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i 

Abstract 

 

Metabolic disorders will be the number one non-communicable disease on a global scale by 

2030. In the next 10 years, one billion people are estimated to suffer from disabling consequences of 

metabolic disorders and the global health expenditure specifically for diabetes is estimated to reach 

$845 billion by 2045. Lots of risk factors such as dietary intake, lack of exercise and other life style 

behaviors are considered to influence the development of metabolic disorders. However, despite the 

efforts that have been undertaken to unravel their potential causes, the underlying molecular 

mechanisms remain elusive. Some evidence suggested links between the pathogenesis of metabolic 

disorders and changes on chromatin and chromatin-modifying enzymes, which can contribute to a 

persistent dysregulated metabolic phenotype. Indeed, a rising number of studies links epigenetic 

alterations with the diagnosis and prognosis of metabolic disorders. Most studies have investigated the 

impact of altered metabolism on chromatin modifications via energy substrates. However, as of today, 

there is a lack of comprehensive studies examining how by modulating epigenetics metabolism is 

affected. 

The current study has focused specifically on this route of interplay between epigenetics and 

metabolism. Importantly, a prerequisite for exploiting these findings for pharmacological intervention 

is a detailed understanding of how differential epigenetic modifications control cell metabolism. In the 

current study, I present, support and discuss novel data uncovering the interplay between epigenetics 

and metabolic pathways on a cellular level and highlight potential new avenues for alternative 

treatment strategies. Using live cell metabolic profiling of glycolysis and oxidative phosphorylation, 

mass spectrometry-based quantitation of over 40 distinct histone modifications, and quantitative 

proteomics, this work suggests a potential “histone code of metabolism”, which characterised specific 

metabolic states of cells and links those not only to histone PTMs but also potentially novel protein 

effectors. 
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1.1 Societal and clinical relevance of epigenetics and metabolism 

According to World Health Organization (WHO) data, noncommunicable diseases (NCDs) are 

the leading cause of death globally (WHO, 2018). In particular, NCDs accounted for seven out of ten 

most frequent reasons of morbidity and mortality (WHO, 2019). It is alarming that the greatest part of 

NCDs consist of metabolic diseases. As reported in 2019 in the atlas of the International Diabetes 

Federation (IDF), diabetes will affect more than 700 million people by 2045 (IDF, 2019). The global 

health expenditure is estimated to rise to $845 billion by 2045 only for diabetes cases (Williams et al., 

2020). Obesity and cardiovascular diseases are increasing (WHO, 2014) with obesity prevailing and 

estimated to affect 1 billion people globally by 2030 (Kelly et al., 2008). There are multiple projection 

studies forecasting that almost 50% of the population in the US and UK will be obese by 2030 

(Finkelstein et al., 2012; Kopelman et al., 2007; Thomas et al., 2014; Y. Wang et al., 2008) and other 

studies analyse various EU countries as well, in regards to short and long term obesity rates (Janssen 

et al., 2020; OECD, 2017). It is essential to identify risk factors of predisposition for those diseases 

and work towards prevention management. In fact, prediction or increased risk of diabetes and heart 

diseases can be associated with a group of risk factors including high fasting blood sugar, high blood 

pressure and low HDL cholesterol levels. These and other abnormal physiological measures are 

described as the “metabolic syndrome" (NIH, 2016). The projection data mentioned above underline 

the pressing need to identify methods to prevent and treat the metabolic syndrome. Another important 

aspect to look into to improve prevention measures is to address yet unanswered questions about the 

fundamental pathology of metabolic diseases. There are many other determinants such as life style 

choices, like nutrition preferences and training routine that are thought to hold a role in the progression 

of  metabolic diseases among different patients (Jumpertz von Schwartzenberg & Turnbaugh, 2015; 

Khera et al., 2016; Phillips, 2016; Zeevi et al., 2015). Furthermore, the molecular mechanisms framing 

the impact of metabolism on possible patterns of deregulated genes underpinning causality and 

progression of metabolic diseases, are far from being fully understood. Interacting factors are traded 

dynamically and reciprocally between epigenetics and metabolism, while constantly being regulated 

by multifactorial external stimuli, unravelling correlations among varying pathological states. The 

epigenome can be affected not only by immediate physiological effects like hormonal dysregulation 
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and adipose tissue generation but also from lifestyle factors and diet choices. For example, there is 

eminent evidence that eating preferences may impact gene transcription via epigenetic mechanisms 

(Etchegaray & Mostoslavsky, 2016; van Dijk et al., 2015). A few studies have been published pointing 

towards inheritance to the offspring (L. M. Nicholas et al., 2013; Rando & Simmons, 2015; Seki et al., 

2012). A comprehensive analysis of genomic DNA methylation showed that children of parents 

impacted by the Dutch famine exhibited several DNA regions linked with growth and metabolism  

showing significantly differential methylation even 70 years later. These regions included  genes 

implicated in control of birth weight and LDL cholesterol regulation (Tobi et al., 2015). 

Dietary habits is not the only factor influencing epigenetic regulation of metabolism. There are 

more societal factors such as sleep patterns, meal timing and work shifts that trigger misalignment of 

the circadian rhythm. A study demonstrated that even one night of sleep deprivation leads to 

hypermethylation of different circadian clock genes, that are expressed in a tissue-specific manner. 

This results in increased insulin resistance and impaired glucose tolerance (Cedernaes et al., 2015; 

Donga et al., 2010; Fontana & Partridge, 2015; Morris et al., 2016). Additionally, metabolites are the 

substrates utilized in the formation of chromatin modifications and play a fundamental role in all 

biochemical pathways. It has been demonstrated that food-derived metabolites can be used as 

substrates for transcription factors and histone modifying enzymes. As a consequence, chromatin 

folding is affected, resulting in more compacted or more accessible areas of the genome and 

respectively to decreased or increased gene transcription (Fan et al., 2015b; Gut & Verdin, 2013; C. 

Lu & Thompson, 2012). 

On the other hand, there is evidence indicating that epigenetics in turn could impact metabolic 

mechanisms and disease (Crunkhorn, 2011; Heerboth et al., 2014; Kwak & Park, 2016). However, the 

studies exploring metabolism via epigenetic alterations for example via histone PTMs are very limited 

and mainly focus on one target (see Chapter 1.3). Big network studies and multifaceted analyses 

focusing on altering metabolism via histone PTMs are currently missing. Also, there are no studies 

linking epigenetic inhibitors with metabolic regulation. Therefore, efforts exploring epigenetic targets 

as future candidates for drug development in metabolic diseases need to be further advanced. The aim 
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of my work was to add more clues in the interplay of epigenetics and metabolism and to help discover 

novel therapeutics to modify pathological states. 

 

1.2 Epigenetics and metabolism in human disease 

1.2.1 Rare diseases 

Rare diseases by definition affect a very small number of people comparing to the general 

population. Our limited understanding of the underlying pathomechanisms and the lack of identified 

druggable targets are the main causes why there are so many rare diseases without treatment. Rare 

diseases comprise monogenetic as well as multifactorial disorders, albeit not all of them have a genetic 

background. The observed symptoms vary greatly and encompass birth dysplasia, gradual atrophy and 

in multiple cases extend to the onset of dysregulated metabolic phenotypes. 

Rett syndrome (RTT; OMIM 312750) is a rare progressive neurodegenerative disease. It 

mainly affects young females and its symptoms include diminished brain volume, as well as speech 

and motor disabilities, breathing malfunctions, muscle atrophy and many metabolic complications. It 

is primarily caused by any of various mutations in the methyl-CpG-binding protein 2 gene (MECP2) 

(Kyle et al., 2016).  The main role of MECP2 is to control chromatin structure and epigenetic 

imprinting. MECP2  selectively binds to methylated DNA and  associates with chromatin-remodelling 

complexes (such as type I histone deacetylases, HDACs) to modulate gene transcription (Justice et al., 

2013). Interestingly, MECP2 impacts various biological pathways on multiple levels and currently the 

molecular mechanisms from gene to phenotype are not entirely deciphered (Justice et al., 2013). 

However, a few published studies started to elucidate the underlying pathomechanisms behind RTT’s 

metabolic symptoms. More specifically, one study showed that lipid metabolism was vastly influenced 

both in the brain and systemically in MECP2 null mice (Buchovecky et al., 2013). Another study 

described mitochondrial malfunction and abnormal morphology in patients with RTT, as well as 

murine models of MECP2 (Kriaucionis et al., 2006). In recent published work, MECP2 was identified 

as a regulator of lipid homeostasis. It was shown to recruit the repressor complex, NCoR1/SMRT - 

HDAC3, to its lipogenesis targets in hepatocytes. Furthermore, it was demonstrated that Mecp2 mutant 
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mice develop fatty liver disease and dyslipidaemia with similarities to HDAC3 liver-specific ablation 

(Kyle et al., 2016). These above data frame MECP2 as an important epigenetic modulator of metabolic 

homeostasis. 

Albeit RTT being a better studied example, there are more rare diseases with a potential direct 

link among epigenetics and metabolism. Mutations of various epigenetic regulatory factors have in the 

past first been linked with cancer. It is now apparent that cell metabolism and cancer are tightly 

connected. For this reason, it does not come as a surprise that many genes which had previously been 

linked with cancer may also lead to metabolic disease phenotypes in the absence of cancer symptoms. 

More specifically, histone-lysine N-methyltransferase 2D (KMT2D,MLL4/MLL2, is a key H3 lysine 

4 (H3K4) mono-methyltransferase (J.-E. Lee et al., 2013). It is mainly associated with acute myeloid 

leukaemia, lung and colon cancer (Rao & Dou, 2015). Furthermore, KMT2D mutations are linked with 

Kabuki syndrome, which is a multisystem congenital anomaly. Characteristics and symptoms of this 

syndrome include facial and skeletal dysmorphisms, mild to moderate intellectual disability and 

postnatal growth defects (Van Laarhoven et al., 2015). Mutations in the KMT2D gene are detected in 

45–80% of patients. Whilst abnormalities of the musculoskeletal system are the primary characteristics 

of Kabuki syndrome, later in life patients also suffer from symptoms of metabolic deregulation. 

Congenital heart disease progression is another pathology where KMT2D has been implicated 

to play a role although the exact mechanism is not clear (Zaidi et al., 2013). Even though the exact 

underlying  molecular mechanism of KMT2D’s influence on metabolism remains elusive and may be 

different from disease to disease, it has been previously demonstrated that mutations in Mll2 in mice 

cause impaired glucose tolerance and insulin resistance (Goldsworthy et al., 2013). Interestingly, 

KMT2D mutant mice were found exhibiting characteristics of mild non-alcoholic fatty liver disease 

(NAFLD) including increased levels of blood plasma cholesterol and triglycerides. Another study 

implicated KMT2D and KMT2C as modulating factors  of the hepatic circadian clock which also play 

a role as co-activators of the circadian transcription factors retinoid-related orphan receptor (ROR)-α 

and -γ, that have been previously involved in regulating lipid metabolism (D.-H. Kim et al., 2015; Lau 

et al., 2008). It has also been shown before that KMT2D can also act as a coactivator of PPARγ within 
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the murine liver to control over-nutrition induced steatosis. Interestingly, the heterozygous Kmt2d+/- 

mice were resistant  to hepatic steatosis triggered by over-nutrition (D.-H. Kim et al., 2016). 

DNA methylation in mammals is linked with the epigenetic mechanism of parental imprinting, 

where the differential expression of one allele of a specific gene is directed by its parental origin. All 

imprinting control regions (ICRs) that have been identified so far are differentially DNA methylated 

regions (DMRs) on the two parental chromosomes and are heritably maintained in the developing 

embryo. The role of post-translational histone modifications (PTMs), however, is not straightforward. 

DMRs are featuring asymmetrical aggregation of various histone modifications on the two parental 

chromosomes and a demand for histone demethylation has been identified at some ICRs in order to 

establish germline DNA methylation (Ciccone et al., 2009). Imprinting disorders consist a group of 12 

pathologies with similar clinical symptoms and common epigenetic patterns. They have been indicated 

to influence growth, development and metabolism (Livingstone & Borai, 2014).  Silver–Russell 

syndrome (SRS) patients have in their vast majority a common underlying disease-linked epigenetic 

change; loss of methylation on chromosome 11p15 (Schönherr et al., 2006). In spite of this finding, 

the molecular aetiology underlying SRS remains elusive in a considerable fraction of patients. The 

most interesting genomic regions to examine differences in DNA methylation in SRS patients are CpG 

islands. This is due to the fact that methylation changes in these parts of the genome impact the direct 

epigenetic environment to modulate transcription of affected genes. Interestingly, genes coding for 

metabolic factors were particularly enriched at CpG islands that are differentially methylated in SRS 

patients (Prickett et al., 2015). This finding could possibly be a link among the observed metabolic 

symptoms of SRS patients,  including type II diabetes, cardiovascular disorders and obesity (Wakeling 

et al., 2017). 

A number of imprinted genes hold a key role in modulating energy homeostasis and glucose 

metabolism, such as DLK1, GRB10 and IGF2 (Livingstone & Borai, 2014). There are specific diseases 

like Beckwith–Wiedemann syndrome (BWS) that are linked with these genes and showcase their 

importance for normal metabolic regulation. BWS is a congenital disorder that is described by elevated 

expression ofIGF2, in most cases caused by a loss of DNA-mediated imprinting. 50% of BWS patients 

experience hypoglycaemia. This condition is caused by hyperinsulinism, instead of it being a direct 
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effect of Igf2. However, the underlying β-cell defect is yet to be elucidated (Adachi et al., 2013; 

Sparago et al., 2004). Studies investigating epigenetic implications have indicated that parental obesity 

can influence embryonic methylation of IGF2,  linking these alterations with birth weight and the 

occurrence of metabolic syndrome later in life (Hoyo et al., 2012; Soubry et al., 2013). In animal 

models, parental caloric restriction impacts epigenetic modulation of Igf2 (S. Zhang et al., 2011). It 

has also been shown that transmission of a null Grb10 allele results in decreased adiposity, elevated 

lean mass and improved glucose tolerance possibly through the Igf1 signalling and controlled insulin 

secretion (Mokbel et al., 2014). Interestingly, hypomethylation of the GRB10 locus has been involved 

in the development of both SRS and Beckwith–Wiedemann syndromes (Koren & Palladino, 2016; 

Scott & Moore, 2012). One other  possible factor controlling a transgenerational epigenetic disease 

predisposition is DLK1 (also referenced as preadipocyte factor 1) (Andersen et al., 2009). It had been 

shown that DLK1 was highly expressed in preadipocytes, and downregulation of Dlk1 correlated with 

adipocyte differentiation in vitro. Another study in an animal model indicated that a regulatory 

mutation causing partial loss of imprinting of the Dlk1-Dio3 cluster resulted in embryonic 

hypothyroidism in the offspring (Charalambous & Hernandez, 2013). More specifically, the animals 

exhibited postnatal hypothyroidism and impaired brown tissue generation because of increased 

expression of Dlk1, causing obesity, glucose intolerance and hypothyroidism. 

Taken together, the increasing evidence suggests that chromatin modifications, DNA 

methylation and imprinting hold key roles in modulating metabolism, and their dysregulation in disease 

can lead to devastating outcomes. Furthermore, these epigenetic drivers of metabolism can be impacted 

by a range of non-genetic and extracellular cues, thereby mediating transgenerational effects on 

metabolism. 

 

1.2.2 Cancer 

Cancer is characterised by several defined hallmarks – and it has become clear that metabolism 

is one of them (DeBerardinis & Chandel, 2016; Vander Heiden & DeBerardinis, 2017). An increased 

uptake and metabolism of glucose by cancer cells in contrast to normal cells was first described by 
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Warbung (Warburg et al., 1927).  Another phenotype observed in tumors is high glutamine demand, 

since this amino acid is a main nitrogen source for the biosynthesis of many cell components necessary 

for  fast growth which is a typical characteristic of tumors (DeBerardinis & Cheng, 2010; Eagle, 1955; 

Nicklin et al., 2009). Metabolic pathways are strictly regulated because of their crucial function in 

cells. Importantly, this is not limited to just the direct energy requirements of the cell. It has previously 

been shown that the cellular uptake of glucose can also be modified by extracellular stimuli and not 

only by the immediate bioenergetic needs of a cell (Grassian et al., 2011). Similarly, tumor tissue might 

depend on cell interactions and nutrient in its microenvironment to achieve proliferation and the 

cancer-associated accelerated growth. In line with this, it has been demonstrated that several metabolic 

pathways are dysregulated in cancer and can be reprogrammed to facilitate the development of tumors 

despite the absence of essential nutrients (Boroughs & DeBerardinis, 2015). 

Moreover, the origin and the cause of tumorigenesis, the microenvironment nutrient 

availability and potential  of metastasis, could fuel stimulation of different metabolic pathways 

(Boroughs & DeBerardinis, 2015). As a consequence, profiling of tumor metabolic regulation came 

into focus in the past years (H. Wang et al., 2016; Yuneva et al., 2012). However, a caveat of tumor 

classification based on metabolic profiles is the observed heterogeneity. In particular, even parts of the 

same tumor exhibit high metabolic heterogeneity, as demonstrated by several studies that aimed to 

detect metabolic changes for tumor classification (Denkert et al., 2006; T. Li & Deng, 2017; Russell et 

al., 2017). 

Even though there are genetic and histopathological differences, tumor development appears 

to frequently entail the activation of a defined cluster of pathways to sustain core functions such as 

redox balance, catabolism and anabolism (Cantor & Sabatini, 2012). The rewired metabolism of cancer 

cells could be a cause or a consequence of the multiple alterations in the epigenome which is 

interconnected with nutrient and metabolite availability. Indeed, it has been shown by several 

publications that metabolic alterations impact the epigenome to provoke more cancerogenic changes 

(L. Cai et al., 2011; Fan et al., 2015a; Feinberg et al., 2016; Pietrocola et al., 2015; Roe et al., 2017). 

Moreover, the epigenome may play a role in uncoupling normal metabolic functions to support 

tumorigenic growth. 
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A large number of metabolites hold centre roles as signalling molecules in epigenetic 

modulation  in normal cells, including S-adenosyl methionine (SAM), which is essential for DNA 

methyltransferases (DNMTs) and histone methyltransferases (HMTs) (Rea et al., 2000), nicotinamide 

adenine dinucleotide (NAD) a cofactor for class III histone deacetylases (Galdieri & Vancura, 2012), 

flavin adenine dinucleotide (FAD) and 2-oxoglutarate (2-OG), that modulate lysine demethylases 

(KDM), acetyl-CoA, that is necessary for adding acetyl groups to histones by histone acetyl 

transferases (HATs).  Hence, metabolites are participating in the regulation of all crucial stages in 

forming, controlling, and removing histone epigenetic modifications. 

Onset of cancer is therefore highly impacted by the dysregulation of the cellular levels of those 

metabolites which establish direct routes of influencing the epigenome and subsequently affect cancer 

development (Kaelin et al., 2013; Mehrmohamadi et al., 2016). In line with this, mutations in isocitrate 

dehydrogenase 1 (IDH1) and IDH2, key metabolic enzymes, have been associated with glioblastoma 

and acute myeloid leukaemia (Losman et al., 2013). The altered enzymatic activity caused by these 

mutations results in the accumulation of the metabolite R-2-hydroxyglutarate (R-2HG). Increased 

levels of R-2HG influence the function of dioxygenases requiring 2-oxoglutarate (2-OG) as a co-

substrate. Dioxygenases hold a key role in cells and include prolyl hydroxylases, cytosine 

hydroxylases, and histone demethylases. High levels of R-2HG inhibit the TET DNA- and JmjC 

histone-demethylase families and affect gene expression partially via a modified epigenetic state, 

defined by unsuccessful expression of cellular differentiation programs (Dang et al., 2009; Figueroa et 

al., 2010). Although in this case the production of R-2HG is associated with metabolic dysregulation, 

its impact on cancer development appears to be not linked with but instead to an absence of 

differentiation. 

Another set of striking examples are fumarate hydratase (FH) and succinate dehydrogenase 

(SDH), mutations of which have been involved in many types of cancer. The result of these mutations 

are the increased amounts of their products, which are both intermediates of the tricarboxylic acid 

(TCA) cycle (M. Xiao et al., 2012). Although these mutations  reprogram the TCA cycle metabolism 

(comparable to the mutations  in IDH1/IDH2 mentioned above) the implication of fumarate and 
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succinate in tumor development  may be associated with vast changes in the epigenome as they likewise 

influence dioxygenase activity (Kaelin et al., 2013; Laukka et al., 2016). 

Although gene mutations linked to cancer growth signalling pathways are currently 

outnumbering known changes in metabolic enzymes, growing evidence supports the significance of 

metabolic pathways in causing and promoting tumorigenesis. Specifically, transcription regulators, 

which are key pathway modulators in glycolysis, hypoxia, androgen response, and lipid metabolism, 

act synergistically with KDM3A in cancer progression (S. Wilson et al., 2016, 2017). Additionally, 

DNA enhancer methylation was a powerful predictor of cancer associated gene expression in a study 

of 58 cancer cell types. Importantly, two thirds of the impacted genes (upregulated and 

hypomethylated) had known functions in metabolic processes (Van Damme et al., 2016). 

 

1.3 Regulation of metabolism by histone modifications 

1.3.1 Functional interplay between histone PTMs and metabolism 

As previously discussed, there are studies that focus on how specific epigenetic changes affect 

metabolism. These studies are linking mainly DNA methylation changes or PTMs on metabolic 

enzymes with metabolic regulation. Moreover, research has been conducted mostly from the 

perspective how metabolic substrates influence histone PTMs. As mentioned above (Chapter 1.2.2), 

the natural fluctuations of cellular levels of various metabolites can directly influence chromatin 

modifications and epigenetic dynamics, as reviewed recently (Reid et al., 2017). Moreover, artificial 

perturbations in experimental models or through pathological alterations can use the same pathways of 

metabolic-epigenetic interplay. Examples include the work of Cluntun et al., who have described how 

increased glucose has led to increased glycolysis rates and through the production of Acetyl-CoA 

higher acetylation levels on histones H3 and H4 (Cluntun et al., 2015). Furthermore, Mehedint and 

colleagues described how maternal choline deficiency affects H3K9me and CpG methylation in the 

fetus (Mehedint et al., 2010). Importantly, the physiological relevance of those interactions cover both 

normal physiology, cancer, cell differentiation and others (Chisolm & Weinmann, 2018; Reid et al., 

2017). 
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However much less is known how PTMs affect metabolism and specifically how histone PTMs 

regulate metabolism. To my knowledge, no comprehensive study has been published investigating a 

multitude of histone PTMs and their effects on metabolic regulation. Moreover, little is known about 

the effects of epigenetic small molecules on metabolism. A few select studies have investigated related 

aspects of metabolism, looking at single histone PTMs. Cai and colleagues reported increase of 

H3K9ac in the kidneys of diabetic mice (M. Cai et al., 2016) and other works have investigated various 

acetylation sites on the genes linked with diabetic nephropathy (X. Li et al., 2016). A functional role 

for chromatin modifications was suggested for diabetes, where loss of PRC2 mediated H3K27me3 led 

to glucose intolerance and diabetic phenotype of β cell islets in animal models (T. T. H. Lu et al., 2018). 

Furthermore, few studies are analysing how a specific small molecule impacts metabolism, although 

these studies are mainly focusing on pan HDAC inhibitors with little or no specificity for particular 

targets. For example, HDAC inhibitor sodium butyrate is found to increase acetylation on H3/H4 and 

increase oxygen consumption rate in treated flies (Peleg et al., 2016). In another study, FDA approved 

broad-spectrum (panobinostat, vorinostat) and selective (romidepsin) HDAC inhibitors were found to 

disrupt Warbung effect-related gene enhancers and was associated with decreased glycolytic levels, 

reversing the Warburg effect (Nguyen et al., 2020). However, there was no investigation of histone 

PTMs induced changes (apart from controlling the inhibitors’ efficacy through H3K27ac levels). 

Abexinostat, another HDAC inhibitor was found to alter multiple genes regarding adipocytic and 

osteoblactic differentiation and H3K9ac levels were quantified (Ali et al., 2016). Entinostat, another 

HDAC inhibitor, was found to induce lipid synthesis in HepaRG cells, however the exact mechanism 

of action or potentially induced histone PTMs remain unknown (Nunn et al., 2016). It is important to 

point out that the disease that is predominantly investigated for potential effects of epigenetic small 

molecules, is cancer, even though there is a great range of various other metabolic syndromes and rare 

diseases that could be investigated after epigenetic inhibitor treatments since there is evidence of 

epigenetic deregulation linked with their underlying pathogenesis (as discussed in Chapter 1.2.1). 

The lack of data in this important field has impeded fundamental and clinical research 

regarding the role of histone PTMs in metabolism and potential exploitable drug candidates and 

therapies. Bringing together in a systems-view three aspects – histone modifications, metabolic states, 
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and the proteome – will help to increase the understanding of their interplay, and to identify key 

modifiers of metabolism and future druggable targets. 

1.3.2 Relevance for fundamental and clinical research 

Despite the lack of wide-ranging studies on histone modifications and metabolism (See 

Chapter 1.3.1), a clear understanding of this is especially crucial to promote clinical research in the 

future, in tackling metabolic diseases and syndromes with metabolic phenotypes, such as cancer, 

immunological and neurodegenerative diseases. 

To date, 10 therapeutics have been approved by the US Federal Drug Administration (FDA). 

The primary targets of those drugs are epigenetic mechanisms. Even though the majority of these 

approved medicines were initially for cancer treatment, now a growing number of compounds that 

target epigenetic proteins in other diseases is in preclinical and clinical development (Buocikova et al., 

2020; Meighan-Mantha, 2017; Qi et al., 2016). In particular, the HDAC inhibitor valproic acid which 

had initially been developed for psychiatric disorders, is now under investigation in clinical trials for 

various types of cancer. Even though 30 years have passed from the initiation of clinical trials involving 

DNMT-inhibitors and HDAC-inhibitors, only the past 5 years have seen 2nd generation epigenetic 

drugs advancing from preclinical to clinical trials phases. These novel drugs are more potent, more 

specific and can target additional protein families, such as bromodomain and extra terminal protein 

(BET), mutant isocitrate dehydrogenase (IDH), lysine-specific demethylase 1A (LSD1/KDM1A), 

histone methyltransferase (HMT) and protein arginine methyltransferase (PRMT). Additionally, a  

recent but promising trend in the cancer therapy landscape is combination treatments of epigenetic 

drugs with other molecules (Ahuja et al., 2016; Dueñas-Gonzalez et al., 2014; Raynal et al., 2017).   

In addition to cancer, epigenetic inhibitors could be one of the main agents to treat other types 

of disease. For instance, ESR1 and ESR2 are expressed in smooth vascular muscle cells. They are also 

usually hypomethylated in human atherosclerosis and folic acid deficiency is indicated to hold a role 

in endothelial dysfunction associated with aging and cardiovascular disease (J. Kim et al., 2007; Kok 

et al., 2015). In regards to several neurological disorders, epigenetic alterations are involved in the 

nervous system’s memory, plasticity and aging (Jakovcevski & Akbarian, 2012). ORY-2001 was the 
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first epigenetic drug that entered clinical phase I for Alzheimer’s (Maes et al., 2016; Meighan-Mantha, 

2017). Another neurodegenerative disease for which epigenetic treatments are considered, is 

Huntington’s (HD). The polyglutamine repeat sequence in the huntingtin protein, which causes the 

disease, has been shown to inhibit HATs,  resulting in a reduction of acetylation on H3 and H4 histones. 

Several recent studies have demonstrated that HDAC-inhibitor treatment stops effects of HD in vivo – 

with other molecules still under investigation to elicit similar effects (Bürli et al., 2013; Duan, 2013; 

Gray, 2010). Other HDACi have also recently been employed to treat diabetes (Mau & Yung, 2014).  

However, it still remains unknown how epigenetic inhibitors impact the underlying specific 

pathomechanisms. Novel ideas have evolved such as examining metabolic checkpoint inhibitors for 

cancer therapy and reversal of its progression (Scharping & Delgoffe, 2016). There is cause for 

optimism that in the coming years it will be possible to improve the control of the bidirectional 

relationship among epigenetic switches and metabolism and thereby address disease development. 

