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Zusammenfassung

Der Migration von Zellen kommt eine Schlüsselrolle in vielen physiologischen Kontex-
ten wie Embryogenese, Immunreaktion und Metastasenbildung zu. Trotz der inten-
siven Forschung der letzten Jahrzehnte haben Krebs-assoziierte Erkrankungen noch
immer einen wesentlichen Anteil an Todesfällen in den Industrienationen, was mit-
unter auf die äußerst vielfältigen Ausprägungen des Krankheitsverlaufs einer Krebs-
erkrankung zurückzuführen ist. Um in diesen Prozess mit spezifischen Therapien ein-
greifen zu können, bedarf es eines vollständigen Verständnisses der verschiedenen Inter-
aktionsnetzwerke einer Zelle mit ihrer Umgebung. In der vorliegenden Arbeit wurden
mikrostrukturierte Oberflächen verwendet, um Zellmigration auf standardisierte, zell-
adhäsiven Strukturen zu beschränken, die parallelisierte, reproduzierbare Experimente
ermöglichen. Insbesondere wurden verschiedene Geometrien konstruiert, um unter-
schiedliches Zellverhalten auszulösen und die resultierende Dynamik des Zytoskeletts
zu beobachten. Die Abstraktion dieser Bewegung auf quantitative Observablen er-
möglichte die Anpassung theoretischer Modelle und den Vergleich mit denselben.
In einem ersten Projekt wurde das Zellverhalten in Streifen verschiedener Länge

und Enden unterschiedlicher Krümmung untersucht. Für alle untersuchten Streifenlän-
gen und -krümmungen konnte eine einheitliche Umdrehzeit festgestellt werden. Diese
Dauer, in der die Zelle erst depolarisiert um dann stochastisch in die Gegenrichtung zu
polarisieren, wurde zu etwa 100 Minuten bestimmt. Dieses allgemeine Verhalten konnte
von einem zellulären Potts Modell reproduziert werden.
Um Zellmigration auf ein Minimalmodell zu abstrahieren, wurde in einem zweiten

Projekt eine Methode etabliert die Parameter eines zellulären Potts Modells auf sys-
tematische Weise an reales Zellverhalten anzupassen. Hierfür wurden geometrische
Mikrostrukturen verwendet, die charakteristische Formen der Zellbewegung auslösen.
Die daraus erfassten Observablen wurden eins zu eins in Verbindungen mit den Para-
metern des Modells gesetzt. Das auf diese Weise vollständig angepasste Modell konnte
auf quantitativer Ebene alle zuvor verwendeten Geometrien reproduzieren und in quali-
tativer Übereinstimmung das Zellverhalten auf neuen Geometrien prognostizieren.
Um Zellpersistenz und räumliches Gedächtnis zu quantifizieren, wurden in einem

weiteren Projekt Zellen auf Labyrinthe beschränkt. Der Vergleich mit verschiedenen
Erinnerungsmodellen zeigte, dass ein Modell, das verstärkende Rückkopplung und ein
Verblassen der Erinnerung mit der Zeit berücksichtigt, die höchste Übereinstimmung
erzielte.
Ein bereits etablierter Aufbau wurde verwendet, um den Einfluss verschiedener Zellsig-

nalmoleküle auf die Interaktion zweier Zellen genauer zu untersuchen. Das Blockieren
der E-Cadherine führte zu invasiverem Verhalten, charakterisiert durch vermindertes
Zurückziehen der Zellen bei Kontakt und einen beschleunigenden Reibungsterm.
Zuletzt wurde die kollektive Migration von Zellen durch Kanäle mit Verengung be-

trachtet. Ein charakteristisches Geschwindigkeitsprofil mit verminderten Geschwindig-
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Zusammenfassung

keiten vor der Engstelle entwickelte sich mit fortschreitender Zellfront, was auf sogenan-
ntes Zell-jamming zurückgeführt wurde. Hier ergab der Vergleich mit einem zellulären
Potts Modell allerdings ausgeprägte Verhaltensdifferenzen.
Insgesamt trägt diese Arbeit zu einem besseren Verständnis der Zytoskelettdynamiken

der Zellmigration auf Mikrostrukturen bei. Zusätzlich zu den Beobachtungen auf
phänomenologischer Ebene, ebnet der quantitative Vergleich mit theoretischen Model-
len in dieser Arbeit denWeg für weitere Untersuchungen auf quantitativ-abstrahierender
Ebene.
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Summary

Cell migration plays an important role in many physiological processes, including em-
bryogenesis, immune response and cancer metastasis. Despite intensive research in
recent decades, cancer-associated diseases still account for a significant proportion of
deaths in industrialized nations due to the highly diverse process of cancer progression.
To specifically target this process by therapeutics, the different variations of cellular in-
teraction with the surrounding need to be disentangled and understood. In this thesis,
microstructured surfaces were applied to confine cell migration to standardized adhesive
arrays. Various geometries were designed to evoke different cellular behaviours and ob-
serve the resulting cytoskeletal dynamics. The abstraction to quantitative observables
allowed for tuning of and comparison with theoretical models.
In a first project, the influence of curvature on cell reversal was investigated confining

cells to stripes of four different lengths and presenting four different tip geometries. For
all lengths, as well as positive and negative curvatures analyzed, no change in cell
depolarization time was detected. The overall reversal time for a cell to depolarize in
the tip of the stripe and stochastically repolarize was determined to generalize to about
100 min. This general behaviour could be reproduced by a cellular Potts model.
To describe cell migration by a minimal model and presenting a systematic way to

optimize model parameters, the parameters of a cellular Potts model were calibrated in
a second project. Here, adhesive geometries were used to extract characteristic observ-
ables and connect them to the parameters of the model in a one-to-one relation. The
fully calibrated model was capable of quantitative reproduction of all geometries with
one set of parameters and allowed qualitative prediction for novel geometric designs.
Cellular persistence and spatial memory were accessed by confinement of cells to

maze-like structures. We compared cell behaviour to different models of memory and
found a model including a reinforcing term and a term for memory degradation over
time to achieve best fit.
For a closer look at cell-cell interaction, a previously proposed platform for probing

of two-cell interaction was used to investigate the change in cellular behaviour under
blocking of cell-cell signalling. We observed the blocking of E-cadherin to lead to
a more invasive cell phenotype with reduced reversal upon contact and positive, i.e.
accelerating, friction coefficient.
Finally, collective invasion into a channel with constriction was investigated. We

found a characteristic velocity profile with reduced velocities establishing ahead of the
constriction, which was attributed to the phenomenon of cell jamming. The comparison
with a cellular Potts model showed qualitatively very different behaviour.
Taken together, this thesis contributes to a better understanding of cytoskeletal dy-

namics of migrating cells in confinement. In addition to the insights the phenomeno-
logical observations in this work could provide, the abstraction of complex signalling
networks to theoretical models provides a quantitative basis for further investigation.
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1. Introduction

Die Zelle, einmal gebildet, wächst durch ihre individuelle Kraft fort,
wird aber dabei durch den Einfluſs des ganzen Organismus so geleitet,
wie es der Plan des Ganzen erfordert. Dieſs ist das Grundphänomen
der ganzen thierischen und pflanzlichen Vegetation.

Theodor Schwann
”Mikroskopische Untersuchungen über die Uebereinstimmung in der

Struktur und dem Wachsthum der Thiere und Pflanzen“
Berlin, 1839

Although the first cells were discovered as early as 1665 by Robert Hooke when
looking at a thin slice of cork with a microscope, only in 1839 Theodor Schwann first
published the theory that all living beings, plants and animals, have cells as their
smallest building blocks [1, 2]. During this time, Joseph Récamier had already coined
the term metastasis and observed tumor growth and spreading in his patients [3].
Today, the observation of locomoting cells still presents a fascinating field of interdis-

ciplinary research as it is involved in many different processes such as wound healing,
immunoresponse and embryogenesis [4, 5, 6]. Cell migration is involved in disease as
well, presenting a key process in cancer metastasis causing 25% of deaths in Germany
in 2019 [7, 8]. Depending on its environment, metastasis can involve various signalling
pathways, adhesion mechanisms and cytoskeletal dynamics making it a highly diversi-
fied process [9]. Before a process this complex can be manipulated by therapeutics, the
different variations of how cells interact with their surrounding have to be disentangled
and understood.
The very start of migration is the polarization of a cell i.e. the establishment of a

chemical imbalance across the cell. This polarization can have various reasons such as
external chemical or geometrical stimuli, migration in a collective, cell division during
wound healing or embryogenesis. Or cells can polarize through stochastic fluctuations.
A temporal classification of stochastic polarization can yield insights into the respon-
siveness of cells, especially when the influence of geometric stimuli can be quantified as
well.
With polarization, a complex regulatory machinery starts to activate mechanical

processes that lead to physical deformations of the cell [10]. Although the three key
players Rac1, RhoA and Cdc42 have been identified to establish, maintain and organize
cell polarization and migration, they are entangled in a highly interconnected network
[11, 12]. Disentangling this system proves an ambitious task regarding the sheer number
of involved molecules and variability in response for different cells or environmental
conditions.
In biological settings, cells never appear completely isolated but rather in a context

of surrounding tissue, proteins and other cells. During metastasis, trains of invading
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1. Introduction

cells have been observed to originate from the primary tumour into the neighbouring
tissue in a highly adapted process [13]. Here, the analysis and description of collective
cell movement as active matter shows various behaviours of cells described as fluids in
some cases but rigid solids in others [14, 15]. The transition from fluid to rigid, termed
jamming transition, presents an interesting feature already known from foams and rigid
spheres and the description in the context of cell migration could lead to findings of
generic behaviours such as phase transitions or characteristic instabilities [16]. Also,
an investigation of the impact of various signalling molecules onto cell-cell interaction
with single cell resolution could help to deepen the understanding of collective invasion
from the biological side.

To access the trigger, regulatory network, maintenance mechanism and way of com-
munication of single cell migration and neighbouring cells, artificial in vitro systems
prove beneficial. By confining cells to well-defined geometries, experiments can be
conducted in a reproducible assay enabling high-throughput measurements and easy
observation over several days on a microscope. Hereby, different geometric constraints
can mimic various cellular environments that lead to the emergence of distinct migra-
tory responses. While cells in 3D environments mainly show amoeboid-like migration,
restricting cell migration to locomotion on adhesive 2D-surfaces typically leads to a
mesenchymal migration type. This type of migration is characterized by elongated cell
shapes with actin rich protrusions at the cell front and tappered tails at the back. Since
cell migration in this mesenchymal mode relies on the formation of focal adhesions for
spatial displacement, geometric patterns of cell adhesive proteins can confine and di-
rect cell migration. Prominent examples are cell adhesive patterns which have been
frequently used to observe collective invasion [17, 18], cytoskeletal organization [19, 20]
or speed and persistence of individual cells [21, 22]. Other purposefully designed pat-
terns open the floor for challenges such as ratchets, non-adhesive gaps, narrow bridges
or pillars that probe particular aspects of migration [23, 24, 25, 26, 27]. Such micropat-
terning techniques that create defined areas for cell adhesion allow for reduction of the
natural spatio-temporal complex dynamics and enable better statistics due to unified
conditions in arrays. This enables the extraction of meaningful observables despite the
naturally high cell heterogeneity.

Such observables are a suitable basis for models [28]. Finding general laws describ-
ing the motion of cells can allow the prediction of intrinsic generic behaviours that
can be a basis for future experiments, for instance for collective movement at various
densities [29, 30]. In this way, physical models can be used to predict potentially in-
teresting phenomena or vice versa when biological systems are employed to explore
physical questions. Furthermore, such models can be able to disentangle stochasticity
and deterministic terms, allowing direct access to the underlying dynamics veiled by
fluctuations [26]. More descriptive physical models such as cellular Potts models are a
versatile tool to construct a minimal reproductive system abstracting from highly com-
plex biochemical networks and scalable from single cells to huge collectives [31, 32, 33].
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This reduction allows to investigate the relative importance of the different cellular pro-
cesses and the exploration of dominating signalling pathways without the phenomenon
of compensation present in biology. Although cellular Potts models rely on parameters
for all implemented mechanisms and are computationally rather expensive, a system-
atic parameter determination could be used to greatly reduce the computational time
needed for calibration.
In this thesis, we investigate cytoskeletal dynamics of cells on microstructures from

different perspectives. Additionally to phenomenological observations, we compare our
findings with theoretical models to open the way for quantitative abstraction of com-
plex signalling networks.

This thesis is structured in the following way:
Chapter 2 introduces the fundamental concepts behind major components of this

thesis. It discusses the basic process of cell migration both on a single cell and a
collective level with special emphasis on the regulation of cell polarization and involved
proteins. In addition, an overview of different modelling approaches for cell migration
from collectives to single cells is given. Finally, the chapter presents different methods
for the fabrication of adhesive geometries for cell confinement.
In chapter 3, single cell migration in stripes is studied under varying lengths and

tip geometries. Reversal times and velocities are investigated. A common reversal
time and velocity distribution is uncovered that neither depends on the length of the
stripe nor the curvature at the stripe ends. Interestingly, this contrasts to curvature-
induced polarization reported earlier as we could report no influence of curvature on
reversal times and thus possibly on depolarization. The experimental findings could
be reproduced by a cellular Potts model. The results of this chapter are recorded in
publication P1.
In chapter 4, we propose a systematic method to stepwise calibrate a cellular Potts

model by establishing one-to-one relations to experimental observables extracted from
single cell migration on different adhesive geometries. We could obtain a full set of
parameters that is able to simultaneously reproduce all geometries used for calibration
and allows qualitative predictions for untrained structures. The results of this chapter
will be submitted for publication shortly.
In chapter 5, migrational persistence of single cells in maze structures is investigated.

Discretizing decisions, we could show subsequent cellular choices not to be a Bernoulli
process but to be clearly biased towards previous choices. Furthermore, a one parame-
ter model was not able to reproduce the bias in relative frequency of choices observed
in experiment. We could show a two parameter model accounting for a modification
in choice preference and a temporal degradation thereof of qualitatively describe the
observed behaviour. This shows cell migration in a maze to be a process rich in phe-
nomenology rather than spatial inertia.
In chapter 6, the transmission of polarization upon contact of two cells is examined in
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1. Introduction

a dumbbell-shape that provokes heads-on collisions of cells. In expansion to a previous
study characterizing two-cell motion in this confinement [34], we analysed the influence
of functionally blocking E-Cadherin on invasiveness and could determine a clear change
to more invasive behaviour in this geometry for the two cell lines compared. Thereby,
we manage to disentangle the influence of cell-cell signalling proteins on the coupling of
polarization and the resulting migratory behaviour in quantitative terms of repulsion
and friction coefficients.
In chapter 7, collective flow of cells through channels with a constriction is investi-

gated. Cells show the development of a characteristic velocity profile along the direction
of invasion with reduced velocities prior to the constriction and an increase therefrom
towards the cell front. This suggests a rise in cell number and density to lead to a
jamming of cells in front of the constriction, a phenomenon contrasting the description
of cells as a Newtonian fluid in channels without constriction. Results from experiments
are compared to a cellular Potts model and found to show quantitatively very different
behaviour.
Chapter 8 summarizes the ideas and results of this thesis and gives an outlook onto

reasonable further experiments. Additional expansions and improvements to the pre-
sented assays are discussed that could further deepen the understanding of cell polar-
ization. Appendixes A and B contain a brief description of experimental procedures
such as cell culture and experimental setup, as well as the data analysis developed in
the course of this thesis.
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2. Concepts - Cell Migration and Modelling

To facilitate the discussion of experimental approaches and their results, this chapter
briefly reviews the background information. It introduces the fundamental concepts
of cell migration and gives a short introduction to different modelling approaches of
migrating cells.

2.1. Cell Migration
While details of migration may vary a lot between different types of cells, in general, cells
go through five different steps during migration that repeat cyclically. These phases are
polarization, extension of the membrane in the front, attachment of the protrusion to
the substrate, building of forces resulting in displacement and release of old attachments
at the back [35]. This cycle is illustrated in Fig 2.1 and differs greatly in overall duration,
length and peculiarity of the phases between cell types. Thus migration persistence as
well as speed are broadly distributed for different cell lines [36].

a b c

d e f

Figure 2.1.: Cyclic process of cell migration. (a) A not oriented cell (b) polarizes, (c) a protrusion in
the direction of polarization is formed and (d) attached to the substrate, (e) traction forces are build
resulting in a displacement of the nucleus and (f) old adhesions to the substrate are released. Then
the cell either depolarizes (a), repolarizes into a new direction (b) or forms another protrusion in the
same direction (c).

Taking a look into the intracellular processes, the actin machinery can be identified
as driving factor [37, 38]. The actin cytoskeleton is one of the three stabilizing skeletal
components present all over the cell, next to microtubuli and intermediate filaments.
The actin network is attached to trans-membrane molecules such as integrins and con-
nects the cell to its surroundings [39]. It plays a major role in cell migration [38]. Even
the actin bundles enveloping the cell nucleus influence migration [40]. Actin itself is al-
ready a polarized, directed filament, as new monomers are quickly added at the barbed
end and slowly removed at the pointed end, resulting in a preferred elongation in the
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2. Concepts - Cell Migration and Modelling

direction of the barbed end. Protrusions as depicted in Fig 2.1c are pushed forward by
actin filaments deforming the cell membrane. In lamellipodia, i.e. large broad protru-
sions, the filaments are branched by Arp2/3 and cross-linked, thus leading to a dense
actin network inside cells [38, 41]. In filopodia, i.e. small finger-shaped protrusions at
the very front of lamellipodia, actin is organized into bundles [42]. All these processes
such as actin branching, actin nucleation, integrin activation in adhesion and building
of stresses resulting in displacement are orchestrated by complex signalling networks
[10, 43]. The conductors in this signalling orchestra are the Rho GTP-ases, above all
Rac1, RhoA and Cdc42 [44]. These key players will be discussed in more detail below
in the context of cell polarization.

2.2. Cell Polarization
In the very first step of cell migration, the previously existing symmetry inside the cell is
broken and a molecular gradient is established, a process referred to as cell polarization.

2.2.1. Keys to Polarization

Polarization in migrating cells spans over several orders of magnitude. In collectively
migrating cells, velocity is coordinated over multiple cell diameters on the range of
200 µm [45], whereas in single cells, polarization is sensitive to small curvatures in the
size of 60 nm [46]. This requires a complex network for regulation and communication
on the intra- and intercellular level.
A cell can process many different external signals to decide for one specific direction

of migration. Cells can be guided by chemical gradients, e.g. growth factors, a process
called chemotaxis [47] that is even more sensitive if cells ”sense“ collectively [48]. In
contact with the surrounding matrix, they can move into the direction towards stiffer
substrates, called durotaxis [49], or into the direction that allows more adhesions to the
ground, called haptotaxis [50]. Depending on the shape of protrusions of single cells,
also specific adhesive geometries surrounded by repellent surface, called micropatterns,
can induce a preferred movement direction [24]. Or cells can simply polarize into any
direction by stochastic fluctuations.

2.2.2. Intracellular Polarization

During the process of polarization, the cell turns from a previously symmetric to an un-
symmetric state. This desymmetrization evolves through all intracellular levels, started
by small proteins activating signalling cascades that amplify the chemical asymmetry.
This stimulates mechanical processes that start to physically deform the cell via actin
protrusions. The now polarized cell starts migrating as described before in Fig 2.1.

6



2.2. Cell Polarization

Rac1, RhoA and Cdc42

Inside a cell, three key players have been identified to establish, maintain and spatially
organize polarized protrusions: Rac1, RhoA and Cdc42 [44, 11]. First proposed in
1992 [51, 52], up to today a highly interconnected and complex regulatory network
has been discovered [12]. Rac1, RhoA and Cdc42 are all members of the Rho GTPase
family, a group of enzymes that can hydrolyse and bind to guanosine triphosphate
(GTP). Guanine nucleotide exchange factors (GEFs) activate Rho GTPases, GTPase-
activating proteins (GAPs) deactivate them [53]. And guanine nucleotide dissociation
inhibitors (GDIs) extract them from the cell membrane, thus altering their location and
mobility [54]. This classical interaction scheme is depicted in Fig 2.2.

Figure 2.2.: Switching cycles of Rho GTPases. Extraction from membrane by GDIs, activation by
GEFs, deactivation by GAPs and interaction of active form with effector target proteins.

Depending on their localization, the Rho GTPases can have different functions. At
the front of a polarized cell, Rac1 can be found in lamellipodia and in membrane ruf-
fles [52]. In neutrophils, it was discovered to be crucial for retraction and localized at
the back of cells [55]. Cdc42 was reported to be necessary for directed polarization
towards a chemical attractant [56], as well as formation of filopodia [57] and orienta-
tion of the microtubuli organizing center (MTOC), a frequent measure of polarization
[58]. At first, RhoA was discovered to initiate stress fibre formation by activating
actin-myosin contractility at the trailing edge of cells [51]. With advances in imaging
and biosensor development, this rather simple picture of distribution has been comple-
mented by discoveries of RhoA impact on stabilizing microtubuli at the cell front [59],
as well as the temporarily and spatially extremely precise localization at the very tip
of a lamellipodium, reaching back only 2 µm for 40 s [60].
These quite distinct roles in polarization of RhoA can be explained by looking at the

regulatory network of Rho GTPases. Although this network by itself is quite simplistic,
compare Fig 2.2, over 60 GEFs and 70 GAPs have been identified for the whole Rho
GTPase family [61, 62]. Furthermore, orchestrating all intracellular processes for mi-
gration with respect to the current cell environment requires much more sophisticated
regulation of Rho GTPases rather than simple activation by GEFs, binding to an ef-
fector protein and deactivation by GAPs. Hence, there have been studies investigating
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2. Concepts - Cell Migration and Modelling

the potential of GEFs to form complexes [12], the post-translational modifications of
Rho GTPases [54], and how GEFs and GAPs directly regulate each other [63]. This
leads to a highly complex and intertwined network around the key players Rac1 and
RhoA with several interconnected layers of regulation as shown in Fig 2.3.

Rac1

focal adhesion 
maturation

stress
�bers actomyosin 

contractility

actin 
branching

focal adhesion 
turnover

actin poly-
merization

focal adhesion 
formation

Arp 2/3

WAVE
formins PAK mDia?

RhoARhoA

ROCK

FilGAP DLC1 tensin-3PTEN DLC1 p190RhoGEF FAK

Direction of Movement

Figure 2.3.: Highly reduced regulatory network for Rho GTPase signalling in a migrating cell. Focal
adhesions are depicted in red. Starting with many nascent adhesions, some are turned over, i.e.
removed, others are preserved and mature under mechanical stress to larger adhesions that are finally
dissolved at the rear. The actin-cytoskeleton is depicted in grey. Single actin strands are polymerized
at the leading edge, branched in the lamellipodium and bundled and reinforced into stress fibers in the
cell body. Rac1 and RhoA signalling pathways for regulation of adhesion and actin-cytoskeleton are
depicted below. Arrows indicate activation, blunt ends indicate blocking or deactivation and circles
stand for co-localization. Exemplary GEFs and GAPs are indicated by bold letters.

In the figure, the cell is subdivided into three segments governed by distinct Rho GT-
Pase dynamics, the leading edge, the lamellipodium and the cell body. At the cell front,
new adhesions to the substrate are formed and single actin filaments are polymerized,
leading to a forward pushing of the membrane. These two processes can be mediated by
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2.2. Cell Polarization

RhoA, that is activated at the leading edge [64]. The activation of mDia by RhoA at the
leading edge has been suggested but not been proven so far [65]. The protein mDia is
part of the formin family, that is involved in actin nucleation, elongation and bundling
[66]. RhoA itself can be activated by many different GEFs, of which p190RhoGEF
has been reported to initiate the formation of focal adhesions upon binding to focal
adhesion kinase (FAK) in fibroblasts [67].
In the lamellipodium, cell migration is dominated by Rac1-based signalling. As a fine

balance between adhesion and actin polymerization is needed for cell migration driven
by lamellipodia, actin is branched and some primary focal adhesions are turned over,
i.e. dissolved, in this part of the cell [65]. For the activation of Rac1 for focal adhesion
turnover, several GEFs and their formed complexes have been identified [12]. For the
sake of simplicity, they are not depicted in Fig 2.3. Two examples for different pathways
that regulate focal adhesion turnover by activation of Rac1 are its activation by the
GEF TIAM1 in a complex with talin, a focal adhesion protein, and by the GEF β-PIX
under involvement of PAK (p21-activated kinase) and paxillin, another focal adhesion
protein [68, 69]. For actin polymerization, Rac1 interacts with the WAVE complex that
in turn activates Arp 2/3, a protein leading to the nucleation of actin branches [70].
It has also been reported that Rac1 can remodel the cytoskeleton by interaction with
formins [71]. The dominance of active Rac1 in the lamellipodium over active RhoA can
among others be established by the GAP DLC1 that couples to tensin3. This complex
deactivates RhoA and is proposed to activate Rac1 by a yet unidentified GEF [72, 73].
At the cell rear, DLC1 froms a complex with PTEN that upon binding inhibits

DLC1 activity. The inhibited DLC1 no longer deactivates RhoA and hence leads to
an increase in RhoA induced signalling. Foremost, RhoA leads to ROCK induced
actomyosin contractility [74]. This contractility in turn leads to the maturation of focal
adhesions and the formation of stress fibers. Additionally, the contractility is postulated
to block the formation of additional lamellipodia [75]. One possible signalling pathway
is the activation of the GAP FilGAP by ROCK that leads to a deactivation of Rac1 as
depicted in Fig 2.3 [65].
Two reviews by Ridley [65], and Lawson and Ridley [12] present a more complex

regulatory mechanism for Rho GTPase signalling including, more rarely regarded GT-
Pases and different GEF and GAP complexes. However, this highly complex signalling
network is far from completely understood and still requires further investigation such
as for instance the role of GDIs in spatially modulating GTPase activation by extrusion
from the membrane to the cytosol of the cell.
Guilluy et al. [63] reduced the complex and not yet fully known regulatory network

of RhoGTPases to the two key players Rac1 and RhoA as depicted in Fig 2.4. Here,
Rac1 is dominantly present at the leading edge of a migrating cell, only disrupted by
the rapid activation of RhoA and the following activation of Rac1 during an protrusion-
retraction cycle of a lamellipodium, shown with enhanced spatial extension. At the cell
rear, active RhoA dominates and down regulates Rac1.
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RhoA

Rac1

RhoA
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Figure 2.4.: Distribution of active Rac1 (light blue) and active RhoA (pale yellow) throughout a cell
as well as spatially dependent mutual regulation.

Machacek et al. [60] use FRET sensors to access spatio-temporal timing at the
leading edge of migrating 3T3 cells. They show that RhoA is activated synchronized
with actin polymerization at the very edge of the protrusion, whereas Rac1 and Cdc42
are activated 2 µm away from the edge 40 s afterwards [60]. In this thesis, the time
resolution for experimental image acquisition typically is 10 minutes. Hence, for mere
visualization of polarization, simple actin staining has no temporal signalling delay in
comparison to experimental time resolution and was used in section 3.2. Furthermore,
during 10 minutes the cell has already undergone measurable displacement so that even
the nucleus position is a valid access point to the direction of polarization. In section 8
other polarization markers are discussed that could be useful in future experiments with
higher temporal resolution.

Myosin-VI in Polarization

Yet, the Rho GTPases and their complex signaling network are not enough to mech-
anistically polarize a cell via protrusions and exert forces onto the cytoskeleton to
physically move the cell. Here, cellular motors come into play. On microtubuli, kinesin
and dynein motor proteins move cargo into plus or minus direction. On actin filaments,
the myosin family transports molecular cargoes under ATP hydrolysis. Of the 18 known
classes of myosins, all but one move towards the barbed, plus end of actin [76]. So far,
only myosin-VI (myo6) was discovered to move in the opposite direction towards the
pointed, minus end [77], making it a motor protein of particular interest. It is present
in all higher eukaryotes [78], strongly bound to actin [79] and exists in four different
isoforms in humans that can be expressed in response to different environmental condi-
tions [80]. It was shown to be present at the dynamic membrane ruffles at the leading
edge of migrating cells [81].
The detection of myo6 throughout the cell suggests involvement in multiple cellular

processes and specific spatial regulation [82]. These processes include clathrin-mediated
endocytosis [83], anchoring of the plasma membrane of stereocilia [84] (the lacking
results in deafness [85]) as well as presumed roles in stabilizing and sorting in the Golgi
complex [86, 87]. Additionally, it has been reported to form a complex with β catenin
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and E-cadherin, suggesting it develops a protrusive force that pushes actin filaments
against the membrane to create protrusions [88].
To this end, recent studies by Rogez et al. [46] have revealed the capability of

myo6 to remodel membrane curvature, one of the key processes in cell polarization
and migration [89]. In their in vitro experiments, they demonstrate how the direct
motor protein-lipid interaction of myo6 remodels the membrane geometry at the range
from nano- to micrometer scale into flower-shaped membrane pores. By ”seeding“ the
membrane with nanostructures that offer negative gaussian curvatures in the radius of
about 60 to 80 nm, they were able to show a strong preference of myo6 for these negative
curvatures. Their in silico model, consisting of a curvature-dependent recruitment term
of myo6 to the membrane and an effective line tension, strengthens the claim of direct
myo6 lipid interactions as sufficient to remodel the membrane. Thus, small curvatures
on the length scale of 60 nm provide an interesting experimental basis to study the
impact of myo6 on cell polarization and migration.
In conclusion, cell migration is a spatially and temporally highly regulated, complex

process. Stochastic fluctuations lead to the formation of a cell front and back, differ-
ing in activity of Rho GTPases. The actin cytoskeleton is the scaffold used to push
new protrusions outwards at the leading edge. This formation of lamellipodia involves
complex interplay of Rho GTPases for signalling, myosins for translocation and actin
as physically displacing building block.

