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ZUSAMMENFASSUNG 

 

Die idiopathische Lungenfibrose (IPF) ist eine chronische interstitielle 

Lungenerkrankung mit bisher unbekannter Ätiologie, die durch eine 

fortschreitende Abnahme der Atemkapazität und einer sehr schlechten Prognose 

gekennzeichnet ist. Kennzeichenend fuer die IPF ist die wiederholt auftretende 

epitheliale Zellschädigung, die zu aberranten Aktivität von 

Entwicklungssignalwegen wie dem WNT-Signalweg und der Aktivierung von 

Myofibroblasten führen, die infolgedessen vermehrt extrazelluläre 

Matrixkomponenten sekretieren. Extrazelluläre Vesikel (EVs) sind sekretierte 

Vesikel, die verschiedene Signalmoleküle wie Proteine, Nukleinsäuren und Lipide 

über weite Strecken transportieren und so die interzelluläre Kommunikation 

fördern. Es wurde festgestellt, dass der nicht-kanonische WNT-5A-Ligand in der IPF 

hochreguliert ist, insbesondere bei Lungenfibroblasten von IPF Patienten im 

Vergleich zu gesunden Spendern. Vor Kurzem wurde entdeckt, dass WNT-Liganden 

durch EVs transportiert werden und in der Lage sind, die WNT-Signalübertragung 

in den Rezeptorzellen zu aktivieren. Die Rolle von EVs und die Sekretion von WNT-

Liganden in EVs ist in der IPF jedoch unbekannt. Die vorliegende Arbeit basiert auf 

der Hypothese, dass die EV-Sekretion in IPF erhöht ist und dass WNT-5A vermehrt 

in EVs sekretiert wird was zu einem profibrotischen Phänotyp der 

Lungenfibroblasten beiträgt. Um das EV-Sekretionsprofil in IPF zu charakterisieren 

und den Beitrag von EV-gebundenem WNT-5A zur Entwicklung und Fortschreiten 

der Krankheit aufzuklären, wurden EVs aus bronchoalveolarer Lavageflüssigkeit 

(BALF) von experimenteller Lungenfibrose sowie von IPF , nicht IPF-ILD und nicht 

ILD sowie Gesunden Proben aus zwei unterschiedlichen Kohorten, isoliert. Die EVs 

wurden dann durch Transmissionselektronenmikroskopie, Nanopartikel-Tracking-

Analyse und Western Blot (WB) charakterisiert. Primäre humane 

Lungenfibroblasten (phLFs) wurden zur EV-Isolierung verwendet und durch 

Stoffwechselaktivitätstests, qPCR und WB nach WNT-5A-Funktionsverlust- und 

WNT-5A-Stimulationsstudien analysiert. Diese Experimente zeigen eine 

hochregulierte EV-Sekretion in BALF von sowohl experimenteller als auch humaner 

Lungenfibrose mit einem Anstieg des WNT-Liganden WNT-5A-. Zusätzlich wurde 

die WNT-5A-Sekretion auf EVs in primären menschlichen Lungenfibroblasten 
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(phLFs) nach fibrotischer Stimulation durch TGF-β induziert. Darüber hinaus 

konnten die von phLF sekretierten EVs die Proliferation von phLF fördern, die durch 

WNT-5A-Inhibierung durch siRNA oder Antikörper Behandlung abgeschwächt 

wurde. In ähnlicher Weise waren EVs aus IPF-BALF in der Lage, eine PhLF-

Proliferation zu induzieren, die vom EV-gebundenen WNT-5A-Liganden abhängig 

war.  

In dieser Doktorarbeit konnte gezeiget werden, dass eine erhöhte Sekretion von EVs 

im BALF von IPF-Erkrankten die Signalübertragung von WNT-5A vermittelt, die 

durch Erhöhung der Proliferation von Lungenfibroblasten zur Pathogenese der 

Erkrankung beiträgt.  

Zukünftige Studien zur Sekretion und Zusammensetzung von Evs, sowie deren Rolle 

bei der Pathogenese der IPF, könnten zu neuen Ansätzen für die Diagnose und 

Behandlung von Lungenfibrose führen. 
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SUMMARY 
 

Idiopathic pulmonary fibrosis (IPF) is a lethal interstitial lung disease of yet unknown 

etiology characterized by a progressive decrease of lung function and poor prognosis. The 

cellular hallmarks of IPF are repetitive epithelial cell injury that leads to aberrant activity of 

developmental pathways, such as WNT signaling pathway, and activation of myofibroblasts 

which secrete extracellular matrix components in excess. Extracellular vesicles (EVs) are 

secreted membranous particles that transport diverse signaling mediators such as proteins, 

nucleic acids and lipids, over long distances thus mediating intercellular communication. 

The Non-canonical ligand WNT-5A is upregulated in IPF, especially in lung fibroblasts from 

patients in comparison to donors. Recently, it was discovered that WNT ligands are secreted 

on EVs which can activate WNT signaling in the receptor cells. However, the role of EVs and 

the secretion of WNT ligands through EVs in IPF remain largely unknown. The present work 

hypothesizes that EV secretion is increased in IPF and the WNT-ligand WNT-5A is 

transported on EVs which contributes to profibrotic lung fibroblast function. In order to 

characterize the EV secretion profile in IPF and elucidate the contribution of EV-bound 

WNT-5A to the disease, EVs were isolated from bronchoalveolar lavage fluid (BALF) from 

experimental lung fibrosis as well as from IPF, non IPF-ILD, non-ILD and healthy volunteer 

samples from two independent cohorts or from primary human lung fibroblasts (phLFs). 

EVs were then characterized by transmission electron microscopy, nanoparticle tracking 

analysis and Western Blotting (WB). These experiments reported an upregulated EV 

secretion in BALF from both experimental and human lung fibrosis samples with an 

increase in the content of the WNT-ligand WNT-5A. In addition, WNT-5A secretion on EVs 

was induced in primary human lung fibroblasts (phLFs) upon fibrotic stimulation by TGF-

β. For functional studies, phLFs were used for EV stimulation and analysed by metabolic 

activity assays, qPCR and WB upon WNT-5A loss-of-function and WNT-5A stimulation 

studies. The phLF-derived EVs were able to promote phLF proliferation, which was 

attenuated by WNT-5A silencing and antibody-mediated WNT-5A inhibition. Similarly, EVs 

from IPF-BALF were capable of inducing phLF proliferation which was dependent on the 

EV-bound WNT-5A ligand. Taken together, this thesis showed that increased secretion of 

EVs in the IPF lung mediates WNT-5A signaling, which contributes to disease pathogenesis 

by increasing lung fibroblast proliferation. Future studies of EV secretion and composition, 

as well as their role in disease pathogenesis may lead to novel approaches for the diagnosis 

and treatment of pulmonary fibrosis.  
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1. INTRODUCTION 
 

1.1. Chronic Lung Diseases 

Chronic lung disease (CLD) is a broad term describing a variety of persistent lung disorders. 

CLDs are one of the leading causes of death worldwide (Lozano, Naghavi et al. 2012, Sauleda, 

Nunez et al. 2018) and include a series of complex lung diseases that are usually caused by 

genetic and environmental factors that harm the lung epithelium and architecture (Dela 

Cruz, Kang et al. 2011, Ley and Collard 2013).  

CLDs are subclassified as obstructive or restrictive lung disease. In obstructive lung disease 

(i.e. chronic obstructive lung disease (COPD), asthma, cystic fibrosis), patients suffer from a 

reduced breath due to a narrowing of the airways that causes deficient exhalation of air 

from the lungs, whereas in restrictive lung disease (i.e. idiopathic pulmonary fibrosis (IPF), 

sarcoidosis, tuberculosis), patients are not able to fully fill their lungs due to an increased 

stiffness of their lung insterstitium (World-Health-Organization 2007). 

Currently, there is a lack of treatment for most of the CLDs to reverse their pathology and 

the therapeutic options to relief their symptoms are very limited (Barnes 2017, Galli, 

Pandya et al. 2017). Therefore, there is a big need of research to better understand the 

mechanisms underlying the disease pathology in order to develop more effective therapies.  

 

1.2. Interstitial Lung Disease 

Interstitial lung disease (ILD) comprises a large group of lung diseases that share common 

clinical and pathological features but vary among the etiologies and pathophysiologies 

(Eickelberg and Selman 2010). ILDs are caused by the inhalation of harmful substances such 

as cigarette smoke or air pollutants as well as by infectious agents or radiation exposure. All 

ILDs are associated with high mortality and morbidity rates and affect the interstitium of 

the lung, therefore concerning the epithelium, endothelium, the perivascular and 

perilymphatic tissues of the lung and the basal membrane (Antoniou, Margaritopoulos et al. 

2014).   
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1.3. Idiopathic Pulmonary Fibrosis 

Idiopathic Pulmonary Fibrosis (IPF) is the most common form of ILD with a yet unknown 

etiology that carries a high mortality rate with a life expectancy of 2-3 years and an 

estimated prevalence of 14-63 cases per 100,000 in the United States and 1.25-23.4 per 

100,000 in Europe (Nalysnyk, Cid-Ruzafa et al. 2012). IPF is mainly characterized by a 

progressive and irreversible injury of the lung epithelium that leads to abnormal wound 

healing (Strieter and Mehrad 2009, Meiners, Eickelberg et al. 2015). The dysfunctional 

wound repair results in a massive myofibroblast activation and excessive extracellular 

matrix deposition ultimately causing lung failure and death (White, Lazar et al. 2003, 

Chambers and Mercer 2015). The risk factors that contribute to disease progression include 

cigarette smoke, exposure to air pollutants or gastroesophageal reflux and genetical 

predisposition (Raghu, Collard et al. 2011). The therapeutic options for those patients are 

nowadays very limited. There are currently two FDA-approved drugs; Nintedanib (Ofev®) 

and Pirfenidone (Esbrit®), which have a positive effect on disease progression by 

improving lung function and survival rates (Fisher, Nathan et al. 2017, Fleetwood, McCool 

et al. 2017, Nathan, Albera et al. 2017). However, the mechanisms of action of these agents 

are not fully understood and, althought, they might slow the progression, the positive effects 

are only modest and do not allow to reverse the disease course. Furthermore, these 

treatments are only recommended for patients with mild-to-moderate IPF leaving the lung 

transplantation as only option for those patients that suffer from severe lung fibrosis 

(Raghu 2017). Therefore, it is important the search for new targets to develop future 

therapies. 
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1.4. Clinical features of IPF 

Patients with IPF commonly present a dry, non-productive cough with dyspnoea that 

rapidly progresses to decreased lung function (Flaherty and Martinez 2000).  

The histopathological features of IFP are classically described by varying degrees of 

peripheral fibrosis, patchy damaged epithelium, mild inflammation, dysfunctional 

proliferation of mesenchymal cells, excessive extracellular matrix (ECM) deposition and 

honeycomb structures underlined by hyperplastic alveolar type II cells (White, Lazar et al. 

2003, King, Pardo et al. 2011, Jones, Fabre et al. 2016). Fibroblasts foci are a hallmark in IPF 

pathology described as abnormal accumulation of fibroblasts (and myofibroblasts) within 

an ECM highly rich in collagen (Chambers and Mercer 2015, Jones, Fabre et al. 2016).  

Besides the disease-specific features, 5-10% of patients with IPF also suffer from acute 

exacerbations which are additional respiratory difficulties of unknown cause that worsen 

the dyspnoea in less than 30 days and lead to a drastic drop of lung function and life quality 

together with a decrease in life expectancy (Johannson, Vittinghoff et al. 2014, Papiris, 

Kagouridis et al. 2015, Collard, Richeldi et al. 2017, King and Nathan 2017). 
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1.5. Pathomechanisms of IPF 

The continuous inhalation of harmful environmental factors such as cigarette smoke or air 

pollutants causes repetitive injury of the lung epithelium which leads to (re)activation of 

developmental pathways, such as WNT (Wingless/Integrated) pathway, and an aberrant 

wound healing response (Magro, Allen et al. 2003, White, Lazar et al. 2003, Kottmann, 

Hogan et al. 2009, Strieter and Mehrad 2009, Wolters, Collard et al. 2014). The aberrant 

response is perpetuated by an impaired epithelial-to-mesenchymal crosstalk that drives, 

fibroblasts proliferation, epithelial-to-mesenchymal transition (EMT) and myofibroblast 

activation thus ending in an excessive ECM deposition (Figure 1) (Selman and Pardo 2002, 

Chapman 2011, Marmai, Sutherland et al. 2011, Chapman 2012). Among the cellular 

mechanisms implicated in the impaired cellular communication in IPF, fibrogenic factors 

(e.g. transforming growth factor β [TGF-β]) are known to be upregulated and they usually 

act through an autocrine and paracrine fashion (White, Lazar et al. 2003, Fernandez and 

Eickelberg 2012). In addition, aging is a potent risk factor due to a number of hallmarks 

related to aging that predispose to the disease, such as cellular senescence which is a 

mechanism of cell cycle arrest that compromises tissue repair therefore contributing to the 

progression of IPF (Chilosi, Carloni et al. 2013, Spagnolo, Grunewald et al. 2014, Lehmann, 

Baarsma et al. 2016, Schafer, White et al. 2017). Recent evidence is also pointing to a strong 

genetic factor including polymorphisms or mutations in genes linked to epithelial injury, 

host defence, wound healing and cellular repair, which convey susceptibility to IPF (Selman, 

Pardo et al. 2008, Spagnolo, Grunewald et al. 2014). 

 

Figure. 1 Pathomechanisms in IPF. Repetitive lung injury leads to (re)activation of developmental 

pathways such as WNT pathway and drives EMT in epithelial cells and fibroblasts proliferation that 

differentiate into myofibroblasts and secrete excessive extracellular matrix (ECM) components. 
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1.5.1. Lung fibroblast plasticity in IPF 

 

Fibroblasts are cells of the connective tissue that possess high plasticity and can gain 

different phenotypes which are key attributes to response to tissue injury. The phases of 

tissue repair include coagulation, inflammation, fibroblast proliferation and 

remodelling/restorin of the normal tissue.  Fibroblasts, and their activated phenotype 

(myofibroblasts), are main players in these repair and regeneration processes in the lung 

and their main function is to secrete ECM components that provide a tissue scaffold that 

allow repair events to happen and eventually dissolves restoring the normal tissue 

architecture (Lorena, Uchio et al. 2002). 

During the repair process, secreted factors such as TGF-β, tumor necrosis factor alpha 

(TNFα) and interleukins (e.g. IL-1), promote an activated fibroblast phenotype called 

myofibroblasts that first synthetize and secrete ECM components, growth factors and 

cytokines during the inflammation phase and later promote the contraction of the wound 

to restore the damaged tissue. Myofibroblasts can be recruited from mesenchymal cells, 

bone marrow fibrocytes and from epithelial cells through the EMT process (Kuhn and 

McDonald 1991, White, Lazar et al. 2003, Fernandez and Eickelberg 2012). 

In lung fibrosis, the damage is persistent, and the repair process becomes dysregulated 

when the tissue scaffold is not resolved contributing to a scar formation (Chapman 2011, 

Chambers and Mercer 2015). In this scenario, proliferation and activation of lung fibroblasts 

become key ongoing events that facilitate IPF pathogenesis.  
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1.6. WNT pathway 

 

The WNT pathway is a developmental pathway that regulates both normal developmental 

and repair processes in the organism. Dysregulation of the WNT pathway and its secreted 

factors has been reported in CLD such as lung cancer, COPD or IPF (Chilosi, Poletti et al. 

2003, Konigshoff, Balsara et al. 2008, Baarsma and Konigshoff 2017). The WNT signalling 

consists of two different pathways (Figure 2): 1. The canonical, or β-catenin-dependent 

pathway, and 2. the non-canonical, or β-catenin-independent pathway. In the canonical 

pathway, the activation of specific membrane receptors named frizzled (Fzd) or low-density 

lipoprotein receptor-related proteins (Lrp) by canonical WNT ligands (i.e. WNT3A) leads to 

a phosphorylation cascade that recruits Axin, thereby preventing the constitutive 

degradation of β-catenin which translocates into the nucleus to regulate the expression of 

certain genes. The non-canonical pathway is activated by the binding of non-canonical WNT 

ligands (i.e. WNT-5A) to specific Fzd receptors allowing the downstream activation of c-Jun-

N-terminal kinase (JNK)-dependent or Calcium-dependent signaling pathways that are 

involved in the rearrangement of the cytoskeleton and the organization of the cell polarity 

during development (Baarsma, Konigshoff et al. 2013). 

