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1 Introduction 

Cold-tolerant clostridia are known as causative agents for spoilage of vacuum-packed meat. 

The first case of so-called blown pack spoilage occurred in 1989 in the UK where meat was 

found to be spoiled by Clostridium (C.) estertheticum (Dainty et al., 1989). Since then, meat 

spoiled by cold-tolerant clostridia has been reported worldwide and different species such as 

C. gasigenes, C. frigoriphilum and C. tagluense have been discovered (Broda et al., 2000a; 

Pecheritsyna et al., 2007; Suetin et al., 2009). Whereas C. estertheticum and C. gasigenes 

produce high amounts of gas and therefore lead to swelling of the package (blown pack 

spoilage), other species such as C. frigoriphilum, C. bowmanii and C. frigidicarnis produce only 

little or no gas (Broda et al., 1999; Dorn-In et al., 2018; Moschonas et al., 2010). In this study, 

the term cold-tolerant (psychrotolerant) clostridia refers to species which are able to grow at 

temperatures lower than 5 °C, such as psychrophilic (cold-loving) and psychrotrophic (cold-

growing) Clostridium spp. (Adam et al., 2010). 

Since culturing of cold-tolerant clostridia is time-intensive, molecular biological methods, such 

as Polymerase Chain Reaction (PCR), are often used as an alternative to detect cold-tolerant 

clostridia in samples. Specific PCRs for the detection of C. estertheticum and C. estertheticum-

like, C. bowmanii, C. frigoriphilum and C. tagluense-like have already been developed 

(Brightwell and Clemens, 2012; Broda et al., 2003a; Dorn-In et al., 2018). However, there may 

be other cold-tolerant Clostridium species, which may be present in samples but stay 

undetected, since no specific PCR has yet been developed to detect them directly in meat 

samples.  

C. putrefaciens and C. algidicarnis are both psychrotrophic species and were first described in 

1911 and 1994, respectively (Lawson et al., 1994; McBryde, 1911). They were often associated 

with deep tissue spoilage (bone taint) and ham souring but have recently also been found in 

vacuum-packed meat (Boyer, 1926; Broda et al., 1996a; Hernández-Macedo et al., 2012). Both 

species show a high similarity of their 16S rRNA genes and can therefore not be differentiated 

by sequencing (Broda et al., 2000b). To this point, all methods to differentiate between the 

two require pure isolates and are thus rather time consuming.   

To this day, no health issues have been associated with cold-tolerant clostridia but the 

financial losses in the meat industry caused by this type of spoilage are severe, which makes 
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an early detection of a possible contamination within abattoirs and cutting plants an 

important issue. Although incidences of cold-tolerant clostridia were reported worldwide, 

only a few investigations on this topic were conducted in Germany. Most studies concentrate 

on the prevalence of cold-tolerant clostridia in meat from retail or in abattoirs in Germany 

(Böhm, 2013; Bonke et al., 2016; Eckardt, 2015; Ziegler, 2009). 

The aim of this study was to obtain the prevalence of cold-tolerant clostridia in beef processed 

and retailed in Germany, as well as in processing plants and abattoirs of the investigated beef 

samples by tracing back the information provided on the package. For this purpose, 60 

vacuum-packed beef samples were purchased in supermarkets and butchers in Greater 

Munich and investigated for the appearance of said clostridia using culturing methods, 

multiplex qPCR and sequencing as partly described by Dorn-In et al., (2018). For a definite 

species identification of cold-tolerant clostridia found in some samples, a further aim of this 

study was to develop a Restriction Fragment Length Polymorphism (RFLP) and, additionally, a 

multiplex quantitative Polymerase Chain Reaction (qPCR) as practical methods to differentiate 

between C. putrefaciens and C. algidicarnis. 



2 LITERATURE 11 

 

2 Literature 

2.1 Microbial Spoilage of Meat 

Meat spoilage is a natural process leading to sensory deviations, such as changes in colour, 

odour, flavour and texture of the meat. Globally, around 20% of the produced meat products 

are lost or wasted at some point in the food supply chain, mainly due to commencing spoilage 

(FAO, 2011). Apart from the massive food waste, it also accounts for immense economic losses 

in the meat industry.   

Meat spoilage can have several causes unrelated to microbiota, such as physical damage, 

chemical reactions and pest infestation. However, microbial growth represents the main 

cause (Gram et al., 2002).   

2.1.1 Spoilage of Meat under Aerobic Conditions 

Bacteria belonging to the order Pseudomonadales are the main spoilage microorganisms in 

meat stored under aerobic conditions. Representative spoilage genera in this order are 

Pseudomonas (Family Pseudomonadaceae), as well as Moraxella and Acinetobacter (Family 

Moraxellaceae).  

Pseudomonas (P.) species (spp.), predominantly P. fragi, P. lundensis, P. fluorescens and 

P. putida, are the main cause for microbial meat spoilage under aerobic and chilled conditions 

(Delaquis et al., 1992; Koutsoumanis et al., 2006; Sundheim et al., 1998). Pseudomonas spp. 

produce high amounts of methyl acetate and ethyl acetate, utilising glucose and amino acids, 

and their growth comes along with foul, cabbage-like odours and slime production 

(Stanborough et al., 2018).     

The incidence of meat spoilage caused by Moraxella spp. and Acinetobacter spp. is generally 

significantly lower than by Pseudomonas spp. (Farber and Idziak, 1984; Ingram and Dainty, 

1971; McMeekin, 1975). Moraxella spp. proportionally increases when the meat is salted, 

while Pseudomonas spp. decreases due to osmotic stress (Juven and Gertshovki, 1976). 

Acinetobacter spp. can act as a major spoilage cause, when meat has a high ultimate pH, since 

the initial numbers of Acinetobacter spp. are proportionally higher under these circumstances 

(Gill and Newton, 1978). 
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In rarer cases, mainly when the surface becomes dry, moulds and yeasts, such as Candida spp., 

Cryptococcus spp. and Sporotrichum spp., can play a role in aerobic meat deterioration 

(Abunyewa et al., 2000; Nielsen et al., 2008).  

