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Zusammenfassung

Schwarze Löcher sind äußerst effiziente Speicher von Quanteninformationen. In dieser Ar-
beit untersuchen wir einen universellen Mechanismus, der dem mikroskopischen Ursprung
dieser erhöhten Mikrozustandsentropie zugrunde liegt. Darüber hinaus wollen wir all-
gemeine Phänomene in Systemen untersuchen, die diesen Mechanismus implementieren,
und daraus folgende Implikationen für die Evolution schwarzer Löcher und die Kosmologie
diskutieren.

Viele Fragen der Quantengravitation haben ihren Ursprung in der Physik Schwarzer
Löcher. Eine bekannte und faszinierende Eigenschaft von Schwarzen Löchern ist, dass ihre
Entropie die sogenannte Bekenstein-Grenze sättigt. Im Quanten-N-Portrait von Dvali und
Gomez wurde die hohe Entropie S eines Schwarzen Lochs mit der Entstehung von S (fast)
masselosen Freiheitsgraden in Verbindung gebracht.

Die Kernidee des Quanten-N-Porträts ist, dass makroskopische Schwarze Löcher oder
die de Sitter-Raumzeit eine grundlegende Beschreibung als Vielteilchensysteme besitzen.
Sie repräsentieren Zustände weicher Gravitonen mit einer sehr hoher Besetzungszahl.
Dies ermöglicht es, Eigenschaften, von denen man annahm, dass sie ausschließlich in
der Gravitation zu finden sind, wie die hohe Entropie großer Schwarzer Löcher, als uni-
verselle Phänomene zu identifizieren, die auch in nicht-gravitativen Systemen wie atom-
aren Bose-Einstein-Kondensaten implementiert werden können. Dies eröffnet eine neue
Forschungsrichtung, weil wir nun verstehen, dass Schwarze Löcher nicht einzigartig in
diesen Eigenschaften sind. Es gibt andere Systeme, die ähnliche Quanteninformation-
seigenschaften aufweisen und sogar im Labor hergestellt werden können. Erstens entmys-
tifiziert dies Schwarze Löcher, da wir diese Eigenschaften in analogen Modellen tatsächlich
untersuchen können. Darüber hinaus können wir etwas über die Physik schwarzer Löcher
lernen, indem wir diese Art von Systemen studieren. Daher eröffnet diese Forschungsrich-
tung die Möglichkeit, wertvolles interdisziplinäres Wissen zu gewinnen.

Im ersten Teil dieser Arbeit identifizieren wir universelle Mechanismen in allgemeinen
Vielkörpersystemen, welche die gleiche Entropieeigenschaften wie Schwarze Löcher be-
sitzen. Generische bosonische Systeme mit schwacher und anziehender Wechselwirkung
besitzen Zustände mit einer stark erhöhten Speicherfähigkeit. Dies wird ermöglicht durch
einen Mechanismus welcher für nahezu masselosen Freiheitsgrade im Spektrum verant-
wortlich ist und assistierte Masselosigkeit genannt wird. Wir argumentieren, dass solche
Systeme mit erhöhter Speicherfähigkeit dem universellen Effekt von Speicherbürde unter-
liegen, der sie an einen kritischen Zustand bindet und ihren Zerfall unterdrückt. Wir un-
tersuchen ein Prototypmodell, um zu zeigen, dass die Speicherbürde durch Umschreiben
gespeicherter Quanteninformationen von einem Satz von Freiheitsgraden zu einem an-
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deren überwunden werden kann. Dieser Prozess erfordert jedoch eine Feinabstimmung
der Parameter. Wir führen daher numerische Studien durch, um den Parameterraum für
mögliche Umschreibe-Werte abzubilden.

Aufgrund der universellen Natur von Systemen mit erhöhter Speicherfähigkeit wenden
wir unsere Ergebnisse im zweiten Teil auf Schwarze Löcher und die de Sitter-Raumzeit an.
Im Fall von de Sitter Raumzeit, welche durch Gibbons-Hawking-Strahlung zerfällt, führt
die Speicherbürde zu einem Quantenbruch Effekt. Dies hat wichtige Konsequenzen für
inflationäre Observablen und steht in voller Übereinstimmung mit früheren Ergebnissen
aus der Literatur. Desweiteren eröffnet es die Möglichkeit, dass das Universum seine
Quantenerinnerungen aus einer Epoche viel früher als 60 e-Faltungen vor dem Ende der
Inflation bewahrt hat.

Als nächstes untersuchen wir Schwarze Löcher als System mit erhöhter Speicher-
fähigkeit. Wenn wir die Parameter unseres Prototypmodells so auswählen, dass sie mit
den Gravitationsskalierungen übereinstimmen, beobachten wir, dass die Entwicklung auf-
grund einer unterdrückten Rate von Umschreiben im Vergleich zum Anfangsstadium der
Verdampfung von Schwarzen Löchern extrem langsam wird. Dies impliziert eine Meta-
morphose, einschließlich einer drastischen Abweichung von der Hawking-Verdampfungsrate,
spätestens nachdem das Schwarze Loch die Hälfte seiner ursprünglichen Masse verloren
hat.

Ein weiteres Beispiel für eine ungewöhnlich große Skalenteilung findet sich im Elek-
troschwachen Hierarchieproblem. Die beobachtete Higgs Masse bleibt angesichts ihrer
quadratischen Sensitivität gegenüber einer Ausschlussgrenze, welche so groß wie die Planck-
Skala sein könnte, rätselhaft. Im dritten Teil untersuchen wir numerisch das von Dvali und
Vilenkin vorgeschlagene kosmologische Relaxationsmodell der Higgs-Masse zur Erklärung
des elektroschwachen Hierarchieproblems. Dieses Szenario führt einen neuen Begriff von
Natürlichkeit ein, wonach das Vakuum mit einem kleinen Erwartungswert des Higgs-
Feldes einem unendlich erhöhten Entropiepunkt der Vakuumlandschaft entspricht, welcher
zu einem Attraktor der kosmologischen inflationären Evolution wird. In diesem Rahmen
untersuchen wir numerisch die Entwicklung des Higgs-Vakuum-Erwartungswerts. Wir
modellieren die inflationären Vakuum-zu-Vakuum-Übergänge, die durch die Nukleation
von unter 3-Formfeldern geladenen Membranen ausgelöst werden, als zufällige Irrfahrt.
Insbesondere untersuchen wir den Einfluss der Anzahl gekoppelter 3-Formfelder auf die
Konvergenzrate des Higgs-Vakuum-Erwartungswerts. Wir entdecken eine erhöhte Rate
mit zunehmender Anzahl von Membranladungen. Darüber hinaus zeigen wir, dass für
späte Zeiten die Einführung von mehr Ladungen äquivalent zu zusätzlichen Membran-
Keimbildungen ist.



Abstract

Black holes are extremely efficient storer of quantum information. In this thesis, we
investigate a universal mechanism underlying the microscopic origin of this enhanced mi-
crostate entropy. Moreover, we seek to study general phenomena in systems implementing
this mechanism and discuss implications to black hole evolution and cosmology.

Many questions of quantum gravity have revolved around black holes. One intrigu-
ing and well known property of black holes is that their entropy saturates the so-called
Bekenstein bound. In Dvali and Gomez’s quantum N-Portrait, the high entropy S of a
black holes was linked to the emergence of order S (nearly) gapless degrees of freedom.

The key idea of the quantum N-Portrait is that black holes or de Sitter spacetime
actually possess a fundamental description as many-body systems. Namely, they represent
states of soft gravitons with very high occupation number. This allows us to interpret
properties, that were thought to be exclusive to gravity, like the large black hole entropy,
in terms of universal phenomena, which can also be implemented in non-gravitational
systems like atomic Bose-Einstein condensates. This opens up a new direction of research
because we understand that black holes are not unique. There are other systems that
exhibit similar quantum informational properties and that can even be manufactured in a
laboratory. First, this demystifies black holes since we can actually probe these properties
in analogue models. Moreover, we can learn about black hole physics by studying this type
of systems and mapping corresponding findings back to quantum gravity. Therefore, this
research direction opens up the possibility of gaining valuable interdisciplinary knowledge.

In the first part of this thesis we identify a universal mechanism in general many-body
systems, that can result in a similar degeneracy of microstates as is found in gravity. This
results in a large level splitting between the typical energy gap of the system compared
to the excitation levels of the aforementioned microstates. Generic bosonic systems with
weak and attractive interaction possess states that exhibit a sharply enhanced memory
capacity due to emergent nearly-gapless degrees of freedom by a mechanism we call as-
sisted gaplessness. We further argue that such systems of enhanced memory capacity are
subjected to the universal effect of memory burden, which ties them to a critical state and
suppresses their decay. We study a prototype model to show that memory burden can be
overcome by rewriting stored quantum information from one set of degrees of freedom to
another one, which becomes increasingly more gapless while at the same time the orig-
inal set acquires a gap. However, this process requires a fine-tuning of parameters. We
therefore perform numerical studies to map the parameter space for possible rewriting
values.

Due to the universal nature of systems of enhanced memory capacity we apply our
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findings to black holes and de Sitter spacetime in the second part. In case of de Sitter,
which decays due to Gibbons-Hawking evaporation, the memory burden results in a quan-
tum breaking effect. This has important consequences for inflationary observables and is
in full agreement with previous results from the literature. It opens up the possibility, that
the Universe kept its quantum memories from an epoch much earlier than 60 e-foldings
before the end of inflation. Next, we study black holes as a system of enhanced mem-
ory capacity. Choosing the parameters of our prototype model to match gravitational
scalings, we discover that, due to a suppressed rate of rewriting, the evolution becomes
extremely slow compared to the initial stage of black hole evaporation. This implies a
metamorphosis, including a drastic deviation from Hawking evaporation, at the latest
after the black hole has lost half of its initial mass.

Another example for a unusual large splitting of scales can be found in the Elec-
troweak Hierarchy Problem. The observed Higgs mass in light of its quadratic sensitivity
to a cutoff that might be as large as the Planck scale remains puzzling. In the third
part we numerically study the cosmological relaxation model of the Higgs mass proposed
by Dvali and Vilenkin to explain the Electroweak Hierarchy Problem. This scenario in-
troduces a different notion of naturalness according to which the vacuum with a small
expectation value of the Higgs field corresponds to an infinitely enhanced entropy point of
the vacuum landscape, that becomes an attractor of cosmological inflationary evolution.
In this framework we study numerically the evolution of the Higgs vacuum expectation
value. We model the inflationary vacuum-to-vacuum transitions, that are triggered by
nucleation of branes charged under three-form fields as a random walk. In particular, we
investigate the influence of the number of coupled three-forms on the convergence rate
of the Higgs vacuum expectation value. We discover an enhanced rate with increasing
number of brane charges. Moreover, we show that for late times the inclusion of more
charges is equivalent to additional brane nucleations.
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Chapter 1

Introduction

1.1 Invitation
Black holes are mysterious objects from the point of view of quantum information. One
well-established fact about them is that they saturate the Bekenstein bound on informa-
tion capacity [7], [8]. It was realized that in order to account for such a high entropy, a
black hole must deliver qubits with extremely small energy gaps. For a black hole of mass
M and corresponding Schwarzschild radius rg (measured in Planck scale units) these gaps
have to be at least suppressed by a factor ∼ 1/M2 compared to a quantum level-spacing
in any ordinary system of the same size [9]–[11].

It was postulated that the emergence of such approximately gapless qubits, which are
responsible for the large microstate degeneracy of a black hole, is in its bare essence the
same phenomenon as the appearance of gapless modes around a quantum critical point
in a system of attractive bosons [9], [11].

The realization that the microscopic origin of the Bekenstein entropy is not exclusive
to gravity opens up several exciting research directions. One is the development of a
microscopic theory describing a black hole as a bound state of soft gravitons, a so-called
quantum N-portrait [11]. The second direction is to use this universal mechanism and
implement it in other systems outside of gravity. For example it was shown that the emer-
gence of gapless modes could be a mechanism to enhance the memory capacity in neural
networks [12], [13]. Moreover, it can in principle be implemented in cold bosonic systems,
which might have important application to quantum computing and quantum informa-
tion storage [9], [14], [15]. The above connection can also give an interesting prospect of
simulating in table top quantum experiments the key mechanism of information storage
in such seemingly-remote systems as black holes and quantum neural networks.

This thesis seeks to continue this line of research by developing and studying many-
body systems that share the black hole property of enhanced microstate entropy. The
main novelty to previous work in this direction will be the focus on the dynamics of
states of enhanced memory capacity. This will allow us to draw conclusions on systems
with a large degeneracy of microstates in general and, moreover, novel implications to the
dynamics of black holes and de Sitter spacetime, which lie in the gravitational sector of
this class of systems.
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1.2 Conventions
We shall apply the following conventions in this work. We set c = kB = 1 throughout the
thesis. We will keep Planck’s constant ~ explicit in this introductory chapter, but we will
set it to one afterwards. The metric signature is set by ηµν = (−1, 1, 1, 1).

Newton’s constant shall be denoted byGN . We write the Planck mass asMp =
√
~/GN

and the Planck length as Lp =
√
~GN . The numerical value of the (reduced) Planck mass

is given by MP = 2.48 × 1018 GeV.

1.3 Black Holes
Since black holes play a major part in this work, we shall briefly review some of their
intriguing properties. From the point of view of general relativity, a Schwarzschild black
hole is described as a manifold with the following metric

ds2 = gµνdx
µdxν = −

(
1 − rg

r

)
dt2 +

(
1 − rg

r

)−1
dr2 + r2dΩ2, (1.1)

where the Schwarzschild radius is given by rg = 2GNM . M denotes the ADM-mass and
dΩ2 is the metric on the two-sphere. Its most prominent feature is the sign change of the
factors (1 − rg/r) precisely at the radius rg. This switched role of the coordinates r and
t has important physical consequences. The fact that r becomes time-like after r = rg

marks a sphere, called the event horizon, which no light-like worldline can escape after
entering. In particular, this means that any information about the interior of a black hole
remains inaccessible for any outside observer. On top of that, the metric of an uncharged
black hole is completely fixed by the mass. This property is condensed in so called no-
hair theorems (see for example [16]). These extraordinary properties made black holes an
arena of theoretical gedankenexperiments for many branches of physics.

In this thesis we are especially interested in the quantum informational properties of
black holes. An important thermodynamical implication of the existence of a horizon has
been pointed out by Bekenstein. In order to maintain the second law of thermodynamics
in the universe a black hole has to carry an entropy, which scales with its area A [7].
After demonstrating a deep connection between thermodynamics and black hole physics
in [17], the precise numerical value of the entropy, as well as the temperature, have later
been determined in [8] by Hawking:

T = ~κ
2π = 1

8πGNM
, S =

πr2
g

~GN

= 1
4
A

L2
p

, (1.2)

where κ denotes the surface gravity and the horizon area is given by A = 4πr2
g . Hawking

also showed that black holes radiate with a thermal spectrum and therefore evaporate
[8]. The presence of ~ indicates that this is an inherently quantum process. The typical
energy E of one quantum and the rate of particle production Γ in this radiation process
is given by

E ≈ ~
rg

, Γ ≈ 1
rg

. (1.3)
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We note that this calculation can be carried out in the framework of semi-classical gravity
independent of a specific UV-completion. This is possible, since for macroscopic black
holes the curvature at the Schwarzschild radius is much smaller than Mp, at which quan-
tum gravitational effects are expected to become important. For black holes of small
masses M ∼ Mp this treatment breaks down and must be superseded by a full theory
of quantum gravity. It is important to reiterate that Hawking’s results were obtained by
considering quantum fluctuations on top of a rigid Schwarzschild background of infinite
mass. Specifically, these calculations do not take backreactions to the metric into account,
which therefore remains, strictly speaking, static and eternal. With this assumption the
outgoing radiation is perfectly thermal and carries no information about the origin of
the black hole. Generalizing these results to black holes with finite mass lead to the so
called information paradox. However, this approach was challenged shortly after it was
published and it was pointed out that the neglected backreaction in Hawking’s calcula-
tion would render its results invalid after a period of time after the black hole is still
macroscopic [18]. More recently it was pointed out that a finite mass black hole cannot
maintain exact thermality of Hawking radiation [19], which renders a possible paradox
baseless. The deviation from perfect thermality provides a built-in measure of the valid-
ity of the semi-classical treatment since equation (1.2), together with Ṁ ∼ r−2

g , leads to
Ṫ /T 2 ∼ 1/S (see [19]). This quantity sets the lower bound on the deviation from ther-
mality. It vanishes only in the strict semi-classical limit GN → 0, M → ∞, rg = finite. It
is important to note that in this limit S → ∞. Only in this limit, the standard Hawking
result is exact. However, for finite mass black holes and non-zero GN , the deviations from
the thermal spectrum are set by 1/S.

1.4 De Sitter Spacetime
In the previous section we reviewed certain aspects of black holes with emphasis on their
quantum informational properties. We saw an especially interesting connection between
the event horizon area and the Bekenstein entropy in formula (1.2). One of the surprising
and impressive features of this formula is its universality. It can be applied to all kinds
of black holes including different charges, geometries and rotations. It also applies to
cosmological horizons, like the event horizon in de Sitter spacetime [20].

The manifold of de Sitter is classically described by the following metric:

ds2 = −dt2 + a2
0e

2
√

Λ
3 t
(
dχ2 + χ2dΩ2

)
, (1.4)

with a scale parameter a0 and a positive cosmological constant Λ. This metric can also
be regarded as a four-dimensional hyperboloid, which is extrinsically embedded in a 5-
dimensional Minkowski spacetime:

ds2 = −z2
0 + z2

1 + z2
2 + z2

3 + z2
4 = l2Λ. (1.5)

The quantity lΛ ≡ 1/H is the so called de Sitter radius, where H is the Hubble parameter.
It can be shown that this metric is a solution to the vacuum Einstein equation with a
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positive cosmological constant Λ and therefore satisfies

Gµν + Λgµν = 0, (1.6)

where Gµν is the Einstein tensor. The cosmological constant and the Hubble parameter
are related by

H2 = Λ
3 . (1.7)

De Sitter spacetime describes an accelerated expanding universe and is of extreme im-
portance for the inflationary paradigm, which solves many puzzles of the hot Big Bang
theory. From the perspective of this thesis the most interesting aspect of this spacetime
is that it also exhibits an event horizon. This allows us to characterize it, analogous to
the Bekenstein entropy of black holes, by its Gibbons-Hawking entropy [20]

S = 3π
~GNΛ = 1

4
A

L2
p

, (1.8)

with the de Sitter horizon area A = πl2Λ. The analogy between black holes and de Sitter
extends further. Similar to the Hawking radiation, the de Sitter horizon also produces
particles in form of Gibbons-Hawking radiation [20]. Analogue to Eq. (1.3), the typical
energy and the rate of this evaporation is given by

E ≈ ~
lΛ
, Γ ≈ 1

lΛ
. (1.9)

Equivalent to the black hole case the entropy (1.8) becomes infinite in the semi-classical
limit.

1.5 Quantum N-Portrait
In this section we review the basics of the multi-particle framework of gravity put forward
by Dvali and Gomez in a series of publications [9], [11], [21]–[24], since we will often refer
to it in the following parts of this thesis.

Based on the premise that classical solutions in quantum field theory should have a
representation in terms of some underlying fundamental quanta, every classically extended
object can be interpreted as a bound state of a large number N of constituents. In this
framework the classical theory is recovered in the limit N → ∞. For a finite number of
constituents quantum corrections appear.

This idea of interpreting classical lumps as bound states1 was applied to black holes in
[9], [11]. In this so called corpuscular picture of gravity Minkowski spacetime is a distinct
ground state and black holes, de Sitter and other spacetime manifolds are considered to be
excitations on top of this vacuum. Geometry is no longer considered to be a fundamental
quantity, but a mean-field consequence arising as an expectation value of an underlying
quantum state. A natural candidate for the constituents of spacetime is the graviton.

1For an application of this idea to solitons we refer to [25] and [11].
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Correspondingly, any geodesic in a curved spacetime is the result of scattering processes
with the gravitons constituting the condensate.

Considering a black hole as a condensate also allows for a natural interpretation of
Hawking radiation. Completely equivalent to a Bose Einstein condensate in condensed
matter physics a black hole loses constituents due to re-scattering. It was calculated in
[11] that in this picture the standard Hawking rate can be recovered.

Before we continue, we want to state a few quantitative results of this line of research,
that will become useful later on. In particular, the wavelength of gravitons that build up
a black hole is set by the typical energy of the system. As we have already reviewed in
section 1.3, this scale is set by the geometrical parameter rg:

Eg ∼ ~
rg

. (1.10)

With this the number of constituents of a black hole can easily be estimated to be

N ∼ M2

M2
p

∼
r2

g

L2
p

. (1.11)

The dimensional scattering strength αg is given by

αg = ~GN

r2
g

= 1
N
. (1.12)

The last thing we require for the following analysis is the Hawking radiation rate. As
described above, evaporation in the Black Hole N -Portrait is no longer a vacuum process,
but is described as a regular scattering, which kicks particles out of the condensate from
time to time. Quanta escape whenever their energy exceeds the binding energy [11]

Eescape = ~√
NLp

. (1.13)

The easiest process contributing to this is an ordinary 2 → 2 scattering. The correspond-
ing Feynman diagram involves two 3-point interaction vertices. This indicates that the
amplitude scales as αg and the rate therefore with α2

g. Since the particular gravitons,
that scatter, are within a condensate of total occupation N , the scattering amplitude gets
enhanced by a combinatorial factor of

(
N
2

)
≈ N2. The last factor contributing to the rate

is the characteristic energy of the process. This is given by Eq. (1.13). In summary, the
rate for such a process to the leading order in N is,

Γ ≈ 1
N2N

2 ~√
NLp

= 1
rg

. (1.14)

1.6 Quantum Breaking
Since the birth of quantum theory an important question is on which timescale is it
possible to approximate a system, that is intrinsically quantum, by a classical equation.
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The specific example of a spreading wave packet and the following break down of the
Bohr correspondence principle was already studied in [26]. The corresponding timescale is
called the Ehrenfest time. It is usually assumed that the bigger and the more macroscopic
a system is the less quantum effects are important2. In this sense macroscopic objects
become increasingly more classical. Motivated by a small coupling strength and small
curvatures (much smaller compared to the Planck scale Mp) this paradigm is usually also
applied to gravity in such a way that quantum effects are ignored for macroscopically
extended spacetimes. For example, this paradigm was applied to black holes physics in
the calculation of Hawking radiation, as well as Gibbons-Hawking radiation, in case of de
Sitter.

In the special case of de Sitter spacetime this approach was challenged in [31]. Based
on the concept of quantum breaking, which is the timescale tq after which a given system
can no longer be approximated as classical and which was first introduced in [32], it was
argued that due to internal scattering processes de Sitter spacetime cannot remain static.
Based on the Quantum N-Portrait [24] (see also section 1.5 for further references), which
models de Sitter spacetime as an excited and coherent state on top of Minkowski vacuum,
the authors computed a finite timescale, after which a description in terms of a classical
metric breaks down. They identified re-scattering processes of gravitons as the source of
both Gibbons-Hawking radiation as well as a build-up of quantum corrections, that lead
to a significant deviation after the timescale tq.

It was also argued in [31], [33] that this would lead to a fundamental inconsistency in
case a quasi-de Sitter configuration continues to exist on a timescale that is longer than
its quantum break-time. For details we refer to the original papers [24], [31], [33], [34].

This line of research was later extended to cosmic QCD axions [35], [36] and to general
discrete symmetries, that are spontaneously broken after inflation [37].

1.7 Enhanced Microstate Entropy
In section 1.3 on black holes and in section 1.4 on de Sitter spacetime we emphasized
the extraordinarily large microstate entropy of those two systems. A large entropy means
that the system can be in a large number of microstates for a given macrostate. Since
one prominent macroscopic parameter is energy, an important question is how many
microstates are accessible within a fixed energy gap ∆E. Therefore, a large entropy
means that many distinct states have the same energy and consequently fit into the same
narrow energy gap. In the following we shall quantify this statement.

Generally speaking, a system with a microstate entropy S has by definition eS distinct
microstates. A system can achieve this by providing of order S lowly occupied3 and nearly
gapless degrees of freedom (d.o.f). Summarized, we have

#microstates = eS , #d.o.f ∼ S. (1.15)
2Note that there are well known examples of systems that exhibit quantum effects on macroscopic

scales like superconductivity [27], [28] or Bose Einstein condensation [29], [30]
3Note that the maximal occupation number of a single mode only counts logarithmically towards the

total microstate entropy.
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A natural measure of gaplessness would be to compare the energy difference of dis-
tinct microstates with the fundamental energy gap Etypical of the system in consideration.
Therefore, to account for a entropy S, all S degrees of freedom (or equivalently quantum
modes) have to be excitable without exceeding ∆E. This gives the following constraint
for a single mode:

∆E .
Etypical

S
. (1.16)

We remark that in the case, in which the entropy carrying modes have positive or negative
energies with equal probability, it is also possible to adopt the following weaker constraint

∆E .
Etypical√

S
. (1.17)

In this scenario, not all but most microstates fit within ∆E. This is, however, still
sufficient to account for the entropy scaling (1.15). Throughout this thesis, the difference
between the bounds (1.16) and (1.17) will be inessential.

Next, we apply these considerations to black holes. In this case the typical energy
is given by Etypical = ~r−1

g . This is the average amount of energy a black hole loses by
radiating one Hawking quantum. Let us take a closer look at properties (1.16) and (1.17).
They mean that the system exhibits energy gaps, that can be arbitrarily smaller than
the typical level spacing. Therefore, the existence of many approximately gapless degrees
of freedom is a necessity for systems with a large entropy. This implies that systems
with an enormous entropy, like black holes or de Sitter spacetime, have to exhibit modes,
that have an extremely small energy gap. Concluding we want to note that the existence
of many gapless modes is not a property, which is exclusive to gravity, but can also be
constructed in simple many body systems as we will demonstrate in later chapters.

1.8 The Electroweak Hierarchy Problem
The seminal discovery of the Higgs field at the LHC has left us with a perfect Standard
Model (SM) of particle physics potentially valid up to energies well above the Planck scale
MP = 2.48 × 1018 GeV. At the same time, it left unsolved one of the most mysterious
puzzles in particle physics: the so-called Hierarchy Problem. The difference of many
orders of magnitude between MW,Z,H ≈ 100 GeV and Mp ≈ 1019 GeV is puzzling in light
of the sensitivity of the Higgs mass towards anything above the electroweak scale. To
understand the nature of the problem better we shall briefly review important concepts
of the Hierarchy Problem in the following.

The mass term of the Higgs field H in the SM is given by

m2H†H, (1.18)

which is invariant under gauge and global symmetries on H. This invariance renders
the Higgs mass parameter open to loop corrections. This means that the Higgs mass
receives contributions from every scale which it interacts with. Therefore, the huge dif-
ference between the Planck and electroweak scale turns out to be problematic, when we
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Figure 1.1: Radiative correction to the Higgs boson mass.

compute radiative correction to the Higgs boson mass in form of 1-loop diagrams. For
example, a fermion loop as it is shown in Fig. 1.1 with coupling λf yields a radiative
correction

∆m2
H

∣∣∣∣∣
fermion-loop

= −
λ2

f

8π2 · Λ2 + . . . , (1.19)

where we introduced a cutoff Λ to regularize the loop integral. The ellipsis stand for
additional terms that are logarithmic in the cutoff, which we shall ignore here. Details on
the calculation can be found in any textbooks on quantum field theory, see for example
[38]. Similar terms arise from gauge bosons and the Higgs self-coupling. This means that
in total the Higgs mass is schematically given by

m2
H ∼ m2

H,bare + (λ2
g + λ2 − λ2

f + . . . ) · Λ2 + . . .︸ ︷︷ ︸
SM

+ . . .︸ ︷︷ ︸
New Physics

' (125 GeV)2 , (1.20)

where we suppressed numerical factors in each term, λg is the coupling constant to gauge
bosons and λ is the Higgs self-coupling. The important observation here is that various
different contributions from standard model physics share the common quadratic factor4

Λ2. At first glance, it is not clear which value Λ should have. Furthermore, its precise
meaning in a renormalizable theory, which requires an input scale, is not clear.

However, this no longer holds true in the presence of gravity [39]. The reason for that is
that gravity puts a precise bound on masses, above which no elementary particle can exist.
To see that no particle exists with a mass larger than Mp we briefly review the reasoning
in [39]. For a particle of mass m there are two important associated length scales. Namely,
the Compton wavelength Lc, which represents a distance at which quantum fluctuations
become important, and the gravitational radius Lg, at which an object would become a
black hole if its entire mass is localized within this radius. These are given by

Lc = ~
m
, Lg = ~m

M2
p

, Lp =
√
~GN . (1.21)

For comparison we also added the Planck length Lp, which is the scale at which quantum
gravitational effects are expected to become strong, for easy comparison. Let us now
consider an object of mass m < Mp. For this object the Compton scale is much larger
than the Planck scale or the gravitational radius, i.e. Lc > Lp > Lg. In this regime

4These quadratic divergences occur only for scalar particles. As noted above, fermions and vector
bosons are protected from them by chiral symmetry and gauge invariance, respectively.
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quantum effects are much more important than contributions from gravity. Moreover,
gravitational features are completely shielded by quantum effects. Therefore, this object
can be interpreted as an elementary particle. On the other hand, for masses m > Mp

we get Lc < Lp < Lg. This means that this object represents a (macroscopic) black hole
and can therefore be considered to be (semi-)classical. Thus, the Planck scale is an upper
bound on the mass of any elementary particle. This makes the Hierarchy Problem real,
since it implies the existence of a universal regulator scale Mp. However, having Λ2 = M2

p

in Eq. (1.20) combined with the observational fact that mH ≈ 125 GeV2 requires a precise
cancellation of all those various contributions to a precision ∼ M2

H/M
2
P ∼ 10−34. This is

the essence of the Hierarchy Problem and challenges our current understanding of high
energy physics. This puzzle is also widely considered to be the main motivation5 for
searching for new physics [41]. On top of all contributions from the SM, gravity itself
contributes to the Higgs mass in form of quantum black holes. These are objects with
mass m ≈ Mp and behave in many regards very similarly to elementary particles and
would also lead to Planck scale contribution in form of new physics in (1.20).

To address this puzzle many solutions have been proposed in the literature. One ap-
proach is to stabilize the Higgs mass due to additional symmetries. For example, in a
supersymmetry approach Planckian contributions cancel between partners and superpart-
ners, thus removing the quadratic sensitivity to the cutoff [42], [43]. Another approach
is to directly lower the cutoff Λ. One possibility to bring down the gravitational scale is
via extra dimensions [44], [45] as well as large number of species [46], [47] (for a similar
approach in a cosmological context see for example [48] and [49]). Other approaches are
technicolor [50], [51] or warped extra dimensions [45]. However, the predicted stabilizing
new physics, which is required around a scale not much larger than the weak scale in
these proposals, have not been observed at currently available energy scales at LHC. This
observational fact challenges those approaches.

However, an alternative idea, which was already suggested in pre-LHC era, is solving
the Hierarchy Problem via cosmological relaxation of the Higgs mass [52], [53]. This
scenario does not rely on any low energy physics, as it can push the scale of the onset
of new physics up to the Planck scale. It also introduces a notion of naturalness [41],
that is fundamentally different from the standard one by ’t Hooft [54]. Here, the vacuum
with the small value of the Higgs mass has infinite entropy and represents an attractor
of cosmological evolution. The non-observation of any new physics at the LHC gives a
serious motivation for a detailed study of this scenario. A list of recent references based
on the same idea can be found in [41]. We shall focus on this specific approach in this
thesis and discuss it in more detail in chapter 4.

5For a different philosophical viewpoint see [40]. There, a more practical approach to new physics is
advocated by emphasizing observational shortcomings of the SM, like neutrino masses and dark matter.
Consequently, the question of the origin of certain numerical values should be considered a secondary
task.
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1.9 Outline

The outline of this thesis is as follows. In chapter 2 we study systems of enhanced memory
capacity. Motivated by black holes and condensed matter physics we identify a possible
mechanism, called assisted gaplessness, that can dynamically generate an abundance of
gapless modes, which result in an enhanced microstate entropy. Next, we shall discuss
a robust procedure to identify states of enhanced memory capacity in the spectrum of a
generic bosonic system which additionally exhibits at least some attractive interactions.
We refer to this procedure as c-number method, because it relies on replacing quantum
operators by c-number valued expectation variables in the presence of large occupation
numbers. We demonstrate our method on a simple three-mode system, which is derived
from a weakly and attractively interacting Bose gas with Dirichlet boundary conditions.
The finding that cold atom systems can exhibit a similar entropy scaling as a black
hole opens up an exciting perspective of simulating quantum informational properties of
gravity in simple prototype systems. Moreover, it could lead to the realization of black
hole type information processing and storage in table-top experiments and may even be
applied to quantum devices. Next, we explore implications to the overall dynamics, if a
system exhibits states, that are accompanied with nearly gapless degrees of freedom in
the spectrum. First, we explore if a system naturally evolves towards such a state if such
is dynamically accessible. Afterwards, we discuss possible implications to the scenario
of UV-completing of classicalization. Concluding, we study the generic phenomenon of
memory burden, which is naturally linked to systems, that implement assisted gaplessness.
We shall see that the stored quantum information in the gapless degrees of freedom
generically backreacts and resists any deviation away from a critical configuration. We
also discuss possible scenarios to delay or avoid this memory burden effect. We put
special focus on the mechanism of rewriting, which tries to alleviate the memory burden
by transferring information from one set of quantum modes to another. To quantify this
behavior we perform numerical simulations on a prototype system.