 

 

Figure. 2. Schematic representation of the canonical and non-canonical WNT pathway.  
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1.7. WNT ligand secretory pathway 

 

WNT ligands are essential for the activation of the canonical and non-canonical pathways 

upon binding to their specific membrane receptors. This WNT ligand family is composed of 

19 different secreted glycoproteins that are defined by their aminoacid sequence (Baarsma, 

Konigshoff et al. 2013). The WNT ligand structure includes an N-terminal sequence for its 

secretion, several glycosylation sites and a cysteine-rich domain that contributes to ligand 

folding (Nakatani, Masudo et al. 2002, Mikels and Nusse 2006). The regulation of the WNT 

ligand secretion is an important step in the activation of WNT signaling. 

The first step of the WNT secretory process takes part in the endoplasmatic reticulum (ER) 

where immature WNT ligands are postranslationally modified by the O-acyl transferase 

Porcupine (Porcn) (Tanaka, Okabayashi et al. 2000). Palmitoylated WNT ligands are 

subsequently transferred to the Golgi where they bind to the G protein-coupled receptor 

177 (GPR177), also named Evi/Wls (Wntless), that facilitates their secretion (Bartscherer, 

Pelte et al. 2006). Because of the lipid modifications, WNT ligands are highly hydrophobic, 

therefore they need additional  support to travel through the extracellular matrix (Willert 

and Nusse 2012). Different, but not mutually exclusive, proposed mechanisms provide a 

solution to allow lipid-modified WNT proteins to travel in the extracellular space: 1. Short-

range interaction between WNT ligands and extracellular carbohydrate chains such as 

heparan sulfates (Port and Basler 2010), 2. binding to carrier particles that make WNT 

ligands soluble such as the lipoprotein Lipophorin or the fly lipocalin Swim (Panakova, 

Sprong et al. 2005), and, 3. packaging into extracellular vesicles (i.e. exosomes) which have 

recently emerged as potent vehicles that allow WNT ligands to travel long distances (Figure 

3) (Gross and Boutros 2013, Routledge and Scholpp 2019).  
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Fig. 3. Schematic representation of the WNT secretory pathway(Gross and Boutros 2013). 

WNT proteins are first palmitoylated by Porcupine in the endoplasmatic reticle (ER) and then go to 

the golgi were they bind to the WNT shuttle protein GPR177 (Evi/Wls) that allows their secretion 

into EVs.  

Reprinted with permission of Elsevier. Copyright © 2015 Elsevier Ltd. All rights reserved. 
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1.8. WNT pathway in IPF 

 

The aberrant activation of wound-healing and developmental pathways is known to 

contribute to IPF pathogenesis. The (re)activated WNT signaling pathway and upregulation 

of certain WNT ligands are currently considered as a common signature in IPF (Chilosi, 

Poletti et al. 2003, Konigshoff, Balsara et al. 2008). Most of the attention has been paid to 

the canonical/β-catenin WNT pathway which has been found to be upregulated in alveolar 

type II (ATII) cells from both bleomycin-induced mouse lung fibrosis and patients with IPF 

(Aumiller, Balsara et al. 2013). The WNT target gene, WNT1-inducible signaling protein-1 

(WISP-1) was found to induce proliferation and expression of EMT components in mouse 

ATII cells (Konigshoff, Kramer et al. 2009, Konigshoff and Eickelberg 2010) and 

proliferation in mouse and human lung fibroblasts (Klee, Lehmann et al. 2016). 

Furthermore, WISP-1 neutralization decreased fibrotic burden in bleomycin-treated mice 

(Konigshoff, Kramer et al. 2009). In addition, the canonical ligand WNT-10A has been found 

to be upregulated in experimental mouse lung fibrosis and correlated with poor prognosis 

in IPF patients (Oda, Yatera et al. 2016). The non-canonical WNT pathway, although much 

less explored, has also been linked to IPF through its ligand WNT-5A. The expression of the 

non-canonical ligand WNT-5A is upregulated in lung fibroblasts and myofibroblasts from 

IPF patients (Vuga, Ben-Yehudah et al. 2009, Newman, Sills et al. 2016). In addition, 

treatment with WNT-5A increased proliferation and induced resistance to apoptosis in 

normal lung fibroblasts and in lung fibroblasts from IPF patients (Vuga, Ben-Yehudah et al. 

2009). This data suggests that there is an important effect of non-canonical WNT signaling 

in IPF for lung fibroblast expansion in the disease. 
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1.9. Extracellular Vesicles 

 

Active intercellular communication is required to maintain the homeostasis within the 

organisms. To facilitate this process, a series of mechanisms, such as extracellular vesicle 

(EV) secretion, have evolved to safely transport secreted factors from sending to receiving 

cells.  

EVs were first observed 50 years ago as membrane-enclosed vesicles from tumor cells and 

platelets by P. Wolf who referred to them as “platelet dust” (Wolf 1967). At the beginning, 

EVs were thought to be released only by simple budding of the cellular plasma membrane, 

however, in the 80s a more complex secretion pathway for EVs was described. It includes a 

pre-step where vesicles are formed within a multivesicular body (MVB) which later fuses 

with the plasma membrane thus releasing the EVs (Harding and Stahl 1983, Pan and 

Johnstone 1983). A decade later, EVs were found to be biologically active by presenting 

antigens to induce T-cell response (Raposo, Nijman et al. 1996) and to contain cellular 

mediators such as RNAs, miRNA, lipids and proteins (Ratajczak, Miekus et al. 2006, Valadi, 

Ekstrom et al. 2007). Since then, increasing evidence has accumulated towards a potent role 

of EVs in the cell-to-cell communication. Currently, EVs are defined as highly heterogeneous 

membranous vesicles that carry specific components depending on the cellular source, state 

and environment (Colombo, Raposo et al. 2014, Kowal, Tkach et al. 2014, Yanez-Mo, 

Siljander et al. 2015). Two main groups of EVs have been defined (Figure 4, (Gould and 

Raposo 2013, Nana-Sinkam, Acunzo et al. 2017): (a) microvesicles (MV) from around 150-

2000 nm that are formed by outward budding directly from the plasma membrane, and (b) 

exosomes from around 30-150 nm that are formed in endosomal compartments (MVBs) 

which then fuse with the plasma membrane.  
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The composition of EVs is cell type specific and thus varies depending on the cellular 

environment. In particular, exosomes carry different proteins, lipids and nucleic acids (DNA, 

mRNAs and miRNAs) that are sorted and encapsulated during exosome biogenesis (Kowal, 

Tkach et al. 2014, Hessvik and Llorente 2018). Therefore, EVs play a crucial role in 

mediating the intercellular communication under physiological as well as pathological 

conditions. EVs can be found in a large variety of biological fluids, including bronchoalveolar 

lavage fluid (BALF) which is often used to diagnose lung diseases such as IPF. 

 

Figure 4. Extracellular vesicle biogenesis (Nana-Sinkam, Acunzo et al. 2017). Microvesicles are 

larger vesicles that bud out from the membrane whereas exosomes are smaller concave vesicles that 

are pre-encapsulated in a multivesicular endosome (MVB) which then fuses with the membrane.  

Reprinted with permission of the American Thoracic Society. Copyright © 2019 American Thoracic Society. The American Journal 

of Respiratory and Critical Care Medicine is an official journal of the American Thoracic Society. 

  



12 

 

1.10. Extracellular vesicles and WNT ligands 

 

WNT ligands are produced and secreted to the extracellular space to drive the activation of 

the pathway at the neighbouring/distant cells upon binding to their receptors. To travel in 

the extracellular space, WNT ligands need the assistance of soluble vehicles such as EVs. The 

first evidence that involved EVs in the WNT ligand secretion was described by Greco et al. 

who proposed that Wingless (Wg), the Wnt homologue in Drosophila, was found in the so 

called “argosome”, vesicles in the wing imaginal discs (Greco, Hannus et al. 2001). Diverse 

studies found later that Wg/WNT and the WNT shuttle protein GPR177 were in EVs in 

multiple systems as demonstrated by electron microscopy and proteomics (Korkut and 

Budnik 2009, Koles, Nunnari et al. 2012, Gross and Boutros 2013). In fact, active WNT 

ligands were found to localize on the surface of EVs due to their binding with the 

transmembrane protein GPR177 which allows them to interact directly with the cell 

membrane receptors (Gross and Boutros 2013). Colocalization of WNT with EV proteins 

were further observed within and outside of the producing cell, thus highlighting a complex 

WNT secretory pathway that is connected to EVs and facilitated by GPR177 (Lakkaraju, 

Mary et al. 2008, Luga, Zhang et al. 2012). 
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1.11. EVs and chronic lung diseases 

 

Several cell types in the lung, such as fibroblasts, epithelial cells and immune cells, are 

known to release EVs which are key mediators of intracellular communication (Nana-

Sinkam, Acunzo et al. 2017, Kubo 2018). Importantly, the EV secretion in the lung appears 

to be modified under disease conditions (Figure 5, (Fujita, Kosaka et al. 2015). Circulating 

EVs were found increased in plasma from patients with chronic obstructive pulmonary 

disease (COPD) and correlated with worse lung function when compared to ex-smokers 

(Takahashi, Kobayashi et al. 2012). Cigarette smoke extract stimulation of human lung 

bronchial epithelial cells induced release of EVs that, in turn, promoted myofibroblast 

differentiation (Fujita, Araya et al. 2015). In Sarcoidosis and in asthma, EVs from BALF of 

patients have been suggested to contribute to the inflammatory process (Qazi, Torregrosa 

Paredes et al. 2010, Torregrosa Paredes, Esser et al. 2012). In addition, the inhibition of EV 

secretion by the compound GW4869 was reported to ameliorate the disease in the murine 

asthma model (Kulshreshtha, Ahmad et al. 2013). In lung cancer, EVs have been implicated 

with malignant processes such as EMT, angiogenesis, metastasis and drug resistance 

(Janowska-Wieczorek, Wysoczynski et al. 2005, Li, Liu et al. 2016, Rahman, Barger et al. 

2016, Deng, Rong et al. 2017). Despite the increasing knowledge of EV involvement in CLDs, 

there is little known about the EV role in IPF. Currently, there is only one observational 

study published that found increased miR-21-5p expression in EVs from serum of 

bleomycin-treated and patients with IPF which correlated with disease progression 

(Makiguchi, Yamada et al. 2016). In conclusion, several evidences point to an increased 

profile of EV secretion in CLDs that contribute to specific pathomechanisms, therefore, 

investigating the EV secretion in IPF could provide new therapeutic targets. 
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Figure. 5. EVs in stress airway physiology (Fujita, Kosaka et al. 2015). Repetitive damage of the 

lung epithelium leads to changes in the cell environment that modifies EV secretion and composition 

therefore compromising the normal cell-to-cell communication. 

Reprinted with permission of Elsevier. Copyright © 2015 Elsevier Ltd. All rights reserved. 

  



15 

 

2. HYPOTHESIS AND OBJECTIVES 
 

Idiopathic pulmonary fibrosis (IPF) is a lethal chronic lung disease of yet unknown etiology 

and with limited therapeutic options. Current evidence suggests that impaired epithelial to 

mesenchymal crosstalk is a hallmark of the disease that leads to myofibroblast activation 

and subsequently deposition of excessive extracellular matrix components (White, Lazar et 

al. 2003, Fernandez and Eickelberg 2012). Extracellular vesicles (EVs) are potent mediators 

of cell-to-cell communication under both physiological and disease conditions (Yanez-Mo, 

Siljander et al. 2015, Nana-Sinkam, Acunzo et al. 2017). Recently, the potential contribution 

of EVs to diverse chronic lung diseases like asthma, COPD and lung cancer has been 

investigated (Kubo 2018). However, the expression and role of EVs in the local lung 

environment in the context of lung fibrosis remains largely unexplored. Aberrant activity of 

the WNT signaling pathway is known to contribute to the IPF pathogenesis (Chilosi, Poletti 

et al. 2003, Konigshoff, Balsara et al. 2008) and it has been recently discovered that WNT 

ligands can be secreted on EVs to mediate intercellular communication (Gross and Boutros 

2013). Most of the research has focused on the canonical WNT/β-catenin pathway thus 

reporting that canonical WNT ligands, like WNT3A, WNT7B and WNT10A, are mostly 

increased in the lung epithelium in both human and experimental mouse lung fibrosis. The 

non-canonical WNT pathway, however, is much less studied. Non-canonical WNT-5A ligand 

has been found upregulated and to promote proliferation in IPF lung fibroblasts (Vuga, Ben-

Yehudah et al. 2009), however, its potential involvement in EV-mediated signaling has not 

been yet investigated. Therefore, this work aimed to test the hypothesis that increased EVs 

in IPF carry WNT-5A that contributes to profibrotic lung fibroblast function. 
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The present study had the following objectives: 

1. To characterize the EV secretion profile in bronchoalveolar lavage in both 

experimental and human pulmonary fibrosis. 

2. To investigate the secretion of WNT-5A on EVs in BALF from IPF compared to non-

IPF patients (non-IPF-ILD/non-ILD as well as healthy volunteers) in two 

independent cohorts.  

3. To identify the major cellular source of EV-bound WNT-5A using primary human 

cells (lung fibroblasts vs lung epithelial type II cells). 

4.  To study the potential effect of EV-bound WNT-5A on lung fibroblast function. 
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3. MATERIALS AND METHODS 
 

3.1. Materials 

3.1.1. Laboratory equipment and software 

Table 1. Laboratory equipment 

Product Manufacturer  
-80 ᴼC freezer U570 HEF 
-20 ᴼC freezer MediLine LGex 
Agarose gel running chamber 
Analytical scale XS20S Dual Range 
Autoclave DX-45 
Cell culture bench Herasafe KS180 
Cell Incubator BBD6620 
Centrifuge MiniSpin plus 
Centrifuge Rotina 420R 
ChemiDoc XRS+ Gel imaging system 
Dry ice container Forma 8600 Series 
Dynamic Light Scattering Zetasizer Ultra 
Electronic pipet 
Electrophoretic Transfer Cell, Mini Protean Tetra 
Fixed-angle rotor T635.5 
Fixed-angle rotor TFT80.2 
FlexiVent system 
Fridge MediLine LKv 3912 
Ice device ZBE 110-35 
Light Cycler LC480II 
Liquid nitrogen tank Apollo 200  
Liquid nitrogen tank BioSafe 420SC 
Magnetic stirrer KMO2 
Mastercycler gradient and Nexus 
Micro-Sprayer Aerosolizer, Model IA-1C 
Multipette stream 
Incubator HERATherm IGS60 
Sartorius Micro-Dismembrator 
Nalgene Freezing Container 
NanoDrop 1000 
Nanosight NS300  
Pipettes Research Plus 
Plate centrifuge 5430 
Roll mixer VWR 
Scale XS400 2S 
Shaker Duomax 1030 
Thermo Scientific Bottle PC Ultra 75mL PK/ 
Thermo Scientific Cap Al Sealing Tube 2mL EA 
Thermo Scientific Cap Sealing 75mL Ultra Tube  
Thermo Scientific Tube PA Thinwall 2mL PK/50 
Transmission Electron Microscope Zeiss Libra 
Ultracentrifuge Sorvall WX 80+ 
Ultrapure water supply MilliQ Advantage A10 
Vortex Mixer 
Vacuum pump NO22AN.18  
Water Barth Aqualine AL12 

New Brunswick; Hamburg, Germany 
Liebherr; Biberach, Germany 
Biorad; Hercules, USA 
Mettler Toledo; Gieβen, Germany 
Systec; Wettenberg, Germany 
Thermo Fisher Scientific; Schwerte, Germany 
Thermo Fisher Scientific; Darmstadt, GE 
Eppendorf; Hamburg, Germany 
Hettich; Tuttlingen, Germany 
Biorad; Hessen, USA 
Thermo Fisher Scientific; Darmstadt, GE 
Malvern Panalytical; Malvern, UK 
Eppendorf; Hamburg, Germany 
Biorad; Hercules, USA 
Thermo Fisher Scientific; Massachusetts, USA 
Thermo Fisher Scientific; Massachusetts, USA 
Scireq; Montreal, Canada 
Liebherr; Biberach, Germany 
Ziegra; Hannover, Germany 
Roche Diagnostics; Mannheim, Germany 
Cryotherm; Kirchen-Sieg, Germany 
Cryotherm; Kirchen-Sieg, Germany 
IKA; Staufen, Germany 
Eppendorf; Hamburg, Germany 
Penn-Century; Philadelphia, USA 
Eppendorf; Hamnurg, Germany 
Thermo Fisher Scientific; Darmstadt, GE 
Thermo Fisher Scientific; Darmstadt, GE 
Omnilab; Munich, Germany 
PeqLab; Erlangen, Germany 
Malvern Panalytical; Malvern, UK 
Eppendorf; Hamburg, Germany 
Eppendorf; Hamburg, Germany 
VWR International; Darmstadt, Germany 
Mettler Toledo; Gieβen, Germany 
Heidolph; Schwabach, Germany 
Thermo Fisher Scientific; Massachusetts, USA  
Thermo Fisher Scientific; Massachusetts, USA 
Thermo Fisher Scientific; Massachusetts, USA 
Thermo Fisher Scientific; Massachusetts, USA 
Carl Zeiss NTS GmbH; Oberkochen, Germany 
Thermo Fisher Scientific; Massachusetts, USA 
Merck Millipore; Darmstadt, Germany 
IKA; Staufen, Germany 
KNF; Freiburg, Germany 
Lauda; Lauda-Königshofen, Germany 
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Table 2. Software 