2.2.3. Coordination of collectively migrating cells

The polarization of cells is getting even more complex when cells no longer migrate solely
but move as small cohorts or large groups, referred to as cell sheets. Here, not only single
cells polarize but they also need to communicate their polarization to neighbouring
cells, coordinate a direction of migration and move cohesively, often without loosing
contact. To coordinate their movement, they employ physical or chemical signalling
either through direct cell-cell contacts or via interaction with the extracellular matrix,
the surrounding of cells. Such coordinated movement is more sensitive to external
stimulants [90] and more persistent [45] than single cell migration.
There are recent reviews by Trepat and Sahai (2018), Ladoux and Mège (2017), Friedl

and Mayor (2017), and Mayor and Etienne-Manneville (2016) that broadly discuss the
current knowledge on collective cell migration with focus on mesoscale physical prin-
ciples [91], the mechanobiology [92], cell-cell-junctions [93] and front-rear organization
[94].
Here, selected aspects thereof are shortly presented. Similar to single cells, front-

rear asymmetry in coherently migrating groups of cells is based on actomyosin [95].
Collective cell movement consists of cross-cell polarization, cell-cell interfaces and co-
ordinated multicellular displacement [96]. Ways of cell-to-cell communication involve
three different junctions, namely cadherin-based adherens junctions, tight junctions and
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desmosomes [92]. For this thesis, adherens junctions are of most interest as cadherins
are studied in section 6. These are of importance in communicating stresses and me-
chanically couple cells to each other [97]. At the very front of a polarized cell group,
the first cells indicate direction and are often morphologically distinct from the rest,
they are called leader cells [94]. All cells behind the leader cells are called followers.
Leading cells have more contacts to external signals [94], larger focal adhesions [92] and
their polarization is induced by the lack of junctions at the free edge [94]. They do
not simply drag along the cell sheet but engage in a global tension field involving all
cells that can be seen as a tug-of-war [98]. The conformation of leader and follower
cells is subject to fluctuations and leader cells can fall behind while former follower cells
emerge as new leaders [91]. Studies using photoactivatable Rac by Wang et al. [99]
showed induction of protrusions and emerging leading behaviour as a transient state.
Furthermore, at decreasing Rac activity in leading cells, other cells behind the leader
develop protrusions and take over the lead indicating the importance of Rac for the
emergence of protrusions and leader cell position.
Cells throughout the epithelial sheet are connected to the front cells by adherens

junctions. One of the junctions’ main components can be E-cadherin, a homophilic
transmembrane protein that links two cells by tight binding in the extracellular domain
and is connected to the actin cytoskeleton on the inside by accessory proteins called
catenins [100]. E-cadherins and its regulators play an important role in communicating
stresses and forces between cells [101] as well as in multiple developmental processes
associated with cancer metastasis such as the epithelial to mesenchymal transition where
cells gain invasive properties and, detached from the collective, start migrating actively
[102]. The precise tuning of cadherin number is crucial for coherent cell motion, as
down regulation and overexpression both lead to a collapse of coordinated collective
migration [103, 95, 17].
During collective movement, only the leading cells form big visible protrusions. How-

ever, small lamellipodia slipping under the cells in front have been observed and called
cryptic lamellipodia [104]. These small lamellipodia play an important role in sig-
nalling, as protrusions induce downstream cascades leading to cohesive movement of
cell cohorts via the previously described Rac1-RhoA pathway. All Rho GTPases fulfil
the same tasks as in single cell migration, although they now additionally regulate and
control cell-cell contacts and cell-to-cell signalling. Rac1 plays a significant role in clo-
sure of gaps in cell monolayers by promotion of cells crawling into the gap [105] as well
as leader-follower conformation [99]. For polarization of leading cells in monolayers,
Cdc42 is needed in different cell types [106, 107]. Presumably, RhoA not only con-
trols myosin-based contractility but also the lateral coupling in cadherin-based cell-cell
contracts [95].
Although the exact molecular details of collective migration may vary substantially

in different types of cells, Fig 2.5 shows a reduced scheme of cell-cell coupling employed
in this thesis. As for single cell migration, we focus on the distribution of Rac1 and
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RhoA that is not changed much. Only the cells at the very front of the sheet exhibit
clearly pronounced lamellipodia. Cells further behind show small, so-called cryptic
lamellipodia reaching only little beneath the cell in front. Polarization in the cell sheet
is achieved via mechanical stresses in the actin cytoskeleton that can be communicated
by E-cadherin based adherens junctions. Myosin VI is located at these juctions and on
actin filaments at the cell front.

leading cellfollowing cell

adherens junction

mechanical stress

actin �lament

myosin VI on actin

direction of motion

active Rac1

active RhoA

Figure 2.5.: Scheme of collectively migrating cells reduced to leading cell and first follower. Cells are
connected by adherens junctions based on E-cadherin that communicates mechanical stresses through-
out the cell sheet and is coupled to the actin cytoskeleton. Myosin VI is co-localized on actin at the
connection to E-Cadherin as well as at the leading edge. Distribution of active Rac1 in lamellipodia is
depicted in blue and active RhoA in the cell bulk in yellow. The lamellipodium of the leading cell is
much more pronounced than in the following cells that only exhibit small, cryptic lamellipodia slipping
beneath the cell in front.

2.3. Models for Cell Migration
Although much can be learned about cell migration by modifying the biology and
analysing the resulting changes, a physics perspective on cell dynamics aims for a more
general description. Such a description is achieved by abstracting and reducing the
plethora of bio-chemical processes to a minimum model. In the field of cell migration,
many different models are well established. However, most of the currently employed
models have their specific scope of application, e.g. collectives from small cohorts to
hundreds of cells, single cell dynamics or intracellular processes, and do not describe
the whole plethora of cell migration phenomena in detail. An overview of modelling
approaches for cell collectives is given by Alert and Trepat [108], whereas single and
intracellular models are discussed by Danuser et al. [109]. A very detailed overview
on different modelling approaches for adherent cells, singles and collectives, as well as
abstraction possibilities for the underlying biology is given in Schwarz and Safran [110].
In the following, only models applicable to the experimental scope of this thesis are

shortly discussed. In a zoom-in, at the beginning models for the description of a ”liquid
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2. Concepts - Cell Migration and Modelling

of cells“ are discussed and followed by models including more and more cellular details
at the cost of the capability to only describe fewer to single cells, resulting in a short
overview of intracellular models that describe signalling dynamics inside a single cell
without displacement or interaction to the surroundings.

2.3.1. Collective Cell Migration
Collective cell migration is an umbrella term as cell collectives can span orders of mag-
nitude in cell number and spatial extension from the description of thousands of cells
to as few as two interacting cells. This section starts with models describing collective
migration of a few hundreds of cells.

Continuum models

Continuum models are models that describe cells not on a particle resolution, but as
temporally and spatially evolving fields X(r, t) described by partial differential equa-
tions. Nematic models are a type of continuum models where the fields describing cells
have an order parameter that is invariant to rotations under 180◦ [111]. These fields can
describe velocity, density or polarity. Alert and Trepat [108] systematically build up a
model starting with a free energy of quiescent compressible polar media. Adding den-
sity and polarity dynamics, overall force balance in the tissue, viscoelastic properties,
traction forces described in [112] and boundary conditions, they arrive at a very general
description based on liquid crystal principles [108]. A subclass of nematic models is the
Toner and Tu [113] field generalization of the classic Vicsek model [114], often referred
to as dry active matter, as hydrodynamic interactions are not included [115]. Modelling
cells as active nematic liquid crystals has succeeded in linking isotropic stresses leading
to protrusion from a confluent cell layer to topological defects suggesting an analogy
between epithelial sheets and active nematics [116].
Cell sheets invading a straight channel are well described by simple hydrodynamic

laws in the form of a Fisher-Kolmogorov equation as in [14]:

∂c(x, t)
∂t

= Dc
∂2c(x, t)
∂x2 + λc(x, t)(1− c(x, t)

k
),

where c(x, t) is the one dimensional density over x ranging from cell front back to
channel entrance at time point t, λ describes exponential growth up to approaching the
carrying capacity k where growth saturates, and Dc is the collective diffusion coefficient.
However, when introducing a constriction inside the channel, simple hydrodynamic laws
no longer accurately describe cell motion. Here, even a more advanced active nematic
liquid crystal model shows clear deviations from experiments and is not able to describe
velocity fields correctly as shown in Fig 2.6 [117, 118].
Collective flow through a constriction is again shortly discussed in section 7 and an
outlook on an alternative to investigate this type of motion is given.
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Figure 2.6.: Comparison of velocity direction in simulation and experiment. (a) Velocity field orienta-
tion as calculated in the active nematic liquid crystal model. Yellow line indicates the current position
of the cell sheet, i.e. the border between nematic and isotropic phase. In front of the constriction flows
are mostly perpendicular to the channel and inside the constriction vortices dominate. (b) Velocity
field orientation as extracted from experimental data via particle image velocity in yellow. Prior to
constriction movement is mainly directed into the constriction where flow is even more oriented parallel
to the channel. Images courtesy of M.L. Zorn adapted from [117].

Single Particle Resolution

A more detailed level of modelling are models that discern different cells. Single particle
models such as the Vicsek model have a phenomenological alignment term motivated
by animals flocks and can show spontaneous formation of particle flocks spanning the
whole system [114]. Phase field models describe multiple cells i ∈ {1, ..., N} by spatially
varying fields Φi(r, t), one per cell [119]. They have been applied to simulate collective
cell migration around a circular object [120] or dynamics of elastic cell monolayers [121].
As described in [122], collectively migrating cells can be modelled as isotropic particles
[123], deformable particles [124] or polygons described via Voronoi tesselation [125].

When turning the focus from cell collectives more onto cell interactions, one can
reduce the number of observed cells for the benefit of more details in intracellular dy-
namics. Fully describing all cellular interactions with data-derived equations of motion
is still a challenge as disentangling deterministic from stochastic contributions is hard.
Here, Brückner et al. recently introduced underdamped Langevin inference to derive a
model framework directly from experimental data [126].
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2.3.2. Bridging the Scale
In their most recent work [34], Brückner et al. reduce the complexity from large groups
of cells to a minimal model for cell-cell interaction consisting of two cells in a ’cell
collider’ thus bridging from the description of collective migration to the modelling of
single cells. Here, cells are represented by point-like particles with a certain position
and velocity.

Cell-Cell Interaction Model

First used for the description of single cells in a two-state micropattern [26], Brückner
et al. propose a stochastic equation of motion with predictive power to describe two-cell
interactions as follows [34]:

dv

dt
= F (x, v) + f(|∆x|)∆x+ γ(|∆x|)∆v + σ(x, v)η(t),

where F (x, v) describes the interaction of a single cell with the confinement, as in [26].
The cell-cell interaction is decoupled into two terms accounting for cohesion f(|∆x|)∆x
and friction γ(|∆x|)∆v, the ∆ indicating relative position and velocity of the two cells.
The stochastic contribution influencing motion is presumed to be described by a Gaus-
sian white noise η(t), with mean 〈η(t)〉 = 0 and 〈η(t1)η(t2)〉 = δt1,t2 . They apply their
method of undamped Langevin inference [126] and fit the single cell term F (x, v) up
to third order in a Fourier basis in x and polynomials in v (see Supplement S4 in [34]).
They resolve different types of cell-cell interactions, spanning a two-dimensional plane
along the friction - anti-friction axis and the attraction - repulsion axis with two cell
lines being located in different quadrants [34].
This concept is also used for the analysis in section 6.

Cellular Potts Model

Another model living on the mesoscale and applied in sections 3, 4 and 7 is the cellular
Potts model (CPM). In 1962, Steinberg suggested that many multicellular processes
can be attributed to differences in cell-cell and cell-substrate adhesion [127]. Intrigued
thereby, Graner and Glazier developed a cellular interpretation of the Potts model,
where degenerated spins σ(i, j) = 1, 2, ..., N identify areas of N cells on a lattice of
all connected sites (i, j) [128, 129]. Emanating from their model, all CPMs are lattice
based models described by a Hamiltonian, minimizing free energy, and modelled with
a Monte-Carlo scheme. Today, there are many different applications of cellular Potts
models in collective migration [130, 131, 132], for small groups of cells [133], as well as
in single cells [31, 134].
Here, the model described by Thüroff, Goychuk et al. [33] is used. This model features

a scalar internal polarization field that can be seen as abstraction of the biochemical
Rac-Rho network as well as mechanical coupling via a constrictive term, making it a
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versatile hybrid model. It has been previously applied in studies investigating small
groups of cells on circular micropatterns [133], single cells on substrates of different
stiffnesses [135] and in short microlanes [136] and cell collectives migrating through a
constriction [137].
Here, we focus on the case of a single cell in confinement which is most relevant for

the present work. A cell in confinement is described by three fields that each assign a
numeric value to all grid sites: The temporally invariant ”confinement field“ D that is
zero for all hexagons of the micropattern and assigns a numeric energy penalty onto all
cell-repellent sites of the confinement. The ”polarization field“ ε that assigns temporally
evolving values of ”activity“ to all hexagons of the cell and is zero on all other sites.
The ”regulatory field“ F ∈ Z that is used for bookkeeping during simulation sub-steps
and reset to zero after each main step. An illustration of these fields is shown in Fig 2.7.
D is ∞ on all grey tiles of the confinement and zero on all others. ε is zero on all tiles
that are not occupied by the cell, i.e. do not have an orange contour, and changes
over time in all tiles of the cell ranging from minimal to maximal polarized. F is zero
everywhere except the tiles of the shaded circles where it is −1 for retraction and +1
for protrusion.

-

+

Feedback Radius

Con�nement

Micropattern

Protrusion+

Retraction-

Cell

Figure 2.7.: Illustration of the CPM as described by [33] for single cells on a micropattern. Confining
hexagons not accessible to the cell are coloured in grey. Grid sites occupied by the cell are indicated
by an orange contour. Retraction or protrusion sites are indicated by - (yellow) or + (red). Cell sites
within a feedback radius R from the retraction or protrusion site are shaded in the respective colour.

The durations of the simulation is measured in Monte-Carlo-Steps (MCS). The MCSs
are subdivided into smaller steps each, so-called elementary events ϑ. The number of
elementary events occurring in a MCS is dependent on the number of empty grid sites
along the contour of the cell. For each elementary event ϑ, a random hexagon of the
cell contour is chosen and an empty adjacent site next to it. With equal probability one
of two events is attempted: Retraction from the occupied site or protrusion into the
adjacent field, both depicted in Fig 2.7. Then, an acceptance probability for this event
p(ϑ) is calculated and evaluated. If the event is discarded, a new elementary event
starts. If the event is accepted, the cell grid is updated accordingly and noted in the
bookkeeping field F . A new elementary event starts until all ϑ of one MCS have been
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performed. Then, F is used to update the polarization field of the cell ε, a new MCS
is started and the number of elementary events ϑ is determined anew until all MCS of
the simulation have been performed.
The determination of the acceptance probability of elementary events p(ϑ) is focused

on in this paragraph. All simulation parameters used in the following paragraphs are
listed in overview Table 2.1. The acceptance probability consists of a product of two
independent contributions:

p(ϑ) = min{pcont(ϑ) · pcyto(ϑ), 1} ,

where pcont(ϑ) is a term accounting for cell contractility and pcyto(ϑ) can be seen as
outwards driving cytoskeletal force.
The cell contractility term pcont(ϑ) is determined by a change in contractile energy

Hcont(ϑ) = κAA(ϑ)2 + κPP (ϑ)2,

with A being area and P perimeter of the cell and κA and κP positive coupling
constants. The elementary event ϑ causes a change in contractility ∆Hcont(ϑ) =
Hcont(ϑ) − Hcont(ϑ0) with ϑ0 describing the current state of the cell units. This re-
sults in a term

pcont(ϑ) := exp

(
−∆Hcont(ϑ)

kBT

)
which reflects the probability ratio between the probability qcont(ϑ) ∝ exp (−Hcont(ϑ)/kBT))
of the proposed state given by ϑ and the probability qcont(ϑ0) of the current state ϑ0.
This connects the proposed sampling scheme to a Metropolis algorithm [138].
The cytoskeletal term pcyto(ϑ) contains the previously introduced three fields for con-
finement D, polarization ε and the bookkeeping regulatory field F . The field D is
constant for the whole simulation and F is reset at the beginning of each MCS and
only needed for the evolution of ε. At the beginning of the main simulation, the cell
starts with a homogeneous mean polarization field ε = ε0, that will evolve over time
and assign each hexagon a polarization value ε ∈ [ε0 − ∆ε/2; ε0 + ∆ε/2], with ∆ε thus
denoting the difference between maximal and minimal polarization. The change in
polarization energy for the elemental event ϑ taking place at a certain cell site and a
neighboring free hexagon is given by

∆Hcyto(ϑ) =
 εcell +Dcell for ϑ = retraction event.
− (εcell +Dfree) for ϑ = protrusion event.

Here, εcell denotes the polarization at the site of the elemental event ϑ, Dcell the con-
finement at this site and Dfree the confinement at the site the protrusion invades into.
The contribution to the probability accordingly is defined as above as

pcyto(ϑ) := exp

(
−∆Hcyto(ϑ)

kBT

)
.
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As described at the beginning of the paragraph, the obtained probabilities pcont(ϑ) and
pcyto(ϑ) are multiplied and the elemental event takes place with probability p(ϑ). A
successfully invaded hexagon is assigned the polarity field value of the field of origin of
the protrusion εcell.
The temporal evolution of the polarization field ε is discretized into MCSs and the

regulatory field F keeps book of changes due to accepted elementary events ϑ. An im-
portant parameter here is the feedback radius R that describes how many neighbouring
lattice sites the accepted event ϑ influences, illustrated in Fig 2.7. Initially, F is set to
zero and updated by ϑ as follows

Fϑ+1 =
Fϑ − 1 for ϑ = retraction event
Fϑ + 1 for ϑ = protrusion event

in radius R around event site.

After all elementary events ϑ of one MCS have been performed, the polarization field
ε is updated in dependence on F and an additional parameter µ, the cytoskeletal rate,
that describes the speed of the polarization changes:

εMCS+1 =


εMCS + µ (ε0 + ∆ε/2− εMCS) for F > 0
εMCS + µ (ε0 − ∆ε/2− εMCS) for F < 0

εMCS + µ (ε0 − εMCS) for F = 0

After update of the polarization field ε, the bookkeeping field F is set back to zero for
all grid sites and a new MCS begins with the determination of the number of elementary
events ϑ it will try to perform.
To clarify and illustrate the influence of the cytoskeletal rate µ on the temporal

evolution of the polarization field ε, Fig 2.8 shows the change in ε for different values
of the cytoskeletal rate µ in dependence on the bookkeeping field F .
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Figure 2.8.: Evolution of polarization for different values of µ. Starting at ε0, the different colours
illustrate the speed of change in polarization, i.e. position on the y-axis, for different values of µ from
low (yellow) to high (red). Additionally, values of F < 0 of a hexagon lead to an temporal evolution of
the polarization field towards the minimum, whereas F > 0 over time drives the polarization towards
the maximum. Where F = 0, the polarization of the hexagon relaxes into mean polarization ε0 (this
is the case for all hexagons inside the cell body that are not reached by the signalling radius R).
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Table 2.1 shows an overview of the parameters of the CPM relevant for this work.
For a more detailed description of the model and additional features, please refer to
[33].

Table 2.1.: Overview of the parameters used for single cell CPM simulations developed by [33].
Symbol Parameter Description
κA area coupling energy coefficient for number of hexagons inhabited by the cell
κP perimeter coupling energy coefficient for the cell perimeter
T temperature temperature used for scaling of probabilities, degenerated
D adhesion penalty adhesion penalty for each hexagon
ε0 mean polarization starting polarization of the cell
∆ε polarization span difference between maximal and minimal polarization
R feedback radius radius of adjacent hexagons influenced by elementary event ϑ
µ cytoskeletal rate speed of change in polarization

2.3.3. Single Cell Models
Earlier publications on single cells using CPMs included internal dynamics in the form
of partial differential equations for key regulatory proteins such as Cdc42, Rac and Rho
[31, 139]. They nicely produced broad gradients of these key players, but did not show
the fast Rac-Rho dynamic at the cell front, that was experimentally reported around
the same time [60]. Also, a very recent publication reported a Monte-Carlo based model
for 3D cell structure containing cytoskeletal forces as well as curved membrane proteins
[140]. A model including the Rho GTPase network of polarization with active and
inactive forms of RhoA, Rac1, DIA, ROCK and PAK and their mutual regulation was
recently published by Bolado-Carrancio et al. [141]. It focuses on the description of
cell-internal fields by means of regulatory networks but does not model cell displacement
or deformation. However, by abstraction of regulatory networks they show Rho-Rac
oscillations at the cell front and Rho dominated contractility at the back as well as the
propagation of waves of activity from cell front to back as observed in their experiments.
A mechanistic option to describe single cell movement is the reduction to 1D lanes and
the modelling and observation of cell lengths and protrusion dynamics [142, 143, 144].
In both, experiment and theory, cells confined to 1D lanes show a variety of movements
that can be abstracted to springs connected to the substrate [142, 143, 145].
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2.4. Micropatterning for Confined Cell Migration

In the scope of this thesis, cytoskeleton and morphodynamics of cells are quantita-
tively compared to models. An important experimental tool to access different modes
of cell migration in a high-throughput and reproducible fashion is the confinement of
cells to small structures of choice, micropatterns. Generally speaking, there are two
fundamentally different approaches to confine cells. Either by two-dimensional surface
structuring, defining areas of cell adhesiveness and cell-repellent areas, or by physi-
cally modelling a confinement in three dimensions. For two-dimensional confinement,
there are three commonly used techniques: Microcontact Printing (µCP), Microscale
Plasma-initiated Protein Patterning (µPIPP) and Laser-Assisted Protein Adsorption
by Photobleaching (LAPAP). First proposed by the group of Whitesides at Harvard,
µCP and µPIPP are techniques developed in the late 1990ies [146, 147]. Both tech-
niques are based on a polymer stamp that moulds the desired structure often cast from
a silicon wafer fabricated with classical laser lithography. In µCP, the stamp is incu-
bated with the protein for cell adhesion and used to transfer it onto the surface. Then,
the remaining uncoated surface can be passivated [148, 149]. In µPIPP, the stamp is
used to protect a part of the surface from passivation that is afterwards incubated with
a protein of choice [150]. The advantage of µCP is the possibility to fabricate hol-
low structures, e.g. a ring-shaped adhesive area, whereas micropatterns fabricated by
µPIPP are visible in phase contrast and thus labelling of the adhesive protein with a dye
is optional. As a more recently developed approach, LAPAP no longer relies on polymer
stamps but instead uses classical photo lithography. A photomask, e.g. a chrome mask
with transparent microstructures, is used to adsorb a fluorescent protein to a repellent
surface by bleaching at UV-illumination [151, 152]. Then, a cell-adhesive sequence can
be bound to the bleached protein via click-chemistry. An schematic overview of these
fabrication protocols is given in Fig 2.9. The most commonly used protein for cell
adhesion in micropatterning is fibronectin, a protein also present in the extra cellular
matrix [153]. For passivation, coatings with polyethylen glycol (PEG) chains are widely
used. They can be attached to poly-L-lysine backbones, resulting in PLL-PEG block-
copolymers binding to the surface with PEG chains hindering attachment of cells and
other proteins.
Experiments on cells confined by micropatterns have a broad application [154]. They

can be used to keep single cells immobile, allowing for the investigation of translation
kinetics [155, 156], signalling pathways [157, 158] or cytoskeletal properties in vari-
ous different shapes [19, 159, 160]. When allowed to migrate, single cells confined to
micropatterns allow the investigation of cell speed, persistence and polarization in de-
pendence on environment [36, 161, 23] as well as the quantification of other migratory
aspects particularly addressed by the specific geometry [162, 163]. The high flexibility
in not only shape but dimensionality as well, make micropatterns a versatile tool to
study cell collectives as well [17, 164].
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For the confinement of collectively invading cell sheets, three dimensional patterns
present an alternative to two-dimensional structures if channel shapes could lead to
bridging of the sheet over passivated areas. This method has been as well proposed
by the group of Whitesides [165] and cells are guided by an adhesive substrate and
repellent walls, see Fig 2.9. During fabrication, a photo-polymerizable cell repellent,
e.g. polyethylene glycol-dimethacrylate (PEG-DMA), is invading into the channels of a
stamp and cured [166, 167, 168]. After stamp removal, the previously protected surface
can be incubated with cell adhesive proteins that do not adsorb to the cell repellent
PEG-DMA walls due to the steric hindering of the PEG chains.
All previously described techniques describe the structuring of rigid surfaces. There

are as well protocols for micropatterning soft substrates, e.g. polyacrylamide, that allow
the observation of migration on different elastic modules [169, 170]. Also, not only flat
adhesive substrates can be structured but cells can be embedded in three dimensional
confinement as well [171, 172, 173].
Concludingly, migration of cells presents a very rich phenomenology and confinement

of cells by micropatterns can present a tool to disentangle different aspects of migration
and provide a highly reproducible and well-defined experimental platform [174].
Table A.1 indicates the microstucturing techniques used in the different sections of

this thesis.
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Figure 2.9.: Schematic overview of different micropatterning techniques: Microcontact Printing (µCP),
Microscale Plasma-initiated Protein Patterning (µPIPP), Laser-Assisted Protein Adsorption by Pho-
tobleaching (LAPAP) and moulding of three-dimensional structures.
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3. Spontaneous Polarization in Stripes

The first step of cell migration is polarization; either induced or spontaneous [35].
Stochastic fluctuations lead to spontaneous symmetry breaking and result in a formation
of front and back end defined by distinct cell signalling events. The cell adapts a typical
polarized morphology. Different mechanisms for polarization have been discovered [175,
176, 106]. An important aspect of polarization is the spontaneous quenching at contact
with a boundary and the resulting dynamics of cell locomotion in absence of external
clues. To investigate the dynamics of polarization, depolarization and repolarization,
we use a confining geometry suitable to observe many of those events in a row; an
adhesive stripe.
This chapter is published as Zhou, Schaffer et al. [136].

3.1. Quasi Oscillations of Cells in Stripes
On a short stripe-shaped micropattern, cell migrate along the longer axis in a periodic
fashion, as shown in Fig 3.1.
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Figure 3.1.: Cell migration on a stripe micropattern. (a) Overlay of phase contrast and fluorescence
images of a migrating cell with nucleus stain in blue at 10 min time resolution. Stripe micropattern of
20µm width and 120µm length indicated in first time frame in yellow. (b) Nucleus trajectory of this
cell exhibits quasi oscillatory behaviour over 36 hour of observation.
Adapted and reprinted from [136] under (CC BY 4.0).
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During migration, as shown in Fig 3.1a, we see a pronounced lamellipodium at the
leading edge with dark ruffles at the very front and a slimmer retracting tail at the
back. When the cell reaches the tip of the stripe, the cell shortens, depolarizes and
repolarizes on the opposite site to redirect its movement along the stripe once more.
This behaviour is stable over the whole 36 hours of observation during which every
10 min images were recorded. Fig 3.1b shows an exemplary nucleus trajectory of a
cell migrating in a stripe of 120 µm length and 20 µm width. The trajectory shows
up-down oscillations with repolarization phases of different lengths at the two ends of
the stripe. Comparing the y-coordinate of the plot 3.1b and the fluorescently labeled
nucleus in Fig 3.1a, we note that the nucleus does not reach the tip of the stripe and
the lamellipodium elongates much further in front of it. Depolarization starts when the
lamellipodium reaches the tip and thus the amplitude of the quasi oscillations may vary.
Some spontaneous turning events in the middle part of the stripe are observed as well.
Cells used in this experiment are MDA-MB-231, a highly invasive and motile breast
cancer cell line, shortly described in section A. Cell position is accessed by tracking the
nucleus that is stained with Hoechst 33342 over 36 hours of observation at an imaging
rate of 10 min.

Oscillations are stable over different stripe lengths

To investigate the universality of cellular quasi oscillations in stripes, cells have been
observed in stripes of different lengths of 120, 170, 220 and 270 µm and constant width
of 20 µm as shown in Fig 3.2. All recorded trajectories are shown as grey background
and an exemplary trajectory for each stripe length is highlighted in blue. About one
hundred trajectories have been recorded for each length. To distinguish phases of
polarized motion from phases of reorientation, ”reversal areas“ are chosen such that
the lamellipodia of cells not yet has touched the end of the stripe. They are indicated
in blue areas of the stripes next to the trajectories and the areas are constant for all
stripes. In the grey area of the illustrated stripes, cells are expected to mostly move
persistently.
In this way disentangling motion and reorientation, the influence of length on the

reversal times as well as on the velocity of polarized motion can be explored. Therefore,
Fig 3.3a shows the velocity distribution in the centre part of the stripe, indicated in grey
in Fig 3.2, for different lengths. Part b of the figure displays a plot of the distribution
of reversal times for the different lengths. Insert display the corresponding absolute
counts. The velocity simply is calculated by the displacement in y direction from one
time point to the next for all observations starting in the grey area. We observe similar
velocity distributions for all lengths. Taking into account the different amounts of
observations underlying the densities, we conclude that the length of the stripe does
not influence the velocity in the centre part. Corresponding conclusions can be drawn
for the reversal times depicted in Fig 3.3b where the similarity of distributions is even
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Figure 3.2.: Quasi oscillations in stripes of 120, 170, 220 and 270 µm length. All recorded trajectories
are shown in grey background and an exemplary trajectory is highlighted in blue for each length.
Trajectories were recorded over 36 hours at 10 minutes time interval.
Adapted and reprinted from [136] under (CC BY 4.0).

more pronounced. Thus, for all investigated lengths the cells do not show any fatigue,
for instance by prolonged reversal times or by reduced migration velocities for long
stripes. Predictions from theoretical models of oscillatory behaviour of cells in stripes
can be confirmed [177].

Cellular Potts Model reproduces Oscillatory Movement

The versatile Cellular Potts model described in section 2.3.2, further referred to as
CPM, has been successfully used to describe movement of small groups of cells in mi-
cropatterns [133] and single cells on substrates of different stiffnesses [135]. Combining
a simplified biochemical Rac-Rho interaction model in form of a scalar polarization
field with mechanical coupling via a constricting term, this hybrid model is a versatile
tool for the description of cell migration. For a detailed model description, please refer
to [33]. Here, time was calibrated by setting the average absolute velocity of cells in
experiment 〈|v|〉 = 0.6µm/min to equal the simulation. Starting from previous work
[133], we revise the parameters to tune persistence, stochasticity and resolution of the
cells to better resolve the tip of the micropatterns. Applying this model to the confin-
ing geometry presented here, we can see the emergence of oscillatory behaviour similar
to experiment as illustrated in Fig 3.4. Looking at the simulated cell in panel a of
the figure, we see the emergence of repeated up and down movement. The internal
polarization field is depicted in a colour gradient from blue to green, showing short
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Figure 3.3.: Distributions of velocities and reversal times for different stripe lengths of 120, 170, 220
and 270 µm. (a) Colour-coded distributions of velocity in the centre part of the stripe and accordingly
coloured inserts displaying count basis of the densities. (b) Colour-coded distributions of reversal
times at the tip regions and accordingly coloured inserts displaying count basis of the densities.
Adapted and reprinted from [136] under (CC BY 4.0).

periods in a depolarized state at the tips during reversal. We access the trajectory of
the cell plotted in panel b by the centre of mass of the cell. This is a difference to
experiment where the centre of mass of the nucleus is used for determination of cell
position. Nevertheless, we assume the centre of mass to be a robust access to the cell
position and well-comparable to the centre of mass of the nucleus. Taking a closer look
at the trajectory in b, we see reversal events of different durations just as in experiment,
making the model well-suited for further comparison.

3.2. Repolarization in Different Tip Geometries
As in experiment the length of the stripe does neither influence velocity nor reversal
time, we use this reliable set-up to investigate the influence of curvature on reversing.
Membrane curvature has been reported to play a role in many intracellular signalling
networks including formins [178], BAR proteins [89], cell migration and polarization
via MyosinVI, as described in section 2.2.2 and [46]. We choose geometries to address
different types of curvatures, depicted in Fig 3.5. After having started with the most
natural-seeming tip of a cell to migrate into, the round shape, we can think of the most
simple curvature, namely no curvature at all, i.e. a blunt end. As many proteins are
reported to be explicitly sensitive to positive versus negative curvature [89, 46], the next
curvature of interest is the inverted round shape, a concave tip. As the most intriguing
feature of this geometry are the two very pointed ends, another thing that come to
mind is flip of the pointed ends, leading to a single, pointed tip presenting two negative
curvatures to the cell. We adjust the stripe dimensions of the different geometries to
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Figure 3.4.: Cell migration on a stripe micropattern simulated by the CPM. (a) Graphical output
depicting the simulated cell. Colour gradient depicts polarization field. Time intervals were chosen to
correspond to experimental time resolution. Stripe micropattern of 20µm width and 170µm length.
(b) Centre of mass trajectory of the simulated cell exhibits quasi oscillatory behaviour and shows
fluctuations in the reversal duration.

all have the constant width of 20 µm as used before and present constant reversal areas
to the cells, resulting in varying stripe lengths labelled in the illustration.
From the different lengths with round tips, the stripe length of 170 µm has been chosen
for further investigation as a good compromise between number of reversal events and
time points outside the reversal areas.

