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Abstract

Quantifying the impact of trace gases on the Earth’s climate is of great interest. A

method that has been widely employed over the last decades is spectroscopy via

space-based passive imaging spectrometers. These instruments require a periodic

radiometric calibration preferably with the Sun as a well-known reference. Also,

the Sun spectrum is used as reference for the analysis of the measured spectra.

During the acquisition, a diffuser is used to scatter the Sunlight into the instrument,

thereby overfilling its pupil and field of view. The diffuse light coming from the

diffuser induces an interference pattern at the detection plane, which is known as

speckle. Depending on the used diffuser type and the design of the instrument,

the speckle pattern may cause significant error amplitudes. The speckle error can

not be reliably removed by post-processing or mitigated with common speckle

reduction techniques because this would involve additional moving parts in the

optical system and would pose a considerable risk of failure for space instruments.

Hence, the speckle error needs to be suppressed by the design of certain instrument

parameters. The characterization of speckle in imaging spectrometers was mostly

done via representative end-to-end setups. Especially for recent instrument designs,

which feature comparably small speckle amplitudes, this method is unreliable

because the speckle error cannot be adequately distinguished from other error

sources, such as straylight. Also, no comprehensive theoretical models have been

presented that may completely explain results from measurements. In this thesis,

an existing measurement technique is improved and characterized in terms of its

errors and limitations. It is based on the acquisition of monochromatic speckle
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patterns in the slit plane, which are then numerically propagated to the detection

plane. This technique reduces the complexity of the measurement and isolates

the error contribution by the diffuser. The main achievement of this thesis is the

development of a standalone theoretical prediction model, which is based on the

above measurement technique. The model needs basic instrument and diffuser

scattering parameters as input and calculates the speckle error amplitude and the

speckle size at the detector plane. It considers the speckle averaging effect from

polarization, averaging by the spectral bandwidth perceived by the instrument,

and averaging within detector pixels. The validity of the prediction model is tested

in three ways. First, it is compared to the measurement technique mentioned

above. Second, it is compared to a test measurement with a spectrometer. Third,

it is used to emulate an artificial measurement with a spectrometer of the Global

Ozone Monitoring Experiment, which is an Earth Observation mission for which

the error of the retrieved column densities due to the diffuser is known. For this,

the measured spectrum is distorted with a speckle error according to the model

prediction. The resulting deviation in the retrieved column density is compared to

literature. The results of all approaches are in good agreement with the prediction

model. One can therefore infer that the developed model is a reliable and fast

method to quantify the speckle error in imaging spectrometers, which requires no

test setups and therefore makes it viable even in early planning phases of a mission.

It is the first model completely resting on established speckle theory.



Zusammenfassung

Die Quantifizierung des Einflusses von Spurengasen auf das Klima der Erde ist

von großem Interesse. Eine in den letzten Jahrzehnten häufig verwendete Methode

ist die Spektroskopie mit weltraumgestützten, passiven, abbildenden Spektrom-

etern. Diese Instrumente werden regelmäßig einer radiometrischen Kalibration

unterzogen, die vorzugsweise mit der Sonne als Referenz durchgeführt wird. Diese

Sonnenreferenz wird auch zur Analyse der gemessenen Erd-Spektra verwendet. Zur

Kalibration dient ein Diffusor, der das Sonnenlicht in das Instrument streut und

so dessen Pupille und Sichtfeld homogen ausleuchtet. Das vom Diffusor ausge-

hende diffuse Licht induziert ein Interferenzmuster an der Detektionsebene, das

als Speckle bekannt ist. Je nach verwendetem Diffusortyp und der Konstruktion

des Geräts kann das Speckle-Muster erhebliche Fehleramplituden verursachen. Der

Speckle-Fehler kann nicht zuverlässig durch Post-Processing entfernt oder durch

gängige Speckle-Reduktionsverfahren abgeschwächt werden, da dies zusätzliche

bewegliche Teile im optischen System bedeuten und bei Weltrauminstrumenten

ein erhebliches Ausfallrisiko darstellen würde. Daher muss der Speckle-Fehler

möglichst im Vornherein durch das Anpassen bestimmter Instrumentenparameter

unterdrückt werden. Die Charakterisierung von Speckle in abbildenden Spektrom-

etern wurde meist über Ende-zu-Ende-Versuchsaufbauten durchgeführt, die das

eigentliche Instrument nachbilden. Insbesondere für neuere Gerätedesigns, die ver-

gleichsweise kleine Speckle-Amplituden aufweisen, ist diese Methode unzuverlässig,

weil der Speckle-Fehler nicht genau von anderen Fehler-Quellen, wie beispielsweise

Streulicht, unterschieden werden kann. Bisher sind auch keine umfassenden the-
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oretischen Modelle bekannt, die Ergebnisse von Messungen vollständig erklären

könnten. In dieser Arbeit wird ein existierendes Messverfahren verbessert und

hinsichtlich seiner Fehler und Limitierungen charakterisiert. Monochromatische

Speckle-Signale werden einzeln in der Spalt-Ebene gemessen und dann numerisch

zur Detektionsebene propagiert. Dieses Verfahren reduziert die Komplexität der

Messung und ermöglicht das alleinige Messen der Diffuser-Beiträge. Den Kern

dieser Arbeit bildet die Entwicklung eines theoretisches Vorhersagemodell, das auf

dem oben erwähnten Messverfahren beruht. Das Modell benötigt einige grundle-

gende Geräte- und Streuparameter des Diffusors als Eingabe und berechnet die

Speckle-Fehleramplitude und die Speckle-Größe in der Detektorebene. Es werden

die Mittelungseffekte durch Polarisation, durch die vom Instrument bedingte spek-

trale Bandbreite sowie Mittelungen innerhalb von Detektorpixel berücksichtigt.

Die Gültigkeit des Vorhersagemodells wird auf drei Arten getestet. Erstens wird

es mit dem oben erwähnten Messverfahren verglichen. Zweitens wird es mit einer

Testmessung mit einem Spektrometer verglichen. Drittens wird es verwendet, um

eine künstliche Messung mit einem Spektrometer des Global Ozone Monitoring

Experiment zu emulieren, welches eine Erdbeobachtungsmission ist, für die der

durch den Diffusor verursachte Fehler in der errechnten Säulen-Dichte bekannt ist.

Dafür wird das gemessene Erd-Spektrum entsprechend der Modellvorhersage mit

einem Speckle-Fehler verzerrt. Die resultierende Abweichung in der Säulen-Dichte

wird mit der Literatur verglichen. Die Ergebnisse aller Ansätze stimmen gut mit

den Vorhersagen des Modells überein. Daraus lässt sich schließen, dass das en-

twickelte Modell eine zuverlässige und schnelle Methode zur Quantifizierung des

Speckle-Fehlers in abbildenden Spektrometern ist, das keine Versuchsaufbauten

benötigt und damit auch in frühen Planungsphasen einsetzbar ist. Es ist das erste

Modell, welches vollständig auf fundamentaler Speckle-Theorie basiert.



Chapter 1

Introduction

One of the most pressing challenges of our time is climate change (IPCC, 2015).

It is a consequence of increased greenhouse gas emissions, especially over the last

century (Hegerl et al., 2019). These trace gases are responsible for absorbing and

reflecting the Earth’s heat emission in the atmosphere. It is therefore of great

interest to quantify the concentration of trace gases and to identify emission sources.

For these tasks, space-based Remote-Sensing satellite missions play an integral role

(IPCC, 2014, section 1.5). A widely used type of instrument is the passive imaging

spectrometer that is installed on the satellites. These instruments record the light’s

intensity depending on its wavelength coming from the Earth. On its way from

the Sun through the atmosphere, the light interacts with molecules by scattering,

absorption, or reflection (see fig. 1.1). These processes have a characteristic

wavelength dependency for every species known from laboratory measurements

(Stutz et al., 2008, section 3.7.2). Therefore, one can, in principle, deduce the

specific concentration of a trace gas by comparing the incoming spectrum of the Sun

with the one being reflected by the Earth and looking for those intrinsic features.

These passive spectroscopy methods are complemented by active techniques, such

as Light Detection And Ranging (LIDAR) or Laser-Induced Fluorescence (LIF),

where an artificial light source instead of the Sun is used.
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Figure 1.1: Illustration of passive Remote-Sensing via satellite. Light coming
from the Sun propagates through the Earth’s atmosphere to the satellite, thereby
interacting with trace gas molecules by scattering, absorption, or reflection. These
interactions can take place in the atmosphere and at the surface. Every species
has its own unique spectral fingerprint for these interactions. The reflected and
scattered light from the atmosphere is analyzed with respect to these fingerprints,
which allows the retrieval of the respective trace gas concentration.

1.1 Remote-Sensing with Imaging Spectrometers

A space-based imaging spectrometer functions as follows: from an orbit above

the atmosphere an area on the Earth surface (field of view) is captured by a

telescope and focused at the entrance slit. The field at the slit is imaged through a

dispersive element onto an array detector, thereby splitting the light into its spectral

components. The work done in this thesis applies to both linear and two-dimensional

array detectors. A schematic is shown in fig. 1.2. The instrument views different

areas on the ground by orbiting in a Low Earth Orbit. Recent examples for this

type of instrument are the Global Ozone Monitoring Experiment (GOME) onboard

the European Research Satellite 2 (ERS-2) (ESTEC Publishing Division, 1995),

the Envisat Medium Resolution Imaging Spectrometer (MERIS) (Olij et al., 1997),

the Sentinel-5/UVNS instrument (Guehne et al., 2017), and the GreenHouse Gas

Information System (GHGIS) instrument of CO2M, which is the former CarbonSat

mission (Fletcher et al., 2015). In order to provide meaningful measurement data,

the instrument is calibrated periodically in order to compensate for systematic



1.2 Diffuser-Speckles in Imaging Spectrometers 3

effects, such as detector aging. For the radiometric (intensity) calibration, the Sun

is often used as a reference. The Sun has a perceived opening angle of 0.5°, which

is far less than the field of view of an imaging spectrometer. Therefore, a diffuser is

used to scatter the Sunlight into the instrument homogeneously, thereby overfilling

the field of view. This is also illustrated in fig. 1.2.

Figure 1.2: Schematic of an imaging spectrometer. A field of view on the Earth’s
surface is imaged by a telescope to the entrance slit. From there, it is imaged
through a collimator, a dispersive element, and a focusing lens on an array detector.
During the radiometric calibration, a diffuser is positioned in the field of view to
homogeneously scatter Sunlight into the instrument.

1.2 Diffuser-Speckles in Imaging Spectrometers

The Sunlight scattered from the diffuser during the solar calibration gives rise to

an interference pattern known as speckles (Richter and Wagner, 2001; Brug et al.,

2004). The speckles propagate from the diffuser through the slit and disperser to

the focal plane, where they are integrated. Here, they cause intensity fluctuations

due to the peaks and valleys of these patterns called Spectral Features (Brug et al.,

2004) and are illustrated in fig. 1.3. The diffuser essentially distorts the actual signal

with a modulation, which is multiplicative. As a consequence, the Spectral Features

create an error by altering the radiometric calibration function, which converts
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the raw measured detector signal to calibrated radiances in terms of intensity.

Also, for some methods, the solar reference spectrum can be used to analyze the

measured Earth-shine spectra instead. Speckle effects are better known in the

context of highly coherent light, such as holographic imaging (Bianco et al., 2018)

or Laser Speckle Contrast Imaging (Heeman et al., 2019). Notable interference

effects involving Sunlight, which has a broad spectrum compared to laser sources,

might seem counter-intuitive at first glance. Indeed, the diffuse Sunlight coming

from the diffuser does not yield a net speckle pattern with a substantial amplitude.

However, the spectrum of the light incident on the instrument detector features only

a limited bandwidth, namely the spectral resolution, which can be narrow enough to

yield speckle patterns of significant amplitude. These Spectral Features depend on

numerous geometric conditions, which make a prediction of the exact pattern at the

detector plane unreliable. The quasi-statistical behavior also renders any mitigating

post-processing steps ineffective. There are various speckle suppression techniques

known (see J. W. Goodman, 2020, section 6) that may seem eligible in this case,

such as rotation or tilting of components in the optical system. However, they

require additional moving parts, which are usually not implemented in space-based

instruments because of the supplementary risk of failure. The above methods are

only viable in on-ground calibrations with static setups. A remaining option is the

prediction of the diffuser speckle error. In combination with other radiometric error

sources, such as straylight and polarization, it allows an a priori global optimization

of the instrument in early planning phases. With this approach speckles can be

suppressed by appropriately tuning specific design parameters of the spectrometers,

such as spectral resolution, aperture dimensions, or slit dimensions.
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Figure 1.3: Distortion (Spectral Features) of the measured detector intensity by
diffuser speckle during the solar radiometric calibration.

1.3 Need for New Diffuser-Speckle Characteriza-

tion Techniques

One of the first imaging spectrometers, for which the issue of diffuser Spectral

Features played a significant role, was the GOME instrument (Richter and Wagner,

2001). The observed deviation, for example, of NO2 column densities retrieved with

GOME data, were as high as 50 %. In the context of the Scanning Imaging Ab-

sorption Spectrometer for Atmospheric Chartography (SCIAMACHY) instrument

”spectral oscillations” caused by the onboard diffuser were reported a few years

later (Ahlers et al., 2004; Brug et al., 2004). End-to-end setups, such as proposed

by Brug and Courrèges-Lacoste, 2007, served as characterization method. While

representative setups may answer, whether a specific instrument design satisfies

certain requirements regarding diffuser speckle, they provide little general insights

concerning instrument parameters. Thus, the effort of quantifying the speckle error

needed to be done for every planned spectrometer. Also, separating the diffuser

speckle signal from other error sources in the setups is difficult to achieve. Although

there have been attempts (Brug and Scalia, 2012), no comprehensive theoretical

basis was available, which could connect instrument parameters to measurement

results. For recent instruments such as the Sentinel 5/UVNS (Guehne et al., 2017)

or the GHGIS instrument of CO2M (former CarbonSat), a novel approach was
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proposed by Burns et al., 2017 and improved by Richter et al., 2018. It is based

on the subsequent acquisition of monochromatic speckle patterns in the entrance

slit of an instrument over the range of multiple times the spectral resolution. In a

numerical simulation, the speckle patterns are propagated through the instrument,

combined to a spectrum and integrated as such at the detector plane. This mea-

surement technique as well as simplifying assumptions about the optical system

reduce the experimental complexity and limit systematic error contributions. Since

most of the instrument is simulated, this method is can produce comprehensive

measurement data for most instrument designs. Most importantly, it removes

the black-box character from the problem by allowing a step-by-step tracing of

the speckle behavior throughout the instrument. Also, one can detect even the

smallest speckle amplitudes with it. This important for the above-mentioned recent

instrument designs, which use volume diffusers featuring smaller speckle error

signals than can be reliably distinguished from other detected signals. Based on

this novel measurement technique, a standalone mathematical prediction model

is developed within this thesis and in Richter et al., 2021. It is the first model

fundamentally based on speckle theory concepts.

Brug and Courrèges-Lacoste, 2007 first proposed the Spectral Features Amplitude

(SFA) as a standardized measure of the diffuser speckle signal at the detector. It

describes the amplitude of the features in the perceived spectrum that are solely

caused by the diffuser. This is illustrated in fig. 1.4. By dividing the red graph by

the blue one on the left-hand side yields the speckle signal as an amplitude relative

to the mean normalized intensity. The SFA is defined as the standard deviation

over multiple spectral channels of the diffuser speckle signal on the right-hand

side. Another important parameter of the speckle signal is its average period

or the speckle size Lc. It can be determined, for example, by calculating the

autocorrelation of the amplitude signal.
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Figure 1.4: Left-hand side: detector signal (blue) and the intensity fluctuation due
to diffuser speckle (red). Right-hand side: division of the red graph by the blue one
yields the speckle signal as an amplitude relative to the mean normalized intensity.
The standard deviation of this graph is the Spectral Features Amplitude (SFA).
The average spectral length or period of the Spectral Features is denoted by Lc.

1.4 Outline of the Thesis

In this thesis, new ways for characterizing diffuser induced Spectral Features in

imaging spectrometers are developed, improved, and assessed. The thesis begins

with an introduction to theoretical concepts (chapter 2). First, some basics of

probability theory are given in section 2.1, which are the prerequisite for the

description of speckle in section 2.2. Then, a recently developed alternative

measurement approach for diffuser Spectral Features is described in chapter 3. It is

improved as well as characterized in terms of uncertainties. Based on this technique,

a standalone mathematical prediction model is given in chapter 4. Results from

both the measurement and prediction are compared for a current instrument design.

In order to validate the prediction model, an end-to-end test spectrometer setup is

designed and evaluated in terms of the Spectral Features in chapter 5. The results

are then compared to the estimated prediction of the model. In chapter 6, the

prediction model is used to estimate the impact of diffuser speckle on retrieved NO2

column densities using the Differential Optical Absorption Spectroscopy method.



1.4 Outline of the Thesis 8

As a reference serves the GOME instrument, which allows a comparison between the

deviations calculated in this study and the actually observed ones from literature.

Hence, the validity of this model is shown in three ways. In chapter 7, the results

of the thesis are summarized and evaluated. Finally, an outlook is given.



Chapter 2

Theory

In this chapter, the theoretical concepts needed to characterize speckles in imaging

spectrometer are presented. First, a few basics from probability theory are intro-

duced in section 2.1. They are needed for the statistical description of speckle in

sections 2.2 and 2.3.

2.1 Probability Theory

The occurrence of speckles in an optical system needs to be treated as a random

process. The presented terms and definitions can be found in Ibe, 2013; Klenke,

2013; J. W. Goodman, 2015, whereas the following summary of frequently used

concepts, formulas, and notations is adopted from the first source.

Let’s consider a random experiment with a spinner that can take every direction

relative to a reference in a two-dimensional plane. The probability space Ω of the

experiment contains every single possible outcome w and can be defined in the case

of the spinner as Ω = [0°, 360°), which denotes every angle between the reference

and direction spun of the spinner. A random variable X(w)1 is a function that

assigns a real number to every outcome w, X : Ω 7−→ ξ, whereas this case one

can define ξ = [0, 360). An event is defined as the subset of possible outcomes w

1Random variables are usually denoted as a single letter X without the function variable,
hence we will follow that notation from here on.
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that meet a certain criterion. For example V = [X = 45] = 45° denotes an event

consisting of all outcomes for which X is equal to 45. We can assign a probability

to every event, e.g. for the above, we can write p = P [X = 45] = 0. This event

is assigned zero probability because the chance of any angle being spun from the

uncountable number of possible angles is infinitely small. However, the probability

of a range of angles is non-zero. With the event [X ≤ x] the cumulative distribution

function (CDF) FX of X is defined by

FX(x) = P [X ≤ x] =
x

360
. (2.1)

For the current example, we have FX(90) = P [X ≤ 90] = 1
4
. The function defined

by

fX(x) =
dFX(x)

dx
=

1

360
, (2.2)

that has the property for an event V ,

P [V ∈ X] =

∫
V

fX(x) dx (2.3)

is called the probability density function (PDF) of X. The expectation value or

mean of X is defined by

E [X] = X =

∫
ξ

xfX(x) dx = 180, (2.4)

which can be interpreted as the weighted average of possible values of X. The nth

moment of X for n = 1, 2, 3... is defined by

E [Xn] = Xn =

∫
ξ

xnfX(x) dx =
360n

n+ 1
. (2.5)

Note that the first moment is the expectation value X. The central moments give a
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measure of the spread of a random variable about their means:

E
[
(X −X)n

]
= (X −X)n =

∫
ξ

(x−X)nfX(x) dx . (2.6)

The special case for n = 2 is called variance σ2
X ,

σ2
X = E

[
(X −X)2

]
= E

[
X2
]
− E [X]2 =

3602

3
− 1802 = 10800, (2.7)

where the third step follows from expanding the inner brackets and using E [E [X]] =

E [X]. The characteristic function MX of X is defined in terms of the PDF:

MX(w) = E
[
ejωX

]
=

∫
ξ

ejωxfX(x) dx =
ejω360 − 1

jω360
. (2.8)

Consider two random variables X and Y with means E [X] = X and E [Y ] = Y ,

and variances σ2
X and σ2

Y , respectively. The covariance of X and Y , denoted by

Cov(X, Y ) or σXY , is defined by

σXY = E
[
(X −X)(Y − Y )

]
= E [XY ]− E [X]E [Y ] , (2.9)

where the last step follows again from the same arguments used in equation 2.7.

The covariance is a measure of linear correlation between the two random variables.

X and Y are called independent if E [XY ] = E [X]E [Y ]. In this case they are

also uncorrelated, because σXY = 0. However, the reverse does not necessarily

hold. That is, if they are uncorrelated, it is still possible for them to be dependent

in some non-linear way. A comparable method of measuring linear correlation is

the correlation coefficient ρX,Y of X and Y , which is defined as the normalized

covariance by

ρX,Y =
σXY
σXσY

. (2.10)
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2.2 Speckle Theory

In this section, a few frequently encountered fundamental concepts about speckles

are summarized, which are mainly based on the work of J. W. Goodman, 2007.

Based on this theory, the impact of speckle in imaging spectrometers can be well

described.

2.2.1 First-Order Statistics of Speckles

We start with the description of an ideal or undisturbed speckle distribution,

which will be the basis for all further discussions. The signal amplitude of an

electromagnetic wave can be expressed with the cosine function in the space-time

as (J. W. Goodman, 2020):

A (x, y, t) = A (x, y, t) cos[2πf0t− θ (x, y, t)], (2.11)

where A is the amplitude, f0 is the center frequency, and θ the phase of the signal.

It is convenient to write this signal as a complex phasor:

A (x, y, t) = A (x, y, t) eiθ(x,y,t). (2.12)

This representation is equal to doubling the negative frequency components and

suppressing the positive ones. The frequency term in the exponent is omitted

because it is not needed in the following. This form allows for a natural description

of speckle consisting of an amplitude and a phase without losing information about

the original signal. A speckle field A can be considered a summation of a multitude

of these signals having random amplitudes and phases. For a fixed point in space

and time, the so-called random phasor sum is given by:

A = Aeiθ =
1√
N

N∑
n=1

an =
1√
N

N∑
n=1

ane
iφn , (2.13)
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where A is the resultant complex phasor, N is the number of phasor components

in the sum, A represents the magnitude of A, θ the phase of the resultant, an

the nth complex component phasor of the sum, an is the magnitude of an, and

φn is the phase of an. Referring back to the notations introduced in the previous

section 2.1 the amplitudes and phases are random variables with an : R 7−→ R

and φn : G 7−→ G, where G := [−π, π). For the random phasor sum we have

A :
(
R
N ,GN

)
7−→ (R,G). Lets consider the real and imaginary part of A

R = Re(A) =
1√
N

N∑
n=1

an cosφn (2.14)

I = Im(A) =
1√
N

N∑
n=1

an sinφn (2.15)

The following assumptions are presumed for the statistics of the component phasors

that make up the sum:

1. Amplitudes and phases an and φn are statistically independent of am and φm

for n 6= m.