We apply the general concepts and properties of states of enhanced memory capacity to
gravitational systems in chapter 3. First, we study the implications of assisted gaplessness
to de Sitter spacetime. Next, we argue that because of its enormous entropy de Sitter also
has to experience the phenomenon of memory burden. This back reaction of the quantum
information stored in the Gibbons Hawking entropy results in a quantum breaking effect
similar to the one discussed in section 1.6. Further, we discuss possible implications on
inflationary observables. We conclude by commenting on a possible inconsistency of de
Sitter spacetime in case that de Sitter quantum breaks, before it gracefully exits this state.
Additionally, we apply our findings of chapter 2 to black holes. We argue that, because
of its similarities to de Sitter spacetime with regards to quantum information, the same
reasoning applies also to black holes. Similarly, the memory burden results in a quantum
breaking effect, which leads to deviation from the semiclassical Hawking rate at the latest
after half of the mass has evaporated. Our numerical studies indicate a significant slow
down of evolution after this sets in. We furthermore provide a preliminary analysis on
possible implications to observational bounds on primordial black holes as dark matter
candidate.
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We turn to the Hierarchy Problem in chapter 4. First, we briefly review the scenario
of a Higgs vacuum expectation value relaxation in the cosmic attractor model introduced
by Dvali and Vilenkin. We then confirm the relaxation of the Higgs VEV to the attractor
value by numerical simulations. Furthermore, we extend the analysis to additional three-
form fields and study their effect on the convergence rate. This study is motivated by
embedding the attractor scenario into various fundamental theories that contain multiple
forms.

For transparency purposes we point out that some of the results obtained and pub-
lished together with collaborators have subsequently been reported in their respective dis-
sertations. Explicitly, results form [1] and [2] were reported by Sebastian Zell [55]. Results
from [2] and [4] will also be reported independently by Lukas Eisemann (in preparation).
Furthermore, parts of [1] which are the basis of section 2.2.3, were already reported in my
Master thesis [56]. Specific references will be given in the corresponding chapters.
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Chapter 2

Enhancement of Memory Storage
Capacity

Systems of enhanced memory capacity, which exhibit states with an abundance of mi-
crostates, pose a very interesting topic. For one, they are realized in nature in the form
of black holes and de Sitter spacetime. Since the quantum aspects in gravity are not fully
understood yet, studying generic properties of analogue systems might shed more light on
their gravitational realizations. Secondly, these systems are equally interesting from the
perspective of condensed matter physics and might even have applications in quantum
devices for storage or computing.

In this chapter we first introduce a general mechanism that leads to states of enhanced
memory capacity in section 2.1. This mechanism relies on large occupation numbers and
weakly attractive interaction between at least some of the degrees of freedom in the
system. We coined this mechanism assisted gaplessness. We shall demonstrate it on a
simple prototype system.

In the following section 2.2 we introduce the c-number method which helps to identify
such states of enhanced memory capacity in the spectrum of such system. Especially in
systems, which achieve an abundance of microstates by the means of assisted gaplessness
and therefore exhibit large occupation numbers, this method is significantly easier than a
full diagonalization. The procedure will be demonstrated on a concrete prototype system
consisting of 3 quantum modes.

In section 2.3 we study the time evolution of systems that are initially prepared in
a non-critical state, but possess such a state accessible in their spectrum. We confirm
that such states are indeed attractors of dynamical evolution. We furthermore quantify
this behavior and also discuss possible applications of our findings to the concept of UV-
completion by classicalization.

In section 2.4 we introduce a general property of states with enhanced memory ca-
pacity, which we call memory burden. The quantum information that is stored in the
emerged gapless degrees of freedom in such a state backreact to any evolution that would
evolve the system away from the critical configuration and in that sense stabilize it. We
then study possible scenarios to avoid such a strong backreaction due to the quantum
effect of memory burden. However, we shall see that this universal phenomenon can not
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be avoided on long enough timescales and even in fine-tuned cases, where the burden can
be reduced, it is not efficient enough to avoid backreaction altogether.

This chapter is based on the paper [1], which is joint work with Gia Dvali and Sebastian
Zell, as well as the papers [2] and [4], which is joint work with Gia Dvali, Lukas Eisemann
and Sebastian Sell. Section 2.1 follows [1]. The next section 2.2 is also based on [1] where
preliminary results including Figs. 2.5, 2.4, 2.3, 2.2 and 2.1 were already reported in [56].
Exact references are given in the text. Section 2.3 is based on yet unpublished work [5]
in collaboration with Gia Dvali, Lukas Eisemann and Sebastian Sell. For the most part
section 2.4 is based on [4] and to a smaller extend on [2].

2.1 Assisted Gaplessness
In the following we shall discuss a mechanism to produce dynamically a large number of
nearly degenerate states in a bosonic system contributing to a large microstate entropy.

A generic bosonic system is described by a set of K degrees of freedom in the form of
quantum oscillators. The corresponding creation and annihilation operators âk and â†

k,
where k = 1, . . . , K satisfy the standard canonical commutation relations (CCR):

[âj, â
†
k] = δjk , [âj, âk] = [â†

j, â
†
k] = 0 . (2.1)

The number operator of a k-mode is defined by n̂k ≡ â†
kâk. Eigenstates of this operator,

which we denote by |nk〉, where nk is the corresponding eigenvalue, form a complete basis
of the Hilbert space. Inspired by bit-registers in information theory we will mostly be
interested in states of the form

|n1, . . . , nK〉 ≡ |n1〉 ⊗ |n2〉 ⊗ . . .⊗ |nK〉 , (2.2)

where we interpret a specific set of occupation numbers n1, . . . , nK as a distinct memory
pattern. Information can then be encoded in these types of patterns. An important
quantity of a specific memory pattern is its associated energy cost and more specifically
the amount of energy required to rewrite a memory register from one pattern to another.
In general, for a given Hamiltonian Ĥ the energy for a specific pattern is given by

En0,n1,... ≡ 〈n1, . . . , nK |Ĥ|n1, . . . , nK〉 . (2.3)

In case of free oscillators the energy level-spacing between states of different occupation
for a specific mode âk, i.e. |nk〉 and |nk ± 1〉 is given by a constant which we shall denote
by the energy gap εk. The energy cost for a fixed memory pattern is then given by

En0,n1,... =
∑

k

εknk. (2.4)

Similarly, the energy difference between two states |n1, . . . , nK〉 and |n′
1, . . . , n

′
K〉 is simply

∆E = ∑
k εk(nk − n′

k).
To acquire a large microstate entropy a system has to fit a large number of these

|n1, . . . , nK〉 in a small energy gap ∆E. However, unless εk are extremely small numbers,
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generic states are usually separated by a large energy difference and therefore do not
count towards a large microstate entropy. In the following, we will adjust the situation
by introducing a specific type of interaction between the memory modes âk and another
degree of freedom which we denote by â0. The corresponding annihilation and creation
operators shall again satisfy the bosonic commutation relations (2.1) and we denote its
number operator with n̂0 ≡ â†

0â0. When we apply this to concrete examples in later
chapters we will see that this mode â0 is usually the one with the smallest energy gap ε0
and can therefore be highly occupied, which we will assume from now on. The important
property of the interaction between â0 and the âk modes is that it is attractive. An
particularly easy choice is:

Ĥ = ε0n̂0 +
(

1 − n̂0

Nc

)
K∑

k=1
εkn̂k , (2.5)

where 1/Nc � 1 is the interaction strength. The reason for this specific structure will
become apparent shortly. If the â0 mode is unoccupied, the energy cost for a specific
pattern reduces again to Eq. (2.4). However, as soon as n̂0 gets populated the effective
gap of the âk modes shrinks due to the attractive coupling. In the limit of large occupation
of n̂0 we can use a Bogoliubov approximation, replacing the number operator n̂0 with its
corresponding expectation value n0 and this way obtain an easy description of the effective
gaps Ek of the n̂k modes:

Ek =
(

1 − n0

Nc

)
εk. (2.6)

It becomes immediately clear that

Ek → 0 for n0 → Nc, (2.7)

and the effective gaps exactly vanish for the critical occupation n0 = Nc. In this case the
memory modes become gapless and all states of the form

|Nc︸︷︷︸
n0

, n1, . . . , nK〉 , (2.8)

become degenerate in energy for arbitrary occupation numbers n1, . . . nK . Since the â0
mode is assisting the memory modes in becoming gapless we shall call â0 the master
mode. However, this comes with a cost. In order to alleviate the energy cost for storing
and rewriting information by making the memory modes gapless, one first has to invest
the energy ε0Nc to bring the system into its critical state. Only then a sector of the
Hilbert space with an enhanced entropy becomes accessible.

Assuming for a moment that each of the memory modes can choose among d different
possible states |nk〉 with nk = 0, 1, . . . , d − 1, equivalent to a qudit, this system exhibits
(d + 1)K distinct microstates with minuscule energy difference around the critical and
macroscopic occupation n0 = Nc. This is equivalent to an entropy

S = K ln(d+ 1). (2.9)

So to account for an entropy S a physical system has to provide of order K ' S nearly
degenerate degrees of freedom.
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2.2 C-number Method

2.2.1 The Method
In the introduction 1.7 and the last section 2.1 we discussed the importance and sev-
eral properties of gapless modes and an actual mechanism that produces dynamically an
abundance of those. In this section we shall take a slightly different perspective and argue
that the existence of at least a few gapless degrees of freedom is a very generic feature of
bosonic systems that are weakly attractive interacting.

As we saw in the last section 2.1 assisted gaplessness can be a robust mechanism to
provide for an abundance of gapless modes in the spectrum. However, up until now we
only discussed the bare essence on a simplified model in which there is a strict separation
between modes that becomes gapless and therefore contribute to the microstate entropy
and the mode that assisted them by lowering their effective gap. In more sophisticated
systems such clear distinction may not be that easy and multiple modes can be macro-
scopically occupied and can furthermore contribute to collective excitations, which will
carry the information. A specific example for such a system is given by the Lieb-Lininger
model with attractive interaction and Dirichlet boundary condition. This behavior can
also be found in quantum neural networks which we shall discuss in more detail in section
3.3. In the following we discuss a method for identifying gapless (collective) degrees of
freedom in the spectrum of such systems. Our method is by no means exhaustive in the
sense that it may not identify all states accompanied with gapless modes. Here we pursue
the more modest goal of finding at least some of those.

Let us start with a generic bosonic Hamiltonian

Ĥ = Ĥ(â†
1, . . . â

†
K , â1, . . . , âK , εk, α) (2.10)

where again â†
k, âk represent the creation and annihilation operators of a set of quantum

oscillator degrees of freedom satisfying the CCR (2.1). Furthermore, εk are the free gaps
of the different modes and α is a set of parameters which shall represent the different
coupling constants in the theory. For simplicity we shall assume the Hamiltonian written
in these operators to be normal ordered. Furthermore we shall restrict ourselves here
to a specific subclass of systems that exhibit total particle number conservation. This
is equivalent to a global U(1) symmetry. Note that any continuous symmetry of the
Hamiltonian automatically leads to a flat direction in the energy landscape transforming
states of same energy into each other. To illustrate this we can consider the simple
example of a free quantum oscillator:

Ĥ = â†â. (2.11)

This Hamiltonian also possesses a global U(1) symmetry parameterized by a complex
phase that transforms

â → eiϕâ and â† → e−ϕâ†. (2.12)

Note that we are only interested in gapless modes that emerges due to assisted gaplessness
and our c-number method. However, our procedure is also sensitive to flat direction which
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arise from continuous symmetries. For that reason we have to incorporate such symmetries
in the method which we shall demonstrate on a specific example. It is straightforward
to see that the states |Ψ(â)〉 and |Ψ(eiφâ)〉 are degenerate in energy and are therefore
connected by a gapless transformation. This, however, is not connected to attractive
interaction. Since the c-number method is sensitive to the symmetries of the Hamiltonian
we shall demonstrate how to take those into consideration on the example of U(1) in the
following.

A particle number conserving incarnation of Hamiltonian (2.10) has the following form

Ĥ =
K∑

k=0
εkâ

†
kâk +

K∑
k,j,m,n=0

α
(4)
kjmnâ

†
kâ

†
j âmân (2.13)

+
K∑

k,j,m,n,o,p=0
α

(6)
kjmnopâ

†
kâ

†
j â

†
mânâoâp

+
K∑

k,j,m,n,o,p,q,r=0
α

(8)
kjmnopqrâ

†
kâ

†
j â

†
mâ

†
nâoâpâqâr + . . . ,

It is again easy to see that this Hamiltonian is invariant under the transformation (2.12).
We shall also assume that the full Hamiltonian is bounded from below to be consistent.

To reiterate, the sole requirements for the existence of states with enhanced microstate
entropy are

1. The system consists of bosonic degrees of freedom allowing for high occupation
numbers

2. Some of the interactions are attractive to form a non-trivial energy landscape

Usually identifying gapless modes reduces to the task of finding eigenvectors of the
Hamiltonian with an eigenvalue that is close to or equal zero. However, even though
there exist approximation schemes to avoid a computational intense diagonalization of
the complete Hamiltonian this task usually gets harder the greater the Hilbert space
grows. In the following on the other hand we want to show that larger systems in form
of higher occupation numbers can actually help identifying gapless modes more easily.
The crux of our method will be that a high occupation enables us to replace operators by
their expectation values in form of a Bogoliubov approximation simplifying calculations
enormously. This replacement for the specific case of a total particle number conserving
symmetry has the following form

~̂a → ~a , ~̂a† → ~a∗ , (2.14a)

â0 →

√√√√N −
K∑

k=1
|ak|2 , â†

0 →

√√√√N −
K∑

k=1
|ak|2 , (2.14b)

where ak are complex numbers and we introduced the abbreviation

~a = (a1, . . . , aK) , ~a∗ = (a∗
1, . . . , a

∗
K) . (2.15)
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Note that due to particle number conservation we expressed the master mode â0 in terms
of the total particle number and the sum of the remaining modes. This reduces K + 1
quantum operators to only K complex variables. However, this only fixes the modulus
of the replaced mode. Additionally we have to fix a global phase later on. We want to
emphasize again that we shall construct a state which comes with at least one gapless
degree of freedom. So we are especially not limited to the ground state or similar out-
standing choices. Therefore, motivated by the indicated scaling in the conservation law
Eq. (2.14) we shall assume that the complex valued expectation values of the operators
scale with the total particle number of the system, i.e. ai ∼

√
N . In summary, we obtain

the replacement
Ĥ(~̂a†, ~̂a, â†

0, â0) → Hbog(~a,~a∗) , (2.16)
where Hbog(~a,~a∗) is an algebraic c-number function, which depends on K complex vari-
ables. Naturally, replacing operators with expectation values introduces an error. Usually
this error in the Bogoliubov approximation scales as 1/N . Consequently, the approxima-
tion becomes exact in the limit of infinite occupation number. In order to keep the
collective coupling constant we will apply the following limit procedure

N → ∞ , α(i) → 0 , with λ(i) ≡ α(i)N i/2−1 = const. , (2.17)

where we suppressed the indices of the coupling constants. Throughout the remainder
of this section the limit N → ∞ will always correspond to the procedure (2.17) with an
implicit interaction strength scaling α(i) → 0. In this limit the Bogoliubov approximation
and therefore the c-number method are exact. For a finite number of particles N there
are corrections that scale as a power of 1/N .

After finding a simplified approximate representation of the system (2.13) in case of
large occupation numbers we will now discuss the conditions for the Bogoliubov Hamilto-
nian Hbog that lead to the existence of gapless excitation. For this purpose we introduce
the notion of a critical point of a c-number representation of a Hamiltonian. It is de-
fined as a value ~a◦ such that its first derivative as a function of the complex numbers ak

vanishes,
∂Hbog

∂~a

∣∣∣∣∣
~a=~a◦

= 0 , (2.18)

and moreover the determinant of the second derivative matrix is zero,

det M
∣∣∣∣
~a=~a◦

= 0 , where M ≡
(

B∗ A
AT B

)
. (2.19)

Here the matrices A and B denote Akj ≡ ∂2Hbog
∂a∗

k
∂aj

and Bkj ≡ ∂2Hbog
∂ak∂aj

, which implies BT = B

and A† = A. So we deal with a stationary inflection point of the function Hbog(~a,~a∗), i.e.,
a point at which the curvature vanishes in some directions.

If the complex valued function Hbog exhibits such a critical point then this implies
(within 1/N corrections) the existence of a state with emergent gapless degrees of freedom.
This statement holds in the full quantum theory. In other words, any critical point in
the Bogoliubov Hamiltonian corresponds to a state of enhanced memory capacity. To
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show this we expand the Hamiltonian around the expectation value of a macroscopic
background state with total occupation number N and corresponding to Eq. (2.14) replace
the â0 mode with

〈â0〉 ≈ 〈â†
0〉 ≈

√√√√N −
K∑

k=1
〈â†

kâk〉 . (2.20)

Again, this introduces an error of order 1/N which vanishes in the double scaling limit
(2.17). This replacement incorporates particle number conservation, removes the un-
wanted symmetry and reduces the Hamiltonian to a K-mode system. Next, we consider
quantum fluctuation around this background field by shifting the operators by the sta-
tionary inflection point of the c-number Hamiltonian Hbog,

~̂a → ~a◦ + ~̂α , ~̂a† → ~a∗
◦ + ~̂α† . (2.21)

Note that a simple constant translation of the operators does not change their algebraic
structure. So the shifted operators α̂k and α̂†

k still satisfy the same canonical commutation
relations (2.1). Such a replacement is always possible and is exact on the level of the full
quantum Hamiltonian. However, the Hamiltonian is in general not diagonal in these new
modes.

Next we shall study the spectrum around critical background state at which gapless
modes emerge in more detail. For our purposes it is enough to only consider terms up
to quadratic order in the Hamiltonian. Note that there are no linear terms around this
specific state ~a◦ since it extremizes the Bogoliubov Hamiltonian and therefore all first
order derivatives vanish. Also note that we choose a macroscopic state in which the
background modes scale as ak ∼

√
N . In contrast to that the fluctuations around this

critical point remain independent of N . This leads to an effective suppression of 1/
√
N

for each factor of α̂k in each term of the Hamiltonian. So in the limit (2.17) of large N ,
the second-order term dominates and the effective Hamiltonian takes the following form:

〈Ĥ〉 = H0 + 〈~̂α†A~̂α〉 + 1
2

(
〈~̂αB~̂α〉 + 〈~̂α†B∗~̂α†〉

)
, (2.22)

where the constant H0 ≡ Hbog(~a◦,~a
∗
◦) denotes the value of the c-number function at the

extremal point. In the following we will drop this irrelevant constant in the Hamiltonian
and write in block-matrix form:

〈Ĥ〉 = 1
2 〈
(
~̂α† ~̂α

)(B∗ A
AT B

)(
~̂α†

~̂α

)
〉 + const. (2.23)

Now we can diagonalize the Hamiltonian by following Bogoliubov transformation:(
~̂α†

~̂α

)
= T

~̂β†

~̂β

 , with T =
(
V ∗ U
U∗ V

)
, (2.24)

or written in the entry level and equivalent form,

α̂k = U∗
kjβ̂

†
j + Vkjβ̂j , (2.25)
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where U and V are the transformation matrices and β̂†
j , β̂j are the new modes that form

a diagonal canonical basis. These should still represent bosonic quantum oscillators.
Therefore, the canonical commutation relations imply the conditions:

V V † − U∗UT = 1 , V U † − U∗V T = 0 . (2.26)

To ensure we end up with a diagonal matrix we choose the matrices U and V such that
off-diagonal terms, of the type β̂jβ̂k and β̂†

j β̂
†
k, are absent from the Hamiltonian. This

implies that U, V satisfy

U †ATV ∗ + V †AU∗ + V †B∗V ∗ + U †BU∗ = 0 . (2.27)

In this way, we bring the Hamiltonian to the form

〈Ĥ〉 = 〈β̂†
kEkjβ̂j〉 + const. , (2.28)

where the matrix E is given by

E ≡ U †ATU + V †AV + V †B∗U + U †BV . (2.29)

Note that the conditions (2.26) and (2.27) remain unaffected if U and V are rotated under
a unitary matrix. We can use this freedom to find a unitary transformation that brings
E to diagonal form. Therefore we assume E to be diagonal in the following.

To determine the existence of gapless modes in the Hamiltonian E written in the new
operators β̂k we have to know if it contains zero eigenvalues. A sufficient condition for
this is if its determinant vanishes. However, we already assumed that we are at a critical
point a◦ around which the Hamiltonian (2.28) was expanded. We therefore know that
the second derivative matrix M contains a zero eigenvalue. Note that M and E are
related via the transformation matrix T . Because the transformation matrix T is regular
and therefore the dimension of the kernel (and number of zero eigenvalues) is invariant
under such transformation we can consider det E = 0 equivalently to det M. Moreover
the determinant of the matrix T can be determined with the help of following relation

T J T † = J , (2.30)

where J = diag(1,−1) and 1 is a unit matrix of dimension K. Consequently, we can
compute det T = 1. For details on these transformation properties and more general
diagonalization methods for bilinear Hamiltonians we refer to [57]. In short, our assump-
tion det M = 0 implies det E = 0. Therefore, gapless degrees of freedom exist among the
quantum modes b̂k. Moreover, due to the previously mentioned invariance of the dimen-
sion of the kernel under the regular transformation T the number of zero eigenvalues in
M and the corresponding number of gapless degrees of freedom among the β̂k modes is
the same.

We want to reiterate that above results are exact in the double scaling limit (2.17)
in case for infinite particle number N . For finite occupation numbers there will emerge
correction that scale as a power of 1/N . They originate from higher order terms which
we dropped earlier and corrections to the replacement (2.20). So similar to a quantum
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phase transition which can only occur for infinite particle numbers [58] those modes are
only nearly-gapless, with a gap that vanishes as 1/N for N → ∞. Note that also the
exact position in state space of ~a◦ will receive 1/N corrections. However, we can always
make those contributions arbitrarily small by choosing a large enough N . Concluding,
also for finite N the energy efficiency for storing quantum information in these nearly
gapless modes is severely enhanced. Therefore we conclude that a critical point in the
complex number valued Bogoliubov Hamiltonian Hbog corresponds to the appearance of
nearly-gapless modes in the full quantum theory. In summary, each zero eigenvalue of the
second derivative matrix M leads to a nearly-gapless mode.

Note that our c-number method is in spirit equivalent to the study of the Gross-
Pitaevskii equation [59], [60], which corresponds to working in position space rather than
in momentum operators. Also in this paradigm the field operator ψ̂ is expanded around
a classical background value: ψ̂ = ψcl + δψ̂. Here studying the spectrum of fluctuation
δψ̂ allows to determine gapless modes. Our method is conceptually the momentum space
analogue of this technique. The c-number method first relies on a transition to momentum
space by expanding the field operator ψ̂ in mode operators â. After that we expand the
operators around their classical expectation value: ~̂a = ~a◦ + ~̂α.

Coherent State Basis

Before we actually apply the c-number method to an exemplary system we first want to
mention another point of view on our procedure to determine states of enhanced memory
capacity. Instead of using number eigenstates, we can also take advantage of coherent
states. These represent states that most closely resemble the oscillatory behavior of a
classical harmonic oscillator and are another kind of template state that can be used to
determine critical configurations. Before we start, note that coherent states |~a〉 are the
eigenstates of the destruction operators:

âk |~a〉 = ak |~a〉 , (2.31)

where ak is a complex eigenvalue. This eigenvalue can also be computed with the help of
expectation value of the number operator

|ak|2 = 〈~a| n̂k |~a〉 . (2.32)

Using this it becomes clear that taking an expectation value of the Hamiltonian (2.13)
over a coherent state |~a〉 simply amounts to the Bogoliubov approximation (2.14). This
is an equivalent procedure to the replacement of operators by their expectation value c-
numbers. Therefore, we can write

〈~a| Ĥ |~a〉 = Hbog . (2.33)

This means that coherent states explicitly realize the replacement (2.16). An immediate
upside of this point of view is that this procedure is exact also for finite N . The Bogoliubov
Hamiltonian Hbog can therefore be understood as the expectation value of a coherent state.
In particular, this construction is relevant when the Bogoliubov Hamiltonian possesses a
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stationary inflection point ~a◦. If in this case the eigenvector with vanishing eigenvalue is
given by ~δa, then we can consider the state |~a◦ + ε ~δa〉. For small values of ε, it fulfills

〈~a◦ + ε ~δa| Ĥ |~a◦ + ε ~δa〉 = 〈~a◦| Ĥ |~a◦〉 . (2.34)

This corresponds to a whole family |~a◦ + ε ~δa〉 of states with approximately the same
energy. Therefore information can be stored in this set of states exceptionally efficiently.
Note, however, that coherent states do not form an orthonormal basis. So not every state
in this family counts towards the microstate entropy and only those that differ enough in
the operators âk can be sufficiently distinct. This can me made explicit by considering
the scalar product of two coherent states |~a〉 and |~a′〉:

| 〈~a|~a′〉 |2 = e−
∑

k
|ak−a′

k|2 . (2.35)

To make the overlap sufficiently small we have to demand that we only count states that
satisfy ∑

k

|ak − a′
k|2 � 1 . (2.36)

Naturally, regardless in which basis the memory states are represented, their number and
therefore the entropy is the same. So the information storage capacity is the same in the
coherent state basis as well as in the basis of number eigenstates of the Bogoliubov modes
β̂k. Explicitly, this can be seen by using relation (2.36). It is clear from this that coherent
states can be counted as different as soon as

|nk − n′
k| �

√
nk , (2.37)

where nk = |ak|2 and n′
k = |a′

k|2. Using this to count states we get of order √
nk different

possible expectation values of the particle number. On top of this we have additional
distinct states by varying the phases ϕk. Taking into account the uncertainty, ∆nk∆ϕk &
1, this gives √

nk different phases for each modulus nk. Combining those two this gives
nk different states, the same result as in the basis of number eigenstates. Although
computationally there is no obvious advantage of using coherent states rather than number
eigenstates in the c-number method, their usefulness lies in the ability of taking a smooth
classical limit. This convenience will come in handy when generalizing the concept of
enhanced memory capacity to classical systems like neural networks [12]

We next shall apply our c-number method first to an easy example which was already
solved in the literature as an easy crosscheck since all equations can be solved analytically
and the Bogoliubov transformation can be carried out explicitly. After that we apply our
procedure to the more difficult analogue system with Dirichlet boundary condition rather
than periodic one.

Comparison with Goldstone Phenomenon

On a side note we want to discuss the fundamental difference of the appearance of gapless
modes due to assisted gaplessness, namely an attractive interaction among the quantum
modes to the the well-known phenomenon of appearance of gapless excitations in the form
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of Goldstone bosons. These emerge as a result of a phase transition accompanied by a
spontaneous breaking of a global symmetry. One crucial difference is that gapless modes
originating from Goldstone phenomenon exist in a domain past the critical configuration
of phase transition. This is not the case in the model studied above. In this model gapless
degrees of freedom only emerge exactly at the critical point and appear due to a cancella-
tion between the positive kinetic energy and a negative collective interaction energy. This
makes it hard to interpret the phenomenon of assisted gaplessness in terms of a Goldstone
mode originating from a spontaneous breakdown of a global symmetry. This difference
in particular makes the phenomenon of assisted gaplessness interesting since there is no
a priori symmetry reason for the emergence of any gapless modes. However, even though
the phenomenon has a priori no connection to a symmetry, additional symmetries can
greatly enhance the number of gapless modes once assisted gaplessness takes place. One
specific example in case of a spherical symmetry is discussed in [61].

2.2.2 Application to a Bose Gas with Periodic Boundary Con-
ditions

As an easy entry point to our method we shall apply it first to the well understood system
of a weakly attractively interacting cold and dilute Bose gas with periodic boundary
conditions. In this model the interaction can be approximated by a four-point function.
Based on the results of [62] this system was subject of extensive studies in a series of papers
[9], [10], [14], [15], [32], [63], [64], which focused primarily on its quantum informational
properties. In particular, a similar procedure in which an operator valued Hamiltonian
was replaced by a c-number function was already used in [10]. Since the spectrum of this
theory is already known and all calculations can be carried out analytically it is a great
example to understand the application of the c-number method. The Hamiltonian of the
periodic system is given by

Ĥ =
∫ L

0
dz
[ ~2

2m∂zψ̂
†∂zψ̂ − ~2

2m
π2α

L
ψ̂†ψ̂†ψ̂ψ̂

]
, (2.38)

with α being a dimensionless and positive coupling strength. The mass of the atoms is
given by m and L is the size of the system. We can write this Hamiltonian in momentum
space by expanding the field operators ψ̂

ψ̂ =
√

1
L

∞∑
k=−∞

âke
ikz, (2.39)

and plug it in the Hamiltonian (2.38). This yields
∞∑

k=−∞
k2â†

kâk − α

4

∞∑
k,m,n=−∞

â†
kâ

†
mân+kâm−n , (2.40)

with a coupling constant α. Note that we set ~ = 1 and consider for simplicity a specific
choice of parameters where we put m = 1/2 and the length of the system L = 2π.
The total particle number is given by N . In case of repulsive interaction this system is
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also known as Lieb-Liniger model [65], [66]. As it was demonstrated e.g. in [63], higher
momentum modes only get marginally occupied for small coupling strength. Therefore,
we truncate the Hamiltonian (2.40) and only keep momentum modes with |k| ≤ 1.

First we have to take care of the symmetries of the system since we are not interested in
gapless transformation arising from those. One is again particle number conservation. We
have seen that this can be incorporated naturally by replacing the number operator of one
quantum mode with the sum of the remaining ones minus the total particle number in the
system. Since we consider small couplings we expect the lowest momentum mode k = 0 to
be occupied the most so shall choose to replace â0. This system also exhibits an additional
symmetry due to momentum conservation. This symmetry imposes a superselection sector
in which the total momentum of the system is fixed. Therefore we can remove this
symmetry by fixing a value and consequently choosing a superselection sector. We choose a
total momentum of zero which implies that the expectation values of the number operators
n̂−1 ≡ â†

−1â−1 and n̂1 ≡ â†
1â1 remain equal. So 〈n̂−1〉 = 〈n̂1〉 has to hold for all times t.

Last but not least there is one additional phase symmetry which transform â−1 → e−iφâ−1
and â1 → eiφâ1. In summary, we still have to eliminate one modulus and one phase. To
achieve that we use the replacement (2.14b) due to particle number conservation and
moreover we replace â−1 → â to get rid of the phase. In summary we have the following
replacement rules

~̂a =
(
â−1
â1

)
→
(
a1
a1

)
, ~̂a† =

(
â†

−1
â†

1

)
→
(
a∗

1
a∗

1

)
, (2.41)

and
â0 →

√
N − 2|a1|2 , â†

0 →
√
N − 2|a1|2 . (2.42)

This gives the following Bogoliubov Hamiltonian:

Hbog = 2|a1|2 − α

4

(
N2 + 2N(a1 + a∗

1)2 − 2|a1|2(3|a1|2 + 2a2
1 + 2a∗2

1 )
)
. (2.43)

After having arrived at a complex valued approximation of the original Hamiltonian we
can search for flat directions. According to our description we first have to find an extreme
point, see (2.18). So we set the first derivative of (2.43) equal to zero:

∂Hbog

∂a1
= 2a∗

1 − α
(
N(a1 + a∗

1) − 3a2
1a

∗
1 − 3a1a

∗2
1 − a∗3

1

)
= 0 . (2.44)

An obvious solution is a1 = 0 on which we shall focus in the following. However, there are
also two additional solutions given by a1 ≈ ±0.5345

√
αN−1

α
. At those points our second

requirement is fulfilled. They therefore represent turning points but are not associated
to a flat direction. So let us return to the solution a1 = 0. The second step is to check
under which conditions the determinant of the second derivative matrix M vanishes at
this point. According to (2.19) we check

det M = −4 + 4αN = 0 . (2.45)
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This is obviously true in the case for a collective coupling λ = αN = 1. This implies
the existence of a flat direction and consequently the emergence of a gapless degree of
freedom for a collective coupling of λ = 1 and a state in which all particles occupy the
0-mode. This is in accordance (including corrections of 1/N) with previous findings, see
for example [63].

2.2.3 Application to a Bose Gas with Dirichlet Boundary Con-
ditions

We saw in the previous subsection that finding gapless modes using the c-number method
is straightforward in case of periodic boundary conditions. However, in this case also a full
numerical diagonalization is available to analyze the system and the benefit of our methods
are not apparent. Therefore we shall apply it to the Dirichlet boundary case which is much
more involved and is no longer as easily accessible both to numerical as well as analytical
methods. However, the choice of different boundary condition is not only motivated by
being a harder test for our method but also from a experimental point of view. An
experimental realization of a system of enhanced memory capacity would be extremely
interesting. This is not only true from a standpoint of quantum informational properties
of black holes and quantum gravity in general, but it may also of interest in general for
quantum information science and may lead to important technical applications. This
study is therefore motivated by a presumed simpler experimental realization of Dirichlet
boundary conditions rather than periodic ones. Additionally, it is also interesting how
sensitive the emergence of gapless degrees of freedom is to the boundary conditions.