Moreover, metabolic alterations can be identified as early warning signs of many diseases such as 

neurodegeneration (Kennedy et al., 2016). Therefore, it is urgent to gain more knowledge in 

understanding the underlying mechanisms of how epigenetic drugs affect metabolic states to be able 

to discover disease biomarkers, therapeutic targets and design novel therapies. My study aims therefore 

to provide new insights into the interplay between epigenetics and metabolism and help to elucidate 

novel regulatory pathways and provide resources to aid in further drug discovery endeavours.  
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1.5 Publications relating to this study 

Parts of the work described in this thesis have been published, are in preparation or submitted 

status to be published in peer reviewed journals: 

• Tzika, E.; Dreker, T.; Imhof, A. Epigenetics and metabolism in health and disease. Frontiers 

in Genetics, 2018. https://doi.org/10.3389/fgene.2018.00361  

• Tzika, E., et al.: The potential of epigenetically-active small molecules in regulating 

metabolism - paving novel avenues for alternative treatment strategies. Research paper. (In 

preparation) 

• Tzika, E., et al.: Optimized seahorse XF assay for metabolic profiling. Technical Note. (In 

preparation) 

• Sollner, F. (…), Tzika, E., et al.: Protein ADP-ribosylation Regulates Human Mitochondrial 

DNA Replication. (Submitted/under review) 
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2.1 Materials 

2.1.1 Mammalian cell lines 

HEK293T wild type and knockout cell lines were a kind gift from Dr. M. Volker Albert from 

Prof. Dr. A. Imhof lab at the Biomedical Centre. U2OS and HEK TREX cell lines were kindly provided 

by Ms. F. Soellner from Prof. Dr. A. Ladurner lab at the Biomedical Centre for a collaboration project. 

2.1.2 Buffers and solutions 

Non-commercial buffers and solutions were prepared in-house using standard sterile 

techniques. Buffers and solutions were prepared with ddH2O (18.2MΩ) and autoclaved. Chemicals 

used to prepare the buffers were of molecular biology grade and obtained from Sigma Aldrich and 

other certified laboratory supply providers. 

2.1.3 Enzymes and other materials 

Commercial buffers, reagents, materials, kits and enzymes not prepared in the laboratory were 

used according to the manufacturers’ instructions. The small molecules / compounds used in this study 

were acquired in ≥99% (HPLC) grade from the following providers: Selleck Chemicals Llc, Cayman 

Chemical and Tocris Bioscience. Some of the compounds used were part of the company sponsor 

proprietary chemical libraries. The list of those chemical compounds is given in Table 2.1. 

2.2 Mammalian cell culture techniques 

2.2.1 Propagation of mammalian cell lines 

HEK293T (wildtype and knockout), HEK TREX (wildtype and knockout) and U2OS 

(wildtype and knockout) cell lines were grown in Dulbecco’s modified Eagle’s medium with 4.5 g/L 

glucose (DMEM,PAN Biotech), respectively supplemented with 10% fetal bovine serum (FBS, from 

Gibco), 100 U/ml penicillin and 100 µg/ml streptomycin (Gibco, Thermo Fisher Scientific) at 37ºC in 

5% CO2. All cell lines were split regularly every three days by trypsinisation at approximately 80% 

confluency. All experiments were performed with early passages of the cell lines and were discarded 

after eight passages of splitting.  
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2.2.2 Storage of mammalian cell lines     

To prepare frozen stocks HEK293T (wildtype and knockout) cells, 6·106 cells were 

resuspended in 1 ml freezing medium (80% v/v FBS, 20% DMSO). All frozen cell stocks were stored 

at -80°C. 

Frozen cells were thawed in RT. The defrosted cells were diluted in complete DMEM, pelleted and 

resuspended again in complete medium with antibiotics, followed by standard propagation at 37°C. 

 

2.3 Seahorse XF methodology 

2.3.1 72h treatment protocol for HEK293T wildtype and KO cell lines 

300k/well cells were seeded in DMEM in 6 well plates and a selected inhibitor (full list of 

concentrations used can be found in Table 2.1) was added separately in each well. Two wells were 

used for each inhibitor and two wells for DMSO controls. Cells were incubated for 72h at 37 oC in a 

CO2 incubator. One day prior to the experiment the sensor plate was hydrated as described by the 

manufacturer and placed in a non CO2 incubator. Also, the seahorse XF was turned on to heat up at 37 

oC. On the day of the experiment, cells were collected, washed in DPBS and resuspended in assay 

medium with pH at 7.4 at 37 oC (base medium was supplemented with 2mM L-glutamine, 1mM sodium 

pyruvate, 10mM glucose and 5mM HEPES buffer and passed through a sterile filter) with the freshly 

added inhibitor or DMSO. Each cell suspension was calculated to a number of 30k cells/seahorse XF 

well and 6 replicates were measured for each treatment. Optimisation steps performed in this study has 

previously shown that 30k HEK293T cells were optimal for seahorse XF measurements on the XFe96 

(as described in the Results Chapter). Cells were then incubated for 1h at 37 oC in a non CO2 incubator. 

In the meantime, Mito Stress Test reagents oligomycin (10uM), FCCP (10 uM), rotenone/antimycinA 

(5 uM) were loaded sequentially in ports A-C for each well in the sensor plate. After the end of the 1h 

incubation time, the cell plate was covered carefully with the sensor plate and placed into the seahorse 

XF (XFe96). Temperature equilibration, sensor and fiber optics optimisation lasted 20min in an 

automated procedure following the manufacturer’s instructions. After that step, the run was initiated 

and lasted 90 min. The measuring module followed a 3 min mixing and 3 min measuring intervals of 
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OCR and ECAR at the beginning of the experiment and between each reagent injection. At the end of 

the run, the raw files were exported and analysed in the WAVE software (Agilent) and exported to 

Excel or other formats for further bioinformatic analysis (see the relevant Methods Chapter 2.6). First 

normalization of readouts was carried out using live cell staining after the completion of measurements. 

This procedure is described in the subchapter 2.3.5. 

 

Chemical Compound ID Concentration used in this study 
SC 00107038 10uM 
SC 00105914 0.75uM 
SC 00106834 0.1uM 
SC 00107029 1uM 
SC 00106414 1uM 
SC 00106835 1uM 
SC 00107032 10uM 
SC 00107048 2uM 
SC 00106836 10uM 
SC 00107036 160nM 
SC 00107022 5uM 
SC 00105711 50nM 
SC 00107059 1uM 
SC 00107063 0.5uM 
SC 00107064 10nM 
SC 00107067 363nM 
SC 00107062 0.1uM 
SC 00107050 120nM 
SC 00107054 50nM 
SC 00106842 15uM 
SC 00107016 1uM 
SC 00107059 1uM 
SC00107019 30uM 
SC 00107061 1uM 
SC 00107049 2uM 
SC 00107065 1.4uM 
SC 00107066 250nM 
SC 00107058 1uM 
SC 00107052 100nM 
SC00107051 220nM 
SC 00107053 100nM 
SC 00106838 7uM 
SC 00106839 1uM 
SC 00106951 1uM 
SC 00107069 2uM 
SC 00106960 20uM 

Anacardic acid 8uM 
SC 00106959 30uM 
SC 00106841 12uM 
SC 00106840 5uM 
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SC00106956 0.05uM 
SC 00106845 0.4mM 
SC 00106827 0.3uM 
SC 00106829 4uM 
SC 00106947 1uM 
SC 00013575 0.5uM 
SC 00106935 1uM 
SC 00085956 1uM 
SC 00106942 1uM 
SC 00106949 5uM 
SC 00101300 25uM 
SC 00106934 500nM 
SC 00106948 1.2uM 
SC 00106945 1uM 
SC 00106837 10uM 
SC 00085937 1uM 
SC 00106955 0.5nM 
SC 00106946 0.3uM 
SC 00106933 30nM 
SC 00106843 1uM 
SC 00106958 2uM 
SC 00087771 8uM 
SC 00095567 1uM 
BI 00062343 0.25uM 
SC 00106941 0.1uM 
SC 0010LEV 10uM 
SC 00107030 1uM 
SC 00107014 225nM 
SC 00106950 10uM 
SC 00107025 0.3uM 
SC 00107021 20uM 
SC 00107015 5uM 
SC 00107028 2uM 
SC 00107024 1uM 
SC 00107023 200nM 
SC00107033 10uM 
SC 00107017 0.5uM 
BI 00062344 3uM 
SC 00107026 2uM 
SC 00107034 1.25uM 
SC 00107018 60nM 
SC 00107035 300nM 
SC 00107037 100nM 
SC 00107027 100nM 
SC 00106826 10nM 
SC 00106940 20uM 
SC 00106943 5uM 
SC 00106832 1uM 
SC 00082039 5uM 
Nicotinamide 21uM 
SC 00106944 9uM 
SC 00106939 20uM 
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SC 00106828 1uM 
SC 00106961 20uM 
SC 00106953 100uM 
SC 00106954 8.4uM 
SC 00106957 0.3uM 
SC 00106831 25uM 
SC 00106952 30uM 
SC 00106833 5uM 

Table 2.1.: List of small molecules / inhibitors employed in this study. 

 

2.3.2 1h treatment direct injection protocol for HEK293T wildtype and KO cell lines 

For the 1h protocol, cells were seeded in a concentration of 30k/SeahorseXF well in assay 

medium and incubated as described for the 72h treatment protocol. Each tested inhibitor was added in 

a concentration of 10x of the amounts described in Table 2.2 in port A of each well and other Mito  

Stress Test reagents were added sequentially in ports B-D at concentrations previously described. After 

the 1h incubation of the cells the sensor plate was placed on top of the cell plate. The combined plates 

were then placed in the XFe96 and after a 20 min equilibration the experiment measurements started 

by first injecting the inhibitors or control (DMSO) in the cells. OCR and ECAR were monitored for 

one hour and then the mito stress test was performed by injecting sequentially Oligomycin, FCCP and 

rotenone/antimycinA. The full run lasted 150 min. All other following steps were performed as 

previously described. 

 

2.3.3 XF cell mito stress test analysis for HEK TREX and U2OS cell lines  

HEK TREX and U2OS cell lines were firstly tested using the seahorse XF technology in different 

seeding numbers to determine the optimal cell numbers for the seahorse XF assay. After this 

optimisation step, cells were seeded at densities of 60,000 and 40,000 respectively into a XF96 cell 

culture microplate and on the day of the assay incubated for one hour in (180 ul/well) Mito Stress Test 

assay medium at 37°C in a CO2 free incubator for 1h. The assay medium was buffered at pH 7.4 at 

37°C. The medium contained 2 mM L-glutamine, 1mM sodium pyruvate, 10 mM glucose and 5mM 

HEPES buffer. 
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The oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) were 

measured in a XF96 extracellular flux analyzer (Agilent Technologies). Three basal measurements 

were performed and then H2O2 was injected in port A of separate wells in final well concentrations of 

0.1 mM, 0.5 mM and 1 mM (where indicated) and measured for 1h. Then continued with sequential 

injections of 10 uM oligomycin A (port B), 10 uM FCCP (port C), and 5 uM rotenone/antimycin A 

(port D) in each well of the plate. The concentrations of the above known electron transport chain 

(ETC) inhibitors are the ones used for port injections in the seahorse XF96 sensor plate. Three 

measurements were performed after the addition of each ETC inhibitor to determine the ATP turnover, 

the spare respiratory capacity and the non mitochondrial respiration effects. Live cell count was 

performed at the end of the assay to normalise the seahorse XF assay readouts (see next paragraph). 

2.3.4 Protein concentration normalization 

After the end of the seahorse XF assay 150 ul of seahorse XF assay medium were removed 

from each well and 50 ul of lysis buffer (RIPA buffer and 100x protein inhibitors; in 5ml RIPA buffer 

add 50 ul 100x protein inhibitors) was added to the remaining 50 ul of assay medium and cells in each 

well plate. Then an incubation step followed at 4 ˚C for 5 min while shaking. The plate was stored at -

20 ˚C if it was to be processed later. Protein concentration of mammalian whole cell extracts was 

determined according to the BCA method using Sigma Aldrich’s QuantiPro BCA assay kit, following 

the manufacturer’s instructions.  The appropriate sample buffer was used as blank control. A standard 

curve based on at least six BSA standards of known concentrations was used to calculate the protein 

concentration of the samples based on their absorbance at 562nM. For each sample, 6 measurements 

were performed.  

2.3.5 Live cell normalization 

After the end of the seahorse XF assay well volumes were brought to 200 ul (from 247ul). 

Calcein AM reagent was prepared by adding 12 ul of DMSO (vortex and spin down) and diluted with 

1800 ul cold PBS (vortex and spin down).The tube was always covered with aluminium foil. The whole 

procedure of preparing the calcein AM reagent and addition to plate wells was done under minimum 

light. 25 ul of calcein AM mix with PBS was added at 4 uM final concentration in each well, covered 
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with plate lid, aluminium foil and briefly and gently shaken on the bench. Incubation for 30 min in 37 

˚C followed. A specific file was set up and optimised for a Tecan Ultra plate reader for the seahorse 

XF plates including all parameters for the specifications of this plate. The plate reader was always 

turned on at least 10 min before the plate readout and set to 30 ˚C. Fluorescence mode was selected 

and wavelengths at 485 nm excitation and 535 nm emission. Z position (~11551 uM) and manual gain 

(28-32) were determined separately in every experiment and 10 flashes option was mostly used. Mirror 

selection was set at dichroic 2. After the plate readout staining evaluation and qualitative cell viability 

(cell equal distribution on well) under UV light was performed.  The staining and analysis of the 

normalisation results was performed in replicated for each sample. Two blank measurement values 

were deducted from the other sample values and then these results were applied as normalisation step 

on the WAVE (Agilent) software that was used for the seahorse XF assay analysis. 

 

2.4 Histones extraction and sample preparation 

2.4.1 Histones extraction  

After HEK293T cells were treated in triplicates with selected inhibitors (3 technical replicates 

x 30 selected inhibitors and DMSO controls) for 72h in 6 well plates at concentrations as noted on 

Table 2.1, cells were trypsinised and suspensions were placed in 15 ml falcon tubes. Cells were 

collected by centrifugation at 300 g for 5 min at 4˚C, washed and resuspended in 5ml DPBS. Another 

centrifugation step followed at 300 g for 5 min at 4˚C, supernatant was removed and pellets were 

resuspended in 1.8 ml DPBS and placed into labelled Eppendorf tubes. Cells were collected by 

centrifugation, supernatant was removed and cells were frozen at -80˚C. After collection of all samples 

at the company labs, the protein extraction steps and histones preparation for mass spectrometry 

analysis was done following the protocol provided by Dr Ignasi Forne at the ZFP facility in the 

Biomedical Centre. Essentially, cell pellets were left on the bench for 3 min and 200 ul of H2SO4 (~100-

200 ul/106 cells) was added in all samples and brief vortexing for 30 sec followed to break the pellets. 

The Bioruptor was used until all pellets were completely dissolved (10x30 sec ON, 10x30 sec OFF). 

Samples were then placed in the cold room, 4˚C, rotating on a bench wheel overnight. After overnight 
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cell suspensions were centrifuged (30 min, 4oC, 20800 g) to separate the extracted histones 

(supernatant) from cell debris and other proteins (pellet). Simultaneously, another centrifuge was set 

up at 4oC. Under the fume hood, supernatants were transferred (~200 ul) to new labelled tubes. Next, 

if sample concentration was not previously measured to be 300 uM = 106 HEK293T cells, all 

concentrations were measured and adjusted to same concentrations using BCA assay as previously 

described. 300 uM of protein is the required protein concentration starting material amount for the 

histone sample analysis protocol procedure that was provided by the facility. Proteins were precipitated 

adding H2SO4 and TCA: TCA was added in the supernatants of all samples (TCA volume= supernatant 

volume x 26/74). Samples were inverted once and placed in 4oC for 2h. Cell precipitates were placed 

at -80oC further analysis.  Also, the amounts of samples that were not used in the current experiment 

were stored in separate tubes as back up samples for future experiments at -80oC. After the 2h 

incubation time, samples were centrifuged at 4oC in the cold room for 30 min at 20800 g. Samples 

were then placed on ice and the supernatant was discarded. The histone pellets (haze) lied on the side 

walls of the tubes or sometimes was not obvious and it was scattered around the tube walls. This step 

was followed by 4 wash steps of the histone hazes with 500ul ice cold acetone (kept at -20oC) followed 

by centrifugation at 4oC for 15min at 20800 g. Special care was taken to keep the labelling on the tubes 

and to not be removed from the acetone washes. Also, when acetone was removed around 20 ul was 

left in the tube in order to not disturb the histone pellets. The pipet tip had to not touch the tube walls 

or the bottom of the tube as the histone haze turned transparent and it was prone to sample loss if the 

handling was not delicate. The histone pellets-hazes were then air dried for 15 min under the fume 

hood. Dried histone pellets were resuspended with 14 ul HPLC water (histone pellets were often on 

the side of the tubes and around the walls up to the tube height of 500 ul). Then, 4 ul of Laemmli and 

2 ul DTT were added in final sample volumes as in the table below:   

Ingredient Concentration Volume  
DTT (1M in 100uM TRIS) 10% (100mM) of final volume  2ul 
Laemli 5x 1x 4ul 
HPLC H2O n/a 14ul 
Final volume  20ul 
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After brief resuspension to bring histone pellets into solution, a quick spin down followed (nano 

centrifuge up to 2000 rpm). If colour changed to orange yellow, pH was adjusted by adding 1 ul of 2M 

TRIS. Samples were frozen at -20oC until loading into polyacrylamide gels. 

2.4.2 SDS polyacrylamide gel electrophoresis and trypsinisation 

Histone proteins were separated according to their molecular weight using SDS-PAGE. Pre-

cast 8%-16% 10-12 sample Tris-Glycine gels were used. Proteins were denatured by heating at 95oC 

for 5 min. After 1 min incubation on bench a brief centrifugation step followed to collect the sample 

at the bottom of the tube. 10 ul of each histone sample was loaded in each well and 4 ul of a protein 

marker was used in every run. The gels were run at 80 V for 20 min and then at 160 V for 1 h in running 

buffer (900 ml H2O + 100 ml 10x running buffer) prepared in house. After the end of the run, gels were 

cracked open from the cassette following the manufacturer’s method and place in 10 cm plastic dishes 

with lids and washed 2x with H2O. Next, 20-30 min staining step with Coomassie (prepared in house) 

followed and then a destaining step (buffer prepared in house) of the gels for 30-40 min. Gels were 

then placed under the hood to carefully extract the histone gel bands from each sample. A razor was 

used to cut between 11.5 kDa and 17 kDa of the marker bands respectively for each sample which 

corresponds to the range of size of the histones H1H2, H3, H4. For this, gels were placed on a glass 

lighted surface with small amount of HPLC water and gel bands were carefully cut in small pieces and 

placed in tubes with HPLC water respectively for each sample. Razor and glass surface was cleaned 

with ethanol after extraction of each sample histone bands. The same procedure was followed until the 

collection of all 98 samples. After removal of the containing HPLC H2O another 200 ul of HPLC H2O 

was added to the samples and gel pieces were incubated for 1min in RT (gel pieces were covered with 

H2O). Then H2O was removed and 2x destaining steps followed. 200 ul of destaining solution (50% 

ACN/50 mM NH4HCO3) was added and samples were placed for 30 min at 37oC (shaking). This 

procedure of destaining was repeated until gel bands were fully destained. After the last destaining step 

and removal of the destaining solution, (2x) 200 ul of H2O was added at the samples for 5 min in RT 

(no shaking) and then removed. (2x) addition of 200 ul 100% ACN followed for 5 min in RT (no 

shaking) and then removed. The gel pieces turned white and all remaining ACN was removed by 
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spinning down the samples. 20 ul of 100% propionic anhydrite/acetic anhydrite was added to the gel 

pieces (1:10 of final volume, in the current protocol final volume was 200 ul) and another 40 ul of 100 

mM NH4HCO3. Lids had to be pressed closed for 30 sec because of the CO2 production of the reaction. 

Then another 140 ul of 1 M NH4HCO3 and lids had to be pressed closed for 2 min. Then lids were 

opened to release the CO2. pH was confirmed to be acidic or up to 7. If pH was not within the acidic 

range, 1M of ambic was added (~10 ul each time after checking the pH). The solution from previous 

steps was placed in shaking conditions for 45 min at 37oC. After the incubation time ended, wash steps 

followed; 5x: 200 ul, 100 mM NH4HCO3, 5 min, (no shaking) RT, and solution was removed every 

time before starting the new step. Then another 5x wash steps with H2O (200ul H2O, no shaking, 5 min 

RT, solution was removed in between). Finally, 3x steps with 200 ul 100% ACN followed (no shaking, 

5 min, RT, solution was removed every time before starting the new step). The whole amount of ACN 

was removed by a brief spin down to collect it and pipet it of the tube.   

A mix of acylated SpikeTides (JPT Innovative Peptide Solutions, provided by BMC Mass 

Spec facility) were used in concentrations of 3 ul, 5 ul and 10 ul for 25 ng/ul histones concentration 

sample to determine which is a suitable concentration for detection using an Orbitrap LTQ and a Q 

Exactive.  

An amount of 3 ul spike tides mix was selected to be used in each sample as below while working on 

ice for the trypsinisation step: 

Reagent Sample 
Spike tides (master mix) 3 ul 

Trypsin (100 ng/ul in 100 mM NH4HCO3) (25 ng/ul in 100 mM NH4HCO3) 27.5 ul 
100Mm NH4HCO3 79.5 ul 

Final volume 110 ul 
 

An incubation step of 20 min on ice followed. 120 ul of 50 mM Ambic was added to fully cover the 

gel pieces and then they were incubated overnight at 37 oC (shaking). 
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2.3.3 Histone peptide extraction 

At this step, peptides were extracted from the gel pieces. 100 ul of 50 mM ambic was added 

to cover them and gel pieces were incubated for 10 min in RT. Then, a sonication step followed for 3 

min. The supernatant was transferred to low binding tubes (SN1) and another 100 ul of solution (50% 

ACN/0.1% TFA) was added to the gel pieces. Then, a sonication step followed for 3 min, incubation 

for 10min in RT, spin down and supernatant (SN2) was transferred in the low binding tube. The last 

step was repeated once more and the supernatant was transferred. 2X steps of adding 70 ul – 100 ul, 

100% ACN to the gel pieces followed and then gel pieces were sonicated for 3 min, incubated for 10 

min in RT, spined down) and the supernatant was transferred to the low binding tube (SN3 to SN2+ 

SN1). Samples were then placed balanced to evaporate in the Speedvac at 30oC. Evaporation of around 

350 ul of sample volume was usually observed to last about 5h. 

2.4.4 Mass spec histone sample preparation 

C18 Purification  

Desalting of samples was performed using C18 tips. Samples were prepared for loading on the 

C18 by being resuspended in 30 ul 0.1% TFA and an addition of 5 ul 1% TFA. pH was checked to be 

between pH 2 and pH3. C18 tips were prepared for binding of the peptides following manufacturer’s 

procedures by using 20 ul MetOH (conditioning and cleaning of the cartridge) and centrifuged at 1000 

g for 1 min. Then, addition of 20 ul 0.1% TFA/80% ACN (wetting of cartridge) followed and tips were 

centrifuged at 1000 g for 1 min. 20 ul of 0.1% TFA (equilibration) was added with care to not fully 

dry the cartridge after the short centrifugation step (1000 g for 1 min). The cartridges were placed in 

new tubes to collect the samples. Samples were loaded on the cartridges (2 x 20 ul) and spun down at 

1000 g for 1 min. Then samples were (2x) reloaded and spun down at 1000 g for 1 min. The samples 

were loaded 3 times in total and were bound on the C18 cartridges. The flow through was stored (FT) 

for later analysis steps with carbon tips. 2x wash steps (20 ul 0.1% TFA) followed and then cartridges 

were placed in new low binding tubes. 3X elution steps and brief centrifugation (10UL 0.25% TFA/ 

80%ACN, 1000g for 1min) followed (EL1) and samples were stored at -20oC. 

Carbon tips 
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The more hydrophilic and smaller peptides are not efficiently bound on the C18 cartridges and 

to increase the turnover carbon tips were used on the initial flow through from the C18 tips. Carbon tip 

beds were prepared by three (10 ul 100%ACN) wetting steps (30 sec, 1000 rpm) and 3x (10 ul 

0.1%TFA) equilibration (30 sec, 1000 rpm) steps. Then, carbon tips were placed in new low binding 

tubes and the sample was loaded 3x-5x (FT from C18). Then, 5x (10 ul 0.1%TFA) wash steps followed 

and carbon tips were placed in new tubes. The samples were then bound on the carbon tips. Finally, 3x 

15 ul (70% ACN/0.1% TFA) elution (EL2) steps followed. The 45 ul volume of samples was reloaded 

once more on the tips. EL1 and EL2 were combined and briefly centrifuged for 10 sec. The samples 

were then placed in Speedvac for evaporation and stored at -20oC. Prior to mass spectrometry runs 

samples were resuspended in 12 ul 0.1%TFA and were then given to the BMC mass spec facility. The 

samples were injected into a nano LC-MS/MS Q Exactive for analysis following the facility standard 

procedures. Raw files were imported into Skyline. A peptide library for Skyline was provided by the 

Mass Spec facility. This library was used to identify peptide peaks based on mapped mass and retention 

times in the individual control and drug-treated samples, followed by manual review to ensure peaks 

were properly called by the Software. Peptide abundance was quantified following the procedure as 

described before (Feller et al., 2015). The effect of drug treatments was then calculated and depicted 

as log2-ratio of intensities in drug-treated samples versus control (DMSO)-treated samples. 

 

 

 

 

2.5 Whole proteome analysis 

2.5.1 Mass spectrometry whole proteome sample preparation 

72h drug-treated cell samples and vehicle controls were separately washed 1x in PBS, briefly 

treated with trypsin to achieve singe cell status and after half a minute DMEM used to culture 

HEK293T was added to inactivate the trypsin. Cells were then pelleted (4 min, 1000 rpm) and washed 

sequentially 3x in ice cold PBS with centrifugation in between and removal of PBS.  The cell pellets 
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were snap frozen in liquid nitrogen were shipped to DC Biosciences in dry ice for protein extraction 

and further analysis steps. 

2.5.2 Sample processing  

Upon reception, proteins were extracted and cell lysates were subjected to protein quantitation. 

Each sample was brought to ~100 µg of protein, which was estimated that corresponds to 0.33*106 

cells. After adjustment of protein concentration, samples were trypsin digested, reduced and alkylated 

and then labelled with TMT-11plex following the instructions of the manufacturer (ThermoFisher 

Scientific). Each set of TMT constituted of 10 drug-treated samples and one control from one 

replicate), which were combined and cleaned-up (total: 3 TMT-11plex-labelled samples per replicate). 

Each sample was fractionated by high pH reversed phase chromatography into 4 fractions. Final 

peptide samples were analysed by LC-MS/MS/MS on a Fusion Tribrid Orbitrap instrument using a 

data dependent, MultiNotch MS3 acquisition method at the proteomic facility of the School of Life 

Sciences, University of Dundee (DC Biosciences). The raw spectra file output was analysed in 

MaxQuant against a human proteome database as described (Tyanova et al., 2015) with quantification 

carried out on MS3 level. Protein IDs with quantification were exported for further analyses in Excel 

or using R Bioconductor environment. All data from the proteomic dataset are represented as log2 

fold-change of intensities in drug-treated vs DMSO (control)-treated samples. 

 

 

 

 

2.6 Statistical analyses 

2.6.1 Statistics 

Unless otherwise stated, the figures present the average values of at least three independent 

biological experiments +/- SEM or Standard Deviation, as described in the figure legends and Results. 

Asterisks (*) indicate statistical significance (* p<0.05; ** p<0.01; *** p<0.001), based on unpaired, 
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two-tailed distribution Student’s t test. Correlations were calculated using Pearson’s correlation 

coefficient (r). 

2.6.2 Seahorse XF analysis 

All Seahorse XF experiments were normalized to the number of living cells using the Live 

Cell counting method (as described above). For each well, the OCR (oxygen consumption rate, in 

pmol/min) and ECAR (extracellular acidification rate, in pmol/min) data from the Seahorse XF were 

divided by the RFU (relative fluorescence units) as determined by the Live Cell staining after the assay. 

These normalized metabolic readout data (in pmol/min/RFU) were then used as the basis for further 

analyses. First, the measurement intervals for defined metabolic states were defined (the time points 

indicate representative timepoints from a specific experiment):  

72h experiment     

Phase 
First 
measurement (min) 

Last 
measurement (min) 

Start of exp  0   
Drug or DMSO incubated* 1 1.35 3 14.83 

Oligomycin injected 4 21.75 6 35.18 
FCCP injected 7 42.17 9 55.60 

ROT/ANT injected 10 62.53 12 75.98 
 

*As cells were pre-incubated in Drug or DMSO prior to the experiment, the first measurement  
cycle already includes the effect of the drug.  

 

 1h experiment     

 Phase 
First 
measurement (min) 

Last 
measurement (min) 

 Start of exp  0   
 Baseline prior to injection 1 1.35 3 14.82 

 Drug or DMSO injected 4 21.75 13 82.27 
 Oligomycin injected 14 89.22 16 102.68 
 FCCP injected 17 109.67 19 123.15 
 ROT/ANT injected 20 130.13 22 143.63 

Based on these measurement cycles, the following metabolic states were defined: 

• Basal metabolic rate: average of the normalized metabolic rates of the first three 

measurements. For the 72h experiments, the effect of drug treatments on the basal rate was 

calculated by comparing the fold-change of this basal metabolic rate in drug-treated samples 

versus control (DMSO)-treated samples. For the 1h experiments, the drug effect was calculated 
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by subtracting the baseline rate (average of first three measurements) from the average of three 

measurements 11,12 and 13 (i.e. 1h after drug injection). 