Software Producer  

Endnote X6 
GaphPad Prism 5 
Image Lab 6.0 
LightCycler®480 software 1.5 
WinTEM™ Libra®120 
NanoSiht NTA software 3.1 
Zetasizer Xplorer software 

Thomson Reuters; San Francisco, USA 
GraphPad Software; La Jolla, USA 
Biorad; Hercules, USA 
Roche Diagnostics; Mannheim, Germany 
Carl Zeiss NTS GmbH; Oberkochen, Germany 
Malvern Panalytical; Malvern, UK 
Malvern Panalytical; Malvern, UK 

 

3.1.2. Chemicals and consumables 

Table 3. Chemicals and reagents 

Product Manfacturer  

0.2% Trypsin – EDTA solution  
Ammonium peroxodisulfate (APS) 
Agarose 
Bleomycin 
Bovine serum albumin (BSA) 
BrdU cell proliferation kit 
Complete® Mini without EDTA (Protease-inhibitor) 
Desoxyribonucleotides mix (dNTPs) 
Dimethyl sulfoxide (DMSO) 
Dithiothreitol (DTT) 
Exoquick exosome precipitation solution 
Exosome-depleted FBS Media Supplement 
Ethanol, p.a. 
Fetal bovine serum (FBS) GOLD, heat inactivated 
GeneAMP PCR kit 
Glucose 
HEPES 
I-glutamine 
Isopropanol, p.a. 
IWP-2 small molecule inhibitor  
Light Cycler 480 SybrGreen I Master Mix 
Lipofectamine LTX with PLUS reagent 
Lipofectamine RNAiMAX 
Methanol, p.a. 
N,N,N',N'-Tetramethylethylenediamine (TEMED) 
Non-fat dried milk powder 
Penicillin-Streptomycin (10.000 U/ml) 
Ponceau S solution 
Poly-L-lysine (0.01% solution) 
Random hexamers 
Recombinant human TGF-β1 protein 
Recombinant human WNT-5A protein 
Roti®block Blocking solution 
Rotiphorese Gel 30 (37,5:1) 
Sodium doecyl sulphate (SDS) 
Supersignal West Dura Extended Duration 
Supersignal West Femto Substrate 
Tris base, buffer grade 
Triton X-100 

Sigma-Aldrich; Taufkirchen, Germany 
AppliChem; Darmstadt, Germany 
Sigma-Aldrich; Taufkirchen, Germany 
Almirall; Barcelona, Spain 
Sigma-Aldrich; Taufkirchen, Germany 
Cell Signaling, USA 
Roche Diagnostics; Mannheim, Germany 
Thermo Fisher Scientific; Schwerte 
Carl Roth; Karlsruhe, Germany 
AppliChem; Darmstadt, Germany 
System Bioscience; California, USA 
System Bioscience; California, USA 
AppliChem; Darmstadt, Germany 
GE Healthcare; Freiburg, Germany 
Life Technologies; Carlsbad, USA 
AppliChem; Darmstadt, Germany 
PAA laboratories; Pasching, Austria 
Gibco, Life Technologies; Germany 
AppliChem; Darmstadt, Germany 
Sigma-Aldrich; Taufkirchen, Germany 
Roche Diagnostics; Manheim, Germany 
Invitrogen, Life Technologies; Carlsbad 
Invitrogen, Life Technologies; Carlsbad 
AppliChem; Darmstadt, Germany 
AppliChem; Darmstadt, Germany 
AppliChem; Darmstadt, Germany 
Gibco, Life Technologies; Carlsbad,  
Sigma-Aldrich; Taufkirchen, Germany 
Sigma-Aldrich; Taufkirchen, Germany 
Life Technologies; Carlsbad, USA 
R&D Systems; Minneapolis, USA 
R&D Systems; Minneapolis, USA 
Carl Roth; Darmstadt, Germany 
Carl Roth; Darmstadt, Germany 
Carl Roth; Darmstadt, Germany 
Pierce, Thermo Fisher Scientific; Germany 
Pierce, Thermo Fisher Scientific; Germany 
AppliChem; Darmstad, Germany 
AppliChem; Darmstad, Germany 
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Tween 20 
Ultrapure DNase/RNase-Free Distilled Water 
WST-1 Cell Proliferation reagent 

AppliChem; Darmstad, Germany 
Invitrogen, Life Technologies; Carlsbad 
Abcam; Cambridge, UK 

 

Table 4. Consumables 

Product Manufacturer  

Amicon Ultra 3K-0.5mL centrifugal filters 
Carbon coated copper grids 
CD45 microbeads 
EpCAM microbeads 
Cell culture dishes 
Cell culture flasks 
Cell culture multi-well plates 
Cell scraper 
Cryovials 1.5mL 
Falcon tubes (5mL and 50mL) 
Filter tips 
Glas Pasteur pipettes 
Measuring sterile pipettes (2mL, 5mL, 10mL, 50mL) 
PCR 96-well plates, white 
Reaction tubes (0.5mL, 1.5mL) 
Whatman blotting paper 3mm 

Merck Milliore; Darmstadt, Germany 
Agar Scientific; Stansted, UK 
Miltenyi Biotec; Teterow, Germany 
Miltenyi Biotec; Teterow, Germany 
Corning; Schwerte, Germany 
Nunc; Wiesbaden, Germany 
TPP Techno Plastic Products, Switzerland 
Corning; Schwerte, Germany 
Greiner Bio-One; Frikenhausen, Germany 
BD Bioscience, Heidelberg, Germany 
Biozym Scientific, Heissisch Oldendorf, GE 
VWR International; Darmstadt, Germany 
VWR International; Darmstadt, Germany 
Biozym Scientific; Hessisch Oldendorf, GE 
Eppendorf; Hamburg, Germany 
GE Healthcare; Freiburg, Germany 

 

3.1.3. Buffers and solutions 

Table 5. Buffers and solutions 

Substance Concentration  

HEPES (N-2-hydroxyethilpiperazine-N-2-ethane 
sulfonic acid) 
 
Laemli loading buffer (4x) 
SDS 
Glycerol (87%) 
Bromophenol blue 
Tris/HCl, ph 6.8 
DTT (dithiothreitol) 
 
PBS (Phosphatate buffered saline, pH 7.4, 10x) 
NaCl 
KCl 
Na2HPO4 

KH2PO4 

 

RIPA (radio-immunoprecipitation assay) 
Tris-Cl, pH 7.4 
NaCl 
NP40 
Na-deoxycholate 
 
SDS (sodium dodecyl sulphate, 20%) 
SDS 
Millipore H2O 
 
 

 
1M 
 
 
12% (w/v) 
60% (v/v) 
0.06% (w/v) 
375 mM 
600 mM 
 
 
1.37 M 
27 M 
100mM 
20 mM 
 
 
50 mM 
150 mM 
1% (v/v) 
0.25% (v/v) 
 
 
200 g (w/v) 
1 L 
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SDS-PAGE (sodium dodecyl sulfate polyacryolamide 
gel electrophoresis) Running Buffer 
Tris/HCl, pH 7.4 
Glycine 
SDS 
 
SDS-PAGE Separation Gel (10%) 
Millipore H2O 
1.5 M Tris/HCl pH 8.8 
SDS 20% 
Acrylamide 
APS 10% 
TEMED 
 
SDS-PAGE Stacking Gel (4%) 
Millipore H2O 
0.5 M Tris/HCl pH 6.8 
SDS 20% 
Acrylamide 
APS 10% 
TEMED  

 

TBS (Tris-buffered saline) (10x) 
Tris/HCl pH 7.4 
NaCl 
 
TBS-T (TBS with TWEEN®20) (1x) 
TBS (10x) 
Tween®20 
Millipore H2O 
 
Transfer buffer (10x) 
Tris/HCl 
Glycine 
 
Transfer buffer (1x) 
Transfer buffer (10x) 
Methanol 
Millipore H2O 

 
 
250 mM 
1.92 M 
1% (w/v) 
 
 
3.7 mL 
2.25 mL 
45 μL 
3 mL 
30 μL 
6 μL 
 
 
1.8 mL 
750 μL 
15 μL 
400 μL 
15 μL 
3 μL 
 
 
10 mM 
150 mM 
 
 
10% (v/v) 
0.1% (v/v) 
89.99% (v/v) 
 
 
250 mM 
1.92 M 
 
 
10% (v/v) 
10% (v/v) 
80% (v/v) 

 

3.1.4. Standards and kits 

Table 6. Standards 

Product Manufacturer  

Protein marker V Peqlab; Erlangen, Germany 

 

Table 7. Kits 

Product Manufacturer  

BCA Protein assay kit 
PeqGold RNA kit 
RNase-Free DNase set 
RNeasy Mini kit 
BrdU cell proliferation kit 

Pierce, Thermo Fisher Scientific; Schwerte, 
Germany 
Peqlab; Erlangen, Germany 
Qiagen; Hilden, Germany 
Cell Signaling; Massachusetts, USA 
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3.1.5. Enzymes 

Table 8. Enzymes 

Product Manufacturer  

Collagenase I 
Dispase 
DNase I 
RNase inhibitor 20U/μL 

Biochrom; Berlin, Germany 
BD Bioscience; Heidelberg, Germany 
AppliChem; Darmstadt, Germany 
Invitrogen, Life Technologies; Carlsbad, USA 

 

3.1.6. SiRNA 

The silencing RNAs were dissolved in sterile DNas/RNase-free water to obtain 100 μM 

stock solutions and stored at -80ᴼC. The siRNA solutions were used at 200 pmol.  

Table 9. SiRNA 

Product Manufacturer  

Non-silencing control siRNA (SC-37007) 
WNT-5A siRNA (SC-41112) 

Santa Cruz Biotechnology; California, USA 
Santa Cruz Biotechnology; California, USA 

 

3.1.7. Quantitative PCR 

The primers for quantitative PCR (Polymerase Chain Reaction) were designed using the 

platform PrimerBLAST (http://www.ncbi.jlm.nih.gov/tools/primer-blast/). Primers were 

given an amplicon with a length of 80-150 bp (200 bp maximal). 

Table 10. Human primers 

Gene Sequence  

HPRT 
 
 
WNT-5A  
 
 
CCND1 
 
 
FN1 
 
 
ACTA2 
 
 
COL1A1 
 
 
TNC 

5´AAGGACCCCACGAAGTGTTG3´ 
3´GGCTTTGTATTTTGCTTTTCCA5´ 
 
5´CCAAGGGCTCCTACGAGAGTGC3´ 
3´CACATCAGCCAGGTTGTACACCG5´ 

5´CCGAGAAGCTGTGCATCTACAC3´ 
5´AGGTTCCACTTGAGCTTGTTCAC3´  

5´GGATGTGTGGCAGATAGGATGTATT3´ 
3´CAATGCGGTACATGACCCCT5´ 

5´CGAGATCTCACTGACTACCTCATGA3´ 
3´AGAGCTACATAACACAGTTTCTCCTTGA5´ 

5’CAAGAGGAAGGCCAAGTCGAG‘3 
5’TTGTCGCAGACGCAGATCC‘3 

5´CCATCTATGGGGTGATCCGG3´ 
3´TCGGTAGCCATCCAGGAGAG5´ 

 

 

 

http://www.ncbi.jlm.nih.gov/tools/primer-blast/
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Table 11. Murine primers 

Gene Sequence  

HPRT 
 
 
WNT-5A  
 

5´CCTAAGATGAGCGCAAGTTGAA3´ 
5´CCACAGGACTAGAACACCTGCTAA3´ 
 
5´GACTCCGCAGCCCTGCTTTG3´ 
5´CCAATGGGCTTCTTCATGGCGAG3´ 

 

3.1.8. Antibodies for Western Blot 

Primary antibodies were diluted 1:1000 in 10% Roti®block Blocking solution in TBS-T 

and secondary antibodies were diluted 1:4000 in 5% milk in TBS-T. Directly HRP-

conjugated antibodies were diluted 1:50000 (β-actin) or 1:1000 (GAPDH) in 5% milk in 

TBS-T. 

Table 12. Primary antibodies 

Antigen Source  Manufacturer 

Calreticulin (2891S) 
CD81 (DLN-09707) 
CCND1 (EPR2241) 
GPR177 (sc-13635) 
TGS101 (HPA006161) 
WNT-5A (MAB645) 

rabbit  
rabbit 
rabbit 
rabbit 
mouse 
rat 

Cell Signaling; Massachusetts, USA 
Dianova; Hamburg, Germany 
Abcam; Cambrige, UK 
Santa Cruz Biotechnology; California, USA 
Sigma-Aldrich; Taufkirchen, Germany 
R&D systems; Abingdon, UK 

 

Table 13. Secondary antibodies, HRP-linked 

Antigen Source  Manufacturer 

Mouse IgG (NA931V) 
Rabbit IgG (NA934V) 
Rat IgG (NA935V) 

sheep 
donkey 
sheep 

GE healthcare; Munich, Germany 
GE healthcare; Munich, Germany 
GE healthcare; Munich, Germany 

 

Table 14. Directly HRP-conjugated antibodies 

Antigen Source  Manufacturer 

β-actin (A3854) 
GAPDH (3683) 

mouse 
rabbit 

Sigma-Aldrich; Taufkirchen, Germany 
Cell Signaling Technology; Boston, USA 
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3.1.9. Cell culture media 

Primary human lung fibroblasts were cultured in Dulbecco’s Modified Eagle’s 

medium/Nutrient mixture F12 medium (DMEM/F-12) from Gibco (Life Technologies, 

Carlsbad, USA). Primary human ATII cells were cultured in DMEM medium supplemented 

with 10% fetal calf serum (FCS), 1% penicillin/streptomycin, 2mM I-glutamine (Life 

Technologies, Carlsbad, USA), 3.6 mg/ml glucose (Applichem, Darmstadt, Germany) and 10 

mM HEPES (PAA Laboratories, Pasching, Austria). 3D-lung tissue cultures were cultured in 

DMEM/F-12 medium supplemented with 1% EV-depleted FCS, 1% penicillin/streptomycin 

and 2.5% amphotericin B (Sigma Aldrich, St Louis, MO).  For starvation medium, DMEM/F12 

medium was supplemented with 0.1% FCS and 1% penicillin/streptomycin. For EV-

depleted medium, DMEM/F12 medium was supplemented with 1% EV-depleted FCS and 

1% penicillin/streptomycin. 

 

3.1.10. Human lung tissue samples 

All lung tissue samples were collected from the Giessen site of the European IPF registry 

(eurIPFreg) and obtained as described in (Zuo, Kohls et al. 2010) by the UGMLC Giessen 

Biobank (member of the DZL Platform Biobanking, Ethics Approval No. 111/08 and 58/15) 

and the CPC Bioarchive CPC-M (University Hospital Grosshadern of the Ludwig Maximilian 

University, Ethics Approval No. 333-10, 455-12). The lung tissue specimens used for 

western blot were obtained from lung explants of healthy controls or patients with IPF 

(table 15). The diagnosis of IPF was based on the American Thoracic Society (ATS) criteria 

(Raghu, Collard et al. 2011, Raghu, Remy-Jardin et al. 2019). The primary human lung 

fibroblasts (phLFs) and primary human alveolar type II cells used for EV isolations were 

obtained from non-carcigenic lung cancer resections and explanted lungs. 

Table 15. Lung tissue homogenates for western blot 

Patient Number  Mean age (years) Male gender (%) 

Sporadic IPF 
Healthy control 

13 
13 

50 (34-61) 
54 (42-62) 

40% 
50% 
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3.1.11. Patient cohorts for broncheoalveolar lavage fluid (BALF) analysis 

Two independent cohorts (Munich and UCSF) were used to obtain bronchoalveolar lavage 

fluid (BALF). The diagnoses were given in accordance with established criteria (Raghu, 

Collard et al. 2011, Raghu, Remy-Jardin et al. 2019). For Non-ILD patients, BALF was 

performed for diagnostic evaluation (unclear cough) and ILD was excluded. The diagnosis 

of non-IPF ILD and IPF was determined by a pathology core consisting of two pulmonary 

pathologists, a radiology core consisting of three pulmonary radiologists, and a clinical core 

consisting of five pulmonary physicians. Informed consent was obtained from every patient. 