2.1.2 Spoilage of Meat under Anaerobic Conditions  

Spoilage of meat under anaerobic conditions can be caused by obligate anaerobic 

microorganisms (e.g. Clostridium spp.), facultative anaerobic (e.g. Enterobacteriacaeae and 

Brochothrix thermosphacta) or aerotolerant microorganisms (e.g. lactic acid producing 

bacteria). 

When maintaining hygienic slaughtering conditions and a constant low storing temperature, 

lactic acid producing bacteria (LAB) are dominating in an anaerobic atmosphere, as found in 

vacuum-packed meat (Borch et al., 1996; Yost and Nattress, 2002). Commonly found species 

are Lactobacillus spp., Leuconostoc spp. and Carnobacterium spp. (Hernández-Macedo et al., 

2011). Generally, their spoilage potential is rather low. If spoilage occurs, it is often caused by 

LAB strains producing butyric acid (Jones, 2004). Short chain fatty acids, such as lactic acid, 

acetic acid and butyric acid account for the typical acidic and cheesy odour of meat spoiled by 

lactic acid producing bacteria (Gill, 1983; Jääskeläinen et al., 2012; Jones, 2004). 

In case of temperature abuse, Enterobacteriaceae, such as Serratia proteamaculans, 

Hafnia alvei, Proteus spp. and Klebsiella spp., can be a relevant cause of vacuum-packed meat 

spoilage (Gamage et al., 1997; Gill and Newton, 1978; Hanna et al., 1979). The spoilage is 

characterised by offensive odours and greening of the meat (Brightwell et al., 2007).  

B. thermosphacta plays an important role in meat deterioration (Hernández-Macedo et al., 

2011). It can grow under aerobic as well as anaerobic conditions and preferably metabolises 

glucose (Pin et al., 2002). With residual oxygen being present in vacuum-packs, its main 

products are acetoin and diacetyl, causing an offensive, sweet and cheesy odour. Under strict 

anaerobic conditions, spoilage caused by B. thermosphacta is less severe since lactic acid and 

ethanol are the main metabolites resulting from its utilisation of glucose. (Gribble and 

Brightwell, 2013; Pin et al., 2002).   

So-called blown pack spoilage (see Fig. 1) of vacuum-packed and constantly chilled meat has 

been related to psychrotolerant Clostridium spp. since 1989 (Broda et al., 1999; Dainty et al., 

1989; Silva et al., 2011). The spoilage is characterised by an immense gas production which 
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leads to gas bubbles in the drip and eventually to a distension of the vacuum film (Boerema 

et al., 2007). The cheesy odour is caused by butanol, butyl esters and butyric acid being volatile 

compounds of gas produced by psychrotolerant clostridia (Broda et al., 1996b). Since Dainty 

et al. (1989) first reported on meat spoiled by C. estertheticum in the United Kingdom, cases 

of blown pack spoilage have occurred all over the world (Bolton et al., 2015; Bonke et al., 

2016; Broda et al., 1996b; Wambui et al., 2020; Zhang et al., 2020).  

While blown pack spoilage was long believed to be solely caused by C. estertheticum and 

C. gasigenes, more recent studies have shown that Enterobacteriaceae and LAB are also able 

to produce gas and cause this kind of spoilage. In the United States, commercially obtained, 

gas-swollen ground beef chubs were tested for microbial spoilage and revealed to be 

contaminated with Hafnia alvei (Kang et al., 2002). In New Zealand, cases of blown pack 

spoilage were also found to be unrelated to psychrotolerant clostridia. Further investigations 

revealed a contamination with species of Enterobacter, Serratia, Hafnia and Rahnella 

(Brightwell et al., 2007). Similar findings were reported by Hernández-Macedo et al. (2012) in 

meat from Brazil. Chaves et al. (2012) tested different species of Enterobactericeae and lactic 

acid bacteria recovered from meat and abattoir samples for their blown pack spoilage 

potential. Various species, such as Hafnia alvei, Klebsiella pneumoniae, 

Leuconostoc mesenteroides and Lactobacillus brevis, showed commencing gas production 

after 14 days and a moderate to hard distension of the packaging after 21 days of storage at 

4 °C.  

Studies showed that other cold-tolerant Clostridium species than C. estertheticum and 

C. gasigenes, such as C. bowmanii, C. frigoriphilum and C. frigidicarnis, were able to produce 

only small amounts of gas (Broda et al., 1999; Dorn-In et al., 2018; Moschonas et al., 2010). 

Thus, the spoilage appearance of vacuum-packed meat caused by these Clostridium species 

was rather similar to spoilage caused by Enterobacteriaceae and LAB. In some cases, the co-

contamination of meat with different bacterial groups has to be considered. The routine 

culturing method may not detect cold-tolerant clostridia, since they grow much slower and 

require lower growth temperatures than Enterobacteriaceae and LAB. Additionally, specific 

media for culturing cold-tolerant clostridia are not yet available, thus the current 

quantification method is solely based on qPCR (Bonke et al., 2016; Brightwell and Clemens, 

2012; Dorn-In et al., 2018). Therefore, developing specific primers and probes to detect and 

to quantify a wide range of cold-tolerant Clostridium species in meat samples is required. 
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Unlike Enterobacteriaceae, B. thermosphacta and LAB, cold-tolerant clostridia are uncommon 

in vacuum-packed meat. Therefore, when present in high numbers in meat, they may be 

considered as a main spoilage microorganism in that product. 

 

 

Figure 1: Vacuum-packed beef sample with severe distention of the vacuum foil due to gas 

production of C. estertheticum (label blackened).  

 

2.2 Psychrotolerant Clostridia 

2.2.1 Appearance and Characteristics  

Like all Clostridium species, psychrotolerant (cold-tolerant) clostridia are spore-forming, gram-

positive, rod-shaped anaerobes. Psychrophilic (cold-loving) and psychrotrophic (cold-growing) 

clostridia are characteristically able to grow at very low temperatures. The definitions of the 

terms psychrophilic, psychrotrophic and psychrotolerant as used in this study followed 

Source: S. Mang, 2018 (Chair of Food Safety, LMU Munich) 
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descriptions from previous studies (see Table 1).   

