.

Our view of the architecture reflects this modeling procedure, meaning that
as von Neumann notes an ‘all-or-nothing’ organ might be liable to be character-
ized under other usages as a more or less continuous valued organ. What should
be clear at this stage is that analog computation utilizes a model to frame the
use of the device, not unlike how models are used in other areas of science to
represent sets of properties and relations relevant to a given inquiry. For analog
computers, this seems to have historically been models incorporating similarity

5A similar conflation also appears in Borko (1962), where the author shifts from a model-
based notion that analog devices calculate by “using analogies”, but then subsequently iden-
tifies an analog device as a “continuous function computer”.

6Thus, in the remainder of this article, the reader should note that when I use the term
‘analog’, even as an adjective, it does not refer to continuity.
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and analogy. However, I argue this is just one type of a more general category
of what can be called model-based computation. At this point I diverge slightly
from Ulmann’s statements, although the central premise is, I think, present in
his work already quoted and thus I am offering more of a naturally implied
extension than a meaningful divergence.

Before moving on, however, we can state that there may be particular objec-
tions to construing analog computation in the manner done here. One might say
that ‘analog’ has taken on a new meaning, and that for all intents and purposes
analog computation is just defined nowadays as computation with continuous
variables. I must insist on disagreeing with this approach to redefining ter-
minology, since it leads to unnecessary confusion. Piccinini and Bahar (2013)
throw out the very idea of analog-model based computation that Ulmann has
brought to our attention (and which I am agreeing with here):

In another sense, “analog” refers to representations that bear some
positive analogy to what they represent. There is evidence that
nervous systems contain and manipulate analog models of their en-
vironment [. . . ] But analog models need not be represented and
manipulated by analog computers. (Piccinini and Bahar, 2013, p.
466)

The authors are correct if what they mean by analog computer is just a com-
puter with continuous variables. However, I find the arguments and examples
advocated for here (and extensively in Ulmann’s work) to convincingly establish
that analog computation is not (and has not even historically been) identical to
computation with continuous variables. With this in mind, the authors might
be sympathetic to the solution advocated for here: disentangling continuity
and analogy into two separate dimensions of the general notion of computation.
One dimension is that of the types of variables manipulated in components.
The other dimension concerns the extent to which a computational device can
model a target.

Later, Piccinini (2015, §12) indeed seems to recognize the confusion in the lit-
erature with continuous variables, although his discussion in the chapter largely
focuses on electronic analog computers and presumes real variables. He also
claims (Piccinini, 2015, p. 199) that the “notion of an analog model [. . . ] is
orthogonal to the notion of analog computation.” He seems to acknowledge
that this is not historically true, but he thinks it is conceptually accurate. If he
means by this statement that the model is orthogonal to the types of variables
manipulated, then we are in agreement. If he instead means that the model is
orthogonal to what it means to compute, my account is in disagreement since I
think it is clear models are representations.7 Taking into account his view that

7Also, Care (2010) advocates a deep relationship between analog computing and modeling
in science supported by an in depth historical analysis.
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computation does not require representation seems to support the latter inter-
pretation, and goes against the model-based notion of computation presented
here.

3.2 Model-Based Computation
The notion of model-based computation is easily inferred from those definitions
already provided for analog computation by Ulmann. The notion is just slightly
more general, in that the model used may or may not incorporate similarities or
analogies to the extent that analog models do.8 That is, even if there are sim-
ilarities in the device, these similarities may not be sufficient by themselves to
form a useful model of the target problem class. Some other parameters might,
for example, be invoked to make the model work even though it is unknown
whether such a parameter corresponds to the target. It could even be that the
parameter is known to be dissimilar to the target, but the model is sufficient
nonetheless for our uses. Analog computation is then a special case more accu-
rately thought of as shorthand for analog-model computation. It might be that
good examples of model-based computation are in fact using analog models,
but it is arguably a small class within the computational landscape compared
to any potential model-based computation—if only for the reason that analog
models are a restricted class of models in general.

But what is a model? This question has been widely addressed in the
philosophy of science community, and a few brief notes might be helpful before
moving forward. There are a variety of different kinds of models which are used
in science. There are toy models, idealized models, scale models, mathematical
models, and many more kinds of models. Each of these kinds may have overlap
with other kinds, they are not exclusive of each other. All models, it seems,
need a target object or set of data which is to be represented or accounted for
in some way in the model. See Frigg and Hartmann (2012) for more on models
in science. Model-based computation may involve many of the same aspects as
other models in science.

Definition 2 (Model-based Computer). A model-based computer is a device
which may have a malleable internal structure, and which can represent aspects
of the class of problems it is used to solve. The representations should be suffi-
cient to form a model of the target problem class. Under proper use, the organs
in the device can be interpreted by the model to function in a manner that we
take to solve the target problems. This may or may not be consistent with our
understanding of the target problem class.

8Although it may be an open question whether all models are in fact rooted in analogy or
similarity, I do not focus on such an argument here.



3.2. Model-Based Computation 37

It is useful to go one step further in this section, to discuss model-based
simulation. This is helpful before encountering analog simulation in later sec-
tions. Model-based simulation is a refined form of model-based computation,
in which the dynamics of the device are relevant for the user or target problem
(as opposed to just a functional relation). Generally, the dynamics of a model-
based computer may or may not model what we know about the dynamics of
the target system. Simulation operates on a richer model that deems relational
aspects (such as temporal or dynamical relations) of the device relevant. One
can have static features represented in a model which, after use, has an output
which functionally represents a useful computation concerning a target prob-
lem. However, the dynamics of using the model may be irrelevant to the kind
of dynamics present in the target system. In this case we would not say that
there is model-based simulation present.

Just reading the output of a slide rule, for example, does not seem to in-
volve simulation but just accomplishes a computation with the model. Take
two equal length sticks with logarithmic scales on them lined up side by side.
Multiplication can be calculated by sliding one of the sticks relative to the other
by a factor. That is, 2 times 4 could slide one stick by 2 on the logarithmic scale
(representing a multiplication of 2). Then, one looks up the other factor and
reads off the corresponding value on the other stick. In this case, 4 would be
lined up with 8, the result of the calculation. It is also interesting to note that
a slide rule is typically called an analog computer. Under the misconception of
analog computer as necessarily involving continuous variables, what role does
continuity play in the use of a slide rule? It is arguable that the continuously
adjustable aspect of the device is incidental to the actual use and function of
the computer since outputs are also not real numbers.

The dynamics of sliding the stick does not seem to model an algorithm for
multiplying some integers. The model in this case involves not only the physi-
cal ruler, but also the reasoning and mathematics involved to create the scales
encoded in the ruler. The preparation of the computing device has utilized pre-
computed knowledge (i.e. log(xy) = log(x) + log(y)) to functionally output
values consistent with an algorithm for multiplication, but the sliding dynamics
are not particularly relevant for the computation. One could just introduce
notches at intervals, but surely a notched slide rule does not suddenly become a
digital computer. It is just now implementing a discrete computational model
of logarithms. I think it is quite reasonable to expect that model-based com-
putation, in general, does not necessarily include relevant dynamics with the
target system. When it does, a stronger notion of model-based simulation may
be applicable. We will see later an example of analog simulation in which the
dynamics are relevant and similar.

As this is a relatively simple example, we can say a bit more about what
a model consists here. For the slide ruler, our target problem is modeled by
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a set of input operations which obtain, upon a functional relation, a desired
output. That is, our model is the set of representations and operations upon
such representations (a mapping) that are used. The end step after a specific
procedure can be interpreted as our desired result, that which is to be computed.
If our problem is to multiply two integers, a slide rule encodes two logarithmic
scales. We operate upon such scales by sliding (adding distance) one factor,
and then reading out the number mapped from the factor on the first stick to
the number on the other stick.

Consider that a plastic model of a molecule consists of all aspects standing in
a representational relation to an actual molecule (whether similar or dissimilar),
and the operations we can do with the plastic pieces (which may or may not
reflect ‘operations’ possible in actual molecules). At a minimum, a model for
model-based computation likewise consists of a set of representations and a set
of operations upon these representations. The representations may be linguistic
or symbolic, for example, while the operations may be thought of as functional
relations between them.

3.2.1 Benefits?
In the present work I am remaining relatively qualitative in my analysis of the
‘computational landscape’, however some general comments may be of interest
concerning any formal results associated with analogy machines or model-based
computation. If there is any genuine ‘speed-up’ to be found compared to clas-
sical computation, I think it is primarily the result of two sources. The first
potential source is simply due to the architecture and type of values processed
in the given system.

The second, and likely more important, source of potential speed-up in any
particular model-based computer is that it may front certain information in the
‘premises’ of the set-up.9 In other words, some computational work might have
already been done in the design of the system. This includes pruning off certain
forks in reasoning or avoiding certain lengthy calculations that do not need to
be investigated or reported by the program. As a simple example, just consider
Deutsch’s problem and finding out whether a black box implements a balanced
or constant function of four possible functions f : {0, 1} → {0, 1}.

A classical computer requires two evaluations of the black box, sending both
a 0 and 1 through. We learn not only whether it is constant or balanced, but
also which of the four functions is performed. A quantum computer can, by
throwing out the irrelevant information of the specific function and encoding
the global property of the function cleverly into the phase, tell us in one go
whether the box implements a constant or balanced function. Our model of the

9The benefits or drawbacks of any specific device depends on the model involved, and
thus it makes no sense to talk of ‘general’ speed-up (or slow-down) results for model-based
computing.
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problem works with the architecture to cleverly set up the computation such
that it (ideally) tells us only what we need to know and nothing more.

Any complexity claims should always be aware of these ‘fronted’ or indirectly
utilized resources. If we haven’t recognized these resources adequately, we might
be mislead by certain claims of speed-up or complexity. In statements such
as the following from Rubel, for example, we can see that these resources are
alluded to by mentioning that the scientist has a ‘feel’ for the computing device:

It is fashionable nowadays to downgrade analog computers, largely
because of their unreliability and lack of high accuracy (roughly
one-tenth of one percent at best). But analog computers, besides
their versatility, are extremely fast at what they do, which is solving
differential equations. In principle, they act instantaneously and in
real time. Further, in contrast to the situation in digital computing,
the operator of an analog computer has an extremely good “feel” for
what the computer is doing. Analog computers are still unrivaled
when a large number of closely related differential equations must
be solved. (Rubel, 1985, p. 78-79)

While Rubel is specifically referring to analog computers, I think the state-
ment is generally applicable to model-based computation. It is this ‘feel’ that I
think imparts some of the benefits to model-based computation, since one has
already done some work in constructing the model and in understanding how
to work with the particular architecture. Many models provide the user with
a ‘feel’ for the target problem or system, even with the acknowledgement that
in reality there are certain features of the model which are non-representative
or known to be false. See e.g. Frigg and Hartmann (2012, §4.2). By utilizing
a model in computation, the features of the model (such as idealization, etc.)
have restricted the computational possibilities to things which fit the use—thus
streamlining any process to just those which are relevant for the User. For
this reason, a model-based computer (or analog computer) is not necessarily a
general purpose computer.10

3.3 Computational Claims about the Brain
I would like to now draw attention to a few important areas of debate, and
offer some preliminary thoughts on how they might be viewed differently un-
der the reframing of the computational landscape offered here. The first area

10Piccinini (2015, p. 203) also notes that we should distinguish between ‘general purpose’
as referencing computational universality (i.e. a Universal Turing machine for digital compu-
tation), and ‘general purpose’ in the sense that we can do many things with the same device.
A model-based computer in the account offered here might be neither universal nor useful for
many different things.
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concerns computational claims about the brain. In one influential take, Searle
(1990) equates the question Is the Brain a Digital Computer? with Are Brain
Processes Computational?. After the preceding discussion, this seems like a
mistake.11 Digital computers are of course computational, but something that
is computational is not necessarily digital. A digital computer may be repur-
posed in another context (with another user) to implement another form of
computation, as noted by von Neumann:

By an all-or-none organ we should rather mean one which fulfills
the following two conditions. First, it functions in the all-or-none
manner under certain suitable operating conditions. Second, these
operating conditions are the ones under which it is normally used;
they represent the functionally normal state of affairs within the
large organism, of which it forms a part. Thus the important fact is
not whether an organ has necessarily and under all conditions the
all-or-none character—this is probably never the case—but rather
whether in its proper context it functions primarily, and appears to
be intended to function primarily, as an all-or-none organ. (Neu-
mann, 1963, p. 298)

To be fair, Searle’s discussion does touch upon some very legitimate issues
with these questions. However, it is not clear that his discussion translates
easily for the notion of model-based computation advocated for here. I want
to agree with Searle’s (and von Neumann’s) comments on use being funda-
mental to computation, but avoid the framing of computation as equivalent to
digital computation. Digital computation is but one subset of potential user-
dependent contexts which may constitute a computational device. Not only
does a model-based notion of computation help clear this issue up, but it im-
portantly emphasizes at its core the user-dependent context which is so central
to the notion of computation generally. This helps us grasp better what alter-
native models of computation are doing for us, namely that they can be used
to subjectively prune away irrelevance or to emphasize certain relevancies for
particular uses.

Then, what would it mean if we asked Is the Brain a Model-based Com-
puter?, and is this different still from Searle’s second question Are Brain Pro-
cesses Computational? In the scope of this present paper I cannot answer all
of the interesting questions brought up in this topic, but I can discuss one re-
cent approach in cognitive science that arguably fits the notion of model-based
computer.

11Even more so than Searle himself might have admitted.
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3.3.1 Bayesian Brain and Generative Modeling
There is a growing use of Bayesian probabilistic methods and hierarchical gen-
erative models (HGM) in cognitive science. See e.g. Friston (2010) and Clark
(2013). Some of this literature can be taken as arguing that the brain be con-
sidered a model-based computer as we have defined it here: that it is a device
whose evolution in time effectively performs computations based on a model.
Take Friston’s description as an example:

The Bayesian brain hypothesis uses Bayesian probability theory to
formulate perception as a constructive process based on internal or
generative models. The underlying idea is that the brain has a model
of the world that it tries to optimize using sensory inputs. [...] In
this view, the brain is an inference machine that actively predicts
and explains its sensations. (Friston, 2010, p. 129)

This approach is argued by the authors to have the capacity of unifying
several areas of cognitive science. Whether the specifically Bayesian approach is
the final unifier may still be at question. Nonetheless, the approach not only fits
the model-based account of computation I have advocated here, but even seems
to fit the more restricted sense of analog computation since the modeling that a
Bayesian brain is doing is related via similarity to the external world. The brain,
under this view, is constantly simulating the world and adjusting its model
according to the errors experienced. The HGM is amplifying relevant or similar
features of a model via feedback with the environment, while dissimilar features
fall out of focus (and, under the Bayesian approach, obtain lower probabilities).

Under this framework, we would answer ‘yes’ to the question of whether
the brain is a model-based computer, and also ‘yes’ to the question of whether
brain processes are computational. However, this may be a bit premature since
we have noticed that computation is dependent on a user—and what would be
using this model-based computer? This is no trivial problem, and in fact re-
lates to longstanding mind/brain problems and what is called the “homunculus
fallacy” (HF). See e.g. Searle (1990, §V). Can the model-based conception of
computation add anything new to this problem?

Without being overly conclusive, I suggest that the hierarchical generative
model of cognition may be a good step towards addressing the user problem.
The reason is that it simply accepts a finite regress and offers a more general
notion of model-based computation.12 While this isn’t solving the problem (or
avoiding the fallacy) in the traditional sense, it is simply not so unreasonable

12Attempting to mitigate or explicitly accepting the HF is a required step, since as Searle
notes, “... The homunculus fallacy is endemic to computational models of cognition and
cannot be removed by the standard recursive decomposition arguments.” Searle (1990, p. 36)
What can be done, I argue, is to put a new spin on the issue.
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to suppose that the brain—as a computational system—involves complex hier-
archical modeling of the external world. The representations in this model no
doubt still succumb to HF objections, but not in a naive way.

The slightly more sophisticated view does not succumb to an infinite regress
traditionally associated with the homunculus fallacy, since there are finite levels
in the hierarchy. The homunculus could just be the topmost level in the hierar-
chical generative model, and it ‘uses’ the computations from lower levels in the
hierarchy. For a discussion of this approach in the foundations of cybernetics,
which HGMs are arguably appropriating in a new way, see e.g. Ashby (1958,
§4/7, 4/11, 13/14). Now, a reader familiar with the HF would likely object and
say that the topmost level of the hierarchy is still problematic, since it is not
‘used’ by a higher level user. I do not know a way out of this objection, nor
whether it is useful to reconcile. I can only say that the entire integrated ‘body
+ HGM’ system definitely seems to use the HGM, for all of the reasons why
people think HGM is a good model of cognition in the first place.

In any case, it seems that a sophisticated model-based notion of computation
does not do worse for computational claims about the brain than what has been
accomplished previously. The brain doesn’t need to be a digital computer, or a
general purpose analog computer.13 However, it is clear that a brain-like system
which utilizes a model (i.e. does model-based computation) of the external
environment to generate minimum error or minimum surprise is much different
than Searle’s formulation of these issues.

A potential benefit of this view of cognition was hinted at by Kenneth Craik
in a 1943 publication:

[I]n the particular case of our own nervous systems, the reason why
I regard them as modelling the real process is that they permit trial
of alternatives, in, e.g. bridge design, to proceed on a cheaper and
smaller scale than if each bridge in turn were built and tried by
sending a train over it, to see whether it was sufficiently strong. [. . . ]

It is likely then that the nervous system is in a fortunate position,
as far as modelling physical processes is concerned, in that it has
only to produce combinations of excited arcs, not physical objects;
its ‘answer’ need only be a combination of consistent patterns of
excitation—not a new object that is physically and chemically

13A similar point is made by Piccinini and Bahar (2013), however their re-structuring of the
cognitive computationalism debate ends with a hybrid notion of computation for cognition
that combines digital computation with the conflated notion of analog computation discussed
earlier. Besides the obvious disagreement we have in defining analog computation, I think the
notion of model-based computation discussed here supports in some ways their assertion that
neural computation is a kind of its own (not particularly digital, not particularly continuous).
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stable. [. . . ]

My hypothesis then is that thought models, or parallels, reality—
that its essential feature is not ‘the mind’, ‘the self’, ‘sense-data’, nor
propositions but symbolism, and that this symbolism is largely of
the same kind as that which is familiar to us in mechanical devices
which aid thought and calculation. (Craik, 1943, p. 52-57)

In cognitive science, this is now known as ‘mental modelling’, and it seems
quite consistent with model-based computation as I have construed it here.
Thagard characterizes mental models as “psychological representations that
have the same relational structure as what they represent.” Thagard (2010,
p. 447) I argue that the benefits which Thagard and Craik attribute to the
brain’s ability to model are just the same as what I have outlined earlier. The
low-level processes which contribute to model-formation end up trimming ir-
relevant representations off, and of course this is combined with parallelism in
the neural architecture. Together with a system-defined use (i.e. the survival
of a human or the optimization of some task), we can legitimately characterize
‘mental models’ in cognition as an instance of model-based computation. We
can also find model-based computation in external scientific models, and in the
next section I discuss a special case of MBC.

3.4 Analog Simulation in Physics
For the second kind of computational claim to be discussed, I move to model-
ing in physics. A few recent publications in the physical sciences (along with
some philosophy of physics) have drawn attention to the use of analog models
in scientific reasoning. One notable example is that of fluid systems displaying
analogous phenomena to Hawking radiation (the phenomena of photons escap-
ing the event horizon of a black hole). See Unruh (2008). These models have
been argued, under strict conditions, to be performing analog simulation by
Dardashti, Thébault, and Winsberg (2017). Importantly, these systems seem
to allow us more access to black hole phenomena than would otherwise be pos-
sible.

The reader should already be anticipating the main point of this section:
these sort of systems are analog computers in the clearest sense—they are based
on strict similarity conditions, and as alluded to earlier are prime examples of
model-based computation (specifically analogy-based). They are simulating
while also displaying formal and physical similarities with the target computa-
tional problem. The type of simulation these systems do is arguably providing
even stronger results than traditional simulation in which the architecture of
the computing device is irrelevant to the simulated problem. However, because
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of the background knowledge involved in constructing a table-top system, we
might be less surprised at the outputs because we have a good ‘feel’ for what
the system can do.

The strict models used in analog simulation are based on formal similari-
ties (such as isomorphisms) between the systems of equations describing both
the computing device (i.e. a table top fluid system) and the target system
(i.e. a black hole). We mentioned earlier that for model-based simulation,
the dynamics of the computation are relevant (but may not be similar). For
analog simulation, the dynamics of the device must preserve relevant similari-
ties with the dynamics of the target system. An earlier paper, by Trenholme
(1994), also defined analog simulation through an isomorphism between causal
structures between systems (although again, this was combined with a non-
representational and metaphysical notion of isomorphism). This brings us to
the last important step in this short paper, namely re-connecting our discussion
with previous work concerning model-based reasoning.

3.5 Model-Based Reasoning in Science
The literature concerning model-based reasoning is divided among a few con-
texts. In philosophy of science, model-based reasoning is discussed in the sense
of using a scientific model to make inferences about a target system (which
the model represents). See e.g. Frigg and Hartmann (2012, §3). The systems
discussed in the previous section are good examples. The scientist may, for ex-
ample, use the model to justify a theory of Hawking radiation or to suggest new
experimental questions. Inferences are carried from the domain of a model to
assert information or knowledge about the target system. The model is assumed
to have some relevant similarity to the target system.

There are, however, several other senses in which we might further distin-
guish flavors of model-based reasoning—particularly when talking about ap-
proaches to characterize human cognition. Consider a logical model, and the
notion that a model-based reasoner chooses among sets of truth values of vari-
ables in a given premise set. That is, an agent’s model is comprised of logico-
semantic content, and model-based reasoning in this sense is some more or less
straightforward deductive process.

This seems fairly distinct from the above notion, in that inferring from the
domain of a model to a target domain seems not to be deductive, but rather
abductive. The former notion of model-based reasoning has something to do
with the seemingly non-deductive inferences that individuals and scientists make
from a model. For example, inferring some property of a real system from an
idealized model in physics.

Another sense of model-based reasoning is in diagnostics, or in artificial
intelligence systems which have a model of the environment. See Davis and
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Hamscher (1988). Now, this might sound very close to the notion of HGM
and ‘mental models’ I discussed previously. However I think it is important
to distinguish between model-based reasoning as somehow providing rules or
guidelines in an argument or in an artificial inference system, with model-based
computation as I have construed it. Model-based computation can be a part
of model-based reasoning, but it isn’t clear that model-based computation is
model-based reasoning.

Reasoning is an active process (one might even say conscious), whereas
computation—aside from the User’s set up of a problem or the interpretation
of an output—seems to be passively implemented. Model-based reasoning may
likely be involved in constructing a particular computing device, but it isn’t
clear that what the device is doing should also be considered model-based rea-
soning. Or, it isn’t clear that our use of the device as a model-based computer
constitutes model-based reasoning as understood by previous work on the sub-
ject. Nonetheless, it seems to be that a more in-depth analysis of these two
notions may be fruitful.

One could perhaps say that the most fundamental distinction to be made in
this discussion is an intra-inter distinction. That is, there is the reasoning or
processes involved in exploring a model—these inferences are intra-model. On
the other hand, we have the seeming abduction or analogical argument from
the model to the target system. This is inter-model, it exceeds the domain of
the model and applies to our representation of the target system.

For a model-based computational device, it is important that our intra-
model operations can produce a state which achieves inter-model significance.
That is, at the end of the physical operations of the device, our use indicates a
functional relationship of the outcome with some property of the target system
(more precisely, a formal representation of the target system) or a solution of a
target problem. In other words, the outcome corresponds under a ‘use function’
to a desired calculation. Under certain circumstances, there may be a formal
similarity between the intra-model operations and the operations which could
in principle be applied to the target system (or target problem). This would
be identified with the special case of analog model computation and analog
simulation.

3.6 Conclusion
At this stage, I offer a preliminary framework in Fig. 3.1 of computation to
reflect model-based computation as discussed in this present work. I suggest
that, at the very least, we should think of computation as consisting of two di-
mensions. One dimension represents the characteristics of physical devices and
computational organs—or, our characterization of the dynamics or behavior of
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such components. The other dimension has to do with the status of represen-
tation in a model—ranging from a model which is totally dissimilar to a target
problem, to very similar (like in analog simulation). Importantly, these dimen-
sions can be thought of as more or less orthogonal, and we can see why not being
conscious of these dimensions might lead to the kinds of objections discussed
earlier concerning analog computation. Ulmann has drawn our attention to the
fact that there are two fundamental dimensions of computation that need to be
distinguished to really understand what certain devices are doing.

Model Similarity
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TotalNone

Figure 3.1: A proposed picture of the computational landscape
in the context of model-based computation discussed here.

Briefly, lets take a look back at our examples and where they might fit
into this framework. Absolute locations on the diagram for particular devices
are unlikely to be uncontroversial. First, on the model similarity dimension.
Take the slide rule example discussed earlier. The representations involved in
the model do not particularly seem relevant or similar to multiplication. Even
though our description of how the ruler implements multiplication is a step-by-
step procedure, the manner in which the computation is achieved seems fairly
dissimilar to a particular way of multiplying two integers. A slide rule is not
the only means of computing multiplication, and so unless our target problem is
explicitly to compute multiplication by a logarithmic means we would probably
place a slide rule somewhere to the left of total similarity. However, that might
just be the actual implicit purpose of a slide rule, in which case we would indeed
mark it somewhere further to the right on the model similarity dimension.

The example concerning analog simulation, on the other hand, involves a
table top model which is characterized by certain well-defined similarities (i.e.
isomorphisms of causal structure) to the target problem. This is very near
to total similarity. The mathematical representations of the fluid system are
similar to those of the black hole, as well as the dynamics (‘operations’) which
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occur when the system is allowed to evolve in time. Again, we can see that the
more specific our model and device is, the generality of what can be computed is
limited. It is unclear how multiplication could be accomplished by such a device,
or why we would want to try. Quantum simulation, which is the simulation of
one quantum system by a controlled quantum system, would also likely fall far
to the right on the similarity axis.

Then there is the vertical dimension in the above framework. This concerns
the types of values used by organs in the device. If only binary values are used,
then this corresponds to a traditional digital computer. Somewhere in-between
are any number of discrete-state devices. A notched slide rule would probably
be in the lower right quadrant, whereas the traditional idea of a ‘smooth’ slide
rule would be in the upper right corner, near other analogy machines and analog
simulators. This fact does illustrate just how practical this two dimensional view
is. In the ideal case, we could imagine some device whose organs operated with
continuous variables. There is always the question of whether such values are
recoverable (i.e. quantum amplitudes), but nonetheless I think the extremities
on this axis are reasonably clear. General purpose digital computers would be
along the bottom, perhaps in the lower left corner. A more specialized digital
device like a GPU might be a bit closer to the middle, but still on the bottom.
More general purpose analog devices would probably be somewhere in the upper
middle. And so on.

This is all a preliminary outlook on what has so far been discussed. I have
argued that this framework is beneficial for theoretical computer scientists and
philosophers alike. Future work is justified, particularly in discussing more in
depth case studies and attempting to plot them in such a landscape to get an
overall picture of the landscape of computation. Even if the precise plotting
of computational devices is not the primary goal, it seems like the exercise of
discussing computation along these dimensions helps to get a grip on what one
is working with in any given alternative computing device.

A model-based notion of computation helps us understand why certain ar-
chitectures or models might perform better on, for example, optimization prob-
lems. Take D-Wave’s supercooled annealing chip, for example. Its usefulness
derives from a combination of architectural features and model-based consider-
ations in the set-up of the device, and these determine the types of problems
that it can be useful for. It is worth investing in because it exploits a combi-
nation of pre-computed modeling considerations with an architecture that also
reflects these considerations (whether it truly exhibits a “quantum” advantage
or not).

