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Abstract

Time. The nature of this very eccentric dimension has concerned humankind from the
beginning. Despite culture, ethnicity, religion, or development stage, no society would
have ever been emerged without making time a measurable tool to describe and control
workflows. Only knowing about seasons made it possible to develop agriculture. The
concept of months enables navigation and trading enterprises, and days provide a baseline
for labor management. A society’s technological progress is correlated with its capability
to measure more adequate time intervals and observe events on a very exact timescale.

Events specify the who, what, and when. They establish the atomic parts of routines and
tasks in our everyday world. Especially the temporal properties are critical for various event
types: We arrange appointments, we wait for deliveries, we finish projects before deadlines,
or we enjoy our legally assured vacation in-between periods of work. Nonetheless, the
unpredictability of events provides various processes and makes the temporal perspective
very exciting. On the one hand, delays often cause problems in the successive chain of
events. On a personal scope, examples might be very familiar by considering, e.g., public
transportation. The severity of such risks is usually higher on business scope and might
inflict infringements of service level agreements like a late supply of raw materials. On the
other hand, temporal deviations are advantageous in many cases. Identifying opportunities
to perform tasks faster provides additional time for further actions. At this point, we
should emphasize that there is no intrinsic association between acceleration/delay and
benefit/detriment. E.g., a delayed train causes one person to miss an appointment and
another person, that is late himself, to catch up with his schedule.

Identifying deviations in the temporal perspectives of processes provides a knowledge
base for subsequent risk management operations. Since fast detection for variations is al-
ways the supreme discipline in anomaly detection, we will discuss the online discovery of
process models focusing on the temporal properties of the process executions in this the-
sis. By identifying event-level deviations on event streams by using standardized control
schemes, we discover and visualize temporal drifts in processes as Gantt charts. Then, the
question arises about the impact of the execution timestamps to determine the process’s
footprint. Using timestamps only, we investigate the potential to perform two process
mining tasks without workflow information. First, we propose an approach to match pro-
cess logs, relying solely on activities’ temporal occurrence and align activities of different
processes utilizing the temporal behavior. Afterward, we propose a temporal conformance
checking technique that applies statistical methods for the rapid generation of kernel den-
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sity estimation models. Both approaches are developed as supplementary techniques to
assist the workflow-based traditional methods.

We raise the anomaly detection from event to case level by introducing temporal devia-
tion signatures as representations for the temporal characteristics of cases. The subsequent
approaches use this parametrization to adapt traditional data mining techniques like clus-
tering and outlier detection. Instead of finding singular outlier traces in processes, our
focus lies on the discovery of abnormal structures. These collective anomalies are difficult
to detect since standard outlier detection fails due to the missing outlier score. A first
approach demonstrates that the workflow perspective already contains cluster structures
regarding only the non-conforming cases of a process. We extract all non-conforming traces
and apply clustering based on a geodetic distance, which refers to the process model to de-
termine a ground distance. The discovery of substructures assists in the root-cause analysis
as collective anomalies are likely to have common causes. Dealing with singular anoma-
lies is not as efficient as solving problems for a whole class of abnormal process behavior.
Therefore, we discuss the aggregation of temporally and structurally abnormal traces into
anomaly micro-clusters. Adapting OPTICS for visualization and detection, we propose
methods for the online monitoring of cluster structures. Thereby, process operators can be
embedded in human-in-the-loop approaches while still detecting temporal deviations in a
complicated and currently executed process as online monitoring.



Zusammenfassung

Zeit. Die Natur dieser sehr exzentrischen Dimension beschäftigt die Menschheit seit ihrem
Anbeginn. Ungeachtet ihrer Kultur, ethnischen Zugehörigkeit, Religion oder ihres En-
twicklungsstadiums basiert das Voranschreiten einer Gesellschaft auf der Messbarkeit der
Zeit, denn erst dadurch werden Abläufe dokumentier- und kontrollierbar. Ohne das Wis-
sen über Jahreszeiten wäre Landwirtschaft nicht möglich. Das Konzept einzelner Monate
erlaubt die Navigation auf See und ist Voraussetzung für Handelsunternehmungen mit fer-
nen Ländern. Tage bilden die Grundlage für das Arbeitsmanagement. Der technologische
Fortschritt einer Gesellschaft korreliert mit ihrer Fähigkeit, Zeitintervalle feingranularer zu
messen und Ereignisse auf einer immer genaueren Zeitskala zu beobachten.

Ereignisse, die das Wer, Was und Wo spezifizieren, sind die grundlegenden Elemente
von Routinen und Aufgaben unseres Alltags. Besonders zeitliche Eigenschaften stellen
einen kritischen Faktor für viele Ereignistypen dar: Wir vereinbaren Termine, warten auf
Lieferungen, schließen Projekte fristgerecht ab oder genießen unseren gesetzlich geregel-
ten Urlaub. Nichtsdestotrotz sind die zeitlichen Komponenten von Ereignissen meist
unvorhersehbar und gerade dies macht diese Perspektive sehr spannend. Auf der einen
Seite führen Verspätungen oft zu Problemem in der nachfolgenden Kette von Ereignissen.
Auf einer persönlichen Ebene ist dies einfach nachvollziehbar, wenn man auf öffentlichen
Nahverkehr angewiesen war. Für Unternehmen sind die Auswirkungen meist größer und
betreffen meist den Verstoß gegen vertraglich geregelte Leistungen wie eine verspätete
Rohstofflieferung. Andererseits sind zeitliche Abweichungen in vielen Fällen auch nützlich.
Werden Möglichkeiten erkannt, Arbeitsschritte schneller auszuführen, kann die frei gewor-
dene Zeit für weitere Aufgaben genutzt werden. An dieser Stelle müssen wir unterstreichen,
dass Verzögerungen nicht notwendigerweise negativ bewertet werden müssen, genauso wie
Beschleunigungen nicht immer vorteilhaft sind. Zum Beispiel bedeutet eine Zugverspä-
tung für eine Person eine Verzögerung in seinem Tagesablauf, gleichzeitig kann ein ebenso
verspäteter Fahrgast doch noch seinen Zug erreichen.