The Munich study was approved by the ethics committee at the LMU (Ludwig-Maximilians 

Universität München, Germany, Ethics Approval 382-10) and patient characteristics are 

presented in Table 4.16. The UCSF study cohort was approved by the University of California 

San Francisco (UCSF) ethics committee (study #12-09662) and patient characteristics are 

presented in Table 4.17. 

Table 16. Patients included in the Munich cohort. 

Diagnosis N  Male gender (%) Age (years±SD) FLV (L±SD) DLCO (% pred ± 
SD) 

Non-ILD* 
 
COP 
 
HP 
 
IPF 
 
All 

12 
 
2 
 
5 
 
16 
 
35 

3 (25%) 
 
1 (50%) 
 
3 (60%) 
 
10 (63%) 
 
17 (49%) 

57.4 ± 14.3 
 
73 ± 1.5 
 
55.6 ± 5.9 
 
68.7 ± 11.0 
 
63.8 ± 12.3 

4.9 ± 0.4 
 
5.0 ± 0.8 
 
4.2 ± 0.7 
 
3.4 ± 0.7 
 
3.8 ± 0.8 

77.1 ± 10.7 
 
82 ± 11 
 
43.9 ± 7.16 
 
54.3 ± 12.6 
 
60.3 ± 18.5 

Footnotes: *control non-ILD group: diagnostic evaluation of unclear cough (n=10), Previous breast cancer 

metastasis (n=1) and post-transplantation (n=1). All with no signs of ILD. Abbreviations; COP: Cryptogenic 

organizing pneumonia, HP: Hypersensitivity pneumonitis, FVC: Forced vital capacity, DLCO: diffusing capacity 

of the lung for carbon monoxide. 

 

Table 17. Patients included in the UCSF cohort. 

Diagnosis N  Male gender 
(%) 

Age 
(years±SD) 

FLV 
(L±SD) 

DLCO (% pred ± 
SD) 

Healthy volunteers 
 
IPF 
 
All 

8 
 
9 
 
17 

4 (50%) 
 
9 (100%) 
 
13 (76%) 

57.5 ± 6.7 
 
71.1 ± 3.3 
 
64.7 ± 8.6 

4.3 ± 1.0 
 
3.6 ± 1.2 
 
4.0 ± 1.1 

no data 
 
47.9 ± 12.9 
 
- 

Footnotes: Abbreviations; FVC: Forced vital capacity, DLCO: diffusing capacity of the lung for carbon monoxide. 
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3.1.12. Animals 

For experimental lung fibrosis, eight to ten weeks old female C57BL/6N mice free of 

pathogen were purchased from Charles River Laboratories (Sulzfeld, Germany). All animals 

were kept under governmental and international guidelines including access to water and 

rodent chow ad libidum. The studies performed in mice were approved by the local 

government for the administrative region of Upper Bavaria (Project 55.2-1-54-2532-88-

12). To induce lung fibrosis, mice were instilled intratracheally with 2U of Bleomycin 

(Almirall, Barcelona, Spain) per kg body weight dissolved in 50 µl of sterile PBS applied as 

a single dose per animal using the Micro-Sprayer Aerosolizer, Model IA-1C (Penn-Century, 

Wyndmoor, PA). PBS alone was instilled as control. At day 14 post-instillation, mice were 

sacrificed for the extraction of BALF and lung lobes.  

3.1.13. 3D-Lung Tissue Cultures 

The 3D-Lung Tissue Cultures were generated from bleomycin- or PBS-treated mice (day 14 

post-instillation) as described in (Lehmann, Korfei et al. 2017) and kept in culture for 72 

hours in EV-depleted medium supplemented with 2.5% amphotericin B (Sigma Aldrich, St 

Louis, MO) for subsequent EVs isolation.  
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3.2. Methods 

3.2.1. Extracellular Vesicle isolation and characterization 

3.2.1.1. Isolation of extracellular vesicles (EVs) 

 

Isolation of EVs from murine and human BALF samples, as well as from primary human cell 

cultures (primary human lung fibroblasts [phLFs] and primary human alveolar type II cells 

[phATIIs]) were performed for characterization, protein analysis and functionality studies 

using the state-of-the-art method of ultracentrifugation (Thery, Witwer et al. 2018). First, 

BALF or cell culture supernatants were centrifugated at 2000 xg for 5 min to remove 

remaining cells. Cell-free fluids were subsequently subjected to 10.000 xg centrifugation for 

30 min and the resulting supernatants were transferred to a new tube and further 

ultracentrifuged at 100.000 xg for 120 min. The resulting pellets containing EVs were 

washed in sterile PBS and subjected to a second ultracentrifugation step at 100.000 xg for 

120 min. Finally, the EV pellets were resuspended in 30-100 μl of sterile PBS and stored at 

-80ᴼC until use. For protein characterization of EVs from small sample sizes (such as 3D 

lung tissue cultures and murine BALF-EVs) the isolations were performed using the 

precipitation reagent ExoQuick© (Systems Bioscience, California, USA). For that, the 

reagent was added to the cell-free BALF and culture supernatants at the concentrations 

indicated by the manufacturer and samples were incubated overnight at 4ᴼC. The next day, 

EVs were precipitated by centrifugation at 1500 xg for 30 min and the resulting EV pellets 

were resuspended in 30-100μl of sterile PBS and stored at -80ᴼC until use. All experiments 

were performed under sterile conditions. All centrifugations were performed at 4ᴼC. The 

rotors used for ultracentrifugation were fixed-angle T635.5 and TFT80 (both from 

Thermofisher, Sorvall, Massachusetts, USA). 
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3.2.1.2. Characterization of EVs 

 

Nanoparticle tracking analysis 

Nanoparticle tracking analysis (NTA) by NanoSight NS300 system (Malvern Panalytical, 

Malvern, UK) was performed to quantify and determine the size and distribution of the 

particles present in the different EV samples. To that end, EV samples were diluted in 500 

μl of sterile PBS and injected through a single syringe into the fluidic chip at a constant flow. 

The vesicle movements were tracked by a fast video capture for 5 records of 30 sec each 

and the dedicated software (NTA 3.1, Malvern Panalytical, Malvern, UK) reported a particle 

concentration and size distribution for each measurement. The values are presented as 

calculations from 3 (mouse BALF) or 5 (human BALF and phLF) replicates and expressed 

as number of EVs per ml of initial sample. 

Dynamic light scattering 

The size distribution of the EVs that were isolated from murine BALF by ExoQuick© was 

determined using the dynamic light scattering (DLS) system with DLS Zetasizer Ultra 

(Malvern Panalythical, Malvern, UK). Briefly, EV samples were diluted serially in sterile PBS 

to fit the range of sensitivity and 70 μl of each preparation was disposed into the cubette. 

Measurements of the particles in suspension were done in triplicates and the software 

Zetasizer Xplorer calculated an average particle size and presented the size distribution as 

a curve for each measurement. The images were obtained by the software WinTEM 

Libra120. 
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Transmission electron microscopy (TEM) 

Negative staining was used to visualize the EVs by the transmission electron microscope 

Zeiss Libra 120 Plus (Carl Zeiss, Oberkochen, Germany). Electromicroscopy grids were 

glow-discharged with carbon at 20mA for 20 seconds prior to sample preparation. Samples 

containing EVs were first vortexed for 20 seconds and serially diluted to fit the microscope 

range of sensitivity. Subsequently, 5 μl of each sample was added on a carbon-coated grid 

followed by a washing step with sterile water for 5 seconds. Then, the grid was incubated 

with uranyl acetate for 1 minute and washed twice for 5 seconds with sterile water. The 

grids were dried by blotting from the edge on filter paper and kept for visualization. The 

images were obtained by the software WinTEM Libra120. 
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3.2.2. Animal experiments 

To induce lung fibrosis, eight to ten old mice were first anasthesized intraperitoneally with 

0.2 mg/ml medetomidin (Orion Pharma, Hamburg, Germany), 2.0 mg/ml midazolam 

(Roche Pharma, Mannheim, Germany) and 0.02 mg/ml fentanyl (Janssen-Cliag, Neuss, 

Germany) per kg of body weight. Next, 2 Units of bleomycin (Sigma Aldrich, Taufkirchen, 

Germany) per kg of body weight dissolved in 200 μl saline solution (B. Braun, Melsungen, 

Germany) was instilled intratracheally as a single dose using a Micro Sprayer (Penn 

Century; Wyndmoor, USA) via a 20 G INTROCAN cannula. Afterwards, mice were awakened 

by subcutaneous administration of 0.29 mg/ml atipamezole (Orion Pharma, Hamburg), 

0.059 mg/ml flumazenil (Hexal, Holzkirchen, Germany) and 0.14 mg/ml Naloxon (Actavis, 

Munich, Germany) per kg of body weight. 14 days post-instillation, mice were anasthesized 

intraperitoneally with 100 mg/ml ketamine and 0.7 mg/ml Rompun (both from Bela Pharm; 

Vechta, Germany) per kg of body weight. Following the cutting of the Vena cava, the trachea 

was exposed, and the mice were intubated intratracheally to proceed with 2 times lavage 

with 500 μl sterile PBS containing Protease inhibitor to collect broncheoalveolar lavage 

fluid (BALF). BALF was then centrifuged at 500 xg for 5 min and frozen for subsequent EV 

isolation. The lung was rinsed with 0.9 % saline solution through the right ventricle of the 

heart and shock-frozen in liquid nitrogen prior to protein isolation. The development of lung 

fibrosis was confirmed by lung function measurements before BALF collection using the 

flexiVent system (Scireq, Montreal, Canada) with a tidal volume of 10 ml per kg of body 

weight at 150 breaths per minute. All surgical instruments were obtained from Fine Science 

Tools (Heidelberg, Germany) and the cannulas from B. Braun (Melsungen, Germany). 
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3.2.3. Patient cohorts for broncheoalveolar lavage fluid (BALF) analysis 

Bronchoscopy procedure was performed in a single sub-segment of the right middle lobe 

and 100mL of sterile saline was used to collect BAL fluid (BALF) according to a standardized 

protocol (Goldstein, Rohatgi et al. 1990). The BALF was kept on ice and then frozen at –80ᴼC 

until EV isolation.  
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3.2.4. Cell biology 

 

3.2.4.1. Isolation of primary human lung fibroblasts (phLFs) 

Primary human lung fibroblasts (phLFs) were isolated as previously described(Staab-

Weijnitz, Fernandez et al. 2015). Human lung tissue was first dissected with a sterile scalpel 

blade and then digested with 1 mg/ml of collagenase I (Biochrom, Cambridge, UK) for 2h at 

37ᴼC. Samples were then filtered through a 70 μm pore nylon filter (BD Falcon, NJ, USA). 

and centrifuged at 400 xg at 4ᴼC for 5 min. The resulting pellets were resuspended in 

DMEM/F-12 medium supplemented with 20% FBS and 1 % penicillin/streptomycin and 

seeded on cell culture dishes. All experiments were performed on phLFs at early passages 

(passages 2-6), to avoid any effects of replicative senescence in later passages. 

 

3.2.4.2. Isolation of primary human alveolar type II cells (phATII) 

Primary human ATII cells (phATII) were isolated as previously described (Konigshoff, 

Kramer et al. 2009, Mutze, Vierkotten et al. 2015, Ota, Ng-Blichfeldt et al. 2018) with slight 

modifications. Briefly, human lung tissue was mechanically minced and enzymatically 

digested using a mix of dispase/collagenase and the cell suspension recovered after 

filtration through nylon filters 100 µm and 20 µm. Cells were then subjected to a Percoll 

gradient (Sigma-Aldrich, Taufkirchen, Germany). After collection from the Percoll 

interphase, red blood cells were lysed (Red blood cell lysis buffer, Sigma, USA) and phATII 

were sorted by negative selection using a magnetic activated cell sorting-based method 

using the CD45 marker (human CD45 MicroBeads, Miltenyi, USA). The collected cells were 

resuspended in Dulbecco’s Modified Eagle’s medium/Nutrient mixture F12 medium 

(DMEM/F-12) (Gibco, Carlsbad, Germany) supplemented with 20% FCS (GE Healthcare, 

Freiburg, Germany) and 1% penicillin/streptomycin and cultured for 48h before being used 

for experiment. 
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3.2.4.3. Culturing and cryopreservation of mammalian cells 

Culturing of phATII was performed in 10cm dishes with Dulbecco’s Modified Eagle’s 

medium/Nutrient mixture F-12 medium (DMEM/F-12) medium supplemented with 10% 

(v/v) FCS (GE Healthcare, Freiburg, Germany), and 1% (v/v) antibiotics (100 μg/ml 

streptomycin and 100 U/ml penicillin (Gibco, Carlsbad, Germany). After 2 days of culturing, 

phATII were washed twice with PBS and cultured for 48 h in extracellular vesicle (EV)-

depleted medium. The phLFs were cultured in DMEM/F-12 supplemented with 20% (v/v) 

FCS and 1% (v/v) antibiotics until 80% confluence and then starved for 24 h in DMEM/F-

12 supplemented with 0.1% FCS and 1% antibiotics. Afterwards, cells were kept or treated 

in EV-depleted medium for 48 h prior to EV isolation. All the EV treatments performed on 

phLFs were done in EV-depleted medium as well. When passage was lower than 3, phLFs 

were eventually cryopreserved for future experiments. The cells were first detached by 

incubation with trypsin/EDTA solution for 5 min at 37ᴼC, followed by resuspension in 

complete medium and centrifugation at 500 rpm for 5 min. The cell pellets containing 

approximately 2-3x106 cells/ml were then resuspended in freezing medium (90% complete 

medium, 10% DMSO) and transferred into cryovials that were frozen at -80ᴼC. The next day, 

the cryovials were transferred into liquid nitrogen tanks for long-term storage. 

 

3.2.4.4. Generation and culturing of murine 3D-lung tissue cultures (3D-LTCs) 

Mouse 3D-LTCs were obtained from healthy and bleomycin-treated mice using the 

procedure described in (Uhl, Vierkotten et al. 2015). Briefly, once the mice were 

anaesthetised and intubated, the lungs were flushed via the right ventricle of the heart with 

PBS and subsequently a syringe pump was used to inject liquid agarose (2% in DMEM/F-12 

medium supplemented with 1% streptomycin/penicillin). The trachea was then ligated, and 

the lung was transferred into a tube with culture medium that was kept on ice, to allow the 

agarose to solidify. Afterwards, the lobes were cut with a vibratome device (Hyraz V55; 

Zeiss, Jena, Germany) to a thickness of 300 µm using a speed of 10–12 µm·s−1, a frequency 

of 80 Hz and an amplitude of 1 mm. The resulting 3D-LTCs were cultivated in DMEM/F-12 

medium supplemented with 1% EV-depleted FCS for 48 h before EV isolation from cell 

culture supernatants.  
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3.2.4.5. Treatments on EVs 

WNT-5A neutralization 

WNT-5A was inhibited on EVs using a WNT-5A neutralizing antibody. EV-Pellets isolated 

from phLFs or BALF from IPF patients were diluted in EV-depleted medium and incubated 

with 1µg of either αWNT-5A antibody (RND systems: MAB645) or control IgG antibody 

(RND systems: MAB006) for 30 min before stimulation of phLFs for functional analysis. 

Disruption of EV membrane by detergent 

EV-Pellets isolated from phLFs or BALF from IPF patients were first incubated with 0.075% 

triton (diluted in EV-depleted medium) for 30 minutes. Afterwards, mixtures were vortexed 

for 15 seconds and then used to treat donor phLFs. 

 

3.2.4.6. Cell treatments 

All cells were grown to 80% confluence and then starved in starvation medium for 24 h. 

Afterwards, all treatments were performed in EV-depleted medium. 

TGF-β treatments 

phLFs were grown in 75 cm3 flasks, starved for 24 h, and then treated with TGF-β (2ng/ml) 

or 0.01% BSA as a control for 48 h. Afterwards, 50ml (pool of 5 flasks) of the supernatants 

from each condition were used for EV isolation.  

IWP-2 treatments 

phLFs were grown in 75 cm3 flasks and starved for 24 h. Depletion of WNT ligand secretion 

was then performed by treatment with 100nM of IWP2 (Sigma-Aldrichs, Taufkirchen, 

Germany) or DMSO as vehicle control. Treatments were refreshed once after 24 h by adding 

IWP2 or DMSO to the supernatants. After 48 h, 1ml of the supernatants was collected to 

confirm WNT-5A depletion, and the remaining volume was subjected to EV isolation. 

