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Zusammenfassung

Die Fourier-Transformations-Infrarotspektroskopie (FT-IR) ist ein zeit- und kostene�ziente
Technik, das geeignet ist, gleichzeitig die charakteristischen spektralen Fingerabdrücke aller
molekularen Bestandteile chemisch komplexer Proben zu erfassen. Jüngste Untersuchun-
gen haben ihr Potenzial an Bio�üssigkeiten für eine schnelle biomedizinische Diagnostik
erforscht. Kommerzielle FT-IR-Spektrometer weisen technische Einschränkungen auf, die
sich nachteilig auf ihre Detektionsleistung auswirken. Die meisten der bisher verö�entlichten
Studien basieren jedoch auf kleinen Fall-Kontroll-Kohorten, die nicht ausreichende statistische
Aussagekraft zu bieten haben und nicht repräsentativ für die allgemeine Bevölkerung sind.
Darüber hinaus wurde der Ein�uss von demographischen Faktoren und Komorbiditäten auf
den Infrarot-Fingerabdrücke menschlicher Bio�üssigkeiten nicht genau verstanden. Die neue
feldaufgelöste Spektroskopie (FRS) wurde in unseren Labors entwickelt und hier für die Anal-
yse von menschlichem Blutserum und -plasma getestet. Dies nutzt eine wellenformstabile
MIR-Pulslaserquelle mit hoher Brillanz und hohem Dynamikbereich. In Kombination mit der
elektrooptischen Abtasttechnologie ermöglicht es die Erfassung des kohärenten elektrischen
Feldes der angeregten Moleküle direkt im Zeitbereich.

Diese Dissertation konzentriert sich auf den Vergleich der FRS-Spektroskopie mit einem
hochmodernen FT-IR-Spektrometer, um das Potenzial molekularer Infrarot-Fingerabdrücke von
menschlichen Bio�üssigkeiten zur Erkennung von Krankheiten zu untersuchen. Sowohl die
FRS- als auch die FT-IR-Spektroskopie werden hier auf die menschlichen Blutplasmaproben der
KORA-FF4-Studie, eine bevölkerungsbasierte Kohorte mit großem Querschnitt, und über eine
unabhängige Fall-Kontroll-Studie validiert. Algorithmen des maschinellen Lernens wurden
eingesetzt, um die Erkennungse�zienz und die spektralen Signaturen der einzelnen unter-
suchten Erkrankungen zu bestimmen. Die Auswirkung allgemeiner demogra�scher Parameter
auf die Infrarot-Fingerabdrücke werden zunächst bei gesunden Personen untersucht, um
ihren Ein�uss auf die Variabilität zwischen Personen zu ermitteln. Insbesondere Alter und
Entzündung werden als Hauptfaktoren identi�ziert, die die große spektrale Variabilität der
Infrarotsignaturen zwischen Personen beein�ussen. Die Abhängigkeit der Detektionse�zienz
von der Anzahl der untersuchten Individuen wird bei der Bewertung der einzelnen Erkrankun-
gen berücksichtigt. Insbesondere zeigt die Analyse, dass mindestens 130 Probanden involviert
sein sollten, um eine ausreichende statistische Power der Studie zu gewährleisten. Letztendlich
wird über die chemische Fraktionierung im Rahmen der spektroskopischen Erkennung von
Krebs berichtet, die ein tieferes molekulares Verständnis der Infrarot-Fingerabdrücke von
menschlichem Blutserum und Plasma liefert.

Der Vergleich unabhängiger Kohorten zeigt, dass für die Zielbedingungen spezi�sche
Infrarot-Fingerabdrücke auch für unterschiedliche Studien erzielt werden können, was die Ro-
bustheit des Ansatzes unterstreicht. Insbesondere die zeitliche Au�ösung der FRS-Spektroskopie
erlaubt die Unterscheidung zwischen spezi�schen und unspezi�schen spektralen Signaturen
in unterschiedlichen Zeitfenstern. Diese überlappen sich im Frequenzbereich, was einen
wichtigen Vorteil gegenüber der FT-IR-Spektroskopie darstellt. Sowohl FT-IR als auch FRS
erweisen sich als etwa gleichermaßen vielversprechend für die Erkennung von Personen,
die von Lungenkrebs, Diabetes, Bluthochdruck, hohen Blutfetten betro�en sind, sowie von
Personen, die einen Schlaganfall oder Herzinfarkt erlitten haben. Dennoch bietet die FRS-
Spektroskopie eine höhere Erkennungse�zienz für verschiedene Prädiabetes-Entitäten sowie
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für Brust- und Prostatakrebs. Es ist zu erwarten, dass das diagnostische Potenzial der FRS
aufgrund der technischen Verbesserungen, die derzeit in unseren Labors entwickelt werden,
deutlich zunehmen wird. Generell hat sich der Infrarot-Fingerabdruck von Blutplasma und
-serum als zeite�ektive, robuste und kostengünstige Technik zur Erkennung und Überwachung
mehrerer Krankheiten erwiesen, sowohl einzeln als auch gleichzeitig, und stellt damit potenziell
ein wertvolles Werkzeug für Anwendungen im klinischen Bereich da.



Abstract

Fourier-transform infrared spectroscopy (FT-IR) is a time and cost-e�ective technique suited
to simultaneously record the characteristic infrared spectral �ngerprints of all molecular
constituents of chemically complex samples. Recent investigations have explored its potential
on bio�uids for rapid biomedical diagnostics. However, most of the previously published
studies are based on small observational case-control cohorts of clinical patients providing low
statistical power and not aimed to assess any general population, often focused on speci�c
medical conditions not providing validation with independent cohorts. Furthermore, it was
not well understood what is the impact of demographic factors and comorbidities on the
infrared �ngerprints of human bio�uids. Commercial FT-IR spectrometers present technical
limitations, detrimental to their analytical power. The new �eld-resolved spectroscopy (FRS)
has been developed in our laboratories and tested here for the screening of human blood serum
and plasma. FRS exploits a waveform-stable few-cycle MIR pulsed-laser source with high
brilliance and dynamic range. Combined with electro-optic sampling technology, it allows for
the detection of the background-free coherent electric �eld of excited molecules in the time
domain.

This dissertation focuses on the comparison of FRS spectroscopy with a state-of-the-art FT-
IR spectrometer to address the potential of infrared molecular �ngerprinting of human bio�uids.
Both FRS and FT-IR spectroscopy are here applied on the human blood plasma samples of
the KORA-FF4 study, a large cross-sectional population-based cohort, and validated via an
independent case-control study. Machine learning algorithms have been used to determine the
detection e�ciency and the spectral signatures of each medical condition investigated. The
e�ect of demographic parameters on the infrared �ngerprints is �rst evaluated among healthy
individuals to address their impact on the between-person variability, addressing age and
in�ammation as the main factors. The diagnostic potential of FT-IR and FRS spectroscopy is then
addressed for the detection of several common medical conditions, for which the dependence
of the detection e�ciency on the number of individuals investigated is also considered. In
particular, about 130 individuals per group are required to guarantee enough statistical power
to the analysis. Ultimately, chemical fractionation is reported in the frame of spectroscopic
detection of cancer, providing a deeper molecular understanding of the infrared �ngerprints of
human blood serum and plasma.

The comparison of independent cohorts shows that infrared �ngerprints speci�c to each
medical condition can be obtained for very di�erent study settings, highlighting the robustness
of the approach. The temporal resolution of FRS allows the distinction between speci�c and
unspeci�c spectral signatures in di�erent time windows, providing an important advantage
over FT-IR spectroscopy where the signature overlap. FT-IR and FRS are found to be equally
promising for the detection of individuals a�ected by lung cancer, diabetes, hypertension, high
blood lipids as well as of individuals who had episodes of stroke or heart attack. Nevertheless,
FRS provides higher detection e�ciencies for di�erent prediabetes entities as well as for breast
and prostate cancer. The diagnostic e�ciency of FRS is expected to increase signi�cantly due to
the technical improvements currently under development. Ultimately, infrared �ngerprinting
of human blood bio�uids is proved to be a robust, time-e�ective and e�cient technique for
detecting and monitoring several medical conditions singularly as well as simultaneously, thus
potentially providing a valuable tool for applications in clinical settings.
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Chapter1
Introduction and Motivation

In 1800 Sir William Herschel demonstrates for the �rst time the existence of the thermometrical
spectrum of the sun, later identi�ed as infrared (IR) radiation, with the sole help of a prism and a
thermometer [1]. From that moment, it took about 80 years for chemical infrared spectroscopy
to emerge and another 80 for the commercialization of the �rst IR spectrometer. In 1957 Perkin-
Elmer placed on the market the Infracord double-beam spectrophotometer [2], able to record
spectra from 660 up to 4000 2<−1 in only 12 minutes, �nally making infrared spectroscopy
fast and easily accessible. The same year, Norman K. Freeman introduces the potential of the
technique for the analysis of biological samples as well as of tissues in his book "Advances in
Biological and Medical Physics" [3]. Infrared spectroscopy is soon applied for disease detection
in humans, leading to a comparable growth rate in the number of publications about this topic
as for IR spectroscopy in general (Figure 1.1).

The �rst paper about IR spectroscopy appears in Science in 1927 [1], but the number of
publications grows slowly in the next years. It is only in 1963 that the research around IR
spectroscopy starts to �ourish. In the same year, the �rst paper reporting IR spectroscopy on
a human bio�uid for disease detection is published [4]. In this paper, the IR spectra of urine
samples of one patient a�ected by Hurler’s syndrome and three siblings with Morquio-Ullrich´s
disease are compared with the spectra of the molecules expected to be up-regulated by the
respective conditions: chondroitin sulfate B in both cases and altered hyaluronic acid in the last.
For the �rst time, the potential of IR spectroscopy for the detection of disease-induced biological
changes in the chemical composition of human bio�uids is reported. This happens already
before the advent of microcomputers able to perform Fourier-transform (FT), which lead to an
additional boost in the commercialization of the more advanced FT-IR spectrometers based
on the Michelson interferometer technology. The �rst FT-IR spectrometer, by Digilab (Model
FTS-14), is available on the market in 1969 [5]. By the year 2000, the performance-to-prize ratio
of these devices has been incredibly boosted, making the applicability of FT-IR spectroscopy in
clinical settings increasingly interesting.
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Figure 1.1: Number of publications about infrared spectroscopy in general and applied to disease
diagnosis in human biosamples per year. Source: PubMed [6].

In the last twenty years, the potential of FT-IR spectroscopy on bio�uids and tissues for
the screening of the human health status has been largely explored, particularly for the early
detection of speci�c medical conditions and as a tool for treatment monitoring. Indeed, as a
result of the huge advances in medicine, developed nations have reached a higher quality of
life leading to longer life expectancy [7]. As a consequence of aging populations, an increase
of chronic diseases has been recorded, leading to high demand for new fast and reliable
throughput diagnostic tools. Highly sensitive techniques, such as mass spectrometry and
nuclear magnetic resonance, have been proposed for the identi�cation of speci�c biomarkers
for several conditions [8–14]. On the other hand, FT-IR spectroscopy can acquire information
about concentration and structure of all molecular constituents of the sample under analysis in
one single measurement, o�ering an advantageous approach compared to biomarker-targeted
techniques. One of the main advantages of FT-IR is its high potential for the diagnosis of
multiple conditions in one fast measurement making it suitable for fast patients triaging and
personalized medicine [15, 16]. Moreover, it is simple to operate, reagent-free, label-free,
non-destructive and easily adaptable to clinical environments [16]. Several studies have been
proven the potential of infrared spectroscopy in di�erent bio�uids, such as human blood serum
[17] and plasma [18], whole blood [19], sputum [20], bile [21], amniotic �uid [22], cerebrospinal
�uid [23], urine [24], saliva [25] and tears [26]. The bio�uid determines how invasive and
costly IR �ngerprinting for disease diagnosis is. Human blood serum and plasma are the
most advantageous being easily available and, more importantly, the only ones able to carry
information about the health status of every organ in the body.

Many e�orts have been done to prove the advantages of the technique, but few in the
direction of actual clinical applications. To this end, further improvements are still needed.
FT-IR must ultimately be proven to improve patients outcomes and alleviate �nancial strains
on the healthcare system. The cooperation between instrument developers, spectroscopists and
clinicians is therefore essential to this end [16]. So far, only a few major programs have been
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moving toward applications of IR spectroscopy on large scale clinical trials, such as: Biotech
Resources, which uses attenuated total re�ection-Fourier transform-infrared spectroscopy (ATR-
FTIR) of human blood cells for the screening of malaria in low-income areas [27]; Cireca
Theranostics, which has developed “spectral histopathology” protocols for the analyses of tissue
sections as support to histopathologists in the decision-making process [28, 29]; Glyconics,
which together with Spectrolytics, a German spectrometers development company, aim at
producing a hand-held point-of-care (POC) FT-IR device speci�cally for clinical settings for
the analysis of chronic obstructive pulmonary disorder (COPD) and diabetes [30–32]; Clinspec
Diagnostics Ltd, implementing the clinical translation of ATR-FTIR to identify and classify brain
cancer from blood serum samples, investigating also its costs and health bene�ts [33].

Several reasons limit the approval of FT-IR spectroscopy in clinical practice, such as the
general lack of standardization and, especially, of validation in multi-center clinical trials [15].
Most of the several studies published to prove the potential of IR spectroscopy for disease
detection are proof-of-principle, usually based on small retrospective case-control studies. In
these cohorts, the individuals are sampled based on the presence (cases) or absence (controls) of
the target condition. On the other hand, in prospective cohorts, people without the "outcome"
of interest are sampled in speci�c conditions (in a population, among the patients of speci�c
clinics, etc.) and a variety of parameters that might be relevant to the development of the target
condition are recorded over a speci�ed period; the individuals who develop the condition are
the cases and the rest are internal controls [34]. Both samplings are a�ected by di�erent sources
of selection biases leading to cohorts of individuals systematically di�erent from the population
they intend to represent. The most important selection biases are: non-response bias, due to
the dependence of the sampling from non-responders and responders; volunteer-bias, which
considers the potential di�erences between those who volunteer (reported to be more sociable,
from higher social classes and more educated) and the general population; ascertainment-bias,
which is the systematic di�erence between the actual data and the reported one, either due to
the study participants (response-bias) or to the investigators (assessment or observer-bias) [35].

Case-control studies are usually retrospective and more cost-e�ective because the collection
is focused only on the individuals of interest, usually among clinic patients, making them
speci�c to a target population [34]. Cross-sectional studies, on the other hand, are usually
prospective and individuals are sampled either from national registers or in a random fashion
to represent the entire population [35, 36]. Both case-control and cross-sectional studies are
referred to as "observational" because the investigator simply observes. Population-based
studies are more likely to be representative of the whole population, thereby minimizing
selection biases, especially if random sampling is adopted [35]. Prospective cohorts reduce
these biases as well because cases and controls are collected independently from the prognosis
[15]. Therefore, prospective cross-sectional population-based cohorts are the ideal study to
evaluate the infrared �ngerprints of common phenotypes in the general population. Moreover,
as opposed to case-control studies which focus on one outcome in each study, cross-sectional
cohorts examine various parameters allowing for prospective case-control-like analysis [34].
The main drawback of such studies, which is the reason why they are so rarely used, is the long
time required for sample collection. This is also due to the need for recruiting more individuals
to compensate for eventual losses of subjects in follow-up studies. Moreover, these cohorts are
not suited for the analysis of rare conditions that would be underrepresented as only a few
individuals will develop them during the study [34, 37].
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In the past 20 years, no major technological improvements have been applied to FT-IR
spectroscopy. The thermal radiation sources feature quite a low brilliance, with detrimental
e�ects on the signal-to-noise ratio (SNR). Recently, new sources with higher photon �ux
density have been proposed, such as quantum cascade lasers (QCL) and coherent femtosecond
broadband sources [38–41]. Synchrotron infrared sources provide 100-1000 times higher photon
�ux density and have been shown to provide better disease diagnostic e�ciencies in several
studies [42–46]. However, their accessibility is very limiting. The high noise and the limited
dynamic range of the detectors in commercial FT-IR spectrometers are also limiting. Frequency
up-conversion detectors can provide higher quantum-e�ciency and sensitivity [5]. Other
sources of technical noise, such as interferometer instabilities, contribute to lowering the SNR
and are usually compensated by balanced detection, active stabilization or fast data-acquisition
[47–51].

To boost the e�ciency of commercial IR spectrometers, a new technique has been recently
implemented in our research group: �eld resolved spectroscopy (FRS) [52]. A waveform-stable
few-cycle MIR pulsed-laser is used as a high brilliance source. Combined with electro-optic
sampling (EOS), it allows the detection of the coherent electric-�eld-resolvedmolecular �ngerprint
(EMF) of the excited molecules in a background-free fashion. This extensively reduces the
in�uence of the source �uctuations on the signal of interest and allows the use of higher
brilliance sources without the drawback of saturation at the detectors. These advantages allow
the detection of less abundant molecules in their natural aqueous environment pushing the
limit of detection (LOD) down to 200 ng/mL, 40 times lower than state-of-the-art commercial
FT-IR devices (8 `g/mL) and 5 orders of magnitude lower than the most abundant molecule,
human serum albumin. Moreover, FRS performances have been demonstrated also for the
investigation of intact biological systems with high optical and physical thicknesses (FT-IR
upper limit is 10`m), such as human THP-1 leukemic-monocyte-like cell line and on goat
willow (Salix caprea) leaves with 120 `m thickness [52]. It is therefore a very powerful tool for
biology, biomedicine, pharmaceutical and ecological applications. Further developments are
ongoing, such as the broadening of the spectral coverage, currently between 1000 and 1500
2<−1, and the implementation of fast scanning able to "freeze" the excitation pulse �uctuations.

In this dissertation, FT-IT and FRS spectroscopy are applied to human blood plasma samples
collected in the frame of KORA-FF4 (cooperative health research in the region Augsburg),
a prospective cross-sectional population-based cohort. The samples have been collected by
the Helmholtz Zentrum in 2013-2014 as a continuation of a longitudinal monitoring study of
epidemiology, health economics and health care of a German population [53, 54]. The collection
has been performed via strati�ed random sampling in seventeen communities in Augsburg
following the German guidelines for Good Epidemiological Practice [55]. The participants
underwent in-person interviews and medical examinations leading to a platform with more
than 10.000 variables, including socio-demographic parameters, risk factors, medical history
and medications [54, 56, 57]. The main results obtained for KORA-FF4 via FT-IR are compared
with an independent prospective case-control study for cancer diagnosis, Laser 4 Life (L4L), by
a consortium between Ludwig-Maximilians-Universität, the Max Planck Institute for Quantum
Optics and multiple international clinical centers in Europe. This is based on human blood
serum collected in 2018-2019 from clinical patients in the area of Munich. The validation
with an independent study is often missing in recent publications on this topic [58]. The
large preanalytical error, amounting to about 60% of the total errors in clinical practice [59],
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is a potential obstacle in the comparison of independent cohorts. However, this is shown
to be negligible compared to the biological diversity between individuals, which makes IR
spectroscopy suitable for screening purposes [60].

Overall, this dissertation presents an investigation of the IR signatures of demographics
and other common factors in human blood bio�uids of healthy individuals and the in�uence of
these parameters on the diagnosis of common medical conditions. To the best of our knowledge,
this analysis has never been carried out to this extent on a population-based cohort before.

1.1 Outline of the dissertation
The tools used in this dissertation are introduced in chapter 2: from common FT-IR spectrometers
and other vibrational spectroscopy techniques to the description of the FRS set-up, with
respective advantages and disadvantages. Ultimately, the machine learning algorithms used for
the analysis of both FT-IR and FRS data are discussed.

In chapter 3 the technical and biological noise are discussed for both techniques. The
speci�city of the IR analysis of human blood bio�uids has been questioned because of the large
between-person variability due to demographics and other common parameters (age, gender,
smoking status, etc.). In particular, in�ammation has been addressed as one of the factors with
the strongest impact on the spectral signature of proteins [61]. Diseases are normally associated
with molecular concentrations varying beyond the normal physiological levels. However, the
large biological variability between individuals can mask their signatures, especially at the
earliest stages. Chapter 3 addresses the role of these parameters on the between-person spectral
variability among the healthiest individuals of KORA-FF4 and L4L cohorts.

Chapter 4 focuses on the detection of endpoint and intermediate conditions. Prospective
randomized studies are often thought to eliminate the in�uence of confounding variables:
since each type of exposure is assigned by chance, they should be equally distributed among
cases and controls [34]. However, the comparison of the �ngerprints of the same diseases in
KORA-FF4 and L4L, which are very di�erent in nature, shows that if cases and controls are
not matched other factors might a�ect the �ngerprints [15]. Matching is shown to isolate
phenotype-speci�c signatures, necessary to address the actual diagnostic e�ciency of di�erent
diseases.

Ultimately, the high chemical complexity of human blood bio�uids is associated with a
large dynamic range of concentrations of the di�erent biomolecules. The strong signals of
the most abundant molecules cover the spectral signatures from the low abundant ones [16,
61]. To solve this issue, chemical fractionation is applied in chapter 5 on human blood serum
samples collected in a pilot case-control study for cancer detection [62]. This allows a deeper
understanding of the IR �ngerprints at a molecular level.





Chapter2
Infrared spectroscopy and machine learning

algorithms

The techniques and machine learning algorithms used in this dissertation are introduced in
this chapter. First, a theoretical description of molecular vibrations and the related spectro-
scopic transitions is given. This is followed by a short description of the technical aspects of
commercial FT-IR spectrometers, with related advantages and limitations. Similar techniques
increasingly used for the analysis of human bio�uids are brie�y introduced. To conclude the list
of vibrational spectroscopic techniques, FRS is ultimately discussed. In particular, a description
of the technology behind is proposed and advantages and disadvantages of the technique are
reported. Ultimately, the machine learning and the matching algorithms used in the following
chapters are introduced.

2.1 Quantum mechanics de�nition of vibrational modes
and excitations

This section aims at introducing the theoretical aspects of vibrational spectroscopy, starting
from the quantum mechanic de�nition of normal modes and concluding with the related
spectroscopic transitions.

2.1.1 De�nition of molecular normal modes
Before going into the technical aspects of vibrational spectroscopy, a theoretical description
of molecular vibrations is presented, from the description of a free particle to the harmonic
oscillator. The following discussion refers to the more thorough explanation of this topic in
[63] and [64].

To start with, it is essential to introduce the most relevant basic notion of quantum me-
chanics: all the properties of a system depending on space (r) and time (t) are described by
a wavefunction. A given wavefunction Ψ(r, C) is a complex mathematical function which, if
squared, returns the probability density, namely the probability to �nd the system in a given
unit of volume. The total probability is therefore:∫

% (r, C)3f =

∫
Ψ∗(r, C)Ψ(r, C)3f = 〈Ψ|Ψ〉 (2.1)

where Ψ∗ is the complex conjugate of Ψ, respectively denoted as 〈Ψ| and |Ψ〉 in bra-ket notation.
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% (r, C) must have a single value for each position. Therefore, the wavefunction needs to be
single-valued as well and its integral must always exist and be �nite. Moreover, it must be
continuous in space, with continuous �rst derivative except at the system boundaries. Another
essential concept of quantum mechanics is that any measurable physical property � is the
expectation value of a correspondent Hermitian operator �̂, expressed as:

� = 〈Ψ|�̂|Ψ〉 (2.2)

where Hermitian means that, given two wavefunctions Ψ0 and Ψ1 , it follows that 〈Ψ1 |�̂|Ψ0〉 =
〈Ψ0 |�̂|Ψ1〉∗. The quantum mechanical operator associated to the direction r is simply r̂ = r,
while the one associated to the momentum p is p̂ = −8ℏ∇̂ , where ℏ is the Planck’ constant ℎ
divided by 2c and ∇̂ = (m/mG + m/m~ + m/mI) is the gradient operator. One of the most important
operators to describe any system is the Hamiltonian, which returns the total energy � as the
sum of the kinetic () ) and potential energy (+ ). In particular, from the de�nition of p̂, it follows
that the operator kinetic energy is:

)̂ =
p̂2

2< =

(
− ℏ2

2<

)
∇̂2 (2.3)

where ∇̂2 = (m2/mG2 + m2/m~2 + m2/mI2) is the Laplacian operator.
In 1926, Erwin Schrödinger �nds an elegant solution to derive the wavefunction of a system,

the time-dependent Schrödinger equation:

�̂Ψ = 8ℏ
mΨ

mC
(2.4)

which, from the de�nition of Hamiltonian and from equation 2.3, can be reformulated as:

8ℏ
mΨ

mC
= − ℏ2

2< ∇̂
2Ψ ++ (r)k (2.5)

which has the following solution:

Ψ = k (r)4G? (−2c8�C/ℏ) (2.6)

The associated probability, described in equation 2.1, only depends on the radial part of the
solution and is equal to |k (r) |2. If the Hamiltonian only depends on the position, namely
�̂ = �̂0(r), the equation 2.5 becomes:

�̂0k (r) = �k (r) (2.7)

which is the time independent Schrödinger equation. The solutions of this eigenvalue equation
are eigenfunctionsk: (r), which for an electron in an atom or molecule are the set of orbitals and
represent an eigenstate associated with a speci�c eigenvalue �: of the system. The Hamiltonian
operator returns a complete set of orthogonal functions (〈k8 |k:〉 = 0) which can be multiplied
by a nonzero value to be normalized (〈k8 |k8〉 = 1) giving orthonormal eigenfunctions. Any linear
combination of eigenfunctions, called superposition of states, is also an eigenfunction.

The time-independent Schrödinger equation of a free particle in a constant potential, which
can be set to zero, is given by equation 2.7 substituting � with the kinetic energy as expressed
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in equation 2.3 and returns not-quantized energies. However, if the particle is con�ned in a
box of length ; with potential energy zero inside the box and in�nite outside, the wavefunction
and the corresponding energy are quantized according to the �rst quantum number =, which
can have only integer values. Both the number of nodes and the uniformity of the probability
distribution increase with =. Moreover, the superposition of states can give wavefunctions
more localized in space, called wavepackets. The probability |k= |2 is zero outside the box for
in�nitely high walls. However, if the height of the box is �nite, the probability of �nding the
particle outside the box is low but not zero because of the purely quantistic tunnel e�ect.

The case of an electron in a chemical bond resembles the one of a particle in a box with
�nite walls. The potential can be approximated to the one of a harmonic oscillator (e.g. a spring
connecting two masses), which in one dimension is + (G) = 1

2:G
2, with G the displacement

from the equilibrium mean length and : the force constant. An harmonic oscillator of reduced
mass<A =<1<2/(<1 +<2) has an oscillation frequency a = 1

2c

√
:
<A

. Using the de�ned + (G),
the one-dimensional Hamiltonian returns the following eigenvalues:

�= =

(
= + 1

2

)
ℎa (2.8)

The minimum energy, namely the zero-point energy, is therefore (1/2)ℏl . As for the case
of a particle in a box, also for the harmonic oscillator eigenvalues and wavefunctions are
quantized according to =, which determines the number of nodes and the spatial distribution
of probabilities that, as before, becomes more uniform for increasing values of =. Compared
to the case of a particle in a box, the dependence of � from = is linear and the wavefunctions
have a more complex shape. As described before, a wavepacket is a linear combination of
harmonic-oscillator wavefunctions. Because of the temporal dependence 4G? (−2c8�=C/ℏ) in
the complete wavefunction j= (G) (see equation 2.6), a wavepacket oscillates in the potential
well with the classical frequency a .

In a molecular system, each vibration is the complex collective motion of many nuclei
together, but their analysis can be simpli�ed assuming that the vibrational potential is a
harmonic function of the atomic coordinates. Therefore, a set of normal coordinates b , given by
the linear combination of the atoms’ coordinates, can disentangle the vibrational modes (or
normal modes) along single normal coordinates. In this case, the potential can be written as
+ = 1

2Σ8:8b
2
8 . The wavefunctions of an harmonic oscillator are:

j= (G) = #=�= (D)4G?
(
− D

2

2

)
(2.9)

with #= a normalization factor, �= an Hermite polynomial and D the dimensionless positional
coordinate given by:

D =
G√

ℏ/2c<Aa
(2.10)

A molecule with N atoms has 3# degrees of freedom, 6 of which are rotations and 3# − 6 of
which are vibrational modes (3# − 5 for linear molecules with only two rotational degrees of
freedom). In the harmonic approximation, the vibrational wavefunction of each of the 3# − 6
harmonic oscillators are:

- (D1, D2, ...) = Π3#−6
8=1 j=(8) (D8) (2.11)
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with corresponding energies:
�E81 = Σ3#−6

8=1

(
=8 +

1
2ℎa8

)
(2.12)

with =8 the excitation level corresponding to the normal mode 8 . Despite the harmonic oscillator
nicely describes the normal modes of molecules, a better approximation is given by the Morse
potential [65]:

+" (b) = �4
(
1 − 4G?

(
−

√
:4

2�4
(b − b4)

))2
(2.13)

with �4 the dissociation potential calculated from the zero-point energy, b4 the coordinate
at equilibrium and :4 the force constant at this position. This potential takes into account
the anharmonicity of molecular vibrations which originates from the steeper increase of the
potential energy when the system goes to too small inter-atomic distances and to the possibility
to stretch the system more strongly than a harmonic oscillator reaching longer inter-atomic
distances. One of the major di�erences with the harmonic oscillator approximation, where
the energy gaps are always Δ� = ℎa (from equation 2.8), is that here the gaps are increasingly
smaller at increasing =:

Δ� = �=+1 − �= = ℎa0 − (= + 1)
ℎa20
2�4

(2.14)

2.1.2 Spectroscopic transitions between normal modes
The harmonic and anharmonic oscillator approximations describe stationary states via Hamil-
tonians which do not depend on time. To describe the transition between vibrational states,
stimulated by light in the IR spectral range (200 - 5000 2<−1), the time-dependent Schrödinger
equation 2.5 needs to be considered. In particular, the Hamiltonian will be the sum of two
contributions:

�̂ = �̂0 + �̂ ′(C) (2.15)
with �̂0 the Hamiltonian of the unperturbed system and �̂ ′(C) describing the perturbation due
to the incident electric �eld of light. In the simple case of a diatomic molecule with vibrational
coordinate G , the perturbation term of the Hamiltonian can be written as:

�̂ ′(G, C) ≈ −E(C) · µ (2.16)

where E(C) is the electric �eld of the IR radiation and µ is the molecular dipole moment. The
strength of the transition between an initial level = and a �nal level < is |E0 · µ<= |2, with
E0 the amplitude of the electric �eld and µ<= = 〈j< | ˆ̀ |j=〉, the matrix element of the electric
dipole operator. The amplitude of the molecular electric dipole can be written in a Taylor series
as:

|µ(G) | = |µ0| + (m |µ|/mG)0G +
1
2 (m

2 |µ|/mG2)0G2 + ... (2.17)

from which the transition dipole moment µ<= can be re-formulated. In a poliatomic molecule
with 3# − 6 normal modes it will have the form:

µ<= = Σ3#−6
8=1

( mµ
mG8

)
0
〈j<(8) |G8 |j=(8)〉 +

1
2Σ

3#−6
8=1 Σ3#−6

9=1

( m2µ

mG8mG 9

)
0
〈j<(8)j<( 9) |G8G 9 |j=(8)j=( 9)〉 + ...

(2.18)
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The �rst term (mµ/mG8)0〈j<(8) |G8 |j=(8)〉 accounts for the main vibrational absorption bands at
respective energies ℎa , while the second terms accounts for the weaker overtone transitions
at 2ℎa . In particular, from the �rst term it is evident that vibrational absorption can happen
only if both parts in the �rst term are nonzero, which for the matrix element happens only for
<8 − =8 = ±1. Therefore, the selection rules for vibrational spectroscopy are:( m |µ|

mG

)
0
≠ 0 (2.19)

< − = = ±1 (2.20)

In particular, from equation 2.19 it is evident that IR absorption is prohibited for transition
totally symmetric to the molecular structure because they do not induce a change in the electric
dipole of the molecule.

The possibility to disentangle vibrations from small functional groups or atoms largely
simpli�es the interpretation of infrared spectra of macromolecules (Table 2.1), especially for
complex samples such as bio�uids (Figure 2.1). For example, in proteins the vibrations of the
amide group can be distinguished from the side chains and originates four main bands due to:

1. # − � stretching mode (Amide A, 3280 - 3300 2<−1);

2. � = $ stretching mode with contributions from in-phase bending of # −� bond (Amide
I band, 1650 - 1660 2<−1 in U-helical structures and 1620 - 1640 2<−1 in V-sheets);

3. # − � in-plane vibrations coupled with � − # and � −� stretching and � = $ in-plane
bending (Amide II band, 1540 - 1550 2<−1 in U-helical structures and 1520 - 1525 2<−1 in
V-sheets);

4. # − � in-plane bending coupled with � − # stretching as well as � − � and # − �
deformation (Amide III band, 1200 - 1350 2<−1).

The interactions with other peptide groups, as well as with solvent molecules such as water,
create exciton-like couplings with the consequent splitting of the absorption bands. Despite the
contributions to the absorption spectra are more complex, the break-down of di�erent bands as
the collection of vibrations from a few atoms is not too far from the actual contributions and it
allows to attribute the absorption bands to speci�c functional groups. The main biomolecules
in biological samples are built on speci�c building-blocks based on di�erent functional groups,
such as: amino acids, based on the amino group (−�# −� −�$−); lipids, such as fatty acids,
phospholipids, glycerolipids, sterols (such as cholesterol) and others, all based on saturated
and unsaturated hydrocarbon structures (� −� , � = � and � − � ); carbohydrates, based on
carbon, oxygen and hydrogen atoms (� −� , � − � , � −$� and � −$ −�); nucleotides, with
speci�c structures and interactions in DNA and RNA molecules, based on a pentose sugar, a
nitrogenous base and a phosphate group, each with speci�c vibrational signatures. In particular,
in the absorption spectra of human blood serum and plasma, the vibrations can be mainly
attributed to speci�c biomolecules based on their structure and abundance (Table 2.1 and Figure
2.1).
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Band (2<−1) Molecular vibration Main biomolecules Color in Figure 2.1
1120 - 1170 a (� = $), a (� −$ −�) carbohydrates green
1200 - 1400 a (� − # ) - Amide III proteins purple

1240 a0B (% = $) nucleic acids orange
1400 a (�$$−) - Amide III amino acids light purple

1500 - 1600 X (# − � ) - Amide II proteins purple
1600 - 1700 a (� = $) - Amide I proteins purple
1730 - 1760 a (� = $) fatty acids yellow
2840 - 2860 aB (��2) lipids light yellow
2865 - 2880 aB (��3) lipids light yellow

Table 2.1: Association of molecular vibrations in aqueous solutions with the main classes of biomolecules
present in human blood serum and plasma, as highlighted in Figure 2.1. The Amide bands arise from the
coupling of more vibrational modes; here, only the main ones are highlighted for simplicity. Symbols: a
- stretching, aB - symmetric stretching, a0B - asymmetric stretching, X bending.

Figure 2.1: Example of the absorption spectrum of a human serum sample highlighting the main
biomolecules contributing in the corresponding spectral region, as reported in Table 2.1. No major
absorption bands arise in the silent region between 1800 and 2750 2<−1.

2.2 Infrared spectroscopy
This section introduces the basic concepts of IR-based spectroscopic techniques. In particular,
the most common techniques employed for the analysis of human bio�uids for bio-medical
investigations are described, with a particular focus on the two techniques used in this disser-
tation: FT-IR and FRS spectroscopy.

2.2.1 Technology of commercial spectrometers
In this section, the technical aspects of the most common IR spectrometers commercially
available are illustrated with relative advantages and disadvantages.

Every spectrometer has three fundamental components: a source that emits homogeneous
radiation in the spectral range of interest, a method/device able to resolve the di�erent wavelets
of light and a detector to record the light intensity. The typical sources of IR spectrometers are
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thermal radiation sources, solid materials heated to turn incandescent and emit radiation with
an energy distribution similar to the Plank’ distribution law for the black-body [5]:

�_3_ =
21_
−5

4 (22/_) ) − 1
3_ (2.21)

where 21 = 2c22ℎ and 22 = 2ℎ/: ; 2 is the speed of light, ℎ is the Plank’s constant and : the
Boltzmann’s constant. Among the most common sources, there are the Nernst Glower, based
on rare earth oxides, and the Globar, a silicon carbide rod. The central frequency _2 is inversely
proportional to the temperature, which is usually set to deliver lower _2 to guarantee a more
homogeneous energy distribution at all wavelengths [66]. However, this is detrimental to the
total intensity and the source photon-density �ux, the brilliance.

The existence of infrared radiation of the solar spectrum has been proven by Sir William
Herschel in 1800 via a simple thermometer and a prism. In 1880, Samuel Pierpont Langley
introduced a more sophisticated detection system, the bolometers, with which he performed
the �rst accurate measurement of IR wavelengths of the solar spectrum [1]. Nowadays, there
are two types of IR detectors used in commercial spectrometers: thermal detectors, which
measure the heating with the same performance at all frequencies, and photodetectors, sensitive
to the radiation intensity. Examples of thermal detectors are: thermocouples, which exploit
the temperature-dependent voltage of the junction between two dissimilar metals; bolometers,
based on a material with a resistance that changes with the temperature; pyroelectric detectors,
which uses pyroelectric materials with temperature-dependent polarization which, placed
between two electrodes, act as capacitors and convert the thermal changes in voltage; pneumatic
detectors, such as the Golay cell, based on a gas-�lled chamber where an absorbing material
heats the gas upon IR absorption increasing the pressure and deforming a membrane which
modulates the incident light of a photodiode. The lasts have a higher sensitivity but are also
more expensive. Among the most used photodetectors are photoconductive cells, where the
detector material is a semiconductor with a narrow-band gap which features an increase in
the electrical conductivity upon IR radiation absorption. Response time and sensitivity of
photodetectors can be much higher than thermal ones, but they usually need to be cooled to
reduce the thermal noise. Moreover, they are not suited for the detection of long wavelengths
with too low energy for electron excitation.

Another fundamental part of any spectrometer is a device able to resolve di�erent wave-
lengths, the most common being dispersive optics such as prisms and gratings. Both split the
di�erent wavelengths of broadband spectra in di�erent directions via dispersion and di�raction
e�ects allowing their isolated detection via the use of slits. The simple sources and detectors
already available, combined with the well-known technology of dispersive optics, have made
possible the commercialization of the �rst dispersive spectrometer already in the 1940s, spread-
ing IR spectroscopy in laboratories. The �rst relatively cheap spectrometer on the market was
the Infracord by Perkin-Elmer (1957), with spectral coverage from 600 to 4000 2<−1, where
the lower limit is due to the optical properties of the sodium chloride prism, later replaced by
potassium bromide (400 2<−1) or cesium iodide (200 2<−1). The use of grating has allowed
reaching even lower wavenumbers.