2. For any n, an and φn are statistically independent of each other.

3. The phases φm are uniformly distributed on the interval [−π, π).

With these assumptions in mind, let us consider the random phasor sum A for

large N . The sum of the real and imaginary parts R and I of the resultant

phasor A are then large sums of independent random variables. The Central

Limit Theorem states that the statistics of the sum of N independent random

variables is asymptotically Gaussian as N approaches infinity (see Marks, 2009).

Hence, according to J. W. Goodman, 2015 one can combine R and I to a bivariate
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Gaussian PDF with the general form for an arbitrary correlation as

fR,I (R, I) =
1

2πσRσI
√

1− ρRI

× exp

[
− 1

2(1− ρ2
RI)

(
(R−R)2

σ2
R

+
(I − I)2

σ2
I

− 2ρRI(R−R)(I − I)

σRσI

)]
(2.16)

In the following, the mean and variance of R and I are calculated explicitly. For

the means we have

E[R] = E

[
1√
N

N∑
n=1

an cosφn

]
=

1√
N

N∑
n=1

E [an cosφn]

=
1√
N

N∑
n=1

E [an]E [cosφn] = 0

(2.17)

E[I] = E

[
1√
N

N∑
n=1

an sinφn

]
=

1√
N

N∑
n=1

E [an sinφn]

=
1√
N

N∑
n=1

E [an]E [sinφn] = 0,

(2.18)

where the order of averaging and summation is interchanged. Due to the inde-

pendence of an and φn the averaging can be separated, and we use the uniform

statistics of φn, implying zero means for both cosφn and sinφn. For calculating the

variances we first consider for n 6= m, E [cosφn cosφm] = E [cosφn]E [cosφm] = 0

and also E [sinφn sinφm] = 0. Variances with zero means are equal to the second

moment, hence we have

σ2
R = E

[
R2
]

=
1√
N

N∑
n=1

N∑
m=1

E [anam]E [cosφn cosφm]

=
N∑
n=1

1√
N
E
[
a2
n

]
E
[
cos2 φn

]
=

1√
N

N∑
n=1

E
[
a2
n

]
E

[
1

2
+

1

2
cos 2φn

]

=
1√
N

N∑
n=1

E [a2
n]

2

(2.19)
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σ2
I = E

[
I2
]

=
1√
N

N∑
n=1

N∑
m=1

E [anam]E [sinφn sinφm]

=
N∑
n=1

1√
N
E
[
a2
n

]
E
[
sin2 φn

]
=

1√
N

N∑
n=1

E
[
a2
n

]
E

[
1

2
− 1

2
cos 2φn

]

=
1√
N

N∑
n=1

E [a2
n]

2
.

(2.20)

Here we used that only terms for n = m further contribute. Additionally, a

trigonometry identity and the uniformity of 2φn is utilized, which follows from the

uniformity of φn. With similar steps, we can show that the real and imaginary part

are uncorrelated:

σRI = E [RI]− E [R]E [I]

= E

[(
N∑
n=1

1√
N
an cosφn

)(
N∑
m=1

1√
N
am sinφm

)]
− 0

=
1√
N

N∑
n=1

E
[
a2
n

]
E [cosφn sinφn]

=
1√
N

N∑
n=1

E
[
a2
n

]
E

[
1

2
sin 2φn

]
= 0,

(2.21)

where in the last step the double-angle trigonometric identity, and again, the

uniformity of 2φn is used. In summary, we established that R and I have zero

means, are uncorrelated, and have equal variances. By taking into account the

above findings, that is the zero means R = I = 0, equal variances σR = σI = σ,

and zero correlation σRI = 0, which implies ρRI = 0 with eq. (2.10). The PDF in

eq. (2.16) reduces to

fR,I (R, I) =
1

2πσ2
exp

[
−R

2 + I2

2σ2

]
. (2.22)

Because of the circular nature of equal probability values in the complex plane

contingent by eq. (2.22) A is said to be a circular complex Gaussian variable (J. W.

Goodman, 2015). To find the joint PDF of intensity and phase, one can use the

rules of probability theory for the transformation of variables (J. W. Goodman,
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2015). Consider the relations between real and imaginary parts to intensity and

phase

I = R2 + I2

θ = arctan

( I
R

) (2.23)

and

R =
√
I cos θ

I =
√
I sin θ.

(2.24)

One can express the desired joint density function of intensity and phase through

R and I by (Dainty et al., 1975)

fI,θ = fR,I

(√
I cos θ,

√
I sin θ

)
‖J‖, (2.25)

where ‖J‖ is the magnitude of the Jacobian determinant of the transformation

between the two sets of variables,

‖J‖ =

∥∥∥∥∥∥
∂R
∂I

∂R
∂θ

∂I
∂I

∂I
∂θ

∥∥∥∥∥∥ =
1

2
. (2.26)

Substituting eq. (2.22) in eq. (2.25) we find

fI,θ =
1

4πσ2
exp

(
− I

2σ2

)
, (2.27)

where I ≥ 0 and −π ≤ θ < π (see initial assumption about the component phases).

For this work, the intensity is of primary interest. The corresponding PDF is found

by integration over the angular domain,

fI(I) =

∫ π

−π
fI,θ(I, θ) dθ =

1

2σ2
exp

(
− I

2σ2

)
. (2.28)
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The nth moment is according to eq. (2.5)

In =

∫ ∞
−∞

InfI(I) dI =

∫ ∞
0

In
1

2σ2
exp

(
− I

2σ2

)
dI

=
(
2σ2
)n
n!,

(2.29)

where in the second step the domain I ≥ 0 of fI is incorporated. From this result,

we derive the mean intensity I is 2σ2, and we can write the PDF as

fI(I) =
1

I
exp

(
−I
I

)
. (2.30)

This distribution describes fully developed speckles.

An vital quantity to characterize speckle is the contrast C defined as the fraction

of the standard deviation σI and mean intensity I,

C =
σI

I
. (2.31)

This value shows the normalized magnitude of intensity fluctuations in an image

and is the most important value used throughout this work to characterize speckle

patterns. With eq. (2.29) we calculate C for the above type of speckle using the

first and second moment:

C =

√
I2 − I 2

I
=

√
2I

2 − I 2

I
= 1. (2.32)

Thus, for ideal or undisturbed speckles, we expect a contrast of unity. This kind

of speckles are called fully developed Gaussian speckles. From hereon, it will be

assumed that the underlying speckle statistic is the one just presented. For future

references, we also calculate the characteristic function of intensity, which is given

by eq. (2.8):

MI(ω) =

∫ ∞
0

ejwIfI(I) dI =

∫ ∞
0

ejwI
[

1

I
e−I/I

]
dI =

1

1− jωI . (2.33)
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2.2.2 Statistics of the Sum of Independent Speckle Intensi-

ties

When dealing with speckles in spectrometers, the speckle statistic present on the

detector plane of the instrument can not be considered ideal in the sense of the

previous section. Instead, the net statistic can be considered as a summation of a

number of the latter ones. This section discusses the hypothetical case, where all

speckle intensities are independent, e.g., their spatial distributions have nothing in

common. Let us consider the sum of N independent speckle intensities. For the

total intensity, we have

IS =
N∑
n=1

In. (2.34)

The characteristic function MS(ω) of the sum of independent random variables IS

is the product of the characteristic function of their components Mn(ω) (Marks,

2009),

MS(ω) =
N∏
n=1

Mn(ω). (2.35)

Assuming that every speckle pattern In is following the same statistics as derived

in the previous section Mn(ω) is given by eq. (2.33), yielding

MS(ω) =
N∏
n=1

1

1− jωIn
, (2.36)

where In is the mean intensity of the nth speckle pattern of the sum. By applying

the inverse Fourier transformation to the characteristic function MS(ω) (see again

eq. (2.33)), we get the PDF for the total intensity pS(IS). A concrete result depends

on the relations between the different values of mean intensity In. If all In are

distinct and nonzero, one finds for IS > 0

fS(IS) =
N∑
n=1

In
N−2∏N

p=1, p 6=n(In − Ip)
exp

(
− Is
In

)
. (2.37)
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In a second case, if all In have the same value I0 we get

fS(IS) =
IN−1
S

Γ(N)IN0
exp

(
−IS
I0

)
=
NNIN−1

S

Γ(N)IS
N

exp

(
−N IS

IS

)
, (2.38)

where IS = NI0 is the total mean intensity. As in the previous section, the speckle

contrast for the total intensity is of particular interest. Therefor, we determine the

first and second moments. In the general case of distinct In with mean values In,

the first moment of the total intensity is seen to be

IS =
N∑
n=1

In. (2.39)

For the second moment we have

I2
S =

N∑
n=1

N∑
m=1

InIm =
N∑
n=1

I2
n +

N∑
n=1

N∑
m=1,m 6=n

In Im, (2.40)

where we use that In and Im are independent for m 6= n. Additionally, we recall

that every speckle pattern in the sum follows negative exponential statistics as

described in section 2.2.1, from which follows that I2
n = 2In

2
(see eq. (2.29)). We

can rewrite the second moment as follows:

I2
S = 2

N∑
n=1

In
2

+
N∑
n=1

N∑
m=1,m 6=n

In Im =
N∑
n=1

In
2

+

(
n∑
n=1

In

)2

=
N∑
n=1

In
2

+ IS
2
. (2.41)

The variance calculates to

σ2
s = I2

S − IS
2

=
N∑
n=1

In
2
. (2.42)

Finally, for the speckle contrast C for the sum of independent speckle intensities,

we get

C =
σS

IS
=

√∑N
n=1 In

2∑N
n=1 In

. (2.43)
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For the case of equal mean intensities in the sum (In = I0 ∀n), this yields the

insightful result:

C =
1√
N
. (2.44)

It tells us that by summing N completely different speckle images of the same

intensity together, the speckle contrast is reduced by a factor of
√
N .

2.2.3 Statistics of the Sum of Correlated Speckle Intensities

We will now look at speckle intensities that are partially correlated to each other.

The following is a generalization of section 2.2.2, where the correlation between all

intensities is essentially zero. We start again with the sum of N speckle intensities:

IS =
N∑
n=1

In =
N∑
n=1

|An|2. (2.45)

The linear correlation between two speckle pattern intensities In and Im is given

by the correlation coefficient (see eq. (2.10)), which in our case yields on intensity

basis

ρn,m =
InIm − In Im√

I2
n − In

2
√
I2
m − Im

2
=
InIm − In Im

In, Im
, (2.46)

where in the last step we use eq. (2.29) since the intensities follow a negative

exponential distribution. Similarly, for the correlation coefficients of the complex

fields An and Am we have

µn,m =
AnA∗m −An Am√

A2
n −An

2
√

A2
m −Am

2
=

AnA∗m√
In,
√
Im
, (2.47)

where in the last step we invoke the circular Gaussian statistics of the fields

(implying zero means) and use eq. (2.45). Additionally, this enables us to relate

the correlation of the intensities to the ones of the fields (Middleton, 1960; J. W.

Goodman, 2007) by

ΓI = InIm = InIm
[
1 + |µn,m|2

]
. (2.48)
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Substituting this into eq. (2.46) one can see that

ρn,m = |µn,m|2. (2.49)

The form of µn,m is therefore

µn,m =
√
ρn,m exp(jψn,m), (2.50)

where ψn,m is the phase term describing the correlation between the fields An and

Am. To calculate the speckle contrast, we define the column vector A containing

all N fields

A =


A1

A2

...

An

 . (2.51)

Every speckle field An has a certain amount of correlation with every other field

Am given by µn,m. One can account for the different correlations between all fields

by defining a coherency matrix J as a mathematical representation by

J = AA†, (2.52)

where † stands for the Hermitian transpose operation. For the entries in the matrix

we have Jn,m = AnA∗m , thus the coherency matrix can be written using eq. (2.47)

as

J =


I1

√
I1I2µ1,2 · · ·

√
I1INµ1,N√

I1I2µ
∗
1,2 I2 · · ·

√
I2INµ2,N

...
...

. . .
...√

I1INµ
∗
1,N

√
I2INµ

∗
2,N · · · IN

 . (2.53)

The coherence matrix is Hermitian by construction because of the conjugate

symmetry about the diagonal. Additionally, we see that IS = tr(J ), i.e. the total

mean intensity is the sum over the diagonal of J . In the next step, we transform
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the partially correlated field components that make up the sum to a basis, for which

the correlation is zero (J. W. Goodman, 2015). The average intensities of the fields

In (the diagonal entries of J ) will, in general, be altered by this transformation.

However, the total mean intensity IS will remain constant. The above mentioned

transformation of the speckle fields An is a unitary linear transformation L0, that

diagonalizes J :

J ′ = L0JL†0 =


λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λN

 . (2.54)

Its existence is a result of matrix theory (Landi and Zampini, 2018). Due to its

unitary nature, that is L0L†0 = 1, it is lossless, meaning the total mean intensity

IS = tr(J ) = tr(J ′) is retained. Also, according to J. W. Goodman, 2007 the

circular complex Gaussian statistics of the underlying fields are preserved. Note,

that the complex coherence factor of eq. (2.50) includes a phase ψn,m. One can

show, that due to the construction of J the phase term can be omitted when

calculating the eigenvalues (Dainty et al., 1975, Sect. 4.7.2). After transforming an

ensemble of correlated speckle fields with average intensity In to an uncorrelated

one with different individual average intensities λn (while retaining the total average

intensity IS), we can use the results from section 2.2.2. Hence, for the speckle

contrast we can write in accordance with eq. (2.43),

C =
σS

IS
=

√∑N
n=1 λ

2
n∑N

n=1 λn
. (2.55)

2.2.4 Statistics of Polarized Speckle Intensities

Another effect that can influence the observed speckle contrast is polarization,

which is discussed in this section. The polarization state of light describes the

orientation of the electric field oscillations in a (x, y)-plane perpendicular to the

propagation direction z of the light. We start with linearly polarized light in x
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direction incident on a diffusing material,

~Ai =
√
Iix̂, (2.56)

where Ii is the incident intensity and x̂ the unit vector in the x-direction. The

observed light can be written as

~Ao = Axx̂+ Ayŷ. (2.57)

Hence for the total observed intensity, we get

I = Ix + Iy =
∣∣A2

x

∣∣+
∣∣A2

y

∣∣. (2.58)

We assume that the speckle intensities follow a negative exponential distribution as

described in section 2.2.1. Recalling section 2.2.3 the current case can be thought of

as the sum of two correlated speckle intensities. Therefore, the correlation between

the two underlying speckle fields Ax and Ay is

ρx,y = |µx,y|2. (2.59)

We follow the same formalism as introduced in section 2.2.3 and write for the

coherency matrix

J =

 Ix

√
IxIyµx,y√

IxIyµ
∗
x,y Iy

 , (2.60)

which can be diagonalized with linear unitary transformation L0 to

J ′ =

λ1 0

0 λ2

 . (2.61)
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It yields a trivial result in case of no correlation (µx,y = 0) between the two

components. The two eigenvalues of the coherence matrix are explicitly given by

λ1,2 =
1

2

[
Ix + Iy ±

√(
Ix − Iy

)
+ 4IxIy |µx,y|2

]
. (2.62)

We verify with eq. (2.62) that

Ix + Iy = λ1 + λ2 = I (2.63)

and conclude that in analogy to the previous case, we can describe light with

correlated x and y polarization components as uncorrelated in the new basis x′ and

y′ with different component intensities. Hence, for completely depolarized light

λ1 and λ2 are of equal strength and without loss of generality we have λ1 > λ2

for polarized light. According to Wolf, 1959, we can decompose the diagonalized

coherence matrix using these two arguments by

J ′ =

λ2 0

0 λ2

+

λ1 − λ2 0

0 0

 . (2.64)

In doing so we describe the light as a composition of a completely depolarized and

a completely polarized part. We recall that the total intensity is still given by

eq. (2.63) and the polarized one by λ1−λ2. We define the degree of polarization as

P =
λ1 − λ2

λ1 + λ2

(2.65)

which can take a value between 1 for full polarization and 0 for complete depolarized

light. We can express the P using eq. (2.62),

P =

√(
Ix − Iy

)2
+ 4IxIy |µx,y|2

Ix + Iy
. (2.66)
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By using eq. (2.65) one can write the eigenvalues in terms of P ,

λ1,2 =
1

2
I (1± P) . (2.67)

We are now able to calculate the speckle contrast according to eq. (2.43) as

C =

√
λ2

1 + λ2
2

λ1 + λ2

=

√
1
4
I

2
(1 + P)2 + 1

4
I

2
(1− P)2

I
=

√
1 + P2

2
. (2.68)

As P approaches zero C converges the same value as it has been derived in

section 2.2.2 for N = 2, i.e. the sum of two independent speckle intensities. For

fully polarized light (P = 1) no reduction takes place.

2.2.5 Speckle Size

A very important characteristic of speckles is their spatial extent governed by the

optical system they originated from. J. W. Goodman, 2007; Dainty et al., 1975 have

derived a way to determine the size of a speckle utilizing the autocorrelation function

of the speckle field between different points in the imaging plane. Consider a planar

Figure 2.1: Free-space scattering geometry in transmission. Light incident from
the left is scattered by a diffuser at the (α, β)-plane and observed in a finite area
in the (x, y)-plane a distance z downstream. Adapted from J. W. Goodman, 2020.

rough diffuser, as depicted in fig. 2.1, in a plane (α, β), which is homogeneously

illuminated by coherent light of wavelength λ. The parallel imaging plane (x, y)
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is positioned at a distance z from the diffuser plane. The diffuser is assumed

to be rough enough to induce phase shifts of multiple times 2π. Additionally,

we only consider points in the imaging plane close to the z-axis; that is, only

small scattering angles are considered (paraxial propagation). This enables us to

express the complex field amplitude of the light in the imaging plane in terms of

the scattered field amplitude in the plane just behind the diffuser by the Fresnel

diffraction integral (see J. W. Goodman, 2017),

A(x, y) =
ejkz

jλz
ej

k
2z

(x2+y2)

∞x

−∞

a(α, β)ej
k
2z

(α2+β2)ej
2π
λz

(xα+yβ) dα dβ . (2.69)

As mentioned in the beginning, we want to find the autocorrelation function ΓA of

the speckle fields in the imaging plane between to points (x1, y1) and (x2, y2),

ΓA ((x1, y1), (x2, y2)) = E [A(x1, y1)A?(x2, y2)] . (2.70)

Substituting this into eq. (2.69) gives

ΓA ((x1, y1), (x2, y2)) =
1

λ2z2
ej

k
2z

(x21+y21−x22−y22)

∞x

−∞

∞x

−∞

Γa ((α1, β1), (α2, β2))

× ej k2z (α2
1+β2

1−α2
2−β2

2)ej
2π
λz

(x1α1+y1β1−x2α2−y2β2) dα1 dβ1 dα2 dβ2 ,

(2.71)

where Γa ((α1, β1), (α2, β2)) = E [a(α1, β1)a?(α2, β2)] denotes the correlation func-

tion of the scattered fields just behind the diffuser plane. For the next step, the

light exiting the diffuser plane is assumed to be completely spatially incoherent.

This means that the spatial correlation function Γa of the scattered field a(α, β) is

as narrow, that it can be approximated by a delta function:

Γa((α1, β1), (α2, β2)) = κI(α1, β1)δ(α1 − α2, β1 − β2). (2.72)
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κ denotes constant with dimensions length squared, I(α1, β1) the field intensity

just behind the diffuser plane, and δ(α1 − α2, β1 − β2) the two-dimensional delta

function. Substituting this into eq. (2.71), we get

ΓA ((x1, y1), (x2, y2)) =

1

λ2z2
ej

k
2z

(x21+y21−x22−y22)

∫∫∫∫ ∞
−∞

κI(α1, β1)δ(α1 − α2, β1 − β2)

× ej k2z (α2
1+β2

1−α2
2−β2

2)ej
2π
λz

(x1α1+y1β1−x2α2−y2β2) dα1 dβ1 dα2 dβ2

=
κ

λ2z2
ej

k
2z

(x21+y21−x22−y22)

∞x

−∞

I(α1, β1)e−j
2π
λz

(α1(x1−x2)β1(x1−x2) dα1 dβ1 .

(2.73)

For future purposes we are only interested in the modulus of the autocorrelation

function of the fields |ΓA|, thus we can omit the complex term in front of the

integral. Also, we substitute ∆x = x1 − x2 and ∆y = y1 − y2 and replace the

coordinates (α1, β1) by (α, β). The resulting expression for ΓA becomes

ΓA(∆x,∆y) =
κ

λ2z2

∞x

−∞

I(α, β)e−j
2π
λz

(α∆x+β∆y) dα dβ , (2.74)

which, apart from the constant factor in front of the integral, is the two-dimensional

Fourier transform of the scattered intensity at the diffuser. In other words, the

autocorrelation function of the fields in the observation plane can be described,

under the approximations made, by the Fourier transform of the scattered intensity

just behind the diffuser plane. This is an equivalent result of coherence theory

known as van Cittert–Zernike Theorem and is described in Hecht and Lippert,

2018, p. 1131f. In order to find an expression for the correlation coefficient of the

fields, we recall its definition as normalized covariance from eq. (2.10) and see that

for zero mean fields, we get

µA(∆x,∆y) =
ΓA(∆x,∆y)

ΓA(0, 0)
=

∞s
−∞

I(α, β)e−j
2π
λz

(α∆x+β∆y) dα dβ

∞s
−∞

I(α, β) dα dβ

. (2.75)
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The autocorrelation of intensity is found by using eq. (2.48)

ΓI(∆x,∆y) = I
2[

1 + |µA(∆x,∆y)|2
]
, (2.76)

and the normalized autocorrelation function (see eq. (2.10)) is determined to be

ρI(∆x,∆y) =
ΓI(∆x,∆y)− I 2

σIσI
=

ΓI(∆x,∆y)− I 2

I
2 = |µA(∆x,∆y)|2. (2.77)

In the second step eq. (2.29) and in the last one eq. (2.76) is used. The ”size”

of an speckle can now be defined via the correlation area Ac by integrating over

ρI(∆x,∆y)

Ac =

∞x

−∞

ρI(∆x,∆y) d∆x d∆y =

∞x

−∞

|µA(∆x,∆y)|2 d∆x d∆y . (2.78)

We will now calculate the speckle size for a rectangular scattering spot (or pupil)

of dimension Lα × Lβ. Therefor we define I(α, β) to be

I(α, β) = I0Π

(
α

Lα

)
Π

(
β

Lβ

)
, (2.79)

where Π(x) is the rectangle function, which is unity for |x| ≤ 1
2

and zero otherwise.