 

Table 1: Temperature range for growth of psychrophilic, psychrotrophic and psychrotolerant 

  microorganisms (Olson and Nottingham, 1980; Adam et al., 2010) 

 minimum range optimum range maximum range 

psychrophilic -5 - +5 °C 12 – 15 °C 15 – 20 °C 

psychrotrophic -5 - +5 °C 25 – 30 °C 30 – 35 °C 
psychrotolerant* capable of growing at < 5 °C  

*covers psychrophilic, psychrotrophic and mesophilic strains with low minimum growth 
temperatures (Broda et al., 1997).  
 

All psychrotolerant Clostridium species produce gas, however, in various amounts. While 

C. estertheticum and C. gasigenes are known to produce large volumes of gas, other species 

show significantly less gas production (Broda et al., 1999; Moschonas et al., 2010). The main 

compounds of the produced gas are carbon dioxide and hydrogen. Butyric and volatile sulphur 

compounds, as well as ammonia and diamines, lead to the putrid odour of meat spoiled that 

way (Broda et al., 2000a). The appearance and selected characteristics of the most relevant 

species of psychrotolerant clostridia are summarised in Table 2.   
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Table 2: Appearance and characteristics of selected cold-tolerant Clostridium species 

species morphology of colonies temperature 
optimum pH range ß - haemolysis 

C. estertheticum subsp. 
estertheticum (1,2,3) 

1 - 2 mm, round with often 
coarsely granulated 
margins, smooth, slightly 
raised, cream-white to 
greyish, semi-transparent 
to opaque 
 

6 - 8 °C 5.5 - 7.8 - (1) / + (2,3) 

C. estertheticum subsp. 
laramiense (1,4) 

small, greyish white, 
smooth, convex 

15 °C 4.5 - 7.5 + 

C. gasigenes (5) 0.7 - 3.0 mm, white to grey, 
circular, convex and shiny 

20 - 22 °C 5.4 - 8.9 + 

C. putrefaciens (6,7) cottony, small, filamentous 20 -25 °C 6.0 - 9.0 n. d. 

C. algidicarnis (8) 2 - 3 mm, raised, convex, 
creamy grey 

25 - 30 °C n. d. + 

C. tagluense (9) round, cream-coloured, 
convex, 1 - 2 mm 

15 °C 6.0 - 8.0 n. d. 

 
C. frigoris (1) 

1 - 2 mm, round with often 
coarsely granulated 
margins, smooth, slightly 
raised, cream-white to 
greyish, semi-transparent 
to opaque 
 

 
5 - 7 °C 

 
5.5 -7.5 

 
- 

C. lacusfryxellense (1) 8 - 12 °C 6.0 - 7.3 - 

(1) Spring et al. (2003)   (2) Helps et al. (1999)   (3) Yang et al. (2010)   (4) Kalchayanand et al. (1993)   (5) Broda et 
al. (2000a)   (6) McBryde (1911)   (7) Sturges and Drake (1927)   (8) Lawson et al. (1994)   (9) Suetin et al. (2009)    
n. d. = not determined    

     
 

2.2.2 Sources of Contamination of Meat 

Knowing about the relevant sources of cold-tolerant clostridia is a major requirement for an 

effective prevention of contamination.   

 While species like C. estertheticum subsp. estertheticum, C. gasigenes, C. frigidicarnis 

C. putrefaciens and C. algidicarnis were first found in spoiled meat samples, a significant 

number of psychrophilic species, such as C. tagluense, C. frigoriphilum, C. algoriphilum, 

C. frigoris, C. lacusfryxellense, C. bowmanii and C. psychrophilum, were first isolated from 
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extreme, non-animal related environments like permafrost or Antarctic mat samples (Broda 

et al., 1999; Broda et al., 2000a; Collins et al., 1992; Lawson et al., 1994; McBryde, 1911; 

Shcherbakova et al., 2005; Spring et al., 2003; Suetin et al., 2009). However, strictly 

psychrophilic clostridia are not restricted to permanently cold territories. Several of the 

above-mentioned species were later found in animal-related samples and spoiled meat from 

areas with a moderate climate like Germany, Ireland, New Zealand and the United Kingdom 

(Broda et al., 2009; Cavill et al., 2011; Dorn-In et al., 2018; Moschonas et al., 2010).   

There have been various studies investigating prime sources of cold-tolerant clostridia and the 

point of contamination of the carcass. Broda et al. (2002) took swabs of the hide, faeces and 

tonsils of 100 slaughter animals and 33 environmental samples at various points of a venison 

processing chain in New Zealand and tested them for the occurrence of cold-tolerant 

clostridia. In 6% of hide samples and in 5% of faecal samples they found C. gasigenes. This 

species could not be isolated from tonsil swabs or environmental samples. Other species that 

could not be fully identified but showed high similarities to C. estertheticum were also mainly 

found in faecal samples, fewer in hide or environmental samples. Tonsil swabs were 

continuously negative for cold-tolerant clostridia.   

The studies of Boerema et al. (2003), also conducted in New Zealand, revealed similar results: 

39 samples were taken from the abattoir and its environment and tested for C. estertheticum 

and C. gasigenes. Both species were mainly found in hide, faeces and soil samples, as well as 

in samples taken from the stockyard pen and significantly less in samples taken from the 

slaughter floor or the boning room. Both authors consequently concluded that the source of 

contamination with cold-tolerant clostridia is most likely spores on animal hide contaminated 

with faeces which are then transferred to the carcass during the dressing process.   

This conclusion was supported by Moschonas et al. (2009), after testing 1680 samples of 

animals and the surroundings of four different Irish slaughterhouses for the occurrence of 

C. estertheticum and C. gasigenes. Samples positive for one or both of the two species 

predominantly originated from hide or faeces samples and from predressing areas, while 

positive samples from postfleece removal areas were rare.  

Broda et al. (2009) included two additional species – C. putrefaciens and C. algidicarnis – in 

their study and made an important finding. After taking and testing 357 samples, they found 

that, in accordance with former studies, C. estertheticum and C. gasigenes were mainly found 

in samples of fleece, faeces and soil. Neither of the two species could be detected in postfleece 
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removal areas. C. putrefaciens/C. algidicarnis (no further differentiation was made), however, 

could rarely be detected in faecal or farm samples but mainly in swabs taken from surfaces of 

the boning room, suggesting that contamination happens only after the carcass breakdown. 