The starting point is again Hamiltonian (2.38). However, this time we impose Dirichlet
boundary conditions which can be incorporated by expanding the field operators in the
following eigenfunctions

ψ̂ =
√

2
L

∞∑
k=1

âk sin
(
kπz

L

)
. (2.46)

This leads to the following momentum space representation of the Hamiltonian:

Ĥ full =4π2~2

2mL2

[ ∞∑
k=1

k2

4 â
†
kâk − α

8

∞∑
k,l,m=1

[
(â†

kâ
†
l âmâk+l−m + 2â†

kâ
†
l âmâk−l+m)

− 2(â†
l+m+kâ

†
l âmâk + â†

kâ
†
l âmâk+l+m)

]]
.

We note that the ground state structure and a possible phase transition resulting in
the appearance of gapless modes similar to the periodic case of this theory in the mean
field limit was already studied in [56]. However there it was not possible to extract any
conclusive information about the precise quantum states in the mean field limit.

Continuing, we further note that Hamiltonian (2.47) is neither analytically nor nu-
merically easy to access. We therefore restrict ourselves to the simpler case where we
again truncate the momentum modes. However, in contrast to the periodic case these
higher momentum modes are no longer negligible even for small couplings and therefore
represent a completely different system which has not necessarily much in common with
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the original one. For low particle numbers a numerical diagonalization was carried out
in [56] for different truncations kmax ≤ 5. Here we shall focus on kmax = 3 which already
shows a rich abundance of different quantum phases. This is also the smallest number
if modes for which the non-periodic system behaves qualitatively differently compared to
its periodic counterpart. Carrying out the truncation yields

Ĥ = 1
4

3∑
k=1

k2â†
kâk − α

8

[
3â† 2

1 â
2
1 + 8â†

1â
†
2â1â2 + 2â† 2

1 â
2
2 + 2â† 2

2 â
2
1 (2.47)

+ 8â†
1â

†
3â1â3 + 2â† 2

1 â
2
3 + 2â† 2

3 â
2
1 − 2â† 2

1 â1â3 − 2â†
1â

†
3â

2
1 (2.48)

+ 4â†
1â

†
2â2â3 + 4â†

2â
†
3â1â2 + 2â†

1â
†
3â

2
2 + 2â† 2

2 â1â3 (2.49)

+ 3â† 2
2 â

2
2 + 8â†

2â
†
3â2â3 + 2â† 2

2 â
2
3 + 2â† 2

3 â
2
2 + 3â† 2

3 â
2
3

]
. (2.50)

where we again have set for convenience L = 2π and ~ = 2m = 1. Our subsequent task
is to understand the phase portrait of the Hamiltonian (2.50) with the aim of identifying
an emergent gapless mode that leads to enhanced entropy states with long decoherence
time and large information storage capacity. For this purpose we shall first introduce the
Bogoliubov approximation of this Hamiltonian and study the ground state as a function
of the collective coupling λ. This analysis has also been carried out in [56] and shall be
repeated for consistency and also to correct a few minor errors in the numerical analysis.

The first step is to perform the Bogoliubov approximation according to our prescrip-
tion. That means that we have to take into account all symmetries of the Hamiltonian.
Note that the conditions of the c-number method for finding states of enhanced memory
capacity does clearly not depend on the specific parametrization of the complex variables
~a and ~a∗. Therefore we can always reparametrize to find the most useful form 1 . A specif-
ically useful parametrization which already incorporates particle number conservation is
given by

â1 →
√
N(1 − x) cos(θ) , â2 →

√
Nxei∆2 , â3 →

√
N(1 − x) sin(θ)ei∆3 . (2.51)

Note that since we already took care of the symmetry emerging from particle number
conservation with this specific choice of parameters, we reduced the number of complex
variables already by one. In other words, we replaced the initial three modes with two
complex numbers that can be written as two moduli and two phases.

The parameter x describes the relative occupation of the 2-mode and is restricted to
the interval 0 ≤ x ≤ 1. On top of that the angle θ ∈ [0, π/2] specifies how the remaining
particles are distributed among the 1- and 3-mode. Beside those two we have two relative
phases ∆2 and ∆3. The Bogoliubov Hamiltonian can then be computed by plugging in

1The equivalence of the vanishing of the second derivatives in ~a and x is non-trivial and only holds if
there are no unoccupied modes, ak 6= 0. Schematically, the reason is that ∂Hbog

∂a = a
∂Hbog

∂x and therefore
∂2Hbog

∂2a = a2 ∂2Hbog
∂2x + ∂Hbog

∂x .
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Figure 2.1: Relative occupation numbers of the ground state of the Bogoliubov Hamil-
tonian as functions of λ. The 1-mode is displayed in blue, the 2-mode in orange and
the 3-mode in purple. There is a discontinuous change in the occupation numbers at
λgs ≈ 3.5.

the replacement rules (2.51) into Hamiltonian (2.50):

Hbog

N
= 1

4
(
1 + 3x+ 8(1 − x) sin2(θ)

)
− λ

8

[
sin2(2θ)(1 − x)2

(1
2 + cos(2∆3)

)
(2.52)

+ 3 + 2x− 2x2 + 4x(1 − x)
(

cos(2∆2) cos2(θ) + cos(2∆2 − 2∆3) sin2(θ)
)

(2.53)

+ 2 sin(2θ)(1 − x)
(
x cos(2∆2 − ∆3) + cos(∆3)

(
2x− (1 − x) cos2(θ)

)) ]
. (2.54)

To get a feeling for the system let us first analyze the ground state. We can do so by
finding the global minimum of the Bogoliubov Hamiltonian (2.54). It is evident that
the choices ∆2 = 0 as well as ∆3 = 0 or ∆3 = π are preferred since they minimize
each term separately. This is evident from the last line of the Hamiltonian (2.54). For
3n2 > n1, ∆3 = 0 is preferred and otherwise ∆3 = π. Next, we minimize the energy
with respect to ∆3 and the remaining two continuous parameters x and θ numerically.
This procedure can be carried out for different values of the collective coupling λ. In
Fig. 2.1 we plot the occupation numbers for the different modes in the ground state as
a function of λ. We observe that the occupation numbers change discontinuously at the
critical point λgs ≈ 3.5, where the subscript gs stands for ground state. This corresponds
to a first order phase transition. In order to understand the region around the phase
transition better we plot the Bogoliubov Hamiltonian as a function of x and θ for the
critical value λ = 3.5 in Fig. 2.2. It is clear from this illustration of the energy landscape
that two disconnected generate minima exist. Since they are disconnected, a transition
between those two minima is discontinuous in the respective variables. To illustrate how
this second minimum develops by increasing the collective coupling we plot the energy
of the ground state as a function of x where we minimize the energy with respect to the
other parameters θ and ∆3. This is shown in Fig. 2.3. We conclude that a local minimum
exists at x = 0 for all values of λ and that another local minimum at x = xmin(λ) 6= 0
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Figure 2.2: Bogoliubov energy (rescaled by the inverse particle number) for λ = 3.5 as a
function of x and θ. The red surface is the region where ∆3 = π minimizes the energy
and in the orange surface, ∆3 = 0 is preferred. We observe two disconnected, degenerate
minima, one for x = 0 (green point) and one for x 6= 0 (blue point).

starts to exist for λ > λlm, where
λlm ≈ 1.8 . (2.55)

We use the subscript lm to indicate light mode and emphasize that due to finite N effects
this degree of freedom is not exactly gapless. However, in the context of our method λlm

corresponds to a stationary infliction point and we shall take a close look at this special
value in the following. In contrast to that λgs corresponds to the point where the second
minimum and its associated ground state become energetically favorable.

Before continuing by studying in the approximate gapless mode in the spectrum let us
summarize our findings about the ground state in the Bogoliubov approximation picture.
The ground state changes discontinuously at the critical point λgs ≈ 3.5 corresponding
to a first order phase transition. This can be verified in the full quantum theory by
performing a numerical diagonalization of the Hamiltonian (2.50). Already for a moderate
particle number of N & 100 the corresponding plot of the expectation values of the
number operators is indistinguishable from Fig. 2.1 reassuring the correctness of our
approximation.

This behavior is qualitatively different from the periodic boundary condition case,
where a continuous transition, i.e. a second order phase transition, was observed [62]. It
is exactly because of this continuous behavior that the slow occupation of higher modes
enables one to maintain control by truncating higher momentum modes. The large sym-
metry and the severely reduced Hilbert space size due to the truncation makes the numer-
ical study of this model feasible and allows for conclusions about the untruncated system.
In contrast, the discontinuous behavior of the analog system with Dirichlet boundary
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Figure 2.3: Minimal value of the Bogoliubov Hamiltonian (rescaled by the inverse particle
number) subject to the constraint that the relative occupation of the 2-mode is x. At
λlm ≈ 1.8, a stationary inflection point signals the appearance of a second minimum and
at λgs ≈ 3.5, this second minimum becomes energetically favorable.
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conditions prevents us from making any reliable statement about the full system (2.47).
Therefore, none of our results necessarily have to apply to the full system. For this reason
we shall take the system (2.50) as fundamental and do not care about its specific origin
from Hamiltonian (2.47). Note that is not a huge drawback, since the truncated system
is still evolved enough to be a challenging benchmark for the c-number method and more-
over we assume that it is close enough related to the original one to be of experimental
significance.

Emergence of a Gapless Mode

After the preliminary study of the ground state of the system (2.50) we shall now focus
on the gapless mode emerging around the critical point λ = λlm. The first task will be to
employ the previously developed c-number method at the beginning of this section 2.2.
As one of the main motivations of the development of this method this will allow us to
skip the involved analysis of the full spectrum. Instead we remain with the much simpler
task of showing that the Bogoliubov Hamiltonian (2.43) possesses a stationary inflection
point. Since this only involves two complex variables, the problem is reduced to solving
a set of analytic equations.

Because of our preliminary work on the groundstate we expect from Fig. 2.3 that
a stationary inflection point appears at λ = λlm. In the following we shall study this
special point more closely. According to the c-number method we start by setting the
first derivative of the Bogoliubov Hamiltonian equal to zero. This gives us four algebraic
equations, which we can solve for the four parameters x, θ, ∆2 and ∆3. We find that
the latter two parameters behave as in the second minimum, ∆2 = ∆3 = 0. Therefore
only the derivatives with respect to x and θ result in non-trivial conditions. Due to their
lengthiness and non apparent enlightening structure we display those equation in the
appendix A. As we expect from the previous analysis, solutions, i.e., local extrema, only
exist for λ > λlm, which we determine as λlm = 1.792. The next task in our method
is to ensure that the determinant of the second derivative matrix M vanishes. Again
because of the lengthy expressions and the absence of an apparent easy analytical access
we put those in the appendix A. Next we plug in the extreme point and then compute the
determinant. The result is displayed in Fig. 2.4a as a function of the collective coupling.

The displayed results confirm that det M vanishes as λ approaches λlm from above.
Therefore, both our requirements (2.18) and (2.19) are satisfied and λ = λlm corresponds
to a stationary inflection point in the Bogoliubov Hamiltonian. Consequently, this critical
point correspond to a point of enhanced memory capacity with the emergence of (a)
gapless degree(s) of freedom.

As an alternative viewpoint and to ensure the correctness of the c-number method
we can also consider the full Bogoliubov transformation. This allows us to obtain the
full quantum spectrum in the limit N → ∞. To reiterate the necessary steps, we first
have to replace the annihilation (and creation) operators â(†)

1 →
√
N − â†

2â2 − â†
3â3 in

the full Hamiltonian (2.50) to ensure that we only consider fluctuations that respect
particle number conservation in agreement with the full quantum system. After that we
expand the Hamiltonian up to second order around the macroscopic background defined
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Figure 2.4: Excitation energy as a function of λ for N → ∞ derived in two different
methods. In both cases, we observe a gapless excitation at λlm ≈ 1.792. Stable excitations
only exist for λ ≥ λlm. As is clear from the Hamiltonian (2.47), the energy unit is 4π2~2

2mL2 .

by the Bogoliubov approximation (2.51). However, this has been done in the Bogoliubov
approximation which is strictly speaking only exact in the limit of infinite N . It remains
therefore our task to show that this mode also exists in the full quantum theory with
finite total occupation number. We display the result in appendix A in equations (A.4)
and (A.5). As before, we subsequently look for pairs (x, θ) where the first derivative (A.4)
vanishes and stable fluctuations exist. In accordance with the previous analysis we obtain
the same values as above. To calculate the Bogoliubov transformation to diagonalize
the corresponding Hamiltonian explicitly we have to rely on numerical methods. Here
we shall apply the method described in [57], [67]. From this so diagonalized matrix the
energy gaps of the corresponding Bogoliubov modes can be readily read out. The smallest
energy eigenvalue as a function of the coupling strengthλ is shown in Fig. 2.4b. This fully
matched the previous result obtained by the c-number method displayed in Fig. 2.4a.
Thus, this analysis confirms that a gapless mode still exists at λlm in the limit N → ∞.
For finite N , however, we expect deviations to the gaplessness as well as the exact value
of λlm that scale as powers of 1/N .

Note that this critical state around which an (approximate) gapless mode emerges is
not the ground but an excited state. Nevertheless, the present analysis indicated that this
point is stable and therefore a viable candidate for efficient quantum information storage.
One way to see that is the fact that the energy gaps of all modes are positive and large
in the relevant regime λ ≥ λlm, excluding, of course, the flat direction we shall use for
information storage. This point is also confirmed by the fact that we did not observe any
instabilities in the numerical simulations which we shall discuss later on.

To conclude this paragraph we want to note that to actually write or read out any
information this system has to be coupled to an external environment. Such a coupling
could destabilize the system in an experimental setting. However, this interaction has to
be very small to not disturb the gaplessness in the first place. For a detailed discussion we
refer to section 2.4.4. Since this already severely restricts the coupling to external modes
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we expect that this is enough to ensure the stability of the critical state. This has to be
studied, of course, in a case by case basis for potential experimental realization.

Slow Mode in Full Spectrum

Until now the analysis was based on the Bogoliubov approximation which is only exact
in the limit N → ∞. For any finite N we expect corrections that scale with powers of
1/N . In the following we shall therefore confirm the existence of an approximately gapless
mode in the spectrum of the full quantum system in case of a finite number of particles.
To this end, we shall use a very general fact, namely that modes with a small energy gap
∆E evolve on the long timescale ~/∆E. In this light we expect a significantly slowed
down time evolution for a state close to a critical point. We shall use the appearance of
an enlarged timescale as an indicator for gapless modes around a certain state. Note that
in case of the periodic system it was explicitly shown that the evolution significantly slows
down at the critical point [10]. As already discussed, this memory modes with extremely
small gaps also have an experimental signature in form of absorption lines of very low
frequency. 2

The decoherence time of a state also determines how long a state can store information.
This is an important property for the use of states of enhanced memory capacity as actual
storage of information. As discussed in the beginning of this chapter we chose occupation
numbers as an encoding scheme for information. Of course, the specific choice of code
is of no physical importance. Therefore we assume that we can experimentally prepare
a state in such a way that we can choose its components in a certain basis. If we do a
measurement of the state before it has evolved significantly due to the large timescales,
we can directly read out the components again and therefore the stored information.
However, if the system has already evolved significantly the information gets scrambled
and distributed over a large amount of degrees of freedom. A retrieval of information is
then only possible with a precise knowledge of the dynamics of the system to reconstruct
the spreading of the information. Roughly speaking the timescale of evolution therefore
determines a decoherence time. It is the time after which the subset of nearly-gapless
modes has been decohered by the rest of the system.

The next step now is to determine the precise quantum state corresponding to the
critical configuration. Note that up until now we have only determined macroscopic
parameters, namely the collective coupling as well as the relative distribution of particles
among the three modes. Therefore we still have to decide on a procedure to associate
a quantum state to the specific critical configuration. We then shall verify that this
state is indeed connected to a gapless mode by time evolving it. A long timescale (in
some measure which we will determine below) would then indicate a gapless mode. This
quantum state should in case of λ = λlm correspond to a stationary inflection point of
the Bogoliubov Hamiltonian. Additionally, we require that we extend this construction
also for different values of λ to facilitate comparison and the distinction between states of

2As a side remark we want to mention that it is not sufficient to search for eigenstates in the quantum
spectrum with nearly the same energy gap. The reason is for example apparent in Fig. 2.3e. Though
both groundstates are degenerate in energy the transition is suppressed by a huge barrier. As it was
disused above there are no gapless modes associated with such a configuration.
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enhanced memory capacity and ordinary states. In the following we shall construct such
a quantum state which exists for all λ & 1 and becomes stationary at the critical value
λ = λlm.

Our approach to determine the quantum state |Φinf〉 is defining a subspace of states
close to the inflection point and then selecting the state of minimal energy among them.
One requirement is that this subspace should not be too big in order to be sensitive to
properties of the stationary inflection point at critical configuration. However, this subset
cannot to be small to facilitate the minimization procedure. If the subspace does not
contain enough basis states than the energy obtained for these states is too high. Of course
this procedure is not unique. However, we shall see that it suffices for our purpose. We
note that we expect that many different quantum states exists corresponding to different
occupation numbers of the light mode.

Concrete Procedure

In the following we shall outline our concrete procedure. We shall impose two conditions
which originate from properties of the inflection point. Firstly, we only consider states for
which the expectation value of the relative occupation of the 2-mode matches its critical
value n2(t)/N = xinf (λ). Beside that we restrict the set of basis states which we use to
form the quantum state |Φinf〉. We only use those states which do not deviate too much
from the critical occupation values. Concretely, we choose an upper bound δni on the
deviation from the critical value determined from the Bogoliubov Hamiltonian. Assuming
additionally that modes with bigger relative occupation should have a bigger spread, we
empirically determine δn1 = 0.4, δn2 = 0.375 and δn3 = 0.225 to be a good choice.3

After we successfully determined a set of states |Φinf〉 for different values of the col-
lective coupling we simulate its time evolution numerically on a computer. Here we use
the full quantum Hamiltonian with the complete basis of the Hilbert space. We show the
expectation value of n2(t) for a total particle number N = 60 for exemplary values of λ
in Fig. 2.5. Clearly, a drastic slowdown given by drastically lower frequencies dominate
around λ = λlm.

As a next step we shall quantify this slow down behavior. This will also allow us to
estimate the coherence time as a function of λ. For this purpose we extract a typical
frequency from the time evolution of |Φinf〉 by considering its Fourier components. In the
discrete Fourier decomposition we only consider frequency up to nmax. Thus we obtain
so the Fourier coefficients c1, c2, . . . , cnmax corresponding to frequencies f1, 2f1, . . . , nmaxf1.
Next, we define the mean frequency in the time evolution by

f̄ := f1

∑nmax
i=1 i|ci|2∑nmax
i=1 |ci|2

. (2.56)

This timescale associated to the mean frequency can be interpreted as a measure for the
3We verified this procedure by comparing the results obtained in this truncation with the ones derived

using the full basis in case of small particle numbers where the computation is feasible. For N ≤ 50,
we observed that their qualitative behavior, is identical whereas this no longer seems to be the case for
higher N . However, the only important point for us is to come up with some recipe to find the slowly
evolving states corresponding to states of enhanced memory capacity.
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Figure 2.5: Time evolution of the quantum state |Φinf〉, which corresponds to the inflection
point of the Bogoliubov Hamiltonian. The expectation value n2(t) is plotted for a total
particle number ofN = 60. We observe that lower frequencies dominate around λ ≈ 2.083.
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Figure 2.6: Estimate of the decoherence time tcoh associated to |Φinf〉 as a function of λ
for a total particle number N = 60. We observe that it increases distinctly around the
critical value λ ≈ 2.083.

decoherence time. This is the timescale after which the subset of nearly-gapless modes
has been decohered by the rest of the quantum modes. In this sense, we get:

tcoh = 1
f̄
. (2.57)

For the specific choices f1 = 1/3000 and nmax = 12000, we show tcoh as a function of λ
in Fig. 2.6.4 We observe that the timescale of evolution increases distinctly around the
specific value λ ≈ 2.083. This deviation from the critical value λlm = 1.792 is expected
due to a finite N . As we have discussed previously our reasoning is only exact in the
limit N → ∞. We therefore expect deviation from that in our concrete realization with
N = 60 that scale with 1/N . In contrast, note that we do not expect tcoh to diverge for
infinite N because |Φinf〉 generally contains an admixture of non-gapless modes. Let us
quantize these finite N effects:

λ
(N)
lm = λlm + a ·N−b, (2.58)

where a > 0 and b > 0 are two undetermined fitting parameters. To determine those we
repeat this analysis for different particle numbers 40 ≤ N ≤ 90. We then again determine
the critical value corresponding to the lowest mean frequency λ(N)

lm and fit to those values
the function (2.58). This procedure yields a = 3.56 and b = 0.61. We note that b is close
to 2/3, which was the result in the periodic system [62]. As can be clearly seen from
Fig. 2.7, the numerically determined values λ(N)

lm are well described by the fitted function
(2.58). All these results are a clear indication that the slow evolution we observe in the
real time plots is due to emergence of gapless modes near a critical configuration. This

4Note that different choices of f1 and nmax lead to the same result. Therefore, cutting off low and high
frequencies to make the considered parameter space finite, which is required in a numerical treatment,
has no influence on our findings.
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Figure 2.7: Critical value λ(N)
lm as a function of particle number N . The positions obtained

from numerical simulations are plotted in blue. The fitted function (2.58) is shown in red.

fits our prediction with the c-number method in the Bogoliubov treatment. Concluding,
we observe the appearance of a nearly-gapless mode around λ = λlm for finite values of
N as well.

We shall conclude this section by discussing the specific critical state |Φinf〉 for N = 60
and λ = 2.083 in position space. This might be particularly interesting for a experimental
realization of this configuration. The particle density is given by

ρ(z) ≡ 〈Φinf| |ψ̂|2 |Φinf〉 = 1
π

3∑
k,l=1

〈Φinf| â†
kâl |Φinf〉 sin

(
kz

2

)
sin

(
lz

2

)
. (2.59)

We plot this so defined particle density for the critical state |Φinf〉 in Fig. 2.8. Additionally,
we illustrate the gapless mode by varying the occupation numbers in the flat direction.
For this purpose we fix the value of λ = 2.083, but slightly vary the value of x used in
the minimization procedure that determines the quantum state: xi = xinf(λ) + δxi. We
obtain a family of states |Φinf, i〉, where |Φinf, i〉 is a state of minimal energy subject to the
constraint that its relative occupation of the 2-mode is xi. The density profiles for these
small deviations are also shown in Fig. 2.8.

2.2.4 Encoding Information via Coupling to an External Field
Next we shall discuss another important aspect of using systems of enhanced memory
capacity for the storage of quantum information and their realization and probing in a
lab environment. We therefore shall discuss how the nearly-gapless mode emerging at
the critical value λlm of the collective coupling can be probed by an external field. For
simplicity, we work with the nearly-gapless collective Bogoliubov modes. From the above
analysis it is clear that this can always be achieved at a critical point with the help of a
Bogoliubov transformation.

We shall denote this Bogoliubov or memory mode again with â and its gap with ε.
Near the critical configuration it is possible to neglect the effect of modes with higher
gaps, as long as the energy of the external mode is sufficiently small to not excite them.
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Figure 2.8: Position space representation of the critical state with small variations for
λ = 2.083 and N = 60. The relative particle density ρ/N is plotted. The green line
corresponds to the critical state |Φinf〉 itself and the adjacent lines are variations of it,
which we obtained by slightly changing the value of x used in the minimization procedure
that determines the quantum state: xi = xinf(λ) + δxi. The values of δxi are indicated in
the plot.

Following the discussion in [15], the essential features of the coupling to an external field
ĉ can already be captured by the simple Hamiltonian

Ĥeff = εâ†â+ εγ ĉ
†ĉ+ g

2
(
âĉ† + â†ĉ

)
, (2.60)

where we denote the energy gap of the external mode ĉ with εγ. The index γ indicates
that this would most likely correspond to a photon in an experimental setup. Furthermore
the parameter g describes the strength of the coupling between the external mode and
the memory mode. The structure of this particular Hamiltonian is motivated by following
reason. In the expansion of the Hamiltonian around the critical macroscopic background,
the coupling in (2.60) is expected to be the leading order term in the interaction term
â†â(ĉ+ ĉ†) of the original â-modes. These interaction conserves total particle number and
total momentum. Note that due to its bilinear structure the Hamiltonian can be cast in
matrix form again.

As an example let us consider with an initial state, in which the memory mode is
empty and the external field is given by a coherent state:

|Φ(t = 0)〉 = |0〉a ⊗ |γ〉c , (2.61)

where γ parameterizes the occupation of the external coherent state. Straightforward
calculation gives [15]:

〈Φ(t)| ĉ†ĉ |Φ(t)〉 = γ2
(

1 − g2

δ2
g

sin2
(
δgt

2

))
, (2.62)

where we defined
δg =

√
(εγ − ε)2 + g2 . (2.63)
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It becomes apparent that the interaction between those two subsystems leads to a fluc-
tuation in the occupation number of the external field. To facilitate oscillations between
both modes we choose εγ ≈ ε. This implies that the coupling has to be small (g / ε) in
order to not disturb the gaplessness of the mode â which will be discussed in further detail
in section 2.4.4. The time evolution of the expectation value of the occupation numbers
of memory modes are given by

〈Φ(t)| â†â |Φ(t)〉 = γ2 g
2

δ2
g

sin2
(
δgt

2

)
. (2.64)

Therefore we can write any specific memory pattern in the Bogoliubov modes by using
soft excitations of an external field. Naturally, this can also used the other way around
such that information stored in the â modes can be released by emitting soft ĉ quanta.
Note that equations (2.62) and (2.64) also show why soft external radiation is sensitive
to the critical point. It is clear that far away from the critical configuration the lightest
mode has a much larger gap such that ε � εγ. Consequently, the amplitude of fluc-
tuations gets suppressed as g/ε. In other words, due to the large level splitting there
is no efficient transfer of occupation possible between the two subsystems. Therefore,
soft radiation stops interaction with the system. Thus, a critical point exists, whenever
soft radiation, whose energy εγ is much smaller than the typical energy of the system,
i.e., εγ � ~2/(2mL2), interacts significantly with the particles in the Bose gas. We see
therefore that gaplessness is not for free. The energy efficiency of the information storage
within the gapless memory mode goes hand in hand with the difficulty of the read-out of
the stored quantum information. Because the respective gaps in the memory sector are
extremely small, different memory patterns are not easily distinguishable. This results in
a long read-out time. This is extremely important in a possible practical application of
assisted gaplessness for the storage of quantum information, since the same constraints
would apply there as well. Since a system can not be a good storage as well as a read-out
device, the best way would be to incorporate a time-dependent interaction term. Since a
concrete implementation of the ideas mentioned above reaches beyond our field of exper-
tise, this issue will not be discussed any further within the scopes of this work. Concluding
this section we want to also comment on the stability of such critical configuration as it
was described above. We saw that such states are typically not identified with a ground
state but an excitation above it. However, excited states do not necessarily exhibit an
instability in form of a Lyapunov exponent. This can be seen for example in the analysis
leading to plot 2.4b. In the limit of large N we have already demonsrated that in the
relevant regime λ ≥ λlm all the gaps are positive and only one becomes zero at criticality.
Moreover, we see no signs of any decay in the full numerical analysis of the system, which
again confirms the absence of any instability. Correspondingly, we conclude that in the
closed system described by the Hamiltonian (2.50) the critical configuration around which
a gapless degree of freedom emerges is stable. Of course, the system can be destabilized
by coupling it to an external environment just strongly enough. However, in this case
we would lose gaplessness and with it the sole reason we have been interested in this
system to begin with. We expect that the weakness of the external influence also ensures
a sufficient stability of the critical state, although the matter has to be studied on a case
by case basis for potential experimental setups.
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2.3 States of Enhanced Memory Capacity as Attrac-
tors

States of enhanced memory capacity, critical configuration at which gapless modes emerge
are a generic feature of weakly and attractively interacting systems with high occupation
numbers. In the last section we introduced a robust method of identifying such states in
the spectrum. With the c-number methods we are able to determine critical configurations
at which gapless degrees of freedom emerge. In case there is not just a single mode, but
an abundance of gapless degrees of freedom emerging, these critical points act as attractor
states of dynamical evolution.

However, such states are not only interesting from the perspective of condensed matter
theory but also have important implications for high energy physics. As an alternative
approach to Wilsonian-UV completion the idea of classicalization [68]–[70] has been put
forward. Its idea is readily described: Instead of exciting new degrees of freedom in the
ultra violet, increasingly classical resonances denoted as classicalons are produced. In
this sense the theory is self-complete since no new degrees of freedom appear, but already
existing low energy degrees of freedom are getting succeedingly excited. An important
theory in which classicalization might be realized is gravity [68].

2.3.1 Connection to Gravity and Classicalization
Classically, gravity is modeled as the geometry of spacetime. However, an alternative
many-body point of view was put forward in [9] which interprets black holes as con-
densate at the critical point of a quantum phase transition. Shifting the focus on its
well-known quantum informational properties it becomes apparent that every quantum
mechanical description of a black hole must account for its Bekenstein-Hawking entropy
[7]. Consequently, any microscopic description of a black hole must deliver a sufficient
number of microstates to be compatible with the Bekenstein-Hawking entropy. As we
argued previously this can be accomplished by an adequate number of gapless modes.
Therefore, black holes represent a prime example of states of enhanced memory capac-
ity in gravity. By studying such states in non-gravitational systems, which allow for an
easier analytic and experimental study, one can therefore try to draw conclusions about
the quantum mechanical properties of black holes. Another example sharing a similar
abundance in microstate entropy is de Sitter spacetime. In fact also de Sitter with its
Gibbons-Hawking entropy [20] saturates the Bekenstein’s bound [71] similar to black
holes. The transition process to states of enhanced memory capacity is of special interest
in case of black holes since this would correspond to a formation process. In high energy
particle physics such a formation can be modeled by an 2 → N scattering process, where
N represent some large macroscopic number. A detailed computation of this scattering
amplitude can be found in [72]. Usually, such processes with a transition to quasi-classical
microstates are exponentially suppressed [73]. To overcome this suppression the transition
probability has to be sufficiently enhanced due to a high degeneracy of microstates in the
final state. Therefore classicalons (or black hole formation in gravity) must be states of
enhanced memory capacity. Transitions to states accompanied with a high degeneracy
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of microstates is therefore also motivated by applying those findings to the viability of
classicalization. Possible applications of classicalization, however, also go beyond gravity.
Another classicalizing theory might be found in a Standard Model with a derivative self-
coupling of the Higgs. For an easily accessible review on classicalization and references
we refer to [39].

2.3.2 The Model
Again we will use assisted gaplessness to build a model which exhibits states with an
enhanced number of degenerate microstates. We therefore start again with Hamiltonian
(2.5). To allow for actual dynamics to move towards or away from the critical configuration
we add an additional mode to the system which we denote with b̂ and which also fulfills
the bosonic commutation relations (2.1). Its number operator is given by m̂ ≡ b̂†b̂. This
supplementary modes acts as a reservoir which allows for a varying occupation number of
the master mode â0. Before we also introduce interaction of â0 and b̂ to allow for particle
transfer between those modes we shall first focus on the energetics. Let us start with
following Hamiltonian

Ĥdiag = m̂0 + n̂0 +
K∑

k=1
(2 − α n̂0) n̂k . (2.65)

As will become apparent soon, the non-zero gap of b̂0 is the reason why we replaced
(1 − α n̂0) by (2 − α n̂0). Note that only energy differences are physical.

Similar to Eq. (2.6) and assuming the master mode to be highly occupied the effective
gap of the memory modes are given by

Ek = 2 − αn0 . (2.66)

If the occupation of the master mode is zero or low such that αN0 � 1 the effective
gap is Ek ≈ 2. In this case the energy gap between an excitation of a reservoir mode
or a memory mode is ∆E = 1 and any transition is energetically strongly suppressed.
However, if the master mode attains its critical occupation, i.e. αn0 = 1, the effective
gap of the memory mode reduces to Ek = 1. This renders the energy difference between b̂
mode and the âk modes effectively gapless. In other words, the reservoir and the memory
modes can exchange occupation without energy cost. This statement becomes explicit in
the Bogoliubov approximation after using 〈m̂0〉 = N − n0 − ∑K

k=1 〈n̂k〉, where N is the
total particle number in the system and K denotes the number of memory modes in the
system:

〈Ĥ〉 = N +
Q∑

k=1
(1 − αn0) 〈n̂k〉 + O (1/n0) . (2.67)

For the critical occupation αn0 = 1 the expectation value of the energy becomes indepen-
dent of the occupation of the critical modes. Therefore, we obtain energetically-degenerate
microstates whose number is in accordance with Eq. 2.9 given by

Ncr = (d+ 1)K , (2.68)
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where d is again the capacity or maximal occupation of each memory mode. Note that
the counting Eq. (2.68) assumes that the total particle number of the system is actually
high enough to populate all these states, i.e. N ≥ dK + 1/α. In case of the total particle
number N being not sufficient, Eq. (2.68) has to be modified.