 

 

 

 

WNT-5A knock down transfections 
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phLFs were grown in 75 cm3 flasks (for EV isolation) or in 6-well plates (for protein 

analysis) to 80% confluency and transiently transfected with siRNA against WNT-5A (SC-

41112; Santa Cruz Biotechnology, California, USA). Transfection was performed on cells 

using 5 ml per flask or 1 ml per well of serum-free Opti-MEM medium (Life Technologies, 

Carlsbad, Germany) containing 200 pmol per ml of WNT-5A siRNA or non-silencing control 

combined with Lipofectamine 2000 transfection reagent (Life Technologies, Carlsbad, 

Germany). After 6 h, the medium was changed to complete medium and kept O/N. For EV 

isolations, cells were kept in EV-depleted medium for 48 h. To analyse Cyclin-D1 expression, 

cells were further starved in starvation medium for 24 h. 

EV stimulations for proliferation analysis 

Donor phLFs were seeded in a 96-well plate at 5.000 cells per well and put on starvation for 

24 h. The protein concentration of the different EV-Pellets was quantified using Pierce™ BCA 

Protein Assay Kit (Thermofisher Scientific), according to manufacturer´s instructions. EV-

Pellets were then diluted at concentrations of 0.01, 0.5 or 1.5 µg protein/ml in EV-depleted 

medium and used to stimulate the donor phLFs for 48 h. Neutralized WNT-5A EVs or IgG-

treated EVs were used at the concentration of 0.5 µg protein/ml. EV-depleted medium alone 

was used as control. EVs alone or treated with detergent were used at the concentration of 

0.5 µg protein/ml and EV-depleted medium with same concentration of detergent without 

EVs was used as control. Afterwards, proliferation was assessed by cell counting, WST-1 Cell 

Proliferation Reagent (ab155902, Abcam, Cambridge, UK) and BrdU cell proliferation kit 

(#6813, Cell Signaling, Massachusetts, USA). For cell counting, cells were detached by 

incubation with trypsine for 5 min at 37 ᴼC and then stained with Trypan Blue (Sigma-

Aldrich) at 1:1 concentration and counted with a Neubauer chamber. Proliferation 

assessment by WST-1 or BrdU were performed according to manufacturer’s guidelines. For 

WST-1 assay, 10 μl of WST-1 solution (Abcam, Cambridge, UK) was added to each well and 

the plate was incubated at 37ᴼC for 2 h, subsequently, the absorbance was read at 460 nm 

wavelength. For BrdU assay, 10 μl of 10x BrdU solution was added to each well and the plate 

was then incubated at 37ᴼC for 4 h, the plate was then incubated with fixing/denaturating 

solution at RT for 30 min followed by incubation with 1X detection antibody solution at RT 

for 1 h. The plate was then washed 3 times with 1X washing buffer and incubated with 1X 

HPR-conjugated secondary antibody at RT for 1h. Afterwards, the plate was washed 3 times 

and absorbance was read at 460 nm wavelength.   

 

EV stimulations for protein analysis 
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Donor phLFs were seeded in a 12-well plate at 100.000 cells per well and put on starvation 

for 24 h. Next, protein concentration of the EV-Pellets obtained from phLFs secreted under 

baseline conditions was quantified by Pierce™ BCA Protein Assay Kit (Biochrom, Berlin, 

Germany). EV-Pellets were then diluted at 0.5 µg protein/ml in EV-depleted medium and 

used to stimulate the donor phLFs for 48 h. EV-depleted medium alone was used as control. 



36 

 

3.2.5. Molecular biology 

 

3.2.5.1. RNA analysis 

mRNA isolation 

The murine lung tissue was first homogenised into a cryotube with a grinding ball using a 

microdismembrator at 3000 rpm for 30 seconds. The tissue powder was lysed by incubation 

in 700 μl QIAzol for 15 min at RT and the tubes were agitated again into the 

microdismembrator. The tubes were then vortexed for 30 seconds and incubated at RT for 

5 min. 140 μl of chloroform per 700 μl QIAzol was added to each sample followed by vortex 

and incubation at RT for 3 min and further centrifugation for 15 min at 12000 xg at RT. The 

upper aqueous phase was transferred into a column provided by the kit. For the human cell 

cultures, 600 μl Qiazol was added into each well of a six-well plate and incubated for 2 min 

at RT. The lysing procedure was facilitated by scratching and the mixture was transferred 

into a column provided by the kit. From there, total RNA isolation was performed using the 

PeqGold RNA kit (Peqlab, Erlangen, Germany) according to the manufacturer’s guidelines. 

The concentration of the isolated RNA was quantified spectrophotometrically at 260 nm 

wavelength (NanoDrop 1000). 

cDNA synthesis, Real-time PCR (RT-PCR) 

The GeneAMP PCR kit (Applied Biosystems, Carlsbad, USA) was used to obtain cDNA from 

the isolated RNA. 1 μg of isolated RNA was diluted in RNAse-free water to a final volume of 

20 μl. Samples were first denaturated and then complemented with the reagents for the 

reverse transcription as described in table 4.18. The denaturation and reverse transcription 

were performed in an Eppendorf Mastercycler according to the settings in table 4.19. 

Table 18. Reverse transcription reagents 

Reagent Stock 
concentration 

Volume  
Final concentration (in 
40 μl) 

10x Buffer II 
MgCl2 

dNTPs 
Random hexamers 
RNAse inhibitor 
Reverse transcriptase 
H2O 
Denat. RNA 

100 mM 
25 mM 
10 mM 
50 mM 
5 μM 
5 U/μl 
50 U//μl 
50 ng/μl  

4 μl 
8 μl 
2 μl 
2 μl 
1 μl 
2 μl 
1 μl 
18 μl  

10 mM 
5 nM 
0.5 nM 
2.5 μM 
0.25 U/μl 
2.5 U/μl 
- 
- 
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Table 19. Settings for RT-PCR 

Reaction temperature duration 

(1) Denaturation 
(2) Annealing 
(3) Reverse transcription 
(4) heat inactivation 

90 ᴼC 
20 ᴼC 
43 ᴼC 
99 ᴼC 

10 min 
10 min 
75 min 
5 min 

 

Quantitative PCR (qPCR) 

For qPCR, all primers were designed with the platform NCBI PrimerBLAST and tested for 

efficiency by checking their melting temperatures and the melting curves in the reactions 

containing serial dilutions of the primers. The primers were diluted in DNAse/RNAse-free 

water to a concentration of 2.5 μM. The cDNA was mixed with the master mix and primers 

according to table 4.20. The reactions were performed in duplicates for 45 cycles in a 

LightCycler 480 (Roche Diagnostics; Mannheim, Germany) with the conditions listed in 

table 4.21. All target genes were normalized to HPRT. 

Table 20. Reaction scheme for qPCR 

Reagent Stock concentration Volume Final concentration (in 10 

μl) 

SybrGreen I Master Mix 
Primer mix (fw/rv) 
H2O 
cDNA 

2x 
10 μM 
- 
 5 ng/μl 

5 μl 
0.5 μl 
2 μl 
2.5 μl 

1x 
0.5 μM 
- 
12.5 ng 

 

Table 21. Settings for qPCR 

Reaction temperature duration 

(1) Denaturation 
(2) Annealing 
(3) Elongation 
(4) Melting curve 

95 ᴼC 
59 ᴼC 
72 ᴼC 
60-95 ᴼC 

5 min 
5 sec 
20 sec 
1 min 
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3.2.6. Protein biochemistry 

3.2.6.1. Protein isolation and quantification 

For murine and human lung tissue, the specimens were first homogenised into a cryotube 

containing a grinding ball using a microdismembrator at 3000 rpm for 30 sec. The tissue 

powder was lysed with 100-500 μl RIPA buffer (supplemented with 1x Roche complete mini 

protease inhibitor cocktail). Culture plates containing the cells for analysis were kept on ice 

and 100 μl RIPA buffer was added per well of a 6-well plate. The lysis was facilitated by 

scratching with a cell lifter and the lysates were transferred to a 1.5 ml tube and incubated 

on ice for 20 min which was interrupted for vortexing of the sample for several times. 

Protein extracts were purified by centrifugation at 12000 xg at 4 ᴼC. The supernatants were 

transferred to a new tube and protein concentration was determined by BCA assay kit 

(Biochrom, Berlin, Germany) according to manufacturer’s instructions by measuring 

absorbance at 563 nm wavelength with Tecan Sunrise multiplate reader. Samples were pre-

diluted to fit the standard curve and reactions were performed in duplicates. 

 

3.2.6.2. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) 

and Western blotting 

The supernatants and BALF or EV-free samples were concentrated if necessary with Amicon 

Ultra-0.5 centrifugal filters (Merck Millipore, Amsterdam, The Netherlands) from 500 μl to 

50 μl. Reducing conditions (4x Laemmli loading buffer: 150 mM Tris HCl, 275 mM SDS, 400 

mM dithiothreitol, 116 3.5% (w/v) glycerol, 0.02% bromophenol blue) were used for the 

detection of GPR177 and non-reducing (without dithiothreitol) for all other proteins. For 

murine BALF-EVs, whole EV-Pellet lysates were loaded into the gel, whereas a constant 

protein amount (10 μg) was used for comparison of EVs obtained from 3D-LTCs, human 

BALF and phLFs or phATII cell culture supernatants. Samples were loaded into a 10% SDS 

PAGE gel and proteins were separated at 120 V until the running front reached the end of 

the gel. Separated proteins were then transferred to a nitrocellulose membrane (Millipore) 

at 350 mA for 60 min prior to blocking in 1x RotiBlock in TBS-T (Carl Roth, Darmstadt, 

Germany) for 30 min. Blocked membranes were incubated O/N at 4ᴼC with primary 

antibodies. Finally, membranes were incubated with HRP-conjugated secondary antibodies 

for 1 h at RT. The signal was detected by enhanced chemiluminescence reagents (Pierce 

ECL, Thermo Scientific, Darmstadt Germany) and imaged at ChemiDoc™ XRS+ system 

(Biorad, Hessen, Germany). Β-Actin and GAPDH were used as loading controls for lung 
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homogenates. Ponceau S staining (Sigma-Aldrich, Taufkirchen, Germany) was used as 

loading control for samples containing EVs.  

 

3.2.7. Statistical analysis 

All data was analyzed with GraphPad Prism 5 software (La Jolla, CA, USA) and is expressed 

as mean±SD. Student’s t test was used for comparison between PBS and bleomycin groups, 

whereas paired Student’s t test was applied to experiments involving phLFs. For 

comparison of more than 2 groups, One-way ANOVA was used followed by Dunnett´s or 

Bonferroni post-hoc test. Normal distribution of the data distribution was determined by 

Kolmogorov-Smirnov testing with Lilliefors’ correction before applying unpaired Student’s 

t test. 
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4. RESULTS 

 

4.1 Extracellular vesicle (EV) characterization in experimental and human IPF 

The first aim of this study was to characterize the EV secretion in the context of pulmonary 

fibrosis. For that, EVs were isolated from bronchoalveolar lavage fluid (BALF) from 

experimental and human lung fibrosis and controls. In mice, experimental lung fibrosis was 

induced by intratracheal administration of bleomycin whereas PBS was used as vehicle and 

BALF was collected after 14 days when the fibrosis was well established. To study the 

disease in humans, BALF was collected from IPF, non-IPF-ILD and non-ILD patients as well 

as from healthy volunteers. Isolation of EVs from mouse and human samples were 

performed as described in figure 6 and the EVs were characterized by size, concentration 

and protein content. ExoQuick® precipitation reagent was used to isolate EVs from mouse 

BALF and 3D-lung cell cultures for protein characterization purposes, whereas the state-of-

the-art method of serial ultracentrifugation was used to isolate EVs from mouse and human 

BALF, as well as from primary cell cultures for quantification and functionality experiments.    

 

Figure 6. Schematic representation for the protocol used for the isolation of EVs in 

bronchoalveolar lavage fluid (BALF) and cell culture supernatant (SN). Abbreviations: 

broncheoalveolar lavage fluid (BALF), supernatant (SN), extracellular vesicle pellet (EV-Pellet), 

extracellular vesicle-free supernatant (EV-free-SN). 
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4.1.1. EV secretion is upregulated in experimental lung fibrosis 

To study the EV secretion in experimental lung fibrosis, BALF was collected from 

bleomycin- or PBS (vehicle)-treated mice at day 14. BALF was then subjected to EV isolation 

by ultracentrifugation for the analysis of EV size and concentration, or by precipitation with 

ExoQuick® for protein characterization. Morphological assessment of EVs by transmission 

electron microscopy (TEM) revealed the presence of (i) large amounts of exosomes as 

smaller concave vesicles between 30 and 200 nm (Fig. 7A for ultracentrifugation and Fig. 

7B for ExoQuick®; arrows), and (ii) a smaller fraction of microvesicles as irregular 

membranous vesicles between 200 and 1000 nm (Fig. 7A for ultracentrifugation and Fig.  

7B for ExoQuick®; arrow heads). There were no particles found larger than 1000 nm, 

indicating no contamination by apoptotic bodies or cell debris in the samples.  

 

 

Figure 7. Characterization of EV morphology by transmission electron microscopy (TEM). 

Representative TEM image of EVs from BALF of mice treated with PBS as vehicle control (BALF PBS) 

or bleomycin (BALF Bleo) isolated by (A) ultracentrifugation or (B) ExoQuick®. BALF was collected 

at day 14 post-instillation. Arrows indicate exosomes and arrowheads indicate microvesicles. 
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Tumor susceptibility gene 101 (TSG101) is an endosomal sorting complex that regulates 

the sorting of cargos into the multivesicular bodies where the vesicles are formed, therefore 

it is commonly used to identify EVs (Yoshioka, Konishi et al. 2013). TSG101 was found 

enriched in the EV-Pellets, demonstrating the purity of the EV isolations (Fig. 8). 

Furthermore, TSG101 was increased in BALF-EVs from fibrotic lungs compared to BALF-

EVs from control (Fig.  8A), suggesting a potential increase in EVs under fibrotic conditions. 

Of note, significantly increased amount of protein content was found in BALF-EVs from 

fibrotic compared to healthy mice (Fig. 8B, EV total µg protein/mL: PBS 51.3±25.32, Bleo 

266.2±114.8, P=0.0001).  

 

 

Figure 8. Increase of EV-associated proteins in BALF from bleomycin-treated mice. (A) Analysis 

of the expression of the EV-enriched protein TSG101 in EV-free-supernatants (EV-free-SN) and EV-

Pellets (EV-P) from BALF from PBS- and bleomycin-treated mice. EVs were isolated by ExoQuick®. 

Pool of 2 mouse BALFs per n; n=3 per group.  (B) Total protein quantification in BALF-EVs from PBS- 

and bleomycin-treated mice (n=8 per group). EVs were isolated by ultracentrifugation. Student’s t-

test; *p<0.05, ***p<0.001. 
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To obtain an accurate comparison of BALF-EVs between PBS- and bleomycin-treated mice, 

the EV numbers and size distribution were determined by nanoparticle tracking analysis 

(NTA); an accurate technique that records the Brownian motion of the individual vesicles 

(Fig. 9, left panel). An increased number of EVs, in particular exosomes, was found in the 

BALF from fibrotic mouse lungs compared to controls indicating a change in number and 

size distribution of EVs upon fibrosis development (Fig. 9, middle panel). Moreover, the 

number of exosomes was significantly higher in the fibrotic BALF when compared to control 

(Fig. 9, right panel, exosome particles/ml: PBS 1.93x108±6x106, Bleo 4.3x108±1.9x108, 

P=0.049). Taken together, these results demonstrate that EV secretion is increased in BALF 

in experimental lung fibrosis. 

 

 

Figure 9. EV concentration is increased in BALF from bleomycin-treated mice. (Left) Histogram 

showing the results of nanoparticle tracking analysis (NTA) performed on same samples as in Fig. 

5.2 (measurements in triplicates; n=3 per group). (Middle) graph of the vesicles grouped in exosomes 

(Exo; 30-200nm) or microvesicles (MV; 200-1000nm). (Right) statistics for the exosome fraction. 

Data is represented as particles/mL of EV fraction. 
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4.1.2. EV secretion is upregulated in IPF patients 

To further investigate if EVs are also increased in the human disease, the presence of EVs 

was explored in human BALF. Two independent cohorts were studied: (i) non-ILD, non-IPF 

ILD and IPF patients (Table 1, Munich Cohort,) and (ii) IPF patients and healthy volunteers 

(Table 2, UCSF cohort). The isolated EVs were first characterized by morphology and 

protein expression. TEM images showed intact EVs and, similar to mouse BALF-EVs, a 

higher fraction of exosomes was found towards a smaller fraction of microvesicles (Fig. 10A 

exosomes; arrows, microvesicles; arrowheads). The purity of BALF-EVs was further 

validated by the expression of the EV-enriched protein TSG101, and the absence of 

Calreticulin (an ER marker which is absent in EVs) (Fig. 10B).  