• Maximal respiration: maximal respiration in the Mito Stress Test is defined as the metabolic 

rate after treatment of cells with Oligomycin and FCCP, corrected for the non-mitochondrial 

respiration (measurable as remaining metabolic rate after treatment with ROT/ANT). In these 

experiments, maximal respiration was therefore calculated by taking the average of the three 

measurements after FCCP injection (measurements 7,8, 20, 9 for 72h experiments, 

measurements 17, 18, 19 for 1h experiments) and subtracting the average of three 

measurements after ROT/ANT injection (measurements 10, 11, 12 for 72h experiments, 

measurements 20, 21, 22 for 1h experiments). 

For each compound, six technical replicates were prepared and measured on each Seahorse XF multi-

well plate. These six technical replicates were averaged and the averages used for further calculation. 

To allow comparison of experiments carried out on different dates and across different treatments, each 

plate contained (at least) two DMSO controls constituted of six technical replicates. All metabolic 

values were normalized to the average basal rate of this (or the average of several) DMSO control(s). 

Effects of drug treatments in comparison to DMSO control were calculated and represented as fold-

change (for initial metabolic analyses) or log2 fold change (for all analyses where seahorse XF, 

proteomic and histone PTM data are compiled). 

2.6.3 Bioinformatic analyses of metabolic, proteomic and histone PTM data  

In addition to the fundamental analyses and graphs outlined above, advanced analyses and 

representations were prepared in R (Version 4.0.0 “Arbor Day” using the R Studio (Version 1.3.959) 

with various packages as described below, including the Bioconductor environment (Version 3.12.0), 

in part with bioinformatics support and collaboration. As first step to perform unbiased data clustering 

and generate heatmaps, the ideal number of clusters was determined. For this, the fviz_nbclust() 

function from package factoextra (Version 1.0.7) was applied to the log2-transformed data of all three 

datasets, using the gap statistics method. For the following clustering and heatmap generation the 

ComplexHeatmap package for Bioconductor was employed (Version 2.6.2), using the Euclidian  
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distance method as clustering algorithm. To elucidate enrichment of biological pathways in different 

drug-treated samples, the STRINGdb package was used (Version 2.2.0).  Enrichment p values were 

calculated using hypergeometric testing. The number of significantly differentially expressed proteins 

was compared to the number of proteins within a term of the ontology (biological process terms) and 

the total number of proteins in the background. In this analysis, only the proteins detected in the 

experiment were used as background (instead of the whole proteome as an alternative) as this gives 

more accurate results. Benjamini-Hochberg (BH) multiple testing correction was also applied to the p-

values.    

In order to identify common themes and correlations across the three different datasets, 

multivariate linear modelling was employed using the linear modelling function lm() from package 

stats (Version 3.6.2) in R. In particular, four separate regression models were made: 1) Basal OXPHOS 

72h versus all acetylated histone PTMs; 2) Maximum OXPHOS 72h vs all acetylated histone PTMs; 

3) Basal Glycolysis 72h versus all methylated histone PTMs; 4) Maximum Glycolysis 72h vs all 

methylated histone PTMs. In each model, linear regression was carried out with the metabolic values 

as x-values and histone PTM levels for each analyzed histone peptide as y-values across the 30 

treatments. 

Principal Component Analysis (PCA) was employed to identify clusters and underlying 

correlations in the datasets. PCA was carried out in R Studio using the prcomp() function of the PCA 

tools package in Bioconductor (Version 2.2.0) with the settings center = TRUE and scale = TRUE. 

Based on the output of the PCA, six different types of graphs were generated. The correlation matrix 

was generated using the corrplot() package (Version 0.8.4) based on the PCA output of cos2 values – 

depicting how much of the variability of a given observation (e.g. histone mark) was represented by a 

given principal component of the PCA (Dim1, Dim2, ....). The quality of representation based on cos2 

was depicted using the fviz_cos2() function from the package factoextra (Version 1.0.7) with choice = 

var for the 4 most important principal components (Dim1, Dim2, Dim3, Dim4).  The “Scree” plot, 

which explains how much of the observed variance in a data set is explained by a given principal 

component, was made using fviz_eig() from the package factoextra (Version 1.0.7). To depict the 

distribution of  “PCA Individuals” (i.e. drug treatment samples) and identify possible similar groupings 
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across Principal Components, and to depict distribution of  “PCA Variables” (i.e. histone 

modifications, or metabolic readouts)  and their groupings,  fviz_pca_ind() and fviz_pca_var() were 

used, respectively, with the coloring representing the  quality of representation per dimension for 

Individuals (cos2), or contribution (contrib), for Variables, again from the package factoextra (Version 

1.0.7). “Biplots” were generated using fviz_pca_biplot() from the package factoextra (Version 1.0.7) 

The employed Pearson multivariate correlation was carried out to identify and visualize 

correlations and anticorrelations across all three different data sets. For this, the data sets were 

consolidated so that the 30 different drug treatments constituted the rows, while the  metabolic readouts 

(72h base, 72 max, 1h base, 1h max), histone PTMs (e.g. H3K927me3), and individual protein levels 

(e.g. RPS9) constituted 5096 columns (in excel). Pearson correlations were computed using the 

correlate() package (Version 0.8.4)  in R across different subsets of the consolidated data set -  for 

example comparing the four metabolic states against protein levels. The resulting correlation matrices 

were plotted using the corrplot() package, with coloring indicating the degree of correlation (Pearson’s 

r), with r close to 1 indicating a high positive correlation and r close to -1 indicating a high negative 

(anti-) correlation. Thresholds of correlations that were depicted or not depicted are described in the 

figure legends and the text.
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3.1 Aim of this study  

The aim of this project was to investigate and characterize the interplay between epigenetics 

and metabolism. For this, the effects of small molecule-induced changes of histone post-translational 

modifications (PTM) on levels of cellular proteins and cellular metabolism were measured. Clarifying 

the link between the induced and characterized PTM patterns, protein expression levels and metabolic 

pathway regulation will help finding strategies to interfere with pathologic or dysregulated metabolic 

states (e.g. in tumor cells or adipocytes) by epigenetic modulation.  The first step to achieve this goal 

was to identify and optimize an appropriate metabolic assay. Literature review and existing usage 

within the research network led to the selection of the seahorse XF assay. However, significant 

optimisations were required to make the assay fit for the project purposes and to be able to screen 100 

epigenetic compounds for induced cellular metabolic changes. Subsequently, histone PTM changes 

induced by the treatment with selected small molecules were investigated by a quantitative histone-

targeted mass spectrometric approach. This was followed by a whole proteome analysis to investigate 

protein changes induced by those epigenetically active compounds. Finally, novel findings between 

histone PTMs and induced protein changes and metabolic effects were evaluated using unbiased 

statistical methods and interpreted in light of the relevant literature. The final aim of this work was that 

its results could be used as the groundwork for exploration of potential new treatments for metabolic 

disorders and other diseases with aberrant metabolism, including cancer. 

 

3.2 Establishment of the seahorse XF assay 

3.2.1 Challenges of existent seahorse XF assay 

The seahorse XF metabolic assay as used historically before and as described in literature 

(Muller et al., 2019; Swain et al., n.d.) proved to be challenging to use. Most problems were stemming 

from very low reproducibility of experimental results, which made statistical analysis impossible to 

perform. The factors that caused low reproducibility were the unequal cell distribution across the assay 

wells’ surfaces, unequal and generally very low cell adherence and finally the normalisation method 
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used as the final assay step to calculate an accurate cell number per well. For each of these issues, 

solutions were identified and the assay was optimised accordingly to upgrade the seahorse XF assay. 

3.2.2 Optimised vs commonly used seahorse XF protocol 

In initial measurements, technical replicates usually presented with a large variation of oxygen 

consumption rate (OCR) in time course measuring basal respiration over a period of one hour (variation 

of ca. 16% in an example experiment as depicted in Fig 3.1A). After applying the commonly used 

normalization method based on measuring protein concentration (BCA assay after end of the 

experiment), the technical variation increased dramatically (to 36% in the representative example 

experiment depicted in Fig 3.1B). The protein concentration normalisation method itself usually 

presented large and consistently over 30% variation amongst the three technical replicates (43% in the 

presented example), likely caused by the small number of cells per well that had to be used in the 

protein measurement assay. After the optimisation of the protocol as described under the methods 

chapter 2.3, technical replicates presented on average not more than 15% OCR variation for basal 

respiration (12% in the example experiment shown in Fig 3.1C). Importantly, after application of the 

new and optimized normalisation method of fluorescence-based live cell number counting, the 

variation between technical replicates dropped to 5% (Fig 3.1D). After the optimisation of the seahorse 

XF protocol, problems regarding cell distribution and attachment (Fig 3.2A, B) were resolved (Fig 

3.2C, D). 

 

3.3 Metabolic screening  

3.3.1 Seahorse XF assay experimental approach types: 72h assay and 1h assay  

To realise the metabolic profiling of small molecules, two different assays were established 

and implemented. As fully capturing significant downstream effects of drug treatments on protein level 

and metabolic phenotype would rely on allowing histone PTM changes to take effect, followed by   

altered gene expression and further downstream changes in protein levels, a 72h incubation with drugs 

was used. Equally important, a shorter, 1h, real-time measurement of the drugs’ impact on metabolism 

was employed to gather insights on potential effects that are not mediated by histone PTM changes but  



Figure 3.1. Optimization of seahorse XF assay led to more reliable experimentation and
significantly reduced variation between technical replicates (more than 30% on average).
For the comparison, basal respiration rates of HEK293T cells are measured. The y-axis represents
OCR (pmol/min) and x-axis represents time (min). Depending on the normalisation method applied
the y-axis represents OCR ([pmol/min]/[mg/ml]) for the protein concentration and OCR
([pmol/min]/RFU) for the live cell number counting normalisation.
A. Results obtained with the commonly-used seahorse XF protocol before normalization. Three

technical replicates are shown with relative standard deviation of 16%.
B. Results obtained with the commonly-used seahorse XF protocol after applying BCA-based

normalization method. Three technical replicates are shown with 36% relative standard deviation.
The BCA values between the three technical replicates had 43% relative standard deviation
despite similar cell numbers as determined by counting.

C. Results obtained with the optimized seahorse XF protocol. Five technical replicates are shown
with relative standard deviation of 12%.

D. Results obtained with the optimized seahorse XF protocol after applying the normalization
method of live cell counting. The relative standard deviation of live cell numbers between
technical replicates was 6%. The values of the five technical replicates after applying the
normalization method showed a relative standard deviation of 5%.
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Figure 3.2. The optimised seahorse XF protocol resolved multiple assay issues and reduced
experimental variation.
A. Light microscopic image of HEK293T cells obtained before the assay using the commonly-used

seahorse XF protocol. Cells showed “edge effect”, non-equal distribution, and clusters within
the population.

B. Light microscopic image of HEK293T cells obtained after the assay using the commonly-used
seahorse XF protocol. Cells commonly detached, making normalization challenging.

C. Light microscopic image of HEK293T cells obtained before the assay using the optimized
seahorse XF protocol. The optimized protocol achieved equal single cell distribution, resolution
of the edge effect, and equal cell attachment.

D. Fluorescence microscopy image of HEK293T cells after performing the optimized protocol.
Cells were equally distributed across the well bed.
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direct interactions of the small molecules with metabolic processes. This was intended to 

identify fast-acting drugs but also serve as a control to allow selection of drugs that predominantly 

exert their metabolic effects via epigenetic mechanisms including alterations of protein expression 

patterns rather than direct modification of the activity of metabolic enzymes. 

For the first type of experiments (Fig 3.3A), HEK293T cells were treated with inhibitors for 

72h and then counted and placed in the seahorse XF plate with seahorse XF medium with the respective 

drug. Afterwards, they were placed in the seahorse XF instrument for the mitochondrial stress test. 

After the performance of the assay, results were normalized using cell density as measured with the 

live cell number fluorescence counting approach. The other type of experimental set up involved 

seeding of HEK293T in the seahorse XF plate in assay medium and injection of epigenetic inhibitors 

directly during the assay in the instrument where measurements were performed for 1h (Fig 3.3B).  

This essentially allowed a real-time tracking of the metabolic response of live cells to the small 

molecules. After 1h of measurements, the mitochondrial stress test was performed. After the 

completion of the assay cells were normalised to live cell number as described in Materials and 

Methods (Chapter 2.3.5 and 2.6.2). 

3.3.2 Typical readouts of the seahorse XF assay 

During the performance of the seahorse XF assay, measurements of both oxygen consumption 

and extracellular acidification rates can be monitored simultaneously. For the current project, 

mitochondrial stress tests were performed for the metabolic screening. During the mitochondrial stress 

test, multiple parameters can be obtained in one assay to assess mitochondrial function and oxygen 

consumption rate (OCR) including basal respiration, ATP production linked respiration, maximal 

respiration, proton leak and nonmitochondrial respiration (Fig 3.4). At the same time, the rate of 

glycolysis can be measured in the form of extracellular acidification rate (ECAR). Each of the 100 

screening experiments followed this aforementioned approach and provided deep underlying data 

traces. The following comparative and integrating statistical analyses relied on four key metabolic 

parameters: basal (resting) OCR, basal ECAR, maximum (“stressed”) OCR and maximum ECAR. The 

calculation of those parameters is described in Materials and Methods Chapter 2.6.2. 



Figure 3.3. Seahorse XF assay experimental approach.
A. Experiment type 1: 72h assay. HEK293T cells were grown in standard growth medium

supplemented with appropriate concentrations of tested inhibitors for 72h. Before the seahorse
XF assay, cells were harvested, counted and reseeded in seahorse XF assay plates with assay
medium supplemented with drug. Following the seahorse XF assay and mitochondrial stress test
performance, live cell number and viability was assessed and used for normalization.

B. Experiment type 2: 1h assay. Before the seahorse XF assay, HEK293T cells were harvested,
counted and reseeded in seahorse XF assay plates with assay medium. Direct injection of drugs
during the seahorse XF assay was performed in the seahorse XF device using the respective ports
of the assay plate. Measurements were monitored for 1h, followed by the mitochondrial stress
test. Live cell number and viability was assessed and used for normalization.

38

Chapter 3 Results

d = 0

Drugs added 2h
Split cells

d = 3

Split cells 
Drugs added

2h start assay, 
oligomycin, FCCP 
injections

d = 3d = 3

Normalise Data analysis

d = 0d = 0

Split cells Normalise Data analysis

d = 0 d = 0

2h start assay, drugs (1h 
measurement), oligomycin, 
FCCP injections

A

B

72h experiment

1h experiment



Figure 3.4. Typical readouts of the optimized seahorse XF assay mitochondrial stress test.
Experiment type 2, direct injection of drug: 6 technical replicates of HEK293T cells are shown. Y-
axis shows OCR (pmol/min) and x-axis shows time (min). The parameters measured during the
mitochondrial stress test are basal respiration, maximal respiration, ATP-linked respiration, proton
leak and non-mitochondrial respiration. Dotted vertical lines indicate the time points of sequential
injections during the mitochondrial stress test: drug or DMSO, oligomycin, FCCP,
rotenone/antimycin.
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3.3.3 Compounds targeting epigenetic reader and writer proteins can significantly alter 

metabolism 

100 epigenetically active compounds were screened for metabolic effects using the seahorse 

XF assay and the mitochondrial stress test. An overview of the selected compounds and employed 

concentrations can be found in (Table 2.1) in the Materials and Methods Chapter 2.3.1. The 100 initial 

compounds were selected to represent a wide variety of known and suspected epigenetically active 

small molecule compounds. Major classes of chromatin-modifying enzymes were covered (e.g. histone 

deacetylases, histone methyltransferases) and compounds both with broad or very specific activity 

were included. 

The consolidation of the 100 individual experiments revealed that many epigenetically active 

compounds alter basal respiration and glycolysis after the 72h drug treatment (Fig 3.5A).  HAT 

inhibitors (SC00106951, SC00107069, SC00106960) targeting NAT10 (GNAT family), Tip60 

(MYST family), p300/CBP respectively, decreased respiration with SC00106960 increasing both 

respiration and glycolysis. HDAC inhibitors, and molecules targeting epigenetic reader domains 

resulted in various metabolic effects. In the cases of inhibitors SC00105711 and SC00107059, the 

observed 1h metabolic effects could hint at potential off target effects. Methyltransferase inhibitors 

containing classic SET domains generally decreased metabolism or showed no effects. One exception 

was inhibitor SC00107035 targeting KMT3C (alternative name SMYD2) which contains an interposed 

SET domain by MYND domain and therefore KMT3C is classified as a different group of SET domain 

containing methyltransferases (Abu-Farha et al., 2007; Brown et al., 2006; Tsuda & Komatsu, 2010). 

Several tested methyltransferase inhibitors which target the non-SET domain methyltransferase 

DOT1L, showed no effect compared to control. PRMT methyltransferase inhibitors showed 

heterogeneous effects. In contrast to the significant alterations observed at 72h, the 1h of treatment 

with epigenetic compounds showed much less pronounced metabolic effects on the basal respiration 

and glycolysis (Fig 3.5B). Five notable exceptions to these observations were one HAT inhibitor 

(SC00106959), two epigenetic reader domain compounds (SC00107049, SC00106842) and a 

demethylase inhibitor (SC00106834).  

  



Figure 3.5. Compounds targeting epigenetically-active proteins significantly altered metabolism
– basal respiration and glycolysis.
A. Basal respiration and basal glycolysis rates after 72h drug treatments. Each dot represents cells

treated with a distinct drug. Values indicate fold-change of readouts in drug-treated cells vs
DMSO (control). OCR fold change (y-axis) is plotted against ECAR fold-change (x-axis).

B. Basal respiration and basal glycolysis rates after 1h drug treatments. Each dot represents cells
treated with a distinct drug. Values indicate fold-change of readouts in drug-treated cells vs
DMSO (control). OCR fold change (y-axis) is plotted against ECAR fold-change (x-axis).
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72h treatments with those molecules resulted in more pronounced maximal respiration and 

corresponding glycolysis rates in the mito stress test (Fig 3.6A). 1h treatments with epigenetic 

compounds presented fewer metabolic effects comparing to 72h treatments. However, the 1h readouts 

of maximal respiration/glycolysis were more pronounced than the basal rates, corresponding to the fact 

that the cells are “stressed” from the addition of oligomycin and FCCP and therefore potentially more 

sensitive to disturbance by the added compounds. Epigenetic reader domain inhibitors, HAT and 

methyltransferase inhibitors were the two drug classes that showed most metabolic effects after 1h (Fig 

3.6B). This could be hinting possibly at non-specific effects and activity in the cytoplasm in addition 

to the epigenetic mechanisms those compounds are generally known for. 

  

3.4 Epigenetic proteins regulate metabolism 

Very few comprehensive metabolic characterizations of mammalian cells under different 

conditions have been published to date. A limited set of studies focused on individual epigenetic 

regulatory proteins and their potential involvement in metabolism (Nguyen et al., 2020; J. Yang et al., 

2017; T. Zhang et al., 2020). In particular, no screening study linking epigenetic proteins and 

metabolism has been published to the author’s knowledge. Therefore, the seahorse XF assay was used 

to measure the metabolic phenotype of cell lines deficient in specific epigenetic proteins, including 

DOT1L, KMT9, PARP1 and MacroD1. Furthermore, the results helped to test the screening approach 

and validity of results so far, potentially demonstrating that there can be causative relationship between 

the activity/presence of an epigenetic regulator and metabolism. The selected knockout cell lines 

therefore were used as specific examples to support that the observed correlations between histone 

PTM changes and metabolic changes caused by epigenetically active compounds could be underlined 

by causative relationships (for instance signaling cascades), as discussed in Chapter 4 

3.4.1 Effects of genetic alterations of HEK293T DOT1L and KMT9  

To look into more detail in the metabolic effects of KMT methyltransferase inhibitors for the 

DOT1L domain and SET domain methyltransferases, the metabolic characteristics of two types of 

knockout cell lines were analysed using the seahorse XF assay: HEK293T DOT1L KO and HEK293T  



Figure 3.6. Compounds targeting epigenetically-active proteins significantly altered metabolism
– maximal respiration & glycolysis.
A. Maximal respiration and maximal glycolysis rates after 72h drug treatments. Each dot represents

cells treated with a distinct drug. Values indicate fold-change of readouts in drug-treated cells vs
DMSO (control). OCR fold change (y-axis) is plotted against ECAR fold-change (x-axis).

B. Maximal respiration and maximal glycolysis rates after 1h drug treatments. Each dot represents
cells treated with a distinct drug. Values indicate fold-change of readouts in drug-treated cells vs
DMSO (control). OCR fold change (y-axis) is plotted against ECAR fold-change (x-axis).

A 72h maximal cellular metabolism

B 1h maximal cellular metabolism
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KMT9 KO. Basal respiration was significantly increased in the case of DOT1L KO comparing 

to WT and KMT9 KO (Fig 3.7A). In the HEK293T KMT9 KO, basal glycolysis was significantly 

reduced comparing to WT and HEK293T DOT1L KO (Fig 3.7B) while DOT1L KO seem to have 

increased basal glycolysis. Maximal respiration was slightly increased in DOT1L KO comparing to 

WT and KMT9 KO (Fig 3.7C). Maximal glycolysis was significantly reduced in KMT9 KO comparing 

to WT and DOT1L KO (Fig 3.7D).  

In line with the above consolidated results, respiration measurements over time showed that 

KMT9 KO was similar to WT (Fig 3.8A, C) but presented significantly reduced glycolysis (Fig 3.8B). 

In contrast to these results, cells treated with DOT1L or KMT inhibitors for 72h showed no metabolic 

effect compared to control when measured on the seahorse XF. This could potentially be explained if 

the employed inhibitors do not fully inhibit the cellular activity of DOT1L, thereby allowing enough 

remaining activity so that no downstream effect on metabolism was observed despite the inhibitor 

treatments. The KMT9 KO metabolic effects were in line with the effects caused by inhibitors targeting 

SET domain methyltransferases, as all SET domain KMT inhibitors led to reduced metabolism (Fig 

3.5A, Fig 3.6A).  

3.4.2 Upon cellular stress, HEK293T DOTL1 KO increase both glycolysis and 

mitochondrial respiration, while WT and KMT9 KO cells show minimal responses  

Interestingly, absence of DOT1L increased the respiration and glycolysis potential of 

HEK293T when exposed to stress after sequential injections of oligomycin and FCCP during the 

mitochondrial stress test (Fig 3.9). In contrast, WT and KMT9 KO showed minimal responses during 

the mitochondrial stress test. The DOT1L KO showed preference to oxidative phosphorylation at basal 

state but used both oxidative phosphorylation and glycolysis under stress conditions.  
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Figure 3.7. Epigenetic proteins regulated metabolism: confirmation using HEK293T DOT1L
and KMT9 KO cell lines.
The results shown are compiled of n=3 biological replicates for the KMT9 KO and n=5 biological
replicates for the WT and DOT1L KO.
A. Y-axis indicates normalized basal respiration rates ([pmol/min]/RFU). Results from KO cell

lines are depicted relative to WT.
B. Y-axis indicates normalized basal glycolysis rates ([mpH/min]/RFU). Results from KO cell lines

are depicted relative to WT.
C. Y-axis indicates normalized maximal respiration rates ([pmol/min]/RFU). Results from KO cell

lines are depicted relative to WT.
D. Y-axis indicates normalized maximal glycolysis rates ([mpH/min]/RFU). Results from KO cell

lines are depicted relative to WT.
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Figure 3.8. Detailed analysis of HEK293T KMT9 KO cell line revealed significantly reduced
glycolysis with mitochondrial respiration similar to WT.
A. Seahorse XF analysis of mitochondrial respiration of HEK293T WT vs KMT9 KO. N=3

biological replicates; error bars: SEM, 6 technical replicates per condition per biological repeat.
X-axis represents time (min) and y-axis normalized OCR ([pmol/min]/RFU).

B. Seahorse XF analysis of glycolysis rate of HEK293T WT vs KMT9 KO. N=3 biological
replicates; error bars: SEM, 6 technical replicates per condition per biological repeat. X-axis
represents time (min) and y-axis represents normalized ECAR ([mpH/min]/RFU).

C. Normalized respiration rate parameters measured with seahorse XF (see A).
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Figure 3.9. Upon cellular stress, HEK293T DOTL1 KO increased both glycolysis and
mitochondrial respiration, while WT and KMT9 KO cells showed minimal responses.
Cellular respiration and glycolysis rates before (light-colored round symbols) and after the
mitochondrial stress test (dark-colored pyramid symbols). N=3 biological replicates for KMT9 KO
and n=5 biological replicates for WT and DOT1L KO. There were 6 technical replicates for each
biological repeat. X-axis represents normalized ECAR ([mpH/min]/RFU) and y-axis represents OCR
([pmol/min]/RFU). No treatment indicates the basal rates for OCR and ECAR and stress test
indicates rates after injections of oligomycin and FCCP.
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3.4.3 MacroD1 regulates metabolism in HEK TREX cells by promoting oxidative 

respiration and inhibiting glycolysis 

To expand the investigations to a protein that is known to have a physiological function in 

mitochondria but outside of the oxidative phosphorylation pathway, MacroD1 knockout cell lines were 

employed.  MacroD1, a macrodomain-containing ADP-ribosyl hydrolase, is mainly localized in 

mitochondria and targets ester bonds of ADP-ribosylated phosphorylated double-stranded DNA ends, 

promoting a reversal of DNA damage response (Agnew et al., 2018). MacroD1 has been implicated in 

the pathogenesis of various cancer types but its role in metabolism has not been investigated so far. 

The HEK TREX KO of the mitochondrial protein MacroD1 appeared to have decreased respiration 

and increased glycolysis comparing to WT (Fig 3.10A, B). Basal respiration rate, ATP linked 

respiration, nonmitochondrial respiration and proton leak rates appeared similar to WT. Maximal 

respiration rate though was significantly increased in the MacroD1 KO comparing to WT (Fig 3.10C).  

3.4.4 MacroD1 regulates metabolism in U2OS cells by promoting oxidative respiration 

and inhibiting glycolysis 

The effects seen on HEK TREX cell line were confirmed on the U2OS cell line for the 

MacroD1 protein (Fig 3.11A, B); MacroD1 KO showed decreased respiration and increased glycolysis 

comparing to WT. It was interesting to investigate whether poly(ADP-ribose) polymerase (PARP), an 

enzyme that senses DNA damage by adding poly ADP substrates, would have an opposite metabolic 

effect than MacroD1. PARP1 has the opposite function from MacroD1 as it adds ADP substrates and 

MacroD1 is a mono hydrolase removing these marks (Alemasova & Lavrik, 2019; Jankevicius et al., 

2013; Tallis et al., 2014). PARP1 KO presented slightly higher respiration to WT and similar 

glycolysis. MacroD1 KO appeared to have both basal and maximal respiration rates decreased 

comparing to WT (Fig 3.11C). Under stress conditions and after the performance of the mitochondrial 

stress test the results showed that lack of MacroD1 influenced negatively the basal respiration rate and 

maximal respiration rate comparing to WT. PARP1 KO showed slight increase of maximal respiration 

rate comparing to WT after the performance of the mitochondrial stress test (Fig 3.12). To study the 

role of MacroD1 in metabolism under conditions of DNA damage stress, cells were pre-treated with  



Figure 3.10. MacroD1 regulated metabolism in HEK TREX cells by promoting oxidative
respiration and inhibiting glycolysis.
A. Seahorse XF analysis of mitochondrial respiration of HEK TREX WT vs MacroD1 KO. N=4

biological replicates; error bars: SEM, 6 technical replicates per condition per biological repeat.
X axis represents time (min) and y axis represents normalized OCR ([pmol/min]/RFU)

B. Seahorse XF analysis of glycolysis rate of HEK TREX WT vs MacroD1 KO. N=4 biological
replicates; error bars: SEM, 6 technical replicates per condition per biological repeat. X axis
represents time (min) and y axis represents normalized ECAR ([mpH/min]/RFU)

C. Normalized respiration rate parameters measured with seahorse XF (see A).
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Figure 3.11. MacroD1 regulated metabolism in U2OS cells by promoting oxidative respiration
and inhibiting glycolysis.
A. Seahorse XF analysis of mitochondrial respiration of U2OS WT vs MacroD1 KO and Parp1 KO.