The Fourier transform of I(α, β) calculates according to eq. (2.75) as follows:

µA(∆x,∆y) =

s∞
−∞ I(α, β)e−j

2π
λz

(α∆)+β∆y dα dβs∞
−∞ I(α, β) dα dβ

= sinc

(
Lα∆x

λz

)
sinc

(
Lβ∆y

λz

)
,

(2.80)

where sinc(x) = sin(πx)/(πx) is the sinc function. By substituting this into

eq. (2.78) we get for the correlation area

Ac =

∞x

−∞

sinc2

(
Lα∆x

λz

)
sinc2

(
Lβ∆y

λz

)
d∆x d∆y =

λ2z2

LαLβ
. (2.81)
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The one-dimensional representation of the size of a speckle in α or β direction can

be defined as

Lc, α/β =
λz

Lα/β
. (2.82)

For the case of a circular scattering spot shape of diameter D we define I(α, β) as

I(α, β) = circ

(
2r′

D

)
, (2.83)

where r′ =
√
α2 + β2 and

circ(r′) =

1 r′ ≤ 1

0 otherwise.

(2.84)

The two-dimensional Fourier transform of this function calculates to

∞x

−∞

circ

(
2r′

D

)
e−j

2π
λz

(α∆+β∆y) dα dβ

=

∫ ∞
0

r′circ

(
2r′

D

)
dr′
∫ π

−π
e−j

2π
λz
rr′(cos(θ) cos(φ)+sin(θ) sin(φ)) dθ

=

∫ D/2

0

r′ dr′
∫ π

−π
e−j

2π
λz
rr′ cos(θ−φ) dθ

=

∫ D/2

0

r′ dr′ 2

∫ π

0

ej
2π
λz
rr′ cos(θ′) dθ′

= 2π

∫ D/2

0

r′J0

(
2πr

λz
r′
)
dr′ = 2π

(
λz

2πr

)2 ∫ πDr/(λz)

0

uJ0(u) du

=2π

(
λz

2πr

)2
πD

λz
rJ1

(
πD

λz
r

)
= 2π

(
D

2

)2J1

(
πD
λz
r
)

πD
λz
r

,

(2.85)

where in the second step the integral is transformed to the polar coordinate system

(Baddour, 2011) with r =
√

(∆x)2 + (∆y)2. In the third step the above definition

of the circ function and a trigonometric identity in the exponent is used. For the

following step the integral definition of the Bessel function of first kind, nth order

(see Erdélyi et al., 1953, §7.12(2)), Jn(x) = i−n

π

∫ π
0
eix cos(θ) cos(nθ) dθ is used to

solve the integral over θ′. Afterwards the integral identity
∫ a

0
uJ0(u) du = aJ1(a) is
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used for the second integral. For the correlation coefficient of the fields, we then get

µA(∆x,∆y) =

∞s
−∞

circ
(

2r′

D

)
e−

2π
λz

(α∆)+β∆y dα dβ

∞s
−∞

circ
(

2r′

D

)
dα dβ

=
2π
(
D
2

)2 J1(πDλz r)
πD
λz
r

π
(
D
2

)2 = 2
J1

(
πD
λz
r
)

πD
λz
r

.

(2.86)

The correlation area calculates to

Ac = 4π

∫ ∞
0

r

∣∣∣∣∣J1

(
πD
λz
r
)

πD
λz
r

∣∣∣∣∣
2

dr =
(λz)2

π(D/2)2
, (2.87)

where the double integral is again transformed into polar coordinates and the

normalization of the Bessel function
∫∞

0
J1(ax) dx = 1/a is used. Analog to the

rectangular case, we define the one-dimensional representation to be the square

root of the correlation area,

Lc =
2λz√
πD

(2.88)

which reminds one of the well-known Airy disc size (Hecht and Lippert, 2018, p.

937), dAiry = 1.22λz
D

. This is a consequence of the van Cittert–Zernike Theorem

used in the derivation of the speckle size (Hecht and Lippert, 2018, p. 1136). We

have established the speckle size for a free space geometry and a rectangular as

well as a circular scattering spot shape. We have established the speckle size for a

free-space geometry and a rectangular as well as a circular scattering spot shape. In

J. W. Goodman, 2007 the argument is made that the above result can be applied to

an imaging geometry shown in fig. 2.2, as well. In this case, the scattering surface is

effectively located in the exit pupil of the imaging system. The exit pupil is defined

as the image of the limiting aperture perceived from the image side of the system,

which means that the variable z can be replaced with zi in all previously derived

equations for the imaging case (J. W. Goodman, 2017, pp. 411-413). This result

implies that the speckle correlation is usually not influenced by optical aberrations
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by the imaging lens (J. W. Goodman, 2020, section 5.1.2).

Figure 2.2: Imaging scattering geometry in transmission. Light incident from the
left emerges from diffuser and is imaged by a lens in the (α, β)—plane a distance z0

downstream. The observation plane (x, y) is in the focal plane of the lens located a
distance zi behind it. Adapted from J. W. Goodman, 2020.

2.2.6 Statistics of Integrated Speckles

Experimentally speckle can be measured with an array detector with an active area

divided into pixels of finite size. Thus speckle fields are being sampled with the

area of a detector element. Let’s consider the measured intensity W of a uniform

detector pixel

W =
1

AD

∞x

−∞

D(x, y)I(x, y) dx dy , (2.89)

where I(x, y) is the intensity of the speckle pattern being detected, and AD =
s∞
−∞D(x, y) dx dy is the area of one detector element, with

D(x, y) =

1 inside the pixel

0 outside pixel.

(2.90)

As before, we are interested in the contrast, for which we, again, need to find the

first and second moment to calculate the variance. For the first moment, we have

W =
1

AD

∞x

−∞

D(x, y)I dx dy = I, (2.91)
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where the orders of averaging and integration have been interchanged again, and

I is assumed independent of position. Therefore, the measured mean intensity is

equal to the actual mean intensity of the speckle field. Similarly, for the second

moment, we have

W 2 =
1

A2
D

∞x

−∞

∞x

−∞

D(x1, y1)D(x2, y2)I(x1, y1)I(x2, y2) dx1 dy1 dx2 dy2 . (2.92)

For the next step, the speckle pattern is assumed to be wide-sense stationary. In

literature, this kind of stationarity is commonly referred to with respect to the

parameter time t (Ibe, 2013). Given a random process X(t) parameterized by time

t, this wide-sense stationary criterion is met if the mean and the autocorrelation

function are independent of absolute time (J. W. Goodman, 2015; Ibe, 2013), i.e.,

1)E [X(t)] = µ, independent of t

2) ΓX(t1, t2) = ΓX(∆t), is a function of only the time difference ∆t = t2 − t1

If we extend this stationarity to the position parameter p = (x, y), we can write the

mean of the intensity products in terms of the coordinate differences ∆x = x1 − x2

and ∆y = y1 − y2, which reduces the second moment to

W 2 =
1

A2
D

∞x

−∞

KD(∆x,∆y)ΓI(∆x,∆y) d∆x d∆y , (2.93)

where KD(∆x,∆y) is the deterministic autocorrelation function of the detector

element aperture D(x, y),

KD(∆x,∆y) =

∞x

−∞

D(x1, y1)D(x1 −∆x, y1 −∆y) dx1 dy1 , (2.94)
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and ΓI is the statistical autocorrelation function of the intensity I(x, y). We use

eq. (2.48) to write

ΓI(∆x,∆y) = I
2 [

1 + |µA(∆x,∆y)|2
]
, (2.95)

and substitute it into eq. (2.93), yielding

W 2 =
I

2

A2
D

∞x

−∞

KD(∆x,∆y) d∆x d∆y

+
I

2

A2
D

∞x

−∞

KD(∆x,∆y)|µA(∆x,∆y)|2 d∆x d∆y .

(2.96)

From eq. (2.94) one can see that
s∞
−∞KD(∆x,∆y) d∆x d∆y = AD, which reduces

the first term to I2. For the variance of W follows

σ2
W =

I
2

A2
D

∞x

−∞

KD(∆x,∆y)|µA(∆x,∆y)|2 d∆x d∆y . (2.97)

We can define a parameter

M =

[
1

A2
D

∞x

−∞

KD(∆x,∆y)|µA(∆x,∆y)|2 d∆x d∆y

]−1

(2.98)

to write the speckle contrast with eq. (2.31) as

C =
1√
M
. (2.99)

The physical interpretation of M can be better understood by separating the

two functions KD(∆x,∆y) and |µA(∆x,∆y)|2 under the integral representing the

detector pixel size and the speckle size, respectively. This can be conveniently

done by considering two extreme cases, where the speckle size is narrow or wide

compared to the detector pixel size. This implies that one function is significantly

wider than the other and can be pulled out of the integral using the respective value
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at (∆x,∆y) = (0, 0). Starting with the case of very small speckles, M becomes

M =

[
KD(0, 0)

A2
D

∞x

−∞

|µA(∆x,∆y)|2 d∆x d∆y

]−1

, (2.100)

where KD(0, 0) =
s∞
−∞D

2(x1, y1) dx1 dy1 follows from eq. (2.94). Assuming the

detector is uniformly sensitive, meaning eq. (2.90) holds, KD(0, 0) reduces to AD.

The remaining factor in the integral is the autocorrelation function of intensity (see

eq. (2.49)), whose result can be interpreted as the correlation area of a speckle Ac,

Ac =

∞x

−∞

|µA(∆x,∆y)|2 d∆x d∆y . (2.101)

Therefore we get for the parameter M

M ≈ ADAc
(AD >> Ac). (2.102)

With this result, the interpretation becomes more intuitive: M is the average

number of speckles per detector pixel or the average number of speckles influencing

the measurement in one pixel. In the second case with AD << Ac we find with

|µA(0, 0)|2 = 1,

M ≈
[

1

A2
D

∞x

−∞

KD(∆x,∆y) d∆x d∆y

]−1

= 1 (AD << Ac). (2.103)

We see that the parameter M can never fall below unity, and we conclude that at

least one speckle will influence the measurement in a detector pixel. To determine

M , the detector aperture function D(x, y) and the intensity covariance function µA

need to be specified. We will calculate an integral expression for two cases, starting

with a uniform squared pixel of size LD × LD and a rectangular intensity pattern

on the scattering medium of size Lx × Ly. The detector aperture is modeled with
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the rectangle function Π, by

D(x, y) = Π

(
x

LD
,
y

LD

)
= Π

(
x

LD

)
Π

(
y

LD

)
. (2.104)

The autocorrelation of the rectangle function is the triangle function Λ, yielding

KD(∆x,∆y) =

∫ ∞
∞

Π

(
x1

LD

)
Π

(
∆x− x1

LD

)
dx1

×
∫ ∞
∞

Π

(
y1

LD

)
Π

(
∆y − y1

LD

)
dy1

=L2
DΛ

(
∆x

LD

)
Λ

(
∆y

LD

) (2.105)

By invoking the van Cittert-Zernike Theorem one can determine the intensity

covariance function µA as already demonstrated previously in section 2.2.5. Also,

the presented geometry is adopted again. For the intensity distribution on the

scattering spot, we have a 2D rectangle function:

I(α, β) = Π

(
α

Lx

)
Π

(
β

Ly

)
. (2.106)

The Fourier transform of a rectangle function is the sinc function, hence for the

normalized correlation function we have

µA(∆x,∆y) = sinc(∆xLx)sinc(∆yLy). (2.107)
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For the parameter M we can now write with eq. (2.98):

M =

[
L2
D

L4
D

∞x

−∞

Λ

(
∆x

LD

)
Λ

(
∆y

LD

)
|sinc(∆xLx)sinc(∆yLy)|2 d∆x d∆y

]−1

=L2
D

 LDx

−LD

(
1−

∣∣∣∣∆xLD
∣∣∣∣) |sinc(∆xLx)|2 d∆x

(
1−

∣∣∣∣∆yLD
∣∣∣∣) |sinc(∆yLy)|2 d∆y

−1

=

[∫ 1

−1

(1− |u1|) |sinc(u1LDLx)|2 du1

∫ 1

−1

(1− |u2|) |sinc(u2LDLy)|2 du2

]−1

=

[
2

∫ 1

0

(1− u1) sinc2 (u1LDLx) du1 2

∫ 1

0

(1− u2) sinc2 (u2LDLy) du2

]−1

,

(2.108)

where in the third step we have made the substitutions u1 = ∆x/LD and u2 =

∆y/LD.

2.2.7 Angle and Wavelength Diversity

In this section, the correlation of speckle patterns is presented that are recorded with

varying angles or illumination wavelengths. The discussion follows J. W. Goodman,

2020, chap. 6.3, pp. 188f for an imaging geometry in the reflection and transmission

case, which are depicted in fig. 2.3. The scattering plane (α, β) is located just next

to the diffuser in the downstream direction. A lens is placed a distance z away

in the (ξ, η)—plane. The observation plane (x, y) is again positioned a distance z

downstream. All planes are parallel.

We start with the discussion of the reflection case. The scattering diagram is

shown in fig. 2.4. Light is originating from an average illumination direction î with

a wave vector ~ki of magnitude |k| = 2π/λ. It is incident on a finite scattering spot,

which is small compared to the distance z. The scattered light emerges from the

scattering plane h (α, β) and is observed from an average direction ô having an

analog wave vector ~ko. The angular range around the illumination and observation

directions is considered small, for which the wave vectors describe the geometry

sufficiently well. The phase shift due to the surface roughness h (α, β) can be
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Figure 2.3: Imaging geometry showing both the transmission and reflection case.
Scattered light emerging from plane (α, β) just downstream of the diffuser is imaged
by a lens in the (ξ, η)—plane a distance z away. The observation plane (x, y) is
located a distance z behind it. Adapted from J. W. Goodman, 2020.

expressed with

φ (α, β) =
[(
−~ki + ~ko

)
ẑ
]
h (α, β) . (2.109)

We define a scattering vector originally proposed by Parry, 1975 with

~q = ~ko − ~ki = qαα̂ + qββ̂ + qz ẑ = ~qt + qz ẑ (2.110)

which can be split into a transverse and a normal component with respect to ẑ.

Their magnitudes can be written as

|~qt| =|k||sin(θo)− sin(θi)|, (2.111)

qz =|k||cos(θo) + cos(θi)|, (2.112)

where θi and θo are the respective angles of the wave vectors subtended with surface

normal ẑ. For the phase shift in eq. (2.109) follows

φ (α, β) = qzh (α, β) . (2.113)

The imaging system can be described by its point-spread function k (α, β, x, y) (see
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Figure 2.4: The scattering diagram in the reflection case. Light originating from an
average illumination direction î is incident on a finite scattering spot in the (α, β)–

plane just right to diffuser surface with an average wave vector ~ki. The scattered
light with an average wave vector ~ko is reflected in the observation direction ô.
~q = ~ko − ~ki is the scattering vector and h (α, β) denotes the surface roughness. θi
and θo are the respective angles of the wave vectors subtended with the surface
normal. Adapted from J. W. Goodman, 2020.

J. W. Goodman, 2017, p. 113)

k (α, β, x, y) =
1

λ2z2
ej

π
λz (α2+β2)

∞x

−∞

P (ξ, η) e−j
2π
λz

[ξ(α+x)+η(β+y)] dξ dη , (2.114)

where P (ξ, η) is the pupil function of the imaging lens. The field a (α, β) at the

diffuser surface is therefore related to the field at the observation plane by

A (x, y) =

∞x

−∞

k (α, β, x, y) a (α, β) dα dβ . (2.115)

A quadratic phase term in x2 + y2 was dropped in eq. (2.114), since we are only

interested in the intensity of the fields in the observation plane (x, y). Now we

want to examine how two fields A1 (x1, y1) and A2 (x2, y2) change, if one or all of

the following parameters are changed:

• wavelength of illumination λ,

• angle of illumination θi,

• and angle of observation θo.
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The change can be quantified by the cross correlation

ΓA (x1, y1, x2, y2) = A1 (x1, y1) A∗2 (x2, y2), (2.116)

where the variations in λ, θi, and θo are implicit. An explicit derivation of the

following can be found in J. W. Goodman, 2020, Appendix D. The result is the

normalized cross-correlation function µA given by

µA (∆x,∆y) =
A1 (∆x,∆y) A∗2 (∆x,∆y)√
|A1 (∆x,∆y)|2

√
|A2 (∆x,∆y)|2

= F (∆qz) Ψ (∆x,∆y)

(2.117)

with

Ψ (∆x,∆y) =

s∞
−∞ |P (ξ, η)|2e−j

2π
λ2z

(ξ∆x+η∆y)
dξ dηs∞

−∞ |P (ξ, η)|2 dξ dη
(2.118)

and

∆qz =

∣∣∣∣2πλ1

[cos(θo1) + cos(θi1)]− 2π

λ2

[cos(θo2) + cos(θi2)]

∣∣∣∣. (2.119)

F represents the characteristic function of the diffuser’s effective surface height

fluctuations and Ψ the geometric extent of a speckle in the observation plane. Both

contributions need to be specified depending on the used diffuser and imaging

system to enable any further calculations beyond this general expression, which

will be done in later sections.

We continue with the transmission case. The overall result from above remains

the same. The needed adjustments in the derivation ultimately influence only the

scattering component qz as will be shown in the following. Consider the scattering

diagram in fig. 2.5 (a): light from an average direction î is incident on a scattering

slab with refractive index n under an angle θi with the surface normal. Inside the

diffuser, it is refracted in the direction r̂ and emerges from the (α, β)–plane just

right of the diffuser’s surface from where it is observed in an average direction ô

having an angle θo with the surface normal. In this case, h (α, β) describes the

cause of the phase shift the light suffers inside the diffuser. It can be intuitively

thought of as an effective surface roughness like in the reflection case but is due to
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a more complex process. In (b) the wave vectors of the incident and refracted light

as well as the in the observation direction are depicted. For simplicity, we assume

that all of them lie in the (β, z)–plane. The difference to the reflection geometry is

that ~ki and ~ko point in the same half-space and ~ki is transformed into ~kr by Snell’s

law (see Hecht and Lippert, 2018, chap. 4.4.1). The continuity of the underlying

fields requires that β (or surface parallel) components of both the incident and

refracted wave vectors are equal, i.e. ~kiβ̂ = ~krβ̂. This increases the length of ~kr

in the ẑ–direction. Overall ~kr is n times longer than ~ki and ~ko, which have the

magnitude |k| = 2π/λ, where λ is the free-space wavelength. We can write the

phase shift as

φ (α, β) = |k| (−nr̂ẑ + ôẑ)h (α, β) (2.120)

and define a scattering vector

~q = ~ko − ~kr = ~qt + qz ẑ (2.121)

which again split up into a transverse and normal component. For the transverse

component we have

~qt =
(
~ko − ~kr

)
t

=
(
~ko − ~ki

)
t
, (2.122)

where we have used the above mentioned continuity of the parallel components of

the wave vectors on the refractive boundary. For the magnitude we get

|~qt| = qt =
2π

λ
[sin(θo)− sin(θi)] . (2.123)

The normal component is given by

qz = koz − kor = koz −
√
k2
r − k2

rα − k2
rβ

= koz −
√
k2
r − k2

iα − k2
iβ = koz − |k|

√
n2 −

(
îα̂
)2

−
(
îβ̂
)2

= koz −
2π

λ

√
n2 − sin2(θi) =

2π

λ

[
cos(θo)−

√
n2 − sin2(θi)

]
.

(2.124)
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From this follows for the difference of the normal component of two fields A1 (x1, y1)

and A2 (x2, y2)

∆qz =

∣∣∣∣2πλ1

[
cos(θo1)−

√
n2 − sin2(θi1)

]
− 2π

λ2

[
cos(θo2)−

√
n2 − sin2(θi2)

]∣∣∣∣
(2.125)

which is the final result. On a closing note, it is mentioned in J. W. Goodman,

2020 that in a simple imaging geometry, the contributions of the term Ψ can be

neglected with respect to the discussed parameter changes. However, dispersive

imaging spectrometers induce a wavelength-dependent lateral shift on the speckle

patterns that can not be neglected. Also, to which extent angular changes may be

insignificant in terms of Ψ should be carefully examined for a specific instrument’s

geometry.

(a) (b)

Figure 2.5: Scattering in the transmission case: (a) light originating from an average
illumination direction î is incident on a finite scattering slab with refractive index
n having an angle θi with the slab’s normal. The ray is refracted in the direction r̂
and emerges from the (α, β)–plane just right to diffuser’s surface. The scattered
light is observed from an average direction ô under an angle θo with the diffuser
normal. Again, h (α, β) denotes the effective surface roughness. (b) wave vectors of

the incident and refracted light ~ki and ~kr as well as ~ko in the observation direction.
Adapted from J. W. Goodman, 2020.
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2.3 Speckle Summation and Averaging in Imag-

ing Spectrometers

In sections 2.2.2 to 2.2.4 and 2.2.6 several effects are discussed that can lead to

a reduction of the speckle contrast C compared to fully developed speckles with

unity contrast. The standardized measure to quantify the magnitude of the speckle

impact is the Spectral Features Amplitude (SFA) Brug and Courrèges-Lacoste,

2007, which is mathematically equal to the speckle contrast C. It describes the

amplitude of the features in the perceived spectrum that are solely caused by the

diffuser. The features are due to a net speckle pattern that is integrated at the

detector. Predicting the exact position of this pattern at the detector plane can

be unreliable since it depends on various geometric conditions. Instead, it can be

quantified by the speckle contrast introduced in section 2.2, eq. (2.31). In doing

so no further knowledge about the positions of individual speckles is required. In

fact, the contrast C at detector level can solely be determined by factoring in

any relevant speckle averaging effects that reduce it from an initial value which is

assumed to be unity as established in eq. (2.32). To every reduction effect one can

assign an averaging factor M1,2 which reduces a contrast C1 to C2 by

M1,2 =
C2

1

C2
2

. (2.126)

It is well established and important to note that a contrast reduction can only be

achieved if speckle patterns are summed on intensity basis and if they exhibit a

correlation that is smaller than unity J. W. Goodman, 2007. Correlation can be

understood as similarity. The summation of partially correlated and completely

uncorrelated (independent) speckle patterns is discussed in previous sections. If,

however, speckles are summed on amplitude basis, no reduction will take place.

This is the case if individual speckle patterns can interfere. Therefore, it is sufficient

to treat effects for which the underlying summation is on intensity basis for which

only in this case the contrast or SFA is impacted.



Chapter 3

Measurement of Diffuser-Speckle

In this chapter, an experimental approach for quantifying the impact of speckles in

an imaging spectrometer as an alternative to common representative end-to-end

setups is presented. Compared to the latter method, it features several advantages:

it can be adjusted to represent different instruments quickly, the experimental

complexity is reduced, ensuring that only speckle contributions are measured, small

speckle error amplitudes are detectable, and one is able to track the progression of

the speckle statistics through the instrument. These advantages are the premises for

a better understanding of the speckle effect and the development of the theoretical

model in the following chapter. In section 3.1 the basic principle is explained.