Die Identifikation zeitlicher Abweichungen in Prozessen liefert uns eine Wissensbasis
für nachfolgende Operationen im Risikomanagement. Da eine schnelle Erkennung stets die
Königsdisziplin der Anomalieerkennung sein wird, werden wir in dieser Thesis die Prozess-
modellfindung unmittelbar zur Prozessausführung diskutieren und dabei den Fokus auf
zeitliche Attribute legen. Beginnend auf dem Ereignislevel zeigen wir den Einsatz von
standardisierten Kontrollschemata auf Ereignisströmen, durch die wir temporale Tenden-
zen herausarbeiten und als Gantt-Schaubilder visualisieren. Anschließend betrachten wir
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die Frage, wie viel Prozessinformation in den Zeitstempeln integriert ist und ob dieser po-
tentielle Prozess-Fußabdruck für zwei klassische Prozessanalyseaufgaben genutzt werden
kann: Zuerst stellen wir eine Methode vor, die sich ohne Berücksichtigung der Aktivitäten
lediglich auf die Zeitstempeldaten stützt und die Aktivitäten zweier unabhängiger Prozesse
abgleicht. Danach testen wir mit einem statistischen Ansatz die temporale Konformität
mittels Dichteschätzern. Beide Methoden sind zur Unterstützung von traditionellen ar-
beitsflussbasierten Herangehensweisen entwickelt worden.

Durch die Einführung von zeitlicher Abweichungssignaturen als Repräsentanten für das
temporale Verhalten der Prozessfälle heben wir die Anomalieerkennung vom Ereignislevel
auf die Fallebene an. Die nachfolgenden Ansätze nutzen diese Parametrisierung, um tra-
ditionelle Datengewinnungstechniken wie Aggregation und Ausreißererkennung anzuwen-
den. Anstatt einzelne Ausreißer in Prozessdaten zu finden, konzentrieren wir uns auf die
Entdeckung von anormalen Strukturen. Diese kollektiven Anomalien sind schwerer zu ent-
decken, da Standardmethoden darauf ausgelegt sind, einzelne Objekte im Gegensatz zu
Gruppen zu finden. Eine Untersuchung zeigt, dass schon auf Basis der Arbeitsflussper-
spektive Strukturen aus gruppierten Objekten in den nichtkonformen Prozessinstanzen
zu finden sind. Wir extrahieren ebendiese nichtkonformen Fälle und aggregieren diese
mittels einer geodätische Distanz, die ein Prozessmodell als Referenz bzw. Grunddis-
tanz verwendet. Die gefundenen Strukturen können dann zur Ursachenforschung für die
Abweichungen verwendet werden, denn die Wahrscheinlichkeit ist größer, dass kollektive
Anomalien einen gemeinsamen Grund für ihr abweichendes Verhalten haben. Das betra-
chten einzelner Anomalieobjekte ist wesentlich ineffizienter als die eventuelle Problemlö-
sung für eine ganze Anomalieklasse. Daher diskutieren wir auch im Weiteren, wie zeitlich
und strukturell anormale Prozessspuren zu Mikroansammlungen anhäufen. Unter der Ver-
wendung von OPTICS zur Visualisierung und Erkennung stellen wir Methoden vor, die die
Beobachtung und Kontrolle potentieller Häufungsstrukturen in Prozessströmen zur Aus-
führungszeit erleichtern. Dadurch können Prozessoperatoren in einer ständigen Mensch-
Maschine-Interaktionsschleife komplexe zeitliche Veränderungen im Prozess rasch erkennen
und fast unmittelbar eingreifen.
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Chapter 1

Introduction to Temporal Process
Deviations

All we have to decide is what to do
with the time that is given us.

J.R.R. Tolkien

Why are temporal deviations of particular interest, especially in the process analysis
domain? What are the indications of temporal deviations? Which archetypes of temporal
deviations exist? In the following chapter, we will take a brief journey through the field
of process mining while keeping our gaze focused on the temporal characteristics of the
processes.

1.1 Motivation and Background

1.1.1 Process Observations
Time is a base concept of life [25]. Long before humans made technological advances like
stone tools and fire, we perceived that the world around us is continually changing in the
flow of time. Learning, regardless if it is natural or artificial learning, would not be possible
without time. We were not here if we had not adapted to new situations if there were no
previous derivable experiences in the past. We developed our society based on our finite
individual existence’s fundamental margin and the necessity to select appropriate actions.

Unfortunately, learning is limited to time itself. The major problem is obvious: Activi-
ties like collecting food during warm temperatures, hunting animals before the herd moves
on, and reproducing during calmer periods is time-consuming. Although our lifespans in-
creased, we would still be hunting for the game if we would not have developed a way to
not only learn from our own experiences but preserve knowledge for our descendants.

Observing action sequences and formalizing them for documentation and knowledge
transfer is the baseline definition for what we call process mining. Although we will never
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know the first process miner’s name - or if she even had one - we continued developing
more complex and sophisticated process models over time. We can observe recurring
events for more considerable periods than only one life span with gestural and oral process
descriptions. There is no need to look for berries in the winter if one prepares the tribe
over summer sufficiently.

Cave paintings provided longer-lasting and more consistent logging of hunting intro-
ductions or other vital actions [58]. Parallelisms are challenging to describe orally, but
paintings lead to extended techniques with dedicated roles that can execute different si-
multaneous actions. Annotations got greatly improved by unification using an actual script
instead of drawings. However, either due to poor education or for simplicity, drawn work-
ing instructions kept their importance. Most megastructures would not have been possible
to construct without the means to organize all the necessary building steps for various
workers with different specializations and languages. Today, we often design instructions
as illustrations if we want customers or employees to perceive the information. We teach
children to read visual process models and implement the data into toy constructions made
from plastic bricks.

We are still looking for better process models to carry more information or to transfer
it more intuitively [15]. However, this is an ongoing process itself. The primary motivation
is still unchanged: Develop models that help choose standard process actions based on
previous executions. Knowledge transfer is always the focus, regardless of whether we
want to teach young tribe members about hunting or sending new employees through an
onboarding process.

Nowadays, our capabilities to measure and quantify the world have been advanced, and
the amount of data we collect is enormous. We do not rely on orally passed knowledge
anymore but established various digital archives. Since accuracy has also increased, we are
now capable of tracing the slightest deviation. The challenge arises in identifying abnormal
patterns, putting them into context, and creating guidance for process operators so that
all process participants know what to do with the limited time they can provide.