 

 

Figure 10. Characterization of EVs from human BALF. (A) Representative transmission electron 

microscopy images of EVs isolated from BALF from non-ILD or IPF patients. (B) Protein analysis of 

the ER-marker Calreticulin and the EV-enriched protein TSG101 in cell lysates (CL), pure BALF 

(pBALF), EV-Pellets (EV-P) and EV-free-BALF-supernatants (EV-free-SN) of human BALF sample 

from patients with non-IPF ILD, IPF or non-ILD. EVs were isolated by ultracentrifugation. Ponceau S 

staining was used as loading confirmation. 
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When investigating the EV-Pellets from the Munich cohort, a significant upregulation of EV 

protein content was observed in BALF from IPF patients compared to non-ILD/non-IPF-ILD 

(Fig. 11, EV total µg protein/mL: non-ILD/non-IPF-ILD (n=12/7) 251.6±166.6, IPF (n=16) 

552.3±427.3, P=0.0212), indicating an increased EV secretion in the BALF from IPF  

NTA was then performed on BALF-EVs to precisely quantify the number of particles. A 

significant increase in EVs, mainly attributed to exosomes (Fig. 12 left and middle panel), 

was found in BALF from IPF patients in comparison to non-ILD/non-IPF-ILD (Fig. 12, right 

panel, particles/mL of initial sample: non-ILD (n=7) 2.2x108±1.8x108, non-IPF-ILD (n=6) 

3.3x108±2.5x108, and IPF (n=4) 6.0x108±3.8x108; non-ILD vs. IPF, P=0.0438; and for 

combined non-IPF groups vs. IPF, P=0.0387).  

Figure 12.  EV concentration is increased in BALF from IPF patients compared to non-IPF. Total 

protein quantification in EV-pellets isolated from BALF from non-ILD/non-IPF-ILD (n=12/7) and IPF 

(n=16) patients. EVs were isolated by ultracentrifugation. 

Importantly, the increase of EVs in IPF was confirmed in a second independent cohort of 

IPF patients and healthy volunteers, although this analysis did not reach statistical 

significance (Fig. 13A, particles/mL of initial sample: healthy (n=8) 5.7x107±2.5x107, IPF 

(n=9) 3.0x108±3.4x108, P=0.0633). Further analysis of this cohort indicated that EV 

numbers negatively correlate with lung function (Fig. 13B), suggesting that increased EVs 

correlate with increased disease severity.  
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Figure 13.  EV concentration correlates with lung function in IPF patients compared to healthy. 

Quantification of EVs isolated from BALF of healthy volunteers or patients with IPF from a second 

cohort of patients (Table 2). Data is represented as particle/mL related to initial sample. All EVs were 

isolated by ultracentrifugation. Student’s t-test; *p<0.05, ***p<0.001. (B) Correlation of lung function 

parameter (%FVC) with EV amount isolated from BALF of patients with IPF (UCSF Cohort, Fig 5.6). 

Dots represent single patient values; correlation coefficient is indicated.  

 

Notably, when combining both cohorts, EVs were significantly increased in IPF compared 

to non-IPF (Fig. 14 for combined analysis, P=0.0428), suggesting an enhanced EV secretion 

in human IPF. Altogether, these results strongly support the notion of enhanced secretion 

of EVs into the BALF, in both experimental lung fibrosis and human IPF.  

 

 

 

 

Figure 14.  EV concentration is upregulated in IPF compared to non-IPF. Comparison of EV 

amount secreted in BALF from non-IPF and IPF patients. Quantification by nanoparticle tracking 

analysis of EV amount in BALF from non-IPF (n=21) and IPF (n=13) patients. The data of 2 different 

cohorts was combined (white; Munich cohort, grey; UCSF cohort). Measurements were done in 5 

replicates. Unpaired Student’s t test, *P<0.05. 

4.2. EV-bound WNT-5A is upregulated in IPF 

EVs exert their function by transporting a variety of mediators, including WNT proteins 

(Gross and Boutros 2013) which are known to be upregulated in IPF (Konigshoff, Balsara et 

al. 2008, Burgy and Konigshoff 2018). The protein WNT-5A, which is a major player in the 

non-canonical WNT pathway, has been linked to lung fibroblast proliferation which is a 
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main hallmark of IPF (Vuga, Ben-Yehudah et al. 2009). Therefore, the secretion of WNT 

ligands, specifically WNT-5A, through EVs was next studied in the context of lung fibrosis. 

 

4.2.1. WNT-5A is increased in fibrotic lung tissue 

First, the expression of WNT-5A was analysed in lung homogenates in both experimental 

and human lung fibrosis. Significant upregulation of WNT-5A was observed in lung 

homogenates from bleomycin- compared to PBS-treated mice at both mRNA and protein 

levels (Fig. 15A and 15B respectively) and upregulated WNT-5A protein was also found in 

lung homogenates from IPF compared to donor tissue specimens (Fig. 15C).  

 

Figure 15. WNT-5A is upregulated in lung homogenates from experimental and human lung 

fibrosis. (A-B) Expression of WNT-5A (A) protein and (B) mRNA level in lung homogenates from 

PBS- or bleomycin-treated mice (n=3-8 mice per group). (C) Protein analysis of WNT-5A expression 

in lung homogenates from donors and IPF patients and subsequent densitometry analysis (n=6 per 

group). 

4.2.2. The WNT shuttle protein GPR177 is upregulated in IPF 

 

The WNT shuttle protein G protein-coupled receptor 177 (GPR177) is a key component of 

the WNT secretory pathway and is necessary for the shuttling of WNT ligands to the cellular 

membrane and the anchoring to EVs (Koles, Nunnari et al. 2012). To study whether the 

machinery required for the secretion of WNT ligands on EVs is increased in lung fibrosis, 
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the expression of GPR177 was investigated in lung homogenates from bleomycin-treated 

mice compared to PBS-treated controls. GPR177 was significantly increased in the fibrotic 

tissue at protein levels (Fig. 16A). Notably, the secretion of GPR177 was also found 

increased in BALF from bleomycin-treated mice (Fig. 16B). Upregulation of GPR177 was 

further confirmed in lung homogenates from IPF patients compared to donors (Fig. 16C, 

GPR177 protein: donors 0.35±0.25, IPF 0.48±0.16, P=0.0262). These results suggest that 

WNT ligand secretion through EVs is upregulated in lung fibrosis. 

 

Figure 16.  The WNT shuttle protein GPR177 is upregulated in experimental and human lung 

fibrosis. (A-B) Expression of the WNT shuttle protein GPR177 in (A) lung homogenates and (B) BALF 

from PBS- or bleomycin-treated mice (n=3 per group). Ponceau S staining was used as loading 

confirmation. (C) Protein expression of GPR177 in lung homogenates from donors (n=7) and IPF 

(n=7) patients and subsequent densitometry. Student´s t test was used in all statistics; *p<0.05, 

**p<0.01, ***p<0.001. 

4.2.2. EVs transport increased WNT-5A in experimental lung fibrosis 

As WNT-5A has been linked to IPF, its secretion on EVs was studied next. For that, the 

expression of WNT-5A was analysed in EVs and EV-free supernatants. WNT-5A was found 

in the EV fraction particularly enriched in EVs from BALF of fibrotic mouse lungs compared 

to controls (Fig. 17).  
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Figure 17. WNT-5A is enriched in EVs from BALF of bleomycin-treated mice. Analysis of TSG101 

and WNT-5A in whole EV-Pellets from BALF (n=3 per group) from PBS- and bleomycin-treated mice 

by ExoQuick® (n=4 per group). 

 

In addition, the EV-bound secretion of WNT-5A was also studied in supernatants of 3D-lung 

tissue cultures (3D-LTCs), which closely represent the in vivo lung microenvironment and 

allow the analysis of EVs including those from distal areas of the lung, in contrast to BALF 

which may be restricted to more proximal regions. Importantly, WNT-5A was highly 

enriched in EVs from fibrotic 3D-LTCs compared to controls, indicating that these EVs carry 

WNT-5A under fibrotic conditions and can originate from distal areas of lung tissue (Fig. 18, 

WNT-5A expression relative to TSG101: PBS 0.3±0.4, Bleo 3.7±0.9, p=0.0011). These results 

strongly indicate that increased WNT-5A is predominantly transported by EVs in 

experimental and human lung fibrosis.  

 

Figure 18. WNT-5A is enriched in EVs from fibrotic 3D-lung tissue cultures. Analysis of TSG101 

and WNT-5A in EV-Pellets from 3D-lung slices culture supernatants derived from PBS- and 

bleomycin-treated mice by ExoQuick® (n=4 per group). Equal amount of EV pellets was loaded 

(10ug). Densitometry analysis of WNT-5A expression relative to Ponceau (right panel), Student’s t 

test. 

4.2.3. EV-bound WNT-5A is increased in BALF from IPF patients 

To elucidate the potential clinical relevance of EV-mediated WNT-5A signaling in IPF, the 

expression of WNT-5A was studied in EVs isolated from BALF of non-ILD, non-IPF-ILD, or 

IPF patients. For that, WNT-5A was analysed along with the EV-enriched proteins TSG101 

and CD81, the latter being a tetraspanin involved in EV biogenesis (Andreu and Yanez-Mo 
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2014). Increased levels of WNT-5A were found in EVs from IPF patients when compared to 

non-IPF EVs (Fig. 19, WNT-5A expression: non-IPF (n=5) 24.98±9.51, IPF (n=7) 

72.09±43.56, P=0.0408).  

 

Figure 19. EVs from BALF of IPF patients are enriched in WNT-5A. Protein analysis of EV-

enriched proteins TSG101 and CD81, as well as WNT-5A in EV-P isolated by ultracentrifugation in 

BALF from non-ILD (n=3), IPF (n=7) and Hypersensitivity Pneumonitis (HP) (n=2), and 

corresponding densitometry of WNT-5A relative to Ponceau, Student’s t test. Ponceau S staining was 

used for loading confirmation. *p<0.05. 
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The protein CD81 has been described as one of the most expressed surface markers in 

myofibroblasts (Akamatsu, Arai et al. 2013) and a marker of a specific EV subpopulation 

which is characterized by a specific protein composition as analysed by proteomics (Kowal, 

Arras et al. 2016). Of note, WNT-5A correlated with CD81 (Fig. 20A, r2=0.4586, P=0.0156), 

as well as TSG101 (Fig. 20B, r2=0.3762, P=0.0339). Collectively, these results suggest that 

WNT-5A expression is increased in EVs in IPF and that EV-bound WNT-5A has a potential 

role in intercellular communication during fibrogenesis. 

 

 

Figure 20. WNT-5A expression in BALF-EVs correlates with the EV-enriched markers CD81 

and TSG101. (A) Correlation between WNT-5A and CD81 expression. (B) Correlation between WNT-

5A and TSG101 expression Dots represent single values, linear regression test. 
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4.3. Lung fibroblasts are a source of EV-bound WNT-5A 

The next aim was to find which cell type might be the source of WNT-5A secretion through 

EVs. WNT-5A has recently been found to be upregulated in lung fibroblasts in chronic lung 

disease (Baarsma and Konigshoff 2017), therefore highlighting fibroblasts as one source of 

EV-associated WNT-5A in IPF. To analyse if fibroblasts are indeed a major source of WNT5A 

secretion in the lung, EVs were isolated from cell culture supernatants from primary human 

lung fibroblasts (phLFs) and from alveolar epithelial type II (phATII) cells in comparison. 

EVs isolated from cell culture supernatants from both cell types showed the typical EV 

morphology and size (Fig. 21A). Notably, WNT-5A was found highly enriched in EVs from 

phLFs whereas it was almost undetectable in phATII cells (Fig. 21B), thus suggesting that 

phLFs are a major source of WNT-5A secretion via EVs in the lung.  

 

 

Figure 21. Lung fibroblasts are a major source of EV-bound WNT-5A. (A) Representative 

transmission electron microscopy images of EVs isolated from primary human lung fibroblasts 

(phLFBs) and primary human epithelial type II (phATII) cell culture supernatants. (B) Comparison 

of the EV-enriched proteins TSG101 and CD81, as well as WNT-5A, in equally loaded EV Pellets 

isolated from phLFBs or phATII cell culture supernatants. Ponceau S staining was used as loading 

control. 
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4.4. EVs induce lung fibroblast proliferation 

Lung fibroblast proliferation has been linked to lung fibrosis (Vuga, Ben-Yehudah et al. 

2009, Baarsma and Konigshoff 2017). To address the potential functional implications of 

EVs in IPF, EVs were collected from phLFs supernatant and used to treat phLFs in an 

autocrine fashion to analyse the proliferative effect.  

 

4.4.1. Lung fibroblast-derived EVs induce proliferation in an autocrine manner 

phLFs were stimulated with EVs from the same line at increasing concentrations to measure 

the proliferative response. Upon EV treatment, phLFs exhibited a significant increase in 

their metabolic activity compared to phLFs treated with EV-free-medium only (Fig. 22A, % 

increase in metabolic activity to control: 0.01μg EVs 19.7±10.4, P=0.0064, 0.5μg EVs 

17.6±12.45, P=0.0199). Similarly, there was a significant increase in the number of cells 

upon EV treatment (Fig. 22B), indicating that EVs impact fibroblast proliferation in an 

autocrine manner. 

 

 

Figure 22. EVs induce lung fibroblast proliferation in an autocrine manner. Assessment of 

proliferation by WST-1 assay (A) or cell counting (B) of phLFs stimulated with EVs from the same 

cell type at the indicating concentrations for 48h (n=3 and n=6 respectively; 1way ANOVA; Dunnett´s 

post-test; *p<0.05) 
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4.4.2. Intact EVs are required for the induction of phLFs proliferation 

To investigate if the structural integrity of EVs is really needed for the WNT-5A effect on 

lung fibroblast proliferation, EVs were pre-treated with a detergent which disrupts the EV 

membrane without affecting the protein content. The proliferative response was 

significantly decreased in those fibroblasts that received disrupted EVs when compared to 

intact EVs (Fig. 23). Therefore, structurally intact EVs containing WNT-5A are required for 

the observed effects on proliferation.  

 

Figure 23. EV structure is needed for the proliferative effect of EV-bound WNT-5A. Proliferation 

analysis by WST-1 assay in phLFs stimulated with autocrine EVs alone (EV) or pre-treated with 

detergent (EV+triton). N=3 per group. Paired Student’s t test; *p<0.05.  
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4.4.3. Lung fibroblast-EVs downregulate the expression of myofibroblast markers 

Giving that activation of lung fibroblasts into myofibroblasts is another hallmark in IPF 

(White, Lazar et al. 2003), the expression of certain genes known as myofibroblast markers 

was next investigated as an additional functional readout of effects mediated by phLF-

derived EVs. Next to an effect on proliferation, there was a decreased gene expression of the 

myofibroblast markers FN1, ACTA2, COL1A1 and TNC upon EV treatment of lung fibroblasts 

(Fig. 24). These data indicate that EV-bound WNT-5A promotes a proliferative rather than 

a synthetic cellular phenotype of fibroblasts. 

 

 

Figure 24. Effect of primary human lung fibroblasts derived EVs on (myo)fibroblast gene 

expression. phLFs were treated with EVs derived from the same patient at the concentration of 

1.5µg EV prot/mL (n=6-9) and mRNA levels of FN1, ACTA2, COL1A1 and TNC were assessed. Paired 

Student’s t test; *P<0.05, **P<0.01. 
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4.5. EV-mediated proliferation of lung fibroblasts is dependent of WNT-5A 

To investigate whether the effects of EVs on lung fibroblast proliferation were mediated by 

WNTs, overall inhibition of WNT protein secretion as well as specific inhibition of WNT-5A 

were next performed prior to phLF treatments. 

 

4.5.1. EV-induced lung fibroblast proliferation is mediated by WNT proteins 

To elucidate whether the effects of EVs on lung fibroblast proliferation were promoted by 

WNT proteins, the overall WNT secretion was inhibited by the inhibitor of WNT production 

molecule 2 (IWP2), which inactivates the O-acyltransferase Porcupine thus preventing the 

exit of WNT proteins from the endoplasmatic reticulum (Dodge, Moon et al. 2012). Pre-

treatment of phLFs with IWP2 efficiently decreased WNT-5A secretion in phLFs 

supernatants (Fig. 25A). Moreover, the inhibition of WNT protein secretion in the EV-

producing cells also reduced the capability of EVs to induce proliferation in the recipient 

phLFs when compared to the effect of EVs from vehicle-treated cells (Fig. 25B, % increase 

in metabolic activity to control: DMSO (vehicle)-EV 45.8±26.6 vs. IWP2-EV 27.0±12.3). This 

result indicates that EV-induced fibroblast proliferation is mediated, at least in part, by WNT 

proteins. 