There is an interplay between our understanding and descriptions of phys-
ical systems and their dynamics, and what we consider to be our model for
computation. For a general purpose digital computer, it might suffice to map
a representational model (i.e. digital computation) onto our description of the
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physics of the device. On the other hand, it might be useful to first describe
what a system does, and to see what could be computed if we set up and con-
trolled such a system in certain ways. That is, let the description of the physics
of the system define our model of computation. As an example, consider Carver
Mead’s outline of neuromorphic computing hardware:

The fact that we can build devices that implement the same basic
operations as those the nervous system uses leads to the inevitable
conclusion that we should be able to build entire systems based on
the organizing principles used by the nervous system. I will refer
to these systems generically as neuromorphic systems. We start by
letting the device physics define our elementary operations. Mead,
1990, p. 1631

Specialized computational devices like IBM’s TrueNorth, one of many re-
cent attempts at neuromorphic hardware, illustrate the model-based notion of
computation for neuromorphic computing. One can imagine that pairing such
a device with a specialized artificial neural network (ANN) algorithm can result
in model-based computational efficiencies. For example, matrix multiplication
is a typical operation performed in an ANN one might want to design for in a
computational device meant to implement ANN algorithms.

A convolutional neural network (CNN), for example, is an ANN whose con-
volutional layers learn through back propagation appropriate kernels to con-
volve with the input. One could think of it as a model-based neural network
(specifically for image processing), whereas the neuromorphic hardware might
be model-based to process typical neural network operations. The operation of
a CNN is inspired by the receptive field of biological neuron vision processing.
A convolution in the continuous case is defined for two functions (e.g. of time)
f and g, sliding a kernel over a signal:

(f ∗ g)(t) =
∫ ∞
−∞

f(τ )g(t− τ )dτ (3.1)

Even though TrueNorth was a neural-inspired architecture, it was not devel-
oped explicitly for deep CNNs. Still, the result of matching efficient neuromor-
phic architecture with neuro-comutational models is impressive. See Esser et al.
(2016). We see that as the model-based considerations and hardware architec-
ture align, even if imperfectly, the performance on certain classes of problems
increases—for example, in machine learning and image recognition tasks. The
tool (or combination of tools) has a better fit to the problem, encoding certain
assumptions about what should be computed, how and why.

We can understand the justification to find an architecture that reflects our
model as closely as possible, such as a neuromorphic hardware specially built
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for convolutional neural networks. In the special case, we have a device that
performs analog simulation as outlined earlier. However, this likely comes at a
cost of computational generality. We may make some pragmatic compromises
in our model for ease of use, for finding an appropriate architecture, and to
increase the domain of application of the device, etc. Optimizing hardware for
matrix multiplication is one area which seems to be a fruitful compromise, since
it is a typical operation in many popular artificial neural networks.

In conclusion, model-based computation seems to be a worthwhile notion to
entertain when discussing alternative computing. If a User wants to compute
certain things that are modeled better by neuromorphic or quantum computers,
then using these devices might provide some computational advantage. The no-
tion of model-based computation does not entail any kind of dramatic proposal
to re-draw complexity classes or endorse any view on hyper-computation. In
fact, it is clear from the discussion that complexity claims should be wary of
fronted resources by the modeling process.

As a conceptual tool, model-based computation helps us get a better grasp
on the landscape of computation. This account also gives an intuitive picture of
what does and doesn’t compute (since a computational device computes relative
to a User). I have argued that this tool is useful for analyzing and understanding
various kinds of computational claims. Perhaps it can also help us keep track
of the emerging market for specialized computing devices.
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Chapter 4

Neural Networks as Cybernetic
Regulators

The same point of view may be applied to the brain, and we can
see how one part of a brain can show towards another part the
objective behavioral relationship of designer to machine. We can
begin to see how one part—a basal structure perhaps—can act as
“designer” towards a part it dominates, towards a neural network,
say. Ashby, 1958, p. 255

Cybernetics provides a useful conceptual framework for characterizing ar-
tificial neural networks (ANNs). This should be unsurprising, given the com-
plex historical interplay of the central ideas and the interdisciplinary influences
among biology, neuroscience, computer science, connectionism, and all flavors
of AI. (Cordeschi, 2002) The cybernetic interpretation of ANNs, consistent with
decades of subsequent development and use by control theorists (see e.g. Leigh
(2012, §16)), provides an accessible level of analysis. Indeed, one might consider
control theory to be an engineering discipline which matured out of some of the
central ideas of cybernetics. It would only be natural for philosophers to make
use of this rich conceptual history to understand what ANNs are and what they
are capable of. This chapter attempts to bolster philosophical analyses in the
area, in particular against the worry that ANNs are epistemically opaque, and
outline how general cybernetic concepts usefully connect to modern machine
learning. This is enough to justify a stand-alone project, but for the purposes
of this dissertation this chapter also serves as a build up for chapter 5 and a
transition from the previous chapter 3.

The apparent epistemic opacity of computer simulation and machine learn-
ing techniques means we are faced with the problem of justifying decisions based
on these techniques. As noted for example by Humphreys (2009), such opac-
ity may arise for human epistemic agents who are unable to follow all of the
computational steps—and even if they could, there may be a fundamental limit
to what we can understand. One example which seems to fall into the class
of opaque techniques is classification using ANNs. Trained classifiers are used
widely by data scientists in industry, and may be used to justify and automate
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a variety of decisions. Such widespread usage will inevitably encounter objec-
tions: why should we trust in these techniques when they are opaque? It will
be useful to have at least some sort of explanation ready at hand, even though
it may not make the token neural network model transparent. The account of-
fered here will hopefully reduce some opacity worries, but it might also redirect
these worries to more salient issues concerning the use of ANNs. For example,
how an ANN fits a task might not be as worrying as the fact that it fits.

There are a wide variety of audiences we may wish to explain (or justify)
the behavior of ANNs to. There are expert explanations, and layman explana-
tions. Expert explanations are about refining understanding for highly-trained
experts in machine learning or in a related technical field such as linguistics,
neuroscience, mathematics, statistics, physics, etc. The field of data science
is surprisingly diverse with respect to the backgrounds that practitioners hail
from. High-level explanatory analyses will assume and build upon the linear
algebra, calculus, and statistics used in ANNs for machine learning purposes.
They aim to “illuminate” the so-called black box by explicating mechanisms,
doing statistical analyses, and trying to find the essential computational aspects
and parameters of the ANN models that are relevant for giving the expert a
detailed understanding of what is going on inside.

Layman explanations, on the other hand, I take to be about the conceptual
foundations about what kind of objects ANNs are. Such an explanation will
give a non-expert a sense of the types of behaviors and results these objects are
capable of. It will help develop intuitions, which could be refined by further
study and experimentation, but which should suffice for a wide range of justifi-
cation inquiries. It is this sort of understanding I am aiming to characterize in
this present chapter. If I am successful, I would hope that the concepts outlined
here give entry level data scientists, laymen, and other interested non-experts
(such as philosophers) a useful way of thinking about ANNs that is accessible
and not too formal. There are, after all, more people who would like a basic
conceptual understanding than there will ever be experts.

Expert attempts to illuminate so-called “black box” models will be of little
use for such an audience. Individuals who are not formally inclined, or do not
have expert familiarity with linear algebra and statistics will not be illuminated.
The high cost of specialization required for experts to understand the details
means that further insights are diminishing returns. Any additional explanatory
power or justification they provide are likewise not worth the trouble. Experts
can and should keep investigating for more esoteric insights. For widespread ex-
planatory purposes, however, any worthwhile insights which change the overall
justification picture for the effectiveness of ANNs will have to be translated into
an accessible and intuitive picture. At present, I think the cybernetic account
of ANNs is such a picture.

If analyzing an ANN is anything like analyzing a brain, it seems reasonable
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to suppose we can use a common methodology or framework to understand both
kinds of systems. If cybernetics (and cognitive systems theory in particular) is
such a framework, which I find uncontroversial, then the epistemic situation we
have with respect to an ANN falls primarily under the same jurisdiction as other
similar systems. I think non-experts may find the notion of a cybernetic regu-
lator a useful starting point for understanding the kinds of objects that ANNs
are. I argue they are cybernetic regulators with large amounts of parameters.
Furthermore, their regulation is error-controlled—that is, the parameters which
achieve regulation are adjusted based on a measure of the current performance.
These concepts are expanded upon in the next few sections.

4.1 Some Basics
Perhaps the most well known examples of cybernetic regulators are mechani-
cal governors, for example centrifugal governors (see e.g. Maxwell, 1868). The
mechanical feedback in a governor controls, for example, the amount of fluid
propellant for an engine. A crucial machine in the subsequent history of cy-
bernetics was Ashby’s table top device called a homeostat. The purpose of the
homeostat was to be demonstrative of core principles: it showed how a simple
system could control, through feedback, environmental disturbances and ‘adapt’
to a stable state. See Ashby (1958, §5/14), and also Asaro (2008) and Corde-
schi (2002, §4, §5) for some context on the homeostat. Another simple and
familiar example is a thermostat: a system which controls the air temperature
in a given volume (e.g. a room). It has a sensor for the current temperature,
and a method of determining the distance (and direction) between the sensed
temperature and the current regulatory goal. This goal is set by the user. Fur-
thermore, the regulator either contains (or is coupled to) a mechanism whose
actions ideally produce a state of the world aligning with the regulatory goal.
That is, under the control of a thermostat, the temperature of a room should
equal the set temperature.

Cybernetics as a framework gives us the concepts and intuitions we need to
understand the behavior of objects like thermostats. In this chapter I claim it is
also a very useful framework for developing intuitions about ANNs. I argue that
the bulk of understanding we wish to obtain about ANNs is already present in
the cybernetic picture, specifically that provided by Ashby (1958). ANNs are
cybernetic regulators very similar to a thermostat. Once the basic concepts
are introduced, and this similarity is understood, we can see that some aspects
in modern usage of ANNs (such as regularization) are relatively easy to grasp.
This perspective is useful for a large demographic of individuals who may be
in search of an explanatory framework to develop intuitions about the kinds of
objects ANNs are.
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First, a very brief introduction to ANNs. For more details on the fundamen-
tals of ANNs, see for example Basheer and Hajmeer (2000). A basic example
of an ANN is a perceptron which provides basic predictions or classifcations of
a given input stimulus or data example x (a vector of features). It is composed
of nodes (neurons) with activation functions, weights w, and biases b. A sim-
ple perceptron has no intermediate nodes, and no layers in-between the input
and output layers. It can separate linearly separable data, and its activation
function is a Heaviside function:

H(x) =

1 if x > 0,
0 otherwise

(4.1)

We apply the Heaviside to the dot product of weights and data, H(w · x +

b). This has the effect of producing an artificial ‘neuron’ with a threshold.
The neuron “fires” when the argument of the function (which is a number)
exceeds the threshold. The output of the function is a prediction about the data
example. A multi-layer perceptron (MLP) with non-linear activation functions
(e.g. ReLu, sigmoid) is capable of approximating arbitrary non-linear functions.
Hence, one way to understand ANNs is as function approximators. An MLP
effectively has non-linear perceptrons hidden inside of itself which activate on
input from another layer in the network, and not directly on a stimulus (data).
The weights w in an MLP are a matrix, as each node is connected between the
layers (they are dense). Large numbers of hidden layers in an ANN is referred
to as a “deep” neural network.

ANNs learn in a systematic and automated manner, where input data is
transformed on a forward pass resulting in an output. This output could for
example be a class prediction in a classifier, or an action prescription in rein-
forcement learning. Weights are updated on a backward pass according to a
form of gradient descent on the error surface, where a weight’s contribution to
the model’s performance is calculated and adjusted for future forward passes.
An algorithm which propagates errors back through the network is called a back
propagation algorithm. The end goal is to have a trained network which can
predict or classify the data (e.g. images), as well as new data that the network
has not trained on.

I will discuss primarily supervised learning, which occurs when we feed data
examples (such as images of dogs and cats) into the network, knowing which
images are cats and which are dogs and assigning them labels (0 and 1, for
example). There are other types of learning, but my discussion does not signifi-
cantly hinge on the differences between them. For example, the reader may have
heard of unsupervised learning, which unfortunately sounds like it is fundamen-
tally different from supervised learning. However, the basics are still the same.
Indeed, Yann LeCun has stated that he prefers to use the term “self-supervised”
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learning, since the algorithm itself is coming up with labels (and therefore the
error gradient). A mixture of machine and human annotated data is also possi-
ble, for example in so-called active learning. See for example Holzinger (2016)
for more details.

The important point is that there is a feedback loop which communicates
error to a model, which is then used by an update mechanism to improve the
model. I take this to be the central conceptual point for understanding the kind
of objects ANNs are. If ANNs and the associated methodologies were considered
to be opaque, such a conceptual understanding offers significant transparency.
Essentially, I am claiming that ANNs are best understood conceptually as cy-
bernetic regulators. This will for some appear to be trivially uninteresting,
bringing up old history. However, as I have noted, my motivation is in large
part to find an explanatory framework suitable for rendering ANNs transparent
to a growing demographic of interested parties. Some parts of this article may
go beyond what can be considered accessible to the entire demographic, but
I include them in an attempt to bolster what I have already found to be an
effective way to reduce the opacity of ANNs for laymen.

4.2 What Exactly is a Cybernetic Regulator?
A cybernetic regulator is part of, or interacts with, a complex system. It con-
trols environmental disturbances by appropriate actions, resulting in a state of
the world aligning with a regulatory goal. We call the system to be regulated
the reguland. Ashby (1958, §11) outlines the idea with a very simple decision
game between two players. Take the very simple case of a thermostat above.
This example is widely used historically in the literature in and around the
development of cybernetic ideas, and Cordeschi (2002) details many influen-
tial arguments using thermostats. We can represent the ‘thermostat game’ in
table form, at first just considering a broken thermostat which only regulates
into two classes of states. That is, the potential goal temperatures are not on
a continuum or discrete multi-partite scale, but simply partitioned into two
distinguishable classes of states. Lets say above and below 20◦C.

R1 R2

E1 <20 ≥20
E2 <20 ≥20

Both players E and R (‘Environment’, ‘Regulator’) have access to their
actions (picking rows and columns, respectively), and can see all possible out-
comes represented in the table. E goes first, choosing a row, and R plays a
column for some outcome at the intersection of Ei and Rj . In the case of the
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thermostat, this is the set temperature (greater or less than 20◦C). In the spe-
cial case above, the number of potential plays R can make equals the number
of possible outcomes of the world, and the number of possible disturbances from
the environment. Lets say that E1 is cold air less than 20◦C entering from an
open window, and E2 is hot air above 20◦C entering. This case is uninteresting
except to note that R has a very simple strategy to achieve perfect regulation
(always ‘winning’) for either goal. What the R1 and R2 plays look like are left
to the reader as an exercise.1

Consider now a better thermostat which can target integer degrees between
15◦C and 25◦C. There might be environmental disturbances for which R has
no appropriate play to obtain the desired state of the world (set temperature
of the room).

Rj

15 21 12
29 22 21

Ei 21 16 19
21 24 17
23 20 21

Lets say the temperature is set to exactly 21◦C. In the set up of this game—
i.e. the characterization of the regulator and its environment—there is always
a winning play R can do to achieve the desired state of the world, no matter
what the environment does. If, however, the temperature is set to 18◦C, there
is no play R can make which results in this state of the world for any possible
Ei. We also see that there are states of the world which cannot be the goal of
our thermostat (by stipulation of the example). On the whole, this thermostat
is still pretty bad. We can imagine increasing its regulatory capacity (and per-
formance) by increasing the number of regulatory goals it can be ‘programmed’
to. In this case, there is no additional plays which the R needs to be capable
of. Extending the setting range from 10◦C up to 30◦C means at least if our
goal is on the table, R has a response under some plays from E.

Ideally, a perfect regulator would be able to control any Ei and yield the
regulatory goal as the state of the world. In the above game, the only possibility
for perfect regulation occurs when the goal is 21◦C. The variation of regulatory
responses by R is, in this sense, insufficient to control the variation in E. We
can try augmenting the game with more moves for R, which perhaps result in
more comprehensive regulatory capacities. Depending on the mechanisms of
control in the overall system, it may be possible to improve regulation for a
large class of goals just by increasing the number of R’s potential moves until
regulation meets some threshold of performance. If we just consider in this

1In the case of E1 and E2 what does R need to do?
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toy example that columns (plays) for R are made up of random integer entries
between 10◦C to 30◦C, eventually R will have a move for each Ei which results
in any desired temperature (assuming R has the ability to see the ‘game’ and
choose the appropriate actions). It can become a perfect regulator for all goals
it can aim at.

This example provides the basic intuition for a general law of the behaviors
of regulators construed in this way, first provided by Ashby, 1958. Broadly,
Ashby’s Law of Requisite Variety (LRV) says that “only variety in R can force
down the variety due to [E]”. A good regulator R has a sufficiently variable
strategy profile for responding to moves by E, enabling it to accurately and
effectively control the outcomes of the game. Ashby, 1991b provides a discussion
of the LRV in information theoretic terms, influenced by the work of Shannon’s
communication theory.2 A regulator, in effect, reduces the ‘flow’ of information
from environmental disturbances passing into the system. If the temperature of
a room should be regulated by a well-designed thermostat, the fluctuations of
cold air entering the room from an open window should not result in equivalent
fluctuations of the room’s temperature.

4.2.1 Error-Controlled Regulator and Feedback
One way in which a regulator can improve its performance is by learning. Imag-
ine that the plays available to R are chosen from a uniformly random distribu-
tion in response to the input. Its regulatory performance would not be good,
but by equipping R with a mechanism which reports the errors back into the
regulator we might be able to take advantage of that information. We could use
it to make improvements for future attempts to control similar environmental
disturbances. We could adjust or update the distribution from which plays are
chosen. A simple example of reinforcement learning treats the distribution as
a bag of colored marbles. We choose plays by picking marbles at random from
the bag.

Lets say there is a uniform distribution over 5 regulatory plays, the proba-
bility for each play is 1

5 . In marbles, lets say there are 5 marbles of 5 different
colors for a total of 25 in the bag. The environment throws a situation at me
(itself assumed part of its own distribution of situations), and I draw randomly
from the bag for my response in an attempt to control the situation to a desired
outcome. If it is a positive outcome aligning with my goal, I note the color of
the marble and add another of the same color to the bag. Lets say it was a
blue marble. Now there are 26 marbles, 6 of them blue. The reader can check
that the probability of choosing a blue marble at random from the bag is now
greater, and since probabilities sum to one, the probability of each other color

2In fact, it seems to be Ashby’s intention to think of the concept of variety (of distinguish-
able physical states of a system) as underpinning Shannon’s notion of information. In a two
state system, these states are coded into bits.
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has gone down. We continue in such a way, adding marbles to reinforce plays
which achieve an outcome aligning with the regulatory goal.

Without going into too much detail, it is clear that over time we can adjust
the random distribution in a deterministic way which adapts or learns a dis-
tribution of responses that increases regulatory performance. While there are
limitations to the kind of learning in this toy example, we can imagine that a
regulatory system like a thermostat could begin with poor regulatory capacity
and random responses, but slowly adapt in a determined way. Over time, with
the right reinforcements, such adaptation could result in much more effective
control of typical temperature disturbances. Trainable weights in an ANN are
adjusted in a similar way, called back-propagation. In other words, information
of the error (distance) between the play (prediction attempt) and the actual
goal is fed back into the regulatory mechanism. This information can then be
used to adjust parts of the mechanism, which will change future control actions.
If the best actions are represented as minima in an abstract landscape, there
are algorithms which systematically descend that landscape based on the error
information. Gradient descent (and stochastic gradient descent) are standard
algorithms which do this. Thus, it makes sense to treat ANNs as error-controlled
cybernetic regulators.

4.3 Shattering and the VC Dimension
We are on our way to characterize artificial neural networks as cybernetic reg-
ulators. First, we make a pit stop to discuss an important mathematical con-
cept called shattering which underlies formal analyses of machine learning tech-
niques. If we conceptualize shattering in game theoretic terms as above, then
shattering is just another regulatory game. In set theoretic terms, class R shat-
ters set E if we can construct the power set like so:

P(E) = {r ∩E | r ∈ R} (4.2)

R can be thought of as a set of plays r (themselves sets), E a set of environ-
mental disturbances, and P(E) is all combinations of disturbances in E. When
each member of the power set P(E) can be captured or controlled by an appro-
priate play r, we say that R shatters E. A regulator built with the capacity to
shatter all potential disturbances would be a universal regulator. Practically,
we suppose there are finite disturbances generated in a distribution D, where
our typical set of disturbances are a subset of this distribution: E ⊂ D.

As a visual example, we can think of R as a set of curves or shapes which
attempt to separate E as a set of data points. Consider the simple example of
four data points, each equally distanced along the circumference of a unit circle.
We try to shatter these points by using circles which can be placed anywhere in
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the plane and scaled smaller or bigger. Shattering the set of these points using
the set of circles of any size and location in the plane means we want to be able
to capture any set of points within a circle. Circles are our regulatory plays,
and we have infinitely many of different radius and location at our disposal.

x2 + y2 = r2

Above, we can see that it is trivial to capture each singular point. However,
we also want to capture all combinations of points. Shattering means being
able to construct the power set of the set of points using only circles.

x2 + y2 = r2

We can also capture in a circle the four sets of two adjacent points, as well
as the four sets of three adjacent points. All four points is also trivial. However,
with a circle of any radius or center, we cannot capture just the two non-adjacent
points across from each other without also including one of the other points.
Therefore, we cannot construct the power set containing all combinations of
these points. To do so, we have to increase the regulatory capacity of our set
of plays (i.e. set of shapes). Whereas in the simple game Ashby provides we
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needed another “move” in the strategy profile, in this game we will need to use
another shape which can capture the two sets of opposing points. By separating
the radius into two parameters, we can use ellipses to squeeze between the other
points. Ellipses shatter this simple set of points.

x2

a2 +
y2

b2
= 1

This further demonstrates the intuition that if we continue to increase the
strategy profile of our regulator, the parameters determining the fitting capacity,
we will be better able to respond accurately to disturbances. In an ANN, this
translates to an intuition that if we increase the number of trainable parameters,
after training for the same amount of time (or steps) we will have a more
closely fit model than with fewer parameters. The model more closely fits the
training distribution, however, and may not indicate generalizability. After
increasing parameters, we may notice diminishing returns in the capacity of our
model. Thus, another measure is actually more important than the number
of parameters. This is called the Vapnik-Chervonenkis (VC) dimension, and it
measures the cardinality of the largest data set shatterable by the set of plays.
In the toy example above, the set of circles has a VC dimension of 3, whereas
ellipses along either axis have a VC dimension of 4. While increasing the number
of parameters may increase the VC dimension, depending on the problem the
VC dimension may exceed the number of parameters.

The use of the VC-dimension in statistical learning theory runs
against the idea that the generalizability of a theory goes along
with its simplicity, calculated in terms of the number of its pa-
rameters. Standard examples exist of hypothesis classes with low
VC-dimension and a very large number of parameters (e.g., sup-
port vector machines), and vice versa. Indeed, the set of classifiers
{sign(sin bx) | b > 0} shatters any finite set of distinct points dis-
tributed along the x-axis, although they are governed by just one
parameter. Corfield, Schölkopf, and Vapnik, 2009, p. 55
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An interesting upshot to the game-theoretic conceptualization offered here is
that we can relate the VC dimension in machine learning (and set shattering) to
the notion of regulation (or control) of a cybernetic system. The VC dimension
can then be thought of as a formal measure of the ability of available regulatory
mechanisms to squeeze the input of a system into some defined goal state, i.e.
a measure of control capacity. Importantly, the VC dimension does not always
coincide with the number of parameters (Vapnik, 2000, p. 82-83). However, for
two systems characterized by the same VC dimension (regulatory capacity), one
or the other may be much simpler or more efficient. This brings me to the next
important point about how we understand the kinds of objects that ANNs are.
They are not just cybernetic regulators with large amounts of parameters, but
the mechanisms they utilize are non-trivial. They relate in some relevant way to
the problem (data) at hand—in other words they can be considered models. We
may then, using for example the VC dimension as a guiding measure, distinguish
between good and bad models.

4.4 Restating the Good Regulator Theorem
In getting a grip on the kinds of objects that ANNs are, I have discussed so far
how regulatory capacity can be thought of in game-theoretic terms, and intro-
duced the VC dimension as a better measure than the number of parameters.
It is furthermore pragmatically useful to think of (trained) ANNs as regulatory
models.3 For present purposes, it is important to outline how we can distinguish
the important features of these models, and how we measure their effectiveness.
If we can get a sense of what a good ANN model looks like, we can reduce our
sense of epistemic opacity about how they function. This brings me now to
what is known as the Good Regulator Theorem (GRT) from Conant and Ashby
(1970):

Definition 3. The simplest optimal regulator R of a reguland E produces ac-
tions r ∈ R which are related to the events e ∈ E by a mapping h : E 7→ R.

If we are to relate the theorem to modern ANN models, this formulation is
rather unclear. We can imagine that such a theorem aims to state a complexity
criterion for good machine learning models. However, I think it needs to be re-
formulated. For context, the authors seem to claim that unnecessarily complex
(but still optimal) regulators are not models, which I think is an oversight:

[The] best regulator of a system is one which is a model of that sys-
tem in the sense that the regulator’s actions are merely the system’s
actions as seen through a mapping h. [. . . ]

3ANNs are already commonly referred to as models, I am just clarifying the conceptual
sense in which I see them as models.
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[The Theorem] leaves open the possibility that there are regula-
tors which are just as successful (just as ‘optimal’) as the simplest
optimal regulator(s) but which are unnecessarily complex. In this
regard, the theorem can be interpreted as saying that although not
all optimal regulators are models of their regulands, the ones which
are not are all unnecessarily complex. Conant and Ashby, 1970

What I think we want to actually say is that unnecessarily complex regula-
tors are bad models, but they are still models. But what exactly is unnecessary
complexity? Even though two models may have the same shattering capacity
in principle, having the same VC dimension, the theorem attempts to state
the intuition that still one model may be better than the other. The original
formulation of the theorem doesn’t seem to address the case that a regulator
(ANN) can be a model but still be unnecessarily complex—for example it’s per-
formance is unimproved when more regulatory capacity (parameters) is added.
Also, what the authors intend to be optimized is unclear when we try to relate
the theorem to ANNs. To be fair, it was originally about abstract regulators,
but I think a restatement of the theorem and a corollary may be warranted.

Definition 4. For a set of regulators Rd with VC dimension d, we can impose
an order ≤ on them according to their ability to reduce some relevant costs,
increase some performance measures, and the number of trainable parameters
they contain.

With such an ordered set 〈Rd,≤〉 we can clarify the model-mapping between
the regulator’s actions and events in the environment. It is taken as given that
even if a regulator is not optimal we can always construct a model-mapping,
however convoluted it may be. We just want a way to rank the models. Ad-
ditionally, we need a measure of complexity to rank the complexity of a given
representation of a regulator. We want the simplest representation of the regula-
tor from the class of representations CR available. Measuring the representation
of the model by Kolmogorov complexity allows us to define what I think is a
sufficiently updated GRT:

Definition 5. The simplest optimal regulator RO is both (i) the upper bound
in the partially ordered set 〈Rd,≤〉, and (ii) represented by co ∈ CR such that
K(co) ≤ K(ci) for all other ci ∈ CR.

The simplest optimal regulator will be an optimal regulator with the lowest
Kolmogorov complexity. When doing a machine learning task, we might scoff
at the fact that there are millions of trainable parameters. This may give us the
impression of a black box, populated by unnecessary amounts of parameters,
inefficient in their VC capacity. However, for ANNS, these parameters are not
hidden, and epistemic clarity about ANNs can still be enhanced further. Some
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examples of more specific kinds of ANNs not only reduces the epistemic opacity
worry, but it also trains our intuitions about the good regulator theorem—and
what kinds of complexity is unnecessary.