1.1.2 Event-based Workflow Processes
The database community started many years ago to mine data from databases to derive
frequent patterns that generalize the surrounding applications’ characteristics and al-
low predictions on future database inventories. Agrawal et al. popularised the idea of
association rules[2] in 1993, giving a name to an idea that has already been known for
decades.

Revealing dependencies and correlations between items within a single database has
been scaling since. Big data grows massive, so do the databases. Due to the constant data
logging in all domains, most databases witness not only transactions. Execution points in
time are stored as well. Having those data at hand, looking on singular database instances
is not sufficient anymore. The relation between various objects provides more information
than individual items. Especially the order of data objects raised much research interest.
Sequential pattern mining extracts frequent patterns of consecutive objects. GSP[55],
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SPADE[69], and PrefixSpan[23] are popular algorithms in this field to identify subsequences
with high support in databases.

Considering sets of database objects is very useful for market basket analysis [30] and
similar applications that focus on static results at some checkout state, thus neglect the
ordering. On the opposite, sequential patterns depend on a very strict ordering of objects.
Many applications rely heavily on actions performed in sequence for technical reasons or
ensure safety, fraud-prevention, or compliance.

Regarding the majority of applications, constraints on orderings are fundamental on
a local scope. Specific series of actions have to be performed in a given order. E.g.,
goods have to be packed before they are stamped, and afterward, they will be delivered.
Any other order does not technically make any sense. Globally, however, most processes
are semi-ordered accumulations of sequential actions. Thus, while packing and
shipping goods, it is not required to handle the accounting part before or after the shipment
strictly. Due to efficiency reasons alone, parallelisms emerge in a vast amount of processes.
Sometimes, simultaneous action sequences grew without intention and completely organic.
This interim space between unordered transaction sets and action sequences contains the
type of processes we discuss here, as illustrated in Fig. 1.1.

Figure 1.1: Between mining tasks neglecting sequential order and tasks that rely on strict
sequences, process mining deals with partially ordered sequences and derives generalized
models from sequences.

Processes contain no intrinsic definition, as the term is broadly used in almost every
scientific domain. The previous description is still not sufficient to set the margin for the
central topic of this thesis. The processes we are dealing with describe finite sequences
of actions. These execution series represent a transformation of an object from a starting
state into a final state. For instance, a typical customer journey starts with a customer’s
registration after requesting a product or service. Finally, he will receive the requested item,
and after all debriefings, feedback cycles, and payments are made, the process execution is
completed.
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However, this also includes chemical or physical processes. Similarly, we start with
an initial state and transform it into something different, e.g., a pile of wood is burnt to
transform it into lumps of coal, smoke, and heat. While most of the discussed processes in
process mining regard business-related transformations, other processes can be considered
with the same techniques. We require the process to be representable by gradual events
instead of a continuous movement. In particular, statistical processes often rely on mea-
surable, continuous parameters to control the process outcome’s quality. To consider such
continuous world scenarios as a process mining application, we first need to redefine these
processes. Every action in the process has to be translated into a discrete activity. In
Fig. 1.2, we illustrate an discretization of a continuous sensor input into an event log.
Certain increases and decreases in the temperature data indicate and change event and
are represented respectively. This does only serve as an example, as the discretizer can be
designed in various ways. There is a rich collection of concepts in the literature [22].

Figure 1.2: A continuous process can be transformed into a discrete event representation
by signal processing and classification of drift prominence.

1.1.3 Events and Event Logs
Usually, we utilize proper event data and skip the discretization pre-processing steps. The
baseline data sources for processes in order to perform any mining task are sets of events.
Process operators’ extended efforts to keep records of all performed operations using au-
tomated information systems lead to many data to start the mining tasks. The most
dominating and driving domain for process mining is probably the business area, which
uses large-scale and specialized process-aware information systems like enterprise resource
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planning systems [34]. Although such data sources are much more accessible for process
mining, many domains provide spreadsheet collections or other modest information sys-
tems.

We do not go into detail about the actual data source formats here. Despite this, we
state the requirements necessary to perform the later discussed approaches. Each event
contains data about the performed action as an activity label. Further, we expect an
event to have a timestamp. In most cases, the source of the event attaches this informa-
tion. Otherwise, the information system registers the time at the moment of its registration.
Since we focus on temporal aspects in this thesis, we demand timestamped events for the
remaining chapters. We explicitly allow events with the same timestamps here since the
granularity of measurement does not always provide an adequate differentiation to account
for slightly shifted event occurrences.

We also require a partition of the whole event set into cases. A case is an execution
sequence according to the process environment. Each case is assumed to perform indepen-
dently. However, this constraint is always questionable. Regarding the process modeling
purely as a digital simulation tool, cases are independent in theory. Since there is a physical
counterpart and cases share resources, the independence assumption crumbles. Neverthe-
less, this assumption mirrors the desire to have processes that yield reproducible results
for similar parameters. If the process provides customer service, the customer experience
should not differ significantly for customers with similar profiles. Cases should use distinct
case identifiers, which have usually been taken care of by the information system.

Events containing case, activity labels, and timestamps are the minimal requirements
for most process mining approaches and the later-described techniques in this thesis. Re-
garding involved resources or other vital indicators, processes sometimes attach additional
attributes to events. The sequence of events within a particular case is called the trace of
that case. However, the terms case and trace are often used synonymously in the literature.
The context usually clarifies it.

A collection of case data is called an event log. As previously mentioned, it might be
that a case contains duplicates of events. This repetition does not have to be a database
issue, but activities can reoccur within the same case. E.g., a proposal or offer is sent to a
customer but not answered, so it is resent again. If activities are repeated shortly after each
other, the timestamps’ temporal granularity might not be large enough to guarantee specific
events then. Therefore, we consider event logs as event multisets instead of event sets.
Depending on the information system, ambiguities can be avoided with careful activity
labeling or additional indexing.