Afterward, the experimental means and procedures are shown in section 3.2 followed

by a discussion about the mitigation of stray light and a constraint on the setup set

by the diffuser illumination in section 3.3. In section 3.4 the image post-processing

steps are described.

3.1 Experimental Approach

The measurement method to quantify the impact of Spectral Features in imaging

spectrometers used in this work is based on the determination of speckle statistics

at intermediate steps in the instrument (Burns et al., 2017; Richter et al., 2018),

rather than just at the detector plane (Brug and Courrèges-Lacoste, 2007). This
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allowed for the derivation of a comprehensive prediction model (Richter et al.,

2021), which is presented later (chapter 4).

Figure 3.1 shows the optical setup of an imaging spectrometer during the solar

calibration as described previously in section 1.1. Incoming Sunlight is scattered

by a diffuser in transmission at the plane with spatial coordinates g and h, thereby

homogeneously filling the aperture and field of view of the instrument. The scattered

field distribution is imaged to the slit plane with spatial coordinates x and y by

the telescope. Here, the slit cuts the image, and only light emerging from points

within the slit aperture is collimated onto the dispersive element, such as a grating,

separating its spectral components to different angles depending on the wavelength

λ. The focusing lens converts the various angles to positions b at the detector plane.

The relations between slit and detector plane coordinates are summarized by the

simplified linear spectrometer equations given by Burns et al., 2017

a = Mxx, (3.1)

b = Myy + kλ, (3.2)

where Mx and My are the magnification factors in the x- and y-direction, respec-

tively, and k = db / dy is the dispersion. A few assumptions are made by Burns

et al. (2017) and Richter et al. (2021) that simplify the measurement but should

not impact speckle related effects appreciably. First, the magnification factors in

eqs. (3.1) and (3.2) as well as the dispersion are assumed constant with wavelength

and spatial coordinates x and y. Further, the instrument point spread function is

neglected. Finally, the Sun’s light is spatially coherent, which allows the approxi-

mation of collimated light incident on the diffuser. Also, the Sun is considered to

be a point source. At this point, an argumentation is anticipated regarding the

treatment of the net speckle distribution in the slit and detector plane as a super-

position of monochromatic speckle intensities (see Richter et al., 2021) and will be

detailed in chapter 4. So far, we have discussed the general structure of an imaging

spectrometer consisting of various optical components and the simplification made
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Aperture plane
(g, h)

Slit plane
(x, y)

Detector plane
(a, b)

Diffuser &
aperture

Telescope

Entrance slit

Collimator, dispersive element, & focusing lens

2D array
detector

Detector spectral 
dimension b

Slit spatial 
dimension y

Aperture spatial 
dimension h

Experiment Numerical propagation

Figure 3.1: Optical setup of an imaging spectrometer during solar calibration.
The sequence of optical components is subdivided into two parts. The first part is
covered by the experimental setup in the lab, starting at the illuminated diffuser
and ending at the slit in the telescope focal plane. The second part numerically
propagates the images recorded in the slit plane to the instrument detector plane.
Adapted from Richter et al., 2021.

for this measurement technique. Let us take a look at how this experimental

approach reflects these components. The complete optical setup of an imaging

spectrometer is mimicked by two separate parts, as illustrated in fig. 3.1. The first

part is covered by the experiment in the lab ranging from the illuminated diffuser

over the telescope to the entrance slit. The second part is a numerical simulation

and consists of the optical components from the slit to the detector. The acquired

data in the first part is used as input for the numerical propagation through the

rest of the instrument. During the first part, monochromatic speckle intensities

are recorded subsequently over a wavelength range λ1...λN at the slit plane (x, y).

The spectral step size ∆λ needs to be sufficiently small in order to sample the

changing speckle patterns appropriately. In chapter 4 it will be shown on the basis

of the measured data that the respective sampling chosen for the measurements

is adequate. Following the acquisition in the first part of the measurement chain,
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the intermediate result is a three-dimensional data set Islit(x, y, λ) consisting of

a spectrum of monochromatic speckle images. The speckle images are rescaled

in order to properly match the optical system of the spectrometer that is being

mimicked. This process is detailed in section 3.4. In fig. 3.2 (a) and (b) examples

of measured speckle patterns are shown. In the numerical simulation, these speckle

images are mapped to detector positions (a, b) and summed in intensity (Burns

et al., 2017) with

Idet (a, b) =
∆λ

λres

λN∑
λ=λ1

Islit

(
a

Mx

,
b− kλ
My

)
Θ (b− kλ) Θ (kλres − b+ kλ) , (3.3)

where eqs. (3.1) and (3.2) are used to express slit plane coordinates as detector

coordinates, Θ(y) = 0, y < 0 and Θ(y) = 1, y ≥ 0, which is known as the Heaviside

function, and λres is the spectral resolution of the instrument. The two Heaviside

functions omit wavelengths greater and smaller than intended for a spectral detector

coordinate b. The equation illustrates the limited amount of speckle intensities

contributing to the sum at a single detector element. The result of the summation

is a two-dimensional intensity distribution as illustrated in fig. 3.2 (c) and (d).

Finally, Idet (a, b) is integrated according to the instrument’s detector pixel grid

(ã, b̃) which is depicted in fig. 3.2 (e) and (f). As described in section 2.3 the speckle

averaging effects are of interest, which lead to different contrasts at intermediate

steps in the measurement chain. There are three mechanisms to be accounted for

according to Richter et al., 2021, for which averaging factors are defined in the

following:

1. Depolarization of diffuse light generated by the diffuser given by

Mpolarization =
12

cslit
2 , (3.4)

where the numerator is the initial contrast in the absence of any reduction,

which is expected to be unity (see section 2.2.1) and cslit is the average

measured contrast in the slit plane determined from all recorded speckle
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patterns Islit(x, y, λ) (see section 4.4 for details). Refer to section 3.4.3 for an

explanation, why the actually measured contrast in the slit is not unity. This

constant offset from unity, however, can be compensated for and does not

change the final measurement result.

2. Spectral averaging due to the summation of speckle patterns using eq. (3.3)

given by

Mspectral =
cslit

2

c2
spectral

, (3.5)

where cspectral is the measured contrast of the intensity distribution Idet(a, b).

3. Integration of speckles with instrument detector pixel when applying the grid

(ã, b̃) yields the intensity distribution of the detector pixels Idet

(
ã, b̃
)

is given

by

Mdetector =
c2
spectral

c2
detector

, (3.6)

where cdetector is the measured contrast of Idet

(
ã, b̃
)

.

At last, the measured SFA is calculated as the reduced speckle contrast by com-

pounding the three averaging effects according to J. W. Goodman, 2007 as

SFA =
1√

MpolarizationMspectralMdetector

. (3.7)
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Figure 3.2: Speckle patterns in the NIR band (a, c, and e) and SWIR band (b,
d, and f) at different stages in the measurement chain: (a/b) is an example of
a monochromatic speckle pattern in the slit plane; (c/d) is the speckle pattern
integrated at the detector plane using eq. (3.3) and normalized by the mean.
Horizontal lines denote the instrument detector pixel grid (ã, b̃), and (e/f) is the
final normalized pixel integrated detector image. The standard deviation taken
over the pixel rows is the SFA. Adapted from Richter et al., 2021.



3.2 Materials and Procedure 49

3.2 Materials and Procedure

Measurements are performed for different wavelength bands that are commonly

encountered in Earth observation missions, such as the visible band (VIS), the

near-infrared band (NIR), and the short-wave-infrared band (SWIR) (Irizar et al.,

2019; Meijer et al., 2019; Voors et al., 2017; Wenig et al., 2004). First, the materials

that are used for all bands are presented; everything wavelength-specific is shown

later. The measurement setup covering a spectrometer instrument from the diffuser

to the entrance slit is depicted in fig. 3.3. A tunable external cavity diode laser

with a narrow linewidth serves as a light source. A small portion of the laser light

is tapped into a Fizeau interferometer, which spectrally stabilizes the laser via a

proportional-integral-derivate (PID) feedback loop. All fiber connections are single-

mode (SM) fibers, which can be used because the spectral tuning ranges are only

a few nanometers. Also, SM fibers introduce no additional speckle contribution

to their outputs in contrast to multi-mode fibers. A linear polarizer ensures

polarization stability after the fiber output. The divergent laser beam illuminates

the diffuser at normal incidence with respect to the diffuser plane, thereby overfilling

it significantly (see section 3.3 for details on the illumination). The diffuser has a

diameter of 70 mm and a thickness of 3 mm if not mentioned otherwise. It is made

out of highly scattering fused silica HOD®-500 material featuring inhomogeneities

of 20 µm or less. It has been selected for the Sentinel-5/UVNS instrument by

Irizar et al., 2019 and is therefore deemed a suitable choice for the wavelengths

used in this work. The power meter is illuminated by a representative portion of

the divergent laser beam. The power readings are used to calibrate the acquired

images in intensity, which is detailed in section 3.4. The round apertures control

the size of individual speckle correlation areas. Aperture 2 blocks any unwanted

angular contributions (see details in section 3.3). The telescope’s focal length is

ftel = 1100 mm and images the diffuse light onto a 2D array detector positioned in

the focal plane. Note that the focal plane in fig. 3.3 represents the slit plane in

fig. 3.1 and the diffuser plane is tilted by 10° with respect to aperture and slit planes
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in order to ensure that only scattered light reaches the detector. The telescope is

aligned perpendicular to the aperture and slit plane. Tables 3.1 to 3.3 shows the

Aperture plane
(g, h)

Slit plane
(x, y)

Diffuser & aperture 1

Aperture 2 &
telescope Detector

Diffuser plane
(e, f)

Linear polarizer

Fiber output

Fiber tab
with SM fiber 
connections

Tunable laser
source

Wavemeter

Computer 

Power
meter

Divergent laser beam

Figure 3.3: The layout of the experimental setup for measuring diffuser-induced
monochromatic speckle patterns in the slit plane is depicted. The diffuser is
illuminated with a divergent beam of monochromatic laser light out of a single-mode
fiber. The laser source is spectrally stabilized with feedback from a wavemeter. The
divergent beam is polarized by a linear polarizer. A portion of the beam is captured
by a power meter for later intensity calibration. The speckle field originating from
the diffuser is imaged by a telescope through two apertures onto a two-dimensional
array detector. The diffuser plane is tilted with respect to the other planes in
order to minimize specular light contributions at the detector. All components are
controlled and synchronized via a computer. Adapted from Richter et al., 2021.

laser sources, detectors, and SM fiber types used in the measurements throughout

this work for the NIR, SWIR, and VIS band, respectively, with a few important

parameters. Note that the CCD camera is used for both the NIR and VIS bands.

All other experimental parameters specific to a certain measurement such as the

spectral tuning range λ1...λN , the step size ∆λ, the diameters of both apertures D,

and the diffuser thickness d are given in the respective result section. The power of

the laser sources needs to be adjusted so that the dynamic range of the respective
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detector is utilized best without altering the to be measured speckle statistic in

terms of the intensity and the speckle size. In the following, we derive the expected

speckle intensity PDF in the slit plane. For that, we anticipate a result of section 4.3:

the intensity in the slit plane Islit is the sum of two independent speckle patterns,

which we denote here by I1 and I2. They arise from the depolarization of the light

by multi-scattering inside the volume diffuser. We assume unbiased scattering

properties with respect to the two polarization components, which implies them

having equal average intensities, i.e. I1 = I2 = I0, and that Islit = I1 + I2. Consider

the PDF in eq. (2.38) describing the sum of N independent speckle patterns In

with total intensity IS and equal component mean In = I0. We set IS = Islit and

N = 2 for the case of the slit plane, which gives

fslit (Islit) =
Islit

Γ(2)I2
0

exp

(
−Islit
I0

)
=
Islit
I2

0

exp

(
−Islit
I0

)
, (3.8)

where the definition of the gamma function for positive integer arguments, Γ (N) =

(N − 1)!, is used. The probability that the speckle intensity exceeds the detector’s

dynamic range threshold It can be calculated with

P (I > It) =
1

I2
0

∫ ∞
It

I exp

(
− I
I0

)
dI =

(
1 +

It
I0

)
exp

(
− It
I0

)
. (3.9)

This implies that the average component intensity, which is given by I0 = Islit
2

,

needs to be chosen as low as possible without diminishing the measured speckle

contrast by a small signal-to-noise ratio. If the laser power is adjusted so that

the average image intensity Islit amounts to 25 % of the dynamic range of the

detector It, then the chance of intensities not being properly recorded is 0.3 %.

This condition is satisfied for all measurements.
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Toptica Laser Center λ Tuning range Line width
DL Pro 780 780 nm 765 nm...805 nm 6× 10−7 nm
CTL 1550 1550 nm 1510 nm...1630 nm 2× 10−6 nm
DL Pro HP461 460 nm 457 nm...461 nm 1× 10−7 nm

Table 3.1: Laser sources used in this work with center wavelength, available tuning
range, and typical line width according to the supplier.

Camera model Detector type Active area Pixel size
Atik 460ex CCD (Si) 2750 px× 2200 px 4.54 µm
Photonic Science CMOS (InGaAs) 640 px× 512 px 15.5 µm

Table 3.2: Camera models used in this work with detector type, active area, and
pixel size.

Fiber model Operating λ λcutoff Core diam. NA
Thorlabs 780HP 780 nm...970 nm (730± 30) nm 4.4 µm 0.13
Thorlabs SMF-28-J9 1260 nm...1625 nm 1260 nm 8.2 µm 0.14
Thorlabs 460HP 450 nm...600 nm (430± 3020) nm 2.5 µm 0.13

Table 3.3: Fiber types used in this work with operating wavelength range, cut-off
wavelength, core diameter, and numerical aperture (NA) according to the supplier.
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3.3 Straylight and Diffuser Illumination

The idea of the measurement setup, as shown in fig. 3.3, is to resolve individual

speckle correlation areas with a camera in the slit plane. The recorded data is

used as starting point for a numerical propagation of the monochromatic speckle

patterns from the slit plane to a virtual detector plane of an instrument. The

diffuse light is focused at the slit plane with a telescope featuring a long focal length

of ftel = 1100 mm and a clear aperture of Dtel = 102 mm. A telescope is images

objects from infinity, e.g. when they are far away, with a high f-number, which is

f/# = ftel
Dtel
≈ 11. This also means for the numerical aperture NA ≈ 1

2f/#
= 0.1 or

an acceptance angle of α ≈ 5°. The spatial limitations in the laboratory only allow

for distances between diffuser and telescope of about 300 mm. Due to its proximity,

some light scattered by the diffuser may reach the telescope at angles exceeding

its numerical aperture, which leads to light being scattered at part of the inner

housing of the telescope. Those additional contributions appear as fine speckles

at the focal plane. In an earlier study by Richter et al., 2018 the residuals are

filtered using Fourier analysis of the recorded speckle patterns. For every acquired

image, the higher frequency components of the power spectral density, which is

well known for a given aperture (J. W. Goodman, 2007, p.77-79), is removed,

leaving only frequencies that originated from the diffuser aperture. This approach

involves additional post-processing of the acquired images, which may change the

speckle statistics unintentionally. Thus, in this work, a different method is used.

In order to block far off-axis scattering angles, two apertures are placed between

diffuser and telescope, as proposed by Richter et al., 2021. The second aperture is

placed directly upstream of the telescope lens, thereby a priori keeping stray light

contributions from propagating to the focal plane. The effective aperture diameter

determining the speckle size is the exit pupil (see J. W. Goodman, 2007, p. 82). Its

size and position define the effective f-number of the telescope. The symmetry is

illustrated in fig. 3.4: The apertures have a diameter d1 and d2, where the smaller

sized one defines the exit pupil on the image side of the system (J. W. Goodman,
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2017). For all measurement the condition d1 ≤ d2 holds, which implies that the

effective aperture size is D = d1. First, knowing the exact size of the exit pupil

Figure 3.4: Geometry between the diffuser and the focal plane of the telescope
is shown. The slit plane is located in the focal plane of the telescope; thus only
rays parallel to the optical axis are imaged. The exit pupil on the imaging side is
defined by a smaller diameter of d1 and d2. Angular contributions originating from
far off-axis locations are blocked by aperture 2.

of the imaging system is important since it directly determines the size of the

speckle correlation areas (see section 2.2.5). Secondly, the size of the scattering

spot at the diffuser needs to be matched to the area of the diffuser, which can

be assumed to be illuminated homogeneously by the divergent laser beam. In

the following, the method used to determine the uniformity of the laser beams is

presented. A power meter is placed on a translation stage a distance downstream

from the fiber output, where normally the diffuser is positioned. The Gaussian

beam originating from the single-mode fiber is centered on the power meter head,

which has a round sensitive area with a diameter of 9.5 mm. The head is then

successively translated perpendicularly to the optical axis by small steps of 0.1 mm.

In this way, the transversal intensity profile I (r) of the beam at the distance r

from the optical axis is measured for all three laser sources used throughout this

work. The results are depicted in figs. 3.5 to 3.7 for the VIS, NIR, and SWIR
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laser source, respectively. The uniformity U (D) over the aperture diameter D is

characterized by the equation

U (D) =
I(0)− I

(
D
2

)
I(r)

, 0 ≤ |r| ≤ D

2
, (3.10)

where it is assumed without loss of generality that the maximum intensity is centered

at r = 0. Table 3.4 depicts the beam uniformities calculated with eq. (3.10) and the

intensity profiles of figs. 3.5 to 3.7 for various aperture diameters. For a diameter

up to 15 mm the assumption of uniform illumination of the diffuser is reasonably

met. Diameters beyond 20 mm, especially in the SWIR case, should be avoided.

D = 10 mm D = 15 mm D = 20 mm D = 28 mm
UV IS (D) 3.5 % 7.6 % 13.2 % 24.9 %
UNIR (D) 3.5 % 7.5 % 13.0 % 23.2 %
USWIR (D) 2.8 % 8.5 % 17.4 % 31.0 %

Table 3.4: Calculated beam uniformities U (D) from transversal intensity profiles
I (r) of figs. 3.5 to 3.7 for a distance downstream of the fiber output of 470 mm.

Figure 3.5: Measured beam intensity of the divergent VIS laser beam 470 mm
after the fiber output at different positions perpendicular to the optical axis.
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Figure 3.6: Measured beam intensity of the divergent NIR laser beam 470 mm
after the fiber output at different positions perpendicular to the optical axis.

Figure 3.7: Measured beam intensity of the divergent SWIR laser beam 470 mm
after the fiber output at different positions perpendicular to the optical axis.

3.4 Image Calibration Strategy

The intention of the measurement chain presented in this chapter is to simulate the

speckle effect in a virtual imaging spectrometer. Consequently, the dimensions of

the recorded images need to be matched in accordance with the optical parameters

of the target instrument. Also, since the speckle effect is quantified relative to

an otherwise constant mean intensity over the acquired spectrum, any systematic

fluctuations between the measured speckle images need to be calibrated to minimize

their contribution to the SFA result. In this section, the procedures, which deal
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with those two aspects of the image post-processing, are presented.

3.4.1 Slit Image Scaling

For the appropriate resizing of the acquired speckle images, which serve as input

for the numerical spectrometer propagation, the speckle extent Lc needs to be sized

with respect to the instruments’ slit dimensions. In section 2.2.5 it is shown that

the speckle size in the slit plane depends on the f-number of the preceding imaging

optics, which in this case, is defined by the aperture diameter D and the telescope

focal length ftel. With eq. (2.88) one can estimate the average speckle sizes of

the measurement chain Lc,meas and the virtual instrument Lc,instr for a circular

aperture. Let Wx,instr and Wy,instr denote the slit size of the instrument in x- and

y-direction, then the dimensions of the sub-images are given by

Wx,im = Lc,meas
Wx,instr

Lc,instr
, (3.11)

Wy,im = Lc,meas
Wy,instr

Lc,instr
. (3.12)

Although it seems like that virtually, every configuration is possible as long as Wx,im

and Wy,im do not exceed the pixel values of the recording camera, in reality, some

limitations arise due to the finite pixel width of the recording cameras. For example,

the target instrument features a dispersion k, which causes an offset between the

speckle images at the detector plane ∆b. The numerical propagation demands

that this offset has an integer value corresponding to a complete pixel. Given the

constant wavelength step size ∆λ and the fact that the slit width corresponds to

the spectral resolution λres one can infer for the image height

Wy,im = ∆b
λres
∆λ

.

This immediately defines Wx,im, too, because the aspect ratio of the entrance slit

is conserved. Now, the speckle size needs to be adjusted so that it matches the
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numerically constrained image dimensions. This can be achieved by tuning the

aperture diameter D to an appropriate size or changing ∆λ. In summary, the

experimental parameters should be carefully evaluated before a measurement in

order to minimize deviations from the optimal image dimensions.

3.4.2 Image Flat-Field Correction

In the following, the second step of the image post-processing is described, which

aims at the equalization of the recorded data to the same mean intensity and

the elimination of intensity structures introduced by the used detector or imaging

system (Richter et al., 2018). Therefore, after the acquisition of the speckle

images Ispeckle (λn) the same wavelength range is traversed again and a flat field

or calibration image Ical (λn) is recorded. During the integration, the diffuser is

translated and rotated simultaneously in order to average out the diffuser speckle.

In doing so, only characteristics caused by the optical system of the measurement

chain without the speckle contributions are selected. For every image on both runs

the laser output power Pspeckle (λn) and Pcal (λn) is recorded by the power meter,

which are used to calibrate for laser power fluctuations caused by the wavelength

tuning. After the calibration run 100 dark images are taken and averaged, yielding a

noise-reduced background BG. The calibrated speckle image Ispeckle,cal is according

to Richter et al., 2018, given by

Ispeckle,cal (λn) =
(Ispeckle (λn)−BG)Pcal (λn)

(Ical (λn)−BG)Pspeckle (λn)
. (3.13)

3.4.3 Speckle Statistic in the Slit Plane

There is one important implication for the statistic of the speckle images that

are recorded in the focal plane of the telescope, namely the slit plane. According

to J. Goodman, 1975 the speckle field in the focal plane of an imaging lens does

not follow circular Gaussian statistics since the otherwise complex pupil function

becomes real-valued. This gives rise to a non-zero specular component at the point
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where the optical axis of the imaging system meets the focal plane. This specular

component effectively reduces the speckle contrast. In order to avoid recording this

component in an actual spectrometer, the detector is usually positioned off-axis,

which is also done for this setup. From speckle theory, the actual contrast for fully

developed circular Gaussian speckle fields is known to be unity (see section 2.2.1),

which allows for a simple compensation. Even without this effect, it is challenging

to actually acquire speckle images with unity contrast since, for this intensity,

values close to zero are needed, which is unrealistic for most detectors.