There are many different kinds of ANNs. Data scientists use them for differ-
ent purposes, in part informed by the motivations that lead to their construc-
tion. Convolutional neural networks (CNNs), for example, learn filters (kernels)
to pass over an image, detecting features such as edges. The learned structure
of these networks fulfill to some relevant extent what we perceive to be the
goals of receptive fields in human vision. They have a lot of parameters, of
course, but we can understand why they are good at classifying images. Un-
necessary complexity in this context means something like extra convolutional
layers or large kernel sizes which do not increase performance. Or, information
which is compressed out by an effective compression of the network. CNNs do
however fall prey to classifying images with the correct features, even though
the features are not in the correct arrangement. So there is some structure
or complexity which is absent, if we intend to truly regulate the superclass of
image data with CNN models. Capsule networks improve CNNs for some tasks
by preserving spatial relationships between features in images (learning a pose
matrix). See e.g. Sabour, Frosst, and Hinton (2017). There is a great compu-
tational complexity cost for capsule networks to overcome such a drawback, yet
the argument can be made that the extra complexity in the capsule network is
necessary. It is improving some relevant aspect of the model with respect to
the target problem, not just adding parameters willy nilly.

These examples continue to deflate the epistemic opacity worries of ANNs,
providing an insight into the meaningful structure behind a sea of regulatory
parameters. We could say that an ANN which did not have these additional
structures, yet had the same VC dimension, would need to be unnecessarily
complex. Or, at the very least, the extra complexity would be valued poorly
by an expert user compared to the structured complexity found in advanced
networks like a capsule network. It would lack the model-specific organization
we think is relevant for regulating the typical (i.e. training) distribution of
environmental disturbances. Or, worse, it would just memorize its task, a classic
worry of ANNs. In any case, I am supporting the intuition that if we could
measure the Kolmogorov complexity of an unnecessarily complex model it would
be greater than that of the model with the additional structure even if it has
more parameters. In the case of a CNN or capsule network, our descriptions
even use shortcuts: feature detectors, Gabor filters, pose matrices, etc. These
shortcuts represent concepts which have already reduced the opacity of the
ANN, because they are specific mechanisms.

So, why do we use certain ANN architectures for certain problems? Such
a question will for many have an obvious answer: the particular mechanisms
involved in the different architectures are better suited for handling different
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classes of data. In the language of cybernetics, they are better regulators for
certain kinds of inputs (e.g. images) because their internal structure more
closely resembles a (good) model relevant for processing the specialized input
distribution. Temporal patterns might be better recognized or classified by a
recurrent neural network. Image classification utilizes convolutional or capsule
neural networks. The fact that we can distinguish between these different kinds
of ANNs should tell us immediately that their construction is not arbitrary, and
that at least somebody knows more or less the mechanisms we will find in each
of them. Their complexity is composed—at least to some degree—of labeled
parts, not just a random sea of parameters. The layman should be aware, even
absent an understanding of the terms used to label these mechanisms, that the
experts do use these shortcuts to refer to the organization and behavior of parts
in the ANN.

Effective ANNs provide an enormous variety of trainable parameters, or-
ganized in distinguishable mechanisms, enabling them to fulfil Ashby’s Law of
Requisite Variety. Furthermore, their structure is not unnecessarily complex,
additionally qualifying them as good regulators under my reformulation (even
if they aren’t the simplest optimal regulators!). The parameters in these regu-
lators are transparent, and thus any epistemic opacity in our understanding of
them cannot be like the opacity in black boxes which are just defined by inputs
and outputs. The kind of opacity we are faced with for ANNs is typical for the
study of complex systems, such as the brain.

This deflates claims of epistemic opacity in machine learning with ANNs, and
highlights the comparable epistemic situation we have when studying complex
computational systems such as the brain. Any opacity we feel in our under-
standing will be primarily due to our practical inability to follow and assign
meaning to the high number of transformations in parameters, and not due to
an inherent limitation of understanding any mechanisms involved. Epistemic
opacity of ANNs is thus better conceptualized along the lines of Rube Goldberg
machines, and not Black Boxes.

4.5 Regularization
The foundations of cybernetics provides an accessible picture of how systems
like ANNs achieve what they can, and why they can. We can now cash out
the above argument, and see how the picture provided helps us grasp some
techniques which are common in data science when utilizing ANNs. Training
an ANN can be thought of in terms of constraint. It aims to reduce the variety
of outputs flowing from variety in input signals (disturbances, data examples).
We feed in, for example, thousands of distinct images of cats and dogs—but
to be an effective regulator it needs to squeeze the output into a much smaller
set of desired outcomes (two classes). Furthermore, even though the variety in
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the inputs might be high under one measurement or perspective, under another
there is significant constraint in the organization and features of the images.
Otherwise, we wouldn’t expect the learning regulator to ever learn how to make
effective predictions.

Ashby goes so far as to say that if “something is predictable implies that
there exists a constraint.” He continues, drawing a parallel to associative learn-
ing. He states that “learning is possible only to the extent that the [set of
training examples] shows constraint” and “learning is worth while only when
the environment shows constraint.” (Ashby, 1958, p. 132-134) If the reguland
or environment has no constraints (such as random input) we would not expect
the regulator to be able to learn how to regulate properly. However, we should
not underestimate the ability of a regulator to successfully adapt. A sufficiently
robust ANN can even learn to classify images whose labels are random, as long
as there are some constraints on the distribution of images. That is, even though
the back-propagation of error is uninformative, high accuracy (at least on the
training set) can still be achieved.

Perhaps more interesting, such networks can even achieve high accuracy on
labelled images of random noise! See for example the overview in Zhang et al.,
2016. This is a dramatic example of a problem known as overfitting. In fact,
ANNs are so good at regulatory tasks that there are many methods employed
by data scientists and machine learning researchers to reduce performance (e.g.
accuracy). To understand why, first consider that a set of data examples are typ-
ically split into three groups: training, validation, and test data. ANNs learn
first on just the training examples, cross checking the updated model agains
validation data. If the model is too adaptive, it may learn to regulate specif-
ically the training distribution, getting worse on the validation set. Likewise,
the model will perform worse when making predictions on the more general
distribution which includes the test examples.

One method utilized to increase the robustness and generality of ANNs
is called dropout. Dropout consists of skipping over nodes (or weights) in a
network with some probability during a training epoch. Training occurs on a
sub-network. These nodes are then returned for the next training epoch with
their values (and dropout may be applied again). The dropout technique helps
avoid overfitting when training a neural network model. Intuitively, we might
think of this as leading to less overfitting since the network will always need to
compensate for a fraction of lost connections, and the connections which survive
will be less specialized. Thus, there may be some value in a regulator forgetting,
and remaining more adaptively flexible.

I have characterized neural networks as cybernetic regulators. What does
it mean for a cybernetic regulator to overfit? This is a bit of a misnomer
under the reconstruction I am offering. Cybernetic regulators simply fit their
training distribution. From the control theory perspective, when the error is
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reduced to zero, by definition the regulator has done what it was supposed to
do. (Leigh, 2012, p. 26) An error controlled regulator will—if properly damped
and allowed a sufficient strategy profile (measured by the VC dimension)—tend
to match the distribution of disturbances with a distribution of actions which
model the disturbances. This results in a reduction of information (precisely
measured Shannon information) ‘flowing’ through the system, squeezing the
state of the reguland into a desired state. If the regulatory model is to be used
for a task outside of the training distribution effectively, then they need to be
equipped with a method to forget, change structure, or make errors. Dropout is
obviously such a method, which is why it is effective at reducing overfitting. If
they regulate too well the originally intended regulands, they will poorly adapt
to novel regulands.

Another way we can understand why a method like dropout works is by
talking again in terms of constraint. There are many ways in which the various
parameters in a regulator could be adjusted. There are, however, fewer ways
they can be adjusted which results in effective regulation of the regulands. Thus,
the actions of the regulator are highly constrained if it is to function properly
as intended. On the other hand, by reducing constraint our resulting regulator
will be more flexible. This may not be desired for a training distribution, but
if we intend to use the device outside of this distribution it may be better. For
an ANN, then, we see that dropout reduces the constraint in actions taken to
regulate (fit) the regulands. That is, there is more variety in its action than
optimal. It would fit better if we didn’t use dropout, but we actually don’t
want the best fitting regulator. More precisely, we don’t want the best fitting
regulator for a limited distribution of inputs. This indeed lines up with many
analyses of dropout as a regularization procedure which averages among many
sub-networks. At the end of several epochs where dropout occurred, we use
the entire network on test data. The entire network can now be considered an
ensemble of sub-networks added together.

Another way to mitigate over-fitting (perfect regulation) is by early stopping.
During the training period, or the period in which negative feedback informs
the regulator, we decide at a certain level of performance to stop training even
though we know it can still be improved. In convolutional networks training
on images, we can also augment the image set by doing transformations like
cropping on the images to achieve more robust representations. We could do
better, but we don’t want to do better, because it would come at a cost of doing
worse on the test data.

These are all known as ‘regularization’ procedures, commonly understood
as critical to help prevent overfitting and increase generalization of trained
ANN models for test data. However, there is arguably still an explanatory
gap since relatively simple networks with more parameters than the training
data can overfit even on random labels of data. (Zhang et al., 2016) Explaining
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what and how ANNs do what they do is of course one of the primary reasons
why people are concerned with epistemic opacity as highlighted by Humphreys.
(Humphreys, 2009) By looking to Ashby’s cybernetic regulators to understand
the kinds of objects ANNs are, we might see his LRV and GRT as the funda-
mental concepts to understanding the power and limitations of ANNs. They
encode the intuition that a high number of parameters may be able to cope
with complex tasks, but what is more important is the nature of the model.

4.6 Retaining and Managing Learned Struc-
tures

This final section provides a short transition to the topic of the next chapter
on transfer learning. I mentioned that Ashby built a mechanical system to
illustrate how a cybernetic regulator can be implemented in practice, adjusting
its internal structure in response to disturbing stimuli in order to remain stable.
Behaviorally, we can understand the system as ‘learning’ or adapting. This was
called a homeostat.

As a follow-up to Ashby’s homeostat, his Dispersive and Multi-Stable System
(DAMS) intended to scale up the table top experiment with the ability to freeze
successful internal adaptations in order that they may not be lost by subsequent
changes of the system.

The idea behind giving DAMS a more complex nature relied on the
possibility of letting the machine isolate some of its parts when they
would have reached adaptation, and letting the rest of the machine
keep hunting for other “friendly” variables. What was to be gained
from this is that it would no longer be necessary to re-wire the whole
machine to prepare it for the next task. [. . . ]

Truer learning could allegedly be achieved when already reached
adaptations were kept and other portions of the organism continued
coping. Malapi-Nelson, 2017, p. 165

Such a notion is, I argue, a pre-cursor to the modern practice of transfer
learning in ANNs. It also alludes to the potential of a more general regulatory
capacity when the machine is equipped with the ability to apply past adap-
tations. This will be discussed in depth in the next section. Overall, ANNs
display very similar behavior to the ideal concepts present in cybernetic regu-
lators outlined by Ashby. However, a second-order framework is required for
managing what is learned. That is, trained ANN models are each only first-
order cybernetic regulators. If they are to be more general, and justify claims of
artificial general intelligence, there needs to be regulation among learned models
determining which models to apply and when. Something like what scientists
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do, when they utilize analogies and transfer models to new domains, is arguably
such a second-order regulatory method.

Finally, I just want to briefly suggest an overview of what possible situations
there are in terms of knowledge transfer for an effective regulator. This is an
area I think for future research into developing the picture of transfer learning
I offer in the next chapter. Consider a regulator R, its action on an input in X
which results in some output in Y . R takes a xi ∈ X to some yj ∈ Y (these
could be vectors in vector spaces, for example). For another space of inputs and
outputs x′k ∈ X ′ and y′l ∈ Y ′, what is the desired action of R, or some other R′
constructed by modifying R? Overall, there are eight potential cases we could
consider (assuming the format of inputs are compatible):

1. R(xi) = yj 5. R′(xi) = yj

2. R(x′k) = yj 6. R′(x′k) = yj

3. R(xi) = y′l 7. R′(xi) = y′l

4. R(x′k) = y′l 8. R′(x′k) = y′l

(4.3)

The first case is what the regulator R is intended to control. That is, R
is trained on data X to squeeze into desired states in Y . It is adapted to X
and Y . New data from X ′ are either associated to R, or to another related
model R′ which is not trained like R is, but constructed from it. In the special
case R′ = R. The questions are then what relationship there is between the
data (distributions) X and X ′, and whether R′ squeezes into Y like R, or into
some Y ′. For present purposes it is more interesting to focus on the cases
involving x′k, since such inputs are novel with respect to the original regulator
R. Transfer learning seems to me to be most like cases 6 and 8, where R′ is
a slightly modified version of R. For example, most weights in hidden layers
of R are frozen, but ‘adapters’ are added to R′ on the top and bottom of the
network to handle different sized data or a different number of classes. A full
discussion of the rest of these cases is an interesting task for future research.
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Chapter 5

Transfer Learning and Artificial
General Intelligence

The “designer” of a machine is simply the origin of certain parameter
values. Ashby, 2008, p. 4448

This article is an attempt at sketching an approach to artificial general in-
telligence (AGI) based on transfer learning. The automation of current transfer
learning methods have the potential to make significant progress towards ro-
bust AGI. I am specifically concerned with the automation of transfer learning
methods using artificial neural network (ANN) models, and I will build on the
basics of ANNs presented in the previous chapter. The sketch provided here
can be taken to provide a rough vision for the kind of engineering tasks involved
in creating a meaningful AGI with these methods.

As I take AGI to be largely distinct from any considerations of strong or sen-
tient AI, this present work will be largely devoid of any speculations concerning
‘the singularity’ or other popular discussions of conscious robots. I will only
say that it seems to me that robust AGI (however it is achieved) is certainly
necessary, but perhaps not sufficient, for sentient AI. Debates around sentient
AI are largely about whether it is in principle possible to achieve, whereas my
discussion of robust AGI via automated transfer learning takes it to be definitely
graspable as an engineering problem which is possible to be solved. Because of
this, there is arguably an imperative for philosophical analysis of the issue. Such
analysis is squarely within the domain of a cybernetic systems framework, and
I think it is instructive—as previous examples have been—to why a structural
systems theory approach makes particular sense.

Before getting to the specific methods relevant for AGI, I draw attention to
another popular method which is already automated, hyperparameter optimiza-
tion (HPO). Keeping this in mind should help to contextualize the discussion in
subsequent sections. Instead of a data scientist or machine learning researcher
manually trying different combinations of learning and dropout rates, for ex-
ample, automated HPO can simply search through a ‘grid’ of combinations of
a range of hyperparameter values to find (more) optimal values for training a
model. We want optimal hyperparameters to improve accuracy per unit of time
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(batch or epoch). That is, we use HPO to find parameters to train a model
more efficiently (thereby hoping we achieve a better model faster).

Grid search is just one popular HPO method offered by industrial automa-
tion services. Other methods are also used, including forms of Bayesian opti-
mization and genetic algorithms. Examples of automation services are found in
Amazon’s AWS Sagemaker, auto-sklearn (Feurer et al., 2015), IBM’s AutoAI,
Cray’s crayai, and other competitors. These services aid in the training and
deployment of production level machine learning models. They provide a vari-
ety of methods which can be used to aid in a development cycle. Although very
practical, HPO doesn’t seem like a significant move towards what we might ex-
pect from AGI. It just improves the performance of a specific model, one which
may not be generalizable in the way we might expect from more robust AGI.
Since AGI is the present focus of this work, I want to consider the automation
of a method which at its core is about generalizing models, and managing the
use of previously trained models.

General intelligence (GI) is surely related in some way to the adaptive ca-
pability of a (cognitive) system to successfully respond to inputs which, at least
from a practical point of view, are reasonably considered to be novel compared
to typical past inputs. For artificial GI, in the context of ANNs, this means the
inputs are reasonably considered to be outside the training domain. That is,
the novel data comes from a different distribution compared to the distribution
the ANN model was trained to handle. The system utilizes previous experi-
ence (however unrelated) to successfully handle the novel input. To this end,
I now introduce more concretely what is called transfer learning in ANNs. In
contemporary machine learning, ANNs are motivated by connectionist cogni-
tive science and neurobiology. Connectionist motivation for studying transfer
learning is outlined by the Sharkeys:

(i), [. . . ] it makes little sense from a cognitive science perspective to
have neural nets that are trained from scratch on every new task,
and that are unable to draw on any prior knowledge;

(ii), so far as neural nets are used for psychological modelling, train-
ing nets that are in effect tabula rasa flies in the face of the mass of
evidence of the important role of innate structure in the brain.;

(iii), it is simply not practical to have to create and train an entirely
new net as each fresh problem is approached. (Sharkey and Sharkey,
1993, p. 314)

Transfer learning is typically considered to be the use of pre-trained ANNs
for novel tasks considered to be outside of the original training domain. Specif-
ically, this usually means re-using a set of weights (and associated ANN archi-
tecture) which have been trained on one data distribution D1 to make (or learn
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to make) predictions on data from another distribution D2.1 The method has
become common in data science, mainly due to the impracticality of always
training a new network. Crucially, it is the human data scientist who decides
the appropriateness of transferring the model, or of the similarity between do-
mains D1 and D2. The majority of parameters (weights) in an appropriate
pre-trained network can also be ‘frozen’, greatly increasing the efficiency of
learning the new task. The reader may wonder how this relates to the familiar
paradigm of supervised learning.

Transfer learning is both technically and practically distinct from supervised
learning, although supervised learning could be viewed as a special case of trans-
fer learning. Consider a mechanism M1 which generates data X1 according to
a distribution D1. Supervised learning models trained on X1 arguably expect
new data (the data for which the model was trained to deal with) to be in-
terpretable within the same distribution D1. That is, we consider the training
data X1 to be a representative subset of the data generated by M1, exhibit-
ing learnable properties of the distribution D1. We don’t typically assume the
model will successfully apply (generalize) to some data X2 generated by some
other mechanism M2, which may exhibit properties of a distribution D2 which
diverges from D1. By definition, transfer learning applies a model trained on
X1 (generated by M1) to some novel data which comes from a data set X2
generated by some other mechanism M2. Here we can see that if X1 ∪X2 are
consistent with D1 and can be interpreted as generated just by M1, we are
assuming a special case. Transfer learning is a technique which requires making
explicit our assumption about the relationship of a model to novel data, the
distribution it comes from, and the mechanism which produces it.2

While one could quibble in principle about these definitions and the bound-
aries of certain cases, in the end transfer learning is practically distinct from
conventional modeling because it is used under the assumption that certain
capacities of the model are being transferred to a new context. If it isn’t al-
ways assumed outright that the data comes from a different distribution, it is
arguably so for the interesting cases. These are the cases I am most concerned
with, and are clearly distinct from the special case of supervised learning. It
seems extremely unreasonable to suppose, for example, that transfer learning
on an image problem with a model trained on ImageNet is effectively applying
a model trained to deal with the ideal distribution of images in general—i.e. a
distribution of all images.3 Sure, some layers in a convolutional network (e.g.
edge detecting filters) may apply generally to all images, however they may be

1Transfer can also be achieved in other ways which do not necessarily involve re-using the
exact network architecture or weights. See for example Pratt, Mostow, and Kamm (1991).

2Yet another reason why explicit representations in the scientific methodology are neces-
sary.

3Suggesting that this is what an ImageNet model is learning is ambitious, and would seem
a little like changing the goal posts if it was used to define away these kinds of transfer
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images at completely different scales, generated by different mechanisms, with
completely different color or feature distributions.

If successful on a new task, the ability to use a pre-trained network is more
efficient than re-initializing and learning the task from scratch. It also means
that a model, or meaningful parts of it, may be able to apply to increasingly
diverse domains. While we will never have just one model for every use case,
being able to adaptively apply models to new use cases is seen as a feature
of general intelligence. Transfer learning techniques may be expected to sup-
port artificial intelligence systems for increasingly more general tasks in the
near future if automated properly. That is, the artificial system itself must
make judgements about when to apply pre-trained models like we do, and be
able to compare problem domains. The artificial system needs an inter-domain
reasoning engine, a way to manage robust transfer learning.

The purpose of this article is to philosophically situate these claims, and
evaluate them in an associationist framework for cognition. I begin in section 5.1
by briefly sketching an associationist skeleton, which is fleshed out by literature
on analogical reasoning in section 5.2. In section 5.3 I outline the basics of
an interesting recent example of transfer learning, and then discuss whether
claims of AGI resting on the promise of near-future transfer capabilities are
justified. I argue that, from an associationist point of view, robust transfer
learning capabilities would indeed provide the kind of information-processing
mechanism necessary for what we expect from AGI. As alluded to, this would
require the automation of several management tasks which are currently done
manually by data scientists and machine learning researchers. In the end, I
suggest that we are justified to have the expectation of increasingly widespread
AGI in the near future.

Flipping the script, in section 5.4 I discuss how machine implementations
of transfer learning might inform an account of inter-domain reasoning. The
traditionally nebulous notion of analogical reasoning, for example, might benefit
from a concrete machine view based on transfer learning. A useful sketch of
how to distinguish good from bad analogies is achieved by utilizing the notion
of positive and negative transfer. Overall, there is certainly interest in ways of
facilitating robust knowledge transfer in both scientific reasoning and artificial
intelligence. In section 5.5 I suggest ‘general systems theory’ (GST) as an
already existing framework that helps provide a methodology for robust transfer.

As a methodology for transferring knowledge to new domains, GST can be
viewed as a ‘logic’ of discovery—a conceptual (and formal) account of induc-
tive adaptation. I wrap up in section 5.6 by briefly summarizing how I view
the relationship between the philosophy of discovery in science (for example in

learning cases. A ‘superdistribution’ could still arguably be considered distinct from the
training distribution.
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Simon (1973)), computational cognitive science, and connectionist artificial in-
telligence. I appeal to a previously discussed relationship outlined by Thagard
(1982), and conclude that a philosophical framework which incorporates and
facilitates knowledge transfer (such as GST) may be of use for the development
of AGI capabilities built on transfer learning, completing a theoretical triangle
for engineering AGI systems.

5.1 Computational Associationism
As a framework for understanding concepts and human cognition, association-
ism has been around in various forms from Aristotle to Locke.4 Associationism,
for our purposes, is the assumption that a cognitive system has the capacity to
‘associate’, or group together, different experiences relevant for cognitive tasks.
It is the capacity to draw connections or comparisons between different per-
ceptions, situations, or problems. Most importantly, we are here concerned
with the association of new perceptions, or new tasks, with old experiences.
It does not need to be perfect, or an in principle mechanism that draws the
correct connection. A pragmatic sense of association is just that it is an effec-
tive mechanism. The language of ‘experiences’, ‘perceptions’, ‘concepts’, and so
forth, should be filled out according to whatever framework of cognition is being
used. What is important is that we suppose some computational framework,
consisting of inputs, functions, and outputs. Additionally, some form of memory
and a retrieval mechanism must be assumed—if perception and the immediate
processing of perceptual inputs does not directly perform associations.

For example, we first begin with some initialized state S of the receptive
perceptual system of an organism, and an input to the system I. The out-
put, the response of the system to stimulus, is related according to a function
O = f(S, I). A further assumption for the associationist, however, is that
an adaptive intelligent system survives in part due to the not wholly incorrect
mapping between perceptual structures and the environmental input. That is,
it is a reasonable assumption that the ways in which a successful system per-
ceives does not contradict the processing of perceptual information relevant to
survival. For example, the system would be compromised by introducing a ran-
dom gate between the perception of some data and the processing of that data
with respect to some goal. Conversely, we would expect (as noted by Bertalanffy
(1969, p. 239-242), among others) that systems which successfully reproduce
and are naturally selected process information according to a model that has

4I am not concerned with an in depth treatment of the idea here, but mention what I
take to be the core of associationism so as to situate the potential importance of the machine
intelligence concepts to follow. For a more comprehensive overview of associationist literature,
see Mandelbaum (2017). Also Cordeschi (2002, §6.4) provides more context on the history of
connectionism and low level associationist ideas.
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relevant similarities with the structure and distribution of the environmental
inputs.

Computational associationism supposes that a computational system which
is intelligent effectively performs some comparative task on inputs. That is
to say, the system is capable of some associative function as the output OA =

f(S, I, I ′), taking as arguments not only the current state and perceptual input,
but some previously learned (or experienced) information I ′. Notably, I and I ′
are related through some relation of relevance R(I, I ′). Such a relation might
range from some measure of similarity on features, a structural relationship
shared (or mapped) between I and I ′, or a statement regarding a class or type
which I and I ′ both belong.

Associationism embodies the capacity for the comparative perception of
novel objects (and problems or situations) with what has been previously en-
countered. That is, the capacity to associate. One might think of a sort of
cognitive ‘bootstrapping’ which is enabled by the ability to transfer knowledge
or actions from previous impressions. We may formulate these claims in com-
putational level terms, according to the levels outlined in Marr (1982) and Marr
and Poggio (1976). This level of analysis is concerned with what an associative
system should compute and why. An assumption about associationist problem
solving is that the system expects to have a lower cost using a solution that was
effective on a previous problem, which is associated in some relevant respects
with the problem at hand. It is assumed that the system solves the problem
more efficiently by effectively associating it with some previous experience (or
with some problem-solving structure).

On the other hand, if perception is filtered through adapted networks in the
first place then this procedure isn’t so much bootstrapping as it is a necessary
consequence of the efficient re-use of biased information processing systems.5 In
other words, at the implementation level the association can already be encoded
into the mechanisms which process the input information. A state S might
encode information about I ′, so call it S′, then we can say it is some function
of I ′, S′ = g(I ′), and so the association is formalized as some OA = f(S′, I).

The system should associate to some relevant structure, according to this
view, because non-relevant solutions will be more costly. These costs may be
incurred due to decreased efficiency, for example, or failure to solve the prob-
lem (when it could have been solved by the successful implementation of an
associated solution). It is presumed, therefore, that non-association is strictly
worse on the whole. This very rough and brief outline of what I take to be
an associationist picture will suffice for what follows. When using analogies to
cash out the association, previous successful solutions are analogous or similarly
structured.

5This picture should also not be taken to be limited to a perceptual system, but for present
purposes thinking of perception along these lines is sufficient.
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Figure 5.1: What has been referred to as analogical cognition
may variously include parts of an associative mechanism, a cog-
nitive system’s internal model, and the application of that model

for predictions and higher-order reasoning.

5.2 Analogy in Cognition
Analogical relations are perhaps the most notorious associative relations. Anal-
ogy in the context of reasoning encompasses a wide range of claims. For ex-
ample, claims concerning perceptions and judgments of similarity, about cogni-
tive and computational tasks, and also claims regarding the ability to transfer
situational and methodological solutions to new (i.e. novel and previously un-
encountered) problems. Analogical reasoning, from an associationist perspec-
tive, can be seen as fundamental to human cognition since it is one way to cash
out the associative function. That is, an analogical relation is one candidate for
the relation R(I, I ′) mentioned above.

In this present section I focus on some particular claims concerning the
role of analogy in human cognition, in order to contextualize the arguments
regarding transfer learning in following sections. These cannot be representative
of all claims regarding analogy, but are a selection relevant for illustrating how
analogy is one way to cash out associationism. Holyoak and Thagard (1997,
p. 35) state that “The analogical mind is simply the mind of a normal human
being.” More elaborately, Hofstadter (2001, p. 499) waxes poetically about the
centrality of analogical reasoning in the “broad blue sky” of cognition. Analogy
is “the very blue that fills the whole sky of cognition”.