N=6 biological replicates; error bars: SEM, 6 technical replicates per condition per biological
repeat. X-axis represents time (min) and y-axis represents normalized OCR ([pmol/min]/RFU)

B. Seahorse XF analysis of glycolysis rate of U2OS WT vs MacroD1 KO and Parp1 KO N=6
biological replicates; error bars: SEM, 6 technical replicates per condition per biological repeat.
X-axis represents time (min) and y-axis represents normalized ECAR ([mpH/min]/RFU)

C. Normalized respiration rate parameters measured with seahorse XF (see A).
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Figure 3.12. U2OS MacroD1 KO reduced the response to cellular stress compared to WT and
PARP1 KO.
Cellular respiration and glycolysis rates before (light-colored round symbols) and after the
mitochondrial stress test (dark-colored pyramid symbols). N≥3 biological replicates for MacroD1 KO
and n ≥ 3 biological replicates for WT and PARP1 KO. There were 6 technical replicates for each
biological repeat. X-axis represents normalized ECAR ([mpH/min]/RFU) and y-axis represents OCR
([pmol/min]/RFU). No treatment indicates the basal rates for OCR and ECAR and stress test
indicates rates after injections of oligomycin and FCCP.
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various concentrations of H2O2. Indeed, even under these conditions, the seahorse XF time 

course experiments showed a similarly reduced maximum oxidative phosphorylation in the MacroD1 

KO cells, while glycolysis rates were also higher, similar to the non-H2O2-stressed cells (Compare 

Appendix Fig A.5 to A.8 and Fig. 3.11, 3.12). Together these results suggested that MacroD1 in U2OS 

cells has a positive regulatory role to promote oxidative phosphorylation, while it has an inhibitory role 

on glycolysis. In line with their oppositive functions in ADP-mediated protein modifications, PARP1 

knockouts led to opposite effects on metabolism.    

3.5 Pharmacophore fragment analysis did not show a correlation between 

underlying drug structure and metabolic readouts of 100 inhibitors 

The results of the initial screening of 100 epigenetically active inhibitors showed a diverse 

picture of drug-induced responses on cellular metabolism. Importantly, small molecules targeting the 

same group of cellular proteins showed apparently different results (Fig 3.5 and Fig 3.6). This 

prompted the question whether the metabolic effects could be explained by factors other than their 

effects on epigenetic inhibitors described on the literature. One way to investigate this is the 

pharmacophore fragment based analysis, which is an unbiased way to assess the contribution of 

pharmacologically active sub fragments of drugs irrespective of their known or suspected activity 

(Khanna, 2012; Nicolaou, 2014; Wasko et al., 2015). Pharmacophore analysis was performed in silico 

in collaboration with BioNTech Small Molecules, using the MOE software, providing an annotation 

of the 100 screened chemicals with distinct pharmacophore clusters. After acquiring the results from 

BioNTech Small Molecules, two types of compounds clustering (1: fragment cluster based; 2: MOE 

gpiDAPH3 based) were used to group the drug inhibitors. As shown in Fig. 3.13A, the screened 

compounds were distributing in 4 large “macro” groups, combining criteria from both clustering 

methods as defined by statistical proximity within a fragment cluster or MOE gpiDAPH3. To correlate 

the cellular metabolic effect of the compounds with pharmacophores, 72h inhibitor treated HEK293T 

basal respiration rates from all compounds (Fig 3.5 and Fig. 3.6) were divided in 9 groups depending 

on the effects on respiration and glycolysis (Fig 3.13B top row of the table). For example, cluster 1 “up 

up”, described all inhibitors causing increased oxidative phosphorylation and glycolysis upon  



Figure 3.13. Pharmacophore fragment-based analysis did not show underlying drug structure 
similarities to explain metabolic readouts of 100 inhibitors.
A. Pharmacophore analysis using MOE software. The screened compounds cluster in 4 large groups

defined by statistical proximity within a fragment cluster or MOE gpiDAPH3.
B. 72h basal respiration rates were used to cluster the inhibitors in the macro classes corresponding

to the fragment cluster method (Up: at least 30% increase comparing to control for OCR or
ECAR, Down: at least 30% decrease comparing to control for OCR or ECAR, NC/NC: no
change comparing to control for OCR or ECAR)

C. 72h maximal respiration rates were used to cluster the inhibitors in the macro classes
corresponding to the fragment cluster method.

A

B

RNA Pol II ChIP

53

Chapter 3 Results

Type of compound cluster 1 cluster 2 cluster 3 cluster 4 cluster 5 cluster 6 cluster 7 cluster 8 cluster 9
OCR / ECAR response Up Up Up NC Up Down NC Up Down Up Down NC NC Down Down DownNC NC

1 0 0 0 1 0 2 2 0 5
2 0 2 0 1 0 0 1 2 11
3 0 0 0 0 0 0 0 0 1
4 0 0 0 0 0 0 0 0 0
5 0 3 1 3 0 3 4 0 27
6 1 1 0 1 0 0 2 3 6
7 0 0 0 0 0 0 0 0 0
8 0 1 0 0 0 0 0 0 1
9 1 0 0 0 0 1 0 1 2

10 0 0 0 0 0 0 0 0 1

1 2 7 1 6 0 2 7 5 43
8 0 0 0 0 0 1 0 0 0

16 0 0 0 0 0 0 0 0 1
17 0 0 0 0 0 0 1 1 2
18 0 0 0 0 0 0 0 0 2
26 0 0 0 0 0 0 0 0 1
44 0 0 0 0 0 1 0 0 0
48 0 0 0 0 0 0 1 0 1
53 0 0 0 0 0 0 0 0 1
54 0 0 0 0 0 0 0 0 1
57 0 0 0 0 0 0 0 0 1
58 0 0 0 0 0 1 0 0 0
62 0 0 0 0 0 1 0 0 0
76 0 0 0 0 0 0 0 0 0
88 0 0 0 0 0 0 0 0 0
92 0 0 0 0 0 0 0 0 0
98 0 0 0 0 0 0 0 0 0

101 0 0 0 0 0 0 0 0 1

A 0 2 0 2 0 2 3 2 17
B 1 4 1 4 0 0 5 3 30
C 0 0 0 0 0 3 1 0 5
D 1 1 0 0 0 1 0 1 2
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cluster
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Macro 
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 treatment comparing to control.  

Then the distribution of the compounds along the10 pharmacophore fragment-based clusters 

were compared to the 9 metabolic groups (Fig 3.13B). In addition, the 4 macro classes of compounds 

identified were used to compare the compounds within each class with the compounds grouped in each 

metabolic group (Fig 3.13B).  A possible correlation between fragment clusters and metabolic clusters 

would be identified if all or most inhibitors of one metabolic cluster would associate within one 

fragment cluster. However, no such exclusive grouping was observed, meaning that no possible 

chemical structure similarities were identified that could explain the obtained metabolic effects from 

the metabolic screening. Similar analysis was performed for the 72h maximal respiration rates (Fig 

3.13C) and 1h basal respiration rates and 1h maximal respiration rates (Appendix Fig A.1-4). 

Eventually, this study revealed that a specific metabolic effect could be triggered from drugs with 

varying structures and varying targets. This result led to the investigation of commonly regulated 

epigenetic modifications as an intermediate step and basis to design next steps of identifying commonly 

regulated epigenetic targets that introduce similar metabolic effects described in the next Chapters. 

 

3.6 Epigenetically active compounds alter metabolism, histone PTMs and 

protein expression; identification of commonly affected targets 

3.6.1 Epigenetically-active compounds cluster in distinct groups based on their 

metabolic impact on HEK293T cells 

To take an alternative approach to analyze the data hierarchical clustering was performed. In 

contrast to the method described in 3.5 (which was a supervised method based on predefined binary 

groups) this approach allowed clustering of compounds and respective induced metabolic effects in an 

unbiased manner. For this, seahorse XF results were normalised to control and transformed into log2 

ratios and clustered based on similarity of their metabolic readouts, as described in Chapter 2.6. Basal 

and maximal respiration rates for both 1h and 72h treatments were analysed as well as basal glycolysis 

and maximal glycolysis for both experiment types (Fig 3.14A). Three distinct metabolic effect groups 

were identified. The metabolic effects were synergistic where both oxidative phosphorylation and  



Figure 3.14. Epigenetically-active compounds clustered in distinct groups based on their
metabolic impact on HEK293T cells.
Hierarchical clustering and heatmap of 100 epigenetically-active compounds based on their metabolic
profiles measured with seahorse XF. The results are normalised to DMSO (control). Upregulation in
drug- vs DMSO-treated cells is indicated in red and downregulation is indicated in blue. All four
measured mitochondrial stress test parameters from both 72h and 1h experiments are represented:
basal OCR, basal ECAR, maximal OCR and maximal ECAR.
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glycolysis were decreased or both increased, and antagonistic were oxidative phosphorylation 

was increased and glycolysis was decreased. There were almost no cases were oxidative 

phosphorylation was decreased and glycolysis increased. The relative lack of this type of observation 

(which would be similar to Warbung effect) was in line with expectations since the cell lines used were 

not cancer derived and the drugs used were mainly described as anticancer treatment candidates. 

Interestingly, different classes of inhibitors caused similar metabolic effects. Furthermore, distinct drug 

groups such as HDAC inhibitors were identified causing increase in oxidative phosphorylation and 

decrease in glycolysis (Fig 3.14). 

3.6.2 Criteria for selection of 30 inhibitors out of 100 initially studied compounds  

To look into more detail for molecular mechanisms involved in affecting metabolism via 

epigenetics, 30 compounds were selected for follow-up experiments (Fig 3.15A). The criteria for 

compound selection were: to cause a 30% change in metabolism compare to control; to present no 1h 

effects to reduce likelihood of unspecific and non-histone effects; absence of cell toxicity; and to be 

known to target specific proteins. 

 Compounds included in the selection had to cause a 30% change in metabolism comparing to 

control, present no 1h effects to reduce likelihood of unspecific and non-histone effects, show no cell 

toxicity and have a specific target. The selected epigenetically active compounds covered various 

inhibitor classes such as HAT, HDAC, methyltransferase inhibitors and others (Fig 3.15B).  

An overview of the 30 selected compounds is presented in Table 3.1 (below). Three classes of 

HAT inhibitors targeting nuclear HATs were selected.  SC00106951 HAT inhibitor main target is 

NAT10 (GCN5 HAT family), SC00107069 targeting Tip60 (MYST HAT family) and SC00106960 

targeting P300/CBP. The selected HDAC inhibitors were covering various targets from the HDAC 

subfamilies. For instance, HDAC inhibitor SC00106933 was selected that is targeting class I (HDAC1) 

(refer to Table 3.1 for more details on the other inhibitors).  

  



Figure 3.15. Criteria for selection of 30 inhibitors out of 100 initially studied compounds.
A. The figure represents the criteria used for selecting 30 compounds out of the initial pool of 100

drugs.
B. 30 compounds covering all functional classes were selected for follow up analyses.
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Chemical Compound 
ID 

Chemical group Concentration used in 
this study 

SC 00087771 HDAC inhibitor 8uM 
SC 00106933 HDAC inhibitor 30nM 
SC 00106837 HDAC inhibitor 10uM 
SC 00106955 HDAC inhibitor 0.5nM 
SC 00106947 HDAC inhibitor 1uM 
SC 00013575 HDAC inhibitor 0.5uM 
SC 00101300 HDAC inhibitor 25uM 
SC 00107069 HAT inhibitor 2uM 
SC 00106951 HAT inhibitor 1uM 
SC 00106960 HAT inhibitor 20uM 
SC 00107026 KMT inhibitor 2uM 
SC 00107028 KMT inhibitor 2uM 
SC 00107024 KMT inhibitor 1uM 
SC 00107037 PRMT inhibitor 100nM 
SC 00107015 PRMT inhibitor 5uM 
SC 00107035 KMT inhibitor 1uM 
SC 00107023 KMT inhibitor 1.25uM 
SC 00107029 KDM inhibitor 1uM 
SC 00106834 KDM inhibitor 0.1uM 
SC 00105914 KDM inhibitor 0.75uM 
SC 00107050 Epigenetic reader domain targeting 120nM 
SC 00107067 Epigenetic reader domain targeting 363nM 
SC 00107063 Epigenetic reader domain targeting 0.5uM 
SC 00107016 Epigenetic reader domain targeting 1uM 
SC 00107054 Epigenetic reader domain targeting 50nM 
SC 00106831 Sirtuin inhibitor 25uM 
SC 00106957 Sirtuin inhibitor 0.3uM 
SC 00082039 Sirtuin activator 5uM 
SC 00106943 Other molecule 5uM 
SC 00106940 Other molecule 20uM 

Table 3.1.: Overview of 30 small molecules selected for further detailed study in proteomics and histone PTM analyses 

3.6.3 Selected 30 compounds cluster in three distinct groups based on their effect on 

respiration and glycolysis 

As previously discussed (Fig 3.15A, B), 30 inhibitors were selected out of 100 that were 

following certain criteria. Hierarchical clustering was performed to study the metabolic effects and 

potential correlations of drug type / cellular target group with downstream metabolic effects of the 30 

selected inhibitors (Fig 3.16). The results of the seahorse XF experiments were normalised to control 

and transformed into log2 ratios and underwent hierarchical clustering followed by heatmap 

generation.  Three distinct metabolic effect groups were identified using this approach. Interestingly, 

while in the original clustering of 100 drugs many chemical groups contributed to similar metabolic  
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Figure 3.16. Selected 30 compounds clustered in three distinct groups based on their effect on
respiration and glycolysis.
Hierarchical clustering and heatmap of 30 epigenetically-active compounds based on their metabolic
profiles measured with seahorse XF. The results are normalised to DMSO (control). Upregulation in
drug- vs DMSO-treated cells is indicated in red and downregulation is indicated in blue. All four
measured mitochondrial stress test parameters from both 72h and 1h experiments are represented:
basal OCR, basal ECAR, maximal OCR and maximal ECAR.
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effects (Fig 3.14), heterogeneity of types of inhibitors grouped per metabolic effect group, was 

reduced to a minimum of 2 to 3 inhibitor classes for the selected 30 drugs (Fig 3.16). This may point 

to the notion that certain inhibitor classes could cause specific metabolic effects like the selected 

methyltransferase inhibitors which mainly caused a decrease to both glycolysis and oxidative 

phosphorylation comparing to the untreated cells (Fig 3.16). A potential reason for this more stringent 

outcome is that inhibitors with off-target effects and immediate (1h) effects that had a high likelihood 

of not mediating their cellular impact via chromatin mechanisms were not selected for this analysis of 

30 drugs, therefore allowing for a more focussed and specific correlation analysis between cause and 

effect within the limited group of 30 inhibitors These promising results prompted a further 

investigation of the potential regulation of cellular metabolism by common epigenetic mechanisms.   

3.6.4 72h treatments with epigenetic drugs cause a wide range of histone PTM changes  

To investigate possible epigenetic mechanisms involved in inducing the observed metabolic 

changes I looked first into specific histone PTMs. Specifically, histone PTM changes induced by the 

72h inhibitor treatments were analysed using mass spectrometry, focusing on H3 and H4 methylation 

and acetylation marks in HEK293T cells. Three biological replicates for each 72h treatment for all 30 

inhibitors were performed and histones were extracted, separated and analysed using an online nano 

LC MS/MS QExactive system, as detailed in Materials and Methods (Chapters 2.4 and 2.6)  

Identification of the histone mass spec peaks was done using the skyline software and quantification 

was performed following a standard method developed by the Imhof group (Feller et al., 2015). Data 

quality analysis is depicted in Fig A.9 (Appendix), showing that while control samples showed very 

low inter-sample variability (Fig A.9A), the different compound treatments had much higher deviation 

from the PTM mean levels (Fig A.9A). Furthermore, some compounds elicited very large changes 

versus the control, both increasing or decreasing PTM levels vs control, while others were more similar 

to the control (Fig A.9B). To define PTMs that were significantly altered in the treated samples 

comparing to control, hierarchical clustering analysis of PTM changes was performed, and showed 

that the compounds were grouped into distinct subsets depending on their target and inhibitor 

classification. For instance (and as expected) HDAC inhibitors mainly increased acetylation marks and 
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were grouped next to each other, classic SET domain methyltransferase inhibitors SC00107024, 

SC00107026, SC00107028, induced anticipated PTM changes such as H3K27me3 and H3K27me2 

decrease and unmodified H3K27 increase and were grouped in the same subset (Fig 3.17).  

In contrast to HDACi and methyltransferase inhibitors, inhibitors of epigenetic reader 

domains, HAT and demethylase inhibitors showed a bigger variability of induced epigenetic marks 

within each chemical group. These results urged a further investigation of underlying epigenetic 

mechanisms involved in metabolic regulation, since various epigenetic marks were found associated 

with similar metabolic activity. It was also not clear if the epigenetic marks induced affected 

transcription and protein levels of specific proteins, which then could be the mediators of induced 

metabolic changes. To examine this, whole proteome analysis was performed to monitor changes 

induced by the selected inhibitors.  

3.6.5 Based on their effect on the whole cell proteome, epigenetically -active drugs can 

be clustered in four distinct groups 

To investigate the role of specific proteins and epigenetic enzymes in the regulation of 

metabolic activity, proteome changes due to inhibitor treatments were investigated (see chapters 2.5 & 

2.6). Whole proteome analysis before and after a 72h treatment with the selected 30 inhibitors resulted 

in the identification of more than 5000 proteins. Protein changes were clustered in  4 major groups (Fig 

3.18 and 3.19). Cluster 1 and 2 contained proteins that were altered due to HDAC inhibitor treatment. 

Interestingly, protein IDs included ZNF292 and  CPT1A which are downstream of HIF1A and found 

to regulate glycolysis in different studies (O. Xia et al., 2009a; C.-H. Yao et al., 2018). Additionally, 

clusters 1 and 2 contained proteins that were affected by HAT inhibitor treatment. Proteins changed 

after methyltransferase inhibitor treatments were clustered in groups 1,2 and 4 whereas proteins 

affected from demethylase inhibitor treatment were clustered in groups 3 and 4. Interestingly, proteins 

differentially expressed due to epigenetic reader domain inhibitor treatments were mainly clustered in 

group 4. Proteins enriched in group 4 included AFF4 which is interacting with HIF1A related targets 

(Galbraith et al., 2013).  In comparison to the initial metabolic screening analysis, hierarchical 

clustering of both histone PTMs and whole proteome changes presented that  



Figure 3.17. 72h treatments with epigenetic drugs caused a wide range of histone PTM changes.
Hierarchical clustering and heatmap of histone H3 and H4 methylation and acetylation changes
induced by 30 epigenetically-active drugs. The results are normalised to DMSO (control).
Upregulation in drug- vs DMSO-treated cells is indicated in red and downregulation is indicated in
blue. N =3 biological replicates.
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Figure 3.18. Based on their effect on the whole cell proteome, epigenetically-active drugs could
be clustered in four distinct groups.
Hierarchical clustering and heatmap of proteomic changes induced by 30 selected epigenetically-
active drugs. Upregulation of proteins is indicated in red and downregulation of proteins is indicated
in blue. Minimal log2 fold-change threshold for analysis was 1.11.
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Figure 3.19. Based on their effect on the whole cell proteome, epigenetically-active drugs could
be clustered in four distinct groups – also at higher analysis stringency.
Hierarchical clustering and heatmap of proteomic changes induced by 30 selected epigenetically-
active drugs. Upregulation of proteins is indicated in red and downregulation of proteins is indicated
in blue. Minimal log2 fold-change threshold for analysis was 1.55.
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there might be overarching themes across the drug induced changes and possible antagonistic 

effects within the same chemical drug groups.  These initial promising results prompted a further 

analysis for each of the chemical groups with greater emphasis on identifying histone PTM patterns as 

well as protein candidates that could have a relevant effect on epigenetics or metabolism (Chapter 3.7 

and 3.8, as well as Discussion Chapter 4.1). 

 

3.7 Analysis of interplay between histone modifications, proteomic 

changes and metabolic phenotype in different chemical drug classes  

3.7.1 HDAC inhibitors  

In order to better understand the specific effect HDAC inhibitors may have on epigenetic marks 

and metabolism, the hierarchical clustering was performed selectively for all 7 HDAC inhibitors. Both 

the metabolic and histone PTM analysis showed emergence of two different large clusters of response 

to HDAC inhibitor treatments (Fig. 3.20, A and B). In particular, a group of 4 HDAC inhibitors 

(SC00106933 targeting class I HDAC1; SC00106955 targeting class I HDAC1/2; SC00087771 

targeting class I HDAC1/3 and class IV HDAC11; SC00106837 targeting class IIA HDAC4) decreased 

glycolysis while increasing oxidative phosphorylation (Fig 3.20A, four HDAC inhibitors from the left). 

Interestingly, three out of these four (SC00106933, SC00106837, SC00087771) also behaved the same 

way in the histone PTM analysis (Fig. 3.20, B, three inhibitors from the right): all three of them 

significantly increased cellular levels of transcription-promoting histone PTMs such as histone 

acetylation, while decreasing major repressive marks such as H3K9me3. This observation could 

potentially point to a correlation between generally higher levels of transcription (high histone 

acetylation, low repressive histone methylation) and suppression of glycolysis. Behaving differently, 

three HDAC inhibitors caused less pronounced effects on histone PTMs (Fig. 3.20B, left side). Of 

those three, two (SC0013575, SC106947) which both target class I (HDAC1, HDAC3) showed the 

same pattern in the histone PTM analysis, but with generally very mild effects. 

One of the seven HDAC inhibitors, SC00101300, behaved differently from all the others, 

showing different results in the histone PTM analysis, causing a global reduction of H3/4 acetylation  



Figure 3.20. HDAC inhibitor treatments of HEK293T cells caused correlating formation of
distinct metabolic and PTM phenotype clusters.
A. Hierarchical clustering an heatmaps of the selected HDAC inhibitors. 72h treatments with

selected HDAC inhibitors induced metabolic changes, while 1h treatments did not lead to
significant effects comparing to control.

B. 72h treatments with selected HDAC inhibitors induced histone PTM changes comparing to
control. Three apparent clusters could be identified.
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(Fig. 3.20B, left). Indeed, it is the only tested selective HDAC class IIA inhibitor, targeting 

HDACs 4/5/7/9 (Lobera et al., 2013). Importantly, it has previously been shown that SC00101300 does 

not increase acetylation of histone H3 and H4, but rather increases acetylation of H1 and H2A/H2B 

(Choi et al., 2018; Su et al., 2020). Although it is known that H1 and H2A/H2B can be heavily 

modified, I am not aware of research that has been published on linking acetylation of H1 and 

H2A/H2B with metabolic regulation. Moreover, it has been shown that class IIA HDACs are present 

in the cytoplasm, shuttling between cytoplasm and nucleus, in contrast to the class I HDACs which are 

nuclear and class IIB which are cytoplasmic (Verdin et al., 2003). Interestingly, HDAC4 acetylates 

lysine residues on HIF1A and regulates hypoxia and cancer (Geng et al., 2011) and inhibition of class 

IIA inhibitors decreased HIF1A acetylation (Qian et al., 2006). Therefore, the observation of this 

unusual behaviour could be explained by the different targeting activity of this specific inhibitor on 

HDAC class IIA in contrast to the other HDACs. Furthermore, this “outlier” result uncovered a 

potentially new role of H1/H2 acetylation in metabolism (which due to the experimental design was 

not measured in the histone PTM work) which could be the basis for further analysis in the future. 

In conclusion, the experiments with HDAC inhibitors showed that all HDAC inhibitors 

increased oxidative phosphorylation. However, only the subset of HDAC inhibitors that caused strong 

hyperacetylation of H3/4 caused reduction of repressive methylation marks and a downregulation of 

glycolytic activity. This observation is important as employing HDACs to reverse the Warburg effect 

would therefore only be efficient for the 4 HDAC inhibitors with this specific profile. On the contrary, 

HDAC inhibitors that do not result in expected acetylation changes could even be detrimental by 

further increasing glycolysis, therefore supporting the Warburg effect and tumour growth. 

To link the direct epigenetic effect of inhibitors with the downstream physiological effect, the 

proteomic changes were analysed. Overall, in line of the HDAC inhibitors’ strong effect on 

metabolism, metabolism-related proteins were generally highly enriched. The STRING database 

(version10.0) was used for the enrichment analysis for biological processes, cellular components and 

molecular functions for the proteins identified from the proteomics analysis (only biological processes 

enrichment is shown, Fig. 3.21). The significantly enriched annotation terms that are summarised in  

  



Figure 3.21. HDAC inhibitor treatment caused significant upregulation of metabolic pathways.
Enrichment analysis of HEK293T cells treated with HDAC inhibitors. Enrichment analysis is based
on the set of proteins differentially expressed across the seven HDAC treatments (minimal log2 fold-
change threshold for analysis 1.11) using biological process terms. Enriched terms were ranked based
on their statistical significance (-log10 p-value, left). The corresponding number of differentially
expressed proteins per biological process is depicted on the right part of the figure.
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Fig 3.21 showed p<0.05. Interestingly, many regulators of metabolism were affected, such as 

chromatin remodelling enzymes, transcription factors and signal transduction proteins.  

The hierarchical proteome clustering on protein level resulted in four separate groups (Fig. 

3.22). Here, it became apparent that the distinctions between groups are finer than on the histone PTM 

level: the right-most HDAC inhibitor “cluster 4” (SC00106837, SC00087771) caused the same PTM 

and metabolic effects, linked by a similar proteomic profile. Furthermore, the HDAC inhibitor “cluster 

3”, comprising SC00101300 and SC0001375 caused same PTM and metabolic effects. Whereas the 

proteomic profiles looked similar, they were associated with very different effects on metabolism 

(down vs upregulation of glycolysis). One potential explanation for this observation may be that in 

contrast to global PTM analyses, changes of the levels of a few critical proteins can have a significant 

impact on physiological functions. In line with this hypothesis, several proteins linked to the regulation 

of metabolism were enriched in either cluster 3, or cluster 4 – suggesting that those transcription factors 

and chromatin regulators could be involved in switching between high or low glycolysis (Fig. 3.23). 

For example, proteins ZNF292 and CPT1A are known to be involved in metabolic processes although 

their role is not fully uncovered yet (see Chapter 3.6.5). It has previously been shown that they are 

downstream of HIF1A and under hypoxic conditions CPT1A is downregulated (Fillmore & 

Lopaschuk, 2013; D. A. Nicholas et al., 2019; C.-H. Yao et al., 2018) and ZNF292 is upregulated  (Del 

Rey et al., 2017; Nauta et al., 2017; O. Xia et al., 2009b), leading to increased glycolysis. In this current 

work, CPT1A was increased and ZNF292 was decreased after HDAC inhibitor treatments (cluster 4) 

which was associated with decreased glycolysis (Fig 3.20-23). Interestingly, hypoxia-induced key 

factors HIF1A and HIF2A were not enriched in the proteomic samples of this study. This observation 

suggests that these two factors (ZNF292, CPT1A) may independently act of HIF1A/HIF2A under 

normoxia and may play a role in regulating metabolism by upregulating glycolysis. Moreover, there 

were another 9 HIF-associated proteins enriched in cluster 4. In cluster 3, five different HIF-associated 

proteins were enriched. GUF1 and ADIPOR1 were downregulated versus control, both of which are 

HIF induced and shown to increase glycolysis which is in line with the current findings (Mora-García 

et al., 2017; Zhu et al., 2018) (Fig 3.23). The activation of a glycolysis-promoting partial HIF network 

by cluster 4 HDAC inhibitors may therefore contribute to the specific observed metabolic results and  



Figure 3.22. HDAC inhibitor treatments of HEK293T cells caused significant changes in whole
proteome with three types of patterns observed across the seven compounds.
Hierarchical clustering and heatmap of protein level changes after treatment with selected HDAC
inhibitors. Minimal log2 fold-change threshold for analysis was 1.11.
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Figure 3.23. Detailed depiction of proteins most affected by HDACi treatments revealed highly
changed proteins between “cluster 3” and “cluster 4” which appeared superficially similar
based on whole-proteome hierarchical clustering heatmaps (Fig. 3.22)
Enrichment analysis of HEK293T cells treated with HDAC inhibitors. Enrichment analysis is based
on the set of proteins differentially expressed across the seven HDAC. Depicted are proteins that
showed the largest fold-change vs the control samples upon inhibitor treatment
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would warrant further investigation, as naturally the focus of research on HIF 

network/metabolism-regulation has been on its effect under hypoxic conditions. 

Although all the discussed HDAC inhibitors affected some parts of the HIF regulatory 

network, the particular components activated differ between clusters 3 and 4. Indeed, HDACs are 

important for HIF activity and are positive regulators of HIF stability (S. Kim et al., 2007; Sang & 

Chen, 2011; Schoepflin, 2016). The HIF pathway plays an important role in tumor metabolism by 

modulating Warbung effect and HIF-induced glycolysis under hypoxia leads to tumor cell survival 

(Courtnay et al., 2015; Dabral et al., 2019; Semenza, 2007; L. Xia et al., 2020). Cancer treatments 

inducing the Warburg effect through increased glycolysis such as HDAC inhibitors SC00101300 and 

SC0001375 may therefore elicit undesired side-effects that promote tumor survival. On the other hand 

HDAC inhibitors repressing HIF activity may be better candidates to address drug resistance and 

metastasis potential. 

 

3.7.2 HAT inhibitors 

Three HAT inhibitors were selected from the initial metabolic screening. The metabolic 

profiling showed three different responses, with each HAT inhibitor causing a different metabolic 

effect. 