Although an event log contains many event sequences, these sequences provide their
observation’s consecutive order. Single sequences do not imply that their succession is
totally ordered, as discussed above. Many cases work in parallel, e.g., customers are served
simultaneously by different staff members in a larger business. This concurrency continues
on the case-level as well. Some activities have to be performed in order. Some can be
performed in parallel. This concurrency is one of the significant properties of workflow
processes. Second, particular activities or short sequences can be redone as an attempt to
fix a minor defect. These loops are also not represented in individual process traces since we
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assume that all cases contain finitely many events. The last significant property of processes
is choices in the executions. Subsections of processes can be left out without risking to fail
the process execution. For instance, a customer has some options in an ordering process.
The default process represents an ordering for himself. The process changes if the invoice
address and the shipment address differ. We could model all different process executions
individually, but we embrace the generalization of models in exchange for less accuracy in
process mining. By considering multiple process cases, discovery algorithms derive process
models that reveal these three properties - concurrency, loops, and choices[59].

1.1.4 Research on Temporal Process Features
Process mining research has a strong focus on structural aspects of processes. However,
some approaches utilize the temporal aspects of events. They use it either as a stand-
alone feature source or as an addition to the structural perspective. The most popular
task depending on the related publications, is remaining time prediction. This task’s
challenge is to estimate the required time for a case to reach a final state. Depending on
the process, there is a vast spectrum of possibilities to continue and complete a case. The
previously collected knowledge of the already processed case prefix sometimes provides
only a loose correlation with the estimated suffix.

We mention some of the works dealing with the remaining time prediction here, but
we exclude related works that only focus on the next activity prediction. Van Dongen et
al. used non-parametric regression to build remaining time estimators for activities and
case suffixes in [63]. In [28], Leitner et al. also used regression to predict SLA violations.
Many remaining time predictors or cycle-time predictors are based on process models
annotated with temporal information. Starting with [62], Van der Aalst et al. used finite
state machines as transition systems to replay cases and aggregate the estimated duration
times on the execution paths. In [18][19], Folino et al. built predictive clustering trees
first to improve the method in [62]. Rogge-Solti et al. use stochastic Petri nets to embed
concurrency into the prediction to improve prediction accuracy[49]. Ceci et al. applied
frequent pattern mining to extract frequent activity patterns as short-term subprocess
representations[8]. These are used to predict the next activities and the completion times
of the cases. Polato et al. developed a combined approach [36] using regression over case
features to annotate process models. In [37], they also extend their techniques to predict
the remaining times on non-stationary processes. Rogge-Solti and Weske annotated Petri
nets with arbitrary distributions, allowing a more precise and individual representation of
durations[50]. Navarin et al. used LSTMs to predict the remaining times[35]. Choueiri
et al. included manufacturing characteristics to improve prediction results in a particular
manufacturing application[12]. For a more thorough overview of publications regarding
remaining time prediction, we highly recommend the survey[65] of Verenich et al.

The remaining time prediction is very prominent due to its challenge being a very well
defined problem. Also, the utility is intuitive, and its business value is quite high. However,
only in [43], we briefly touch this task. In the remainder, we focus on different challenges
in the temporal process perspective. Different works have been proposed regarding dura-
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tions and temporal anomalies. Already in 1999, Eder and Panagos[16] highlighted the
importance of temporal aspects in workflow systems. Cook et al.[13] used formal timed
models for temporal conformance checking by integrating time margins. Rogge-Solti and
Kasneci[48] developed the first approach to apply anomaly detection in the continuous
space of time instead of solely structural aspects. They used Bayesian networks to deter-
mine outlierness based on z-scored activity durations. In [5], Basile et al. proposed an
approach to modify a process model to exhibit observed temporal anomalies. Böhmer and
Rinderle-Ma[6] constructed likelihood graphs, similar to Bayesian networks, to model the
structural component of processes in the basic variant. Extended likelihood graphs were
derived to cover resource and time information. The likelihood graph is used to determine
an anomaly probability for a case by traversing the graph like a decision tree. Yang et
al.[68] developed a process alignment technique that considers activity durations and ap-
plies dynamic time warping to determine pairwise case distances. Lefebvre[27] proposed
a technique to diagnose if observations from a stochastic timed discrete event system lim-
ited by uncomplete sensor configurations are consistent. Temporal constraints are focused
on specifying tolerance intervals. Senderovich et al.[52] introduced the Temporal Network
Representation based on Allen’s interval algebra and illustrates pairwise temporal relations
between activity executions. In [33], Mavroudopoulos et al. use distance-based methods
to identify temporally abnormal process executions. Stertz et al. [56] propose temporal
conformance checking as a specific task. In contrast to previous works, this raises the
critical challenge on a more superior level. They rely on z-scoring of interim times be-
tween activity relations to derive a deviation score. Böhmer and Rinderle-Ma[7] developed
Anomaly Detection Association Rules to detect different features in processes. Based on
the Apriori algorithm for sequential pattern mining, they derive association rules. As an
extension, they propose temporal ADARs. To cope with the fuzzy character of execution
times, they use duration classes for generalization purposes.

1.2 A Taxonomy of Process Anomalies
The Oxford English Dictionary defines an anomaly as "a thing, situation, etc. that is dif-
ferent from what is normal or expected." This definition covers a broad scope and requires
sufficient clarification for every individual anomaly detection task. Hence, two major com-
ponents are required: An object type to draw anomaly candidates from and a baseline
representing normality or expectations.

1.2.1 Anomaly Object Types of Processes
The spectrum of object types is vast and well covered in the process mining research
community. There are multiple ways to approach this classification. We pick the data
hypercube as a starting point. In Tab. 1.1, we give a schematic overview of the relations
of anomaly object types and baselines in a process application. However, these do not
specify the exact representation of processes. We represent processes usually by logs or
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Table 1.1: Taxonomy of process anomalies by type and baseline. For all pairs, examples
are given for detection tasks or following issues. Further, related papers from this thesis
are stated.