He continues, and we can see the close relationship that analogical reasoning
has to perception in an associationist framework for cognitive science:

The triggering of prior mental categories by some kind of input—
whether sensory or more abstract—is, I insist, an act of analogy-
making. Why is this? Because whenever a set of incoming stimuli
activates one or more mental categories, some amount of slippage
must occur (no instance of a category ever being precisely identical
to a prior instance). Categories are quintessentially fluid entities;
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they adapt to a set of incoming stimuli and try to align themselves
with it. The process of inexact matching between prior categories
and new things being perceived (whether those “things” are physical
objects or bite-size events or grand sagas) is analogy-making par-
excellence. How could anyone deny this? After all, it is the mental
mapping onto each other of two entities—one old and sound asleep
in the recesses of long-term memory, the other new and gaily dancing
on the mind’s center stage—that in fact differ from each other in a
myriad of ways. Hofstadter, 2001, p. 503-504

These statements express a view that analogy, as some kind associative
mechanism, is fundamental to human cognition. Analogy making is thought
of not as a high-level cognitive task different in kind to perception, but rather
analogy-making and perception are fundamentally intertwined. This serves to
show why we are interested in machine protocols that can implement something
along these lines, ‘learning’ in some important sense from previous experience.
Carbonell (1983, p. 143) begins to provide an account of problem solving and
learning that relies on previous experience. A solution method for a previously
solved problem is chosen based on the similarity to the current problem.6

It is worth drawing attention also to the structure-mapping account of ana-
logical reasoning from Gentner (1983). For Gentner, analogies are structural
mappings between two domains (sets of features or properties and relations be-
tween them), and are found on a spectrum between mere similarity mappings
and abstract generalities. (Gentner, 1983, p. 161) Whereas similarity map-
pings are at the object level, analogies map the relational structure between
the objects. For a simple example, let domain X consist of a set of features
FX = {a, b, c} and relations RX = {Rab,Rac} where the relations are spelled
out like Rab = R(a, b). Domain Y consists of features FY = {d, e, f , g} and
relations RY = {Rdef ,Rdg,Rfgd,Rfe}. A similarity mapping will be a map
FX → FY , whereas an analogy mapping will be from RX → RY . This mapping
can then be used as a source of information, such as to assert a credence in a
theory for the target system or to infer a similar property or relation also exists
or holds in the target domain since it exists in the similar source domain.

For our computational level framework, analogy as explicated above must
reduce some relevant cost for the computational system. Cost reduction is a
weaker goal than cost minimization, but is appropriate for types of model-based
reasoning which might occasionally result in poor transfer to a new problem.
The effective reduction of some costs, such as reducing time for a computa-
tion, might result in less accurate computations but payoff in the long run. A

6A transformation in solution space from the familiar solution to a novel solution for the
new problem is taken to provide an account of analogical reasoning in problem solving. The
initial state in the solution space is determined by a reminding protocol, which is essentially
a search for the most similar problem through a database of previously solved problems.
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comparable reduction means that the class of actions prescribed by analogi-
cal cognition is supposedly preferable (i.e. expects a lower cost) to actions or
solutions not rooted in an analogy (or similar associationist) protocol.

While the structure-mapping account of analogical cognition may be under-
stood in symbolic terms, I take structure mapping to be consistent also with a
connectionist picture. The structure of an artificial neural network, for example
its trained weights, can also be usefully mapped to new problems in the same
way that analogical mapping occurs. These weights encode relational structure.

5.3 Transfer Learning
While transfer learning may be a general concept in cognition, I am mainly
concerned in this paper with the implementation of the concept in machine
learning—particularly with artificial neural networks. Transfer learning pro-
tocols utilize a learned neural network as a model for application to another
learning problem. This has also been called adaptive generalization by Sharkey
and Sharkey (1993, p. 314), where the main question is “understanding when
knowledge can be transferred between nets: identifying the circumstances under
which pre-training on one task will assist (or interfere) with the performance of
a subsequent task.”.

In some of the first publications concerning transfer learning, transfer in
neural networks is conceptualized as using the learned weights of a network
at the outset—either directly or by using them as modulators to create other
weights. See for example Pratt, Mostow, and Kamm (1991) and Pratt (1993).
Weights from a hidden layer to the output layer have also been shown to transfer
classification capacity by Sharkey and Sharkey (1993, p. 322). Modern deep
ANNs have abundant hidden-to-hidden layer weights as well, and these are
generally what are pre-trained in transfer learning techniques. The input and
output layers can be adjusted, but the largest number of transferred parameters
are in the hidden layers.

Currently, an entry level data scientist does not need to train a new ANN
for every task she encounters. With keras, a deep learning library for the
Python programming language created by Chollet (2015), there are pre-trained
deep networks (models) available to be downloaded and used. Similarly with
pytorch. These models are essentially sets of weights of certain dimensions,
which have been trained on paradigmatic sets of data. As an example, for image
recognition, there are a number of models to pick off the shelf which have been
trained on the ImageNet dataset from Deng et al. (2009). This is a large dataset
of images, and the models already have ‘experience’ classifying the images in this
set. These pre-trained models are useful for experimenting on new image data
sets, and for when the number of data samples available on the new classification
task are small. Transfer learning is also making progress in other areas, such as
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natural language processing (NLP) with LSTMs. Notably Howard and Ruder
(2018) recently introduced a method called Universal Language Model Fine-
tuning which “enables robust inductive transfer learning for any NLP task,
akin to fine-tuning ImageNet models”. The field is evolving rapidly, and perhaps
future methods will involve some automated code writing from more generally
capable models as well. For example, Microsoft is using exclusive access to the
GPT-3 model developed by OpenAI (Brown et al., 2020) to translate natural
language into code.

It takes a lot of time and energy to train ANNs, and by using pre-trained
models the potential efficiency gain for solving new machine learning tasks is
large. This is crucial, as it begins to close the gap with the ability of humans to
adaptively generalize from very small sample sets. Transfer learning techniques
are becoming more robust, as data scientists learn to apply pre-trained models
in more diverse ways to more and more cases. So, the appeal of robust transfer
learning includes not just to be able to transfer from a previous context to a new
context, but in certain cases to be able to learn faster and more efficiently than
by training a new model from scratch. If the pre-trained weights are frozen,
this efficiency is largely due to a significant reduction in parameters which are
‘hot’ and need to be trained.

A measure of transfer can be positive or negative. Positive transfer occurs
when the protocol is more efficient or accurate than an alternative protocol.
The biased structure of the network encodes a model, and we expect positive
transfer because this model is relevant to the structure of the input information.
Negative transfer occurs when the transfer protocol makes learning less efficient,
less accurate, or take longer to learn a new task. To be clear, I take negative
transfer to be actively worse than useless transfer or indifference on a new
task. It should be thought of as really anti-useful or impeding performance
compared to a baseline (i.e. random initiation or training a separate network
from scratch).7 It is desirable to find ways to enable positive transfer learning. I
will focus for the remainder on attempts which utilize pre-trained (deep) neural
networks. That is, the weights or connections have been previously learned
or pruned in some procedure resulting in non-random weights or non-uniform
connections. Positive transfer via pre-trained neural network models can be
considered as successful adaptive generalization. Otherwise, the network may
result in negative transfer as it is biased for certain tasks and against others.
(Sharkey and Sharkey, 1993, p. 326) How has connectionist transfer fared in
recent work?

One interesting example, PathNet from Fernando et al. (2017), learns
7If our performance metrics include time, then a ‘useless’ transfer would most likely imply

actual negative costs, since we wasted time training on a task. Unless of course we needed to
train the model anyways, or were efficiently trying to reuse an old pre-trained model (perhaps
we have a bag of old trained models at the ready).
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weights in a deep ANN playing the Atari game Pong, and then ‘freezes’ im-
portant parts of the network for the new task of playing the Atari game Alien.

The parameters contained in the optimal path evolved on the first
task are fixed, and all other parameters are reset to their random
initial values. Fernando et al., 2017

Keeping the learned structure from the previous task, the researchers
achieved positive transfer learning. This has been done with deep convolu-
tional neural networks which learn image filters (convolutions), and take im-
ages (frames of the Atari game display) as data types. In this case, the transfer
was measured against the same network’s ability to learn Alien from scratch.8
While learning both games (Pong then Alien) was longer than just learning
Alien, comparing the time it took to learn Alien after learning Pong shows a
positive transfer effect. In other words, this case illustrates a positive transfer
effect. It may also be argued to exemplify the efficient re-use of an ANN.

It is important to emphasize that the domain comparison is being done by
the data scientist from the outside. That is, we could say there is a tutor
or teacher telling the network what its pre-trained structure might positively
transfer to. Even though the authors have automated one procedure for setting
the structure of the network for the next task, the hard part is to figure out how
to automate (with reasonable success) which problems to apply the network
to. That is, we don’t just want the Pong-network to be used for Alien, and
other handpicked Atari games, but also other similar problems that we do not
anticipate (or do not want to supervise).

So, the hard work has already been done. The domain comparison is put
in by hand, we are externally plugging in a problem that we view as similar.
The scientist is feeding to the network a problem which stands in an analogi-
cal or similarity relation to the previous problem. Also, our matrix and vector
dimensions are compatible, and the data types (such as pixel colors) are com-
mensurable. Both data sets are of the Atari type. Such compatible data formats
are a very special case. Future transfer learning, if it is to fulfill the expecta-
tions of artificial general intelligence, will need to robustly automate domain
comparisons and data formatting from various domains. To some extent, our
evaluation of transfer learning capacities (and, I argue, of AGI capacities) will
depend on our own perception of the ‘distance’ between the source and target
domains. It will be debatable whether this case is really inter-domain transfer,
or just intra-domain. This is likely to be a chronic issue of interpretation, while
the steady march of incremental progress continues.

Furthermore, we will not have a single network be capable of meaningfully
successful results on a wide variety of inter-domain tasks. In other words, there

8Or more precisely, the same configuration of a network.
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is no free lunch: performance on one class of problems will necessarily come at
a cost of performance on some other class of problems. This intuitive result is
a gross oversimplification of the widely-cited formal no free lunch theorems by
Wolpert and Macready (1997). Nonetheless, this oversimplification is sufficient
for our discussion. A more likely route would be to have a variety of pre-learned
networks and a way to manage which one to apply in a given circumstance. This
problem I will call the hard problem of AGI with transfer learning, and it may
also be similar to what Korb (2004, p. 435) calls the “meta-learning prob-
lem”. Tackling this management problem requires a robust ‘structure mapping
engine’, which has arguably been the focus of computational approaches to anal-
ogy. See for example Falkenhainer, Forbus, and Gentner (1989) for an influential
early work in the field, computationally implementing the structural mapping
ideas of Gentner. The work of Pickett and Aha (2013a) and Pickett and Aha
(2013b), for example, is a more recent attempt in the field (although not for
managing pre-trained ANN models). The spontaneous discovery of structural
relations seems to me to be on the right track towards a transfer management
engine.

The recent work of Lu, Wu, and Holyoak (2019) may be viewed as indicative
of a trend to bridge the gap between the old computational view of analogies
and a more modern view based on deep learning methods. In some ways we
might see this as part of the larger trend away from symbolic AI towards sub-
symbolic or connectionist AI. However, for my present purposes, works like
these don’t acknowledge the inherent structure mapping which is going on at a
‘low level’ in ANN models. With this in mind, it becomes clear that automated
transfer learning will be a powerful structure mapping engine. An AGI based
on modern ANN models must learn and be trained at the management level,
that is, it must learn to effectively transfer models and apply them successfully.
Currently, human data scientists and researchers are the managers of various
models, and when to apply them.

Significant problems, such as the incommensurability of representations (or
differences in feature dimensions), must be adjusted for and made similar—
and so we are looking for a framework which is built to handle these kinds of
problems. Making representations structurally similar, or abstracting away from
irrelevant features, will need to be outlined and automated. I will consider in
the final sections a theoretical framework for reasoning in science called general
system theory (GST), which might just fit the bill. I argue that the methodology
of GST is at its heart assuming a structure mapping engine, and provides us at
least an intuition of what such an engine in a modern machine learning context
must satisfy for AGI.

As a final comment, we would like to understand not only the practical
limitations of when a transfer can be applied, but in general about whether
a particular transfer should be allowed to occur. This is a rather involved
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practical problem to solve, with some progress already being made, but it does
lead to some ethical questions about AGI. Is the machine intelligence going to
make a bad classification or decision based on inappropriate transfer? Will it
inadvertently damage the environment or harm humans? These worries are not
due to the intelligence of the machine, but to the ignorance of the machine
concerning appropriate transfer. I will argue later that GST also helps provide
some guidance on this issue.

5.3.1 Artificial General Intelligence
We are not yet at the stage of having robust artificial general intelligence (AGI),
but data scientists increasingly generalize results and models in machine learn-
ing. The current state of the art still involves the interactions between a data
scientist, her perceptions of a machine learning problem, and automated ma-
chine learning techniques. There are still many aspects which need to be manu-
ally done by the data scientist. For example, in a transfer learning problem, this
involves the perception of similarity between the domain a pre-learned network
was intended to perform on (i.e. the distribution of data that the network was
trained on), and the domain for a problem. AGI, on the other hand, is the
automation of those aspects which are currently manually done. For an AGI to
be based on transfer learning techniques, perceptions of similarity (as well as
other manual tasks, like formatting the data or adjusting network dimensions)
need to be automatically done by the artificial system.

So, we hope to automate the role data scientists are currently playing. As
our techniques for transfer learning become more robust and sophisticated, we
are clarifying what exactly needs to be automated for an AGI system. Keeping
in mind, of course, that there will never be a single network useful for all
problems (there is no free lunch), the automated and robust use of a bag of
networks seems like a plausible expectation for the near-future capabilities of
AGI systems.

Can we achieve AGI without transfer learning? It might be possible, but
I will argue that robust automation of transfer learning is sufficient to achieve
reasonably impressive AGI. If we grant some form of associationism in human
cognition, as I have outlined earlier, we would have justification for expecting
that a machine learning environment which can achieve some means of associa-
tion and transfer would be more powerful than a machine learning environment
without such capabilities. In this case, more robust AGI is just what we would
expect from automating robust transfer learning.

As a note, a general machine intelligence needs the ability to generalize from
previous problem encounters and solutions to new ones, but it does not need to
generalize to any potential future problem. Only the next one, or the next one
in a domain of perceived similarity. Future work might find additional progress
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in furthering this research program by utilizing transductive machine learning
techniques, as mentioned in Harman and Kulkarni (2007).

This outlines what I take to be a minimum account of what a machine
protocol must satisfy to be considered a candidate for AGI. What should we
expect from AGI in the near future? Are claims about AGI stemming from
transfer learning research justified? To be more precise: should we expect that
robust AGI can be achieved by focusing on developing more and more robust
transfer learning techniques? I answer this question in the affirmative, for the
reason that transfer learning is a way to cash out what it means for a machine
intelligence to be general. However, what is interesting for philosophers, data
scientists, and AI theorists, is the explanation for why it makes sense that more
robust transfer learning capabilities will lead to AGI. The reason associationists
can offer is that transfer learning is what human cognitive systems do at some
level. Additionally, there are lessons I think we can take away for a philosophical
account of analogical reasoning.

5.4 Machine Analogies
Transfer learning via pre-trained artificial neural networks might be a way for
philosophers to get a handle on forms of inter-domain reasoning like analogy.
From the literature discussed earlier, I sketched a picture of analogies which
is closely linked with the notion of structural transfer. It is perhaps the most
intuitive way to visualize what transfer learning can do. Analogies are, in a
sense, the prototypical way we transfer knowledge from one domain to another.
Turning this on its head, we can take the story of transfer learning in ANNs to
inform a philosophical account of analogy.

I argue that machine protocols doing something arguably like analogical
reasoning, namely inter-domain transfer learning in ANNs, can inform the ex-
pectations of traditional normative and explanatory goals in philosophical anal-
yses of analogical reasoning. There have historically been several attempts at
implementing programs that are inspired by the cognitive theory of analogical
reasoning. That is, they aim to implement structure mapping (ala Gentner)
or analogical discovery. For a very useful overview, see Bartha (2013, §3.4-
3.5), and also the recent work of Pickett and Aha (2013a) and Pickett and Aha
(2013b). We can turn these models from being computational studies aimed at
informing us about analogical cognition, and as models of interest for artificial
intelligence, to models that can inform a philosophical account of analogical
reasoning. Similarly, transfer learning in ANNs can do the same (they are
arguably not even wholly distinct from these previous works). Paul Bartha rec-
ognizes that a schism is already tangible between computational and classical
philosophical analyses:
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One concern is that there appears to be no way to extract any spe-
cific norms of analogical reasoning from the algorithms and coding
conventions. [. . . ] But computational models are meant to chal-
lenge traditional epistemological objectives. Efforts to develop a
quasi-logical theory of analogical reasoning, it might be argued, have
failed. In place of faulty inference schemes such as those described
earlier, computational models substitute procedures that should be
judged on their performance rather than on traditional philosophical
standards. Bartha, 2013

He seems optimistic that some philosophical theory of analogical reasoning
might be born out in a computational approach. I maintain the view he alludes
to, that a machine account can justifiably forego providing (or assuming) some
normative account of good and bad analogies. Rather, we can provide a means
of distinguishing good analogies from bad ones by measuring the degree of
transfer that the inter-domain relation enables. In other words, measuring
analogies by their performance in some formal sense. Of course, this is easier
said than done. It is unlikely that such a measure would be formally feasible for
the high-level reasoning Bartha is concerned with, yet we can still tell a story
(and construct models) populated with characters from the picture outlined
here. Maybe good (high-level) analogies, such as in scientific reasoning, are
ones which reduced some relevant costs in solving a new problem. Perhaps they
enabled science to proceed efficiently, without frustration, or the alternative was
not to ‘solve’ the problem at hand.

This is arguably a natural impulse if one is thinking of analogy as shorthand
for an associative cognitive mechanism akin to perception. Such a contention
is explicitly appealed to in a more recent computational approach to modeling
analogical cognition in Pickett and Aha (2013a) and Pickett and Aha (2013b),
with the goal of spontaneously recognizing structural isomorphisms (defining an
analogy) in a data set in a manner more efficient than a search over the concept
space—because of an assumption that the brain associates analogical struc-
tures efficiently. The authors achieve this by “representing relational structures
as feature bags, [. . . reducing] the problems of analogy to problems of surface
similarity.”

The discussion of spontaneous analogy should be kept distinct from the case
of a granted analogy. That is, the problem of finding a structure to map is
different from the procedure of using an established mapping for some purposes
(like inferring a new structural property holds in the target domain). The first
sense is something like a discovery, while the second is more like an induction
where both source and target domains are already known to some degree (and
presumed to be related structurally). Both of these aspects play a role in
computational models of analogy, but as Pickett and Aha (2013a) note the
“more difficult problem is finding the analogs to begin with.”
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These computational approaches are different from the pursuit of an ana-
logical classification scheme a priori. Perhaps at a later point there will be a
rejoinder between the classical philosophical view and the machine view, how-
ever this does not concern me here—as Bartha says there is “room for both
computational and traditional philosophical models of analogical reasoning”.9
At least for now. I will return to this discussion in the next section. In an im-
portant sense, the discussion of norms we threw out earlier for a philosophical
account of analogy comes into play when we are faced with the task of regulat-
ing transfer. It is still not needed to define or make sense of transfer from the
beginning.

For better or worse, humans make ‘bad’ analogies all the time. Thus, a
philosopher might not be satisfied with computational models of analogy in-
spired by ‘imperfect’ human cognition, and want to categorize proper from
improper analogies. Nonetheless, ‘good’ and ‘bad’ might instead be learned
through interaction, and through negative responses from the environment.
That is, analogies might be characterized by how they model the environment—
and the relations between perceptual systems and environmental input. We
might then judge them by how they impact performance on classes of transfer
learning tasks. For example, a bad analogy might enable a bad prediction—
resulting in a large distance between what is expected and what is eventually
observed. Alternatively, a good analogy might reduce such a measure.

Thus, what we care about is the effectiveness of the analogical reasoning
procedure. ‘Good’ analogies are ones that result in positive transfer learning,
and ‘bad’ analogies result in negative transfer learning. Positive and negative
will, of course, vary with the ways we measure costs, the computational model,
and with the choice of a target problem. Traditional philosophical measures
may classify certain effective (and positive) cases of transfer learning as bad
analogies even though in the situation, the agent might have effectively reduced
some relevant cost such as time. Another cost reduction we see in examples of
transfer learning in ANNs is in the number of samples needed to train (learn)
a new problem.

Consider the following statement in a recent machine learning textbook, not-
ing the ability of humans to quickly generalize and transfer with small training
sets:

Humans do not require tens of thousands of images of a truck, to
learn that it is a truck. [. . . ] This suggests that humans have much
better ability to generalize to new settings as compared to artificial
neural networks. [. . . ] In other words, humans are masters of trans-
fer learning both within and across generations. Aggarwal, 2018, p.
453-454

9For further details on perhaps the most up to date philosophical work on analogy, the
interested reader may wish to take a look at Bartha (2010) as well.
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The author supports this contention with an evolutionary argument about
the evolved (pre-trained) structure of the neural networks which we suppose are
present in the brain. Thus, in a certain sense, AGI via transfer learning extends
a long-standing philosophical claim about cognition and human intelligence into
the frontier of machine learning. However, as I have noted, robust transfer
learning includes much more than the transfer itself. It also includes the ability
to curate, format, and interpret a wide range of data—and the selection of an
appropriate structure to map onto the problem.

This is all not to say that there can be no normative component in an
account of analogy. For example, I think we can agree with Carbonell (1983,
p. 148) on a basic norm that any machine account of analogy should satisfy.
He talks about an experimenter placing bananas out of reach, while the subject
(a monkey) is allowed to watch the bananas being placed. The experimenter
places the bananas out of reach with the help of a stool, and then removes
the stool. A general norm in this case is something like “. . . a ‘smart monkey’
ought to learn from his observations . . . ” and follow the observed manner in
which the bananas were originally placed as a solution to retrieve them. In
Carbonell’s example, if the monkey does not learn from its observations of an
experimenter, we can make a strong argument that it will be less likely to solve
the problem of obtaining bananas which the experimenter has placed out of
reach. The relevant version of such a norm will be, for machine accounts of
analogy, something along the associationist lines I have outlined.

To reiterate, this doesn’t necessarily tell us anything about good or bad
analogies. We would have to formulate the statement with regard to a cost in
order to say something about bad analogies. It is simply a normative condition
concerning information processing in the most general sense.

5.5 A Methodology for Robust Transfer
Above, I have alluded to some of the extra bits and pieces that are required for
robust transfer learning to be automated. Since it is achieving the robustness
that will provide the largest hurdle for technical implementation and software
development, some further discussion is warranted. Additionally, we may want
to guard against bad transfer, and recover some of the normative intuitions that
philosophers have.

Is there a rigorous enough way to rule bad transfer out such that a machine
protocol could also achieve normative classifications of domain comparisons
and transfer? Does there already exist a methodology which might provide a
framework for solving these problems for robust transfer learning? I suggest
that general systems theory (GST), as outlined and advocated for by Berta-
lanffy (1950) and Bertalanffy (1969), provides us with a framework useful for
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discussing robust transfer learning. GST is motivated in part by a call for sci-
entific generalists after noting the inadequacy of reductionism in biological and
social sciences, and the failures of specialists as noted by Bode et al. (1949).
GST aims to facilitate general modeling practices in science by focusing on rele-
vant similarities between different systems in different fields. The methodology
is intended to guard against improper transfer between domains:

[G]eneral system theory can serve as a regulatory device to distin-
guish analogies and homologies, meaningless similarities and mean-
ingful transfer of models.

The homology of system characteristics does not imply reduction of
one realm to another and lower one. But neither is it mere metaphor
or analogy; rather, it is a formal correspondence founded in reality
inasmuch as it can be considered as constituted of “systems” of
whatever kind. Bertalanffy, 1969, p. 85

His distinction between analogy and homology stems from biology, where
an analogous organ in an organism has a similar function to another organ (in
another organism) but is unrelated in a structural or causal way. In this case, a
shared structure could be a shared evolutionary path. A homologous organ has
more structural similarities to another organism’s organ due to shared evolu-
tionary ancestors, but may differ in function. The main point for our purposes
is that this distinction focuses on managing transfer of relational structures:
being conscious of whether or not a transfer is justified.

GST may help in regulating analogy-use in science. Perhaps more interest-
ing, can it shed light on the proper role of transfer in artificial intelligence sys-
tems? Since GST is a framework that emphasizes structural knowledge transfer
between domains, it must guard against improper transfer or it is at risk of
becoming useless. It also must work on ways of abstracting, idealizing, and
translating terms and concepts in one domain in order to be comparable with
terms and concepts in other domains of science. These are remarkably simi-
lar to what we would want for robust transfer learning and AGI. That is, we
would ideally want non-trivial comparisons between problem domains, as well
as the ability to make non-uniform data types compatible, and models which
are successful across tasks.

While “meaningless similarities” may not be an issue for an account of anal-
ogy based on performance (we might just imagine a poor measure of transfer,
or no increase in problem-solving ability), they do seem to present an issue for
implementing AGI by transfer learning techniques. Thus, the norms for my
present account become significant a posteriori when considering the practical
implications of a concrete methodology. The reason we look for the norms are
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for harm reduction. They are, however, unnecessary for the theory of (analogi-
cal) structure mapping—only to deal with the consequences of an AGI system
that is based on transfer learning.

GST provides a philosophy of science framework explicitly suited to analyze
knowledge transfer between systems and, therefore, between modeling domains.
There is a focus on expressing structural properties common between systems.
As such it allows inter-theoretical transfer of knowledge for a scientist, modeler,
or philosopher. A practicing systems theorist may take the knowledge gained
from one system (i.e. a method of problem solving, or an idealized mechanism)
and apply the method or mechanism to another (typically less well-understood)
system. The GST framework thus has baked into it a robust method of inter-
theoretic (or inter-domain) knowledge transfer.

As a final comment, it should be noted that there are two typical means for
applying the methodology of GST. The first is a top-down approach, starting
with a very general formalism which captures a particular class of systems.
Alternatively, when the class of systems is not well known, one can begin with
a case-by-case method and build up a system theory which generalizes as the
cases are addressed. As a more recent example, I take the approach advocated
for in Goldstone and Wilensky (2008) to illustrate the benefits of a case-by-case
method of general systems theory promoting knowledge transfer in the learning
process (particularly utilizing agent based modeling).10

We have proposed transferring complex systems knowledge by hav-
ing students rig up their perceptual systems to perceive situations
in a manner informed by a provided or constructed rule set and
then simply “leave this rigging in place” when presented with new
situations. Goldstone and Wilensky, 2008, p. 505

I am thus an advocate for a case-by-case approach to general systems science
rather than a top-down universal systems approach for two reasons. First, the
approach is arguably more relevant for unsolved problems and anomalies in
science as well as descriptive of certain important cases in modern systems
science. Second, the knowledge transfer between restricted classes of systems
provide more meaningful explanations of target system behavior. Future work
on the differences in implementation of these approaches in artificial systems
would be interesting, perhaps providing justification in turn for refining GST
as a philosophy of science framework (specifically focused on structures).

10“The principles of complex systems can be expressed generically, but we do not advocate
this as a stand-alone pedagogical procedure. The principles are typically very difficult to
understand when presented only in a generic form but highly intuitive when instantiated in
a case study.” Goldstone and Wilensky, 2008, p. 474
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5.6 A New Logic of Discovery?
To wrap up, I would like to connect the present discussion with previous work on
the logic of discovery. Analogical reasoning, and by extension transfer reasoning,
is many times associated with discovery. That is, an agent learns something
new through some (not always straightforward) procedure. In the philosophical
discussion, the debate is whether we as philosophers can characterize a logic
of discovery. Is there a way to formalize the process of discovery—and how
does this relate to creativity and revolutionary thought especially in scientific
reasoning? Of particular interest is whether such a procedure is deductive.