Therefore, the system described by the Hamiltonian (2.65) features a critical config-
uration accompanied by an enhancement of microstate entropy due to the mechanism of
assisted gaplessness. Next, we shall discuss whether this state is actually dynamically
realized in the presence of a reservoir that can potentially source such configuration. So
the only missing ingredient is the addition of an interaction term that allows for a transfer
of particles between the different modes. We choose following interaction terms

Ĥint =
K∑

k=0
gk

(
b̂†âk + â†

kb̂
)
. (2.69)

with interaction strength gk. We impose the following two conditions on the values of the
coupling parameters. First, the interaction term should not disturb our energy considera-
tions made above since gaplessness and the resulting enhanced memory state space is the
main reason for this study. Since it is bounded as 〈b̂†âk〉 . gkN in the approximation of
large particle numbers, we therefore impose

gkN � 1 . (2.70)

Secondly, since we want all energetically degenerate microstates, whose number is given
by (2.68), are accessible. To ensure this the reservoir has to contain enough particle so the
full memory sector of the Hilbert space can actually be explored. Furthermore, we need
to ensure that no symmetry renders part of the critical Hilbert space unreachable. In case
two or more couplings are identical, e.g. if gk1 = gk2 , the operator Q̂ = (â†

1 − â†
2)(â1 − â2)

represents a conserved charge, i.e. the occupation numbers of âk1 and âk2 are no longer
independent. To prevent this all couplings gk must be sufficiently different to ensure that
each memory mode remains distinct. We can satisfy both conditions by choosing5

gk = 1
N3/2

1√
k + 1

. (2.71)

In summary, we obtain the following Hamiltonian:

Ĥ = m̂+ n̂0 +
K∑

k=1
(2 − α n̂0) n̂k +

K∑
k=0

gk

(
b̂†âk + â†

kb̂
)
. (2.72)

The free parameters of this model are the number of memory modes K, the maximal
distinct occupation states of each memory mode d, the coupling strength α as well as the
total particle number N .

5This scaling is motivated by the results of [62], where it was shown for a specific system that the
energy gap at the critical point scales as εk ∼ n

−1/3
0 . The choice of gk should be such that the energy

due to the interaction term is smaller than the gap of the critical modes.
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2.3.3 Time Evolution
Next we compute the time evolution of this system numerically. The numerical error on
the norm of the time evolved state is bounded by 10−7. For the numerical methods and
details on the simulation see appendix B and [6].

As an initial state we choose an "empty" state in the sense that all particles of the
system are in the reservoir mode b̂ and the other modes are empty.

|Ψ(t = 0)〉 = |N, 0; 0, ..., 0〉 . (2.73)
Moreover, we choose d = 1, i.e., the critical modes are qubits and can be either in the
state |0〉 or |1〉. The motivation of this choice is twofold. First, it facilitates numerical
simulations by reducing the size of the Hilbert space. On the other hand it also has
a physical effect, since it modifies the ratio of critical vs. non-critical Hilbert space in
dependence on the available total particle number. We shall discuss the latter point in
more detail below.

Of primary interest will be the effect of the presence of the (gapless) memory modes âk.
More specifically, we shall study the effect of the existence of a large subspace in the Hilbert
space sourced by a large degeneracy of microstates around the critical configuration αN0 =
1 on the dynamics of the system. To this end, we time evolve the state (2.73) for systems
with different amount of memory modes K. We simulate the time evolution of the system
(2.72) until tmax = 3000. For the coupling strength we set α = 1/6 and the total particle
number N = 15. The time dependence of the expectation value of the number operators
n̂0 and m̂ for exemplary values of K are shown in Fig. 2.9. In the absence of the memory
modes (see Fig. 2.9a) the Hamiltonian (2.72) reduces to a two-mode system and can be
solved analytically. This analytic solution will become of importance later on in section
2.4. Here we only have to observe that the system simply exchanges particles between
the reservoir and the master mode, where the occupations oscillate periodically around
the mean N/2 with maximal amplitude. The maximal amplitude is facilitated by equal
free energy gaps of quanta of the master mode and the reservoir.

However, adding memory modes to the system changes this picture dramatically (see
Fig. 2.9b and 2.9c). After a short transition period which can be interpreted as thermal-
ization, the system settles to a stationary regime that differs from the above behavior
in two key aspects. First, the mean occupation of the master mode becomes critical
(n0 = 1/α) already for relatively small values of K. Secondly, the temporal variance of
its occupation number diminishes significantly and the expectation value remains close to
its critical value for later times. In this sense, the system is attracted towards the critical
occupation of the master mode. Therefore, states of enhanced memory capacity become
attractors of dynamical evolution. This effect is enhanced by increasing the number of
memory modes (see again Fig. 2.9b and 2.9c). However, Fig. 2.9d makes evident that this
effect does not continue indefinitely and starts to diminish above a certain value of K.
In order to quantify this behavior, we compute for different numbers of memory modes
K the temporal mean n0 and the temporal variance δn2

0 of the occupation number of the
master mode:

n0 = 1
n

n∑
j=1

n0(tcut + j∆t) , δn2
0 = 1

n− 1

n∑
j=1

(n0(tcut + j∆t) − n0)2 , (2.74)



2.3 States of Enhanced Memory Capacity as Attractors 43

500 1000 1500 2000 2500 3000
t

5

10

15

n0 & nb

(a) K = 0
500 1000 1500 2000 2500 3000

t

5

10

15

n0 & nb

(b) K = 4

500 1000 1500 2000 2500 3000
t

5

10

15

n0 & nb

(c) K = 8
500 1000 1500 2000 2500 3000

t

5

10

15

n0 & nb

(d) K = 14

Figure 2.9: Real time evolution of the expectation value of the occupation numbers of the
master mode â0 (red) and the reservoir mode b̂ (blue) under the Hamiltonian (2.72) for
N = 15, 1/α = 6 and d = 1 for various number of memory modes K. Towards K = 8, we
observe that the mean occupation of the master mode assumes the critical value n0 = 1/α
and that the temporal variance becomes distinctly smaller. A systematic analysis of this
behavior can be found in Fig. 2.10.
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Figure 2.10: Temporal mean and variance (defined in (2.74)) of the occupation number
of the master mode â0 as a function of the number of memory modes K. We set N = 15,
1/α = 6 and d = 1. The means are observed to be closest to the expected value 1/α = 6
(dashed line) in the range of 8 . K . 12. Likewise, the variance is minimal for 8 .
K . 12, which includes K∗ = N − 1/α = 9, the maximal number of qubits for which the
critical Hilbert space is still entirely accessible. The fitted function (2.75) is displayed in
orange. The value δn2

0(K = 0) = 28.2 is not shown in the plot and also excluded from
the fit.

where j labels the taken samples after time step ∆t. The number of sampling steps
is given by n = (tmax − tcut)/∆t. To be insensitive to the early thermalization non-
stationary regime shortly after t = 0 we exclude early times before tcut. In the following
we set ∆t = 20 which is sufficient since all relevant frequencies are smaller than 1/20.
Furthermore we chose tcut = 500. In Fig. 2.10 we show the result of this analysis.

In the absence of memory modes the mean value of the occupation number of the
master mode is N/2 = 7.5. Starting to add âk modes to the system brings this value closer
to the critical one 1/α = 6. For K & 6 it assumes the critical value up to small deviations
that we expect due to corrections to the Bogoliubov approximation that scale as 1/n0.
Moreover, we observe that the memory modes are not getting highly occupied i.e., the total
occupation number in the memory sector is less than 3. In terms of the variance, we see
that it naturally assumes its maximal value for K = 0 and then decreases significantly for
increasing values of K > 0. The minimal value of the variance is observed in the range 8 .
K . 12 and then increases again forK > 12. This result is expected sinceK∗ = N−1/α =
9 is a special value: It is the maximal number of qubits for which the reservoir mode still
has enough particles to explore the complete critical Hilbert space, i.e., where N is large
enough for all of the critical modes to be occupied while the master mode attains its critical
value n0 = 1/α at the same time. These findings suggest an intuitive interpretation.
Enlarging the memory pattern space increases the attraction towards the critical point
as long as the particle number is big enough to explore the full Hilbert space. Therefore,
the temporal variance only decreases if there are enough particles to maintain the critical
occupation n0 = 1/α and in principle simultaneously explore the complete memory space.
However, as soon as Hilbert space is added that cannot be fully explored, the effect is
reversed. Additional Hilbert space that can not be effectively explored corresponds to
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uncritical Hilbert space, i.e. states that are not accessible at the critical point n0 = 1/α.
Consequently, the addition of uncritical Hilbert space decreases the attraction towards
the critical point and therefore increases the amplitude. In summary, the addition of
accessible critical Hilbert space increases criticality whereas non-critical Hilbert space
decreases it.

In order to quantify the attractiveness of the critical configuration in this interpreta-
tion, we fit the empirically determined variances by a function of the form

f (Ncr,Ntot) = AN −α̃
cr +BN β̃

tot , (2.75)

where Ntot is the total size of the Hilbert space and Ncr is the size of the accessible critical
Hilbert space. The size of the critical Hilbert space is

Ncr = (d+ 1)K (2.76)

for K ≤ K∗, i.e. in the case where the total particle number is sufficient to explore
the complete memory space while simultaneously maintaining criticality. However if the
particle number is insufficient, i.e. K > K∗, Ncr is smaller and in case of qubits, i.e.
d = 1, given by

Ncr (α,N,K) =
N−1/α̃∑
na=0

(
K
na

)
, (2.77)

where the summation variable na is the number of particles that is occupying the memory
modes âk. In contrast to that the size of the complete Hilbert space Ntot is given by

Ntot (N,K) =
N∑

j=0

j∑
na=0

(
K
na

)
. (2.78)

Applying the fit function (2.75) to the data in range 1 ≤ Q ≤ 15 yields the following
values for the parameters6: A = 6.4, B = 6.9 · 10−10, α̃ = 0.64 and β̃ = 1.7. As is evident
from Fig. 2.10, the simple function f describes the result well. However, we are not sure
if a fit of the form (2.75) is successful in general.

We have concluded that criticality is maximized when K is increased to the maximal
value K∗ for which the number of particles N still suffices to simultaneously maintain the
critical occupation of the master mode and all memory modes modes, i.e.,

N∗ = K∗ + 1/α . (2.79)

This is the minimal value of the total occupation number for which the full critical Hilbert
space is still accessible and fully count to the microstate entropy. To isolate the strength
of the attraction to a state of enhanced memory capacity from the technicality of a
sufficiently large particle reservoir we now study the system in which we increase N and
K simultaneously such that Eq. (2.79) is always satisfied. We choose tcut = 1500 for this

6Note we restrict ourselves to the range 4 ≤ K ≤ 15 since we expect our considerations only to hold
if the critical Hilbert space is large enough. For transparency reasons we note that the quality of the fit
increases distinctly by excluding smaller values of K.



46 2. Enhancement of Memory Storage Capacity

6 8 10 12 14 16
K

5.0

5.5

6.0

6.5

7.0

7.5

8.0

n0

(a) Means
4 6 8 10 12 14

K

0.2

0.4

0.6

0.8

δ n0
2

(b) Variances

Figure 2.11: Temporal mean and variance (defined in (2.74)) of the occupation number
of the master mode â0 for the system (2.72) with 1/α = 6 and d = 1 when N and K are
varied simultaneously while satisfying N = K + 1/α. The means can be observed to be
close to the expected value 1/α = 6 (dashed line) throughout. The variance decreases
monotonically. The fitted function (2.80) is displayed in orange. The values for K ≤ 4
are not shown in the plot and are also excluded from the fit.

analysis. The corresponding results for coupling strength α = 1/6 and d = 1 are shown
in Fig. 2.11.

As expected, we now observe a monotonic increase of the pull to the critical config-
uration in the sense that the temporal variance decreases as the critical Hilbert space is
enlarged. As before, we can try to make this statement quantitative by fitting the function

f (Ncr) = AN −α̃
cr , (2.80)

where we only kept the critical part of the Hilbert space since, we provide a large enough
reservoir. This is in accordance with the observation that there is no regime in which
the amplitude increases again. Excluding again smaller K < 4 and fitting in the range
4 ≤ K ≤ 20 yields A = 13.7 and α̃ = 0.96. We conclude that the simple function (2.80)
describes the result well.

We remark that both functions (2.75) and (2.80) describe an exponential dependence
of the temporal variance on the number K of memory modes. This observation commen-
surate with the notion of classicalization. As we have reviewed previously two to many
particle scattering amplitudes are exponentially suppressed. However, classicalizing theo-
ries overcome this suppression with the help of an exponential enhancement due to a large
microstate degeneracy in the final state. Although the amplitude of oscillations and the
transition amplitude are different physical quantities, it is conceivable that an exponential
suppression of the former is connected to an exponential enhancement of the latter.

In conclusion, we have seen that the system will inevitably move towards this state
assuming the critical configuration is physically accessible.
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2.4 Memory Burden
Next we shall discus a very generic feature of systems that exhibit a configuration with a
sharp enhancement of memory capacity. The universal phenomenon of memory burden,
which was first introduced in [74], is the result of the collective backreaction of the stored
quantum formation in the gapless memory modes to the overall evolution of the system,
resisting any deviation from the critical configuration.

2.4.1 General Mechanism
In the last section we discussed how the master mode assisted the memory modes in
becoming gapless. In this section we shall reverse this picture and study how occupation
in the âk modes back reacts to the evolution to â0. To illustrate this we shall consider
first a simple prototype system which we will use as a baseline. Similar to section 2.3 we
shall first consider a system consisting of two modes, â0 which initial (macroscopically)
occupation is N . Additionally, we introduce another mode b̂0 with a number operator
m̂0 ≡ b̂†

0b̂0 and energy gap ε0. For simplicity and without affecting our point we shall
assume the occupation of the b̂0 mode to be initially empty. To facilitate the oscillation
between them we set both gaps equal. To allow for transition between those two modes
we also introduce a coupling with strength C0. The Hamiltonian and initial state for this
simple 2-mode system is given by

Ĥ = ε0m̂0 + ε0n̂0 + C0(â†
0b̂0 + b̂†

0â0) (2.81)

and
|in1〉 = |Nc︸︷︷︸

n0

, 0︸︷︷︸
m0

〉 , (2.82)

respectively. This theory can easily be solved analytically and the system performs free
oscillations with full amplitude N on a timescale set by the inverse coupling constant.
The evolution is described by

n0(t) = N(1 − sin2(C0t)). (2.83)

This solution is illustrated in Fig. 2.12.
Next we shall study how the presence of memory modes can result in a deviation

from this. Note, that we will be mostly interested in a setting where â0 is macroscopi-
cally occupied, roughly speaking, constituting the classical features of the system and an
abundance of entropy carrying memory modes where each one only has very low occupa-
tion numbers. In other words, we shall study how those quantum mechanically behaving
memory degrees of freedom influence the classical evolution (in the mean-field limit).

Therefore, we reintroduce the memory sector and using again assisted gaplessness,
similar to Hamiltonian (2.5), add the aforementioned b̂0 to it with the corresponding
coupling term:

Ĥ = ε0n̂0 + ε0m̂0 +
(

1 − n̂0

Nc

)
K∑

k=1
εkn̂k + C0(â†

0b̂0 + b̂†
0â0) (2.84)
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Figure 2.12: Time evolution of Hamiltonian (2.81) (without memory burden).

First note that this system satisfies particle number conservation or equivalently global
U(1)-symmetries. All n̂k individually and n̂0 + m̂0 commute with the Hamilton operator
Ĥ and are therefore conserved in time. So in this system the occupation of each memory
mode as well as the sum of â0 and b̂0 stay constant for all times.

We shall start with the simplest case. If the memory sector is empty, i.e. all nk = 0 ,∀k
the system reduces to Hamiltonian (2.81) and the time evolution remains unaltered and
is described by plot Fig. 2.12. So let us consider the case with an initial state of the form

|in2〉 = |Nc︸︷︷︸
n0

, 0︸︷︷︸
m0

, n1, . . . , nK〉 , (2.85)

with nk 6= 0 for some or all k. It is evident that Fig. 2.12 can no longer depict the evolution
accurately. Since the system is in the critical configuration n0 = Nc the memory modes are
gapless and regardless of the exact values of the various nk values all states of the form in
Eq. (2.85) are degenerate in energy. However, as soon as n0 = 〈n̂0〉 moves away from the
critical value the âk would reacquire a huge gap. Therefore, due to energy conservation,
any deviation from the initial critical state is highly suppressed whenever there is a high
load of information in the form of occupation in the memory sector. This is the essence
of the memory burden phenomenon. In the following we shall quantify this behavior.

Since the memory burden µ is intrinsically linked to energy conservation and the
change of the effective gaps (2.6) of the memory modes we define the memory burden [2]

µ ≡
K∑

k=1
nk
∂Ek

∂n0
(2.86)

as a measure for the backreaction of the stored quantum information. It quantifies the
unactualized energy cost of the memory pattern in case the occupation of â0 actually
changing. For the particular example of (2.84) the memory burden is given by

µ = −
K∑

k=1
εk
nk

Nc

(2.87)

Since the memory sector is not dynamically active, it is still possible to solve the
system analytically. The time dependence of the expectation value of n̂0 as a function of
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Figure 2.13: Time evolution of Hamiltonian (2.88) (with memory burden).

the coupling strength C0 and memory burden µ is given by [74]

n0(t) = N

1 − 4C2
0

4C2
0 + µ2 sin2

√C2
0 + µ2

4 t
 . (2.88)

Depending on the value of µ the time evolution of n0 can drastically differ. For small
burden |µ| � C0 the solution (2.88) reduces again to (2.83). However, as soon as either
the memory load is high enough of their free gaps εk are sufficiently big, follows C0

µ
� 1. In

that case the original relative amplitude C2
0

C2
0 +µ2 gets suppressed to C2

0
µ2 . This is illustrated in

Fig. 2.13 for exemplary values of the parameters. Thus, the stored quantum information
ties n0 to its initial and critical value. In other words, the system is stabilized around its
point of enhanced memory capacity. This is the essence of memory burden.

2.4.2 Alleviating Memory Burden
It is evident from Fig. 2.13 that memory burden can drastically affect the evolution of a
system of enhanced memory capacity. The universality of this phenomenon suggests that
every such system should be stabilized in its critical configuration and prevented from
decaying or being altered in general. In light of this drastic impact it’s natural to ask if
memory burden can avoided or at least alleviated to some extent.

Inspecting Eq. (2.86), the two important characteristics of memory burden are the
occupation numbers nk in the memory sector and the dependence of their effective gaps
Ek on n0. So on first glance reducing occupation numbers by offloading it to other degrees
of freedom seems like a valid possibility to reduce the burden of memory. However, as
we shall see shortly, this option is severely restricted. To illustrate this point we shall
consider the following Hamiltonian

Ĥ = ε0n̂0 + ε0m̂0 +
K∑

k=1
εkm̂k +

(
1 − n̂0

Nc

)
K∑

k=1
εkn̂k + C0

K∑
k=0

(â†
kb̂k + b̂†

kâk), (2.89)

where we introduced b̂k as the "free" counterparts of âk modes that are not subjected to
mechanism of assisted gaplessness. Their corresponding number operators are give by
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m̂k ≡ b̂†
kb̂k. For the sake of simplicity, we further couple âk and b̂k with the same coupling

constant7 C0 as â0 and b̂0. Limiting ourselves to initial times, so we can assume n0 to be
constant, the solution can be obtained equivalently to (2.84) and the expectation value
of n̂k is given by

nk(t) ' nk(0)
(

1 − 4C2
0

ε2
k

sin2
(
εk

4 t
))

, (2.90)

with nk(0) being the initial occupation in the kth-memory mode. Here, we additionally
assumed C0 � εk. To ensure that gaplessness of the âk is not disturbed too much we
shall restrict ourselves to the case of small couplings. This will be discussed in more
detail in section 2.4.4. Similar to Eq. (2.88) the amplitude of oscillation is suppressed
by

(
C0
εk

)2
. So similar to the memory burden effect for â0 no efficient deviation from the

initial occupation is possible. We will come back to this when we apply those findings to
gravity in sections 3.1 and 3.2.

In all previous examples we have limited ourselves to systems in which total particle
number is conserved. Furthermore, the sum of the occupation in the 0-sector,i.e. n0 +m0,
and in the memory sector,i.e. ∑

k nk + ∑
k mk are conserved separately as well. One

may wonder if this assumption is too restrictive and memory burden can be alleviated
more easily in case of number non-conserving interaction. This, however, is not the case.
Broadly speaking, an efficient offloading of the information is again not possible due to the
relatively large level splitting. Explicit calculations for the case of number non-conserving
interactions can be found in the appendix 2.4.10.

As offloading occupation numbers from the memory sector to external degrees of
freedom is not an efficient process to alleviate memory burden, another approach would
be to modify the effective gap dependence on the master mode. In our prototype example
the effective gaps depend linearly on n0 (see Eq. (2.6)), thus resulting in a relatively
steep effective potential. In other words, a slight deviation from the critical occupation
n0 = Nc quickly re-induces the large gap of the memory modes. However, depending on
the physical system, this effective potential may be more shallow and the dependence may
be non-linear. As a simple extension we shall consider a polynomial dependence and take
the following Hamiltonian

Ĥ = ε0n̂0 + ε0m̂0 +
(

1 − n̂0

Nc

)p K∑
k=1

εkn̂k + C0(â†
0b̂0 + b̂†

0â0) (2.91)

where the only difference to Hamiltonian (2.84) is the newly introduced power p of the pre-
factor in front of the energy gaps of the memory modes. This effectively makes memory
burden a higher order process. In this model the effective gaps (2.6) and the memory
burden (2.86) are

Ẽk =
(

1 − n0

Nc

)p

, µ̃ = p
(
Nc − n0

Nc

)p−1
µ, (2.92)

7Note that couplings to the memory modes are severely restricted themselves to not disturb their
gaplessness. This is discussed in more detail in section 2.4.4
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Figure 2.14: Time evolution of Hamiltonian (2.88) (with delayed memory burden).

where we expressed the memory burden in terms of Eq. (2.87). In comparison with the
original model (2.87) the memory burden gets suppressed by powers of ((Nc − n0)/Nc).
The effective potential is therefore more shallow and slight deviation from the critical
occupation results in a slower increase of the effective memory gaps. The larger p is, the
more the backreaction gets delayed. However, in this setup it is not possible to avoid
memory burden forever. At the critical value µ̃ ∼ C0 backreactions originating from the
quantum information set in and memory burden becomes important for the evolution. At
this critical value we calculate an upper bound on the deviation from criticality Nc − n0,
above which the beack reaction from memory burden cannot be ignored:

Nc − n0 = Nc

(
C0

p|µ|

)1/(p−1)

. (2.93)

For µ > C0, it is clear that the backreaction can no longer be avoided, as soon as the
deviation from criticality if of order of Nc. At this point the system stabilizes. This
behavior is illustrated for specific values of the parameters in Fig. 2.14. At the beginning
n0 follows its free oscillatory evolution, but as soon as memory burden sets in around
half-life time, the system gets stabilized.

2.4.3 Avoiding Memory Burden by Rewriting
Since altering the interaction can only delay memory burden until order half decay at
the best, the only option remaining is to actually get rid of the occupation altogether.
However, as it was discussed at the beginning of this section, a huge level splitting prevents
any efficient particle transfer. Consequently, only degrees of freedom with a similar low
gap can be efficient occupation number acceptors. As it was already introduced in [74],
assisted gaplessness can be used to introduce a second memory sector. This second set
of memory degrees of freedom, which are not occupied in the beginning, are constructed
such that their effective gap vanishes for a smaller value of n0 = Nc − ∆Nc. So whenever
n0 has lost ∆Nc > 0 particles, the first memory sector will reacquire a gap, whereas
this new second sector becomes gapless. We shall introduce this using again an explicit
model. The creation and annihilation operators of this second memory sector shall be
denoted by â′†

k′ and a′
k′ respectively. They satisfy the usual commutation relations (2.1).
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Their number operator is defined by n̂′
k′ ≡ â′†

k′ â′
k′ and their free energy gap is given by

εk′ . The index k′ runs from 1 to K ′. This can be modeled by the following terms in the
Hamiltonian:

Ĥ =
(

1 − n̂0

Nc

)
K∑

k=1
εkn̂k +

(
1 − n̂0

Nc − ∆Nc

)
K′∑

k′=1
εk′n̂′

k′ + . . . (2.94)

where we reverted back to p = 1. In this model, a new set of memory modes â′
k′ , becomes

gapless after n0 has lost ∆Nc particles. At the same time, the old ones âk acquire nonzero
gaps given by Ek = εk(Nc − ∆Nc)/Nc. To facilitate actual transfer of occupation numbers
from the first to the second sector we shall consider the following 2-point interaction
terms:

Ĥ =
K∑

k=1

K′∑
k′=1

Ck,k′(â†
kâ

′
k′ + H.c.) + . . . (2.95)

with Ck,k′ a coupling constant. Note that with this type of interaction the total particle
number in both sectors combined

Nm ≡
K∑

k=1
nk +

K′∑
k′=1

n′
k′ , (2.96)

is conserved. With all necessary components now introduced we can combine them into
a full prototype model:

Ĥ = ε0n̂0 + ε0m̂0 + C0(â†
0b̂0 + b̂†

0â0) (2.97)

+
(

1 − n̂0

Nc

)
K∑

k=1
εkn̂k +

(
1 − n̂0

Nc − ∆Nc

)
K′∑

k′=1
εk′n̂′

k′ (2.98)

+
K∑

k=1

K′∑
k′=1

Ck,k′(â†
kâ

′
k′ + H.c.) (2.99)

+
K∑

k=1

K∑
l=1

C̃k,l(â†
kâl + H.c.) +

K′∑
k′=1

K′∑
l′=1

C̃k′,l′(â′†
k′ â′

l′ + H.c.) (2.100)

where we additionally introduced intra-sector coupling constants C̃k,l and C̃k′,l′ within
each of the two sets of memory modes for the sake of generality. A system described by
Hamiltonian (2.97) has two special sets of states. Similar to (2.5), the first set is given by
states of the form

|Nc︸︷︷︸
n0

, 0︸︷︷︸
m0

, n1, . . . , nk, 0︸︷︷︸
n′

1

, . . . , 0︸︷︷︸
n′

k′

〉 (2.101)

in which the master mode occupation is such that the first memory sector is gapless. As
previously explained, all states in (2.101) are degenerate in energy regardless of the exact
value of nk. In addition to that this model features a second set of states characterized
by

|Nc − ∆Nc︸ ︷︷ ︸
n0

,∆Nc︸ ︷︷ ︸
m0

, 0︸︷︷︸
n1

, . . . , 0︸︷︷︸
nk

, n′
1, . . . , n

′
k′〉 . (2.102)
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In these states n0 = Nc − ∆Nc applies, such that the second sector is gapless, while the
first develops a gap. As long as the first sector is empty, those states have the same energy
regardless of the specific values of n′

k′ . Note that we further require the initial effective
gap of the second memory sector to be greater than the elementary gap of the system

|E ′
k| � ε0. (2.103)

This serves us to ensure that the â′
k′ modes are not gapless to begin with, since we would

have then added them to the âk modes. However, for the following results it is already
enough to require the following weaker constraint to hold:

|E ′
k| � ε0√

Nm

. (2.104)

With this it is energetically possible for the system to avoid the memory burden effect
during decay by offloading the information from the âk modes to the â′

k′ ones. To be
more specific, the system can avoid the backreaction by its memory load by evolving from
the initial state (2.101) into the second critical configuration (2.102) under the constraint
(2.96) that total particle number in the memory sectors is conserved. However, the
absence of energetic restrictions is no guarantee that this transition actually takes place
dynamically. Studying this question will be the subject of the next section.

2.4.4 Bounds on Couplings
Before we discuss the actual time evolution we shall investigate another important point.
Usually, interactions will offset the gaps of the free theory. Since we introduced couplings
to the memory modes within a sector and also to an additional second set of degrees of
freedom, these interactions will result in a disturbance of the small gaps. Since approxi-
mate gaplessness is the sole reason we are interested in these systems to begin with, we
have to make sure that these couplings are small enough to maintain this feature. In
other words, we require that the effective mean gap Eeff stays close to zero also in the
presence of interaction. For the sake of the mildest possible bound we assume that in-
teractions between different memory modes contain both attractive, as well as repulsive
couplings. In this case distributing Nm particles among the critical memory sector can be
interpreted as a 1-d random walk and typically only results in an energy disturbance of√
NmEk. Imposing that this disturbance is smaller than the elementary gap of the system

ε0, we obtain the constraint
Eeff .

ε0√
Nm

. (2.105)

Note that dropping the assumptions of equally distributed plus and minus sign contribu-
tions to the energy results in the stronger constraint Eeff . ε0

Nm
. In the following, however,

we shall assume that at least the weaker bound (2.105) is satisfied. We shall consider
the inter- and intracouplings as distinct cases. We start with the interaction within one
memory sector C̃k,l. We assume that all intra-sector coupling are of the same order. For
simplicity we start with a two mode system. The Hamiltonian can then be written as a
2 × 2-matrix: (

0 C̃k,l

C̃k,l 0

)
, (2.106)
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where we suppressed the operators for better readability. Since we consider modes within
one sector, their gaps on the diagonal should both be zero. Demanding that these gaps
are disturbed by at most ε0/

√
Nm in the presence of interaction, i.e. C̃1,2 6= 0, implies

C̃1,2 .
ε0√
Nm

. (2.107)

To generalize this result to more than two modes we can use Wigner’s semicircle law.
Interpreting the coupling matrices (2.106) as samples of independent and identically dis-
tributed random variables with zero mean and unit variance, their generalization to many
modes belongs to a Wigner Hermitian matrix ensemble. In this situation, Wigner’s semi-
circle law states that the spectral distribution converges and, in particular, it becomes
independent of the dimension K, if the entries of the matrix are rescaled by 1/

√
K. For

proof and details we refer to other works, e.g. [75]. It is therefore sufficient to suppress
the off-diagonal entries of the coupling matrix (2.106) with the appropriate factor

C̃k,l .
ε0√

Nm

√
K
. (2.108)

This ensures approximate gaplessness for the majority of modes even in the presence of
interaction. An alternative route to calculate the bounds on the couplings has been shown
in [73]. The expectation values of the off-diagonal elements in (2.106) scale as NmC̃k,l.
Note that we also assumed here that couplings with positive and negative signs are equally
likely, so that the N2

m nonzero entries result in a contribution on the order
√
N2

m = Nm.
Again, demanding that those contributions are smaller than ε0 requires

C̃k,l .
ε0

Nm

. (2.109)

In case the total occupation is of the same order as the number of modes (Nm ∼ K) this
bound is identical to the constraint (2.108).

The inter-sector coupling can be treated similarly with the crucial difference that the
gaps for different sectors are not the same. Assuming again that all couplings Ck,k′ are of
the same order, we can write the Hamiltonian as

(
0 Ck,k′

Ck,k′ εk∆Nc/Nc

)
. (2.110)

We estimate Eeff ∼ KC2
k,k′N/(εk∆Nc). With that we can estimate the bounds on the

couplings between different sectors

Ck,k′ .

√
ε0εk∆Nc√

KNc(Nm)1/4 , (2.111)

which is milder than the bounds (2.108), since εk ≥ ε0.
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2.4.5 Numerical Time Evolution
As we discussed in section (2.4.1) the only viable option to avoid memory burden is to
offload the information in the critical sector to another set of degrees of freedom which
becomes succeedingly more gapless when the master modes lose constituents. Although
this process is energetically allowed, it is a priori not clear that this happens dynamically.
Unfortunately, the dynamical system described by Hamiltonian (2.97) is not analytically
solvable. Therefore, we shall employ numerical methods to study this system. To simulate
this system on a computer we have to specialize to a particular realization, meaning we
have to choose specific values for the parameters of the model. In light of the applications
of these models to gravity in section 3 we shall apply a few simplifications in accordance
with these systems to reduce the parameter space. First, we set the free gaps of all
memory modes in both sectors to be equal, εm ≡ εk = εk′ . Additionally, we assume that
the couplings between sectors Ck,k′ and couplings within a sector C̃k,l are of the same
order. This allows us to extract a common factor and write the couplings in the form
Cmfi(k, k′), where Cm is a common factor to all couplings and fi(k, l) takes values of
order one and different for every pair of indices k and l. The ladder point is important to
break the exchange symmetry âk ↔ âl. Otherwise both modes describe the same degree
of freedom and could have been removed from the beginning. In the following we choose
|fi(k, l)| ∈ [0.5; 1]. Their exact value is of no importance to our analysis and could in
principle be picked randomly. However, for the sake of consistency and ensure that they
have different values for distinct pairs (k, l), we use the following procedure to assign them
values

fi(k, l) =
{
Fi(k, l) − 1 for Fi < 0.5

Fi(k, l) for Fi ≥ 0.5 (2.112)

where Fi(k, l) =
(√

2(k + ∆ki)3 +
√

7(l + ∆li)5
)

mod 1. Moreover, we set ∆k1 = ∆k2 =
1, ∆k3 = K + 1, ∆l1 = ∆l3 = K + 1 as well as ∆l2 = 1. Note that this system still
conserves (2.96). Also the total occupation in the master mode â0 and its free counter
part b̂0 remains constant during evolution. Therefore also ε0(n̂0 + m̂0) corresponds to a
conserved quantity. Since as initial state we only consider eigenstates of this operator, it
only leads to a trivial global phase and we can omit it. In turn, we will use ε0 as a basic
energy unit. We arrive at the Hamiltonian

Ĥ

ε0
= εm

ε0

(
1 − n̂0

Nc

)
K∑

k=1
n̂k + C0

ε0

(
â†

0b̂0 + b̂†
0â0
)

+ εm

ε0

(
1 − n̂0

Nc − ∆N

)
K′∑

k′=1
n̂′

k′ + Cm

ε0


K∑

k=1

K′∑
k′=1

f1(k, k′)
(
â†

kâ
′
k′ + h.c.