Chapter 4

Prediction Model for

Diffuser-Speckle

In this chapter, a theoretical prediction model of the impact of diffuser speckle in

imaging spectrometer is given. It can be understood as a mathematical representa-

tion of the measurement technique in chapter 3. The basic theoretical concepts of

speckle are established in section 2.2. An introduction to the approach of quantify-

ing the diffuser induced speckle effect in spectrometers is given in section 2.3. The

goal of the prediction model is to determine the result of the measurement technique

presented in chapter 3, namely eq. (3.7). Therefore, one needs to determine all

three reduction factors Mpolarization, Mspectral, and Mdetector, which is presented in

section 4.1. In section 4.2 a method to characterize the employed diffusers in

this work is given. Finally, in section 4.3 the SFA results determined with the

measurement chain (see chapter 3) are presented and compared to the prediction

model.

4.1 Model Description

The SFA prediction model has been first introduced by Richter et al., 2021 and is

presented in the following. At this point, let us recall that a contrast reduction can
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only be achieved if speckle intensities are summed on intensity basis, that is, they

can not interfere with each other, and that they show a correlation smaller unity

(J. W. Goodman, 2007, Section 3.3.1). For each of the averaging factors, it will be

shown that both conditions are met. In the following, all references to the optical

setup of the spectrometer in question, including diffuser, slit, and detector planes,

are depicted in fig. 3.1, section 3.1.

4.1.1 Polarization Averaging

The first reduction effect is due to polarization averaging. Sunlight has two

orthogonal polarization states, which are incoherent (Hecht and Lippert, 2018,

p. 656). The volume diffuser generates depolarized light due to multi scattering

(Lorenzo, 2012, p. 85), which yields two equally strong independent speckle patterns

for every polarization configuration per orthogonal state as shown in section 2.2.4.

They can not interfere and are therefore summed on intensity basis. This yields a

total of four independent contributions for Sunlight,

M
(sun)
polarization = 4. (4.1)

Note that for measurements conducted in chapter 3 employing a laser source, there

are only two independent speckle patterns (Richter et al., 2021), since a laser

features only one polarization state. The monochromatic light incident on the

diffuser is, again, depolarized when exiting it due to multi scattering, hence

Mpolarization = 2. (4.2)

4.1.2 Spectral Averaging

The finite bandwidth of the light, which is collected in the spectral channels of

a spectrometer, is called spectral resolution and gives rise to spectral averaging.

Consider a speckle intensity In (x, y, λn) generated by the diffuser with monochro-
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matic light at a wavelength λn in the slit plane (x, y) of the instrument. The

underlying field An (x, y, λn) gives rise to the speckle intensity, and they are related

by In = |An|2, where An is the field amplitude. Now, the wavelength is changed

gradually to λm, thus increasing the difference ∆λn,m = |λn − λm|. As the wave-

length changes so does the underlying field Am (x, y, λm). In section 2.2.7 a general

formulation of the cross-correlation function is given, which describes the relation

between the two fields. It consists of two components, one of which is defined by

the scattering properties of the diffuser denoted by F and one, which is given by the

imaging system denoted by Ψ. In the following, both contributions are specified for

the volume diffuser used throughout this work in transmission geometry. We start

with the diffuser part. In the slit plane, the correlation is influenced by changing

light paths through the diffuser medium at different wavelengths, which we will

denote by F (λn, λm). In order to model the correlation contribution, the approach

by Zhu et al., 1991 is used. They presented an analytic equation for the wavelength

correlation function in a slab geometry of a scattering media:

F (λn, λm) =

(d+ 2B)/(z0 +B)
[
sinh

(
z0

√
q2 + α2

)
+B

√
q2 + α2 cosh

(
z0

√
q2 + α2

)]
[1 +B2(q2 + α2)] sinh

(
d
√
q2 + α2

)
+ 2B

√
q2 + α2 cosh

(
d
√
q2 + α2

) ,

(4.3)

where d is the thickness of the material, q =

√
i6π
∣∣∣ 1
λn
− 1

λm

∣∣∣ βns/lt is the magnitude

of the scattering vector, ns denoting the refractive index of the scattering material,

lt the transport mean free path, and β =
∣∣∣cos(θo)−

√
n2
s − sin2(θi)

∣∣∣ the in this case

constant angular contribution from section 2.2.7, eq. (2.125) taking into account the

tilted diffuser plane (e, f) with respect to the other planes. A method to determine

the parameter lt experimentally is shown in section 4.2. The symbol z0 describes

the average penetration depth after which the light is scattered for the first time.

Since it does not have a great impact in a transmission geometry, it is approximated
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with lt. By setting α = 0 absorption is ignored. The parameter for the boundary

condition is given by B = lt
2(1+R)
3(1−R)

, where R is the reflection coefficient which is

calculated using the Fresnel equations (Zhu et al., 1991). It accounts for internal

reflection due to index of refraction mismatch at the boundaries.

The speckle intensities in the slit plane (x, y) are imaged to the detector plane

(a, b) using eqs. (3.1) and (3.2). Here, they are subject to a spatial offset in the b-

direction induced by the dispersive element, which amounts to ∆b = k∆λn,m. This

contribution to the correlation is denoted as Ψ (∆b) and is the second contribution

to the cross-correlation of the two fields An and Am discussed in section 2.2.7:

Ψ (∆a,∆b)|∆a=0 =

∫∞
−∞ |P (g, h)|2 e−i 2πλ̃z (g∆a+h∆b)dg dh∫∞

−∞ |P (g, h)|2 dg dh

∣∣∣∣∣
∆a=0

, (4.4)

where P (g, h) is the aperture function of the imaging system. For a circular aperture

of diameter D, the result from eq. (2.88) can be used to get for a one-dimensional

offset immediately

Ψ (0, k∆λn,m) = 2
J1

(
πD

λn,mftelMy
k∆λn,m

)
πD

λn,mftelMy
k∆λn,m

, (4.5)

where J1 is the Bessel function of first kind, first order, λn,m is the mean of the

neighboring wavelengths involved, and ftel is the focal length of the telescope. It is

established in section 2.2.7, eq. (2.117) that the ”magnitude of change” between

individual speckle fields can be described by the first order field correlation. In the

current case it depends on wavelengths λn and λm,

µn,m (λn, λm) =
An (x, y, λn)A∗m (x, y, λm)√
In (x, y, λn)Im (x, y, λm)

= F (λn, λm) Ψ (0, k∆λn,m)

(4.6)

where in the second step eqs. (4.3) and (4.5) are used. The symbol ∗ denotes the

complex conjugate. µn,m is related to the correlation on intensity basis ρn,m by
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eq. (2.49). The accumulation of a number of N speckle intensities In

(
a
Mx
, b−kλn

My

)
per spectral channel at the detector plane is given by

Idet (a, b) =

N=λres/∆λ∑
n=1

In

(
a

Mx

,
b− kλ
My

, λn

)
. (4.7)

Similarly, for the average detector intensity, we have

Idet =

N=λres/∆λ∑
n=1

In. (4.8)

The correlations between the speckle intensities in the sum are given by µn,m (λn, λm),

which allows the description with the formalism presented in section 2.2.3. The

entries Jn,m = AnA∗m of the coherency matrix J are given by

Jn,m =

√
InImµn,m, (4.9)

where eq. (4.6) is used, n,m = 1...N , and spatial positions are in terms of detector

coordinates. After the diagonalization of J , the eigenvalues Ĩn are used to calculate

the spectral averaging factor

Mspectral =

(
Idet
σdet

)2

=

(∑N
n=1 Ĩn

)2

∑N
n=1 Ĩn

2 . (4.10)

In the following, the limit of very small spectral sampling steps ∆λ is discussed,

which represents the case of a continuous spectrum. Two aspects need to be

considered. First, is the accumulation of speckle patterns in eq. (4.17) on intensity

basis and second, is Mspectral independent of spectral sampling ∆λ? An argument

for the latter is given by Richter et al., 2021, which cite a property of the coherency

matrix J called Toeplitz. A Toeplitz matrix shows an asymptotic behavior of its

eigenvalues (Grenander and Szegö, 1958). One can see that by decreasing the

spectral sampling one increases the number summations N in eq. (4.7), and thus
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in eq. (4.10), as well as the size of the coherency matrix J . (Gray, 2006) gives

proof of the fact that both, the numerator and denominator in eq. (4.10) converge

for large N . Richter et al., 2021 also show that the summation is on intensity

basis by invoking the short temporal coherence of sunlight ∆tsun, which is on the

order of femtoseconds (Hecht and Lippert, 2018) in comparison to the substantially

greater integration time ∆tint of a realistic detector, which is on the order of

microseconds or higher. The resultant intensity of two speckle fields An (λn) and

Am (λm) perceived by a detector is the time average of the underlying fields given

by

〈Idet,nm〉∆tint = |An|2 + |Am|2 + 2〈Re{AnA
∗
m}〉∆tint (4.11)

The coherence term 2〈Re{AnA
∗
m}〉∆tint is an oscillatory beat which varies on the

order of ∆tsun. Thus, in good approximation, contributions by this term average

out,

〈Re{AnA
∗
m}〉∆tint → 0,

∆tsun
∆tint

→ 0,

which implies a summation of monochromatic speckle patterns on intensity basis

(see also George and Jain, 1974). A similar argument by Caron, 2020 can be made

using a property of the diffuser. Its correlation function F approaches zero for

large wavelength shifts ∆λnm,

lim
∆λnm→∞

F (λn, λn + ∆λnm) = 0. (4.12)

Let us define a wavelength shift ∆λdecorr, for which the correlation falls to a value

of e−3,

F (λn, λn + ∆λdecorr) = e−3, (4.13)

which we call spectral decorrelation length. Strictly speaking, it is itself wavelength

dependent, because the width of F is coupled to the mean free path length lt (λ),

which in turn is anti-proportional to the scattering cross-section, lt ∼ 1/σ(t) (see

Bertolotti, 2007, p. 29). However, in the following it is assumed, that ∆λdecorr is

appreciably constant over the width of the spectral resolution λres. Let us consider
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two waves with different wavelengths separated by ∆λcoh. The coherence between

them is bound to the condition (Hecht and Lippert, 2018)

c
∆λcoh

λ
2 ∆tcoh . 1, (4.14)

where λ is the average wavelength of the two waves, c is the speed of light, and

∆tcoh is the coherence time. For a realistic integration time of ∆tint = 1 µs and

a wavelength of λ = 1 µm the wavelength shift required to violate this coherence

condition is

∆λcoh .
λ

2

c∆tint
≈ 4× 10−6 nm (4.15)

Let us discuss three cases of the finite spectral sampling ∆λ:

∆λ < ∆λcoh Wavelength shifts smaller than ∆λcoh lead to a summation on ampli-

tude basis,

∆λcoh < ∆λ < ∆λdecorr for wavelength shifts greater than ∆λcoh the summation

is on intensity basis but with no appreciable decorrelation,

∆λdecorr < ∆λ summation is on intensity basis and speckle intensities are decorre-

lated.

We have already established, a summation on amplitude basis can not reduce

speckles and therefore needs no further attention. In fact, only the third case has

a significant impact on the speckle contrast. As a consequence, for a continuous

spectrum, we need no infinitely dense sampling for F . Instead, we can derive one

from the cases above and the sampling theorem (Jähne et al., 1999, section 2.4.2)

to be

∆λ =
∆λdecorr

2
. (4.16)

4.1.3 Detector Averaging

The third averaging effect occurs at the detector plane (a, b). Here, the individual

speckle patterns are summed to a net intensity denoted by Idet (a, b) in eq. (4.7). As
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a final step, the instrument detector integrates this speckle pattern by summation

of all intensities within a detector pixel. The pixel grid is denoted by
(
ã, b̃
)

and

gives rise to detector averaging. The principle of this speckle reduction effect is

detailed in section 2.2.6. In summary, the average speckle size compared to a

detector pixel determines the number of speckles that are averaged per pixel. The

analytic expression for the detector averaging factor for stationary speckle in a

detector pixel with relative coordinates (∆a,∆b) is given by

Mdetector =

[
1

A2
D

∞x

−∞

KD (∆a,∆b) |µdet (∆a,∆b)|2 d∆a d∆b

]−1

, (4.17)

where AD is the area of a detector pixel, KD (∆a,∆b) is the autocorrelation function

of the detector pixel, and µdet (∆a,∆b) is the correlation of the speckle field at the

detector plane. An intuitive approximation for the common case in a spectrometer

is a speckle correlation area Ac much smaller than the pixel area AD:

Mdetector ≈
AD
Ac

AD � Ac. (4.18)

Key for the correct calculation is the determination of the speckle correlation

function µdet which determines the speckle size. Therefor, one needs to consider how

this size evolves during the summation in eq. (4.7). For the following explanation

refer to fig. 4.1. It is instructive to think about a single correlation area Ac of

respective 1D sizes La and Lb in the detector plane centered at coordinates (an, bn).

The spatial correlation relative to this position is given by eq. (4.4),

Ψ (∆a,∆b) =

∫∞
−∞ |P (g, h)|2e−i 2πλ̃z (g∆a+h∆b) dg dh∫∞

−∞ |P (g, h)|2 dg dh
, (4.19)

with ∆a = a − an and ∆b = b − bn being relative coordinates, as before. We

have established previously that the spatial distribution of a speckle pattern

decorrelates after a spectral shift of λdecorr. An equal statement would be that a

single speckle correlation area can only persist within one length of this spectral
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interval. Therefore, the speckle correlation area ”exists” at the detector plane of

the instrument at every intermediate position between the coordinates (an, bn) and

(an, bn + kλdecorr) simultaneously and is summed by the detector. This effectively

elongates the speckle in the spectral direction. Thus, we can write the intensity

correlation function |µdet|2 as a symbolic convolution of the geometric speckle size

|Ψ|2 with diffuser correlation function |F |2:

|µdet(∆a,∆b)|2 = |Ψ(∆a,∆b)|2 ~ |F (λn, λm)|2 , (4.20)

where ~ denotes the convolution operation.

Figure 4.1: Schematic illustration of the elongation of the speckle correlation
function µdet due to the instrument’s dispersion k at the detector plane (a, b).

4.2 Diffuser Characterization

The diffusers used in this work play an integral part in all conducted measurements.

In the previous section 4.1 an approach by Zhu et al., 1991 is shown that gives

a relation, F (λn, λm), between the fields of speckle patterns An (x, y, λn) and

Am (x, y, λm) for neighboring wavelengths λn and λm by eq. (4.3) in the slit plane

(x, y). An intuitive interpretation of the diffuser function F is, that it constitutes a

measure of the diffuser’s sensitivity to wavelength change. In other words, it tells

us how fast a speckle pattern changes spectrally. Apart from the wavelength and

the thickness d of the diffuser the key parameter is the transport mean free path
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lt(λ), which depends on the scattering cross-section of the material and is therefore

wavelength dependent. It is the typical distance after which the initial direction of

the light is completely randomized due to anisotropic scattering (Bertolotti, 2007).

lt(λ) is determined for the following parameters:

• λ = 776 nm; d = 3 mm,

• λ = 1572 nm; d = 3 mm,

• λ = 460 nm; d = 0.5 mm,

• λ = 460 nm; d = 1.0 mm,

• λ = 460 nm; d = 2.0 mm.

The three latter results in the VIS range are used in section 5.2. A speckle field An

is related to the measured intensity by In = |An|2. With this relation we can use the

Pearson correlation ρPearson (In(λn), Im(λm)) between recorded speckle intensities

In(λn) and Im(λm) to find a measure for F by

|F (λn, λm)|2 ∼ ρPearson (In(λn), Im(λm))

=

∑
i

∑
j

(
In,ij − In

) (
Im,ij − Im

)√(∑
i

∑
j

(
In,ij − In

)2
)(∑

i

∑
j

(
Im,ij − Im

)2
) , (4.21)

where i, j are image pixel indices, n,m = 1...N and N is total amount of images

used for the calculation. The explicit wavelength dependency is dropped on the

right-hand side. The similarity is justified with eq. (2.49). In figs. 4.2 to 4.5 the

averaged measurement points are represented as blue stars. The error bars are

omitted, because the error of the mean is smaller than 0.5 % thus too small to be

displayed. The red graph is a fit to eq. (4.3) with the desired mean free path length

lt as parameter. The results are depicted in table 4.1. The manufacturer of the

HOD®-500 diffuser material gives an additional value with lt (500 nm) = 56 µm

with an unspecified thickness (Heraeus Conamic, 2021). The measured values are in
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good agreement with this specification except for thicknesses below 2 mm, for which

there seems to be an effect, which reduces lt beyond the wavelength dependence.

Parameters (λ, d) lt
776 nm, 3 mm (59.3± 0.4) µm
1572 nm, 3 mm (67.8± 0.5) µm
460 nm, 0.5 mm (21.5± 0.4) µm
460 nm, 1.0 mm (38.8± 0.3) µm
460 nm, 2.0 mm (51.0± 0.5) µm

Table 4.1: Experimentally determined transport mean free path parameter lt
for different diffuser thicknesses and illumination wavelengths conducted with the
measurement setup presented in chapter 3. It depends on the thickness of the
diffuser and the illumination wavelength. It is the typical distance after which the
initial direction of the light is completely randomized due to anisotropic scattering
(Bertolotti, 2007).
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(a) (b)

Figure 4.2: Measurement of the correlation function |F (λn, λm)|2 for a 3 mm
thick diffuser in (a) the NIR (776 nm) and (b) the SWIR band (1571 nm). Blue
stars denote the measured Pearson correlations between speckle patterns In(λn)
and Im(λm). All wavelength shift combinations up to 0.1 nm are averaged for 120
images. Error bars are omitted, because the standard error of the mean value is
too small to be displayed. The red graph denotes the fit of the measured data
points to eq. (4.3) with (a) lt(λ) = (59.3± 0.4) µm and (b) lt(λ) = (67.8± 0.5) µm.
Adapted from Richter et al., 2021.
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Figure 4.3: Measurement of the correlation function |F (λn, λm)|2 for a 0.5 mm
thick diffuser at 460 nm. Blue stars denote the measured Pearson correlations
between speckle patterns In(λn) and Im(λm). All wavelength shift combinations
up to 0.08 nm are averaged for 21 images. Error bars are omitted, because the
standard error of the mean value is below 0.5 % and therefore too small to be
displayed. The red graph denotes the fit of the measured data points to eq. (4.3)
with (a) lt(λ) = (21.5± 0.4) µm.
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Figure 4.4: Measurement of the correlation function |F (λn, λm)|2 for a 1.0 mm
thick diffuser at 460 nm. Blue stars denote the measured Pearson correlations
between speckle patterns In(λn) and Im(λm). All wavelength shift combinations
up to 0.08 nm are averaged for 81 images. Error bars are omitted, because the
standard error of the mean value is below 0.5 % and therefore too small to be
displayed. The red graph denotes the fit of the measured data points to eq. (4.3)
with (a) lt(λ) = (38.8± 0.3) µm.
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Figure 4.5: Measurement of the correlation function |F (λn, λm)|2 for a 2.0 mm
thick diffuser at 460 nm. Blue stars denote the measured Pearson correlations
between speckle patterns In(λn) and Im(λm). All wavelength shift combinations
up to 0.08 nm are averaged for 81 images. Error bars are omitted, because the
standard error of the mean value is below 0.5 % and therefore too small to be
displayed. The red graph denotes the fit of the measured data points to eq. (4.3)
with (a) lt(λ) = (51.0± 0.5) µm.
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4.3 Results and Comparison to Measurement

In this section, the results by Richter et al., 2021 of the SFA measurements

conducted in the manner described in chapter 3 are presented and compared to the

results of the SFA prediction model presented in this chapter. The basis for the

experiment and the model are parameters representing a proposed spectrometer

instrument for the CO2 Monitoring mission by the European Space Agency (see

Meijer et al., 2019) depicted in table 4.2. The values for the refractive index ns (λ)

of the diffuser material (fused silica) are calculated using the dispersion formula

by Malitson, 1965. In section 4.2 the determination of the diffuser parameter lt is

detailed. The experimental parameters used for the measurements are displayed

Parameter Value
Magnification Mx 0.34
Magnification My 0.30
Aperture diameter 40.0 mm
Slit dimensions (x, y–direction) 295 µm, 152 µm
Detector dimensions (a, b–direction) 105 µm, 45 µm
Detector pixel size 15 µm
Telescope focal length f 131 mm
Diffuser thickness d 3 mm
NIR specific
Spectral resolution λres 0.128 nm

Average wavelength λ 777.1 nm

Refractive index of diffuser material ns(λ) 1.454

Mean free path lt(λ) (59.3± 0.4) µm
SWIR specific
Spectral resolution λres 0.4 nm

Average wavelength λ 1574.25 nm

Refractive index of diffuser material ns(λ) 1.444

Mean free path lt(λ) (67.8± 0.5) µm

Table 4.2: The sample spectrometer parameters that are used for the measurement
and prediction are shown. They were chosen to represent a proposed instrument
for ESA’s CO2M mission (Meijer et al., 2019). Adapted from Richter et al., 2021.

in table 4.2 for both bands. The spectral tuning range needs to be as wide as

possible in order to reduce statistical uncertainties. However, the measurement

quality also suffers from systematic time-dependent influences such as temperature



4.3 Results and Comparison to Measurement 74

fluctuations. This effectively limits the tuning range. Both effects are discussed in

section 4.4. Comparing the tuning step size ∆λ with fig. 4.2 in section 4.2, one

can see that the change of the recorded speckle patterns with wavelength denoted

by the diffuser correlation function F is sampled appropriately. The diameter D

of the round apertures are chosen to achieve an optimum between detector signal

and sampling of the speckle patterns. Using eq. (2.88) to calculate the average

speckle size in the slit plane of the measurement chain with the telescope focal

length z = ftel and the average wavelengths λ yields 96 µm and 150 µm for the

NIR and SWIR bands, respectively. Comparing the expected speckle sizes with

the employed detector pixel dimensions of 4.5 µm and 15.5 µm reveals that the

speckles are sampled in one dimension with approximately 20 pixel in the NIR and

10 pixel in the SWIR band, which seems sufficient since detector averaging effects

become significant if the speckle sizes are approx equal to the detector pixel size or

smaller (see section 2.2.6). Figures 4.6 and 4.7 depict a comparison between the

Parameter NIR SWIR
Spectral tuning range λ1...λN 776.4 nm...777.7 nm 1571 nm...1577.5 nm
Tuning step size ∆λ 1 pm 3.1 pm
Diameter of apertures D 10 mm 13 mm

Table 4.3: Experimental parameters for the measurement setup presented in
chapter 3.

measured and the predicted speckle correlation function µdet at the detector plane

for the NIR and SWIR band. They show very good agreement. In the spatial

direction, the function follows the diffraction-limited Bessel function introduced in

section 2.2.5. In the spectral direction, however, the correlation is elongated due

to the dispersion of the instrument. In the following, the three speckle averaging

factors Mpolarization, Mspectral and Mdetector as determined by Richter et al., 2021

are given using the SFA prediction model as presented in the previous section

and compared to their counterparts determined with the SFA measurement chain.