One might think that, by definition, certain revolutionary discoveries are not
deductive. We romanticize Eureka! moments as spontaneous events of genius
insight, and so it seems intuitively unlikely that we will be able to reconstruct
a step-by-step procedure that leads to such an event. On the other hand, as
discussed by Simon (1973), for other cases of discovery we might not have
the same intuition. It might be possible to reconstruct a logical procedure for
“everyday” discovery, for example the discoveries of normal science or in human
cognition. Whereas for a logic of revolutionary discovery we would seem to need
to solve a problem similar to that of induction, a logic of normal discovery would
not. If we characterize normal science as systematic model-building and testing,
for example, we can imagine logical steps to follow that might lead to discovery.

For the present purposes, discovery is most interesting when it enables learn-
ing about a new domain. Thus, a suitable formal reconstruction of transfer
learning of some sort is a reasonable candidate for a logic of discovery. While
one might find traditional formalizations of analogy as unsatisfactory, transfer
learning in neural networks for machine learning provides a state of the art
example that is arguably more interesting for a number of reasons. We can
tell a plausible story about associationist cognition, as well as the usual story
about neural networks being biologically inspired and similar in some relevant
respects to human cognition.

The GST story of a logic of discovery is about being ready to interpret
new problems as having structural similarities to old problems. GST is in the
modeling business of making representations more similar, and in the machine
learning context it can be seen as a framework advocating to not only re-format
past experience but also bias future perception in ways that will promote pos-
itive transfer.11 This is of course not perfect, and will result in bad transfer
more or less depending on the implementations, but the basic idea is that some
transfer will in general be better than no transfer.

I will end with a simple overview of the kind of reasoning utilized for my
arguments here. In Thagard, 1982, we are provided with a description of the

11See the discussion in Goldstone and Wilensky, 2008, p. 492-495 for more on the relation-
ship between perception and similarity of representations.
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relationship between AI, philosophy of discovery, and cognitive science:

The reason that AI provides more than interesting analogies [be-
tween AI and philosophy of discovery] is that along with cognitive
psychology it is concerned with many of the same kinds of problems
that arise in philosophy of science, so that solution of those prob-
lems can only come through progress in all fields. Thagard, 1982,
p. 167

Thagard summarizes his view of the relationship between these fields by a
graph (left), which I modify (right) to summarize the direction advocated for
in this article:

Cog.Psych.

AIPhil.Disc.

Ass.

AGIGST

For my present argument, I am retrofitting the triangle for the purposes
of AGI by robust transfer learning. As a sketch of the methodology here, I
am plugging associationist cognitive science and general systems theory into
the graph. I think it is safe to extend Thagard’s graph to one where there
is symmetric influence between all three fields. Then, we plug associationism
into the cognitive science node, general systems theory (preferably structural
systems theory) into the philosophy of discovery node, and AGI (with robust
implementations of transfer learning) into the AI node.

Under this theoretical triangle, I believe that indeed some claims of near-
future AGI based on robust transfer learning are justified. Furthermore, philo-
sophical accounts of model-based reasoning, including inter-domain analogical
reasoning, might benefit from this kind of inter-dependent theoretical frame-
work. At the very least, I hope to have illustrated why, as Aggarwal, 2018, p.
454 notes, “Developing generalized forms of transfer learning [. . . ] is a key area
of future research” in data science, and why philosophers should be involved
with the discussion as well.
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Chapter 6

Bayesian Confirmation from
Analog Models

1

When an experimenter comes to a difficult patch in the particular
system he is investigating he may, if an isomorphic form exists, find
that the corresponding patch in the other form is much easier to
understand or control or investigate. And experience has shown
that the ability to change to an isomorphic form, though it does
not give absolutely trustworthy evidence (for an isomorphism may
hold only over a certain range), is nevertheless a most useful and
practical help to the experimenter. Ashby, 1958, p. 97

The word analogy comes from the greek ἀναλογία, meaning proportion, and
analogical reasoning has been discussed since at least the time of Aristotle.
Following the modern treatment found in Hesse, 1966, the form of an analogical
argument is similar to solving proportion problems in mathematics. We are
given the relation between two terms, and one term from a second relation.
From these three terms, and the relation between the first pair, we can infer a
fourth term completing the second pair. Using fractional notation such problems
are of the form

A

B
::
x

D
(6.1)

For simple mathematical ratios, we could have for example

2
3 ::

x

9 (6.2)

where we read out “two is to three, as x is to nine”. This expression rep-
resents a transformation A such that A(2, 3) = A(x, 9). In this case, if A is a
division operator, x is determined by preserving the quotient on both sides of
the equality. We look for an x that, under A as the first argument and 9 as
the second argument, provides the same number. Solving for x = 6 involves
interpreting the :: as an equality, and we simply multiply the diagonals yielding

1This chapter is the result of joint work with Roland Poellinger.
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3x = 18. However, without some further clarification three possible interpreta-
tions might seem equally likely, that x = 4, 6 or 8. The latter option interprets
the relationship between 3 and 9 as the addition of 6, and applies the same to
the numerator. The first option interprets the relationship as squaring 3, and
thus squaring 2 is 4. By convention, and use in analogical reasoning, we say that
in this case x = 6 since it is the proportion that must remain the same—that
is, it is not the relationship between 3 and 9 but the relationship between 2 and
3 that should be preserved on the right hand side for an analogical relation.
This is a structural relation, since we could replace the 2 and 3 with any two
numbers which are invariant in the quotient.

We can think of this example as a special case for this mathematical pro-
portion problem, to be relaxed for analogies. We just require instead two trans-
formations, A,A′, where A′ is relevantly similar to A. This is plausible since
the arguments (or objects) being related may differ in important respects, or
the relations themselves are not the same. In the mathematical example, the
division operator is presumed to be implemented by the same algorithm for
both pairs, which are composed of the same kinds of objects: integers. This
need not be the case, and indeed analogies generally will not be precise enough
to fulfill such object-level and relational level identities. However, under reason-
able levels of abstraction we can understand analogical reasoning as a mapping
of relevant transformational structure. That is, there is some kind of mapping
or morphism T : A 7→ A′.

Relational structure mapping is the key to analog relations according to
Gentner, 1983. When we use the form of (6.1) to talk about scientific reasoning
from an analog model, we might read out “A is related to B, which is similar
to the way C is related to D”. That is, there is some relation Rel1(A,B) that
is similar to a relation Rel2(C,D). This relational structure is what is mapped
between representations in an analogy, on Gentner’s account, and is denoted
here by the double colon notation ‘::’. The fraction bars are indicating some
general relation (as opposed to actually representing division of integers, as in
the mathematical example). As discussed in chapter 3, we can say that the
kind of mapping relation between an analog model and a target system is just
a special case of a model-target relation.

6.1 Analogy and confirmation
Probabilities are subjective degrees of belief. Theory confirmation in science
is represented in the Bayesian framework by confirmatory probabilities—that
is, a theory obtains higher probability given confirming evidence compared to
the theory without this evidence. Hypotheses and Evidence are considered to
be random variables, visualized as nodes in a network. These variables and
their epistemic relations are represented in DAGs—Directed Acyclic Graphs.
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For nodes H and E, we say that E confirms H when P (H |E) > P (H). If H
is a hypothesis and E some evidence for the hypothesis, we would expect our
subjective degree of belief in H to be positively influenced by an observation of
relevant evidence. In a causal Bayesian network representation of the situation,
we intuitively expect E to be a descendant of H—that is, there is some causal
or other directed connection between H and E. This aspect of a Bayesian
network will be slightly revised later in order to accommodate our view of analog
confirmation, since analog evidence E′ is not, under minimal assumptions, a
descendant of H nor is it causally connected. It is also not a direct prediction
by the hypothesis.

In his book, Paul Bartha comments on analogical arguments and Bayesian
epistemology, noting the related problem of old evidence:

For Bayesians, it may seem quite clear that an analogical argument
cannot provide confirmation. In the first place, it is not obvious
how to represent an analogical argument as an evidential proposition
E. Second, even if we can find a proposition E that expresses the
information about source and target domains used in the argument,
that information is not new. It is “old evidence,” and therefore part
of the background K. This implies that E ∧K is equivalent to K,
and hence that

Pr(H |E ∧K) = Pr(H |K) (6.3)

According to the definition, we don’t have confirmation. Instead,
we have an instance of the familiar “problem of old evidence” (Gly-
mour 1980). Third, and perhaps most important, analogical argu-
ments are often applied to novel hypotheses H for which the “prior”
probability Pr(H |K) is not even defined. Again, the definition is
inapplicable. (Bartha, 2010, p. 31)

Bartha goes on to suggest that the role of analogy in Bayesian epistemol-
ogy is to raise prior probabilities of a considered hypothesis. While we agree
that analogical considerations may impact prior probabilities, we think that
Bartha has only discussed one way in which analogical reasoning may be used
by scientists—and thus only one way in which analogies may shape Bayesian
models. There is an important difference between a situation in which a specific
analogical (or modeling) relation is granted by a scientist, and a situation in
which the discovery or establishment of an analogy is taken as evidence. The
latter is arguably what Bartha is referring to, whereas we will mainly be con-
cerned with the former. These may just be two phases of one reasoning process,
however we think they are conceptually and formally distinct.
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We argue that Bartha’s idea is captured in an epistemic network in which
the analogy is modeled as a node—a random variable representing the possi-
ble existence or non-existence of an analogical relation. Confirmation from an
analog model, on the other hand, grants the existence of an analogical relation.
We think this is better modeled as an informational link (a contour) between
theoretical domains. We will see how analogy does play a role in evidential
statements which do not succumb to the old evidence problem. Therefore, tra-
ditional Bayesian confirmation is also accounted for in our approach, showing
that analogical considerations can also impact posterior probabilities by taking
into account evidence predicted by an analog model.

6.2 Analog simulation
First, we provide some background on the kinds of cases motivating our analy-
sis. In a recent paper on analogical inference in physics, Dardashti, Thébault,
and Winsberg, 2017 discuss an analogy between an accessible table top fluid
system (the model or source) and a less accessible target system we want to
gain insights about, namely black holes. The source system is prepared, manip-
ulated, and observed. It is built not just to verify and exhibit control, but to
make predictions and justify inferences about the target system.2 The authors
introduce the formal concept of analog simulation, explicating the intuition that
the model can make predictions relevant for confirming the target theory. We
will look at another example, also from the philosophy of physics, but first let
us introduce a formal reconstruction of analog simulation as we see it, omitting
the specific details to the case:

1. The target system T is represented asMT in a suitably chosen modeling
framework LT ;

2. MT is constrained by certain background assumptions AT , summarizing
theoretical and empirical knowledge as well as the domain of conditions
where the model is intended to apply;

3. MT can be used to predict phenomena ET , and will in turn be confirmed
by evidence in accordance with ET ;

4. The accessible source system S is represented asMS in a suitably chosen
modeling framework LS ;

2It seems to be a matter of opinion whether constructing the model results in any surprising
new knowledge. As an anecdote, the present authors remember a physicist being unconvinced
in spending any time on analog gravity models since of course they will exhibit the behaviors
of interest because there are the obvious isomorphic equations describing the model system.
This seems to be similar to the problem of old evidence Bartha is alluding to. We will, like
(Dardashti, Thébault, and Winsberg, 2017), push forth under the assumption that model-
building is informative for a significant group of interested parties.
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5. MS is constrained by background assumptions AS , and the domain of
conditions which the model is intended to apply;

6. Just as on the T side,MS can be used to predict phenomena ES and will
in turn be confirmed by evidence in accordance with ES .

The source system S will now allow analog simulation of target T ’s behavior
if (i) there exist exploitable structural similarities betweenMS andMT suffi-
cient to define a robust syntactic isomorphism, and if (ii) this isomorphism is
prompted by and based on a set of model-external empirically grounded argu-
ments, abbreviated as meega. The first condition is concerned with establish-
ing the capacity to control and make relevant predictions. The scientist who
builds the model system is doing so to test knowledge, and knowledge is demon-
strated or gained through the ability to control the system and make accurate
predictions. The second condition concerns a means to justifiably relate two
apparently separate theoretical domains for the purposes of scientific reasoning.
A scientist may feel justified for any number of reasons, from bare perceived
similarities to expert knowledge of the general behavior of large classes of sim-
ilar systems. Our reconstruction will focus on the first (and weaker) of the
two, where there is some stake in building a model system for investigation and
validation of the target theory.

AT

MT

ET

constrains

predicts

AS

MS

ES

constrains

predicts

syntactic

isomorphism

meega

prompt

Figure 6.1: The analog simulation scheme: Framework LT

(left box) is used to model target system T in modelMT ; source
system S is treated accordingly in framework LS (right box).

Figure 6.1 relates the above sketch in a conceptual graph. meega prompt
the establishment of a bridge between theoretical networks in the form of a
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syntactic isomorphism as translation between the systems’ components. For
Dardashti, Thébault, and Winsberg, 2017, observations of phenomena ES in
table-top fluid systems boost confidence in theoretical assumptions AT about
gravitational phenomena described in framework LT . The syntactic isomor-
phism (motivated by extensive expert knowledge about the underlying physics
and mathematics of both frames) allows for the transfer of knowledge about
acoustic Hawking radiation in the fluid system to Hawking radation in black
holes. The model demonstrates knowledge by demonstrating control, and this
is why it seems plausible there is a confirmatory boost to the target theory by
observing evidence predicted in the model.

But suppose we are non-experts, unsure about the high-level physics and
mathematics justifying the analogy. We want to be able to model confirmation
from analog models even when they are not very pretty, and even when there
might be obvious dissimilarities between the systems. It is worthwhile to find a
way that Bayesian reconstructions in these cases can inform a general Bayesian
account for model-based knowledge transfer and analogical reasoning in general.
If our following case study (also an analog model from physics) does nothing
else, we hope it helps triangulate an approach for modeling knowledge transfer
in cognition and artificial systems.

6.3 Water wave analog of the Casimir effect
The example of an analog model we will consider here is the table-top fluid
model of the Casimir Effect investigated by Denardo, Puda, and Larraza, 2009.
The model is a physical or material analogy. The quantum Casimir effect is pro-
duced between two very small (and very thin) uncharged parallel metal plates
that are placed close together in a vacuum. At certain distances d the plates are
pushed together, at others they are pushed apart. How do we explain this? In
quantum theory there is a non-zero energy associated with the ground state of
each mode in the quantum vacuum hf/2 (where f is the frequency of the har-
monic oscillator associated with the mode and h is Planck’s constant). We can
account for Casimir effect behavior in quantum electrodynamics by calculating
the relative difference in pressure between the force of electromagnetic radia-
tion outside the plates and inside the plates, since the closeness of the plates
excludes certain wavelengths in the background spectrum. The spectrum of
zero point frequencies is infinite both on the outside and inside of the plates,
but after renormalization Denardo, Puda, and Larraza (2009, p. 1095) note
that the result of the calculation gives a force of π2 h̄c/240d4 per unit area.

The water wave analog model that the authors construct consists of a table-
top bath which is vertically vibrated according to a range of frequencies (10-
20 Hz) which excites surface waves. Two acrylic or PVC plates are hung in
parallel above the bath and dipped into the vibrating fluid bath (VFB). The
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d

F

Figure 6.2: The abstract scheme underlying both the quantum
Casimir and the fluid Casimir effect; F indicates the attractive

force, d the distance between the two plates.

surface waves and VFB are analogous to the zero point fluctuations in the
quantum “vacuum”. The PVC plates experience an analog Casimir force, which
we explain in terms of the difference in pressure due to the exclusion of certain
waves between the plates.3

We can model the relationship between these two systems in the following
way according to the similarity relation discussed above. Say the phenomena
of two parallel plates being pushed together when dipped in the VFB is EF .
To differentiate, let us say that EQ is the similar effect on Casimir plates. The
VFB for the analog model is BF , and it has a causal relationship to EF in that
it causes the relative pressure due to wave motion to be greater on the surface
area outside the plates than on the surface of the interior. Thus far we can
say—in the form of a fractional notation:

BF

EF
::
XQ

EQ
. (6.4)

Our choice for XQ, if we had no other knowledge of the target system, would
arguably be an XQ that fulfills similar conditions as BF (that is, XQ should be
some causal explanation like BF , i.e., XQ = BF

′). It seems that our expectation
for an XQ = BF

′ is greater than other options—given that we have established
some justification for applying the analog model in the first place (i.e., we have
at the very least EF :: EQ), as well as subjective perceptual and theoretical
justification for building the model in the first place.

3Also mentioned in both Denardo, Puda, and Larraza, 2009 and Barrow (2002, §7) is a
larger instance of macroscopic ‘Casimir’ effects where parallel ships rolling on a swell will
result in the destructive interference of waves between the ships, thus allowing the relative
pressure difference from the waves on the outer surfaces to push the ships closer together.
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Importantly, this set up is different from that considered in Dardashti,
Thébault, and Winsberg, 2017 since it is not the existence of a particular effect
that is the unknown variable in the analogical argument. In their discussion,
the effect of Hawking radiation is what is inaccessible—black holes are pre-
sumed to exist. Here, what is inaccessible is not the effect (we already have
observed Casimir plates coming closer together). Rather, what is inaccessible
is the background medium or field which is supposed to be part of the causal
mechanism of how the observed phenomenon is produced—but which cannot be
directly observed.4 What is confirmed in their example is a theory of black holes
and Hawking radiation. What is potentially confirmed here by the argument
XQ = BF

′ is any quantum theory of the vacuum which gives an ontology of
non-zero energy density using a mechanism or term that is similar to the vi-
brating fluid bath (i.e., a BF

′). We will now refer to the quantum mechanism
as BQ.

In our example, we know that the analogical relationship at least breaks
down with respect to the dimensions of the analog model and the target system.
The authors consciously note other deficiencies in the analogy Denardo, Puda,
and Larraza, 2009, p. 1095:

The analogy of our water wave system to the Casimir effect is not
exact. Because the water waves are driven, the energy density of
the spectrum is not infinite, so a regularization procedure is not
needed. Furthermore, we are primarily concerned with the case of
closely spaced plates, which yields a force that is independent of the
separation distance d. This behavior is in contrast to the Casimir
force, which has a 1/d4 dependence due to the divergence of the ω3

spectrum at high frequencies.

Furthermore, there are terms in our formal representation of the fluid such
as viscosity and surface tension which have unclear analogical relationships with
the quantum world. However, in our view these are not particularly trouble-
some. The analogy concerns the relative difference in pressure between the
exterior and interior of two parallel surfaces in an oscillating medium composed
of a range of frequencies. We are now taking this analogical relationship as
granted. We are no longer in a discovery phase, but applying the “discovered”
model to see how we learn, how our beliefs are affected.

Before introducing a Bayesian network in the next section which can appro-
priately model confirmation from BF (the analog model) we should first like to
know the kinds of probabilities that should hold in such a network in order to

4“Although [zero point energy] cannot be directly observed, the presence of the plates
discretizes the spectrum between and transverse to the plates, which causes the imbalance of
the radiation force.”Denardo, Puda, and Larraza, 2009, p. 1095
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ensure confirmation. As mentioned earlier, we can consider quantum electrody-
namics TQ to be the theory of electromagnetic radiation in a quantum vacuum—
the relevant theory for explaining the Casimir effect. Unfortunately, measuring
the zero point fluctuations directly is not possible, and thus—obviously—the
existence of such an ontology is independent from the theory. In other words,
since we have not observed BQ, then P (TQ |BQ) = P (TQ). This is a problem
since BQ is supposed to give us the causal explanation of EQ, and surely we
should have that P (TQ |EQ) > P (TQ)—i.e., that observing the Casimir effect
confirms a quantum theory of the vacuum.

Considering the analog model, however, it seems plausible that as a Bayesian
agent the mechanism offered by the fluid system confirms (increases the prob-
ability of) an analogous mechanism in the target system. It should thus be
that P (BQ |BF ) > P (BQ), as well as P (BF |EF ) > P (BF )—i.e., observing
evidence predicted by a model of the bath system should confirm the model. In
the end we will want that P (TQ |EF ) > P (TQ), that the analog phenomenon
confirms the target theory. This stems from the final positively correlated mod-
ule P (TQ |BQ) > P (TQ).

So the Bayesian network should allow the following assumptions to hold:

P (TQ |BQ) > P (TQ) (6.5)
P (BQ |BF ) > P (BQ) (6.6)
P (BF |EF ) > P (BF ) (6.7)

In the example of the fluid analog model of the Casimir Effect, the theories of
fluid mechanics TF and quantum electrodynamics TQ have evidence domains
concerning macroscopic fluids EF and electromagnetic radiation in a vacuum
EQ respectively. The difference in orders of magnitude justifies by itself the
assumption that the overlap between evidence of these theories is, under normal
conditions, nonexistent. Our situation is notably different from the overlapping
evidence in the networks discussed in Dizadji-Bahmani, Frigg, and Hartmann,
2011. However, it is seen that after the analogical argument is admitted into
the network, both BF and EF are common descendants of TF and TQ. This
is the first preliminary look at one Bayesian model which affords the kind of
confirmatory relationship we are looking for.

An analogy is made with the relative pressures of waves on parallel partitions
in the (practically) random ‘bath’—either surface waves in a macroscopic fluid
or electromagnetic radiation in a quantum vacuum. These waves are assumed
to be linear, since non-linear mechanics begin to appear upon sufficiently high
amplitude vertical oscillations of the fluid bath when droplets are ejected. See
Denardo, Puda, and Larraza, 2009 and Terwagne and Bush, 2011, for example.
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TQAuxQ

BQ BF

TF AuxF

EQ EF

Figure 6.3: A Bayesian network representing the relationship
between the analog Casimir effect EF and the Casimir effect EQ.
The dashed edge marks analogy as asymmetric link in order to
capture the subjective sense in which P (TQ |EF ) > P (TQ), by
making EF and BF descendants. Also P (TQ |BF ) > P (TQ).

Thus, the limitation of the system to approximately sinusoidal waves is a rele-
vant aspect of the analogy that we can call an auxiliary condition. These and
other auxiliary conditions from the experimental set up that produces both the
Casimir effect and the analog effect, plus the respective relevant theories, gives
us descriptions of the fluid and quantum systems BF and BQ respectively, which
are related through the analogical argument given earlier. However, it still isn’t
exactly straightforward how to represent the analogical relationship between
BF and BQ in the network. A possible choice for directing an edge between
these nodes in the Bayesian network would be from BQ to BF : In this way, BF

and EF are descendants of TQ, but the arrow also introduces asymmetry in the
graph.

6.4 Bridging models
The above network fails to capture the epistemic information required of an ana-
log relation based on similarity between target and model systems. It represents,
if you will, only half of a superposition of two Bayesian networks, each yield-
ing answers to queries for different inferential directions—if BF and BQ behave
analogously, evidence for either side should inform the other side in a symmetric
way. The purpose of the present work is to show that such a case should be
admitted as normal into the Bayesian formal framework. The structural sim-
ilarities between these domains is a matter of course and not an exception to
the probabilistic reasoning Bayesian epistemology aims to reconstruct. In this
section we provide an alternative account of Bayesian confirmation, utilizing
undirected edges to bridge theoretical frameworks and preserve the symmetric
capacity of analog relations. The undirected edges are a minimal extension to
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normal Bayesian networks, convenient shorthand for preserving the symmetrical
information.

6.4.1 Directed and undirected relations
Our choice to direct the edge from BQ to BF in Fig. 6.3 is rooted in the epistemic
status and goals of a scientist (or philosopher) in a particular situation. Simply
put, we want to confirm TQ, not TF . If we wanted to confirm TF we would switch
the arrow the other way around.5 So, EF and BF must be descendants. If the
arrow pointed in the other direction and they weren’t descendants, the collider
structure at BQ would d-separate TQ from BF and EF , giving us TQ ⊥⊥ BF ,EF .
In other words, if the collider were present then P (TQ |BF ) = P (TQ), where
instead we want that P (TQ |BF ) > P (TQ).6

For a specific inquiry, confirmation from an analog model can be represented
in a DAG. Yet, we may wish to have confirmation flow the other way (e.g., to
TF ) and our formal system should be prepared with the extra information on
hand to do this. If we were to use only the above DAG in our representation
of the problem, then we would lose the information relevant to the symme-
tries of an analogy and the potential to confirm in the opposite direction (i.e.,
P (TF |EQ) > P (TF )). Since we are not looking for a case-by-case account
of analog confirmation, we want to preserve this information in a more general
framework that ties in with Bayesian confirmation theory. As shown, a standard
Bayesian network is insufficient to adequately handle representing confirmation
from analog relations as we have construed them. The question remains: How
can intertheoretical, symmetric relations be integrated in a formal model from
which genuine (Bayesian) confirmation claims can be derived?

We suggest a new type of edge—a non-directed, non-causal, informational
link. Furthermore, it is not to be deactivated by (causal) interventions in the
model. It should work like synonyms, mathematical inter-definitions, or logical
relations (which certainly all belong to the pool of knowledge we use for decision
making). A deterministic function, for example, results in the special case of a
maximal mutual information between the variables. Information gained about
one results in the same amount of information about the other. There is, so

5However, the unobservability of the quantum “bath”, BQ, may present some issues. For
example, it seems like it should be the case that P (TF |BQ) = P (TF ). If we can’t observe
BQ directly (this is the reason the analogical argument was made in the first place) then we
can’t condition on it like it is observed evidence.

6 This argument similarly goes for an edge between EQ and EF , were we to choose to
express the analogical relationship between the two frames at the evidential level. Also,
our previous discussion used analogical reasoning to map the structure between BF and
EF to suggest BQ. If the fluid bath was not granted as analogical, a mere similarity of
evidence would arguably not justify the strong intuition that we might want to confirm TQ.
One might be getting similar evidence from dissimilar systems—e.g., mere numbers from
point measurements, similar but unstructured. What is important is precisely the structural
mapping between the descriptions of systems.
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to say, a communication channel between the representations of systems. In
standard statistical modeling, extensionally equivalent variables would certainly
be collapsed into one single variable (node, respectively). For our purposes,
though, we would like to disambiguate in the model the intensional distinction
between connected variables. Consequently, the final model ought to contain
two separate nodes and mark these nodes as tightly, functionally dependent.

In briefly discussing the possibility of embedding such non-causal links into
causal Bayes net structures, Verma and Pearl acknowledge the usefulness of
such hybrid models:

The ability to represent functional dependencies would be a power-
ful extension from the point of view of the designer. These depen-
dencies may easily be represented by the introduction of determin-
istic nodes which would correspond to the deterministic variables.
Graphs which contain deterministic nodes represent more informa-
tion than d-separation is able to extract; but a simple extension
of d-separation, called D-separation, is both sound and complete
with respect to the input list under both probabilistic inference and
graphoid inference. Verma and Pearl, 1988, p. 75

Symmetrical inter-theoretical relations like analogies are in our view a
paradigm case study to implement such an extension. We thus propose to
model analogy as a relation between strictly correlated variables. It is a non-
causal and non-directional relation constructed on top of a syntactic isomor-
phism (formalized as a 1-1 function) in an extensions of a Bayes net causal
model. Such hybrid structures have been discussed in philosophy (Poellinger,
2012), as well as statistics (e.g., as chain graphs in Lauritzen and Richardson,
2001). We can extend a standard causal model triple M = 〈U ,V ,F 〉 to a
quadruple K = 〈U ,V ,F ,C〉, where U is a set of exogenous variables, V a set of
endogenous variables, F a set of functional causal mechanisms (cf. Pearl, 2000,
def. 7.1.1, p. 203). The extension, C, is a set of epistemic contours: a set of
1-1 functions ij,k that take the value of some variable Vj and assign the value
ij,k(Vj) to some other variable Vk in the pattern. Importantly, intervening on
one of these entangled variables will not break the contour.