Type

Baseline Stat. Model Classifier Density Context

Singleton

e.g. events

Likelihood
estimation of
single event
existence; devi-
ation control of
event durations
[42][43]

Single-point
fraud detection;
validity check of
event features;
log repair w.r.t.
duplicates

Outlier detec-
tion; failure
prediction in
manufacturing

Data-aware
outlier; event
restoration
w.r.t. false
meta-data

Hyperpin

e.g. feature pairs

Bottleneck
activity detec-
tion; resource
profiling; role
mining

Identifying
promotion
candidates;
prediction of
high-workload
time intervals

Handling DDoS
attacks; unusual
frequency of ac-
tivities at cer-
tain timestamp

Identifying
resources with
unusual demand
in specific areas
(season, places)

Slice

e.g. cases

Statistical
conformance
checking; Likeli-
hood estimation
of certain trace
profiles; [44]

(Temporal) con-
formance check-
ing; checks for
pre-defined key
performance in-
dicators [47]

Variant mining;
trace clustering;
[41][40][38][39][45]

Trace clus-
tering in
distributed non-
standardized
systems

Subcube

e.g. subspaces

Statistical test-
ing of process
log samples

Conformance
checking on
episodic trace
alignments

Subprocess min-
ing; abnormal
variants in spe-
cific episodes

Data-aware
episode mining

Cube

e.g. processes

Process match-
ing; log align-
ment; [46]

k-Nearest-
Neighbor
classification of
process models;
"Black Swan"
identification

Subsidiary eval-
uation; compar-
ison and perfor-
mance analysis
of process im-
plementations

Season-based
root-cause
analysis
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by process models. To match the presented anomaly taxonomy, we have to identify the
according anomaly base type depending on the chosen representation.

Process data usually contains case identifiers, activity labels, and timestamps, forming
a three-dimensional cube as the data space. Additional features extend the dimensionality
of the data space, resulting in a hypercube. Each event in a process execution corresponds
to a hypercube cell and provides the smallest or at least most individual object type for
anomalies as a singleton. We often refer to singular event anomalies as outliers, but we
have to be cautious due to overloaded terminology in the anomaly detection field. To
traverse through the standard object types, we are guided by the terminologies regarding
online analytical processing (OLAP)[10][60]. Event outliers are the primary target in fraud
detection. As a single point of failure, either in the case of a malecious attack attempt
or as a malfuntion, a single event indicates a problem before any failure cascade starts to
propagate the issue.

The next considered object types for anomaly detection are the sub-dimensional slices
or hyperpins. Fixing all but n−2 dimensions provides a subset of the process data. These
object types are event collections projected onto smaller feature sets. E.g., we neglect case
ids and consider pairs of activity and timestamp only. In this case, the object type is
interesting if we look for suspicious activity occurrences at unusual times. This category
contains all feature set projections that have 0 < d < n − 1 degrees of freedom. Tuples of
features specify any anomaly object as hyperpins. E.g., a bottleneck analysis identifies pairs
of activities and time slots with high occurrence frequency. Many role mining tasks are
located here, since pairs of activities and resources are found in the result sets. Regarding
frauds in this category, anomalies are typically timed attacks that abuse a service access
point at the same time.

Decreasing the number of fixed dimensions and therefore increasing the degrees of
freedom leads to slices with n−1 dimensions. The most prominent object type here is the
case, which fixes the case identifier while carrying all remaining information as a profile.
Due to its prominence, we collect anomaly detection tasks under the term conformance
checking in most scenarios. Fixing specific activities or resources, like staff or machines, is
applied in quality assurance or similar deviation exploration tasks.

Considering specific timestamps rarely bears sufficient information for anomaly detec-
tion since process data is often volatile. Instead, we take aggregated temporal intervals into
account. In terms of OLAP, this aggregation is called roll-up. Large slices contain enough
information to detect more general concepts and their abnormal counterparts. Due to the
continuity of time, using slices of timestamps, we are performing concept drift detection.
Aggregating resources with similar profiles is a standard job in role mining or organiza-
tional mining, and the identification of abnormal staff or machinery is also an anomaly
detection task.

Regarding the hypercube structure, subcubes are potential anomaly candidates as
well. Anomaly detection in this domain is related to frequent itemset mining or pattern
mining in general if the anomalies are frequent. The rare subcube anomalies are rare pat-
terns and represent feature associations with shared behavior and non-negative minimum
occurrence. Irregular patterns lose their similarity due to the pollution by the remaining
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features. They are, therefore, hard to detect using a global perspective for data mining
methods. Subspace clustering is also a suitable class of techniques here to identify not
only process cases but, besides, the dimensions of interest for each particular cluster. E.g.,
the root for a temporal anomaly might inflict deviations in a certain subset of activities,
but has no impact on the majority of the process. Hence, trace clustering based on the
global case scope does not yield any interesting results in this case. All variants of event
log samples and log projections fall into this category. However, additional refinements
and compositions are possible, e.g., slicing subcubes.

These object types describe all potential objects of interest for anomaly detection in
process mining regarding only one process. If we consider various processes at once, we have
to deal with multiple hypercubes. Each process itself exists as an anomaly candidate,
which we regard in the field of process matching.

1.2.2 Anomaly Baselines in Processes
Since an anomaly is a composite of an object type and a baseline, we discuss the different
baselines. We make no claims of being complete here but cover the majority of types and
baselines. In many cases, a strict differentiation is not possible, and margins are fuzzy.
The most common baseline is a statistical approach. A large set of object instances is
used as a training set to create a hypothesis. Statistical tests use the created distribution
to determine the likeliness of tested samples. Even for populations of objects, we compare
the distributions and determine the magnitude of deviation to indicate the significance of
the anomaly.

Related to distributions, we can use the likelihood to derive a classifier. Classifiers
can also be manually defined or trained in another manner. Due to the advancements in
machine learning, the artificial intelligence community provides various techniques in this
area. Basic classifiers start with nearest-neighbor classifiers or separating lines like support
vector machines and surmount deep neural networks and complex ensemble classifiers.

The density baseline is used for parametrized objects. At least, a measure of similarity
is necessary to establish a notion of density or sparsity. The more common approach is the
identification of objects with a high dissimilarity to other objects. As said above, these are
commonly known as outliers. However, anomalies sometimes occur on the other side of the
density spectrum. Instead of sparsity, a cluster of similar objects is abnormal if the baseline
is a sparser dataset. We call such a cluster a collective anomaly. Examples for this case
are process instances that follow an atypical behavior that deviates from the remaining
process. Indeed, clustering can be interpreted as an anomaly detection task since we often
assume a uniform distribution as a baseline, and dense accumulations of objects are the
anomalies then.