These results support other authors in their assumption that C. putrefaciens and 

C. algidicarnis may proliferate in deep tissues and the lymphatic system and thus could be 

present in living animals (Boyer, 1926; Broda et al., 1996a; Haines and Scott, 1940; Mundt and 

Kitchen, 1951).  

Dorn-In et al. (2018) obtained 110 isolates of cold-tolerant clostridia from 108 samples of 

different types of meat, as well as from skin and faeces samples of wild boar. While   

C. estertheticum and C. frigoriphilum were isolated mainly from faeces samples, 

C. frigidicarnis, C. bowmanii and C. tagluense-like were predominantly isolated from skin of 

wild boars. 

2.2.3 Methods of Detection and Differentiation  

2.2.3.1 Culturing 

Since psychrophilic and psychrotrophic clostridia grow at low temperatures the culturing 

process is slow and not always successful (Boerema et al., 2003; Broda et al., 1998; Dainty et 

al., 1989). To this day, there is no selective culture medium which makes isolation difficult. 

Commonly used are Columbia Blood Agar (CBA) as a solid and Peptone Yeast Glucose 

Starch (PYGS) as a liquid culture medium (Broda et al, 1998). PYGS broth is used in order to 

enrich the number of cold-tolerant clostridia, if present in samples. Suspicious colonies 

growing on CBA have to be further confirmed by either biochemical methods, molecular 

biological methods or Matrix-Assisted Laser Desorption/Ionization-Time of Flight Mass 

Spectrometry (MALDI-TOF MS), as described below. Culturing methods used for cold-tolerant 

clostridia are therefore only for qualitative purposes. 

2.2.3.2 Molecular Biological Methods 

There are several molecular biological methods to detect cold-tolerant clostridia. The first PCR 

to detect C. estertheticum was developed by Helps et al. (1999). The used primers bind to the 

16S rRNA gene of said species and produce amplicons with a size of 641 bp.  

Broda et al. (2003a) established a method to detect C. estertheticum and C. gasigenes using 
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two primer sets (16SDBF/16SDBR to detect C. gasigenes and 16SEF/16SER to detect 

C. estertheticum and C. estertheticum-like) binding to the 16S rRNA gene and one primer set 

(EISRF/EISRR to detect C. estertheticum) binding to the Internal Transcribed Spacer (ITS) 

region. However, since then, new species of cold-tolerant clostridia have been discovered and 

several studies have shown that primer pair 16SEF/16SER is also able to bind to the 16S rRNA 

gene of species like C. bowmanii and C. lacusfryxellense (Brightwell and Clemens, 2012; Cavill 

et al., 2011).  

Boerema et al. (2002) designed a primer set to detect 16S rRNA gene fragments of 

C. algidicarnis and C. putrefaciens in meat drip. Since both species show a high rate of 

similarity in the target region, a differentiation was not possible. 

Brightwell and Clemens (2012) developed a real time PCR assay for the detection of 

C. estertheticum and C. estertheticum-like, such as C. bowmanii and C. lacusfryxellense, in a 

variety of different matrices. While the detection of said species in meat, hide, blood/drip and 

environmental samples was successful (limit of detection: 3 spores per ml), the detection in 

faeces and soil proved to be more difficult and enrichment prior to the DNA extraction is 

recommended. 

Dorn-In et al. (2018) developed the first multiplex qPCR to identify four different cold-tolerant 

Clostridium species, namely C. estertheticum, C. frigoriphilum, C. bowmanii and 

C. tagluense-like and thereby provided a practical method for a rapid identification of said 

species. 

qPCR based methods, as described above, are used to detect and at the same time quantify 

target microorganisms directly in samples such as meat drip, faeces or environmental swabs. 

However, the provided PCR methods cannot detect all species of cold-tolerant clostridia and 

many of them are not able to differentiate between species. Therefore, further molecular 

biological methods have to be applied for exact species identification. 

Broda et al. (2000b) used Restriction Fragment Length Polymorphism (RFLP) analysis of the 

16S rRNA gene to differentiate six different species of cold-tolerant clostridia, namely 

C. estertheticum, C. algidicarnis, C. putrefaciens, C. fimetarium, C. vincentii and C. botulinum 

(type B and E). Out of all eight restriction enzymes tested, a combination of four 

endonucleases (AluI, HaeIII, TaqI, CfoI) allowed a distinct differentiation of all species involved.  

A discrimination and identification of cold-tolerant clostridia using internal transcribed spacer 

polymorphism analysis was attempted by Broda et al. (2003b). However, due to the presence 
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of interstrain and a lack of interspecies ITS polymorphism, the method proved to be unsuitable 

for the purpose of identification.  

Genetic sequence analysis of the 16S rRNA gene (about 1500 bp) presents another method to 

identify cold-tolerant Clostridium species. Using universal primer sets, the sequence is 

amplified in a PCR run and, after purification and sequencing, can be compared to 16S rRNA 

gene sequences of other cold-tolerant clostridia, which are provided in public databases (e.g. 

NCBI, https://blast.ncbi.nlm.nih.gov/Blast.cgi). Even though sequencing is generally a very 

reliable method for identification, it cannot be applied to all cold-tolerant Clostridium species. 

The 16S rRNA gene sequences of some cold-tolerant Clostridium species, such as 

C. putrefaciens and C. algidicarnis, are highly homogenous and can therefore not be 

differentiated that way (Broda et al., 2000b).  

Since the application of RFLP analysis and sequencing of the 16S rRNA gene require pure 

isolates, culturing has to be performed first. Therefore, a variability of materials is needed and 

the working process is time intensive until the contaminating species is finally identified. 

2.2.3.3 MALDI-TOF MS 

Another way of differentiating cold-tolerant Clostridium species is by using MALDI-TOF MS. 

Similar to RFLP analysis and sequencing of the 16S rRNA gene, pure isolates are required as 

starting material. The wide range of standard protein spectra of each cold-tolerant Clostridium 

species has to be established and included in the databank. There are still many unknown 

cold-tolerant Clostridium species and variable protein structures within the same species may 

lead to insufficient results of the identification, as reported by Dorn-In et al. (2018). 