However, dispersive optics have major limitations and have therefore been replaced by
the Michelson interferometer. This is based on a beam splitter (BS) that divides the beam from
the source in two halves (Figure 2.2): one goes to a �xed mirror (M1) and is sent back to the
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source and the detector via the same beam splitter; the other half goes to a mirror (M2) placed
on a movable stage (Δ3) and is also sent back to the source and the detector via the beam
splitter. The two arms will therefore give an interference pattern that can be converted in a
spectrum via Fourier transform. In particular, since the electric �eld of light of the two harms
are propagating with the same orientation, their interference can be described as the sum of
their scalar values. Each electric �eld can be expressed as �8 (I, C) = �>DC4

8 (lC−^I−2^38 ) , with
8 = 1, 2 for the beam re�ected at M1 and M2 respectively and �>DC the �eld of each beam at the
interferometer output, which takes into account the respective phase due to the fact that, for
Δ3 = 0, each beam travels the distance 38 twice. Knowing that the wavelength is de�ned as
_8 =

2c
| ®̂8 | and that R is the re�ectance of each mirror, the intensity of the interference signal is:

�>DC = � · �∗ = 2�8='(1 − ')
(
1 + 2>B 4cΔ3

_

)
(2.22)

Figure 2.2: Schematic of the Michelson interferometer. The light source is split via a BS into two harms
with intensity I1 and I2, respectively sent to mirrors M1 and M2 distant d1 and d2 from the BS. M1 is in a
�xed position, while M2 is on a movable stage which allows scanning the interference of the two beams
after they are recombined at the BS. Acronyms: BS - beam splitter; I1/I2 - intensity of the �rst/second
harm; M1/M2 - mirror of the �rst/second harm; d1/d2 - length of the �rst/second harm; Δ3 - range of
motion of the movable mirror M2.

Despite the Michelson interferometer has been conceived in the 1890s, only the advent
of microcomputers able to perform Fourier transform made the spread of FT-IR spectroscopy
possible in the 1960s [67]. The implementation of Michelson interferometer in commercial IR
spectrometers gave rise to what we nowadays call Fourier-transform infrared spectroscopy or
FT-IR. This technique has multiple advantages compared to dispersive IR spectroscopy. First of
all, the possibility to acquire the full spectrum in a single scan provides the multiplex advantage,
namely a faster acquisition rate compared to dispersive spectroscopy limited by the need to
rotate the prism or grating to scan each wavelength. Moreover, FT-IR spectrometers record
the whole spectrum at once, while the use of slits in dispersive spectrometers extensively
reduces the intensity at the detectors, detrimental to the signal-to-noise ratio (SNR), called
the throughput advantage. On top of that, FT-IR o�ers the precision advantage, namely the
higher precision and resolution in wavelengths, with laser-based calibrations, compared to
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dispersive devices based on external calibrations. This advantage allows comparing FT-IR
spectra acquired at very di�erent times. Overall, all the advantages combined allow to reach
high SNR via averaging multiple scans maintaining a short acquisition time.

2.2.2 Fourier-transform infrared spectroscopy in transmission mode,
FT-IR

The most common commercial FT-IR spectrometers work in transmission mode, meaning that
the exciting beam passes through the sample under investigation and is partially absorbed
[66, 68]. The attenuation of the beam from an initial intensity �0 to � returns the sample
transmittance:

) =
�

�0
= 10−Y (_)2; (2.23)

where the multiplication between the concentration 2 and the path-length ; gives the number
of molecules interacting with the exciting beam, while Y (_) is the molar extinction coe�cient, a
function of the optical properties of the sample as well as of the exciting wavelength. Equation
2.23 is shorten by calculating the ;>610 to:

� = ;>610
1
)

= Y (_)2; (2.24)

which is the Lambert-Beer law, where � is the absorbance of the sample. This is additive,
meaning that, for each wavelength, the total absorbance is the sum of the ones of each analyte
in the sample. Of course, the validity of equation 2.24 is limited to a range of concentration that
depends on the molecule: at too low concentrations the solvent will screen the molecules of
interest (the analyte) leading to lower absorption signals than predicted by equation 2.24, while
too high concentrations lead to similar screening e�ect by the analyte itself, again leading to a
smaller absorption.

2.2.3 Attenuated total re�ection, ATR-FTIR
Another approach for the acquisition of FT-IR spectra is in re�ection [66, 68]. This exploits the
re�ection and refraction of a beam when it travels from a media with refractive index =1 to
one with index =2 with an incident angle \8 . If =2 < =1, for B8=\8 < =2/=1 it is partially re�ected
with an angle \A = \8 and partially refracted into the medium with an angle \ 5 according to the
Snell’s law:

B8=\8

B8=\ 5
=
=2
=1

(2.25)

However, at the critical angle \2 , for which B8=\2 = =2/=1, \ 5 is 90◦ and the refracted beam
will travel along at the interface of the two materials. For angles larger than the critical one,
the refracted beam is evanescent and does not propagate. As a consequence, the radiation is
only re�ected into the �rst medium. This phenomena is called total re�ection and is at the
base of attenuated total re�ection Fourier-transform spectroscopy (ATR-FTIR), also called internal
re�ection spectroscopy.

In total internal re�ection, an evanescent wave with the same spectrum as the re�ected
one propagates within few micrometers beyond the interface with intensity diminishing
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logarithmically. The interaction with the second medium allows recording its absorption
spectrum in a measurement independent of the sample thickness. This technique allows to
measure surfaces as well as optically thick samples and it is useful to reduce the contribution of
highly absorbing solvents like water. Internal re�ection elements (IRE) with a higher refractive
index than the samples of interest (KRS-5, diamond, ZnSe, etc.) are used to achieve total internal
re�ection. The penetration depth into the sample can be estimated as:

3? =
_

2c=�'�
√
B8=2\8 −

(
=B
=�'�

)2 (2.26)

with =�'� the refractive index of the IRE material and =B the one of the sample. The fact that
3? is a function of the wavelength introduces a dependence of the signal intensity on _ not
present in transmission mode. Moreover, the high variation of =B around the central absorption
frequency a�ects the penetration depth originating distorted bands compared to transmission
spectrometers. This can be avoided by working at high incident angles, far from the critical
angle. However, this is detrimental to the signal intensity. Therefore, the IRE usually has a
trapezoidal shape which allows having multiple re�ections (up to 25) to reach a high signal
ampli�cation.

2.2.4 Surface enhanced IR absorption, SEIRA
Surface enhanced infrared spectroscopy (SEIRA), which provides a higher sensitivity compared
to common FT-IR spectroscopy, is usually applied on biomolecules, such as proteins [69]. This
technique exploits the signal enhancement underneath the metal/analyte interaction, which
has two origins. The �rst is the same as for similar techniques in the visible, such as surface-
enhanced Raman scattering (SERS), and is based on the electromagnetic �eld enhancement due
to surface plasma polariton (SPP) excitation of the nano-structures at the surface of the metal.
However, it has been estimated that this enhances the signal only by a factor of 10, while the
enhancement obtained in SEIRA is a factor of 100. Therefore, the second source of enhancement
is far more important. This is called the e�ective medium theory and takes into account that the
roughness of the surface is smaller than the IR wavelength which, therefore, probes a composite
metal/sample medium, referred to as the "e�ective medium". The interaction between the IR
radiation and the e�ective medium gives rise to an oscillating dipole of the absorbed sample
coupled with the induced dipole of the metal. The dielectric of the metal is therefore altered
enhancing the absorbance of the e�ective medium at the vibrational frequencies of the sample.

The di�erent origin of the absorption signal induces major di�erences in the spectra acquired
via SEIRA compared to FT-IR spectroscopy. The main di�erence is that, in the �rst, only the
molecular vibrations orthogonal to the surface are strongly enhanced, while the ones parallel
to it are extremely weak. SEIRA is strictly sensitive to the metal surface and represents a useful
and increasingly spread technique for the analysis of structure and functions of biomolecules
such as proteins at the level of a single monolayer.
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2.2.5 Raman spectroscopy
Like infrared-based techniques, Raman is another spectroscopic method increasingly applied
in similar studies to identify its potential for clinical applications [70, 71]. This technique
explores the molecular vibrations of the sample analyzing the light scattered by the molecules,
giving complementary information compared to FT-IR spectroscopy. In particular, it is based
on two-photon processes involving excitation and detection of light at higher frequencies than
FT-IR [64, 66].

The Raman interaction is due to the displacement of electrons and proton in the electric �eld
of the incident light, which creates and induced dipole moment with intensity dependent on
the applied electric �eld and on the deformability of the electron cloud, namely the molecular
polarizability U :

`8=3 = U� (2.27)
In the classical description of Raman spectroscopy, applying an electric �eld � = �02>B (2caC)
will create an induced dipole emitting radiation in all directions with intensity given by U2�20.
Therefore, the polarizability is the main factor in the Raman interaction with light. For small
displacements, this can be expanded in a Taylor series:

U = U0 +
mU

m&
& + ... (2.28)

where & is the normal coordinate of the molecular vibration, given by & = &02>B (2caEC), with
aE the frequency of the associated normal mode. Higher orders are neglected in the harmonic
approximation. Substituting equation 2.28 in equation 2.27, considering the de�nition of & , the
induced dipole can be written as follows:

`8=3 = U0�02>B (2caC) +
mU

m&

&0�0
2 [2>B (2c (a − aE )C) + 2>B (2c (a + aE )C)] (2.29)

This classical de�nition of the induced dipole moment highlights that three phenomena happen
upon the interaction with light: the Rayleigh scattering, an elastic scattering dependent only
on the frequency of the incident light, and two inelastic interactions leading to a di�erent
frequency than the incident light, called Stokes lines if they have lower energies (a( = a − aE )
and anti-Stokes if they have higher energies (a�( = a + aE ). Therefore, Raman spectra originate
from inelastic interactions with light allowing the probing of the molecular vibrations aE . The
anti-Stokes lines originate from higher vibrational states of the ground. The distribution of the
population between vibrational states follows the Boltzmann distribution:

=1
=2

= 4 (ℎaE/:) ) (2.30)

which explains why the anti-Stokes signals are usually less intense. Rising the temperature can
increase their contribution relative to the Stokes lines. Equation 2.29 highlights one selection
rule of Raman, which is that mU/m& has to be non-zero. This means that only vibrations leading
to a change in the molecular polarizability will be Raman active.

Similar conclusions can be derived from a quantum mechanic description analogous to the
one followed for IR spectroscopy in section 2.1.2. It can indeed be shown that a similar matrix
element found for IR can be obtained for Raman spectroscopy by replacing the molecular
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electric dipole with the molecular polarization. For a mode with normal coordinate G , the
matrix element has the following form:

α<= = U0〈j< |j=〉 +
( mα
mG

)
0
〈j< |G |j=〉 +

1
2

( m2α
mG2

)
0
〈j< |G2 |j=〉 + ... (2.31)

with j= and j< the initial and �nal vibrational wavefunctions. In o�-resonance Raman spec-
troscopy, these states are in the electronic ground state, therefore 〈j< |j=〉 = 0. As for IR
spectroscopy and in agreement with the classical description, the selection rules for Raman
spectroscopy are: ( mU

mG

)
0
≠ 0 (2.32)

< − = = ±1 (2.33)

The comparison of the �rst selection rule while the one in equation 2.19 for IR spectroscopy
highlights that the IR-active modes are the ones associated with transitions that induce a
change in the electric dipole of the molecule, while the Raman active modes are associated
with a change in the molecular polarizability. For this reason, IR and Raman spectroscopy are
considered complementary techniques. Resonant Raman spectroscopy, operated via tuning the
exciting pulse to the electronic molecular excitation, o�ers the opportunity to obtain unique
vibrational spectra by relaxing the second selection rule, in common between Raman and IR
spectroscopy. This is possible because the initial and �nal vibrational states belong to two
di�erent electronic states. As for IR spectroscopy, surface-enhanced Raman spectroscopy
(SERS) is also widely used for biological applications.

2.2.6 Field-resolved spectroscopy, FRS
In section 2.2.1, the main technology behind the most widely spread commercial FT-IR spec-
trometers has been introduced. These devices have several limitations, starting from the low
brilliance of the thermal radiation sources to the limited dynamic range of the commercial
detectors. Moreover, commercial FT-IR spectrometers are usually operated away from the
shot-noise limit and are dominated by the detector noise [5]. Besides these technical limitations,
one of the major drawbacks of common FT-IR spectroscopy is the strong water absorption of
aqueous samples. To avoid this strong signal, in most of the studies on liquid biological samples
(e.g. blood serum or plasma) these are �rst dried, leading to reproducibility problems due to the
migration of macro-molecules to the periphery giving non-homogeneous distributions in the
so-called co�ee-ring e�ect [15, 58]. To overcome these limitations, a new laser-based technique
has been developed in our laboratories, called �eld resolved spectroscopy or FRS. In this section,
a description of the setup, with connected advantages and disadvantages, is discussed.
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FRS set-up

One of the main limitations of FT-IR spectrometers is the low photon �ux of the thermal
sources. Better alternatives are the quantum cascade lasers (QCL), which give both pulsed and
continuous laser radiation with about 104 times higher power density and are compatible with
miniaturization [72]. Synchrotron sources provide a higher brilliance, but their availability and
cost are too limiting. Other sources providing better performances are coherent mid-infrared
(MIR) femtosecond broadband sources [38–41].

The source used in the FRS setup is the MIR radiation generated via di�erence frequency
generation (DFG) driven by the compressed pulse of a Kerr-lens mode-locked ytterbium-doped
yttrium-aluminum-garnet (Yb:YAG) thin-disk oscillator [38]. Figure 2.3 shows a schematic of
the FSR setup [52]. The thin-disk oscillator provides a near-infrared (NIR) pulsed laser centered
at 1030 =< with a repetition rate of 28 "�I, pulse duration (full-width half maximum) of 220
5 B and an peak power of 14 ", . The NIR radiation is then broadened and compressed via
self-modulation in bulk media (fused silica) using three consecutive Herriot-multi-pass cells
able to provide a �nal pulse duration of 16 5 B (Fourier limit of 15 5 B). At this stage, the pulses
cover from 920 to 1180 =< and have average power of 60, . The MIR radiation is generated
via intrapulse DFG focusing the compressed NIR pulses on an 11<< thick type I !8�0(2 (LGS)
crystal. The generated MIR radiation, with a spectral coverage that spans from 980 to 1550
2<−1, passes through a chopper (7.5 :�I) and is focused with a spot diameter of 420 `< and
average power of 50<, on the liquid cuvette in ZnSe (2<< thickness, Micro Biolytics GmbH ).
The cuvette is �lled via an automated micro�uidic system suited for the measurement of liquid
biological samples, programmed to exchange aqueous samples and water reference. Active
noise eater based on an acousto-optic modulator device, as well as the lock-in detection via
chopping the MIR signal, are employed to further improve the stability of the system.

Employing sources with higher MIR power and brilliance does not automatically lead
to better sensitivity because of limitations due to intensity noise and dynamic range [52].
To overcome the lasts, the detectors commonly used in commercial FT-IR spectrometers are
replaced with the �eld resolved electro-optic sampling (EOS), which allows the measurement of
the electric �eld of the vibrating molecules. The high waveform stability of the MIR pulses
together with the high dynamic range and the �eld-scaling of the signal allows the precise
subtraction of the signal from the water reference thus isolating the signal of the other molecules
[52, 73], overcoming the limitations of drying the samples. The time-resolved trace obtained
after the subtraction is called electric-�eld-resolved molecular �ngerprint (EMF).

This detection scheme uses a short sampling pulse to probe the electric �eld of interest. In
particular, the NIR is separated by the MIR after the DFG crystal via a dichroic mirror, attenuated
and used as sample pulse in the EOS detection. The two beams are spatially recombined in a
germanium plate, at Brewster angle for the MIR beam, and combined in a 96 `<-thick GaSe
crystal via sum frequency generation (SFG). This allows recording the interference with the
sampling pulse via balanced heterodyne based on two photodiodes. A short-pass �lter is used
to enhance the SNR. The balancing is obtained via a half-wave plate and a quarter-wave plate.
The detection is con�ned in the temporal window of the propagation of the NIR in the EOS
crystal. This temporal gating in the detection allows scanning the MIR signal by tuning the
delay with the sampling pulse, tracked via an interferometric delay tracking system (IDT).
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Figure 2.3: Scheme of the FRS setup used in this dissertation. The source is a Yb:YAG thin-disk oscillator.
The 1030 =< radiation (full-width half maximum of 220 5 B) is then broadened and compressed via three
consecutive Herriot-multi-pass cells (Stage 1, Stage 2 and Stage 3) providing a �nal pulse duration of 16 5 B
(Fourier limit of 15 5 B) with spectral coverage spanning from 920 to 1180 =< and have an average power
of 60, . The MIR radiation is generated via intrapulse DFG (IDFG) in a 11<< thick type I LGS crystal.
The generated MIR radiation has a spectral coverage that spans from 980 to 1550 2<−1. After passing
through a chopper, the MIR is focused on the liquid cuvette in ZnSe (2<< thickness, Micro Biolytics
GmbH ) with an average power of 50<, . The NIR generated at the LGS crystal is separated by the MIR
and used as the sampling pulse in the EOS detection. The MIR and NIR beams are spatially recombined in
a germanium plate and combined in a 96 `<-thick GaSe crystal via SFG. A short-pass �lter (SPF) is used
to enhance the SNR. The balancing is obtained via a half-wave plate (HWP) and a quarter-wave plate
(QWP). The delay between the two pulses is tracked via an interferometric delay tracking system (IDT).
Acronyms: Yb:YAG - ytterbium-doped with yttrium aluminium garnet (.3�;5$12); MIR - mid-infrared;
NIR - near-infrared; IDFG - intra-pulse di�erence frequency generation; LGS - lithium gallium sul�de
(!8�0(2); EOS - electro-optic sampling; SFG - sum frequency generation; SPF - short-pass �lter; SNR -
signal-to-noise ratio; HWP - half-wave plate; QWP - quarter-wave plate; IDT - interferometric delay
tracking system. Adapted by permission from Copyright Clearance Center: Springer Nature Limited,
Nature [52] (Field-resolved infrared spectroscopy of biological systems, Ioachim Pupeza et al., 2020).
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FRS: advantages and further developments

One of the main advantages of FRS spectroscopy is the waveform-stability of the MIR pulses
which allows subtracting the signal of a reference measured a few minutes before from the
samples of interest, thus suppressing the strong absorption of water allowing the measurement
of biosamples in their natural aqueous environment. The high brilliance source boosts the
performance of commercial FT-IR spectrometers. However, this is advantageous only if com-
bined with a detection system able to cover a high dynamic range. In this respect, the temporal
gated detection scheme is advantageous as it allows the detection of intense signals that would
saturate the detector if the whole signal would reach it at once. The EOS detection is relatively
similar to the interferometric approach employed in FT-IR spectroscopy. In both cases, the arm
encoding the signal of the sample is detected using a second arm acting as the local oscillator
for the heterodyne/homodyne detection. However, in FT-IR spectroscopy the molecular signal
is strongly a�ected by the technical noise of the exciting source, as it builds upon it. On the
other hand, the impulsive excitation combined with the temporal gated detection in FRS allows
to temporally �lter the exciting pulse thus isolating an "excitation/background-free" signal.
The impact of the MIR noise is reduced making only the noise of the sampling pulse relevant,
which is operated close to the shot-noise limit.

Overall, FRS o�ers "background-free" measurements of the coherent response of impul-
sively excited molecules circumventing the limitations imposed by source-noise and detector
saturation. The combination of a high brilliance MIR source and the sensitive EOS detection
allows reaching the limit of detection (LOD) of 200 =6/<! with the described FRS set-up, about
40 times lower than FT-IR (8 `6/<!) and 5 orders of magnitude lower than the most abundant
molecule in human serum (albumin). In other words, this implies that FRS can potentially detect
more low abundant molecules compared to the commercially available FT-IR spectrometers,
without the need for concentrating, fractionating or depleting the biosamples. The analysis
of intact systems with high optical and physical thickness has been demonstrated in [52] and
highlights the potential of FRS spectroscopy for biological, biomedical, pharmaceutical and
ecological applications. In this dissertation, FT-IR and FRS measurements are performed on full
samples preserving the natural aqueous environment of blood-based bio�uids.

Further developments are currently being implemented, such as the development of sources
with super-octave spectral coverage and higher intensity dynamic range, potentially able to
reach LOD below 50 =6/<! and faster scanning operations able to freeze the excitation pulse
�uctuations in each measurement. Higher day-to-day reproducibility is also necessary, due
to the operation of the whole system from the third Herriot cell below 1<10A to reduce the
water absorption. This indeed creates a strong tension on both sides of the liquid cuvette with
unwanted e�ects on the measurement reproducibility, as tackled in the next chapter.
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2.3 Data analysis
The tools used in this dissertation for the analysis of FT-IR and FRS data are brie�y introduced
in the following section. In particular, all dimensionality reduction and machine learning
analysis have been carried using python version 3.7.3 [74, 75], while the matching of cases and
controls cohorts has been performed using RStudio version 1.3.1093 [76].

2.3.1 Principal component analysis
The measurement of large cohorts of individuals via FT-IR and FRS result in big datasets,
however, most of the spectral information is not informative. Therefore, dimensionality
reduction techniques able to retain the most informative part of the data are essential for
any further analysis. There are di�erent ways to perform it, such as feature selection, which
simply retains a subset of the original features, and subspace projection, which constructs new
representations with lower dimension as linear combinations of the features of the original
data. In this dissertation, dimensionality reduction is performed via the key instrument of the
subspace projection approach, namely principle component analysis (PCA). In the following
chapters, PCA has been applied to the data before any other analysis, except for deriving the
SVM coe�cients. A more detailed description of PCA can be found in [77].

Dimensionality reduction has multiple advantages. To start with, it reduces the computa-
tional time and power consumption, boosting the performances by retaining only the features
encoding useful information. It also reduces the tendency to over�t the data of supervised
learning algorithms. Moreover, dimensionality reduction is useful for feature extraction and/or
visualization purposes, for which PCA is commonly adopted.

The algorithm for the PCA unsupervised learning model is hereby reported. This is based
on the assumption that the dataset can be modeled as multivariate stochastic observations
with Gaussian distributions, according to which the covariance matrix of the data su�ces to
determine the optimal projection subspace. Let {G1, G2, ...G# } be the N-dimensional training
dataset, each GC being an M-dimensional vector, with covariance matrix R = { ˆA8 9 } and:

ˆA8 9 =
1
#
Σ#C=1G

8
CG
9
C (2.34)

with 8, 9 = 1, 2, ..." . Applying the spectral decomposition on R = V�V) the eigenvectors V
composing a new basis set provide the principal components:

yC = V)<xC (2.35)

with V< the �rst m eigenvectors of V. Therefore, only the �rst< "principal eigenvectors" are
considered to reduce the dimensionality from " to<. The elements of the diagonal matrix �

are the corresponding eigenvalues which monotonically decrease from _1 to _" .
The algorithm simply describes the projection of the data along the principal components

exploiting the statistical dependence and inherent redundancy embedded in the training data
to derive a more compact but highly representative dataset. Under the Gaussian distribution
assumption, it can be demonstrated that the PCA is well representative of the original dataset
because it satis�es two criteria. The �rst is the mean-square-error criterion which shows that the
PCs are the best estimates of the original data, namely that the error n (x|z) = minynR< | |x− x̂~ | |,
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with x̂~ the best estimate of G from the principal component y. This is satis�ed by the following
theorem about the optimality of PCA in reconstruction error: PCA o�ers an optimal subspace
projection with the minimal expected value of reconstruction error:

n [| |G − Ĝ~ | |2] = CA {R- } − Σ<8=1_8 = Σ"8=<+1_8 (2.36)

where the trace CA {R- } denotes the sum of all the diagonal elements of the matrix. This states
that the PCA retain the while information of the original data retaining the most valuable in
the �rst< components.

Another criterion is the maximum-entropy criterion, based on how much information of
the original data is retained in the reduced-dimension vector y. The entropy is a measure of
the amount of information in a random vector. It can be shown that maximizing the mutual
information � (x|y) between the dataset x and the principal components y is equivalent to
maximizing the entropy of the PCA, � (y). Being y a subspace of x, it cannot contain more
information, therefore � (x|y) = � ( y) and � (y) ≤ � (x| y) = � (x). Ideally, � (y) should be as
close as possible to � (x). Being the probability distribution of x and, therefore, of y Gaussian:

? (y) = 1√
(2c)< |R~ |

4G?

{
− 1
2 (y

)R−1~ y)
}

(2.37)

and from the de�nition of entropy:

� (x) = −
∫

? (x);>6[? (x)]3x (2.38)

it can be shown that PCA o�ers an optimal subspace projection with maximal mutual informa-
tion between x and y:

� (x|y) = 1
2Σ

<
8=1;>62(2c4_8) (2.39)

There are di�erent numerical methods to compute the PCs, such as singular value decomposition
(SVD) and spectral decomposition. In this dissertation, SVD is selected. The SVD algorithm is
applied directly on the matrix data X = [x1, x2, ...x=] in the following way:

X =


V

[
D 0

]
U if N ≥ M

V

[
D
0

]
U if M > N

(2.40)

with V and U respectively " × " and # × # unitary matrices and D a diagonal matrix of
dimension " ×" or # × # based on the<8={", # }. The PCA representation will be again
de�ned as y = V)<x with V< the< × # matrix from the �rst rows of the matrix V.

In the general expression of principle components (equation 2.35), the eigenvectors of
the matrix V are just projections, without any information regarding the amount of variance
explained by each PC which is expressed by the eigenvalues in �. The multiplication of the
eigenvectors by the square root of the corresponding eigenvalue returns the loading vector.
While PCA separates the covariance matrix into explained variance and direction, the loading
vectors construct back that part of information of the original data, namely the covariances
between the original variables and the components. These will be useful in the next chapters
to identify the frequency components responsible for the largest spectral variability.



24 2 Infrared spectroscopy and machine learning algorithms

2.3.2 Machine learning algorithms

In this dissertation supervised and unsupervised algorithms are used in the same fashion
for both the FT-IR and FRS data. Here a quick overview of the methods applied for the
reported analysis is presented. A thorough discussion about the reported methods is available
in dedicated books [78, 79].

Supervised binary classi�cations: support vector machine, SVM

Supervised machine learning algorithms "learn" the data to build a model for the distribution of
classes on a training set, based on the known labels, and perform predictions on unlabeled data
constituting the test set. One of the multiple applications is data mining, boosting the robust
classi�cation of two or more classes in a given dataset. This section focuses on one of the most
spread supervised algorithms, support vector machine or SVM, which is applied after PCA on
both FT-IR and FRS data for the binary classi�cation of individuals based on their phenotypes.

Let - = {x1, x2, ...x# } be a dataset and . = {~1, ~2, ...~# } the corresponding categorical
labels or teacher values. The input dataset would be [-,. ] = {(x1, ~1), (x2, ~2), ...(x# , ~# )}.
In linear regression analysis, which models the dependence of a dependent variable y from
an independent variable x, the aim is to �nd a vector w and the intercept (or bias) 1 that can
approximate the dependent variable, namely w)x8 + 1 ≈ ~8 . While in linear regression this
condition is applied to all datapoints, SVM takes into account only the most meaningful of
them, called support vector. In particular, for SVM the equality becomes the inequality:

~8 (w)x8 + 1 − ~8) ≤ 0 ∀8 = 1, ...# (2.41)

or, in other words, it has to satisfy w)x8 + 1 ≥ +1 and w)x8 + 1 ≤ −1. In particular, in an ideal
case where the two classes are completely and linearly separable, w)x8 + 1 = ±1 are the two
marginal hyperplanes or supporting hyperplanes, equidistant from the decision hyperplane given
by w)x8 + 1 = 0. The data on the marginal hyperplanes are the support vectors, while the rest
are called non-support vectors. This approach, called the maximal margin classi�er, aims at
de�ning the marginal hyperplanes with the largest mutual distance. However, this works only
in the ideal case of a good separation, which is most of the time not the case. Simply allowing a
few miss-classi�cations gives soft margins which work better for the classi�cation of the whole
dataset in not-ideal settings. In this case, the support vectors are the observations on the edges
and within the soft margins.

Soft margin classi�cation is an example of the bias/variance trade-o�: it increases the bias
to lower the variance. In particular, the 180B2 measures the error on the training data, while
the error on the test is 180B2 + E0A80=24 and will, therefore, always be higher. However, for a
given model, increasing the number = of datapoints the 180B2 + E0A80=24 increases and the 180B2
decreases, converging for = →∞. Therefore, the number of datapoints, in our case of spectra
or time traces, in�uences the performance of the classi�er (see section 4.2.3). Moreover, the
180B2 + E0A80=24 and 180B2 depend on the complexity of the model. Models with low complexity
lead to a under�tting of the training data, while increasing the complexity they can �t better the
training set, therefore decreasing the 180B . However, if the level of complexity is too high, they
will perform poorly on the test (high E0A80=24) leading to strong over�tting. The bias/variance
trade-o� means �nding the optimal complexity model able to minimize both errors.
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In k-fold cross-validation (CV), the training set is split into k (usually 10) subsets: k-1 subsets
are used to train the model which is tested (validated) on the remaining subset. This procedure
is repeated using di�erent subsets as a test and the performance is the average of the values
computed in the loop. Cross-validation can be computationally expensive, but each training
does not exclude too much data, which is advantageous for small datasets. The classi�cation
will address correctly some of the positive (true positive, TP) and some of the negative (true
negative, TN) datapoints and it will wrongly identify other positive (false negative, FN) and
negative (false positive, FP) ones. A way to represent the classi�cation performance and derive
a unique number is using the receiver operating characteristic (ROC) curves, obtained by plotting
the true positive rate (TPR = TP/(TP + FN)) against the false positive rate (FPR = FP/(FP + TN))
at di�erent classi�cation thresholds. The e�ciency of a binary classi�cation can be determined
by the area under the curve (AUC) of the ROC curve, which goes from 50% for a random
classi�cation (no separation between the two classes) to 100% for ideal separations. Besides
giving a compact estimate of the classi�cation e�ciency, AUC is also advantageous because it is
scale-invariant, measuring how well predictions are ranked independently from their absolute
values, and is classi�cation-threshold-invariant.

Linear SVM has been found to perform better than non-linear classi�cation algorithms on
both FT-IR and FRS data of human blood-based bio�uids and is therefore applied after PCA in
10-fold cross-validation (repeated 10 times) for all binary classi�cations in this dissertation.
Moreover, for linear SVM, the magnitude of the feature weights, called SVM coe�cients, indicates
the relevance of each feature for the corresponding binary classi�cation [80]. These coe�cients
are calculated directly on the spectral and temporal data. The SVM binary classi�cations on
the EMFs in the time domain have been performed by scanning increasingly narrower time
windows, selecting the thickness giving the highest classi�cation e�ciency and scanning it
again to identify the temporal range giving the highest AUC. This optimal time window has
been used to calculate the SVM coe�cient in the time domain. The distance between the
average AUC obtained for the training set from the standard deviation of the test set has been
used to evaluate the potential over�tting. SVM is usually applied after standard scalers which
standardize the features by subtracting the mean ` and scaling to unit variance B (I = (G − `)/B).
However, when applied on FT-IR and FRS data standard scalers lead to over�tting, especially
for small cohorts, and are therefore not applied in this dissertation.

Unsupervised algorithms

Unsupervised algorithms are widely used to identify cluster of data with a similar structure
without apriori knowledge, namely without taking into account any given label and are there-
fore called unsupervised clustering algorithms. Among the multiple applications of clustering,
they can be used to gain a better understanding of the structure of complex datasets by summa-
rizing the distribution of speci�c parameters among the identi�ed clusters. Their performance
depends on several factors, such as the number of clusters, the topology of node vectors, the
objective function for clustering, the type of clustering algorithms, the initial conditions and
the evaluation criterion for selecting the best clustering.

Before going into the details of the unsupervised algorithms used in this dissertation, it is
useful to introduce a method for the de�nition of the optimal number of clusters. One way
to proceed, used in the following chapters, is by adopting the elbow method which plots the
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within-cluster sum of squares (WCSS) clustering the data for an increasing number of clusters.
Of course, WCSS will be maximum for one cluster (the whole data set) and will decrease to
zero for the maximum number of clusters possible, namely if the number of clusters equal to
the number of datapoints, as in this case each cluster will count only one point. The optimal
number of clusters is the one for which the slope of the WCSS changes abruptly, called "the
elbow".

The clustering algorithms can be based on di�erent approaches: centroid clustering, based
on the identi�cation of the center of the clusters, density clustering, based on the density
distribution of the datapoints, distribution clustering, which assume that the data follow pre-
selected distributions, and connectivity clustering, based on the mutual distance of the datapoints.
One of the most commonly used centroid clustering algorithm is K-means, which, selected the
number K of clusters, chooses k random centers, allocates each data point to the cluster whose
center is nearest, ensuring that every cluster has at least one datapoint. It further replaces the
cluster centers with the mean of the elements in their clusters iteratively until it reaches the
smallest sum of squared distances of each point G8 to the center 2 9 of the respective j-th cluster:

Φ(X, c) = Σ8, 9X8, 9 [(G8 − c 9 )) (G8 − c 9 )] (2.42)

where X8, 9 is 1 if G8 belongs to the j-th cluster and 0 otherwise, therefore acting as a switch. If
we knew where the center of each of the clusters was, it would be easy to de�ne X8, 9 , and the
other way around. Iteration helps �nding the<8=(Φ(X, c)).

An alternative method among the connectivity clustering algorithms is called agglomerative
clustering. In this case, instead of the distance between datapoints and centroids, the mutual
distance between datapoints is considered and plotted in a dendrogram. In this case, each
point is �rst assumed to be an independent cluster and is associated with the closest datapoint,
therefore creating a hierarchical clustering. The height at which to truncate the dendrogram
will determine the number of clusters and strongly depends on the data. Di�erent approaches,
such as the elbow method, can be helpful to determine the number of clusters.

The clustering methods discussed so far are based on mutual distances in the feature space.
The algorithms based on distribution clustering, instead, consider a dataset as a collection
of di�erent clusters, each based on probability models. Knowing the model would make it
possible to attribute each datapoint to its cluster, as well as, knowing to which cluster each
point belongs, would allow to easily de�ne the probability model. This is similar to the issue
seen for K-means, for which one should know both the centers and to which center each
datapoint belongs. As for K-means, also in these clustering algorithms, the issue is solved
by iterative calculations in what is called expectation maximization or EM. The distribution
clustering algorithms start by de�ning random components, such as random centers obtained
via k-means, and then calculate the probability for each data point of being generated by
the corresponding probability model. It then iterates the optimization of the parameters to
maximize the likelihood of each assignment until it converges to a local optimum. An important
example of distribution clustering algorithms is the Gaussian mixture model (GMM), based on
the assumption that the datapoints are generated from a mixture of Gaussian distributions.
GMM uses the EM algorithm to �t mixture-of-Gaussian models.

A way to compare the clustering performances of di�erent distribution clustering algorithms
for di�erent parameters (e.g.: number of clusters, probability distribution, etc.) is via adding
penalties for increasing model complexity to the training error. The 180B2 alone, indeed, is not a
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good measure since it will decrease at increasing model complexity leading to a higher E0A80=24 .
Adding a penalty will identify an "optimal model complexity" which satis�es the bias/variance
trade-o�. There are two comparable methods to de�ne the penalty: the Akaike information
criterion (AIC) and the Bayesian information criterion (BIC). In both cases, the penalty is the
log-likelihood !, which increases for a better model. Both methods aim at minimizing the
penalized log-likelihood, in particular 2: − 2! in AIC and 2: (;>6# ) − 2! in BIC, where : is the
number of parameters.

To compare the e�ciency of di�erent clustering algorithms, the silhouette score is a good
solution. This is calculated for each sample based on the mean intra-cluster distance (�2 ) and the
mean nearest-cluster (#2 ) distance, namely the distance between the sample and the nearest
cluster it does not belong to, as (#2 − �2)/<0G (�2, #2). The silhouette score can go from 1 for
a perfect assignment to −1 if the sample belongs to another cluster. If the score is 0, the two
clusters overlap and it is di�cult to attribute the sample to any of the two clusters.

In this dissertation, unsupervised methods are applied on FT-IR and FRS data to identify
clusters on all PCs encoding 99.9% of the total variance. The elbow method is used to identify
the optimal number of clusters, namely the one leading to a drastic change in the slope of the
WCSS and the best performing algorithm is selected via their silhouette scores. The clustering
methods applied are: agglomerative clustering (with a�nity = ’euclidean’ and linkage = ’ward’,
as well as with a�nity = ’cosine’ and linkage = ’average’); K-means; Gaussian Mixture Model
(with covariance type = ’full’, as well as with covariance type = ’spherical’). The BIC scores are
also used to address the best performing GMM clustering for a di�erent number of components
and covariance types (full and spherical).

2.3.3 Case-control matching algorithm

In this dissertation, the IR spectroscopy of biosamples is performed to identify the vibrational
signatures of common phenotypes via binary classi�cations with control cohorts. However,
to isolate phenotype-speci�c signatures, other parameters (e.g. age, gender, comorbidities,
etc.) need to be equally distributed between cases and controls to guarantee that the target
phenotype is the only di�erence between the two groups. One way to do so is by random
sampling, which increases the chances that other parameters are balanced. However, if a
parameter correlates with the target phenotype, it will not be equally distributed between cases
and controls. Di�erent correlations, as is the case for di�erent studies (e.g. cross-sectional and
case-control cohorts), will therefore lead to di�erent �ngerprints for the same phenotype. To
overcome this issue and enhance the phenotype-speci�city, one solution is to match cases and
controls for the known parameters [81].

One way to match two cohorts is via propensity score [82], which are the likelihood of being
positive (8 = 1) to the target phenotype ℎ based on a set of covariates - (ℎ = 8 |- ), which can be
derived via logistic regression. Therefore, controls with the same likelihood of being positive
to the phenotype can be considered as a match for the cases with a similar propensity score,
even though their covariates might di�er. In other words, after matching via propensity score,
the covariates will be balanced on average. Summarizing many covariates in a single score is
a major advantage as compared to matching the known covariates one by one since the last
would return fewer cases the more parameters are considered in the matching.