Analysing the trajectories obtained accordingly to the experiments on different lengths
of stripes, we see that the tip geometries seem to have little to no influence on reversal
times as depicted in Fig 3.6. Panel (a) shows the velocity distributions in the centre
part of the stripes for the different geometries coded in colour. The insert displays
the corresponding counts. Mean velocities range from 34.7 µm/h for the round tip
to 41.1 µm/h for the pointed tip, ranging within the expected scale, modulated by
cell-to-cell variations. Reversal times plotted in panel (b) show even less variation for
the different geometries. Although magnitudes of the densities do indicate slight differ-
ences, mean as well as median reversal times range within the temporal resolution of
10 min for all geometries.
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Figure 3.5.: Different stripes with annotated dimensions and reversal areas indicated in colour. The
stripes are designed in a way to have a constant middle part and tips of the same area. All circular
shapes used here have a radius of 10 µm and stripes have a constant width of 20 µm. Names and
colours indicated here are further used for the different geometries.
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Figure 3.6.: Distributions of velocities and reversal times for different tip geometries. (a) Colour-coded
distributions of velocity in the centre part of the stripe and accordingly coloured inserts displaying
count basis of the densities. (b) Colour-coded distributions of reversal times at the tip regions and
accordingly coloured inserts displaying count basis of the densities.
Adapted and reprinted from [136] under (CC BY 4.0).
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3.2. Repolarization in Different Tip Geometries

3.2.1. Repolarization Time in Experiment and Simulation
The indifference of the cells to the presented tip geometries nevertheless is an intriguing
effect in its negativity and presents an interesting basis for comparison with the CPM.
Analysing the simulated trajectories analogously to experiment and adjusting time via
velocity in the centre part of the stripe, we obtain densities compared in a violin plot
in Fig 3.7. Simulated reversal time distributions are depicted in coloured contour cod-
ing for tip geometry and filled with white on top of experimental densities with solid
contour and shaded filling. Density amplitudes between simulations and experiments
are scaled by a constant to allow for better comparability. Now comparing the distri-
butions of simulation and experiment, we can see a much less pronounced stochasticity
of reversal of the simulations but nice agreement in peak position that is confirmed in
mean and median values. The much narrower distributions for simulated cells are due
to the nature of the modelling process where we simulated cells using different random
seeds but the very same parameters, thus describing perfectly monoclonal cells but not
including population heterogeneity as in experiment.

0

200

400

600

Densities 

Re
ve

rs
al

 ti
m

e 
in

 m
in

blunt concave pointed round

blunt
concave
pointed
round

Experiment

blunt
concave
pointed
round

Simulation

Figure 3.7.: Reversal time densities for experiment and simulation for different geometries. Densities
are displayed in white with coloured contour for simulations and shaded for experiments. Furthermore
densities are scaled by a constant factor between experiments and simulations to allow for better
comparability.
Adapted and reprinted from [136] under (CC BY 4.0).

3.2.2. Actin Dynamics in Experiment and Polarization in
Simulation

Although there is no difference for different tips in reversal times, the cells do encounter
quite distinct geometries at the tip. Especially the depolarization as the cell reaches
the end of the geometry presents an interesting phenomenon. To visualize this depo-
larization, cells were transfected with LifeAct GFP mRNA. Exemplary close-up images
of F-actin distribution during depolarization are shown in Fig 3.8 in the top rows and
compared to the polarization field of simulated cells displayed beneath. Panel a shows
how actin polymerization in the blunt end stops equally distributed, similar to the
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round tip in panel d. For concave shaped tips in panel b, we see how the lamellipodium
splits into two small one that each advance into the pointed ends. In contrast, in panel c
the altered negative curvatures in the tip lead to a focusing of F-actin activity in the
pointed end. The polarization field in simulation is not as spatially narrowed and does
not as clearly show either splitting or focusing. This may be due to the broader region
of high activity in simulation simply not yielding a contrast big enough to show in
the overall polarization, suggesting that polarization describing the level of the whole
cell does not correspond to the microscopic actin activity on the subcellular level in
detail. Furthermore, the cells in experiment often protrude into the area around the
micropattern which is energetically not possible in simulation.

a b

c d

Figure 3.8.: Time series of cells in different geometries reaching the tip. Comparison between LifeAct-
GFP transfected MDA-MB-231 cells in the top row and simulated data below for (a) blunt (b) concave
(c) pointed and (d) round tips.
Adapted and reprinted from [136] under (CC BY 4.0).

3.3. Discussion
In this work, we analysed cell motion in confining stripes. Restricted to these stripes,
cells show polarized quasi oscillatory behaviour along the long axis of the stripes. This
motion can be characterized by the movement velocity and the reversal times in the tip
regions. There, the leading edge encounters the end of the fibronectin coated adhesive
surface and the begin of the cell-repellent PEGylated area that prevents the formation of
focal adhesions and thereby stops further movement into this area. Presumably by this
reduced capability of adhering, the cell depolarizes in this region and new protrusions
are formed at the free edge on the opposite end of the cell. This phenomenon of
quasi oscillation is stable for all investigated lengths and geometries, in accordance
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with previous studies reporting on the persistence length to be much larger with about
400 µm [36, 21]. Interestingly, even the migration velocities and reversal times are
found to be very similar for all geometries used in this study.
However, for different curvatures at the tip the microscopic details in actin distribution
vary, indicating that protrusions into tapered constrictions are enhanced and can even
split into two separate small ones. This microscopic differences and constant overall
reversal time independently of geometry allow the conclusion that depolarization time
scales are short compared to overall turning and repolarization at the opposite edge.
For a future study, one could also think about switching from 2D confinement to 3D.
In this study, cells are solely able to ”feel“ presented curvatures via the position of
substrate adhesions resulting in deformation of the membrane. The real 3D curvature
of the leading edge often extends out into the PEGylated area ”blurring“ the curvature.
Here, forcing the cell into a 3D confinement might lead to more pronounced curvature
effects.
Comparison with the extended Cellular Potts model described in detail in [33] yields

a possible explanation for stochastic reversal times, another indication of the model’s
capability to describe motion of cells: A cell randomly explores its vicinity and at
successful adhering to the substrate, positive feedback reinforces the adhesions and
promotes further polarization in the close surrounding area. At the tip, the inability
of the cell to form new protrusions leads to a halt in positive reinforcement and the
polarization fades or is actively quenched. At the same time, the cell still tries to form
new adhesions in its surrounding leading to the inevitable formation of new adhesions
on the free, opposite cell edge. With positive feedback, the cell repolarizes at this side
leading to a full reversal. The main driving mechanism for quasi oscillatory motion in
stripes thus can be reduced to the stochastic emergence and reinforcement of exploring
protrusions of the cell. We will investigate the multifariousness of the Cellular Potts
model in the next section.
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4. Multi Geometry Calibration on Single Cell
Trajectories

Cell migration is a complex process and the regulatory networks are highly intertwined
[12] and precisely spatiotemporally controlled [60]. Confining cells to micro-structured
environments has proven a versatile tool to specifically access intracellular organiza-
tion [134], characterize single cell motion [162] or observe the dynamics of collective
migration [92]. By restricting single cells to patterned surfaces, the naturally complex
spatio-temporal dynamics is reduced and particular aspects of cell migration can be
addressed such as persistence and speed of migration or reversal time for repolarization
[36, 136]. Such kind of experiments are a useful basis for models. Here, we present
a systematic approach to determine the full set of CPM parameters as presented in
section 2.3.2 using a set of well-chosen experiments of single cells in defined geome-
tries. The geometries accentuate complementary properties and facilitate a successive
parameter determination. We demonstrate this “calibration” strategy using four data
sets from a MDA-MB-436 cell line. It is furthermore shown that a calibrated CPM-cell
will allow for predictive modelling of cell behaviour in novel geometries that have not
been used in the parameter optimization.

4.1. Single Cell Geometries with Orthogonal Properties
We performed experiments in a set of four distinct geometries shown in Fig 4.1. Each
geometry yields different measures of migration for a single cell. All experiments are
performed with the same cell line, in our case MDA-MB-436, a cancer cell line that is
shortly characterized in section A. In total, the experiments yield seven different ob-
servables as listed in Table 4.1 and at least one hundred cells are recorded per geometry.

a cb d

Figure 4.1.: Cells in different confinements. Cell nuclei are stained with Hoechst and indicated in blue.
(a) Cell in no confinement, (b) stripe with round tip (length 170 µm, width 20 µm), (c) ring-shaped
micropattern (inner radius 40 µm, outer radius 60 µm), (d) ring with a cell-repellent gap (ring as c,
gap width 13 µm). Figure tiles c and d adapted and reprinted from [162] under (CC BY 4.0).

The most simple geometry for two dimensional migration is a cell without confinement
that freely moves on an adhesive substrate. From this case, we extract the unperturbed
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cell area A0. A simple, dimensionless measure for shape of a two-dimensional object is
circularity O, relating area A and perimeter P via O = P 2/4πA. For a perfect circle,
the circularity is equal to 1 and increases with rougher outline. Therefore, cells were
stained with a cytosol marker and area and perimeter were extracted by a Python script
and manually checked for miss-identifications as described in Appendix B.2. Futher-
more, we observe cells to move in mesenchymal mode, i.e. with a clearly pronounced
lamellipodium, an elongated cell shape and a slimming rear. This means, cells in ex-
periment move along the long axis of their body, a phenomenon that often is not the
case in CPMs and will also be used for parameter determination.
As presented in section 3, a stripe-shaped geometry is very suitable to study frequent
arrest of motion and repolarization; a feature challenging to more mechanical descrip-
tions of cell motion [143]. We analyse cells on stripes of a length of 170 µm with a
round tip. Here, we extract the reversal time in the tip region trev and additionally
the mean velocity v that is used for time calibration. Experimentally, microscopy data
was automatically processed by a Python script detecting the pattern, rotating and
cropping areas of interest and tracking the centre of mass of the stained nucleus as
described in Appendix B.1. Afterwards, all extracted cell tracks were manually checked
for miss-identifications.
Another geometry restricting cell motion to quasi one dimension is a ring-shaped con-
finement that has been previously suggested as a platform to compare cell migration via
a ”migratory fingerprint“ [162]. To describe cell motion in such a circular confinement,
the mean squared displacement MSD is particularly suited. Experimental trajectories
were re-evaluated from [162].
A simple modification of the ring, introduced in [162] as well, allows access to another
completely independent parameter. A gap in the ring shape provides the opportunity
for investigation of cell protrusions into cell-repellent areas. To quantify the ability of
the cell to overcome repulsion by the passivated area, the crossing probability over a
gap pc is well suited. Here a gap width of 8 µm is used and pc is calculated by defining
an area ±40µm around the gap and observing entry and exit side, i.e. crossing (c) or
turning (t) and taking the ratio of event numbers pc = nc

nc+nt
with nc the number of

crossing and nt the number of turning events. Experimental data from [162].
To facilitate later comparison with simulations, Table 4.1 gives an overview of the

observables, their symbol of representation, the geometry they are extracted from and
their value used for calibration.

Table 4.1.: Overview of geometries and extracted experimental observables from MDA-MB-436.
Geometry No Confinement Stripe Ring Gap

Observables Area Circularity Velocity Reversal time MSD Cross. Prob.
Symbol A0 O v trev MSD pc
Calib. Value 733 µm2 5.06 34.9 µm

h
90 min - 35%
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4.2. Determining Parameters of the Cellular Potts Model

4.2. Determining Parameters of the Cellular Potts
Model

Now that we have reduced cell migration in different confinements to their unique char-
acterizing variables, we want to connect these observables with simulation parameters
of a cellular Pott’s model (CPM) as introduced in section 2.3.2. This hybrid model
that combines a constrictive, mechanical term with an elastic term for polarization and
adhesion is a versatile tool to abstract the complex processes underlying cell migration.
In contrast to section 3, we want to stepwise derive model parameters by connecting
them with experimental observables in one to one relations. As submodels of CPMs are
meaningful in their own right, we start with a minimal set of parameters and increase
complexity while further refining the cell. After each newly set parameter, we go back
through all previous steps to ensure no aspect of migration is neglected arriving in a
full set of parameters capable to reproduce cell migration in all geometries with the
same set of parameters.
For the sake of brevity, in the plots of this section only the very first calibration of each
parameter is depicted. A full overview of the parameter evolution during the process
of calibration is given in Table 4.2.

4.2.1. Cellular Potts Model in Equilibrium
Starting with a minimal set of parameters for a cell adhering to a surface, we set the
polarization field to the mean polarization ε0 and do not allow temporal evolution.
Thus, we set the following term to zero: the polarizability of the cell ∆ε = 0, the
feedback radius for protrusions or retractions R = 0 and the cytoskeletal rate µ = 0
that describes how fast the cell polarizes.
As described in [33], temperature in this model is a degenerated parameter that scales

the overall probability of a retraction or protrusion event to happen via p(T ) ∝ −∆H
kBT

.
Thus, we set it to an arbitrary value of T = 40.
The model is scalable to describe cells in different spatial resolutions and therefore

we need to fix one more parameter to start from. We set the mean polarization to a
starting value of ε0 = 1500 and determine all other parameters in dependence on the
mean polarization.
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4. Multi Geometry Calibration on Single Cell Trajectories

Micropattern set hexagon-to-micrometer scale

To set a spatial resolution of the hexagons, we use the confinement microstructures and
choose a number of hexagonal tiles for representation that still allows for enough detail
to describe the round tip of the stripe and introduce small gaps in the ring, as seen in
Fig 4.2.

5 µm 5 µm

a b

Figure 4.2.: Spatial resolution of hexagons determines level of detail in micropatterns. (a) Round tip
of stripe structure. (b) Zoom in on the gap of the ring-shaped micropattern.

The area of all simulations is set to correspond to a square of 200 µm × 200 µm,
represented by hexagons arranged in 460 columns and 530 rows1. This allows for direct
transfer of area, perimeter and coordinates in simulation to experimental observables
measured in µm2, µm and Cartesian coordinates.

Area and Area Coupling κA

At equilibrium, the CPM shows no gradient in polarization and thus no polarization-
driven movement. An easily accessible parameter of such a resting cell is the adhesion
area. Here, the cell area is balanced by restrictive forces of the contractile term and
elastic forces of the mean polarization. As we already set the mean polarization ε0, we
can now adjust the mechanical parameters that constrict area, the area coupling κA,
and perimeter, the respective perimeter coupling κP . For simplicity, we first assume the
influence of both to be equal, setting κP = κA as their influence should be of the same
order of magnitude. Thüroff et al. [33] determined the area coupling to be of major
influence on cell size, so we first determine the area coupling κA to result in a cell area
A0 as observed in experiment. Therefore, we vary the area coupling κA and compare the
resulting area to the experimental value. As a proportional dependence of area on the
ratio ε0/κA was reported, we expect a monotonously decreasing coupling between area
and κA. The optimal value for κA is determined by spline interpolation with additional
monotonicity assumption according to the method of Fritsch and Carlson [179] and
depicted in Fig 4.3a.
As can be seen in Fig 4.3b, the variations in experimental cell sizes are much more

pronounced than for simulations. This can be explained by a variety of reasons. Ex-
1These numbers are not the same due to the hexagonal grid of the model that lead to a different
width than height
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Figure 4.3.: Determination of area coupling κA by cell area A0. (a) Dependence of cell area on area
coupling, dashed lines indicate experimental mean area and interpolated κA.
(b) Boxplots of area distributions. Experimental data in blue, simulations in red. The filled box
corresponds to the 25 to 75 percent quantiles and the median is indicated by the solid horizontal line.

perimental cells are no perfect monoclonal replicates of the same cell, whereas in sim-
ulation the exact same parameters are used. Furthermore, in experiment we didn’t
inhibit polarization for the determination of cell size, as this mostly results in a change
in morphology resulting, for instance, in the rounding of cells. But the most reasonable
explanation of the experimental variation in sizes is simply the fact that real cells divide
after some time into two daughter cells of about half the size that again grow to divide.
Thus, we approximate a cell cycle independent area by taking the median cell area and
neglecting cell division in simulations.

4.2.2. From Equilibrium to Polarization
Allowing a small, localized polarization, we leave the non-motile equilibrium regime.
Therefore, we set the cytoskeletal rate to the maximum value µ = 1, resulting in a
discrete three step polarization ε ∈ {ε0 − ∆ε/2; ε0; ε0 + ∆ε/2}. The initial value of the
feedback radius for protrusion and retraction events R = 4, corresponding to ≈ 1.8 µm,
is motivated by the width of the membrane ruffles at the cell front. For the polarizability
∆ε, we lack a biologically motivated starting point, so we determine its value as first
migratory parameter.

Circularity and Polarizability ∆ε

As the value of polarizability determines the outwards pushing force of the cell and the
strength of adhesion to the substrate, we expect it to strongly influence the cell shape.
Varying polarizability widely across its range of definition (0 < ∆ε < ε0), we obtain
completely different cell shapes from almost circular cells to very rough and frayed ones.
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Figure 4.4.: Determination of polarizability ∆ε by circularity O. (a) Dependence of circularity on
polarizability, dashed lines indicate experimental mean circularity and interpolated ∆ε.
(b) Boxplots of circularity distributions. Experimental data in blue, simulations in red. (c) Exemplary
images of simulated cells for different polarizabilities.

By tuning the polarizability as depicted in Fig 4.4, we fit mean circularity in simula-
tions to experiment. First, depicted in panel a), we vary polarizability and interpolate
the observed values of mean circularity as described for the area. Second, we compare
the obtained distribution of circularities for simulation with the fit parameter and ex-
periment and obtain nice accordance, see panel b). Panel c) shows cells for different
polarizabilities to motivate circularity as a well-suited measure for cell shape.
This adjusted polarizability now describes the minimal adhesion energy of a cell

before it detaches as well as the maximal protrusive force a cell can exert in simulation.
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4.2. Determining Parameters of the Cellular Potts Model

Reversal Time and Cytoskeletal Rate µ

So far, we only allow three different states of cell polarization, i.e. minimal = ε0−∆ε/2,
mean = ε0, and maximal = ε0 + ∆ε/2. As this does not at all capture important biologi-
cal phenomena as for instance the slow process of depolarization, we aim to correct this
description next. A geometry particularly suited to observe cell depolarization and re-
polarization is stripe shape already explored in section 3. The parameter describing the
speed of regulation of polarization is the cytoskeletal rate µ that determines the number
of intermediate polarization steps. As we now no longer compare time-independent cell
observables, a method to connect simulation time, given in Monte Carlo Steps (MCS)
and experimental time has to be established. To this end, we extracted the mean ve-
locity of cells in the stripe from experiments and set it equal to the velocities observed
in simulation. As both velocities contain the displacement in µm, we obtain a factor
for time calibration that calculates to 0.00689 h/MCS = 0.4134 min/MCS. By applying this
factor to the reversal times, extracted as in section 3, we obtain simulated and experi-
mental reversal times in minutes. Then we investigate the evolution of median reversal
time trev in dependence of the cytoskeletal rate µ, see Fig 4.5a. To this end, we model
the median trev with a quantile-regression spline fitted by the R package mboost [180].
The distributions of experimental reversal time and adjusted simulation are depicted
in panel b) and nicely correspond.
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Figure 4.5.: Determination of cytoskeletal rate µ by reversal time in a stripe. (a) Evolution of reversal
time in dependence on cytoskeletal rate. Dots show medians of simulations. Dotted lines indicate the
experimental median trev and selected µ. Solid line depicts the fit and shaded regions correspond to
± 2 se, i.e. standard error obtained by 999-fold bootstrapping. (b) Resulting reversal time distributions
after parameter adjustment.
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4. Multi Geometry Calibration on Single Cell Trajectories

Directionality and Signalling Radius R

After adjusting the first parameter in a second geometry, we take a step back and
observe the behavioural changes for a cell without confinement. Area and circularity
are barely changed. However, simulated cells without confinement no longer show
typical polarization behaviour of two or more competing protrusions and an elongated
shape in the direction of movement but rather a keratocyte croissant-like shape. An
additional observable describing the cell shape in dependence on the direction of motion
needs to be introduced to ensure correct cell behaviour in periodic boundary conditions
without confinement. This dependence can be quantified by the angle between the long
axis of the cell and the direction of movement, termed d. A frequent observation in
CPMs is the keratocyte-like cell shape that here contrasts the reported elongated shape
of cells in experiment [181]. Although not extracted from experiment, the angle can be
calibrated by minimizing it in simulation. Here, we turn to the signalling radius R as
feedback mechanism of protrusion. We vary R to minimize the angle between long axis
of the cell and movement direction of the cell and discover a bi-phasic behaviour plotted
in Fig 4.6. Investigating both areas of local minima, R = 1 and R ≥ 30, we discover
a ”dead-end“ for the latter as for the stripe geometry the extrapolated optimum of µ
exceeds the maximum of µ = 1. Furthermore, at R ≥ 30 cells no longer move in a
random walk like fashion but spiral in circles. This phenomenon of circular motion has
been previously reported for cells reacting to a chemo-attractant [31], but in the case
presented here is caused by a feedback radius that covers a comparably large part of
the cell. The respective feedback radius is indicated in panel b) of Fig 4.6 as solid grey
hexagon.

Figure 4.6.: Determination of signalling radius R by angle of polarization and the long axis of the cell.
(a) Mean angle for different signalling radii. (b) Typical cell shape for two different signalling radii
with respective R indicated as solid grey hexagon.

Having minimized d setting R = 1, we re-calibrate the previously determined param-
eters and arrive at a set of parameters that is capable of describing all observations so
far at the same spatial and temporal resolutions as stated earlier.
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4.2. Determining Parameters of the Cellular Potts Model

Mean Squared Displacement and Perimeter Coupling κP

So far, we equally weighted area coupling and perimeter. Whereas area coupling κA
has a quite intuitive influence on area as we saw before, the perimeter coupling κP
is more difficult to grasp. Thüroff, Goychuk et al. [33], have unravelled an important
relation where the persistence time of motion increases monotonically with the ratio
of polarizability ∆ε and perimeter coupling κP . Using the ring-shaped lane geometry,
we want to fine-tune this ratio via the mean squared displacement (MSD) of a cell
as function of time. Time is using the same factor of 0.4134 min/MCS applied before.
Thüroff, Goychuk et al. [33] furthermore showed that this ratio consistently determines
not only persistence time but aspect ratio as well. We thus knowingly compromise
between circularity and MSD by changing κP . To measure the distance to the exper-
imental MSD curve, we employ the Sobolev distance induced by the L2 norm applied
to f(t) = log(MSD(log(t)) and its first derivative ḟ(t) [182]. The log-log-scale is the
standard scale for interpreting MSDs and the Sobolev distance reflects both absolute
values and slope of the curve. The distance is discretized at the experimental 10 min
sampling rate and minimized as depicted in Fig 4.7.
In Fig 4.7b, we see that experimental MSD shows a transition behaviour in scaling

from MSD ∝ τ 2 to MSD ∝ τ , indicating a transition from more ballistic to diffusive
behaviour. For simulation data, this effect is not as pronounced. Although a clear
transition from ballistic to diffusive motion has been reported in [33] for a freely moving
cell, we don’t see this effect as clearly in a ring shaped micropattern. Nevertheless, as
shown in Fig 4.7c, we do see random turning events for κP = 0.3352, an important
feature for migration in a ring-shaped micropattern. The chaotic trajectory for κP = 0.1
can be explained by looking at the cell images in Fig 4.7d. For small values of κP , the cell
looses coherence and several cell segments, connected by thin membrane tubes, move
almost independently. This is a biologically not reasonable behaviour. The simulation
still returns the calculated centre of mass that no longer adequately describes the cells
and leads to a chaotic trajectory. For κP = 0.4, we see completely erratic movement
and the cell barely polarizes at all. This may indicate that the ratio of polarizability ∆ε
and perimeter coupling κP already is too big and the behaviour reported by Thüroff,
Goychuk et al. [33] may change in a ring-shaped confinement compared to a freely
moving cell.
By tuning the parameter coupling κP , we achieve cell motion reproducing sponta-

neous turning events while maintaining the mean aspect ratio within reasonable range
of experimental observations, compare Fig 4.9c.
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Figure 4.7.: Determination of perimeter coupling κP by mean squared displacement in a ring. (a) Log-
log Sobolev distance of simulations with different κP to experiment. (b) Mean square displacement
trajectories in a ring for experiment (blue) and simulation with best fit (red). (c) Spiral plots, where
radius of motion is increased over time, for different κP . (d) Corresponding image of a simulated cell
in a ring.

Transition Probability and Adhesion Penalty D

So far, in simulations the cell was exclusively confined to the micropatterned structure.
In experiment, the micropattern consists of a fibronectin coated surface and the sur-
rounding area is passivated by PLL-PEG that should not allow for cell adhesion [150].
However, cells can extend into this area and overcome a small repellent space [162].
Using a ring with a gap, we tune the strength of repulsion by the energy penalty field
D that directly feeds back into polarization as described in section 2.3.2. We link it to
the crossing probability pc over a 8 µm gap, as shown in Fig 4.8.
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Figure 4.8.: Determination of adhesion penalty D by crossing probability over a 8 µm gap in a ring.
(a) Crossing Probability for different adhesion penalties D and best fit to experimental data, indicated
by dotted lines. (b) Crossing probability in experiment (blue) and adjusted D for simulation (red).
(c) Spiral plots, where radius of motion is increased over time, for different D, gap indicated in grey.

Exemplary trajectories for different penaltiesD are plotted with radius of confinement
increasing with time, as already used for mean squared displacements. The position
and width of the gap is indicated in grey. For very small adhesion penalties, compare
D = 10, cells are no longer confined to the ring shape but move rather freely, leading
to a no longer reasonable definition of crossing probability. For intermediate values,
see D = 50 and D = 104, the cells are nicely confined and crossing and turning events
can be observed. At high penalties D > 150, the cells no longer cross the gap but turn
when their front reaches the repellent area. By estimating the crossing probability pc
with logit-regression as depending non-linearly on a spline of D, we find the optimal
value for the adhesion penalty field to be D = 104.
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4.3. Calibrated CPM and Predictive Power
After iterative calibration of single parameters, we arrive at a set of parameters that is
suited to describe cell migration in four different geometries simultaneously, as depicted
in Fig 4.9.
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Figure 4.9.: Comparison of experiments (blue) and simulation (red) with fully calibrated set of pa-
rameters. Scale bars correspond to 20 µm. (a) Cell without confinement, cell shapes on the left,
exemplary trajectories on the right. (b) Cell in a stripe, typical cell image in confinement on the left,
exemplary trajectories along the long side on the right. (c) Cell in a ring, typical cell image on the
left, spiral plots with radius of motion increased over time on the right. (d) Cell in a ring with 8 µm
gap, image during crossing on the left, spiral plots with radius of motion increased over time and gap
indicated in grey on the right.

We conclude that the CPM is capable to reproduce different migratory behaviours in
four distinct confinements with one carefully obtained set of parameters. Experiment
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4.3. Calibrated CPM and Predictive Power

and simulation match in following aspects: Cells without confinement show multiple
competing protrusions and frequently change direction of migration. Their shape is
elongated along the main movement direction and shows a broader front and a slim-
ming rear. In a stripe, cells migrate from one end to the other in an oscillatory manner
with reversal times of different lengths at the ends. There, they completely depolarize
and spontaneously repolarize. In a ring-shaped confinement, cells show quite persistent
motion but also turning events occur and the direction of migration reverses. Cells
encountering a repellent barrier in a ring show crossing as well as turning events at the
barrier and spontaneous reversal of migration anywhere on the ring. As all previous
geometries were re-evaluated after each new step, we developed a consistent description
of a cell in different micro-environments. The parameter evolution is summarized in
Table 4.2. Note that due to the careful optimization using nested models and indepen-
dent observables only one recalibration of parameters was needed when proceeding to
a subsequent step.

Table 4.2.: Overview of experimental observables and parameter development used for single cell CPM
simulations. Rows: Simulation Parameters. Columns: Steps in Calibration, labelled by experimental
observables used in this step, calibrated parameter bold.

Parameters Experimental Observables
A0 O vexp, trev dir MSD pc

T 40 40 40 40 40 40
ε0 1500 1500 1500 1500 1500 1500
κA 0.2236 0.2236 0.2236 0.2236 0.2236 0.2236

min/MCS - - 0.4134 - 0.4134 -
∆ε 0 406 406 834 834 834
µ 0 1 0.099 0.077 0.077 0.077
R 0 4 4 1 1 1
κP = κA = κA = κA = κA 0.3352 0.3352
D ∞ ∞ ∞ ∞ ∞ 104

Predictive Power for a Dumbbell-shaped Confinement
We now challenge the CPM by introducing a new geometry, a dumbbell-shaped mi-
cropattern that has been previously used to characterize migration [26].
Fig 4.10 depicts a comparison of experiment and simulation with the calibrated CPM.
The panel Fig 4.10a shows the localization of cell nucleus in experiment and centre of
mass in simulation, already indicating differences. In experiment, cells spend most of
the time on either side of adhesive squares whereas in simulation cells seem to get stuck
on the bridge connecting the two islands. This is confirmed by the plot of experimental
trajectories in Fig 4.10b. However, if migration is simplified to hopping rates from one
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side to the other, the differences seem less pronounced, compare Fig 4.10c. A possible
reason for deviations is the simplification of cells to two dimensions that is of particu-
lar interest when cells move over the bridge. In experiment the cell does not need to
deform much but simply ”hovers“ over the bridge whereas in simulation, cells seem to
get stuck due to energy penalties on membrane deformation and adhesion outside the
bridge leading to unpolarized cells trapped on the bridge. In conclusion, the calibrated
CPM is capable of reproducing qualitative migratory phenomena, such as the hopping
of cells from one island to another, but differs when migration is quantified.
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Figure 4.10.: Predictive capability of calibrated CPM and comparison in a dumbbell micropattern.
(a) Position of cell nucleus in experiment and centre of mass in simulation on a dumbbell. (b) Exem-
plary trajectories for experiment (blue) and simulation (red) along the long side. (c) Distribution of
hopping rates for experiment (blue) and simulation (red). Experimental data provided by Alexandra
Fink.

Predictive Power for Different Tip Geometries
As the calibrated CPM is capable to reproduce cell behaviour in various geometries
quantitatively and predict it qualitatively in dumbbells, we challenge this model with
the tip geometries investigated in chapter 3. There, the model correctly reproduced
the invariance in reversal times. However, when we compared the polarization field
of the model with a LifeAct marker visualizing actin at the leading edge while the
cell encountered the differently shaped ends of the stripes the model did not show
some features such as the splitting of lamellipodia in concave tips. Here, we used the
fully calibrated CPM to simulate these geometries again and observed the polarization
field at encounter with the end of the lane as shown in Fig 4.11. For comparability,
the experimental pictures from chapter 3 are again depicted next to the images of
simulation. With the fully calibrated CPM, the polarization field shows the behaviour
we observed experimentally. At the blunt end, polarization is evenly quenched. For cells
migrating into the concave tip, the active region splits into two parts as polarization
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a
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d

Figure 4.11.: Correct reproduction of actin distribution in different tip geometries by the polarization
field of the fully calibrated CPM. LifeAct stained actin distributions obtained in experiment shown
in colour next to simulated images of the same geometry. (a) Quenching of actin activity in a stripe
with blunt end. (b) Splitting into two tips for negative curvature. (c) Focussing into the pointed end.
(d) Centred quenching in the positive curvature.

is quenched first in the centre. For a related geometry, a protruding concave tip,
polarization is persistent in the tip although the cell in simulation is more confined to
the pattern than in experiment. In the round structure that has already been used
during calibration, polarization is quenched rather evenly and a last active part is
visible in the centre although it is not as clearly defined as for the protruding concave
tip. Here, stepwise calibration has lead to a parameter set that, unlike the simulations
presented in section 3.2, is capable to reproduce even details in the actin distribution
while maintaining accordance to experiment in all other geometries used.