The values are depicted in table 4.4. The measurement and the prediction show

good agreement within the margin of the 1σ uncertainty. The thorough discussion
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(a) (b)

Figure 4.6: Cross-section of the detector correlation function |µdet|2 in the NIR
band for (a) the spatial dimension and (b) the spectral dimension. The blue lines
represent the measured correlations; the red lines the predicted ones.

regarding the subjects of uncertainties can be found in the following section 4.4.

The measured values are obtained by comparing the speckle contrast levels at

different stages in the virtual instrument’s measurement process. Mpolarization = 2

is verified by placing a linear polarizer after the diffuser. The measured contrast in

the slit plane rises by the factor of 1/
√

2. Rotating the polarization axis without

changing the measured contrast confirms that the light exiting the diffuser is, in

fact, depolarized. Mspectral is determined by comparing the average contrast in the

slit plane cslit with the one of the accumulated intensity at the detector before the

pixel integration cspectral by using eq. (2.126)

Mspectral,meas =
cslit

2

c2
spectral

. (4.22)

Mspectral can be interpreted as the number of independent speckle patterns present

in one spectral channel due to its bandwidth. The total number of speckle patterns

incident on the detector is equal to the product of Mspectral and Mpolarization.

Similarly, the averaging factor due to detector pixel aperture is calculated as,

Mdetector,meas =
c2
spectral

c2
detector

. (4.23)
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(a) (b)

Figure 4.7: Cross-section of the detector correlation function |µdet|2 in the SWIR
band for (a) the spatial dimension and (b) the spectral dimension. The blue lines
represent the measured correlations; the red line the predicted ones.

Mdetector is the number of speckles contributing to the measurement in a pixel. For

details on the calculations of the contrast levels above, refer to section 4.4. From

the results presented, it becomes clear that the SFA is higher for longer wavelengths

because the diffuser’s decorrelation wavelength becomes smaller, i.e., its’ sensitivity

to wavelength change gets smaller, resulting in less independent speckle patterns.

Also, the geometric size of speckle scales with wavelength (see eq. (2.88)) decreasing

the number of speckles per detector pixel and thus reducing detector averaging.

The only constant contribution can be expected by polarization. The value for

Mpolarization may be different for other diffusers and geometries if the scattered light

is not depolarized entirely. Figure 4.8 depicts the SFA scaling with wavelength

over the representative spectral region for a CO2I like instrument (Meijer et al.,

2019), which is the subject of the study by Richter et al., 2021 using the prediction

model in the NIR and SWIR band. Linear scaling with the simplified assumptions

about the underlying instrument, such as the wavelength-independent dispersion k

and magnifications Mx and My, over the spectral range in question seems to be a

good approximation. Note that the SFA value calculated with the presented model

for a specific wavelength is only valid for a small spectral bandwidth around it.

Otherwise, the wavelength scaling effects can not be considered constant anymore.
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Type Mpolarization Mspectral Mdetector SFA [%]
Measurement NIR 2 55.9± 0.6 (6.1± 1.8)× 102 0.38± 0.08
Prediction NIR 2 56.5 5.7× 102 0.39
Measurement SWIR 2 29.9± 0.6 (1.7± 0.5)× 102 0.99± 0.21
Prediction SWIR 2 30.0 1.8× 102 0.96

Table 4.4: Comparison of the SFA results from the measurement chain with the
prediction model from Richter et al., 2021. The measurement uncertainties are
given in the 1σ interval.

(a) (b)

Figure 4.8: Scaling of the SFA with wavelength of a CO2I like instrument in the
(a) NIR and (b) SWIR band using the prediction model. For both bands the scaling
with wavelength can be approximated as linear. Adapted from Richter et al., 2021.
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4.4 Discussion of Measurement Uncertainties

In this section, the calculation of uncertainties of the averaging factors, which

are calculated with the measurement chain introduced in chapter 3 is presented.

Two different approaches to determining the errors are shown, both of which cover

distinct aspects of the measurement. The first approach is a rigorous Gaussian

error propagation starting with fluctuations of contrast and intensity between

images in the data set. The second approach uses the prediction model shown in

the previous sections to quantify the impact of fluctuations in the functions that

directly contribute to averaging factors. These fluctuations are then propagated

with a Monte Carlo method.

4.4.1 Gaussian Error Propagation

This section describes the Gaussian error propagation of uncertainties between

individual speckle images. The speckle contrast level ci for every recorded image Ii

is determined by

ci =
σi

Ii
=

√
1

Npixel−1

∑Npixel
h=1

(
Ii,h − Ii

)2

1
Npixel

∑Npixel
h=1 Ii,h

, (4.24)

where Ii and σi are the mean value and the standard deviation of Ii, respectively,

and each image consists of Npixel. The average speckle contrast in the slit is

calculated by taking the mean over all individual image contrasts,

cslit =
1

Nimages

Nimages∑
i=1

ci, (4.25)

where Nimages is the number of images. The error of the average contrast cslit is

estimated as the standard error of the mean estimator (Ahn and Fessler, 2003).

Hence,

∆cslit = SEcslit =
σcslit√
Nimages

, (4.26)
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where σcslit =
(

1
Nimages−1

∑Nimages
i=1 (ci − cslit)2

)1/2

is the standard deviation of the

image contrasts, hence, the uncertainty for the contrast of a single image. In a next

step cslit is compared to the measured contrast cspectral of the intensity distribution

accumulated at the detector plane Ispectral, given by

cspectral =
σspectral

Ispectral
. (4.27)

In analogy to σcslit the uncertainties for the standard deviation and mean intensity

of a single image σσi and σIi , respectively, are estimated by taking the standard

deviation over the image series,

σσi =

√√√√ 1

Nimages − 1

Nimages∑
i=1

(σi − σ)2, (4.28)

σIi =

√√√√ 1

Nimages − 1

Nimages∑
i=1

(
Ii − I

)2
, (4.29)

where I and σ are the average mean and standard deviation over all images. Then

the uncertainty for σspectral and Ispectral is taken as

∆σspectral =
σσi√
Nres

(4.30)

∆Ispectral =
σIi√
Nres

, (4.31)

where Ispectral is composed out of Nres images. Nres = λres/∆λ is the amount

of images taken with a sampling ∆λ for a spectral interval equal to the spectral

resolution λres of the instrument. For the contrast uncertainty it follows

∆cspectral = cspectral

√∣∣∣∣∆σspectralσspectral

∣∣∣∣2 +

∣∣∣∣∆IspectralIspectral

∣∣∣∣2. (4.32)
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The averaging factor Mspectral is given by

Mspectral =
cslit

2

c2
spectral

. (4.33)

The uncertainty of the first approach for Mspectral is therefore

∆M
(Gauss)
spectral

Mspectral

=
1

Mspectral

√∣∣∣∣∂Mspectral

∂cslit
∆cslit

∣∣∣∣2 +

∣∣∣∣∂Mspectral

∂cspectral
∆cspectral

∣∣∣∣2

=
1

Mspectral

√√√√∣∣∣∣∣ 2cslit
c2
spectral

∆cslit

∣∣∣∣∣
2

+

∣∣∣∣∣−2cslit
2

c3
spectral

∆cspectral

∣∣∣∣∣
2

=

√∣∣∣∣2∆cslit
cslit

∣∣∣∣2 +

∣∣∣∣2∆cspectral
cspectral

∣∣∣∣2
(4.34)

For the uncertainty of the speckle contrast at the detector level, there is no direct

access to the component uncertainties as there is for the previously stated contrasts.

Therefore, the statistical uncertainty is calculated using the error of the standard

deviation estimator (Ahn and Fessler, 2003) as

∆cdetector
cdetector

≈ ∆σdetector
σdetector

=
1√

2 (Ndetector − 1)
, (4.35)

where Ndetector is the number of detector pixels for the calculation of cdetector. For

the approximation, it is used that ∆σdetector
σdetector

� ∆Idetector
Idetector

. Similar to eq. (4.34) the

uncertainty of the first approach for the corresponding averaging factor Mdetector is

then given by

∆M
(Gauss)
detector

Mdetector

=

√∣∣∣∣2∆cspectral
cspectral

∣∣∣∣2 +

∣∣∣∣2∆cdetector
cdetector

∣∣∣∣2. (4.36)

4.4.2 Monte Carlo Error Propagation

This section describes the an alternative error propagation using Monte Carlo

methods. In the previous section 4.4.1 the uncertainties for both averaging factors

are derived by comparing a large amount of acquired images. This method,
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however, does not take into account effects on pixel level within single images,

because one image consists of a large amount of pixel. The uncertainties on

pixel level are estimated indirectly by calculating fluctuations in those functions

that mathematically contribute to Mspectral and Mdetector (see Richter et al., 2021).

From chapter 4 we know that the spatial speckle extent Lc, given by Ψ, and

the diffuser correlation function, given by F , are the governing factors. For a

subset of λres/∆λ ≈ 120 images contributing to a single spectral channel, the

average speckle size is determined by numerically calculating the width of the

autocorrelation function, which is proportional to Lc,n with n ∈ {1...120}, yielding

a measure of the average fluctuations of Ψ, ∆Lc = σLc,n . The variations in F

are estimated by using eq. (4.21) to calculate ρPearson (In(λn), Im(λm)) ≡ ρn,m

with n,m ∈ {1...120}. In a Monte Carlo simulation normal distributed random

values are drawn from N
(
ρn,m, σρn,m

)
and N

(
Lc,n, σLc,n

)
. They are taken as an

input to calculate Mspectral and Mdetector several thousand times (see eqs. (4.7),

(4.9), (4.10), (4.17), (4.19) and (4.20)). In a final step the contribution given by

the sampling of the detector intensity by a limited amount of pixel Ndetector (see

eq. (4.35)) is estimated. On this account, we use the fact that the detector intensity

is normal distributed with N (µ = 1, σ = SFA) due to the addition of many speckle

patterns, which individually follow a negative exponential distribution, but together,

according to the Central Limit Theorem, approach a Normal distribution (see J. W.

Goodman, 2020, section 3.3.3, p.51). From the normal distributed detector intensity

a random sample Idetector (Ndetector) of size Ndetector is drawn. Mdetector (Ndetector) is

then calculated by using eq. (2.126) as

Mdetector (Ndetector) =
c2
spectral

c2
detector (Ndetector)

, (4.37)

where cdetector (Ndetector) =
σIdetector(Ndetector)

Idetector(Ndetector)
. Figure 4.9 shows the resulting dis-

tribution of occurrences from 50 000 repetitions for Mspectral and Mdetector with

both an infinitely large pixel sample and one corresponding to the actual mea-

surement in the NIR band. The average variations σρn,m in F are determined
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to be 1.5 % and σLc,n = 1.3 % for Ψ. The results are, again, normal distributed

with N
(
µ = 56.6, σ = ∆M

(MC)
spectral = 0.7

)
and N (µ = 5.8× 102, σ = 0.1× 102) for

Mspectral and Mdetector in case of many pixels, respectively. In the case of the 30 pix-

els used in the actual measurement the distribution becomes significantly wider and

asymmetric towards the upper flank. This can be explained with the inverse square

dependency of eq. (4.37), which allows only for positive outliers and the proximity

of the mean value to zero. The mean value shifts to µ (Ndetector) = 6.4× 102 and the

standard deviation is calculated as σ (Ndetector) = ∆M
(MC)
detector = 1.8× 102. For the

SWIR band after 50 000 runs with uncertainty parameters σρn,m = 2.5 % and σLc,n =

2.7 % the resulting normal distributions are N
(
µ = 30.2, σ = ∆M

(MC)
spectral = 0.6

)
for Mspectral and N (µ = 1.88× 102, σ = 0.04× 102) for Mdetector. Again, in the

case of an limited amount of pixels the similar behavior as in the NIR case is

seen: the mean value shifts to µ (Ndetector) = 2.0× 102 and the standard deviation

is calculated as σ (Ndetector) = ∆M
(MC)
detector = 0.5× 102. The described method of

quantifying the impact on the measurement result indirectly accounts for any error

contributors like pointing instabilities, detector noise, temperature fluctuations, if

they have an influence on either F or Ψ. Conversely, if they do not impact these

functions, they need no further consideration. The SFA scales with wavelength,

since F or Ψ do (see section 4.3). This implies that the uncertainties estimated

with the Monte Carlo approach also reflect this scaling over a wavelength range.
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Figure 4.9: Histogram of 50 000 Monte Carlo occurrences following a normal

distribution of (top) Mspectral with N
(
µ = 56.6, σ = ∆M

(MC)
spectral = 0.7

)
and (mid-

dle) Mdetector with N (µ = 5.8× 102, σ = 0.1× 102) by using normal distributed
fluctuations σρn,m of 1.5 % in F and σLc,n = 1.3 % in Ψ for the NIR band. The
bottom pane includes the contribution from the limited amount of pixels the final
contrast level is calculated from. The 1σ width of this distribution is taken as
uncertainty ∆M

(MC)
detector.
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Figure 4.10: Histogram of 50 000 Monte Carlo occurrences following a normal

distribution of (top) Mspectral with N
(
µ = 30.2, σ = ∆M

(MC)
spectral = 0.6

)
and (mid-

dle) Mdetector with N (µ = 1.88× 102, σ = 0.04× 102) by using normal distributed
fluctuations σρn,m of 2.5 % in F and σLc,n = 2.7 % in Ψ for the SWIR band. The
bottom pane includes the contribution from the limited amount of pixels the final
contrast level is calculated from. The 1σ width of this distribution is taken as
uncertainty ∆M

(MC)
detector.
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4.4.3 Comparison and Interpretation

In table 4.5 the estimations of the absolute uncertainties for Mspectral and Mdetector

with both approaches are given from the data of the study by Richter et al.,

2021. Comparing the estimated values for ∆M
(Gauss)
spectral and ∆M

(MC)
spectral it is evident

that only the latter one appreciably reflects the error contribution by the internal

structure of individual images. As a consequence, the value from the Monte Carlo

method is chosen for the final error estimation. On the other hand, for ∆M
(Gauss)
detector

and ∆M
(MC)
detector both estimations show very good agreement, since the error from

the under-sampling of the intensity distribution dominates. The Gaussian error

propagation accounts for the highest contribution, which is the sampling of normal

distribution by a limited amount of pixel. This effect can be reduced by the

enlargement of the spectral tuning range. Acquiring data over a wider spectral

range, however, increases uncertainties by wavelength scaling effects and time-

dependent environmental influences. The SFA is given by eq. (3.7); Mpolarization is

considered free of uncertainties; thus the final error on the SFA is

∆SFA

SFA
=

√√√√1

2

∣∣∣∣∣∆M
(MC)
spectral

Mspectral

∣∣∣∣∣
2

+
1

2

∣∣∣∣∣∆M (MC)
detector

Mdetector

∣∣∣∣∣
2

. (4.38)

Band ∆M
(Gauss)
spectral ∆M

(MC)
spectral ∆M

(Gauss)
detector ∆M

(MC)
detector

∆SFA
SFA

NIR 0.03 0.7 1.7× 102 1.8× 102 0.21
SWIR 0.03 0.6 0.4× 102 0.5× 102 0.21

Table 4.5: Absolute uncertainties calculated from the measurement data of the
study by Richter et al., 2021 and the relative SFA uncertainty determined with
eq. (4.38).



Chapter 5

Diffuser-Speckle in Test

Spectrometer

The measurements presented in chapter 3 mimic the spectrometer up to the entrance

slit. The imaging optics, including the dispersive element up to the detector, are

simulated by numerical propagation of the data acquired in the entrance slit.

Also, a number of simplifying assumptions are made to reduce the complexity of

the optical system further. In this part, the SFA is measured with a complete

spectrometer setup to verify that the complexity reduction is, in fact, minor,

and the prediction model presented in chapter 4 can therefore be applied to real

spectrometers. Compared to earlier end-to-end setups, it does not represent an

actual instrument for a Remote-Sensing mission but is purposely design to yield

a distinct speckle error signal for reliable measurement results. In section 5.1 the

relevant spectrometer parameters are determined, which are needed as input for the

prediction model. In section 5.2 the results of the SFA measurements are presented

and discussed.
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5.1 Test Spectrometer Characterization

The instrument parameters needed as input for the prediction model are derived in

the following. As the manufacturer of the test spectrometer was not able to provide

most of them. The unknown parameters of the instrument are therefore inferred

given the principle layout of the instrument and the known basic parameters as

provided by the manufacturer as follows. The optical layout of the spectrometer,

which is known as crossed Czerny-Turner configuration, is depicted in fig. 5.1.

The optical setup is the same as in previous sections, with the test spectrometer’s

entrance slit plane placed in the focal plane of the telescope. See fig. 3.3 in section 3.2

for details. The light field at the entrance slit of width Wslit is collimated onto the

diffraction grating by a spherical mirror. It is positioned a distance after the slit,

defining the entrance arm length La. The incident angle relative to the normal

of the grating plane is denoted by α; the angle of the diffracted light with the

normal by β. The grating is illuminated over a width of Wg. The diffracted light is

focused on a linear detector array, which is positioned a distance after the focusing

mirror, denoted by the exit arm length Lb. The angle γ denotes the inclination

with respect to the normal of the detector plane. Initially, the following design

parameters are known:

Holographic grating Groove density ng = 2400 mm−1.

f-number f/# = 4.

Entrance/exit arm lengths The entrance and exit arms have the same length,

La = Lb = 102 mm.

Detector Npx = 3648 px, hpixel = 200 µm× wpixel = 8 µm pixel size.

Wavelength range 434 nm to 517 nm, centered at 460 nm.

Slit dimensions Interchangeable slit widths Wslit = {10, 25, 50, 100} µm and slit

height Hslit = 1 mm available.
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The angle of incidence α and the angle of diffraction β are related to the diffracted

wavelength λ and groove density ng of the grating by (Lerner, 2006)

sin(α) + sin(β) = ngλ, (5.1)

where we assume that the spectrometer uses the first diffraction order from now

on. The linear dispersion is given by (Lerner, 2006)

k ≡ dλ

dx
=

cos(β) cos(γ)

ngLb
. (5.2)

Strictly speaking, the exit arm length Lb and the inclination γ are wavelength

dependent. Here, the fact is used that the spectrometer is centered around 460 nm

to assume γ ≈ 0 and Lb = const if we consider only measurement data ranging

a few nanometers around this center wavelength. For example, given the initial

parameters by the supplier above, the wavelength of 475 nm hits the detector at

an inclination of γ ≈ 3°, which would result in an error of around 0.2 %. The

magnification in spectral direction My and in spatial direction Mx are given by

(Lerner, 2006)

Mx =
Lb
La

= 1, (5.3)

My =
cos(α)Lb
cos(β)La

. (5.4)

The magnification of unity in spatial direction implies that only a fraction of the

total entrance slit height is captured by the detector. From this, we can derive that

the effective slit height is equal to the detector pixel height, H ′slit = 200 µm. The

spectral resolution of the instrument is the magnified slit width multiplied by the

linear dispersion (Lerner, 2006), hence

λres = kMyWslit =
Wslit cos(α)

ngLa
. (5.5)
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By measuring the dispersion and the spectral resolution with the tunable monochro-

matic VIS laser source, presented in section 3.2, one can use eqs. (5.1) to (5.5) to

establish the values for α and β required to describe the instrument. However, let

us first formalize the measurement process of a spectrometer. Consider a function

of intensity dependent on wavelength S (λ) as input. The instrument assigns a

finite wavelength interval from λ (i) to λ (i+ 1) to a discrete number of pixels Npx

with index i (see Stutz et al., 2008, p. 157), which convert it to a signal Si by

Si =

∫ λ(i+1)

λ(i)

S (λ′) dλ′ . (5.6)

Assuming a linear dispersion, the wavelength-pixel-mapping can be described by

Ω : λ (i) = λ (0) + ∆λ (i) · i, (5.7)

where λ (0) is an offset representing the wavelength for pixel i = 0 and ∆λ (i) =

λ (i+ 1) − λ (i). A second transformation of an original signal to be considered

is a spectral broadening of a monochromatic stimulus (see Lerner, 2006), which

in this case is due to the bandpass defining the spectral resolution given by the

entrance slit. As one can see from eq. (5.5), the spectral resolution is proportional

to the slit width Wslit. This implies that even for a spectral infinitely narrow

input signal it will be measured with a width of λres. In order to estimate the

dispersion of the spectrometer, the laser source is tuned over a wavelength range

several times the spectral resolution. At every step j, the spectrum Si,j (λj) of the

monochromatic laser line for the wavelength λj is acquired. During the acquisition

the diffuser is rotated and translated simultaneously to average out the speckles.

The technique is described in detail in section 3.4. Figure 5.2 depicts the intensity

values of two chosen pixels with indices i = 1020 and i = 1075, which lie within the

tuned wavelength range, with an installed slit width of Wslit = 50 µm and a step

size ∆λ = 0.01 nm. The peaks are centered at λ1 = 460.35 nm and λ2 = 461.69 nm.
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Considering the detector pixel width of 8 µm the linear dispersion calculates as

k =
461.69 nm− 460.35 nm

(1075− 1020) · 0.008 mm
= 3.046

nm

mm
= 0.0244

nm

px
.

The full width at half maximum of the two peaks is taken as the spectral resolution

λres = 0.179 nm (Lerner, 2006). This procedure is repeated for all available slit

widths. The results are summarized in table 5.1. The average estimated linear

dispersion around 460 nm is determined to be k = (0.0244± 0.0002) nm/px over

nine separate measurements. By using eq. (5.2) the angle of diffraction is determined

to be β = 42°. The interchangeable slits underlie manufacturing uncertainties

regarding their width Wslit. Using an inverse linear regression (Freund et al., 2006),

the actual slit widths W ′
slit are estimated. The angle of incidence is iterated to

α = 26.8° for the best fit with the smallest residuals. Table 5.1 shows the results

with the 95 % confidence interval. All values are within a reasonable manufacturing

uncertainty. The test spectrometer can now be fully described.

Nominal slit
width Wslit

10 µm 25 µm 50 µm 100 µm

Estimated λres 0.035 nm 0.087 nm 0.178 nm 0.368 nm
Estimated W ′

slit (9.6± 1.3) µm (24± 4) µm (49± 4) µm (101± 4) µm

Table 5.1: Measurement results of the spectral resolution λres for the available slit
widths and the best inverse linear regression fit with the 95 % confidence interval
for α = 26.8°.
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Figure 5.1: Optical bench of the crossed Czerny-Turner type test spectrometer.
The light field at the entrance slit of width Wslit is collimated onto the diffraction
grating by a spherical mirror. It is positioned a distance after the slit, defining the
entrance arm length La. The incident angle relative to the normal of the grating
plane is denoted by α; the angle of the diffracted light with the normal by β. The
grating is illuminated over a width of Wg. The diffracted light is focused on a linear
detector array, which is positioned a distance after the focusing mirror, denoted by
the exit arm length Lb. The angle γ denotes the inclination with respect to the
normal of the detector plane.
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Figure 5.2: Plot of intensity values of the detector pixel #1020 and #1075
over a wavelength range of 2 nm with a slit width Wslit = 50 µm and a step size
∆λ = 0.01 nm. The spectral distance between the peaks of the two graphs at
λ1 = 460.35 nm and λ2 = 461.69 nm is used to estimate the linear dispersion of
k = 3.046 nm/mm. The full widths at half maximum of the peaks are taken as the
spectral resolution of λres = 0.179 nm.