Contours possess the properties we want for our analog relations. Yet, em-
bedding entangled variables of this kind in Bayesian networks precisely renders
them non-Markovian.7 In the general case, the inferential framework must be

7When Pearl claims that “[t]he Markovian assumption [. . . ] is a matter of convention,
to distinguish complete from incomplete models”(Cf. (Pearl, 2000, p. 61) he naturally has
Bayes net causal models (with distinct variables) in mind, which we just dismissed.
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tweaked to retain soundness,8 but in our special case with a single intertheoret-
ical bridge, we only require the idea of utilizing an undirected functional link
to join two probabilistic chains (i.e., our two frames). So, how can we spell out
analogical inference across this newly introduced bridge?

6.4.2 Analogical inference across symmetric links
In our proposal, the model-external postulate (or assumption, or also percep-
tion) “BQ is similar to BF (in certain known respects)” prompts the inclusion of
a translation relation rather than the insertion of a new node. Analogical rea-
soning begins with a domain comparison which we characterize as the insertion
of an inter-theoretical bridge.9 Figure 6.4 is a rendition of the Casimir effect
example discussed above with the contour i marking the analogical relationship
between the frames at the level of systems BQ and BF .

TQ

BQ BF

TF

EQ

AuxQ AuxF

EF

i

Figure 6.4: System-level analogy as epistemic contour i with
the intertheoretical bridge i between BQ and BF .

In this graph, the undirected edge between BQ and BF , along with the for-
mal explication we have introduced, provides a means for implementing analog
confirmation as we have construed it. A scientist or an artificial system can
obtain P (TQ |EF ) > P (TQ) while retaining the information represented by the
undirected edge, and the ability at some later time to provide confirmation for
TF . While in this case we might not need or want to confirm TF , a general
account should provide for this.

8For consistent reasoning and efficient computation of causal knowledge patterns to remain
possible at all, acyclicity, independence (as expressed in the graphical d-separation criterion),
and the identifiability of causal effects receive new explications. Poellinger, 2012 introduces
a further graphical criterion, the principle of explanatory dominance, to define under which
conditions the Markov requirement can be reclaimed and extended Bayes nets can be utilized
for causal inference.

9This insertion can formally be understood as a structural mapping by which two frames
are related.
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One might wish to instead represent the analogical contour between TQ and
TF (Figure 6.5). However, this would be a much stronger claim since BQ and
BF are determined to an additional extent by auxiliaries. After all, confirma-
tory boosts in probability may be divided between the theory and auxiliary
assumptions as per the Duhem-Quine problem. An analogy at the theory level
is, in some sense, an analogy that could be a step further towards unification
than one at the system level. We will return to briefly discuss (pre-)unification
in Sec. 6.5.

TQ

BQ BF

TF

EQ EF

i

Figure 6.5: Theory-level analogy as epistemic contour i with
the intertheoretical bridge i between TQ and TF .

A potential option would also be to insert a collider structure between the
model (system) levels representing an analogy. However, as we have argued,
granted analogies should not be represented as a node. It is unclear what the
content of the node would be, and the values it could take would arguably de-
pend upon a meta-level analysis of the network (i.e., it would be a self-referential
node). We think our approach of modeling the analogy as a functional relation is
more consistent with the case study, as well as mathematically useful for future
applications of the method. Furthermore, there is support from the cognitive
science literature treating analogy as an associative perceptual mechanism (i.e.
structure mapping). In this way, the transfer of knowledge from one domain to
the other is direct, not necessarily the result of a top-down generalization.

6.4.3 Translation via relevant sub-isomorphisms
We take analog contours to be an expression of a modeling relationship between
frameworks. It can be thought of formally as a translation relation based on
a relevant sub-isomorphism, which has been anticipated in the literature on
models and representations in science, cf. Frigg and Hartmann, 2012:
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One version of the semantic view, one that builds on a mathematical
notion of models, posits that a model and its target have to be iso-
morphic (van Fraassen, 1980; Suppes, 2002) or partially isomorphic
(Da Costa and French, 2003) to each other. Formal requirements
weaker than these have been discussed by Mundy, 1986 and Swoyer,
1991. Another version of the semantic view drops formal require-
ments in favor of similarity (Giere, 1988; Giere, 2004; Teller, 2001).
This approach enjoys the advantage over the isomorphism view that
it is less restrictive and also can account for cases of inexact and sim-
plifying models. However, as Giere points out, this account remains
empty as long as no relevant respects and degrees of similarity are
specified. The specification of such respects and degrees depends
on the problem at hand and the larger scientific context and cannot
be made on the basis of purely philosophical considerations (Teller,
2001).

We follow this line of reasoning and formulate a relevance filter in order to
capture the purpose-driven selection of theoretical entities to be translated. Of
course, basing analogy on a purpose-driven relevance concept makes the concept
of analog models context-specific. The important point is that there is some
structural relationship which is mapped between the model and target systems.
We can embrace this and call BF an analog model of BQ relative to

1. a relevance filter Rlv;

2. a bijection between the relevant properties of BQ and BF (an isomorphism
between sub-structures of BQ and BF ).

The filter function Rlv, an indicator function over the descriptive elements of
both frameworks, selects for each semantic category (for individual objects and
each set of n-ary relations between such objects) subsets of equal magnitude;
i.e., for each category:

||Rlv(BQ) || = ||Rlv(BF ) || . (6.8)

If BQ and BF behave alike with respect to relevant parts (i.e., parts selected
by Rlv) that are described by PQ(x)Q and PF (x)F (with properties P of objects
x in the respective models), then the following formula explicates the analog
relation between frameworks via translation i:

∀PF , xF (PF (xF )↔ PQ(xQ)) . (6.9)

Note that this isomorphism might be the result of iteratively fine-tuning
non-bijective translations between the frameworks.10

10We are thankful to Mark Colyvan for valuable discussions about the nature of this mor-
phism.
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Having defined the propagation of information across the epistemic contour
in this way, tracing confirmatory support in Fig. 6.4 yields the following:

P (BF |EF ) > P (BF ) (6.10)
P (TQ |BQ) > P (TQ) (6.11)

P (i(BF ) |BF ) > P (i(BF )) (6.12)

where i(BF ) represents specific information about the properties of BQ relevant
for the analogical inference (i.e., as chosen by the filter function).11 Eq. 6.12
exploits the characterization of contour i as 1-1 function: Learning BF tells us
more about the Rlv-selected properties and objects at the core of BQ, thereby
raising our degree of belief in those BQ that are compatible with i(BF ). Now,
by transitivity, 6.10, 6.11, and 6.12 together entail

P (TQ |EF ) > P (TQ), (6.13)

which was implied by our list of desiderata above—Eq. 6.5, Eq. 6.6, Eq. 6.7,
chained together. Formula 6.13 is an instance of Bayesian confirmation—this
time across theoretical frameworks, though, and it encodes what we set out to
achieve: Bayesian confirmation from an analog model.

6.5 Analogy and (pre-)unification
In her structure-mapping account of analogical reasoning, Dedre Gentner makes
an important distinction between mere similarity, analogy, and abstract gener-
alities or law-like statements. These represent different stages of learning about
the relationship between two domains, moving from early similarity compar-
isons, to analogies, to generalizations:

This sequence can be understood in terms of the kinds of differ-
ences in predicate overlap discussed in this paper. In the structure-
mapping framework, we can suggest reasons that the accessibility
and the explanatory usefulness of a match may be negatively re-
lated. Literal similarity matches are highly accessible, since they
can be indexed by object descriptions, by relational structures, or
by both. But they are not very useful in deriving causal principles
precisely because there is too much overlap to know what is crucial.
Potential analogies are less likely to be noticed, since they require
accessing the data base via relational matches; object matches are
of no use. However, once found, an analogy should be more useful in

11As soon as one learns of a specific instantiation of i(BF ), i.e., the relevant core of BQ,
those theoretical entities not in the Rlv mapping must be updated in line with consistency
requirements.
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deriving the key principles, since the shared data structure is sparse
enough to permit analysis. [. . . ] To state a general law requires
another step beyond creating a temporary correspondence between
unlike domains: The person must create a new relational structure
whose objects are so lacking in specific attributes that the structure
can be applied across widely different domains. (Gentner, 1983, p.
167-168)

This contextualizes our approach and the way in which analogy can be seen
as the pre-unification of two theoretical frames. The way we have modeled
the link between these frames may be understood by Gentner as a “temporary
correspondence between two unlike domains”. The Casimir example discussed
is arguably in the middle of Gentner’s spectrum between bare similarity and
abstract generality. There are literal similarity matches—but some features
in representations of the respective domains must also be thrown out as not
similar. There is relational structure being mapped—but the objects still have
enough specific attributes that it may be unwarranted at this stage to make
any conclusive generalization about an entire class of systems. Although, in
this case, it may be appropriate. Sliding the undirected contour up or down in
the extended Bayesian network seems to plausibly correspond to the levels of
analysis Gentner has outlined.

That said, we can imagine that such a class could be built up in a case-
by-case manner, and eventually justify a unified claim regarding the structure
of all domains in the class. Indeed, there are cases in science where strong or
systematic analogies can be thought of as almost unificatory (see Bartha, 2013).
We think there is strong motivation for interpreting contours at the level we
have utilized them (i.e., between model systems) as pre-unificatory analogies.
This might be contrasted with, for example, an approach that models the inter-
theoretical relationship as a sort of common cause (i.e., a parent node of both
structures at the uppermost theory level). We think that these two approaches
can coexist, representing different stages of epistemic modeling. An analog
knowledge pattern can precisely represent a scientist’s nuanced view of an inter-
theoretic relation before she might wish to consider that the theories under
question should somehow be unified into one theory.

As a final note for additional follow-up work by fellow philosophers of
physics, we might consider confirmation of the general class of quantum theo-
ries such that with regard to the quantum vacuum they contain a BQ—which
is analogous to the vibrating bath in the analog model. In this sense, a partic-
ular interpretation of the Casimir effect seems to be implied by the conceptual
aspect of the explanation: the argument XQ = BF

′ supports a field-theoretic
explanation in terms of a spectrum of modes rather than that the effect is due
to Van der Waals force. This is perhaps a problem for explaining the Casimir
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effect in terms of the Van der Waals force.12 Furthermore, there are many other
systems which exhibit similar phenomena (Denardo, Puda, and Larraza, 2009,
p. 1100):

Casimir-type effects occur, in general, for two bodies in a homo-
geneous and isotropic spectrum of any kind of random waves that
carry momentum. A net attractive force occurs between two par-
allel plates in the typical case where the radiation force is reduced
between them.

The various analog models of Casimir-type effects seem to provide some sort
of unifying explanation, whereas an alternative explanation of the Casimir effect
in terms of the van der Waals force is in contrast to such models.13 However, the
systems are not all described by a single unifying theory—and thus the weaker
analogies between models might be taken to supply a form of pre-unificatory
explanations in the cases where well-defined structural similarities might even-
tually lead to theoretical unification. Grounded in an analytic approach towards
the concept of analogy, our constructive proposal provides a novel template for
making such epistemological advances explicit.

6.6 Conclusion
The extended subjective Bayesian network presented here is able to account
for confirmation from analog models and analog simulation. Thus, slightly
modified, Bayesian confirmation theory is able to meet the challenge offered in
Dardashti, Thébault, and Winsberg, 2017. Importantly, our account preserves
the informational symmetries involved in analogical reasoning, as demonstrated
in an application to a case study from philosophy of physics, the Casimir effect.
It should be reemphasized that, in this case, what is inaccessible about the
target system is not the phenomenon—both the target and analog systems
have shown the plates moving closer together—but rather the theoretical and
ontological explanation of why the target system produces the phenomenon.
Thus, we are confirming a theory of a phenomenon by offering an explanation
of an analogous phenomenon.

12Also, an explanation in terms of ‘virtual particles’ flitting in and out of existence seems
inferior, given these results, to an explanation in terms of crests and troughs in a fluctuating
medium.

13Unless van der Waals and Casimir forces were shown to be equivalent, but our under-
standing is that they are distinct. We remain open to further discussion on this point.
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Chapter 7

Decoherence and Survival

The existence of laws of similar structure in different fields makes
possible the use of models which are simpler or better known, for
more complicated and less manageable phenomena. Therefore gen-
eral system theory should be, methodologically, an important means
of controlling and instigating the transfer of principles from one field
to another, and it will no longer be necessary to duplicate or tripli-
cate the discovery of the same principles in different fields isolated
from each other. At the same time, by formulating exact criteria,
general system theory will guard against superficial analogies which
are useless in science and harmful in their practical consequences.
Bertalanffy, 1969, p. 81

The physical world is ultimately quantum, and our interactions with it are
governed by quantum measurements, quantum uncertainty, and quantum logic.
What does this mean for human cognition and decision-making? One might
suggest first looking at the agents whose survival depends most on correctly
discriminating states in the quantum world: physicists. We find out rather
quickly that physicists do not have to use quantum mechanics to solve all prob-
lems. They do not use it to make sense of the everyday world they live in.
Quantum decoherence is a feature of quantum dynamics that many physicists
appeal to in order to supply a story or explanation why the world humans live in
is best characterized classically. Classical physics is the physics of large objects
at low-speeds—the world of billiard balls and bears. The most efficient way to
solve problems in this regime is to utilize classical mechanics.

The objects humans interact with, internally model, and have beliefs about
are typically classical. That is, they are subject to classical measurement, classi-
cal definiteness, and classical logical relationships. There are exceptions. Some
macroscopic systems are characterized quantum mechanically. This is, how-
ever, atypical. These are highly technical situations that involve, for example,
quantum fluids or superconducting systems. There is little to no justification
to think that human agents have ever had to make decisions over these kinds
of systems until the last hundred years or so.
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Arguably, it is by far a rare exception that some human belief state might
be appropriately modeled as ‘quantum’. That is, unless one is talking about
a special class of phenomena or problems where a quantum belief state appro-
priately mirrors the distribution of these inputs. That is to say, a quantum
physicist should have quantum belief states when she is trying to distinguish
quantum states and quantum phenomena in the quantum world. If one wants to
be as certain as possible about what a quantum state is (or will be), a modeler
will use quantum representations, quantum measurements, and quantum logic.

A quantum state can exist in a so-called ‘superposition’ of states, and this
is not merely an uncertainty between classical states. That isn’t to say that
macroscopic states of objects like water are atypical because of the superposition
property which holds between multiple waves on a fluid surface. Most objects,
most tasks, most situations encountered were surely better modeled classically.
A superposition or wavelike model would impede decision-making in the same
way that a physicist would be impeded trying to distinguish some macroscopic
state by parsing a high-dimensional wave function.

What, then, should one make of recent quantum-like models (QLMs) of
cognition? Are we wrong about what is a typical task for human agents? Does
the success of these models suggest that quantum-like representations are better
than classical alternatives? I argue that they do not do better, and that the
intuitions about classical representations being optimal for the classical world
are correct. Even granting that maybe there is some use for these models in
a way which does not contradict ‘classical’ cognition, I argue that decoherence
should still occur among realistic sets of un-isolated belief states.

There are already well known decoherence objections to actual quantum
mechanisms in the brain. Tegmark, 2000 Proponents of QLMs want to remain
agnostic about what carries their quantum-like mechanisms of cognition, and
just use the quantum formalism:

We remain agnostic with respect to this question, and instead focus
more on the application of the mathematics, of the formal core of
quantum theory, to the behavioral results obtained from cognition
and decision experiments. Busemeyer and Bruza, 2012, p. 25

Unfortunately, it is clear that they also appeal to certain concepts that are
not easily divorceable from physical interpretations in quantum theory. They
are also not divorceable from the formal mechanisms which are sufficient for
a quantum-like decoherence argument. The debate over decoherence in quan-
tum mechanics represents precisely the kind of interpretational problem which
plagues the quantum formalism. One does not need actual quantum physical
systems to interfere with the environment (such as other quantum states) to
make a decoherence argument against coherent quantum models of cognition.
Even ‘agnostic’ formal models will need to justify one set of formal procedures
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which act on sets of (quantum) belief states over another. If I assert a no-
collapse interpretation of quantum-like belief dynamics, who can stop me?

Nevertheless, I argue that the procedures these models rely on are not as ag-
nostic as they seem. Indeed, I think these models lie squarely in the algorithmic
level of Marr’s hierarchy (see e.g. Marr, 1982; Marr and Poggio, 1976). There
are a set of assumptions, and a sequence of operations with these assumptions,
which result in the ability to model (or produce) formal results aligning with be-
havioral data. In particular, behavioral data which shows widespread mistakes
like the conjunction fallacy. That being said, I will grant for the most part that
these models may be construed as potential computational-level alternatives to
Bayesian models.

7.1 Classical Bayesianism
Bayesianism provides a strong story for what a human agent should compute,
and why. It is, essentially, supposing that cognition is classical in its logical
structure to reflect the classical structure of typical stimuli in the environment.
If it weren’t, the mismatch with reality would result in certain losses which
could be avoided by modeling the world appropriately (classically).

In a Bayesian decision theory, one interprets probabilities as subjective de-
grees of belief, and update in accordance with Bayesian updating. Central to
this update procedure is Bayes theorem:

P (A|B) = P (B|A)P (A)
P (B)

(7.1)

This theorem assumes P (B) > 0, and is proven by the commutativity of
set intersection, where abstractly defined events A,B are elements or subsets
of the entire space of events Ω. One might wonder, in the context of subjective
decision theory, whether this commutativity is actually justified. No one seems
to question the commutativity of abstract objects in set theory, and neither
do I, but when A and B are events in a subjective belief space this might be
questioned. In other words, there is non-trivial philosophical work to do to
support the claim that subjective degrees of belief obey commutativity as well.

Proponents of quantum like decision modeling emphasize the non-
commutativity of projection operators corresponding to incompatible events
in an agent’s cognitive process, it is important to see that it is crucial in the
proof of Bayes theorem.

Proof of Bayes thm:

Definition Conditional Probability P (A|B) = P (A∩B)
P (B)

1. P (A|B)P (B) = P (A∩B)
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2. P (B|A)P (A) = P (B ∩A)

3. By commutativity of the set intersection, we can substitute so that
P (A|B)P (B) = P (B|A)P (A)

4. P (A|B) = P (B|A)P (A)
P (B)

Again, in terms of static or logical set-theoretic properties, it does not seem
justified to question commutativity. These events are by definition compatible,
and they will commute. This brings up the discussion in Birkhoff and Neu-
mann, 1936, where the event structures of classical vs. quantum experimental
propositions were being considered. The structure for experimental proposi-
tions in quantum mechanics is different from the corresponding structure in
classical physics. The way an agent, like a physicist, interacts with the physical
world obeys a slightly different set of logical relations for quantum events com-
pared to macroscopic or classical events. Without going into detail here, one
could characterize the difference as boolean and non-boolean. If the agent is to
be successful at doing physics, then these logical relations should be adhered
to in the respective domains. Decoherence is an explanation for why classical
descriptions are appropriate for macroscopic physics despite the fact that the
world is actually quantum underneath.

Are the kinds of problems that are typically encountered by a (typical) agent
more like those found in quantum or classical mechanics? Most importantly is
the issue of whether an agent should somehow act upon representations which
commute, or whether they just descriptively do not always do so. I will return to
this discussion in later sections when discussing the success of a physicist as an
agent who “regulates” physical phenomena, and how decoherence provides the
key to understanding why this physicist will be the best regulator by respecting
quantum decision principles only for quantum problems.

Proponents of QLMs want to revise arguably the best computational level
accounts, those which provide some computational story of minimizing expected
error/loss and why the system should do so, without providing any alternative
norms. Take, for example, the following quotes:

There is another line of research in which quantum physical models
of the brain are used to understand consciousness (Hammeroff, 1998)
and human memory (Pribram, 1993). We are not following this
line; instead, we are using quantum models at a more abstract level,
analogous to Bayesian models of cognition. Busemeyer et al., 2011,
p. 193



7.1. Classical Bayesianism 113

Elsewhere, proponents acknowledge the computational foundations (i.e. a
“top down” approach in Marr’s hierarchy, eliciting the hows and whys of cog-
nition) of the Bayesian paradigm.1 The authors clearly contextualize their
approach as an alternative to the Bayesian paradigm. Pothos and Busemeyer,
2013, p. 257

We seek to infer the computational (and possibly process) principles
of cognitive processing. Pothos and Busemeyer, 2013, p. 319

I do not think I am out of line in interpreting the QLM program as attempt-
ing to replace the (Bayesian) classical normative picture at the computational
level. However, the normative force of classical accounts goes much deeper into
Marr’s hierarchy than QLM proponents are ready to admit. Consider again the
following statements I discussed in chapter 3 from von Neumann concerning the
capacity of physical components in a computational device to be interpreted in
multiple ways:

“The electromechanical relay, or the vacuum tube, when properly
used, are undoubtedly all-or-none organs. Indeed, they are the pro-
totypes of such organs. Yet both of them are in reality complicated
analogy mechanisms, which upon appropriately adjusted stimula-
tion respond continuously, linearly or non-linearly, and exhibit the
phenomena of “breakdown” or “all-or-none” response only under
very particular conditions of operation.” Neumann, 1963, p. 297-
298

For present purposes, most of the quote appears to relate to Marr’s algo-
rithmic and hardware levels. However, notice that a physical system doesn’t
just ‘compute’. A purpose is implicitly assumed. For, without a purpose of the
computational system, how could one talk of a proper use? A device is properly
used when it is applied to a problem which is from a typical distribution of
problems.

For a device to compute—and for someone to talk meaningfully about some-
thing computing—I interpret von Neumann as supporting the claim that any
given computational system must be interpreted with a “proper use” in mind.
He continues, providing some conditions that are relevant for understanding
this proper use:

“By an all-or-none organ we should rather mean one which fulfills
the following two conditions. First, it functions in the all-or-none
manner under certain suitable operating conditions. Second, these

1I agree with many of the sentiments in the critical articles in response so far. A number
of good points are made in the responses of Pothos and Busemeyer, 2013.



114 Chapter 7. Decoherence and Survival

operating conditions are the ones under which it is normally used;
they represent the functionally normal state of affairs within the
large organism, of which it forms a part. Thus the important fact is
not whether an organ has necessarily and under all conditions the
all-or-none character—this is probably never the case—but rather
whether in its proper context it functions primarily, and appears
to be intended to function primarily, as an all-or-none organ. ”
Neumann, 1963, p. 298

These two conditions can be applicable to more than just “all-or-none” or-
gans, but to how one constructs the notion of normativity and typicality in
computation, (and regulation in a cybernetic system generally). His first condi-
tion, that of suitable operating conditions, allows one to define sufficient initial
conditions, i.e. a ‘set up’, such that it is possible to follow the meaningful steps
(an algorithm) that proceed afterwards. It also allows one to specify why the
system should function according to the (potentially user-defined) use. This
constitutes the why of a computational analysis. The second of von Neumann’s
condition concerns what it means for a system to have a ‘proper’ use. If we
don’t know the typical conditions in which a system should function, we will
likely have no clue as to what its proper function would be, i.e. what is be-
ing computed. In practice, one may just have to assume typicality in order to
reverse-engineer the system under study.2

For a given device, in order to determine when it is failing to compute,
one assumes typicality. In the conjunction fallacy example, discussed shortly,
the Bayesian paradigm can regard the problem as atypical, and the failure as
irrational. Without the normative framework determining what is typical, one
lacks the ability to categorize mistakes. This is precisely the problem that QLMs
run into for the conjunction effect, where it is unclear whether they really render
it as irrational.

Quantum-like models, on the other hand, would allow for incompatible rep-
resentations which can result in cognition that is fundamentally context sen-
sitive when it shouldn’t be (by classical lights). There is, as of yet, no story
of why human cognition should be so. However, I will entertain the possibility
that it is possible. In this case, proponents may be justified in their research
program. It is clear that the mathematical machinery is at least more general
than classical probabilities.

2 “[. . . ] the nervous system is not accompanied by a manual explaining the principles of
operation. The blueprints and the early prototypes were thrown away a long time ago. Now
we are stuck with an artifact, so we must try to reverse engineer it.”Mead, 1990, p. 1630
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7.2 Quantum Basics
The quantum formalism begins with the concept of a vector space. Consider a
plane as a two dimensional vector space, V . Let V be a set such that vectors
v, w ∈ V , represented visually by arrows, can be identified with a pair of
coordinates [x, y]T from an origin (where T represents the transpose operation,
making the in-line row into a column vector). We can concatenate elements of
V to form a new element of V . That is, v+w = u ∈ V . The ‘+’ symbol could
be thought of as addition, but it is more precise to just think of it as a linear
combination of the two vectors.

The dimensions of the space are determined by the number of basis vectors
required to span the space. A spanning basis is a set of linearly independent
vectors which, when stretched (multiplied by a scalar a, b ∈ R) or combined any
number of ways can reach any point in the space. A set of vectors are linearly
dependent when one of the vectors can be written as a linear combination of
other vectors. Two vectors are sufficient to achieve a basis for a plane. Take
the so-called computational basis vectors v1 = [1, 0]T and v2 = [0, 1]T (i.e.
the unit arrows in the x and y directions, at 90◦ to one another). Convince
yourself that every point in the x-y plane can be reached by combinations of
scalar multiples of these basis vectors. That is, any vector (or point) w can be
written in the form

w = av1 + bv2 (7.2)

Now I move on to the vector spaces used in the Hilbert space formulation
of quantum mechanics. This space has an inner product defined in addition
to using more general complex numbers α, β ∈ C for scalar multiplications.3
Here I follow the simple conventions in the field of quantum computation, by
representing a quantum wave function in Dirac notation with column vector
basis states defined according to observed classical bits |0〉 and |1〉.

|0〉 =
[
1
0

]
|1〉 =

[
0
1

]
(7.3)

A qubit will be represented by a linear combination (‘superposition’) of the
form

|ψ〉 = α |0〉+ β |1〉 (7.4)

where the complex-valued coefficients α, β (‘amplitudes’) are supposed to
evolve coherently in time evolution of the state |ψ〉, and determine observed
probabilities in quantum mechanical experiments according to the Born Rule

3A complex number, in Cartesian coordinates, is a number c of the form x+ iy, where
i =

√
−1. These numbers make up the complex plane, and vectors are defined similar to

those above.
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calculation |α|2 + |β|2 = 1 (where | · | denotes the modulus of the complex num-
ber). Superpositions (linear combinations) and amplitudes are general features
of wave mechanics—such as surface waves on water. When two waves overlap,
we represent them mathematically as a linear combination. They are ‘super-
posed’, and result in constructive and destructive interference. The amplitudes
in a quantum state, which determine observed probabilities, can also interfere
with one another. When using the formalism of quantum mechanics, we will
have coherent superpositions of n qubits according to the general form

|ψ〉n =
11...1∑

x=00...0
αx |x〉 (7.5)

where x is an integer in binary representation. The coherent dynamics of this
superposition during time evolution will mathematically appear as a function
on each and every one of the 2n amplitudes. It is a philosophical question
what exactly the entities are which the amplitudes αx and states |x〉 represent
in the quantum world. These amplitudes will interfere, and because of their
role in determining probabilities they are sometimes referred to as probability
amplitudes. This term is at best a convenient reminder, but at worst it is a
misnomer. Derived probabilities reflect results in measurements or observations
and not properties of coherent dynamics of a state (unless carefully qualified
as counterfactual properties). One may find the term “quasi-probability” more
helpful to avoid the conflation between probabilities and amplitudes.