4.4. Discussion
In this chapter, a method for parameter optimization of a CPM is proposed, tested and
extrapolated. Using experiments on confinement geometries evoking different migratory
properties, model parameters are determined in a step-wise process. Explicitly defined
observables and distance measures for comparison between experiment and simulation
guarantee transparency and reproducibility. Statistical modelling was used to approx-
imate objective functions at, yet, unevaluated sites, yielding guidance for parameter
space exploration. Starting from a minimal set of parameters, determination of new

49



4. Multi Geometry Calibration on Single Cell Trajectories

parameters and re-checking already calibrated ones leads to a continuously improved
accuracy for cell representation, shown for the freely moving cell in Fig 4.12. In the
end, all experiments are nicely reproduced with a single set of parameters both qual-
itatively in terms of cell shape and trajectories as well as quantitatively determined
by the established accuracy measures. However, the possibility of another even more
suited parameter cannot be ruled out, as two starting parameters were determined a
priori and not changed throughout the process. Furthermore, the parameter optimiza-
tion guided by statistical modelling could be further refined and reconceptualized in the
sense of model based (Bayesian) optimization [183]. This approach is particularly suit-
able for costly objective functions involving for instance the conduction of experiments
or computationally expensive simulations.

Advancing Calibration

Figure 4.12.: Images of free cell with advancing calibration from left to right.

Applying the fully set parameters to a new geometry, a dumbbell-shaped microstruc-
ture, the model shows even predictive capability on a phenomenological level. Predic-
tions of hopping motion between the two adhesive sites are observed in experiment as
well. When experiment and simulation are compared on a quantitative level, the limits
of the model become apparent and hopping rates in simulation are about a factor of two
smaller than in experiment. This discrepancies can be lead back to the fundemental
difference between the two dimensional nature of the model and the three dimensional
biological cell that is highly emphasized in the dumbbell geometry. However, for the
different tip geometries we observe accordance even on the level of microscopic details
that highlights the strong predictive capability and clever biological abstraction of the
model.
In conclusion, CPM parameter determination benefits from a step-wise calibration

approach with experimental data leading to the capability of reproduction of many
features of cell migration simultaneously. Yet, fundamental differences restrict full
accuracy. An expansion of the CPM to three dimensions at conserved volume and
explicit introdution of a bio-chemical and a mechanical adhesion field could lead to a
much more accurate representation and could even allow for modelling of different cell
lines opening a whole new field of possible experiment-simulation comparisons.
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5. Persistence of Polarized Motion in Mazes

The ability of single cells to move persistently over large distances through complex en-
vironments is an important process for instance for the human immune system. There,
leukocytes are exposed to different external clues [184] and in response navigate through
dense surroundings in a fast and efficient manner securing our resisting to pathogens
[5]. While migrating through complex tissue, cells constantly have to find their path
exploring different branches and squeezing through small constrictions. To investigate
this complex form of navigation, an abstraction to more simple geometries is useful
[185]. Whereas directed leukocyte migration is crucial for our immune system, just
the opposite is true for cancer metastasis where cells invade into healthy tissue leading
to the formation of new tumors. This single cell migration of cancerous cells can be
observed both in three dimensions as well as in two dimensional lanes [173, 143].
Much is already known about the biochemical regulation of polarization inside cells

but we want to analyze the temporal evolution of cell polarization in a complex environ-
ment. Here, we investigate single cell decisions in mazes and the resulting development
of a directional memory. We apply a simple urn model, expand it for a memory term
and a memory-degradation term and find that cell migration through a maze is more
than a simple random left-right decision. Previous decisions influence the next choice
and the effect weakens for decisions laying further back.
This work is a collaboration with Theresa-Maja E. Reitz as part of her Bachelor’s

Thesis [186] and David B. Brückner and Chase P. Broedersz from the Arnold Sommer-
feld Center for Theoretical Physics of the LMU.

5.1. Accessing Migration through Mazes
Confining cells to microstructures is a very versatile and broadly used tool to investigate
specific properties of cells in a reproducible and coherent manner. To investigate direc-
tional bias in cell migration, a geometry presenting many subsequent left-right decisions
is needed. Furthermore, cells need to be able to migrate the maze in any direction to
gain long trajectories and better statistics.

The Maze
The structure used to access persistence of polarization here is shown in Fig 5.1. It
consists of a stretched hexagonal lattice to suggest a preferred movement direction along
the long side of the pattern. Cells moving from left to right or vice-versa encounter
a spike forcing them to decide for left or right. They are lead back into a horizontal
part and again encounter a spike forcing them to decide. In this way, many subsequent
decisions can be observed of many cells in parallel as plotted in Fig 5.1c.
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5. Persistence of Polarized Motion in Mazes

a

b

c

Figure 5.1.: Microstructured maze for the investigation of directional memory in cell migration. Scale
bar = 200 µm. (a) Image of the wafer negative structure. (b) Experimental overlay image of cells
on the maze. Micropattern in red, phase contrast in gray and cell nuclei used for tracking in blue.
(c) Binarized maze and trajectories in color generated using the TrackMate plugin of ImageJ [187].

Here, all experiments were performed with MDA-MB-231 cells, a highly invasive
breast cancer cell line shortly described in Appendix A.4. Structures were fabricated
using microcontact printing as described in section 2.4 and [150]. Trajectories were
extracted using the TrackMate plugin of ImageJ [187].
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5.1. Accessing Migration through Mazes

Breaking down Motion into Decisions
To discretize the cell trajectories into a tuple of choices, the maze is subdivided into unit
cells and cell motion is tracked from one unit cell to another as illustrated in Fig 5.2.
This results in lists of discrete left or right choices for each cell obtained as described
in section B.3.

1

2

3 4

1

2

3

4

left, right {lr}

right, right {rr}

right {r}

right, right {rr}

Figure 5.2.: Exemplary trajectories of cells on a grid of unit cells and resulting decision lists. Unit
cells are color coded. Trajectories 1 and 2 show no turning events. Trajectories 3 and 4 show one
and two turning events, respectively. Two successive turning events as shown in 4 lead to a difficulty
in classification as {right, left} is justifiable as well depending on how far the cell advances into the
horizontal part of the orange unit cell. If trajectory 4 advances more than 26 µm into the dark blue
unit cell, the track is classified as {right, left, right}. This distance corresponds to roughly a quarter
of the horizontal segment of the unit cell.

The decisions are saved in lists and result in the relative frequency tree shown in Fig 5.3.
All tracks are stopped after four subsequent choices to minimize the selection for un-
usually fast cells. The total amount of cells to make the fourth choice has dropped
to about one third. In the relative frequency tree, all possible choices are listed sep-
arately and can be used to get a first feeling for the stability of the observed effects.
As we know nothing about the previous choices of the cells and the pattern is sym-
metric for left and right choices, we expect the first decision to have a 50:50 relative
frequency as directional biases of different cells should level out. Deviations from these
numbers can be seen as a quality measure for sample size and the resulting stability
of stochastic effects and relative frequencies. Here, for a total of 2787 cells we observe
relative frequencies of f(l) = 51.6% for a first left choice and f(r) = 48.4% for right.
For the probability of a first left choice, we obtain a 95% Wald confidence interval of
[0.497, 0.535] which indicates that deviations from symmetry, if present at all, are very
small. Thus, and as there is no reason why cells should have an intrinsic preference for
left or right, the order of choices is assumed to modulate the relative frequencies in a
symmetric way, i.e. f({llrr}) = f({rrll}). A symmetrization of the decision tree for
left and right further improves the statistic reliability by roughly doubling the number
of observations and the relative frequencies are treated as probabilities for comparison
with models for memory in the following denoted as ”s“ for start and same as the first
choice and ”d“ for different than the starting choice.
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Figure 5.3.: Decision tree for single cells in a maze. Edges are labeled with dependent relative fre-
quencies, boxes indicate absolute relative frequency and total number of observations. Last column
specifies branch decisions, ”l“ for left and ”r“ for right.
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For the ease of comparison, a symmetrized decision tree with according labeling is
depicted in Fig 5.4.

{s}
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{ss}
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{sss}
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{ssss}
244

67.4%

{sssd}
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32.6%

64.9%

{ssd}
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{ssdd}
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56.3%

35.1%
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49.6%
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45.4%

{sddd}
112

54.6%

50.4%

40.0%

Figure 5.4.: Symmetrized decision tree for single cells in a maze, ”s“ denotes start and same as first
choice, ”d“ indicates a switch in decision compared to the first one. Edges are labeled with dependent
relative probabilities, boxes contain choice abbreviation and total number of observations. {dddd} is
incorporated in the total number of {ssss} for reasons of symmetry.

If the decision sequence is to be considered, the dependent relative probabilities
denoted at the edges can be compared. Here, accumulating preference for series of ”s“
decisions can be seen.

55
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5.2. Modelling Migration through Mazes
As a first access point for comparison with models, the decisions can be visualized
and compared to a Galton Board, a visualization of a Bernoulli process suggested by
François Galton in 1889 [188]. Fig 5.5 shows the comparison of four successive left-right
choices in comparison to a classic Galton Board. The distributions plotted in Fig 5.5b
show pronounced deviations of the cellular behavior from an ideal Bernoulli process.
Indeed, a χ2 test comparing experiment and Galton probabilities is highly significant
with a p-value of about zero. This indicates that subsequent cell decisions are not
independent.
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Figure 5.5.: Comparison of four subsequent left-right decisions of cells in a maze with a Galton Board
with four levels. (a) Image of the maze and board structure. (b) Plot of symmetrized choice frequency
for N=931 cells (orange) and probabilities of the Galton Board (blue).
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The Urn Model
To quantify the deviation of the cellular probability distribution from a Bernoulli pro-
cess, the urn model provides a simple and suitable platform. Here, we model left or
right choices of cells as drawing from an urn containing spheres in two colours, ”s“ and
”d“. To account for dependence, after each decision the cells adds additional H spheres
of the same colour to the urn. A value of H = 0 corresponds to the classical drawing
with replacement and H = −1 equals drawing without replacement. We also allow for
non-integer values of H and start with five spheres of both colours. In fact, in this
model the probability of a path X1, . . . , Xn ∈ {s, d} does not depend on the order of
decisions and can be written in dependence of k = ∑n

i=1 δXi,s, the number of ”s“ choices
amongst n subsequent decisions:

p(k) =
(
n

k

)∏k−1
i=0 (5 + iH) ·∏n−k−1

j=0 (5 + jH)∏n−1
m=0(10 +mH) .

For the same four successive choices as visualized above, i.e. n = 4, k ∈ {4, 3, 2}, the
probability distributions are modulated by H as shown in Fig 5.6.
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Figure 5.6.: Comparison of four subsequent left-right decisions of cells in a maze with an urn model.
Experimental data in orange, N = 931 cells. Urn model data color coded for parameter H. Initially,
the urn contains 10 spheres, 5 each, and H describes the change in sphere number. For H = 0, the
probability distribution of the Galton Board is recovered.

Comparing the distributions created by the urn model to the experimentally observed
probabilities, the optimal value seems to be close to H = 1.6 which indicates a positive
feedback, i.e. a tendency of the cell to repeatedly choose alike. This model only takes
into account the absolute number of choices and in particular has perfect memory. For
a more fine-grain analysis, we compare single paths in the decision tree (Fig 5.4) with
the respective model probabilities in Fig 5.7.
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5.2. Modelling Migration through Mazes

At comparison of the detailed decisions, two big differences become immediately
apparent. For {ssds} and {ssdd}, the urn model shows strong deviation from experiment
and no longer H = 1.6 seems to be the perfect fit but rather about H = −0.9. Despite
this, for an increasing number of decisions made, decreasing values of H can be seen
to fit best. This indicates that early choices are over-represented and in experiment
choices laying further back in time loose influence. By the nature of the urn model,
an implementation of a memory degradation term would worsen interpretability. The
impact of the parameter H is not accessible in an intuitive fashion as at later choices
the number of spheres has changed and adding a constant number of spheres results in
a decreasing influence on probabilities.

A Two Parameter Model for Memory
A model with more intuitive change in probabilities, e.g. proportional influence of H
on the probabilities in each step, can have following form with again Xn the results of
previous n decisions, Xi∈n ∈ {s, d}, and kn the number of ”s“ choices thereof:

p(Xn+1 = s|X1, ..., Xn) = max(min( 0.5 + knH − (n− kn)H, 1), 0) .

This allows a direct proportional change in probabilities and describes the imbalance
between left and right choices. So far, this model does not include a fading in memory
over time but it can be expanded by an additional parameter λ > 0 to describe the loss
of memory:

p(Xn+1 = s|X1, ..., Xn) = 0.5 +
n∑
i=1

eλ(i−n)H (δXi,s − δXi,d) . (5.1)

This model now includes a symmetric change in probability by a factor H at decision
and a loss of influence of previous choices at a rate eλ. Assuming |H| < 0.5·(1−e−λ), we
obtain 0 < p(Xn+1 = s|X1, ..., Xn) < 1 leaving a positive probability for both outcomes
for all n ∈ N unlike the previously discussed one parameter models.
In comparison with experimental data, a minimum residual sum of squares optimiza-

tion has been used to estimate parameters fitting observed relative frequencies in each
stage of Fig 5.8. For estimation of experimental error, a bootstrapping algorithm has
been applied and the resulting fits are shown in Fig 5.8. The reduced one parameter
model shows some quite pronounced deviations for {ssds} and {ssdd} as already ob-
served for the urn model but else is able to qualitatively describe the probabilities. The
two parameter model is capable to show the right tendency (more or less than prob-
ability 0.5) for all observed decisions. When comparing the change in probability H,
the two models show strong differences. The one parameter model has relatively weak
feedback onto the probabilities whereas H is about a factor of five stronger in the two
parameter model but looses a factor of about one half in influence with each previous
decision.
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5.3. Discussion

5.3. Discussion
In conclusion, cellular motion through mazes cannot be described as pure random left-
right decisions. While the overall distribution of cells can be recapitulated by an urn
model with simple feedback, the detailed probabilities including the order of choices
presents cannot be quantitatively captured. To describe the observed decisions, a two
parameter model is needed, that includes relative changes in probabilities and a term
for memory loss over time.
However, biochemical understanding of ”memory“ has yet to be obtained. To this

end, memory can be seen as simple inertia in motion which leads to preferences of same
choices. The cumulative effect observed here could be linked to a stronger polarization
towards this direction. First experiments to force a reset of the lamellipodium by
introducing a constriction before the branching segment did not bring the desired result
as cells preferred to redirect motion rather than force the way through the constriction.
For more detailed insights into the cellular process of deciding, the decision should be

analyzed as a temporally resolved process. Therefore, heatmaps indicating the spatial
distribution of cells in the unit cells could lead to a deeper understanding if simple
inertia is the key factor in deciding or if cells spend much time at the branching point
and more actively choose a direction. To this extent, a brightfield segmentation of cell
shapes could further improve the picture of cellular decision making.
On the long run, targeting potential polarization related proteins by fluorescent dyes,

e.g. by a FRET sensor for active Rac1 Rho GTPase, could answer the question if
the cell stays polarized into the same direction during the decision process. Also,
choosing differently branched geometries, e.g. regular hexagonal paths, could lead to a
simplification of the categorization of decisions that currently present a possible source
for errors, as shown in Fig 5.2, trajectory 4. Furthermore, a comparison of invasive
behavior of metastasizing cancer cells and leukocytes on structures allowing multiple
protrusions and constrictions as described by Kopf et al. [185] could lead to further
understanding of the invasive capabilities of cells during tumor spreading and their
origin.
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6. Cell-Cell Contacts and Friction

After previously studying single cells and their motility in confinement, we now turn
to cell-cell interaction. Generally speaking, collective cell migration plays an important
role in many processes such as development, wound healing and metastasis. This highly
complex process, as shortly described in section 2.2.3, includes three hallmarks as spec-
ified by Friedl and Gilmour [96]: First, the formation of cell-cell junctions that connect
cells on a physical and biochemical level and remain intact during movement. Second,
an actin cytoskeletal organization that spans across cell boundaries. Third, changes
in the extra cellular matrix around the cells. Different collective migration modes are
tuned by the strength of junctions and the molecules involved [93]. Cell-cell interaction
and communication thus is a crucial process for collective movement.
One important type of such cell-cell junctions are based on E-Cadherin [101]. Its role

in metastasis, however, is still unclear and subject to recent studies [189, 13]. A simple
access to the complex process of E-Cadherin based collective migration is a reduction
to two cells. To ensure reproducible two-cell encounters, cells can be confined to a 1D
lane microstructure [190, 191] where they can either redirect, slide past each other, or
follow one another. A more advanced ”cell collider“ has recently been proposed and
explored by Brückner et al. [34]. Here, cells are confined to a dumbbell shape consisting
of two adhesion sites connected by a narrow bridge [26, 163, 192]. Due to the shape of
confinement, multiple repeated collisions of two cells can be observed in parallel. In a
previous study, Brückner et al. show that this geometry is well suited to characterize
cell-cell interaction. They compare a highly invasive cell line, MDA-MB-231, and a non-
cancerous cell line, MCF10A, and quantify differences in encounter behaviour. Both
cell lines are briefly characterized in Appendix A.
Here, we employ this previously suggested ”cell collider“ to quantify the influence of

cell-cell signalling proteins on two-cell interactions of the same cell lines, MDA-MB-231
and MCF10A. We show that blocking of E-Cadherin, a mainly mechanical coupling
protein, leads to a more invasive phenotype in MCF10A and their motility pattern
evolves similar to that of MDA-MB-231. We also explore the role of the signalling
protein ephrin-A2 onto the invasiveness of MDA-MB-231 and find that blocking of
ephrin-A2 lead to a even far more invasive behaviour.
This work is a collaboration with Georg Ladurner as part of his Master’s thesis and

David B. Brückner and Chase P. Broedersz from the Arnold Sommerfeld Center for
Theoretical Physics of the LMU.

6.1. Motion of Two Cells in a Confining Geometry
To investigate repeated encounters of two cells, Brückner et al. have developed an
analysis that will be briefly wrapped up in this section following the line of thought of
their recent publication [34].
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They propose a dumbbell shaped micro-confinement, as shown in Figure 6.1a. Here,
cells adhere to one square each and they extend lamellipodia along the bridge con-
necting the squares transitioning onto the other side. The cell position is accessed via
tracking of the stained nucleus. Three different outcomes of such cell-cell contacts are
distinguished as shown in Fig 6.1b. Either the cell invading the other square turns back
and reverses into its original square, or the other cell slides past the intruder, leaves
the square and they switch places, or the cells connect and both follow each other to
the vacant square. Panel c displays an exemplary interaction table with relative oc-
curences of the different interaction types. Tables of this kind will be used to compare
and quantify cell interactions in the following.
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Figure 6.1.: Two cell behaviour on a dumbbell micropattern. (a) Cells occupy one square each. A
contact events starts when one cell nucleus crosses the centre of the pattern, as indicated by the dashed
grey line. (b) Possible outcomes of contact events and resulting nuclear trajectories (c) Interaction
table showing exemplary relative frequencies of contact results.

Moving from a phenomenological level to a more advanced analysis, as described in
2.3.2, both previously mentioned cell lines can be compared in terms of their distance
dependent cohesion f and their friction γ that is dependent on relative position and
relative velocity. Figure 6.2 shows the cohesion and friction terms for both cell lines
as well as the respective interaction tables. The first row shows interaction analy-
sis of the highly invasive MDA-MB-231 cell line, second row shows the same analysis
for MCF10A. This analysis reveals quite different interaction behaviour of both cell
types. On a phenomenological scale, MDA-MB-231 cells slide past each other, whereas
MCF10A cells tend to reverse at contact and slide less frequently. At the dynamic level
of those interaction events, even more pronounced differences become apparent. On
short ranges, MDA-MB-231 cells do not repel each other but are attracted and even
accelerate at contact, as the positive friction term indicates. MCF10A cells exhibit an
overall repulsive interaction and slow down as moving past each other.
For more details on the underlying model and further analysis, please refer to Brück-
ner et al. [34].
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Figure 6.2.: Analysis of two cell interaction on a dumbbell micropattern for two different cell lines.
First row MDA-MB-231. (a) Sliding past each other is the dominant interaction. (b) Cells show
short ranged negative cohesion, i.e. attraction. (c) Cells show short ranged positive friction, i.e. anti-
friction.
Second row MCF10A. (d) Reversal up on contact is the dominant interaction. (e) Cells show mutual
repulsion. (f) Cells exhibit short ranged friction.
Plots shown courtesy of David Brückner.

6.2. Influence of E-Cadherin on Cell-Cell Interaction
E-Cadherin mechanically couples cells and plays an important role in the establishment
and maintenance of cell-cell contacts and signalling, see also section 2.2.3. Many recent
studies indicate an important role of E-Cadherin in cancer metastasis as E-Cadherin
levels often are low in single invading cells and high when trains of cells metastasise
tissue [13, 102]. In clinical studies low expression levels of E-Cadherin are often linked
to poor prognosis [193]. The previously analysed MDA-MB-231 cells do not express
E-Cadherin [194, 195] but MCF10A cells do [196]. In a comparable study of cells on
lanes of different widths, Milano et al. [191] have found E-Cadherin expression levels
to influence the number of sliding events. Introducing E-Cadherin expression in MDA-
MB-231, they observed a decrease in the number of cells sliding past each other and
for MCF10A cells with E-Cadherin knock-out the number of sliding events increased.
This leads to the question how detailed interaction dynamics are influenced by E-

Cadherin. The cell collider provides a suitable platform to characterise cell-cell interac-
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tion in terms of friction and attraction. We block E-Cadherin in MCF10A cells using
an antibody1 in an excessive concentration of 5 µg

ml
, referred to as MCF10A E-Cad. In

Fig 6.3, the resulting dynamics of MCF10A E-Cad are shown and compared to MDA-
MB-231 and MCF10A. On a phenomenological level, blocking E-Cadherins leads to an
increase in sliding events and a reduction of reversal. The overall behaviour is located
in between the two original cell lines. When taking a closer look at the exact dynamics,
cells still repel each other at all distances, only at intermediate ranges, the repulsion
is zero. However, no attraction on short distances as for the MDA-MB-231 cells can
be seen. In terms of friction, cells behave more like the MDA-MB-231 cells as they no
longer display strong friction on very short distances but even slight acceleration can
be seen. This acceleration is particularly interesting as interaction by E-Cadherin is
mainly mechanical and thus blocking of E-Cadherin should only lead to a reduction of
friction as mechanical coupling is disabled. A change to acceleration on the other side
indicates not only a loss in mechanical friction but a modification of signalling as well.
This could be induced either by the blocked E-Cadherin itself or a change in the actin
cytoskeleton where the formation of ”stress fibers“, i.e. actin bundles, is stabilized by
E-Cadherin-E-Cadherin bounds.
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Figure 6.3.: Comparison of MCF10A blocked E-Cadherin (MCF10A E-Cad) to wild-type cells. Wild-
type data extracted from Fig 6.2. Green colours indicate MCF10A cell line, dark and dotted for
wild-type, bright for antibody blocked E-Cadherin. Blue depicts MDA-MB-231 cell line. (a) Rel-
ative frequency of contact event outcomes. Sliding emerges as dominant interaction at blocking of
E-Cadherin in MCF10A as is typically observed for MDA-MB-231 cells. Indicated number of obser-
vations for antibody experiment denoted below. (b) E-Cad cells show overall repulsion as wild-type
with spatial modulation at intermediate distances. They show no attraction as MDA-MB-231 cells.
(c) Friction is greatly reduced in E-Cad cells and even slight anti-friction as for MDA-MB-231 cells is
observed on short distances.

1anti-CD324 (E-Cadherin) Monoclonal Antibody (DECMA-1), Functional Grade, eBioscience™ from
Thermo Fisher Scientific, catalog # 16-3249-82, RRID AB_10734213
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Concludingly, we observe that blocking E-Cadherin with an antibody in MCF10A
does not only reduce friction but in terms of friction leads to interaction behaviour
between two cells that is more similar to MDA-MB-231 although less pronounced.
However, in terms of cohesion cell-cell interaction still is repulsive as in the wild-type. In
general, MDA-MB-231 and MCF10A cells have fundamentally different expression levels
of various proteins that all could influence their interaction dynamics [197]. For instance
do MDA-MB-231 cells lack E-Cadherin but instead express Cadherin 11, another cell-
cell coupling protein [198].

6.3. Influence of Ephrin-A2 on Cell-Cell Interaction
As reduction in mechanical coupling leads to more invasive behaviour in MCF10A
cells in terms of sliding events and friction indicating a change in signalling as well,
modification of cell-cell signalling could reverse the effect and lead to less invasive
behaviour in MDA-MB-231 cells.
A prominent family of cell-cell signalling proteins are erythropoietin-producing hepa-

tocellular receptors (Eph receptors) and their ligands, Eph receptor interacting proteins
(Ephrins). They are common in many different cell types throughout the body and play
important roles in many signalling processes [199, 200]. Due to their receptor-ligand
type of binding, different signalling cascades can be activated inside the two connected
cells by receptor and ligand, i.e. forward and reverse signalling [201, 202]. Furthermore,
receptor-ligand interactions are not restricted to a matching pair but different recep-
tors can bind to one ligand and the other way round leaving many potential interaction
possibilities [203]. Ephrin-A1 and the two receptors EphA2 and EphA1 have already
been characterized to play an important role in breast cancer survival [204], regulate
metabolism and growth in MCF10A [205] and display different levels of expression in
MDA-MB-231 and MCF10A [206] leading to different migration responses at ephrin-A1
clustering [207]. Much less is known about ephrin-A2, another member of the ephrin
ligand family, that only recently has started to gain attention in the field of cancer
research. Ephrin-A2 has been found to promote metastasis in prostate cancer by en-
hancing cell invasion depths in vitro and promoting angiogenesis and tumor size [208].
In the breast cancer cell line MDA-MB-436 ephrin-A2 has been successfully used as tar-
get for drug delivery to reduce cancer progression [209]. Here, an ephrin-A2 antibody2

in a concentration of 1 µg
ml

is used in MDA-MB-231 cells, referred to as MDA-MB-231
Ephrin-A2. We expect the antibody to block or hinder ephrin-A2 binding to possible
receptors leading to a silencing of the receptor-mediated signalling path. However, we
do not know if the antibody silences all ephrin-A2 induced signalling. The resulting
change in cell-cell interaction behaviour, depicted in Fig 6.4, thus should be taken with
a grain of salt and may need further verification by other experimental methods.

2anti-Ephrin A2 Monoclonal Antibody (OTI3E3) from Thermo Fisher Scientific, catalog # MA5-
25187, RRID AB_2723128
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Figure 6.4.: Comparison of MDA-MB-231 blocked ephrin-A2 to wild-type cells. Wild-type data ex-
tracted from Fig 6.2. Blue colours indicate MDA-MB-231 cell line, dark for wild-type, bright for
antibody blocked ephrin-A2. Dotted green depicts MCF10A cell line. (a) Relative frequency of con-
tact event outcomes. Sliding is dominant interaction of MDA-MB-231 Ephrin-A2 cells just as for the
wild-type. Indicated number of observations for antibody experiment denoted below. (b) Ephrin-A2
cells show even much more pronounced attraction than MDA-MB-231 cells. Axis has been rescaled to
show full extent of cohesion coefficient derived from antibody experiment. (c) Compared to the wild-
type, for the ephrin-A2 blocked cells positive friction, i.e. anti-friction, is enhanced on short distances
and converts to negative, regular friction on intermediate distances.

The addition of ephrin-A2 antibody to MDA-MB-231 cells seems to induce an in-
creased invasive behaviour in all surveyed metrics. The strength of effect varies but
especially the cohesion term shows a very clearly increased attraction of the cells to
each other. Interestingly, this effect does not lead to a higher occurrence of cells fol-
lowing each other. Thus, the effect has to be counter-balanced by the friction term
that shows higher anti-friction of cells on short distances compared to the wild-type.
This means cells speed up even more when they are close to each other and results in
a propelling of cells away from each other. However, as previously indicated, the exact
function of the antibody still has to be elucidated and comparably low statistics may
distort the effects. In contrast to the observations presented here, Lucero et al. report
the complete absence of ephrin-A2 in both cell lines used in this section, MDA-MB-231
and MCF10A [210]. This calls for all the more thorough investigation and questioning
of the effects described by alternative experimental methods. Nevertheless, the Eph-
ephrin family of cell-cell signalling molecules presents a versatile access point to modify
cellular interactions. For instance, Eph-receptors have been reported to be involved in
contact inhibition of locomotion via the Rho-ROCK signalling pathway and may be
another interesting access point for modification [211].
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6.4. Discussion
In conclusion, the cell-cell interaction platform proposed by Brückner et al. [34] proves
a versatile tool to quantify the influence of proteins of interest on cell-cell interaction.
For E-Cadherin, we observe a strong anti-correlation of E-Cadherin mediated cell-cell
coupling and invasiveness in our system and detect even non-mechanical effects. For
Eph-ephrin induced signalling, we also observe strong effects of ephrin-A2 on invasive
behaviour indicating an important role in cell-cell communication in our system. How-
ever, the complex nature of receptor-ligand binding relations and induced signalling
requests more detailed examination. As a first verification a simple immunostaining for
ephrin-A2 could answer the question of its presence or absence in the cell lines given
the antibody binding is specific enough to this protein only. Genetically knocking-out
of ephrin-A2 would allow to determine its role in signalling further. Other, more char-
acterized proteins of the Eph-ephrin family, e.g. EphA2, could also be of interest to
infer their influence on cell interaction dynamics. Also, the impact on interaction dy-
namics of signalling proteins further downstream such as ROCK could be accessed by
inhibition, e.g. by Y-27632, to modify the cytoskeletal composition of the interacting
cells as reported for MDA-MB-231 by Cascione et al. [212].
Generally speaking, the impact of any protein of interest on cell cohesion and friction

can be investigated in a quantitative manner using this technique under two restrictions.
First, the protein level needs to be controllable, either by a blocking antibody that bears
the possibility of cells overcompensating or better by genetical modification. Second,
usually cells have more than one signalling pathway to regulate important cellular tasks
such as cell-cell interaction or cytoskeletal arrangement. This means that by knockout
of one signalling protein one path may be blocked but very rarely do cells not have
other pathways to partially compensate this loss. Thus, the full influence of the protein
of interest cannot be captured but at least a clear hint of the influence on cohesion and
friction can be obtained.
Another application of this platform is the quantification of controlled encounter of

cells of different cell lines. By combining one cell each, the interaction dynamics of
for instance a metastasising cell line and the surrounding tissue cells can be quantified.
This could provide new insights into the details of cell-cell interaction during invasion on
a single cell level. By choosing specific proteins, their influence could again be observed
at the encounter of two distinct cell types offering a vast field for future experiments.
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7. Collective Flow through Constrictions

Cell-cell interaction, taken further from chapter 6, leads to collective migration. Al-
though cell-cell interaction, as described in chapter 6, already presents one of the key
processes needed for collective migration, understanding more complex phenomena such
as plug-flow, vortex formation or jamming require the analysis of a collective of migrat-
ing cells [213]. To abstract processes as complex as collectively migrating cells, theo-
retical models are a versatile tool to unravel global relations governing the dynamics,
see section 2.3 for a short overview.
For collective migration into channels of different widths, Vedula et al. report cells ex-

hibiting different migratory phenomena, e.g. contraction-relaxation for narrow stripes
and swirling in wide channels [17]. They identify mechanical coupling and cell con-
tractility to be of great influence for the front speeds of the invading cells into the
channels. For a channel of constant intermediate width, Marel, Zorn et al. observe
the development of a stationary plug-like flow profile and a density-dependent emer-
gence of short-lived swirls within the cell sheet [14]. They find the density profile of
the cell to stabilize inside the channel and to be well-described by a Fisher-Kolmogorov
equation. Tlili et al. observe cells moving around a circular object to behave like a
fluid as well [18]. In contrast to the fluid description, Angelini et al. describe high
density monolayers to exhibit glass-like dynamics [214], suggesting a transition from
fluid-like to glass-like dynamics with increasing density, a phenomenon often referred
to as jamming.
Here, we ask the question to what extent cells obey hydrodynamic laws when we

expect proliferation to break mass conservation over long time scales and extrusion
from the cell sheet into the third dimension acts as compressibility. Furthermore, we
want to explore to what extent these complex dynamics can be captured by a theoretical
model. A geometry motivated from hydrodynamics that allows investigation of these
questions is a channel with a constriction that afterwards broadens again into the initial
width, see Fig. 7.1. This geometry was initially investigated by Matthias Zorn as part
of his PhD thesis [117]. This work is a collaboration with Felix Kempf and Erwin Frey
from the Arnold Sommerfeld Center for Theoretical Physics of the LMU.