)

+
K∑

k=1

K∑
l=1
l 6=k

f2(k, l)
(
â†

kâl + h.c.
)

+
K′∑

k′=1

K′∑
l′=1
l′ 6=k′

f3(k′, l′)
(
â

′†
k′ â′

l′ + h.c.
) , (2.113)

where we set ε0 = 1 from here on.
To end up with a finite dimensional Hilbertspace to facilitate numerical computations

we truncate the maximal occupation of each memory mode to one. Every âk then repre-
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sents a qubit. In general we shall consider initial states such that the first memory sector
âk is critical and Nm of these modes are occupied. The reservoir mode b̂0 as well as the
second memory sector will start empty. Correspondingly, an initial state is of the form

|in〉 = |Nc, 0, 1, . . . , 1︸ ︷︷ ︸
Nm

, 0, . . . , 0〉 , (2.114)

where we set the occupation number of the first Nm modes in the first memory sector to
1. In the following we shall study how the behavior changes by varying the parameters
of the Hamiltonian (2.113). As a baseline we shall choose the following values

εm =
√

20 , Nc = 20 , ∆N = 12 , K = K ′ = 4 , C0 = 0.01 , Nm = 2 . (2.115)

Note that the Hilbert space grows exponentially in the number of included modes as it is
evident from the microstate entropy consideration (2.9). This severely limits the values
of K and K ′ that can be simulated efficiently on a computer. In this study the highest
number of memory modes in the initial sector considered is K = 8. Choosing parameters
according to (2.115), the only free choice remaining is the overall coupling strength Cm.
This parameter will be of major interest in the following.

2.4.6 Possibility of Rewriting
To compute the time evolution we use a software package based on a Krylov subspace
method. This package allows us to compute expectation values as a function of time with
a rigorous upper bound on the numerical error, i.e. the norm of the difference between the
exact time-evolved state and its numerical approximation. This bound is set to 10−6, with
exception for the large K = 8 system, for which we use 10−5 to increase the feasibility
of simulating large numbers of sample systems. For details on the numeric and specific
implementation we refer to the appendix B or [6]. In this section we consider the system
(2.97) with parameters given by (2.115) and with an initial state of the form (2.114). The
time evolution of the expectation value of n̂0 and ∑k n̂k for different values of the coupling
strength Cm is plotted in Fig. 2.15. In case of no interaction between the two memory
sectors, i.e. Cm = 0, the system simplifies by replacing ∑K

k=1 n̂k → Nm and ∑K′

k′=1 n̂
′
k′ → 0.

The system then has the analytic solution (2.88). This is illustrated in Fig. 2.15a. We
observe that the critical sector is frozen and the amplitude of the oscillation of the master
mode is strongly suppressed due to the memory burden effect introduced in section 2.4.1.

This behavior also continues for many non-zero values of the coupling as can be seen
for an exemplary value in Fig. 2.15b. Although the time evolution of the system becomes
more involved and can no longer be described by the simple solution (2.88), the value of
n0 is basically still tied to its initial value and the critical sectors remain effectively frozen.

There are, however, certain values of the coupling for which the behavior of the sys-
tems changes significantly. For those specific and fine-tuned values the amplitude of the
oscillation between â0 and b̂0 increases distinctly, albeit on a significantly longer timescale
compared to the free oscillation without burden. This is illustrated in Fig. 2.15c and
2.15d for two specific example values. As previously described this oscillation of the mas-
ter mode is facilitated by offloading occupation from the first memory sector to the second
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one. We observe that this diminishing of the memory burden by rewriting the information
from âk to â′

k′ modes can happen either via an instantaneous jump [as in Fig. 2.15c] or via
synchronized oscillations [as in Fig. 2.15d]. Although the exact mechanism behind the two
different behaviors is not clear at this point, both are in line with our statement that n0
can only change significantly, if the memory burden is reduced by offloading information
from the memory sector to other degrees of freedom. Also note that the transition from
state (2.101) to (2.102) is by no means complete. This can be understood by considering
the following aspects. For one, the transition is still suppressed, which we will take a
closer look at in section 2.4.9. Secondly, the state-space volume in the Hilbert space of
superpositions of classes (2.101) and (2.102) is much higher than the number of states of
the individual sets. Roughly speaking, similar to the reasoning in section 2.3, the number
of states consisting of a superposition of states in which either the first or the second sector
is critical outnumbers obviously the number of states in a single sector individually. We
expect that complete rewriting into the second set of memory modes can be facilitated
by adding further sectors, to which the â′

k′ modes can transfer information.
In the following we shall refer to values of the overall coupling Cm for which partial

rewriting is talking place as rewriting values. As we already noted in the beginning of
this paragraph these values are rare and fine-tuned. This can be seen in Fig. 2.16a, where
we plot the maximal amplitude of the expectation value n0 as a function of Cm. In fact
for small values Cm < 1 there exists only a few number of these special values. They
become more frequent for stronger coupling strength, however, we loose gaplessness and
clear distinction between the two different critical configurations blurs so we shall limit
ourselves to the regime Cm ≤ 1. Note that this plot refers to the specific system (2.97) with
parameter choice (2.115). We remark, however, that for other parameter choices, we have
observed much more abundant rewriting values. There are also indications that making
memory burden a higher order process by setting the exponent in (2.91) to p > 1 increases
the abundance of rewriting values. However, we did not perform enough simulations to
make a definite statement about this point.

For the same parameter values we consider the exemplary choice p = 2, where we
made in (2.97) following replacements:

1 − n̂0

Nc

→
(

1 − n̂0

Nc

)2

, 1 − n̂0

Nc − ∆Nc

→
(

1 − n̂0

Nc − ∆Nc

)2

. (2.116)

According to Eq. (2.92) this reduces the memory burden by a factor of approximately
0.03. For this estimate we use that Nc − n0 can get as large as 0.3 for p = 1; see Fig.
2.16a. In order to make both cases comparable we keep the free amplitude of n0 in case
of zero coupling between the memory sectors on the same order of magnitude as for the
p = 1 case. This can be achieved by reducing C0 by the same factor,i.e. set C0 = 0.0003.
The corresponding maximal amplitude plot can be seen in Fig. 2.16b. Apart from the
aforementioned increase in frequency of rewriting values, we observe the same qualitative
behavior as for p = 1.



58 2. Enhancement of Memory Storage Capacity

0 2000 4000 6000 8000 10000
t

19.75

19.80

19.85

19.90

19.95

20.00
n0

0 2000 4000 6000 8000 10000
t

1.70

1.75

1.80

1.85

1.90

1.95

2.00

Σ
k
nk

(a) Cm = 0.

0 2000 4000 6000 8000 10000
t

19.75

19.80

19.85

19.90

19.95

20.00
n0

0 2000 4000 6000 8000 10000
t

1.70

1.75

1.80

1.85

1.90

1.95

2.00

Σ
k
nk

(b) Cm = 0.1.
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(c) Cm = 0.30055.
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(d) Cm = 1.239.

Figure 2.15: Time evolution of the initial state (2.114) for different values of Cm. n0 is the
expectation value of the occupation of the mode â0 and ∑k nk that of the total occupation
in the first critical sector. Time is plotted in units of ε−1

0 ~.
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Figure 2.16: Maximal amplitude of the expectation value of n̂0 for different values of Cm.

2.4.7 Parameter Scalings
After confirming that rewriting does indeed take place dynamically in the system (2.97),
we shall continue to investigate how this behavior quantitatively depends on the parame-
ters of the model. The dependence on the information capacity of the memory sector is of
particular interest for us and will be discussed later in more detail. As a second observable
beside the rewriting value we determine the rate Γ with which n0 can transfer occupation
to m0. We define it as the ratio of the maximal amplitude and the timescale on which
this maximal value is attained. This observable is especially motivated in light of the
application to black hole evaporation, see section 3.2. At this point it can be interpreted
as a general decay rate of a macroscopic system. In the following, we will only consider
p = 1, since preliminary checks indicate no qualitative changes for higher p.

In order to determine how the rewriting values of Cm and the corresponding rates Γ
scale with the parameter X ∈ {Nc, εm, C0,∆Nc, K}, the system has been time evolved
with different fixed X, with the remaining parameters fixed at the values given in (2.115).
For each X-value, the time evolutions have been done for many couplings Cm ∈ [0, 1] (or
a larger interval), where we used a sampling step of δCm = 10−3 or smaller.

We define as a rewriting values the coupling prefactor Cm for which the amplitude of
n0 exceeds the one in absence of inter memory sector coupling,i.e. the case of Cm = 0 by
20%. In case rewriting values cannot be distinguished with regard to our sampling rate,
i.e. they appear as a continuum, we only consider the one with the highest value of Γ.
Since the rate is very sensitive to the coupling strength, we perform time evolutions with
a smaller sampling step of δCm = 5 × 10−5 to map the rewriting value more accurately.
Finally, we select the point with the highest rate. This choice is again motivated by our
application to black hole evaporation later on.

The scalings for the rewriting values Cm and the decay rate Γ are as follows:

1. Nc scaling:
To distinguish the effect of this parameter from the distance between the two mem-
ory sectors, we simultaneously vary ∆Nc such that Nc/∆Nc stays fixed. The de-
pendence on the critical occupation Nc,i.e. the occupation number at which the
first memory sector becomes gapless, is illustrated in Fig. 2.17. The data points
from simulations are given in blue. To extract the scaling of the rewriting values
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we fit a function of the form fC(Nc) = a(Nc

22 )−b to the data. The function param-
eters are fitted to a ≈ 0.275 and b ≈ 0.911. For the rate Γ we chose the function
fΓ(Nc) = A(Nc

22 )−B, with the fit result A ≈ 4.46 × 10−5 and B ≈ 1.14. These fit
functions are plotted in orange in Fig. 2.17. Therefore, the scaling with regard to
Nc is approximately given by

Cm ∼ N−1
c , Γ ∼ N−1

c . (2.117)

2. εm scaling:
To determine how Cm and Γ scale when varying the free gap εm we plot the numerical
data in Fig. 2.18. We fit a function of the form fC(εm) = aεm, with the fit result
a ≈ 0.300. According to the data Fig. 2.18b the rate Γ is in good approximation
independent from the value of the free gaps. The free gap of the memory modes εm

scaling is:
Cm ∼ ε1

m , Γ ∼ ε0
m (independent) . (2.118)

3. C0 scaling:
The data used to determine the scaling with C0 is illustrated in Fig. 2.19. Within
our precision and purpose, we observe no dependence of the rewriting values on the
coupling between â0 and b̂0. It is negligible compared to the scaling with the other
parameters. To determine the scaling for the decay rate we fit fΓ(C0) = ACB

0 to
the data. The fit results in A ≈ 2.85 × 10−2 and B ≈ 1.38. The scaling with the C0
coupling is given by

Cm ∼ C0
0 (independent) , Γ ∼ C1.4

0 . (2.119)

4. ∆Nc scaling:
The dependence of the occupation number distance between the two memory sectors
∆Nc is illustrated in Fig. 2.20. The abundance of rewriting values complicates
determining the actual scaling. For this reason we select data points for which a
scaling is apparent. For the function fC(∆Nc) = a(∆Nc

12 )b, this fit indicates a ≈ 0.300
and b ≈ 0.207. Another scaling behavior can be extracted with b ≈ −0.130. The
rate Γ is determined by using the fit function fΓ(∆Nc) = A(1 − B∆Nc

20 ). The fit
parameters are estimated to A ≈ 1.38 × 10−4 and B ≈ 1.07. The ∆Nc scaling is
observed to be

Cm ∼ (∆Nc/Nc)0.2 , Γ ∼ (1 − ∆Nc/Nc) . (2.120)

5. K and K ′ scaling:
Next we shall study the scaling with regard to the amount of memory modes K
and K ′. Unfortunately, due to limited numerical resources we can only study three
values, namely K = K ′ = 4, 6, 8. In the following we assume that the first sector
is initially half filled, so Nm = K/2. The motivation for this is twofold. First, this
corresponds to be the most probable state in the limit of large macroscopic systems
and assuming that the cases nk = 0 and nk = 1 are equally likely. This is again



2.4 Memory Burden 61

14 16 18 20 22 24 26
Nc0.0

0.2

0.4

0.6

0.8

1.0
Cm

(a) Rewriting values of Cm.

14 16 18 20 22 24 26
Nc

4.×10-5

6.×10-5

8.×10-5

Γ

(b) Rates Γ at those rewriting values.

Figure 2.17: Data and fits for the rewriting values of Cm and the rates Γ as function of
Nc. ∆Nc has been varied to keep Nc/∆Nc fixed.
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Figure 2.18: Data and fit for the rewriting values of Cm and the rates Γ as function of εm.

important for applying these results to gravity. On the other hand, it dampens the
effect of varying Nm since the ratio K/Nm remains constant when varying K.
The numerical results are displayed in Fig. 2.21. We parameterize the rewriting
values and rate as

Cm ∼ KβC , Γ ∼ KβΓ . (2.121)

Note that because we only have access to limited data points we cannot make precise
statements here and the correct values for βC and βΓ might differ significantly. To
emphasize this we plot the fit function in dashed lines. The rough estimate for the
parameters are

βC ≈ 1 , βΓ ≈ −1 . (2.122)

2.4.8 Efficiency of Rewriting - Numerical Results
It is apparent from the real time plots 2.15c and 2.15d that the memory burden can actu-
ally (partially) overcome by transferring occupation from the first to the second memory
sector. However, there is still large backreaction to the time evolution of the master mode
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Figure 2.19: Data and fits for the rewriting values of Cm and the rates Γ as function of
C0.
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Figure 2.20: Data and fits for the rewriting values of Cm and the rates Γ as function of
∆Nc.
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Figure 2.21: Data and fits for the rewriting values of Cm and the rates Γ as function of K.
The orange curves correspond to the fit of the mean values (red squares) with a function
given by Eq. 2.121 with parameters 2.122. The fit is plotted in dashed lines to emphasize
the large statistical uncertainty.
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in form of a severe slow down compared to the free oscillation (with a time scale set by
C0) in case of absence of memory burden. In the following we shall investigate if rewriting
is indeed a viable option to alleviate memory burden in larger systems and how much the
decay is slowed down with increasing number of memory modes. Unfortunately, due to
limited available data we can’t extract a reliable scaling when varying K. However, we
can at least try to constrain rewriting, i.e. give a lower bound on Cm and an upper bound
on Γ. To this end, we calculate the mean value of Cm for the 11 data points at K = 6. In
order to obtain a maximally conservative bound, we moreover choose among the results
for K = 8 the 11 data points with the lowest values of Cm and compute their mean.
Performing a fit with the two resulting mean values, we get

βC & −0.7 . (2.123)

We have not included the value at K = 4 since doing so would increase βC . For the rate
Γ we will adapt a similar procedure and try to be as conservative as possible. Equivalent
to the rewriting values we average over the 11 data points at K = 6. At K = 8 we choose
the 11 data points with the highest rate and compute their mean. Performing a fit over
the value at K = 4 and those two obtained as described above we obtain

βΓ . −0.7 . (2.124)

Note that we have not excluded the value at K = 4, in this case since thous would decrease
βΓ. As with the fit value in Eq. (2.121) the statistical significance of these results is far
too low to make any reliable statement, so the true values might not respect the bounds
(2.123) and (2.124). So, although we can not give reliable numbers, we observe clear
indications that rewriting becomes more difficult for larger systems.

2.4.9 Efficiency of Rewriting - Analytic Considerations
To increase the credibility of the numerical result from the last section we shall provide
analytical estimates on the process of rewriting in the following. To simplify computation
we specialize to a system with K = K ′ and assume each set of memory modes to be
diagonal and also come with equal energy gaps. Therefore we set C̃k,l = C̃k′,l′ = 0 and
εk = εk′ =

√
Ncε0. Then, without any loss of generality, the matrix Ck,k′ can be set

diagonal, since we can always achieve this with a unitary transformation that leaves the
physics unchanged. Our prototype system (2.97) then simplifies to

Ĥ = ε0n̂0 + ε0m̂0 + C0
(
â†

0b̂0 + b̂†
0â0
)

+ E
∑

k

n̂k + E ′∑
k

n̂′
k +

∑
k

Ck,k

(
â†

kâ
′
k + h.c.

)
,

(2.125)

where the operators for the effective gaps for the first and second memory sector are given
by

E ≡
√
Nc

(
1 − n̂0

Nc

)
ε0 , and E ′ ≡

√
Nc

(
1 − n̂0

Nc − ∆Nc

)
ε0 , (2.126)
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respectively. Again, we shall be interested in initial states of the form (2.101). For this
state the master mode has a critical occupation and the effective gaps are given by

E = 0 , E ′ ' −∆Nc√
Nc

ε0 < 0 . (2.127)

Since the second gap is negative, there exist states with much lower energy than the initial
one (2.101). A particular extreme example would be

|low〉 = |Nc︸︷︷︸
n0

, 0︸︷︷︸
m0

, 0, . . . 0, n1︸︷︷︸
n′

1

, . . . , nK︸︷︷︸
n′

K

〉 , (2.128)

where all information is transferred from the first to the second sector while keeping the
occupation in the master mode constant. The macroscopic energy difference between the
initial state (2.101) and (2.128) is

〈low| Ĥ |low〉 − 〈in| Ĥ |in〉 = E ′∑
k

nk ∼ ∆Ncµ , (2.129)

where we wrote the energy difference in terms of the memory burden

µ = −ε0
∑

k

nk√
Nc

. (2.130)

Since µ is negative, the energy difference (2.129) is negative as well. To avoid confusion we
stress that all considered systems including (2.125) is energy conserving, so a transition
from (2.101) to (2.128) is energetically forbidden. The important point here is that
deforming |in〉 in the direction of |low〉, i.e. transferring occupation from âk to â′

k′ without
altering the value of n0, results in a negative energy balance. On the other hand of course,
there are states with much higher energy. For example:

|high〉 = |Nc − ∆Nc︸ ︷︷ ︸
n0

,∆Nc︸ ︷︷ ︸
m0

, n1, . . . , nk, 0︸︷︷︸
n′

1

, . . . , 0︸︷︷︸
n′

k′

〉 . (2.131)

For this specific state the effective gaps (2.126) are

E ' ∆Nc√
Nc

ε0 > 0 , E ′ = 0 . (2.132)

Therefore, the energy difference between the initial state and |high〉 is

〈high| Ĥ |high〉 − 〈in| Ĥ |in〉 = E
∑

k

nk ∼ ε0
∆Nc√
Nc

∑
k

nk , (2.133)

which is a positive number. So by reducing the occupation of the master mode without
offloading the memory burden, we create an energy imbalance in positive direction. It
is then clear that by simultaneously deforming the initial state in both |low〉 and |high〉
direction, such that the exchange of the occupation number between the sets nk and n′

k′

is balanced by the exchange between n0 and m0, we obtain intermediate states that are
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nearly degenerate with |in〉 state. Therefore, it seems possible that rewriting is a valid
option to overcome memory burden [2], [74]. However, this is in contrast to the numerical
results in section 2.4.8. There we found that although it is possible to deviate from the
critical configuration by offloading information, the backreaction due to the burden is
still strong, thus resulting in a suppressed amplitude and severely diminished rate. The
reason for this can be easily traced back to the following. To maintain the energy balance
the trajectory in state space requires a synchronized evolution of both the master mode,
as well as the memory sectors. These sets have to produce opposite contributions to the
energy budget such that the net difference is zero. However, each of those two evolutions
has a highly suppressed amplitude due to the huge energy splitting. This breaks the
process and is the reason why the system cannot evolve efficiently. To illustrate this let
us consider the early time evolution of the system (2.125) in the initial state (2.114). Near
t = 0 the system can be described as a set of coupled 2 × 2-problems of the form

Ĥ =
∑

k

( âk â
′
k

â†
k 0 Ck,k

â
′†
k Ck,k E ′

)
+

( â0 b̂0

â†
0 ε0 + µ C0
b̂†

0 C0 ε0

)
. (2.134)

The subsystems of modes with index 0 and those with k and k′ respectively are coupled
via the occupation dependency of the effective gap E ′ and the memory burden µ. This
interdependence on each other makes this system difficult to solve. However, since our
goal is to only obtain a qualitative picture on the behavior for early times, we can solve
this system iteratively. In this zero order approximation we evolve those two subsystems
independently by holding E ′ and µ constant for each iteration steps. The (â0, b̂0) and
(âk, â

′
k′) subsystems are coupled via E ′ and µ, which depend on n0 and ∑k nk respectively.

To extract the qualitative behavior for early times we solve the system (2.134) iteratively
by succeedingly holding one subsystem constant. Therefore, µ and E ′ can be treated
as constant for each iteration in this zeroth order approximation. We then evolve the
decoupled systems in the first order by taking into account the variations of the occupation
numbers obtained in the zeroth order. To leading order we have

δn0 ∼ −Nc
C2

0
µ2 and δnk ∼ −

C2
k,k

E ′2 . (2.135)

Since the variation of E ′ and µ are of higher order and extremely small, their variation
is negligible in the next iteration. Therefore, we can assume within one timestep that
K = Nc = ∑

k nk. Furthermore, we have to take into account the bound C0 . ε0/
√
Nc,

which shall be of special importance in the black hole case (see section 3.2), as well as the
condition (2.105), which ensures that gaplessness is not disturbed too much. This yields

C2
k,k

E ′ .
ε0√
Nc

. (2.136)

The variation of for the effective gaps and memory burden are given by

δµ

µ
.

ε0√
NcE ′ and δE ′

E ′ ∼ 1
∆NcNc

. (2.137)
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Remembering the condition on the effective gaps of the second sector at the beginning
of evolution, see Eq. (2.103) or (2.104), we get a lower bound on |E ′|. To be as less
restrictive as possible we choose the softer bound (2.104). This is already sufficient to
conclude that the iteration series rapidly converges. We see that the time evolution is
such that the system is essentially trapped in the initial state. As a side remark we note
that by assuming an equal distribution of plus and minus signs in the interaction terms,
(2.136) acquires an additional factor 1/

√
Nc.

2.4.10 Role of Number Non-Conservation
Up until now we only considered systems that exhibit total particle number conserving
interaction. We shall discuss that this assumption is not to restrictive. In the following
we see why particle conservation is by no means the reason for the inefficiency of rewrit-
ing. For the sake of clarity, let us consider the subsystems (â0, b̂0) and (âk, â

′
k′) again

independently.

Number non-conserving decay of the master mode

We start with considering a non number conserving interaction between the master mode
â0 and the external mode b̂0. For simplicity we neglect the dynamics of the memory
sector and assume a constant memory burden µ. This system is then described by the
Hamiltonian

Ĥ = (ε0 + µ)â†
0â0 + ε0b̂

†
0b̂0 + C0(â0b̂0 + â†

0b̂
†
0) , (2.138)

where we have taken the parameter C0 to be real and of the same strength as in the
number-conserving version to make a comparison between the two cases possible. Since
our most interesting application of the memory burden effect will be black hole evaporation
we shall assume C0 ∼ ε0/Nc. This is motivated by the fact that in the black hole picture
this corresponds to half-decay time of t ∼ Nc/ε0 in units of the energy of the Hawking
quanta. This imitates the scaling of the black hole lifetime at the level of our toy model.
As discussed in section 2.2, a system of the form (2.138) can be brought to diagonal form
by a Bogoliubov transformation:

â0 = uα̂− vβ̂† , b̂0 = uβ̂ − vα̂† , (2.139)

where α̂ and β̂ are the eigenmodes and

v2 = 1
2

 1√
1 − 4C2

0
(2ε0+µ)2

− 1

 , u2 = 1
2

 1√
1 − 4C2

0
(2ε0+µ)2

+ 1

 . (2.140)

Employing the black hole parameters again the full memory burden µ ∼ −ε0
√
Nn. Taking

into account that C0 ∼ ε0/Nc, Eq. (2.140) gives,

v2 ' C2
0
µ2 ∼ 1

N3
c

, u2 = 1 + O(1/N3
c ) . (2.141)
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We can read off that the depletion coefficient v2 is miniscule due to an extra 1/Nc sup-
pression due to the memory burden factor ε0/µ. This is exactly the same suppression
that we also found in the number conserving case, see Eq. (2.88).
Another way to see that number violating interaction is no shortcut to get rid of mem-
ory burden is by applying the Bogoliubov approximation in case for a macroscopically
occupied master mode. In this case we can replace operators of the â0 mode by their
respective expectation values again, namely â0 →

√
Nc and â†

0 →
√
Nc. The Hamiltonian

(2.138) then becomes

Ĥ = ε0b̂
†
0b̂0 + C0

√
Nc(b̂†

0 + b̂0) , (2.142)

where we discarded the constant and terms that are smaller than 1/
√
Nc. This is self-

consistent as long as the departure of â0 from
√
Nc is small. Using the canonical trans-

formation
b̂0 = β̂ − C0

√
Nc/ε0 , (2.143)

the Hamiltonian (2.142) can be diagonalized. Furthermore, the occupation of the b̂0 mode
in the β vacuum can be easily computed:

〈b̂†
0b̂0〉 = C2

0Nc

ε2
0

. (2.144)

Thus, depletion is still suppressed by C0. It is clear that as long as the m0 is small and
the inverse processes that increase the occupation number of â0 are not effective, the
nature of the interaction if not important. Regardless of whether the mixing is number
conserving or not, any deviation from the critical occupation is severely restricted. Note
as well that higher order decay processes also do not allow for the memory burden effect
to be alleviated efficiently. Terms of the form â0b̂

l
0, converting a single â0 quanta in l b̂0

ones are negligible, since each extra b̂0 operator brings an additional factor of 1/
√
Nc in

the interaction vertex. Thus each of these terms scales as ε0/N
l/2
c .

Number non-conserving decay of memory modes

Next we shall show that our reasoning still hold true, when we allow reducing occupation
numbers in the memory sector via non-conserving interactions. Note that if we drop the
requirement of particle number conservation, it is in principle possible that a tachyonic
instability emerges in case that one of the effective gaps becomes negative. This is es-
pecially the case if p = 1, see Eq. (2.92), as it was assumed in the previous sections. In
the following we shall assume that gaps are always positive, so the system is stable and
to avoid mixing the notion of instability with the alleviation of memory burden. This
imposes a constraint on the structure of the Hamiltonian, which we will take into account
in the following.

Similar to (2.138) let us consider a non-number conserving mixing in the memory
sector

Ĥ = Ekn̂k + Ek′n̂′
k′ + +Ck,k′ (âkâ

′
k′ + h.c.) . (2.145)
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Again, we only consider one-to-one mode coupling to simplify calculations and make our
illustration more clear. Neglecting for a moment the dynamics of the energy gaps reduces
the system to a set of independent 2 × 2 problem. The exact form of the energy gaps Ek

and Ek′ is not important for our reasoning. The only requirement (besides positivity) we
shall assume in the following is that they alternatively become zero for two specific and
macroscopically distinct values of the occupation number of the master mode. Therefore
we require

Ek = 0 , Ek′ � ε0, for n0 = Nc,

Ek′ = 0 , Ek � ε0, for n0 = Nc − ∆Nc. (2.146)

For example, we can choose

Ek ≡
(

1 − n̂0

Nc

)
εk , (2.147)

as before, and for Ek′ assume one of many possible shapes, e.g.,

Ek′ ≡
(

1 − n̂0

Nc − ∆Nc

)2

εk′ or Ek′ ≡
(

n̂0

Nc − ∆Nc

− 1
)
εk′ . (2.148)

Even a gap function such as Ek′ ≡
(
1 − Nc−∆Nc

n̂0

)
εk′ for example would be admissible, since

we are not restricted by renormalizability and only interested in the regime of n0 � 1 in
this context. Let us reiterate the point that we want to treat the number conserving and
non-conserving case on equal footing. Therefore, we choose the coupling strength to be
of similar order. Specifically, we require that it is small enough to not disturb gaplessness
leading to condition (2.136). Now, let us recall that the reason why the depletion of the
gapless memory modes in the particle number-conserving case (2.97) was not efficient, is:

• Relatively large level-splitting: ∆E = Ek′ − Ek

• Suppressed mixing coefficient Ck,k′ .

As long as these conditions are maintained, the behavior of the system does not change
significantly irregardless of the nature of interaction. Equivalent to solving the system
(2.138) we can also use a Bogoliubov transformation,

âk = uα̂k − vβ̂†
k′ , â′

k′ = uβ̂k′ − vα̂†
k , (2.149)

with

u2 = 1 + v2 , v2 = 1
2

 1√
1 −

4C2
k,k′

(Ek+ Ek′ )2

− 1

 . (2.150)

Next, taking into account Eqs. (2.136) and (2.146), we obtain for the first critical occu-
pation n0 = Nc

v2 ∼
C2

k,k′

(Ek′)2 � ε0√
NEk′

, u2 ' 1 . (2.151)
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Again we end up with a highly suppressed rate. This rate is negligible and of no help
for alleviating the memory burden on any reasonable timescale. Let us conclude this
discussion by noting that equivalent to the previous case, higher order operators cannot
improve the situation due to extra suppression by powers of 1/Nc.

As we have seen in both subsystems, number non-conserving mixing cannot help to
get rid of memory burden more effectively than number conserving interactions. It is im-
portant to be aware of the fact that memory burden is a relative effect. This phenomenon
results in a delay of the otherwise unperturbed time evolution due to the backreaction of
the stored quantum information. It is therefore an effect which is intrinsically quantum.
Due to its relative nature one has to compare the time evolution of both with and without
quantum information and corresponding memory burden in order to quantify the effect.

Above we have considered a specific example which we have normalized such that the
system looses half its constituents in case of absence of memory burden on a timescale
set by Nc. Note that we have measured time in units of the elementary gap ε0. This
choice is motivated by black hole physics to which we shall apply these results in section
3. At this point for understanding memory burden in general the precise normalization
is not important. The chosen half-decay time Nc fixes the interaction strength of the
coupling between â0 and b̂0, which is responsible for the transfer of occupation number
away from the master mode. Within our frame it is also responsible for the macroscopic
or classical evolution of the system. Let us now turn to the analogue system with a full
memory sector such that the memory burden is maximal. First let us assume that the
system exhibits only particle number conservation interaction. In this case we saw both
numerically in section 2.4.5 and analytically in section 2.4.9 that memory burden sets in
at the latest after half life time, the time scale after the master mode has lost of order
half its constituents. Whenever the stored quantum information starts backreacting, the
leakage of master mode occupation to the environment is stopped and the system gets
stabilized. In this subsection we studied, if the assumption of particle number conserving
interaction is the cause for the inevitability of avoiding memory burden. The answer to
that question is negative since, regardless of the nature of interaction, the requirement
that gaplessness needs to be maintained severely restricts the coupling strength among the
memory modes and also to possible external fields. This restriction is enough to prevent
any efficient offloading of the information out of the memory sector, which in turn makes
memory burden impossible to avoid on long enough timescales.

The fact that it makes no difference in regard to offloading whether we assume/use a
number conserving or a number non-conserving system, can also be seen from a different
perspective. The initial state is critical and the memory modes carry at least a typical
information load whereas the environment and the second memory sector are empty due to
their large free gaps. We are interested in the possibility to avoid the burden by offloading
particles off the âk modes by coupling them to some other modes. This interaction can
either be number conserving or not. The only difference is the number of particles that
would be created by annihilating one quantum of âk. However, a critical observation is
that within the allowed range of values for the coupling strengths the other sectors never
get populated significantly on any reasonable timescale. This implies that on average the
inverse process can not play any role whatsoever in the dynamics. Therefore, the total
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number conservation is irrelevant for the phenomenon of memory burden. So it makes
no difference for an observer of the âk-sector which kind of interaction is responsible for
the decay. It is simply not possible to determine the kind of interaction, since the inverse
process. which would allow do differentiate the conserving from the non-conserving one,
is not observable.