5.2 SFA Results and Comparison to Prediction Model 93

5.2 SFA Results and Comparison to Prediction

Model

In this section, the speckle impact on measurements with the test spectrometer

previously presented is determined and compared to the predictions of the model

established in chapter 4. First, the generic measurement procedure is outlined.

Then, the parameter space over which the test setup is varied is presented and

justified. Finally, the measurement results are shown and discussed with respect to

the predictions.

For every measurement, a spectral tuning step size ∆λ = 0.01 nm is chosen,

which samples the instruments pixel dispersion of k = 0.0244 nm px−1 (see eq. (5.2)).

This is a compromise between the measurement time and the sampling condition

as derived in section 4.1.2, eq. (4.16). From figs. 4.3 to 4.5 one can see that

only for the last case of the 20 mm thick diffuser the sampling of the correlation

function F is insufficient. However, we will see at the end of this section that the

under-sampling has no significant effect in this case. The laser source is tuned

twice over a wavelength range λ1...λN . On the first run, the recorded spectra

Si,j,speckle (λj) contain intensity fluctuations due to the diffuser speckles. On the

second run, the diffuser is moved in order to suppress the speckles during every

acquisition yielding the reference spectra Si,j,ref (λj). This is the same calibration

method as employed in chapter 3. Every recorded spectrum is normalized with

the simultaneously measured value of the power meter. In the post-processing,

the spectra of both runs are subtracted with an averaged background spectrum

consisting of 100 dark acquisitions. The monochromatic spectra S ′i,j,speckle (λj) and

S ′i,j,ref (λj) of both runs are added,

Si,speckle =
N∑
j=1

S ′i,j,speckle (λj) ,

Si,ref =
N∑
j=1

S ′i,j,ref (λj) ,
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yielding one spectrum Si,speckle containing speckles and one reference spectrum

Si,ref with no speckles. Note that both are non-zero only for pixel corresponding to

wavelengths in the interval [λ1, λN ]. Finally, the two spectra are divided, leaving

us with the normalized speckle spectrum

Ŝi =
Si,speckle
Si,ref

.

The SFA is calculated as the standard deviation of the measured wavelength range,

hence

SFA
(
Ŝi

)
=

√√√√ 1

iN − i1 − 1

iN∑
i=i1

(
Ŝi − Ŝi

)2

, (5.8)

where one can use the known dispersion k and fig. 5.2 from section 5.1 to calculate

the pixel index i0 corresponding to a wavelength λ0 = 460 nm. For the edge indices

in the sum we have

i1 = i0 +
λ1 − λ0

kwpixel

iN = i1 +
λN − λ1

kwpixel
.

In contrast to earlier studies with setups, which are more representative of actual

instruments (Brug et al., 2004; Brug and Courrèges-Lacoste, 2007), this test setup

is chosen so that the speckle visibility is as high as possible to achieve more

confident quantitative results concerning parameter changes. In chapter 4, it is

established that the SFA is primarily governed by the geometrical extent of the

speckle correlation areas Ψ and the diffuser correlation function F . The goal is

to vary the two functions separately to show their dependency. With reference

to eq. (4.5) the width of Ψ can be varied by choosing different pupil diameters

D. Referring to eq. (4.3) one can adjust F by changing the diffuser thickness d.

Figure 5.3 depicts an example for Si,speckle, Si,ref , and Ŝi, respectively. The peaks

and valleys present in Ŝi are due to the diffuser speckle. In order to verify this claim

and to get a measure of the speckle correlation function at the detector µdet, the
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autocorrelation of Ŝi is determined numerically with a lagged correlation coefficient

(see section 2.1, eq. (2.10))

|µdet|2 ∼ ρŜi (η) =
E
[(
Ŝi − µ

)(
Ŝi+η − µ

)]
σ2
Ŝi

, (5.9)

where µ = Ŝi. The result for the exemplary measurement is shown in fig. 5.4. Thus,

Ŝi can be analyzed in terms of µdet, which essentially is the spectral extent of the

speckles Lc,det, and the amplitude, which is the SFA.

In the following, a summary of all conducted measurements with their respective

parameters is presented. They were all conducted with the 50 µm slit, which is a

compromise between throughput of the spectrometer, the speckle extent at the slit,

and detector plane, and the SFA. The findings in section 3.3 essentially restrict the

usable aperture diameter D to values of 20 mm and smaller. The speckle size in

the entrance slit plane should not exceed the slit width significantly to avoid effects

from speckles being partially cut off. Using eq. (2.88) the expected speckle size

for an aperture diameter of 10 mm at 460 nm wavelength and the known telescope

focal length of ftel = 1100 mm is 57 µm, thus constituting the lower diameter limit.

The spectral tuning step size for all measurements is ∆λ = 0.01 nm. The diffusers

are characterized by the correlation function F , which is influenced by the thickness

d and the transport mean free path lt which are both determined in section 4.2. All

Parameter Value
Magnification Mx 1
Magnification My 1.20
Slit dimensions (x, y–direction) 200 µm, 49 µm
Detector pixel dimension (a, b–direction) 200 µm, 8 µm
Telescope focal length ftel 1100 mm
Spectral resolution λres 0.178 nm (7.3 px)

Table 5.2: Summary of the test spectrometer parameters used for the measurement
and prediction.

measurement results (M) together with the corresponding predictions (P) are shown

in table 5.3 for variations of the aperture diameter D and the diffuser thickness
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(a) Spectrum Si,speckle containing speckles.
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(b) Despeckled reference spectrum Si,ref
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Ŝ
i

[a
.u

.]

(c) Speckle spectrum Ŝi normalized with the
reference.

Figure 5.3: Example of a spectrum (a) containing speckles, (b) without speckles,
and (c) the ratio of speckle spectrum with the reference.

d. For every measurement, the tuning range is given. The SFA is calculated with

eq. (5.8). The uncertainty is approximated with the error of the standard deviation

estimator (Ahn and Fessler, 2003)

∆SFA

SFA
≈ 1√

2 (iN − i1 − 1)
, (5.10)

which implies a dependence of the uncertainties to the spectral length of the

measurement. This error estimation is similar to the component ∆M
(Gauss)
detector in
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Figure 5.4: Numerically calculated autocorrelation coefficient ρŜi to estimate the
width Lc,det of the correlation function µdet at the detector. See eq. (4.20) for
reference. The autocorrelation falls to zero after approximately four pixels.

section 4.4 which is significantly greater than any other of the discussed error

contributions. It is thus a good approximation for the total uncertainty. The

speckle size Lc,det is determined with eq. (5.9). All measured SFA values are in

good agreement with the corresponding predictions within the estimated error

interval. The speckle size is systematically smaller than predicted, except for the

case with D = 20 mm. An explanation could be the short tuning ranges, which

make deviations from the actual speckle size more likely. From the measurements

with D = 15 mm, it seems that the speckle size is not dependent on the diffuser

correlation F . This is expected since the geometric speckle size denoted by Ψ is

much wider than F . Thus, for this instrument setup, F only influences the SFA

appreciably. In summary, the presented results illustrate that the diffuser-induced

speckle errors can be predicted with satisfactory accuracy for the selected test

spectrometer.
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Measurement (M)
Prediction (P)

λ1...λN [nm] D [mm] d [mm] Lc,det [px] SFA [%]

P 460 10 0.5 5.8 12.5

M
460.3...461.6
460.3...461.2

10 0.5
5.5
5.5

11.1± 1.8
11.8± 1.7

P 460 15 0.5 4.5 10.5
M 460.2...462.3 15 0.5 4.1 10.3± 0.8
P 460 20 0.5 3.9 9.1

M
460.2...461.8
460.2...462.2

20 0.5
4.0
3.5

8.9± 0.8
9.2± 0.9

P 460 15 1.0 4.5 7.4

M
460.2...462.2
460.2...461.8

15 1.0
4.2
4.0

7.7± 0.7
7.4± 0.7

P 460 15 2.0 4.5 4.5
M 460.2...461.4 15 2.0 4.0 5.0± 0.6

Table 5.3: Measurements results (M) of the SFA and the speckle size Lc,det for
various aperture diameters D and diffuser thicknesses d over the wavelength tuning
range λ1...λN compared with the corresponding prediction (P).



Chapter 6

Diffuser-Speckle Impact on DOAS

Retrieval

In the previous chapters, the predictive model is tested on two different measurement

methods and instruments. The speckle errors are given in terms of the SFA, which

is a measure on instrument detector level. In this chapter, the prediction model

is used to estimate the impact of speckles on a retrieval of the NO2 column via a

method known as Differential Optical Absorption Spectroscopy (DOAS). For this

purpose, the VIS-3 channel of the Global Ozone Monitoring Experiment (GOME)

is used as a reference for the prediction model. This instrument is chosen as an

extreme case for this study since the diffuser speckle error played a more distinct role

than for more recent instruments. First, the DOAS retrieval technique is explained

in section 6.1 followed by an introduction to Radiative Transfer Models (RTM)

and the approach to solve the underlying Radiative Transport Equation (RTE)

in section 6.2. The latter concept is needed to generate an artificial reflectance

spectrum for which a measurement by the GOME instrument is mimicked, which is

shown in section 6.3. After, the derivation of the diffuser speckle signal parameters

from the GOME instrument is outlined in section 6.4 followed by section 6.5,

which explains the preparation of the speckle-distorted error spectra. In the final

section 6.6 the DOAS retrieval process is described incorporating speckle errors of



6.1 Differential Optical Absorption Spectroscopy 100

different severity. The results are compared to known column uncertainties from

earlier studies of GOME retrieval data.

6.1 Differential Optical Absorption Spectroscopy

In this section the Differential Optical Absorption (DOAS) method is described,

which is used to retrieve the NO2 column density from an artificial Earth reflectance

spectrum (see section 6.3). The following discussion is based on the comprehensive

book about DOAS by Stutz et al., 2008. The absorption of light by trace gases in

the atmosphere can be described by the Beer-Lambert law. It can be written as

I (λ) = I0 (λ) exp

(
−
∫
σ (λ, T (s)) c (s) ds

)
, (6.1)

where I0 (λ) denotes the initial intensity of the light entering the atmosphere

and I (λ) is the intensity after the light has propagated through a column with

concentration profile c (s). The item σ (λ, T (s)) denotes the temperature dependent

characteristic absorption cross-section of the respective trace gas species. The

temperature dependency is usually omitted by using the temperature at the number

density maximum of the climatological profile of the respective trace gas (see

Burrows et al., 1999) or by applying other temperature corrections (Wenig et al.,

2005). For an absorption measurement in the atmosphere eq. (6.1) has to be applied

to all present trace gases and needs to consider all other influences:

I (λ) = I0 (λ) exp

(
−
∑
i

σi (λ) SCDi

)
A (λ) , (6.2)

where I (λ) is the measured intensity, I0 (λ) is the solar reference spectrum, and

A (λ) is an attenuation factor combining effects by Mie and Rayleigh scattering,

the impact of the instrument, and all other broadband-constituted influences. The

sum in the exponential function is over all present trace gases i with an absorption

cross-section σi (λ) and their respective slant column density SCDi, which is given
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by

SCDi =

∫
ci (s) ds . (6.3)

The concentration of the absorber i is denoted by ci (s) and needs to be integrated

over the entire light path. The absorption cross-sections σi (λ) are well-known

from laboratory measurements and characteristic for the respective trace gas.

Equation (6.2) can be rewritten by taking the logarithm on both sides:

ln(I (λ)) = ln(I0 (λ))−
∑
i

σi (λ) SCDi + ln(A (λ)). (6.4)

Usually, either the attenuation factor A (λ) or the initial intensity I0 (λ) are not

a priori known, which essentially makes solving for the desired SCDi impossible.

However, this problem can be circumvented, which is the core idea behind the

DOAS technique: the quantities combined in A (λ) show very broad spectral

characteristics, whereas certain absorbers’ cross-sections σi (λ) display narrow-band

structures. Thus, we may split them up into a slow varying or low frequency (LF)

part σLFi (λ) and a fast varying or high frequency (HF) part σ′i (λ) by

σi (λ) = σLFi (λ) + σ′i (λ) . (6.5)

If one models all low frequency contributions by a set of suitable basis functions

εj (λ) (Wenig et al., 2005),

ln(I0 (λ))−
∑
i

σLFi (λ) SCDi + ln(A (λ)) =
∑
j

ajεj (λ) =: ln(I ′0 (λ)), (6.6)

eq. (6.4) becomes

ln(I (λ)) =
∑
j

ajεj (λ)︸ ︷︷ ︸
LF

−
∑
i

σ′i (λ) SCDi︸ ︷︷ ︸
HF

, (6.7)
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which is linear in the unknown quantities aj and SCDi and can be determined via

a linear least-squares method (Wenig et al., 2005). The quantity I ′0 (λ) can be

interpreted as the intensity in the absence of any HF absorbers. The HF part is

called the differential optical density and is given by

D′ (λ) = ln

(
I ′0 (λ)

I (λ)

)
=
∑
i

σ′i (λ) SCDi. (6.8)

This summarizes the basic idea behind the DOAS method.

6.2 Radiative Transfer Modeling

In this section the basics of radiative transfer modeling (RTM) are described. This

concept is used to generate an artificial Earth reflectance spectrum in section 6.3.

Radiative transfer models approximate the propagation and extinction of light in

the Earth’s atmosphere, which is a complex process. Photons can be scattered

multiple times into the light path under consideration from all directions as well as

leave it in the same manner. Also, they can be absorbed. Additionally, at long

wavelengths thermal emissions may play a role. The goal of any RTM is finding a

solution for the Radiative Transport Equation (RTE), which in its general form in

a steady-state can be written as (Stamnes, 1986):

(n̂ · ∇) I (r, n̂, ν) = hνQ (r, n̂, ν) . (6.9)

The quantity I (r, n̂, ν) is the specific radiance of light of frequency ν at location

r propagating in direction n̂. The term (n̂ · ∇) is called the streaming term and

defines the geometry. The source term Q (r, n̂, ν) represents scattering and emission

as the causes for the change in the radiance and can be expressed for a planetary
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atmosphere as (Chandrasekhar, 2011):

hνQ (r, n̂, ν) = hνQ (r, θ, φ, ν) = −βext (r, ν) I (r, θ, φ, ν)

+
1

4π

∫ ∞
0

dν ′ βsca (r, ν, ν ′)

∫ 2π

0

dφ′ p (r, θ, φ, θ′, φ′, ν ′) I (r, θ′, φ′, ν ′)

+ βabs (r, ν)B [T (r) , ν] .

(6.10)

The above equation consists of three terms – one with the negative sign representing

the extinction of light in the current path by absorption and scattering, the second

one with a positive sign denoting the addition of light to it’s current path by

other multi-scattering events, and the third one also with a positive sign called

emission term, which is in the approximation of a thermodynamic equilibrium

of the atmosphere proportional to the Planck function at temperature T (r) and

frequency ν, B [T (r) , ν] (Mihalas, 1978, p. 26). By Kirchhoff’s law the emission

coefficient βemi equals the absorption coefficient βabs. The coefficients for absorption,

scattering, and extinction are defined as (Stamnes, 1986):

βabs (r, ν) =
∑
i

βabsi (r, ν) βabsi (r, ν) = ni (r)σ
abs
i (ν) (6.11)

βsca (r, ν) =
∑
i

βscai (r, ν) βscai (r, ν) = ni (r)σ
sca
i (ν) (6.12)

βext (r, ν) = βabs (r, ν) + βsca (r, ν) , (6.13)

where ni (r) is the density of the respective species i and σabsi (ν) and σabsi (ν) are

the corresponding absorption and scattering cross-sections. The scattering phase

function p is given by

p (r, θ, φ, θ′, φ′, ν) =

∑
i β

abs
i (r, ν) pi (θ, φ, θ

′, φ′, ν)∑
i β

abs
i (r, ν)

(6.14)
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and the phase functions for the individual species pi being

pi (θ, φ, θ
′, φ′, ν) = pi (cos(Θ), ν) =

σscai (cos(Θ), ν)∫
4π
dΩσscai (cos(Θ), ν)

. (6.15)

The scattering angle Θ is related to the polar and azimuth angle through the cosine

law of spherical geometry by

cos(Θ) = cos(θ′) cos(θ) + sin(θ′) sin(θ) cos(φ− φ′). (6.16)

Due to the scattering term in the source of eq. (6.9) there is no direct analytic

solution to it, except in very specific simplified cases. However, depending on

the wavelength regime and complexity of the to be modeled atmosphere there are

two general groups of approaches to numerical solutions that can be taken. The

first one is of statistical nature, in which the paths of many individual photons

with parameters randomly sampled from appropriate PDFs are traced through the

atmosphere under the desired conditions. The second group relies on the calculation

of a numerical solution for the resulting radiation field (Stutz et al., 2008). One

approach of the former group is a Discrete Ordinate Method, for which an widely

used algorithm called DISORT was put forward by Stamnes et al., 1988. Since this

method is chosen for the calculations in section 6.3, it will be the sole focus of the

following discussion. In Cartesian coordinates the streaming term can be written

as (Kuo et al., 1996):

(n̂ · ∇) = nx
∂

∂x
+ ny

∂

∂y
+ nz

∂

∂z

= cos(φ)
√

1− cos2(θ)
∂

∂x
+ sin(φ)

√
1− cos2(θ)

∂

∂y
+ cos(θ)

∂

∂z
,

(6.17)

where (nx, ny, nz) are the components of the unit vector, θ is the polar angle and φ

is the azimuth angle. Following Stamnes, 1986 we use the plane-parallel geometry,

which assumes a flat Earth surface and divides the atmosphere into parallel layers
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of infinite size in x– and y–directions. The streaming term then becomes

(n̂ · ∇) = cos(θ)
∂

∂z
. (6.18)

By making the above approximation, substituting µ = cos(θ) and introducing the

vertical optical thickness dτ = βext dz eq. (6.9) can be written with the source from

eq. (6.10) as follows:

µ
dI (τ, µ, φ, ν)

dτ
=− I (τ, µ, φ, ν)

+
ω (τ, ν)

4

∫ 2π

0

dφ′
∫ 1

−1

dµ′ p (τ, µ, φ, µ′, φ′, ν) ,
(6.19)

where we have dropped the emission term, since it can be neglected for the

visible wavelength regime which is of interest for this study. The same goes for

frequency redistributions due to Raman scattering. The photons are assumed to be

monochromatic throughout the propagation. The item ω (τ, ν) is called the single

scattering albedo and is defined by

ω (τ, ν) =
βscai (r, ν)

βexti (r, ν)
=

βscai (r, ν)

βabsi (r, ν) + βscai (r, ν)
. (6.20)

Now, a technique known as the direct/diffuse distinction (Stamnes, 1986) is applied.

For that, the intensity is split up into the direct beam portion Idir (ν) and the

diffuse or scattered part Isca (ν) by

I (ν) = Idir (ν) + Isca (ν) . (6.21)

If we assume that no multiple scattering occurs, then the direct portion remains, for

which setting the scattering term to zero and integration of eq. (6.19) immediately

yields

Idir (τ, µ, φ, ν) = I inc (0, µ = −µ0, φ = φ0, ν) exp

(
− τ

µ0

)
, (6.22)
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where I inc (0,−µ0, φ0, ν) is the incident radiation on the top of atmosphere at

τ = 0. Equation (6.22) is the Lambert-Beer law. For a parallel beam of sunlight

the boundary condition at the top is

Idir (0, µ, φ, ν) = I inc (ν) δ (µ− µ0) δ (φ− φ0) (6.23)

The first term in eq. (6.21) is solved by eq. (6.22), while for the second term the

solution can be found by solving the RTE

µ
dIsca (τ, µ, φ, ν)

dτ
=− Isca (τ, µ, φ, ν)

+
ω (τ, ν)

4

∫ 2π

0

dφ′
∫ 1

−1

dµ′ p (τ, µ, φ, µ′, φ′, ν)

+
ω (τ, ν) I inc

4
p (τ, θ, φ,−µ0, φ0, ν) exp

(
− τ

µ0

)
.

(6.24)

For these cases with multi-scattering events we need to specify the boundary

conditions, which is

I (0,−µ0, φ0, ν) = 0 (6.25)

at the top, and

πI (τg, µ, ν) = µ0AI
inc exp

(
− τg
µ0

)
+ 2πA

∫ 2π

0

dφ′
∫ 1

0

dµ′ µ′I (τg,−µ′, ν) (6.26)

at the bottom in case of a Lambertain reflecting surface with albedo A. Now the

fact is used, that for scattering processes in the atmosphere the phase function only

depends on the scattering angle Θ. With this, the Θ–dependence in eq. (6.24) is

isolated by expanding the known phase function as series of Legendre polynomials

Pl (see Thomas, 1999, section 6.3),

p (τ, θ, φ, θ′, φ′, ν) = p (τ,Θ, ν) ≈
2M−1∑
l=0

(2l + 1) gl (τ, ν)Pl (cos(Θ)) , (6.27)
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where lth expansion coefficient gl is given by

gl (τ, ν) =

∫ 1

−1

Pl (cos(Θ)) p (τ,Θ, ν) d cos(Θ) . (6.28)

Then the addition theorem for spherical harmonics (see Gradshteyn, 2007, section

8) is applied to eq. (6.27) to give

p (τ,Θ, ν) =

2M−1∑
l=0

(2l + 1) gl (τ, ν)

[
Pl (µ)Pl (µ

′) + 2
l∑

m=1

Λm
l (µ) Λm

l (µ′) cos(m (φ0 − φ))

]
,

(6.29)

where the normalized associated Legendre polynomials are defined by

Λm
l (µ) =

√
(l −m)!

(l +m)!
Pm
l (µ) , (6.30)

and Pm
l (µ) are the associated Legendre polynomials. The intensity is expanded as

a cosine Fourier series with

I (τ, µ, φ, ν) =
2M−1∑
l=0

Im (τ, µ, ν) cos(m (φ0 − φ)). (6.31)

By inserting eqs. (6.29) and (6.31) into eq. (6.24) yields 2M independent input

equations for the DISORT solver algorithm, for which the solution can be found

via an eigenvalue problem:

µ
dIm (τ, µ, ν)

dτ
= −Im (τ, µ, ν)

+
ω (τ, ν)

2

∫ 1

−1

dµ′
2M−1∑
l=m

(2l + 1) gl (τ, ν) Λm
l (µ) Λm

l (µ′) Im (τ, µ′, ν)

+
ω (τ, ν) I inc

4
(2− δm0)

2M−1∑
l=0

(2l + 1) gl (τ, ν) Λm
l (µ) Λm

l (µ′) exp

(
− τ

µ0

)
,

(6.32)
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where

δm0 =

1 m = 0

0 m 6= 0.