Matching can then be performed using optimal full matching, which minimizes the total
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distance between cases and controls with comparable propensity scores matching one or more
individuals to each case, making it ideal to avoid discarding cases. The matching applied
generates a distance matrix based on the propensity scores. One way of calculating it is via the
Mahalanobis metric distance, namely as 3 (8, 9) = (D − E))�−1(D − E), whit D and E the matrices
with the covariates of cases and controls respectively and � the variance-covariance matrix
of the controls. To make sure that the matched control is not too far in the multidimensional
space, which is more likely for an increasing number of covariates, the distance is estimated
based on a speci�ed tolerance, or caliper Y, such that | |3 (8, 9) < Y | |.

In this dissertation, full matching based on propensity score and Mahalanobis distance has
been used to match cases and controls using RStudio (version 1.3.1093) [76].



Chapter3
Technical and biological noise of FT-IR and

FRS fingerprints

The development of any disease alters the natural physiological state of speci�c organs and
tissues and, therefore, of the bio�uids in contact with them. This makes human blood serum and
plasma, which access all organs in our body, particularly unique and powerful for applications
in health monitoring. Their chemical composition can be investigated in a fast and quantitative
fashion via infrared (IR) spectroscopy, which gives a snapshot of their molecular concentrations
and structures. However, multiple factors could potentially in�uence their composition and,
therefore, their IR signature, including demographic and other common parameters. As a
consequence, the standard deviation of spectra between di�erent individuals, later on referred
to as the between-person spectral variability, is very large [58, 60, 83]. This has been often
addressed as one of the major confounding factors challenging the reliability of IR spectroscopy
for disease diagnosis [61]. However, so far there has been no major e�ort in the robust
characterization of the signatures and origin of such strong variability in any large study.

Samples from about 2100 KORA-FF4 individuals have been measured via FT-IR and FRS
spectroscopy. From the Lasers4Life (L4L) clinical study, only the FT-IR spectra of the 620
cancer-free individuals have been selected for comparison. In this section, principal component
analysis (PCA) and support vector machine (SVM) binary classi�cations, as well as unsupervised
machine learning algorithms, are used to address the impact of age, gender, body mass index
(BMI), smoking status, alcohol consumption and in�ammation on the between-person spectral
variability of FT-IR and FRS data recorded for the healthiest individuals of KORA-FF4 and
L4L cohorts, namely the individuals non-symptomatic (NSP) for the know common medical
conditions and with normal glucose tolerance (NGT). Before addressing the biological variability
among NSP/NGT individuals, the noise intrinsic to the measurement of liquid biological samples
is investigated in the �rst part of this chapter using the KORA-FF4 measurement campaign, the
largest ever performed via FRS spectroscopy.
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3.1 Technical noise characterization

The KORA-FF4 and L4L cohorts are independent, implying that di�erent clinical equipment
and standard operating procedures (SOPs) for blood drawing, sample handling and quality
check have been adopted. The lack of standard SOPs has been often addressed as the major
source of preanalytical errors in clinical practice [58, 61, 84, 85]. However, the inter-clinical
impact on FT-IR spectra of human blood bio-�uids has been shown negligible compared to
the between-person spectral variability, which includes the biological information we seek
in our analysis [58, 60, 83]. This not only allows the comparison of independent cohorts but,
more importantly, it opens the way for IR spectroscopy applications for health monitoring.
The clinical and demographic parameters collected for KORA-FF4 and L4L di�er in content and
source. In both studies, each phenotype is self-reported. The only exceptions are in KORA-FF4
for diabetes, identi�ed via oral glucose tolerance test (OGTT), and heart attack, involving
individuals who had su�ered from a myocardial infarction. Because of the di�erences between
the two cohorts, any comparable outcome is expected to be a signature speci�c to the phenotype
under investigation.

The samples have been shipped to our laboratories on dry ice. Once arrived, several
aliquotes have been prepared and stored at -80°� until measurement. The aliquotes of L4L have
been prepared manually, while the numerous samples of KORA-FF4 have been processed via an
automated liquid handling system. The SOP applied for the sample preparation was the same
for FT-IR and FRS measurements: the samples are randomized, thawed in a water bath, mixed
with a vortex mixer for about 30 B and spun down for about 1<8=. Replica of the same human
blood serum sample have been used as quality control (QC, BioWest, Nuaillé, France) and
measured every 5 samples to check for instrument drifts and con�rm that chemical changes of
the biosamples are negligible in the 3-4 ℎ time span of the measurements [86]. About 450 QCs
have been measured during the KORA-FF4 measurement campaign. The QCs have a similar
chemical complexity compared to the actual samples. Therefore, the standard deviations of
the FRS time traces and absorption spectra of QCs provide a useful characterization of the
technical noise of the respective technique when the last is applied on human blood serum or
plasma and is suitable for preprocessing optimization, as discussed in the following.

3.1.1 Preprocessing optimization: FT-IR

The FT-IR spectra of human blood serum and plasma have been performed in their natural
aqueous environment via MIRA-Analyzer (micro-biolytics GmbH), a state-of-the-art spectrom-
eter dedicated to the measurement of liquid biological samples. The transmission cell in �0�2
is 9.6 `< thick. The spectral coverage spans from 1000 to 3000 2<−1,truncated at 1500 2<−1
when compared to FRS. The implemented software alternates sample and water measurements
at room temperature with a resolution of 4 2<−1. The IR spectrum of water is subtracted from
the signal of the corresponding sample introducing negative absorption values, which are set
back to zero by adding a standard water spectrum to �atten the silent region (1850 - 2300 2<−1)
[87, 88]. The normalization of each spectrum to its mean area reduces the technical noise by a
factor of 26 and, consequently, the standard deviation of the spectra of the samples by a factor
of 8 (Figure 3.1). Therefore, unless speci�ed, all FT-IR data in this work are normalized.
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Figure 3.1: FT-IR spectral standard deviation of the 450 QCs and the 2100 samples measured during the
KORA-FF4 measurement campaign. The comparison between not normalized data (dotted lines) and
the data normalized to their mean area (solid lines) highlights that normalization reduces the technical
noise by a factor of 26 on QCs and of 8 on the samples. Acronyms: QCs - quality controls.

3.1.2 Preprocessing optimization: FRS

As for FT-IR, the FRS measurements of human blood serum and plasma are performed on
liquid samples. In particular, 12 time-traces are recorded from -0.4 to 7 ?B and averaged for
every measurement. After each sample, a water reference is recorded and subtracted directly
in the time domain to remove the strong water absorption. The subtraction of the average
time-trace of the water reference from the one of the respective sample isolates the coherently
emitted electric-�eld-resolved molecular �ngerprint (EMF) of the excited biomolecules. The
strong noisy residual of the exciting pulse around the zero of the EMFs can be �ltered out
using a high temporal pass �lter (HTPF) to isolate the background-free molecular �ngerprint, as
described later in this section. The raw time traces are subjected to technical noise that covers
the biological information we seek and need to be compensated. To this end, as done for FT-IR
in the previous section, the EMFs of all 450 QCs measured with the KORA-FF4 samples are
used to evaluate the technical noise intrinsic to the measurement of biological samples. In this
section, the e�ect of each preprocessing step is evaluated to identify the combination able to
minimize the technical noise.

Despite the high stability of the laser, reproducing every day the same experimental settings
it is highly challenging. One if the consequence it that the centers of the raw time-traces are
slightly di�erent from day to day (Figure 3.2b). The principal component analysis (PCA) reveals
how this technical noise introduces a dependence on the measurement day (Figure 3.2a). Tho
compensate for it, several centering options have been investigated. In the following, Hilbert
centering is applied. This uses the Hilbert transformation to retrieve the envelope of each
reference pulse and centers their maximum to a common zero. The same shift along the time
axis is applied to the average time-trace of the corresponding samples before the subtraction
(Figure 3.2c, d).
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Figure 3.2: FRS preprocessing optimization in the time domain: EMFs centering. The EMFs recorded
for the 450 QCs are used to test several preprocessing steps and to evaluate the technical noise of FRS
measurements on blood-based bio�uids. The color gradient highlights the measurement day. (a) The
PCA analysis of (b) the raw EMFs highlights a day-to-day dependence due to di�erent centering of the
time traces. After applying the Hilbert centering, (c) the PCA shows a di�erent day-to-day dependence
and (d) the EMFs are more similar to each other. Acronyms: FRS - �eld-resolved spectroscopy; EMF -
electric-�eld-resolved molecular �ngerprint; QCs - quality controls; PCA - principal component analysis.

The PCA of the EMFs recorded for the QCs is used to analyze the technical noise and the
e�ciency of every preprocessing step. In particular, given that the QCs samples are the exact
replicas of the same sample, in the ideal case there should be no clustering according to any
experimental parameter, at least in the �rst principal components addressing the main source
of data variability. After Hilbert centering, plotting PC1 against PC2 it is visible that the EMFs
cluster according to the measurement day (Figure 3.2c). The characteristics of the exciting pulse
are indeed slightly di�erent every day depending on several factors, such as room humidity,
optics degradation, thermalization processes or slightly di�erent alignment. The KORA-FF4
measurements have been performed over three months. To compare the EMFs acquired in this
large time span, we need to compensate for any day-to-day variation of the exciting pulse and
to extend the same correction to the whole time window. This preprocessing step is called
standardization. As seen in section 2.2.2, the absorbance of each sample is:

� = −;>6( |C (l) |2) (3.1)

where t(l) is the transfer function:

C (l) = �) (�B (C))/�) (�A (C)) (3.2)
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with �B (C) and �A (C) the electric �elds of a generic sample and the respective reference. Because
of the day-to-day technical variability, we can assume that two water references �A1(C) and
�A2(C) measured in di�erent days are not the same. Therefore, the EMFs derived from them
would be not comparable being them de�ned as:

�"�1 = �B1(C) − �A1(C) = C (C)�A1(C) − �A1(C) (3.3)
�"�2 = �B2(C) − �A2(C) = C (C)�A2(C) − �A2(C) (3.4)

According to equation 3.2, multiplying �B (C) and �A (C) by the same arbitrary non-zero
complex functionk (l) does not change the transfer function. Therefore, it is possible to make
the two EMFs comparable by applying the following �lter based on the electric �eld of one (or
more) speci�ed reference �̃A (C):

k( (l) = �) (�A (C))/�) (�̃A (C)) (3.5)

Figure 3.3: FRS preprocessing optimization in the time domain: EMFs standardization. (a) The EMFs of
the QCs replica after applying Hilbert centering and standardization show di�erent signatures according
to the measurement day around 350 5 B . The color gradient highlights the measurement day. (b) The
corresponding PCA analysis shows a clustering according to the measurement day along PC2 and
PC3. (c) The corresponding eigenvalues and cumulative explained variance of the �rst �ve principal
components show that PC1 explains about 90% of the total variance, while PC2 and PC3 address about
6% of it together. (d) The loading vectors of the �rst three principal components show that PC1 depends
on the noisy signal of the exciting pulse around zero, while LV2 and LV3 have a strong signature around
350 5 B , which re�ects the variability shown in panel (a). Acronyms: FRS - �eld-resolved spectroscopy;
EMF - electric-�eld-resolved molecular �ngerprint; QCs - quality controls; PCA - principal component
analysis; PC - principal component; LV - loading vector.
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Figure 3.4: FRS preprocessing optimization in the frequency domain: EMFs standardization. (a) The
absorption spectra corresponding to the EMFs of QCs shown in Figure3.3a features a high variability. (b)
The PCA analysis of the absorption spectra highlights that PC2 and PC4 feature a clustering according
to the measurement day. (c) The eigenvalues and cumulative explained variance of the �rst �ve principal
components show that PC1 addresses about 58% of the total variability, while PC2 and PC4 address
about 26% and 2% of it respectively. (d) The loading vectors of the �rst four principal components
show that PC1 is associated with the broad excitation pulse residual, as in the time domain, while LV2
and LV4 feature an interference pattern with a period of 98 2<−1 associated with the 350 5 B signal
seen in Figure3.3. Acronyms: FRS - �eld-resolved spectroscopy; EMF - electric-�eld-resolved molecular
�ngerprint; QCs - quality controls; PCA - principal component analysis; PC - principal component; LV -
loading vector.

Standardization completely eliminates the day-to-day dependence in the EMFs of the water
references. The PCA of the EMFs of QCs shows that, after standardization, PC1 accounts for
the di�erence in the intensity of the main pulses, as can be seen in the �rst loading vectors
(LV1) both in the EMFs (Figure 3.3d) and in the associated absorption spectra (Figure 3.4d).
However, in the time domain PC2 and PC3 still shows clustering according to the measurement
day (Figure 3.3b). This is also evident along PC2 and PC4 of the respective absorption spectra
(Figure 3.4b), for which the corresponding LVs feature an interference pattern with a period of
98 2<−1 (Figure 3.4d). This pattern corresponds to the signature at 350 5 B in the time domain
(Figure 3.3a, d). A similar interference pattern arises at 1.9 ?B , exactly 350 5 B after the �rst
back re�ection of the exciting pulse at the EOS crystal. Despite the day-to-day dependence is
reduced, it still accounts for a large part of the data variability (Figure 3.3c and 3.4c). Therefore,
it is vital to address its technical origin.

To this end, the EMFs of QCs measured on consecutive days in similar settings are compared.
The thickness of the measurement cell has been measured via an FT-IR spectrometer and is
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31.89 `< under atmospheric pressure. Under vacuum, the e�ective thickness � can be retrieved
from the de�nition of group velocity:

E6 = �/C = 2/=6 (3.6)

From the equation above, we can derive the thickness � as 2 ∗ � = (2 ∗ 3C)/=&� by setting
3C to 350 5 B . The refractive index of QCs (=&� ) can be derived from the one of water (1.350)
knowing that the EMFs of water and QCs induce a time delay in the main pulse of about 0.5 5 B ,
which returns =&� = 1.355. Therefore, the cell thickness under vacuum is 38.72 `<, measured
at an ambient pressure of about 950<10A , due to the low pressure on both external sides of the
measurement cell. The oscillator, DFG and EOS chambers are operated under vacuum (below
1 <10A ) to reduce the strong absorption of water. If the e�ective thickness under vacuum
would be constant, this would not introduce any day-to-day dependence. Since the atmospheric
pressure is di�erent every day (Figure 3.5b), it in�uences the e�ective thickness acting from
the top of the cell inducing small changes (3�) from one day to another. Figure3.5a shows the
EMFs of QCs measured in two di�erent days with an ambient pressure di�erence of 0.5<10A .
From Equation 3.6 it can be calculated that the delay of about 1 5 B in the interference pattern
at 350 5 B corresponds to a 3� of 0.22 `< (0.6% of the cell thickness). For the extreme cases of
the very �rst and the very last QCs measured, performed with an ambient pressure di�erence
of about 14<10A , the delay is about 3.6 5 B and corresponds to a 3� of 0.79 `<, about 2% of the
cell thickness.

Figure 3.5: Day-to-day dependence of FRS measurements: e�ect of the ambient pressure on the
measurement cell thickness. (a) The EMFs of QCs measured on consecutive days, colored by measurement
day, show a delay of about 1 5 B around 350 5 B (inset). (b) The ambient pressure for each measurement
day of the KORA-FF4 measurement changes from day to day (colored by month). (c) The PC1/PC2 plot
for the EMFs of the QCs shows that the clustering is connected with the ambient pressure variation
(colored by measurement day). The red shaded area in panels (c) and (b) refer to the same month.
Acronyms: FRS - �eld-resolved spectroscopy; EMF - electric-�eld-resolved molecular �ngerprint; QCs -
quality controls; PC - principal component.
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Ultimately, it can be concluded that the day-to-day dependence arises from an internal
re�ection of the exciting pulse inside the measurement cell because of the thickness variations of
the last in function of the external pressure. However, this does not explain why standardization
is not fully e�cient on biological samples. This is due to their slightly di�erent refractive
indexes between the water references and the actual samples. Fortunately, because of their
similar chemical composition, the human blood serum replica QCs and the actual human blood
plasma samples have very close refractive indexes, which turns vital for the implementation of
a preprocessing step able to reduce the day-to-day dependence in the EMFs of the samples. This
step is called interference correction. Each sample is associated with the closest QC measured to
build the following �lter:

k�� (l) = k( (l) ∗ (CB (l)CA (&�) (l))/(C&� (l)CA (l)) (3.7)

where CB,A are the transfer functions of the sample we apply the correction to and its reference,
C&�,A (&�) are the ones associated to the closest QC andk( (l) is the �lter used for standardization.

Figure 3.6c shows the e�ect of di�erent preprocessing procedures on the technical noise.
Standardization lowers the technical noise of the main pulse to the minimum, but makes
longer times noisier. Interference and echo correction compensate the noise at 350 5 B and 1.5
?B selectively, the last originating from the back re�ection at the EOS crystal. Applying echo
correction after the other preprocessing steps acts speci�cally at 1.5 ?B . However, if applied
before, it helps standardization and leads to a strong reduction of the technical noise at longer
times. Therefore, it can be concluded that the preprocessing yielding the lowest standard
deviation of the EMFs of QCs is based on the following steps applied in the speci�ed order:

1. Hilbert centering (HC)

2. Echo correction (EC)

3. Interference correction (IC)

4. Standardization (ST)

Thanks to this combination of preprocessing steps the day-to-day dependence of the EMFs
of QCs is extensively reduced (Figure3.6a, b).
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Figure 3.6: Optimal preprocessing for the KORA-FF4 EMFs in the time domain. (a) The PC1/PC2 plot
of (b) the EMFs of all QCs after applying the optimized preprocessing protocol show no clustering
according to the measurement day, highlighting that the preprocessing proposed extensively reduces the
day-to-day dependence, giving identical EMFs for the replicas QCs samples (colored by measurement
day). (c) The standard deviation of the EMFs of all QCs is shown for di�erent preprocessing highlighting
that the optimized preprocessing (black line) minimizes the technical noise. (d) The comparison of the
same EMF of a QC after applying Hilbert centering only (grey) and applying the optimized preprocessing
protocol (black) shows the extensive reduction of the technical noise. Acronyms: EMF - electric-�eld-
resolved molecular �ngerprint; PC - principal component; QCs - quality controls; HT - Hilbert centering;
EC - echo correction; IC - interference correction; ST - standardization; EOS - electro-optic sampling.
Red star - interference pattern; black stars - back re�ection at the EOS crystal.



38 3 Technical and biological noise of FT-IR and FRS �ngerprints

3.1.3 Comparison of biological and technical noise of IR �ngerprints

The optimal preprocessing protocols found for the FT-IR and FRS data of QCs are applied on
the KORA-FF4 samples to compare the technical noise characterized in the previous sections
with the biological one, namely the spectral variation of the samples due to the biological
variability between individuals. The aim in this section is to compare the biological-to-technical
noise ratio obtained via the newly developed FRS spectroscopy with a state-of-the-art FT-IR
spectrometer.

The PCA of QCs and samples show a day-to-day dependence only along the PC1 after
applying only the Hilbert centering preprocessing step (Figure 3.7a). This highlights a higher
impact of the day-to-day dependence compared to the di�erence between QCs (black shaded
area) and samples, a�ecting PC2. The optimal preprocessing removes the in�uence of the
measurement day and e�ciently reduces the standard deviation of human blood plasma EMFs
(Figure 3.7b).

Figure 3.7: Biological-to-technical noise ratio of EMFs in the time and frequency domain. (a) The
PC1/PC2 plot for the EMFs of samples and QCs (black shaded area) with Hilbert centering only and (b)
applying the optimized preprocessing protocol shows that the preprocessing reduces the day-to-day
dependence of the EMFs. (c) The standard deviation of the EMFs of samples and QCs in the time and
(d) the frequency domain for the HTPFs highlighted in panel (c). (e) The relative standard deviation
calculated as the ratio between the standard deviation of the EMFs of samples and the one of QCs shows
the biological-to-technical noise ratio for the HTPFs shown in panel (c), highlighting that the ratio is
maximized for the HTPF going from 0.14 to 7 ?B . Acronyms: EMF - electric-�eld-resolved molecular
�ngerprint; PC - principal component; QCs - quality controls; HTPF - high temporal pass �lter; STD -
standard deviation.
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Figure 3.7c shows that the biological variability encoded in the EMFs of the biosamples is
higher than the technical noise in the whole time window starting from 140 5 B . The residual
signal of the exciting pulse is a major source of noise that can be removed with an HTPF.
The absorption spectrum can be calculated from EMFs via Equation 3.1 as −;>6( |C (l) |2), with
C (l) the Fourier transform of the corresponding time trace. To reduce the noise coming from
the exciting pulse, an HTPF is applied and the Fourier transform is de�ned as C�)%� (l). The
−;>6( |C�)%� (l) |2) is not an absorbance, but it allows a closer comparison with FT-IR spectra
and will be considered as the EMFs’ signal in the frequency domain. The standard deviations
of both samples and QCs in the frequency domain for di�erent HTPFs increase for longer
initial times (e.g. going from the temporal window 0.14 - 7 ?B to 0.5 - 7 ?B). The highest
biological-to-technical noise ratio is associated with an HTPF from 0.14 to 7 ?B which will
therefore be employed in all the following analyses (Figure 3.7d, e).

The FT-IR analysis of QCs highlights that the technical noise is higher for the Amide
bands of proteins (1250 - 1750 2<−1; Figure 3.8b, black line). The biological noise is higher
for the signatures of proteins and lipids (1750 - 3000 2<−1; Figure 3.8b, light purple line). The
FT-IR analysis of KORA-FF4 blood plasma samples highlights that the biological-to-technical
noise ratio is smaller for proteins, while lipids are the main source of the biological variability
between individuals (see section 3.2.2). In the spectral range between 1000 and 1250 2<−1, the
biological-to-technical noise ratio calculated for FT-IR is higher than for the Amide bands as
well as compared to the FRS data in the frequency domain. Between 1250 and 1500 2<−1, where
the ratio calculated for FT-IR is smaller, the two techniques reach similar values (Figure 3.8c).

Figure 3.8: Biological-to-technical noise ratio of FT-IR and FRS in the frequency domain. (a) The average
FT-IR spectra of all KORA-FF4 samples are compared with the FRS spectra derived with and without
a HTPF (0.14 - 7 ?B). (b) The standard deviation of FT-IR spectra of samples and QCs show a higher
technical noise from the amide bands of proteins and a higher biological noise from proteins and lipids.
(c) The biological-to-technical noise ratio is compared for FT-IR and FRS in frequency domain showing
that the ratio is comparable between 1250 and 1500 2<−1 and higher for FT-IR at lower frequencies.
Acronyms: FRS - �eld-resolved spectroscopy; HTPF - high temporal pass �lter; QCs - quality controls;
STD - standard deviation.
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In conclusion, the spectra and EMFs of QCs have been �rst evaluated for both FT-IR
and FRS for the identi�cation of the optimal preprocessing able to minimize the technical
noise associated with the measurement of liquid blood-based biosamples. The optimized
preprocessing found for each technique has then been applied on the KORA-FF4 blood plasma
samples which have been used to identify the biological noise due to the biological variability
between individuals. The biological-to-technical noise ratio highlights a larger biological
variability between individuals associated with the spectral signatures characteristic of lipids.
The comparison of the biological-to-technical noise ratio derived for the newly developed
FRS spectroscopy with the one obtained via a state-of-the-art FT-IR spectrometer highlights
that the performances are comparable between 1250 and 1500 2<−1, but are still smaller for
FRS at shorter wavenumbers. Further improvements on the FRS setup are currently being
implemented to boost its performance.

3.2 Between-person spectral variability among healthy
individuals

Infrared �ngerprinting is a fast and cost-e�cient way of recording a snapshot of the chemical
composition of a sample. The standard deviation of the IR �ngerprints measures the biological
variability of human blood bio�uids between individuals. Despite the last is well known to
have a strong impact on FT-IR spectra [58, 60], there are no comprehensive studies that try to
tackle the source of this variability in a general large population. The FT-IR �ngerprints and
the FRS time traces of the KORA-FF4 cross-sectional population-based cohort are perfectly
suited for this purpose. Before tackling this issue, the KORA-FF4 cohort is shortly introduced.

3.2.1 KORA-FF4 cross-sectional population-based cohort

In this section, the KORA-FF4 cross-sectional population-based cohort is introduced. Table 3.1
shows the number of individuals positive for each known intermediate and endpoint medical
condition (Figure 3.9a) as well as of the healthiest individuals, namely the ones non-symptomatic
(NSP) to the known medical conditions and with normal glucose tolerance (NGT), identi�ed as
NSP/NGT.

In particular, the known medical conditions for this cohort are: prediabetes, type II diabetes,
heart attack (individuals who had an episode of myocardial infarction), hypertension, high
blood lipids, chronic obstructive pulmonary disease (COPD), asthma, as well as individuals
who had cancer (former or ex-cancer cohort) or a stroke. Being a cross-sectional population-
based cohort, the number of cases re�ects the probability of developing that disease in the
represented population. Hypertension and high blood lipids a�ect about 50% of the population,
with more than a thousand cases each. Fewer individuals are positive to the other medical
conditions, ranging from 60 cases that had a stroke to about 350 individuals with prediabetes.
The number of cases is important for this type of study as it in�uences the outcome of the
binary classi�cations (see section 4.2.3).

The common parameters evaluated in this study are easily accessible factors, such as gender,
age, smoking status, alcohol consumption and body mass index (BMI) which is de�ned as the
ratio between a person´s weight and the square of his height. Another less accessible parameter
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considered is the C-reactive protein (CRP) concentration, indicative of many physiological
changes and commonly used as an index for the in�ammation level [89]. The average values
reported in Table 3.1 reveal that the healthiest individuals (NSP/NGT) have the lowest average
age, BMI and CRP concentration, while there are no major di�erences with the other cohorts
for the ratio between smokers and non-smokers and the average daily alcohol consumption.

KORA-FF4 cohort
Cohort n.

cases
M/F Age CRP

(<6/!)
BMI
(:6/<2)

Smok
/ not
smok

Alcohol
(6/30~)

All 2074 1.0 60.2± 12.3 2.4 ± 4.4 27.8 ± 4.9 0.2 14.7 ± 20
NSP/NGT 394 0.7 51.6 ± 10 1.5 ± 2.6 25.4 ± 3.7 0.3 13.8 ± 17
Prediabetes 360 1.4 65.4± 11.1 3.1 ± 4.9 29.6 ± 4.7 0.2 17.8± 23.2
Diabetes 288 1.5 69.4± 10.1 3.5 ± 5 31.1 ± 5.4 0.1 15.9± 24.3
Heart attack 69 3.1 71.1 ± 9.4 3.1 ± 4.8 30.3 ± 5.5 0.1 13.7± 20.8
Hypertension 1035 1.1 64.5± 11.2 2.8 ± 4.5 29.3 ± 5.2 0.1 15.1± 21.1
High lipids 1033 1.6 62.1± 11.5 2.6 ± 5.2 28.3 ± 4.8 0.2 15.8± 22.1
Stroke 54 1.3 72 ± 9.1 4 ± 5.9 29.2 ± 4.2 0.1 16.2± 23.7
COPD 150 0.8 64.8± 11.2 4.2 ± 8.1 30 ± 6.1 0.2 12.5± 17.7
Ex-cancer 229 1.1 67.1± 11.5 2.7 ± 4.6 27.7 ± 4.4 0.1 15.2± 19.1
Asthma 182 0.7 60.1 ± 12 2.6 ± 3.2 28.2 ± 5.6 0.2 11.9± 17.3

Table 3.1: Description of the KORA-FF4 cohort. The table shows the number of individuals positive
for each known common medical condition and of the healthiest non-symptomatic individuals with
normal glucose tolerance (NSP/NGT). For each cohort, the average values of age, CRP, BMI and daily
alcohol consumption are reported together with the ratio between the number of male and female
individuals and the one between active smokers and non-active smokers (former and never smokers).
Since KORA-FF4 is a cross-sectional population-based cohort, the number of cases show the probability
of developing each medical condition in the given population. The NSP/NGT individuals have the lowest
average age, BMI and CRP compared to the other cohorts. Acronyms: M/F - males-to-females ratio; CRP
- C-reactive protein; BMI - body mass index; NSP/NGT - cohort of non-symptomatic normal glucose
tolerance individuals; COPD - chronic obstructive pulmonary disease.
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3.2.2 FT-IR �ngerprints of common parameters in KORA-FF4

This section focuses on the analysis of the FT-IR �ngerprints to identify the main common
parameters responsible for the between-person spectral variability among the healthiest in-
dividuals, namely the NSP/NGT cohort. To that end, both unsupervised machine learning
algorithms and SVM binary classi�cations are applied. The common parameters considered
are shown in Table 3.1. To analyze the e�ect of each parameter, the NSP/NGT individuals are
grouped into case/control cohorts according to the de�nitions reported in Table 3.2.

Parameter Control cohort Case cohort
Gender females males
Age <55 years old > 54 years old
BMI < 25 :6/<2 - underweight

and normal weight
> 24.99 :6/<2 - preobese
and obese

Smoking status non-active smokers active smokers
Alcohol consumption 0-20 6/30~ > 20 6/30~
In�ammation [CRP] < 5<6/! - low [CRP] > 4.99<6/! - high

Table 3.2: KORA-FF4 case/control cohorts for each common parameter among healthy individuals. The
known common parameters listed in Table 3.1 are here analyzed in case-control studies. The thresholds
used to identify these cohorts, which are based on di�erent risk categories, are here listed for each
parameter. Acronyms: BMI - body mass index; CRP - C-reactive protein.

The between-person spectral variability, namely the standard deviations of the FT-IR spectra
of a selected cohort of individuals, have been computed for each medical condition (Figure 3.9b,
grey bars) as well as for each respective sub-cohort de�ned according to Table 3.2 (Figure 3.9b,
colored bars). The NSP/NGT individuals are expected to have the smallest between-person
variability, in agreement with what observed in the FT-IR data presented here. Prediabetes, an
intermediate condition, induces a higher biological variability between individuals, slightly
smaller than the endpoint diseases. All medical conditions reach comparable standard devia-
tions, most probably because each individual might be a�ected by the other known conditions
as well. Indeed, most symptomatic cases have at least one or two comorbidities and only
too few individuals have none, making it di�cult to disentangle the e�ect of every single
condition on the between-person spectral variability. Among the healthiest individuals, the
spectral variability of males is larger compared to females. The same is true for smokers,
preobese and obese individuals, people with high daily alcohol consumption and individuals
with high in�ammation compared to their respective controls (Table 3.2). These trends hold
for symptomatic individuals, with a few exceptions (Figure 3.9b, *). For example, diabetes
introduces a larger between-person spectral variability among individuals younger than 55
years compared to the older ones and, together with prediabetes, heart attack and stroke, to
the preobese and obese individuals compared with the ones with normal weight.
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Figure 3.9: Number of individuals for each medical condition in KORA-FF4 and corresponding FT-IR
between-person spectral variability. (a) The number of individuals positive for each known medical
condition is reported for the KORA-FF4 population (Table 3.1). (b) The between-person spectral variabil-
ity, namely the total standard deviation of the spectra, is reported for each cohort in panel (a) (black
shaded bars) and the respective sub-cohorts based on the known common parameters listed in Table 3.2
(colored bars: legend). Acronyms: COPD - chronic obstructive pulmonary disease; NSP/NGT - cohort of
non-symptomatic normal glucose tolerance individuals; y/o - years old.

Analysis via SVM binary classi�cations

This section wants to address to what extend each known common parameter a�ects the
FT-IR �ngerprints of the human blood plasma of NSP/NGT individuals. In particular, this is
addressed by performing binary classi�cations of the case-control cohorts de�ned in Table 3.2.
Each binary classi�cation is performed via the supervised machine learning algorithm SVM in
10-fold cross-validation (repeated 10 times).

The e�ciency of each classi�cation, measured with the AUC of the ROC curves, addresses
the impact of each parameter on all spectral features. In particular, higher AUCs are found for
gender and in�ammation (> 80%), followed by smoking status, age and alcohol consumption
(70 - 80 %), while BMI has a relatively low AUC of 66 % (Figure 3.10a). A strong impact from
physical activity is expected according to what has been reported in the literature [90, 91].
Surprisingly, the classi�cation of physically active against non-active individuals results in no
separation (AUC = 50%), probably because of the qualitative and strongly biased nature of this
self-reported parameter.

Figure 3.10b shows the di�erential �ngerprint associated with each parameter, calculated
as the di�erence between the average FT-IR spectrum of the cases and the average spectrum
of the controls. The SVM coe�cients, which unveil the features responsible for each binary
classi�cation, are in good agreement with the di�erential �ngerprints. The only exceptions are
in�ammation, smoking status and alcohol consumption for which the SVM coe�cients are too
noisy because of the low number of cases (< 150 individuals, see section 4.2.3).
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Figure 3.10: SVM binary classi�cation of common parameters on the FT-IR spectra of healthy individuals
in KORA-FF4. (a) The AUCs obtained via SVM binary classi�cation for the known common parameters
among NSP/NGT individuals (Table 3.2) unveils that gender and in�ammation have the strongest impact
on the �ngerprints, followed by age, smoking status and alcohol consumption, while BMI and physical
activity have low or no impact. (b) The di�erential �ngerprint of each parameter is comparable to the
SVM coe�cients (black dotted lines), which unveil the spectral signatures responsible for the binary
classi�cation, with the exceptions of in�ammation, smoking status and alcohol consumption which
count few cases leading to noisy SVM coe�cients. Shaded areas: standard deviations of each cohort
in the di�erential �ngerprint (colored: case cohort; black: control cohort). Acronyms: SVM - support
vector machine; NSP/NGT - cohort of non-symptomatic normal glucose tolerance individuals; BMI -
body mass index; CRP - C-reactive protein.
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From this analysis, it is evident that gender and in�ammation have the strongest impact
on the FT-IR �ngerprints of healthy. In particular, the most relevant features associated with
gender arise mostly at low frequency, between 1000 and 1250 2<−1, with some contributions
from the amide bands. The di�erential �ngerprint associated with CRP has a strong protein
signature characteristic of the altered albumin-to-globulin ratio (AGR) in the Amide I and II
bands (1500 – 1800 2<−1), characteristic of in�ammation [61, 92]. Age, smoking status and
daily alcohol consumption have also an important impact on the IR �ngerprints of healthy, all
with a relevant signature in the protein and lipid spectral region (the last between 1800 and
3000 2<−1, see Table 2.1). The parameter with the smallest impact is BMI, which shows similar
spectral contributions as age and CRP.

Analysis via unsupervised algorithms

Figure 3.9b shows that, among NSP/NGT individuals, medium-to-high in�ammation is asso-
ciated with the largest between-person spectral variability and the SVM supervised analysis
shows that in�ammation, together with gender, has the strongest impact on the FT-IR �nger-
prints of healthy. The classi�cation e�ciencies are informative for the impact of each parameter
on all spectral features but are not su�cient to identify their impact on the between-person
spectral variability speci�cally. A deeper analysis based on unsupervised methods is here pro-
posed to identify clusters of similar spectral �ngerprint, analyze how the common parameters
are distributed between the clusters and understand which of them has the strongest impact in
the clustering and, therefore, on the IR signatures. All the analyses reported here are performed
on the PCs encoding 99% of the total variance.

The optimal number of clusters is �rst obtained via the elbow method and it is found to
be three. This is indeed the number of clusters leading to a drastic change in the slope of the
within-cluster sum of squares (WCSS) (Figure 3.11c). K-means, agglomerative clustering and
Gaussian mixture model (GMM) are applied and compared via their silhouette scores. K-means
and GMM return comparable scores (Figure 3.11a). In particular, GMM performs better with
covariance type full compared to setting the covariance type as spherical (Figure 3.11b). Both
K-mean and GMM �nd similar clusters with a large separation along PC1 and PC2 (Figure
3.11e-d respectively).

The distribution of the common parameters in each cluster highlights their in�uence on the
clustering outcomes. From Table 3.3 and Figure 3.11f, it can be seen that age and in�ammation
play an important role in de�ning the clusters. In particular, most of the individuals with
medium-to-high in�ammation end up in cluster 1 and most of the individuals older than
55 years, especially if they have high risk factors (smokers, high alcohol consumption, high
BMI), end up in cluster 3. Therefore, most of the individuals with low risk factors, age and
in�ammation are in cluster 2, separated from cluster 1 along PC2 and from cluster 3 along PC1.
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Figure 3.11: Unsupervised clustering analysis of the FT-IR spectra of healthy individuals in KORA-FF4.
(a) The silhouette scores are reported for the unsupervised algorithms applied on the PCs explaining
99% of the total variability calculated for the NSP/NGT cohort. The graph shows that K-means and
GMM have the best performances. (b) The BIC scores found for GMM clustering with di�erent number
of components and covariance types shows the highest performance for GMM with covariance full
for 3 clusters. (c) The elbow method reporting WCSS against the number of clusters shows 3 clusters
as the optimal number. (d) The PC1/PC2 plot colored according to the clusters identi�ed via GMM
(covariance type full) and (e) K-means are compared with (f) the PC1/PC2 plot colored according to
selected combinations of common parameters (colored in grey are the individuals that do not correspond
to any of the speci�ed groups). The comparison highlights that K-means and GMM return similar
clusters. Moreover, it highlights that the datapoins corresponding to individuals with high in�ammation
(high CRP) tend to cluster together, as well as for the data corresponding to individuals older than 55
years, especially for high risk factors (smokers, high alcohol consumption or high BMI). Acronyms: PC -
principal component; NSP/NGT - cohort of non-symptomatic normal glucose tolerance individuals; BIC
- Bayesian information criterion; WCSS - within-cluster sum of squares; CRP - C-reactive protein; BMI -
body mass index; AC - Agglomerative clustering (1 - a�nity = ’euclidean’, linkage = ’ward’; 2 - a�nity
= ’cosine’, linkage = ’average’); KM - K-means; GMM - Gaussian Mixture Model (1 - covariance type =
’full’; 2 - covariance type = ’spherical’).
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Cluster young with high
CRP concentration

old with high CRP
concentration

old with high risk
factors

1 45.2% 42.3% 32.3%
2 25.8% 23.1% 22.6%
3 29.0% 32.1% 45.2%

Table 3.3: GMM clusters found for the FT-IR �ngerprints of healthy individuals in KORA-FF4. Age and
in�ammation are the most unequally distributed parameters among the three clusters. The percentage
of individuals with high in�ammation and older than 55 years are reported. Most of the individuals
with high in�ammation are in cluster 1, while most of the individuals older than 55 years and with high
risk factors (smokers, high alcohol consumption or high BMI) are in cluster 3. Therefore, most of the
individuals with low risk factors, age and in�ammation are in cluster 2. Acronyms: GMM - Gaussian
Mixture Model; CRP - C-reactive protein; BMI - body mass index.