Time in hours

0 4 8 32282420 36 401612
Figure 7.1.: Front shape of cell sheet advancing into a channel with constriction. Scale bar = 200 µm.
Cell fronts were manually extracted from an collectively invading cell sheet at the colour coded time
points. Image courtesy of Matthias Zorn, adapted with permission from [117].
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7.1. Cell Behaviour in Narrowing Channels
As shown in Fig. 7.1, MCF10A cells enter a channel from a reservoir, migrate along,
encounter a constriction to pass through and re-emerge into a confinement of the same
width as before. Cells are confined by three dimensional PEG-DMA structures, see
Appendix A for more details on cells and structuring.
In these experiments, the question was asked how the system deviates from a New-

tonian fluid. There, we would expect higher velocity inside the constriction compared
to before and after it. To access the velocities, a particle image velocimetry (PIV)
analysis is performed, as described in [117]. Generally speaking, PIV analysis tracks
displacement of small pixel assemblies from one image to the next, resulting in a flow
field often used to visualize fluid dynamics. Here, pixel clusters of the size of 8× 8 µm
are used to track cell displacement in two subsequent images. The result is exemplarily
shown in Fig. 7.2.

a

b

c

Figure 7.2.: Particle image velocimetry (PIV) analysis of cells migrating through a constriction.
(a) Phase contrast image of cell sheet advanced into the channel beyond the constriction. (b) Overlay
of phase contrast image and extracted displacement in two subsequent images averaged over 8×8 µm.
(c) Velocity field plotted alone for the ease of viewing.
Figure courtesy of Matthias Zorn, adapted with permission from [117].

PIV analysis shows most of the velocity vectors to roughly point into the direction of
overall migration but on short length scales more complex behaviour can be observed
as can be seen in the insert of Fig. 7.2c. The area of observation is large compared to
the spatial resolution but interesting dynamics can be observed at short length scale.
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7.1. Cell Behaviour in Narrowing Channels

Thus, instead of coarse graining, velocities can be reduced to their component along
the direction of migration, parallel to the channel and averaged over the direction
perpendicular to the channel and 2 hours in time. The resulting velocity component in
x-direction is plotted in Fig. 7.3 for different invasion depths.
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Figure 7.3.: Velocity of advancing cell sheet in parallel to the channel for different invasion depths.
Progress into the channel colour coded and indicated on schematic channel drawing at the bottom.
Slight difference in indicated cell front and velocity profile due to time averaging of 2 hours. Shaded
regions indicate standard errors of the mean.
Image courtesy of Matthias Zorn, adapted with permission from [117].

Interestingly, cells maintain initial speed throughout the narrowing part and the whole
constriction. Velocities before the constriction only decrease after the cell front has
already migrated 250 µm past the point of the channel that again has maximal width.
This observation indicates a clear difference in behaviour to a Newtonian fluid, as
velocities are not increased inside the constriction and decreased again after it but we
rather see a maximal migration velocity that changes dependent on the position of the
cell front as well as the position in the channel itself. The plateau of decreased velocity
before the constriction is reproducible over variations in length of constriction as well
as for different constriction widths, as depicted in Fig. 7.4. Here, only x-velocities
calculated at the last time point are shown for different geometries. Fig. 7.4a shows
the emergence of the plateau at introduction of constrictions of different narrowness
independent of actual minimal width and in comparison the typical velocity profile for
a straight channel. Fig. 7.4b depicts the independence of the length of the constriction.
Here, even a dip in velocity right before the constrictions seems to emerge for these
geometries. This phenomenon of decreasing velocity in front of the constriction long
after the cell front passed may indicate a certain compressibility of cells before motion
is altered and presents a key feature for collective flow through constrictions.
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Figure 7.4.: Velocity in x direction of cell sheet 250 µm after the constriction for different geometries.
(a) Introduction of constriction leads to emergence of a velocity plateau. Dark blue shows the typical
velocity profile for a channel without constriction with movement speed increasing steadily towards
the cell front, before declining slightly. All other geometries narrow down into a constriction at dotted
grey lines as indicated in the schematic channel drawing below the curves. All geometries vary from
each other only by narrowness of constriction. (b) Velocity plateau seems independent of lengths of
constriction. Differently to the geometries of plot (a), transition regions from full width to minimal
diameter are reduced from 500 µm to 300 µm, resulting in a completely independent second set of
geometries. Geometries in this subplot only vary to each other in length of constriction resulting in
curves of different lengths. Arrows above the curves indicate onset of transition into the constriction,
bold arrow corresponds to length of minimal width. Dotted lines below the curves indicate end of
the plateau. For 50 µm to 700 µm no accumulation of jamming is observed and velocity plateaus are
similar within the error margin. Shaded regions indicate standard errors of the mean.
Plots courtesy of Matthias Zorn, adapted with permission from [117].
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7.2. Cell Migration in Experiment and Simulation

7.2. Cell Migration in Experiment and Simulation
As already discussed in modelling chapter 2.3 and summarized in Fig. 2.6, previous
attempts to describe cell motion through a constriction by an active nematic liquid
crystal model failed to reproduce the characteristic flow direction.
Another approach to model collective movement at single cell resolution is cellular

Potts models (CPM). CPMs are used to reproduce collective motion in cellular monolay-
ers [130, 131], investigate glass-transitions from fluid- to solid-like behaviour [132] and
bridge the scale from single cell migration to large collectives [33]. The cellular Potts
model also proved a versatile tool to investigate cell migration described in previous
chapters 3 and 4.

Cellular Potts Model in Narrowing Channels

Kempf et al. have investigated collective flows through constrictions using a CPM [137].
Their model is compared to experiments in the following.
In experiment as well as simulation, cells are seeded in a reservoir and divide there

until a confluent layer is reached. Only then, the entrance to the channel is opened and
cells start invading into it. Cell division rates balance invasion speed such that no gaps
in the moving cell sheet occur. Images for an advanced cell sheet in simulation and
experiment are shown in Fig. 7.5.

a

b

Figure 7.5.: Cells invading a constriction from the left. (a) Simulated by a CPM. Image courtesy of
Felix Kempf. (b) Phase contrast image of fixed MCF10A cells.

From initial observation, for the CPM cell sizes seem smaller than in experiment and
cells are tightly connected. In experiment, cells at the leading edge sometimes escape
the sheet and move in front as they are only loosely connected. This may already
indicate some differences that will be explored in more detail in the following.
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7. Collective Flow through Constrictions

Densities throughout the Channel
To compare the general distribution of cells, density and the respective single cell size,
Fig.7.6 shows cell numbers for simulation and cell nuclei in experiment.
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Figure 7.6.: Cell density throughout the channel. (a) Simulated by a CPM. High densities left in
front of the constriction. Image courtesy of Felix Kempf. (b) Cell nuclei visualized by a DAPI stain
on fixed MCF10A cells. High densities in the whole cell sheet before the constriction.

In simulation, cell numbers are highly increased before the constriction. Inside the
constriction and in the reservoir, cells are a little more compacted than in the rest of
the sheet, but this effect only seems minor. In comparison, the stained cell nuclei in
experiment show that cells are most dense before the constriction as well and even show
three dimensional stacking. In the constriction, cells are already less dense than left of
it and density even further decreases after it, similarly to simulation. From the density
profile inside the channel with high density in front of the constriction, reduced cell
velocities can be expected caused by cell jamming. The observed densities also could
explain why the drop in velocity profiles in front of the constriction only emerges after
the cells have invaded much further into the channel, as only now density in front of the
constriction is explicitly higher than inside the constriction and behind it. However, so
far we can only speculate that the evolved density profile is caused mainly by cell-cell
adhesion compressing cells, as it is quite well reproduced by the CPM which includes no
more advanced cell-cell interaction terms such as for instance cell stresses communicated
over several cells contracting the whole sheet.

Flow Velocities inside the Channel
As elucidated by Fig 7.4, a key feature of collective migration through a constriction in
experiment is the plateau of reduced velocity before the constriction that emerges when
the cell front has reached far into the channel. Fig. 7.7 depicts heatmaps of velocities
parallel to the channel for simulation (a) and experiment (b).
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Figure 7.7.: Magnitude of velocity component of cells parallel to the channel. (a) Simulated by a
CPM. Region of backflow left of the constriction, smaller velocities right of it. Image courtesy of Felix
Kempf. (b) Heatmap of MCF10A cells. No wide prominent regions of strong backflow but overall
higher velocities inside and right of the constriction. Image courtesy of Matthias Zorn, adapted with
permission from [117].

Interestingly, CPM and experiment paint a very different picture in terms of velocity.
For the simulation, in front of the constriction maximal velocity amplitudes are observed
with cells displaying strong backflow in the narrowing channel section and high velocities
in main movement direction in the region of full width. Inside the constriction, cells
still migrate in both directions at high velocities. After the constriction, cells advance
at homogeneous intermediate velocity into main movement direction. In contrast, in
experiment cells display the previously described velocity profile with smaller velocities
before the constriction and increasing velocity from constriction entrance to cell front.
The backflow observed in simulation in front of the constriction is only present at the
very side of the narrowing segment in this explicit experiment displayed and probably
not a common reproducible feature. Inside the constriction, behaviour of simulation
and experiment is the most similar, as cells migrate at increased velocities. After
the constriction, cells in experiment show inhomogeneous migration at high velocity
in all directions whereas in simulation cells immediately slow down and migrate very
cohesively at medium speed. This presents a fundamental difference.

7.3. Discussion
In this chapter, collective migration through constrictions has been explored experimen-
tally and compared to simulations with a CPM. In experiment, cells show a plateau
of reduced velocity in front of the constriction that only evolves after the cell front
has already left the constriction and moved 250 µm further into the channel. Start-
ing roughly from the constriction, increasing velocities towards the front are observed.
These dynamics are stable over different constriction widths as well as different lengths
of the constriction. Cell density seems to coincide with reduced velocity, indicating
jamming as a possible explanation for the velocity plateau, as observed in [214]. This
would also explain the delayed onset of reduced velocity, as cells need to jam up in front
of the constriction first.
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In simulation, cell distribution and density is quite well comparable to experiment
although cells are a little smaller in simulation and no cells escape the cell sheet. This
may indicate cell-cell adhesion to be stronger than in experiment. However, when com-
paring cell velocities fundamental deviations of simulation from experiment indicate
intrinsic differences. While densely packed cells in experiment show reduced speeds,
the opposite holds true for simulation where velocity amplitudes are higher in more
dense parts of the cell sheet. Especially right in front of the constriction where cells
are most tightly jammed in simulation even a high velocity backflow is observed over
the whole width of the channel. Cells in simulation do not show any slowing at higher
confinement which is a strong contrast to biological observations and other implemen-
tations of the model [132]. Kempf et al. show, however, that for a different set of
parameters and a comparable geometry they do observe a plateau of reduced veloc-
ity in front of the constriction [137]. They do not see the characteristic monotonous
speeding of cells through the constriction to up the cell front as in experiments but an
immediate speeding inside the constriction followed by a sharp drop at widening of the
channel.
For better comparability between experiment and simulation, as a first step, cell

size in simulation could be adjusted to fit the experimental relative confinement sizes of
about 15 cells in the wide part of the channel and at most 5 cells inside the constriction.
Also cell-cell adhesion could be varied in simulation until cells are as loosely connected as
in experiment with single cells detaching from the front sometimes. This could also lead
to a less ordered invasion after the constriction as it is observed in experiment. It could
be worth attempting to determine all parameters via the stepwise calibration method
proposed in chapter 4 supplemented by two cells on a dumbbell to access adhesion
between cells, as applied in chapter 6. In experiment, a stable nucleus label could allow
much better monitoring of cell densities during the measurement than a simple fixation
and staining at the end. Furthermore, targeting cell-cell contacts by antibodies or
knockouts of cell-cell-interaction proteins, e.g. E-Cadherin or ephrin-A2 as investigated
in chapter 6, could allow further investigation of communication pathways in jamming.
Another interesting aspect for comparison could be cell size and shape, as Atia et al.

find that cell shape and variability seem constrained by an universal geometrical relation
only [215]. For simulations, this observable is easily extractable, whereas in experiment
a cell membrane marker would be needed. Testing this hypothesis for cells migrating
through constrictions could add further insight into the universality of this phenomenon
and presents an additional aspect for comparison.
In conclusion, upon introduction of a constriction into the straight channel the de-

scription of an invading cell sheet by classic hydrodynamic laws breaks down and we
observe a characteristic velocity profile along the channel that is robust against varia-
tions in geometry but seems to be density dependent. Furthermore, collective migration
of cells presents characteristic dynamics which could not yet be described by the active
nematic model or CPM presented here and thus require further fine-tuning.
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In this thesis, cell migration on micropatterns was studied. Cell polarization and result-
ing morphodynamics have been quantitatively compared to models. Cells were shown
to exhibit distinct types of motion depending on the confining geometry. By access-
ing cell position by tracking of the cell nucleus, cell movement was observed for up
to 72 hours allowing the observation of emergent migratory phenomena provoked by
geometric constraints.
At the confinement of cellular motion to stripes of finite length in chapter 3, repeated

quenching and re-establishment of migration was observed. We found this phenomenon
of quasi-oscillatory motion to be stable over various lengths of stripes. Here, the time
spent in the cell tip during turning as well as the migratory speed at the tip centre were
not influenced by overall stripe length. For differently curved tips of stripes (concave,
convex, blunt and pointed) neither velocities nor reversal times changed either. Our
study showed the reversal time at a dead end of cell migration to have a duration con-
served over various changes in geometric details making it a suitable basis for model
testing. We compared our experimental findings with a cellular Potts model (CPM). Al-
though stochasticity in distributions of velocity and reversal times was greatly reduced,
the model was capable to nicely reproduce the insensitivity to geometric detail. Taking
a look at the spatial distribution of actin during quenching of polarization, we found
experiments to show a geometry-dependent pattern that could not be fully captured by
the model.
Intrigued by the versatility of CPMs [33, 134, 216, 31] and the possibility to extract

hallmarks of cellular behaviour from carefully chosen micro-confinements [36, 26, 162,
136], we successively calibrated a CPM to mimic cellular behaviour in chapter 4. Our
study showed a rational approach to link computational parameters to experimental
observables by confinement to geometries with orthogonal properties. Thus, the high
dimensional optimization problem can be reduced to distinct linear distances that by
stepwise revision yield a fully calibrated set of CPM parameters. This model is capable
to reproduce all experiments used for parameter determination and furthermore shows
predictive capability on novel geometries. Thereby, we showed that on a mesoscale
cellular behaviour can be abstracted to a scalar polarization field with symmetric feed-
back upon retraction and protrusion without the explicit implementation of biochemical
signalling pathways.
Given the quantitative differences in prediction, an explicit inclusion of cellular reg-

ulatory mechanisms into the CPM could further improve the accuracy. Promising
networks that govern cellular behaviour are the adhesion to the substrate and the Rho
GTPase network of polarization. For correct implementation, we started to investigate
the visualization of polarization by fluorescent labelling of early markers of polarization,
e.g. Rac1 and Vasp, as shown in Fig 8.1. Further and more thorough collaboration
with a biological department could provide a stable cell line expressing a Förster res-
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Figure 8.1.: Fluorescent markers for early polarization in MDA-MB-231. (a) and (b) show cells
expressing a pGFP-N1-Rac1-2 in house cloned plasmid. (c) shows a cell expressing a p-Rac-GFP
plasmid, kind gift of the group of Stefan Zahler, Department of Pharmacy at LMU. (d) depicts a cell
transfected with a pCAX-EGFP-Vasp plasmid, kind gift of the group of Michael Sixt at IST-Austria.
Scale bar = 10 µm.

onance energy transfer (FRET) sensor for Rac1 activity to help elucidate its exact
spatio-temporal contribution in the different confining geometries. This knowledge to-
gether with more information on the adhesion regulation could provide enough detail
for the implementation of two distinct fields in the CPM, one for substrate adhesion and
one for polarization. A biologically more accurate representation could lead to a more
quantitative than qualitative accuracy of the model and could allow for the comparison
of different cell lines or mutants thus providing a platform to conclude from differences
in gene expression levels to changes in migratory behaviour.
Another feature of cell migration we investigated in chapter 5 of this study is the

movement of cells through mazes. Here, cellular motion is simplified into discrete left-
right decisions and compared to stochastic models in chapter 5. This simplification of
cellular motion from a persistent random walk process to discrete outcomes opens up
the whole field of Bernoulli models for comparison that commonly have variables that
are interpretable in a very intuitive fashion. Our study showed that migration through
mazes is no independent unbiased decision process but can be described by a model
including a proportional change in decision probability and a temporal degradation
thereof.
Combining our finding with a close spatio-temporal analysis of the decision process,

deeper elucidation on the dynamics that leads to taking a left or right turn could
be obtained. Labelling various components of cell machinery known for polarization
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signalling, e.g. Rac1, or the cytoskeletal machinery, e.g. the microtubuli organizing
centre, could help to further understand how cells decide for a direction. Combination
of this geometry with experiments on a lane of finite length as in chapter 3 might
allow insights into the process of cell reversal and redirection of polarization. This
experimental setup could be further used to characterize the role of various components
of the molecular machinery in migration and reversal. A molecular motor of interest
could be MyosinVI (myo6), located at the leading edge of a cell. We studied the
localization of this motor on a dumbbell with nano-rippels, as shown in Fig 8.2.

b

a

Figure 8.2.: MyosinVI-GFP expressing RPE cell on dumbbell with 60 nm rippels. Pattern visualized
by Alexa647-labelled fibronectin. Scale bar = 10 µm. (a) Fluorescence microscopic image of a cell
transitioning from one adhesive site to the other. (b) TIRF image of a transitioning cell shows
spreading of filopodia over the whole pattern with enhanced MyosinVI activity. Cells were a gift from
the group of Claudia Veigel at the Biomedical Center Munich, LMU.

Although we could not determine the effect of myo6 on transition of cells from one
side of the dumbbell to the other, we expect the maze and finite lane geometries to be
far more suited to investigate the myo6 localization during redirection or quenching of
polarization. In combination with a knockout mutant of myo6, comparison of cellular
behaviour of wildtype and knockout combined with the knowledge of localization of
myo6, gained by the myo6-GFP mutant, could help to better understand its role in
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migration.
As myo6 is known to form a complex with β catenin and E-Cadherin, the exper-

imental setup described in chapter 6 could be used to investigate its role in cell-cell
communication. Applying the previously proposed ”cell collider“, our study showed
E-Cadherin to be of great importance for cell-cell communication. Non-cancerogenic
cells, MCF10As, were treated with a functional E-Cadherin antibody blocking cell-cell
contacts based on E-Cadherin. We could show that the two-cell dynamics on a dumb-
bell evolved to become more similar to a highly invasive, cancerous cell line, namely
MDA-MB-231. Our study thus provides evidence for the crucial role of E-Cadherin in
maintaining a non-cancerous migratory phenotype for the two cell lines compared here.
For Ephrin A2, we could observe a even more invasive behaviour in the cancerous cell
line upon addition of the Ephrin A2 antibody.
This setup could provide a platform to quantitatively screen the role of various pro-

teins involved in cell-cell communication in a high-throughput fashion. Further proteins
of interest could be of the Rho GTPase family regulating polarization, e.g. ROCK, or
the cytoskeletal machinery, e.g. myo6. Furthermore, heterotypic experiments of two
different cell types could allow the observation of a minimal invasion interaction of one
malignant, cancerous cell and a cell of the surrounding tissue in a repeated, well defined
and reproducible fashion.
Not only can cell-cell communication dependent on mechanical or biochemical sig-

nalling be investigated, but also the dependence of cell dynamics on the substrate. A
suitable platform to generate variations of the same confining structure is photolithog-
raphy, e.g. Laser-Assisted Protein Adsorption by Photobleaching (LAPAP), as shown
in Fig 8.3. Structuring surfaces with LAPAP achieved good results for single exposure
patterns. Using an alignment frame and suitable markers for position, two succes-
sive steps in patterning can be achieved and thus the possibility to link two different
adhesion sequences is given. Also first trials on the structuring of non-rigid surfaces
with LAPAP have been performed. Here, surface chemistry and stickiness have to be
improved to allow for non-deformed patterns with a high signal to noise ratio.

a b c

Figure 8.3.: Various structures produced with LAPAP. Scale bar = 50 µm. (a) Squares of different
sizes. (b) Half a dumbbell and dark shadow of another half dumbbell. (c) First tries on dumbbells
on SoftPDMS, protocol by Aurélie Dupont, Laboratoire interdisciplinaire de Physique, Université
Grenoble Alpes [217].
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Taking cellular interaction to a bigger scale in chapter 7, we investigated collective mi-
gration through a constriction and found that neither a phase-field model nor a CPM
were capable to reproduce the characteristic velocity profile throughout the channel.
For future experiments, the dependence of jamming on cell density could be further
explored by performing time-lapse measurements of cells with a nucleus label. Futher-
more, the density evolution inside the channel could be further investigated whether
cell division or influx from the reservoir are the driving force.

All in all, the results of this thesis contribute to deepening the understanding of cellular
migration and signalling. We have shown how confinement of cells to microstructures
provides a versatile platform to easily access different aspects of cell migration in a
well-defined and reproducible manner. Our proposed platforms for further investiga-
tion of biochemical networks can help to unravel a part of the highly complex regulatory
mechanism that governs cytoskeletal dynamics during cell migration and that has been
subject to researchers from various fields for a long time.

Es ist ein wesentlicher Vorzug unseres Zeitalters, daſs die einzelnen
Disziplinen der Naturwissenschaften in immer innigere Vereinigung
miteinander treten, und gerade dieser wechselseitigen Durchdringung
und Ergänzung verdanken wir einen groſsen Theil der Fortschritte,
welche die Naturwissenschaften in der neuesten Zeit gemacht haben.

Theodor Schwann
”Mikroskopische Untersuchungen über die Uebereinstimmung in der

Struktur und dem Wachsthum der Thiere und Pflanzen“
Berlin, 1839

[218, 219, 220, 221]
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8. Conclusion and Future Prospects
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A. Materials and Methods

This section will give a short overview of the protocols and cells used in this thesis.
Table A.1 shows a overview of cell lines, microstructuring methods, microscopes, ex-
perimental details and image analysis used in each chapter of this thesis and further
elaborated in the following sections.

Table A.1.: Overview of cell lines, patterning, microscopes, experimental details and image analysis.
Chapter Cell Lines Patterning Microscope Specifics Image Analysis
3 MDA-MB-231 µCP see Zhou et al. [136]
4, free cell MDA-MB-436 none Nikon Ti yes, see below see B.2
4, stripe MDA-MB-436 µCP Nikon Ti - see B.1
4, donut MDA-MB-436 µCP see Schreiber et al. [162]
4, gap MDA-MB-436 µCP see Schreiber et al. [162]
4, dumbbell MDA-MB-436 µPIPP as in Fink et al. [163]
5 MDA-MB-231 µCP Nikon Ti - see B.3
6 MDA-MB-231 µPIPP as in Brückner et al. [34]
7 MCF10A 3D moulding see Zorn [117]
8 MDA-MB-231, RPE µCP, LAPAP Nikon Ti yes, see below -

A.1. Cell Confinement
As described in section 2.4, there are various possibilities to confine cells to geomet-
ric shapes of choice, of which four have been used in this thesis. Two confinement
approaches, microscale plasma-initiated protein patterning (µPIPP) and microcontact
printing (µCP) restrict single cells to 2D micropatterns by a fibronectin coated, thus
adhesive area and a PLL-PEG coated, cell repellent surrounding. The two approaches
differ in two details: First, for µPIPP the microstructure is afterwards visible in phase
contrast microscopy whereas for µCP a part of the fibronectin has to be labelled by a
fluorophore to ensure position and quality. Second, µPIPP cannot be used for closed
structures such as a ring-shaped geometry as the centre part would not be passivated
resulting in a circle instead of a ring. However, for only qualitative confinement of
cells to micropatterns no difference between these two methods has been observed. The
protocols for fabrication can be found in Segerer et al. [150] for µPIPP and Schreiber
et al. [162] for µCP. For multicellular experiments, cell were confined to three dimen-
sional structures cast from a PDMS stamp using PEG-DMA and a cell-adhesive dish
[168]. The exact protocol can be found in detail in Zorn [117]. The fourth approach
for cell confinement is Laser-Assisted Protein Adsorption by Photobleaching (LAPAP).
There, a chrome mask is used for spatially defined photobleaching and adsorption of a
fluorophore to a cell-repellent surface. A click-chemistry anchor allows covalent binding
of RGD-sequences as described by Bélisle et al. [151]. So far, there is no standard
protocol as the patterns shown here still are subject to optimization.
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A.2. Cell Lines and Culture
Throughout this thesis, different cell lines are used as shown in Table A.1 and briefly
described below.

Cell Culture
All cell lines were kept at cultivating conditions annotated to their brief profiles and
passaged every 2-3 days. If not stated otherwise, cells were washed with PBS, detached
using Accutase and incubated at 37◦C until they rounded up (for most cell lines used
this takes 2 min, for MCF10A >15min). Afterwards the culture flask was gently patted
to detach the cells, resuspended with 2 ml culture medium and the flask was thoroughly
rinsed with the cell suspension to detach all remaining cells. During centrifugation for
3 min at 800 rcf the cell number was determined using a Neubauer counting chamber.
The supernatant was carefully aspirated and the cell pellet was resuspended in 3 ml
culture medium. Then, cells were seeded in the amount stated in their profiles.

Cell Lines
• MDA-MB-231

◦ Cellosaurus Identifier: CVCL_0062
◦ Short Description: highly invasive breast cancer cell line
◦ Culture Medium: L15 with 10% fetal bovine serum (FBS)
◦ Culture Conditions: 37◦C and 0% CO2
◦ Average Generation Time: 30 hours
◦ Seeding number in T25 for 2 / 3 days: 3.5 · 105 / 2.25 · 105

◦ Typical Morphology, 5x and 20x phase contrast

• MDA-MB-436
◦ Cellosaurus Identifier: CVCL_0623
◦ Short Description: invasive breast cancer cell line
◦ Culture Medium: L15 with 10% FBS
◦ Culture Conditions: 37◦C and 5% CO2, one week in same flask
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A.2. Cell Lines and Culture

◦ Average Generation Time: 60 hours
◦ Seeding number in T25 for 2 / 3 days: 4.2 · 105 / 3.7 · 105

◦ Typical Morphology, 5x and 20x phase contrast

• MCF10A

◦ Cellosaurus Identifier: CVCL_0598
◦ Short Description: Fibroblastic disease cell line
◦ Culture Medium: DMEM:F12 with 5% horse serum, 10 µg

ml
insulin, 20ng

ml
hEGF,

0.5 µg
ml

hydrocortison, 100ng
ml

cholera toxin
◦ Culture Conditions: 37◦C and 5% CO2

◦ Average Generation Time: 48 hours
◦ Seeding number in T25 for 2 / 3 days: 5.1 · 105 / 4.3 · 105

◦ Typical Morphology, 5x and 20x phase contrast

• RPE

◦ Cellosaurus Identifier: CVCL_0145
◦ Short Description: Human Retinal Epithelium cell line
◦ Culture Medium: DMEM:F12 with 10% FBS
◦ Culture Conditions: 37◦C and 5% CO2

◦ Average Generation Time: 24 hours
◦ Seeding number in T25 for 2 / 3 days: 3.5 · 105 / 2.0 · 105
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A. Materials and Methods

◦ Typical Morphology, 5x and 20x phase contrast

A.3. Microscopes
If not indicated otherwise, all experiments were performed on a Nikon Ti Eclipse setup
with 10x and 20x Nikon phase-contrast objectives or a 60x Nikon oil immersion TIRF
objective and a Lumencor Spectra-X or Nikon mercury fibre illuminator as fluorescence
excitation source. The microscopes were equipped with a pco.edge 4.2 LT sCMOS
camera and a large Okolab10 incubation box with gas mixer. For the recording of the
fluorescence of the stained cell nuclei, images were recorded at 2x2 binning to reduce
photo damage by enabling shorter exposure times. To record many cells in parallel,
automated scanning time-lapse measurements were performed at an imaging rate of 10
min in phase contrast and cell fluorescence. Experiments were performed for a duration
of 24 to 72 hours and about a hundred positions were imaged. For experiments in
chapters 4 and 5, fluorescent micropatterns were recorded once at the beginning of the
measurement. Exposure times were chosen such that cells still were vital at the end of
the measurement.

A.4. Experimental Procedure
If not indicated otherwise, all experiments were performed in L15 without phenol red
supplemented with 10% FBS, at 0% CO2 and 37◦C, except for experiments involving
MCF10A that were performed in the medium composition for MCF10A without phenol
red at 10% CO2 and 37◦C. After cell passaging, the remaining cell suspension was used
to seed about 7500 cells onto the microstructures fabricated the day before and stored
over night under PBS at 4◦C. The PBS was removed and 1 ml of cell culture medium
was added to the 60µ ibidi dishes the cell suspension was distributed equally over the
dish and swayed in a eight-shape to ensure even cell distribution. Cells were allowed to
adhere to the pattern for about 3 hours under cultivation conditions. Afterwards, the
medium was very carefully exchanged for the imaging medium and a cell stain could be
added, see next section. Cells were carefully transferred to the preheated microscope,
allowed to equilibrate for one hour and the measurement was set up.