2.5 Summary
Before we continue and apply all the concepts discussed above to gravitational systems
and quantum neural networks we shall briefly summaries our findings. In this chapter we
started section 2.1 by introducing the concept of systems of enhanced memory capacity.
These are systems that exhibit critical configurations around which an abundance of
(nearly) gapless degrees of freedom emerge. This is equivalent to a macroscopic state
with an enhanced microstate entropy. We discussed a dynamic mechanism that ensures
the existence of such a special state in the spectrum. This mechanism, which we call
assisted gaplessness, relies on a weakly attractive interaction between a large set of modes
and a macroscopically occupied master mode. Due to the special signature of the coupling
increasing the occupation number of the master mode assists the other modes in lowering
their effective gap until a critical occupation is reached at which they become gapless.

Next, we introduced the C-number method, as a robust procedure to find gapless
modes in a system that exhibits large occupations and a weakly attractive interaction
among at least some modes in section 2.2. If the energy landscape is non trivial, this
method simplifies the task of finding flat directions corresponding to gapless degrees of
freedom compared to the computationally intense task of full diagonalization. We applied
this method to a 3-mode prototype system and confirmed the existence of gapless modes
via their slow time evolution.

Although such states of enhanced memory capacity seemed to be extremely special
and selectively prepared at first glance, we confirmed that system exhibiting those state
actually evolve dynamically towards them. Provided that external constraints like energy
or momentum conservation do not prohibit it, the system will move towards a state at
which an enlarged portion of the Hilbert space opens up due to the emergence of an
abundance of microstates. In section 2.3 we quantified the attraction with the proportion
of critical Hilbert space in relation to whole Hilbert space.

In section 2.4 we discussed a very general feature of states of enhanced memory ca-
pacity. They are subject to the universal phenomenon of memory burden that resists
any deformation from the critical configuration. Since the memory modes, which we have
denoted by âk, are gapless due to a specific occupation of the master mode, any deviation
from this critical number would reintroduce a gap for the memory modes. This creates
a force that basically ties the system to its initial critical state. Next we analyzed if this
drastic effect on the evolution can be avoided by alleviating or removing the memory
burden. Since a direct offloading to generic degrees of freedom is not efficient enough
due to a large level splitting, we studied the offloading of information stored in memory
modes âk to another sector â′

k′ which is also subject to assisted gaplessness and therefore
approximately gapless. We call this process rewriting. However, although this mechanism
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is indeed suitable for reducing the memory load by transferring occupation, our results
indicate that it is still not nearly efficient to avoid backreaction altogether. During rewrit-
ing we observed a severe slow down of evolution compared to the free case in the absence
of a memory load.
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Chapter 3

Application to Gravity and Neural
Networks

This chapter is devoted to the study of quantum informational properties of black holes
and de Sitter spacetime. We focus on the enormous Bekenstein and Gibbons Hawking
entropy of black holes and de Sitter respectively and discuss possible implications of this
high memory capacity to the evolution of these gravitational systems. Furthermore, we
also apply our findings on systems that exhibit states of enhanced memory capacity to
quantum neural networks.

As we have pointed out in the introduction in section 1.4 and 1.3, de Sitter spacetime,
as well as black holes, saturate the Bekenstein bound. This means they are primary
examples for systems of enhanced microstate entropy. We shall therefore apply the concept
of assisted gaplessness, as well as memory burden, to those particular systems. Moreover,
we shall see that this also applies to certain quantum neural networks as well.

In the first section 3.1 we only assume the well established fact that de Sitter exhibits
an enhanced microstate degeneracy due to its Gibbons-Hawking entropy. Since de Sitter
experiences loss of quanta during the process of Gibbons-Hawking evaporation, it is a
natural assumption that the internal state changes and therefore moves away from the
critical configuration. This leads to a memory burden effect.

In section 3.2 we study the effect of memory burden due to the large entropy of a black
hole in combination with Hawking evaporation. Since the black hole mass is a continuous
parameter it is imaginable that memory burden can be avoided with the help of rewriting.
We shall see, however, that it is not efficient enough to maintain the semi-classical rate.

In section 3.3 we study the phenomenon of assisted gaplessness in (quantum) neural
networks. We discuss a possible dictionary between neural networks consisting of neurons
and their synaptic connections and a Hamiltonian consisting of quantum oscillatory modes
and the interactions between them.

This chapter is based on paper [1], which is joint work with Gia Dvali and Sebastian
Zell, as well as the papers [2] and [4], which is joint work with Gia Dvali, Lukas Eisemann
and Sebastian Sell. The section 3.1 follows [2]. The section 3.2 follows [4]. The last
section 3.3 is based on [1].
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3.1 De Sitter Spacetime
We have discussed in the introduction 1.4 that de Sitter spacetime is a primary example for
a system of enhanced memory capacity due its Gibbons-Hawking entropy which similar to
a black hole saturates the Bekenstein bound [71]. Therefore, if this quantum informational
property can be captured by the general mechanism discussed in section 2, de Sitter can
not escape the effect of memory burden first introduced in [74] and which we thoroughly
discussed in section 2.4. The information stored in the memory modes of de Sitter can
literally be viewed as its primordial quantum memory.

3.1.1 Memory Burden of de Sitter
Let us now apply our findings on memory modes to the specific case of de Sitter spacetime.
It is well established that it exhibits an enormous entropy [20] saturating natures absolute
limit on the information capacity of a physical system. We shall denote this entropy by
S. This means that de Sitter can be in ∼ eS distinct microstates or equivalently that
there are of order S nearly gapless degrees of freedom in the spectrum on top of this
background. Following the multi-particle interpretation put forward in [24], we can adopt
the premise that a mechanism similar to assisted gaplessness also exists in the scope of
gravity and causes this enhanced microstate entropy. This means that a macroscopically
occupied mode, which we here shall also refer to as â0 here, assumes a particular critical
value Nc for which a large set of modes âk with k = 1, 2, . . . , S becomes gapless. In the
following we write their particle number operator with n̂0 and n̂k respectively. We can
write this similar to Eq. (2.5) in the form of a Hamiltonian depending on the effective
gaps of the memory modes Ek = Ek

(
n0
Nc

)
and the occupation number of the individual

memory modes. We write
Ĥ =

∑
k

Ekn̂k . (3.1)

Note that for simplicity we have set the gap of the â0 mode as ε0 = 0. The effective gaps
are such that they collapse, whenever the critical occupation is attained, i.e. n0 → Nc.
However, they are non-zero for generic occupation numbers of the â0 mode. In the critical
configuration n0 = Nc the memory modes âk become (approximately) gapless and can be
excited at zero (very low) energy cost. Consequently, different patterns of the form

|pattern〉 ≡ |n1, n2, ..., nS〉 . (3.2)

become degenerate in energy and fit in an infinitesimal energy gap. The entirety of those
states shall be called the memory space. All of the states are distinct from each other
via their specific values nk, therefore counting to the microstate entropy for a specific
macrostate, which is characterized in this system by the macroscopic value of n0. Assum-
ing a cutoff d for the maximal occupation the number of different states is given by dS. In
particular, the number of states scales exponentially with the entropy S. The mechanism
of assisted gaplessness is therefore sufficient to reproduce a microstate entropy that scales
as S.

However, we have seen in section 2.4 that such a system inevitably experiences the
effect of the burden of its memory. De Sitter has a large entropy, which means that
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a large number of modes becomes gapless due to the critical value for n0 through the
mechanism of assisted gaplessness. Any deviation from this critical configuration would
reintroduce an effective gaps for the memory modes of de Sitter. In this case the quantum
information stored in a memory pattern would become very costly in energy. To prevent
this, the quantum information backreacts on the decay and tries to tie the system to its
initial critical state in the form of the memory burden effect. We suggest that because
of the very general nature of this phenomenon, it must also be applicable to de Sitter.
This provides a quantum clock in the form of a memory burden of a primordial pattern
encoded in the memory modes of de Sitter. It is exactly those modes that account for its
Gibbons-Hawking entropy. Due to the generality of our arguments and the universality of
the phenomenon, which should apply to all systems that exhibit an enhanced microstate
entropy, we actually do not require a precise microscopic understanding of these degrees
of freedom. Furthermore, the classical evolution governed by Einstein’s equation cannot
affect the information stored in them, since they are intrinsically quantum. Therefore, the
pattern cannot be erased by inflation and is only revealed after a long enough timescale
due to cumulative quantum effects. Because memory burden is intrinsically quantum in
nature, its effects can not be captured by any classical or semi-classical analysis. There-
fore, any classical description breaks down after the point when the memory burden
becomes unbearable. Our interpretation is that the memory overburden effect is a quan-
tum information characteristic that accompanies the phenomenon of quantum breaking
of de Sitter described in [24], [31], [34].

A very interesting aspect of these conclusions is that they provide a mechanism that
potentially opens a new observational window into a pre-inflationary Universe. This
would notably imply the possibility of catching a glimpse into the Universe’s beginning,
even before that last 60 e-foldings. This effect becomes more visible the closer the end of
inflation is to its quantum break time, since the backreaction to the classical evolution due
to the stored quantum information becomes increasingly stronger. This reversed situation
is very intriguing, since pre-existing information usually gets readily washed out during
the subsequent de Sitter phase. It would be an intriguing endeavor to search for these
primordial imprints in cosmological observables.

3.1.2 Quantum Breaking of de Sitter

In the last section we discussed that a classical description of the time evolution of de
Sitter cannot be accurate forever due to the memory burden effect. This fully agrees with
the results in the composite picture of gravity proposed in [24]. As we have mentioned
above, the quantum N -portrait of gravity interprets macroscopic extended spacetimes
as a multi-graviton state not unlike a Bose-Einstein condensate. Already in [24] it has
been shown that re-scattering processes among the constituents result in 1

N
-effects, which

accumulate over time. This provides an intrinsic quantum clock which can be used to
determine the actual duration of the de Sitter phase. This manifests as a decay or leakage
process in this framework which results in a literal aging of de Sitter space time. This
potentially leads to new types of observables that can probe the inflationary universe
from a time long before the last 60 e-foldings. Possible quantum corrections arising in
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this picture of widely used characteristics of inflation, like density perturbation or tilt, can
be readily computed. For example, curvature perturbations produced at different epochs
will differ. For details we refer to [24]. Note that these perturbations are independent
from the variation of the Hubble parameter due to the standard slow-roll of the inflation
field. These deviations are purely classical in origin. On top of that, a specific microscopic
process in the form of quantum decay takes place. In other words, the backreaction of
the accumulating 1

N
-effects leads to a breakdown of the de Sitter invariance in the same

fashion as the evaporation of water from a finite volume tank violates the time-translation
invariance. Even if the evaporation rate is constant and very small, over long enough
timescales the water level in the tank will change which is an observable effect.

3.1.3 De Sitter and Inflation

After discussing the general idea we shall now try to make more quantitative statements.
The two relevant quantities of de Sitter which will be important in the following are its
Gibbons-Hawking entropy S and the Hubble scale H. These two values determine the
free energy gap ε0 ∼ H as well as the entropy N = S. However, it is well established that,
similar to a black hole, de Sitter evaporates. This means that after the time tQ = SH−1

a Hubble patch of size H−1 would emit a number of quanta N of order of its Gibbons-
Hawking entropy S. The energy of a quantum in the Gibbons-Hawking radiation is
typically of order ε0 ∼ H. The total energy emitted is therefore of the same order as the
total vacuum energy contained within the Hubble patch, which is equal to EdS ∼ Sε0.
This simple estimate fully confirms the situation in [24], [31], [34]. There it was shown
that in the multi-particle picture of de Sitter the time scale tQ = SH−1 is the same on
which a coherent state description of the de Sitter Hubble patch loses of order half of its
constituents. This is a strong indication that one can apply our general results of the
previous section 2 to de Sitter spacetime by treating it as the special case N = S. With
the established counting S = N , we know that this corresponds to order S nearly gapless
degrees of freedom which we shall again denote by âk. At this stage, knowledge of the
precious nature of these modes is not important and would require a precise microscopic
theory of de Sitter. We shall see that for our purposes a general description is enough
and we can already learn some valuable lessons from it. As an outlook, these modes
should in principle be labeled by quantum numbers that correspond to symmetries in
the classical limit. In order to have a level degeneracy N to account for the required
entropy, the memory modes of de Sitter must belong to very high harmonics. We can
use this to estimate the energy gaps of the memory modes: εk ∼

√
Nε0. It is reassuring

that this scaling also fully matches the holographic counting [76], [77] which yields the
number of planckian qubits of order N . Using this we estimate the typical unactualized
energy of a memory pattern encoded in a Hubble patch to εpat ∼ N

3
2 ε0 ∼ EdS

√
N . This is

an incredible result. This means that de Sitter spacetime is an extremely energy efficient
storage device of quantum information. A pattern that, with naive counting, would exceed
the energy of the entire de Sitter patch by a factor of

√
N is stored with the same cost as

the empty pattern. This statement is naturally completely equivalent to the observation
that de Sitter exhibits an enormous microstate degeneracy, which is the origin of its
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Figure 3.1: Highly schematic plots (for even values of m) of the energy thresholds of the
memory modes in a theory with cosmological constant. Only around a single value of
Y0, gapless modes emerge.

Gibbons-Hawking entropy. Note, that the only property, that we used so far, was the
high entropy of the geometry. In particular, we have made no further assumption about
its microscopic structure. We shall continue in this spirit and only add one additional
assumption about its evaporation process. We add only one assumption that the loss of
quanta implicates a deviation from the critical configuration in which all memory modes
are exactly gapless. In other words, evaporation changes the internal structure in such a
way that at least some modes acquire a gap to match the corresponding entropy of the
partly evaporated de Sitter state, but then it is clear that this will result in a memory
burden effect.

It is very important to note that for de Sitter, the critical occupation Nc is determined
by the cosmological constant Λ. It therefore represents a fixed parameter of the theory. So
even if the energy landscape of de Sitter exhibits more minima that can be used for efficient
memory storage for other occupation numbers n0 = N ′

c 6= Nc, their energy must be an
increasing function of |Nc −N ′

c|. Let us illustrate this with the following Hamiltonian:

Ĥ =
(

1 − n̂0

Nc

)m ∑
k 6=0

εkn̂k + (3.3)

+
(1 − n̂0

N ′
c

)m

+
(

1 − n̂0

Nc

)l
 ∑

k′ 6=0

ε
′

k′ n̂
′

k′ + ... ,

where l > 0. The resulting energy landscape of this Hamiltonian is plotted in Fig. 3.1. As-
suming that the two sets of modes Y ′

k′ and Yk can carry an identical pattern, i.e. Y ′

k′ = Yk,
their respective energy costs differ significantly. In a state with n0 = N ′

c compared to a
state with n0 = Nc the same pattern would require Epat =

(
1 − n0

Nc

)l
εpat more energy.

So even if we assume that de Sitter is able to copy the pattern from one set of memory
modes into another, the memory burden will steadily increase. This completely matches
our findings in section 2.4. Since we do not have a full theory of quantum gravity of de
Sitter spacetime available, the exponents (3.3) m and l in Eq. remain free parameters.
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We can, however, use the established semi-classical result that in the classical limit, which
correspond in our picture to N = Nc → ∞, only one macrostate of enhanced memory
capacity has to emerge. This is a requirement to ensure that we can actually match a
quantum state of the microscopic theory to the semi-classical description of de Sitter.
Therefore, it is clear that the memory burden effect should set in at the latest after de
Sitter lost of order 1 of its constituents,i.e. δn0 ∼ N . After this point memory burden is
unavoidable and a strong backreaction will set it working against any further decay. Note
that this upper bound after which quantum effects become important fully matches the
quantum break-time discussed in [31]

The quantum breaking of de Sitter consequently results from two competing tenden-
cies. On one hand, the system depletes by losing the constituent n̂0-mode into an external
b̂0 mode in the form of Gibbons-Hawking radiation. This results into a deviation away
from the critical configuration, for which the memory modes nk 6=0 become gapless and can
therefore carry the enormous Gibbons-Hawking entropy. Consequently, the increasing en-
ergy gaps raise the energetic cost of the stored quantum pattern. On the other hand, it is
impossible to offload this pattern into Gibbons-Hawking radiation due to the enormous
level splitting between the critical modes âk and their free counterparts b̂k, as discussed
in section 2.4.1. The stored quantum information therefore backreacts on the evolution
that renders Gibbons-Hawking emission more and more unfavorable. Thus, after a finite
time the memory burden becomes unbearable and the emission stops.

It is likely that quantum breaking of de Sitter is a signal of a fundamental quantum
inconsistency of theories with positive constant vacuum energy [24], [31], [34]. For alter-
native views we refer to other works e.g., [78]–[80]). Before we continue, we want to stress
the fundamental importance if not confusing the quantum breaking phenomenon with a
possible instability of the type suggested in [81], [82]. Quantum breaking [24], [31], [34]
is not accompanied by any Lyapunov exponent, that could potentially provide a graceful
exit from the problem and this is the very source of a possible inconsistency.

After analyzing the case of a fundamental de Sitter originating from a constant cos-
mological constant term in the theory we shall study de Sitter in case of inflation. For
simplicity, we shall consider a slow-roll version of inflation (see e.g. [83] or [84]) sourced
by a new scalar degree of freedom called the inflaton. The dynamics of this new field
allow for a continuous change of the parameters and can potentially take the system out
of the de Sitter phase before it quantum breaks. A microscopic description of this type
of graceful exit was given in [24]. At this point we shall not speculate whether a sensible
theory can allow de Sitter cosmologies, that extend beyond the quantum breaking point.
This is still an debated question and out of the scope of this thesis. However, we can still
make some important physical conclusions. Regardless of the details of the final state
after de Sitter has experienced quantum breaking and the question if such a description
is even possible in a consistent way, it is clear that within our Hubble patch, the inflaton
found a graceful exit beforehand. This scenario seems very likely, since our semi-classical
description of the late inflationary epoch shows no conflict with observations. We can
therefore pursue the task of searching for observable imprints of the primordial quantum
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Figure 3.2: Highly schematic plots (for even values of m) of the energy thresholds of the
memory modes for the case of black holes. Multiple minima exist, corresponding to
different possible black hole masses.

information, that leads to the memory burden. The observation and read-out of such a
pattern becomes easier for a longer duration of inflation. This information can be in-
terpreted as some kind of quantum hair. This memory pattern is stored in degrees of
freedom, that were essentially gapless in the beginning. Therefore, it is not surprising
that by quantum uncertainty a very long time is required for decoding a pattern, that is
encoded in such a narrow energy gap.

De Sitter Versus Black Holes

As we have discussed multiple times, de Sitter spacetime and black holes share very
similar quantum informational properties due to their enhanced microstate entropy. We
shall discuss implications of this line of research to black holes extensively in the following
section 3.2. However, here we already want to state the important question whether by a
similar analogy the memory overburden could lead to an inconsistency for black holes. The
answer is no [74]. Unlike the cosmological constant, the black hole mass is a parameter of
the state and not the theory. This means that the theory contains many black hole states
corresponding to different masses and correspondingly different entropies. To put it in
a nutshell, the theory contains an entire family of states of enhanced memory capacity
with different values of n0. The corresponding energy landscape, analogue to Fig. 3.1, is
plotted in Fig. 3.2.

An aspect, that was already suggested in [74] and will be discussed in greater detail
in section 3.2, is that memory burden has important consequences in regard to the decay
process of black holes due to Hawking evaporation. However, this does not lead to any
inconsistency of the theory, since the black hole can move from a state with mass M to
a state with mass M ′ during evaporation within the same theory, whereas de Sitter does
not share this flexibility. Since the cosmological constant is a parameter of the theory and
not the state, de Sitter is forever fixed to a single critical configuration set by Λ. In other
words, for a fixed theory (and corresponding fixed cosmological constant) there is only a
single de Sitter state.
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3.2 Black Holes
As we have already discussed, black holes are nature’s most efficient storage device of
quantum information. Therefore, it makes sense to imagine that some of the previously
discussed very general properties of systems of enhanced memory capacity should also
apply to them. Specifically, we shall apply our findings on memory burden, as well as
methods to alleviate the burden to black hole evolution and evaporation. Let us start
with the well known fact, that the Bekenstein-Hawking entropy [7] depends on the mass
M of the black hole

S = 4πGNM
2 , (3.4)

where GN is Newton’s constant. This already makes it clear that the number of gapless
modes in the system has to scale with the mass, too. This has important implications in
the case the black hole loosing mass due to evaporation, because then modes, that were
previously gapless, have to acquire an energy gap in accordance with the reduced entropy.
However, as we have iterated many times, this inevitably results in a memory burden
as long as the initial state of the entropy carrying memory modes is typical, i.e. not
empty. This memory burden tries to avoid any deviation from the critical configuration,
ultimately back reacting to the semi-classical decay and resisting against the decrease of
M . The generality of our arguments makes it hard to imagine how a black hole could
avoid this fate and we conclude that similar to de Sitter spacetime a classical black hole
has to quantum break at the latest when the memory burden becomes unbearable. As
we have previously argued, we expect this effect to take place on a time scale not later
than half-life time.

For more quantitative understanding and to judge, if rewriting can be a valid option
in the black hole case, we shall adopt the model (2.97) and choose its parameters to mimic
gravity as closely as possible. To find a concrete mapping between black hole character-
istics and the parameter of our model, we shall again rely on a particular microscopic
theory and employ again the black hole quantum N portrait [11] for this task. We want
to reiterate that none of our results depend on the specifics of this particular theory and
we shall only use it as a dictionary for our parameters.

To facilitate a precise mapping let us briefly state the connections of the N portrait and
our many particle model (2.97). For more details we refer to our short review in section 1.5
or to the original paper [11]. In the N portrait a black hole represents a saturated bound
state of soft gravitons at the critical point of a quantum phase transition. The role of the
master mode â0 in our model can be identified with high wavelength gravitons which are
constituting the background field responsible for the classical metric. Their characteristic
wavelength is set by the Schwarzschild radius rg = 2GNM . Due to their naturally low
gap they can he highly populated and, because of the attractive nature of gravitational
interaction, assist other modes in becoming gapless. Without the background created by
the low frequency modes those other modes would represent very high momentum modes
with large free energy gaps and would therefore naturally not contribute to the microstate
entropy of a black hole. While low momentum modes provide the classical background,
these high momentum modes, which are rendered gapless due to the critical occupation
of the former, are responsible for the Bekenstein-Hawking entropy (3.4).



3.2 Black Holes 81

Interpreting a black hole as a multi-particle bound state of soft gravitons, similar
to a Bose-Einstein condensate, also allows for an easy incorporation and interpretation
of Hawking evaporation [8]. In this picture the outgoing Hawking radiation is a result
of quantum depletion process in which, similar to a condensate, the black hole loses
constituents due to internal rescattering. Consequently, some of the particles of the
master mode get converted into free quanta and the occupation number of the master
mode decreases. The role of outgoing radiation is taken by b̂0 modes in our model. Of
course, our model doesn’t incorporate outgoing particles, since â0 and b̂0 can oscillate into
each other. So our model can only capture a decay process, as long as the occupation
in the b̂0 modes can be safely neglected. We expect that our mapping will therefore
break down at the latest after â0 is getting populated again. There is a second reason
why our model can’t capture black hole evolution on long timescales. Classically, M is
a free parameter of the system and black holes exist for all possible values of the mass.
This means that for every M there exists a specific set of modes that become gapless to
account for the entropy at this specific value. Furthermore, during decay this set of mode
changes accordingly to the loosing mass. In contrast to that, our model only consists
of two fixed sets of modes that become gapless for two distinct occupation values of the
master mode. Setting up the correspondence initially for a certain mass M corresponding
to a specific number of particles in the master mode â0, the mapping will only last as long
as the deviation from the initial mass is not too big. Early times are incorporated with
our second sector of memory modes, however, as soon as a third memory sector would
become important our correspondence breaks down. Finally, our model does respect
particle number conservation, gravity, on the other hand, does not. However, as we
have discussed in section 2.4.10, this does not affect our conclusion, since the nature of
interaction is not of importance for the attempt to alleviate memory burden.

In the following we present the specific mapping between our model parameters and
characteristics of a classical Schwarzschild black hole:

• The elementary gap of a black hole is set by the inverse of its Schwarzschild radius rg.
Therefore we set the free gap of the master mode ε0 = r−1

g . Since in our model this
also determines the gap of the free counterpart b̂0, this also ensures that Hawking
quanta correctly show the typical energy r−1

g .

• To reproduce the correct entropy (3.4), we consider K memory modes in the first
sector. According to Eq. (2.9) this leads to a microstate entropy of S ' K.

• As the initial occupation in the gapless memory sector we set Nm = K/2. In
the limit of macroscopic black holes this corresponds to the most likely occupation
number, since the number of patterns with different Nm is insignificant for S � 1.

• Due to its spherical symmetry we can label black hole states by the quantum num-
bers (l,m) of angular spherical harmonics. Assuming that excitations in radial
modes are negligible, to account for the K modes that are necessary for the entropy
S we have to occupy states at least until l ∼

√
K. This takes into account that the

degeneracy of spherical harmonics scales as l for each level. Therefore, the highest
modes have an energy that scales with

√
K. We set the free energy gap of the
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memory modes to εk =
√
Kε0. Note that in a black hole this would correspond to

Planckian energy scales, εk ∼ 1/
√
GN .

• Using only generic arguments about black hole properties, the exact value of the
critical occupation Nc, remains a free parameter. We shall rely here on the N
portrait which motivates the choice Nc = S. In this model the total energy of the
black hole is then reproduced by M = Ncε0.

• The coupling strengths C0 and Ck remain undetermined and free parameters at this
point. We shall, however, find consistency bounds below.

In summary, we can express all parameters of our model (2.97) in terms of the entropy and
the Schwarzschild radius. For convenience we briefly reiterate the mapping in a concise
manner:

ε0 = r−1
g , Nc = S , K = S , Nm = S/2 , εk =

√
Sr−1

g . (3.5)

Next we shall also cast the bounds on the coupling (2.108) and (2.111) to a form using
black hole parameters. Gravitational interaction is universal, therefore all couplings have
to be of the same order. Consequently, we use the stronger bound of those two and
constrain the couplings with

Ck,k′ ∼ C̃k,l .
ε0

S
. (3.6)

Note that we used here again the assumption that the disturbance of the effective gaps
scales with

√
Nm rather than linearly in Nm, thus leading to softer constraints. In gravity

this might not be the case and the real constraints may apply.
Since the gravitational interaction scales with energy, gravity also sets a bound on the
coupling between â0 and b̂0 modes:

C0 .
ε0√
S
. (3.7)

Concluding we want to comment on additional shortcomings of our model. Since gravi-
tational interaction is universal, our model should also contain couplings of the form âk

and b̂k similar to the master mode and its free analogue. We have already concluded in
section 2.4 that such an interaction is not efficient enough to avoid memory burden and
here we shall argue why the reasoning is unchanged in the black hole case. Again, in real
gravity the memory modes âk with momentum label k, couple to their free counter part,
which we shall denote with b̂k. However, those b̂k are not subject to the effect of assisted
gaplessness. Therefore, these (Planckian) modes satisfy the free dispersion relation and
correspondingly have a huge energy gap. This setup can be described by the following
Hamiltonian:

Ĥhigher =
K∑

k=1
εkb̂

†
kb̂k +

K∑
k=1

Ck

(
â†

kb̂k + b̂†
kâk

)
+

K′∑
k′=1

Ck′

(
â

′†
k′ b̂k′ + b̂†

k′ â′
k′

)
. (3.8)

As before, we have εk =
√
Sε0. Since we know the entropy of the black hole, we can now

estimate bounds on the couplings Ck to ensure that the entropy-carrying modes âk stay
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sufficiently gapless. The corresponding coupling matrix, in case we start in the critical
configuration n0 = Nc, is (

0 Ck

Ck ε0
√
S

)
. (3.9)

Still requiring that the effective gaps are not disturbed by more than ε0/
√
S, it follows

that C2
k/(ε0

√
S) . ε0/

√
S, i.e. Ck . ε0. Therefore, as we have stated previously, due

to the enormous level splitting any transition between memory mode excitations and b̂k

modes is severely suppressed. Thus, the free modes stay unoccupied during the time of
evolution. From a quantum informational point of view any leakage of the information
stored in the memory modes to external free modes is highly suppressed. This mechanism
was proposed in [74] as the microscopic explanation, why black holes at early stages of
its evolution release energy, but almost not information. This fact is often considered as
one of the mysteries of black hole physics. However, this setup offers a simple explanation
to this well known fact: The large level splitting between the memory modes that are
subject to assisted gaplessness and their free counterparts, combined with the bounds on
the couplings to avoid losing gaplessness in the first place, prevents any efficient transfer
of information.

Since it is apparent now that the b̂k modes stay unoccupied, the fact that we did not
include them in our numerical studies turns out to be of no importance.

3.2.1 Numerical Studies
We shall study our prototype system for memory burden and rewriting for the specific
black hole parameters (3.5) numerically. As we have already discussed, the only free
parameters remaining are the coupling of the master mode to the environment reservoir
C0, the overall coupling strength between the memory modes Ck and the distance between
the two critical configurations ∆Nc and more specifically independent of the black hole
entropy S. However, we can at least put bounds on these parameters. The specific black
hole constraint (3.7) relates C0 to S. Furthermore, the consistency requirement that the
two memory sectors are sufficiently separated from each other (see the constraint (2.104))
and more specifically, the requirement that the separation of levels should not go to zero
for large Nc, i.e. ∆Nc should not decrease with increasing Nc, leads to a bound for ∆Nc,
namely

∆Nc � 1. (3.10)

Using the observed scalings stated previously in section 2.4.5, namely Eqs. (2.117)-(2.119),
for the coupling values, at which rewriting takes place, we get

Cm ∼ S−0.5+βC (∆Nc/S)0.2 & S−0.7+βC , (3.11)

as well as1

Γ & S−1.7+βΓ . (3.12)
1Since ∆Nc/S → 0, the rate Γ becomes independent from ∆Nc.
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Figure 3.3: Available data (blue dots) for the rewriting values of Cm and the rates Γ
as function of K = K ′, where we take Nm = K/2. The dashed gray curves are the
constraints (3.13) and (3.14), that apply to a black hole. We see clear indications that
for large black holes, rewriting is not fast enough to reproduce the semiclassical rate of
evaporation.

Eq. (3.11) shows that in order to satisfy the constraint (3.6) on the S-dependence of Cm,
the scaling of Cm with K would be constrained as

βC . −0.3 . (3.13)

In a similar matter it follows from Eq. (3.12) that the requirement of reproducing the
semiclassical rate, Γ ∼ 1, leads to

βΓ & 1.7 . (3.14)

Next we investigate the compatibility of the numerical results for K-variation with
the bounds in Eqs. (3.13) and (3.14). We compare the actual results for K = 6, 8 with
the expectation for K = 6, 8 based on the result for K = 4 and a scaling saturating the
bounds Eqs. (3.13) and (3.14). The resulting functions are plotted in Fig. 3.3. We observe
that, although many more rewriting values exist at higher K, none of them satisfies both
the constraints (3.13) and (3.14).2

To complement this analysis we shall also invoke a different approach. With the
estimates for the rewriting values and their corresponding rates (2.123) and (2.124) in
mind we can evaluate how the bounds (3.13) and (3.14) fit in this picture. However, one
immediately realizes that even tough the exponent βC might be small enough to fulfill
the bound, βΓ is vastly different. Moreover, the value is not only too small, but follows a
completely different trend. We therefore conclude that even though rewriting is possible
in this model, which suggests that rewriting might also be taking place in black holes, it is
not efficient enough to avoid memory burden on long timescales. Thus, the semiclassical
rate of particle creation, Γ ∼ 1 is not sustainable and the semiclassical description breaks
down, as soon as the memory burden effect sets in.

2In fact, none of them fulfills either condition, except for one data point at K = 6. It has a sufficiently
high rate, but its coupling strength Cm = 0.74 is far too big to satisfy the bound (3.13).
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In contrast to the behavior of our model (2.113) we expect the semiclassical description
to be valid for newly formed macroscopical black holes. So at least at initial times the
particle production according to Hawking’s rate should be sustainable. Since our model
incorporates immediate backreaction due to memory burden and rewriting is by no means
efficient enough to keep up with the free rate, we observe an instant deviation. Therefore,
our model can obviously not catch this early time behavior accurately and a real black hole
has to realize an appropriate delay of the onset of memory burden. A possible mechanism
to delay the memory burden effect was discussed in section 2.4 which entails making it a
higher order process by choosing an appropriate exponent p � 1. With that however, it
was not possible to get rid of the memory burden altogether, but only do delay it. The
upper bound for such a delay is on the order of half-life time in case of a constant decay
rate. The delay can be maintained at most until the master mode has lost on the order
of half of its initial occupation, corresponding in the black hole N portrait to the order of
half of its mass. Summarizing, a black hole first has to delay the memory burden to keep
up with the semi-classical description, but after long enough timescale it will run into the
memory burden effect and since rewriting is not an efficient enough process, experience a
backreaction resulting in a break down of the semi-classical approximation.