The unsupervised clustering analysis highlight that the �rst two PCs address the origin of
the between-person variability. Among all the common factors analyzed, age and in�ammation
seem to have the strongest impact. Therefore, despite the high AUC associated with gender,
this parameter does not in�uence the features connected speci�cally to the between-person
variability. However, many unknown parameters can play a crucial role in the clustering
(e.g. hormonal status, cholesterol level, etc.). The analysis performed here considers only the
most common and easily accessible factors. Despite CRP concentrations are not immediately
available, this analysis highlights the huge impact of in�ammation on the spectral variability
between individuals. Ignoring it would possibly introduce biases to the analysis of the IR
�ngerprints (see section 4.2.1). To address the spectral features a�ected by the between-person
variability, it is necessary to further investigate the �rst two PC components.

Principal component analysis

The variability explained by each PC abruptly decreases for higher components, with PC1 and
PC2 addressing for about 70% of the total variance of the FT-IR spectra of NSP/NGT individuals
(Figure 3.12a). Unsupervised clustering algorithms highlight that considering PC1 and PC2
is enough to address the origin of the between-person variability among healthy individuals.
Therefore, these PCs are used to identify the features encoding for it. The spectral assignments
to the di�erent classes of biomolecules refer to Table 2.1.

LV1 and LV2 show that PC1 addresses the variance of the lipid signature (1800 – 3000 2<−1;
Figure 3.12b), which accounts for about 45% of the total variability, and PC2 addresses the
variance of the AGR signature seen for in�ammation (Figure 3.12b). Figure 3.12c shows that PC1
correlates with age, which therefore a�ects the variability of lipids among healthy individuals,
in agreement with the previously acknowledged up-regulation of lipids concentration with age
[93, 94]. PC2, instead, correlates with age and CRP concentrations (Figure 3.12c), showing that
these parameters in�uence the AGR protein signature in healthy individuals. Other factors
such as BMI and smoking status have small correlations with PC1 and PC4, but the p-values
are close to 0.01, taken as threshold for meaningful correlations.
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Figure 3.12: PCA analysis of the FT-IR spectra of healthy individuals in KORA-FF4. (a) The cumulative
explained variance of the �rst 5 PCs and (b) the corresponding loading vectors are compared for the
NSP/NGT cohort and the whole population. The comparison highlights that the features encoding for
the spectral variability is analogous for symptomatic and non-symptomatic individuals. LV1 addresses
the lipid signature (Table 2.1), LV2 the protein AGR signature associated with in�ammation and LV5
the signatures from carbohydrates and protein glycosylation (Figure 3.10b). The spectral nature of
the other components is not unambiguously determined. (c) The j2 derived p-values below 0.01 show
the signi�cant correlations between the common parameters and the �rst �ve PCs among NSP/NGT
individuals. Smaller values imply stronger correlations. PC1 and PC2 have stronger correlations with
age and CRP concentration, while gender correlates with PC4 and with PC5. BMI and smoking status
have small correlations with the PCs. Acronyms: PCA - principal component analysis; PC - principal
component; NSP/NGT - cohort of non-symptomatic normal glucose tolerance individuals; LV - leading
vector; AGR - albumin-globulin ratio; CRP - C-reactive protein; BMI - body mass index.
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Contributions in the same spectral region covered by FRS (1000 - 1500 cm−1) arise only
from LV3. Because of the di�erent spectral coverage, the spectral features and, therefore,
the associated between-person spectral variability addressed by the two techniques have a
di�erent molecular origin. For example, between 1000 and 1250 2<−1, the spectral signature
are mostly coming from carbohydrates and proteins glycosylations, as described in Table 2.1.
PC5 has a strong signature in this spectral region (Figure 3.12d), showing that these classes of
molecules are responsible only for about 2% of the between-person spectral variability in the
whole spectral coverage of FT-IR. Gender correlate with PC5 and are therefore relevant for the
between-person variability for the FRS data (Figure 3.12a).

In conclusion, the correlations of the �rst two PCs with age and in�ammation, together with
the high SVM classi�cation e�ciencies found for these parameters, highlight that these are the
main factors responsible for the large between-person variability among healthy, respectively
associated with lipids and proteins variability. These conclusions agree with the ones obtained
via unsupervised clustering (Figure 3.12d).

Discussion

In summary, both supervised and unsupervised methods unveil that age and in�ammation
are the main sources of the between-person spectral variability in FT-IR spectra, with age
connected with the highest source of variability between healthy individuals, namely lipids
(1750 - 3000 2<−1), as well as with the second-highest source of variability, the proteins (1250
- 1750 2<−1), and in�ammation a�ecting only the second. Gender is shown to be relevant
for the biological variability associated with carbohydrates and protein glycosylations (1000
- 1250 2<−1), accounting for a small percentage of the total variability in full spectra, but
main actors in the spectral coverage of FRS. It is moreover noticeable that both cumulative
explained variance and loading vectors are almost identical for NSP/NGT individuals and the
whole population (Figure 3.9a-b). Therefore, it can be concluded that the source of the larger
between-person variability found in intermediate and endpoint diseases (Figure 3.9b) are the
same features, namely the same biomolecules, responsible for the biological variability among
the healthiest individuals. Knowing that the main sources of variability among healthy are age
and in�ammation, it does not surprise that symptomatic individuals, who have a higher average
age and in�ammation level (Table 3.1), have a higher between-person spectral variability. These
�ndings underline how understanding the origin of the between-person spectral variability
among healthy individuals is fundamental before applying FT-IR spectroscopy for disease
diagnosis (see chapter 4).

The impact of age, in�ammation and, partially, BMI on the between-person variability might
be due to the connection existing between these factors, such as the one between CRP and
obesity [95, 96], between aging and weight loss as well as between aging and in�ammation path-
ways [97]. Moreover, low-grade chronic in�ammation is associated with aging and is therefore
called “in�ammaging”, which potentially explains why most of the age-related diseases share
an in�ammatory pathogenesis [98]. The analysis of serum samples of 590 healthy individuals
who participated in the KORA S4 and F4 studies to identify age-associated metabolites [99]
support the theory according to which aging is linked with altered lipid metabolism [100]. This
agrees with the connection between age and the spectral signatures of lipids. The connection
between age and in�ammation might explain the impact of age on the AGR signature.
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Unsupervised clustering has been used also to de�ne speci�c thresholds for age, CRP and
BMI to group the spectra in new clusters based on these values. However, the so-obtained
clusters are not well separate from the ones identi�ed via unsupervised methods. There could
be multiple reasons for that. For example, there could be other unknown parameters with
similar importance that need to be considered when de�ning the clusters. A more interesting
explanation is that age is not a robust parameter because it does not represent the “e�ective
age” of a person; di�erent individuals are indeed found to go through aging at di�erent rates
and, potentially, via di�erent mechanisms [97]. Therefore, each individual of a certain age
could potentially �nd him/herself at a di�erent stage of the aging process and have, therefore,
a di�erent blood composition compared to other individuals of the same age. Moreover, the
association of aging, in�ammation and BMI might have a combined e�ect di�cult to de�ne
with three separate thresholds. It would be interesting to address if the clusters found via the
FT-IR �ngerprints of human blood plasma re�ect the “ageotypes” de�ned in [97]. Identifying
clusters of individuals with similar biological characteristics, and therefore with similar spectra,
could potentially boost the e�ciency in the detection of diseases as grouping cases and controls
accordingly would reduce the between-person variability which does not depend on the disease.

3.2.3 Comparison of FT-IR �ngerprints of common parameters in
KORA-FF4 and L4L

The FT-IR �ngerprints of the common parameters analyzed for the KORA-FF4 cohort in section
3.2.2 are here compared with the ones of the healthiest individuals of the independent cohort
L4L. The way the two cohorts have been sampled makes them, as well as the conclusions
one can draw from these, very di�erent. KORA is a population-based cross-sectional cohort
and retains all natural correlations and distributions of conditions and common parameters
of the general population. L4L, instead, is a case-control multi-clinical study and is therefore
very speci�c to a target sub-population. In other words, the correlation coe�cients found in
L4L are not representative of a general population (Tables 3.6 and 3.7). For this reason, the
analysis performed in the previous section, aiming at grasping the sources of the between-
person spectral variability, would not have a general validity in the L4L cohort as in any other
clinic-based study. This is very unique for the KORA study which makes it extremely valuable.
On the other hand, comparing the IR �ngerprints of the common parameters in independent
cohorts allows the identi�cation of parameter-speci�c IR features.

The L4L cohort has been collected in the frame of a cancer study, but in this dissertation,
only the cancer-free patients are considered. The common medical conditions known for this
cohort and in common with the KORA-FF4 study are four: diabetes, heart disease, hypertension
and asthma (Table 3.4). Therefore, to guarantee a fair comparison, the cohorts of healthiest
individuals are rede�ned as non-symptomatic (NSP*) only for these conditions for both KORA-
FF4 and L4L. This returns a larger cohort of about 900 NSP* individuals for KORA-FF4 compared
to the NSP/NGT previously investigated and allows the comparison of the IR �ngerprints of
the common parameters for a di�erent de�nition of "healthy". Since the NSP* individuals
are more numerous, they allowing a �ner distinction for each parameter without extensively
reducing the number of cases and controls. The thresholds de�ned in Table 3.2 of section 3.2.2
are therefore re-de�ned as reported in Table 3.5. Many values of in�ammation and alcohol
consumption are unknown in L4L (Figure 3.13b) and are not analyzed in this cohort.
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L4L cohort
Cohort n. cases M/F Age BMI (:6/<2) Smokers / not

smokers
All 621 0.6 54.6± 14.6 24.7 ± 6.2 0.2
NSP∗ 439 0.4 51 ± 13.7 23.7 ± 5.9 0.2
Diabetes 30 1.7 67 ± 13.7 28.8 ± 5 0.3
Heart disease 46 1.9 71 ± 10.9 28 ± 6.3 0.1
Hypertension 131 1.1 64.9± 11.7 27.6 ± 6.3 0.2
Asthma 29 0.6 53.6± 13.3 27.4 ± 6.8 0.1

Table 3.4: Description of the L4L cohort. The table shows the number of individuals positive for each
known common medical condition and of the healthiest non-symptomatic individuals (NSP*). For each
cohort, the average values of age and BMI are reported together with the ratio between the number of
male and female individuals and the one between active smokers and non-active smokers. Since L4L is
not a cross-sectional population-based cohort, the distribution of show is di�erent from the one seen for
KORA-FF4 because it does not represent a general population. The NSP* individuals have the lowest
average age and BMI compared to the other cohorts. Acronyms: NSP* - non-symptomatic individuals;
BMI - body mass index; M/F - males-to-females ratio.

Parameter Control cohort Case cohort 1 Case cohort 2 Case cohort 2
Gender females males
Age <55 years old > 54 years old
BMI (:6/<2) < 25 25 - 29.9 > 30
Smoking
status

never smokers ex-smokers smokers

CRP (<6/!) < 2.5 2.5-5 5-7.5 > 7.5

Table 3.5: KORA-FF4 and L4L case/control cohorts for each common parameter among healthy individ-
uals. The known parameters in common between KORA-FF4 and L4L are here analyzed in case-control
studies. The thresholds used to identify these cohorts, which are based on di�erent risk categories, are
here listed for each parameter. The BMI is classi�ed according to the WHO thresholds de�ning a BMI
below 25 :6/<2 as normal weight, between 25 and 29.9 :6/<2 as preobese and above 30 :6/<2 as obese.
Acronyms: BMI - body mass index; WHO - World Health Organization; CRP - C-reactive protein.
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Figure 3.13: Description of the KORA-FF4 and L4L cohorts. (a) The percentages of individuals for each
common parameter are reported for KORA and (b) L4L. The bars are colored based on the diseases
(panels (c) and (d)) and the colors associated with the parameters in each bar go from light to dark
according to the following order: gender (males, females); age (<55 years old, > 54 years old); BMI
(underweight, normal weight, preobese, obese); Smoking status (non-, ex-, active smokers); alcohol
intake (no alcohol consumption, < 10 g/day, above 10 g/day); in�ammation (no, low, medium, high).
The red barred columns represent the percentage of unknown values, showing that only a few values
are known for alcohol consumption and in�ammation for the L4L cohort. (c) The number individuals
positive for each medical condition are reported for KORA (Table 3.1) and (d) L4L (Table 3.4). Acronyms:
BMI - body mass index.

Besides for the individuals with high in�ammation (18 cases), all the NSP* sub-cohorts
include more than 130 people each. The percentages of individuals for each of these sub-cohorts
are reported in Figure 3.13a and b for KORA-FF4 and L4L respectively. The common parameters
are slightly di�erently distributed among the NSP* individuals of the two cohorts. For example,
while in KORA-FF4 the number of males and females are the same, in L4L there is a small
prevalence of males. Moreover, normal weight and preobese and obese individuals are about
50% each in KORA-FF4, while they are only 35% in L4L. A similar comparison is possible for all
other conditions. The distributions (Figure 3.13a, b) and correlations (Tables 3.6 and 3.7) of the
common parameters di�er between the two cohorts highlighting that L4L and KORA-FF4 do
not represent the same population.
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j2 p-values (KORA-FF4) Gender Age BMI
BMI 7.5 · 10−13 2.8 · 10−11
Smoking status 1.8 · 10−10 5.6 · 10−4
Alcohol consumption 2.2 · 10−44
CRP 5.7 · 10−3 9.6 · 10−6 4.9 · 10−16

Table 3.6: KORA-FF4 correlations between common parameters. The j2 derived p-values below 0.01 are
reported for each parameter investigated. The correlations between smoking status and age and between
smoking status and BMI are found only for KORA-FF4 but not for L4L cohort (Table 3.7). Acronyms:
BMI - body mass index; CRP - C-reactive protein.

j2 p-values (L4L) Gender Age
Age 2.1 · 10−9
BMI 5.8 · 10−8 1.8 · 10−4

Table 3.7: L4L correlations between common parameters. The j2 derived p-values below 0.01 are
reported for each parameter investigated. The correlations between age and gender are found only for
L4L but not for KORA-FF4 cohort (Table 3.6). Acronyms: BMI - body mass index.

The binary classi�cation outcomes of the common parameters in KORA-FF4 are very
similar for NSP* compared to the ones found for NSP/NGT cohort (Figure 3.10 and Figure
3.14a, b). It is noticeable that the de�nition of "healthy" does not introduce severe di�erences
in the outcomes of binary classi�cations, most probably because of the strong impact of the
common parameters on the IR �ngerprints discussed in the previous section. The binary
classi�cation of all parameters in the KORA-FF4 cohort returns increasing AUCs for higher
"risk" levels, e.g. for the case cohort 4 compared to the case cohort 1 (Table 3.5). The AUC of
obese individuals is higher than when they are considered together with preobese ones, as in
section 3.2.2. The same is true for in�ammation, for which individuals with medium-to-high
in�ammation were previously classi�ed together, with people with no or low in�ammation.
The binary classi�cation of active smokers results in the same AUC when classi�ed with never
smokers alone or together with ex-smokers as in the previous section. This is because never
and ex-smokers are indistinguishable via FT-IR spectroscopy (AUC = 50%).

The SVM coe�cients found for NSP* individuals of KORA-FF4 and L4L are very similar
(Figure 3.14b and d respectively). In general, the parameters giving higher AUCs have more
features in common between the two cohorts. This highlights the strong stability of the
di�erential �ngerprints of common parameters independently of the nature of the analyzed
cohort, which is not the case for the analysis of diseases (see chapter 4). Despite the high
similarities of the SVM coe�cients, the binary classi�cation e�ciencies are slightly di�erent
for KORA-FF4 and L4L. For example, active smokers are better classi�ed in KORA-FF4 giving
an AUC of 78% against the 60% of L4L. Moreover, the classi�cation e�ciencies of preobese
and older individuals in L4L are higher than in KORA-FF4, going from 65% to 80% for age and
from 66% to 72% for BMI. This could be due to the di�erent chemical composition of the two
bio�uids and would therefore mean that the impact of smoking is stronger in human blood
plasma compared to serum an vice versa for age and BMI.
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Figure 3.14: SVM binary classi�cation of common parameters on the FT-IR spectra of healthy individuals
in KORA-FF4 and L4L. (a) The AUC of the SVM binary classi�cations of NSP* individuals of KORA-
FF4 return comparable results as for the previous de�nition of "healthy" (NSP/NGT, Figure 3.10) with
increasing AUCs for higher risk levels (Table 3.5). (b) The SVM coe�cients of the NSP* individuals
of KORA-FF4 report the most important features in the corresponding binary classi�cation. (c) The
AUC of the NSP* individuals in L4L are slightly di�erent than for KORA-FF4, with active smokers better
classi�ed in KORA-FF4, which would highlight a stronger e�ect on plasma compared to serum, and
preobese and older individuals better classi�ed in L4L. However, age correlate with gender in L4L but not
in KORA-FF4 (Figure 3.13a), which could be the reason for the higher AUC observed in L4L compared
to KORA-FF4. (d) The SVM coe�cients of NSP* individuals of L4L are very comparable with the ones
found for KORA-FF4. The black triangles highlight the features in common between the two cohorts.
Acronyms: SVM - support vector machine; AUC - area under the curve; NSP* - non-symptomatic
individuals; NSP/NGT - cohort of non-symptomatic normal glucose tolerance individuals; BMI - body
mass index; CRP - C-reactive protein.
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In conclusion, the di�erent nature of the two cohorts leads to di�erent mutual correlations
between the common parameters in�uencing their classi�cation e�ciencies. However, most
importantly, their signatures are highly comparable highlighting their robustness in indepen-
dent di�erent cohorts as well as in di�erent bio�uids (human blood plasma and serum). In
the next chapter, it will be shown that this is not true for the �ngerprints of diseases. This
is another evidence of the strong impact of common parameters on the infrared spectra of
human blood serum and plasma and, therefore, of the importance of their characterization
before disease detection.

3.2.4 FRS and FT-IR �ngerprints of common parameters in
KORA-FF4

The FT-IR �ngerprints of the common parameters in the KORA-FF4 cohort analyzed in section
3.2.2 are here compared to the ones found via FRS spectroscopy to validate the potential of this
recently developed technique at its very �rst stages. To this end, since the spectral coverage
of FRS is limited to 1000 - 1500 2<−1, the FT-IR spectra are re-evaluated in the same spectral
range for a proper comparison. The FRS data in the time domain are the EMFs introduced in
section 3.1.2 and the corresponding data in the frequency domain are calculated as "absorption
spectra" after applying the optimal HTPF (0.14 - 7 ?B; Figure 3.15a, b), as described in section
3.1.3.

The FRS data have a strong dependence from the measurement day, compensated in the
preprocessing via interference correction (section 3.1.2; Figure 3.7a, b). The PCA of samples
and QCs together shows no signs of such dependence after applying the optimized preprocess-
ing protocol (Figure 3.7b). However, if only the samples are considered, the dependence on
the measurement day is attenuated but evident. This is because the interference correction
preprocessing is based on the assumption that the refractive indexes of QCs and samples
are the same. This is, of course, not fully true. The slightly di�erent chemical compositions
between samples and QCs, and even between samples, lead to di�erent optical properties.
For this reason, such correction cannot completely remove the day-to-day dependence, still
visible in the FRS data both in the time domain and in the frequency domain. In particular,
the day-to-day dependence a�ects PC1 in the frequency domain and PC2 in the time domain
(Figure 3.15a, b), which is evident from the signature at 350 5 B in LV2 (Figure 3.15e). Only one
PC shows a dependence from the measurement day, highlighting that this e�ect is reduced by
the optimal preprocessing. However, removing the a�ected PC returns lower AUCs for the
binary classi�cations of both diseases and common parameters (data not shown). The removal
of one of the �rst principal components is indeed not recommended as, besides unwanted
sources of noise, they encode most of the valuable biological information. Aware of the need for
improvements on the experimental side, this dataset still provides an important �rst validation
of the potential of FRS �ngerprinting.

The PCA of FT-IR with reduced spectral coverage and of FRS in both domains show that
the �rst 5 PCs explain 90-95% of the total variance (Figure 3.15c), with PC1 addressing about
50% for both techniques in the frequency domain and about 45% for EMFs in the time domain.
The cumulative explained variance is comparable between the two techniques. The loading
vectors of FT-IR and FRS in the frequency domain are rather di�erent, but most of the major
features (in absolute value) are present in both approaches (Figure 3.15d).
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Figure 3.15: PCA analysis of the FT-IR reduced spectra and FRS data of healthy individuals in KORA-FF4.
(a) The PC1/PC2 plots for samples measured via FRS in the frequency and (b) in the time domain (colored
by day) show that the day-to-day dependence is not completely removed and a�ects PC1 and PC2 in
the two cases respectively. (c) The cumulative explained variance of the �rst �ve PCs for the FT-IR
reduced spectra is comparable with the one of the FRS data in the frequency and time domain. (d) The
corresponding LVs of FT-IR reduced spectra and the FRS data in the frequency domain have similar
shapes. (e) The LVs of FRS in the time domain show that the interference pattern around 350 5 B , which
causes the day-to-day dependence, a�ects only LV2 after applying the optimized preprocessing protocol.
Acronyms: PCA - principal component analysis; FRS - �eld-resolves spectroscopy; PC - principal
component; LV - loading vector.

The unsupervised analysis of FT-IR full-spectra has shown the role of lipids and proteins on
the between-person spectral variability (section 3.2.2). A similar analysis with reduced spectral
coverage provides a better understanding of the role of carbohydrates and protein glycosylation.
The elbow method and the silhouette scores de�ne the optimal number of clusters as two
(Figure 3.16a-c) and identify the best-performing unsupervised method (Figure 3.16d-f). As in
full-spectra, FT-IR returns similar silhouette scores for K-means and GMM (covariance type
full), the last giving the highest silhouette score also for FRS (with spherical covariance in the
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time domain). The clusters identi�ed in the PC1/PC2 plots cannot be visually compared (Figure
3.16g-i). The individuals in the two clusters are completely di�erent in the three cases because
the day-to-day dependence in�uence the clustering of FRS data, especially in the frequency
domain (red circle in Figure 3.15a and Figure 3.16h refer to the same datapoints; note: PC2 is
inverted in the two �gures).

Figure 3.16: Unsupervised clustering analysis of the FT-IR reduced spectra and FRS data of healthy
individuals in KORA-FF4. (a) The elbow method shows the WCSS against the number of clusters for
FT-IR in the reduced spectral coverage (1000 - 1500 2<−1), (b) FRS in the frequency domain and (c) FRS
in the time domain showing that two is the optimal number of clusters. (d) The silhouette scores are
reported for the unsupervised algorithms applied on the PCs explaining 99% of the total variability
calculated for the NSP/NGT cohort for FT-IR with reduced spectral coverage (1000 - 1500 2<−1), (e) FRS
in the frequency domain and (f) FRS in the time domain. The graph shows that K-means and GMM
have the best performances for FT-IR, while GMM1 and GMM2 have the best performance for the FRS
data in the frequency and time domain respectively. (g) The PC1/PC2 plot colored according to the
clusters identi�ed via the respective best performing algorithm (panels (a)-(c)) for FT-IR in the reduced
spectral coverage, (h) FRS in the frequency domain and (f) FRS in the time domain. The clusters identify
completely di�erent datapoints in the three cases. In particular, the clusters found for the FRS data are
strongly a�ected by the day-to-day dependence in both the time and frequency domain as it shows the
comparison with Figure 3.15a (the red circle highlights the same datapoints in the two �gures; PC2 is
inverted). Acronyms: FRS - �eld-resolved spectroscopy; WCSS - within-cluster sum of squares; PC -
principal component; NSP/NGT - cohort of non-symptomatic normal glucose tolerance individuals; AC -
Agglomerative clustering (1 - a�nity = ’euclidean’, linkage = ’ward’; 2 - a�nity = ’cosine’, linkage =
’average’); KM - K-means; GMM - Gaussian Mixture Model (1 - covariance type = ’full’; 2 - covariance
type = ’spherical’).
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The distributions of the common parameters in the two clusters found for FT-IR truncated
spectra highlight that there is a small unbalance in the distribution of males and females
between the two clusters and that most of the people with high in�ammation are in cluster 1
(Figure 3.17a). The average CRP concentration in cluster 1 is 2 ± 3<6/!, reaching up to 25
<6/!, while average and maximum CRP concentrations are smaller in cluster 2, respectively 1
± 1<6/! and 8<6/!. In this spectral region, the main signatures come from carbohydrates
and protein glycosylation; the source of the between-person variability of these biomolecules
is a�ected by a di�erent set of common parameters compared to the ones observed in full-
spectrum, in particular by gender and in�ammation (section 3.2.2). These outcomes agree with
the correlations observed in the analysis of full-spectra between gender with PC3 and, together
with in�ammation, with PC4 and PC5 (Figure 3.12c). Indeed, the LV3, 4 and 5 found for FT-IR
in full-spectra are equivalent to the �rst three LVs found for the reduced spectra (Figure 3.17b).

Figure 3.17: PCA analysis of the FT-IR full and reduced spectra of healthy individuals in KORA-FF4. (a)
The PC1/PC2 plot of NSP/NGT individuals colored by speci�c sub-cohorts highlights the importance of
gender and in�ammation in the clustering if the spectral region is reduced to 1000 - 1500 2<−1 (Figure
3.16g). (b) The �rst three LVs for FT-IR with reduced spectral coverage are comparable with the LV3, 4
and 5 in full-spectra. This explains why gender and in�ammation, which are shown to correlate with
PC3, PC4 and PC5 in full-spectra (Figure 3.12c), are the most relevant parameters in the clustering of
the FT-IR reduced spectra. Acronyms: PCA - principal component analysis; PC - principal component;
NSP/NGT - cohort of non-symptomatic normal glucose tolerance individuals; LV - loading vector.
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Cluster Males Females Low CRP con-
centration

High CRP con-
centration

1 43.8% 56.9% 49.7% 85.0%
2 56.2% 43.5% 50.3% 15.0%

Table 3.8: GMM clusters found for the FT-IR reduced spectra of healthy individuals in KORA-FF4. The
distributions of the common parameters that correlate with PC3, PC4 and PC5 in FT-IR full-spectra
are the only unbalanced ones between the two clusters. In particular, there is a small unbalance in the
percentage of all males and all females between the two clusters. The individuals with low in�ammation
are equally distributed between the two clusters, while most of the people with high in�ammation are
in cluster 1 (Figure 3.17a). Acronyms: GMM - Gaussian Mixture Model; PC - principal component; CRP -
C-reactive protein.

The SVM binary classi�cations of common factors return similar AUCs with both techniques
(Figure 3.18a). The classi�cation of both active smokers and medium-to-high in�ammation
levels are based on a few cases (85 and 55 individuals respectively) leading to noisy SVM
coe�cients. In general, the SVM coe�cients of FRS in the frequency domain are noisier than
the ones found via FT-IR and the comparison is not straightforward (Figure 3.18c).

The SVM classi�cation of EMFs in the time domain is performed by sliding di�erent temporal
windows along the whole time trace and evaluating the AUC for each of them to identify the
temporal range delivering the highest e�ciency (see section 2.3.2). Figure 3.18b shows the AUC
along with the whole time window for the binary classi�cation of in�ammation. The yellow
area identi�es the temporal window delivering the highest AUC, also depicted in Figure 3.18d
which shows the SVM coe�cients of each parameter plotted in the corresponding time window
delivering the highest classi�cation e�ciency. As it can be seen from panel b, the optimal
time window is only the one around the maximum AUC, but the classi�cation e�ciencies
might be high also for larger windows and at di�erent times. Therefore, the SVM coe�cients
reported in panel d shows only the most important features in the binary classi�cation, despite
those are not the only one contributing. Di�erent temporal windows carry the information
relevant to each parameter. In other words, each parameter is associated with a unique temporal
�ngerprint. At longer times the signal gets smaller, the AUCs tend to drop and the over�tting
rates rise (Figure 3.18b). The optimal preprocessing described in section 3.1.2 is the only one
able to consistently reduce over�tting in SVM binary classi�cations of EMFs, thus making
the information in the whole time window accessible. However, if standard scaling is applied
before PCA, over�tting extensively a�ects the classi�cations in the whole time window.
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Figure 3.18: SVM binary classi�cation of common parameters on the FT-IR reduced spectra and the FRS
data of healthy individuals in KORA-FF4. (a) The AUCs are similar for the two techniques in both the
time and frequency domain. (b) The AUC derived for the EMFs along with the whole time window for
the binary classi�cation of CRP highlights that despite the optimal time window (yellow area) identi�es
the best time window, the AUC can be higher than 50% also at other times. (c) The SVM coe�cients
corresponding to panel (a) for FT-IR reduced spectra and FRS in the frequency domain are not easily
comparable because the FRS data return noisy coe�cients. (d) The SVM coe�cients derived from the
EMFs data are shown in the optimal time windows and highlight the features contributing the most to
the corresponding binary classi�cation. The SVM coe�cients are very di�erent for each parameter and
show that FRS provides more parameter-speci�c signatures than for FT-IR for which all the features
overlap. Acronyms: SVM - support vector machine; FRS - �eld-resolved spectroscopy; AUC - area under
the curve; EMF - electric-�eld-resolved molecular �ngerprint; CRP - C-reactive protein; BMI - body
mass index; FRS(f) - FRS signal in the frequency domain; FRS(t) - FRS signal in the time domain.

Overall, considering the day-to-day dependence a�ecting the FRS data, reaching comparable
classi�cation e�ciencies as a state-of-the-art FT-IR spectrometry is a promising starting point.
The signatures of the common parameters in the EMFs are highly distinguishable highlighting
how FRS has the potential to deliver highly parameter-speci�c signatures compared to FT-IR
spectroscopy, or in the frequency domain in general, for which the features of other correlated
factors might overlap. However, further developments on the technical and analytical sides are
still needed and are currently being implemented.
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3.3 Concluding remarks

In this chapter, principal component analysis (PCA), supervised and unsupervised machine
learning algorithms are used to address the impact of the common parameters on the FT-IR and
FRS data of the healthiest individuals of KORA-FF4 and L4L cohorts, with a particular interest
in their e�ect on the between-person spectral variability.

As a �rst step, the technical noise a�ecting the measurements of biological samples is
investigated using hundreds of replica of the same human serum sample measured together
with the KORA-FF4 samples. An optimized preprocessing protocol has been identi�ed for both
FT-IR and FRS. The measurement campaign of KORA-FF4 is indeed among the largest published
studies based on FT-IR and the �rst large sample set measured via FRS spectroscopy. The
characterization of the technical noise highlights that FRS data are a�ected by a strong day-to-
day dependence due to the variable ambient pressure acting on the top of the measurement cell
(cuvette) in�uencing its thickness. This e�ect is reduced with the optimized preprocessing, but
the dependence on the measurement day still a�ects the �rst principal components of the FRS
data both in the time and frequency domain introducing an important bias in the unsupervised
clustering analysis.

Despite the residual day-to-day dependence, FRS spectroscopy returns comparable classi-
�cation e�ciencies as a state-of-the-art FT-IR spectrometer. FRS has been already shown to
reach lower LOD compared to FT-IR and to be suited for measuring optically thick samples
for which FT-IR is cannot be applied [52]. Moreover, compared to any technique based on
the frequency domain, the resolution in time allows disentangling contributions that would
overlap in the absorption spectra, which gives FRS the important advantage of identifying very
di�erent signatures for the common parameters investigated (Figure 3.18d). Further technical
developments are currently being implemented in the FRS system to make it more robust to the
daily changes as well as to boost its classi�cation e�ciency by expanding the spectral coverage
and lowering the LOD.

The analysis of FT-IR spectra addresses the origin of the known between-person spectral
variability in a large cross-sectional population-based cohort for the �rst time to the best
of our knowledge. In FT-IR full-spectra, age and in�ammation are the main sources of the
between-person spectral variability. In particular, age in�uences the signature of lipids (1750 -
3000 2<−1, the highest source of variability), in agreement with what reported in the literature
[93, 94, 99, 100], and proteins (1250 - 1750 2<−1, the second-highest source of variability), while
in�ammation a�ects only the second. Aging is connected with in�ammation [97], which is
why most of the age-related diseases share an in�ammatory pathogenesis [98]. The connection
between age and in�ammation might explain the impact of age also on the AGR signature
typically attributed to in�ammation [61, 92]. Using unsupervised clustering to de�ne age
and CRP concentration thresholds does not provide the same clusters as the ones identi�ed
via unsupervised methods. This could be due to the in�uence of other unknown parameters
on the IR �ngerprints of healthy individuals or to the fact that di�erent people go through
aging at di�erent rates and, potentially, via di�erent mechanisms [97]. Therefore, identifying
individuals with similar blood composition based on their age might be ine�cient and a more
proper way could be based on clustering them according to their “e�ective age” [97]. To address
this issue, it is important to further analyze the clusters of FT-IR �ngerprints and look for
connections between these clusters and the “ageotypes” de�ned from other studies [97] as
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well as to investigate the IR �ngerprint of other parameters not considered in this analysis
(e.g. hormonal status, diet, medications, cholesterol levels, . . . ). The importance of identifying
clusters of individuals with similar biological characteristics, and therefore with similar spectra,
is due to the potential advantage in grouping cases and controls accordingly to reduce the
between-person variability of both cohorts boosting the e�ciency of IR �ngerprinting in the
detection of diseases.

The unsupervised clustering of the same FT-IR spectra in the spectral coverage of FRS (1000
- 1500 2<−1) shows that the main parameters connected with the variability in this spectral
region are in�ammation and gender. In particular, the main signatures at these frequencies
come from carbohydrates and protein glycosylations, showing how gender and in�ammation
in�uence the variability of these biomolecules. The connection between CRP and protein
glycosylation can have multiple origins. In�ammation and protein glycosylation are indeed
reported to in�uence each other: in�ammation a�ects the glycosylation and, therefore, the
functional capacity of antibodies [101], while changes in protein glycosylation can modulate
the in�ammatory responses of the body [102]. Gender, age, BMI and smoking status have
been shown to a�ect protein glycosylation too [103–105]. Males and females have been shown
to have di�erent glucose tolerance, probably due to the sexual dimorphism in the hepatic
insulin action [106], which could explain the association of gender with the spectral signature
of carbohydrates. However, it is important to stress that this part of the spectra accounts
for only about 2% of the total variability in full-spectra. This is in agreement with what was
reported in the literature, according to which age-associated changes in the human blood
plasma composition are more pronounced than the ones related to gender and other factors, in
particular for what regards changes in protein, lipid metabolism and oxidative stress [107].

The comparison of the binary classi�cation of common parameters in KORA-FF4 and an
independent cohort highlights that the di�erent correlations between the common parameters
lead to di�erent classi�cation e�ciencies. Chapter 4 will address the importance of matching
case and control cohorts to reduce disease-unspeci�c contributions due to correlations of the
disease under investigation with common parameters or other medical conditions.

Despite the di�erent AUCs, the signatures of each of the common parameters analyzed
are highly comparable in the two cohorts, which does not hold for the signatures of medical
conditions (see chapter 4). This proves that the in�uence of common parameters on the IR
�ngerprints of human blood plasma is even stronger than the spectral signature of diseases.
Moreover, both the cumulative explained variance and loading vectors are almost identical
for healthy individuals and the whole population in KORA-FF4 (Figure 3.9a-b), showing that
the molecular origin of the between-person spectral variability is the same in the two cases.
The higher between-person spectral variability found for endpoint and intermediate medical
conditions (Figure 3.9b) can be explained as the simple consequence of the higher average age
and in�ammatory levels of symptomatic individuals (Table 3.1). These observations stress the
importance of providing a consistent characterization of the infrared spectral signatures of
common parameters in a large cross-sectional population-based cohort before applying any IR
spectroscopy for the detection of medical conditions.



Chapter4
FT-IR and FRS fingerprinting for disease

diagnosis

Human blood serum and plasma provide real-time information on the human phenotypes
and health status in a minimally invasive fashion [108]. Vibrational spectroscopy records a
snapshot of all molecular constituents simultaneously providing IR �ngerprints that correlate
with any change induced by phenotypes or medical conditions on both concentration and
structure of di�erent biomolecules [14, 15, 70, 71, 109]. Recent examples of diagnosis via Raman
and FT-IR spectroscopy on human blood bio�uids have been reported for several diseases
[110–120]. However, these analyses are usually performed on clinic-based case-control cohorts.
In this chapter, FT-IR and FRS spectroscopy are applied on the 2500 individuals of the cross-
sectional population-based KORA-FF4 for the spectral detection of common medical conditions.
In particular, the focus is on the following medical endpoints: diabetes, hypertension, heart
attack, asthma, high blood lipids, chronic obstructive pulmonary disease (COPD), as well as on
individuals who had cancer or experienced episodes of stroke and on the intermediate condition
of prediabetes. The cross-sectional population-based KORA-FF4 cohort provides the unique
advantage to allow identifying the �ngerprints of each condition in the general population,
with the in�uence of all naturally correlated common parameters and comorbidities. The
importance of matching cases and controls for common parameters and comorbidities to assess
the robustness of the approach and to isolate the disease-speci�c features are additionally
evaluated for the FT-IR �ngerprints of diabetes, hypertension, heart disease and asthma via the
independent cohort L4L. Moreover, a comparison of the diagnostic power of IR �ngerprinting
of each condition is addressed considering the in�uence of the statistical power, namely of
the number of cases, of each classi�cation. Before going into disease diagnosis, unsupervised
clustering methods are applied on the whole KORA-FF4 population as performed in chapter
3 for the healthy (NSP/NGT) individuals to asses the impact of common parameters on the
IR �ngerprints of symptomatic individuals and identify the e�ect of each medical condition
in the clustering. In section 3.2.4 it has been shown how the FRS data are in�uenced by the
measurement day too strongly to obtain reliable results with unsupervised clustering (section
3.2.4). Therefore, this analysis is performed only on FT-IR in full-spectra.



64 4 FT-IR and FRS �ngerprinting for disease diagnosis

4.1 Clustering of KORA-FF4 FT-IR �ngerprints
Unsupervised clustering algorithms are used to identify groups of individuals with similar FT-IR
spectra and, therefore, similar blood plasma biochemical composition. These methods allow
addressing what are the most relevant common parameters and medical conditions a�ecting
the between-person spectral variability. Applied to the healthiest sub-cohort of the population,
unsupervised clustering has allowed identifying age and in�ammation as the main factors
a�ecting the between-person spectral variability in the full-spectral coverage (3.2.2). The same
analysis is here applied to the whole population to address the e�ect of these parameters
in the general population, including individuals symptomatic for the known endpoint and
intermediate medical conditions.

As in section 3.2.2, the elbow method address three as the optimal number of clusters (Figure
4.1a). Silhouette scores are used to identify the best performing algorithm. While K-means
and GMM had comparable performances for the healthy individuals, on the whole population
K-means returns a higher silhouette score and is therefore selected as the optimal clustering
method (Figure 4.1b).