88



A.5. Labelling and Transfection

A.5. Labelling and Transfection
For chapter 5, a MDA-MB-231 cell line stably expressing a H2B-mcherry marker was
used, so no additional nucleus stain was needed. All other single cell experiments in
chapters 3 to 6 were conducted with an addition of a final concentration of 25nM Hoechst
33342 to the imaging medium leading to a fluorescence signal of the nuclei within 1 hour
after medium exchange. The antibodies used in chapter 5 were added with the imaging
medium at 5 µg

ml
for CD324 (E-Cadherin) Monoclonal Antibody (DECMA-1) and 1 µg

ml

for Ephrin A2 Monoclonal Antibody (OTI3E3).
For the transfection of the polarization markers in chapter 8, MDA-MB-231 cells were

seeded two days prior to the experiment into a 60µ ibidi dish to be 70% confluent the
next day in culturing conditions and medium. DNA plasmids were transfected using
Lipofectamine2000 and Opti-MEM medium without any supplements. For lipoplex
formation, 2 µl Lipofectamine2000 are diluted in 100 µl Opti-MEM. Then, 1 µg DNA
is diluted in 100 µl Opti-MEM, added to the Lipo-mix and mixed well by pipetting.
The lipoplexes are allowed to form for 5 minutes during which the cells are washed
once with 1 ml PBS and covered in 300 µl Opti-MEM. The Lipo-DNA mix is evenly
distributed over the cells and they are incubated for 6 hours at 37◦C and 5% CO2.
Afterwards, the medium is exchanged for the usual cultivation medium and cells are
allowed to recover over night. The next day, a cell suspension is fabricated analogously
to passaging and seeded onto the structures of choice.
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B. Image Processing

During the course of this thesis, routines for image analysis were developed that will
be explained in the following.

B.1. Single Cell Geometries
For single cells on small micropatterns, a fully automated script for image analysis
and nucleus tracking was established in python. First, the fluorescent image of the
micropattern of a position is used to access the orientation of the structures and detect
the exact positions of the single patterns. Second, the angle of orientation and exact
positions are transferred to the fluorescent image of the cell nuclei and used to crop
the position into single substructures, e.g. single stripes. On these single stripes, the
number of nuclei is determined and if there is only one nucleus present, the centred
coordinates are written to a .csv file. Last, the bright-field images are rotated and
cropped accordingly to allow for manual validation of the tracking. The code was
designed to run as robustly as possible compromising for sensitivity. Although almost
all experiments could be analysed with the same set of parameters, for some positions
a slight parameter adjustment was needed.

B.1.1. Pattern Recognition
The general workflow for first part of the analysis is depicted using an exemplary posi-
tion in Fig B.1. Briefly summarized, the workflow uses several predefined functions of
the image processing library OpenCV, version 3.2.0 [218].
The original image is background corrected by using the OpenCV fast denoising al-

gorithm and a threshold is applied to cut off very bright inhomogeneities in the pattern.
To improve contrast and brightness, a local histogram normalization of the image is ap-
plied by the CLAHE (Contrast Limited Adaptive Histogram Equalization) function of
OpenCV. To detect the outlines of the structures, the Canny edge detection of OpenCV
is applied that was first proposed by John Canny in 1986 [219]. On the detected edges,
a Hough transform is used for the extraction of the overall rotation of the micropat-
terns. Now the main orientation axis of the structures is known, the image is rotated
by the previously computed angle. As the image is now rotated, a previously prepared
template of the single substructure, e.g. a stripe, is loaded and checked for matches
using the OpenCV ”matchTemplate“ function. An area of interest around each possi-
ble stripe detection is set and all the marked areas are checked for matching with the
template under the restriction of only one appearance. The centre of each stripe is
calculated, plotted and annotated with the stripe number for later validation.
After the pattern image, we transfer the rotation and the localization of the stripes

to the fluorescent images of the nucleus and the bright-field images of the cells.

91



B. Image Processing

a

b

c

d

e

f

g

h

Figure B.1.:Workflow of image analysis for single pattern recognition. (a) Original image. (b) Thresh-
old to reduce over-bright spots. (c) CLAHE improved image. (d) Canny edge detection. (e) Hough
line transformation shows pattern direction by purple line. (f) Rotated image. (g) Detected single
structures with region of interest, exemplarily coloured green. (h) Detected and numbered stripes.
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B.2. Cell Area and Perimeter

B.1.2. Nucleus Tracking
The fluorescent image stacks of the cell nuclei are cropped into single stripes and pro-
cessed subsequently. For each stripe position and time point, the Otsu method of
thresholding is applied to binarize the image into pixels of nuclei and other. The num-
ber of unconnected nuclei islands is determined and for only one present nucleus, the
centre of mass coordinates are written into a csv file. The cropped original fluorescence
image and the binarized one are both saved for manual validation of the recognition
process. Thus, all time points, single stripes and positions are analysed. The bright-
field images is cropped and saved in the same directory that contains a unique identifier
for position and single stripe.
For later analysis, for each position all stripes not fully in the field of view or stripes

showing inhomogeneous fluorescence are excluded by denoting their number identifier
in a separate file. For instance, in Fig B.1h the stripe numbers 1 to 16 and 45 to 51
would be excluded due to their position at the edge of the microstructured area or their
being cut off.
Further analysis was performed with the software R that was used for trajectory

filtering and all following data processing and visualization [220]. All trajectories con-
taining a single nucleus were manually verified by looking at respective bright-field and
nucleus image stacks to rule out mistakes in classification.

B.2. Cell Area and Perimeter
To determine the area and perimeter of freely moving cells, cells were transfected with
a cytosol marker and imaged in the according fluorescence channel. These images
were manually segmented into single cells. For the determination of the cell areas,
a python script with a graphical user interface was programmed allowing for manual
thresholding and automated image looping. The threshold for the fluorescent image was
set to capture the whole cell body without the background and noise. All unconnected
islands of pixels were determined and the biggest one was further regarded as cell
body. Potential holes in the cell were closed using the morphological closing library of
OpenCV and the obtained cell area was converted to µm2 and saved. The perimeter
was determined using the ”findContours“ function of OpenCV and the number of pixels
of the unreduced contour was converted to µm and saved as perimeter. The next image
was opened automatically saving a picture of the previous thresheld cell and final area
and perimeter as shown in Fig B.2.
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B. Image Processing

a b c

Figure B.2.: Area and Perimeter extraction from Fluorescence Images. (a) Thresheld image of the
cell body. (b) Closed image and resulting area. (c) Extracted contour and resulting perimeter.

B.3. Mazes
The code for image analysis was implemented by Theresa-Maja E. Reitz as part of her
Bachelor’s thesis and was further refined during an employment as student assistant.
The workflow is depicted in Fig B.3. For the analysis of cell migration through mazes,
the cell nuclei were tracked using TrackMate, a plugin for Fiji [187, 221]. The obtained
trajectories were interpolated to have connected paths of pixels and matched with a
binarized image of the maze micropattern at this position. The orientation and change
in angle of the pattern were determined by eye and lines for further automated process-
ing were drawn as shown in Fig B.3b. The green line determines a left edge of the unit
cells the pattern is subdivided into. The yellow line indicates the change in opening
angle where the trajectories were reset. The blue line determines a right edge of the
unit cells. Red and purple line indicate upper and lower edge of a unit cell. As the
dimensions of the structures are known the pattern can be subdivided into unit cells
with the help of the previously marked lines. Numbering the unit cells as shown in
Fig B.3d, the trajectories can be analysed in terms of the unit cells they pass, compare
Fig 5.2. A list of discrete left-right decisions is obtained for each trajectory.
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B.3. Mazes

a

c

b

d

Figure B.3.: Workflow of image analysis for cell migration through mazees. (a) Trajectories obtained
by TrackMate, colours indicate different cells. (b) Manual segmentation of micropattern for further
automated analysis. (c) Automated image segmentation into unit cells. (d) Numbered and color
coded unit cells for discretization of trajectories into decisions.

95





Bibliography

[1] Robert Hooke. Micrographia or Some Physiological Descriptions of Minute Bodies
Made by Magnifying Glasseswith Observations and Inquiries Thereupon. Royal
Society of London, 1665.

[2] Theodor Schwann. Mikroskopische Untersuchungen über die Ubereinstimmung
in der Struktur und dem Wachsthum der Tiere und Pflanzen. Verlag der
Sander’schen Buchhandlung (GE Reimer), 1839.

[3] Joseph-Claude-Anthelme Récamier. Recherches sur le traitement du cancer, par
la compression méthodique simple ou combinée, et sur l’histoire générale de la
même maladie: suivies de notes, 1. sur les forces de la dynamétrie vitales; 2. sur
l’nflammation de l’etat fébrile, volume 2. Gabon, 1829.

[4] Melanie Rodrigues, Nina Kosaric, Clark A. Bonham, and Geoffrey C. Gurtner.
Wound healing: A cellular perspective. Physiological Reviews, 99(1):665–706, jan
2019. doi:10.1152/physrev.00067.2017.

[5] Petra Kameritsch and Jörg Renkawitz. Principles of leukocyte migration strate-
gies. Trends in Cell Biology, 30(10):818–832, oct 2020. doi:10.1016/j.tcb.
2020.06.007.

[6] Jeffrey A. Farrell, Yiqun Wang, Samantha J. Riesenfeld, Karthik Shekhar, Aviv
Regev, and Alexander F. Schier. Single-cell reconstruction of developmental tra-
jectories during zebrafish embryogenesis. Science, 360(6392):eaar3131, apr 2018.
doi:10.1126/science.aar3131.

[7] Gaorav P. Gupta and Joan Massagué. Cancer metastasis: Building a framework.
Cell, 127(4):679–695, nov 2006. doi:10.1016/j.cell.2006.11.001.

[8] Statistisches Bundesamt (Destatis), February 2021. URL: https:
//www.destatis.de/DE/Presse/Pressemitteilungen/2021/02/PD21_N010_
231.html.

[9] Peter Friedl and Stephanie Alexander. Cancer invasion and the microenvironment:
Plasticity and reciprocity. Cell, 147(5):992–1009, nov 2011. doi:10.1016/j.
cell.2011.11.016.

[10] A. J. Ridley. Cell migration: Integrating signals from front to back. Science,
302(5651):1704–1709, dec 2003. doi:10.1126/science.1092053.

[11] A. Hall. Rho GTPases and the actin cytoskeleton. Science, 279(5350):509–514,
jan 1998. doi:10.1126/science.279.5350.509.

97

https://doi.org/10.1152/physrev.00067.2017
https://doi.org/10.1016/j.tcb.2020.06.007
https://doi.org/10.1016/j.tcb.2020.06.007
https://doi.org/10.1126/science.aar3131
https://doi.org/10.1016/j.cell.2006.11.001
https://www.destatis.de/DE/Presse/Pressemitteilungen/2021/02/PD21_N010_231.html
https://www.destatis.de/DE/Presse/Pressemitteilungen/2021/02/PD21_N010_231.html
https://www.destatis.de/DE/Presse/Pressemitteilungen/2021/02/PD21_N010_231.html
https://doi.org/10.1016/j.cell.2011.11.016
https://doi.org/10.1016/j.cell.2011.11.016
https://doi.org/10.1126/science.1092053
https://doi.org/10.1126/science.279.5350.509


Bibliography

[12] Campbell D. Lawson and Anne J. Ridley. Rho GTPase signaling complexes in
cell migration and invasion. Journal of Cell Biology, 217(2):447–457, dec 2017.
doi:10.1083/jcb.201612069.

[13] Olga Ilina, Pavlo G. Gritsenko, Simon Syga, Jürgen Lippoldt, Caterina A. M. La
Porta, Oleksandr Chepizhko, Steffen Grosser, Manon Vullings, Gert-Jan Bakker,
Jörn Starruß, Peter Bult, Stefano Zapperi, Josef A. Käs, Andreas Deutsch, and
Peter Friedl. Cell–cell adhesion and 3d matrix confinement determine jamming
transitions in breast cancer invasion. Nature Cell Biology, 22(9):1103–1115, aug
2020. doi:10.1038/s41556-020-0552-6.

[14] Anna-Kristina Marel, Matthias Zorn, Christoph Klingner, Roland Wedlich-
Söldner, Erwin Frey, and Joachim O. Rädler. Flow and diffusion in channel-
guided cell migration. Biophysical Journal, 107(5):1054–1064, sep 2014. doi:
10.1016/j.bpj.2014.07.017.

[15] Andrea J. Liu and Sidney R. Nagel. The jamming transition and the marginally
jammed solid. Annual Review of Condensed Matter Physics, 1(1):347–369, aug
2010. doi:10.1146/annurev-conmatphys-070909-104045.

[16] Sriram Ramaswamy. The mechanics and statistics of active matter. Annual
Review of Condensed Matter Physics, 1(1):323–345, aug 2010. doi:10.1146/
annurev-conmatphys-070909-104101.

[17] S. R. K. Vedula, M. C. Leong, T. L. Lai, P. Hersen, A. J. Kabla, C. T. Lim, and
B. Ladoux. Emerging modes of collective cell migration induced by geometrical
constraints. Proceedings of the National Academy of Sciences, 109(32):12974–
12979, jul 2012. doi:10.1073/pnas.1119313109.

[18] S. Tlili, M. Durande, C. Gay, B. Ladoux, F. Graner, and H. Delanoë-Ayari. Mi-
grating epithelial monolayer flows like a maxwell viscoelastic liquid. Physical Re-
view Letters, 125(8):088102, aug 2020. doi:10.1103/physrevlett.125.088102.

[19] M. Théry, V. Racine, M. Piel, A. Pepin, A. Dimitrov, Y. Chen, J.-B. Sibarita, and
M. Bornens. Anisotropy of cell adhesive microenvironment governs cell internal
organization and orientation of polarity. Proceedings of the National Academy of
Sciences, 103(52):19771–19776, dec 2006. doi:10.1073/pnas.0609267103.

[20] Fabrice Senger, Amandine Pitaval, Hajer Ennomani, Laetitia Kurzawa, Laurent
Blanchoin, and Manuel Théry. Spatial integration of mechanical forces by α-
actinin establishes actin network symmetry. Journal of Cell Science, jan 2019.
doi:10.1242/jcs.236604.

[21] Paolo Maiuri, Jean-François Rupprecht, Stefan Wieser, Verena Ruprecht, Olivier
Bénichou, Nicolas Carpi, Mathieu Coppey, Simon De Beco, Nir Gov, Carl-Philipp

98

https://doi.org/10.1083/jcb.201612069
https://doi.org/10.1038/s41556-020-0552-6
https://doi.org/10.1016/j.bpj.2014.07.017
https://doi.org/10.1016/j.bpj.2014.07.017
https://doi.org/10.1146/annurev-conmatphys-070909-104045
https://doi.org/10.1146/annurev-conmatphys-070909-104101
https://doi.org/10.1146/annurev-conmatphys-070909-104101
https://doi.org/10.1073/pnas.1119313109
https://doi.org/10.1103/physrevlett.125.088102
https://doi.org/10.1073/pnas.0609267103
https://doi.org/10.1242/jcs.236604


Bibliography

Heisenberg, Carolina Lage Crespo, Franziska Lautenschlaeger, Maël Le Berre,
Ana-Maria Lennon-Dumenil, Matthew Raab, Hawa-Racine Thiam, Matthieu
Piel, Michael Sixt, and Raphaël Voituriez. Actin flows mediate a universal cou-
pling between cell speed and cell persistence. Cell, 161(2):374–386, apr 2015.
doi:10.1016/j.cell.2015.01.056.

[22] A. J. Lomakin, C. J. Cattin, D. Cuvelier, Z. Alraies, M. Molina, G. P. F. Nader,
N. Srivastava, P. J. Sáez, J. M. Garcia-Arcos, I. Y. Zhitnyak, A. Bhargava, M. K.
Driscoll, E. S. Welf, R. Fiolka, R. J. Petrie, N. S. De Silva, J. M. González-
Granado, N. Manel, A. M. Lennon-Duménil, D. J. Müller, and M. Piel. The
nucleus acts as a ruler tailoring cell responses to spatial constraints. Science,
370(6514):eaba2894, oct 2020. doi:10.1126/science.aba2894.

[23] X. Jiang, D. A. Bruzewicz, A. P. Wong, M. Piel, and G. M. Whitesides. Direct-
ing cell migration with asymmetric micropatterns. Proceedings of the National
Academy of Sciences, 102(4):975–978, jan 2005. doi:10.1073/pnas.0408954102.

[24] Goher Mahmud, Christopher J. Campbell, Kyle J. M. Bishop, Yulia A. Komarova,
Oleg Chaga, Siowling Soh, Sabil Huda, Kristiana Kandere-Grzybowska, and Bar-
tosz A. Grzybowski. Directing cell motions on micropatterned ratchets. Nature
Physics, 5(8):606–612, jun 2009. doi:10.1038/nphys1306.

[25] David Caballero, Raphaël Voituriez, and Daniel Riveline. Protrusion fluctuations
direct cell motion. Biophysical Journal, 107(1):34–42, jul 2014. doi:10.1016/j.
bpj.2014.05.002.

[26] David B. Brückner, Alexandra Fink, Christoph Schreiber, Peter J. F. Röttger-
mann, Joachim O. Rädler, and Chase P. Broedersz. Stochastic nonlinear dynamics
of confined cell migration in two-state systems. Nature Physics, 15(6):595–601,
mar 2019. doi:10.1038/s41567-019-0445-4.

[27] Mcolisi Dlamini, Timothy E. Kennedy, and David Juncker. Combinatorial nan-
odot stripe assay to systematically study cell haptotaxis. Microsystems & Nano-
engineering, 6(1), dec 2020. doi:10.1038/s41378-020-00223-0.

[28] Philipp J. Albert and Ulrich S. Schwarz. Modeling cell shape and dynamics
on micropatterns. Cell Adhesion & Migration, 10(5):516–528, mar 2016. doi:
10.1080/19336918.2016.1148864.

[29] Daniel M. Sussman, M. Paoluzzi, M. Cristina Marchetti, and M. Lisa Manning.
Anomalous glassy dynamics in simple models of dense biological tissue. EPL
(Europhysics Letters), 121(3):36001, feb 2018. doi:10.1209/0295-5075/121/
36001.

99

https://doi.org/10.1016/j.cell.2015.01.056
https://doi.org/10.1126/science.aba2894
https://doi.org/10.1073/pnas.0408954102
https://doi.org/10.1038/nphys1306
https://doi.org/10.1016/j.bpj.2014.05.002
https://doi.org/10.1016/j.bpj.2014.05.002
https://doi.org/10.1038/s41567-019-0445-4
https://doi.org/10.1038/s41378-020-00223-0
https://doi.org/10.1080/19336918.2016.1148864
https://doi.org/10.1080/19336918.2016.1148864
https://doi.org/10.1209/0295-5075/121/36001
https://doi.org/10.1209/0295-5075/121/36001


Bibliography

[30] Elizabeth Lawson-Keister and M. Lisa Manning. Jamming and arrest of cell
motion in biological tissues, 2021. arXiv:2102.11255.

[31] Athanasius F. M. Marée, Alexandra Jilkine, Adriana Dawes, Verônica A.
Grieneisen, and Leah Edelstein-Keshet. Polarization and movement of kera-
tocytes: A multiscale modelling approach. Bulletin of Mathematical Biology,
68(5):1169–1211, jun 2006. doi:10.1007/s11538-006-9131-7.

[32] Philipp J. Albert and Ulrich S. Schwarz. Dynamics of cell ensembles on adhesive
micropatterns: Bridging the gap between single cell spreading and collective cell
migration. PLOS Computational Biology, 12(4):e1004863, apr 2016. doi:10.
1371/journal.pcbi.1004863.

[33] Florian Thüroff, Andriy Goychuk, Matthias Reiter, and Erwin Frey. Bridging
the gap between single-cell migration and collective dynamics. eLife, 8, dec 2019.
doi:10.7554/elife.46842.

[34] David B. Brückner, Nicolas Arlt, Alexandra Fink, Pierre Ronceray, Joachim O.
Rädler, and Chase P. Broedersz. Learning the dynamics of cell-cell interactions
in confined cell migration. Proceedings of the National Academy of Sciences,
118(7):e2016602118, feb 2021. doi:10.1073/pnas.2016602118.

[35] Douglas A Lauffenburger and Alan F Horwitz. Cell migration: A physically
integrated molecular process. Cell, 84(3):359–369, feb 1996. doi:10.1016/
s0092-8674(00)81280-5.

[36] Paolo Maiuri, Emmanuel Terriac, Perrine Paul-Gilloteaux, Timothée Vignaud,
Krista McNally, James Onuffer, Kurt Thorn, Phuong A. Nguyen, Nefeli Georgou-
lia, Daniel Soong, Asier Jayo, Nina Beil, Jürgen Beneke, Joleen Chooi Hong Lim,
Chloe Pei-Ying Sim, Yeh-Shiu Chu, Andrea Jiménez-Dalmaroni, Jean-François
Joanny, Jean-Paul Thiery, Holger Erfle, Maddy Parsons, Timothy J. Mitchi-
son, Wendell A. Lim, Ana-Maria Lennon-Duménil, Matthieu Piel, and Manuel
Théry. The first world cell race. Current Biology, 22(17):R673–R675, sep 2012.
doi:10.1016/j.cub.2012.07.052.

[37] Shiladitya Banerjee, Margaret L. Gardel, and Ulrich S. Schwarz. The
actin cytoskeleton as an active adaptive material. Annual Review of
Condensed Matter Physics, 11(1):421–439, mar 2020. doi:10.1146/
annurev-conmatphys-031218-013231.

[38] Thomas D. Pollard and John A. Cooper. Actin, a central player in cell shape and
movement. Science, 326(5957):1208–1212, nov 2009. doi:10.1126/science.
1175862.

100

http://arxiv.org/abs/2102.11255
https://doi.org/10.1007/s11538-006-9131-7
https://doi.org/10.1371/journal.pcbi.1004863
https://doi.org/10.1371/journal.pcbi.1004863
https://doi.org/10.7554/elife.46842
https://doi.org/10.1073/pnas.2016602118
https://doi.org/10.1016/s0092-8674(00)81280-5
https://doi.org/10.1016/s0092-8674(00)81280-5
https://doi.org/10.1016/j.cub.2012.07.052
https://doi.org/10.1146/annurev-conmatphys-031218-013231
https://doi.org/10.1146/annurev-conmatphys-031218-013231
https://doi.org/10.1126/science.1175862
https://doi.org/10.1126/science.1175862


Bibliography

[39] Benjamin Geiger, Alexander Bershadsky, Roumen Pankov, and Kenneth M. Ya-
mada. Transmembrane crosstalk between the extracellular matrix and the cy-
toskeleton. Nature Reviews Molecular Cell Biology, 2(11):793–805, nov 2001.
doi:10.1038/35099066.

[40] Patricia M. Davidson and Bruno Cadot. Actin on and around the nucleus. Trends
in Cell Biology, dec 2020. doi:10.1016/j.tcb.2020.11.009.

[41] Jan Mueller, Gregory Szep, Maria Nemethova, Ingrid de Vries, Arnon D. Lieber,
Christoph Winkler, Karsten Kruse, J. Victor Small, Christian Schmeiser, Kin-
neret Keren, Robert Hauschild, and Michael Sixt. Load adaptation of lamellipo-
dial actin networks. Cell, 171(1):188–200.e16, sep 2017. doi:10.1016/j.cell.
2017.07.051.

[42] Matthew D. Welch and R. Dyche Mullins. Cellular control of actin nucleation.
Annual Review of Cell and Developmental Biology, 18(1):247–288, nov 2002. doi:
10.1146/annurev.cellbio.18.040202.112133.

[43] Kate M. Byrne, Naser Monsefi, John C. Dawson, Andrea Degasperi, Jimi-
Carlo Bukowski-Wills, Natalia Volinsky, Maciej Dobrzyński, Marc R. Birtwistle,
Mikhail A. Tsyganov, Anatoly Kiyatkin, Katarzyna Kida, Andrew J. Finch,
Neil O. Carragher, Walter Kolch, Lan K. Nguyen, Alex von Kriegsheim, and
Boris N. Kholodenko. Bistability in the rac1, PAK, and RhoA signaling net-
work drives actin cytoskeleton dynamics and cell motility switches. Cell Systems,
2(1):38–48, jan 2016. doi:10.1016/j.cels.2016.01.003.

[44] Keith Burridge and Krister Wennerberg. Rho and rac take center stage. Cell,
116(2):167–179, jan 2004. doi:10.1016/s0092-8674(04)00003-0.

[45] L. Petitjean, M. Reffay, E. Grasland-Mongrain, M. Poujade, B. Ladoux,
A. Buguin, and P. Silberzan. Velocity fields in a collectively migrating epithelium.
Biophysical Journal, 98(9):1790–1800, may 2010. doi:10.1016/j.bpj.2010.01.
030.

[46] Benoit Rogez, Laeschkir Würthner, Anastasiia B. Petrova, Felix B. Zierhut, Dario
Saczko-Brack, Maria-Ana Huergo, Christopher Batters, Erwin Frey, and Claudia
Veigel. Reconstitution reveals how myosin-VI self-organises to generate a dynamic
mechanism of membrane sculpting. Nature Communications, 10(1), jul 2019.
doi:10.1038/s41467-019-11268-9.

[47] Henry Harris. Chemotaxis. Experimental Cell Research, 8:199–208, jan 1961.
doi:10.1016/0014-4827(61)90349-4.

101

https://doi.org/10.1038/35099066
https://doi.org/10.1016/j.tcb.2020.11.009
https://doi.org/10.1016/j.cell.2017.07.051
https://doi.org/10.1016/j.cell.2017.07.051
https://doi.org/10.1146/annurev.cellbio.18.040202.112133
https://doi.org/10.1146/annurev.cellbio.18.040202.112133
https://doi.org/10.1016/j.cels.2016.01.003
https://doi.org/10.1016/s0092-8674(04)00003-0
https://doi.org/10.1016/j.bpj.2010.01.030
https://doi.org/10.1016/j.bpj.2010.01.030
https://doi.org/10.1038/s41467-019-11268-9
https://doi.org/10.1016/0014-4827(61)90349-4


Bibliography

[48] David Ellison, Andrew Mugler, Matthew D. Brennan, Sung Hoon Lee, Robert J.
Huebner, Eliah R. Shamir, Laura A. Woo, Joseph Kim, Patrick Amar, Ilya Ne-
menman, Andrew J. Ewald, and Andre Levchenko. Cell–cell communication en-
hances the capacity of cell ensembles to sense shallow gradients during morpho-
genesis. Proceedings of the National Academy of Sciences, 113(6):E679–E688, jan
2016. doi:10.1073/pnas.1516503113.

[49] ChunMin Lo, HongBei Wang, Micah Dembo, and Yu li Wang. Cell movement is
guided by the rigidity of the substrate. Biophysical Journal, 79(1):144–152, jul
2000. doi:10.1016/s0006-3495(00)76279-5.

[50] S. B. Carter. Principles of cell motility: The direction of cell movement and cancer
invasion. Nature, 208(5016):1183–1187, dec 1965. doi:10.1038/2081183a0.

[51] Anne J. Ridley and Alan Hall. The small GTP-binding protein rho regulates the
assembly of focal adhesions and actin stress fibers in response to growth factors.
Cell, 70(3):389–399, aug 1992. doi:10.1016/0092-8674(92)90163-7.

[52] Anne J. Ridley, Hugh F. Paterson, Caroline L. Johnston, Dagmar Diekmann, and
Alan Hall. The small GTP-binding protein rac regulates growth factor-induced
membrane ruffling. Cell, 70(3):401–410, aug 1992. doi:10.1016/0092-8674(92)
90164-8.

[53] Johannes L. Bos, Holger Rehmann, and Alfred Wittinghofer. GEFs and GAPs:
Critical elements in the control of small g proteins. Cell, 129(5):865–877, jun
2007. doi:10.1016/j.cell.2007.05.018.

[54] Richard G. Hodge and Anne J. Ridley. Regulating rho GTPases and their
regulators. Nature Reviews Molecular Cell Biology, 17(8):496–510, jun 2016.
doi:10.1038/nrm.2016.67.

[55] Elisabeth M. Gardiner, Kersi N. Pestonjamasp, Benjamin P. Bohl, Chester Cham-
berlain, Klaus M. Hahn, and Gary M. Bokoch. Spatial and temporal analysis of
rac activation during live neutrophil chemotaxis. Current Biology, 12(23):2029–
2034, dec 2002. doi:10.1016/s0960-9822(02)01334-9.

[56] David Pruyne and Anthony Bretscher. Polarization of cell growth in yeast.
i. establishment and maintenance of polarity states. Journal of cell science,
113(3):365–375, 2000.

[57] R Kozma, S Sarner, S Ahmed, and L Lim. Rho family GTPases and neu-
ronal growth cone remodelling: relationship between increased complexity in-
duced by cdc42hs, rac1, and acetylcholine and collapse induced by RhoA and
lysophosphatidic acid. Molecular and Cellular Biology, 17(3):1201–1211, mar
1997. doi:10.1128/mcb.17.3.1201.

102

https://doi.org/10.1073/pnas.1516503113
https://doi.org/10.1016/s0006-3495(00)76279-5
https://doi.org/10.1038/2081183a0
https://doi.org/10.1016/0092-8674(92)90163-7
https://doi.org/10.1016/0092-8674(92)90164-8
https://doi.org/10.1016/0092-8674(92)90164-8
https://doi.org/10.1016/j.cell.2007.05.018
https://doi.org/10.1038/nrm.2016.67
https://doi.org/10.1016/s0960-9822(02)01334-9
https://doi.org/10.1128/mcb.17.3.1201


Bibliography

[58] Sandrine Etienne-Manneville and Alan Hall. Integrin-mediated activation of cdc42
controls cell polarity in migrating astrocytes through PKCζ. Cell, 106(4):489–498,
aug 2001. doi:10.1016/s0092-8674(01)00471-8.

[59] Alexander F. Palazzo, Tiffani A. Cook, Arthur S. Alberts, and Gregg G. Gun-
dersen. mDia mediates rho-regulated formation and orientation of stable micro-
tubules. Nature Cell Biology, 3(8):723–729, jul 2001. doi:10.1038/35087035.

[60] Matthias Machacek, Louis Hodgson, Christopher Welch, Hunter Elliott, Olivier
Pertz, Perihan Nalbant, Amy Abell, Gary L. Johnson, Klaus M. Hahn, and Gau-
denz Danuser. Coordination of rho GTPase activities during cell protrusion.
Nature, 461(7260):99–103, aug 2009. doi:10.1038/nature08242.

[61] Sandrine Etienne-Manneville and Alan Hall. Rho GTPases in cell biology. Nature,
420(6916):629–635, dec 2002. doi:10.1038/nature01148.

[62] O. Pertz. Spatio-temporal rho GTPase signaling - where are we now? Journal of
Cell Science, 123(11):1841–1850, may 2010. doi:10.1242/jcs.064345.

[63] Christophe Guilluy, Rafael Garcia-Mata, and Keith Burridge. Rho protein
crosstalk: another social network? Trends in Cell Biology, 21(12):718–726, dec
2011. doi:10.1016/j.tcb.2011.08.002.

[64] Jon S. Zawistowski, Mohsen Sabouri-Ghomi, Gaudenz Danuser, Klaus M. Hahn,
and Louis Hodgson. A RhoC biosensor reveals differences in the activation kinetics
of RhoA and RhoC in migrating cells. PLoS ONE, 8(11):e79877, nov 2013. doi:
10.1371/journal.pone.0079877.

[65] Anne J Ridley. Rho GTPase signalling in cell migration. Current Opinion in Cell
Biology, 36:103–112, oct 2015. doi:10.1016/j.ceb.2015.08.005.

[66] Marie Evangelista, Sally Zigmond, and Charles Boone. Formins: signaling effec-
tors for assembly and polarization of actin filaments. Journal of Cell Science,
116(13):2603–2611, jul 2003. doi:10.1242/jcs.00611.