The qubit is a state represented by an n = 2 dimensional Hilbert space H.
Measurements (which will determine answers to questions in the cognition and
decision contexts) are for present purposes represented as projections Pi onto
subspaces Hi ⊂ H, with probability p(i) = 〈ψ|Pi |ψ〉.4 In general, projectors
will not commute, i.e. for all Pi,Pj it will not be the case that PiPj = PjPi.
Also, ∑

i Pi = I, the identity projection of the space.5 We can characterize a
measurement device D as another two dimensional quantum system with eigen-
states |↑〉 and |↓〉, where the interaction between the device and the quantum
state |ψ〉 obey the following transitions after time evolution:

|0〉 |D〉 → |0〉 |↑〉 (7.6)

|1〉 |D〉 → |1〉 |↓〉 (7.7)

That is, the device will show ‘up’ if the state was |0〉 and ‘down’ if the
state was |1〉, whatever the state of the detector was beforehand. Thus the

4〈ψ| = |ψ〉∗T , where ∗ denotes complex conjugation.
5Projectors are not even the most general form that a measurement can take in quantum

information theory. Rather, the most general form is a positive operator valued measurement
(POVM). However, the proponents’ main claims utilize projective measurements as far as I
am aware.
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superposed state |ψ〉 will transition like so (again omitting amplitudes):

(|0〉+ |1〉) |D〉 → |0〉 |↑〉+ |1〉 |↓〉 (7.8)

Uncertain beliefs regarding sets of quantum belief states in the quantum
modeling framework are called ensembles consisting of the set and associated
(classical) probabilities {pk, |ψk〉}. Many potential ensembles of quantum belief
states correspond to and are represented by density matrices. Pure states are
special cases in the density matrix formulation. Coherent beliefs are represented
as superpositions |φ〉 = |ψ1〉+ |ψ2〉 in some basis, and these are pure states.
The choice of basis is critical in assessing the model. Note that one is not
uncertain about whether the belief is actually |ψ1〉 or |ψ2〉 in a superposition,
but the belief state is the superposition. In other words, it would be misleading
to think of measurement on a superposition as reducing uncertainty about two
potential states (one could measure in a basis where the superposition is an
eigenstate). Rather, this is the interpretation for an ensemble. If |ψ1〉 and |ψ2〉
are potential states in an ensemble, then we can interpret the probabilities for
measurement as uncertainty of which one has been ‘prepared’.

A multi-step transformation on a coherent quantum state will not necessarily
benefit from a Born Rule calculation (that formal procedure which obtains
values interpreted as probabilities from the amplitudes) until at the end when
one is ready to make a measurement upon the state in an experiment, since
the amplitudes will interfere in the meantime. Such a calculation indicates
probabilities for what one would have measured at that time. However, the
term probability amplitude does help capture the difference between how we
come up with quantum probabilities compared to classical probabilities.

7.3 Quantum Conjunction Effect
Quantum like models of cognition consist of a ‘belief’ state-vector |ψ〉, which
can be written as a linear combination in an infinite number of orthogonal
(spanning) bases. A pure state will be a point (in this two-dimensional example)
on the circumference of the unit circle. Proponents use this to analyze results
in psychology such as the famous Linda Problem, where agents seem to process
information irrationally from the perspective of Bayesian norms of rationality.
In these cases of a “conjunction fallacy”, respondents in an experiment will
judge conjunctions as more likely than one of the conjuncts, which violates
Bayesian norms. Respondents are told a story about a woman named Linda
or a man named Bill, and asked to rank the probability of certain statements
about the character. The prompt for Bill is the following:

Bill is 34 years old. He is intelligent, but unimaginative, compulsive,
and generally lifeless. In school, he was strong in mathematics, but
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weak in social studies and humanities. Tversky and Kahneman,
1981

Respondents in experiments of these type widely commit a conjunction fal-
lacy, for various stories and for more or less explicit probabilities. In the Bill
example, the probability rankings for three statements are sufficient to show
the conjunction effect. These propositions are A): Bill is an accountant; J):
Bill plays jazz for a hobby; A ∧ J): Bill is an accountant who plays jazz for a
hobby. The experiment was constructed so that the story was more represen-
tative6 of A than J , yet the probability ranking judgments of a large majority
of respondents (even by students educated in advanced statistics courses) were
A > (A∧ J) > J . This violates classical probability norms, since categorically
the probability measure of a conjunction of events is strictly less than or equal
to the measure of a conjunct.

The same is true for the Linda story, where conjunctive judgments of bank
teller and feminist are ranked as F > (F ∧ T ) > T . In QLMs, there are two
bases we are concerned with, where {F ,¬F} and {T ,¬T} represent in the Linda
problem the beliefs that Linda is a feminist or a bank teller. Or, rather, we can
express the belief state vector |ψ〉 either as an uncertainty regarding an outcome
of measuring in the {F ,¬F} basis, or as uncertainty regarding an outcome of
measuring in the {T ,¬T} basis. These bases are at an angle Θ with respect to
each other. They both span the space.

With this, QLM proponents suggest rendering conjunctions in quantum-like
cognition as a procedure of subsequent projections onto basis states. While it
is ambiguous which basis to project onto first, they suggest to first project onto
the axis that the belief state vector is closest to. One of F or T is ‘measured’ or
cognitively processed first based on the nearest distance from the cognitive state
|ψ〉 (a unit vector) in the space to a basis state. That is, the basis state whose
projector results in the highest probability will be evaluated first in the conjunc-
tion. This is an assumption which allows the model to reproduce the desired
results. In the Linda example, we are to assume that the subject “projects”
attention onto F first, being more likely to land on |F 〉. Then, from |F 〉 we
project onto |T 〉. The probabilities calculated for this transition can differ from
the probability of projecting in the other order, given the angle Θ between the
basis rays in the space.

The angle between the T and F bases is also a parameter relevant to con-
structing a quantum like model, in this case there is a presumption that a |¬T 〉
state is closer to |F 〉 than it is to |¬F 〉. This is a way to ‘bake in’ correlations
presumed by the modeler. This is akin to assuming representativeness, as in
Tversky and Kahneman (1981). One way to look at quantum like models in

6That is, so that it seems like A is representative of the distribution alluded to in the story,
and J is not.
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this case is to say that they are modeling the way that an individual might give
the ‘wrong’ answer in a single multiple choice question. It is unclear whether
one could use the framework to illustrate the rate at which the agent chooses
one answer over another. Proponents appear to assume that this is sensible. It
seems like the correlation angle between the bases should update between trials,
and multiple trials must be presumed if one were to speak of the probability
of an individual choosing an answer, unless discussing an actual quantum-like
mechanism which behaves like the quantum world and is liable to be interpreted
with a Born-like Rule.

However, the method for this is unclear. If there is no such method, then
it is unlikely that the probabilities can be interpreted as a frequency. If this is
the case, the only likely alternative is that the numbers are degrees of belief.
Then, the two flavors of Bayesianism, where degrees of belief are assumed in
the framework, are subjective and objective. If the authors think there are ra-
tional constraints telling us how the agent should orient the angle of correlation
between the bases, they are objective. If any angle is possible, they are subjec-
tive. If the latter is the case, an account of the statistics of a population of test
subjects committing the conjunction fallacy is problematic, since one expects a
roughly even distribution without some bias in orientation.

Long story short, QLMs are assuming a structure to the problem: the pos-
itive correlation between F and T . They are also assuming that a population
of test subjects themselves assume this structure for computing the answer to
the Linda question.

In the formalism of quantum mechanics, calculating the projection tells us
the probability (through Born’s rule) that our measurement will result in ob-
serving the state represented by the basis projected onto. In a given outcome
where one has observed T for example, one then assigns the state of the system
to be |T 〉. In quantum mechanics, this formal account of measurement is at best
an involved epistemological discussion about how one represents knowledge of
the quantum world, and at worst a tangled mess of epistemology and ontology
about how, whether, and to what extent the representations reflect entities in
the quantum world.

Unfortunately, there is no additional story for why, in a QLM, one should
initially represent the belief state vector in the way that we have above. It
seems that the reason for representing the state this way is such that the union
of a set of its projectors are identity and have associated probabilities sum to
one. The reason to do this is arguably so that we remain classically coherent for
the measurement characterized by these projectors. This is just what Bayesian
normativity tells us, only the way the coherent probabilities are being computed
has changed. If we had a story why to represent the feminism and bank teller
bases with incompatible observables, one would have a story which compels loss
under certain betting circumstances. In other words, it would be a norm which
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would be ineffective and irrational for classical tasks.
Furthermore, there is no clarification of why the method of choosing a se-

quence of projections is not arbitrary. Is there a consequence we want to avoid
by first projecting onto the nearest basis? Do we also consider that this projec-
tion is due to an attention measurement that was in that basis (i.e. the agent
asks himself “Is |ψ〉 = {F ,¬F}?”)? Why, for example, doesn’t one instead first
assume that the agent asks herself such a question, and project onto that basis
regardless of whether the state has a more likely projection in another basis?
Why should one model the agent as doing so, and why should the system do
so?

The importance of providing this story should not be underestimated. QLMs
are giving us a procedure to recover certain data. They don’t tell us why such
data should or shouldn’t be the case (i.e. what is right or wrong, typical or
atypical). To do this, proponents would need a normative component I think
they are lacking.

In the case that QLMs are just pure math, there is no reason to associate
any quantum concepts—only the math is relevant. Unfortunately, quantum-
like modeling proponents do not remain agnostic with respect to quantum
concepts—invoking such concepts like measurement, wave-particle duality, and
collapse of the wave function. Are all of these concepts justified in an agnostic
use of mathematics? I don’t think so, as they are heavily dependent on foun-
dational debates over the correct interpretation of quantum mechanics. Even
so, it is not clear that total agnosticism about the nature of the quantum belief
states precludes certain mathematical operations from happening. For example,
if QBSVs are defined, and projective measurements are defined (whatever mea-
surement means in an agnostic context), it seems likely that a decoherence-like
procedure is also defined.

7.4 Quantum-like Decoherence
Quantum-like modeling proponents seem to take their models to possibly be
a general computational level analysis of cognition, akin to Bayesian cognitive
science. They acknowledge that in order to avoid decoherence objections which
have been leveled against hardware level theories, they must be at such an
abstract level. Otherwise, if the belief states were to exist somehow as physical
states, the question of decoherence would rear its ugly head.

The reason decoherence is so devastating for quantum theories at the hard-
ware level, is that the brain is noisy. Any coherent quantum state would ef-
fectively be measured by the noise (thermal or otherwise) and subsequently
decohere. What would it decohere into? The observables would decohere into
states which appear classical.
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Given a quantum measurement device, there will only be certain eigenstates
that are observed. The interaction between the device and the quantum state
being measured is the subject of the measurement problem. What happens to
the entity in the world when we update our epistemic state to reflect the state
observed in the measurement? Where does the extra information go? Is there a
dynamical process which occurs? What happens to the coherent wave function?

There are collapse theories, no-collapse theories, many-worlds accounts,
many minds accounts, Bohmian accounts, and many variations in-between at-
tempting to reconcile the fact that the accurate description of the quantum
state after interaction with a measurement device is an eigenstate of the de-
vice. However, what many of these accounts can at least agree upon, is that
there is some important difference between the appearance of the classical world
(and classical descriptions of classical problems) and the quantum world (and
associated quantum descriptions).

Quantum states interacting with other high-dimensional quantum systems
can be considered to be in some sense measured by these systems. Noise from
the environment dampens the coherent phases. Thus, a coherent quantum state
can be modeled as receiving so-called phase kicks, eventually resulting in a state
described by a density matrix with off-diagonal terms equal to zero. (Nielsen
and Chuang, 2010, §8.3.6) These off-diagonal terms are the coherence terms,
corresponding to varying amplitudes (and thus varying measurement probabil-
ities at different times). In other words, the interaction of the open quantum
system will find a basis in which the density matrix will be diagonal, and the
probabilities will be constant in time. This is called einselection, environmen-
tally induced super-selection (Zurek, 2007). This means that our description is
now mixed, with the terms interpretable as classical probabilities. Decoherence
as a mechanism thus explains why it is appropriate to describe macroscopic sys-
tems classically, even if ultimately there is still a coherent universal quantum
state. One can thus consider decoherence, at least for agnostic formal models,
as a formal mechanism not dependent on corresponding physical mechanisms,
since there is only an apparent collapse of the wave function.

Thus, if one considers quantum belief state vectors as QLM proponents do,
one has two options. One could invoke some idealization in which these purely
formal objects do not interfere with each other and are isolated. This seems
highly implausible, if one transfers the domain knowledge of how a physicist
makes sense of the apparent classical world. Alternatively, one could make the
models more realistic with QBSVs in higher dimensional belief spaces. This
means in turn that either we are dealing with global (or universal) QBSVs—or
relatively isolated low-dimensional QBSVs interfere with the rest of an agent’s
beliefs. In this case, it seems that these QBSVs will decohere. Such an issue
has also recently been noted in a review of QLMs, but the importance of the
agnostic status of quantum belief states is overlooked:
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Quantum effects are generally not robust when states are allowed
to interact with an environment, or when the evolution is otherwise
not well controlled. This has two implications; first, it suggests that
care might be needed to ensure cognitive states remain quantum
during experimental manipulations. Failure to do so could mean no
quantum effects are visible. Second, it suggests an explanation for
why some cognitive variables do not show quantum effects, perhaps
certain preferences/beliefs are just to hard to isolate, and the in-
evitable interaction between them and other thoughts quickly kills
off any quantum behavior before it can be observed. This is a worthy
subject for future research.

More generally, this shows how in some sense CP-maps allow one
to move smoothly between pure quantum and pure classical Markov
models. Evolution under open system dynamics may kill off quan-
tum properties of a system, and the long time dynamics may be
essentially classical. Yearsley, 2017, p. 36-37

This is not so much an interesting area for future research, as it is an achilles
heel for quantum-like models in cognition. It is not possible to have truly ideal-
ized platonic quantum belief states which one is agnostic about, while simultane-
ously invoking a quantum-like measurement procedure (attention measurements
in judgement). They are incompatible since the mechanism of measurement is
the mechanism of decoherence, and I can argue for a no-collapse version of the
dynamics of quantum belief states. Decoherence is a transition of the same form
as measurement. For a two-dimensional environment E, we can characterize its
behavior just like a measurement device. Decoherence can just be thought of
as measurement by the (also quantum) environment in a higher dimensional
system (see again Zurek, 2007 for more details):

|ψ〉 |E〉 = (α |0〉+ β |1〉) |E〉 → α |0〉 |E↑〉+ β |1〉 |E↓〉 (7.9)

A similar transition can be written also in the case that |ψ〉 is a combined
state plus detector as in (7.8). All three quantum systems (environment, de-
tector, and the original state) are then irreversibly correlated with one another.
The result when the environment dominates the interaction (i.e. it is repre-
sented on a higher-dimensional Hilbert space) is a state classically describable
by a reduced density matrix.7 The interaction between the systems has reduced
off-diagonal coherent quantum terms, and we can consistently talk only using
classical probabilities of a decohered state.

7“[. . . ] irreversibility could also arise from more familiar, statistical causes: Environments
are notorious for having large numbers of interacting degrees of freedom, making extraction
of lost information as difficult as reversing trajectories in the Boltzmann gas.” Zurek, 2007
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The formally agnostic ‘dynamics’ of quantum models simply contain the
mechanism for decoherence from the get go. We would thus expect that non-
isolated belief states will almost always decohere under realistic scenarios. The
result is that the state can be described by a reduced density matrix, where
diagonal terms are classical probabilities. Predictions and judgments of the
quantum-like cognition system not only should obey classical principles, but
if correct in the above argument, even the agnostic formal models just will
result in classical cognition. That is, unless something goes wrong and the
incompatible representations are allowed to persist coherently. Agnosticism
about the ontological or implementational status of quantum belief states seems
to smuggle in the coherent magic of quantum mechanics without paying the
toll of decoherence. Unfortunately, if you want to bring measurement into your
modeling framework, then decoherence is your baggage.

That said, belief state vectors which have not decohered may be one way
to understand failures of cognition. Mistakes are made because the state has
not ‘resolved’ into a classical state, and thus for the purposes of a classical task
(which are most typical!) the cognitive system is ‘uncertain’ when it shouldn’t
be. This is the best outcome for QLMs of cognition: it is a quantum-like
model of failure to meet classical norms. Why should quantum models be
taken as preferable over other alternative modeling frameworks which can also
recover classicality and illustrate failures? Quantum models are hardly more
parsimonious.

In the cognition and decision context, an agent makes a judgment on a set
of (perhaps uncertain) beliefs. Realistically, the set of beliefs is much larger
than beliefs about specific propositions in the agent’s immediate sphere of at-
tention.8 That is, lets say that for a task an agent relies explicitly on k beliefs.
Plugging this into the quantum modeling framework, the set of online beliefs is
represented by a quantum belief state vector |ψ〉 ∈ Hk, where Hk is a Hilbert
space of dimension k. For all beliefs, we would have a universal belief state
|Ψ〉 ∈HN where the dimension of the space is larger than the beliefs which are
online N > k. One can imagine that, even if judgments are not made on HN ,
they in general may be made on Hm such that k < m < N .

A superposition of n qubits (two-state quantum systems) will have 2n am-
plitudes. More quantum states in superposition increases exponentially the
complexity of coherence. The risk of decoherence, and of noise affecting the co-
herent system, becomes exponentially larger as the size of the system increases.
The same is true of high-dimensional QBSV for quantum-like models. Only ide-
alized and isolated quantum belief state vectors will not decohere under realistic
assumptions of the complexity of online beliefs. Imagine a platonic idealized
fluid bath where waves never dissipate.

8Attention is anyways considered by QLM proponents to be like projective quantum mea-
surements.
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This presents a problem for a model of the world, or representations of beliefs
about the world, based on quantum representations. These representations will
become unnecessarily cumbersome as the number of simultaneously held beliefs
or features in a model increases. While again this may not be an issue for
quantum belief states in an unrealistically ideal realm, it is an issue for any
algorithmic or hardware level account. Just grant for the sake of argument that
it is plausible to have quantum-like mechanisms in an ideal realm, and ignore
for the moment implementation levels. I emphasize again the point being made
here, in case it is not clear: ideal states interfere with each other as mathematical
objects, and this is sufficient to show that a realistically high-dimensional belief
set will decohere. It also should decohere.

7.5 Classical Norms for the Classical World
Classical (Bayesian) norms stay intact even in quantum like models, since one
still ought to represent events compatibly. Decoherence still should occur. The
conjunction fallacy is still an error. There are issues with the way proponents
anticipate this exact issue:

“Bayesian models of cognition are claimed to be founded on a ratio-
nal basis (Oaksford & Chater, 2009). In fact, Bayes’ rule is derived
from Kolmogorov’s axioms for classic probability theory. Quantum
models of cognition are based on von Neumann’s axioms, which re-
duce to classic theory when all the variables are assumed to be com-
patible. So why do we need to use incompatible events, and is this
not irrational? In fact, the physical world obeys quantum principles
and incompatible events are an essential part of nature. Neverthe-
less, there are clear circumstances where everyone agrees that the
events should be treated classically (such as randomly sampling balls
from urns). However it is harder to argue what is rational for cases
like the Linda story, because one cannot refer to any empirical rel-
ative frequencies for a singular or unique event. Furthermore, it re-
mains an empirical question whether quantum or Bayesian methods
are more useful for modelling probabilities of very complex sequences
when the joint probabilities are largely unknown.” Busemeyer and
Bruza, 2012, p. 141-142

The statement above is typical of the mistakes made concerning quantum
like models and their relationship to normativity and the computational level.
First, yes—Bayesian models are founded theoretically on considerations of ra-
tionality. They are founded on normative considerations of rationality. It isn’t
just that Bayesianism states some nice relationships that degrees of belief might
have—but that an agent (living in a classical world) ought to display and be
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consistent with those relationships or else. The idea is not just that someone
else thinks you ought to comply with these rationality constraints, but that if
you don’t one can demonstrably show that you yourself will suffer a loss you
could have otherwise avoided.9 The authors seem to be aware of this, yet do
not offer any consolation for those who might concur with the sentiment that
to represent non-quantum events incompatibly seems irrational.

A second issue with the above statement is that without some clarification,
it is more or less irrelevant that “the physical world obeys quantum principles
and incompatible events are an essential part of nature.” One might interpret
this as implicitly arguing for physical reductionism, in the same way that one
might for an argument from physics for revising logic (discussed previously).
However, according to the proponents, one is supposed to only be considering
the formalism of quantum mechanics independent of any physical mechanisms
which may or may not be present in the brain—which demolishes the soundness
of such a revisionary argument.

If the physics of the brain doesn’t matter, why should it matter in general
what the physical world is ultimately like at the most fundamental level? It
seems more relevant to talk of the physics of the brain than it does to comment
about the physical world generally—yet proponents are avoiding the former
while seemingly using the latter to support their project. What is relevant,
however, is that the world which makes up the typical types of problems that
a cognitive agent encounters is classical, not quantum. It appears decohered.

Third, just because it might be difficult to come up with Bayesian models for
cases like the conjunction fallacy doesn’t mean we need a new computational
level framework—even if QLMs provided one. We could rather characterize
these cases as non-typical applications of the computational level framework.
QLMs may, however, give an algorithmic level story.

7.5.1 Algorithmic Comparison
The focus on sequences of steps by the authors indicates strongly that the proper
level for QLMs is algorithmic:

“A compatible representation requires us to assume that it is mean-
ingful to assign probabilities to conjunctions of events, and an in-
compatible representation assumes that this cannot be done, and
instead we need to assign probabilities to ordered sequences of
events.”Busemeyer and Bruza, 2012, p. 37

In this section I compare the kinds of steps found in QLMs as well as al-
gorithmic level accounts implementing BDT. One see that the kinds of steps

9Again, the first idea is external while the second is internal to the foundations of Bayesian-
ism.
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involved in QLMs are directly analogous to those more familiar steps already
found in algorithmic implementations associated with Bayesian cognitive sci-
ence. Thus, I will conclude that QLMs are an algorithmic level framework.

Part of the problem contextualizing alternative approaches to cognitive mod-
eling might be that aspects of Bayesianism happen to span both the computa-
tional level (with its normative story) and the algorithmic level with updating
dynamics. The updating dynamics are also algorithmic—as well as any number
of alternative methods for providing the correct relationship between probabil-
ities in a distribution (i.e., fulfilling the normative constraints). Thus, it might
seem that if quantum models can also do some similar things with updating,
they might also be at the computational level. In a certain sense, they are, but
only because classical probabilities and compatible events are special cases of
the Hilbert space formalism—and there is a normative story compatible with
this sub-formalism.

Quantum models piggy-back, if you will, onto the normative constraints al-
ready present in Bayesianism—while simultaneously arguing to compete with
and, ultimately, replace it. This would only pull the rug out from under their
project, rendering them without even the special-case computational-level sup-
port that classical norms supply to the formalism. The computational level is
not about sequences of calculations, it is about what should be calculated by
any algorithm, and why.

To broadly recall the steps in a QLM of the conjunction fallacy: First, one
chooses two bases representing (incompatible) observables (answers to ques-
tions). Then, one assigns a belief state vector (a superposition or linear com-
bination of a basis). Assume that this vector is not equidistant (uniformly
superposed) from all relevant events, and an answer will be given by projecting
(with comparably higher probability) onto nearest axis representing one of the
variables in the conjunction. Then, project onto the axis of the other variable.
The probability of this projection is given by the squared modulus of the projec-
tor on the belief state vector. The entire transition probability can be greater
than a single projection. This protocol is clearly algorithmic in nature. Take
the following statements as evidence:

“There are several ways to justify the assumption that the more
likely event is processed first. One is that the more likely event
matches the story better and so these features are more quickly re-
trieved and available for consideration. A second reason is that indi-
viduals sometimes conform to a confirmation bias and seek questions
that are likely to be confirmed first.”Busemeyer and Bruza, 2012, p.
124

These statements belong to the algorithmic level, in particular the level of
algorithm specificiation, while the projections used to carry out these intuitions
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are at the second algorithmic level in Marr’s hierarchy. They are particular
mechanisms that carry out the specification of the algorithm. The following
table summarizes the similarities (denoted ‘::’) between algorithmic aspects of
these protocols and the kinds of steps in algorithmic BDT. The aspects range
over both algorithmic levels.

Determine Event Space :: Fix Hilbert Space Dim.
Choose Priors :: Assign State Vector

Check Coherence ? Represent Events Compatibly
Update on Information :: Subseq. Proj. onto Subspaces

A given algorithm implementing BDT may, for example, choose a uniform
prior distribution. It is a good example of a particular specification of how to
choose priors.10 Similarly, there may be multiple ways to update coherently.
BDT does not, at the computational level, tell us how to do this—only that
one should obey the probability calculus when doing so.

The thing is, Bayesians can construct an algorithmic account of the conjunc-
tion fallacy just as well as QLMs can. For example, one just picks non-coherent
sets of belief. The contention between these frameworks is whether they both
consider the decision behavior irrational. It would seem that both do, since
it is doubtable that QLM proponents will want to say that conjunction fal-
lacy behavior is rational. However, it should be mentioned that a non-coherent
set of beliefs is outside of the prescriptions of BDT, whereas it is not outside
the prescriptions of idealized QLMs. If this were a feature of a computational
level theory, then it would be a bad computational level theory. What is more
reasonable is that QLMs are primarily algorithmic level accounts.

7.5.2 A Quantum Agent Should Have Compatible Be-
liefs When Possible

One could say that the only difference in a normative story for QLM is that
normal Bayesian normativity only holds in the special cases where events are
compatible. But one could go a step further and reconstruct the Bayesian norms
by requiring that an agent should represent events compatibly wherever possi-
ble. Their beliefs should decohere. In my exposure to proponents of quantum
like models, I have not found sufficiently clear and emphasized statements of
their view on rational normativity in their model. However, a few statements
indicate that any contribution they might have is in terms of an agent’s ability
to represent events compatibly.

10Some Bayesians may not be satisfied with just the coherence requirement, and thus they
may stipulate even more normative conditions on the algorithmic implementation of BDT. For
example, they could say that one should utilize a uniform distribution of priors. Something
along these lines is what is meant by the so-called principle of indifference. Another example
of a normative condition on priors is that if there is an observed frequency among multiple
samples of an event, one should have a prior probability corresponding to this frequency.
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“When all the events are compatible, quantum probabilities satisfy
the same properties as classic probabilities and meet the same ratio-
nal standards in this restricted case. The main question of rational-
ity arises when incompatible events become involved. ”Busemeyer
and Bruza, 2012, p. 347

It might be the case that people don’t always fulfill optimal rationality re-
quirements (i.e. Bayesian coherence protecting against Dutch Books). Further-
more, one could grant that the QLM approach could be a fruitful way to model
‘non-rational’ behavior. Still, this is consistent with and does not replace the
Bayesian normative story. However, there might still be something to say about
normativity for quantum-like modeling in that an agent should, whenever pos-
sible, represent beliefs as compatible with one another. When this is fulfilled,
traditional norms follow.

When beliefs are incompatible, one can always construct a Dutch Book, or
show probabilistic fallacies such as the conjunction fallacy. It is also possible
to construct a Hilbert space model which captures this data. This is the most
plausible results concerning normativity. Simply put: agents should, when able,
represent events compatibly. Otherwise, a violation of classical normativity
and classical losses can occur. In other words, then a Dutch Book can be made
against the agent. In those cases where the agent does not represent events
compatibly, it is possible to construct a quantum model for the agent. QLMs
utilize a strictly more general framework, and thus they are capable of modeling
at least as much as other models realizing BDT. Still, as noted above, work has
to be done on justifying the quantum stories.

This being said, however, one still needs some independent justification as to
why these concepts are incompatible (or rather, that they should be represented
by incompatible observables). It does not seem like bank teller and feminism are
incompatible concepts incapable of defining together a joint event. It seems as if
incompatible is being defined post hoc, for those cases where classical violations
occur. If this is the case then QLMs can no longer explain the conjunction fallacy
since incompatibility is being presumed in order to make the model fit. In other
words, one cannot conclude that feminism and bank teller are incompatible if
this is being assumed to begin with. However, it seems that these concepts
are compatible in general, which is why respondents are irrational (and judge
themselves as irrational) when committing the conjunction fallacy.

Furthermore, the normative aspect of BDT simply implies compatibility (i.e.
decoherence) in the algorithmic handling of events in the first place. Since if
an agent does not represent events compatibly in processing, sure losses may
ensue.