 

Figure 25. Human lung fibroblast derived EVs induce lung fibroblast proliferation through 

WNT proteins. (A) Detection of WNT-5A protein in phLFs supernatants after treatment with 

inhibitor of WNT protein secretion IWP2 or DMSO as control (data show n=3 independent 

experiments). (B) Proliferation analysis by WST1-assay after 48 h stimulation of phLFs with 0.5 µg 

prot./ml of autocrine EVs isolated in phLFs following treatment with IWP2 (IWP-EV) or DMSO 

control (DMSO-EV) (n=4 per group). Paired Student’s t test; *P<0.05.  
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4.5.2. EV-mediated phLF proliferation is WNT-5A dependent 

Given that the use of IWP2 is not exclusive to WNT-5A, and to further confirm that the effect 

of EVs on proliferation was mediated by WNT-5A, silencing and neutralizing experiments 

targeting specifically WNT-5A were performed. The siRNA-mediated silencing of WNT-5A 

in phLFs prior to EV-isolation efficiently inhibited WNT-5A secretion (26A). Importantly, 

silencing of WNT-5A didn’t modify the EV secretion itself, since there were no significant 

changes on the expression of the secretion profile or the EV-enriched proteins CD81 and 

TSG101 (Fig. 26B and 26C).  

 

Figure 26. Human lung fibroblast-derived EVs drive lung fibroblast proliferation in a WNT-5A 

dependent manner. (A) Analysis of WNT-5A protein in supernatants from phLFs treated with WNT-

5A siRNA (siW5A) or scrambled siRNA control (scr) for 24h. Ponceau S staining was used for loading 

confirmation of the supernatants. (B) Quantification by nanoparticle tracking analysis of EV secretion 

from phLF transfected with a siRNA targeting WNT-5A or a control siRNA. (C) Protein analysis of the 

EV-enriched proteins TSG101 and CD81 in EV-Pellets isolated from phLF transfected with a siRNA 

targeting WNT-5A or a control siRNA (left panel). Ponceau S staining was used as loading 

confirmation and to normalize protein expression. Densitometry of CD81 (middle) and TSG101 

(right) relative to Ponceau are presented. Paired Student’s t test for all.  
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In addition, WNT-5A-depleted EVs exhibited significant reduced potential to induce 

proliferation (Fig. 27, % increase in metabolic activity: scramble siRNA-EV 23.7±15.5 vs. 

WNT-5A siRNA-EV 4.2±9.1, P=0.0401), which demonstrates that the effect of phLF-EVs on 

lung fibroblast proliferation is mainly dependent on WNT-5A. 

 

Figure 27. Silencing of WNT-5A produces EVs with reduced potential to induce lung fibroblast 

proliferation. Proliferation assay after 48 h stimulation of phLFs with 0.5 µg protein/ml of EVs 

isolated from phLFs after treatment with WNT-5A siRNA (siW5A-EV) or scrambled (scr-EV) (n=3 per 

group). Paired Student’s t test. *P<0.05. 

 

These results describing a WNT-5A-dependent proliferation were further supported by the 

finding that WNT-5A silencing in fibroblasts also decreased mRNA and protein expression 

of the cell cycle regulator Cyclin-D1 (Fig. 28A and 28B, respectively).  

 

Figure 28. Silencing of WNT-5A in lung fibroblasts reduces the expression of the cell cycle 

regulator Cyclin-D1. (A) mRNA levels and (B) protein expression of cyclin D1 gene (CCND1) after 

24 h stimulation of phLFs with siWNT-5A (siW5A) or scrambled siRNA (scr) as control. N=3 per 

group. Paired Student’s t test for all; *P<0.05. 
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To further confirm these results and exclude any effects on EV composition that might be 

caused by the WNT-5A silencing, WNT-5A inhibition was also performed directly on phLF-

EVs. For that, EVs obtained from non-treated phLFs were incubated with a WNT-5A 

neutralizing antibody (WNT-5A-AB) or with IgG control prior to phLFs stimulation. WNT-

5A neutralization on EVs also decreased their potential to induce fibroblast proliferation 

(Fig. 29, % increased metabolic activity: EV+IgG 23.8±10.3 vs. EV+WNT-5A-AB 10±14.6, 

P=0.0449). In summary, these results provide evidence that it is mainly WNT-5A that 

mediates the pro-proliferative effect of EVs on lung fibroblasts.  

 

 

Figure 29. Neutralization of WNT-5A directly on EVs decreases their capability to induce lung 

fibroblast proliferation. Proliferation assay after 48 h stimulation of phLFs with 0.01 µg proein./ml 

of autocrine Evs that have been incubated with 1 µg of WNT-5A neutralizing antibody (EV+W5A AB) 

or IgG control (EV+IgG) (n=3 per group). Paired Student’s t test; *P<0.05. 
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4.6. TGF-β increases WNT-5A secretion on EVs and exaggerates phLFs proliferation 

Transforming growth factor (TGF-β) is a key profibrotic cytokine (Chambers and Mercer 

2015) and has recently been reported to induce WNT-5A expression in lung fibroblasts 

(Newman, Sills et al. 2016). To elucidate whether a fibrotic stimulus would influence the 

potential of phLFs-EVs to induce WNT-5A-dependent proliferation, phLFs were treated 

with TGF-β and the EV production and response was studied.  

 

4.6.1. The WNT-shuttle protein GPR177 is upregulated upon TGF-β stimulation 

To investigate the effect of EVs derived from a fibrotic context, phLFs were treated with 

TGF-β before EV isolation. Fibrotic stimulation of phLFs by TGF-β led to an increased 

secretion of the WNT shuttle protein GPR177 in the supernatants when compared to control 

(Fig. 30), indicating an increased WNT secretion on EVs by phLFs under fibrotic conditions. 

 

Figure 30. GPR177 secretion by phLFs is upregulated upon TGF-β treatment. (A) Protein levels 

of secreted GPR177 in the supernatants of phLFs after stimulation with TGF-β and subsequent 

densitometry relative to Ponceau. n=3 per group, paired Student’s t test; *p<0.05. 

 

 

 

4.6.2. TGF-β increases WNT-5A secretion on lung fibroblast EVs 

Specific upregulation of WNT-5A secretion in phLFs EVs was observed upon TGF-β 

treatment (Fig. 31A, WNT-5A protein in EVs: ctrl 0.52±0.33, TGF-β 1.68±0.66, P=0.0262). Of 
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note, WNT-5A was particularly enriched in the EV fraction compared to the EV-free 

supernatant (Fig. 31B) meaning that WNT-5A is mostly secreted via EVs. 

 

 

Figure 31. TGF-β treatment on lung fibroblasts leads to an increased WNT-5A secretion on Evs. 

(A) Protein expression analysis of endoplasmatic reticulum protein Calreticulin, the EV-enriched 

protein CD81 and WNT-5A in: cell lysates (CL), pure supernatants (pSN), EV-Pellets (EV-P) and EV-

free-supernatants (EV-free-SN) from phLFBs treated with TGF-β (2ng/ml) for 48 h, and (B) 

respective densitometry analysis of WNT-5A relative to CD81 (graph represents 3 independent 

experiments). Paired Student’s t test; *p<0.05. 
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4.6.3. TGF-β stimulation drives an increased proliferation response in lung 

fibroblasts, which is mediated by WNT-5A 

EVs from TGF-β-treated phLFs were used to treat normal phLFs which responded with a 

increased proliferation when compared to those treated with control EVs (Fig. 32A). To 

investigate whether the proliferation mediated by TGF-β-derived EVs was indeed 

dependent on WNT-5A, EVs from control and TGF-β-treated phLFs were incubated with 

WNT-5A antibody before being used to treat the EV recipient cells. WNT-5A neutralization 

on TGF-β-derived EVs reduced their capability to promote proliferation in the recipient 

phLFs (Fig. 32B). 

 

Figure 32. TGF-β-derived EVs induces increased proliferation of lung fibroblasts, which is 

dependent on WNT-5A. Assessment of proliferation by WST-1 assay of phLFs stimulated for 48h 

with (A) EVs from TGF-β-treated phLFs at the indicating concentrations (n=4; 1way ANOVA, 

Dunnett’s post-test (*), Bonferroni post-test (#); p<0.05), and (B) same EVs incubated with WNT-5A 

antibody (w5a-AB) or IgG control (IgG), paired Student’s t test; *p<0.05. 
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4.7. BALF-EVs from IPF patients promote lung fibroblast proliferation in a WNT-5A-

dependent manner 

Finally, to investigate the proliferative effect of EV-bound WNT-5A in the human disease, 

EVs were isolated from BALF of different IPF patients and were used to treat donor phLFs 

and study the proliferation response.  

 

4.7.1 EVs from BALF of IPF patients significantly increase proliferation of phLFs 

EVs from BALF of IPF patients were found to significantly increase phLF proliferation in a 

dose-dependent manner as measured by total metabolic activity (Fig. 33A; WST-1 assay). 

This proliferative effect was additionally confirmed by cell counting (Fig. 33B) and by a 

DNA-synthesis based method (Fig. 33C; BrdU assay). 

 

 

Figure 33. EVs from BALF of IPF patients induces lung fibroblast proliferation. Assessment of 

proliferation by (A) WST-1 assay, (B) cell counting or (C) BrdU assay of phLFs stimulated with EVs 

isolated from human IPF-BALF at the indicating concentrations for 48h (1way ANOVA, Dunnett´s 

post-test, n=7, n=3 and n=8; respectively). 
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To further confirm that the EV structure was required for the effect on proliferation, IPF-

EVs were incubated with a detergent to disrupt the EV membrane and were used along with 

intact EVs to treat phLFs. Only intact EVs were able to induce proliferation on phLFs (Fig. 

34) indicating the need of a structurally intact EV to exert the functional effect. 

 

Figure 34. EV structure is required for IPF-derived EVs effect on lung fibroblast proliferation. 

Proliferation analysis by WST-1 assay in phLFs stimulated with IPF-EVs alone (EV) or pre-treated 

with detergent (EV+triton). N=4 per group. Paired Student’s t test; p<0.05. 

 

4.7.2 WNT-5A drives the proliferative effect of IPF-derived EVs 

Finally, to elucidate if the proliferative response to IPF-EVs was mediated by WNT-5A, a 

neutralizing antibody against WNT-5A was used. The effect on proliferation was 

significantly decreased when IPF-EVs were pre-incubated with a WNT-5A-AB (Fig. 35, % 

increased metabolic activity: EV+IgG 19.3±10 vs EV+W5A-AB 8±13.9, P=0.0284), therefore 

indicating that the proliferation of phLFs in response to IPF-EVs was indeed due to EV-

bound WNT-5A. 

 

Figure 35. Lung fibroblast proliferation in response to EVs from IPF patients is dependent on 

WNT-5A. Proliferation assay by WST-1 of donor phLFs after 48h treatment with human IPF-BALF-

EVs incubated with WNT-5A antibody (W5a AB) or IgG control (n=7 per group; paired Student’s t 

test; p<0.05). 
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5. DISCUSSION 
 

Extracellular vesicles (EVs) are secreted membranous vesicles of a diameter 

between 10-2000 nm that are known to transport a variety of proteins, nucleic acids 

or lipids, thus driving different biological processes depending on the cellular source 

and context (Yanez-Mo, Siljander et al. 2015). Increasing interest has been paid in 

the last decade into research of EVs as essential vehicles of both physiological and 

pathological processes by harboring specific mediators of a (diseased) cell of origin 

and communicating with other cellular compartments and tissues. Within the lung, 

our understanding and knowledge of EV function in disease has just recently begun 

to grow, with studies highlighting a potential role of EVs in particular in lung cancer 

and inflammatory lung disease (Schneider, Speth et al. 2016, Nana-Sinkam, Acunzo 

et al. 2017, Parimon, Brauer et al. 2018). However, besides an observational study 

that detected increased tissue factor activity in microparticles from BALF of ILD 

patients (Novelli, Neri et al. 2014), EV function in the context of IPF remains largely 

unknown. Active WNT proteins, which are known to play a role in idiopathic 

pulmonary fibrosis, have recently been discovered to be transported through EVs 

(Gross and Boutros 2013), nevertheless the presence and role of EV-associated WNT 

proteins have not been explored yet in IPF. This study focuses on characterizing the 

EV profile and functionality in the context of pulmonary fibrosis and demonstrates 

for the first time that 1) EVs, exosomes in particular, are increased in experimental 

and human pulmonary fibrosis, 2) that WNT-5A ligand can be detected on EVs in the 

fibrotic lung, and 3) that IPF-derived EVs, specifically via WNT-5A, contribute to 

fibroblast proliferation, and thus contribute to disease pathology. Therefore, this 

study proposes a new mechanism of intercellular communication in IPF 

pathogenesis, where the fibrotic context promotes secretion of EV-bound WNT-5A 
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by lung fibroblasts, which in turn increases fibroblast proliferation thereby 

contributing to disease progression (Fig. 36). 

 

 

Figure 36. Proposed mechanism for EVs in IPF. Repetitive lung injury modifies the lung 

microenvironment and promotes increased WNT-5A secretion via extracellular vesicles (EVs) by 

lung fibroblasts. In turn, EV-derived WNT-5A enhances fibroblasts proliferation contributing to the 

progression of IPF. Abbreviations: Extracellular vesicles (EVs), WNT-5A (W5A), Idiopathic 

pulmonary fibrosis (IPF), Transforming grow factor beta (TGF-β). 
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5.1. The vesicle isolation and characterization: an imperative to study EVs 

The growing field of EV biology has benefited from the efforts to standardize 

protocols for the isolation and characterization of EVs (Thery, Witwer et al. 2018). 

Nevertheless, all currently available isolation methods lead to distinct EV 

populations, thus highlighting the importance of a proper characterization in each 

study (Coumans, Brisson et al. 2017). In this study, serial ultracentrifugation has 

been generally used as a state-of-the-art method that does not modify the original 

sample, therefore being preferably used for quantification, characterization of 

human samples, and functional studies. Initially, ultracentrifugation was limited to 

a certain initial volume of sample, therefore, the EVs from murine BALF used for 

protein analysis purposes, were isolated by ExoQuick© which is a reagent that 

precipitates EVs. Despite the use of precipitation reagents such as ExoQuick© is 

acceptable for protein characterization, this method is known to pool down protein 

aggregates (usually in small fractions) that may interfere in the analysis. Further 

optimizations of the isolation protocol allowed later to use ultracentrifugation on 

murine BALF samples as well for the quantification of EVs. Furthermore, the vesicle 

population obtained in both murine and human biosamples has been 

comprehensively characterized by morphology, number, size, and expression of EV 

markers using transmission electron microscopy, nanoparticle tracking analysis, 

dynamic light scattering, and Western Blotting. This extensive characterization has 

demonstrated for the first time intact EVs from BALF, specially exosomes, that 

exhibit functional properties. The present study is the first to study EVs in BALF 

from IPF patients thus representing and initial proof-of-concept that BALF-EVs 

contribute to disease specially through WNT-5A. However, future studies would 

have to include larger number of human samples from IPF as well as other ILD cases 
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and include accurate tools such as proteomic analysis in order to address the 

heterogeneity of BALF samples.  

 

5.2. Non-canonical WNT-5A protein as a main player in IPF 

Disturbed WNT signaling has been implicated in the pathogenesis of several chronic 

lung diseases, including IPF (Baarsma and Konigshoff 2017). Thus far, most studies 

have focused on the canonical WNT/β-catenin pathway in IPF and it is well-

established that canonical WNT signaling is upregulated mainly in alveolar type II 

cells in experimental and human lung fibrosis (Chilosi, Poletti et al. 2003, Konigshoff, 

Balsara et al. 2008, Aumiller, Balsara et al. 2013). The non-canonical WNT pathway, 

and its role in chronic lung diseases, however, is much less explored. In this regard, 

the non-canonical WNT-5A protein has been found upregulated in an unbiased 

microarray screen comparing primary human lung fibroblasts isolated from IPF and 

Donor lung tissue (Vuga, Ben-Yehudah et al. 2009). WNT-5A has also been linked to 

fibroblast survival and, more recently, WNT-5A was reported to be upregulated in 

early fibrotic-like changes in human 3D-LTCs (Vuga, Ben-Yehudah et al. 2009, 

Newman, Sills et al. 2016, Alsafadi, Staab-Weijnitz et al. 2017). Therefore, the 

present work was focused specifically on WNT-5A which was found upregulated in 

EVs from BALF of experimental and human lung fibrosis, as well as from 

supernatants of 3D-LTCs from fibrotic mouse lungs and in TGF-β-treated lung 

fibroblasts. EVs from fibrotic conditions were furthermore found to induce lung 

fibroblast proliferation through non-canonical WNT-5A ligand. Nevertheless, while 

WNT-5A has been largely reported to act β-catenin independent, also indirect β-

catenin dependent functions can be observed. In this regard, Nabhan et al. recently 
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reported that WNT-5A expressing fibroblasts might induce WNT/β-catenin 

signaling in ATII cells (Nabhan, Brownfield et al. 2018), however, if this effect is 

mediated by EVs has not been investigated. Experiments showing the potential of 

fibroblasts-derived EVs on ATII cells inducing WNT/β-catenin signaling and their 

effects in mechanisms such as epithelial-to-mesenchymal transition (EMT), will be 

important to answer this question. In addition, since functional WNT-3A has also 

been found on EVs (Bartscherer, Pelte et al. 2006), the study of WNT-3A expression 

in lung fibroblasts or ATII cells from lung fibrosis and their autocrine/paracrine 

effects would give some insights into the potential canonical role of EVs in IPF. 