2.3 C. putrefaciens & C. algidicarnis  

2.3.1 Reported Cases Worldwide  

C. putrefaciens was first described in 1911 by McBryde in a bacteriological study. Back then, 

statistics showed that 1.675.000 pounds of ham produced annually in the United States were 

seized because of souring. Based on that, McBryde concluded a total annual loss of 

approximately a quarter of a million dollars in the meat packaging industry. He defined a sour 

ham as ham that has a scent that deviates from the normal, often described as sour or – in 

severe cases – putrefactive. As initial cause, McBryde determined the growth of an anaerobic 
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bacterial species that he assigned to the genus Bacillus (B.) and named it B. putrefaciens. 

According to McBryde, the bacillus and its spores are common in dust and dirt and might 

contaminate the ham by being present on thermometers, pumping needles and billing hooks 

which are used during the curing process. By examining ham taken from the killing floor only 

45 minutes after slaughtering, Boyer (1926) later concluded that B. putrefaciens must already 

be present at the moment of slaughter and could possibly be found in the blood and tissue of 

living animals. A year later Sturges and Drake (1927) published a complete description of the 

species and rightly assigned it to the genus Clostridium. In the following years C. putrefaciens 

was found to be the cause of bone taint in cured ham in various studies (Ingram, 1952; Mundt 

and Kitchen, 1951; Ross, 1965).  

C. algidicarnis was first described by Lawson et al. (1994) who isolated the species from spoiled 

vacuum-packed, cooked pork. Since then, it has been associated with bone taint in 

temperature-abused beef and deep tissue spoilage of vacuum-packed lamb (Boerema et al., 

2002; Broda et al., 1996a; De Lacy et al., 1998).   

In recent years, both species were found in vacuum-packed beef in the UK, New Zealand and 

Brazil (Broda et al., 2009; Cavill et al., 2011; Hernández-Macedo et al., 2012; Silva et al., 2011). 

So far, there are no reported findings of C. putrefaciens or C. algidicarnis within the mainland 

of Europe.  

2.3.2 Methods to Differentiate Between Both Species 

C. putrefaciens and C. algidicarnis are very closely related. Their 16S rRNA genes show a 

similarity of 99 – 100% (Broda et al., 2000b; Stackebrandt and Swiderski, 1999), which 

excludes sequencing of said genes as a possible method for differentiation. In most studies 

that involved the investigation of cold-tolerant Clostridium species, no differentiation 

between the two was made (Boerema et al., 2002; Broda et al., 2009; Cavill et al., 2011). Broda 

et al. (2000b) used RFLP analysis to differentiate between various species of psychrophilic and 

psychrotrophic clostridia. C. putrefaciens and C. algidicarnis could be differentiated by using 

the restriction endonuclease CfoI/HhaI for digestion of the former amplified 16S rRNA. The 

obtained restriction patterns are clearly distinguishable. However, the method requires pure 

isolates of both species, similar to MALDI-TOF MS.   
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To this day, there is no method available that can be used to distinguish between both species 

directly from sample material such as meat juice or swab samples.   
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4 Discussion 

4.1 Beef Samples from German Retail 

In this study, 60 vacuum-packed beef samples purchased in German retail were tested for the 

occurrence of cold-tolerant clostridia in their meat juice. At the day of purchase, all samples 

were within their shelf-life span and did not show any signs of spoilage. All beef samples were 

stored at 4 °C for a further eight weeks after purchase in order to increase the chance of 

detecting a possible contamination with cold-tolerant clostridia. After storage, the meat was 

investigated for its spoilage appearance (BPS, odour, loss of meat juice, colour and 

consistency). Meat juice was taken and investigated for the presence of cold-tolerant 

clostridia.  

Until this day, there is very little information about the incidence of cold-tolerant clostridia in 

German processing plants and in meat sold in Germany. The few studies that were conducted 

regarding this issue concentrated on C. estertheticum and C. estertheticum-like organisms, 

further species identification was not carried out (Böhm, 2013; Bonke et al., 2016, Eckardt, 

2015; Ziegler, 2009). The study by Dorn-In et al. (2018) was the first study that identified other 

cold-tolerant clostridia than C. estertheticum, isolated from meat juice, skin or faeces samples 

from Germany, down to species level.   

To obtain more information about the prevalence and the different species of cold-tolerant 

clostridia in processing plants and meat from Germany, samples investigated in this study 

were chosen on the condition that at least one of the production steps had taken place in 

Germany. For 50 samples, all steps from birth to cutting were conducted in Germany.  

4.2 Development of Detection Methods 

As mentioned in literature Section 2.2.1, clostridia that are able to grow at cold temperatures, 

can be psychrophilic or psychrotrophic Clostridium species. In this work, the term “cold-

tolerant clostridia” includes all of these species.  

The detection method of cold-tolerant clostridia in this work was primarily based on the qPCR 

developed by Dorn-In et al. (2018). After DNA extraction of meat drip, samples were tested 

using a SYBR green qPCR detecting the 16S rRNA gene of almost all Clostridium spp.. Samples 

that tested positive were further tested using the multiplex qPCR with probes being specific 
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for C. estertheticum, C. frigoriphilum, C. bowmanii and C. tagluense-like (Dorn-In et al., 2018). 

PCR products of samples that could not be identified this way were purified and sent off for 

sequencing of the 16S rRNA gene. For meat drip samples that tested negative in the SYBR 

green qPCR, a DNA extraction of their PYGS enrichment was carried out and the detection 

process was repeated as described above. Only once the PYGS enrichment tested negative, 

samples were finally classed as negative.  