After discussing the qualitative result that a black hole will experience memory burden
and the break down of the semi-classical description at the latest after it has lost half of
its mass we give a quantitative estimate on how strong the slowdown is, assuming that
black hole evolution continues through a process of rewriting. Remember that in order to
keep up with the semi-classical rate Γ ∼ 1 during initial evolution, the coupling strength
has to scale like C0 ∼ 1/S. Consequently, Eq. (3.12) gets modified to:

Γ ∼ S−2.4+βΓ . (3.15)

We emphasize again that due to numerical limitations we only have access to a small
number of K values and can therefore not determine βΓ accurately. So we pursue a less
ambitious path and try to give a bound on it. There is little evidence from Eq. (2.124)
that the rate increases with system size, so we conservatively estimate that βΓ < 0. This
gives us

Γ .
1
S2 . (3.16)

According to this analysis black hole evolution and evaporation has to drastically slow
down at the latest after the black hole lost on the order of half ot its initial mass.

3.2.2 Metamorphosis
Although we could not give precise quantitative results, it is clear from the above dis-
cussion that the semi-classical approximation is not indefinitely valid. Moreover, at the
latest after losing half of its mass, we expect a black hole to undergo a severe transition
due to quantum backreactions. In the following, we shall discuss scenarios of black hole
evolution after this point, that are consistent with above findings.

In the standard semi-classical treatment, the evaporation process of a black hole is
presumed to be self-similar, i.e. it is assumed to be well described simply by a time-
dependent mass M(t), which in each moment in time determines the Schwarzschild radius
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and the temperature as rg = 2GNM(t) and T = (8πGNM(t))−1 respectively. Under
the challenged assumption (see again section 1.3 for details) that Hawking’s calculation
can be applied to the finite mass case, black holes evaporate with a thermal emission
spectrum, that shifts with the growing temperature, as the evaporation proceeds. Thus,
the assumption is that a classical black hole evolves into a classical black hole of a lower
mass with each quantum emission. Nevertheless, this estimate is widely accepted, despite
the fact that there exist no self-consistent calculation on such timescales going beyond the
semi-classical treatment. As we have already discussed in the introduction this assumption
is inconsistent and can be easily challenged, since already corrections to thermality account
for an order one deviation after a finite number of quanta have radiated away [19].

This immediately implies that it is unjustified to use the self-similar approximation
over timescales comparable with black hole half-decay, τ ∼ Srg.

Indeed, without knowing the microscopic quantum theory, one can never be sure that
the semi-classical approximation is not invalidated due to a build-up of quantum back-
reaction over the span of many emissions.

This can be exactly traced in the microscopic theory of the quantum N-Portrait [11],
[22]–[24]. In this picture quantum backreaction built up and become strong at the latest
by the time a black hole loses of order of half of its mass. Consequently the semi-classical
approximation breaks down and can no longer be used. In particular, the remaining
black hole state is fully entangled after losing on the order of half of its constituents and
therefore an intrinsically quantum without a classical analogue. Note, that self-similarity
can only recovered in the semi-classical limit Nc → ∞ [21], [85] corresponding to infinite
mass.

The present study reveals a new microscopic meaning of the quantum backreaction.
Namely, being states of maximal memory capacity, the black holes are expected to share
the universal property of memory burden. Due to this phenomenon, the black hole evap-
oration rate must change drastically after losing half of its mass. What happens beyond
this point can only be a subject to a guess work. However, given the tendency that the
memory burden resist the quantum evaporation, the two possible outcomes are:

1. A partial stabilization by slowing down the evaporation.

2. Classical disintegration into some highly non-linear gravitational waves.

The second option becomes possible because after the breakdown of the semi-classical
approximation, we cannot exclude any more that the the black hole exhibits a classical
instability. Obviously, there could be a combination of the two options, where a prolonged
period of slow evaporation transits into a classical instability. In the following, we shall
focus on the first option as being the most interesting for the dark matter studies.

Thus, motivated from our analysis of the prototype model, we shall adopt that the
increased lifetime due to the slowdown is

τ̃ & rgS
1+k , (3.17)

where k indicates the power of additional entropy suppression of the decay rate as com-
pared to the semiclassical rate, Γ ∼ r−1

g . Although the spectrum is no longer thermal,
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we shall assume that the mean wavelength of quanta emitted during this stage is still on
the order of the initial Schwarzschild radius ∼ rg, as long as the mass is still on the order
of the initial mass. We must stress, however, that we cannot exclude that the black hole
starts emitting much harder quanta after memory burden has set in. In particular, as the
gap increases, the memory modes become easier-convertible into their free counterparts.
This conversion is likely a part of the mechanism by which the information starts getting
released after the black hole’s half decay.

3.2.3 Small Primordial Black Holes as Dark Matter
The possible stabilization of black holes by the burden of memory could have interesting
consequences for the proposal that primordial black holes (PBHs) constitute dark matter
[86]–[89]. Of course, the full investigation of this parameter space requires more precise
information about the behavior of black holes past their naive half life. Below, we first
give a short qualitative discussion of how some of the bounds on primordial black holes
change in this case. Subsequently, we provide a few quantitative considerations for one
exemplary black hole mass.

There exist many different kinds of constraints on the possible abundance of PBHs
(see [90], [91] for a review). However, the strength and/or the range of many of those con-
straints are based on the semiclassical approximation for BH evaporation, i.e. Hawking
evaporation is assumed throughout the decay. Therefore, a slowdown due to the backre-
action in form of memory burden, which sets in after the half-decay, affects the landscape
of constraints quite dramatically.

If the validity of the semiclassical approximation is assumed throughout the whole
decay process, all PBH with masses M . M∗ ≡ 5 · 1014g would have completely evap-
orated by the present epoch[91]. In contrast, such small PBHs can survive until today
if evaporation slows down after half-decay. Thus, many of the constraints on the initial
abundance of PBHs with masses M . M∗ are altered. In particular, a new window for
PBHs as DM is opened up for some values of the mass below M∗.

For example, we can consider constraints from the galactic gamma-ray background,
following [91]. Since the spectrum of photons observed due to PBHs clustering in the
halo of our galaxy is dominated by their instantaneous emission, the range of the related
constraints in the semiclassical picture applies to black holes with mass M & M∗, with
the strongest constraints coming from M close to M∗ (since they would be in their final,
high-energetic stage of evaporation today). On the one hand, a slowdown significantly
alleviates the constraint around M∗ since such black holes would now be in their second,
slow phase of evaporation. On the other hand, because black holes with masses below
M∗ could survive until today, the galactic gamma-ray background would lead to new
constraints on their abundance. At the same time, the fact that these black holes emit
energetic quanta opens up a possibility to search for them via very high-energetic cosmic
rays. Below we discuss this point in more detail.

As a different example, we consider constraints from BBN, as were studied in [92].
In the semiclassical picture, PBHs of mass smaller than about MN ≡ 1010 g would have
evaporated until then. Therefore, such black holes are typically considered to be uncon-
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strained by BBN. In contrast, a slowdown would cause some PBHs with M . MN to
still exist at that epoch. Therefore, BBN in principle leads to new constraints on such
PBHs. However, the constraints are expected to be mild, since PBHs would already be
in their second, slow phase of evaporation. On the other hand, the strong constraints
on M ∼ MN associated with the final stage of evaporation in the Hawking-picture is
alleviated. Finally, the bound due to BBN on PBHs of masses M � MN is the same
in the semiclassical and our picture because those black holes are in the early stages of
evaporation during BBN.

In the following, we consider an exemplary scenario, in which small PBHs of mass
below M∗ appear to be able to constitute all of dark matter. It should be clear that
we make no attempt to cover the whole spectrum of constraints or the whole range of
masses, and content ourselves with rough estimates. We consider a monochromatic PBH
mass spectrum with M ∼ 108g. Moreover, we need to specify how strong the slowdown
is after half decay. Based on our numerical finding (3.16), we assume that the rate Γ̃ is
suppressed by two powers of the entropy: Γ̃ ∼ r−1

g /S2. Correspondingly, we have k = 2
in Eq. (3.17), i.e. the lifetime τ̃ is prolonged as τ̃ & S2τ , where τ is the standard estimate
based on extrapolation of Hawking’s result. This leads to τ̃ & 1049 s (see [93] for τ), which
is longer than the age of the Universe by many orders of magnitude.

There are two kinds of constraints on the PBHs that we consider. Bounds of the first
type are independent of the fact that the PBHs evaporate, i.e. they are identical to the
ones for MACHOs of the same mass. We are not aware of relevant constraints for masses
as low as M ∼ 108g (see e.g. [93], [94]).3 The second kind of bounds is due to the fact
that, although with a suppressed rate, the PBHs still evaporate.

As explained above, the energy of emitted particles is expected to be around the initial
black hole temperature, TBH = M2

p/(8πM) ∼ 105 GeV. Assuming that the galactic halo is
dominated by the PBHs, the diffuse galactic photon flux due to the PBHs can be roughly
estimated as

Φ ∼ nBH R Γ̃ ∼ 10−34/(cm2s) , (3.18)

where R ∼ 2 · 1024 cm is the typical radius of the Milky Way halo and nBH is the galactic
number density of PBHs. We can estimate the latter in terms of the mass of our galaxy
MMW ∼ 2 · 1042 kg as nBH ∼ MMW/(MR3). This corresponds to one particle hitting the
surface of the earth approximately every 108 years. Clearly, it is impossible to observa-
tionally exclude such a low flux.4 Moreover, one can wonder if the secondary flux, which
predominantly comes from the decay of pions, can change the above conclusion. The
answer is negative since the corresponding rate Γ̃S is only slightly higher than the one for
primary emission, Γ̃S ∼ 10Γ̃ (see [92]).

Moreover, we can turn to constraints from the extragalactic gamma-ray background.
Assuming that cold DM is dominated by PBHs of mass M , one can roughly estimate for

3Constraints would be similar to the ones on N-MACHOs [95].
4We are not aware of an observational lower bound on the diffuse galactic gamma-ray flux at photon

energies Eγ ∼ 105 GeV. For Eγ ∼ 103 GeV, the observed flux is of order 10−10/(cm2s) [96].
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the flux due to secondary photons5 (see [92]):

Φ ∼ ρDM

M
Γ̃ t0 ∼ 10−31/(cm2s) , (3.19)

where ρDM ∼ 2 · 10−30 g/cm3 is the present energy density of dark matter in the Universe
and t0 ∼ 4 · 1017 s is the age of the Universe. Again, this flux is unobservably small.

Finally, the contribution from the considered PBHs to cosmic rays other than photons
can be expected not to exceed significantly the photonic flux, in which case no bound
would result from direct detection of other particles, either.

In conclusion, from the exemplary constraints considered above, the numerical example
of PBHs of mass M ∼ 108g passes an immediate test to be able to account for all DM.
As stated above, a more complete analysis remains to be done.

We finish the section by making a general remark. The stabilized black holes can be
detected via their emission but also via a direct encounter with earth, through gravita-
tional or seismic disturbance. The latter possibility for standard PBH has been discussed
in [98]. In the present context, the encounter becomes much more frequent and for certain
masses the detection through a direct encounter could in principle become more probable
than by emission spectrum.

3.3 Neural Networks

3.3.1 Mapping of Bosonic System on Neural Network
As one more application not necessarily connected gravity we shall discuss certain types
of neural networks as systems of enhanced memory capacity.

This novel connection has first been suggested in [12], [13]. This section will be
presented in two parts. The first one will introduce a general description of a quantum
neural network by an effective Hamiltonian. After that we shall return back to our specific
prototype system (2.50) and discuss its neural network representation. We shall make the
identification on both a classical level, as well as a full quantum level. Note that this
line of research is still in early states and requires more investigation. Before we start
let us briefly review the basics of a neural network. A neural network is constituted of
neurons and defined through the synaptic connections among them. Inspired from their
biological analogue, these connections are usually only active and transmit information
when a certain threshold of excitation is exceeded, a phenomenon often referred to as
all-or-non law.

A spin-glass inspired realization of such a network, which is described by an energy
function, is the Hopfield model [99]. One major advantage of this model is that it can be
described in a physical language, i.e. a Hamiltonian. Since then there have been many
proposals to extend the Hopfield network also to the quantum world. For an incomplete
list see for example [100].

An alternative approach was proposed in [12], [13]. There the excitation level of each
neuron was identified as the relevant degrees of freedom. Furthermore, these degrees

5The primary photons would effectively be screened by a cosmic gamma-ray horizon (see e.g. [97])
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of freedom are described by an effective Hamiltonian. In this language the threshold
excitations correspond to the energy gaps given by the kinetic term in the Hamiltonian.
Furthermore, the synaptic connections are identified with the interaction terms grouping
two or more neurons together. Consequently, the time evolution of such neural network
is then generated by its effective Hamiltonian. This description has a major advantage
over many other models of neural networks. Its description in terms of a Hamiltonian
introduces the notion of energy and more specifically the energy cost of information storage
to the system. Similar to the previous chapter this is the aspect we are most interested
in. Therefore, we shall not study the learning process, let alone concrete algorithmic
implementations of it, instead we shall merely focus on the energetics of information
storage, recording and read-out.

The positive or negative sign of the interaction terms in the Hamiltonian translate to
either a either excitatory or inhibitory synaptic connection in the neural network. This
means that a certain value for the excitation of a given neuron k can either decrease or
increase the probability of the excitation of another neuron j. On the physical side this
of course has an energetic interpretation as a negative or positive sign translate positively
or negatively respectively to the energy balance of the system.

In [12], [13] it was pointed out that a neural network with negative (and therefore
attractive) interaction sign can exhibit the phenomenon of assisted gaplessness. This
"gravity-like" interaction among neurons combined with certain high occupation numbers
for some neurons lowers the excitation threshold for others. Therefore, these kind of
networks can be considered systems of enhanced memory capacity. To illustrate that
point let us consider again our simple prototype model for assisted gaplessness (2.5) and
interpret it as an effective description of a quantum neural network. In this simple model
all interactions come with a negative sign and are therefore attractive, or in the language
of neural networks excitatory. This means that the excitation of one neuron lowers the
threshold for another mode, because the synaptic connection energy of a set of inter-
connected neurons is negative.

To be specific, assuming that the free gap of a neuron, also denoted by ε is equal one,
and the interaction among those is set by a strength α then the exciting a neuron to a level
N , in general, lowers the threshold for the connected neurons by an amount of amount
∼ αN . This is a completely analogue effect to assisted gaplessness in a multi-particle
quantum mechanical system as it was described above. Weak attractive/excitatory in-
teraction in combination with high occupation/excitation of some modes/neurons assist
other modes/neurons in becoming gapless. At the critical point the excitation threshold
is lowered to zero up to an accuracy of order the coupling constant α. This has some
important consequences because it results in a situation in which the effect of assisted gap-
lessness can become stronger for weaker coupling strength. Equivalent to the case of cold
atoms lowering the coupling strength and while simultaneously increasing the excitation
of a certain set of neurons such that their collective synaptic interaction αN remains con-
stant, results in an state of enhanced memory capacity. Taking again the analogue limit
of (2.17) makes the energy cost for storing a certain pattern more and more narrow and
correspondingly the amount of possible stored patterns arbitrarily large. Note that in a
similar fashion as for the multi-particle system we code information in the neural network
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in the excitation numbers of its constituents. That these apparent similarities between a
quantum neural network and a bosonic quantum field theory are in fact isomorphic has
been shown in [13]. This isomorphism identifies the neural degrees of freedom with the
momentum modes of a quantum field whereas the synaptic connections correspond to the
interaction among different mode operators. Consequently, this identification allows to
treat quantum neural networks on the same footing as a set of coupled harmonic oscilla-
tors from the perspective of enhanced memory capacity. This might also have intriguing
experimental perspectives since it allows to simulate such a quantum neural network in a
system of a cold Bose gas.

We can now use this mapping to represent our previously studied 3-mode system in
section 2.2.3 as a neural network. Consequently we shall identify each momentum mode as
a neuron and the interaction between different oscillatory modes as synaptic connections
6. This neural network is visualized in Fig. 3.4.

Next, we shall make the connection even more explicit by writing the original Hamil-
tonian (2.50) in the language of a neural network. Therefore we case the Hamiltonian in
following form

Ĥ =
3∑

k=1
εkâ

†
kâk −

3∑
k,j=1

â†
kŴkj âj , (3.20)

where εk = 1
4k

2 is the threshold excitation energy of the kth neuron and Ŵkj is a Hermitian
3 × 3 operator valued matrix representing the synaptic connections. Its elements read:

Ŵ11 = 3α
8 â†

1â1 , (3.21a)

Ŵ22 = 3α
8 â†

2â2 , (3.21b)

Ŵ33 = 3α
8 â†

3â3 , (3.21c)

Ŵ12 = α

8

(
4â†

2â1 + 2â†
1â2 + 4

3 â
†
2â3 + â†

3â2

)
, (3.21d)

Ŵ13 = α

8

(
4â†

3â1 + 2â†
1â3 + 4

3 â
†
2â2 − 2â†

1â1

)
, (3.21e)

Ŵ23 = α

8

(
4â†

3â2 + 2â†
2â3 + 4

3 â
†
1â2 + â†

2â1

)
. (3.21f)

After recasting the neural network in the form of an Hamiltonian we can directly apply
our reasoning on systems of enhanced memory capacity to neural networks.

6Note that this simple three neuron system would not be useful for actual learning purposes nor as a
storing device. As the system (2.50) was primary studied for its intrinsic quantum information storage
properties this simple neural network only qualifies as a capacitor of information. This specifically means
that it misses a coupling to the outside world to receive input data or retrieve it afterwards again. So we
only consider the case which involves no input or output operations.
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1 2

3

Figure 3.4: Representation of the Hamiltonian (2.50) as a neural network. The three
neurons are displayed as circles and diamonds represent interaction terms. The number
of lines to a diamond indicates how many mode operators of the corresponding neuron
participate in the interaction.

3.3.2 Enhanced Memory Storage
For later comparison we shall first study the memory capacity in form of the energy cost
of storing a specific pattern in the non critical case. So we shall first consider the case in
which the total excitation of each neuron is well above the critical level, N � 1

α
. Note

that we again assume that the neurons are weakly coupled, α � 1. In this case the neg-
ative contributions to the energy originating from the exitatory interaction is negligible.
Therefore the free gaps are almost unaltered and consequently the energy cost for stor-
ing information is high. Again we shall quantize the lowering of energy cost by assisted
gaplessness by the collective coupling λ = αN . Note that in the regime of low excitation
levels this is a small number, N � 1

α
. Therefore the energy difference between tow pat-

terns encoding information in the excitation numbers of the different neurons is large. Let
|N − n2 − n3, n2, n3〉 and |N − n′

2 − n′
3, n

′
2, n

′
3〉 be two distinct memory patterns. Then

their difference in energy is mostly due to the free excitation cost given by the first term
in (3.20). Since εk & 1 this is a large number and given by

∆Eλ�1 = 1
4 (3(n′

2 − n2) + 8(n′
3 − n3)) + O(λ) . (3.22)

Therefore, the set of different patterns range over a large energy interval. This means that
the capacity of information storage for a fixed infinitesimal energy interval is very small
and the neural network is not considered to be a system of enhanced memory capacity.
For example, in order to rewrite a pattern stored in the number eigenstate |N, 0, 0〉 into
|N − 1, 1, 0〉, we need to pay a energy fee ∆E ' 3

4 , i.e, an external stimulus that is needed
for the redial of information |N, 0, 0〉 → |N − 1, 1, 0〉 has to have an energy of order ∼ 3

4 .
Next we shall consider the more interesting case in which we succeedingly increase

the total excitation level N which is given by the sum of the individual neurons of the
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network. By increasing N we simultaneously strengthen the collective synaptic connection
λ and with that the contribution of the synaptic connection energy. Remember that this
coupling is attractive so it helps lowering the overall energy of the system. By starting
to excite a certain subset of neurons helps to gradually lower the excitation thresholds of
the neighboring ones due to this negative synaptic connection. These thresholds are the
smallest whenever the total excitation level N of all neurons reaches the critical value.
Completely equivalent to the case of a Bose gas this critical point is given by

λlm = αN. (3.23)

For this special value a state of enhanced memory capacity emerges. This means that a a
large subspace in pattern space opens up that is now energetically accessible to the system.
We can estimate how the remaining energy gap scales as a number of total excitation. As
it is apparent from the Bogoliubov analysis in previous chapters it is given by a inverse
power law:

∆Eλ=λlm
∼ 1
Nβ

, (3.24)

where β is a positive constant. This means that around the critical point we can make
the gaps arbitrarily small by making again use of the double scaling limit (2.17). This
results into an extremely efficient configuration to store quantum information encoded in
the occupation or equivalently excitation level of the neurons in the network.

Up until now we have considered a quantum Hamiltonian consisting of operator valued
quantum oscillators. Let us now move to classical neural networks. For this sake we shall
use coherent states. By moving to a basis of coherent state we can replace operators
in the Hamiltonian by their respective expectation value of this classical configuration.
Note that the choice of coherent states as mediator of classicality is of course not unique.
Consequently, this procedure yields a c-number valued energy function Hbog(~a,~a∗) which
describes the quantum network (3.20) in the classical analogue system.

Note that in a classical setting only the expectation values of occupation numbers for
the different modes/neurons might be available. This pattern vector therefore naturally
contains less information than the full quantum state. However, an external read-out or
dial-in device might not be sensitive enough to resolve the full quantum picture of the
storing device. For this reason the appropriate characteristics to code information has to
be chosen. For example if the neural network is in a coherent state which can be described
by three complex numbers |a1, a2, a3〉 the read-out device might only be capable to resolve
the absolute value of these number which of course contains less information compared to
the full state. There might be the case the readout device is also capable of resolve also all
phases. In this case the full quantum state of the network we can used as a pattern vector.
To put it short, the coding scheme has of course be adjusted to the readout capabilities
of the external connection.

Let us continue with a specific example for a code for a pattern vector in the system
(3.20). First we consider the case in which the read-out device can resolve the full quantum
state. Then we can take advantage of the previously introduced parametrization (2.51).
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we write a memory pattern asa1
a2
a3

 =
√
N


√

1 − x cos(θ)√
xei∆2

√
1 − x sin(θ)ei∆3

 , (3.25)

where as before 0 ≤ x ≤ 1. In contrast to that, in case the read-out device is not capable
of catching the full quantum information encoded in a state vector we have to waive for
example the information of the phases. For this purposes it would be equivalent to set
∆2 = ∆3 = 0 in the pattern vector (3.25). Let us again briefly review the mechanism of
assisted gaplessness on the example of the specific neural network (3.20). First remember
that we are working again in the Bogoliubov approximation of large occupation numbers,
therefore we expect 1/N corrections to the following reasoning. In case of small collective
synaptic connection λ � 1, the interaction term between different neurons is minuscule
and the main contribution to the energy function comes from the free excitation thresh-
olds resulting in an energy difference between different memory pattern given by (3.22).
Keeping in mind that by counting different distinguishable microstate in the coherent
state basis one has to be careful not to overcount only patterns that sufficiently differ in
occupation numbers can be used for storing information. Because otherwise those memory
patterns would share a too large overlap and could not be distinguished on a reasonable
timescale. Therefore the energy difference for useful patterns is given by the threshold
excitation energy, which are large in the current example, i.e. ∆E & 1. However, by
bringing the quantum neural network into a critical configuration, this story changes dra-
matically. The closer the system gets to stationary inflection point in the Bogoliubov
Hamiltonian Hbog(~a,~a∗) of the neural network (3.20) the energy price one has to pay to
redial the pattern vector becomes succeedingly more narrow, see Eq. (3.24). Therefore
this gap can be made arbitrarily small by getting closer and closer to the critical value.
This allows us to store information encoded in memory patterns (3.25) in an arbitrarily
narrow energy gap. Note again the 1/N corrections in case of finite total excitation level.
Let us repeat the steps to attain such a state in the language of a neural network. Again
assuming a small synaptic interaction α � 1 in the neural network (3.20). Gaplessness
comes however not for free, therefore the first step is to "invest" in the network by increas-
ing the total excitation level of the neural network to a total level of N = λlm/α ≈ 1.8/α.
Next, we have to shift the distribution of the excitation number N among the thee neurons
such that their expectation values match the stationary inflection point in the Bogoliubov
Hamiltonian approximation. This means one has to choose 〈â†

2â2〉 = xinfN ≈ 0.32N , as
well as 〈â†

1â1〉 = (1−xinf) cos2(θinf)N ≈ 0.67N and 〈â†
3â3〉 = (1−xinf) sin2(θinf)N ≈ 0.01N .

By preparing the neural network in this critical state collective nearly gapless excitations
emerge and an increasing number of distinct patterns can be stored in a small energy gap,
provided N is big enough. This procedure of course reproduces the findings visualized in
Fig. 2.4b. Let us reiterate that this plot is technically only valid in the limit of infinite
particle numbers N → ∞ and corrections appear for finite values that scale as powers of
1/N . This applies not only to the specific value of the gap but also to the exact location
of the critical point in terms of the collective synaptic interaction λlm. We have quantified
those finite size effects for a range of different N in Fig. 2.7.
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As we have seen in section 2.2.3, a narrow energy gap directly leads to slow time
evolution or equivalently an enhanced longevity of the specific state. We quantified this
timescale tcoh as the duration on which the excitation levels, which determine a memory
pattern change significantly. The time evolution for the corresponding Bose gas system is
shown in Fig. 2.5. For states that are not critical this is illustrated in Fig. 2.5a and 2.5c.
This timescale is short and approximately given by tcoh ≈ 1 in energy units of the elemen-
tary gap. Opposed to that, in case the system is in a configuration of enhanced memory
capacity the state gets long-lasting. This is shown in Fig. 2.5b where the coherence time
is tcoh � 1. This timescale for different values of λ was studied in Fig. 2.6. In summary,
if we prepare the system in a critical state, the time evolution significantly slows down
compared to non critical configurations.

To conclude let us summarize the mechanism of applying assisted gaplessness to quan-
tum neural networks. Since the synaptic connections are excitatory, at a certain critical
value a flat direction appears in the energy landscape of the corresponding energy func-
tion. Moving along this flat direction at the stationary inflection point disturbs the
systems without changing its energy balance. These perturbations can be used to store
information energetically efficiently. At this point a large portion of pattern space opens
up that are approximate degenerate in energy. At first glance, on would expect these
states to mix and scramble the information on a very short timescale. Due to their gap-
less nature however, their time evolution is significantly slowed down. This allows us to
distinguish them even after a long time scale since they evolve very slowly. Therefore,
it is possible to store information and read it out again on a timescale shorter than the
timescale of evolution.

Summarizing we can identify a system of oscillatory quantum modes, as they for
example appear in a cold bosonic gas, with a quantum neural network in the way described
in [13]. To illustrate this we mapped the truncated system (2.50) to the neural network
described by Eq. (3.20). Although this network only consists of three neurons, the system
already exhibits remarkably complex features, which it of course shares with its analogue
system from which it was derived. Most interesting for our purposes this network also
features the mechanism of assisted gaplessness and can therefore be brought into a state of
enhanced memory capacity, in which it becomes an ideal storer of quantum information.
This behavior also persists when taking the classical limit of the neural network by using
coherent states. This dictionary might have exciting implications for simulating such
quantum neural networks in experiments with cold bosons.



96 3. Application to Gravity and Neural Networks



Chapter 4

Cosmic Attractor Solution to The
Hierarchy Problem

The Hierarchy Problem is the question why the Higgs mass is so light in contrast to
its sensitivity to any physics above the electroweak scale. One proposal to explain this
puzzling hierarchy is the cosmic relaxation scenario of the Higgs vacuum expectation value
by forward by Dvali and Vilenkin. In this chapter we shall numerically investigate this
model.

First we briefly review core concepts of the cosmic attractor solution to the Hierarchy
Problem suggested by G. Dvali and A. Vilenkin in section 4.1. After that we model the
nucleation of branes as a random walk and simulate the relaxation process in section 4.2.
In section 4.3 we compare our findings to the attractor behavior observed in states of
enhanced memory capacity.

This chapter is based on the paper [3]. To large extent, this chapter is an ad verbatim
reproduction of this publication.

4.1 Cosmic Higgs VEV Relaxation Mechanism
Before we start, we shall briefly review the Cosmic Attractor model introduced in [52] with
further refinements in [53] and [41]. The proposed solution to the Hierarchy Problem relies
on a high degeneracy of vacua around a certain hierarchically-small value of the Higgs
VEV Φ∗. We call this special value point of enhanced entropy since it is in spirit very
similar to states of enhanced memory capacity as it was discussed in chapter 2 and 3. It
is dynamically reached via brane nucleations during inflationary cosmological evolution.
An important assumption in this scenario is that inflation last eternally [101], [102].
This provides infinite time for the system to converge to the point enhanced entropy or
attractor point. In such a scenario, it is therefore natural to find oneself in the vacuum
with maximal entropy and corresponding Higgs VEVΦ∗.

Next, we shall introduce a model implementing these ideas. This can be achieved
by coupling the Higgs to a massless three-form field which is sourced by a 2-brane with
charge Q set by the Higgs field itself. Such a brane can for example be resolved in
form of a domain wall of a heavy axion [52], [53]. However, for the following reasoning
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the fundamental nature of the brane is not important. Every crossing of a 2-brane (or
axionic domain wall) leads to a jump in the field strength F with the distance set by the
corresponding charge on the brane. This is modeled in following equation:

∆F = Q(Φ). (4.1)

On the other hand, F is back-controlling the vacuum expectation value of the Higgs field
via

Φ2 = 1
λ

(
F 2

M2 −m2
)
, (4.2)

where λ is a coupling constant, M is some cutoff andm incorporates all other contributions
to the effective Higgs mass. Using Eq. (4.1) and (4.2) the change of the Higgs VEV for
small values of Q when crossing a 2-brane is

Φ∆Φ = − F

M2λ
Q+ O(Q2). (4.3)

The final ingredient is the exact form of the dependence of Q on Φ. With the effective
brane charge given by

Q(Φ) = ±(ΦN − ΦN
∗ )K

MNK−2 , (4.4)

where N and K are positive and integer valued parameters and the sign of the charge is
not fixed, the difference in the Higgs VEV for neighboring vacua vanishes for Φ → Φ∗.
Correspondingly, the density of vacua diverges at that point. The result is a probability
distribution for Φ with singular peak around Φ∗. This point is called an attractor since
given infinite time Φ will inevitably move arbitrarily close to Φ∗.

For derivation of equations (4.1-4.4) and further details we refer to the original papers
[41], [52], [53]. In the random walk model in the following sections the terms brane
nucleation and timestep are used interchangeably. Furthermore, the variables Φ and λ
are measured in units of the Planck mass MP .

4.2 Numerical Simulation of the Higgs VEV Relax-
ation

4.2.1 Random Walk Model
Since we are solely interested in the efficiency of the attractor mechanism we neglect all
contribution to the Higgs mass other than from F , so we set m = 0. With that the change
of Φ simplifies to

∆Φ = Q

λM2 = ±(ΦN − ΦN
∗ )K

λMNK
. (4.5)

Sufficiently close to the attractor backreaction on the inflationary background can be
ignored, therefore the probability of nucleating a brane or an anti-brane can be assumed
to be equal. Correspondingly we assign to moving either in positive or negative direction
the probability P = 0.5.
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This allows us to abstract from the Hamiltonian time evolution and considerably sim-
plify the dynamic description. Instead of solving the Schroedinger equation of the system
we translate the problem to a stochastic process. Therefore, we will model the time
evolution of Φ as a symmetric random walk. This is an extremely good approximation.
Because brane nucleation is a non-perturbative process and rare, the nucleation of subse-
quent branes in the new vacuum is not sensitive to the original direction of nucleation. In
other words, by the time that a given nucleation happens the walls of the bubble from the
previous nucleation are exponentially far away and do not affect the succeeding nucleation
direction.

Before we simulate the system we employ one additional simplification. Since we are
neglecting any quantum corrections to the attractor point, which are suspected to move
the VEV from zero to the observed small value, we set Φ∗ = 0 in the simulation. Moreover,
we merge the coupling constant λ and the cutoff M into one parameter µ and keep the
exponent of this parameter independent of ν ≡ NK. The change ∆Φ at each discrete
timestep (or equivalently brane nucleation) is then given in compact form by

∆Φ(Φ̃, µ, ν) =
+µΦ̃ν , P = 0.5

−µΦ̃ν , P = 0.5
(4.6)

where P denotes the probability of the specific outcome and Φ̃ is the current value of the
variable Φ. For the remaining free parameters we assume µ ∈ (0, 1) and ν is an integer
and greater than one.

With that the random walk can be defined iteratively by

Φi+1 = Φi + ∆Φ(Φi, µ, ν), (4.7)

where i indexes the brane nucleations and Φi denotes the value of Φ after the ith brane
has nucleated.

It is straightforward to generalize this model to multiple different charges on the brane.
Since these are independent from each other, the sequence in Eq. (4.7) can be generalized
to

Φi+1 = Φi +
d∑

k=1
∆Φ(Φi, µk, νk), (4.8)

for d distinct charges and possibly different and independent parameters νk and λk. So at
every timestep the VEV of the Higgs is shifted by d different terms where again the sign
of each contribution is equally likely due to the unfixed signs of the individual charges.