SC00106960, an inhibitor of p300/CBP and SC00107069, a selective Tip60 inhibitor (MYST 

family of HATs), caused opposite metabolic effects (Fig 3.24A). While SC00106960 increased both 

oxidative phosphorylation and glycolysis after 72h, SC00107069 decreased both metabolic readouts 

after 72h. Interestingly, these two inhibitors also induced a range of different PTM marks (Fig 3.24B). 

This in turn could result in different protein expression profiles between these two drugs. In line with 

this, the proteomics analysis of SC00107069 and SC00106960 showed very diverse profiles of 

enriched proteins (Fig 3.25). In contrast to other drug classes, the HAT inhibitors showed some 1h 

metabolic effects (Fig 3.24A). These 1h effects caused by SC00106960 and SC00107069 could 

potentially be explained by the fact that p300/CBP and Tip60 have been found to regulate a number of  
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Figure 3.24. HAT inhibitor treatments of HEK293T cells caused correlating formation of
distinct metabolic and PTM phenotype clusters.
A. Hierarchical clustering an heatmaps of the selected HAT inhibitors. 72h treatments with selected

HAT inhibitors induced metabolic changes. In the case of 6960 and 6951, 1h treatments lead to
altered metabolic effects comparing to control.

B. 72h treatments with selected HAT inhibitors induced histone PTM changes comparing to
control.
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Figure 3.25. HAT inhibitor treatments of HEK293T cells caused significant changes in whole
proteome with two types of patterns observed across the three compounds.
Hierarchical clustering and heatmap of protein level changes after treatment with selected HAT
inhibitors. Minimal log2 fold-change threshold for analysis was 1.11.
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non-histone proteins, including metabolic enzymes in nucleus and cytoplasm without the 

intermediate step of transcription regulation (Guan & Xiong, 2011; Xiong & Guan, 2012).  

Active transcription-associated H3K4me2 was decreased by all three inhibitors which is in line 

with repressive function of HAT inhibitors. Interestingly, H3K4-specific demethylase KDM5A was 

increased more than 40-fold in SC00106951 and SC00107069 (not identified in SC00106960 which 

had the weakest decrease of H3K4me2 vs control). This is similar to the observation in HDAC 

inhibitor-treated samples where higher levels of KDM5A were associated with lower levels of 

H3K4me2 and inhibition of glycolysis.   

SC00106960 treatment significantly reduced acetylation of transcription-associated H3K9 and 

H3K14, while causing a slight increase of repressive H3K9me2/3 (Fig. 3.24B). A similar effect on the 

relative levels of H3K9ac versus H3K9me2/3 was observed in SC00106951, albeit to a slightly lower 

degree comparing to SC00106960. 

A main writer of H4 acetylation, JADE1, was found more than 20-fold upregulated in 

SC00107069. JADE1 was not changed in SC00106951 vs control and it was not identified in the 

SC00106960 samples. In line with this, increased acetylation of H4 sites was detected only in the case 

of SC00107069. This unexpected increase of some histone acetylation in a HAT-inhibitor treated 

sample could therefore potentially be traced to induced overexpression of a non-targeted HAT, 

potentially as a compensatory mechanism. A similar effect has been described upon ablation of specific 

HAT enzymes in Drosophila cells (Feller et al., 2015).  

SC00106951, an inhibitor of NAT10 (GNAT family of HATs), showed a different metabolic 

response compared to the other two HAT inhibitors, exhibiting an antagonistic metabolic profile, 

similar to some HDAC inhibitors discussed before (Chapter 3.7.1). Interestingly, two histone 

modifications were highly increased only in the case of SC00106951 – namely H3K79me2 and 

H4K20me3. Interestingly, these two modifications – especially H4K20me3 – were also significantly 

increased in the group of three HDAC inhibitors that induced the same antagonistic metabolic effect 

as SC00106951, leading similarly to increased oxidative phosphorylation and decreased glycolysis 

(SC0087771, SC00106837, SC00106933 – see Fig. 3.20A, B). 
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Surprisingly, the treatment-induced proteomic changes for SC00106951 were similar to 

SC00107069 (Fig 3.25, Fig 3.26) and showed a significant enrichment for proteins involved in 

transcription, lipid and fatty acid homeostasis. Importantly, several of the proteins with the highest 

change of protein levels upon HATi-treatment were affected in the same direction and extent by 

SC00106951 and SC00107069 (Fig 3.27). In particular, mediator complex proteins MED23, MED16 

and MED17 were significantly increased after treatment with these two inhibitors (at least 4 fold 

increase comparing to control) but unchanged to control in SC00106951. The mediator complex 

subunit MED16 transduced NRF2-activating signals into antioxidant gene expression (Sekine et al., 

2016). Moreover, other mediator complex components including MED1, MED14, and MED23 are 

required for the development of adipocytes, lipid homeostasis, glucose and lipid metabolism (Chu et 

al., 2014; Ge et al., 2002; Iida et al., 2015; Jia et al., 2004, 2009; Toth et al., 2004; W. Wang et al., 

2009). MED23 is required for MAPK/ELK signalling which regulates Krox20,a transcription factor 

induced in an insulin- triggered adipogenesis cascade (G. Wang et al., 2005; W. Wang et al., 2009). 

MED15, CDK8 and CycC are involved in SREBP-mediated gene transcription and subsequent de novo 

lipogenesis (F. Yang et al., 2006). SREBPs transcriptional activity is controlled through recruiting 

specific transcriptional cofactors, including the mediator complex (Näär et al., 1999; F. Yang et al., 

2006) and CBP/p300 (Giandomenico et al., 2003), which is inhibited by SC00106960. Additionally, 

mediator has been involved in other aspects of metabolism, including fatty acid oxidation, phospholipid 

biosynthesis, and bile acid metabolism. TAB2, adapter protein which is needed to activate TAK1 

(Omori et al., 2012) which is also involved in the lipid regulation via SREBP (Sho Morioka1 et al., 

2016) was also enriched after treatment with these two drugs. Interestingly by inhibiting CBP/p300 

with SC00106960 mediator complex subunits and TAB2 where either not identified or significantly 

downregulated. Although fatty acid metabolism was not measured in the seahorse XF experiments, the 

proteome analysis suggested that while proteins of fatty acid degradation were almost not altered in 

both SC00107069 and SC00106951, they were significantly decreased in SC00106960 comparing to 

control (Fig 3.28). Interestingly, cells treated with SC00106960 had very high levels of glycolysis and 

oxidative phosphorylation, which could suggest that this treatment induces increased reliance on 

glycolysis instead of fatty acid metabolism for energy generation. Similarly, proteomic changes for  



Figure 3.26. HAT inhibitor treatments causes significant upregulation of metabolic pathways
Enrichment analysis of HEK293T cells treated with HAT inhibitors. Enrichment analysis is based on
the set of proteins differentially expressed across the three HAT treatments (minimal log2 fold-
change threshold for analysis 1.11) using biological process terms. Enriched terms were ranked based
on their statistical significance (-log10 p-value, left). The corresponding number of differentially
expressed proteins per biological process is depicted on the right part of the figure.
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Figure 3.27. Several of the most-differentially expressed proteins overlapped between HATi
treatments SC00106951 and SC00107069.
Enrichment analysis of HEK293T cells treated with HAT inhibitors. Enrichment analysis is based on
the set of proteins differentially expressed across the HAT treatments. Depicted are proteins that
showed the largest fold-change vs the control samples upon inhibitor treatment
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Figure 3.28. HAT inhibitor SC00106960 mostly downregulated fatty acid metabolism proteins
Enrichment analysis of HEK293T cells treated with HAT inhibitors. Enrichment analysis is based on
the set of proteins differentially expressed across the three HAT treatments (minimal log2 fold-
change threshold for analysis 1.11) using biological process terms. The number of up- or
downregulated proteins belonging to fatty acid degradation pathways was counted as fraction of all
proteins in the pathway.
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fatty acid biosynthesis and elongation were also opposite: the two similarly behaving drugs 

SC00107060 and SC00106951 induced a strong upregulation of fatty acid biosynthesis proteins 

compared to SC00106960 which presented almost no change in fatty acid biosynthesis enzyme levels 

(not shown). In conclusion, these results demonstrated that HAT inhibitors may be implicated not only 

in glycolysis and oxidative phosphorylation, but that those metabolic phenotypes also extend to fatty 

acid metabolism, although this hypothesis remains to be demonstrated in future experiments. In the set 

of treatments, high induced levels of glycolysis correlated with higher levels of fatty acid degrading 

enzymes (SC00106960), while on the other hand, inhibition of glycolysis was associated with higher 

levels of fatty acid biosynthesis enzymes (SC0010760, SC00106951). 

3.7.3 Methyltransferase inhibitors  

Seven methyltransferase inhibitors were selected after the initial metabolic screening for 

further analysis of induced histone PTMs and protein changes. Interestingly, three metabolic groups 

were identified. The majority of the drugs caused a decrease of maximal oxidative phosphorylation 

and glycolysis with almost no effect on the basal oxidative phosphorylation rates (Fig. 3.29A). Only 

one drug, SC00107037, a PRMT5 inhibitor, increased the maximal oxidative phosphorylation and 

glycolysis after 72h treatment. One more drug, SC00107023 which is a KMT5A inhibitor, increased 

oxidative phosphorylation and decreased glycolysis. Interestingly, all SET domain- containing 

methyltransferase inhibitors decreased maximal respiration capacity and glycolysis (Fig. 3.29A). 

When looked on the histone PTM marks induced by the inhibitor treatments three groups  were 

identified (Fig. 3.29B). One group containing SC00107024 and SC00107037, a second group 

containing SC00107035, SC00107015, SC00107023, and a third group containing SC00107026 and 

SC00107028. The inhibitors SC00107026 and SC00107028 induced almost the same marks, in line 

with them both targeting the same enzymes - KMT6A and KMT6A/B respectively. More specifically, 

KMT6 (EZH2) targets H3K27me1/2/3 and after treatment with the respective inhibitors there was a 

significant decrease of these methylation marks.  The major difference between both inhibitors was 

that SC00107026 presented a significant increase of all H4 related acetylation marks. In the case of 

SC00107028, H3K9me2/3 was increased compared to control, while in the case of SC00107026 was  
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Methyltransferase inhibitors: clustering of metabolic phenotypes

Methyltransferase inhibitors: clustering of histone PTM modifications

Figure 3.29. Methyltransferase inhibitor treatments of HEK293T cells cause correlating
formation of distinct metabolic and PTM phenotype clusters.
A. Hierarchical clustering an heatmaps of the selected methyltransferase inhibitors. 72h treatments

with selected methyltransferase inhibitors induced metabolic changes, while 1h treatments did not
lead to significant effects comparing to control.

B. 72h treatments with selected methyltransferase inhibitors induced histone PTM changes
comparing to control. Three apparent clusters could be identified.
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slightly decreased. In the case of SC00107028, H4K20me1 was decreased, H4K20me2/3 were 

increased but not in the SC00107026. One potential reason could be that SC00107028 also targets 

EZH1. EZH1 displays weaker effects on H3K27me1/2/3 than the EZH2 and can only partially 

compensate to H3K27me3 after loss of EZH2 (Holoch & Margueron, 2017; N. Liu & Zhu, 2017). 

EZH1 binds directly on nucleosomes in contrast to EZH2 that requires JARID2 to do so. Thus, EZH1 

holds a compaction ability of chromatin as it binds tighter to it in contrast to EZH2 that lacks this 

characteristic (Holoch & Margueron, 2017; N. Liu & Zhu, 2017). In addition, EZH1 can also form a 

non-canonical PRC2 complex that is associated with active transcription (Bowen Xua, Kyle D. 

Konzeb, Jian Jinb, 2015; Henriquez et al., 2013; Riising & Helin, 2012; Stojic et al., 2011). Another 

intriguing but controversial issue would be the tissue-specific compensation of EZH2 activity by EZH1 

and restoration of the H3K27me3 mark in a selection of EZH2 target genes (Weipeng Mu, Joshua 

Starmer, Yoichiro Shibata, Della Yee, 2017). As the relative Kd of SC00107028 for EZH1 and EZH2 

in HEK293T cells is not known,  it is possible that the observed fewer protein changes in SC00107028 

comparing to SC00107026 are explained by this inhibitor targeting primarily or at least to a stronger 

degree EZH1. Interestingly, It has been indicated that the oncogenic protein EZH2 positively regulates 

HIF1A which in turn stimulates glycolysis, contributing to the Warburg effect and progression of 

tumorigenesis(Pang et al., 2016). In this study, there was decreased glycolysis after inhibitor treatments 

with SC00107028 and SC00107026 which might be linked to inhibition of EZH2. 

Interestingly, SC00107024, a KMT5B/C (writer of H4K20me2/3) inhibitor, reduced 

H4K20me2/3 (Fig. 3.29B). KMT5B (Suv4-20h1) targets H4K20me1 and H4K20me2 to form 

H4K20me3. In line with this, inhibition of KMT5B/C led to an increase of H4K20me1 comparing to 

control, as the cellular steady state balance shifted from the (often described as transcriptionally 

repressing, see Discussion Chapter 4.1) di- and trimethylated form of H4K20 to the (often described 

as transcriptionally activating, see Discussion Chapter 4.1) mono-methylated H4K20 (H4K20me1 is 

substrate but cannot be generated by KMT5B). KMT5B mainly acts as a transcriptional repressor in 

context to H4K20me1/2/3-regulated genes (Faundes et al., 2018). Moreover, H3K4me2, representing 

a specific tag for epigenetic transcriptional activation, was increased by SC0010724. In a clinical study, 

H3K4me2 and H4K20me1/2/3 were looked at as possible prognostic coregulated marks for various 
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cancer types (Schneider et al., 2011). Taken together, while the connection between H3K4me2 and 

H4K20me1 is not yet fully explained, treatment with SC00107024 showed that these activating 

transcription marks may be connected which warrants further investigation in the future. 

On the other hand, SC00107023 an inhibitor of H4K20 monomethyltransferase KMT5A 

(SETD8), showed H4K20me1 and H4K20me2 equal to control and only H4K20me3 was reduced. 

Although this was unexpected, it has been shown by others that SC00107023 may not fully inhibit 

KMT5A, while another methyltransferase MMSET/NSD2 may be taking the role of monomethylating 

H4K20 when SETD8 is inhibited (Gursoy-Yuzugullu et al., 2017).  

The last of the lysine methyltransferases targeted with inhibitors in this study, KMT3C 

(SMYD2), catalyses H3K4me3 and H3K36me2 (Hyun et al., 2017; Kaniskan et al., 2018). In line with 

this, inhibiting KMT3C with SC00107035 resulted in decrease in H3K36me2 (Fig 3.29B; H3K4me3 

was not part of the tested peptides). 

Histone arginine methyltransferase inhibitors SC00107037 and SC00107015 target 

specifically PRMT5 and PRMT4, respectively. Treatments with these inhibitors did not induce 

significant alterations on tested histone lysine residues comparing to control. A direct measurement of 

arginine methylation was not conducted due the design of the study focussing on histone lysine 

acetylation and methylation. However, SC00107037 was the only inhibitor that decreased H3K36me2, 

while - as expected - EZH2 inhibitors significantly increased it and other inhibitors had no effect. 

H3K27me3 was slightly increased comparing to control after PRMT5 inhibition with SC00107037. It 

has been hypothesized that there is a crosstalk between inhibition of PRMT5 and other methylation 

marks like H3K27me3 (F. Liu et al., 2020). PRMT5-mediated histone arginine methylation 

antagonizes transcriptional repression by Polycomb complex PRC2 (F. Liu et al., 2020). H3K36me2 

could therefore be another mark where the crosstalk between inhibition of arginine methyltransferases 

and other lysine marks is active. Furthermore, it has been demonstrated  that H3K36 methylation 

antagonizes PRC2-mediated H3K27 methylation (Yuan et al., 2011). In line with this, the antagonistic 

effect was seen in the inhibitors directly targeting H3K27me3 and increasing H3K36me2 as a result 

and the opposite.   
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As SC00107037 was the only inhibitor in this group that increased levels of glycolysis, its 

results were analysed in more detail in the following steps for PTMs and proteome changes. PRMT5 

inhibition has been shown to improve fatty liver disease through increasing PPARα and PGC-1α levels, 

mitochondrial biogenesis and β-oxidation (Huang et al., 2018). The results of the current study suggest 

that inhibiting PRMT5 favours β-oxidation. β-oxidation is directly linked with oxidative 

phosphorylation. Electrons are passed from β-oxidation to oxidative phosphorylation via NAD and 

FADH2 oxidation. This may be linked with the observed increase in oxidative phosphorylation after 

treatment with SC00107037 (Fig. 3. 29A). Having higher β-oxidation may therefore provide a source 

of electrons for elevated oxidative phosphorylation. Moreover, these pathways share substrates that 

interact biochemically and there is ample evidence for physical interactions between proteins of β-

oxidation and oxidative phosphorylation. Furthermore, defects in either of these two intimately linked 

pathways have been shown to disturb or inhibit the other and cause metabolic diseases (Arpa et al., 

2009; Gargus et al., 2003; Nouws et al., 2014; Sumegi & Srere, 1984; Taylor et al., 2012; Tyni et al., 

1997). Proteome analysis showed that also specific glycolytic proteins are increased after SC00107037 

treatment, such as PXN (Fig 3.31). PXN mutations have been linked with cell migration and metastasis, 

cancer metabolism and alterations in mitochondrial dynamics and respiratory activity, having been 

associated with promoting mobilization of different sources of fuel for glycolysis (Curtis et al., 2019; 

Kawada et al., 2013).  

As with other epigenetic compounds, proteins differentially expressed due to treatments with 

KMT inhibitors were highly enriched for proteins involved in metabolic regulation (Fig. 3.31). 

Interestingly, IKBKB a regulator of NFkb pathway and mainly known for its role in inflammation 

regulation, was significantly decreased after SC00107037 treatment (Fig. 3.32). It has been shown that 

IKBKB deficient cells exhibit elevated aerobic glycolysis (Reid et al., 2016) which is in line with the 

current project findings (Fig 3.29A and 3.30). Treatment with SC00107037 significantly altered PXN, 

IKBKB linked with elevated glycolysis. In addition to PXN and IKBKB, other proteins like PABPN1 

that play an important role in the regulation of glycolytic muscle fibres (Trollet et al., 2010) linked 

with altered glycolysis and muscle wasting in aging (Olie et al., 2019) were altered (Fig 3.30 and 3.32). 

PRMT5 which induces symmetric di-methylation on histone H4R3 and H3R8, generally acts as  
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Methyltransferase inhibitors: clustering of proteomic changes

Figure 3.30. Methyltransferase inhibitor treatments of HEK293T cells caused significant
changes in whole proteome with two types of patterns observed across the compounds.
Hierarchical clustering and heatmap of protein level changes after treatment with selected
methyltransferase inhibitors. Minimal log2 fold-change threshold for analysis was 1.11.
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Methyltransferase inhibitors: enrichment of biological processes in drug-treated samples

Figure 3.31. Methyltransferase inhibitor treatments causes significant upregulation of
metabolic pathways
Enrichment analysis of HEK293T cells treated with methyltransferase inhibitors. Enrichment analysis
is based on the set of proteins differentially expressed across the three methyltransferase treatments
(minimal log2 fold-change threshold for analysis 1.11) using biological process terms. Enriched
terms were ranked based on their statistical significance (-log10 p-value, left). The corresponding
number of differentially expressed proteins per biological process is depicted on the right part of the
figure.
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repressive marks for gene expression (Greenblatt et al., 2016). On the contrary, asymmetric 

di-methylation on H4R3 and H3R17, deposited by the type I enzymes PRMT1 and CARM1 (PRMT4), 

respectively, is often found on regulatory regions of active genes (Greenblatt et al., 2016). In line with 

these observations, the PRMT4 inhibitor SC00107015 induced very different protein changes 

comparing to PRMT5 inhibitor SC00107037 and opposite metabolic profiles (Fig 3.29A and Fig 

3.30/3.32). 

In the case of SC00107023, the protein changes appeared to be very similar to SC00107035 

and SC00107015. However, treatment with SC00107023 increased oxidative phosphorylation and no 

other treatment apart from SC00107037 and SC00107035 did so. IRF2BPL was the only protein that 

was commonly increased only in SC00107037 and SC00107023 (Fig 3.32). IRF2BPL variants have 

been linked with different neurodevelopmental disorders like Rett Syndrome which is also linked with 

various metabolic anomalies (Neul et al., 2020; Tran Mau-Them et al., 2019). IRF2BPL role is fairly 

new and it is not extensively studied yet. Mitochondrial defects have been found in this study of patients 

with DEE and variants of IRF2BPL (Tran Mau-Them et al., 2019). Also IRF2BPL has been linked 

with female neuroendocrine system regulation (Heger et al., 2007). INO80 was also found decreased 

(Fig 3.32) which is linked with lower glycolysis and increase of genes in the oxidative phosphorylation 

pathway (W. Yao et al., 2016). ANKRD27 was increased in the case of SC00107035 and SC00107023 

(Fig 3.32), where there was an increase in oxidative phosphorylation and decrease in glycolysis (Fig 

3.29A). In SC00107037, where both oxidative phosphorylation and glycolysis were increased, 

ANKRD27 was not affected comparing to control. Interestingly, ANKRD27 has been linked as a 

HIF1A target gene under hypoxia. Interestingly, AFF4, which is also upregulated by inhibitors 

SC00107035 and SC00107023 has been linked with ANKRD27 (Galbraith et al., 2013). Supporting a 

potential role of both ANKRD27 and AFF4 in the link between epigenetic and metabolism, they are 

also upregulated by epigenetic reader domain targeting-molecules (SC00107016, SC00107067, see 

Chapter 3.7.5) and HDAC inhibitor SC0010008771.  

Treatments with SC00107026 and SC00107028 caused the same metabolic changes and 

induced similar histone PTMs (Fig 3.29A and B). Moreover, the protein changes induced by these two 

drugs were almost identical (Fig 3.30 and 3.32).   
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            Taken together, the analysis of methyltransferase inhibitors revealed a picture very different to 

the one captured by HDAC and HAT inhibitors. In line with their much more specific targeting profiles, 

methyltransferase inhibitors elicited more differential histone PTM profiles, as well as proteomic 

changes. Interestingly despite this diversity, all except a PRMT5 inhibitor decreased glycolysis rate 

irrespective of the role of their targeted histone modification (i.e. repressive or activating). However, 

certain themes emerged in combination with other inhibitor classes that are discussed in chapter 3.8 

and Chapter 4.1.  

3.7.4 Demethylase inhibitors 

From the initial eleven demethylase inhibitors investigated in the metabolic profiling, three 

passed the filtering criteria and were further analysed. All three (SC00107029, SC00105914, 

SC00106834) caused highly similar metabolic effects, leading to a significant upregulation of oxidative 

phosphorylation and a slightly less pronounced upregulation of glycolysis (Fig 3.33A). The majority 

of the other eight demethylase inhibitors showed similar phenotype of increased overall metabolic 

activity, with only two showing a decrease of 10% or more versus control (Fig 3.14 and Fig 3.15). The 

filtered histone demethylase inhibitors therefore seemed to comprise a comparably consistent small 

molecule inhibitor group in relation to their metabolic effects. 

  Both SC00106834 and SC00107029 primarily target histone demethylase KDM5B, which is 

a key H3K4me demethylase. In line with the inhibition of KDM5B, an increase in H3K4me2 was 

observed in samples treated with either of the two inhibitors (Fig. 3.33B). SC00106834 is a highly 

specific inhibitor for KDM5B – and resulted in a histone PTM picture in line with the expected 

increased transcription from higher levels of H3K4me2, as well as decreased repressive methylation 

marks H3K9me2/3 and H4K20me2/3 and increased transcription-associated mark H4K20me1 (Beck 

et al., 2012b; Zhibin Wang et al., 2008). However, acetylation was generally not increased and the 

repressive mark H3K27me3 was not decreased, suggesting that the effect of this drug may be limited 

to a certain subset of target genes, or that KDM5B’s target genes in turn repress other genes. In contrast 

to SC00106834, SC00107029 is known to have some more broad-spectrum activity, including 

KDM6A and KDM6B. In line with this, the histone PTM profile results differed from the more specific  
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Demethylase inhibitors: clustering of metabolic phenotypes

Demethylase inhibitors: clustering of histone PTM modifications

Figure 3.33. Demethylase inhibitor treatments of HEK293T cells cause correlating formation of
distinct metabolic and PTM phenotype clusters.
A. Hierarchical clustering an heatmaps of the selected demethylase inhibitors. 72h treatments with

selected demethylase inhibitors induced metabolic changes. 1h treatments caused pronounced
effects comparing to control.

B. 72h treatments with selected demethylase inhibitors induced histone PTM changes comparing to
control.
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KDM5B-targeting SC00106834, despite the strong expected upregulation of H3K4me2. Interestingly, 

H3K79me1/2 was also increased by this drug treatment. Only recently, a demethylase specific for 

H3K79 was identified – KDM2B (J. Kang et al., 2018) and it is possible that the employed small 

molecule may also target KDM2B, leading to the increased levels of H3K79me1/2. On the other hand, 

SC0010519, which targets LSD1, showed a modest increase in H3K4me2 and H3K9me2, which are 

histone modifications LSD1 is known to demethylate (Hyun et al., 2017). 

 The hierarchical clustering of the metabolic phenotype, as well as of the histone PTMs 

unexpectedly showed a higher similarity between SC00107029 and SC00105914, despite the fact that 

they target different demethylases (KDM5A/6A/B, and LSD1, respectively (Fig. 3.33A, B).  

Common to all three demethylase inhibitor-treated samples were unexpectedly decreased 

levels of histone acetylation, especially on histone H4 (Fig. 3.33B). The main writer of bulk histone 

H4 acetylation in vivo is thought to be  JADE1, as part of the HBO1 complex (Foy et al., 2008). Indeed, 

JADE1 protein levels were reduced in all samples, with highest reduction of more than 10.5-fold versus 

control samples observed for SC00105914, which also showed the largest decrease in H4 acetylation. 

This observation potentially could link the global loss of H4 acetylation in conjunction with high levels 

of H3K4me2 through downregulated expression of a key acetylation writer – possibly JADE1. 

 Furthermore, a crucial reader of acetylated histones with known transcriptional-regulation 

functions, bromodomain-containing ATAD2B, was downregulated more than 7-fold vs control in both 

the SC00107029 and SC00105914 samples. Although its cellular function is not yet fully understood, 

several studies indicate that the combination of its bromodomain with its intrinsic ATPase activity is 

an important positive regulator of receptor-induced genes but also can act as generalist enhancer of 

transcription (Cochran et al., 2019; Lloyd & Glass, 2018), the loss of this epigenetic effector may 

mediate transcriptional repression downstream of treatment with demethylase inhibitors. 

 In respect to enrichment for proteins differentially regulated by the treatments, demethylase 

inhibitors showed the most divergent picture across all chemical groups – presenting an almost equal 

distribution of significantly up- as well as downregulated proteins in most of the enriched gene 

ontology terms (Fig. 3.34 and 3.35). The most significantly enriched protein groups were regulation of 

metabolic processes and gene expression, in line with the strong observed metabolic phenotypes. In  
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Demethylase inhibitors: clustering of proteomic changes

Figure 3.34. Demethylase inhibitor treatments of HEK293T cells cause significant changes in
whole proteome changes with two types of patterns observed across the three compounds.
Hierarchical clustering and heatmap of protein level changes after treatment with selected
methyltransferase inhibitors. Minimal log2 fold-change threshold for analysis was 1.11.
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Figure 3.35. Demethylase inhibitor treatments causes significant upregulation of metabolic
pathways
Enrichment analysis of HEK293T cells treated with demethylase inhibitors. Enrichment analysis is
based on the set of proteins differentially expressed across the three demethylase treatments (minimal
log2 fold-change threshold for analysis 1.11) using biological process terms. Enriched terms were
ranked based on their statistical significance (-log10 p-value, left). The corresponding number of
differentially expressed proteins per biological process is depicted on the right part of the figure.

Demethylase inhibitors: enrichment of biological processes in drug-treated samples
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order to understand better the connection between the induced histone PTMs, proteomic changes and 

observed metabolic phenotype, differentially expressed proteins were mapped against the consensus 

KEGG glycolysis pathway. Out of 67 proteins associated with glycolysis, 50 were quantified in the 

relevant proteomics samples. Interestingly, SC00106834 showed a high fraction of downregulated 

proteins across glycolysis, while both SC00107029 and SC00105914 had more balanced 

up/downregulated ratios (Fig. 3.36A). This was confirmed by a more detailed review of the 

differentially expressed proteins, where SC00107029 and SC00105914 formed a subcluster and had 

several important glycolytic enzymes upregulated vs control, while SC00106834’s proteins were 

mostly downregulated (Fig. 3.36B). This observation was further confirmed by similar patterns of 

protein expression in the TCA cycle and oxidative phosphorylation (data not shown). Therefore, the 

unbiased subclustering predicted by the seahorse experiments could be explained by patterns of PTMs 

as well as protein levels of relevant metabolic pathways.  