In the entire derivation we have neglected polarization effects, which are not of

interest for the following sections.

6.3 Generation of an Earth Reflectance Spectrum

In this section, the generation of an artificial Earth reflectance spectrum is described,

which is used in the following sections for the retrievals of the NO2 column density.

For the RTM simulation the libRadtran software package version 2.0 is used (see

Emde et al., 2016; Mayer and Kylling, 2005). For this study a wavelength range

in the visible regime between 400 nm and 470 nm for the NO2 retrieval is chosen.

The following specimen with their respective cross-sections are included: NO2

(Vandaele et al., 1998), O3 (Serdyuchenko et al., 2014, version 25 July 2012), O4

(Thalman and Volkamer, 2013), and water vapor (Rothman et al., 2010). The

high-resolution extraterrestrial solar spectrum by Chance and Kurucz, 2010 serves

as a reference. It is interpolated to a 1 pm sampling via a cubic spline interpolation.

This ensures, that high frequency components of the O3 and O4 cross-sections

are properly included into the calculations. Also, the US-standard atmosphere by

Anderson et al., 1986 is used. The radiative transfer equation is solved via the

Discrete-Ordinate Method with the DISORT algorithm (see section 6.2 for details),

which was originally provided by Stamnes et al., 2000 and written in fortran77.

In this case the optimized C portation by Buras et al., 2011 is used. We set up a

geometry representative for a satellite by

• specifying a top of atmosphere (TOA) measurement height,

• pointing our sensor in nadir direction,

• and choosing an average solar zenith angle of 32°.
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The surface albedo is set to 10 %. The complete input file can be found in the

appendix, listing 7.1. With the above settings the high-resolution Earth reflectance

spectrum is output. It is depicted in fig. 6.1. The slit function of the reference

instrument is considered later in the retrieval procedure.
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Figure 6.1: High-resolution simulated Earth reflectance spectrum as perceived
by a downward looking sensor at TOA altitude for the wavelength range between
400 nm and 470 nm with incorporated cross-sections of NO2, O3, O4, and water
vapor in a standard US-atmosphere profile by Anderson et al., 1986. There is no
instrument slit function considered.

6.4 Speckle Error Prediction for the GOME In-

strument

In this section, the relevant input parameters of the GOME VIS-3 instrument

channel for the prediction model and the SFA result are given. As a reference

for the instrument parameters serves the GOME User Manual by the ESTEC

Publishing Division, 1995. The values are shown in table 6.1. Since the diffuser is

a sand-blasted Aluminum plate used in a reflection imaging geometry, we need to

adjust the model for the diffuser correlation function F and the polarization of the

scattered light compared to chapter 4. In the absence of any specific indications
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about the GOME diffuser plate, we adopt a simple model of Gaussian surface

height fluctuations (see J. W. Goodman, 2020, section 6.3.1, p. 193f) and combine

it with the result of the discussion made in section 2.2.7 to the intensity correlation

|F (∆qz)|2 = exp
(
− (σh∆qz)

2), (6.33)

where we repeat the equation for the normal component of the scattering vector at

the diffuser ∆qz (see eq. (2.119)) for convenience:

∆qz =

∣∣∣∣2πλ1

[cos(θo1) + cos(θi1)]− 2π

λ2

[cos(θo2) + cos(θi2)]

∣∣∣∣. (6.34)

It depends on the difference in the wavelengths λ1, λ2, and the changes in the angle

of illumination θi1 and θi2. The angle of observation θo is assumed constant. With

the GOME User Manual (ESTEC Publishing Division, 1995), p. 32 fig. 4.4-6b, the

angle of incident, θi1 = 12°, and angle of observation, θo = 0° are deduced. The

term σh denotes the RMS height of the diffuser’s surface roughness. We set it to

an intermediate value of σh = 30λ ≈ 13 µm, which seems a realistic starting point

according to Slatineanu et al., 2011; Draganovská et al., 2018. Variations of this

parameter are discussed later. For the polarization, the argument is as follows:

the Sunlight incident on the diffuser initially features two orthogonal polarization

states. An effective volume diffuser, as used in experiments throughout this work,

depolarizes each state due to multiple scattering events yielding two independent

speckle intensities for each state. For a surface diffuser, multiple scattering events

are less likely depending on the angle of incident and the surface roughness, meaning

less depolarization can be expected (Elies et al., 1997). Therefore, we can infer that

2 < Mpolarization < 4. As a starting point an intermediate value of Mpolarization = 3

is chosen. A summary of the GOME instrument parameter serving as inputs

for the prediction model is given in table 6.1. They are taken from the GOME

user manual (see ESTEC Publishing Division, 1995). The speckle error without

averaging contribution due to the changing illumination angle during the calibration
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is estimated to

SFAGOME = 0.64 % (6.35)

with a speckle extent at the detector of Lc,det = 10 px. From p. 127 of the GOME

Parameter Value
Magnification Mx 0.25
Magnification My 0.25
Slit dimensions (x, y–direction) 10.15 mm, 0.10 mm
Detector pixel dimensions (a, b–direction) 2.5 mm, 0.025 mm
Telescope focal length (x, y–direction) 200 mm, 40 mm
Aperture dimensions (x, y–direction) 24.1 mm , 17.0 mm
Spectral resolution λres 0.29 nm (1.5 px)

Average wavelength λ 430 nm
Angle of illumination θi 12°
Angle of observation θo 0°

Table 6.1: Summary of the GOME VIS-3 spectrometer instrument parameters
used as input for the prediction model taken from the GOME user manual (ESTEC
Publishing Division, 1995).

User Manual one can see that the solar calibration takes ∆tcal = 42 s and that the

angle of illumination changes roughly 3.5° during that time. Now, we want to find

the averaging factor due to this angular change over time Mtime. A similar approach

is taken as in section 4.1.2. We need to find the correlation function µ between

the speckle fields A (θi1) and A (θi2), where θi1 = 12° as already established and

θi2 = 12°...15.5°. From eq. (2.117) we get

µ (θi1, θi2) = F (∆qz (θi1, θi2)) Ψ (∆x,∆y) (6.36)

We adopt the approximation by J. W. Goodman, 2020, p. 205 that only the

effective surface height fluctuations denoted by F affect the correlation appreciably,

which yields with eqs. (6.33) and (6.34)

µ (θi1, θi2) = exp

(
−σh

∣∣∣∣2πλ [cos(θi1)− cos(θi2)]

∣∣∣∣), (6.37)
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where λ = 430 nm is the average wavelength in the considered range. We continue

with the method described in section 4.1.2, where a coherency matrix is defined with

values of µ (θi1, θi2). The time averaging factor due to angular change calculates to

Mtime ≈ 1.8. (6.38)

The SFA including this effect is then

SFA′GOME =
SFAGOME√

Mtime

=
0.64 %√

1.8
= 0.47 %. (6.39)

Note that the angular dispersion of the speckle pattern at the detector may enlarge

the speckle size Lc,det as observed by Snel et al., 2009 in the SCIAMACHY diffuser

characterization. Thus, the estimated speckle size is a lower limit. At last, let us

discuss the effect of a larger surface roughness parameter σh, since it can only be

roughly estimated with the information available (ESTEC Publishing Division,

1995). An increase in this parameter reduces the width of the spectral and angular

correlation functions (see eqs. (6.33) and (6.37)) and in turn the speckle size Lc,det

and increases the angular time averaging factor Mtime. In the following additional

SFA results including the initial one from above are summarized for realistic values

of σh = 50λ = 21.5 µm and σh = 70λ = 30 µm:

σh = 30λ : SFA′GOME = 0.47 % Lc,det = 10.0 px (6.40)

σh = 50λ : SFA′GOME = 0.39 % Lc,det = 6.0 px (6.41)

σh = 70λ : SFA′GOME = 0.34 % Lc,det = 4.3 px. (6.42)

6.5 Speckle Distortion of the Solar Reference

In this section, the procedure of generating random speckle signals with parameters

consistent with the predictions of the previous section 6.4 is outlined. The speckle

error is characterized by two parameters, namely the amplitude SFA and the
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speckle size Lc,det. The considered spectral regime for the NO2 column retrieval

is between 400 nm and 471 nm. The spectral resolution of the GOME instrument

is 0.2 nm px−1, thus the 71 nm wide spectral range is sampled by w = 355 px,

which should also be the spectral width of the speckle error signal. We follow the

approach of Duncan and Kirkpatrick, 2008 to compute random complex gaussian

speckle patterns as presented in section 2.2.1. In a two-dimensional array W of

size w × w with zero amplitudes an aperture of dimension g × g is defined, where

the size is chosen according to the desired speckle size with g = w
Lc,det

. Inside this

aperture, the elements of W are added with a random phase factor exp(j2πr),

where 0 ≤ r ≤ 1 is a uniformly distributed random number. Note that the exact

position of the aperture in W does not matter and that w > 2g. The Fourier

transform of W , FW = FT {W} yields a random 2D speckle pattern S with unity

contrast by multiplying with the complex conjugate (∗):

S = FWF
∗
W .

Two examples for S with different speckle sizes Lc,det are shown in fig. 6.2. In

Figure 6.2: Example of generated speckle patterns: (left) with a speckle size of
Lc,det = 6.0 px and (right) with Lc,det = 10.0 px.

order to reduce the contrast of the images to the desired SFA, we use eq. (2.126)

to determine the amount of Msum independent speckle patterns that need to be
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summed (see section 2.2.2 for details):

Msum =
1

SFA2
. (6.43)

The speckle pattern having the target SFA is output after summation of Msum

individual random speckle patterns. As a last step we take a random row i or

column j from the summed speckle pattern Ssum and set its mean to unity yielding

the speckle error signal as shown fig. 6.3 for an amplitude of SFA = 0.2 % and a

speckle size of Lc,det = 10.0 px. Multiple independent speckle error spectra can be
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Figure 6.3: Example of generated speckle error spectrum with SFA = 0.2 % and
Lc,det = 10.0 px.

extracted from a single 2D pattern if the row or column indices are at least Lc,det

apart. The simulated diffusers are therefore different in regard to their scattering

centers but exhibit the same overall speckle statistic in terms of amplitude and

size. In table 6.2 the parameter combinations are shown for which error spectra

are generated. They are based on the prediction results of section 6.4. For every

combination, 40 different spectra are generated, which means that peaks and valleys

inside an individual spectrum are distributed differently every time. This ensures

some degree of statistical independence from random features in the speckle spectra

coinciding with absorption features in the Earth reflectance spectrum.



6.6 Retrieval Results and Discussion 115

Lc,det SFA
3.0 px 0.1 %
3.0 px 0.4 %
3.0 px 0.8 %
3.0 px 2.0 %
6.5 px 0.1 %
6.5 px 0.4 %
6.5 px 0.8 %
6.5 px 2.0 %
9.0 px 0.1 %
9.0 px 0.4 %
9.0 px 0.8 %
9.0 px 2.0 %

Table 6.2: Summary of the parameter combinations of artificial speckle error
spectra. For every set 40 different spectra are generated.

6.6 Retrieval Results and Discussion

In this section, the DOAS retrieval results obtained with the data and methods

described previously are presented and discussed. The goal is to estimate the

deviation of a DOAS retrieval (see section 6.1) using various speckle-distorted solar

reference spectra and compare them to a ground truth retrieval, for which no speckle

error is applied. The parameters for the error spectra are chosen according to the

predictions in section 6.4, which are derived from the parameters of the GOME

instrument. In section 6.5 variations of speckle-distorted spectra around these

predicted speckle error parameters are generated. In the following, the retrieval

deviations are evaluated with respect to the prior derived prediction parameters and

compared to actually observed diffuser errors in the retrieved NO2 column density

(see Richter and Wagner, 2001; Wenig et al., 2004). The retrieval is performed

on an artificial Earth reflectance spectrum which is generated via an RTM (see

section 6.2). In addition to the speckle error, random detector noise is included in

the retrieval process as a comparable error source. In the following, the performed

retrieval modes are described:

Ground truth: in this case, no detector noise or speckle distortion to any parts
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of the retrieval inputs are applied.

Detector noise: only detector noise of various magnitudes σ ∈ {0.05, 0.1, 0.2, 0.5}
is added to the target signal, where σ is in % of the signal’s mean. Target

signals are the solar reference and the Earth reflectance spectrum. For every

magnitude σ, the retrieval is repeated ten times with a newly generated noise

signal. This totals a number of 40 retrievals for this mode.

Detector noise + speckle distortion: detector noise is added as in the previ-

ous case to both, the Earth reflectance spectrum and the solar reference with

magnitudes σ ∈ {0, 0.05, 0.1, 0.2, 0.5}. Additionally, the speckle error signals

from section 6.5 are multiplied to the solar reference. For every parameter

combination of amplitude (SFA) and speckle size (Lc,det) the retrieval is

performed with 40 independent error signals, which in turn are repeated

ten times with different random detector signals. This totals a number of

400 retrievals for each of the twelve speckle parameter combinations from

section 6.5, table 6.2.

The slit function used for the retrieval is Gaussian shaped with FWHM of 0.29 nm.

The retrieved column densities were received by Ka Lok Chan (personal correspon-

dence, 2021). For the retrieval, the slit function is convolved with the generated

Earth reflectance spectrum (see section 6.3), after which they are resampled to

the GOME instrument resolution. The same procedure is applied to the presented

absorption cross-sections. They are then used for the DOAS fit. A fourth-order

polynomial fit is included in the spectral fit in order to remove low-frequency

structures due to Rayleigh scattering. In fig. 6.4 the relative retrieval deviation

from the ground truth in terms of the NO2 slant column density for the speckle-

distortion parameter combination Lc,det = 6.5 px, SFA = 0.4 % and two different

detector noise levels of 0.05 % and 0.5 % are depicted. The steps in the graphs

are due to the fact that for each one of the 40 speckle error signals, the retrieval

is repeated ten times with different random detector noise. The high-frequency

variations are more notable for a higher detector noise. In table 6.3 the retrieval
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deviations for all speckle-distortion and detector noise parameter combination are

summarized. Every entry corresponds to the RMS value of the graphs as shown in

fig. 6.4. Note that the first row’s entries represent deviations with only detector

noise present in the input data. This effectively corresponds to a speckle size of

one pixel and an SFA of σ. The bold-faced entries are in agreement with originally

observed deviations for the GOME instrument of 50 % (see Richter and Wagner,

2001; Wenig et al., 2004). From the presented data, one can derive that the SFA

leading to a retrieval error matching the one observed for the GOME instrument is

around 0.4 %, which is in very good agreement with the SFA model predictions

from section 6.4. For the speckle size Lc,det one can infer a lower limit which lies

between 3 and 6 pixels, which is also in the prediction range. For speckle sizes

above this threshold, the data suggest that the retrieval deviation does not increase

further. The contribution of the detector noise appears to be fairly constant with

only a slight increase towards cases with σ = 0.5 % if the speckle-distortion has an

amplitude of SFA > 0.1 %. For the other cases, it increases linearly with σ. In

conclusion, we have shown that the prediction model for diffuser speckle is capable

of estimating the parameters for an error signal from basic GOME instrument

parameters, which in turn leads to an error in the retrieved NO2 slant column

density when incorporated in a DOAS retrieval. This error matches the actually

observed deviation seen in retrieved columns from the real GOME instrument,

which suggests a valid model prediction. We also give indications to what extent

the speckle error signals of various severity impact the retrieval result and how this

effect compares with detector noise.
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Lc,det, SFA σ = 0.0 % σ = 0.05 % σ = 0.1 % σ = 0.2 % σ = 0.5 %
1.0 px, σ 0 3.40 6.27 13.22 28.48
3.0 px, 0.1 % 9.97 10.31 11.53 15.94 28.48
3.0 px, 0.4 % 33.70 33.84 34.26 35.82 45.91
3.0 px, 0.8 % 80.28 83.43 81.77 85.00 92.17
3.0 px, 2.0 % 219.89 217.22 213.97 212.76 212.55
6.5 px, 0.1 % 11.83 12.06 12.96 16.97 31.36
6.5 px, 0.4 % 47.94 47.77 46.93 48.50 55.28
6.5 px, 0.8 % 118.09 117.51 117.41 114.21 111.53
6.5 px, 2.0 % 304.06 306.61 306.22 310.57 301.73
9.0 px, 0.1 % 15.33 15.52 16.35 19.58 32.69
9.0 px, 0.4 % 44.55 43.54 44.02 46.65 55.30
9.0 px, 0.8 % 110.08 107.90 108.36 106.12 110.63
9.0 px, 2.0 % 320.13 311.30 311.42 313.01 318.56

Table 6.3: Average retrieval deviations in % of the NO2 column density performed
with various speckle-distorted solar reference spectra with parameters (Lc,det, SFA)
and random detector noise of magnitude σ compared with the ground truth. The
calculated number is the standard deviation over all retrieved column densities
subtracted with the ground truth. The bold-faced entries are in agreement with
originally observed deviations for the GOME instrument of about 50 % (see Richter
and Wagner, 2001; Wenig et al., 2004). They also match the theoretical expectation
determined with the model in section 6.4, which indirectly suggests a reliable
prediction.
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Figure 6.4: Two examples of the relative retrieval deviation from the ground truth
in terms of the NO2 slant column density for parameter combinations Lc,det = 6.5 px,
SFA = 0.4 %, and (top) σ = 0.05 % and (bottom) σ = 0.5 %. The steps in the
graph are due to the fact that for each of the 40 speckle error spectra, ten retrievals
are performed with different random noise contributions. This ensures some
degree of statistical independence from random features in the noise contributions
coinciding with absorption features in the Earth reflectance spectrum. The 40
different speckle error spectra correspond to distinct simulated diffusers in regard
to their scattering centers but exhibit the same overall speckle statistic in terms
of amplitude and size. Depending on the spectral position of the diffuser features,
they cause different retrieval deviations. Comparing both panels, the influence of
random noise becomes evident. The bottom one represents the top one with a
more pronounced random modulation.



Chapter 7

Conclusion and Outlook

In this thesis, novel experimental and theoretical methods of characterizing diffuser-

induced Spectral Features by speckles in imaging spectrometers have been explored,

improved, and developed. The Spectral Features cannot only diminish the quality

of the in-orbit radiometric calibration but also cause significant errors when the

speckle distorted solar reference spectrum is used in the context of the commonly

used Differential Optical Absorption Spectroscopy method to retrieve the column

densities of the trace gases. The Spectral Features are usually high-frequency

contributions and will therefore appear as additional absorption features that

essentially reduce the accuracy of the Differential Optical Absorption Spectroscopy

fit to the cross-sections of the individual specimen. Until recently, the speckle

error was mostly characterized with representative end-to-end setups for every

new instrument. Besides the high costs, the underlying speckle effects leading to

the measured diffuser signal at the detection plane remained hidden. For modern

instrument designs, the speckle error amplitudes are so small that the diffuser

signal cannot be reliably distinguished from other error sources, such as straylight.

The optical system was a black box in terms of the speckle effect. This also made

the development of reliable theoretical models a difficult task. Therefore, in this

thesis, a recently developed alternative measurement method is explored, matured,

and characterized in terms of uncertainties. It significantly reduces the complexity



121

of the experimental system and can be adjusted to different instruments quickly.

One is able to measure even small speckle signals and track how the diffuser signal

progresses through the instrument. Especially the last aspect allowed for the

development of a standalone mathematical prediction model based on established

speckle theory, which constitutes the key achievement of this work. With this

model, no experimental efforts are needed in order to quantify the diffuser speckle

signal at the detector plane. It requires a few basic instrument parameters as well

as scattering parameters of the diffuser. The predictions of the model are compared

to results acquired with the above-mentioned measurement method for a current

instrument design. Both prediction and measurement are in good agreement. To

further show the validity of the model, additional measurements are conducted

with a complete end-to-end setup. In contrast to the representative setups for

actual instruments mentioned above, it was purposely designed to yield a distinct

diffuser signal, which allowed for a reliable comparison to the prediction. Also, in

this experiment, the measurement results agree well with the developed theory.

Finally, the impact of diffuser speckle signals on the Differential Optical Absorption

Spectroscopy method is analyzed. For this, a measurement with a spectrometer of

the Global Ozone Monitoring Experiment is simulated. The solar reference used

for the retrieval of the trace gas concentrations is distorted with a range of diffuser

signals featuring different severities. Only the diffuser signals with parameters

predicted by the model led to the column density deviations that matched the ones

found in literature. This constitutes another implicit validation of the prediction

model.

The case of the Global Ozone Monitoring Experiment is an extreme example

in terms of the diffuser speckle error. More recent instruments use other diffuser

materials and geometries, which have less impact. However, the issue of quantifying

the speckle error as part of the total error budget still remains. Especially in the

early planning phases of future instruments the prediction model presented in this

work can be used to estimate the speckle contributions quickly. It is the first model

fundamentally based on known speckle theory concepts. With the trend to finer
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spectral resolutions for prospective missions, the diffuser Spectral Features will

potentially gain more significance. This thesis can serve as a solid basis for future

investigations. For example, angular effects due to the satellite’s movement during

the solar calibration may have a significant impact on the perceived diffuser signal.

Also, the contribution of the Sun as an extended light source is not fully understood.

Any new insights can be incorporated into the current version of the prediction

model. This work provides a good starting point for how future research can be

conducted on this topic.
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Appendices

Listing 7.1: libRadtran input file for generating Earth reflectance

output use r wavelength uu

zout TOA

output quant i ty r e f l e c t i v i t y

sza 32 .0

a t m o s p h e r e f i l e a f g l u s . dat

source s o l a r s a o 2 0 1 0 s o l r e f a i r h i g h r e s 4 0 0 4 7 0 . dat

mol abs param c r s

m o l f i l e no2 a f g l u s n o 2 . dat cm 3

m o l f i l e h2o a f g l u s h 2 o . dat cm 3

m o l f i l e o3 a f g l u s o 3 . dat cm 3

qu i e t

albedo 0 .1

umu 1

phi 0

w a v e l e n g t h g r i d f i l e l a m b d a g r i d f i l e 4 0 0 4 7 0 1 . 0pm.TRANS

r t e s o l v e r d i s o r t

c r s f i l e no2 NO2 Vandaele96 220K air . xs

c r s f i l e o3 o3 223K SDY air . xs

c r s f i l e o4 o4 Thalman Volkamer 293K air corrected . xs

c r s f i l e h2o H2O HITEMP 2010 390−700 296K 1013mbar air . xs
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