Figure 4.1: Unsupervised clustering analysis of the FT-IR spectra of the whole KORA-FF4 cohort. (a) The
elbow method plots the WCSS against the number of clusters showing that three is the optimal number
of clusters for this cohort. (b) The silhouette scores are calculated for the unsupervised algorithms
applied and show that K-means is the optimal algorithm for this cohort. (c) The PC1/PC2 plot (colored
according to the clusters found via K-means) shows that the three clusters separate along PC1 and PC2
which, therefore, address the main between-person spectral variability. (d) The j2 derived p-values
show the correlations of common parameters and medical conditions with the �rst two PCs. Age
and in�ammation have a strong impact on PC1 and PC2 also for the whole population. High blood
lipids ad hypertension have a strong correlation with PC1 and PC2 respectively. Acronyms: WCSS -
within-cluster sum of squares; PC - principal component; CRP - C-reacve protein; BMI - body mass
index; COPD - chronic obstructive pulmonary disease; AC - Agglomerative clustering (1 - a�nity =
’euclidean’, linkage = ’ward’; 2 - a�nity = ’cosine’, linkage = ’average’); KM - K-means; GMM - Gaussian
Mixture Model (1 - covariance type = ’full’; 2 - covariance type = ’spherical’).
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The three clusters identi�ed via K-means separate along PC1 and PC2 (Figure 4.1c), similarly
as for the healthy individuals (Figure 3.11). It is important to remember that the LVs are identical
for the healthy as well as for the whole cohort (Figure 3.12b), therefore the analysis brings
to similar conclusions as in section 3.2.2. In particular, the distributions of the common
parameters and medical conditions in the three clusters identi�ed on the whole cohort are
reported in Table 4.1. About 64% of the NSP/NGT individuals end up in cluster 2 which counts
the youngest individuals and the ones with the lowest in�ammation levels. The impact of age
and in�ammation on PC1 and PC2 are very strong also on the whole population (Figure 4.2c).
Individuals with COPD as well as the ones who had an episode of heart attack or stroke and
former cancer patients end up in cluster 1. Most of the people with high blood lipids are in
cluster 3, while individuals a�ected by diabetes or prediabetes are almost equally distributed
between clusters 1 and 3 (Table 4.1).

Parameter Cluster 1 Cluster 2 Cluster 3
NSP/NGT 25% 64% 11%
M/F 1.1% 1.0% 0.8%
Age 63.9 ± 12.9 56.0 ± 11.7 61.9 ± 10.7
CRP (<6/!) 3.8 ± 6.3 1.3 ± 2.9 2.5 ± 3.2
Smokers 30% 40% 30%
Alcohol consumption
(6/30~)

14.1 ± 20.5 13.8 ± 17.5 16.9 ± 22.8

BMI (:6/<2) 28.9 ± 5.4 26.3 ± 4.0 28.7 ± 5.0
Prediabetes 40% 22% 38%
Diabetes 37% 24% 39%
Hypertension 38% 32% 32%
High lipids 36% 39% 43%
COPD 39% 26% 35%
Asthma 34% 33% 34%
Heart disease 54% 33% 13%
Stroke 65% 15% 20%
Ex-cancer 44% 31% 24%
n. comorbidities 1.8 ± 1.4 1.2 ± 1.2 1.8 ± 1.2

Table 4.1: K-means clusters found for the FT-IR �ngerprints of the whole KORA-FF4 cohort. The
average values of common parameter as well as the ratio between the number of male and female
individuals are reported for each cluster. Age and in�ammation are the most unequally distributed
parameters among the three cluster. In particular, the individuals in cluster 2 have the lowest average
age and CRP concentration compared to the individual of the other clusters. The percentage of the
individuals symptomatic to each known medical condition are reported for each cluster. In particular,
the cases positive to the conditions correlating with age mostly end up in cluster 1, while most of the
individuals with high blood lipids are in cluster 3. In general, the distributions follow the correlation
with the �rst two PC2 (Figure 4.1d). Acronyms: NSP/NGT - cohort of non-symptomatic normal glucose
tolerance individuals; M/F - males-to-females ratio; CRP - C-reactive protein; BMI - body mass index;
COPD - chronic obstructive pulmonary disease.
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In summary, if cluster 2 is taken as a reference, the individuals in clusters 1 and 3 di�er
because of the higher average age and in�ammation levels, which is expected because of
the high similarity between the LVs of healthy individuals and the whole population (Figure
3.12b). In general, the conclusions derived from unsupervised clustering are the same that
can be derived from PCA analysis: the �rst PCs address the main sources of variability, in
particular, due to the spectral signatures of lipids and proteins which are a�ected by the
common parameters and the medical conditions that correlate with these components (Figure
4.1d). For example, the higher percentages of individuals a�ected by hypertension in cluster 1
and of the ones with high blood lipids in cluster 2 are due to the correlations of these conditions
with PC2 and PC1 respectively, which in other words means that they impact the features of
the corresponding LVs.

The unsupervised clustering analysis reported addresses speci�cally the features and the
e�ect of each common parameter connected with the between-person spectral variability, but
it does not show how strongly each factor a�ects the IR �ngerprints in general. To this end,
SVM binary classi�cations are performed in the next section.

4.2 IR spectral detection of clinical endpoints

4.2.1 FT-IR�ngerprints ofmedical conditions in independent cohorts

An increasing amount of research emphasizes the importance of matching cases and controls
to remove potential bias from non-target covariates and to increase the speci�city of the
analysis [15, 82, 121–124]. The present study con�rms the importance of matching case and
control cohorts via analyzing the same medical conditions in two large independent cohorts. In
particular, the FT-IR �ngerprints of individuals a�ected by type II diabetes, hypertension, heart
disease and asthma are compared for KORA-FF4 and L4L cohorts via SVM binary classi�cations
with and without matching cases and controls for the common parameters and comorbidities
correlated with each medical condition.

As introduced in section 3.2.3, the information and nature of the medical conditions com-
pared in the two cohorts are slightly di�erent. In particular, all parameters are self-reported
from the participant to each study, except for type II diabetes for the KORA-FF4 cohort which
has been addressed via OGTT. Moreover, the cohorts of individuals labeled as "heart disease"
refer to people who had an episode of a heart attack in the KORA-FF4 cohort, while it is self-
reported and generic for the L4L cohort. The number of cases symptomatic to each condition
is also very di�erent in the two cohorts (Figure 4.2a, b). In general, L4L is a smaller study
compared to KORA-FF4 and the number of symptomatic individuals is less than 150. Moreover,
KORA-FF4 is a cross-sectional population-based cohort and represents a very di�erent part
of the population compared to the case-control clinic-based L4L study. As a consequence,
the correlation coe�cients between common parameters and medical conditions for the two
cohorts are di�erent and only a few of the correlations are found in both cohorts (Tables 4.2
and 4.3). For example, hypertension correlates with gender and heart disease correlates with
BMI only for the L4L cohort but not for the KORA-FF4 cohort. Since the two populations are
completely independent and have a di�erent nature, any signature found for the same medical
condition in both studies is expected to be speci�c to that condition.
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Figure 4.2: Medical conditions in the KORA-FF4 and L4L cohorts. (a) The number of individuals is
reported for each medical condition in KORA-FF4 (Table 3.1) and (b) L4L cohorts (Table 3.4). Acronyms:
NSP* - non-symptomatic (for diabetes, hypertension, heart disease and asthma).

KORA-FF4 cohort
p-
values

Predia-
betes

Dia-
betes

Hyper-
tension

High
blood
lipids

Heart
at-
tack

Stroke Former
cancer

COPD Asthma

Gender 3.9 ·
10−4

3.2 ·
10−5

1.2 ·
10−5

Age 1.1 ·
10−15

8.2 ·
10−28

1.3 ·
10−49

1.4 ·
10−15

9.9 ·
10−7

4.3 ·
10−7

4.3 ·
10−7

6.8 ·
10−6

BMI 1.7 ·
10−13

1.1 ·
10−15

1.0 ·
10−25

3.5 ·
10−7

8.9 ·
10−3

CRP 6.3 ·
10−6

4.6 ·
10−6

4.3 ·
10−7

6.0 ·
10−3

9.3 ·
10−4

Diabetes 8.2 ·
10−17

Hyperten. 3.1 ·
10−7

7.1 ·
10−25

High
blood
lipids

2.3 ·
10−8

2.6 ·
10−12

Heart at-
tack

2.3 ·
10−11

9.1 ·
10−7

2.1 ·
10−7

Stroke 3.5 ·
10−3

2.9 ·
10−4

3.9 ·
10−6

3.3 ·
10−4

4.6 ·
10−3

Former
cancer

1.5 ·
10−4

9.2 ·
10−4

COPD 1.1 ·
10−4

2.4 ·
10−3

1.8 ·
10−3

2.7 ·
10−47

Table 4.2: KORA-FF4 correlations between common parameters and medical conditions. The j2 derived
p-values below 0.01 are reported for each parameter investigated. Acronyms: BMI - body mass index;
CRP - C-reactive protein; COPD - chronic obstructive pulmonary disease.
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L4L cohort
p-values Diabetes Hypertension Heart disease
Gender 2.6 · 10−3 2.7 · 10−5 3.4 · 10−5
Age 3.4 · 10−4 1.7 · 10−16 3.6 · 10−10
BMI 1.5 · 10−3 6.6 · 10−10 5.6 · 10−3
Hypertension 3.1 · 10−6
Heart disease 2.2 · 10−3 2.8 · 10−10

Table 4.3: L4L correlations between common parameters and medical conditions. The j2 derived
p-values below 0.01 are reported for each parameter investigated. The correlations are slightly di�erent
to what observed for KORA-FF4. For example, hypertension correlates with gender and heart disease
correlates with BMI only for the L4L cohort but not for the KORA-FF4 cohort. Asthma and smoking
status do not signi�cantly correlate with any other parameters or diseases. Acronyms: BMI - body mass
index.

In a �rst analysis, the individuals non-symptomatic to the four medical conditions (NSP*,
analyzed in section 3.2.3) are selected as controls for the SVM binary classi�cation of each
disease and cases and controls are not matched. The distribution of the common parameters for
the individuals symptomatic to the four medical conditions in the KORA-FF4 and L4L cohorts
can be found in Table 3.1 and 3.4 respectively. The classi�cation e�ciencies are similar for the
same medical conditions in both cohorts and are above 50%. The highest AUC is found for
diabetes, followed by heart disease, hypertension and asthma (Figure 4.3a, b). The AUCs found
in the L4L cohort have smaller mean values and higher standard deviations as compared to the
ones found for the KORA-FF4 cohort because of the smaller number of cases in the L4L study
(see section 4.2.3). The SVM coe�cients found for each medical condition are similar in the
same cohort. For example, the coe�cients found for diabetes, hypertension and heart disease
classes of the KORA-FF4 cohort have a similar signature at low frequency (1000 - 1250 2<−1,
Figure 4.3c). Similarly, the coe�cients found for the L4L cohort are highly comparable for
hypertension and heart disease in the whole spectral range (Figure 4.3d). The similarities found
between the SVM coe�cients are due to the correlations between the four medical conditions.
However, as seen before, di�erent cohorts have di�erent correlations because they do not
represent the same part of the population (Tables 4.2 and 4.3). If the case and control cohorts
are not matched, non-target medical conditions and common parameters correlating with the
target disease are more numerous among the cases compared to the controls, thus in�uencing
the binary classi�cation outcomes. As a result, correlating medical conditions share common
features in the SVM coe�cients obtained via binary classi�cations with unmatched controls
(Figure 4.3c, d).
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Figure 4.3: SVM binary classi�cation of four common medical conditions with NSP* unmatched
individuals on the FT-IR spectra of KORA-FF4 and L4L cohorts. (a) The AUC scores found for KORA-FF4
and (b) L4L cohorts have the same trend for the four medical conditions and are always above 50%. The
number of cases is smaller for all conditions in the L4L cohort for which the AUCs have higher standard
deviations compared to the KORA-FF4 cohort. (c) The respective SVM coe�cients found for KORA-FF4
and (d) L4L cohorts are similar for correlating medical conditions, such as diabetes and hypertension in
the KORA-FF4 cohort and hypertension and heart disease in the L4L cohort (Figure 4.2c, d). Acronyms:
SVM - support vector machine; NSP* - non-symptomatic individuals; AUC - area under the curve.

To achieve disease-speci�c classi�cation outcomes it is, therefore, necessary to reduce
the e�ect of correlating medical conditions and common parameters via matching cases and
controls for them. In this study, cases and controls are matched for age, gender, BMI, smoking
status and, if known, CRP concentrations as well as for comorbidities considering only the
four medical conditions of interest in this section (see section 2.3.3 for more details about
how matching is performed). The CRP values are mostly unknown for diabetes and asthma in
the L4L cohort (Figure 3.13c), for which they are not matched. However, their characteristic
signature is easy to address (section 3.2.2 and 3.2.3). Alcohol consumption is excluded from
matching because partially unknown in the L4L study and because it might introduce unwanted
biases being a self-reported qualitative factor [90, 91, 125, 126]. Tables 4.4 and 4.5 show the
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distributions of common parameters for the cases of the four common conditions for KORA-FF4
and L4L cohorts after matching them to the respective controls. Similar values are found for
the controls because of the matching. Since the matching algorithm tries to retain all cases, the
distributions are similar to the ones reported in the previous chapter without matching (see
Table 3.1 and 3.4). However, for heart disease and hypertension classes in the L4L cohort, the
individuals with unknown CRP concentrations have been excluded from the analysis leading
to slightly di�erent distributions than in the classi�cation with unmatched NSP* controls.

KORA-FF4 matched cohorts
Cohort n. cases M/F Age BMI (:6/<2)
Diabetes 288 1.5 69.4 ± 10.1 31.1 ± 5.4
Heart attack 69 3 71.1 ± 9.4 30.3 ± 5.5
Hypertension 1032 1 64.6 ± 11.3 29.3 ± 5.2
Asthma 181 0.6 60.1 ± 12 28.2 ± 5.6

Table 4.4: Distribution of common parameters among the cases of diabetes, heart attack, hypertension
and asthma classes of KORA-FF4 cohort for the classi�cation with matched controls. Acronyms: M/F -
males-to-females ratio; BMI - body mass index.

L4L matched cohorts
Cohort n. cases M/F Age BMI (:6/<2)
Diabetes 30 1.7 67 ± 13.7 28.8 ± 5
Heart disease 27 2.9 72.3 ± 11.1 27.9 ± 6.1
Hypertension 48 3 69 ± 11.2 28.3 ± 5.8
Asthma 28 1.1 53.6 ± 13.5 27.5 ± 6.9

Table 4.5: Distribution of common parameters among the cases of diabetes, heart disease, hypertension
and asthma classes of L4L cohort for the classi�cation with matched controls. The values found for
the common parameters are comparable with the ones observed for the KORA-FF4 cohort, with the
exception of the M/F ratio for hypertension and asthma and of the average age for asthma. Acronyms:
M/F - males-to-females ratio; BMI - body mass index.

Figure 4.4e and f show the SVM coe�cients obtained for KORA-FF4 and L4L for the four
medical conditions classi�ed with unmatched NSP* controls (grey lines) and with matched
controls (colored lines). The SVM coe�cients obtained with the two analyses are very di�erent,
except for hypertension in the KORA-FF4 cohort for which the number of cases and controls
are about 50% of the population and are almost the same after matching. The signatures of
diabetes are also comparable in the two analysis despite the huge reduction in the number
of controls in the classi�cation with unmatched NSP* individuals to the one with matched
controls (from 900 to about 300 individuals in the KORA-FF4 cohort and from 440 to about 25
in the L4L cohort.).
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Figure 4.4: SVM binary classi�cation of four common medical conditions with matched controls on
the FT-IR spectra of KORA-FF4 and L4L cohorts. (a) The number of cases (colored) and controls (black)
in KORA-FF4 and (b) L4L cohorts show that there are fewer cases for the same medical conditions in
the L4L cohort. Because of the way matching is performed, the number of cases is the same as the
number of controls. (c) The AUC scores for the four medical conditions are reported for KORA-FF4 and
(d) L4L cohorts and have the same trend for both studies. The AUCs found from the classi�cations with
matched controls (colored) are smaller and have higher standard deviations than the AUCs obtained in
the classi�cations with NSP* unmatched individuals (grey) because matching cases and controls reduces
the number of controls and, more importantly, reduces the contributions unspeci�c to the target medical
condition due to parameters and comorbidities correlating with it. (e) The corresponding SVM coe�cients
normalized to their maximum are shown for KORA-FF4 and (f) L4L cohorts for the classi�cations with
matched controls (colored lines) and with NSP* unmatched individuals (grey lines). The coe�cients
obtained for each medical condition with the two analysis are di�erent and the contributions due
to correlating comorbidities are reduced (Figure 4.5b) leading to disease-speci�c signatures, highly
comparable for each medical condition between the two cohorts (Figure 4.5a). Acronyms: SVM - support
vector machine; AUC - area under the curve; NSP* - non-symptomatic individuals.
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In the classi�cation with unmatched NSP* individuals, diabetes, hypertension and heart
disease have a similar signature at low frequency (Figure 4.3c). However, the SVM coe�cients
obtained from the classi�cations with matched controls show that this signature is ampli�ed
for diabetes and reduced for heart disease and hypertension (Figure 4.4e), highlighting how
it originated in the last two conditions from their correlation with diabetes (Figure 4.2c).
This is shown in more detail for diabetes and hypertension in Figure 4.5b: these medical
conditions in�uence each others´ SVM coe�cient because of their correlation (p-value of
7.1 · 10−25, Table 3.6). Similarly, the SVM coe�cients found for diabetes, hypertension and
heart disease have very comparable signatures if classi�ed with unmatched NSP* controls
because of their mutual correlation (Tables 3.6 and 4.3), while they return di�erent coe�cients
if classi�ed with matched controls. These observations prove that each parameter that a�ects
the FT-IR �ngerprints and correlates to any extend with the target phenotype a�ects its binary
classi�cation outcomes and it highlights that matching reduces the unwanted not-targeted
contributions. Even more important is that the SVM coe�cients found for the same medical
condition are highly comparable between the KORA-FF4 and L4L independent cohorts (Figure
4.5a), thus unveiling that matching allows the identi�cation of disease-speci�c signatures. The
SVM coe�cients found from the binary classi�cation with matched controls for diabetes and
asthma have a higher protein signature for the L4L cohort compared to the KORA-FF4 cohort
which resembles the signature of in�ammation (Figure 3.10b). The CRP concentration is, as
explained above, not matched in the L4L cohort for these two medical conditions because it is
unknown for most of the cases.

Figure 4.5: Disease-speci�c SVM coe�cients of four medical conditions classi�ed with matched controls
for the FT-IR spectra of KORA-FF4 and L4L cohorts. (a) The SVM coe�cients found from the classi�ca-
tions with matched controls return highly comparable signatures for the same medical conditions in the
KORA-FF4 and L4L cohorts. Because of the very di�erent nature of the two studies, these signatures
are expected to be disease-speci�c. (b) The comparison between the SVM coe�cients obtained from
the classi�cation of diabetes and hypertension in KORA-FF4 with NSP* individuals and with matched
controls highlights that, because of their correlation (Table 4.2), these two medical conditions mutually
a�ect their SVM coe�cients unless cases and controls are matched for the not-targeted disease. The red
dots highlight the features coming from their mutual interference, which are reduced after matching.
Acronyms: SVM - support vector machine; NSP* - non-symptomatic individuals.
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In conclusion, the comparison of two independent cohorts has allowed the identi�cation of
disease-speci�c IR signatures and classi�cation e�ciencies of four common medical conditions
highlighting the importance of matching cases and controls to reduce the in�uence of correlating
non-target factors. In particular, IR spectroscopy achieves the highest e�ciency for the detection
of diabetes, followed by heart disease and hypertension. However, according to this analysis,
FT-IR spectroscopy does not appear suited for the detection of asthma for which the AUC is
50%. The higher AUC found in the classi�cation of asthma with unmatched controls might be
due to other factors correlating with asthma. Matching is therefore essential to address if the
target condition leaves a trace on the IR �ngerprint of human blood bio�uids.

Several published studies aim at identifying the best bio�uid between human blood plasma,
used in the KORA-FF4 cohort, and serum, used in the L4L cohort, for disease detection via
FT-IR spectroscopy [114, 127]. This study does not �nd any evident advantages of one bio�uid
over the other for the classi�cation of the four conditions considered. This is due to the highly
comparable chemical composition of the two blood bio�uids [128]. Tables 4.4 and 4.5 show
that the distribution of common parameters is comparable for each condition in KORA-FF4 and
L4L, except for the males-to-females ratio for hypertension and asthma classes and the average
age for asthma. While this is not relevant for the analysis of asthma which does not have a
detectable IR signature in any case, the di�erent gender distribution among the individuals
a�ected by hypertension of the KORA-FF4 and L4L cohorts might compromise the veracity
of the comparison between the two cohorts. This study is a �rst step needed to stress the
importance of matching cases and controls for the identi�cation of disease-speci�c signatures
via the analysis of very di�erent independent cohorts. However, more extensive studies on
larges cohorts and more medical conditions are necessary to establish that these conclusions
are generally valid and would permit the de�nition of standard procedures for how to match
cases and controls for each medical condition.

The identi�ed disease-speci�c spectral signatures highlight that the features associated with
carbohydrates and proteins’ glycosylations (1000 – 1250 2<−1, Table 2.1) are responsible for
the detection of diabetes, in agreement with the well-known role of blood glucose in diabetic
patients, as well as with the e�ect of high concentration of blood glucose on the protein
glycosylation, such as for hemoglobin and albumin, which are increasingly used to monitor
and detect diabetes [129, 130] because of the high accuracy of the glycemic control over a long
period that these biomolecules o�er. The classi�cation e�ciency found for diabetes in this
study is in agreement with other studies reported in the literature based on di�erent infrared
spectroscopic techniques [131] or bio�uids [25]. In particular, [131] reports the ATR-FTIR
analysis of human whole blood combined with XGBoost algorithms and reports a sensitivity
of about 95% on a very small number of cases (50 individuals), while the sensitivity found in
this study is about 90% for the classi�cation of about 300 type II diabetes cases. Lipids (1750 –
3000 2<−1) return the most relevant spectral signatures for the detection of heart disease, in
agreement with the acknowledged connection between an increased blood serum concentration
of low-density lipoprotein (LDL) with the higher risk of experiencing an episode of heart attack
[132, 133]. The comparison between the FT-IR spectra of HDL and LDL molecules with the
spectrum of human blood serum reported in the literature highlights that the signature of
heart disease found in this study is indeed related to these biomolecules [134]. The smaller
signature at lower frequency due to carbohydrates can be explained by the observation reported
in the literature according to which individuals who experienced a heart attack tend to have
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a lower fasting blood glucose concentration than the respective controls [135]. The spectral
features underneath the classi�cation of hypertension are spread in the whole spectrum and the
interpretation is more di�cult. It has been reported in the literature that the concentration of
urea and creatinine in human blood serum and saliva are potential biomarkers for hypertension
[136], both with spectral features between 1000 and 1800 2<−1. However, further analyses are
necessary to establish the nature of the �ngerprint of hypertension observed in this study. To
the best f our knowledge, this is the �rst study addressing the FT-IR signature of hypertension
in human blood serum and plasma. Diabetes, hypertension and cardiovascular diseases, in
general, are connected with lifestyle and diet. A diet rich in cholesterol and saturated fatty acids,
indeed, has been reported to reduce the LDL receptors increasing the LDL blood concentration
[137]. Moreover, lifestyle factors such as diet and little physical activity promote an increase in
BMI which is connected with conditions like insulin resistance and diabetes [138], while the
high consumption of sodium or alcohol tend to increase the blood pressure and can induce
hypertension [139]. The fast and early diagnosis of these conditions can help many individuals
modifying their lifestyle timely thus preventing them from contracting these medical conditions.
In this context, FT-IR can be a powerful method for the fast, early and simultaneous diagnosis
and monitoring of these diseases.

The drawback of matching is the reduction in the number of controls which, together with
the e�ect of reducing the non-target contributions, returns lower AUCs with higher standard
deviations (Figure 4.4c, d). However, the AUC obtained matching cases and controls are more
disease-speci�c. Moreover, equalizing the number of cases and controls increases the features
in the SVM coe�cient. This is the case of heart disease and asthma which count a low number
of individuals: in the classi�cations, with all 900 NSP* individuals for the KORA-FF4 study,
these cohorts return almost featureless SVM coe�cients, while if classi�ed with a comparable
number of controls the SVM coe�cients have strong signatures (Figure 4.4e). The number
of cases impacts the classi�cation outcomes. Before addressing this is in section 4.2.3, the
FT-IR �ngerprints and classi�cation e�ciencies of other common medical conditions known
for KORA-FF4 are addressed.

4.2.2 FT-IR �ngerprinting of common medical conditions in
KORA-FF4

The previous section has focused on the analysis of four medical conditions for the comparison
of the KORA-FF4 and the L4L cohorts. However, more medical conditions are known for the
KORA-FF4 cohort (Table 3.1). This section reports the SVM binary classi�cations of the FT-IR
spectra of all endpoint medical conditions known for the KORA-FF4 study, in particular for
individuals a�ected by type II diabetes (referred to as "diabetes"), hypertension, asthma, high
blood lipids, chronic obstructive pulmonary disease (COPD), as well as for individuals who
had cancer (former or ex-cancer cohort) or experienced episodes of stroke or heart attack
(previously referred to as "heart disease").

Figure 4.6a shows the number of individuals for each medical condition. Being a prospective
cross-sectional population-based cohort, some medical conditions are underrepresented since
only a few individuals have developed them during the study. The individuals symptomatic
for hypertension and high blood lipids constitute the classes with more cases (about 50% of
the whole cohort), followed by diabetes, former cancer patients and asthma, while all the
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other medical conditions count less than 150 cases each. The classi�cation outcomes are
a�ected by the number of cases, as addressed in the next section. The AUCs highlight the
higher potential of FT-IR spectroscopy on human blood plasma for the detection of diabetes,
hypertension and high blood lipids (Figure 4.6b), which, incidentally, have the largest number of
cases. The classi�cations with all non-symptomatic individuals (NSP/NGT, analyzed in section
3.2.2) are compared with the classi�cations with matched controls. As previously shown for
diabetes and hypertension (Figure 4.5b), matching cases and controls reduces the impact of
not-targeted factors and, therefore, returns lower AUCs compared to the classi�cation with
unmatched controls (Figure 4.6b). In particular, cases and controls have been matched for the
common parameters age, gender and CRP being these the most important factors a�ecting
the between-person spectral variability in the whole spectral range (section 3.2.2), as well
as for all comorbidities with high AUCs in the classi�cation with all NSP/NGT individuals,
namely diabetes, hypertension and high blood lipids, and the ones that correlate with the target
condition (p-value > 0.01), as it is the case for asthma and COPD.

Figure 4.6: SVM binary classi�cation of all known endpoint medical conditions with all NSP/NGT
unmatched individuals and with matched controls on the FT-IR spectra of KORA-FF4 cohort. (a) The
number of individuals for each medical condition is reported for the KORA-FF4 population (Table 3.1)
and re�ects the distribution of each disease in the represented general population. (b) The comparison
between the AUCs derived by the classi�cations of each disease with all NSP/NGT unmatched individuals
(black) and with matched controls (light purple) shows that matching cases and controls reduces the
number of controls and the non-target features, thus isolating the disease-speci�c �ngerprint and,
therefore, resulting in lower AUCs with larger standard deviations. Acronyms: SVM - support vector
machine; NSP/NGT - cohort of non-symptomatic normal glucose tolerance individuals; AUC - area
under the curve; COPD - chronic obstructive pulmonary disease.
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Section 3.2.2 addresses the main sources of the between-person spectral variability among
healthy, mainly lipids and proteins in�uenced by age and in�ammation. Because of the large
between-person variability of proteins and lipids and of their spectral signatures (1750 - 3000
2<−1 and 1250 - 1750 2<−1 respectively, Table 2.1), the di�erential �ngerprints of the di�erent
medical condition are similar to each other (Figure 4.7) and have similar standard deviations
for cases (colored shaded areas) and controls (black shaded areas), especially between 1250
and 3000 2<−1. Moreover, the strong protein features from the Amide bands, which are in
common with all di�erential �ngerprints, are also a�ected by the largest technical noise among
all spectral features (Figure 3.8b, c).

Despite the strong between-person variability, the SVM algorithm identi�es features for
each condition. In particular, the SVM coe�cients shown in Figure 4.7 highlight the features
responsible for the binary classi�cation with the NSP/NGT unmatched individuals (black line)
and with matched controls (white lines). Both hypertension and high blood lipids return similar
AUCs and SVM coe�cients for both classi�cations because the matching algorithm retains about
all cases and controls. A deeper inspection of the SVM coe�cient of hypertension unveils the
reduced intensity of the features at lower frequencies after matching the distribution of diabetes
between cases and controls, as already shown in Figure 4.5c. Similarly, the SVM coe�cient
found for diabetes has higher signatures at low frequency in the classi�cation with matched
controls compared to the unmatched ones. The SVM coe�cients found for high blood lipids in
the two classi�cations are the same because this condition does not strongly correlate with any
other known medical condition or common parameter (Figure 4.2c). The comparison of the
SVM coe�cients of the other medical conditions is more di�cult because the high discrepancy
in the number of cases and controls for the classi�cation with all NSP/NGT individuals return
featureless SVM coe�cients (section 4.2.3). After matching, the SVM coe�cients show similar
features as the di�erential �ngerprints, with stronger di�erences in the Amide I and II bands,
probably because of the larger technical noise recorded for this spectral region (Figure 3.8b, c).
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Figure 4.7: Di�erential �ngerprint and SVM coe�cients of all known endpoint medical conditions
classi�ed with all NSP/NGT unmatched individuals and with matched controls on the FT-IR spectra of
KORA-FF4 cohort. The colored lines are the di�erential �ngerprint of the respective medical condition,
calculated as the di�erence between the average spectrum of cases and the average spectrum of all
individuals non-symptomatic for that condition. The colored shaded area is the standard deviation of
the cases and the black shaded area is the standard deviation of the controls. The standard deviations
of cases and controls are comparable above 1250 2<−1 because of the large between-person spectral
variability of proteins and lipids (section 3.2.2). The corresponding SVM coe�cients (scaled) are reported
for comparison both for the classi�cation with all NSP/NGT individuals (black line) and with matched
controls (white line). The SVM coe�cients show that, despite the large between-person spectral
variability, the SVM algorithm identi�es disease-speci�c signatures. The comparison between the
classi�cation with unmatched and with matched controls highlights again that matching reduced the
non-target features due to factors correlating with the target-disease, as seen in the previous section.
Acronyms: SVM - support vector machine; NSP/NGT - cohort of non-symptomatic normal glucose
tolerance individuals.

In conclusion, the large spectral variability analyzed in section 3.2.2 a�ects the variability
recorded in the di�erential �ngerprints of all medical conditions, but it does not prevent
SVM from identifying disease-speci�c signatures for all medical conditions. The signature of
diabetes, hypertension and heart attack classes have been discussed in the previous section.
The other common parameters leading to high classi�cation e�ciencies are high blood lipids
and stroke. The features underneath the classi�cation of high blood lipids are due to protein
and lipids, probably due to the vibrations of lipoproteins [134], while the smaller contributions
at lower frequencies could be due to triglycerides and glycerol [140]. The spectral signatures
responsible for the classi�cation of stroke are also spread on the whole spectral range, with the
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main contributions from proteins and lipids. The risk factors identi�ed for stroke are multiple,
among which high plasma levels of lipoproteins [141] which could explain the observed spectral
signature. The plasma concentration of several amino acids [142] and of organic and inorganic
metal complexes [143] have also been proposed as biomarkers for stroke and could explain the
signatures at lower frequencies.

The highest classi�cation e�ciencies are found for the most numerous classes, namely
diabetes, hypertension and high blood lipids. Despite the small number of cases, the AUCs
are promising also for stroke and heart attack, even if the standard deviations are large. The
analysis of larger cohorts of individuals who experienced episodes of stroke or heart attack
could help to de�ne the signatures speci�c to these conditions to identify people at high risk.
COPD, former cancer and asthma classes return AUCs close to 50%. However, a negative
outcome can be considered true only for cohorts large enough to guarantee a good statistical
power of the study [144], as explored in the next section.

4.2.3 In�uence of the cohort size on binary classi�cations

The medical conditions with the highest AUCs are found to be also the most numerous classes
(Figure 4.6b). The analyses of the classes with a few cases have a low statistical power, which is
the probability of detecting a speci�ed clinical signi�cance (e.g. the probability to obtain AUC
> 50%) [144–146]. The minimum number of cases necessary has been frequently discussed in
pattern recognition [147–149], but de�ning the smallest cohort to achieve a reliable classi�cation
e�ciency in studies similar to the one presented here is not straightforward [150]. The FT-
IR spectra recorded for the large population-based cohort of KORA-FF4 are useful for this
purpose. Achieving robust classi�cations is essential for an objective comparison of the FT-
IR performances for the diagnosis of di�erent medical conditions. Generally, higher AUCs
correspond to stronger IR signatures, which are therefore easier to identify and have a higher
signi�cance. Since the AUC depends only on the strength of the signal and not on the features
pattern, the analysis of medical conditions with the same AUCs are expected to have the
same statistical power and to require the same minimum number of cases to achieve robust
classi�cations. Diabetes and hypertension are selected for this analysis because these are two of
the largest classes in the KORA-FF4 cohort and because they have very di�erent AUCs. Diabetes
is expected to be representative of all conditions with AUC close to 85% in the classi�cation with
matched controls while hypertension is expected to represent all conditions with AUC close to
66%. All medical conditions with intermediate AUCs are expected to require an intermediate
minimum number of cases for roust classi�cations.

One way generally used to estimate the required sample sizes for medical classi�cations is
using learning curves [151, 152], graphical representations of the classi�cation e�ciency for an
increasing number of cases. The learning curves for the AUCs obtained via SVM classi�cations
show that the classi�cation e�ciencies increase for the increasing number of cases (Figure 4.8a,
top and medium panels). The learning curves are reported for the classi�cations of the two
medical conditions with all the unmatched NSP* controls (de�ned in section 3.2.3; black lines)
as well as with matched controls (colored lines). All the classi�cations with the NSP* individuals
are performed keeping the same 900 individuals as controls, while in the classi�cations with
matched controls the number of controls is always the same as the cases.



4.2 IR spectral detection of clinical endpoints 79

Figure 4.8: AUC and SVM coe�cients for an increasing number of cases from the classi�cation of
diabetes and hypertension with all NSP* unmatched individuals and with matched controls on the FT-IR
spectra of KORA-FF4 cohort. (a) The learning curves show the dependence of the AUC to the number of
cases for the classi�cations with all NSP* individuals (black lines) and with matched controls (colored
lines) for diabetes (top panel) and hypertension (middle panel). The AUCs found with matched cases
and controls are always signi�cantly lower than with unmatched controls. The bottom panel shows the
relative di�erence of the respective SVM coe�cients C de�ned in the text. This panel shows that the
coe�cients found in the classi�cations with matched and with unmatched controls are signi�cantly
di�erent and never zero. In general panel (a) highlights that matching reduces the non-target features of
factors correlating with the target condition leading to lower AUCs and giving disease-speci�c signatures.
The red dots identify the smallest number of cases for robust classi�cation, namely corresponding with
an AUC 5% lower than the AUC at saturation. (b) The SVM coe�cients corresponding to the top and
middle panels of (a) show that the smallest number of cases for robust classi�cations are also the smallest
cohort to return the same SVM coe�cients (red lines) as for larger cohorts. Acronyms: AUC - area
under the curve; SVM - support vector machine; NSP* - non-symptomatic individuals.
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The SVM coe�cients found for each medical condition are similar in both analyses for large
cohorts (Figure 4.8b). However, for small cohorts, the SVM coe�cients found with matched
controls have slightly di�erent features than for a larger number of cases. If the number of
cases is too small compared to the number of controls, the SVM coe�cients do not have evident
features despite the high classi�cation e�ciencies. This is the case for the classi�cations of
less than 100 cases against the 900 NSP* individuals for which the AUCs reach high values.
The AUCs from the classi�cation of more cases with the NSP* individuals reach a plateau for
diabetes, while they slowly drop for hypertension. On the contrary, the AUCs found for the
classi�cations with matched controls rise for an increasing number of cases until saturation.
Fitting the learning curves with logistic functions returns a maximum AUC of 85,0 ± 0,2% for
diabetes and 65,9 ± 0,8% for hypertension. For higher AUCs, the disease detection is easier
and the signi�cance of the feature is higher, which implies that a given statistical power can
be reached with smaller cohorts [145]. This explains the faster exponential growth found for
diabetes compared to hypertension (Figure 4.8a).