[67] Yangmi Lim, Ssang-Taek Lim, Alok Tomar, Margaret Gardel, Joie A. Bernard-
Trifilo, Xiao Lei Chen, Sean A. Uryu, Rafaela Canete-Soler, Jinbin Zhai, Hong
Lin, William W. Schlaepfer, Perihan Nalbant, Gary Bokoch, Dusko Ilic, Clare
Waterman-Storer, and David D. Schlaepfer. PyK2 and FAK connections to
p190rho guanine nucleotide exchange factor regulate RhoA activity, focal ad-
hesion formation, and cell motility. Journal of Cell Biology, 180(1):187–203, jan
2008. doi:10.1083/jcb.200708194.

[68] Shujie Wang, Takashi Watanabe, Kenji Matsuzawa, Akira Katsumi, Mai Kakeno,
Toshinori Matsui, Feng Ye, Kazuhide Sato, Kiyoko Murase, Ikuko Sugiyama,

103

https://doi.org/10.1016/s0092-8674(01)00471-8
https://doi.org/10.1038/35087035
https://doi.org/10.1038/nature08242
https://doi.org/10.1038/nature01148
https://doi.org/10.1242/jcs.064345
https://doi.org/10.1016/j.tcb.2011.08.002
https://doi.org/10.1371/journal.pone.0079877
https://doi.org/10.1371/journal.pone.0079877
https://doi.org/10.1016/j.ceb.2015.08.005
https://doi.org/10.1242/jcs.00611
https://doi.org/10.1083/jcb.200708194


Bibliography

Kazushi Kimura, Akira Mizoguchi, Mark H. Ginsberg, John G. Collard, and Kozo
Kaibuchi. Tiam1 interaction with the PAR complex promotes talin-mediated rac1
activation during polarized cell migration. Journal of Cell Biology, 199(2):331–
345, oct 2012. doi:10.1083/jcb.201202041.

[69] Chetan K Rane and Audrey Minden. P21 activated kinases. Small GTPases,
5(1):e28003, jan 2014. doi:10.4161/sgtp.28003.

[70] Matthias Krause and Alexis Gautreau. Steering cell migration: lamellipodium
dynamics and the regulation of directional persistence. Nature Reviews Molecular
Cell Biology, 15(9):577–590, aug 2014. doi:10.1038/nrm3861.

[71] Sonja Kühn and Matthias Geyer. Formins as effector proteins of rho GTPases.
Small GTPases, 5(3):e983876, jul 2014. doi:10.4161/sgtp.29513.

[72] X. Cao, C. Voss, B. Zhao, T. Kaneko, and S. S.-C. Li. Differential regulation of the
activity of deleted in liver cancer 1 (DLC1) by tensins controls cell migration and
transformation. Proceedings of the National Academy of Sciences, 109(5):1455–
1460, jan 2012. doi:10.1073/pnas.1114368109.

[73] Xuan Cao, Tomonori Kaneko, Jenny S. Li, An-Dong Liu, Courtney Voss, and
Shawn S. C. Li. A phosphorylation switch controls the spatiotemporal activation
of rho GTPases in directional cell migration. Nature Communications, 6(1), jul
2015. doi:10.1038/ncomms8721.

[74] K. Kimura, M. Ito, M. Amano, K. Chihara, Y. Fukata, M. Nakafuku, B. Ya-
mamori, J. Feng, T. Nakano, K. Okawa, A. Iwamatsu, and K. Kaibuchi. Reg-
ulation of myosin phosphatase by rho and rho-associated kinase (rho-kinase).
Science, 273(5272):245–248, jul 1996. doi:10.1126/science.273.5272.245.

[75] Francisco M. Vega, Gilbert Fruhwirth, Tony Ng, and Anne J. Ridley. RhoA and
RhoC have distinct roles in migration and invasion by acting through different
targets. Journal of Cell Biology, 193(4):655–665, may 2011. doi:10.1083/jcb.
201011038.

[76] Tony Hodge, M. Jamie, and T. V. Cope. A myosin family tree. Journal of cell
science, 113(19):3353–3354, 2000.

[77] Amber L. Wells, Abel W. Lin, Li-Qiong Chen, Daniel Safer, Shane M Cain, Tama
Hasson, Bridget O Carragher, Ronald A Milligan, and H Lee Sweeney. Myosin vi
is an actin-based motor that moves backwards. Nature, 401(6752):505–508, 1999.
doi:https://doi-org.emedien.ub.uni-muenchen.de/10.1038/46835.

[78] James R Sellers. Myosins: a diverse superfamily. Biochimica et Biophys-
ica Acta (BBA) - Molecular Cell Research, 1496(1):3–22, mar 2000. doi:
10.1016/s0167-4889(00)00005-7.

104

https://doi.org/10.1083/jcb.201202041
https://doi.org/10.4161/sgtp.28003
https://doi.org/10.1038/nrm3861
https://doi.org/10.4161/sgtp.29513
https://doi.org/10.1073/pnas.1114368109
https://doi.org/10.1038/ncomms8721
https://doi.org/10.1126/science.273.5272.245
https://doi.org/10.1083/jcb.201011038
https://doi.org/10.1083/jcb.201011038
https://doi.org/https://doi-org.emedien.ub.uni-muenchen.de/10.1038/46835
https://doi.org/10.1016/s0167-4889(00)00005-7
https://doi.org/10.1016/s0167-4889(00)00005-7


Bibliography

[79] Enrique M. De la Cruz, E. Michael Ostap, and H. Lee Sweeney. Kinetic mechanism
and regulation of myosin vi. Journal of Biological Chemistry, 276(34):32373–
32381, 2001. doi:https://doi.org/10.1074/jbc.M104136200.

[80] Folma Buss, Susan D Arden, Margaret Lindsay, J Paul Luzio, and John Kendrick-
Jones. Myosin VI isoform localized to clathrin-coated vesicles with a role in
clathrin-mediated endocytosis. The EMBO Journal, 20(14):3676–3684, jul 2001.
doi:10.1093/emboj/20.14.3676.

[81] Folma Buss, John Kendrick-Jones, Corinne Lionne, Alex E. Knight, Graham P.
Côté, and J. Paul Luzio. The localization of myosin VI at the golgi complex and
leading edge of fibroblasts and its phosphorylation and recruitment into membrane
ruffles of a431 cells after growth factor stimulation. Journal of Cell Biology,
143(6):1535–1545, dec 1998. doi:10.1083/jcb.143.6.1535.

[82] Elisa Magistrati and Simona Polo. Myomics: myosin VI structural and functional
plasticity. Current Opinion in Structural Biology, 67:33–40, apr 2021. doi:10.
1016/j.sbi.2020.09.005.

[83] Laura Aschenbrenner, TinThu Lee, and Tama Hasson. Myo6 facilitates the
translocation of endocytic vesicles from cell peripheries. Molecular Biology of
the Cell, 14(7):2728–2743, jul 2003. doi:10.1091/mbc.e02-11-0767.

[84] Rhys Roberts, Ida Lister, Stephan Schmitz, Matthew Walker, Claudia Veigel,
John Trinick, Folma Buss, and John Kendrick-Jones. Myosin vi: cellular
functions and motor properties. Philosophical Transactions of the Royal So-
ciety of London. Series B: Biological Sciences, 359(1452):1931–1944, dec 2004.
doi:10.1098/rstb.2004.1563.

[85] Karen B. Avraham, Tama Hasson, Karen P. Steel, David M. Kingsley, Liane B.
Russell, Mark S. Mooseker, Neal G. Copeland, and Nancy A. Jenkins. The mouse
snell's waltzer deafness gene encodes an unconventional myosin required for struc-
tural integrity of inner ear hair cells. Nature Genetics, 11(4):369–375, dec 1995.
doi:10.1038/ng1295-369.

[86] Claire L Warner, Abigail Stewart, J Paul Luzio, Karen P Steel, Richard T Libby,
John Kendrick-Jones, and Folma Buss. Loss of myosin VI reduces secretion and
the size of the golgi in fibroblasts from snell's waltzer mice. The EMBO Journal,
22(3):569–579, feb 2003. doi:10.1093/emboj/cdg055.

[87] I. Lister, R. Roberts, S. Schmitz, M. Walker, J. Trinick, C. Veigel, F. Buss, and
J. Kendrick-Jones. Myosin VI: a multifunctional motor. Biochemical Society
Transactions, 32(5):685–688, oct 2004. doi:10.1042/bst0320685.

105

https://doi.org/https://doi.org/10.1074/jbc.M104136200
https://doi.org/10.1093/emboj/20.14.3676
https://doi.org/10.1083/jcb.143.6.1535
https://doi.org/10.1016/j.sbi.2020.09.005
https://doi.org/10.1016/j.sbi.2020.09.005
https://doi.org/10.1091/mbc.e02-11-0767
https://doi.org/10.1098/rstb.2004.1563
https://doi.org/10.1038/ng1295-369
https://doi.org/10.1093/emboj/cdg055
https://doi.org/10.1042/bst0320685


Bibliography

[88] Erika R. Geisbrecht and Denise J. Montell. Myosin vi is required for e-cadherin-
mediated border cell migration. Nature Cell Biology, 4(8):616–620, jul 2002.
doi:10.1038/ncb830.

[89] Mijo Simunovic, Gregory A. Voth, Andrew Callan-Jones, and Patricia Bassereau.
When physics takes over: BAR proteins and membrane curvature. Trends in Cell
Biology, 25(12):780–792, dec 2015. doi:10.1016/j.tcb.2015.09.005.

[90] R. Sunyer, V. Conte, J. Escribano, A. Elosegui-Artola, A. Labernadie, L. Valon,
D. Navajas, J. M. Garcia-Aznar, J. J. Munoz, P. Roca-Cusachs, and X. Trepat.
Collective cell durotaxis emerges from long-range intercellular force transmission.
Science, 353(6304):1157–1161, sep 2016. doi:10.1126/science.aaf7119.

[91] Xavier Trepat and Erik Sahai. Mesoscale physical principles of collective
cell organization. Nature Physics, 14(7):671–682, jul 2018. doi:10.1038/
s41567-018-0194-9.

[92] Benoit Ladoux and René-Marc Mège. Mechanobiology of collective cell be-
haviours. Nature Reviews Molecular Cell Biology, 18(12):743–757, nov 2017.
doi:10.1038/nrm.2017.98.

[93] Peter Friedl and Roberto Mayor. Tuning collective cell migration by cell–cell
junction regulation. Cold Spring Harbor Perspectives in Biology, 9(4):a029199,
jan 2017. doi:10.1101/cshperspect.a029199.

[94] Roberto Mayor and Sandrine Etienne-Manneville. The front and rear of collective
cell migration. Nature Reviews Molecular Cell Biology, 17(2):97–109, jan 2016.
doi:10.1038/nrm.2015.14.

[95] Mirjam M Zegers and Peter Friedl. Rho GTPases in collective cell migration.
Small GTPases, 5(3):e983869, jul 2014. doi:10.4161/sgtp.28997.

[96] Peter Friedl and Darren Gilmour. Collective cell migration in morphogenesis,
regeneration and cancer. Nature reviews Molecular cell biology, 10(7):445–457,
2009. doi:10.1038/nrm2720.

[97] Elsa Bazellières, Vito Conte, Alberto Elosegui-Artola, Xavier Serra-Picamal,
María Bintanel-Morcillo, Pere Roca-Cusachs, José J. Muñoz, Marta Sales-Pardo,
Roger Guimerà, and Xavier Trepat. Control of cell–cell forces and collective cell
dynamics by the intercellular adhesome. Nature Cell Biology, 17(4):409–420, mar
2015. doi:10.1038/ncb3135.

[98] Xavier Trepat, Michael R. Wasserman, Thomas E. Angelini, Emil Millet, David A.
Weitz, James P. Butler, and Jeffrey J. Fredberg. Physical forces during collec-
tive cell migration. Nature Physics, 5(6):426–430, may 2009. doi:10.1038/
nphys1269.

106

https://doi.org/10.1038/ncb830
https://doi.org/10.1016/j.tcb.2015.09.005
https://doi.org/10.1126/science.aaf7119
https://doi.org/10.1038/s41567-018-0194-9
https://doi.org/10.1038/s41567-018-0194-9
https://doi.org/10.1038/nrm.2017.98
https://doi.org/10.1101/cshperspect.a029199
https://doi.org/10.1038/nrm.2015.14
https://doi.org/10.4161/sgtp.28997
https://doi.org/10.1038/nrm2720
https://doi.org/10.1038/ncb3135
https://doi.org/10.1038/nphys1269
https://doi.org/10.1038/nphys1269


Bibliography

[99] Xiaobo Wang, Li He, Yi I. Wu, Klaus M. Hahn, and Denise J. Montell. Light-
mediated activation reveals a key role for rac in collective guidance of cell move-
ment in vivo. Nature Cell Biology, 12(6):591–597, may 2010. doi:10.1038/
ncb2061.

[100] René Marc Mège and Noboru Ishiyama. Integration of cadherin adhesion and
cytoskeleton at adherens junctions. Cold Spring Harbor Perspectives in Biology,
9(5):a028738, jan 2017. doi:10.1101/cshperspect.a028738.

[101] L. Shapiro and W. I. Weis. Structure and biochemistry of cadherins and catenins.
Cold Spring Harbor Perspectives in Biology, 1(3):a003053–a003053, aug 2009.
doi:10.1101/cshperspect.a003053.

[102] Antonis Kourtidis, Ruifeng Lu, Lindy J. Pence, and Panos Z. Anastasiadis. A cen-
tral role for cadherin signaling in cancer. Experimental Cell Research, 358(1):78–
85, sep 2017. doi:10.1016/j.yexcr.2017.04.006.

[103] Marta Canel, Alan Serrels, Derek Miller, Paul Timpson, Bryan Serrels, Mar-
garet C. Frame, and Valerie G. Brunton. Quantitative in vivo imaging of the
effects of inhibiting integrin signaling via src and FAK on cancer cell movement:
Effects on e-cadherin dynamics. Cancer Research, 70(22):9413–9422, nov 2010.
doi:10.1158/0008-5472.can-10-1454.

[104] Rizwan Farooqui and Gabriel Fenteany. Multiple rows of cells behind an epithelial
wound edge extend cryptic lamellipodia to collectively drive cell-sheet movement.
Journal of Cell Science, 118(1):51–63, dec 2004. doi:10.1242/jcs.01577.

[105] E. Anon, X. Serra-Picamal, P. Hersen, N. C. Gauthier, M. P. Sheetz, X. Trepat,
and B. Ladoux. Cell crawling mediates collective cell migration to close un-
damaged epithelial gaps. Proceedings of the National Academy of Sciences,
109(27):10891–10896, jun 2012. doi:10.1073/pnas.1117814109.

[106] Naël Osmani, Nicolas Vitale, Jean-Paul Borg, and Sandrine Etienne-Manneville.
Scrib controls cdc42 localization and activity to promote cell polarization during
astrocyte migration. Current Biology, 16(24):2395–2405, dec 2006. doi:10.1016/
j.cub.2006.10.026.

[107] S. Etienne-Manneville. Cdc42 - the centre of polarity. Journal of Cell Science,
117(8):1291–1300, mar 2004. doi:10.1242/jcs.01115.

[108] Ricard Alert and Xavier Trepat. Physical models of collective cell migration.
Annual Review of Condensed Matter Physics, 11(1):77–101, mar 2020. doi:10.
1146/annurev-conmatphys-031218-013516.

107

https://doi.org/10.1038/ncb2061
https://doi.org/10.1038/ncb2061
https://doi.org/10.1101/cshperspect.a028738
https://doi.org/10.1101/cshperspect.a003053
https://doi.org/10.1016/j.yexcr.2017.04.006
https://doi.org/10.1158/0008-5472.can-10-1454
https://doi.org/10.1242/jcs.01577
https://doi.org/10.1073/pnas.1117814109
https://doi.org/10.1016/j.cub.2006.10.026
https://doi.org/10.1016/j.cub.2006.10.026
https://doi.org/10.1242/jcs.01115
https://doi.org/10.1146/annurev-conmatphys-031218-013516
https://doi.org/10.1146/annurev-conmatphys-031218-013516


Bibliography

[109] Gaudenz Danuser, Jun Allard, and Alex Mogilner. Mathematical modeling
of eukaryotic cell migration: Insights beyond experiments. Annual Review
of Cell and Developmental Biology, 29(1):501–528, oct 2013. doi:10.1146/
annurev-cellbio-101512-122308.

[110] Ulrich S. Schwarz and Samuel A. Safran. Physics of adherent cells. Reviews
of Modern Physics, 85(3):1327–1381, aug 2013. doi:10.1103/revmodphys.85.
1327.

[111] Matthew L. Blow, Sumesh P. Thampi, and Julia M. Yeomans. Biphasic, lyotropic,
active nematics. Physical Review Letters, 113(24):248303, dec 2014. doi:10.
1103/physrevlett.113.248303.

[112] David Oriola, Ricard Alert, and Jaume Casademunt. Fluidization and active thin-
ning by molecular kinetics in active gels. Physical Review Letters, 118(8):088002,
feb 2017. doi:10.1103/physrevlett.118.088002.

[113] John Toner and Yuhai Tu. Long-range order in a two-dimensional DynamicalXY-
Model: How birds fly together. Physical Review Letters, 75(23):4326–4329, dec
1995. doi:10.1103/physrevlett.75.4326.

[114] Tamás Vicsek, András Czirók, Eshel Ben-Jacob, Inon Cohen, and Ofer Shochet.
Novel type of phase transition in a system of self-driven particles. Physical Review
Letters, 75(6):1226–1229, aug 1995. doi:10.1103/physrevlett.75.1226.

[115] M. C. Marchetti, J. F. Joanny, S. Ramaswamy, T. B. Liverpool, J. Prost, Madan
Rao, and R. Aditi Simha. Hydrodynamics of soft active matter. Reviews of
Modern Physics, 85(3):1143–1189, jul 2013. doi:10.1103/revmodphys.85.1143.

[116] Thuan Beng Saw, Amin Doostmohammadi, Vincent Nier, Leyla Kocgozlu,
Sumesh Thampi, Yusuke Toyama, Philippe Marcq, Chwee Teck Lim, Julia M.
Yeomans, and Benoit Ladoux. Topological defects in epithelia govern cell death
and extrusion. Nature, 544(7649):212–216, apr 2017. doi:10.1038/nature21718.

[117] Matthias Lawrence Zorn. Towards cellular hydrodynamics: Collective migra-
tion in artificial microstructures. PhD thesis, Ludwig-Maximilians-Universität
München, 2018.

[118] Felix Kempf, Romain Mueller, Erwin Frey, Julia M. Yeomans, and Amin Doost-
mohammadi. Active matter invasion. Soft Matter, 15(38):7538–7546, 2019.
doi:10.1039/c9sm01210a.

[119] Makiko Nonomura. Study on multicellular systems using a phase field model.
PLoS ONE, 7(4):e33501, apr 2012. doi:10.1371/journal.pone.0033501.

108

https://doi.org/10.1146/annurev-cellbio-101512-122308
https://doi.org/10.1146/annurev-cellbio-101512-122308
https://doi.org/10.1103/revmodphys.85.1327
https://doi.org/10.1103/revmodphys.85.1327
https://doi.org/10.1103/physrevlett.113.248303
https://doi.org/10.1103/physrevlett.113.248303
https://doi.org/10.1103/physrevlett.118.088002
https://doi.org/10.1103/physrevlett.75.4326
https://doi.org/10.1103/physrevlett.75.1226
https://doi.org/10.1103/revmodphys.85.1143
https://doi.org/10.1038/nature21718
https://doi.org/10.1039/c9sm01210a
https://doi.org/10.1371/journal.pone.0033501


Bibliography

[120] Juliane Zimmermann, Brian A. Camley, Wouter-Jan Rappel, and Herbert Levine.
Contact inhibition of locomotion determines cell–cell and cell–substrate forces in
tissues. Proceedings of the National Academy of Sciences, 113(10):2660–2665, feb
2016. doi:10.1073/pnas.1522330113.

[121] Robert Chojowski, Ulrich S. Schwarz, and Falko Ziebert. Reversible elastic phase
field approach and application to cell monolayers. The European Physical Journal
E, 43(10), oct 2020. doi:10.1140/epje/i2020-11988-1.

[122] B A Camley and W-J Rappel. Physical models of collective cell motility: from
cell to tissue. Journal of Physics D: Applied Physics, 50(11):113002, feb 2017.
doi:10.1088/1361-6463/aa56fe.

[123] Néstor Sepúlveda, Laurence Petitjean, Olivier Cochet, Erwan Grasland-
Mongrain, Pascal Silberzan, and Vincent Hakim. Collective cell motion in
an epithelial sheet can be quantitatively described by a stochastic interact-
ing particle model. PLoS Computational Biology, 9(3):e1002944, mar 2013.
doi:10.1371/journal.pcbi.1002944.

[124] A. M. Menzel and T. Ohta. Soft deformable self-propelled particles. EPL (Euro-
physics Letters), 99(5):58001, sep 2012. doi:10.1209/0295-5075/99/58001.

[125] Dapeng Bi, Xingbo Yang, M. Cristina Marchetti, and M. Lisa Manning. Motility-
driven glass and jamming transitions in biological tissues. Physical Review X,
6(2):021011, apr 2016. doi:10.1103/physrevx.6.021011.

[126] David B. Brückner, Pierre Ronceray, and Chase P. Broedersz. Inferring
the dynamics of underdamped stochastic systems. Physical Review Letters,
125(5):058103, jul 2020. doi:10.1103/physrevlett.125.058103.

[127] M. S. Steinberg. ON THE MECHANISM OF TISSUE RECONSTRUCTION
BY DISSOCIATED CELLS, i. POPULATION KINETICS, DIFFERENTIAL
ADHESIVENESS, AND THE ABSENCE OF DIRECTED MIGRATIONon the
mechanism of tissue reconstruction. Proceedings of the National Academy of Sci-
ences, 48(9):1577–1582, sep 1962. doi:10.1073/pnas.48.9.1577.

[128] François Graner and James A. Glazier. Simulation of biological cell sorting using
a two-dimensional extended potts model. Physical Review Letters, 69(13):2013–
2016, sep 1992. doi:10.1103/physrevlett.69.2013.

[129] James A. Glazier and François Graner. Simulation of the differential adhesion
driven rearrangement of biological cells. Physical Review E, 47(3):2128–2154,
mar 1993. doi:10.1103/physreve.47.2128.

109

https://doi.org/10.1073/pnas.1522330113
https://doi.org/10.1140/epje/i2020-11988-1
https://doi.org/10.1088/1361-6463/aa56fe
https://doi.org/10.1371/journal.pcbi.1002944
https://doi.org/10.1209/0295-5075/99/58001
https://doi.org/10.1103/physrevx.6.021011
https://doi.org/10.1103/physrevlett.125.058103
https://doi.org/10.1073/pnas.48.9.1577
https://doi.org/10.1103/physrevlett.69.2013
https://doi.org/10.1103/physreve.47.2128


Bibliography

[130] A Szabó, R Ünnep, E Méhes, W O Twal, W S Argraves, Y Cao, and A Czirók.
Collective cell motion in endothelial monolayers. Physical Biology, 7(4):046007,
nov 2010. doi:10.1088/1478-3975/7/4/046007.

[131] Alexandre J. Kabla. Collective cell migration: leadership, invasion and seg-
regation. Journal of The Royal Society Interface, 9(77):3268–3278, jul 2012.
doi:10.1098/rsif.2012.0448.

[132] M. Chiang and D. Marenduzzo. Glass transitions in the cellular potts model.
EPL (Europhysics Letters), 116(2):28009, oct 2016. doi:10.1209/0295-5075/
116/28009.

[133] Felix J. Segerer, Florian Thüroff, Alicia Piera Alberola, Erwin Frey, and
Joachim O. Rädler. Emergence and persistence of collective cell migration on
small circular micropatterns. Physical Review Letters, 114(22):228102, jun 2015.
doi:10.1103/physrevlett.114.228102.

[134] Philipp J. Albert and Ulrich S. Schwarz. Dynamics of cell shape and forces
on micropatterned substrates predicted by a cellular potts model. Biophysical
Journal, 106(11):2340–2352, jun 2014. doi:10.1016/j.bpj.2014.04.036.

[135] Andriy Goychuk, David B. Brückner, Andrew W. Holle, Joachim P. Spatz,
Chase P. Broedersz, and Erwin Frey. Morphology and motility of cells on soft sub-
strates. 2018. URL: https://arxiv.org/abs/1808.00314, arXiv:1808.00314.

[136] Fang Zhou, Sophia A. Schaffer, Christoph Schreiber, Felix J. Segerer, Andriy
Goychuk, Erwin Frey, and Joachim O. Rädler. Quasi-periodic migration of single
cells on short microlanes. PLOS ONE, 15(4):e0230679, apr 2020. doi:10.1371/
journal.pone.0230679.

[137] Felix Maria Kempf. Invasion of soft active matter into capillaries. PhD thesis,
Ludwig-Maximilians-Universität München, 2021.

[138] Andrew Gelman, John B. Carlin, Hal S. Stern, Donald B. Rubin, and David B.
Dunson. Bayesian Data Analysis. Taylor & Francis Ltd., 2013.

[139] Athanasius F. M. Marée, Verônica A. Grieneisen, and Leah Edelstein-Keshet. How
cells integrate complex stimuli: The effect of feedback from phosphoinositides
and cell shape on cell polarization and motility. PLoS Computational Biology,
8(3):e1002402, mar 2012. doi:10.1371/journal.pcbi.1002402.

[140] Raj Kumar Sadhu, Samo Penič, Aleš Iglič, and Nir S. Gov. Modelling cellu-
lar spreading and emergence of motility in the presence of curved membrane
proteins and active cytoskeleton forces. 2021. URL: https://arxiv.org/abs/
2101.00313, arXiv:2101.00313.

110

https://doi.org/10.1088/1478-3975/7/4/046007
https://doi.org/10.1098/rsif.2012.0448
https://doi.org/10.1209/0295-5075/116/28009
https://doi.org/10.1209/0295-5075/116/28009
https://doi.org/10.1103/physrevlett.114.228102
https://doi.org/10.1016/j.bpj.2014.04.036
https://arxiv.org/abs/1808.00314
http://arxiv.org/abs/1808.00314
https://doi.org/10.1371/journal.pone.0230679
https://doi.org/10.1371/journal.pone.0230679
https://doi.org/10.1371/journal.pcbi.1002402
https://arxiv.org/abs/2101.00313
https://arxiv.org/abs/2101.00313
http://arxiv.org/abs/2101.00313


Bibliography

[141] Alfonso Bolado-Carrancio, Oleksii S Rukhlenko, Elena Nikonova, Mikhail A
Tsyganov, Anne Wheeler, Amaya Garcia-Munoz, Walter Kolch, Alex von
Kriegsheim, and Boris N Kholodenko. Periodic propagating waves coordinate
RhoGTPase network dynamics at the leading and trailing edges during cell mi-
gration. eLife, 9, jul 2020. doi:10.7554/elife.58165.

[142] Jonathan E. Ron, Pascale Monzo, Nils C. Gauthier, Raphael Voituriez, and
Nir S. Gov. One-dimensional cell motility patterns. Physical Review Research,
2(3):033237, aug 2020. doi:10.1103/physrevresearch.2.033237.

[143] Christoph Schreiber, Behnam Amiri, Johannes C. J. Heyn, Joachim O. Rädler,
and Martin Falcke. On the adhesion–velocity relation and length adaptation of
motile cells on stepped fibronectin lanes. Proceedings of the National Academy of
Sciences, 118(4):e2009959118, jan 2021. doi:10.1073/pnas.2009959118.

[144] Joseph d’Alessandro, Alex Barbier-Chebbah, Victor Cellerin, Olivier Bénichou,
René-Marc Mège, Raphaël Voituriez, and Benoît Ladoux. Cell migration driven
by long-lived spatial memory. jan 2021. doi:10.1101/2021.01.05.425035.

[145] Pierre Sens. Stick–slip model for actin-driven cell protrusions, cell polarization,
and crawling. Proceedings of the National Academy of Sciences, 117(40):24670–
24678, sep 2020. doi:10.1073/pnas.2011785117.

[146] Milan Mrksich and George M. Whitesides. Patterning self-assembled monolay-
ers using microcontact printing: A new technology for biosensors? Trends in
Biotechnology, 13(6):228–235, jun 1995. doi:10.1016/s0167-7799(00)88950-7.

[147] Younan Xia and George M. Whitesides. SOFT LITHOGRAPHY. Annual Review
of Materials Science, 28(1):153–184, aug 1998. doi:10.1146/annurev.matsci.
28.1.153.

[148] Tobias Kaufmann and Bart Jan Ravoo. Stamps, inks and substrates: polymers
in microcontact printing. Polymer Chemistry, 1(4):371–387, 2010. doi:10.1039/
b9py00281b.

[149] M. Théry and M. Piel. Adhesive micropatterns for cells: A microcontact printing
protocol. Cold Spring Harbor Protocols, 2009(7):pdb.prot5255–pdb.prot5255, jul
2009. doi:10.1101/pdb.prot5255.

[150] Felix Jakob Segerer, Peter Johan Friedrich Röttgermann, Simon Schuster, Ali-
cia Piera Alberola, Stefan Zahler, and Joachim Oskar Rädler. Versatile method
to generate multiple types of micropatterns. Biointerphases, 11(1):011005, mar
2016. doi:10.1116/1.4940703.

111

https://doi.org/10.7554/elife.58165
https://doi.org/10.1103/physrevresearch.2.033237
https://doi.org/10.1073/pnas.2009959118
https://doi.org/10.1101/2021.01.05.425035
https://doi.org/10.1073/pnas.2011785117
https://doi.org/10.1016/s0167-7799(00)88950-7
https://doi.org/10.1146/annurev.matsci.28.1.153
https://doi.org/10.1146/annurev.matsci.28.1.153
https://doi.org/10.1039/b9py00281b
https://doi.org/10.1039/b9py00281b
https://doi.org/10.1101/pdb.prot5255
https://doi.org/10.1116/1.4940703


Bibliography

[151] Jonathan M. Bélisle, James P. Correia, Paul W. Wiseman, Timothy E. Kennedy,
and Santiago Costantino. Patterning protein concentration using laser-assisted
adsorption by photobleaching, LAPAP. Lab on a Chip, 8(12):2164, 2008. doi:
10.1039/b813897d.

[152] Jan Schwarz and Michael Sixt. Quantitative analysis of dendritic cell haptotaxis.
pages 567–581, 2016. doi:10.1016/bs.mie.2015.11.004.

[153] H.K. Kleinman, L. Luckenbill-Edds, F.W. Cannon, and G.C. Sephel. Use of extra-
cellular matrix components for cell culture. Analytical Biochemistry, 166(1):1–13,
oct 1987. doi:10.1016/0003-2697(87)90538-0.

[154] Manuel Théry. Micropatterning as a tool to decipher cell morphogenesis and
functions. Journal of Cell Science, 123(24):4201–4213, dec 2010. doi:10.1242/
jcs.075150.

[155] Fabian Fröhlich, Anita Reiser, Laura Fink, Daniel Woschée, Thomas Ligon,
Fabian Joachim Theis, Joachim Oskar Rädler, and Jan Hasenauer. Multi-
experiment nonlinear mixed effect modeling of single-cell translation kinetics af-
ter transfection. npj Systems Biology and Applications, 4(1), dec 2018. doi:
10.1038/s41540-018-0079-7.