Density can be defined in various ways using distance functions if we deal with objects
that contain numerical attributes. If only categorical attributes describe objects, density
cannot be defined canonically. Either we define a more artificial similarity for this case or
use an object’s context. Available meta-information of an object is used to derive patterns
that can be compared. A process trace might be a regular instance in one context, but
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changing the execution time leads to process conformance violations.
It is often possible to transform baselines and consider an anomaly from another per-

spective, making the distinction somewhat fuzzy. For instance, density in a parametrized
vector space can be represented by a Gaussian mixture model. A statistical model’s likeli-
hood can be extended with a threshold, resulting in a binary classifier definition. Even for
categorical attributes, we often find abstract similarity measures using binning techniques
or artificial scales, e.g., customer happiness, shipping reliability, or creditworthiness. Using
this representation is just a small step towards statistical models, classifiers, and density
definitions.

1.3 Concept Drifts

1.3.1 Concept Drifts in Processes
Concept Drifts are of particular interest in dynamic applications like online monitoring.
However, neither do all online applications contain concept drifts. Neither are concept
drifts exclusive to online scenarios. Regarding the previous section, a concept drift is, first
of all, an anomaly, so we have to establish a view on particular objects and a baseline first
before exploring any dataset.

In machine learning, prediction models predict the properties of observed objects. If a
concept drift takes place, this prediction starts to fail and loses accuracy. Concept drift
detection is the task to localize such changing spots. Therefore, an additional requirement
for concept drift detection is essential: At least one feature of the objects has to be an
ordinal attribute. Otherwise, it is interpretable as such or is representable in a vector
space. Since concept drift detection is mostly applied in time series analysis, concept drift
is sometimes falsely reduced to this domain. However, drifts can also occur spatially or
structurally. We explain by examples.

Time-based concept drifts are simple to imagine. Changes in customer behavior or
regulations cause companies to adjust their business models constantly. For instance, we
intuitively expect concept drifts for seasonal goods according to the changing demand over
one year.

Customers and regulations do not only change globally based on the timestamp. Com-
panies are aware that different markets have to be treated differently. Varying countries,
cultures, or demographics also affect concepts, and the same model applied to different
locations will fail to predict reliable results. Specific region markers like country borders or
geographical units might assist in spatial concept drift detection, but specific problems
often require appropriate cartography. Global operating enterprises with complex logis-
tic supply chains have to take into account various concepts at once, like weather, tolls
and fees, road quality, available transport types, or transport regulations. This combined
risk assessment provides contour-lines that indicate concept drifts regarding risk levels and
highlights regions that should be avoided. Time and space are vector spaces. The question
arises if it is possible to define drifts in non-vectorial spaces. The last example considers the
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topological organizational structure, e.g., a company hierarchy with the directorial board
on top and specialized workers with constraint tasks on the bottom. Due to the rising
interest to improve environmental, social, and corporate governance ratings, identifying
inequalities in ecological footprints, wages, or other concerns can be accomplished by class
concept drift detection.

In the following, we are focusing only on the time-based scale for concept drifts. Process
logs almost always provide timestamped data, while spatial information is often discarded
due to privacy reasons. This argument is even more essential in the case of organizational
matters. Many works consider structural changes over time in processes for concept drift
detection.

1.3.2 Traditional Concept Drift Types

Figure 1.3: The traditional concept drift classification. Each object represents an event
and colors determine cases. The objects are observed in an event stream in this order from
left to right.

In the data mining community, four types of concept drifts are distinguished [20].
Sudden drifts occur if there is an immediate change in the predictions at the observation
horizon. In general, sudden drifts are simple to detect in comparison to the other three
types. Causes for sudden drifts in processes are spontaneously changing influence factors
like crises, system breakdowns, or fraud attempts.

A gradual drift specifies a fading change over some time. Depending on the adaption
speed, gradual drift detection is more challenging in general. In big data applications,
the observation window is often limited. If the change is minor and the transformation
period large, the observation window will likely contain only a partition of the drift. The
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variation within the window might be below the remaining data stream’s variance, so it
will not be detected. Root causes for gradual drifts are regulation changes and workflow
updates. Further, concept drift detection is applied to observed data, and in all practical
scenarios, we have to deal with observation latency. Hence, every sudden change does not
necessarily cause a sudden drift but can affect measurable indicators with various latency
times. Regarding processes, even if a change is introduced at a certain point in time,
the operators adjust the different systems over time. So if a manufacturer switches the
production line in the morning, some assembly machines start working on the new parts
after some minutes while others have to finish previous tasks first and are changed as soon
as possible.

A special case of gradual drifts is incremental drifts. Particularly for discrete data
objects like process events, incremental drifts are very prominent in dynamic data streams.
Instead of a continuous shift, a consecutive sequence of minor step-wise sudden drifts
assembles an incremental concept drift. The detection is similar to sudden drift detection
but similar to all concept drift detection. The magnitude of the drift determines the
detection difficulty.

From a more global perspective, some concept drifts occur regularly over time. The
most prominent examples are seasonal drifts like increasing ski sales in winter. In addi-
tion to the actual detection challenge of individual drifts, this task is extended to buffer
previously detected drifts and compare them to recent drifts. The detection of recurring
drifts is only possible using buffered long-term observation techniques.

1.3.3 The PSI model
In contrast to the drifts’ traditional classification, we suggest another drift classification
model here that indicates the detection difficulty of drifts. The issue with the traditional
model is that it is impossible to differentiate between the drift types, especially for discrete
data like events. Gradual drifts and incremental drifts behave similarly. Especially in
complex processes, drifts are very likely to occur in various dimensions at once, so sudden
drifts and gradual drifts cannot be distinguished. Therefore, we identify three fundamental
qualitative properties for concept drifts: Pace, severity, and intention.

Since most processes are exposed to changing impacts and contain much complexity
continuously, data information systems need to adapt to these changes over time. For
instance, weather conditions and wear damage roads over time, slowly reducing the poten-
tial driving speed and increasing maintenance actions. This degradation causes an increase
in delivery times over a long period. Although these changes are already concept drifts,
detection tasks rarely aim for expected condition changes. The difficulty emerges if rele-
vant and unexpected drifts interfere, and the drifting occurs concurrently to the ground
changes. A typical example is old mining towns, which are built onto networks of tunnels.
The tunneled ground causes faults, increasing the stress on the buildings above. Cracks
in the walls are often misperceived as natural wear since the geological and meteorological
effects have the same slow pace.