The smallest number of cases to achieve robust classi�cations is the one giving an AUC as
close as possible to saturation as well as stable SVM coe�cients. In this study, the minimum
number of cases required for robust classi�cation is de�ned as the one for which the AUC is
5% lower than the AUC at saturation. The minimum number of cases required is 130 cases
for diabetes, giving an AUC of 81%, and 380 cases for hypertension, leading to an AUC of
63% (Figure 4.8a, red dots). Incidentally, the identi�ed number of cases are also the smallest
classes for which the SVM coe�cients have the same features as for larger cohorts for both
diabetes and hypertension (Figure 4.8b). The SVM coe�cients in the classi�cations with NSP*
are di�erent from the SVM coe�cients found for the classi�cations with matched controls.
Their relative di�erence can be easily quanti�ed in a coe�cient � for any given number of
cases =. Since the SVM coe�cient obtained for the classi�cations with all NSP* individuals
do not have evident features for a too small number of cases, the coe�cient obtained for the
maximum number of cases available (# ) is taken as reference for each medical condition. The
relative di�erence � is therefore here de�ned as:

� (=) = 100 ∗
∑
l | ((< (=,l) − ( (#,l) |∑

l | (( (#,l)) |
(4.1)

where# is 288 for diabetes and 1035 for hypertension (Table 3.1), (< are the SVM coe�cients
found for the classi�cations with matched controls normalized to their maximum, ( are the
SVM coe�cients found for the classi�cations with NSP* individuals and l is the spectral
coverage of FT-IR excluding the silent region between 1800 and 2750 2<−1. For both conditions,
the di�erence � found for the minimum number of cases for robust classi�cations is about
40% (Figure 4.8a, lower panel - red dots). In other words, the SVM coe�cients found for the
classi�cation of the smallest number of cases necessary with matched controls are signi�cantly
di�erent from the ones obtained for the largest cohorts in the classi�cations with all NSP*
individuals. This proves that, as concluded in the previous sections, matching signi�cantly
reduces the non-speci�c features present in the SVM coe�cients found for the classi�cations
with unmatched control (Figure 4.5). This is again evident from the lower AUC found for the
classi�cations with matched controls. Even though the AUCs obtained for hypertension in
the classi�cations with unmatched and with matched controls seem to converge (Figure 4.8,
middle panel), �tting the two trends with logistic curves reveal that the AUCs at the respective
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plateaus are signi�cantly di�erent.
The results found for diabetes and hypertension can be generalized under the realistic

assumption that only the magnitude of the signature a�ects the statistical power of the study
independently on the speci�c signatures. Therefore, it can be concluded that the minimum
number of cases required for robust classi�cations is expected to be below 130 cases for
AUCs higher than 85%, as for diabetes, and more than 380 cases for AUCs lower than 66%,
as for hypertension. In light of these observations, a proper comparison of the classi�cation
e�ciencies obtained for di�erent medical conditions should be done for the number of cases
equal to or larger than the corresponding minimum required for robust classi�cations with
matched controls. However, except for the cohort of individuals with high blood lipids, the
other conditions count too few cases. Therefore, the best comparison possible is for the same
number of cases. The AUC corresponding to 70 cases is about 74% for diabetes, 70% for heart
attack and 55% for hypertension. According to these values, the maximum AUC for heart
attack is expected to be close to the one found for diabetes. Similarly, the AUCs found for the
classi�cation of 182 asthma and hypertension cases are respectively 50% and 60%. Therefore,
for a robust classi�cation, more than 380 asthma cases are expected to be necessary to address
whether the FT-IR spectra of human blood plasma are suited for the detection of this condition.
However, whether a poor outcome is worth spending voluminous resources is not trivial [145].
Similar conclusions can be drawn for the 230 former cancer patients and the 150 COPD cases
for which the AUCs are smaller than for the same number of cases with hypertension. On
contrary, for the stroke class which counts only 54 cases, the AUC found is about 60% and it
would be worth addressing the best classi�cation e�ciency in larger cohorts to better address
the potential of FT-IR for the screening individuals at high risk.

In summary, the learning curves show signi�cantly di�erent trends for the classi�cations
with all unmatched NSP* individuals compared to the matched controls because matching cases
and controls removes non-target contributions returning disease-speci�c SVM coe�cients and
systematically lower classi�cation e�ciencies. The classi�cations with matched controls are
therefore used for the comparison of the classi�cation e�ciencies of each medical conditions
analyzed for the same number of cases, from which it can be concluded that a very large
number of cases is required for the robust classi�cation of COPD, asthma and former cancer
patients for which the classi�cation e�ciencies are expected to be lower than the 65% found
for hypertension. This suggests that the SVM analysis of the FT-IR spectra of human blood
plasma might not be suited for the classi�cation of these medical conditions. On the other hand,
the classi�cation of individuals who had episodes of heart attack or stroke return promising
e�ciencies for a small number of cases, highlighting how the analysis of larger cohorts might
lead to the possibility of timely identifying features characteristic of individuals at high risk.
Diabetes, hypertension and high blood lipids classes count enough cases for robust SVM
classi�cations. In conclusion, the study reported here shows that the minimum number of
cases required to address the e�ciency of SVM binary classi�cations of FT-IR human blood
plasma �ngerprints is 130 as observed for diabetes, which is comparable to the conclusions
reported in the literature for another classi�cation algorithm for the Raman spectra of single
cells [150] which identi�es 75-100 cases as the minimum number to achieve good but not
perfect classi�cations. These conclusions might be applied to similar studies to address the
reliability of AUCs of 50%.
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4.2.4 Comparison of FRS and FT-IR �ngerprints of common
conditions in KORA-FF4

The potential of the newly developed FRS spectroscopy for the diagnosis of diseases on human
blood plasma is investigated for all known medical conditions of the KORA-FF4 cohort (Table
3.1) and compared with the FT-IR spectra in the same spectral range (1000 and 1500 2<−1).

The SVM classi�cations of the FT-IR spectra in the reduced an in the full-spectral coverage
(section 4.2.2) are comparable (Figure 4.9a). For both FRS and FT-IR data, the classi�cations of
each medical condition with all individuals non-symptomatic for the target disease ("unmatched
controls") return higher or comparable AUCs than for the classi�cations with matched controls
(Figure 4.9), in agreement with what concluded in section 4.2.3.

Figure 4.9: SVM classi�cation e�ciency of all endpoint medical conditions with matched and unmatched
controls on the FT-IR ad FRS data of KORA-FF4 cohort. (a) The AUCs are reported for FT-IR reduced
spectra (1000 - 1500 2<−1) and for the corresponding (b) FRS data in the frequency domain (FRS(f)) and
(c) in the time domain (FRS(t)). The classi�cations with all individuals non-symptomatic to the target
medical condition ("unmatched controls") return higher or comparable AUCs that with matched controls.
Acronyms: SVM - support vector machine; FRS - �eld-resolved spectroscopy; AUC - area under the
curve; COPD - chronic obstructive pulmonary disease.
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The FRS data in the frequency domain are calculated as "absorbance" after applying the
optimal HTPF from 0.14 to 7 ?B (section 3.1.3). As explained in section 2.3.2, the SVM classi�ca-
tions of the EMFs are performed by scanning time windows with di�erent widths to identify
the optimal time window, namely the temporal range giving the highest AUC. The classi�cation
e�ciencies found for FRS are comparable with the ones of FT-IR in the same spectral range
(Figure 4.10a). Given the large day-to-day dependence a�ecting the �rst PCs of FSR data both
in the time and in the frequency domain (section 3.2.4), this is a promising �rst result. The SVM
coe�cients found for the FRS data in the frequency domain are noisy, but their absolute values
have features in common with the SVM coe�cients found for the FT-IR spectra (Figure 4.10b).

Figure 4.10: SVM classi�cations of all endpoint medical conditions with matched controls on the FT-IR
ad FRS data of KORA-FF4 cohort. (a) The AUCs obtained via FRS and FT-IR between 1000 and 1500
2<−1 are comparable. (b) The absolute values of the corresponding SVM coe�cients found for FRS in
the frequency domain have common features with the coe�cients found for FT-IR. Acronyms: SVM -
support vector machine; FRS - �eld-resolved spectroscopy; AUC - area under the curve; COPD - chronic
obstructive pulmonary disease.



84 4 FT-IR and FRS �ngerprinting for disease diagnosis

The SVM coe�cients obtained from the EMFs in the time domain are reported for the
identi�ed optimal time window (Figure 4.11). As observed for FT-IR in full-spectra, hypertension
and high blood lipids return the same SVM coe�cients for the classi�cations with matched and
unmatched controls. This happens because these conditions a�ect about 50% of the population
and the matching algorithm, which tries to retain as many cases as possible, leads to similar
case/controls cohorts as without matching. However, as previously shown for FT-IR (Figure
4.5b), the SVM coe�cients are similar but not identical because matching reduces the spurious
contributions.

Figure 4.11: SVM coe�cients of all endpoint medical conditions with matched and unmatched controls
on the EMFs of KORA-FF4 cohort. The SVM coe�cients are reported in the respective identi�ed optimal
time windows, which are di�erent for the classi�cations with matched and unmatched controls for all
medical conditions. The only exception are hypertension and high blood lipids for which, since they
a�ect about 50% of the population, almost the same cases and controls are considered in the classi�cations
with and without matching. Acronyms: SVM - support vector machine; EMF - electric-�eld-resolved
molecular �ngerprint; COPD - chronic obstructive pulmonary disease.

Except for hypertension and high blood lipids, the optimal time windows identi�ed for
the other medical conditions are di�erent for the classi�cations with unmatched controls
compared to the classi�cation with matched controls (Figure 4.11). The time resolution can
be advantageous to disentangle the contributions not speci�c to the target disease present in
the classi�cations with unmatched controls and reduced by matching cases and controls. Four
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showcases are considered (Figure 4.12): diabetes and high blood lipids, which count more cases
than the minimum required for robust classi�cations (section 4.2.3) and result in very di�erent
AUCs, as well as heart attack and former cancer classes, which count fewer cases than the
estimated minimum for robust classi�cations and return di�erent AUCs.

Figure 4.12: AUC trends along the time axis of four medical conditions with matched and unmatched
controls on the EMFs of KORA-FF4 cohort. (a) the AUCs trends along the time axis are reported for
diabetes, (b) high blood lipids, (c) heart attack and (d) former cancer patients for the classi�cations with
matched (upper panels) and unmatched (bottom panels) controls. The red dashed lines show the AUC
= 50%. The AUC can have values close to the maximum reached for that classi�cation also outside
the optimal time window (green shaded areas). In the classi�cations with unmatched controls, the
AUCs have comparable values in the same optimal temporal windows found for the classi�cations
with matched controls. However, the AUCs are higher for unmatched controls around 0 ?B due to the
non-speci�c contributions of factors correlating with the target medical condition. Acronyms: AUC -
area under the curve; EMF - electric-�eld resolved molecular �ngerprint.

The AUC trends along the time axis for these four medical conditions unveils that the AUCs
are close to the maximum value reached for the corresponding classi�cation for longer times
than the identi�ed optimal temporal windows (Figure 4.12, green shaded areas), which are
strictly around the highest AUCs. After matching, the number of controls is reduced introducing
larger �uctuations and over�tting rates, with a more important e�ect for the smallest cohorts
such as heart attack and former cancer patients. The over�tting rates are calculated as the
distance between the average AUC of the training set and the standard deviation of the test
set (section 2.3.2). The class of individuals with high blood lipids o�ers the advantage to
compare the classi�cations with matched and unmatched controls without the side e�ect of
the extensive reduction in the number of controls due to matching. The AUCs trends found for
high blood lipids are identical for the classi�cations with matched and unmatched controls
(Figure 4.12b), with the only exception at shorter times (0 - 1 ?B) for which the AUCs are
higher in the classi�cations with unmatched controls. Similar conclusions can be obtained
for the other conditions: in the classi�cation with unmatched controls, the AUCs are close to
the maximum between 0 and 2 ?B for diabetes, which therefore covers also the optimal time
window found for the classi�cation with matched controls, between 0 and 3.5 ?B for heart
attack and between 0.5 and 1 ?B for former cancer patients. However, the AUCs trends have
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big �uctuations for the classi�cation of small cohorts, such as heart attack and former cancer
patients, with the matched controls, thus making the comparison with the classi�cations with
unmatched controls di�cult.

In summary, for all medical conditions, the AUC found from the classi�cations with all
individuals non-symptomatic to the target condition (the "unmatched controls") reach the
highest value around 0 ?B and remains high for a period that covers the optimal time window
found for the classi�cation with the matched controls. In other words, thanks to the resolution
in time it is possible to address that the classi�cation with unmatched controls identify the
disease-speci�c temporal signatures, isolated in the classi�cations with matched controls, plus
the additional contributions of non-speci�c signatures due to factors correlating to the target
disease which a�ect the initial times, where the signal is more intense. The time resolution
o�ers an important advantage on frequency-resolved techniques because it separates disease-
speci�c and unspeci�c signatures in di�erent time windows. The classi�cation e�ciencies
of all medical conditions investigated are comparable for FRS in both the time and frequency
domain and FT-IR, which is a promising achievement considering the day-to-day dependence
of the newly developed technique.

Despite matching isolates the disease-speci�c signatures, it reduces the number of controls
leading to higher over�tting rates, detrimental especially for the medical conditions a�ecting
a few cases. Therefore, larger studies are necessary to achieve a deeper understanding of
the medical conditions underrepresented in the KORA-FF4 cohort for which FT-IR and FRS
�ngerprints are expected to be good predictors, such as stroke and heart attack (see section
4.2.3).

4.3 IR spectral liquid biopsy of an intermediate condition:
prediabetes

The larger availability of high-calorie food and the decreasing levels of physical activity results in
an increasing spread of obesity and metabolic disorders in developed countries. One of the most
important is prediabetes, which has been de�ned as a modern epidemic [153]. The consequences
of prediabetes go beyond simple glycemic dysregulation. This multifactorial metabolic disorder
can lead to many complications, like microvascular diseases such as neuropathy, nephropathy,
and retinopathy, as well as macrovascular diseases like stroke, coronary artery disease and many
others [154, 155]. The presence of prediabetes increases up to 10-fold the risk of developing
type 2 diabetes (T2D), one of the most spread conditions worldwide [154]. Several studies have
highlighted the potential of early detection and treatment of prediabetes in the prevention of
these complications [153, 156]. The most reliable screening tool available is the oral glucose
tolerance test (OGTT) which monitors the blood plasma glucose concentration after 2 hours
from the intake of 75 6 of glucose in water solution. The World Health Organization (WHO)
distinguishes three types of prediabetes [157] based on the blood plasma concentration of
glucose in fasting condition (fasting plasma glucose, FPG) and after two hours from the intake
of the solution of glucose (OGTT glucose):

1. Impaired fasting glucose (IFG): FPG = 110 - 125<6/3! (6.1 - 6.9<<>;/!)

2. Impaired glucose tolerance (IGT): OGTT glucose = 140 - 200<6/3! (7.8 - 11.0<<>;/!)
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3. IFG/IGT - both conditions together

The OGTT test, however, is time-consuming and di�cult to reproduce [158]. Therefore,
infrared spectroscopy of human blood serum or plasma can potentially o�er a faster and
reliable diagnosis. The potential of FT-IR and FRS spectroscopy is �rst investigated for the
three prediabetes conditions in the KORA-FF4 cohort and their classi�cation e�ciency is then
compared with the e�ciency of common clinical parameters connected with prediabetes.

4.3.1 Comparison of FRS and FT-IR �ngerprints of prediabetes in
KORA-FF4

In the previous sections, FT-IR and FRS spectroscopy applied to human blood plasma has been
shown to provide high classi�cation e�ciencies for individuals a�ected by diabetes. Prediabetes
is an asymptomatic condition always antecedent to the development of type II diabetes. In this
section, the potential of both techniques is explored for the three types of prediabetes listed
above in the KORA-FF4 cohort via SVM binary classi�cations with all normal glucose tolerance
(NGT) individuals (FPG < 110<6/3! and OGTT glucose < 140<6/3!) and with matched NGT
controls. The binary classi�cations via the FT-IR data are �rst addressed in full-spectrum and
then in the same spectral range covered by FRS (1000 - 1500 2<−1) and compared with the
classi�cations via the FRS data in the frequency and in the time domain.

The NGT individuals (> 1300) outnumber the cases (Figure 4.13a), which explains why the
SVM coe�cients found for the classi�cations with all NGT controls on the FT-IR in full-spectra
are featureless (see section 4.2.3) and the AUCs are unexpectedly higher than the one found
for diabetes (Figure 4.13b, c). The SVM classi�cations are performed also with NGT controls
matched done for age, gender, CRP concentrations, hypertension and high blood lipids. After
matching, the number of controls is the same as the number of cases and the AUCs found for
the classi�cation of IFG/IGT individuals are slightly smaller than for diabetes (Figure 4.13b).
This is to be expected since the IFG/IGT is the latest stage of prediabetes and the closest to
type II diabetes. Only a few cases are symptomatic for the IGT and IFG conditions which, if
classi�ed with matched NGT controls, return AUCs with average values of about 52% and 60%
respectively. The SVM coe�cients obtained in the classi�cations with matched NGT controls
show that the features of IGT are spread in the whole spectral range, with larger signatures
from proteins (1500 - 1750 2<−1) and lipids (1800 2<−1), while the main spectral signatures of
IFG are associated with carbohydrates and proteins’ glycosylations (1000 - 1250 2<−1, Figure
4.13c). The SVM coe�cient of IFG/IGT presents the features of both isolated conditions and is,
therefore, better classi�ed.

The same analysis is performed on the FT-IR spectra in the same spectral coverage as FRS
(1000 - 1500 2<−1) for the comparison of the two techniques (Figure 4.14). The SVM coe�cient
found in full-spectra for IGT shows that the main features responsible for its classi�cation are
the Amide bands of proteins and the signatures of lipids. Since the spectral signatures of IGT
are not in the spectral range considered and contribute also to the signature of the IFG/IGT
condition, it is not surprising that the average value of the AUCs found in the reduced spectral
coverage for IGT and IGT/IFG are lower than in full-spectra, even though it is not statistically
signi�cant because of the large standard deviations.
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Figure 4.13: SVM binary classi�cation of prediabetes conditions with matched and unmatched NGT
individuals on the FT-IR full-spectra of KORA-FF4 cohort. (a) The number of individuals for each cohort
highlights that the NGT individuals outnumber the prediabetes cases. (b) The classi�cation e�ciencies
are unexpectedly higher than what was observed for diabetes (91 ± 3 %) for the classi�cation of IFG and
IGT/IFG conditions with all NGT individuals. The classi�cation of all conditions with matched NGT
controls returns increasing AUCs for IGT, IFG and IGT/IFG, which is expected considering that the
blood plasma samples have been collected in a fasting conditions and that IGT is due to the glucose
impairment after the intake of glucose, while IFG appears in a fasting condition. (c) The SVM coe�cients
corresponding to panel (b) are featureless in the classi�cations with all NGT individuals because of
the large di�erence in the number of cases and controls (section 4.2.3). The SVM coe�cients obtained
from the classi�cations with matched NGT controls highlight that the main signatures of IFG are due to
glucose and glycosylated proteins, while the spectral signatures connected with IGT are mostly due to
proteins and lipids. The signature of IFG/IGT is a combination of the features of the isolated IFG and
IGT conditions. Acronyms: SVM - support vector machine; AUC - area under the curve; NGT - normal
glucose tolerance; IGT - impaired glucose tolerance; IFG - impaired fasting glucose.
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The average AUCs found for the classi�cations with matched NGT controls on the FRS
data, both in the frequency and the time domain, are higher than the values found for FT-IR
in the same spectra coverage (Figure 4.15a). However, because of the small number of cases,
the standard deviations are too large to have a signi�cant di�erence. Further investigations
on a larger number of cases are needed to address if FRS outperforms FT-IR spectroscopy in
the detection of prediabetes. The higher AUCs found from the classi�cations of FRS data in
the frequency domain compared to the FT-IR data agree with the higher number of features in
the SVM coe�cients derived from the FRS data in the frequency domain for the same type of
prediabetes (Figure 4.15b).

Figure 4.14: SVM binary classi�cation of prediabetes conditions with matched and unmatched NGT
individuals on the FT-IR full-spectra and reduced spectra of KORA-FF4 cohort. The AUCs found in the
full-spectrum (1000 - 3000 2<−1) and in the reduced spectra (1000 - 1500 2<−1) are comparable within
the standard deviations. However, the AUC of IGT and IGT/IFG are slightly smaller in the reduced
spectral range which does not cover the main signature seen for IGT in Figure 4.13c. Acronyms: SVM -
support vector machine; AUC - area under the curve; NGT - normal glucose tolerance; IGT - impaired
glucose tolerance; IFG - impaired fasting glucose.

The SVM binary classi�cations of the FRS data in the time domain are performed as explained
in section 2.3.2 and allows the identi�cation of the optimal time window for each condition,
namely where the AUC reaches the maximum value for that classi�cation. As done above for
FT-IR in full-spectra and the FRS analysis of endpoint medical conditions (section 4.2.2), the
binary classi�cations of the three types of prediabetes are performed with all unmatched NGT
individuals as well as with matched NGT controls. As for the endpoint diseases, the optimal
time windows found in the classi�cations with unmatched controls are di�erent compared to
the optimal time windows obtained for the classi�cations with matched controls (Figure 4.16a).

Because of the small number of cases, the trends of the AUCs along the time axis are
noisy and, for the classi�cations with matched controls, are a�ected by higher over�tting rates
(Figure 4.16b). For example, the optimal time window identi�ed from the algorithm for the
classi�cation of IGT with matched controls are a�ected by over�tting and a window between 1
and 4 ?B , where the over�tting rate is lower, provides a more robust value for the AUC (around
60%). Similar conclusions as for the endpoint medical conditions investigated in section 4.2.2
can be drawn also for IGT, IFG and IFG/IGT, such as that the classi�cations with unmatched
controls return the highest AUCs close to time zero (0 - 2 ?B for IFG and IFG/IGT and at 0 - 4 ?B
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for IGT), while for the classi�cations with matched controls the AUCs reach the highest value
for that condition in more con�ned temporal windows. In other words, the classi�cations with
unmatched controls are due to the temporal signatures speci�c to the target medical condition,
isolated via the classi�cations with matched controls, as well as to non-speci�c signatures
arising around 0 ?B .

Figure 4.15: SVM binary classi�cation of prediabetes conditions with matched and unmatched NGT
individuals on the FT-IR and FRS data of KORA-FF4 cohort. (a) The average AUCs obtained via FRS
are generally higher than for FT-IR in the reduced spectral coverage (1000 and 1500 2<−1). However,
the standard deviations are large because of the low number of cases. (b) The absolute values of the
corresponding SVM coe�cients found for FRS in the frequency domain show both common and extra
features compared to the coe�cients found via FT-IR in the same spectral coverage, in agreement with
the higher AUC values. Acronyms: SVM - support vector machine; AUC - area under the curve; FRS -
�eld-resolved spectroscopy; NGT - normal glucose tolerance; IGT - impaired glucose tolerance; IFG -
impaired fasting glucose; FRS(f) - FRS signal in the frequency domain; FRS(t) - FRS signal in the time
domain.
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Figure 4.16: SVM coe�cients of all prediabetes conditions with matched and unmatched NGT individ-
uals of the EMFs of KORA-FF4 cohort. (a) The SVM coe�cients are reported in the respective identi�ed
optimal time windows, which are di�erent for the classi�cations with matched and unmatched controls
for all prediabetes conditions. (b) The AUCs trends along the time axis are reported for diabetes and
all prediabetes conditions for the classi�cations with matched (upper panels) and unmatched (bottom
panels) NGT controls. The red dashed lines shows the AUCs= 50%. As for the endpoint medical con-
ditions, the AUC can have values close to the maximum reached for that classi�cation also outside
the optimal time window (green shaded areas). In the classi�cations with unmatched controls, the
AUCs have comparable values in the same optimal temporal windows found for the classi�cations with
matched controls. However, the AUCs are always higher for unmatched controls around 0 ?B due to the
non-speci�c contributions of factors correlating with the target condition. Acronyms: SVM - support
vector machine; AUC - area under the curve; FRS - �eld-resolved spectroscopy; EMF - electric-�eld
resolved molecular �ngerprint; NGT - normal glucose tolerance; IGT - impaired glucose tolerance; IFG -
impaired fasting glucose.



92 4 FT-IR and FRS �ngerprinting for disease diagnosis

The blood plasma samples of KORA-FF4 have been collected in fasting conditions, therefore,
the IFG signatures, a condition that implies a glucose impairment during fasting, are stronger
than for IGT, for which the impairment happens only after the intake of glucose. It s therefore
expected that IFG is the leading condition also in the classi�cation of IGT/IFG. The spectral
signatures found via FT.IR and FRS data in the frequency domain are highly comparable with
each other. In particular, the IR �ngerprints show that the spectral signatures of IGT arise
mostly from proteins and lipids, highlighting the need to identify the roots of prediabetes
beyond glucose concentration as this can allow a timely detection even before the glucose
impairment. The spectral signature at low frequencies identi�ed for the IGT condition has a
di�erent shape, and probably a di�erent molecular origin, compared to the same features in the
SVM coe�cient of diabetes and IFG. Unfortunately, the molecular attribution of these signatures
is not straightforward as many biomolecules associated with IGT have spectral signatures
that might correspond to the ones identi�ed in this study. For example, the metabolomics
study on the KORA-S4 cohort reported in [159] identi�es di�erent metabolites connected with
IGT, among which well-known diabetes biomarkers (HbA1c, glucose and insulin) as well as
metabolites with no previously known connection with diabetes and prediabetes, such as
glycine (IR signatures between 1250 and 1750 2<−1), lysophosphatidylcholine (18:2) (1000 -
1250 2<−1 and 1750 - 3000 2<−1) and acetylcarnitine (1000 - 1250 2<−1). The study also reports
an AUC of 63% for the detection of IGT via the three metabolites listed, which is similar to the
AUC obtained via FRS spectroscopy. The spectral signature of IFG is mostly due to glucose
and glycosylated proteins with some contribution in the protein region, di�erent than what
was observed for IGT. However, the molecular interpretation is beyond the possibility of this
analysis and further studies combined with other techniques providing molecular information
are needed. In general, IR spectroscopy has the advantage of characterizing all molecules of
the sample under investigation thus providing a tool to fast and reliably identify the pattern of
changes in the concentration of any molecule connected with prediabetes.

To the best of our knowledge, only another published study uses infrared spectroscopy
for the detection of prediabetes in human blood and is based on ATIR spectroscopy combined
with machine learning algorithms not discussed in this dissertation [118]. The study reports
high classi�cation rates, however, it is based on a small sample set of only 50 cases and, more
importantly, the three di�erent prediabetes conditions are classi�ed together, which is not
optimal as the three are associated with di�erent changes in the chemical composition of blood,
as unveiled by the metablomics analysis reported in [159]. Moreover, in [118], the controls
are not matched to the cases and the analysis can potentially be in�uenced by other factors
correlating with prediabetes, as it is potentially the case also in the study reported here for
which the AUCs found for the classi�cation of prediabetes with unmatched controls are higher
than the AUC found for diabetes. A fundamental di�erence with [118] is that the study reported
here is based on the same classi�er with the sole purpose of comparing the performances of
FT-IR and FRS spectroscopy for the classi�cation of di�erent medical conditions, therefore
no algorithm optimization has been performed for each particular medical condition. In
general, the detection of prediabetes conditions via IR spectroscopy returns promising results,
highlighting the potential of this approach. FRS outperforms FT-IR spectroscopy in the same
spectral coverage, especially for the detection of IGT, not well classi�ed via FT-IR, for which it
returns an AUC of 60% with low over�tting rates. However, a more extensive study on a larger
number of cases is necessary to establish the best performances of both techniques.
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4.3.2 Classi�cation of prediabetes via FRS and FT-IR �ngerprints
combined with clinical parameters

Despite promising, the performances of the FT-IR and FRS spectra of human blood plasma for the
detection of the di�erent types of prediabetes need to be compared with the e�ciencies of other
techniques and clinical parameters. Several easily measurable clinical parameters are indeed
connected with diabetes and prediabetes conditions, such as glucose, glycohemoglobin (HbA1c)
and insulin. In this section, the classi�cation e�ciency of the fasting plasma concentrations
of these three biomolecules, obtained via the clinical analysis of the KORA-FF4 samples, are
compared to the e�ciencies of FT-IR and FRS data for the classi�cation of the three prediabetes
types. In particular, this is performed via merging the concentrations of glucose, HbA1c or
insulin to the FT-IR and FRS data and see how they a�ect the classi�cation e�ciency: if the
classi�cations return similar AUCs as the IR data alone, it can be concluded that the clinical
parameters do not add any information about the prediabetic status to the IR �ngerprints; if
the AUCs are higher than the IR �ngerprints alone, it means that the clinical parameters are
better classi�ers than the spectroscopic data.

Figure 4.17a shows that, if the fasting insulin concentrations are merged to FT-IR full-spectra,
the AUCs of all conditions drop to 50% with large standard deviations. Therefore, insulin is
a confounding factor. If the FT-IR data are merged with the fasting HbA1c concentrations,
the e�ciencies increase up to 80% and 95% for IGT and IFG(/IGT) respectively. When both
insulin and HbA1c are merged with the FT-IR spectra the AUCs have very large standard
deviations, meaning that including insulin is again detrimental for the classi�cation. Merging
the fasting glucose concentrations with the FT-IR data returns AUCs up to 99% for prediabetes
conditions involving IFG. This is expected since the fasting glucose concentrations are the
parameters used to de�ne IFG cases. Therefore, any classi�cation of IFG and IFG/IGT including
this clinical parameter will necessarily result in the highest classi�cation e�ciency. This also
explains the high AUCs found including fasting HbA1c since it correlates with fasting glucose
concentrations (Figure 4.17a). On the other hand, IGT is de�ned from the OGTT test based on
the glucose concentration after the intake of this molecule in solution (not in fasting conditions).
Therefore, both fasting glucose and HbA1c can be used as classi�ers for IGT and are better
predictors than the FT-IR spectra.

The same conclusions can be achieved via the FT-IR reduced spectra (1000 - 1500 2<−1,
Figure 4.17b). FRS in the frequency domain delivers similar AUCs as FT-IR in the same spectral
coverage, with the main di�erence for the classi�cation of IFG, for which FRS performs slightly
better than FT-IR giving similar AUCs without clinical parameters as including insulin alone
or with HbA1c. However, merging the FRS data with these clinical parameters does not return
higher AUCs than the FRS data alone, therefore it can be concluded that insulin and HbA1c
do not add any information about IFG to the FRS data. In the time domain, the EMFs traces
merged with the clinical parameters return AUCs with very large standard deviations, except
for IGT: if the EMFs are merged with insulin concentration the AUC is unexpectedly high, even
higher than what has been reported in the literature for the detection of diabetes via insulin
alone [160]; if the EMFs are merged with glucose the AUC is as high as for the classi�cation
via the EMFs alone.
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Figure 4.17: SVM binary classi�cation of prediabetes conditions with matched NGT individuals on the
FT-IR and FRS data merged with clinical parameters of KORA-FF4 cohort. (a) The AUCs are reported
for the FT-IR data in full-spectra and (b) for the FT-IR data in the reduced spectral coverage (1000 -
1500 2<−1) and for the FRS data, both in the time and frequency domain (pDB in the legend; clinical
parameters: [ins], [HbA1c] and [glucose]). The lower AUCs found with insulin highlights that it is
not a good predictor. The AUCs are close to 99% for the classi�cation of the IR data merged with
glucose and HbA1c if IFG is present as expected since the fasting glucose concentration is the parameter
used to identify IFG and HbA1c correlates with it. IGT is identi�ed via OGTT, therefore the fasting
glucose concentration can be used as a predictor and it performs better than the FT-IR spectra. The same
conclusions can be drawn for FT-IR and for the FRS data, except for the AUCs found from the EMFs traces
for the detection of IGT: if the EMFs are merged with insulin concentration, the AUC is unexpectedly
high (higher than what has been reported in the literature for the detection of diabetes via insulin
alone [160]); if the EMFs are merged with glucose, the AUC is as high as for the classi�cation via the
EMFs alone highlighting that FRS has at least the same predicting power as fasting glucose. Acronyms:
SVM - support vector machine; AUC - area under the curve; FRS - �eld-resolved spectroscopy; pDT -
prediabetes; NGT - normal glucose tolerance; IGT - impaired glucose tolerance; IFG - impaired fasting
glucose; FRS(f) - FRS signal in the frequency domain; FRS(t) - FRS signal in the time domain; [ins] -
fasting plasma concentrations of insulin; [HbA1c] - fasting plasma concentrations of glycohemoglobin;
[glucose] - fasting plasma concentrations of glucose; OGTT - oral glucose tolerance test.
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To the best of our knowledge, this is the �rst analysis reporting the e�ciency of prediabetes
detection via IR spectra merged with clinical parameters. From the results reported, it can
be concluded that insulin is a confounding factor and merging its concentrations with the IR
data result in worse or unexpected classi�cation outcomes. Fasting plasma glucose and HbA1c
concentrations are better classi�ers than FT-IR for IGT, which is not surprising considering the
low AUC obtained via FT-IR. However, the binary classi�cations via FRS data, both in the time
and frequency domain, return higher classi�cation e�ciencies for IGT with similar AUCs with
and without merging the glucose concentrations to the data. This highlights that FRS is a better
classi�er than FT-IR and that it is at least as good as fasting plasma glucose concentration
alone.

The classi�cation e�ciency of plasma glucose, insulin and HbA1c have been reported in the
literature. In particular, the AUCs obtained from fasting capillary glycemia have been identi�ed
from a large cohort (> 4000 individuals) as 91 ± 1% and 75 ± 1% for the diagnosis of diabetes
and IGT respectively [161], comparable with what has been reported from the classi�cations
via FPG ad HbA1c (AUCs of 90% for diabetes and 65-70% for IGT) [162]. Compared to these
studies, the AUC found here for the classi�cation of the 288 diabetes cases with all controls is
similar (91 ± 3% for FT-IR and 88 ± 4% for FRS), while for the classi�cation of the 200 IGT cases
the AUC found via FRS is about 60%, but it is expected to reach higher values from the analysis
of a larger number of cases (section 4.2.3). The study [163] shows that fasting hyperinsulinemia
itself has a primary role in the pathogenesis of diabetes, but our study shows that fasting insulin
concentration is not a good predictor. The insulin sensitivity index at 0 and 120 minutes during
the OGTT test have been reported to return an AUC of 78.5% for the prediction of diabetes
[160], which is lower than what is found via IR spectroscopy, consistently with the observation
that insulin does not provide additional information to the spectra.

Di�erent techniques not based on IR spectroscopy have been applied to increase the
detection e�ciency of prediabetes compared to the tests currently available. Mass spectrometry
is one of these techniques and it has been reported to reach an AUCs of 84% for the detection of
IGT, considering 99 metabolites and 22 lipoproteins associated with the 2-hour glucose or insulin
concentrations [164], and of 87% for the detection of IFG from 23 metabolites, mostly amino
acids, carnitines and phospholipids [165]. Compared to mass spectrometry, IR spectroscopy
has the advantage of addressing all molecular constituents in one fast measurement. The
AUCs found via FRS spectroscopy are comparable for the detection of IFG, but lower for
IGT thus stressing the importance of addressing the best performances of this technique via
studies on larger cohorts (section 4.2.3) as well as to improve its performances via the planned
technical developments which will allow FRS to detect a larger dynamic range of molecular
concentrations and will broaden the spectral coverage so to cover an even larger spectral
coverage than the one of FT-IR.

One of the main limitations of these studies is that there is no way to access the actual
health status of an individual which is addressed via the current golden standard method. In
particular, all the studies listed above, including the one reported here, are based on the OGTT
outcomes. Despite OGTT is the golden standard for the detection of diabetes and prediabetes,
it has been reported to have a low reproducibility because of the in�uence of sampling timing,
diet, exercise, age, gastrointestinal factors and stress before the test [166]. The study [167]
reports the AUCs of FPG and OGTT taking as a baseline a clinical model based on age, gender,
ethnicity, BMI, blood pressure, FPG, HDL and family history of diabetes giving an AUC between
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80-85% for OGTT. Therefore, it is really di�cult to assess if the miss-classi�cations are due to a
wrong assessment of the test used or to the actual true status of the individual miss-classi�ed
via the OGTT test. Longitudinal studies of the same individuals over time might help to address
the actual predicting power of the OGTT test compared to di�erent techniques. To this purpose,
the KORA cohort, which has been monitored at di�erent time points, o�ers again a unique
advantage compared to other studies. The FT-IR and FRS analysis of the KORA-F4, the same
individuals as KORA-FF4 sampled about seven years before, will be performed in the near future
and compared with the presented data for the assessment of the e�ciency of IR spectroscopy
in a longitudinal fashion.

4.4 Concluding remarks
This chapter addresses the molecular changes induced by several common medical conditions
in human blood bio�uids via vibrational spectroscopy. Both FT-IR and FRS spectroscopy are
used to record a snapshot of all molecular constituents simultaneously of each sample to
compare the chemical composition of the human blood bio�uids of individuals symptomatic
to a target disease with the one of non-symptomatic individuals. Most of the analyses of
vibrational spectroscopy for the detection of diseases reported in the literature are on clinic-
based case-control cohorts, while in this chapter both FT-IR and FRS spectroscopy are applied
on a cross-sectional population-based cohort, KORA-FF4, which provides the advantage to
allow identifying the IR signatures of any condition or phenotype in the general population
represented.

In the �rst section, unsupervised algorithms and PCA have been applied on the whole
KORA-FF4 cohort to stress the impact of in�ammation and age on the between-person spectral
variability of FT-IR spectra already observed in the previous chapter for healthy individuals,
which is expected because of the high similarity between the loading vectors of healthy
individuals and the whole KORA-FF4 cohort. The origin of the between-person variability of
the general population is di�erent for the spectral range covered by FRS, between 1000 ad 1500
2<−1, which is mainly a�ected by gender and in�ammation, as seen for the healthy individuals,
as well as from diabetes.

Despite the large e�ect of common parameters on the between-person spectral variability,
it is possible to isolate the features of medical conditions via binary classi�cations. In partic-
ular, SVM is applied to identify the IR �ngerprints and diagnostic power of FT-IR and FRS
spectroscopy on human blood bio�uids for each endpoint and intermediate medical condition
known for KORA-FF4 and in the independent L4L cohorts. The comparison of independent
cohorts highlights the importance of matching cases and controls to isolate the disease-speci�c
signatures and classi�cation e�ciencies for each medical condition, otherwise a�ected by the
correlating parameters and comorbidities. For example, diabetes and hypertension correlate
with each other and are shown to mutually in�uence their SVM coe�cients if classi�ed with
unmatched controls. The importance of matching to address if a given condition in�uences the
IR �ngerprints of the biosample under investigation is highlighted by the binary classi�cation
of asthma with unmatched controls, for which the AUC is higher than 50%, and with matched
controls, which returns no separation showing that the separation seen with unmatched con-
trols arises from factors correlated with this medical condition and it is not speci�c to asthma.
This study stresses the importance of matching cases and controls to isolate disease-speci�c IR
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signatures, but the analysis of larger cohorts and more medical conditions are fundamental to
give a general validity to these conclusions and to de�ne a standard procedure for matching
cases and controls for each disease.

A drawback of matching is the reduced number of controls. The impact of the number of
cases and controls on the classi�cation e�ciency has been shown via learning curves reporting
the AUCs for increasing number of cases for the FT-IR spectra of diabetes and hypertension
in the KORA-FF4 cohort highlighting how the classi�cations with matched controls return
systematically lower classi�cation e�ciencies than with more numerous unmatched controls
because of the combined e�ect of reducing the unspeci�c contributions and of reducing the
number of controls. It has been shown that there is a minimum number of cases required to
reach robust classi�cation e�ciencies and IR signatures which depends on how strongly a given
medical condition impacts the IR spectra, namely on the corresponding AUC. In particular, the
study reported here shows that the minimum number of cases required to address the e�ciency
of SVM binary classi�cations of FT-IR human blood plasma �ngerprints is higher than 380 for
AUCs lower than 65%, as for hypertension, and about 130 for medical conditions giving high
AUCs, as for diabetes, which is comparable to the conclusions reported in the literature for
another classi�cation algorithm for the Raman spectra of single cells [150] which identi�es
75-100 cases as the minimum number to achieve good but not perfect classi�cations. These
conclusions might have a general validity for similar studies to address the reliability of AUCs
of 50%.