However, following this process allowed a definite species identification of only 22 out of 32 

positive samples. Sequencing results showed that nine samples were positive for 

C. algidicarnis/C. putrefaciens and one sample was positive for C. frigoris/C. lacusfryxellense. 

To this day, further differentiation of those species directly from meat juice using molecular 

biological methods was not possible, since their 16S rRNA genes are highly similar (Broda et 

al., 2002; Broda et al., 2000b). Exact differentiation of those species using biochemical and 

morphological analysis of isolates can be difficult and further method development is needed 

to simplify identification. This is a conclusion that led to the second objective of the study: To 

develop a practical method to differentiate between C. putrefaciens and C. algidicarnis using 

molecular biological methods, namely RFLP and multiplex qPCR. For this purpose, samples 

contaminated with C. algidicarnis/C. putrefaciens were submitted to culturing in order to 

obtain pure isolates for the validation of the developed methods. As a result, eight pure 

cultures of C. algidicarnis were obtained and species identification was confirmed using 

MALDI-TOF MS. 

As mentioned above, the 16S rRNA genes of both species are very similar, thus the newly 

developed primers and probes are a combination of the 16S rRNA gene and the Internal 

Transcribes Spacer (ITS). The ITS region is located between the 16S rRNA and the 23S rRNA 

region and is known as a non-conserved sequence. Therefore, it is often used for species and 

intra-species differentiation of bacteria (Barry et al., 1991; Scheinert et al., 1996). Both newly 

developed differentiation methods (RFLP and multiplex qPCR) show a sensitivity and 

specificity of 100%, tested with 48 pure cultures of different bacterial species including 

reference strains of C. algidicarnis (DSM 15099) and C. putrefaciens (DSM 1291), eight filed 

isolates of C. algidicarnis that were previously identified using MALDI-TOF MS and all 60 

vacuum-packed beef samples. They allow a clear identification and differentiation of both 

species and can be independently applied. Comparing the two, the multiplex qPCR represents 

the more efficient method, since it is certainly less time-intensive than the RFLP method. 
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Additionally, the multiplex qPCR can be used for quantification of target species in the meat 

juice samples, as performed in this study. However, the RFLP method can serve as a practical 

alternative if available equipment does not allow for implementation of the multiplex qPCR.  

By using the multiplex qPCR to differentiate between C. algidicarnis and C. putrefaciens, an 

interpretation concept has to follow, since it was not possible to design a probe detecting 

solely C. algidicarnis. Probe Cal-ITS-Fam does not detect C. putrefaciens, but despite 

C. algidicarnis it also detects some other cold-tolerant Clostridium species, such as 

C. frigoriphilum and C. tagluense, however, with significantly less sensitivity. This problem was 

solved by including probe Cpal168-Cy5 combined with primer pair TM-F & Cl642-R into the 

method. This probe is exclusively specific for C. algidicarnis and C. putrefaciens. As long as 

results of probe Cal-ITS-Fam are only evaluated when probe Cpal168-Cy5 shows a positive 

signal, an exact identification of C. algidicarnis is ensured. 

During the process of validation of the RFLP method and multiplex qPCR, it was revealed that 

five beef samples positive for C. frigoriphilum and one beef sample positive for 

C. estertheticum were additionally positive for C. algidicarnis. By following the process that 

was used for detection, this co-contamination was initially missed, since the samples were 

determined as positive for C. frigoriphilum and C. estertheticum and were not further tested. 

Although the multiplex qPCR described by Dorn-In et al. (2018) and the one developed in this 

study are a useful and rapid method for the identification of cold-tolerant clostridia, the 

application of the SYBR PCR, which is specific for almost all clostridia, may be even more 

effective as a screening method. If the aim is to investigate vacuum-packed beef stored at 

refrigerated temperatures for a contamination with any Clostridium spp., the SYBR PCR 

provides useful results and is a good starting point for further investigations, if required. 

Sequencing of the 16S rRNA gene can be a practical method for species identification. Yet a 

co-contamination of several species, as found in this study, could lead to incorrect or unclear 

results. The close relation between certain cold-tolerant Clostridium spp. is another issue that 

can result in unspecific species identification when using sequencing methods. 

Species-specific multiplex qPCRs are a rapid and reliable way to identify the cold-tolerant 

Clostridium spp. down to species level. However, more probes specific for further species such 

as C. frigoris, C. lacusfryxellense and C. tagluense detected in this study need to be developed.  
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4.3 Detected Species  

By using the sequence analysis of the 16S rRNA gene, the multiplex qPCR described by Dorn-

In et al. (2018) and the multiplex qPCR and RFLP method developed in this study, 32 beef 

samples were found to be positive for the following cold-tolerant Clostridium species: 

C. frigoriphilum (n = 14), C. algidicarnis (n = 9), C. estertheticum (n = 1), C. tagluense (n = 1), 

C. lacusfryxellense/C. frigoris (n = 1), C. frigoriphilum & C. algidicarnis (n = 5), C. estertheticum 

& C. algidicarnis (n = 1).  

C. estertheticum and C. gasigenes are generally believed to be the most important cold-

tolerant Clostridium species leading to meat spoilage. In former studies, they were the main 

species isolated from meat with signs of blown pack spoilage or from environmental samples 

from the abattoir area (Bolton et al., 2015; Byrne et al., 2009; Moschonas et al., 2009). In most 

studies, however, the molecular methods used for detection were specific for those two 

species, which might be an explanation as to why those species are overrepresented. 

Additionally, the primer pair developed by Broda et al. (2003a) for the detection of 

C. estertheticum was later found to also detect so-called C. estertheticum-like species, such as 

C. bowmanii and C. frigoriphilum, so samples might have been wrongly concluded as positive 

for C. estertheticum.   

The results of the presented study show that other species than C. estertheticum and 

C. gasigenes can be of high significance regarding the spoilage of vacuum-packed beef. 

C. frigoriphilum has rarely been detected in former studies but was found in 19 of 32 positive 

samples in this study. These results are in accordance with the results obtained by Dorn-In et 

al. (2018), where C. frigoriphilum was detected in 8 of 20 vacuum-packed beef samples with 

signs of blown pack spoilage, collected in Germany. Concluding from the results of these two 

studies, it appears that the prevalence of C. frigoriphilum in Germany is significantly higher 

than the prevalence of C. estertheticum.    

C. algidicarnis was found to be the cause of bone taint, as well as spoilage of vacuum-packed 

meat. Cases have been reported from several countries such as Brazil, the UK and New 

Zealand (Boerema et al., 2002; Cavill et al., 2011; De Lacy et al., 1998; Silva et al., 2011). The 

presented study is the first report of C. algidicarnis in Germany and the mainland of Europe. 