 In summary, the analysis of these three histone demethylase inhibitors suggested that the 

intended primary cellular target of a demethylase inhibitor is not necessarily a good predictor of its 

effects on overall histone PTMs, proteome changes or the metabolic effects. On the contrary, unbiased 

hierarchical clustering of histone PTMs suggested an unexpected grouping of unrelated demethylase 

inhibitors (SC00107029 and SC00105914) that also correlated with similar proteomic profiles (and 

similar levels of highly differentially-regulated transcriptional regulators) and metabolic phenotypes. 

3.7.5 Epigenetic reader domain inhibitors 

Epigenetic reader domains as part of different protein classes play a key role in transcription 

regulation (Borck et al., 2020). However, regulation of metabolism via specific domain motifs is not 

well understood. Five inhibitors were therefore selected after the metabolic screening for further 

analysis of the induced histone PTMs and protein changes. Four targeting bromodomains (BET and 

non BET) and one targeting MBT (malignant brain tumor) family chromatin interacting transcriptional 

repressors were included. The inhibitors were of known broad spectrum activity like the SC00107063 

which inhibits BRD2/4/9 and CECR2 and some were selective for specific targets like the MBT 

member L3MBTL3 antagonist SC00107050. Three metabolic groups were identified, drug treatments  
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Figure 3.36. In-depth analysis of glycolytic proteins and pathways in samples treated with
demethylase inhibitors.
A. Glycolytic proteins regulation in demethylase inhibitors
B. KEGG ontology glycolysis pathway for demethylase inhibitors
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Key differentially expressed glycolysis enzymes:
2.7.1.1     Hexokinase 1/2/3/4
5.1.3.3     Aldose 1-epimerase
2.7.2.3     Phosphoglycerate kinase 1
4.1.1.32   Phosphoenolpyruvate carboxykinase
1.1.1.27   L-lactate dehydrogenase

SC 00106834 SC 00107029SC 00105914

B

Demethylase inhibitors: subclustering based on regulation of glycolytic enzymes

Subcluster

Subcluster

Demethylase inhibitors: detailed analysis of differentially expressed glycolysis genes
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that decreased both oxidative phosphorylation and glycolysis, drugs that caused antagonistic 

effects by increasing oxidative phosphorylation and decreased glycolysis and one drug caused no effect 

in oxidative phosphorylation but decreased glycolysis (Fig 3.37A). Interestingly all inhibitors 

decreased glycolysis. SC00106063 and SC00107050 decreased both oxidative phosphorylation and 

glycolysis after 72h treatment. SC00107016, a selective BRD2/3/4 inhibitor caused antagonistic effects 

and SC00107067, a CREBBP and p300 bromodomain inhibitor, also caused antagonistic effects. 

SC00107054, selective for BRD2/4/T, did not alter oxidative phosphorylation but decreased 

glycolysis.  

Bromodomains are readers of acetylated lysine and even though SC00107016 and 

SC00107054 have similar targets with BRD2/3/4 and BRD2/4/T, respectively, they did not induce the 

same effects on oxidative phosphorylation. However, as expected they did show an almost identical 

histone PTMs map with few different marks. For instance, in the case of SC00107016 H3K4me2 was 

increased but not in the case of SC00107054 and H3K9ac was also increased after treatment with 

SC00107016. The other three inhibitors induced only mild effects on histone PTMs although 

H3K4me2 was significantly upregulated after treatment with all inhibitors apart from the case of 

SC00107054 where there was no change comparing to control. It has been shown before that inhibition 

of demethylation of H3K4 causes autophagy in cancer and inhibitors of LSD1 as well as SC00107050 

and others have the same effect (Zhen Wang et al., 2017a). Also, only in the case of the MBT domain 

inhibitor SC00107050 another mark H3K79me1 was elevated comparing to control. Regarding 

L3MBTL3, it binds to multiple methylated sites on histone H3 (Zhen Wang et al., 2017b). SC00107050 

competitively binds to the lysine methyl binding pocket of the L3MBTL3 MBT domain and displaces 

mono or dimethylated lysine peptides versus unmethylated or trimethylated lysine.  

SC00107063 and SC00107067 clustered next to each other in the unbiased hierarchical 

clustering for protein changes (Fig 3. 38). However, their targets are different; BRD(2,3,4,T), non BET 

and CREBBP, p300 respectively. Distinct proteins that are differently affected from each other could 

explain the opposite effects on oxidative phosphorylation (Fig 3.37A and Fig 3.38). Protein Fem1b 

was significantly decreased in SC00107063 but not in the case of SC00107067. Deprivation of Fem1b 

has been linked with abnormal glucose homeostasis and functional defect in insulin secretion  
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72h basal OCR

72h basal ECAR

72h max ECAR

72h max OCR

1h max ECAR

1h basal ECAR

1h basal OCR

Epigenetic reader domain inhibitors: clustering of metabolic phenotypes

Epigenetic reader domain inhibitors: clustering of histone PTM modifications

Figure 3.37. Demethylase inhibitor treatments of HEK293T cells caused correlating formation
of distinct metabolic and PTM phenotype clusters.
A. Hierarchical clustering an heatmaps of the selected demethylase inhibitors. 72h treatments with

selected epigenetic reader domain inhibitors induced metabolic changes.
B. 72h treatments with selected epigenetic reader domain inhibitors induced histone PTM changes

comparing to control.
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Figure 3.38. Epigenetic reader domain inhibitor treatments of HEK293T cells caused
significant changes in whole proteome with two types of patterns observed across the
compounds.
Hierarchical clustering and heatmap of protein level changes after treatment with selected epigenetic
reader domain inhibitors. Minimal log2 fold-change threshold for analysis was 1.11.
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(D. Lu et al., 2005).  Also, RYBP was decreased in SC00107067 but not in SC00107063. 

RYBP is involved in the ubiquitination of H2AK119ub and network with PRC1 and PRC2 but the role 

of this protein in metabolism is not fully known (Morey et al., 2013). 

Interestingly, in the present study there were other findings that suggested a possible metabolic 

role of RYBP – RYBP was decreased in the case of SC00107037 a PRMT5 inhibitor, and SC00107029 

a methylation inhibitor. FOXP4 was also significantly decreased comparing to control in the case of 

SC00107063. The FOX family of proteins have been found to participate in multiple cellular processes. 

However, only recently FOXO proteins have been investigated in relation to cancer metabolism and 

metabolic regulation in more general terms (Yadav et al., 2018). In that regard, FOXP4-AS1 was found 

to play a role in oxidative phosphorylation and TCA cycle in  cancer (X. G. Liu et al., 2020). It has 

also been indicated that FOXO3a-SIRT6 axis is negatively correlating with a number of aerobic 

glycolytic genes in melanoma patients (Dong et al., 2020). FOXP1 was found to play a central role in 

the response of hair follicle cycle to oxidative stress as FOXP1 deficient hair follicles showed increased 

ROS and shorter anagen phase (Zhao et al., 2015). AFF4 was increased only in the case of SC00107067 

but not SC00107063. AFF4 together with BRD4, which is a target of SC00107063, has been linked 

with HIF1A related targets which are induced under hypoxia (Galbraith et al., 2013). In other drug 

classes AFF4 was also found increased when oxidative phosphorylation was increased and glycolysis 

decreased (methyltransferase inhibitors SC00107023 and SC00107035 and HDAC inhibitor 

SC00107771).  Furthermore, ACTR8 which holds a central role in the INO80 complex and is related 

to HIF1A response, was downregulated only in SC00107067 (increased oxidative phosphorylation) 

but not in any other inhibitor. (INO80 was not changed in SC00107067). On the other hand, 

methyltransferase inhibitors SC00107026 and SC00107028, increased INO80 but there was no change 

in ACTR8 and oxidative phosphorylation was unaltered comparing to control. Therefore, ACTR8 may 

be an important regulator of oxidative phosphorylation. 

SC00107067 and SC00107016 increased oxidative phosphorylation but they showed a 

different PTM profile. They targeted different proteins and as a result they caused different protein 

changes. SC00107054 and SC0010705016 induced similar histone PTMs marks and even though they 

appeared to cluster together after hierarchical clustering of protein changes there are couple of proteins 
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that were differentially regulated that could explain the effect of SC00107016 on increasing oxidative 

phosphorylation and that SC00107054 induced no effect on respiration. For example, ZNF292 as 

previously discussed, ADIPOR1, PTEN and Cabin1 were only a few proteins that were differentially 

expressed between the two different treatment samples. 

As expected SC00107050, due to its selectivity on the L3MBTL3 target, induced only few 

protein changes and showed a different proteomic profile comparing to the other four bromodomain 

inhibitors. For instance, NR2F2 which represses genes crucial for electron transport chain activity and 

mitochondrial dynamics leading to decreased oxygen consumption rates (Wu et al., 2015) and CLN6 

were found altered only after treatment with SC00107050. Mutations in CLN6 cause the neuronal 

disease ceroid lipofuscinosis type 6 (Arsov et al., 2011; Kollmann et al., 2013). Maybe the target 

protein L3MNTL3 is a crucial therapeutic candidate for ceroid lipofuscinosis type 6 and it would be 

very interesting to further investigate. Also, other proteins linked with glucose homeostasis and cellular 

metabolism were altered. For example, Fem1b (B. Kang & Sun, 2014) and CTIF  were altered 

comparing to control which are found to be involved in overfeeding and adipose tissue metabolism 

(Perfilyev et al., 2017). Furthermore, the FOX family of proteins have previously linked with cancer 

metabolism and FOXP4 was decreased significantly comparing to control after treatment with 

SC00107050. Taken together, epigenetic reader domain inhibitors did show similar effects with other 

drug classes like methyltransferase and HDAC inhibitors, with significant impact on the levels of 

metabolically-relevant proteins (Fig. 3.39) but they also presented other PTM and protein changes 

indicating that these drugs affect metabolism via different routes. 

3.7.6 SIRT inhibitors and SIRT activator  

Sirtuins are a very special class of HDACs dependent on NAD+ and have previously been 

linked with metabolism regulation (Chang & Guarente, 2014; German & Haigis, 2015; Guarente et al., 

2018; Houtkooper et al., 2012; Nogueiras et al., 2012; J. Yu & Auwerx, 2009).   SC00106831 is a 

specific SIRT2 inhibitor and SC00106957 is a SIRT1 inhibitor. SC0082039 has been described as a 

SIRT1 activator. Performance of metabolic profiling of SC00106831 and SC00106957 showed 

opposite responses: SC00106831 mainly increased glycolysis and slightly decreased oxidative  
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Figure 3.39. Epigenetic reader domain inhibitor treatments causes significant upregulation of
metabolic pathways
Enrichment analysis of HEK293T cells treated with epigenetic reader domain inhibitors. Enrichment
analysis is based on the set of proteins differentially expressed across the five epigenetic reader
domain inhibitor treatments (minimal log2 fold-change threshold for analysis 1.11) using biological
process terms. Enriched terms were ranked based on their statistical significance (-log10 p-value,
left). The corresponding number of differentially expressed proteins per biological process is depicted
on the right part of the figure.

Epigenetic reader domain inhibitors: enrichment of biological processes in drug-treated samples
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phosphorylation. On the other hand, SC00106957 increased oxidative phosphorylation and 

decreased glycolysis (Fig 3.40A). Oxidative phosphorylation and glycolysis were increased after the 

treatment with the SIRT activator SC0082039 (Fig 3.40A). 

Looking at the immediate effects (after 1h treatments), the two SIRT inhibitors behaved 

differently: the SIRT2 inhibitor SC00106831 induced 1h effects, while the SIRT1 inhibitor 

SC00106957 did not show 1h effects. One possible explanation is that SIRT2 is localized primarily in 

the cytoplasm, and therefore may have direct effects on metabolic cytoplasmatic enzymes, while 

SIRT1 is primarily nuclear and is known to target nuclear transcription regulators such as p300, MOF, 

Ezh2 (Martínez-Redondo & Vaquero, 2013).  

Overall, histone PTM changes induced by the treatments were very weak, especially 

comparing to the Type I/II HDAC inhibitors (compare Fig. 3.40B with Fig. 3.20B). Especially the 

SIRT2-treated samples showed almost control-level histone PTMs for all different marks. These 

observations were in line with the localization of SIRT1 and SIRT2. Unexpectedly, in contrast to other 

HDAC inhibitors, treatments with SC00106831 and SC00106957 significantly reduced acetylation 

marks. Also, treatments with the inhibitor SC00106957 and the activator SC0082039 increased specific 

methylation marks (Fig 3.40B). The observed acetylation pattern may be caused by SIRT1 regulating 

other chromatin modifiers, rather than direct action on lysine histone residues. 

In line with the only moderate histone PTM changes, SIRT inhibitors and activator caused few 

protein level changes comparing to other HDAC inhibitors (Fig 3.41). Consistent with this, pathway 

enrichment analysis showed significantly fewer enriched proteins per pathway comparing to other 

inhibitor groups (Fig. 3.42 and 3.43). SIRT1 and SIRT2 inhibitors induced different protein changes. 

Only one protein, WWP2, was found to be increased in both cases in the same way by almost 2 fold. 

In addition, proteins that were identified in both samples were not affected in the same way between 

the two inhibitors. That could explain the opposite metabolic changes after the treatment with those 

inhibitors. In the case of SC00106831 a few proteins that are downstream of HIF1A were 

downregulated, including ZNF292 and ZNF593 which are upregulated in hypoxia which leads to 

increased anaerobic glycolysis (Loftus et al., 2017; Nauta et al., 2017; O. Xia et al., 2009a). 
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SIRT inhibitors and activator: clustering of metabolic phenotypes

SIRT inhibitors and activator : clustering of histone PTM modifications
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Figure 3.40. SIRT inhibitor and activator treatments of HEK293T cells cause correlating
formation of distinct metabolic and PTM phenotype clusters.
A. Hierarchical clustering an heatmaps of the selected SIRT inhibitors and activator. 72h treatments

with selected SIRT inhibitors and SIRT activator induced metabolic changes. 1h effects were
induced comparing to control

B. 72h treatments with selected SIRT inhibitors and SIRT activator induced histone PTM changes
comparing to control.
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Figure 3.41. SIRT inhibitors and SIRT activator treatments of HEK293T cells cause significant
changes in whole proteome changes.
Hierarchical clustering and heatmap of protein level changes after treatment with selected SIRT
inhibitors and activator inhibitors. Minimal log2 fold-change threshold for analysis was 1.11.

SIRT inhibitors and activator: clustering of proteomic changes
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SIRT activator: enrichment of biological processes in drug-treated samples

Figure 3.42. SIRT activator treatment biological process enrichment
Enrichment analysis of HEK293T cells treated with SIRT activator. Enrichment analysis is based on
the set of proteins differentially expressed with SIRT activator treatment (minimal log2 fold-change
threshold for analysis 1.11) using biological process terms. Enriched terms were ranked based on
their statistical significance (-log10 p-value, left). The corresponding number of differentially
expressed proteins per biological process is depicted on the right part of the figure.
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SIRT inhibitors: enrichment of biological processes in drug-treated samples

Figure 3.43. SIRT inhibitors treatment causes significant upregulation of metabolic pathways
Enrichment analysis of HEK293T cells treated with SIRT activator. Enrichment analysis is based on
the set of proteins differentially expressed with SIRT activator treatment (minimal log2 fold-change
threshold for analysis 1.11) using biological process terms. Enriched terms were ranked based on
their statistical significance (-log10 p-value, left). The corresponding number of differentially
expressed proteins per biological process is depicted on the right part of the figure.
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Other proteins that have been linked with metabolism were differentially regulated by the 

treatments. In particular, IREB2 which is linked with alterations in mitochondrial function and 

homeostasis was upregulated in both SIRT activator and SIRT1 inhibitor SC00106957 where oxidative 

phosphorylation was increased comparing to control. Furthermore, ITCH, which is linked with 

increased oxidative capacity (Jiang et al., 2020) was significantly downregulated in the case of the 

SIRT activator, in line with the increased oxidative phosphorylation induced after the treatment with 

this drug (Fig 3.40A an 3.41). ITCH deficiency has been previously shown to halt fatty liver disease 

caused by obesity (Marino et al., 2014) and from plaque formation in atherosclerosis via SIRT6 

breakdown and SREBP2 which led to decreased cholesterol levels, reduced hepatic steatosis, increased 

mitochondrial oxidative capacity and shift to fatty acids as energy source (Stöhr et al., 2015). 

Overall, the SIRT inhibitors and activator affected metabolism but they did not induce 

expected PTMs changes as the other HDAC inhibitors. However, many proteins that were differentially 

enriched comparing to control could explain the metabolic differences presented after the treatment 

with those drugs. Therefore, the observed effect of sirtuins on metabolism could be mediated partially 

by PTMs and a few key metabolic proteins whose expression is affected, and partially directly by 

regulating targets in the cytoplasm. 

 

3.7.7 Epigenetic effects of two inhibitors with cytoplasmic targets 

 In addition to focusing the analytical work on small molecules that directly target epigenetic 

proteins, two compounds were selected where a clear connection with chromatin regulation has not 

been identified so far. SC00106943 is a specific inhibitor of the cytoplasmic ubiquitous PTP1B 

(protein-tyrosine phosphatase 1B), an important negative regulator of insulin-induced glycolysis 

(Tiganis, 2013). 

In line with the small observed difference in the metabolic readout between treatment and 

control, cellular levels of glycolytic proteins were not affected or slightly downregulated by treatment 

with SC00106943 (Fig. 3.44A, Fig. 3.46). While PTP1B’s primary function relates to the deactivation 

of activated insulin receptor, more functions have been uncovered – including the regulation of several 
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important signaling cascades that regulate transcription, such as inflammation-associated JAK-STAT 

and growth-regulating PI3K-AKT pathways (Feldhammer et al., 2013; Valverde & González-

Rodríguez, 2011). The seahorse XF results suggested that in addition to the known immediate effects 

on glycolysis, PTP1B could influence oxidative phosphorylation via altered gene expression, as levels 

of oxidative phosphorylation were elevated after 72h treatment but not after 1h treatment (Fig. 3.44A). 

In line with a potential undescribed chromatin-mediated function of PTP1B, levels of histone 

H3K4me2 were elevated (Fig. 3.44B). Furthermore, changes across the proteome were observed (Fig. 

3.45), including proteins involved in insulin signaling (e.g. more than 15-fold downregulation of 

SORBS1, which is required for insulin-mediated glucose import), as well as levels of transcription 

regulators (e.g. RNA polymerase II CTD phosphatase RPAP2, transcription factors).  

SC00106940 is a naturally occurring flavonoid that has direct antioxidative functions as a 

scavenger of reactive oxygen species, but it can also modulate the activity of cytoplasmatic proteins 

(Dajas et al., 2013; Tuorkey, 2016). In line with these known cytoplasmatic effects, comparably strong 

effects on metabolism were observed already after 1 hour of treatment with this drug (Fig. 3.44A). The 

observed significant reduction of histone H3 and H4 acetylation by this treatment was unexpected, but 

could in fact be explained by the recent discovery that SC00106940 decreases histone acetyltransferase 

activity and can directly bind HATs (S. A. Ganai et al., 2018; A. Kim & Yun, 2017). The proteomic 

expression profile of SC00106940-treated cells could therefore be a consequence of the putative in 

vivo inactivation of HATs, which in turn could be responsible for the observed metabolic effects after 

longer treatment durations (Fig. 3.45, Fig. 3.44A). 

Taken together these two small molecules, both of which are investigated as potential drug 

candidates in metabolic, neurological or oncological indications, demonstrated that despite a generally-

accepted cytoplasmic mechanism-of-action, epigenetic modulators may be affected by treatments 

which in turn can have relevant consequences on the cells’s energy and signaling homeostasis. It is 

therefore important to consider epigenetic effects and their consequences also in cases where the 

primary drug targets seem to be limited to the cytoplasm. 

 



Figure 3.44. PDE and PTPB inhibitors
A. 72h and 1h treatments with selected PTPB and PDE inhibitors induced metabolic changes

comparing to ctrl.
B. 72h treatments with selected PTPB and PDE inhibitors and activator induced histone PTMs

comparing to ctrl.
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Figure 3.45. PTPB and PDE inhibitors. Proteome (1x) induced changes after 72h treatment
with selected compounds
Hierarchical clustering of protein changes after treatment with selected PTPB and PDE inhibitor and
activator compound
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Figure 3.46. Glycolysis pathway mapping of PTP1B inhibitor SC00106943
Glycolysis pathway mapping of proteins identified using quantitative mass spectrometry of whole-
cell extracts in samples from control-treated or SC00106943-treated HEK293T cells. The map
depicts the canonical human glycolytic pathway obtained from KEGG. Colors indicate upregulation
(red) or downregulation (blue) in drug-treated samples relative to the control sample.
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Other inhibitors: pathway mapping for SC00106943
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3.8 Overarching links between epigenetics and metabolism 

The Chapter 3.7 focussed on the effects of individual inhibitor treatments on the three 

experimental assays, metabolism, histone PTMs and the cellular proteome. Common themes among 

those readouts were identified for each chemical group. To look into prevalent epigenetic marks 

influencing metabolism irrespective of the drug treatment that caused them, various types of correlation 

analyses were performed. More specifically, the purpose of this second type of analysis presented in 

this Chapter 3.8 and Chapter 4.1 was to use the set of 30 inhibitors as a tool to experimentally induce 

various changes in metabolism and PTMs to create many different combinations of cellular states. 

Each cellular state was defined by all analysed histone PTMs (e.g. high H3/H4 acetylation), the state 

of metabolism (e.g. high oxidative phosphorylation, low glycolysis) and the relative level of proteins 

in the proteome. By comparing all variations and common features from all the cellular states, 

statistical analyses were then used to identify common rules that link those states. 

3.8.1 Acetylation changes correlate with decreased glycolysis  

As a first step, multivariate linear modelling between all measured histone PTM levels and 

metabolic states was performed for all drug treatments. This analysis determines if direct linear 

correlations exist between any of the histone PTM marks and a given metabolic state.  

This analysis demonstrated that acetylation levels on histone H4 were significantly correlated 

with basal and maximal glycolysis rates, as well as maximal oxidative phosphorylation but not with 

basal oxidative phosphorylation (Fig. 3.47A-D). In contrast, using this type of analysis, histone 

methylation did not appear to be significantly correlated with oxidative phosphorylation or glycolysis 

(Appendix Fig A.10). When this analysis was restricted to HDAC and HAT inhibitors, in order to more 

directly assess the impact of acetylation changes on metabolism, higher acetylation of H4 peptides 

correlated with a decrease in glycolysis. However, no correlation with oxidative phosphorylation 

changes was identified. Oxidative phosphorylation was in most cases increased irrespective of the 

acetylation changes in H4 peptides. These results indicate that acetylation marks on peptides 

H4K5K8ac, H4K12K16ac, H4K5K12K16ac, H4K5K8K16ac, H4K5K8K12K16ac, H4K5K8K12ac, 

H4K8K12K16ac maybe involved in modulating glycolysis. 



0 0.2 0.4 0.6 0.8 1

H4K8ac

H3K23ac

H4K5K12K16ac

H4K8K12K16ac

H3K9ac

H4K12ac

H4K12K16ac

H4K5ac

H3K9acK14ac

H3K18acK23ac

H4K16ac

H4K5K8K12ac

H3K18ac

H4K5K8ac

H3K14ac

H4K5K8K12K16ac

H4K5K8K16ac

-log10 p-value

Figure 3.47. Correlation of acetylation marks on H3 and H4 and metabolic states
Multivariate linear modelling was performed between all histone PTMs levels and metabolic states
induced by treatments with 30 different drug candidates. Values depict -log 10 p value where p>1.3
indicates a significant correlation (corresponding to p<0.05) between the respective PTM and
metabolic state.
A. Correlation between histone lysine acetylation and basal glycolysis
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C. Correlation between histone lysine acetylation and maximum oxidative phosphorylation
D. Correlation between histone lysine acetylation and base oxidative phosphorylation
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A similar correlation was detected when all drug inhibitor classes were selected for 

comparison, however as their impact on cellular acetylation levels was generally less pronounced, also 

the impact on glycolysis was more limited. In conclusion, the main drivers of this effect were HDACs 

and HATs which led to strong changes of histone acetylation levels and at the same time lower rates 

of glycolysis. As the multivariate linear modelling is less sensitive to potential correlations between 

different variables, for instance if variables correlate but in a non-linear way, more advanced and 

powerful ways to analyse were employed next, including Principal Component Analysis (PCA) and 

correlation matrices, as discussed in Chapters 3.8.2, 2.8.3 and 4.1. Importantly, the key observation 

from this linear modelling – anticorrelation between histone acetylation and glycolysis – was 

confirmed with both alternative statistical methods. 

3.8.2 Identification of opposing chromatin modification networks 

As an alternative and more powerful unbiased analysis approach, Principal Component 

Analysis (PCA) was carried out as described in Materials and Methods Chapter 2.6.3. This allowed to 

get insights about the connections between histone acetylation and methylation patterns (this Chapter) 

and moreover, possible clustering with cellular metabolic states (Chapter 3.8.3).  75% of data variance 

of histone PTM levels was explained by combined principal components one to three (PC1-3, Fig 3.48 

A). Different modifications were explained to different degrees by the first two (PC1/2) or third and 

fourth dimensions (Fig 3.48B, C). For example, the variances of histone PTM acetylation (e.g. 

H3K18acK23ac) were almost completely explained by PC1 (Fig 3.48B), while H3K27me1 was mostly 

represented in dimensions 3 and 4 (Fig 3.48C). This means that while some modifications usually are 

either correlated (e.g. different H3 acetylation on various residues) or anticorrelated (e.g. H3 

acetylation and H3K9me3), other modifications are not directly linked to those mechanisms, and their 

levels changes largely independently of other PTMs. 

To make this point clearer, the variation of all histone PTM levels across all PCA dimensions 

was calculated and plotted (Fig 3.49). Importantly, this type of analysis does not indicate whether a 

given observation is correlated or anti-correlated but it can point to histone modifications that are 

regulated by the same or overlapping pathways if they are represented in the same dimension / principal  



Figure 3.48. PCA analysis of acetylation and methylation marks on H3 and H4 induced by
treatments with 30 different small molecules.
A. 75% of data variance was explained by PC1-3
B. Acetylation and methylation percentage variance explained by PC1 and PC2
C. Acetylation and methylation percentage variance explained by PC3 and PC4
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Figure 3.49. PCA analysis of acetylation and methylation histone modifications on H3 and H4
induced by treatments with 30 small molecules across all principal components
Degree of data representation across PCA dimensions PC1-30. The size and colour of bubble
indicates a higher degree of representation in a specific dimension for the respective PTM mark,
ranging from 0 (0%) to 1 (100%), as depicted in the legend on the side of the diagram.
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component. As shown in Fig 3.49, a large fraction of the observed variation of histone PTMs 

was explained by PC1, including for instance H3K9ac and H3K9me2, two marks that are 

antagonistically regulated in cells. However, there were some notable exceptions: Acetylation changes 

on H4 were observed in the same PC dimension (PC1) as H3K9me1/2/3 and H4K20me3. In contrast, 

activating marks H3K36me2/3 were linked with repressive H3K27me2/3 through PC dimension 2. 

Interestingly, H3K79 was more variable than other modifications, varying in 2-3 dimensions on its 

own (Fig 3.49). As exemplified by H3K79 methylation but identified also by other histone PTMs, this 

analysis showed that different modification states of the same residue were linked through different 

PC dimensions: e.g. H3K79me1 in PC6, while H3K79me2 in PC5. This therefore potentially pointed 

to different regulatory networks with other histone modifications and cellular factors, in order to 

mediate different cellular functions 

Furthermore, this analysis suggested that some modifications were not explained by common 

transcription regulation mechanisms. In particular, modifications that play clearly defined roles in 

general transcription such as H3K9ac, H4K5K8ac, H3K9me1/2/3 were explained by the same 

dimension (PC1). On the other hand, histone PTM marks that have been linked with more diverse 

epigenetic functions like transcription initiation (H3K4me2), transcription elongation (H3K36me2/3), 

and transcriptional silencing (H3K27me3) were explained by different dimensions but not PC1 (Fig 

3.49). Interestingly, there were modifications like H3K27me1, H4K20me1/2/3, H3K79me1/2 that 

were present in more than four dimensions pinpointing a great variability in the biological activities of 

these marks. A more detailed picture of the possible activities of these histone modifications and 

possible links with metabolism are described in the discussion in chapter 4.1. 

As seen in the PCA Biplot (Fig 3.50), histone acetylation was mostly explained by PC1, in line 

with the location of several HDAC inhibitors including SC00106933, SC00106837, S00107771. On 

the other hand, the variation of methylation levels of PTMs H3K27me2/3 and H3K36me2/3 in the 

PCA Biplot is mainly explained in PC2, in line with the location of several methylation inhibitors 

including SC00107026 and SC00107028. The effects of other inhibitors were to a larger degree 

explained by other dimensions, e.g. PC3 and PC4.  