[156] A. Reiser, D. Woschée, N. Mehrotra, R. Krzysztoń, H. H. Strey, and J. O. Rädler.
Correlation of mRNA delivery timing and protein expression in lipid-based trans-
fection. Integrative Biology, 11(9):362–371, sep 2019. doi:10.1093/intbio/
zyz030.

[157] Herbert B. Schiller, Michaela-Rosemarie Hermann, Julien Polleux, Timothée Vi-
gnaud, Sara Zanivan, Caroline C. Friedel, Zhiqi Sun, Aurelia Raducanu, Kay-
E. Gottschalk, Manuel Théry, Matthias Mann, and Reinhard Fässler. β1- and
αv-class integrins cooperate to regulate myosin II during rigidity sensing of
fibronectin-based microenvironments. Nature Cell Biology, 15(6):625–636, may
2013. doi:10.1038/ncb2747.

[158] Alexandra Murschhauser, Peter J. F. Röttgermann, Daniel Woschée, Mar-
tina F. Ober, Yan Yan, Kenneth A. Dawson, and Joachim O. Rädler. A high-
throughput microscopy method for single-cell analysis of event-time correlations
in nanoparticle-induced cell death. Communications Biology, 2(1), jan 2019.
doi:10.1038/s42003-019-0282-0.

[159] Jane James, Edgar D. Goluch, Huan Hu, Chang Liu, and Milan Mrksich. Subcel-
lular curvature at the perimeter of micropatterned cells influences lamellipodial
distribution and cell polarity. Cell Motility and the Cytoskeleton, 65(11):841–852,
nov 2008. doi:10.1002/cm.20305.

112

https://doi.org/10.1039/b813897d
https://doi.org/10.1039/b813897d
https://doi.org/10.1016/bs.mie.2015.11.004
https://doi.org/10.1016/0003-2697(87)90538-0
https://doi.org/10.1242/jcs.075150
https://doi.org/10.1242/jcs.075150
https://doi.org/10.1038/s41540-018-0079-7
https://doi.org/10.1038/s41540-018-0079-7
https://doi.org/10.1093/intbio/zyz030
https://doi.org/10.1093/intbio/zyz030
https://doi.org/10.1038/ncb2747
https://doi.org/10.1038/s42003-019-0282-0
https://doi.org/10.1002/cm.20305


Bibliography

[160] Elena Kassianidou, Christoph A. Brand, Ulrich S. Schwarz, and Sanjay Ku-
mar. Geometry and network connectivity govern the mechanics of stress fibers.
Proceedings of the National Academy of Sciences, 114(10):2622–2627, feb 2017.
doi:10.1073/pnas.1606649114.

[161] François Pouthas, Philippe Girard, Virginie Lecaudey, Thi Bach Nga Ly, Darren
Gilmour, Christian Boulin, Rainer Pepperkok, and Emmanuel G. Reynaud. In
migrating cells, the golgi complex and the position of the centrosome depend on
geometrical constraints of the substratum. Journal of Cell Science, 121(14):2406–
2414, jul 2008. doi:10.1242/jcs.026849.

[162] Christoph Schreiber, Felix J. Segerer, Ernst Wagner, Andreas Roidl, and
Joachim O. Rädler. Ring-shaped microlanes and chemical barriers as a plat-
form for probing single-cell migration. Scientific Reports, 6(1), may 2016.
doi:10.1038/srep26858.

[163] Alexandra Fink, David B. Brückner, Christoph Schreiber, Peter J.F. Röttger-
mann, Chase P. Broedersz, and Joachim O. Rädler. Area and geometry de-
pendence of cell migration in asymmetric two-state micropatterns. Biophysical
Journal, 118(3):552–564, feb 2020. doi:10.1016/j.bpj.2019.11.3389.

[164] Kevin Doxzen, Sri Ram Krishna Vedula, Man Chun Leong, Hiroaki Hirata, Nir S.
Gov, Alexandre J. Kabla, Benoit Ladoux, and Chwee Teck Lim. Guidance of
collective cell migration by substrate geometry. Integrative Biology, 5(8):1026,
2013. doi:10.1039/c3ib40054a.

[165] Enoch Kim, Younan Xia, and George M. Whitesides. Polymer microstructures
formed by moulding in capillaries. Nature, 376(6541):581–584, aug 1995. doi:
10.1038/376581a0.

[166] Hyun-Woo Shim, Ji-Hye Lee, Taek-Sung Hwang, Young Woo Rhee, Yun Mi Bae,
Joon Sig Choi, Jongyoon Han, and Chang-Soo Lee. Patterning of proteins and
cells on functionalized surfaces prepared by polyelectrolyte multilayers and mi-
cromolding in capillaries. Biosensors and Bioelectronics, 22(12):3188–3195, jun
2007. doi:10.1016/j.bios.2007.02.016.

[167] Hwan-Moon Song and Chang-Soo Lee. Simple fabrication of functionalized sur-
face with polyethylene glycol microstructure and glycidyl methacrylate moiety for
the selective immobilization of proteins and cells. Korean Journal of Chemical
Engineering, 25(6):1467–1472, nov 2008. doi:10.1007/s11814-008-0241-9.

[168] Anna-Kristina Marel, Susanne Rappl, Alicia Piera Alberola, and Joachim Oskar
Rädler. Arraying cell cultures using PEG-DMA micromolding in standard culture
dishes. Macromolecular Bioscience, 13(5):595–602, mar 2013. doi:10.1002/
mabi.201200400.

113

https://doi.org/10.1073/pnas.1606649114
https://doi.org/10.1242/jcs.026849
https://doi.org/10.1038/srep26858
https://doi.org/10.1016/j.bpj.2019.11.3389
https://doi.org/10.1039/c3ib40054a
https://doi.org/10.1038/376581a0
https://doi.org/10.1038/376581a0
https://doi.org/10.1016/j.bios.2007.02.016
https://doi.org/10.1007/s11814-008-0241-9
https://doi.org/10.1002/mabi.201200400
https://doi.org/10.1002/mabi.201200400


Bibliography

[169] Qingzong Tseng, Irene Wang, Eve Duchemin-Pelletier, Ammar Azioune, Nicolas
Carpi, Jie Gao, Odile Filhol, Matthieu Piel, Manuel Théry, and Martial Bal-
land. A new micropatterning method of soft substrates reveals that different
tumorigenic signals can promote or reduce cell contraction levels. Lab on a Chip,
11(13):2231, 2011. doi:10.1039/c0lc00641f.

[170] Timothée Vignaud, Hajer Ennomani, and Manuel Théry. Polyacrylamide hydro-
gel micropatterning. pages 93–116, 2014. doi:10.1016/b978-0-12-417136-7.
00006-9.

[171] Soo-Hong Lee, James J. Moon, and Jennifer L. West. Three-dimensional mi-
cropatterning of bioactive hydrogels via two-photon laser scanning photolithog-
raphy for guided 3d cell migration. Biomaterials, 29(20):2962–2968, jul 2008.
doi:10.1016/j.biomaterials.2008.04.004.

[172] Joseph C. Hoffmann and Jennifer L. West. Three-dimensional photolithographic
micropatterning: a novel tool to probe the complexities of cell migration. Inte-
grative Biology, 5(5):817, 2013. doi:10.1039/c3ib20280a.

[173] Miriam Dietrich, Hugo Le Roy, David B. Brückner, Hanna Engelke, Roman Zantl,
Joachim O. Rädler, and Chase P. Broedersz. Guiding 3d cell migration in de-
formed synthetic hydrogel microstructures. Soft Matter, 14(15):2816–2826, 2018.
doi:10.1039/c8sm00018b.

[174] Franziska Lautenschläger and Matthieu Piel. Microfabricated devices for cell
biology: all for one and one for all. Current Opinion in Cell Biology, 25(1):116–
124, feb 2013. doi:10.1016/j.ceb.2012.10.017.

[175] Naoyuki Nishiya, William B. Kiosses, Jaewon Han, and Mark H. Ginsberg. An
α4 integrin–paxillin–arf-GAP complex restricts rac activation to the leading edge
of migrating cells. Nature Cell Biology, 7(4):343–352, mar 2005. doi:10.1038/
ncb1234.

[176] Geonhui Lee, Seong-Beom Han, and Dong-Hwee Kim. Cell-ECM contact-guided
intracellular polarization is mediated via lamin a/c dependent nucleus-cytoskeletal
connection. Biomaterials, 268:120548, jan 2021. doi:10.1016/j.biomaterials.
2020.120548.

[177] Brian A. Camley, Yanxiang Zhao, Bo Li, Herbert Levine, and Wouter-Jan Rappel.
Periodic migration in a physical model of cells on micropatterns. Physical Review
Letters, 111(15):158102, oct 2013. doi:10.1103/physrevlett.111.158102.

[178] Sonja Kühn, Constanze Erdmann, Frieda Kage, Jennifer Block, Lisa
Schwenkmezger, Anika Steffen, Klemens Rottner, and Matthias Geyer. The

114

https://doi.org/10.1039/c0lc00641f
https://doi.org/10.1016/b978-0-12-417136-7.00006-9
https://doi.org/10.1016/b978-0-12-417136-7.00006-9
https://doi.org/10.1016/j.biomaterials.2008.04.004
https://doi.org/10.1039/c3ib20280a
https://doi.org/10.1039/c8sm00018b
https://doi.org/10.1016/j.ceb.2012.10.017
https://doi.org/10.1038/ncb1234
https://doi.org/10.1038/ncb1234
https://doi.org/10.1016/j.biomaterials.2020.120548
https://doi.org/10.1016/j.biomaterials.2020.120548
https://doi.org/10.1103/physrevlett.111.158102


Bibliography

structure of FMNL2–cdc42 yields insights into the mechanism of lamellipo-
dia and filopodia formation. Nature Communications, 6(1), may 2015. doi:
10.1038/ncomms8088.

[179] F. N. Fritsch and R. E. Carlson. Monotone piecewise cubic interpolation. SIAM
Journal on Numerical Analysis, 17(2):238–246, apr 1980. doi:10.1137/0717021.

[180] Torsten Hothorn, Peter Buehlmann, Thomas Kneib, Matthias Schmid, and Ben-
jamin Hofner. mboost: Model-Based Boosting, 2020. R package version 2.9-4.
URL: https://CRAN.R-project.org/package=mboost.

[181] Relda Cailleau, Matilde Olivé, and Quita V. J. Cruciger. Long-term human breast
carcinoma cell lines of metastatic origin: Preliminary characterization. In Vitro,
14(11):911–915, nov 1978. doi:10.1007/bf02616120.

[182] Hiroyuki Shima. Functional Analysis for Physics and Engineering. Taylor &
Francis Ltd., 2016.

[183] Bernd Bischl, Jakob Richter, Jakob Bossek, Daniel Horn, Janek Thomas, and
Michel Lang. mlrmbo: A modular framework for model-based optimization of
expensive black-box functions, 2018. arXiv:1703.03373.

[184] Hélène D. Moreau, Matthieu Piel, Raphaël Voituriez, and Ana-Maria Lennon-
Duménil. Integrating physical and molecular insights on immune cell migration.
Trends in Immunology, 39(8):632–643, aug 2018. doi:10.1016/j.it.2018.04.
007.

[185] Aglaja Kopf, Jörg Renkawitz, Robert Hauschild, Irute Girkontaite, Kerry Ted-
ford, Jack Merrin, Oliver Thorn-Seshold, Dirk Trauner, Hans Häcker, Klaus-
Dieter Fischer, Eva Kiermaier, and Michael Sixt. Microtubules control cellular
shape and coherence in amoeboid migrating cells. Journal of Cell Biology, 219(6),
may 2020. doi:10.1083/jcb.201907154.

[186] Theresa-Maja E. Reitz. Stochastic analysis of cell-trajectories on branched mi-
cropatterns. Bachelor’s Thesis at the Faculty of Physics at Ludwig-Maximilians-
Universität, Munich, October 2020.

[187] Jean-Yves Tinevez, Nick Perry, Johannes Schindelin, Genevieve M. Hoopes, Gre-
gory D. Reynolds, Emmanuel Laplantine, Sebastian Y. Bednarek, Spencer L.
Shorte, and Kevin W. Eliceiri. TrackMate: An open and extensible platform for
single-particle tracking. Methods, 115:80–90, feb 2017. doi:10.1016/j.ymeth.
2016.09.016.

[188] Francis Galton. Natural inheritance. Macmillan and Company,
1889. URL: https://galton.org/books/natural-inheritance/pdf/
galton-nat-inh-1up-clean.pdf.

115

https://doi.org/10.1038/ncomms8088
https://doi.org/10.1038/ncomms8088
https://doi.org/10.1137/0717021
https://CRAN.R-project.org/package=mboost
https://doi.org/10.1007/bf02616120
http://arxiv.org/abs/1703.03373
https://doi.org/10.1016/j.it.2018.04.007
https://doi.org/10.1016/j.it.2018.04.007
https://doi.org/10.1083/jcb.201907154
https://doi.org/10.1016/j.ymeth.2016.09.016
https://doi.org/10.1016/j.ymeth.2016.09.016
https://galton.org/books/natural-inheritance/pdf/galton-nat-inh-1up-clean.pdf
https://galton.org/books/natural-inheritance/pdf/galton-nat-inh-1up-clean.pdf


Bibliography

[189] Veena Padmanaban, Ilona Krol, Yasir Suhail, Barbara M. Szczerba, Nicola Aceto,
Joel S. Bader, and Andrew J. Ewald. E-cadherin is required for metastasis in
multiple models of breast cancer. Nature, 573(7774):439–444, sep 2019. doi:
10.1038/s41586-019-1526-3.

[190] Elena Scarpa, Alice Roycroft, Eric Theveneau, Emmanuel Terriac, Matthieu Piel,
and Roberto Mayor. A novel method to study contact inhibition of locomotion
using micropatterned substrates. Biology Open, 2(9):901–906, jul 2013. doi:
10.1242/bio.20135504.

[191] Daniel F. Milano, Nicholas A. Ngai, Senthil K. Muthuswamy, and Anand R.
Asthagiri. Regulators of metastasis modulate the migratory response to cell con-
tact under spatial confinement. Biophysical Journal, 110(8):1886–1895, apr 2016.
doi:10.1016/j.bpj.2016.02.040.

[192] David B. Brückner, Alexandra Fink, Joachim O. Rädler, and Chase P. Broedersz.
Disentangling the behavioural variability of confined cell migration. Journal of
The Royal Society Interface, 17(163):20190689, feb 2020. doi:10.1098/rsif.
2019.0689.

[193] Udo Jeschke, Ioannis Mylonas, Christina Kuhn, Naim Shabani, Christiane
Kunert-Keil, Christian Schindlbeck, Bernd Gerber, and Klaus Friese. Expression
of e-cadherin in human ductal breast cancer carcinoma in situ, invasive carci-
nomas, their lymph node metastases, their distant metastases, carcinomas with
recurrence and in recurrence. Anticancer research, 27(4A):1969–1974, 2007.

[194] Akihiko Fukagawa, Hiroki Ishii, Keiji Miyazawa, and Masao Saitoh. δEF1 as-
sociates with DNMT1 and maintains DNA methylation of the e-cadherin pro-
moter in breast cancer cells. Cancer Medicine, 4(1):125–135, oct 2014. doi:
10.1002/cam4.347.

[195] Nair Lopes, Joana Carvalho, Cecilia Duraes, Barbara Sousa, Madalena Gomes,
Jose Luis Costa, Carla Oliveira, Joana Paredes, and Fernando Schmitt. 1al-
pha, 25-dihydroxyvitamin d3 induces de novo e-cadherin expression in triple-
negative breast cancer cells by cdh1-promoter demethylation. Anticancer research,
32(1):249–257, 2012.

[196] Augustine Chen, Henry Beetham, Michael A Black, Rashmi Priya, Bryony J
Telford, Joanne Guest, George A R Wiggins, Tanis D Godwin, Alpha S Yap, and
Parry J Guilford. E-cadherin loss alters cytoskeletal organization and adhesion in
non-malignant breast cells but is insufficient to induce an epithelial-mesenchymal
transition. BMC Cancer, 14(1), jul 2014. doi:10.1186/1471-2407-14-552.

116

https://doi.org/10.1038/s41586-019-1526-3
https://doi.org/10.1038/s41586-019-1526-3
https://doi.org/10.1242/bio.20135504
https://doi.org/10.1242/bio.20135504
https://doi.org/10.1016/j.bpj.2016.02.040
https://doi.org/10.1098/rsif.2019.0689
https://doi.org/10.1098/rsif.2019.0689
https://doi.org/10.1002/cam4.347
https://doi.org/10.1002/cam4.347
https://doi.org/10.1186/1471-2407-14-552


Bibliography

[197] G M Nagaraja, M Othman, B P Fox, R Alsaber, C M Pellegrino, Y Zeng,
R Khanna, P Tamburini, A Swaroop, and R P Kandpal. Gene expression signa-
tures and biomarkers of noninvasive and invasive breast cancer cells: comprehen-
sive profiles by representational difference analysis, microarrays and proteomics.
Oncogene, 25(16):2328–2338, nov 2005. doi:10.1038/sj.onc.1209265.

[198] Michael J Pishvaian, Carolyn M Feltes, Patrick Thompson, Marion J Bussemak-
ers, Jack A Schalken, and Stephen W Byers. Cadherin-11 is expressed in invasive
breast cancer cell lines. Cancer research, 59(4):947–952, 1999.

[199] Renping Zhou. The eph family receptors and ligands. Pharmacology & Thera-
peutics, 77(3):151–181, mar 1998. doi:10.1016/s0163-7258(97)00112-5.

[200] Ilias Nikas, Han Suk Ryu, and Stamatios Theocharis. Viewing the eph receptors
with a focus on breast cancer heterogeneity. Cancer Letters, 434:160–171, oct
2018. doi:10.1016/j.canlet.2018.07.030.

[201] K. K. Murai. `eph'ective signaling: forward, reverse and crosstalk. Journal of
Cell Science, 116(14):2823–2832, jul 2003. doi:10.1242/jcs.00625.

[202] Alice Davy and Philippe Soriano. Ephrin signaling in vivo: Look both ways.
Developmental Dynamics, 232(1):1–10, 2004. doi:10.1002/dvdy.20200.

[203] Erika Gucciardo, Nami Sugiyama, and Kaisa Lehti. Eph- and ephrin-dependent
mechanisms in tumor and stem cell dynamics. Cellular and Molecular Life Sci-
ences, 71(19):3685–3710, may 2014. doi:10.1007/s00018-014-1633-0.

[204] Dana M. Brantley-Sieders, Aixiang Jiang, Krishna Sarma, Akosua Badu-
Nkansah, Debra L. Walter, Yu Shyr, and Jin Chen. Eph/ephrin profiling in
human breast cancer reveals significant associations between expression level and
clinical outcome. PLoS ONE, 6(9):e24426, sep 2011. doi:10.1371/journal.
pone.0024426.

[205] Victoria M. Youngblood, Laura C. Kim, Deanna N. Edwards, Yoonha Hwang,
Pranav R. Santapuram, Steven M. Stirdivant, Pengcheng Lu, Fei Ye, Dana M.
Brantley-Sieders, and Jin Chen. The ephrin-a1/EPHA2 signaling axis regu-
lates glutamine metabolism in HER2-positive breast cancer. Cancer Research,
76(7):1825–1836, feb 2016. doi:10.1158/0008-5472.can-15-0847.

[206] Katsuaki Ieguchi and Yoshiro Maru. Roles of EphA1/a2 and ephrin-a1 in cancer.
Cancer Science, 110(3):841–848, feb 2019. doi:10.1111/cas.13942.

[207] Theobald Lohmüller, Qian Xu, and Jay T. Groves. Nanoscale obstacle arrays
frustrate transport of EphA2–ephrin-a1 clusters in cancer cell lines. Nano Letters,
13(7):3059–3064, jun 2013. doi:10.1021/nl400874v.

117

https://doi.org/10.1038/sj.onc.1209265
https://doi.org/10.1016/s0163-7258(97)00112-5
https://doi.org/10.1016/j.canlet.2018.07.030
https://doi.org/10.1242/jcs.00625
https://doi.org/10.1002/dvdy.20200
https://doi.org/10.1007/s00018-014-1633-0
https://doi.org/10.1371/journal.pone.0024426
https://doi.org/10.1371/journal.pone.0024426
https://doi.org/10.1158/0008-5472.can-15-0847
https://doi.org/10.1111/cas.13942
https://doi.org/10.1021/nl400874v


Bibliography

[208] Yao Zhao, Chenchen Cai, Miaomiao Zhang, Lubing Shi, Jiwei Wang, Haoliang
Zhang, Ping Ma, and Shibao Li. Ephrin-a2 promotes prostate cancer metastasis
by enhancing angiogenesis and promoting EMT. Journal of Cancer Research and
Clinical Oncology, mar 2021. doi:10.1007/s00432-021-03618-2.

[209] Zhaohua Richard Huang, Suresh Kumar Tipparaju, Dmitri B. Kirpotin, Chris-
tine Pien, Tad Kornaga, Charles O. Noble, Alexander Koshkaryev, Jimmy
Tran, Walid S. Kamoun, and Daryl C. Drummond. Formulation optimiza-
tion of an ephrin a2 targeted immunoliposome encapsulating reversibly mod-
ified taxane prodrugs. Journal of Controlled Release, 310:47–57, sep 2019.
doi:10.1016/j.jconrel.2019.08.006.

[210] Mariana Lucero, Jaspreet Thind, Jaqueline Sandoval, Shayan Senaati, Belinda
Jimenez, and Raj P. Kandpal. Stem-like cells from invasive breast carcinoma
cell line MDA-MB-231 express a distinct set of eph receptors and ephrin ligands.
Cancer Genomics - Proteomics, 17(6):729–738, 2020. doi:10.21873/cgp.20227.

[211] Jonathan W. Astin, Jennifer Batson, Shereen Kadir, Jessica Charlet, Raj A.
Persad, David Gillatt, Jon D. Oxley, and Catherine D. Nobes. Competition
amongst eph receptors regulates contact inhibition of locomotion and invasiveness
in prostate cancer cells. Nature Cell Biology, 12(12):1194–1204, nov 2010. doi:
10.1038/ncb2122.

[212] Mariafrancesca Cascione, Valeria De Matteis, Chiara Cristina Toma, Paolo Pelle-
grino, Stefano Leporatti, and Rosaria Rinaldi. Morphomechanical and structural
changes induced by ROCK inhibitor in breast cancer cells. Experimental Cell
Research, 360(2):303–309, nov 2017. doi:10.1016/j.yexcr.2017.09.020.

[213] Matthias L. Zorn, Anna-Kristina Marel, Felix J. Segerer, and Joachim O. Rädler.
Phenomenological approaches to collective behavior in epithelial cell migration.
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1853(11):3143–
3152, nov 2015. doi:10.1016/j.bbamcr.2015.05.021.

[214] T. E. Angelini, E. Hannezo, X. Trepat, M. Marquez, J. J. Fredberg, and D. A.
Weitz. Glass-like dynamics of collective cell migration. Proceedings of the Na-
tional Academy of Sciences, 108(12):4714–4719, feb 2011. doi:10.1073/pnas.
1010059108.

[215] Lior Atia, Dapeng Bi, Yasha Sharma, Jennifer A. Mitchel, Bomi Gweon,
Stephan A. Koehler, Stephen J. DeCamp, Bo Lan, Jae Hun Kim, Rebecca Hirsch,
Adrian F. Pegoraro, Kyu Ha Lee, Jacqueline R. Starr, David A. Weitz, Adam C.
Martin, Jin-Ah Park, James P. Butler, and Jeffrey J. Fredberg. Geometric con-
straints during epithelial jamming. Nature Physics, 14(6):613–620, apr 2018.
doi:10.1038/s41567-018-0089-9.

118

https://doi.org/10.1007/s00432-021-03618-2
https://doi.org/10.1016/j.jconrel.2019.08.006
https://doi.org/10.21873/cgp.20227
https://doi.org/10.1038/ncb2122
https://doi.org/10.1038/ncb2122
https://doi.org/10.1016/j.yexcr.2017.09.020
https://doi.org/10.1016/j.bbamcr.2015.05.021
https://doi.org/10.1073/pnas.1010059108
https://doi.org/10.1073/pnas.1010059108
https://doi.org/10.1038/s41567-018-0089-9


Bibliography

[216] Inge M. N. Wortel, Ioana Niculescu, P. Martijn Kolijn, Nir Gov, Rob J. de Boer,
and Johannes Textor. Actin-inspired feedback couples speed and persistence in a
cellular potts model of cell migration. jun 2018. doi:10.1101/338459.

[217] Cécile M. Bidan, Mario Fratzl, Alexis Coullomb, Philippe Moreau, Alain H.
Lombard, Irène Wang, Martial Balland, Thomas Boudou, Nora M. Dempsey,
Thibaut Devillers, and Aurélie Dupont. Magneto-active substrates for local me-
chanical stimulation of living cells. Scientific Reports, 8(1), jan 2018. doi:
10.1038/s41598-018-19804-1.

[218] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

[219] John Canny. A computational approach to edge detection. IEEE Transactions
on Pattern Analysis and Machine Intelligence, PAMI-8(6):679–698, nov 1986.
doi:10.1109/tpami.1986.4767851.

[220] R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2020. URL: https://
www.R-project.org/.

[221] Johannes Schindelin, Ignacio Arganda-Carreras, Erwin Frise, Verena Kaynig,
Mark Longair, Tobias Pietzsch, Stephan Preibisch, Curtis Rueden, Stephan
Saalfeld, Benjamin Schmid, Jean-Yves Tinevez, Daniel James White, Volker
Hartenstein, Kevin Eliceiri, Pavel Tomancak, and Albert Cardona. Fiji: an open-
source platform for biological-image analysis. Nature Methods, 9(7):676–682, jun
2012. doi:10.1038/nmeth.2019.

119

https://doi.org/10.1101/338459
https://doi.org/10.1038/s41598-018-19804-1
https://doi.org/10.1038/s41598-018-19804-1
https://doi.org/10.1109/tpami.1986.4767851
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1038/nmeth.2019


120



Danksagung

An dieser Stelle ein herzlicher Dank an alle, die mir während meiner Promotion zur
Seite standen und mich unterstützt haben. Insbesondere gilt mein Dank:

Prof. Joachim Rädler für die Möglichkeit an diesem Lehrstuhl zu promovieren. Vielen
Dank für die Betreuung dieser Arbeit und die Möglichkeit mich in so viele Projekte
einzuarbeiten. Ich habe in den Jahren am Lehrstuhl sehr viel gelernt.
Meinen Kollaborationspartnern aus der Theorie: Andriy Goychuk für die Beantwortung
von Detailfragen zur CPM Implementierung, Felix Kempf für interessante Diskussionen
über kollektive Migration bei Keksen und David Brückner für perfekt geplante und
dadurch sehr effiziente Meetings zur Zellbewegung auf Dumbbells.
Den Studenten, die ich betreuen durfte und deren Arbeit ebenfalls in dieser Dissertation
steckt: Konstantin Steppe für einen ersten Vergleich des CPMs mit experimentellen
Daten, Anastasia Reinl für erste Untersuchungen der RPEs auf Dumbbells, Theresa
Reitz für ihre großartige Arbeit an Zellen in Labyrinthen und Georg Ladurner für die
unendlich vielen Messungen der Zwei-Zell-Interaktion, die es jetzt nur zum Teil in diese
Arbeit geschafft haben.
Dem gesamten Lehrstuhl Rädler mit seinen vielen Mitgliedern über die letzten Jahre:
Madeleine, durch deren Vorlesung ich erst auf Biophysik gestoßen bin und deren super
Betreuung in Bachelor- und Masterarbeit mich für eine Promotion in der Biophysik
begeistert hat, Sonja für die unvergleichlichen Pilatesstunden, Alex G., die immer ein
offenes Ohr und zwei hilfsbereite Hände hatte und allen Bürokollegen die das Büro über
die Jahre immer zu einem Anker im stürmischen Laboralltag gemacht haben: Tobi für
die IT Unterstützung, Bene für großen Spaß mit der Boss-Trafo und einen Gegenpol
zur Ökobewegung, Matthias für die ausgezeichnete Büroleitung und den Image of the
Month Kontest, Christoph für unendliche Ratschläge und manche Gaudi, Alexandra
für mehr Gemütlichkeit und gute Laune, Judith für einen Ruhepol mit messerscharfem
Blick, Miriam für lustige Pubquiz-Abende, Anita für mehr Power im Büro und Ordnung
in der Zellkultur, Kilian für Gesellschaft wann auch immer man im Büro vorbeischneit,
Julian für irrwitzige Gespräche beim Mittagessen und Johannes für einen netten Ratsch
zwischendurch.
Gerlinde und Charlott, die dafür sorgen, dass das Labor überhaupt funktioniert.
Meinen fleißigen Korrekturlesern: Almond, Anita, Tobi, Matthias und Hanna.
Allen Freunden, die mich durch diese Zeit begleitet haben und die dafür gesorgt haben,
dass auch der Spaß nicht zu kurz kommt: Anita und Basti, Tobi und Judith, David
und Yingxin, Matthias und allen anderen.
Meiner Familie, die mich immer nach Kräften unterstützt hat und vor allem Almond,
der die Arbeit mit seiner Kritik immer wieder verbessert hat und der ein steter Ruhepol
an meiner Seite ist.

121



122


	Titel
	Content
	1 Introduction
	2 Concepts - Cell Migration and Modelling
	2.1 Cell Migration
	2.2 Cell Polarization
	2.2.1 Keys to Polarization
	2.2.2 Intracellular Polarization
	2.2.3 Coordination of collectively migrating cells

	2.3 Models for Cell Migration
	2.3.1 Collective Cell Migration
	2.3.2 Bridging the Scale
	2.3.3 Single Cell Models

	2.4 Micropatterning for Confined Cell Migration

	3 Spontaneous Polarization in Stripes
	3.1 Quasi Oscillations of Cells in Stripes
	3.2 Repolarization in Different Tip Geometries
	3.2.1 Repolarization Time in Experiment and Simulation
	3.2.2 Actin Dynamics in Experiment and Polarization in Simulation

	3.3 Discussion

	4 Multi Geometry Calibration on Single Cell Trajectories
	4.1 Single Cell Geometries with Orthogonal Properties
	4.2 Determining Parameters of the Cellular Potts Model
	4.2.1 Cellular Potts Model in Equilibrium
	4.2.2 From Equilibrium to Polarization

	4.3 Calibrated CPM and Predictive Power
	4.4 Discussion

	5 Persistence of Polarized Motion in Mazes
	5.1 Accessing Migration through Mazes
	5.2 Modelling Migration through Mazes
	5.3 Discussion

	6 Cell-Cell Contacts and Friction
	6.1 Motion of Two Cells in a Confining Geometry
	6.2 Influence of E-Cadherin on Cell-Cell Interaction
	6.3 Influence of Ephrin-A2 on Cell-Cell Interaction
	6.4 Discussion

	7 Collective Flow through Constrictions
	7.1 Cell Behaviour in Narrowing Channels
	7.2 Cell Migration in Experiment and Simulation
	7.3 Discussion

	8 Conclusion and Future Prospects
	A Materials and Methods
	A.1 Cell Confinement
	A.2 Cell Lines and Culture
	A.3 Microscopes
	A.4 Experimental Procedure
	A.5 Labelling and Transfection

	B Image Processing
	B.1 Single Cell Geometries
	B.1.1 Pattern Recognition
	B.1.2 Nucleus Tracking

	B.2 Cell Area and Perimeter
	B.3 Mazes

	Bibliography