Although Dorn-In et al. (2018) applied similar methods (SYBR qPCR and sequencing), none of 

their investigated samples were positive for C. algidicarnis. However, many vacuum-packed 

meat samples investigated in the study of Dorn-In et al. (2018) were suspicious samples 
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obtained from meat processing plants, which occasionally had problems with blown pack 

spoilage, while the samples in this study were fresh meat processed in various processing 

plants. In 2018, when the study of Dorn-In et al. was conducted, a multiplex qPCR for the 

detection of C. algidicarnis was not yet available so the incidence of this species was not 

inclusively investigated. Additionally, unlike C. estertheticum, C. algidicarnis does not produce 

much gas (see Section 3, Table 4 of the Publication and Section 4.4). Thus, the spoilage of meat 

caused by this bacterium may be suspected to be caused by other spoilage microorganisms 

such as lactic acid producing bacteria and/or Enterobacteriaceae.  

4.4 Cold-tolerant Clostridia and Signs of Spoilage 

As mentioned in the publication (see Section 3), loss of meat drip or change of consistency 

cannot be used as a reliable indicator of meat being spoiled by cold-tolerant clostridia. 

However, a change of odour to acidic and cheesy may imply a contamination with these 

bacteria.   

The typical spoilage appearance, so-called Blown Pack Spoilage, results from the immense gas 

production that is observed in samples contaminated with C. estertheticum. The detected 

amounts of C. algidicarnis in beef samples stored for 8 weeks were quite high (quantified by 

qPCR) and, therefore, may very well be the cause of spoilage. However, the production of gas 

was rather similar to samples negative for cold-tolerant clostridia. Since the spoilage 

appearance caused by this species does not differ from the spoilage appearance caused by 

other bacteria, the samples may be falsely considered as not contaminated with clostridia and 

the investigation may be targeted at lactic acid producing bacteria or Enterobacteriaceae. This 

could lead to the application of unspecific hygienic and disinfection measures for the 

processing plants or meat industries. A common cleaning process applied for other spoilage 

microorganisms such as Pseudomonas, Enterobacteriaceae and lactic acid producing bacteria 

may not be effective against endospores of clostridia, since they are strongly resistant against 

a wide range of disinfecting agents and high temperatures (Böhm, 2013; Broda, 2007). 

Similar to the results obtained by Dorn-In et al. (2018), high amounts of C. frigoriphilum found 

in beef samples in this study could not be correlated to the level of gas production. This may 

be partly due to other spoilage microorganisms present in meat samples, such as LAB and/or 

Enterobacteriaceae. Furthermore, meat or muscle type, as well as other components in meat 
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such as fat, may influence the level of gas production. Since this parameter was not included 

in the analysis, it may be an interesting matter for further studies. 

4.5 Distribution of Abattoirs and Cutting Plants where Positive Samples were 

Processed 

To obtain representative results, the chosen samples were processed in a large number of 

abattoirs and cutting plants, namely 28 and 33, respectively. From those, 22 abattoirs and 27 

cutting plants were located in Germany. The origins of the samples were traced back using the 

given information on the packaging. Since all samples were purchased in supermarkets and 

butchers in Greater Munich, the majority of abattoirs and cutting plants (13/22 and 16/27, 

respectively) were located in the state of Bavaria. Positive samples were processed in 16 

abattoirs and 20 cutting plants all over Germany, as well as in Austria, the Netherlands and 

Ireland. Evaluating the obtained results, there is no noticeable difference of the prevalence of 

cold-tolerant clostridia in the different federal states of Germany. Regarding the distribution 

of different species, C. frigoriphilum and C. algidicarnis – the two main species detected in 

positive samples – were found in samples processed throughout Germany. This goes to show, 

that in a significant amount of meat processing plants a contamination with cold-tolerant 

clostridia seems to be an issue and that this problem is not a local occurrence. These results 

are in accordance with the results obtained by Eckardt (2015), where in all three investigated 

German meat-processing plants spores of various cold-tolerant Clostridium species were 

found. However, it has to be mentioned that from the available information about the origin, 

it cannot be concluded if contamination of the sample happened in the abattoir, the cutting 

plant or potentially even in both locations. Nevertheless, the results of this study show that 

more than half of the abattoirs and cutting plants where investigated samples were processed 

are potentially contaminated with cold-tolerant clostridia. Further investigations to see 

whether cold-tolerant clostridia can be found in abattoirs and processing plants and whether 

they can cause a contamination between batches, could therefore be of interest. The 

information obtained could be useful for meat processing plants in order to develop effective 

hygienic concepts, disinfection and cleaning methods against endospores of cold-tolerant 

clostridia and, thus, reduce the possibility of contamination. 



5 SUMMARY 40 

 

5 Summary 

Psychrotolerant (cold-tolerant) Clostridium spp. are known to play a crucial part in the spoilage 

of vacuum-packed, chilled beef, leading to immense economic losses within the meat 

industry. Cases have been reported from countries all over the world. However, until now 

there were only a few reports about the incidence of these bacteria in vacuum-packed beef 

from German retail and about the origins of the meat. Therefore, the presented study was 

targeted at investigating the prevalence of cold-tolerant clostridia in German abattoirs and 

cutting plants.  

A total of 60 beef samples were purchased in supermarkets and at butchers in Greater 

Munich. To enhance the possibility of detecting a potential contamination, samples were 

stored at 4 °C for eight weeks after purchase. Subsequently, samples were tested for the 

occurrence of cold-tolerant clostridia using culturing methods, SYBR green/multiplex qPCR 

(Dorn-In et al., 2018), MALDI-TOF MS and sequencing. It was not possible to differentiate 

C. algidicarnis from C. putrefaciens using sequencing analysis since their 16S rRNA genes are 

highly similar. Therefore, a RFLP method and a multiplex qPCR to differentiate the two species 

were additionally developed in this study. Both methods show a high specificity and sensitivity 

and, therefore, allow for a precise differentiation between C. algidicarnis and C. putrefaciens. 