  



Figure 3.50. PCA Biplot of histone acetylation and methylation modifications on H3 and H4
induced by treatments with 30 different small molecules.
Biplot of PC1 (Dim1) and PC2 (Dim2). Each drug group is differentially coloured and each dot
represents one drug. The length and the colour of Eigen vectors represents a higher or smaller degree
of correlation of the specific histone PTM (named at the end of each arrow) with the respective PC.
The orientation of the Eigen vectors indicates correlation or anticorrelation with a specific PC. The
bigger sized bubbles represent the statistical center of each drug group.
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To specifically look at the type of the correlation between these histone marks (correlated or 

anticorrelated), the eigenvectors were plotted along PC1 and PC2 (Fig 3.51). The length of the 

eigenvectors shows how much the specific variable is correlated with the dimension it is close to and 

the arrows depict the direction of the correlation. For example, H4K12K16ac (and others) and 

H3k9me1/2/3 were previously described to be explained by PC1 (Fig 3.49). From Fig 3.51, it becomes 

clear that these marks did appear to be commonly explained by PC1 and anticorrelated, as their 

eigenvectors lie close to the PC1 (Dim1) axis but face in different directions. This is in line with the 

data that supports that histone acetylation is linked mainly with transcription activation whereas 

H3K9me1/2/3 with transcriptional repression. Interestingly, H3K27me2/3 (repression) faced to a 

degree in a similar direction as H3K36me3 (elongation) and opposite to H3K36me2 (initiation). Also, 

H3K4me2 (initiation) was in the same direction with the repressive H3K27me2/3 but most of this data 

was explained in the dimensions (PCs) 3 and 4 where there was no correlation between them but rather 

H3K4me2 was anticorrelated with H3K27me1. The eigenvector of the variable mark H4K20me1 

(variability seen before (Fig 3.49) was spanning across different dimensions. Indeed, in PC1 and 2 it 

was in the same direction of H3K36me2, H3K27me1 and opposite of H4K20me2/3 (Fig 3.51).  In PC3 

and PC4, H4K20me1 appeared to have opposite activities of H3K27me1 but remained anti-correlated 

with H4K20me2/3.  

 

3.8.3 Metabolic regulation via specific histone methylation and acetylation marks  

To specifically investigate the correlation of either histone acetylation or methylation patterns 

with metabolism, a PCA was carried out – this time including the metabolic assay readouts induced by 

the 30 small molecule treatments in addition to histone acetylation/methylation as additional variable 

(while the analysis in Chapter 3.8.2 did not include the metabolic readouts).  

In the resulting PCA, acetylation/metabolism data were explained by PC1 to almost 70%, 

which is in contrast to methylation/metabolism data, where only 26% of variance was explained by 

PC1 (Fig 3.52 A, B). Therefore, methylation appeared to be more variable than acetylation or that the 

cooccurring observations between methylation and metabolism could be explained in more diverse  



Figure 3.51. Depiction of variables of the PCA plot of acetylation and methylation marks on H3
and H4 of 30 drug candidates
Representation of PC1 and PC2. The length and the colour of Eigen vectors represents a higher or
smaller degree of correlation of the specific PTM mark with the respective PC. The orientation of the
Eigen vectors indicates correlation or anticorrelation with a specific PC.
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Figure 3.52. PCA analysis of acetylation and methylation histone PTMs on H3 and H4, as well
as metabolic readouts (glycolysis and oxidative phosphorylation) induced by treatments with 30
different small molecules
A. Percentage of methylation and metabolism variance explained by each principal component.
B. Percentage of acetylation and metabolism variance explained by each principal component.
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ways. This is in line with the more general effect, partially physically, that acetylation has on 

chromatin, while methylation is written and read by more specific enzymes and reader proteins. 

Regarding specific methylation modifications and the metabolic readouts oxidative phosphorylation 

and glycolysis, 76% of the data was explained by PC1-4, with 50% of the data explained by PC1-2 

(Fig 3.52 A). Specifically, oxidative phosphorylation was explained by PC4 and to a lesser degree by 

PC2, in contrast to glycolysis readouts that were explained by more than 4 dimensions, but to a 

significant part in PC3 (Fig 3.53). This analysis suggested that oxidative phosphorylation was 

explained by different epigenetic regulatory pathways than glycolysis and that the overlap between 

those epigenetic pathways that regulate them is minimal. The fact that oxidative phosphorylation and 

glycolysis can be controlled independently is well described. In fact, normal tissues strongly rely on 

their ability to enter into “glycolytic states” or “oxidative state”, and also tumor cells can switch 

between both states more dynamically (or hybridically) than previously thought when the Warburg 

effect was first formulated (Jose et al., 2011; D. F. Wilson, 2017; L. Yu et al., 2017). However, the 

differential regulation by epigenetic networks had not been demonstrated comprehensively so far, as 

was the case in this study through induction of the changes using epigenetically-active small molecules. 

Next, specific histone modifications that grouped with glycolysis were identified. For histone 

acetylation, almost all modifications grouped in the same dimension (PC1) together with a fraction of 

the variance of glycolysis (Fig 3.54). Interestingly, a large part of the glycolysis variation relating to 

histone acetylation grouped with mono-modified H4K5ac, H4K12ac, suggesting a potential role of 

those residues in regulating glycolysis (to a small degree, as dimension 3 only related to 11% of 

observed variation). The analysis of the eigenvectors along PC1 and PC2 showed that H4K5ac and 

H4K12ac were strongly anti-correlated to both base and maximal glycolysis (Fig 3.55), in line with 

the previous observations from the linear regression analysis in Chapter 3.8.1. On the other hand, 

methylation marks H3K9me1/2/3 and H4K20me1/2/3 grouped with glycolysis in PC1, while 

H3K4me2, H3K9me3, H3K27me1 (but not H3K27me2/3) grouped in PC3, suggesting that these two 

groups of modifications (defined by PC1 and PC3) regulate different aspects of glycolysis (Fig 3.53). 

In fact, the analysis of the distribution of the eigenvectors showed that as an example for the case of 

H4K20, only the mono-methylated form H4K20me1 correlated with higher levels of glycolysis, while  



Figure 3.53. PCA analysis of methylation histone modifications on H3 and H4, as well as
metabolic readouts, induced by treatments with 30 small molecules across all principal
components
Degree of data representation across PC1-30. The size and colour of bubble indicates a higher degree
of representation in a specific dimension for the respective PTM mark, ranging from 0 (0%) to 1
(100%), as depicted in the legend on the side of the diagram.
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Figure 3.54. PCA analysis of acetylation histone modifications on H3 and H4 induced by
treatments with 30 small molecules across all principal components
Degree of data representation across PC1-30. The size and colour of bubble indicates a higher degree
of representation in a specific dimension for the respective PTM mark, ranging from 0 (0%) to 1
(100%), as depicted in the legend on the side of the diagram.
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Figure 3.55. Depiction of variables of the PCA plot of acetylation histone modifications on H3
and H4 induced by treatments with 30 small molecules and metabolic states
Representation of PC1 and PC2. The length and the colour of Eigen vectors represents a higher or
smaller degree of correlation of the specific PTM mark or metabolic state with the respective PC.
The orientation of the Eigen vectors indicates correlation or anticorrelation with a specific PC.
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H4K20me2 and me3 indicated an anti-correlation (Fig 3.56). This repeated observation of 

H4K20’s involvement in glycolytic regulation, differentiated by mono vs di/trimethylation, could be 

related to the different roles of H4K20me1 vs H4K20me2/3 in transcription although not fully 

characterised and (see for instance Chapter 3.7.2, 3.7.3, 3.7.4). 

As introduced above, a different set of PTMs grouped with oxidative phosphorylation: 

regarding acetylation, specifically H4K8ac and H4K16ac showed strong correlation (Fig 3.54), which 

was confirmed by the representation of eigenvector analysis, where those two histone acetylation 

marks anticorrelated with high levels of oxidative phosphorylation (Fig 3.55). The difference to the 

histone PTM pattern of glycolysis was even more prominent for methylation marks. Histone PTMs 

specifically grouping with oxidative phosphorylation (but not glycolysis) were transcription-

elongation-associated H3K36me2/3, repressive H3K27me2/3 (in PC2) as well as H3K79me2 (in PC4) 

(Fig 3.54). Interestingly, the seemingly unintuitive observation of grouping with both a transcription-

associated mark such as H3K36me2/3 and the repressive H3K27me2/3 was clearly explained by the 

eigenvector analysis of oxidative phosphorylation vs methyl PTMs, that clearly showed that 

H3K27me2/3 strongly correlated (pointed in same direction) as oxidative phosphorylation vectors, 

while H3K36me2 was anti-correlating (Fig 3.56). These observations suggested that oxidative 

phosphorylation co-occurred in cells with higher levels of repressive chromatin and lower levels of 

active ongoing transcription elongation. 

In addition to modifications that occurred mostly with either oxidative phosphorylation or 

glycolysis (but not both), high levels of some histone modifications were observed together both with 

high levels of glycolysis and high levels of oxidative phosphorylation, namely H3K27me2/3, while 

high levels of H3K36me2 anti-correlated with both metabolic activities. Therefore, most (especially 

methylation) histone PTMs seemed to have a specific correlation with either glycolysis or oxidative 

phosphorylation, with the exception of the above-mentioned marks.  

  



Figure 3.56. Depiction of variables of the PCA plot of methylation histone modifications on H3
and H4 induced by treatments with 30 small molecules and metabolic states
Representation of PC1 and PC2. The length and the colour of Eigen vectors represents a higher or
smaller degree of correlation of the specific PTM mark or metabolic state with the respective PC.
The orientation of the Eigen vectors indicates correlation or anticorrelation with a specific PC.
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4.1 Identification of new metabolic regulatory networks and potential 

drug targets 

Using a different analysis approach (correlation matrix based on multivariate Pearson’s 

correlation), the results of the overarching analysis (Chapter 3.8) were summarized for histone PTM 

networks (Fig. 4.1), histone PTMs correlating with metabolism (Fig. 4.2) and identification of protein 

targets correlating with different metabolic states (Fig. 4.3). These analyses confirmed the two previous 

statistical approaches (linear modelling, PCA). It is important to note that interactions derived from 

this study were based on comparing cellular states (metabolism, histone PTMs, proteome) induced by 

small molecule treatments, while in many cases in other literature, the experimental approaches 

described native cellular states. The key observations from this correlation analysis were: 

1. Additional histone PTM networks were identified. Apart from expected network interactions, 

this study uncovered several relationships – especially so far uncharacterised in response to 

drug treatments (see results Chapter 3.8 and below in Chapter 4.1.1)  

2. The overarching analysis clearly showed that histone PTMs can be classified in three different 

groups in relation to their potential impact/interplay with metabolism: a) PTMs that define a 

high glycolytic signature, in a sense a histone code of glycolysis; b) PTMs that define a high 

oxidative phosphorylation signature; and c) PTMs that are increased in cells with high 

glycolysis and oxidative phosphorylation. No such comprehensive review of chromatin-

metabolism has been carried out as of today (see below in Chapter 4.1.2). Generally, the “high 

glycolysis code” was marked by histone modifications associated with transcriptional 

repression (low acetylation, high H3K9me2/3, high H3K27me2/3). In turn, the “high oxidative 

phosphorylation” code was marked by a much more diverse set of histone PTMs, characterised 

by high H3K79me2 and H3K27me2/3 and low H4K16ac and H3K9me2/3.  

3. Several proteins that correlated with either glycolysis or oxidative phosphorylation 

induction/repression induced by the 30 different small molecules were identified. While some 

of these proteins appeared to be implicated with metabolic functions through previous studies, 

this analysis uncovered a range of proteins that could play new roles in regulating and 

modulating metabolic pathways (see below in Chapter 4.1.3). 
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4.1.1. Histone PTM networks 

Although it was not the focus of this study to shed light into novel histone PTMs networks, the 

data allowed to look into novel interactions caused by epigenetic treatments and possibly link them to 

altered metabolism. Different histone PTM interactions were identified and described in the chapter 

3.8. Those networks were largely operating as expected. For example, H3K36me2, a transcription 

elongation mark, anti-correlated with H3K27me3, a transcriptional repression mark (Laugesen et al., 

2019; U.Selker, 2017) (Fig 3.57, 4.1). Another example was that H3K27me1 correlated with 

H3K36me3. H3K27me1 is a less abundant H3K27 methylation state (estimated at 5-10% of all histones 

in contrast to >50% for H3K27me2) that accumulates within the gene bodies of transcribed genes, 

promotes transcription, and is regulated by Setd2-dependent H3K36me3 deposition (Ferrari et al., 

2014a; Laugesen et al., 2019). Furthermore, H3K9ac anticorrelated with H3K9me2/3 (transcriptional 

repression); moreover, acetylation marks correlated with each other and H3K4me2, a key transcription 

activation mark, which in turn anticorrelated with H3K9me2/3 which is a repressive mark (Fig 4.1). 

Apart from expected network interactions as outlined above, this study uncovered several new 

relationships especially so far uncharacterised in response to drug treatments.  

In particular, H3K79me2 a transcription activating mark (Wood et al., 2018) that has been 

linked with DNA damage response and cell differentiation, anticorrelated with H3K27me1/2/3, 

H3K36me3 and others (Fig 4.1). H3K27me1, like H3K79me2 is also linked with active transcription 

and H3K27me2/3 with transcriptional repression. However, in the current study, H3K79me2 appeared 

to anticorrelate with H3K27me1 and to a lower degree with H3K27me2/3.  These histone modifications 

(H3K79me2 and H3K27me1) have not usually been examined together in the same studies and under 

the same experimental conditions. Therefore, the different behaviour of the modifications in this study 

could point towards a yet undescribed regulatory network of both modifications. To support this 

possibility and emphasizing a specific role in metabolism, it is interesting to point out that 

H3K27me1/2/3 is participating in PRC2 dependent cell dedifferentiation in diabetes, as loss of PRC2 

led to hyperglycaemia independent cell dedifferentiation mimicking diabetes  (T. T. H. Lu et al., 2018). 

On the other hand, increase of the transcription activation modification H3K79me2 under 

hyperglycaemic conditions was suspected to contribute to diabetic renal fibrosis (Goru et al., 2016).  



Chapter 4 Discussion

Figure 4.1. Pearson correlation analysis of acetylation and methylation modifications on
histones H3 and H4 induced by treatments with 30 different small molecules
Correlation matrix based on Pearson’s correlation coefficient. The size and colour of the bubble
indicates a higher degree of correlation between respective PTM marks, as shown on the right-hand
side legend, ranging from strong anticorrelation (red, -1) to strong correlation (blue, +1). The
threshold for correlations selected in this graph was +/- 0.95.
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Therefore, these two marks and their anticorrelating relationship may constitute a novel switch 

of metabolic regulation, being linked to opposite metabolic phenotypes: they both correlated with 

glycolysis but had opposite relationship with oxidative phosphorylation. H3K27me1 anticorrelated 

with oxidative phosphorylation and H3K79me2 correlated with oxidative phosphorylation (Fig 4.2). 

Another example of a novel interaction are the three methylation states of H4K20, 

H4K20me1/2/3 (Fig 4.1). Specifically, H4K20me1 anticorrelated with H4K20me2/3, in line with the 

fact that those modifications are catalysed by different enzymes and are thought to associate with 

different cellular functions (Hyun et al., 2017). H4K20me1, even though it has usually been associated 

with active transcription (Beck et al., 2012b; Lv et al., 2016; L. Xiao et al., 2019), showed a more 

diverse picture in this study: while it correlated with transcription elongation-associated H3K36me3 

and transcription-activation-associated H3K4me2, it anticorrelated with most acetylated H3 and H4 

residues. Similarly, H4K20me1 also correlated with H3K9me1/2/3. On the contrary, H4K20me3, 

traditionally thought to be linked with inactive transcription (Beck et al., 2012a; Lv et al., 2016; 

Okamoto et al., 2017), correlated with all acetylation marks, and anticorrelated with H3K9me1/2/3. 

Interestingly, more recent studies have started to link H4K20me3 with a role in active transcription 

and associations with active histone modifications (Xu & Kidder, 2018). H4K20me2 has no well 

characterised function to date and no link with transcription has been identified. However, in the 

current study, H4K20me2 presented an identical correlating profile with H4K20me3. These correlation 

analyses showed that H4K20me1 and H4K20me2/3 have very distinctive profiles regarding their 

interaction within the histone code and that their response pattern caused by epigenetic small molecules 

may be different than their native distribution across genes as described in previous studies. This is 

also a novel interaction in regards to metabolic regulation effects. As presented in the interrelations of 

the histone code and metabolic states of the current study, H4K20me1 correlated with glycolysis as 

H3K9m1/2/3 did but H4K20me2/3 anticorrelated with glycolysis. 

Another example is the H3K9me1/2/3. H3K9me1/2/3 is usually linked with inactive/repressed 

genes and heterochromatin (Jih et al., 2017; Ninova et al., 2019; Salzberg et al., 2017). Indeed, 

H3K9me1-3 strongly anticorrelated as expected with histone acetylation (Fig 4.1). However, 

unexpectedly, all three modifications also showed correlation with H3K36me3, which is usually 
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distributed along actively-transcribed gene bodies (Fig 4.1). Interestingly, in a recent study a subset of 

genomic regions including Zinc-finger protein (ZFP) genes and repetitive DNA were characterised by 

this uncommon combination of H3K36me3 and H3K9 methylation (Supplemental materials in (T. T. 

H. Lu et al., 2018)). However, these regions were not investigated and the function of this remains 

unclear but the response to epigenetically-active molecules described here suggests a potentially 

relevant role and warrants further investigation. 

Although the focus of this study has not been to identify new histone PTM networks in native 

cellular states, the above few examples have indicated that previously undescribed or less characterised 

interactions could be physiologically relevant for metabolic regulation. Specifically, the current study 

is different from what has been published, in that it allowed analysis of the impact of epigenetically-

active small molecule inhibitors on chromatin PTM networks. Furthermore, those changes could be 

brought into perspective of the co-occurring metabolic and proteomic changes, as discussed in the 

following Chapters 4.1.2 and 4.1.3. 

4.1.2 Interplay between histone PTMs and metabolism 

In the results Chapter 3.8, the overarching analysis showed that histone PTMs could be 

classified in three different groups in relation to their potential impact/interplay with metabolism: a) 

PTMs that are linked with a high glycolytic signature, the histone code of glycolysis b) PTMs that are 

linked with a high oxidative phosphorylation signature c) PTMs that are linked with both oxidative 

phosphorylation and glycolysis (Fig 4.2).  

A strong and consistent result from this study was that most acetylation marks are 

anticorrelating with glycolysis. At first glance this may appear counterintuitive to the normal function 

of glycolytic physiology, as high rates of glycolysis would lead to production of high levels of cellular 

acetyl-CoA, the substrate of histone acetyltransferases. Indeed, other studies have shown that when 

there is increase of available intracellular glucose there is an increase in glycolysis and also histone 

acetylation (Cluntun et al., 2015). It is important to note that this is a fundamentally different 

perspective and mechanism, as that study tracked the increase of glucose through glycolysis and then 

measured effects on chromatin. To understand the relationship between metabolism and epigenetics, it  
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Figure 4.2. Pearson correlation analysis of acetylation and methylation modifications on
histones H3 and H4 with metabolic readouts, induced by treatments with 30 different small
molecules
Correlation matrix based on Pearson’s correlation coefficient. The size and colour of the bubble
indicates a higher degree of correlation between respective PTM marks, as shown on the right-hand
side legend, ranging from strong anticorrelation (red, -1) to strong correlation (blue, +1). The
threshold for correlations selected in this graph was +/- 0.50.
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becomes clear that it strongly depends if, either a metabolic substrate (such as glucose), or on 

the other hand, histone PTMs are changed.  

In my current study, the perspective was from an opposite route of that described in Cluntun 

et al. - by first altering epigenetic states (histone acetylation) to measure potential outcomes on 

metabolic flow.  My study has shown that in general higher levels of acetylation were associated with 

a decrease in glycolytic activity, and vice versa (see detailed discussions in Chapter 3.7). So far, only 

an indicative relationship between treatment of cells with HDAC inhibitors, followed by increased 

acetylation and decreased glycolysis had been demonstrated, and was often limited to cancer cells 

(Fang et al., 2019; Q. Li et al., 2018; Nguyen et al., 2020). However, my study now shows that 

anticorrelation between histone acetylation and glycolysis is a general concept not limited to HDAC 

inhibitor treatments that links the status of chromatin with metabolic states (see Fig 4.2, Chapters 3.7.1-

3.7.7 and Chapter 3.8). 

In addition to the specific observations regarding histone acetylation and glycolysis, 

metabolism and epigenetics interplay has been mostly studied from the route of altering metabolism, 

e.g. with nutrients and analysing resulting epigenetic changes. Individual studies and reviews have 

described changes in specific histone modifications as responses to metabolic changes (Cluntun et al., 

2015; Dutta et al., 2016). There are also studies and reviews discussing the relationships of metabolic 

intermediates regulating histone PTMs (Campit et al., 2020; Fan et al., 2015c; Suganuma & Workman, 

2018). 

However, the metabolic and epigenetic interplay from the route of altering epigenetics to 

investigate metabolism has not been studied to the same extent. In fact, the scopes of the few available 

studies altering epigenetics to study metabolism were rather limited. They are mostly focusing on one 

or very few epigenetic marks. using usually one or very few inhibitors, which in most cases belonged 

to the same drug class, e.g. HDAC inhibitors, without showing effects on metabolism (Feldman et al., 

2013; Lavarone et al., 2019; Stein et al., 2018; Wapenaar & Dekker, 2016). Furthermore, they have 

also mainly focused on epigenetic changes of metabolic enzymes or other proteins that at a later stage 

affect metabolism and not how histone PTMs marks affect metabolism directly (Gerhäuser, 2012). On 

the other hand, some studies have investigated how treatments with epigenetic inhibitors alter 
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metabolism without analysing histone PTMs or protein changes (Amoêdo et al., 2011; S. Y. Kim et 

al., 2020; Nunn et al., 2016; Wardell et al., 2009). From these studies, only few have discussed how 

specific histone PTM marks, for example acetylation, can impact metabolism – with all of them 

focusing on the pathophysiology of diabetes (Hadden & Advani, 2018; X. Li et al., 2016; T. T. H. Lu 

et al., 2018; Zhong & Kowluru, 2010). 

 Indeed, this is the first time that a study characterises and correlates metabolic signatures of 

PTMs, the glycolytic histone PTM code or the oxidative phosphorylation PTM code addressing more 

than 40 histone PTMs states using epigenetic inhibitors covering all different epigenetic drug classes. 

This current study has comprehensively aimed to characterise a multitude of PTMs and metabolic 

states to come to a more systematic understanding bringing together all three aspects; histone PTMs, 

proteomic changes and metabolic profile alterations as responses to histone epigenetic alterations.  

As mentioned above, acetylation marks anticorrelated with glycolysis with the exception of 

H4K16ac and H4K8ac. Interestingly, these two acetylation marks were anticorrelated with oxidative 

phosphorylation. H4K8ac is mainly found in active promoters of genes (Zhibin Wang et al., 2008) 

while H4K16ac is linked with both active and repressed transcription (Shogren-Knaak et al., 2006). A 

reduction of H4K16ac is also linked with cancer (Fraga et al., 2005). Therefore, these two histone 

modifications may play a more specialized role in regulating metabolism and pathological states. 

Another key chromatin modification, H3K9me1/2/3, was found to correlate with glycolysis, 

while H3K9me2/3 anticorrelated with oxidative phosphorylation. Interestingly, H3K9me2 

demethylation via Phf2 was found to regulate glucose and prevent NAFLD progression – a major and 

highly prevalent metabolic syndrome (Bricambert et al., 2018). H3K9me1 was found to be the one 

modification preserved under SAM depletion in the expense of loss of me2/3 (Haws et al., 2020). 

Furthermore, the complete absence of an interplay between H3K9me1 and oxidative phosphorylation 

but a very strong correlation with glycolysis points to a potentially very interesting role for the 

monomethylated H3K9: which could potentially be exploited to fight cancer cells, that often have 

higher levels of glycolysis. Targeting monomethylated H3K9 may therefore be an avenue to reduce 

the Warburg effect essential for cancer cell survival. 
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A key histone modification involved in active transcription, H3K4me2, was anticorrelated with 

glycolysis and H3K9me1.  In fact, this observation is in line with the fact that higher levels of histone 

acetylation were anticorrelated with glycolysis, suggesting that on a global level, higher levels of active 

transcription (demonstrated by high H3K4me2 and high histone acetylation) corresponded with lower 

glycolysis activity (Fig 4.2). Interestingly, this is similar to other studies showing that H3 acetylation 

and H3K4me1 were anticorrelating with H3K9me1 under hyperglycaemin/hyperinsulinemic 

conditions (Gupta et al., 2012). My study adds another aspect to those results, as it shows firstly, that 

all H3K9 methylation marks (not just H3K9me1) correlate with glycolysis, and secondly, that 

H3K9me2 and H3K9me3 but not H3K9me1 anticorrelate with oxidative phosphorylation (Fig 4.2). 

Further substantiating a potential overarching theme between lower levels of transcriptional 

activity and glycolysis was the observation that also H3K27me2/3, associated with transcriptionally 

inactive/repressed genes, correlated with glycolysis (Ferrari et al., 2014b). A further interesting 

observation was that two different usually repressive marks – H3K9me2/3 and H3K27me2/3 – behaved 

differently regarding oxidative phosphorylation (Fig 4.2). Moreover, and as seen for several other 

histone modifications, the monomethylated form of H3K27 behaved opposite to H3K27me2/3 relating 

to oxidative phosphorylation (H3K27me1 was correlating with glycolysis and anticorrelating with 

oxidative phosphorylation while H3K27me2/me3 correlated with both). 

Also, H4K20me1 was correlating with glycolysis and anticorrelating with oxidative 

phosphorylation while H4K20me2/3 were anticorrelating with glycolysis and correlating with 

oxidative phosphorylation. In most studies H4K20me1 is linked with active transcription and 

H4K20me3with inactive transcription and nothing is known for the role of H4K20me2. There are no 

studies linking H4K20me1/2/3 with metabolism and specifically with the metabolic pathways 

oxidative phosphorylation and glycolysis. There is one study in mice fed with high fat diet were the 

offspring presented higher H4K20me1 on the gene promoter of leptin, suggesting that H4K20me1 

could be involved in transgenerational transmission of epigenetic memory states of 

metabolism(Masuyama & Hiramatsu, 2012). Only one additional study has so far indicated at an 

involvement of H4K20me1 specifically in regulating some metabolic genes without phenotypic 

readouts of the metabolic states (Nikolaou et al., 2017). No more data is available, especially for the 
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higher methylation states of H4K20 and metabolic regulation. The current study presents that 

H4K20me1/2/3 has a different role across glycolysis and oxidative phosphorylation regulation, the 

network of other histone PTMs induced together with H4K20me1/2/3, potential protein candidates 

affected and a set of inhibitors with which H4K20me1/2/3 levels can be altered to further study this 

specific modification. It is the first time that a more complete set of data is presented regarding 

H4K20me1/2/3 and its role in metabolic regulation.  

Work has been published analysing the relation between various histone marks, although not 

in regard to metabolism, as discussed above (Maitituoheti et al., 2020; C. Zhang et al., 2014). In 

summary, there has not been a study to date describing a potential histone PTM code of glycolysis or 

oxidative phosphorylation. A “histone code” for metabolism could prove useful for further research 

and drug development, as proven by work on the epigenetic code / clock of aging, characterised by 

specific patterns of DNA methylation (Hannum et al., 2013; Horvath, 2013) and epigenetic clocks of 

aging combined with progression of metabolic diseases, again using DNA methylation analyses 

(Corso-Díaz et al., 2020; H. S. Lee & Park, 2020). My study suggests that generally, the “high 

glycolysis code” was characterised by histone modifications associated with transcriptional repression 

(low acetylation, high H3K9me2/3, high H3K27me2/3). In turn, the “high oxidative phosphorylation” 

code was marked by a much more diverse set of histone PTMs, characterised by high H3K79me2 and 

H3K27me2/3 and low H4K16ac and H3K9me2/3. Similarly to the epigenetic codes of aging, this could 

allow further fundamental research and act as prognostic markers for metabolic diseases or diseases 

with metabolic phenotypes, such as cancer. This in turn could be the base to target new drug candidates 

to shift metabolic states – as demonstrated by the first time metabolic/chromatin/proteomic 

characterisation of the epigenetically-active small molecules studied and presented here.  