Severity is the most intuitive factor. Slight deviations from a determined baseline
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Figure 1.4: The three-dimensional PSI model with examples for the eight extreme corner
marks of the model. They illustrate very extreme manifestations of pace, severity, and
intention.

are more challenging to detect than profound changes. A complete process’s refactoring
is easily perceived in the data. A construction site in front of the receiving department is
causing a few seconds delay and hence is hardly noticed.

The third drift property in this model is the intention. Mostly representing human
intention, this property represents the expectation of drifts. Traversing this dimension,
we regard process changes on the one side caused by active actions and planned to cause
the effects. On the other side, we observe effects whose root causes are usually unknown
and completely unexpected for the process owners. An example for the active side is an
increased performance after improving machinery, while an earthquake is definitely on the
opposing side.

The PSI model can be adjusted to measures of a particular process and its KPIs. In the
general form as presented here, it gives the means to compare concept drifts qualitatively.
In Fig. 1.4, the three-dimensional model shows some examples of concept drift classifica-
tion. The higher the pace, severity, and intention of a concept drift are, the easier it is to
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detect it accurately. The more challenging but often more gainful detection tasks regard
minor and unexpected changes over a long time.

1.3.4 Temporal Concept Drifts

However, temporal concept drift detection does not imply the observation base. The
primarily addressed deviations concern the temporal perspective itself. Deviations in the
temporal dimensions are either delays or accelerations. Delays are relatively more likely
to observe than accelerations. First, most processes are already optimized to some degree
beforehand, and if there are simple means to improve it further, they might have been
implemented already. Second, any action requires a positive amount of time, so there is
a lower limit for the duration. Although many processes implement some artificial limits
to secure the process continuation, there is no theoretical upper limit. In the following
chapters, we are focusing on temporal aspects only. There are quite many applications
that benefit from combining structural and temporal change detection. However, our
primary drive was to evaluate how well we can detect and predict different anomalies just
by considering time aspects. Although there are arguments for collaborative detection
techniques, both perspectives structure and time exist orthogonally. Anomalies do
not necessarily have to occur in both views concurrently. Sometimes the results of an
anomaly occur only in one perspective. Hence, we want to understand the mechanisms in
the temporal perspective first. There is still the opportunity to develop ensemble techniques
in future works.

Reasons for time-focused process mining techniques are various. In many cases, a
structural change follows temporal deviations. E.g., important mechanical parts like the
train brakes gradually lose their retarding force overtime. We never wait for the structural
drift in safety-relevant systems - like a failing brake - to occur. Even if the stakes are
not that high, long waiting times are often expensive. Early detections mitigate damages
or expenses, but an uncovered failure can spread. E.g., faulty mechanical parts cause
abrasion, which then collects in other areas and jamming consecutive parts. Eventually,
the repair is not an option anymore, and a costly repurchase is required. In other scenarios,
temporal drifts occur entirely without any structural response. If delays are not tied to
costs or safety, temporal deviations can impact other aspects like customer satisfaction.
Customers stay satisfied if they are not put into an idle state but are processed quickly.

Delays are not the only relevant deviation type. Accelerations are also exciting indica-
tors for process changes. If a working team improved the subprocess’s performance, this
knowledge should be used in other areas if possible. In automated processes, acceleration
is often an indicator of faulty command execution. If the execution required less time to
process a certain number of objects, there might be a problem accessing them. If the failure
has been unknown and unexpected, this bug has likely never been caught code-wise on the
machine level. Detecting accelerations reveals fault roots, fraud issues, and potential for
improvement.
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1.4 Streaming Analytics for Anomaly Detection
Large enterprises produce vast amounts of data per day. Processing this data online is
highly beneficial since insights can be used for improvement immediately[61]. Otherwise,
data has to be collected and analyzed at a later date, which introduces some drawbacks.
Online algorithms optimize four different properties[9], as seen in Fig. 1.5, and we will
cover them briefly in the following.

Figure 1.5: Four properties have to be balanced for every online data mining algorithm.
Memory consumption and accuracy, analogously to number of computations and detection
latency, are pairs of ambivalent forces, that demand an elaborated trade-off.

First of all, as also discussed previously, problems should be identified as soon as possi-
ble. The main motivation for streaming analytics is a quick response to abnormal events.
Malicious untreated issues are more likely to get worse than to disappear. This effect is
known as a failure cascade[14]. Hence, the first requirement for an efficient online anomaly
detection approach is a low latency to detect anomalies in time.

To improve the detection speed, we lower the latency and rerun the algorithms more of-
ten. This naïve strategy introduces a new issue. Our resources regarding computation time
are limited by hardware. Therefore, an online approach should not be applied more often
than necessary. The less a recomputation is performed, the higher the latency becomes.
Minimizing both latency and number of reruns are contradictive forces and requires a
trade-off between both operations.

There is also the challenge of performing sufficient data provisioning. In an online ap-
plication we only have access to the most recent objects. Depending on the used hardware,
this subset can contain a large number of objects, but there will always be a finite upper
limit of stored objects. Theoretically, a data stream is infinite and thus no database is
capable to store all data. This memory limitation is the third requirement.

Analogously to the ambivalency above, memory has an opposite force. For every data
mining task, we are obviously interested in accurate results. Due to the minimization
of memory consumption, we do not achieve the same accuracy as an offline algorithm.
Another trade-off between optimizing accuracy and minimizing memory consumption has
to be found here as well.

These four properties are central for all online data mining algorithms. Besides, in pro-
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cess mining we have additional aspects to consider. First, we distinguish between different
process data stream types. Event streams are more popular than trace streams. There
are some works considering streams of already aggregated case data objects. In [42] and
[41], we describe in detail how we collect event stream data to establish an approximate
event log representation.

Another property of data streams is the arrival rate. The arrival of new data objects
can be constant, but it is much more likely to observe a volatile arrival rate for processes.
E.g., most events occur on weekdays, and fewer actions are performed on weekends. There-
fore, it is more suitable to consider event chains of specific length instead of time intervals
for algorithmic evaluations, e.g., regarding detection latency.