A high number of cases guarantees high statistical power to the study [144], namely robust
classi�cations and IR �ngerprints. It is therefore expected that the conditions with the most
numerous cases return also higher AUCs, which is the case for diabetes, hypertension and
high blood lipids. Stroke and heart attack cohorts count a small number of cases, but the
classi�cation e�ciencies are higher than 50% thus making the analysis of larger cohorts of
cases important to address the optimal classi�cation e�ciencies of these conditions and the
robust identi�cation of their IR signature which could potentially help to timely identify people
at high risk. The AUCs found for COPD, former cancer and asthma cohorts are close to 50%
and the comparison with the classi�cation e�ciency for the same number of hypertension
cases shows that for these three conditions a very large number of cases is needed to reach
robust classi�cations and are expected to return low AUCs. Therefore, IR �ngerprinting of
human blood plasma might not be suited for their classi�cation.

The asymptomatic intermediate condition of prediabetes is also investigated in this study
via both FT-IR and FRS spectroscopy on the KORA-FF4 cohort. In particular, three types of
prediabetes have been investigated: IFG, glucose impairment during fasting; IGT, glucose
impairment after the intake of a glucose solution; IFG/IGT, glucose impairment both in fasting
and not fasting conditions. Since the blood plasma samples of KORA-FF4 have been collected
in fasting conditions, the IFG signatures are stronger than for IGT and it is the most important
signature in the IFG/IGT condition.

The average AUCs identi�ed for the classi�cation of prediabetes via FRS are higher com-
pared to the ones found for FT-IR in the same spectral range, showing that FRS performs better
for the detection of these conditions. Moreover, by increasing the number of cases, higher
AUCs can be obtained for the optimal performances of FRS spectroscopy. The AUCs of the
endpoint medical conditions investigated here are comparable between FT-IR and FRS in the
same spectral coverage, which is a promising result for the current version of FRS a�ected by
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the day-to-day dependence discussed in the previous chapters. A major advantage of the time
resolution of FRS over frequency-resolved techniques is that it allows the identi�cation of the
disease-speci�c signatures, visible in the classi�cations with matched controls, in narrower
and separate temporal windows compared to the non-speci�c signatures due to factors that
correlate with the target condition.

Most of the medical conditions are a�ected by lifestyle and diet [137–139] and IR spec-
troscopy can be a powerful method for their timely and simultaneous diagnosis, as well as
monitoring, and could potentially help to identify individuals at high risk which can modify
their lifestyle preventing or delaying the medical condition. A molecular interpretation of the
IR �ngerprints of medical conditions is also attempted in this study, but it is beyond the purpose
of this dissertation as it would require the comparison with the analysis of the same samples
via techniques able to address the molecular changes, similarly to what is reported in the next
chapter for lung cancer for which the FT-IR spectra are compared with the mass spectrometry
analysis of the same samples. In particular, the spectral signature of diabetes is stronger at
low frequencies (1000 – 1250 2<−1) where the main contributions come from carbohydrates
and proteins’ glycosylations, in agreement with the well-known consequences of the glycemic
dysregulation on these biomolecules [129, 130]. The signatures of hypertension are spread
in the whole spectrum. Urea and creatinine have been reported as potential biomarkers for
hypertension in [136] and have both spectral features between 1000 and 1800 2<−1, but further
analyses are needed to establish the molecular origin of the �ngerprint of hypertension for
which this is, to the best of our knowledge, the �rst study addressing the corresponding FT-IR
signature in human blood serum and plasma. The main features responsible for the classi�-
cation of individuals with high blood lipids arise from proteins and lipids and are probably
due to lipoproteins [134], while the smaller contributions at lower frequencies could be due to
triglycerides and glycerol [140]. The strong signatures at higher frequencies found for heart
attack are mostly due to lipids (1750 – 3000 2<−1), in agreement with the increased risk of heart
attack for higher blood concentrations of low-density lipoprotein (LDL) [132, 133] and with the
comparison of the FT-IR spectra of HDL and LDL with the spectrum of human blood serum in
[134]. The observed lower fasting blood glucose of individuals with episodes of heart attack
[135] could explain the signature at low frequency. The IR signatures of stroke are also spread
on the whole spectral range, with the main contributions from proteins and lipids, probably
originating from lipoproteins [141], while the features at low frequency could be due to amino
acids [142] and organic and inorganic metal complexes [143] associated with a high risk of
stroke. Many studies reported in the literature want to address the best bio�uid between human
blood plasma for the detection of diseases [114, 127]. The study reported here on human blood
plasma (KORA-FF4 cohort) and serum (L4L cohort) via FT-IR spectroscopy does not identify
evident advantages of one bio�uid over the other for the detection of diabetes, heart disease,
hypertension and asthma, which can be due to the similar chemical composition of the two
blood bio�uids [128].

All prediabetes conditions return similar signatures in the frequency domain for FT-IR and
FRS �ngerprinting, but the molecular attribution of these signatures is not straightforward as
many biomolecules associated with IGT have spectral signatures that might correspond to the
ones identi�ed in this study. The metabolomics analysis of the KORA-S4 cohort reported in [159]
identi�es glycine (IR signatures between 1250 and 1750 2<−1), lysophosphatidylcholine (18:2)
(1000 - 1250 2<−1 and 1750 - 3000 2<−1) and acetylcarnitine (1000 - 1250 2<−1) as potential
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biomarker for the detection of IGT which provide an AUC close to the AUC obtained via
FRS spectroscopy. The spectral signature of IFG can be associated mainly with glucose and
glycosylated proteins, as it can be expected from the literature [168], but amino acids and
phospholipids might also contribute [165].

IR spectroscopy has been shown particularly promising for the detection of diabetes and
prediabetes conditions. MIR spectroscopy has been previously proposed as new methods for
the detection and monitoring of glucose concentration using the spectral signatures at 1082
and 1093 2<−1 [169]. The review [170] summarizes recent achievements in glucose monitoring
via IR spectroscopy of human tissues using QCL sources. However, [171] underlines the
hazard of addressing prediabetes only based on glycemia because it has a slow impact on the
cardiovascular risks due to diabetes [172] and addresses the importance of monitoring other
factors able to detect the asymptomatic condition of prediabetes. The IR �ngerprints reported
in this study show that the spectral signatures of IGT arise mostly from proteins and lipids,
highlighting the need to identify the roots of prediabetes beyond glucose concentration as this
can allow a timely detection even before the glucose impairment.

Similar studies based on vibrational spectroscopy for the detection of diabetes and predia-
betes in human blood bio�uids have been reported in the literature. For example, ATR-FTIR
analysis of human whole blood combined with XGBoost algorithms has been applied on a very
small number of cases (50 individuals) for the detection of diabetes, reporting classi�cation
e�ciencies close to what was observed in this study [131]. The same technique has been applied
for the detection of prediabetes (50 individuals) reporting higher classi�cation rates than what
has been seen in this study [118]. However, in [118] the three di�erent prediabetes conditions
are classi�ed together, which is fundamentally wrong since di�erent types of prediabetes
lead to di�erent changes in the chemical composition of blood [159], and the controls are not
matched to the cases so the analysis can potentially be in�uenced by other factors correlating
with prediabetes. A fundamental di�erence with [118] is that the study reported here aims at
comparing the e�ciencies of FT-IR and FRS spectroscopy and no algorithm optimization has
been performed for any medical condition.

To the best of our knowledge, the analysis of prediabetes via IR spectra merged with clinical
parameters is reported here for the �rst time highlighting that insulin is a worse classi�er than
IR spectroscopy, in agreement with the AUC of 78.5% for the prediction of diabetes reported
in [160], while fasting plasma glucose, and the correlated HbA1c concentrations, are better
classi�ers than FT-IR for the detection of IGT. However, FRS performs at least as fasting plasma
glucose concentration alone. In particular, the AUCs found here for the classi�cation of the 288
diabetes cases with all controls is similar (91 ± 3% for FT-IR and 88 ± 4% for FRS) as compared
to the values reported for fasting capillary glycemia (FCG) [161], FPG and HbA1c [162]. For the
classi�cation of the 200 IGT cases, the AUC found via FRS is lower than the one ones reported
for FCG [161], FPG and HbA1c [162], but it is expected to reach higher values from the analysis
of a larger number of cases.

Di�erent techniques have been applied to similar studies, such as mass spectrometry, which
has been reported to return an AUCs of 84% for the detection of IGT [164] and of 87% for the
detection of IFG [165]. The AUCs found via FRS spectroscopy in this study are comparable
for the detection of IFG, but lower for IGT, stressing again the importance of addressing the
best performances of this technique via studies on larger cohorts and to further boost the
classi�cation e�ciency of the FRS technique via detecting a larger dynamic range of molecular
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concentrations.
All the studies about diabetes ad prediabetes, including the one reported here, are based on

the OGTT outcomes, which have been reported to have a low reproducibility [166] and to have
an AUC of 80-85% compared to an independent clinical model [167]. It is therefore impossible
to assess if the miss-classi�cations are due to a wrong assessment of the technique used or to
the actual true status of the individual miss-classi�ed via the OGTT test. Longitudinal studies
like the KORA cohort might help to address the actual predicting power of di�erent techniques.
The FT-IR and FRS analysis will be performed in the near future on the samples collected
from the same individuals at a di�erent time point to assess the e�ciency of IR spectroscopy
longitudinally.

Ultimately, it can be concluded that, despite the large between-person spectral deviation
due to age and in�ammation, IR spectroscopy can detect the e�ect of diseases on human
blood bio�uids, particularly for diabetes, prediabetes, hypertension and high blood lipids.
Larger cohorts are necessary to address the best performances for the detection of prediabetes,
heart attack and stroke, while IR spectroscopy is probably not suited for the detection of the
signatures of asthma, COPD and former cancer patients. The classi�cation e�ciencies found
for IR spectroscopy are comparable to the classi�cations reported for other techniques of
vibrational spectroscopy as well as for other methods and are higher for FRS spectroscopy for
all prediabetes conditions. Moreover, the time resolution of the FRS traces allows identifying
time windows where the signal is disease-speci�c without the need for matching cases and
controls which reduces the number of controls and, therefore, the statistical power of the study.
Further developments aiming at improving the technical stability of the FRS setup, broaden the
spectral coverage and increase the dynamic range of concentration aim at further improving
the classi�cation e�ciencies of FRS spectroscopy.



Chapter5
Chemical fractionation and infrared

fingerprinting for cancer detection

This dissertation shows the potential of infrared spectroscopy for the detection of medical
conditions in di�erent settings. Infrared spectroscopy is a well-known technique increasingly
applied for this purpose, but the molecular origin of the �ngerprints of diseases mostly remains
unexplored. This is one of the main reasons for the slow improvements in the �eld and the low
acceptance of the method in clinics.

One of the main advantages of FT-IR spectroscopy is the direct access to all molecules in
human blood plasma/serum. The large dynamic range of molecular concentrations in blood
derivatives is an obstacle for the detection of minimal changes in the concentration of highly
abundant as well as of low abundant molecules. Proteins make up about 80% of all molecules of
human serum (slightly more in plasma), leaving about 11% of metabolites and 9% of inorganic
salts [173]. Of all the proteins, human serum albumin (HSA) constitutes alone about 50-60%
of the total concentration [174]. This large protein, mainly featuring alpha-helix secondary
structure, strongly contributes to the amide bands of all �ngerprints shown in chapters 3 and 4
and covers the signatures of less abundant proteins.

In this section, the potential of separating human serum and plasma in albumin-depleted and
albumin-enriched fractions is explored for a deeper understanding of the infrared �ngerprints
in pilot studies based on smaller cohorts than what has been considered in the previous chapters.
In particular, the signatures of three cancer types are investigated: lung (LCa), breast (BCa)
and prostate cancer (PCa). The fractionation of human blood bio�uids is expected to provide
a better understanding of the spectral signatures of less abundant molecules covered by the
features of albumin. The molecular understanding of these �ngerprints is better addressed
via comparing the FT-IR spectra with the analysis of the same samples via mass-spectrometry.
Before going into details about the analysis of cancer, the protocol used for the fractionation of
the human blood bio�uids samples is presented and the reproducibility is discussed.
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5.1 Fractionation protocol: steps and reproducibility

The large dynamic range of molecular concentration of complex biosamples such as human
blood plasma and serum is a drawback in the analysis via FT-IR spectroscopy as highly abundant
molecules have predominant signals that cover the signatures of less abundant molecules. A
solution to this problem is to reduce the chemical complexity of the bio-sample by splitting it
into di�erent fractions. In particular, for human blood bio�uids, the ideal solution would be
to separate metabolites from proteins and further separate the protein in albumin-enriched
and albumin-depleted protein fractions using a fractionation protocol compatible with IR
spectroscopy.

Commercial fractionation kits and most of the chemical approaches introduce contaminants
in relatively high concentrations and with low reproducibility [175, 176] or break molecular
bonds [177]. The cheapest commercial kits for depletion or fractionation are based on �lters,
membranes and columns which often contain or require the use of chemicals that contaminate
the samples [175], very inconvenient for spectroscopic applications, and are not fully optimized
for samples with such a high chemical complexity as human blood plasma and serum. Highly
sophisticated, reproducible and targeted antibodies-based kits are extremely expensive (> 1000
euros/sample), making their use even on small pilot studies costly [178]. Chemical fractiona-
tion by precipitation via alcoholic solutions is the method that suits the most spectroscopic
applications. The approach used in this chapter is an adaptation of Cohn´s method based on
the studies reported in [176, 179], which was designed during world war II under the urgent
need of plasma-based biological medicines like albumin and IgG [176, 180, 181], extremely
important for the treatment of di�erent diseases [182, 183]. Cohn´s method is a widely-used
protocol in the industry [184].

The developed protocol is performed at 4°C, always using the same number of samples
to ensure reproducibility, especially for the concentration stage (Figure 5.1a). Adding 5% of
NaCl 1.1 M solution and about 45% of high-grade ethanol induces the precipitation of most
proteins and lipids, leaving in solution only albumin, very few other proteins and most of the
metabolites apart for lipids. The albumin-depleted pellet is redissolved in water by vortexing it
for 90 minutes. The remaining proteins are precipitated by adding 55% of high-grade methanol
to the supernatant. The albumin-enriched pellet is redissolved in water by leaving it at 4°C
for 60 minutes. All three fractions obtained are then placed in a vacuum concentrator for 3
hours to reduce the dilution and e�ectively remove the alcoholic components. The protocol
just described provides more than the simple albumin-depleted protein fraction, allowing the
isolation of a metabolite fraction without introducing unwanted molecules. However, the
albumin-depleted protein fraction is not entirely redissolved in water; the residual pellet has
been stored at -80°C for future analysis.

The technical reproducibility of the developed precipitation protocol has been tested via
FT-IR spectroscopy on 8 serum quality controls replica (QC, intra-sample) and the performance
on real human plasma samples has been tested on 40 individuals (between-person), 20 lung
cancer patients and 20 cancer-free controls matched for average age, gender and smoking
status. The FT-IR spectra of each fraction in lung cancer patients (Figure 5.1b ) shows that the
albumin-enriched fraction has the highest intensity among the fractions with a similar spectrum
as for the full human plasma, which is expected because of the higher concentration of albumin.
The spectra of the two protein fractions are similar, which stresses the importance of separating
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the high abundant albumin from the other proteins to better resolve the two signatures. The
metabolite fraction has a di�erent average spectrum with comparable intensity to the one of
the albumin-depleted fraction. The sum of the average absorption spectra of the three fractions
reconstructs the average spectrum of full plasma and highlights that the usual attribution of
the spectral signatures to di�erent biomolecules (Table 2.1) is an over-simpli�cation since the
contributions from proteins are relevant also in the spectral region attributed to metabolites,
and vice versa [62].

Figure 5.1: Outline and characterization via FT-IR spectroscopy of the proposed fractionation protocol.
(a) The schematic outline of the fractionation protocol is depicted: 5% of NaCl 1.1 M and 45% of high-grade
ethanol induce the precipitation of most proteins and lipids (HSA-deleted protein fraction), redissolved
in water by vortexing it for 90 minutes; 55% of high-grade methanol leads to the precipitation of the
remaining proteins (HSA-enriched pellet), also redissolved in water, leaving mostly metabolites in
solution (metabolite fraction); the three fractions are placed in a vacuum concentrator for 3 hours to
reduce the dilution and e�ectively remove the alcoholic components. (b) The FT-IR spectra of full human
blood plasma, of the corresponding fractions and the sum of the spectra of each fraction are shown
for 20 LCa patients. The intensity is higher for the HSA-enriched fraction, according to the higher
concentration of HSA, which has a similar spectrum as for the HSA-depleted fraction. The metabolite
fraction has a di�erent average spectrum of comparable intensity to the one of the HSA-depleted
fraction. (c) The corresponding total standard deviation of the spectra is reported for the 20 LCa cases
(between-person) and 8 replicas of a serum QC (intra-sample) show that the most abundant molecules
address the highest variability in the samples. (d) The between-person spectral variability is shown also
resolved in the frequencies. Acronyms: HSA - albumin; LCa - non-small cell lung cancer; QC - quality
control.
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The standard deviation recorded for the FT-IR spectrum of each fraction is calculated and
scaled according to the respective dilution (Figure 5.1c, d). The sum of the spectral standard
deviation of each fraction obtained from QC replicas is higher than the spectral standard
deviation of the full serum samples (Figure 5.1c, yellow bars), showing that the protocol
increases the measurement error as it is expected since any sample manipulation inevitably
increases the technical noise. However, the noise introduced by the fractionation protocol has
a low impact on the standard deviation of the 20 lung cancer cases, for which the main source
of noise is the between-person spectral variability (Figure 5.1c, d). The largest between-person
spectral variability among the 20 lung cancer cases comes from the albumin-enriched fraction,
in agreement with the high variability of the protein signatures observed for the KORA-FF4
individuals (section 3.2.2 and 4.1) and with the in�uence of age and in�ammation on these
signatures, both connected with a down-regulation of albumin [185, 186]. The sum of these
standard deviations reproduces the variability of full plasma samples proving that the additional
noise introduced with the fractionation is negligible compared to the variability due to the
biological di�erences between individuals. The higher source of variability in the metabolite
fraction is due to the vibrational signatures of EDTA, the anti-coagulant used for the withdrawal
of the blood plasma samples, which will be shown to be informative for the detection of cancer.
The high variability associated with EDTA can be expected based on of the multiple factors
that can in�uence its concentration in the blood plasma, such as the variability in the tubes’
coatings and of the volume of blood in the tube.

The molecular composition of each fraction can be tackled only by combining the spec-
troscopic �ngerprints with a technique able to provide molecular-speci�c information [187].
A variety of omics techniques have recently emerged for in-depth investigation of several
bio�uids [188–192]. In particular, high-throughput mass-spectrometry proteomics for the
analysis of human blood plasma [193] has been used to analyze the same plasma samples
here investigated via FT-IR spectroscopy and it has been adapted and applied also to the
analysis of the corresponding albumin-depleted fractions. Figure 5.2a shows the average
mass-spectrometry intensities for the �rst most abundant proteins for the full plasma and the
albumin-depleted protein fraction of the 20 lung cancer patients and of the 20 controls together.
From the mass-spectrometry intensity, it can be calculated that the concentration of albumin
in the albumin-depleted protein fraction is reduced to about 15% (Figure 5.2b), both in the
real samples ad in the 8 QC replicas, meaning that the proposed fractionation protocol has an
albumin-depletion e�ciency of 85%. Mass-spectrometry shows that 99% of the dry mass of the
albumin-enriched protein fraction count mainly 3 proteins: albumin (ALB), haptoglobin (HP)
and alpha-1-acid glycoprotein (ORM1) [62]. Mass-spectrometry also shows that the applied
fractionation protocol adds only marginal noise to the instrumental one, as described in [62]
and observed via the FT-IR between-person spectral variability.
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Figure 5.2: Mass-spectrometry proteins intensities of the full plasma samples of 40 individuals, the 8
QC full serum replicas and the respective HSA-depleted protein fractions. (a) The average MS intensities
are reported for the most abundant proteins of full plasma and HSA-depleted protein fraction for the 20
LCa cases and the 20 controls in absolute average values. (b) The mass-spectrometry intensities of the
most abundant proteins found in the HSA-depleted protein fraction are reported in percentage with
respect to the intensities observed in the full plasma samples and are compared with the same values
found for the 8 QC serum replicas. The proteins are labeled using the respective gene. The MS intensity
of HSA (gene: ALB) found in the HSA-depleted protein fraction is 15% compared to the MS intensity
found in the full serum and plasma samples showing that the fractionation protocol applied provides an
HSA-depletion e�ciency of about 85%. Among the most abundant proteins, three are depleted with the
applied fractionation protocol, in particular HSA (ALB), haptoglobin (HP) and alpha-1-acid glycoprotein
(ORM1), which make up the main constituents of the HSA-enriched protein fraction. Acronyms: QC -
quality control; HSA - human serum albumin; MS - mass-spectrometry; LCa - non-small cell lung cancer;
ALB - gene correspondent to the human serum albumin; HP - gene correspondent to the haptoglobin;
ORM1 - gene correspondent to the alpha-1-acid glycoprotein.

In summary, in this section, a revisited version of Cohn’s method is presented step by
step for the depletion of the most abundant proteins in human blood serum and plasma. The
fractionation protocol is applied on human serum QC replicas, where it shows to increase
the technical noise of the FT-IR spectra compared to full serum samples. However, the noise
introduced by the fractionation procedure is lower than the between-person spectral variability
as shown via the FT-IR measurements of the human blood full and fractionated plasma of 40
individuals and con�rmed via the mass spectrometry measurements of the same samples. The
proposed protocol is one of the few methods suited for spectroscopy-based studies because
it does not permanently introduce unwanted chemicals in the sample. Mass-spectrometry
has helped to address both the performance and the molecular e�ciency and make-up of the
protein fractions. In particular, the fractionation protocol allows the separation of less abundant
proteins and metabolites from three of the most abundant proteins which potentially mask the
signatures due to the molecular changes of the less abundant biomolecules in the FT-IR spectra
of full bio�uids. The protocol is ultimately proved to be e�cient, reproducible and suited for
both human blood plasma and serum samples. The bene�ts of combining fractionation and IR
�ngerprinting are explored in pilot studies for the classi�cation of three cancer entities in the
next section.
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5.2 Characterization of human blood bio�uids via IR
spectroscopy and chemical fractionation

Human bio�uids cover a wide dynamic range of concentration and the signature of highly
abundant molecules can cover the one from the low abundant ones. A chemical fractionation
protocol has been proposed to separate the biomolecules into three fractions and the e�ciency
and reproducibility have been addressed in the previous section. The advantages of combining
IR spectroscopy with chemical fractionation are here tested on the human blood serum samples
of 334 individuals to address the molecular nature of the spectral variations induced by three
cancer entities (Tables 5.1, 5.2 and 5.3): non-small-cell lung cancer, which counts both ade-
nocarcinoma and squamous carcinoma patients, are classi�ed with lung hamartoma patients
(a benign condition), chronic obstructive pulmonary disease (COPD) and non-symptomatic
individuals (controls); breast cancer cases are classi�ed with non-symptomatic individuals;
prostate cancer cases are classi�ed with benign prostatic hyperplasia patients (BPH) and non-
symptomatic individuals. The average age and gender of the controls are matched to the
corresponding cases, while the smoking status is matched only for the lung cancer cohorts.

Lung cancer
Cohort n. individuals Age Males/Females Smokers / not

active smokers
Lung cancer 53 68.8 ± 10.2 0.7 0.9
Hamartoma 34 62.7 ± 14.4 0.8 0.9
COPD 26 61.9 ± 15 0.5 0.2
Controls 31 58.6 ± 11.4 0.8 0.7

Table 5.1: Lung cancer detection via chemical fractionation and IR spectroscopy of human blood serum:
description of cases and controls. Acronyms: COPD - chronic obstructive pulmonary disease.

Breast cancer
Cohort n. individuals Age
Breast cancer 41 63.7 ± 11.7
Controls 39 63 ± 11.5

Table 5.2: Breast cancer detection via chemical fractionation and IR spectroscopy of human blood
serum: description of cases and controls.

Prostate cancer
Cohort n. individuals Age
Prostate
cancer

36 60.5 ± 11.2

BPH 38 62.4 ± 10.4
Controls 35 59.7 ± 12.9

Table 5.3: Prostate cancer detection via chemical fractionation and IR spectroscopy of human blood
serum: description of cases and controls. Acronyms: BPH - benign prostatic hyperplasia.
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Both FT-IR and FRS spectroscopy are applied on full human serum samples as well as on
the three corresponding fractions. The advantage of fractionation is that their IR spectra help
to address the molecular origin of the �ngerprints recorded for full serum samples. The FT-IR
and FRS data are �rst analyzed for the control classes (individuals without cancer) to gain
a molecular understanding of the spectral signature of gender. SVM classi�cations are then
reported for the full serum samples and the three fractions to address their role in the spectral
signature of lung, breast and prostate cancer.

5.2.1 FT-IR �ngerprinting of individuals without cancer
Before looking at the binary classi�cation of cancer, the FT-IR and FRS data of the full serum and
the corresponding fractions are �rst analyzed for the control classes, namely for all individuals
without cancer, to investigate the role of each fraction in the binary classi�cation of gender and
address the potential of fractionation in combination with FT-IR �ngerprinting. Additionally,
the IR spectra of the serum samples of the 181 benign and non-symptomatic individuals
considered are inspected with the spectra of the plasma samples of the 20 controls analyzed in
section 5.1) to qualitatively compare the molecular information carried by the two bio�uids.

The SVM binary classi�cation of gender on the FT-IR spectra of the full serum samples
and the corresponding three fractions of the 181 controls shows that the metabolite and the
albumin-depleted protein fractions are the most important in the classi�cation of males and
females. In particular, both fractions return an AUC around 73%, while the albumin-enriched
protein fraction returns no contribution to the classi�cation (Figure 5.3), a conclusion that can be
robustly achieved only by splitting the di�erent contributions. The full bio�uids deliver higher
classi�cation e�ciencies than the fractions because they carry the additional information of the
interaction between the molecules separated in the three fractions and, more importantly, they
preserve the information of the residual insoluble pellet lost during fractionation. However,
despite the fractions return lower AUCs, they provide a deeper molecular understanding of the
signatures observed in full serum.

Figure 5.3: SVM binary classi�cation of gender on the FT-IR spectra of full serum and the three fractions
of individuals without cancer. The metabolite and albumin-depleted protein fractions return comparable
AUCs, while the HSA-enriched fraction does not contribute to the classi�cation. Acronyms: SVM -
support vector machine; AUC - area under the curve; HSA - human serum albumin.
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The analysis of the fractions of human blood plasma and serum allows to better address the
molecular origin of the di�erent IR spectra of these bio�uids (Figure 5.4). However, since the
individuals of the plasma and serum cohorts are di�erent, this comparison is just qualitative.
The FT-IR spectra of full plasma and serum show small di�erences. The spectra of the albumin-
enriched and the albumin-depleted fractions are unexpectedly comparable for the two bio�uids.
The main di�erence is due to the presence of 4K-EDTA salt in the tubes used to draw the
blood, an anticoagulant agent that forms stable complexes with calcium ions preventing it from
interacting with the proteins responsible for coagulation, such as �brinogen [194]. As a result,
plasma retains a larger amount of coagulation proteins like �brinogen, almost completely
missing in serum [195]. The process a�ects also the composition of metabolites [128]. The
high similarity found here between the two bio�uids can be due to the low water solubility
of the key proteins present in di�erent amounts in serum and plasma, which is the case for
�brinogen, which can potentially be lost in the insoluble pellet during fractionation. From
this comparison, it can be deduced that the metabolite fraction retains the largest di�erence
between the two bio�uids, in particular, due to the presence in the plasma samples of the EDTA
complexes with the metal ions of the bio�uids [196].

Figure 5.4: FT-IR spectra of full serum and plasma and the respective fractions. The spectra of full serum
and plasma are not scaled, while the spectra of the three fractions are all scaled for the same factor in each
panel. The spectra of full serum and plasma, as well as of the respective HSA-depleted and HSA-enriched
protein fractions, are similar between the two bio�uids. The main spectral di�erence is found in the
metabolite fraction and it is due to the presence of EDTA complexes with the metal ions present in the
plasma samples. Acronyms: HSA - human serum albumin; EDTA - ethylenediaminetetraacetic acid.
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It has been observed that the largest between-person spectral variability associated with
the albumin-enriched fraction (Figure 5.1c, d) is in agreement with the high variability of
the protein signatures observed for the KORA-FF4 individuals (section 3.2.2 and 4.1) a�ected
by age and in�ammation and addressed by the �rst two principal components. The binary
classi�cations of gender on individuals without cancer via the FT-IR spectra of the three
fractions show that the albumin-enriched fraction does not contribute to the classi�cation and
that the albumin-depleted protein fraction and the metabolite fraction return similar AUCs.
This agrees with the observation that, for the KORA-FF4 population, gender does not correlate
with PC1 and PC2, but rather with the principal components addressing the spectral signatures
at lower frequencies (PC4 and PC5, section 4.1), which can be attributed to carbohydrates,
expected to be in the metabolite fraction, or protein’s glycosylation, expected to contribute
to the signal of the albumin-depleted protein fraction. This observation suggests that similar
conclusions achieved via chemical fractionation can be obtained using PCA to disentangle the
contributions of di�erent classes of biomolecules in each component. The analysis of the three
fractions has ultimately allowed the comparison of the signatures of human blood serum and
plasma, highlighting that EDTA is responsible for the main spectral di�erence between the
two bio�uids, which constitute the main di�erence between the two bio�uids in the detection
of cancer via IR spectroscopy, addressed in the next section.

5.2.2 FT-IR �ngerprinting for cancer detection

Breast cancer and prostate cancer are the most common non-cutaneous cancer in women and
men worldwide [197, 198] and non-small-cell lung cancer is among the highest cancer-related
cause of deaths in both genders [199]. Several research studies have been trying to identify
blood biomarkers for their timely diagnosis [200–209]. In parallel, the research is growing
around the use of vibrational spectroscopy of blood bio�uids for the detection of non-small-cell
lung cancer [117, 210], breast cancer [17, 211, 212] and prostate cancer [213] since such a simple
method would be ideal for the time and cost-e�cient cancer detection in clinical settings [214].
In this section, a pilot study based on non-small-cell lung cancer, breast cancer and prostate
cancer is presented to address the molecular nature of the FT-IR �ngerprints of the three cancer
entities in human blood serum via applying the fractionation protocol discussed.

The cases and controls analyzed for the three cancer entities are listed in Tables 5.1, 5.2
and 5.3. To start with, the FT-IR signature of non-small-cell lung cancer in human blood serum
is �rst addressed and compared with the spectral signature found in human blood plasma in
the pilot study used to characterize the e�ciency of the fractionation protocol (section 5.1).
Figure 5.1b shows the absorption spectra of non-small-cell lung cancer in full and fractionated
human blood plasma and Figure 5.5 shows the corresponding di�erential �ngerprints, de�ned
as the di�erence between the average spectrum of the 20 cases and the average spectrum
of the 20 controls. The di�erential �ngerprints of non-small-cell lung cancer show that the
signature in full plasma samples is the result of the lower concentration of albumin and the
higher concentration of the proteins in the albumin-depleted fraction for the cases compared
to the controls, in agreement with what reported in the literature [215–217].
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Figure 5.5: Di�erential �ngerprints of LCa in the FT-IR spectra of full human blood plasma samples and
corresponding fractions. The di�erential �ngerprints are calculated for the 20 cases and respective 20
controls described in section 5.1 and show that the concentration of HSA is lower while the concentration
of the proteins in the HSA-depleted fraction is higher for the cases compared to the controls. The red
shaded area shows the standard deviation of all cases in full plasma. Acronyms: LCa - non-small-cell
lung cancer; HSA - human serum albumin.

The average AUCs obtained for the classi�cation of non-small-cell lung cancer are compa-
rably high in plasma and serum and have smaller standard deviations in serum compared to
plasma because of the higher number of cases (Figure 5.6a). The AUCs of the fractions show
that the main signature of non-small-cell lung cancer is due to the albumin-enriched protein
fraction, which returns the same AUC as in full serum. Slightly smaller AUCs are recorded for
the albumin-depleted protein fraction. The metabolite fractions return signi�cantly di�erent
AUCs for the two bio�uids: 60% in serum and 90% in plasma. The main di�erence is due to the
presence of EDTA in the plasma samples, as can be observed in Figure 5.4. Even though EDTA
is dissolved from the coating of the tubes used during the blood donation of the plasma sam-
ples, it is signi�cantly larger in the metabolite fraction of non-small-cell lung cancer patients
suggesting a higher concentration of ions that can interact with this molecule to form stable
complexes, thus increasing its solubility in the bio�uid. In particular, the calcium ions have
been reported in the literature to be present in higher concentrations in the blood bio�uids of
several cancer entities, among which non-small-cell lung cancer, breast cancer and prostate
cancer [218]. Therefore, a higher classi�cation e�ciency of the metabolite fraction obtained
for the human blood plasma compared to serum can be expected also for other cancer entities.

The serum-based cohorts are large enough to compare the classi�cation of non-small-cell
lung cancer with non-symptomatic and benign individuals (namely, a�ected by Hamartomas
and COPD conditions) separately. The main di�erence expected between the two control
groups is the potentially high in�ammation levels of benign individuals. In particular, for the
individuals considered, the highest serum CRP concentration is 2<6/! for healthy individuals,
62.5 <6/! for individuals a�ected by Hamartomas and COPD conditions and 183.2 <6/!
for non-small-cell lung cancer patients. The individuals a�ected by Hamartomas and COPD
conditions (the benign controls) are more appropriate controls for the classi�cation of cancer
because they present symptoms and physiological conditions closer to the ones of the target
condition, essential for clinic applications. As a consequence of the higher in�ammation levels
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due to the benign condition, the AUCs obtained for the classi�cation of non-small-cell lung
cancer patients with the benign individuals are lower compared to the AUCs obtained for the
classi�cations with non-symptomatic individuals (Figure 5.6b). In particular, the three main
proteins identi�ed in the albumin-enriched fraction, namely albumin, haptoglobin and alpha-1-
acid glycoprotein (section 5.1), are associated with acute in�ammation [219–221]. Therefore,
the albumin-enriched protein fraction encodes for the in�ammatory e�ects of non-small-cell
lung cancer and it is, indeed, the only fraction returning a di�erent AUC for the classi�cations
with benign controls compared to non-symptomatic individuals. Therefore, this study shows
that the depletion of the albumin-enriched protein fraction can be bene�cial to remove the
non-speci�c in�ammatory response and isolate a more speci�c signature of the non-small-cell
lung cancer condition. Ultimately, this study shows that the combination of fractionation, FT-IR
spectroscopy and mass-spectrometry gives access to the molecular origin of non-small-cell
lung cancer spectral signature which can be connected with at least 12 of the most abundant
proteins [62], quickly and e�ciently detected via infrared �ngerprinting.

Figure 5.6: SVM binary classi�cation of LCa on the FT-IR spectra of full serum and plasma and the
three respective fractions. (a) The AUCs are reported for the classi�cation of LCa with non-symptomatic
and benign controls in full human blood plasma and serum and the respective fractions. The main
di�erence between the two bio�uids is in the metabolite fractions which return average AUCs of bout
60% and 90% in serum and plasma respectively. (b) The AUCs are reported for the classi�cation of LCa
with non-symptomatic and benign controls separately for the FT-IR spectra of full human blood serum
and the respective fractions. The main di�erence is encoded in the HSA-enriched protein fraction which
is a�ected by the in�ammatory response of LCa. Acronyms: SVM - support vector machine; AUC - area
under the curve; LCa - non-small-cell lung cancer; HSA - human serum albumin.
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The serum samples of individuals a�ected by breast and prostate cancer are analyzed in
the same way as non-small-cell lung cancer and the results found for the three cancer entities
are compared. The di�erential �ngerprints in full plasma show a higher IR signature for
non-small-cell lung cancer compared to breast and prostate cancer (Figure 5.7a).

Figure 5.7: Di�erential �ngerprints of non-small-cell lung, breast and prostate cancer for the FT-IR
spectra of full human blood serum and corresponding fractions. (a) The di�erential �ngerprints of
the normalized absorption spectra of full serum are reported for the three cancer entities calculated
with respect to the average spectra of the corresponding non-symptomatic controls. The signatures are
di�erent for the three cancer entities showing that the IR features of LCa cases are stronger than for
BCa and PCa relatively to their respective controls. (b) The di�erential �ngerprints of not-normalized
FT-IR spectra of the HSA-enriched fractions (inset: normalized), (c) the HSA-depleted fractions and (d)
the metabolite fractions of the three cancer entities calculated with respect to the average spectra of
the corresponding non-symptomatic controls. The relative concentration of proteins and metabolites
in the three fractions compared to the respective controls are di�erent for the three cancer entities
(arrows). The normalized spectra of the HSA-enriched protein fractions return comparable di�erential
�ngerprints for the three cancer entities with the same signatures found for in�ammation in section 4.1,
highlighting that this fraction carries the general in�ammatory response of cancer. The black areas are
the standard deviations of all non-symptomatic controls together and the red areas are the standard
deviations of all the cancer cases. Acronyms: LCa - non-small-cell lung cancer; BCa - breast cancer; PCa
- prostate cancer; HSA - human serum albumin.

The di�erential �ngerprints calculated from not-normalized FT-IR spectra show the e�ect of
di�erent cancer types on the total concentration of the biomolecules in each fraction. In partic-
ular, the albumin-enriched fractions have small signatures for both breast and prostate cancer
compared to non-small-cell lung cancer, which shows the lower concentration of albumin in
the cases compared to the controls (Figure 5.7b). Normalizing the spectra before the calculation
of the di�erential �ngerprints reduces the impact of absolute concentrations in favor of relative
abundances and, for the albumin-enriched protein fraction, returns comparable features for the
three cancer entities (Figure 5.7b, inset). The signature of the albumin-enriched protein fraction
is the same attributed to the albumin-to-globulin ratio (AGR) typical of in�ammation (section
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4.1, Figure 3.10b), which con�rms the connection of the albumin-enriched protein fraction with
in�ammation seen in the classi�cation of non-small-cell lung cancer with non-symptomatic
and benign controls separately (Figure 5.6).