If QLMs were at the computational level, the only way to justify their sta-
tus at this level would be to reproduce the exact same normative or problem-
oriented statements as BDT. There are not sufficient reasons to suppose that
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QLMs can be construed as providing an alternative framework at the compu-
tational level. Not only do the quantum stories involved in QLMs not establish
any further normative considerations for a computational level reading, but they
are formulated almost solely at the algorithmic level. Agents committing the
conjunction fallacy discussed above should represent events compatibly, and
this corresponds with the normative story already present in Bayesian deci-
sion theory with classical probabilities. As argued, even if it is granted that
QLMs are at the algorithmic level, it is still plausible that classical normativity
emerges from the quantumness through decoherence. Thus, in the end it seems
like quantum models—properly transferred—bolster a classical analysis at the
computational level even further.

7.6 Decoherence and Survival
Proponents of QLM try to avoid the decoherence objections that plague hard-
ware level claims of quantum processing in cognition, since they seem to see
themselves at the computational level where there is no quantum mechanisms
involved (and thus no interactions which could lead to decoherence). A deco-
herence objection is still possible for an agent which processes information in
a quantum-like manner at the algorithmic level. Decoherence illustrates the
improper (or incomplete) mapping of quantum theory involved in the modeling
procedure by QLM proponents, and where traditional assumptions about typ-
icality in cognitive tasks break down. Considering a cognitive agent, one can
see how decoherence is actually related to survival in a crucial way.

Take, again, a physicist as an example agent. This agent has to make
decisions and answer questions as reliably as possible given a variety of typical
physical propositions as inputs. These inputs are all in the realm of classical
physics. They are macroscopic situations and problems, the optimal solutions
of which will be dictated by classical physics. For example, questions about
large objects at low speeds. The success and performance of this physicist are
directly correlated (lets say) with her survival. Doing poorly on certain physics
problems will negatively impact her survival.

One can formulate this in terms of regulation, and think of the agent as a
cybernetic regulator. See for example a useful introduction in Ashby, 1958. A
cybernetic regulator is a complex system tasked with mitigating disturbances
(or solving problems) such that a regulatory goal is achieved. The variance
of problems encountered should be reduced by regulatory actions, and ideally
result in a subset of possible outcomes that align with the regulatory goal. One
says that this regulator will have a model of the environment, and importantly
that this model will be largely determined by typical environmental inputs (or
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problems). It will be more successful at regulating if it is optimized for the
typical class of regulatory tasks or inputs.11

If a physicist has a regulatory model based on classical physics, he or she
will do pretty well to regulate (i.e. answer correctly) classical problems. If
this agent has a regulatory model based on quantum physics, he or she will
do well only if decoherence is applied first. Imagine, for example, trying to
regulate classical problems (such as a bear attack) under the assumption that
each macro-state is in a coherent superposition. Is the bear dead and alive
at the same time—or is the dead bear in an alternate branch of the universe?
This is of course a rhetorical simplification, but the point is that interpretational
debates and quantum weirdness still matters for a psychological theory. The
issues arise due to nature of the concepts and formalisms in quantum theory,
not the order of magnitude at which they apply. Physicists use decoherence as
a story to explain why the world appears classical even though it is actually
still coherently quantum.

It seems unlikely that an agent whose psychological method of representing
and processing information defaults as quantum would survive in the world.
Or, survival would be worse off in comparison to a regulatory model which
reflects the classical structure of typical inputs. As noted, when this processing
does not coincide with a classical regulatory model (for example, when violating
Bayesian norms) there are real world consequences. The classical world cannot
be made sense of by a quantum regulator absent some processing technique
which respects classical norms.

Thus, the regulatory model—if it is to be quantum—must decohere in order
for it to be effective. The quantum-like processing must yield classical results.
The survival of the system would be compromised otherwise. Or, one could
say, the regulatory model would be unnecessarily complex. This observation
comes from Conant and Ashby, 1970 and the so-called “good regulator the-
orem”. The good regulator theorem illustrates why a physicist should rather
switch between quantum and classical regulators, instead of utilizing a quantum
regulator for all tasks. Practically, quantum descriptions are cumbersome and
highly complex for macroscopic systems, even when decohered. In principle, a
regulator operating on these descriptions could be optimal, however it will be
unnecessarily complex for classical problems.

This provides us with a good way to understand how a non-decohered (i.e.
quantum) regulatory model for classical tasks would be inefficient at best. Clas-
sical events could be treated compatibly, agreeing with classical norms, but the
regulator would still be unnecessarily complex (and therefore expending more
resources). Of course, in the platonic realm of mathematical formalisms, one
might not care about such resources. The other case is worse, where events

11I am sidelining for the present any considerations of overfitting or over-regulating and
generalizable adaptability.
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are represented incompatibly leading to violations of the classical norms. The
conjunction fallacy example discussed above is a prime example. In survival
terms, this is clearly worse because it leads to sure losses in typical classical
tasks. Again, algorithmic level mechanisms may well be quantum-like, but the
computational level should match the structure of the distribution of tasks in
the classical world.

In the discussion of decoherence, one can see that the structure of quantum
theory itself involves a story of how the classical world appears at higher orders
of magnitude. Quantum theory, if it is to be a physical theory applied by a
physicist, applies even to macroscopic objects—given a story about how to re-
late coherent unitary dynamics to what appears in macro-level approximations.
Compatible observables will be used by the physicist to characterize the vast
majority of the class of problems for large objects at low speeds. Arguably,
the typical class of problems to be encountered by the (typical) cognitive agent
is much closer to this class of classical physical problems than it is to the set
of quantum physical problems. This is the class that the system is evolved to
regulate.

Now, one may expect a response along the following lines. It could be
that psychological beliefs about various statements are indeed incompatible and
elicited via non-commutative projectors. The urge to think of this as saying
something about the computational level of the system must be resisted. As
repeatedly noted, a system whose regulatory model treats sets of beliefs in this
manner will be subject to penalties from the environment. These penalties
are not only avoided by a more plausible (and efficient) classical model, but
such a classical model matches the structure of quantum theory as applied by a
physicist concerned with responding to and regulating tasks in physical science.
A regulatory model concerns what should be regulated, how the system should
respond to a variety of inputs in order to achieve the regulatory goal—i.e.,
survival.

The above discussion takes significant inspiration from the methodology in
philosophy of physics. It also illustrates that there are nuances and concepts
that have been neglected in the transfer of the theory and formalism of quantum
mechanics to the decision and judgment contexts. Thus, the flawed methodol-
ogy employed by quantum modeling proponents can be understood as improper
model transfer.

For example, algorithmically it doesn’t allow us to define what is typical or
atypical for the cognitive system to compute. This is because it doesn’t allow
us to categorize what is ‘rational’ or ‘irrational’ in any novel way (aside from
fulfilling classical norms). It misidentifies—or, even worse, is agnostic about—
the proper kind of error or uncertainty that the system should be concerned
with. For example, it doesn’t give us an account for why quantum uncertainty
should be minimized as opposed to classic disutility.
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Furthermore, there are accounts concerning the minimization of classical
error. There are accounts for why an agent should represent events classically,
and why certain classical rules should be followed. The Dutch Book account,
perhaps the best known, spells this out in behavioral terms. There are other
accounts, such as proper scoring rules. These are normative accounts which
provide the context for what should be reasoned, or computed, by an agent.

It only sounds nice to note that quantum theory (and associated mathe-
matics) is made to handle uncertainty, and does so ‘better’ than e.g. classical
probability. Uncertainty in quantum theory is not the same kind of uncertainty
that we are concerned with in normative aspects of computational level theories
for cognitive systems.

Our senses did not evolve for the purpose of verifying quantum me-
chanics. Rather, they have developed in the process in which sur-
vival of the fittest played a central role. There is no evolutionary
reason for perception when nothing can be gained from prediction.
And, as the predictability sieve illustrates, only quantum states that
are robust in spite of decoherence, and hence, effectively classical,
have predictable consequences. Indeed, classical reality can be re-
garded as nearly synonymous with predictability. Zurek, 2007

Uncertainty in quantum theory is about knowledge of quantum states, and
knowledge of properties of quantum objects. Uncertainty in cognitive science is
about knowledge and beliefs of everyday (classical) states, and the knowledge
of properties of everyday objects. There is no apparent reason to suspect that
cognitive systems should minimize uncertainty about quantum states.

Only recently have scientists even begun to understand macroscopic quan-
tum behavior—not to mention that we are barely a century into the quantum
revolution. Even though there now exist macroscopic systems set up to exhibit
quantum-like properties, it hardly bears at all on the kinds of things the human
system encounters regularly.

Of course it might be the case that the way in which a cognitive system
computes at the algorithmic and hardware levels is minimizing uncertainty in
a way that one might characterize as similar to that in quantum information
theory. Certainly, though, one would not expect that the reasons why the system
computes in this way are tied to the way in which cognition functions. The first
could just be an artifact of physics, chemistry, or biology—while the second
might be linked to evolution and the need for the entire system to survive (and
not just the isolated computational parts, i.e. neurons).

Quantum models cannot do better for the typical class of inputs, and pro-
ponents would have to argue that what was once the typical class of inputs
encountered by the regulatory system is no longer typical, or that the system is
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built to handle the atypical (hence why they wish to account for classical falla-
cies such as the conjunction fallacy). The fact remains that the system might
not be able to handle the atypical, because the regulatory system is adapted to
handle the typical.

7.7 Conclusion
The structure of quantum theory implies that a decoherence interpretation (and
objection) can also apply to quantum-like processing models. This can actually
be construed to support the appropriateness of classical norms at the compu-
tational level. In short, it is difficult to make evolutionary sense out of the idea
that our cognitive system minimizes uncertainty about quantum-like objects—
the effective regulation of classical inputs would likely be compromised, due
to unnecessary complexity or assured losses, and effective regulation is what it
means to survive.

Quantum like models in cognition and decision theory are, at the very best,
taking for granted the established and thoroughly discussed normative charac-
ter of classical (Bayesian) cognitive theory. At worst, they claim to overwrite
classical theory without recognizing that what has to be overwritten is also that
which would grant them computational level status as construed here. This can
be explained by the improper modeling transfer of the structure of quantum
theory, and understood by examining decoherence as one crucial aspect which
is not transferred from the quantum theoretical domain correctly.

Using the mathematical structure to model the agent’s judgements and deci-
sions might be appealing, but methodologically it represents a poor example of
transferring knowledge from models of physical systems to models of cognitive
systems. A scientist might model an agent using the mathematics of (some)
of quantum mechanics, but the agent should not use quantum-like models as
internal models. Stated another way, any internal model which is coherently
quantum-like should decohere. If it doesn’t, it is an unnecessarily complex
model (or regulator) which compromises the agent’s survival.

Earlier in this dissertation I laid out a pragmatic view of analogy—it is
effective transfer of control via a mechanism similar to perception, applying
an associated model. So perhaps quantum-like models are just pragmatic, and
the formalism just transfers well because it ‘works’. This is a fair point, but
I argue it ignores Bertalanffy’s regulative ideal against superficial analogies. I
contend that, while perhaps not superficial, quantum-like models are certainly
not homologous in their application to human cognition. This I have argued can
easily be seen by considering an idealized physicist who must ‘regulate’ physics
problems in a lab. Such an agent is, after all, the kind of agent for which the
mathematics of quantum mechanics was developed—as a regulatory tool for
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interacting with the quantum world, to solve quantum problems. A physicist
uses classical models for classical problems, not quantum models.
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Chapter 8

Towards a Structural Systems
Theory

What is “structure”? Bourbaki has undoubtedly given the answer,
but what does it mean in my terms? Ashby, 2008, p. 5305

I began this dissertation by introducing cybernetics as a systems theory
framework focused on models and structure and which sees knowledge transfer
as the transfer of control capacity. I followed the thread of model-based transfer
from computation to connectionist networks. Then I noticed how artificial
general intelligence is like the automation of a general systems methodology. In
the end I brought the discussion back up to the level of scientific reasoning with
examples knowledge transfer (structural mapping). As I have demonstrated
throughout the previous discussions, influential accounts involve an inescapable
appeal to structure. There is clearly a structuralist attitude present in the
foundations of relevant systems sciences that should be explicitly acknowledged.
This is especially clear in the work of Ashby. If general systems theory was not
originally primarily concerned with structures, it is at least plausible to forge
a modern alternative which is. I argue, however, that that the way in which it
has been explicated by its most influential proponents is at heart a structural
view of systems. I now conclude by suggesting that a structural approach to
analyzing knowledge transfer in cognitive systems is warranted, and much of the
analysis of knowledge transfer I have presented would not be possible without
diverging from the neo-mechanist and anti-representational takes to systems
analysis.

First, as a recap, General System Theory (GST) as outlined by Bertalanffy
(1969) is a philosophy of science framework for analyzing reasoning in scientific
practices, particularly in non-fundamental sciences populated with modelers
whose subject matter are complex systems. GST also aims at developing an
outline of a methodology for how one should reason about classes of systems,
particularly using mathematical tools which can describe many different kinds
of systems. In this respect, it focuses on the structural and formal similarities
between models of systems. This methodology may implicitly be found widely
in practice, and GST is not wholly distinct from what are called dynamical
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and complex systems theory today. Cybernetics is, likewise, relevant for the
foundations and history of control theory, where feedback and error control are
central. I have established that this systems approach appears to be in contrast
to what Craver (2007, §4) calls the “systems tradition”, which he references
when building his mechanistic view. His overview of the systems tradition
lacks any reference to Bertalanffy or Ashby, where there is a recognition of the
importance of the kinds of representations and structures that modelers use. I
think the term structural systems theory may be more accurate in signifying
what Bertalanffy and Ashby intended.

If not for Bertalanffy, certainly I think it is quite plausible that a structural
view of mechanisms was intended by Ashby. I can offer a brief glimpse of what
I think Ashby had in mind for outlining a structural systems theory. For Ashby
and the foundations of cybernetics, as a paradigm example of a GST, his ap-
peals to the Bourbaki group of mathematicians make this re-branding justified.
Aspects of set theory and group theory are discussed by Ashby throughout his
writings, including in his books Introduction to Cybernetics and companion De-
sign for a Brain (see for example Ashby (1960, §19)). Modern structuralism,
group theory, and what is now category theory, although useful, might however
be a bit too much for what Ashby thought to be the fundamental notion of
structure for systems.

Of primary importance to Ashby’s notion of structure are the intertwined
concepts of transitions and constraint. As I have noted, this involves an explicit
appeal to Shannon’s communication theory. Constraint is the non-random pat-
terns which appear in a message or signal, and quantified by an entropy measure.
The system is fundamentally composed of state transitions, and an analysis of
these transitions by appropriate manipulation will display some constraint (in-
formation). This information, when fed into a regulator (a cognitive system),
can be learned or adapted to. Then there has been a transfer of constraint from
the environment into the system.

It seems that this structure (e.g. of linkages between departments) is
essentially a constraint. What I suspect is that when [the] Environ-
ment presents, in succession, samples from a class of problems, so
that constraint or restriction is present in the problems, the system,
if it seeks optimal conditions for solving, will develop a correspond-
ing constraint, which is the structure. [. . . ] Ashby, 2008, p. 4514

For Ashby, structure is fundamentally constraint in information theoretic
terms. There are parts and organizations and behaviors of a system in the
world, and if upon disturbance of the system the resulting output is con-
strained, then we can speak of some structure. This is because our representa-
tion of the system—just in ‘black box’ terms of inputs and outputs—repeatably
(or reliably) reduces information (surprise). That is, a measure like entropy



Chapter 8. Towards a Structural Systems Theory 137

−∑
i pilog(pi) of probabilities pi of transitions in the ‘channel’ tends towards

zero. This is because there is structure there in the world if there is demon-
strable constraint there. This also means that the system is controllable in
principle if each input to the system can be reliably manipulated. Thus, a
strictly information-theoretic analysis of inputs and outputs, and a characteri-
zation of state transitions, is fundamental to the notion of structure employed
in structural systems theory. Only then are category and group theories going
to enter into the picture, and whatever other mathematical structure a modeler
wishes to use to explain the structure or information which is in the world.
Given the importance of knowledge transfer in cognitive systems, I think we
should be able to explain the transferability of models by whatever formalisms
are utilized.

After discussing how a class of military problems were approached in World
War II, Ashby says that “[. . . ] different classes of problems demanded different
organizations.” (Ashby, 2008, p. 4515) Ashby then brings us back to the
concept of an idealized ‘designer’ imparting structure to the system.

The next question is how this structure is being arrived at. Is the
designer to lay it down initially? Notice that this structure implies
selection (from other structures) and it involves a setting of param-
eters. If it goes far enough it will finish with the designer specifying
everything in [the] ‘cortex’ and leaving the cortex nothing to do. In
other words, the designer, if he puts in part of such structure, is
putting in part of the solution. Ashby, 2008, p. 4515

For our purposes, the designer can be thought of as a data scientist, a
scientist or modeler, or just the previous experience of a cognitive system. He
continues:

If the environment puts up a problem whose solution is part known
and part unknown, a designer may, if he wishes, shorten the ma-
chine’s work by building in a structure that is suitable for the known
part, leaving the machine only the unknown part to work out.

If the designer has done this, then to be precise we must define
whether the ‘designer’ is or is not to be considered in the ‘machine’.
If ‘in’, the knowledge that went to the building of the permanent part
must have been acquired earlier; so the real start of the solution (the
designer’s training) was much earlier than the nominal switching on
of the machinery.

The designer can, if he pleases, extend this ‘helping’ of the machine
to any extent. He can, for instance, help it all the way; in which
case the machine is left with nothing to do but carry out the pro-
gramme. This is the case of the ordinary computing machine; it
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solves nothing; all the solving was done beforehand in the designer’s
brain, and constructed in as programme.

The designer might, it is worth noting, stop just short of full pro-
gramming. He could then build a machine capable of ‘discovering’
the calculus, say. He could build all the machinery so that the only
thing left to be explored was whether a certain sign was positive or
negative. The machine would make this trial in a microsecond and
would make the decision. [. . . ]

So if we inspect a machine and find that the ‘cortex’ shows a strongly
built structure such that the further trials are taking place within its
constraint, we can deduce that some partial knowledge has already
been obtained. [. . . ]

If the environment throws up a series of problems having common
features, the results of the earlier attempts may provide partial
knowledge for the later [attempts]. This partial knowledge can be
used for the construction of a (semi)-permanent structure for [deal-
ing with the problems]. Ashby, 2008, p. 4516-4518

This, I argue, is the foundation for the notion of knowledge transfer offered
in this dissertation. It brings together a model-based notion of computation,
the transfer of parameter values in connectionist networks, and why analogical
cognition is so closely linked to discovery. The structural foundation for knowl-
edge transfer in cognitive systems provides a coherent account across multiple
levels of modeling and explanation. Ashby provides a very succinct summary:
“Built-in structure in an adapting system implies that part of the solution has
already been obtained.” (Ashby, 2008, p. 4519) Thus, knowledge transfer in
cognitive systems is effective because it utilizes built-in structure. It is effective
at controlling for, or adapting to, novel problems or situations which arise.

As one comment for future work, discussions by Bertalanffy (1969, §4) and
Ashby (1991a) distinguish between two methodological approaches for a general
systems theorist. The first is characterized as ‘empirico-intuitive’, where a mod-
eler goes from one case to another, perhaps noticing similarities of a new case to
some familiar model. The second approach is more ‘deductive’, defining some
framework (or structure) which applies universally to a large class of systems.
Bertalanffy characterizes Ashby (1958) as an example of the latter, but more
work on these methodological and modelling schema is warranted. Perhaps in
different situations different approaches should be (or are) utilized. Discovery
for example may proceed more along a case by case basis.

I suspect there are many details about the structural view of systems that
are still to be rediscovered, particularly in Ashby’s work, and to be developed
further with a modern perspective (and modern tools). I think that at the very
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least, if we want to discuss knowledge transfer in cognitive systems as I have in
this dissertation, such a view is worth researching and developing further.

8.1 How Explanations Enable Control
Thus science works, in a sense, uphill; for it persistently rejects the
primary, vivid, knowledge and seeks the colourless, complicated,
patterned knowledge that is communicable. Ashby, 2008, p. 5282

Finally, this dissertation is about knowledge transfer, and began with a dis-
cussion of a prominent account of explanation. Perhaps the structural systems
view, and the account of knowledge transfer as transfer of control, can shed
some light on the debate over explanation.

Explanation in neuroscience and cognitive systems theory may involve sev-
eral levels of explanation from multi-level causal mechanisms, as has been ar-
gued by Craver (2007). Furthermore, following Piccinini (2015), some of these
mechanisms may specifically be computational mechanisms. As mentioned in
the introduction, a major drawback I find in these positions is the ontic notion of
explanation present in particular in Craver’s work, and the anti-representational
view on computational and cognitive systems. Like Wright (2012) and Wright
(2015), I find the ontic notion of explanation is just a misconception which is
not useful. An alternative account of explanation for a systems theorist is war-
ranted, and can be found just by dropping the ontic distinction in the first place.
Again, Craver already links his project to the notion of control. By dropping
the ontic notion, Craver’s picture then becomes more or less consistent with the
systems theory tradition I have sketched.

In the introduction I discussed knowledge as the capacity to control and
make predictions. Knowledge transfer is then defined as the transfer of this
capacity from one domain to another. In other words, we can consider that
the capacity is communicated. An explanation, I have argued, must also be
communicable if it is to be useful. Explanations are a means of communicating
knowledge (as control capacity) from person to person. The whole point of this
pragmatic notion of explanation in systems theory is that, given appropriate
means, an agent on the receiving end of an explanation could in principle use the
information communicated. Explanations represent some information relevant
for the regulation (control, prediction) of a system. Explanations enable control,
as Craver (2007) often notes, but they do this in a way that is inconsistent with
the ontic picture. In other words, ontic explanations do not enable control
unless they are explanatory ‘texts’.

I see the rejection of ontic explanations as just an obvious amendment to
Craver’s picture. Nearly everything else in his view, so far as I am aware,
is totally consistent with the structural systems picture I advocate for. The
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important point is that by describing multi-level causal mechanisms in an ex-
planatory text, the capacity to control the system is made communicable. It is
just incorrect in my view to conclude that explanations (in neuroscience) are
not arguments, as Craver does:

To explain a phenomenon, it is neither required, nor is it enough,
to show that there is a strict law of nature (one that is univer-
sal, deterministic, and insusceptible to failure) between the variable
and the explanandum phenomenon. Such subsumption under laws
would be necessary if explanations were arguments, as defenders of
the epistemic accounts hold. In contrast, I advocate an ontic view of
explanation according to which one explains a phenomenon by show-
ing how it is situated in the causal structure of the world. Craver,
2007, p. 200

What does it mean to say that explanations are (or are not) arguments?
Well, I take the question to be about what explanations do and how they do it.
First we have to figure out what explanations do, and then we can decide for
ourselves whether it makes sense to talk of them as arguments. There are many
kinds of arguments. Descriptions of causal mechanisms in the world are logical
and linguistic entities, and they are used somehow by an explanation. If they
aren’t an argument to Craver’s standards, I argue the description functions effec-
tively as an argument in an explanatory structure. Explanations of phenomena
are functions of descriptions of causal mechanisms. We input our (context-and-
user-relative) description of multi-level causal mechanisms (systems) into our
explanation function, and out pops an explanation of the phenomenon.

What are the kinds of things that we wish to explain? Lets take an event or
phenomenon P and try to explain it. The way the word ‘explain’ is used in this
sense presupposes that to explain is to engage in some activity, some protocol.
How are we going to explain P? I do not think it is out of the ordinary to
characterize explanations of P as functions. The purpose of an explanation is
to enable an agent (or artificial protocol) to solve a classification problem.

Such a classification problem will be, for our purposes, a high-level abstract
task. Given an explanation, an agent will decide if P is explained or not. Thus,
we can characterize an explanation as a function of the event, call it E(P ).
In the trivial case, however, P by itself is relatively uninformative. It makes
more sense to consider an explanation as a function of the event and a model
or description of the event E(P ,M).

For example, consider a binary explanation function E(P ,M) ∈ {0, 1}.
Good explanations are classified as 1, i.e. they explain, otherwise they obtain 0
and do not explain. We can expand M into much more fine-grained elements,
including for example much of the criteria developed by Craver Craver (2007).
It can include defeaters, context, other aspects of a complex system which we
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invoke to make sense of P . With more fine-grained arguments to the explanation
function, we might reasonably move to a more fine-grained classification. We
can move to a continuous explanation scale, where different models explain to
a degree (say on the unit interval).

The degree of explanation for a particular agent may also be dependent on
assumed value structures, or perceptual limitations, or other model-external
factors. Thus, in general E may be a function of multiple variables and struc-
tures (M is, after all, a structure). This shouldn’t be surprising if we expect
explanations to be high-level abstract tasks. Crucially, explanations as outlined
here depends on the representation of the model, as well as a representation of
the phenomenon which will likely not be model-independent.

The function or purpose of explanations is to explain, and in this sense
explanations must be more than just ontic explanatory objects—they need to
be communicable and interpretable for the purposes of a decision problem.
We are interested in whether some protocol or function E explains an event
P . It is uninteresting for our purposes (discussing explanation in science) to
bother about ontic explanatory objects. They are by themselves benign. An
explanation needs to transfer some capacity of control.

For the purpose of control, it is simply necessary that the explanation be
represented in some linguistic structure. It has to contain information that is
non-trivially communicated by the explainer, such that the explainee can use
the information (at least in principle) to control or regulate the mechanism of
concern. The information must be intersubjectively transferred.

8.2 Summary
To conclude, I have argued for a model-based notion of computation in cogni-
tive systems, which bolsters a structure mapping account of knowledge trans-
fer. While originally intended to apply to high-level analogical reasoning, this
structure mapping account makes sense at lower mechanistic levels for cognitive
processes. To explain (and study) such interesting cases, I argue, it is necessary
to abandon the ontic sense of explanation. Furthermore, there are abundant
reasons to resist the anti-representational notions of characterizing relevant sys-
tems. Rather, a systems theory concerned with knowledge transfer in cognitive
systems must be grounded on a robust notion of representation and structure.
By appealing to the cybernetic picture outlined in particular by W. Ross Ashby,
I believe a structural systems theory is a viable and consistent alternative to
the neo-mechanist picture without sacrificing any progress.

In the model-based picture I argue in favor of, the ontic notion of expla-
nation does not appear to be tenable. Structure mapping is the most obvious
way to characterize the way that predictive and control capacity is transferred.
As I have argued, this seems to be inconsistent not only with the mechanistic
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views of Craver (2007) and Piccinini (2015), but apparently also their views of
explanation. I have throughout this dissertation grounded my alternative view
in the cybernetics of Ashby. To me Ashby’s work arguably provides a consistent
alternative foundation for a structural mechanistic view. Ashby also lays out a
consistent picture of explanation for mechanists who have more pragmatic lean-
ings. Compared to the ontic notion, in a structural systems theory explanations
must be communicable.

GST provides a philosophy of science framework explicitly suited to analyze
knowledge transfer between systems and, therefore, between modeling domains.
GST focuses on structural properties common between systems, allowing inter-
theoretical transfer of knowledge for a scientist, modeler, or philosopher. A
practicing systems theorist may take the knowledge gained from one system
(i.e. a method of problem solving, or an idealized mechanism) and apply the
method or mechanism to another (typically less well-understood) system.

My research has centered the account of knowledge transfer around the
themes of model-based structure relevant for control, the mapping of such
structure, and how an overall framework for a structural systems theory might
emerge. After a background in the scientific methodology of general systems
theory and cybernetics (2) I worked my way up from a model-based notion of
computation (3), through connectionist ANN models (4), and into the theory of
artificial general intelligence as the automation of scientific modeling (5). Then
I provided one example of how one might model successful analogy in scientific
reasoning (6), and how structure mapping might go wrong (7). Finally, I con-
cluded by more explicitly endorsing a structural systems theory and a notion
of explanation as enabling control (8).
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