As a result of the investigations, 32 out of 60 samples proved to be positive for the following 

species: C. frigoriphilum (n = 14), C. algidicarnis (n = 9), C. estertheticum (n = 1), C. tagluense 

(n = 1), C. lacusfryxellense/C. frigoris (n = 1), C. frigoriphilum & C. algidicarnis (n = 5), 

C. estertheticum & C. algidicarnis (n = 1). This study is the first report of the occurrence of 

C. algidicarnis in Germany and the whole of mainland Europe.  

The typical spoilage appearance associated with cold-tolerant clostridia, so-called blown pack 

spoilage, was observed in samples contaminated with C. estertheticum, whereas high 

amounts of C. frigoriphilum could not be related to immense gas production and consequent 

swelling of the package. Likewise, C. algidicarnis produced only small amounts of gas, although 

present in high amounts in meat samples. Further spoilage appearances, such as loss of meat 

drip and changes in colour or consistency of the meat, could neither be used as a reliable 

indicator for spoilage by cold-tolerant clostridia, while a change of odour towards repellent, 

acidic and cheesy may indicate a contamination with these bacteria. 
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According to the information on the package, the 32 samples that were contaminated with 

cold-tolerant clostridia were processed in 16 different abattoirs and 20 different cutting 

plants, mainly located in Germany. Considering the results of this study, the prevalence of 

cold-tolerant clostridia in vacuum-packed beef processed in Germany is very high. Since the 

contamination of meat is likely to happen during the process of slaughtering or cutting, it can, 

therefore, be concluded that a substantial number of abattoirs and cutting plants in Germany 

are contaminated with vegetative cells or spores of these bacteria.  
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6 Zusammenfassung 

Psychrotolerante Clostridium spp. sind dafür bekannt, eine entscheidende Rolle im 

Verderbsprozess von vakuumverpacktem, gekühltem Rindfleisch zu spielen, was immense 

wirtschaftliche Verluste in der Fleischindustrie zur Folge hat. Fälle von auf diese Weise 

verdorbenem Fleisch wurden bereits aus der ganzen Welt gemeldet. Bisher wurde jedoch nur 

wenig über das Vorkommen dieser Bakterien in vakuumverpacktem Rindfleisch aus dem 

deutschen Einzelhandel und über die Herkunft des Fleisches berichtet. Ziel der vorliegenden 

Studie war es daher, die Prävalenz kältetoleranter Clostridien in deutschen Schlachthöfen und 

Zerlegebetrieben zu untersuchen.   

Zu diesem Zweck wurden 60 Rindfleischproben aus Supermärkten und Metzgereien im 

Großraum München erworben. Um die Chancen auf einen Nachweis einer möglichen 

Kontamination zu erhöhen, wurden die Proben im Anschluss für weitere 8 Wochen bei 4 °C 

gelagert. Anschließend wurden die Proben unter Verwendung von Kultivierung, SYBR 

green/multiplex-qPCR (Dorn-In et al., 2018), MALDI-TOF MS und Sequenzierung auf das 

Vorkommen kältetoleranter Clostridien untersucht. Die Spezies C. algidicarnis und 

C. putrefaciens konnten mittels Sequenzierung nicht eindeutig voneinander unterschieden 

werden, da die 16S rRNA Sequenzen beider Spezies sehr ähnlich sind. Deshalb wurden in 

dieser Studie eine RFLP Methode sowie eine multiplex qPCR entwickelt, um beiden Spezies 

nachweisen und unterscheiden zu können. Beide Methoden zeigen eine hohe Sensitivität und 

Spezifität und eignen sich daher für eine eindeutige Differenzierung von C. algidicarnis und 

C. putrefaciens. Insgesamt 32 der 60 untersuchten Rindfleischproben waren positiv für 

folgende Spezies: C. frigoriphilum (n = 14), C. algidicarnis (n = 9), C. estertheticum (n = 1), 

C. tagluense (n = 1), C. lacusfryxellense/C. frigoris (n = 1), C. frigoriphilum & C. algidicarnis (n = 

5), C. estertheticum & C. algidicarnis (n = 1). Die vorliegende Arbeit dokumentiert erstmalig 

den Nachweis von C. algidicarnis in Deutschland und dem gesamten europäischen Festland. 

Das typische, als 'Blown Pack Spoilage' beschriebene Verderbsbild kältetoleranter Clostridien, 

konnte in mit C. estertheticum kontaminierten Proben beobachtet werden. Hohe Gehalte an 

C. frigoriphilum konnten jedoch nicht mit einer starken Gasproduktion und einem damit 

verbundenen Aufblähen der Verpackung in Zusammenhang gebracht werden. Auch 

C. algidicarnis produzierte lediglich geringe Mengen Gas, obwohl diese Spezies in einigen 
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Proben in hohen Gehalten nachgewiesen werden konnte. Weitere Verderbsanzeichen, wie 

der Verlust von Fleischtropfsaft und Veränderungen in Farbe oder Konsistenz des Fleisches, 

konnten nicht als verlässliche sensorische Indikatoren für den Verderb durch kältetolerante 

Clostridien identifiziert werden. Veränderungen des Geruchs in Richtung abstoßend, sauer 

und käsig könnten jedoch auf eine Kontamination mit diesen Bakterien hinweisen.  

Die 32 Proben, in denen kältetolerante Clostridien nachgewiesen werden konnten, wurden 

den Informationen auf der Verpackung zufolge in 16 verschiedenen Schlachthöfen und 20 

verschiedenen Zerlegebetrieben verarbeitet, von denen die meisten ihren Standort in 

Deutschland haben. In Anbetracht der Ergebnisse der vorliegenden Studie kann davon 

ausgegangen werden, dass die Prävalenz von kältetoleranten Clostridien in 

vakuumverpacktem Fleisch aus deutschen fleischverarbeitenden Betrieben sehr hoch ist. Da 

eine Kontamination des Fleisches mit kältetoleranten Clostridien in der Regel im Laufe der 

Verarbeitungskette stattfindet, lässt sich darauf schließen, dass die Inzidenz von Sporen 

und/oder vegetativen Zellen kältetoleranter Clostridien in deutschen Verarbeitungsbetrieben 

beträchtlich hoch ist.   
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