The albumin-depleted fractions of breast and prostate cancer show an opposite trend
compared to non-small-cell lung cancer, showing an overall lower protein concentration in
the cases compared to the controls (Figure 5.7c). The di�erential �ngerprints of the metabolite
fractions have comparable intensity in the carbohydrate and protein glycosylation region
(1000 - 1250 2<−1), showing higher concentration in the plasma samples of cases compared
to the controls for non-small-cell lung and breast cancer, with an opposite trend for prostate
cancer (Figure 5.7d). Both breast and prostate cancer have comparable signatures at longer
wavenumbers in the FT-IR signature of the corresponding metabolite fraction. The IR analysis of
the fractions returns a better molecular understanding of the IR signature of the full plasma and
serum samples, highlighting the importance of in�ammation and the di�erent concentration of
albumin, the other serum proteins and of metabolites between the cancer patients and controls
in the three cancer entities. The classi�cation e�ciencies are higher for non-small-cell lung
cancer compared to breast and prostate cancer for the full serum and the three fractions (Figure
5.8), highlighting that IR �ngerprinting is potentially better for the detection of this cancer
entity. All the average AUCs found for prostate cancer are slightly higher than the values
found for breast cancer, but the standard deviations are too high to draw robust conclusions for
which the analysis of larger cohorts is needed (see section 4.2.3). From the average AUCs, it is
expected that the metabolite fraction has an important role compared to the protein fractions in
the binary classi�cation of both prostate and breast cancer which, according to what observed
for non-small-cell lung cancer (Figure 5.6a), can potentially be better classi�ed in human blood
plasma through the signature of the calcium complexes with EDTA.

Figure 5.8: SVM binary classi�cation of LCa, BCa and PCa on the FT-IR spectra of full serum and
the three respective fractions. The higher AUCs found for LCa for the full serum samples and the
corresponding fractions show that FT-IR can potentially perform better in the detection of this cancer
entity. The AUCs found for the classi�cations of PCa are slightly higher than the AUCs found for
BCa, but the standard deviations are too large to get robust conclusions and the analysis of more cases
is required. From the average AUCs, the role of metabolite fraction is expected to be important for
the detection of BCa and PCa, expected to be higher in blood plasma according to what observed
for LCa (Figure 5.6a). Acronyms: SVM - support vector machine; AUC - area under the curve; LCa -
non-small-cell lung cancer; BCa - breast cancer; PCa - prostate cancer; HSA - human serum albumin.
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In summary, the pilot studies on the three cancer entities highlight the potential of fraction-
ation for a better molecular understanding of the IR signatures of non-small-cell lung, breast
and prostate cancer. The sum of the di�erential �ngerprints of the three fractions reconstruct
perfectly the di�erential �ngerprint of full plasma, showing that the additional technical noise
introduced by the applied fractionation protocol does not extensively a�ect the IR signature
of the conditions investigates, which agrees with the observation that the technical noise of
fractionation is negligible compared with the between-person spectral variability (section 5.1).
Therefore, the relevant biological information underneath the signature of non-small-cell lung
cancer is retained in the fractions, as it is expected to be the case for all cancer entities also
in the serum samples. Chemical fractionation allows comparing the molecular information
of non-small-cell lung cancer in human blood serum and plasma showing that plasma can
potentially provide higher classi�cation e�ciencies because of the signature of the EDTA-ion
complexes in the metabolite fractions, expected to be true for all cancer entities for which the
concentration of this ion has been reported to be higher compared to the controls [218]. The
analysis of the three fractions has allowed to isolate the main proteins a�ected by the in�am-
matory response of cancer in the albumin-enriched protein fraction, which returns the highest
AUCs for the classi�cation of non-small-cell lung cancer compared to the other fractions as well
as to the other cancer entities. For breast cancer, metabolite fraction returns the highest AUC
among the fractions, while for prostate cancer the three fractions return comparable AUCs.
Because of the important signature of the metabolite fraction in both breast and prostate cancer,
their classi�cation e�ciencies are expected to be higher in human blood plasma compared to
serum, as observed for non-small-cell lung cancer. Despite the fractionation protocol requires
about 8 hours thus introducing a time-consuming step in the IR �ngerprinting analysis, it
provides a better molecular understanding of the IR signature of the full plasma and serum
samples showing how the concentration of albumin, the other serum proteins and metabolites
change in the target condition compared to the respective controls. Moreover, it allows to
chemically separate the proteins mainly connected with in�ammation, which make up the
albumin-enriched protein fraction, from the other biomolecules thus separating the non-speci�c
signature of in�ammation from the more disease-speci�c molecular changes.

5.2.3 Comparison of FT-IR and FRS �ngerprinting for cancer
detection

In the previous chapter, the advantages of fractionation for a deeper molecular interpretation
of the IR signature of three cancer entities have been shown via FT-IR spectroscopy. Similar to
what was done for the common medical conditions and parameters on the KORA-FF4 cohort,
the performances of FT-IR are compared with the ones of FRS spectroscopy. In particular, in
this section, the data obtained with the current FRS set-up are compared with what reported for
the FT-IR spectroscopy for the analysis of the full serum samples and the three corresponding
fractions of non-small-cell lung, breast and prostate cancer to address the potential advantages
of fractionation in the analysis via FRS spectroscopy.

The analysis presented for the FT-IR spectra in the section above is �rst performed in the
same spectral coverage as FRS (1000 - 1500 2<−1) for the comparison. The AUCs obtained for
FT-IR in the reduced spectral coverage are comparable with what was observed for the binary
classi�cations of FT-IR in full-spectra within the standard deviations, showing that most of the
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molecular changes can be detected in this spectral range (Figure 5.9). It is, however, probable
that the discrepancies between the AUCs found for the reduced and the full spectral coverage
are more visible for a larger number of cases because this would reduce the standard deviation
of the AUCs.

Figure 5.9: SVM binary classi�cation of LCa, BCa and PCa on the FT-IR full and reduced spectral
coverage of full serum and the three respective fraction. The AUC obtained from the SVM binary
classi�cations of LCa, BCa and PCa with matched non-symptomatic individuals on the FT-IR spectra of
full serum and the three corresponding fractions are comparable within the standard deviation for the
reduced (1000 - 1500 2<−1) and the full spectral coverage. Acronyms: SVM - support vector machine;
AUC - area under the curve; LCa - non-small-cell lung cancer; BCa - breast cancer; PCa - prostate cancer;
HSA - human serum albumin.

Before getting into the details of the FRS analysis, it is important to optimize the prepro-
cessing and identify the protocol able to minimize the technical noise, similarly as done in
section 3.1.2. The FRS measurements of the three cancer entities have been performed one
year before the KORA-FF4 measurements with similar experimental settings but with less
diagnostic to monitor the laser �uctuations in real-time and with a worse synchronization
between the delay stage and the chopper trigger which results in the walk-o� of the time traces
measured consecutively. The walk-o� is corrected via the global-T-position (GT), which centers
the maximum values of all reference water traces and the sample time traces to a common zero.
The technical noise is measured as the standard deviation of QC replicas (section 3.1.3). For
the EMFs of the full serum samples, the Hilbert centering (HC) and the GT transformation are
applied to center the data, then the echo correction (EC) is applied to reduce the noise due to
the back refection at the EOS crystal around 1.5 ?B followed by standardization (ST), necessary
to compensate for the changes of the exciting laser pulse which a�ect the molecular signal
in the whole time trace (Figure 5.10a). Because of the higher instability of this pilot study, a
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di�erent optimal preprocessing is found for each fraction (Figure 5.10b). The technological
improvements on the FRS set-up performed during the year between the measurement of this
pilot study and the KORA-FF4 samples have been able to provide a more robust and reproducible
technique, without which long measurements like the KORA-FF4 (over three months) would
have not been possible.

Figure 5.10: Optimal preprocessing for the EMFs of LCa, BCa and PCa serum samples and the three
respective fractions. (a) The technical noise, expressed as the standard deviation of the EMFs of QC
replicas, is reported for the measurements of full serum for di�erent preprocessing protocols. The
HC and GT transformation center the time traces to a common zero; EC reduces the noise due to the
back-re�ection at the EOS crystal around 1.5 ?B; ST compensate for the �uctuations of the exciting
pulse in the whole temporal range. (b) The technical noise of the EMFs of full serum is compared
with the technical noise of the three fractions of QC replicas and the KORA-FF4 cohort after applying
the optimal preprocessing, measured one year later in more robust experimental settings. The best
preprocessing found and applied on the FRS measurements of each sample type is reported in the
legend. The technical noise found for the three fractions is lower compared to the one obtained for the
measurements of full serum ad plasma because of the lower chemical complexity of the fractions. The
need for di�erent preprocessing protocols and the higher technical noise recorded for the full serum
samples compared to the one of the KORA-FF4 FRS measurements show that the experimental settings
have improved considerably during the one year between the two measurement campaigns, necessary
for long measurements like the KORA-FF4 campaign. Acronyms: EMF - electric-�eld-resolved molecular
�ngerprint; LCa - non-small-cell lung cancer; BCa - breast cancer; PCa - prostate cancer; QC - quality
control; HC - Hilbert centering; GT - global-T-position; EC - echo-correction; ST - standardization; IF -
interference correction; EOS - electro-optic sampling; HSA - human serum albumin.
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The technical noise found for the FRS measurement of the fractions is lower compared to
the technical noise found for the KORA-FF4 measurements after the optimal preprocessing
(section 3.1.2) because of the lower chemical complexity (Figure 5.10b). However, the technical
noise found for full serum after applying the optimized preprocessing is higher from 1 ?B to the
end of the time trace compared to the technical noise found for the KORA-FF4 measurements.
The noise at longer time found for the FRS measurements of full serum increase after applying
standardization, which is based on the ratio between the EMFs of the water reference and are,
therefore, more prone to errors at long times where the signal gets smaller. A similar issue is
observed for the KORA-FF4 FRS measurements (Figure 3.6c), however, while for the KORA-FF4
measurements applying the EC before ST helped to reduce the technical noise at longer times,
this does not happen for the measurement of these samples. The reason for this is currently
unclear.

Despite the higher technical errors introduced by standardization, this is a necessary step for
the robust analysis of the EMFs, as shown by the binary classi�cations of the EMFs on full serum
sample for the detection of prostate cancer with two preprocessing protocols: one based only
on the centering transformations (HC and GT) and one with both EC and ST (Figure 5.11). The
comparison of the SVM performances along the time trace for the two preprocessing protocols
shows that standardization reduces the over�tting rate in the whole time window, calculated
as the distance between the average AUC of the training set and the standard deviation of the
test set, compared to applying only the centering options.

Figure 5.11: SVM binary classi�cation of PCa on the EMFs of full serum for di�erent preprocessing
protocols. (a) The AUCs in time are more robust applying HC, GT, EC and ST and have lower over�tting
rates than (b) the AUCs obtained applying only the centering transformations (HC and GT). The
red dashed lines show the AUCs of 50% and the green shaded areas highlight the best time window.
Acronyms: SVM - support vector machine; AUC - area under the curve; EMF - electric-�eld-resolved
molecular �ngerprint; PCa - prostate cancer; HC - Hilbert centering; GT - global-T-position; EC -
echo-correction; ST - standardization; IF - interference correction.

As explained in section 2.3.2 and done for the analysis of the FRS data in the previous
chapter, the SVM binary classi�cations are performed using sliding windows to address the one
providing the highest classi�cation rate, identi�es as the optimal time window. This procedure
provides a temporal resolution of the AUCs. In particular, the AUCs found for non-small-cell
lung cancer are comparable between the FT-IR and FRS data (Figure 5.12). The average AUCs
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found for breast cancer are higher for the EMFs traces of both protein fractions, going from
50% for FT-IR up to 65 - 70% for FRS. Because of the higher AUCs found for FRS in the protein
fractions, the similar AUCs found for FT-IR and FRS in full serum are unexpected and can
potentially be the consequence of the higher technical noise recorded at long times for the
EMFs of full serum. The FRS classi�cation e�ciencies are higher compared to FT-IR also for
the classi�cation of prostate cancer in full serum, for which FT-IR returns no separation and
FRS returns an AUC of about 70%, in agreement with the higher average AUCs found for the
two protein fractions. Therefore, despite the instability of the FRS set-up employed for these
measurements, the method is shown to perform already better than FT-IR spectroscopy for
breast and prostate cancer.

Figure 5.12: SVM binary classi�cation of LCa, BCa and PCa on the FT-IR and FRS data of full serum
and the three respective fractions. The AUCs found for FT-IR are obtained for the same spectral range
covered by FRS (1000 - 1500 2<−1) and are compared with the AUCs obtained for the FRS in the time
domain for the classi�cations with matched non-symptomatic individuals. The AUCs found for FT-IR
and FRS are comparable for the classi�cation of LCa. FRS returns higher AUCs for the classi�cation
of BCa and PCa in the two protein fractions, which explain the higher AUC found for FRS also in the
full serum for the classi�cation of PCa, while the AUC in full serum for breast cancer is unexpectedly
the same as found for the FT-IR data. Acronyms: SVM - support vector machine; AUC - area under the
curve; FRS - �eld-resolved spectroscopy; LCa - non-small-cell lung cancer; BCa - breast cancer; PCa -
prostate cancer; QC - quality control; HSA - human serum albumin.

Despite the trends of the AUCs in time are noisy because of the small number of cases,
the over�tting rates are generally low below 2 ?B and in the optimal time windows identi�ed
for each condition (Figure 5.13). For non-small-cell lung cancer, the optimal time windows
found in full serum and the three respective fractions are around 1 ?B . Therefore, the biological
information of this cancer type is con�ned in time.
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Figure 5.13: SVM binary classi�cation of LCa, BCa and PCa on the EMFs of full serum and the three
respective fractions. The trends of the AUCs in time are reported for the classi�cations with matched
non-symptomatic controls. The green shaded areas highlight the optimal temporal windows. The
classi�cations of LCa return similar optimal time windows, namely the temporal windows for which
the AUC reaches the maximum value for that classi�cation, are around 1 ?B for the full serum and the
respective fractions. The optimal temporal windows found for BCa and PCa are di�erent for full serum
and the three respective fractions. However, the AUC trend in time found for PCa reaches comparably
high values in the whole time trace, thus covering also the temporal windows of the fractions. For BCa,
the AUC found for full serum is a�ected by higher over�tting rates, probably due to the high technical
noise found for these samples (Figure 5.10b), which can explain why the AUCs found for FRS are higher
compared to FT-IR for the two protein fractions and not for full serum. Acronyms: SVM - support
vector machine; AUC - area under the curve; EMF - electric-�eld-resolved molecular �ngerprint; FRS -
�eld-resolved spectroscopy; LCa - non-small-cell lung cancer; BCa - breast cancer; PCa - prostate cancer;
HSA - human serum albumin.

For breast cancer, the optimal time windows found for full serum and the individual fractions
are di�erent. In particular, the albumin-depleted protein fraction and the metabolite fraction
are stable to over�tting in the whole time trace and return high AUCs from 0 to 4 ?B and in the
whole time window respectively. The optimal time window found for the classi�cation of breast
cancer in full serum is centered around 1 ?B , mostly because of the higher over�tting rates
reached at longer times. However, at 6.2 ?B , corresponding to the optimal temporal window
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found for the albumin-enriched protein fraction, the over�tting of full serum decreases reaching
AUCs comparable to the maximum. The classi�cation of breast cancer in full serum shows high
over�tting rates that can be the consequence of the higher technical noise at long times due to
standardization (Figure 5.10b) and explain the similar AUCs found for FT-IR and FRS despite
the higher classi�cation e�ciencies found for the two protein fractions. The optimal time
windows found for the classi�cation of prostate cancer are also di�erent for full serum and or
the three fractions. However, the AUCs trend in time for full serum reached comparably high
values at all times with low over�tting rates, highlighting that the three fractions contribute in
di�erent temporal windows to the classi�cation of prostate cancer with comparable AUCs.

In summary, the classi�cation e�ciencies found for the FRS and FT-IR data are comparable
for non-small-cell lung cancer. However, FRS performs better than FT-IR for the detection
of breast and prostate cancer because of the higher AUCs identi�ed in the albumin-enriched
and albumin depleted protein fraction of the two cancer entities, re�ected also in the higher
classi�cation e�ciency of the prostate cancer in full serum via FRS compared to FT-IR. Despite
the low number of cases, the optimal temporal windows have low over�tting rates, thus
ensuring the robustness of the classi�cations. Ultimately, the combination of FRS with the
fractionation protocol allows identifying the contribution of di�erent groups of biomolecules
to the classi�cation e�ciency, in particular showing that the signature of the two protein
fractions are more important in the binary classi�cation of breast and prostate cancer for the
FRS data than for FT-IR, and to address their contributions at di�erent times. The classi�cation
rates reported in this study are lower compared to other results reported in the literature for
similar analysis [17, 117, 210–213]. However, the study discussed here is based on a very small
number of cases and controls and it is expected to provide more robust results as well as higher
classi�cation e�ciencies in larger studies. The higher classi�cation rates obtained for FRS
compared to FT-IR in the same experimental settings is impressive considering the limitations
of the technique at the moment of the measurements and show that FRS is potentially a better
tool for the detection of breast and prostate cancer.

5.3 Concluding remarks
A re-adaptation of Cohn’s method is presented and adopted for the fractionation of human
blood serum and plasma samples in a metabolite fraction and two protein fractions: the
albumin-enriched protein fraction, which is constituted by about 85% of the human serum
albumin and other two of the most abundant proteins, and the albumin-depleted protein
fraction constituted by the remaining serum proteins. The technical noise due to the chemical
fractionation procedure is lower than the between-person spectral variability of the FT-IR
spectra of human blood plasma, also con�rmed via mass-spectrometry analysis which has been
used to address the molecular composition of the protein fractions. Chemical fractionation
via precipitation is among the few techniques for protein depletion compatible with complex
samples like human blood serum and plasma as well as with spectroscopic applications since it
does not introduce unwanted chemicals in the samples and does not a�ect the chemical bonds
of the analytes. However, the adopted protocol requires about 9 hours for the fractionation
of 24 samples, but it can be scaled up by using equipment able to handle more samples and
it can be speed-up by employing robotic liquid-handling systems. The main drawback of the
chemical precipitation-based protocols is that a small part of the sample cannot be dissolved
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back in water, as is the case for a pellet of the albumin-depleted protein fraction. However, this
has been estimated to be a small percentage of the albumin-depleted protein fraction, which
is con�rmed by the observation that the sum of the average spectra of the three fractions
reconstruct the average spectrum of the full blood bio�uids.

Chemical fractionation combined with IR �ngerprinting has been used to address the
molecular nature of the spectral signature of gender among healthy individuals highlighting
that the metabolite fraction and the albumin-depleted protein fraction return the highest
classi�cation e�ciencies, in agreement with the correlation found for the analysis of the KORA-
FF4 cohort between gender and the spectral signatures at lower frequencies due to the vibrations
of carbohydrates, expected to be in the metabolite fraction, and protein’s glycosylation, expected
to be in the albumin-depleted protein fraction (section 4.1).

The three main proteins that constitute the albumin-enriched fraction, in particular albumin,
haptoglobin and alpha-1-acid glycoprotein, are connected with in�ammation [219–221]. The
spectral signature of these proteins is indeed similar to the IR �ngerprint found for high CRP
values, a marker of in�ammation, in the KORA-FF4 cohort (section 3.2.2). Moreover, the high
between-person variability addressed by this fraction is in agreement with the high impact of
in�ammation on the between-person spectral variability observed in the previous chapters
(section 3.2.2 and 4.1). The albumin-enriched protein fraction returns the highest AUCs for
the classi�cation of non-small-cell lung cancer with respect to the other fractions highlighting
the importance of this unspeci�c signature in the analysis of this cancer entity. The chemical
fractionation protocol can be adapted to deplete only the albumin-enriched protein fraction
to reduce the concentration of the most abundant serum protein, albumin, together with the
main proteins connected with the non-speci�c in�ammatory response of the body.

The FT-IR analysis of the full serum samples and the corresponding fractions shows that
the main signature of breast cancer comes from metabolites, while for prostate cancer the three
fractions return similar classi�cation e�ciencies thus highlighting a di�erent molecular nature
of the signature of each cancer entity underneath the IR spectra of the full serum samples.
Moreover, the comparison of the classi�cation e�ciency for non-small-cell lung cancer in
human blood serum and plasma shows that the metabolite fraction of plasma returns higher
AUCs because of the signature of the EDTA-ion complexes not present in serum, which are
expected to be more abundant in the cases because of the higher calcium ion concentration in
the blood serum of several cancer entities [218], among which non-small-lung cancer, but also
breast and prostate cancer, for which a similar result is expected.

The classi�cation e�ciencies found for non-small-lung cancer via FRS are similar to the
ones obtained via FT-IR for full serum and the respective fractions. FRS returns higher AUCs
compared to FT-IR for the classi�cation of breast and prostate cancer, especially for the albumin-
enriched and albumin-depleted protein fractions. Therefore, the combination of FRS analysis
with chemical fractionation allows identifying the molecular origin of the better performances
of FRS compared to FT-IR in the two protein fractions. The robustness of the results, despite the
low number of cases, is supported by the low over�tting rates found in the optimal temporal
windows of each classi�cation. However, the best classi�cation e�ciencies that can be achieved
via IR spectroscopy for these cancer entities are expected to be higher and can be achieved
by analyzing a larger number of cases (section 4.2.3). Higher classi�cation rates have been
already reported in the literature for similar techniques [17, 117, 210–213]. A larger study of
the considered cancer entities via FRS spectroscopy is planned in the near future. In conclusion,
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considering the technical limitations of the technique at the moment of the measurements and
the higher technical noise compared to what has been observed for the KORA-FF4 cohort (Figure
3.6c), the better performances of FRS compared to FT-IR are �rst results of great auspicious for
future clinical applications.

In this section, it has been shown that chemical fractionation gives access to a better
understanding of the molecular nature of the IR �ngerprints of full bio�uids and the role of
di�erent classes of biomolecules in di�erent conditions. However, the separation in di�erent
fractions to this level can potentially be addressed via principal component analysis, able to
separate the spectral features connected with di�erent families of biomolecules. Moreover, it
does not provide advantages to obtain information about the molecular changes of low abundant
molecules, which can potentially provide higher classi�cation e�ciencies for many diseases,
because the level of chemical complexity, namely the dynamic range of concentration covered,
is still too high for the three fractions isolated with the protocol adopted and the signal from low
abundant molecules is still not accessible. To isolate the IR signature of low abundant molecules,
other fractionation techniques need to be used in combination with infrared spectroscopy, such
as chromatographic techniques, which are currently being implemented in our laboratories.



Chapter6
Conclusions

In this dissertation, the potential of FT-IR and FRS �ngerprinting of human blood bio�uids for
liquid biopsy is addressed via FT-IR and FRS spectroscopy in a cross-sectional population-based
cohort, the KORA-FF4, and validated in an independent clinic-based cohort, the L4L. In the
�rst place, the origins of the large between-person spectral variability are investigated among
the healthiest individuals of the cross-sectional population-based cohort, which represents
a general German population. The spectral signatures and diagnosis e�ciencies for several
common endpoint and intermediates medical conditions are then identi�ed using both FT-
IR and FRS spectroscopy. The potential of combining these spectroscopic methods with a
reproducible chemical fractionation protocol is ultimately explored in the frame of cancer
diagnosis.

The analysis of the large cross-sectional population-based KORA-FF4 cohort has allowed
identifying age and in�ammation as the main source of the biological di�erence between
individuals causing the large between-person spectral variability recorded for the IR signatures
of lipids (1750 - 3000 2<−1) and proteins (1250 - 1750 2<−1). The in�uence of age on the
lipid content of human blood bio�uids was already well-known [93, 94, 99, 100]. Aging and
in�ammation are connected [97, 98], explaining the impact of age also on the spectral signatures
attributed to in�ammation [61, 92]. In the spectral coverage of FRS spectroscopy (1000 - 1500
2<−1), gender and in�ammation have been identi�ed as the main sources of the between-
person spectra variability, a�ecting the IR signatures attributed to carbohydrates and protein
glycosylation. The in�uence of gender on the spectral signature of carbohydrates can be
due to the di�erent glucose tolerance observed in males and females in [106]. Gender and
in�ammation are both connected with protein glycosylation, as reported in [101–103]. The
contribution of these spectral signatures (1000 - 1500 2<−1) to the total variability recorded in
full-spectra (1000 - 3000 2<−1) is about 2%, in agreement with the observation reported in the
literature that age induces stronger changes in the human blood plasma composition compared
to other factors, especially for proteins and lipids [107].

Despite the large between-person spectral variability, IR spectroscopy combined with
SVM binary classi�er has been proven useful for the e�cient detection of several common
medical conditions. The comparison between the KORA-FF4 and the L4L cohorts has allowed
identifying that matching the symptomatic individuals to the respective controls allows isolating
disease-speci�c IR signatures in very di�erent cohorts by reducing the spectral contributions
of non-speci�c factors that correlate with the medical disease target of the binary classi�cation.
Despite matching the controls to the cases reduces the number of controls, thus lowering the
statistical power of the analysis [144], it provides access to the speci�c signature of each disease
independently on the study showing the robustness of the approach.
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The best performances found for IR �ngerprinting have been obtained for diabetes, hy-
pertension and high blood lipids, with promising results also for the detection of stroke and
heart attack which can be useful for the timely detection of people at high risk. Infrared
spectroscopy has provided low detection e�ciencies for COPD, former cancer and asthma
conditions. However, the actual e�ciency of each classi�cation can be robustly addressed
only if the statistical power of the study is high enough [144]. The statistical power increases
with the number of individuals analyzed. The minimum number of cases for robust binary
classi�cations has been estimated to be around 130 individuals, in agreement with what has
been reported in the literature [150] and are expected to have general validity in similar studies.

The molecular interpretation is beyond the purpose of this study but it is attempted for
the medical conditions for which the detection via IR spectroscopy is promising. The spectral
signatures at 1750 – 3000 2<−1 are mostly due to lipids and are important in the binary
classi�cation of high blood lipids, heart attack and stroke. However, the molecular origin of
these signatures can be di�erent for each condition and, according to what has been reported in
the literature, it could potentially be due to lipoproteins for both high blood lipids [134], with the
contributions of triglycerides and glycerol at lower frequencies [140], and stroke [141], with the
contribution of amino acids [142] and metal complexes [143] at lower frequencies. The spectral
signature of lipids recorded for heart attack can potentially be connected with the low-density
lipoprotein (LDL) [132–134], together with contributions at lower frequencies due to the lower
fasting blood glucose of individuals who had a heart attack [135]. The signature of hypertension
is more di�cult to interpret and it could potentially be connected with urea and creatinine,
reported as biomarkers of this medical condition [136]. To the best of our knowledge, this is the
�rst study of hypertension via the FT-IR spectra of human blood bio�uids. The main spectral
features found for diabetes can be attributed to carbohydrates and proteins’ glycosylations, in
good agreement with the well-known e�ect of glycemic dysregulation [129, 130], while the
spectral signature of prediabetes can have multiple origins. In particular, the IR �ngerprint
recorded for IGT can potentially be connected with glycine, lysophosphatidylcholine (18:2)
and acetylcarnitine which have been reported in the literature as biomarkers and provide a
similar AUC as FRS spectroscopy [159]. The IR �ngerprint of IFG can be due to glucose and
proteins’ glycosylations as well as to amino acids and phospholipids, according to [165, 168].
Finally, the signature of IGT/IFG seems a combination of the IR signatures found for the IFG
and IGT conditions separately.

The use of MIR spectroscopy for detecting and monitoring the blood content of glucose
has been previously suggested by other published studies [169, 170], but our observations, in
agreement with other studies [171], suggest that the detection of prediabetes should not rely
only on the glycemic dysregulations alone as this can be a late consequence of prediabetes.
The ATR-FTIR spectroscopy has been applied for the detection of diabetes [131], showing
classi�cation e�ciencies similar to what has been obtained in this study, and for the detection
of prediabetes [118], where higher classi�cation e�ciencies are observed compared to this
study. However, the study reported in [118] has been performed on a low number of cases,
therefore leading to low statistical power, the three prediabetes entities are classi�ed together,
a debatable approach since the three prediabetes conditions have di�erent origins and e�ect
on the composition of blood, and the classi�cations are performed with unmatched controls
and are potentially biased by unspeci�c factors.

The study presented here is, to the best of our knowledge, the �rst showing how clinical
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parameters connected with diabetes and prediabetes a�ect the classi�cation e�ciencies of IR
�ngerprints. In particular, it has been shown here that insulin is a worse classi�er than IR
spectroscopy, in agreement with the lower AUC reported in the literature for the classi�cation
of diabetes using only the concentration of insulin [160]. Fasting plasma glucose, as well as
HbA1c concentrations that correlate with the blood glucose content, provide classi�cation
e�ciencies comparable with the ones obtained for FRS for the detection of IGT, for which FT-IR
spectroscopy is shown to be a bad diagnostic tool. Higher classi�cation e�ciencies compared
to the ones obtained in this study have been reported for the classi�cation of IGT via fasting
capillary glycemia (FCG) [161], fasting plasma glucose (FPG) and HbA1c [162] as well as via
mass-spectrometry [164], but the analysis of a larger number of cases via FRS spectroscopy is
expected to provide better classi�cation performances. The classi�cation e�ciencies obtained
via FRS spectroscopy are similar to the ones reported for the detection of diabetes via FCG [161],
FPG and HbA1c [162] and for the detection of IFG via mass-spectrometry [165] highlighting
that already at this initial stage, this technique provides good diagnostic e�ciency.

The last chapter of the dissertation presents a chemical fractionation protocol to separate
the most abundant proteins, among which human serum albumin (about 50-60% of the total
serum protein concentration), from the less abundant proteins, as well as to isolate a fraction
constituted by metabolites. The chemical fractionation is used to deplete the highly abundant
molecules, which have intense spectral signatures, and identify the spectral features of less
abundant molecules. Mass-spectrometry has been used to con�rm the reproducibility and
e�ciency of the protocol and to address the molecular composition of the protein fractions.
The protocol adopted is compatible with spectroscopic techniques, it introduces a technical
noise smaller than the between-person spectral variability among individuals and it can be
easily scaled up and speed up by employing robotic liquid-handling systems.

Chemical fractionation combined with IR �ngerprinting has been shown to provide a
deeper knowledge on the molecular nature of the IR �ngerprints of human blood serum and
plasma in a pilot study for the detection of non-small-cell lung cancer, breast cancer and
prostate cancer. In particular, albumin, haptoglobin and alpha-1-acid glycoprotein are the
main proteins of the albumin-enriched protein fraction and are here observed to be connected
with in�ammation, in agreement with the literature [219–221]. Therefore, fractionation could
be implemented to reduce the non-speci�c IR signatures of in�ammation in the analysis of
medical conditions, as reported here for the three cancer entities investigated. The classi�cation
e�ciencies found in this study for non-small-cell lung cancer, breast cancer and prostate cancer
are lower compared to what can be found in the literature for similar techniques [17, 117,
210–213], but the limitations can arise by the small number of cases considered in this pilot
study. Despite it provides a better molecular understanding of the IR signatures, the fractions
obtained with the adopted protocol still cover a large dynamic range of concentration and,
therefore, do not fully isolate the signature of low abundant molecules. To reach this goal,
IR spectroscopy should be combined with a technique able to provide a deeper fractionation,
such as chromatographic techniques. The combination of infrared spectroscopy and high-
performance liquid chromatography (HPLC) is currently being implemented in our laboratories.

In summary, it can be concluded that age and in�ammation are responsible for the large
between-person spectral variability of non-symptomatic and symptomatic individuals, which
does not prevent IR spectroscopy combined with SVM classi�er to detect common medical
conditions in human blood serum and plasma. In particular, IR spectroscopy is promising
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for the detection of diabetes, prediabetes, hypertension and high blood lipids, but also for
stroke and heart disease, for which larger studies are needed, while it is not expected to be
a good classi�er for the detection of asthma, COPD and former cancer patients. Di�erent
studies reported in the literature want to identify the best bio�uids between human blood
serum and plasma [114, 127]. In the study reported here, there are no major di�erences for
the classi�cation of common medical conditions, which can be explained based on the similar
chemical composition of the two blood bio�uids [128], while human blood plasma is expected to
perform better for the classi�cation of cancer because of the spectral signature of the complexes
of calcium ions, present in higher concentration in several cancer entities [218], with the
ETDA used as anti-coagulant during the plasma blood donation. However, the investigation of
di�erent cancer entities in larger cohorts in both serum and plasma is required to con�rm this
conclusion.

The data recorded with the newly developed FRS technique have a dependence on the
measurement day which can be reduced but not eliminated by preprocessing. Nonetheless,
FRS returns similar or higher classi�cation e�ciencies compared to a state-of-the-art FT-IR
spectrometer thanks to the lower LOD achievable via FRS [52]. In particular, the classi�cation
e�ciencies found for the detection of prediabetes, breast and prostate cancer are higher for FRS
compared to FT-IR, thus showing that FRS is potentially a better tool for the detection of this
condition. Moreover, the resolution in time makes it easier to disentangle the contributions of
di�erent factors which would overlap in the frequency domain thus returning very di�erent
signatures for each parameter or medical condition investigated and it has been proven useful
to isolate disease-speci�c spectral signatures from the signature of unspeci�c parameters
that correlate with the target disease. Further technical developments are currently being
implemented on the FRS set-up to make it more robust to the daily changes as well as to boost
its classi�cation e�ciency by expanding the spectral coverage and the detection dynamic range.

Besides the technical improvements of the technique, a better understanding of the IR
spectral signature of the general population is still needed. To this end, the investigation
of other factors not considered in this dissertation, such as the hormonal status, diet and
medications, is important as it can potentially provide more information about other sources
of between-person variability. The e�ect of common parameters on the IR spectra of human
blood bio�uids is indeed useful for the identi�cation of clusters of individuals with similar IR
�ngerprints with lower between-person variability, potentially bene�cial for the detection of
medical conditions. Age and in�ammation have an important impact on the IR �ngerprints,
but aging proceeds at di�erent rates and with di�erent mechanisms in each individual [97].
Therefore, the e�ect of age seen in the IR spectra could re�ect the chemical composition of
human blood bio�uids for speci�c “e�ective age” [97] or “ageotypes” [97], a connection that
would be extremely interesting to explore.

The study reported in this dissertation on diabetes and prediabetes, as well as all the ones
reported in the literature, is based on the results of the OGTT test, which has been reported to
have low reproducibility and e�ciency [166, 167], thus making it impossible to assess if the
miss-classi�cations of IR spectroscopy are real. Similar issuers are true for all medical conditions
and can be potentially overcome by the longitudinal analysis of the KORA individuals via both
FT-IR and FRS spectroscopy planned in the near future.

In conclusion, the implementation of IR spectroscopy in clinical settings is very attractive
as it o�ers the possibility to timely and simultaneously detect and monitor di�erent medical
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conditions in a fast and non-invasive fashion. This dissertation reports one of the largest
studies investigating the e�ciency of FT-IR spectroscopy for disease detection in human blood
bio�uids as well as the �rst large study using �eld-resolved spectroscopy showing that IR
�ngerprinting generally provides good classi�cation e�ciencies for several medical conditions.
Already at this initial stage, FRS spectroscopy provides better performances for the detection
of many diseases compared to FT-IR spectroscopy highlighting that the further developments
currently implemented can bring this technique to be the clinic diagnostic tool of the future.





Appendix - The e�ect size

The e�ect size of each common parameter and medical condition discussed for the KORA-FF4
cohorts is reported. The e�ect size is proportional to the classi�cation e�ciency (AUC) at
each frequency and it is calculated as the ratio between the di�erential �ngerprint, namely
the di�erence between the average spectrum of the controls from the average spectrum of
the cases, and the standard deviation of the controls [222]. This approach is based on the
assumption that the distribution of cases and controls is Gaussian at each frequency and that
the standard deviation of the cases is comparable to the standard deviation of the controls.

Figure 6.1: E�ect size of common parameters among healthy individuals on the FT-IR data of the
KORA-FF4 cohort. (a) The e�ect size of each common parameter shows that di�erent frequencies are
relevant for the binary classi�cation of di�erent common factors among the same healthy individuals.
(b) The total e�ect size of each parameter is calculated as the area under the absolute values of the
e�ect size (panel (a)) normalized to bring the highest value (for CRP) to the correspondent AUC. The
comparison with the AUCs shows that the two approaches return comparable results, except for gender
for which the AUC is higher compared to the total e�ect size. Acronyms: AUC - area under the curve;
CRP - C-reactive protein; BMI - body mass index.
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Figure 6.2: E�ect size of common medical conditions on the FT-IR data of the KORA-FF4 cohort. The
e�ect size obtained for unmatched cases and controls is always higher than for matched cases and
controls, in agreement with what has been observed for the classi�cation e�ciencies and the SVM
coe�cients (section 4.2.3). For a high number of cases, such as for hypertension and high blood lipids,
the di�erences are very small because, after matching, only a few controls are removed from the
classi�cation. The intensity of the e�ect size re�ects the trend observed for the AUCs (Figure 4.6b).
Acronyms: SVM - support vector machine; AUC - area under the curve; COPD - chronic obstructive
pulmonary disease.
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Figure 6.3: E�ect size of common medical conditions on the FT-IR and FRS data of the KORA-FF4 cohort.
The e�ect size is reported for the two techniques for matched cases and controls. For the FRS data, the
e�ect size has been calculated on the "absorption" signal derived for the temporal window between 0.5
and 3 ?B , where the AUCs are generally higher for all binary classi�cations. The discrepancies found for
the two techniques can be attributed to the di�erent nature of the signals, especially due to the temporal
�lter applied on the FRS data. Acronyms: FRS - �eld-resolved spectroscopy; AUC - area under the curve;
COPD - chronic obstructive pulmonary disease.
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Figure 6.4: E�ect size of diabetes and prediabetes on the FT-IR and FRS data of the KORA-FF4 cohort.
(a) The e�ect size is reported for diabetes and three prediabetes entities with matched controls for the
FT-IR data in the full spectral coverage (1000 - 3000 2<−1). The intensity of the e�ect size is in agreement
with the AUCs reported in the main text and highlights similar frequency patterns as the correspondent
SVM coe�cients (Figure 4.13b, c). (b) The e�ect size shown for FT-IR in panel (a) is compared, in the
same spectral coverage ((1000 - 1500 2<−1), with the e�ect size obtained for the FRS data (temporal �lter:
0.5 - 3 ?B). The man signatures are comparable between the FT-IR and FRS data, with discreoancies due
to the di�erent nature of the two signals, especially because of the temporal �lter applied on the FRS
data. The higher intensity of the e�ect size for FRS compared to FT-IR for the prediabetes condition of
IGT is in agreement with what observed in the main text (Figure 4.15a). Acronyms: FRS - �eld-resolved
spectroscopy; SVM - support vector machine; AUC - area under the curve; IGT - impaired glucose
tolerance; IFG - impaired fasting glucose.
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