 

5.3. EV-bound WNT-5A promotes lung fibroblast proliferation 

Gross et al. discovered that active WNT ligands can be transported on EVs, which 

inspired the major aim of this work (Gross and Boutros 2013): to investigate the 

role of EVs carrying WNT ligands in lung fibrosis. WNT transport on EVs has 

important implications with respect to the signaling range of WNT proteins, which 

was thought to be rather short and limited to close neighboring cells. In this regard, 

EV-mediated transport can contribute to a larger signaling range of WNT proteins 

and thus determine the signaling outcome on other cells. In this study, EVs were 

found to affect lung fibroblasts proliferation which was mediated in a large extend 

by the non-canonical WNT ligand WNT-5A. Importantly, this effect could not only be 

attenuated by using siRNA-mediated knockdown, but further by antibody-mediated 

neutralization of WNT-5A on EVs and by detergent-mediated disruption of EV 

structure. These data corroborate that indeed EV-bound WNT-5A was responsible 

for the observed effects and that WNT-5A localizes on the EV membrane as 
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described in a previous study (Menck, Klemm et al. 2013). Recent data, although in 

a different organ, also demonstrates that EV-bound WNT-5A contribute to cardiac 

fibrosis by activating profibrotic WNT pathways on cardiac fibroblasts (Dzialo, 

Rudnik et al. 2019). Nevertheless, WNT-5A has also been reported to promote other 

processes in fibroblast such as adhesion (Kawasaki, Torii et al. 2007) or invasion 

(Waster, Rosdahl et al. 2011), as well as epithelial-mesenchymal transition (Gujral, 

Chan et al. 2014). Here, however, WNT-5A expressing EVs from lung fibroblasts 

were found to reduce myofibroblast activation genes Fibronectin, Collagen1a1 and 

Acta2, which needs to be further studied on a protein level. Nevertheless, this 

observation is indicating that the lung fibroblasts are probably downregulating their 

synthetic state in order to stablish a proliferative phenotype as found in response to 

EV-bound WNT-5A stimulus. In addition, to obtain a better picture of the role of 

WNT-5A expressing EVs in lung fibrosis, other processes such as adhesion and 

invasion could be analysed by a migration assay in which fibroblast would respond 

to EVs sender and recipient cells. 
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5.4. The cellular source of WNT-5A harbouring EVs 

EVs are prime mediators for intercellular communication. In IPF pathogenesis, 

altered cellular crosstalk and communication is a key feature leading to aberrant 

epithelial wound healing and fibroblast activation, proliferation, and myofibroblast 

differentiation (Fernandez and Eickelberg 2012).  A previous study based on gene 

expression patterns, found significantly increased WNT-5A in lung fibroblasts from 

unusual interstitial pneumonia (UIP) patients compared to controls with normal 

histology (Fernandez and Eickelberg 2012), which pointed at lung fibroblasts as a 

potential source of EV secretion of WNT-5A.  In addition, a deep-tissue single cell 

study of the lung has detected WNT-5A significantly increased in interstitial lung 

fibroblasts in the aged mice (Angeledis et al. 2019) which is a risk factor for IPF. The 

hypothesis of lung fibroblasts as a source of EV-bound WNT-5A secretion in the lung, 

was confirmed by this study which describes primary human lung fibroblasts as an 

important source of EV-bound WNT-5A in comparison to primary human lung 

epithelial type II cells. Importantly, WNT-5A was found to be increased on lung 

fibroblast-derived EVs upon profibrotic stimulation with TGF-β. Moreover, lung 

fibroblast-derived EVs were found to induce an autocrine effect on fibroblast 

proliferation, which was enhanced when EVs were produced under fibrotic 

conditions. Interestingly, mesenchymal stem cell (MSC)-derived exosomes were 

also found to induce dermal fibroblast proliferation (McBride, Rodriguez-Menocal 

et al. 2017). In addition to lung fibroblast proliferation, differentiation of fibroblasts 

into a myofibroblast can be observed during lung remodelling (Chapman 2012). It 

is thought that fibroblasts exert different phenotypes within a fibrotic lung based 

upon their spatio-temporal distribution, for instance, it has been found that 

activated lung fibroblasts secrete prostaglandins in EVs in order to maintain 
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homeostasis (McBride, Rodriguez-Menocal et al. 2017). In this study, notably, 

fibroblast derived EVs did not promote myofibroblast differentiation, but rather 

decrease myofibroblast markers and as such promote a proliferative rather than a 

synthetic phenotype. Studies focusing on tumor associated fibroblasts have 

observed that EVs are able to promote myofibroblast differentiation (Webber, Spary 

et al. 2015); however, mesenchymal stem cell derived exosomes have also been 

reported to suppress myofibroblast differentiation (Fang, Xu et al. 2016). 

Importantly, EVs derived from cigarette smoked epithelium were able to promote 

myofibroblast differentiation too (Fujita, Araya et al. 2015). Among the BALF-EVs 

there are a mixture of different EVs from different cellular sources, which can lead 

to distinct cellular functions depending of their cargos. In the present study WNT-

5A was undetectable in EVs from epithelial type II cells at a baseline level in 

comparison to lung fibroblast EVs, thus indicating that fibroblasts are a main source 

of WNT-5A secretion through EVs. Nevertheless, melanoma-derived macrophages 

have been also reported to harbour WNT-5A on EVs (Menck, Klemm et al. 2013). It 

will be important to further investigate EVs from other cellular sources, such as 

alveolar macrophages or lung epithelial cells, and study their effects on lung 

fibroblast phenotype. In addition, it will be highly interesting to sort different cell 

types from EVs from IPF-BALF and analyse their effects on normal lung fibroblast in 

order to see if the whole EV profile is changed in the different cell types of the 

fibrosis-derived BALF and what kind of effect do they mediate to drive disease. 
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5.5. The contribution of EVs to impaired cellular crosstalk in IPF 

In IPF pathogenesis, aberrant wound healing of epithelium dysregulates the 

epithelial-to-mesenchymal cellular crosstalk thus altering lung fibroblasts and 

leading to disease. Here, lung fibroblasts are presented as an important source of 

EV-bound WNT-5A secretion which exert specific autocrine effects. Additionally, 

paracrine effects mediated by EVs likely contribute to impaired cellular crosstalk in 

disease (Williamson, Sadofsky et al. 2015). It has been suggested that epithelial cell 

injury impairs, interestingly, local secretion of IL-1β in response to an epithelial 

wound is capable of promoting WNT-5A secretion by myofibroblasts which induces 

migration and proliferation of epithelial cells in the intestinal epithelium (Raymond, 

Marchbank et al. 2012). Therefore, it is plausible that in IPF, injured lung epithelial 

cells signal to fibroblasts, which in turn increase WNT-5A secretion via EVs, thus 

promoting fibroblast proliferation and contributing to disease burden. Therefore, it 

will be interesting to analyse if stimulation with IL-1β is potentiating/contributing 

to the WNT-5A secretion on EVs in response to TGF-β stimulus and see the effect of 

those EVs on epithelial cell migration and proliferation.  Additionally, an increase in 

WNT-5A in primary COPD fibroblasts has been reported to negatively affect alveolar 

epithelial cell function (Baarsma and Konigshoff 2017), suggesting that fibroblast-

derived EV-bound WNT-5A might also influence epithelial cells which highlights the 

importance of defining the contribution of EVs to impaired cellular crosstalk in IPF 

between lung fibroblasts and lung epithelial cells more precisely.  
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5.6. The heterogeneity of BALF-derived EVs 

This investigation has focused mainly on fibroblast derived EVs for functional 

studies and provides evidence that WNT-5A bound EVs in IPF BALF contributes to 

the functional effects. This suggests that WNT-5A harbouring EVs derived from 

fibroblast, which can be found in IPF BALF, may contribute largely to the observed 

phenotype. However, it is most likely that within the BALF from IPF patients also 

other cell derived EVs are included, such as epithelial cell or immune cell 

subpopulations, which thus might alter the functional outcome. The EV 

heterogeneity and the lack of markers for cell-specific origin, makes it difficult to 

elucidate the different cellular sources of the EVs present in biofluids such as BALF 

(Colombo, Moita et al. 2013). Tracing the cellular origin of EVs in biofluids could be 

possible with recent techniques like Multiplex Proximity Extension Assays (PEA) 

which performs a proteomic profile that allows the correlation of EVs with their 

originating cell type based on their protein profile (i.e. tissue-specific proteins or 

integrins present in EVs) (Larssen, Wik et al. 2017). Using a technique like this will 

be useful and important to further investigate EV heterogeneity in the BALF of IPF 

patients, to profile the EV secretion from different cellular sources into BALF and 

their distinct effects on the fibrotic lung cell phenotypes.  
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5.7. The WNT-5A EV receptor cells 

In this study, WNT-5A protein expression was found highly upregulated, in 

particular on EVs, thus enabling WNT-5A transport and signaling between cells even 

upon larger distances. Furthermore, WNT-5A is described to act through EVs 

promoting lung fibroblast proliferation in an autocrine manner. Nevertheless, as 

WNT-5A has also been reported to promote other processes rather than fibroblast 

proliferation, it seems very likely that WNT-5A EVs from lung fibroblasts might also 

affect other cell types even distant to the EV source. Due to their location, the 

alveolar macrophages are potential candidates to be receptors of the EVs that are 

secreted into the lumen, nevertheless, EVs might also reach other parts of the 

organism through the blood circulation. The fact that WNT-5A secreted by primary 

fibroblasts has been recently described to affect alveolar epithelial cell function in 

COPD (Baarsma and Konigshoff 2017), highlights the need to further investigate EV-

mediated WNT-5A signaling on different cell types other than fibroblast.  
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5.8. Disease-specific composition of EVs 

It is described that same proteins, which can be found in EVs, might have different 

effects on the receptor cells depending on the disease context. For instance, whereas 

WNT-5A is known to promote lung fibroblast proliferation in IPF (Vuga et al. 2009), 

it is also able to inhibit WNT/β-catenin driven repair in epithelial cells in COPD 

(Kneidinger, Yildirim et al. 2011, Baarsma and Konigshoff 2017). These disease-

specific effects on the cellular phenotype could be mediated by the distinct 

composition of EVs or a specific surface receptor profile on the recipient cell in the 

disease. As such, it has been demonstrated that EVs can be detected by specific cell 

types due to a distinct integrin expression pattern (Hoshino, Costa-Silva et al. 2015). 

Another intriguing hypothesis is based on the idea that depending on the 

microenvironment, EVs harbor diverse components of a specific pathway, including 

specific signaling receptors that enable the recipient cell to exert novel functions and 

phenotypes. For instance, a specific non-canonical receptor for WNT-5A could be 

shed together with the WNT-5A ligand to stablish a more efficient signal and 

response in the receptor cell. Therefore, EVs are more than a pure vehicle and can 

be able to modulate the cellular response in addition to their cargos. In order to 

decipher which additional receptors or proteins might be carried by EVs along with 

WNT-5A, an unbiased proteomics approach has been started to follow up this study 

using EVs from BALF of IPF and normal samples. To study the whole EV composition 

in the disease-specific context will help us to understand the role of EVs in the IPF 

pathogenesis. 
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5.9. Pathogenic versus protective role of EVs 

This investigation reflects the relevance of WNT-5A ligand secretion through EVs 

and raises the more general question whether EVs, most likely as a mixture of EVs 

from different cellular sources, rather promote lung fibrosis development or might 

also have a protective role in vivo. Notably, several studies to date indicate that EVs 

appear to play versatile roles depending on the (disease) specific 

microenvironment. For instance, EVs have been reported to exhibit a protective role 

in facilitating tissue repair by fostering innate immune defense mechanisms 

(Kesimer, Scull et al. 2009), while others have suggested a proinflammatory role of 

EVs in asthma (Kulshreshtha, Ahmad et al. 2013, Haj-Salem, Plante et al. 2018), 

sarcoidosis (Qazi, Torregrosa Paredes et al. 2010) and LPS-induced lung 

inflammation (Speth, Bourdonnay et al. 2016). Moreover, several studies suggest 

that EVs derived from non-small cell lung cancer cells promote tumor development 

and metastasis in lung cancer (Zheng, Zhan et al. 2018, Wu, Yin et al. 2019) and EVs 

derived from serum from lung cancer patients induce epithelial-to-mesenchymal 

transition on recipient human bronchial epithelial cells (Rahman, Barger et al. 

2016). On the other hand, exogenously administered MSC-derived EVs have 

demonstrated therapeutic potential in the injured lung (Katsuda and Ochiya 2015, 

Fang, Xu et al. 2016, Cruz and Rocco 2017, Bari, Ferrarotti et al. 2019) indicating that 

EVs alone are not pathogenic. Additional studies are needed to elucidate whether 

EVs play a role in promoting IPF pathogenesis or if they represent an attempt to 

resolve the damage. Inhibition of EV secretion or altering EV composition in vivo, 

ideally in a cell-specific manner would provide crucial insight into this question. The 

sphingomyelinase inhibitor GW4869 blocks the global production of exosomes 

(which are the main vesicle present in our EV isolations) (Essandoh, Yang et al. 
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2015) and could be a promising method to inhibit exosome-bound WNTs without 

affecting other WNT pools that might be needed for repair and regeneration. 

Targeting EVs for a potential therapy should be further explored as it might allow 

targeting a specific subset of profibrotic mediators that drive the disease. 

 

5.10. Limitations and conclusive remarks 

A limited amount of patient samples was investigated in this study to provide first 

evidence that EVs are increased in IPF and carry important functional mediators, 

such as WNT-5A. In part, this was due to the limitation of the amount of initial 

volume of the BALF required to perform EV isolations, however, the isolation 

method was optimized during the study and less amount of sample will be needed 

in future.  Nevertheless, a comprehensive characterization of EVs requires large 

amount of biosamples, which restricted the overall number of patient samples that 

could be included in this study. While both independent cohorts showed similar 

results, future investigations of larger cohorts will be essential to further confirm 

the potential correlation of EVs with clinical parameters, such as lung function. 

These studies will need to consider the heterogeneity of the BALF samples (such as 

differential cell counts), include different ILDs, and allow adjustment for parameter 

as age and gender. Furthermore, it will be interesting to explore the potential role 

of EVs as blood biomarkers for ILDs (M, Bayraktar et al. 2017, Njock, Guiot et al. 

2019), and other EV components such as DNA, mRNA or microRNAs that might 

contribute to disease (Schneider, Speth et al. 2016, Nana-Sinkam, Acunzo et al. 2017, 

Parimon, Brauer et al. 2018). Given that the EVs can enter the systemic circulation, 

it is possible that EVs secreted by lung cells will end up in other (distant) organs. 
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Tracking EVs along the organism would be possible using reporter mice in which 

cell specific tags can be found on EVs secreted by the different cell types 

(Gangadaran, Hong et al. 2018).   The hypothesis that EVs originated by the cells of 

the fibrotic lung might travel to other organs to deliver their diseased-influenced 

message could explain the development of non-respiratory comorbidities 

associated with IPF such as ischaemic heart disease (IHD) and gastroesophageal 

reflux (GER) (Cano-Jimenez, Hernandez Gonzalez et al. 2018). Therefore, targeting 

EVs, not only in the lung but using a systemic approach, could be beneficial to 

improve patient survival. 

 

In summary, our present study is the first to report that EVs can be found in 

experimental and human pulmonary fibrosis, carry fibrotic mediators such as WNT-

5A, and contribute to fibrogenesis. Further investigations of EVs in this devastating 

disease are warranted to better understand the contribution to fibrotic 

pathomechanisms, as well as to elucidate their potential as therapeutic targets and 

biomarkers. Nevertheless, this work englobes for the first time a fine 

characterization of EVs in IPF and describes their role in the pathology by promoting 

lung fibroblast proliferation. Furthermore, the fact that EVs derived from the fibrotic 

lung might travel to other organs extends our view of IPF as a disease of the lung to 

a broader picture and opens a new window of therapeutic possibilities for the 

treatment of pulmonary fibrosis and IPF-associated comorbidities. 
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