4.2.2 Simulations
The statistical model defined by Eq. (4.8) is in spite of its simple form difficult to analyze
analytically. Therefore, we perform numerical simulations on a computer. Due to the
statistical nature of the process, quantitative analyses can only be performed with a high
number of realizations. The main focus in this section should lie on the question how the
number of distinct brane charges d affects the convergence rate of the random walk.
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All simulations in this section have been performed with an initial value of the Higgs
VEV given by φ0 = 0.1. The two free parameters of the model were set to λ = 0.5 and
ν = 3, respectively and equal for all three-form fields. Every simulation was calculated
for n = 109 steps. Random walks that diverged at some point were discarded from the
analysis. This is justified since a Higgs particle with mass larger than the Planck mass
would no longer be correspond to a elementary particle. Instead it would represent a
(semi-)classical black hole as we discussed in section 1.8. For late times we plot illustrative
random walks for d = 1 and d = 10 in Fig. 4.1. Matching the intuitive picture, both walks
decrease on average as a function of the timestep i. Of course, the smaller Φ becomes, the
slower becomes the rate in accordance with Eq. (4.6). Thus for the Higgs VEV to relax
infinitely close to zero, infinite time would be required. However, this time requirement
can be accounted for by eternal inflation [101], [102] as already explained in section 4.1.

0 2×108 4×108 6×108 8×108 1×109
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0.002

0.004

0.006

0.008

0.010
Φ

(a) d = 1
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0.008

0.010
Φ

(b) d = 10

Figure 4.1: Exemplary realizations of the random walk defined in Eq. (4.8) for different
number of brane charges. The parameters of the model are given by: µ = 0.5, ν = 3 and
Φ0 = 0.1. The plot range has been set to emphasis late time behavior. In the plotted
example the random walk with the higher number of charges converges faster.

Next, we analyze the dependence of the convergence rate of Φ on the number of charges
d. For this purpose we average over the final value Φf after n = 109 steps for 100 runs
for various d ∈ [1, 100]. If the run diverged at some point we reset and restarted it. The
corresponding data is plotted in Fig. 4.2 in blue. In accordance with Fig. 4.1, we clearly
observe an enhanced relaxation efficiency for higher d.

To obtain quantitative results we fit the data in Fig. 4.2 with a function of the form

f(x) = a · xb, (4.9)

where a and b are fit parameters. The corresponding function is plotted in orange in Fig.
4.2. The fit parameters and their respective standard deviation are presented in table
4.1. The exponent matches, within statistical errors, the averaged exponent when fitting
the values of Φ for individual runs. This completely matches the analytic intuition that
increasing the brane nucleation channels is equivalent (up to a numerical factor) to the
nucleation of more branes. The only difference that can be observed is at the beginning
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when Φ is still large and when the attractor’s pull is the strongest. Greater d results in
larger jumps within n′ steps in comparison with an equivalent run with n′′ = d · n′ steps
and only one charge. For later times and small Φ, however, the difference between jump
distances for neighboring values of Φ becomes negligible.

1 5 10 50 100
d

0.002

0.003

0.004

0.005

Φ f

Figure 4.2: Average final value Φf after n = 109 timesteps as a function of the number of
charges d. For every point the average has been taken over 100 runs. For a fit function
of the form a · xb the parameters attain following values: a = 0.0053 and b = −0.25 with
standard errors σa = 5.3 · 10−5 and σb = 0.005. The parameters of model (4.8) have been
set to µ = 0.5 and ν = 3 with an initial value given by Φ0 = 0.1. The standard error is
depicted as error bars around its mean value.

To map the parameter space at least partially we repeated the analysis also for ν ∈
{2, 4}1 The results of the random walks are presented in table 4.1. Matching our previous
findings, we observe again that the inclusion of more brane charges is up to a numerical
factor equivalent to additional nucleation of branes. We also checked for ν = 3 that
varying µ ∈ [0.05, 0.5] only results in a change of the prefactor a. We expect this behavior
to hold also for smaller values of µ.

To summarize our findings, we observe a clear tendency that the system moves towards
smaller and smaller values of Φ on long enough timescales on a large range of parameters.
This fully matches the analytic consideration in the original papers [52], [53]. We extended
previous work by including additional brane charges in the numerical simulation and,
moreover, provided quantitative estimates for the relaxation rate in a simplified toy model.

1Within the considered number of steps the numerical value of ∆Φ with ν ≥ 5 can not be resolved
accurately enough with standard machine precision. However, this problem can of course in principle be
solved with significant increase in computational complexity. However, we don’t expect any significant
deviation from our results for this parameter range.
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ν a σa b σb ã σã b̃ σb̃

2 4.8 · 10−5 1.1 · 10−6 -0.48 0.014 0.05 0.02 -0.5 0.04
3 0.0053 5.3 · 10−5 -0.25 0.005 0.17 0.07 -0.25 0.06
4 0.026 2 · 10−4 -0.17 2.7 · 10−3 0.25 0.1 -0.16 0.04

Table 4.1: Fitting values for the evolution of Φ as a function of brane charges and number
of nucleated branes. The values for the ladder are marked by a tilde. For both cases the
fitting function is of the form a ·xb. The obtained values have been obtained by averaging
over 100 realizations of the random walk. The corresponding standard errors are denoted
by σ.

4.3 Comparison to States of Enhanced Memory Ca-
pacity

It is very interesting to compare the attraction behavior of the relaxing Higgs VEV to
zero with the attractiveness of states of enhanced memory capacity as discussed in section
2.3.

Let us briefly repeat the key observations in section 2.3. We observed that systems,
which exhibit states with an abundance of gapless degrees of freedom tend to evolve
towards such critical configurations. Assuming that access to these states (including
the different microstates) is not restricted for example due to energy or particle number
conservation we observed that a system which is prepared in a generic state will evolve
towards the one, which occupies the largest portion of the available Hilbert space.

This behavior is very similar to the one observed in section 4.2. This is because the
principle mechanism behind both phenomenon is very similar in nature. To illustrate
this let us identify as a macrostate in the cosmological relaxation model states in which
Φ differs by a macroscopic value δΦ. We consider different states that fit within such a
macroscopically distinguishable gap as its corresponding microstates. Since according to
Eq. (4.6) the distance between two states diminish the closer Φ gets to zero, the amount
of microstates per macrostate increases significantly for fixed δΦ towards smaller value of
the VEV. In this sense, configurations with smaller value of Φ have a higher microstate
entropy. With this identification we can apply our findings on the attractiveness of states
of enhanced memory capacity to the random walk model (4.8). For those we know that,
assuming no external factors prevent it, states of an enhanced microstate degeneracy are
an attractor of dynamical evolution. Of course there are also fundamental differences
between those two system. First, there is no notion of energy in the random walk model
(4.8) since this system is not described by an Hamiltonian. Since in principle all values
of Φ are allowed in the system we can imagine them having all the same energy in this
picture. Another mayor difference is that the dynamics of the systems described in section
2 are defined in terms of a Schroedinger equation in contrast to the random walk model
which is given as a stochastic iteration prescription. However, this description if of course
only an approximation to the full quantum mechanical dynamics. Note that the study of
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Schroedinger equation in terms of a random walk was already suggested in the 1940s, see
e.g. [103] or for a more modern review [104] or [105].
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Chapter 5

Summary

In this last chapter we shall summarize our findings and provide a view of some future
directions in this line of research. First, we shall review our findings of each chapter
separately. After that we try to draw an overall conclusion and give an outlook for
promising future research projects.

5.1 Systems of Enhanced Microstate Entropy - Gen-
eral

In the first chapter, we introduced and studied systems of enhanced memory capacity.
Although, we motivated this line of research with the quantum informational properties of
black holes and de Sitter spacetime we were able to find such states also in nongravitational
systems. This allowed us to put our findings in a wider context and study such systems in
a more general setting. Moreover, such systems can also provide an alternative laboratory
for shedding new light on basic principles of information storage and processing in black
holes. This approach allows both to simulate black hole quantum information features as
well as to generalize them to other contexts. The great advantage of many-body quantum
systems is that they are much easier to control both in experiment and in theory.

In the scope of this chapter we introduced the notion of assisted gaplessness, which
refers to a mechanism responsible for the emergence of nearly-gapless modes. The only
prerequisites for it to occur is the presence of a weak and attractive interaction and the
possibility of high occupation numbers. In this case, a certain occupation of some modes
assists others in becoming gapless by lowering their respective energy thresholds. We
demonstrated this mechanism on the example of a simple cold gas system.

Next, we proposed an analytic procedure for identifying states of enhanced microstate
entropy in the theory. Since this method relies on large occupation numbers, which
allows one to replace operators by c-numbers we call it the c-number method. This ap-
proach is a generalization of the procedure introduced in [10] and is closely related to the
Gross-Pitaevskii equation. We demonstrated our method on a simple prototype system
consisting of three quantum modes. Additionally, the c-number method emphasizes the
generality of states of enhanced memory capacity in attractive bosonic systems.
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Following that, we confirmed that such states are attractors of dynamical evolution
in the sense that a general system exhibiting such states will evolve towards one of them
assuming that they are dynamically accessible. Furthermore, we pointed out interest-
ing implications of these results to the concept of classicalization, in which scattering
amplitudes get unitarized by the production of a macroscopic objects like black holes.

Concluding, we introduced the phenomenon of memory burden. It is a measure for
the backreaction of the stored quantum information that ties the system to the critical
configuration and works against deviations that would reintroduce an energy gap for the
memory modes. Following this, we discussed possible ways to alleviate the memory burden
in order to avoid a strong backreaction. Although we discovered ways to delay the onset of
memory burden we concluded that it can not be avoided as long as the information persists
in the memory sector on a timescale after which the system has experienced a significant
change. For a decaying system this can be identified to its half life. Offloading the
information to the environment is not efficient enough due to an enormous level splitting
between the memory modes and the corresponding free modes. The only possibility to
alleviate the memory burden is to transfer the information from the memory modes to
a another set of degrees of freedom, which is also subject to the mechanism of assisted
gaplessness. In this process, the second sector becomes increasingly mode gapless while
the original memory sector acquires a gap during evaporation. At some point their energy
levels cross and a transfer of occupation numbers is energetically possible. We studied
this process, which we call rewriting, in a specific prototype system numerically.

5.2 Systems of Enhanced Microstate Entropy - Ap-
plication to Gravity

In section 3.1 we have applied the concept of memory burden to de Sitter spacetime.
This lead to a qualitatively new mechanism by which primordial quantum information
could have been carried through the entire inflationary epoch of the Universe’s history.
Due to its Gibbons-Hawking entropy, de Sitter shares the universal properties of systems
of enhanced memory capacity. Since it additionally decays in form of Gibbons-Hawking
evaporation it must be subjected to the universal phenomenon of memory burden typical
for such systems [74]. Our point is that the primordial quantum information, which is
carried by the gapless modes, cannot be erased by an inflationary time evolution. Instead,
it leads to a memory burden that becomes stronger with time and eventually result in
a deviation from the semi-classical evaporation rate after a finite amount of time. This
gives a new physical source of quantum breaking of de Sitter complementing the studies
of [24], [31], [34].

Obviously, inflation must have provided a graceful exit beforehand in our Hubble
patch. However, the longer inflation lasted, the stronger becomes the imprint of the
primordial quantum memory. This would lead to higher chances to find an observational
evidence of the primordial memory pattern. Therefore, the most interesting cases are
the inflationary scenarios that end maximally close to the quantum break-time. In this
case the memory burden due to the quantum information stored in the memory modes



5.3 Electroweak Hierarchy Problem 107

becomes close to unbearable and this will be imprinted in cosmological observables like the
primordial spectrum of density perturbations. In this way, we could, at least in principle,
read out the primordial quantum information of our Universe.

Furthermore, we investigated the memory burden effect in black hole evolution.
We can choose the parameters of our prototype model in such a way that it reproduces

the information-theoretic properties of a black hole, in particular its entropy. In this
case, we have concluded that as far as we can numerically access the system, rewriting
happens significantly too slowly to match the semi-classical rate of particle production.
This strongly indicates that evaporation has to slow down drastically whenever memory
burden sets in. This is to be expected at the latest after the black hole has lost mass on
the order of half its initial mass.

This could open up a new parameter space for primordial black holes as dark matter
candidates. For sufficiently low masses, those black holes would evaporate on a timescale
shorter than the age of the Universe, if Hawking’s semi-classical calculations were valid
throughout their lifetime. It is often assumed that this is the case, so that the correspond-
ing mass ranges are considered as excluded.

In contrast, a significant slowdown of the rate of energy loss, as is displayed in Eq.
(3.16) for example, allows the lifetimes of such PBHs to be much longer, so that they can
still exist today. In this case, small PBHs become viable dark matter candidates. In a
preliminary study, we have qualitatively discussed how some of the constraints change on
a concrete example.

Finally, our analysis sheds more light on a quantum theory of black holes. It has been
standard to assume that black hole evaporation is self-similar all the way until the black
hole reaches the size of the cutoff scale. However, this extrapolation unjustly neglects
the quantum backreaction that alters the state of a black hole. The lower bound on
the strength of the back-reaction effect can be derived using solely the self-consistency of
Hawking formula and is ∼ 1/S per each emission [19]. This fact already gives a strong
warning sign that we cannot extrapolate the semi-classical result over timescales of order
S emissions.

5.3 Electroweak Hierarchy Problem
In chapter 4 we studied numerically the model first introduced in [52], [53] which solves
the Hierarchy Problem by cosmological relaxation of the Higgs mass towards the attractor
vacuum during eternal inflation.

In this scenario the Higgs vacuum expectation value changes due to nucleation of
branes. At the same time the Higgs VEV acts as a back-control parameter that directs
the convergence of the relaxation progress. Such an attractor could in principle be realized
in various different models each with its own specifics.

In this analysis, however, we only focused on universal key features of the Cosmic
Attractor mechanism. For this we have modeled the Higgs VEV evolution as a random
walk with each step mimicking a vacuum transition triggered by a brane nucleation. The
observed convergence to Φ∗ = 0, which represents our attractor point, is in accordance
with analytic considerations. Additionally, this matches the finding that states with an
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enhanced number of microstates are attractor of dynamical evolution similar to the system
studied in chapter 2. We then generalized this stochastic model to multiple different
charges sourced by a 2-brane and studied the impact of their number on the relaxation
rate of the Higgs VEV. We showed that a higher number of three-form fields leads to a
faster convergence rate. That is less brane nucleation are necessary to relax the Higgs
vacuum expectation value below a given value. This confirms the intuitive picture that
adding brane charges is equivalent to an increase of brane nucleation channels.

5.4 Overall Conclusions
All in all, we have seen that collective quantum effects may play a very important role in
gravity and high energy physics in general. We have shown that, on first sight mysteri-
ous, quantum informational properties of black holes and de Sitter can in fact be found
in much easier many-body systems. This opens up the intriguing possibility of under-
standing black hole properties in terms of universal effects and furthermore also gives
a potential for implementing black hole type mechanisms for information storage and
quantum computing in a laboratory.

5.5 Outlook
There are many promising directions to continue the research summarized above. One
interesting path would be to study the dynamics of the information encoded in the Beken-
stein entropy itself. Black holes are not only extremely efficient storage device of quantum
information, but it was furthermore suggested that they are also the fastest in process-
ing information [106], [107]. Inspired by a concrete microscopic model as the quantum
N-Portrait [11], using prototype models similar to those considered in this thesis could
help to draw conclusions about the question if fast scrambling is realized in black holes.

The analogue systems considered in this thesis fully abstract from the geometry and
primarily focus on the quantum informational properties of black holes. It would be very
exciting to extend the analogies between those condensed matter models and gravitational
black holes further by also including geometrical properties such as a horizon.

As a continuation of the study of quantum breaking in de Sitter in [31], it would be
very interesting to extend this analysis to the Schwarzschild metric. In this way, one could
study quantum breaking in black holes more closely. This would complement the study
described in section 3.2, in which a quantum informational origin of quantum breaking
was discussed.
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Formulas

In this appendix we present the Bogoliubov Hamiltonian calculated in section 2.2.3. The
first and second derivative of Bogoliubov Hamiltonian (2.54) for ∆2 = ∆3 = 0 are given
by:

1
N

∂Hbog

∂x
= 1

16

[
− 16λ sin(2θ) − 2λ sin(4θ) + 16 cos(2θ) − 9λ+ 28λx sin(2θ)

+ 2λx sin(4θ) + 3λ(x− 1) cos(4θ) + 21λx− 4
]
, (A.1a)
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(
8 cos(2θ) + λ

(
(7x− 1) sin(2θ) + 2(x− 1) sin(4θ)

+ 3(x− 1) cos(4θ)
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The second-order expansion of the full quantum Hamiltonian (2.50) around the point
defined by the replacements (2.51) of macroscopic occupation for ∆2 = ∆3 = 0 is given
by

Hquad = H
(1)
quad + 1

2H
(2)
quad , (A.3)

where we neglected the constant zeroth order. The first and second order terms are
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furthermore given by
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+ â3

(
λ(x− 1)2 cos(4θ) + λ(7x− 1)(x− 1) cos(2θ)

+
√

4 − 4x sin(θ)
√

−(x− 1) cos2(θ)(3λ(x− 1) cos(2θ) + 8)
)]

+ h.c. (A.4)

H
(2)
quad = 1

128 ((1 − x) cos2(θ))3/2

[

+ 16â2â2λ
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Appendix B

Numerical Methods

In this section we briefly review the numerical methods applied in computing the time
evolution in chapters 2 and 3. This section is part of the work [6], which is in preparation
for publication.

B.1 Krylov Subspace Methods
Given an initial state vector v(0) and a hermitian Hamiltonian H, the state at any other
point in time t can be computed as

v(t) = e−iHtv(0) . (B.1)

Of course, a plethora of approaches exist to exponentiate a matrix. But the special na-
ture of the problem (B.1) – especially the fact that in the end knowledge of the full matrix
eiHt is not required – allows the use of techniques that are significantly more efficient than
generic routines for matrix exponentiation. Particularly important are Krylov subspace
methods, which were first used in 1986 for the purpose of numerical time evolution [108].
We shall briefly sketch them now, before we review them in more detail in section B.2.1.

The m-dimensional Krylov subspace Km is defined as

Km := span
{
v(0), Hv(0), . . . , (H)m−1v(0)

}
, (B.2)

where m � d. Typically, one has m . 100. The key idea is to project the large sparse
matrix H (in our case the Hamiltonian) on the small subspace Km:

Hm := H|Km , (B.3)

and to effectively replace
e−iHt → e−iHmt . (B.4)

The last step represents the crucial approximation. It introduces the error

err(t) := v(t) − ṽ(t) . (B.5)



114 B. Numerical Methods

where v(t) is the exact result (computed using e−iHt) and ṽ(t) represents the Krylov
approximation (calculated using eiHmt). Once matrix exponentiation is restricted to the
small subspace Km, it can be performed very fast using standard methods. In the full
Hilbert space H, only matrix-vector multiplications, as displayed in Eq. (B.2), need to be
carried out. Thus, the effectiveness of Krylov subspace methods is due the fact that no
matrix-matrix multiplication has to be performed in the large Hilbert space H.

We can estimate how large the advantage of Krylov subspace methods is. Clearly, a
necessary requirement for the feasibility of the calculation is that all intermediate results
can be stored in (the memory of) a computer. It turns out the this condition, and not
runtime, indeed is the limiting factor in many practical applications. If one uses standard
matrix exponentiation, the biggest intermediate object is the matrix eiHt, which unlike H
is no longer sparse. So the required storage capacity scales as the number of entries, i.e.
d2. In contrast, the largest entities that are needed for the Krylov method are the basis
elements of the Krylov space (B.2), so the required memory scales as md. In practice,
this leads to a gain in Hilbert space size of more than two orders of magnitude.

The Krylov subspace (B.2) is specifically adapted to the initial state v(0). Therefore,
one can expect that for short enough times t, the error (B.5) is small whereas it grows large
once the state v(t) (as determined without any approximation) deviates sufficiently from
v(0). Thus, it becomes necessary to restart the procedure after a certain time interval, i.e.
to take ṽ(t), computed by the Krylov method, as initial state for a new Krylov subspace.
With such a time stepping procedure in place, it has become evident since the earliest
numerical studies that in many circumstances the Krylov method works surprisingly well
already for values of m as small as 10 (see e.g. [108]–[111]).

At the same time, these and subsequent investigations have lead to important con-
ceptual progress in understand how these Krylov subspace techniques work. A possibly
incomplete list of important studies includes [109]–[117], where it is important to men-
tion that these publications have a wider scope in that they deal with the exponentiation
of a generic spare matrix. In the works cited above, a particularly important object of
study is to provide bounds on the error (B.5). In general, one can distinguish between
a priori and a posteriori error bounds. The first ones can be evaluated without actually
performing the Krylov technique while the second ones rely on the result of the Krylov
method. Correspondingly, a priori error bounds tend to be more general (and in par-
ticular independent of the initial state v(0) whereas a posteriori error bounds are often
sharper.

However, both types of rigorous error bounds typically suffer from the problem that the
function that bounds the error is difficult to evaluate in practice. Therefore, a posteriori
error estimates have been introduced in [108], [110]. They play a twofold role in numerical
implementations of Krylov subspace methods. First, they are used to determine the time
interval after which restarting of the Krylov procedure becomes necessary. Secondly, they
can be used to estimate the error of the final result. Obviously, using error estimates
instead of error bounds leads to the problem that one can in general not be sure if the
outcome of the Krylov method is indeed close to the true result.

As we have discussed, Krylov subspace methods represent an efficient approximation
scheme for calculating the product of an exponentiated sparse matrix and a vector. Such
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a problem appears in a wide range of context. In particular, it is relevant for computing
time evolution in a generic quantum system, as displayed in Eq. (B.1). In this case,
the sparse matrix iH, which is exponentiated, is anti-Hermitian. From the perspective of
Krylov methods, this represents a special case, but in a physical context, this encompasses
the most general quantum system.

In order to actually compute the result of time evolution in a given physical system,
a numerical implementation of Krylov subspace methods is required. This crucial tool
was provided by Sidje in 1998 when he published the software package Expokit [118].1
Among other routines for matrix exponentation, this program provides Krylov subspace
methods for generic sparse matrices. Since certain simplifcations occur for (anti-)Her-
mitian matrices, Expokit contain functions that are specific to this special case, which
is extremely important for physical applications. In line with our previous discussions,
Expokit does not employ a rigorous error bound, but it relies on a version of the error
estimate proposed in [110].

The lack of a rigorous error bound represents a serious drawback for any practical
application. If the problem at hand is such that one can compute the result by means
of a different method, then one can of course check the validity of the error estimates.
However, in such a case there is no need to employ Krylov subspace techniques in the
first place. This is to say that Krylov approximation methods are only interesting if
there is no other means of solving the problem. But then one does not have any means of
making sure that the error estimates still yield viable results. Therefore, it is important to
come up with a rigorous error bound that can be computed efficiently within a numerical
implementation.

A posteriori error bound relies on the fact that the error (B.5) fulfills a simple dif-
ferential equation. This was already noticed in early papers, in particular [116], [117],
and was recently pointed out more clearly in [119]–[121]. Solving this equation is not
an easy task, however, in the special case of an (anti-) Hermitian matrix the necessary
computation can be significantly simplified. The key point is that the norm of e−iHt is
always 1. This trivial observation has important consequences. As e.g. explicitly shown
in [122], this allows us to slightly modify existing Krylov methods in such a way that the
approximate result ṽ(t) is endowed with a rigorous bound on the norm of the error (B.5).
In fact, our algorithm can even adapt to yield a given desired bound on the error.

The second goal of the present work is to provide a numerical implementation of
that approach. We call it The TimeEvolver. From the outset, we specialize to the case
of an (anti-)Hermitian matrix. Consequently, our software package is considerably less
general than Expokit. However, it is sufficient for the most general application of quantum
mechanics, namely time evolving a generic physical system. In turn, we provide an open-
access and based on free software implementation of the Krylov approximation with a
rigorous error bound. In this way, one can be sure that the outcome of the numerical
method is indeed as close as desired to the result of an exact time evolution.

1In particular, it is based on the theoretical investigations [109]–[112].
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B.2 The Method

B.2.1 Krylov Subspace
Following [109]–[111], we shall review known Krylov subspace methods. The first step is
to compute the Krylov subspace (B.2). This can be achieved using the Arnoldi algorithm
(see e.g. [123] for a review), which simplifies because H is Hermitian. With the definition
v1 := v(0), we calculate for j = 1, . . .m:

wj =Hvj , (B.6a)
hj,j =〈wj, vj〉 , (B.6b)
w̃j =wj − hj,jvj − (1 − δj,1)hj−1,jvj−1 , (B.6c)

hj,j+1 =hj+1,j = 〈w̃j, w̃j〉 , (B.6d)
vj+1 =w̃j/hj+1,j . (B.6e)

As discussed in the introduction, it is important to note that no matrix-matrix multipli-
cations H ∗H appear but only much cheaper matrix-vector multiplications H ∗ vj. Using
the Arnoldi algorithm (B.6), we determine an orthogonal matrix Vm := [v1, . . . vm] as well
as the Hermitian Hessenberg matrix (Hm)i,j := hi,j. They fulfill

HVm = VmHm + hm+1,mvm+1e
T
m , (B.7)

where em is the unit vector with entry in the mth component. This implies that

Hm = V T
mHVm , (B.8)

i.e. Hm is the projection of H on the subspace Km, in line with Eq. (B.3). So far, all
statements have been exact. Now we implement the approximation (B.4), which amounts
to using Hm instead of the full H. Thus, the approximate result of time evolving v(0) is

ṽ(t) = Vme
−iHmte1 . (B.9)

The key point is that unlike H, the Hessenberg matrix Hm is small. Therefore, any
standard algorithm can be used to exponentiate it without significant computational cost.

B.2.2 Error Bound
Next we want to derive a bound on the error, err(t) := v(t) − ṽ(t), i.e. the difference
of ṽ(t) and the result v(t) of an exact time evolution (see Eq. (B.5)). It is based on
the well-known observation that err(t) fulfills a simple differential equation [116], [117],
[119]–[121]. It can be derived by first noting that

ṽ′(t) = −iVmHme
−iHmte1 = −iHṽ(t) + ihm+1,me

T
me

−iHmte1vm+1 , (B.10)

where we used (B.7) in the second step. Therefore, it follows that

err′(t) = −iH err(t) − ihm+1,me
T
me

−iHmte1vm+1 . (B.11)
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For the initial condition err(0) = 0, this differential equation is solved by

err(t) = −ihm+1,m

∫ t

0
eT

me
−iHmτe1e

−i(t−τ)Hvm+1dτ . (B.12)

In order to find an upper bound on the norm ||err(t)||, one has to evaluate ||e−i(t−τ)H ||. For
a generic, i.e. non-Hermitian, matrixH this is very hard since it involves the exponential of
a large matrix. Calculating it is as difficult as the initial problem (B.1) we set out to solve.
Thus, formula (B.12) makes evident the typical difficulty of rigorous error bounds: The
bounding function on the r.h.s. contains quantities that cannot be computed efficiently.

Whereas we have not gone beyond the previous studies [116], [117], [119]–[121] so
far, we want to point out now that significant simplifications occur in the case that H
is Hermitian. Namely, the norm of e−i(t−τ)H is 1 and this allows to explicitly bound Eq.
(B.12). Of course, this remark is completely straightforward, and was already pointed
out for example in [122]. Moreover, it is very interesting that the case of a Hermitian
matrix H, which is of extraordinary relevance in physics, leads to such simplifications.
Also taking into account that vm+1 is normalized, we obtain the error bound

||err(t)|| ≤
∫ t

0
dτ
∣∣∣hm+1,me

T
me

−iHmτe1

∣∣∣ . (B.13)

The key point of this formula is that it only depends on quantities that are known in the
Krylov algorithm or easy to determine: The element hm+1,m is already computed in the
Arnoldi procedure and e−iHmτe1 can be calculated without any significant computational
cost since Hm is already known and – as already said – the time needed to exponentiate
the small matrix Hm is negligible. So the only remaining task it to perform the integral
in Eq. (B.13) numerically. As we shall show shortly, this poses no problem.

Formula (B.13) enables us to compute an upper bound on the error for a given Krylov
space and a given time interval t. However, it can do even more. We can use it to find
the optimal step size for a given desired accuracy, where as explained above the step
size denotes the time after which the Krylov procedure is restarted, i.e. a new Krylov
subspace is computed. The input data is the time t, at which we wish to evaluate v(t),
and an upper bound errmax on the error. This determines an upper bound on the error
rate tolrate as follows:

tolrate = errmax

t
. (B.14)

Now we can evaluate the error formula (B.13) at different times. The optimal step size
tstep is the largest time for which the resulting error rate is still below the desired bound:

tstep = max
t̃

err(t̃)
t̃

≤ tolrate . (B.15)

This allows us to use a minimal number of steps while still guaranteeing a rigorous a
posteriori error bound.

Note that (B.15) is of course not the only way to evaluate (B.13). Another possi-
bility is to approximate the exponential function via a series expansion, e.g. a Hermite
interpolation. For details we refer to [124].
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B.2.3 Pseudocode
We shall discuss more concretely our implementation of the algorithm sketched so far. It
is displayed in pseudo-code 1 and consists of repeating three steps:

1. We perform the Arnoldi algorithm as shown in Eq. (B.6). This part is completely
standard. The only aspect we have not gone into so far is the special situation of
a “happy breakdown”. Namely it can occur that the Krylov space Km, as defined
in Eq. (B.2), has a dimension that is smaller than m. In this case, the result
of orthonormalization, as displayed in line (B.6c), is zero for some value of j. If
this happens, working in the Krylov subspace is no longer an approximation but
yields an exact result. This means that our problem is solved and we can stop the
algorithm. We shall not further discuss this special case.

2. We find the optimal step size according to Eq. (B.15). This requires evaluation
of the integral in the error formula (B.13). As is well-known, one of the simplest
methods for numerical integration is by Riemann sums. One discretizes time using
a small substep s and approximates the integrand as step function by evaluating it
at each discrete point in time. Subsequent integration of a sum of step functions is
trivial. We slightly modify this scheme in that we do not initially know the end point
of integration. This means that we evaluate the integral after each substep and then
compare err(nss)/(nss) to tolrate, where ns is the number of substeps performed so
far. If the first expression is smaller, we continue to the next substep. If it is bigger,
we stop and determine the optimal step size as tstep = (ns − 1)s. In order to ensure
that error due to the finite step size in the numerical integration is sufficiently small,
we demand that ns > N_SUBSTEPS_MIN, where N_SUBSTEPS_MIN is a given
constant. If this is not the case, we restart step 2 with a smaller value of s.

3. Using the step size tstep determined above, we compute v(tstep) according to Eq.
(B.9). Now we restart the Krylov procedure, i.e. we go back to step 1, where
v(tstep) now is the initial vector for the next iteration of the algorithm.

It is important to point out that the fraction of runtime required for step 2 is small
since computations are only performed in the small Krylov subspace of dimension m.
Nevertheless, one can gain a slight improvement in performance by diagonalizing the Hes-
senberg matrix Hm at the beginning of step 2. If this is done once, no matrix exponential
is needed any more to compute the integrand of (B.13) for different values of τ . We use
this approach in our implementation.

The Krylov approximation (B.4) is not the only reason why our final result is not
exact. Another source of inaccuracy is the finite precision of numerical computations. Its
effect is the largest when a large number of numerical operations is applied consecutively
(see e.g. [125]). Correspondingly, we expect the Arnoldi algorithm to be most important
in the determination of the numerical error. Since in general d numbers are added in the
computation of the components of vi (see Eq. (B.6)), a conservative upper bound on the
numerical error is given by

d ε , (B.16)
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Input: Hamiltonian matrix H, inital vector v, time t, maximal error errmax
Output: Approximation for exp(−iHt)v
A := −iH; tnow := 0; w := v; tstep = 0.1; tolrate = errmax/t;
while tnow < t do

//Step 1: create Krylov space
v1 := w;
for j := 1 : m do

p := Avj;
Mjj := vjp; // M is different name for Hessenberg matrix Hm

if j=1 then
p := p−Mjjvj;

else
p := p−Mjjvj −Mj−1,jvj−1;

end
no := ||p||2;
if no < tolrate then

// happy-breakdown
end
if j 6= m then

Mj,j+1 := −no; Mj+1,j := no;
vj+1 := p/no;

else
h := no;

end
end
//Step 2: find optimal step size
s := 0.97 tstep/N_SUBSTEPS_MIN; ns := 0;
while ns < N_SUBSTEPS_MIN do

ns := 0;
repeat

ns := ns + 1; tstep := ns · s; ω := exp(M · tstep) · e1;
errrate := h||eT

mω||; errstep := errstep + s · errrate;
until errstep > tolrate · tstep;
s := min(s/2, s · ((ns + 1)/MIN_STEPS));

end
//Step 3: perform step
w = V · ω; tnow := tnow + tstep;

end
Algorithm 1: Krylov-Method
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where ε is the machine precision. In order to ensure that the error of the final result
is not dominated by the numerical one, we compare in each Krylov step the analytic
error bound, errstep, to the estimate (B.16). If the latter is bigger, the program triggers
a warning to alert the user that the analytic error bound may be spoiled by numerical
imprecision.

Finally, we remark that the above algorithm can trivially be extended not only to
compute the final vector but also to sample its values at intermediate points of time: In
step 3, one can use the known matrices Hm and Vm to compute the vector at any ts with
tnow ≤ ts ≤ tnow + tstep.
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