4.1.3 Putative new protein regulators of metabolism 

In the findings discussed up to now regarding histone PTM interactions (4.1.1) and histone 

PTMs in relation to metabolism (4.1.2) links with other published studies and generation of hypotheses 

were more direct than the proteome results discussed in this subchapter. In the proteome results 

presented in Chapter 3, when differentially expressed proteins were analyzed for enriched GO terms 
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for biological processes (for example Fig 3.22), regulation of metabolic process was amongst the most 

prominent results. This implied that there could be a direct effect of epigenetic inhibitors on key 

metabolic enzymes. However, the results were less straightforward. In particular, GO terms covering 

metabolic processes (e.g. “Regulation of metabolic process”) includes not only key metabolic enzymes 

but also transcription factors and other regulators of metabolism. As analyses of many individual 

proteins in the results chapter and overarching topics revealed, most of the enriched proteins in this 

category where in fact transcription factors and pathway regulators - not metabolic enzymes. 

Although metabolic enzymes are strongly regulated by immediately-acting mechanisms, such 

as substrate-, product-, and allosteric regulation, they are subject to long-term changes in abundance 

through transcriptional, posttranscriptional and posttranslational regulation (Bulik et al., 2016; 

Madhukar et al., 2015; Metallo & Vander Heiden, 2013; Wolfinbarger, 2017; Xiong & Guan, 2012). 

The observed lack of changes in key metabolic enzymes could mean that the epigenetic compounds 

did not directly affect the enzyme genes but instead targeted other proteins which then acted on the 

enzymes. In line with this, several known regulators of posttranscriptional and posttranslational 

regulations were identified throughout this study (e.g., PIKFYVE, COQ7, MAGEB2, RASA1, SYK). 

Indeed, most of the identified and enriched proteins were not previously discussed in other 

studies regarding metabolism or were transcription factors or other regulatory enzymes. However, I 

wanted to investigate deeper those protein interactions and their effects on metabolism. On this 

subchapter, I therefore discuss the overview of protein interactions and then via correlation analyses I 

am focusing on a subset of proteins that correlate with specific PTMs marks and metabolism. There is 

not much known about these protein candidates and their relationship with metabolism. However, 

based on several selected protein examples I will discuss a few potential links and possible directions 

for future research. 

In order to identify proteins at the centre of regulatory networks affected by the epigenetic 

drugs, a protein-protein correlation analysis was performed. This analysis would show if the protein 

levels of different proteins are correlated after treatment with the epigenetic drugs. When depicting 

only the most stringent protein-protein correlations (r > 0.99), two proteins were revealed at the centre 

of large regulatory networks: DHRS2 and KDM5A. DHRS2, lipid metabolism (Gabrielli & Tofanelli, 
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2012) dehydrogenase/reductase member 2 (DHRS2) belongs to the short-chain alcohol 

dehydrogenase/reductase (SDR) superfamily, which includes NAD/NADP dependent proteins,  which 

are functionally involved in a number of intermediary metabolic processes and in the metabolism of 

lipid signalling molecules. KDM5A is a H3K4me2/3 demethylase and therefore plays an important 

role in transcriptional regulation (Kirtana et al., 2020). As discussed in Chapter 3.7.2, KDM5A was 

more than 40-fold enriched in two HAT-inhibitor-treated samples and associated with reduced 

H3K4me2 and lower glycolysis. Moreover, KDM5A has been implicated in regulating mitochondrial 

metabolism through regulating expression of mitochondrial pyruvate carrier 1 (MPC-1) (Jiujie Cui., 

2019). Both DHRS2 and KDM5A strongly correlated with a large number of other proteins, as shown 

in the Table below: 

Network node Correlation direction Protein IDs 

DHRS2 Correlating with DHRS2 ARIH1, CORO1A, ELOVL4, 
GMPPB, HADHB, KANK1, LMNA, 
MLEC, MIF2, NEFM, PGM3, TERF2 

 Anti-correlating with DHRS2 ATX10, BID, EIF1AX, H2AFY2, 
IGE/F2BP1, IRAK1, KRR1, MAZ, 
NCL/I, PRUNE, RPP25, RPRD1A, 
SET, SETD7, XPO1 

KDM5A Correlating with KDM5A ANKLE2, AREGEE1, ATRX, 
BLOC1S3, CEIF1, CEP131, 
CLASRP, FAM98A, FOXJ3, 
NDUFA9, NKAP, PHF2, PNISR, 
PRPE38B, PRPF4B, RSRC1, SHOC2, 
SNAP23, SNRP70, SON, SREK1, 
SRSF4, SIK38, TMEM263, USP24, 
XPC 

 Anti-correlating with KDM5A CAMSAP2, LAGE3 

Surprisingly, between DHRS2 and KDM5A there were no similar proteins identified participating in 

the correlations, suggesting that they were involved in two separate regulatory networks. The 

expectation was that because these two proteins were affecting so many other proteins (or were affected 

by many other proteins) that they would play a central role in regulating the observed metabolic 

phenotypes, as it has been implied by other studies indirectly. However, neither DHRS2 nor KDM5A 

correlated directly with metabolic states, as shown in Figure 4.3 (r>0.6). Furthermore, none of the 

protein candidates which (anti)-correlated with DHRS2/KDM5A (Table above) were found in 

metabolism-protein correlations (Fig 4.3).  

  



Chapter 4 Discussion

Figure 4.3. Pearson correlation analysis of acetylation and methylation modifications on
histones H3 and H4, as well as proteins, induced by treatments with 30 different small
molecules
Correlation matrix based on Pearson’s correlation coefficient. The size and colour of the bubble
indicates a higher degree of correlation between respective PTM marks, as shown on the right-hand
side legend, ranging from strong anticorrelation (red, -1) to strong correlation (blue, +1). The
threshold for correlations selected in this graph was +/- 0.80.
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Pearson correlation matrix: metabolism vs most-affected proteins
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In summary, the employed epigenetic drugs affected these two central proteins and their 

associated (statistical) interaction partners but the changes did not seem to be relevant for metabolism. 

This unexpected observation demonstrated that experimental assays that focus only on most affected 

proteins or protein clusters from a treatment may not be the most biologically (in this case 

metabolically) relevant candidates – and may lead to wrong clues on identifying protein candidates for 

drug treatments that regulate metabolism.  

A very different set of 35 proteins was found to correlate (or anti-correlate) with metabolic 

states (at r>0.8, see Fig 4.3) and 139 proteins at r>0.5 (see Appendix Fig A.11), including for example 

PIKFYVE, ARFGEF3, FBXO9, SYK, JADE3, TRMT10A, PDE4DIP. Clearly, the proteins showed a 

broad spectrum of correlations with metabolism: there were two proteins that correlated with both 

oxidative phosphorylation and glycolysis, SYK and FBXO9. Three proteins anticorrelated with both 

oxidative phosphorylation and glycolysis, JADE3, PDE4DIP, DLG3. There was only one protein 

identified in the current analysis that simultaneously correlated with glycolysis and anticorrelated with 

oxidative phosphorylation, PECR which is participating in fatty acid biosynthesis (elongation). 

Interestingly, no proteins were identified for the opposite effect (correlation with oxidative 

phosphorylation and anticorrelation with glycolysis). Moreover, some proteins were focused on either 

glycolysis or oxidative phosphorylation, without affecting the other metabolic readout (e.g. ARFGEF3, 

PIKFYVE, for glycolysis, AZI2, SUV39H1 for oxidative phosphorylation). These results could 

indicate that the identified proteins either up- or downregulated metabolism at the same time, or 

individually, with the notable exception of PECR. A common regulation of both metabolic cascades 

indeed would make sense, as in normal cells glycolysis is the central feed-in of electrons for the 

oxidative phosphorylation, which may get uncoupled in cancer cells (Warburg effect). 

To investigate if some of the above-mentioned proteins that are correlating with metabolic 

states were also linked with specific epigenetic codes, a segmentation analysis was performed, as 

depicted in the Venn diagram in Fig 4.4. Of the 139 proteins correlating with metabolic states (at r>0.5), 

only 25 were found to significantly correlate with specific histone PTMs (at r>0.8 for protein-PTM 

correlations, resulting in 98 protein IDs). Amongst those were, for instance, PIKFYVE, ARFGEF3, 

FBXO9, SYK. While these outputs may provide the source for future in-depth analysis, the following 
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two examples are provided to demonstrate some of the uncovered observations: ARFGEF3 was 

identified as anticorrelating with glycolysis, while PIKFYVE correlated with glycolysis (Fig 4.3).  

 ARFGEF3 PIKFYVE 
Metabolic impact Increased ARFGEF3 with 

decreased glycolysis 
Increased PIKFYVE with Increased 
glycolysis 

Histone acetylation 
 (H3K14ac, H3K18ac, H3K18ac, H3K23ac, 
H3K9ac, H4K12ac, H4K5ac,…) 

Increased ARFGEF3 with 
increased acetylation 

Decreased PIKFYVE with 
increased acetylation 
 

Histone methylation 
H3K27me1/2/3; H3K36me3; 
H3K9me1/2/3; H4K20me1 

Increased ARFGEF3 with 
decreased methylated histone 
PTMs 

Decreased  PIKFYVE with 
decreased methylated histone PTMs 

Histone methylation 
H4K20me2/3 

Increased ARFGEF3 with 
increased methylated histone 
PTMs 

Decreased  PIKFYVE with 
increased methylated histone PTMs 

 

In summary, ARFGEF3 and PIKFYVE follow the previously described PTM patterns of 

glycolysis (see Chapter 4.1.2). Therefore, these two proteins – together with the other 23 that 

overlapped between PTMs and metabolism – could be initial targets to modulate glycolysis via 

epigenetic pathways in cells. Indeed, ARFGEF3 (alternatively known as BIG3) has indirectly been 

implicated as negative regulator of glucose metabolism on a physiological/systemic way, BIG3 

knockout mice showed hyperglycaemia, evidence of its role as a regulator on a single-cell level has 

not been published so far (H. Li et al., 2014). This current study now suggests that indeed ARFGEF3 

may be a negative regulator for glycolysis on a single cell level. Conversely, some evidence suggests 

that PIKFYVE may be important for glucose homeostasis, including through the regulation of glucose 

uptake into cells (Ikonomov et al., 2007, 2016; Y. Liu et al., 2013). 

As mentioned above, PECR was the only protein that presented an opposite correlation 

between oxidative phosphorylation and glycolysis (correlated with oxidative phosphorylation and 

anticorrelaed with glycolysis), as shown in Fig A.11. Interestingly, PECR highly correlated with 

H3K27me1 (which correlated with glycolysis and anticorrelated with oxidative phosphorylation) and 

anticorrelated with H3K27me2/3 (correlated with both oxidative phosphorylation and glycolysis). 

Another interesting finding is that PECR was highly correlated with H4K20me1 (correlated with 

glycolysis and anticorrelated with oxidative phosphorylation) and anticorrelated with H4K20me2/3 

(anticorrelated with glycolysis and correlates with oxidative phosphorylation). It is interesting to look 

at this relationship between PECR and H4K20me1/2/3 and H3K27me1/2/3. These histone PTMs  
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Figure 4.4. Protein correlation analysis of metabolic states and histone PTMs for 30 drug
candidates
Venn diagram representing the number of protein IDs correlating with at least one metabolic state
(basal OXPHOS, maximal OXPHOS, basal glycolysis, maximal glycolysis) after 72h treatments, the
number of protein IDs correlating with at least one histone PTM mark and the number of protein IDs
that are overlapping and correlate with both metabolic states and histone PTM marks.

Metabolism
vs protein IDs

Histone PTMs 
vs protein IDs
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appear to anticorrelate with each other (see discussion on histone PTM/metabolism 

correlations in Chapter 4.1.2). Interestingly, PECR which correlated with glycolysis had the opposite 

profile in histone PTMs with its counterpart proteins that anticorrelated with glycolysis in a one to one 

manner. 

Interestingly proteins that anticorrelated with glycolysis correlated or anticorrelated with 

almost all histone PTMs in the same way, appearing almost as clusters. Also, the two proteins that 

correlated with glycolysis (PIKFYVE and PGDB5) appeared to have the same relationship against all 

histone PTM marks. (H3K27me1 was corelating with PIKFYVE and anticorrelating with PGDB5). In 

contrast, the proteins (anti-) correlating with oxidative phosphorylation appeared to have more versatile 

correlation patterns with histone PTM marks. There were some overlapping patterns between proteins 

AUH, CCDC186, GMEB1, VCORC1L1 mainly for the H4K20me1/2/3 peptides, emphasizing again 

the apparent central role H4K20 plays in metabolism according to this study (see above discussion on 

histone PTM/metabolism correlations in Chapter 4.1.2). Interestingly, when sorting the degree of 

correlation of proteins with H4K20me1, distinct clustering occurred amongst the proteins along histone 

PTMs, e.g. proteins correlating with glycolysis were clustered together with the same affected histone 

marks (e.g. low acetylation). This would suggest a potential strong function of H4K20me1 in regulating 

metabolism (as discussed in Chapter 4.1.2), potentially by impacting different protein networks 

depending on the cellular levels of its methylation state and by regulating acetylation of H3/H4. 

Taken together, the points discussed in this Chapter suggested four new insights: a) identifying 

relevant proteins based on simply quantitative response to epigenetic drug treatments can be misleading 

in the identification of new metabolic regulator druggable targets; b) the analysis of correlation and 

overlap networks between metabolism and histone PTMs allowed to uncover several previously 

undescribed proteins as potential regulators of metabolism (being sensitive to epigenetic drugs directly 

or indirectly); c) those putative metabolic regulators were also correlating with specific histone codes; 

d) H4K20me1 was identified as a central previously unidentified histone PTM involved in regulating 

metabolism via clusters of proteins, which correlate with similar subsets of other histone PTMs in turn.  
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4.2 Next steps  

This work presents the potential of using epigenetic inhibitors to alter metabolism and disease. 

It comprised the investigation of metabolic changes after utilising a large number of epigenetic 

treatments as they were available on the market to date, the identification of possible protein targets as 

metabolic regulators, and suggested a histone code for glycolysis and oxidative phosphorylation. 

To expand on the results of this work, it would be interesting to look into designing specific 

studies focusing on identifying how the described targets are functionally relating to metabolism. For 

example, performing metabolic profiling characterisation using seahorse XF in knockout cell lines for 

proteins correlating with specific metabolic profiles, such as ARFGEF3, PIKFYVE, PECR and others 

would determine if these proteins are key regulators of a respective metabolic phenotype. Also, this 

step would determine if the main metabolic pathway used by the cell is glycolysis or oxidative 

phosphorylation. This could be done on a large scale using siRNA or CRISPR/Cas9 knockout libraries 

in combination with a high-throughput-optimized seahorse XF setup (building on the optimizations 

described in this work, see Chapter 2.3 and 3.2). 

Apart from uncovering additional regulators of metabolism and the importance of the cell’s 

metabolic pathways preference, many diseases are linked with alterations in energy substrates 

preference. For instance, cardiac disease and heart failure have been linked to either acute or 

progressive changes in energy substates metabolism (Evans, 2012; Fukushima et al., 2015). Cancer 

metabolism and cancer microenvironment metabolism are also linked with alterations in energy 

substrates (Thompson, 2016). Consequently, another interesting experimental series would be to 

explore if the above mentioned proteins alter the cell’s preference for a specific main energy substrate 

for mitochondrial respiration (long chain fatty acids, glutamine, pyruvate). This could be done by using 

specific inhibitors, such as etomoxir (carnitine palmitoyltransferase-1 inhibitor), BPTES (glutaminase 

inhibitor) and UK5099 (mitochondrial pyruvate carrier inhibitor).  

If any additional regulators are validated, it would be important to identify if these proteins 

physically interact with key metabolic enzymes as part of protein complexes or regulatory switches. 

For this, initially Co-IP experiments targeting the above mentioned proteins and analysis of co-

precipitating material with mass spectrometry-based proteomics would be an option. Identified protein 
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complexes could then by expressed and purified in vitro to further determine interaction interfaces and 

structures. 

To shed light into the disease relevance it would be interesting to conduct experiments on 

disease-specific models (cell or animal based), for instance for diabetes, obesity or other rare diseases 

that maybe linked with metabolic dysregulation (as discussed in Introduction Chapter 1.2). Cell lines 

of interest could be for example, skeletal muscle versus smooth muscle cells, brown versus white 

adipose tissue, given the fact that these cell lines present different metabolic profiles and would help 

to further investigate the metabolic and epigenetic profiles of different tissue types based on the 

physiological functions, and to investigate changes after pharmaceutical intervention with epigenetic 

inhibitors.  

It would be favourable to also investigate how the epigenome changes after knocking out the 

above mentioned proteins and potentially compare if these results could be achieved by using an 

epigenetic inhibitor. It would be also important to look into not only lysine methylation but also 

arginine methylation and other more recently described histone PTMs, given the very scarce 

information about arginine methylation in context of metabolism and disease, and the complete lack 

thereof of other histone PTMs such as histone butyrylation, hydroxylation, lipidation and 

monoaminylation (Chan & Maze, 2020). Looking only at lysine methylation is only providing part of 

the information.   

Although it has not been a focus of this study, also non-histone proteins can be modified by 

several enzymes that are largely considered as epigenetic writers/erasers (S. Ganai, 2016; Wesche et 

al., 2017). Therefore, PTMs introduced to metabolic enzymes after treatments with epigenetic 

inhibitors would be interesting to investigate. 

The present histone PTM and cellular protein mass-spectrometry analysis provided the first 

step for a systematic approach of the physiological effects of epigenetically active compounds on 

metabolism. An important next step would be to perform RNA-seq in cells treated with epigenetic 

inhibitors, to characterise the transcriptional landscape and identify differentially-regulated genes. 

Importantly, this could uncover novel non-coding RNAs that may regulate metabolism – in addition to 

some that have already been described (P. Li et al., 2015; Redis et al., 2016; Sallam et al., 2016). In 
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addition to their rate of transcription, RNA levels are also regulated by post-transcriptional 

modifications, such as alternative splicing, polyA-tail length, and modification of RNA nucleotides, 

e.g. N6-methyladenosine and ribose-methylation (Shi et al., 2020). It has long been suggested that 

post-transcriptional regulation of RNAs play a role in metabolic diseases (W. Kim & Lee, 2012) but 

the interplay with chromatin and changes upon treatments with epigenetically-active compounds 

remains elusive.  

Moreover, it would be very informative to uncover more molecules participating in metabolic 

regulation that work as signalling factors between cells and organs, such as hormones and neuronal 

peptides. One way to look into that would be to focus into analysing secretions of cells treated with 

epigenetic inhibitors that present altered metabolism. This has been very challenging to perform 

because identifying novel peptide coding genes of around 300bp or smaller, exist within the “genetic 

noise”. However, focusing into that aspect is a crucial step to answer many unanswered questions for 

metabolic regulation and possibly identifying biomarkers and novel therapies not only for obesity and 

diabetes but also for rare disorders and other metabolic syndromes. At a later stage, it would be make 

sense to use patient-derived primary cells wherever feasible to monitor for specific metabolic changes 

in the context of protein networks, energy substrate preference and the histone code and to further 

validate hypotheses presented in this work and future studies. 

 

4.3 Future applications 

There have been 10 epigenetic drugs approved by FDA under the indication for cancer 

treatment (Buocikova et al., 2020; Meighan-Mantha, 2017; Qi et al., 2016). However, only very few 

of the epigenetic inhibitors approved are known and indicated to treat other disease conditions, such 

as procainamide (DNMTi, cardiac arrhythmia) and hydralazine (DNMTi, hypertension). At the 

moment, old drugs that were not known before for their epigenetic activity, are currently being 

investigated and repurposed as specific epigenetic inhibitors, including putative  inhibitors of DNTMs 

(e.g., hydralazine, nanaomycin A),  HDACs (e.g., artemisin, ginseng), and others (e.g., garcinol, 
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ribavirin)  (Moreira-silva et al., 2020) or as drugs with dual actions (e.g., targeting both HDAC and 

DNMT) mainly for cancer therapy.  

My study exceedingly presents novel effects of known epigenetic inhibitors on metabolism 

and the potential to alter metabolic states. These data leave a big window of opportunity for those drugs 

that had been filed under non-metabolic indications, e.g. cancer, to be tried out in treating a variety of 

metabolic diseases and to be repurposed under a different indication, potentially secured with novel 

patent application gains. Additionally, for cancer therapy itself these epigenetic inhibitors could pave 

the way for additional insights into cancer metabolism and interventions to halt cancerous cells via 

metabolic regulation. 

Moreover, the output of this study regarding the histone code changes, PTM networks and 

inhibitor-induced metabolic profiles can be used as a tool for prediction of drug responses,  metabolic 

state changes, and potentially other use cases. It can also be used to identify metabolism/PTM 

interactions in drug discovery and preclinical stages and in the design of focused chemical  libraries 

and drug screening approaches. It might be problematic that currently there is no screening for cellular 

metabolic effects for drug approval (in contrast to the obligatory analysis of PK/PD assays which focus 

on how the drug is metabolised in the organism). Screening for metabolic effects prior to drug approval 

might help in avoiding side effects like cholesterol increase, heart disease, stroke and others that have 

been described from current treatments on the market (Gebauer et al., 2018; Himmerich et al., 2015; 

Wilcox, 1999). This is even more important as metabolic issues are the most frequent and strongest 

growing non-communicable diseases worldwide (WHO, 2018, 2019) and should therefore not be 

unnecessarily burdened further by side-effects of other treatments. The fact that there is no screening 

for metabolic effects in drug design might be a problem and limitation in drug discovery itself as it 

excludes the basis of the function of the cell, metabolism. This is not referring to the possibility that a 

molecule develops metabolic bioactivation potential (Tang & Lu, 2010) but rather that the drug holds 

a direct role in altering cell metabolism.  

Metabolic changes are linked with the epigenome which is sensitive to environmental changes 

and can trigger disease and symptoms as innocent as hair loss to more severe like organ failure 

(Heijmans et al., 2008; Shen et al., 2019). It is a novel direction especially for Pharma companies to be 
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on the guard for such interactions as a quick metabolic screening in the initial stages of drug design 

could save resources and later on minimize patient side effects. There are currently 11 FDA approved 

substances to treat diabetes (FDA, 2015) but none with known epigenetic activity, and there are no 

epigenetic inhibitors approved for diabetes, obesity or other metabolic diseases treatments.  

The epigenetic code presented in this work may also be used as biomarkers to predict metabolic 

diseases and others including neurodegeneration, where metabolic changes can be detected as early 

signs of disease (Kennedy et al., 2016). 

Moreover, it may in the future be used as epigenetic reprogramming of metabolism to 

manipulate altered metabolic phenotypes in a variety of situations, e.g. in aging, cancer and rare 

diseases. There is cause for optimism that in the coming years it will be possible to improve our 

understanding of the regulation of the bidirectional relationship among metabolism and epigenetic 

switches and thus address disease development. Epigenetic interventions could advance the health 

status of the general population and halt disease progression or the metabolic syndrome and the 

transgenerational inheritance of other diseases, which is crucial to alleviate societal health burden. 

Novel epigenetics-based diagnostics could furthermore assist in classification of individuals suffering 

from chronic diseases, prescribe patient profile-based medications and treatments, and diminish 

possible cytotoxicity or adapt dietary requirements for the health advancement of the individual.  
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Figure A.1. Pharmacophore fragment based analysis did not show underlying drug structure
similarities to explain metabolic readouts of 100 inhibitors
A. The screened compounds cluster in 4 large groups defined by statistical proximity within a

fragment cluster or MOE gpiDAPH3.
B. 72h basal respiration rates were used to cluster the inhibitors in the macro classes corresponding

to the fragment cluster method.
C. 72h maximal respiration rates were used to cluster the inhibitors in the macro classes

corresponding to the fragment cluster method.
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Figure A.2. Pharmacophore fragment based analysis did not show underlying drug structure
similarities to explain metabolic readouts of 100 inhibitors
A. The screened compounds cluster in 4 large groups defined by statistical proximity within a

fragment cluster or MOE gpiDAPH3.
B. 72h basal respiration rates were used to cluster the inhibitors in the macro classes corresponding

to the fragment cluster method.
C. 72h maximal respiration rates were used to cluster the inhibitors in the macro classes

corresponding to the fragment cluster method.
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Figure A.3. Pharmacophore fragment based analysis did not show underlying drug structure
similarities to explain metabolic readouts of 100 inhibitors
A. The screened compounds cluster in 4 large groups defined by statistical proximity within a

fragment cluster or MOE gpiDAPH3.
B. 72h basal respiration rates were used to cluster the inhibitors in the macro classes corresponding

to the fragment cluster method.
C. 72h maximal respiration rates were used to cluster the inhibitors in the macro classes

corresponding to the fragment cluster method.
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Figure A.4. Pharmacophore fragment based analysis did not show underlying drug structure
similarities to explain metabolic readouts of 100 inhibitors
A. The screened compounds cluster in 4 large groups defined by statistical proximity within a

fragment cluster or MOE gpiDAPH3.
B. 72h basal respiration rates were used to cluster the inhibitors in the macro classes corresponding

to the fragment cluster method.
C. 72h maximal respiration rates were used to cluster the inhibitors in the macro classes

corresponding to the fragment cluster method.
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Figure A.5. MacroD1 regulated metabolism in TREX cells by promoting oxidative respiration,
even under DNA stress induced by 0.1 mM H2O2

A. Seahorse XF analysis of mitochondrial respiration of TREX WT vs MacroD1 KO before and
after addition of 0.1 mM H2O2 (at t=15min). N=3 biological replicates; error bars: SEM, 6
technical replicates per condition per biological repeat. X-axis represents time (min) and y-axis
represents normalized OCR ([pmol/min]/RFU)

B. Normalized respiration rate parameters measured with seahorse XF based on time course
experiments depicted in A.
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Figure A.6. MacroD1 regulated metabolism in TREX cells by promoting oxidative respiration,
even under DNA stress induced by 0.5 mM H2O2

A. Seahorse XF analysis of mitochondrial respiration of TREX WT vs MacroD1 KO before and
after addition of 0.5 mM H2O2 (at t=15min). N=3 biological replicates; error bars: SEM, 6
technical replicates per condition per biological repeat. X-axis represents time (min) and y-axis
represents normalized OCR ([pmol/min]/RFU)

B. Normalized respiration rate parameters measured with seahorse XF based on time course
experiments depicted in A.
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Figure A.7. MacroD1 regulated metabolism in TREX cells by inhibiting glycolysis, even under
DNA stress induced by 0.1 or 0.5 mM H2O2

A. Seahorse XF analysis of glycolysis of TREX WT vs MacroD1 KO before and after addition of
0.1 mM H2O2 (at t=15min). N=3 biological replicates; error bars: SEM, 6 technical replicates per
condition per biological repeat. X-axis represents time (min) and y-axis represents normalized
ECAR ([mpH/min]/RFU)

B. Seahorse XF analysis of glycolysis of TREX WT vs MacroD1 KO before and after addition of
0.5 mM H2O2 (at t=15min). N=3 biological replicates; error bars: SEM, 6 technical replicates per
condition per biological repeat. X-axis represents time (min) and y-axis represents normalized
ECAR ([mpH/min]/RFU)
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Figure A.8. Treatment of TREX cells with 1 mM H2O2 abrogated normal cellular metabolism
A. Seahorse XF analysis of mitochondrial respiration of TREX WT vs MacroD1 KO before and

after addition of 1 mM H2O2 (at t=15min). N=3 biological replicates; error bars: SEM, 6 technical
replicates per condition per biological repeat. X-axis represents time (min) and y-axis represents
normalized OCR ([pmol/min]/RFU)

B. Seahorse XF analysis of glycolysis of TREX WT vs MacroD1 KO before and after addition of 1
mM H2O2 (at t=15min). N=3 biological replicates; error bars: SEM, 6 technical replicates per
condition per biological repeat. X-axis represents time (min) and y-axis represents normalized
ECAR ([mpH/min]/RFU)



Figure A.9. Basic histone PTM mass spec statistics
A. Density plot comparing the histone PTMs ctrl replicates and the histone PTMs induced by

treatments versus ctrl. Log2 ratios of ctrl vs treatment.
B. Log2 ratios of histone PTM levels depicted as box plots of ctrl vs treatment for all 30 treatments,

with the three biological replicates shown as separate box plots.
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Figure A.10. Correlation of methylation marks on H3 and H4 and metabolic states
Multivariate linear modelling was performed between all histone PTMs levels and metabolic states
induced by treatments with 30 different drug candidates. Values depict -log 10 p value where p>1.3
indicates a significant correlation (corresponding to p<0.05) between the respective PTM and
metabolic state.
A. Correlation between histone lysine methylation and basal glycolysis
B. Correlation between histone lysine methylation and maximum glycolysis
C. Correlation between histone lysine methylation and maximum oxidative phosphorylation
D. Correlation between histone lysine methylation and base oxidative phosphorylation
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Figure A.11. Pearson correlation analysis of acetylation and methylation modifications on
histones H3 and H4, as well as proteins, induced by treatments with 30 different small
molecules
Correlation matrix based on Pearson’s correlation coefficient. The size and colour of the bubble
indicates a higher degree of correlation between respective PTM marks, as shown on the right-hand
side legend, ranging from strong anticorrelation (red, -1) to strong correlation (blue, +1). The
threshold for correlations selected in this graph was +/- 0.50.

Pearson correlation matrix: metabolism vs most-affected proteins