Regarding generalized data streams, the set of data items inherently contains an order.
The mathematical definition of a data stream is a mapping from the natural numbers into
the data object domain. Processes provide timestamped data, so the order is often deter-
mined by the event occurrence. Due to the actual processing and network message passing,
both orders are not necessarily consistent[4]. We neglect this order inconsistency in the
following, and we only utilize the timestamps attached to the arriving events.

From a theoretical perspective, better hardware does not always solve efficiency issues.
The complexities of problems and algorithms dictate boundaries we cannot counter easily.
Theoretical complexity is a mathematical classification of efficiency, which can be de-
termined for both problems and algorithms. The problem complexity is a lower bound for
any algorithm to solve a worst-case problem instance with full accuracy. The algorithmic
complexity, on the other hand, states the worst-case effort to solve a problem. The com-
plexity is given depending on the input size. In streaming analytics, the input is usually a
fixed buffer of size n arrived object. Any algorithm we propose should then work at most
in linear time on this buffer. Then the algorithm should finish its computation before the
next buffer is overloaded. An online event stream analysis approach has to process each
event in constant time because otherwise, the working time will build up over time, and
the delay for query results will increase vastly.

Many problems have a descent complexity beyond constant or linear performance. Es-
pecially anomaly detection requires many data lookups to determine global anomalies.
However, there is always a way to develop an online technique to solve a particular prob-
lem. The lower complexity is mostly traded against a less accurate result. A particular
class is anytime algorithms yielding a more accurate problem solution the more time is
given as a budget. A basic strategy for transforming algorithms into online techniques
is stream sampling. A small finite chunk of data is extracted to represent the whole
data stream. We achieve this compression by randomly picking stream objects or using a
window containing the most recent objects.

1.4.1 Event Stream Sampling
In contrast to long-term warehousing for offline analysis, online techniques rely on a limited
buffer to represent the data. The main challenge is to fill this buffer by fairly picking
data. The sampling should not introduce any biases but should represent the complete
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dataset such that all properties and statistical distributions are contained. In the optimal
case, the results of online algorithms applied to the sample yield the same results as offline
algorithms applied to the complete dataset. This fairness is measurable if the results are
comparable. However, to achieve fairness, the world is much more complicated.

There are few strict constraints for fair sampling. First, the selection strategy picks
a subset of objects as representatives. Then, a discarding strategy removes objects
from the buffer, so recent objects replace old ones. Many online algorithms choose data
objects with equal probability from the data stream to ensure that all effects are covered
equally and achieve fairness. For trace streams, this is a valid strategy. If we consider
event streams, some issues arise. Process cases are very diverse regarding their series of
activities and length. Since we have to decide whether we monitor a case or ignore it at the
beginning of this case, we never know in advance if the case contains interesting anomalies
or represents the majority of the data behavior.

Due to practical reasons, we usually assume cases to be finite. A process has a starting
point and final goals. Cases are interrupted at some point, e.g., a repair process is usually
stopped after a few cycles since, at some point, it is cheaper to produce a new item instead
of repeatedly performing repair attempts. We will only consider processes with finite cases
here, although there are applications with infinite cases. Especially in "X as a service"
applications, we aim for indefinitely lasting customer journeys. Although we can subdivide
such indefinite processes into finite episodic processes, long-term aspects are neglected.

A general issue regarding event stream analysis is the lack of knowledge about
when a case starts and ends. At some point, a long-lasting case has to be discarded.
Usually, we remove a case from observation after we have not received any update regarding
this case. The next arriving event could continue this case, or it has been interrupted
at all without any notice. Nevertheless, the buffer has a limited size, and discarding is
necessary to maintain a valid sample. Therefore, after discarding a monitored case, this
case’s continuation is not recognized, and it will be treated as a completely new case. We
already lost all previously collected case data and cannot restore it. Even events with
artificial start and end tags are not sufficient to solve this problem. However, it helps to
discard cases as soon as they are completed.

1.4.2 Windowing Strategies
Regarding selection and discarding strategies, we start with landmark windows as the
most basic strategy. Until the buffer reaches its capacity, all objects are stored. When
congestion is reached, all buffered data is discarded, and a new buffer is created for the
following window. This method is very efficient in terms of computation time and is
fair. If the window size has a suitable length, many objects are stored for the stream
representation.

Applied to event streams, concurrency of cases poses significant problems. High degrees
of parallelism causes much overlapping of cases. If we aggregate observed events until the
buffer is full, it contains only short subtraces, and analytics are inaccurate. A better
strategy is to use the finite case assumption and store a finite number of case ids. The
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Figure 1.6: The landmark window creates new buffers at certain points in time. The
sliding window moves the window iteratively and discards deprecated objects. The damped
window attaches lower weights to deprecated objects, which is best used for metric data.

corresponding cases are then stored in a secondary data structure. The drawback of this
strategy is a potential focus on less recent cases. The first arriving cases block the buffer.
We neglect later cases if we wait for all buffered cases to become completed.

In [24], a landmark window is used. A case identifier list monitors active cases and
points to intermediate data. After a predefined number of event arrivals, all data is collected
and used to build a process model. The new window starts from scratch to collect new
case data again. As discussed before, this works for medium concurrency processes, and
the process models get inaccurate in case of more parallelism.

Even if we replace completed cases immediately with new ones, this strategy puts a
strong bias on long cases since it quickly replaces short-term cases. The sample’s recency
improves with this sliding window technique, where arriving objects replace the most
outdated objects continuously.

An efficient discarding strategy is crucial here since the selection of candidates has to be
performed frequently. Simple queues are often utilized for sliding windows in data mining
applications. Due to the unpredictable arrival order of process cases, this approach is not
suitable for event streams.

TESSERACT[42][43] and OTOSO[41] apply Cuckoo hash tables. Cases are stored in a
hash table, so quick replacements and look-ups are possible. Using the Cuckoo technique
and assigning two potential storage slots for each case, suitable outdated cases are identified
efficiently to be discarded. Cases that have not been updated for some time have a higher
chance of being discarded. However, due to the replacement mechanism, there is a low
chance that less recent cases will survive within the table for some time. This hash sampling
provides a suitable degree of fairness while being quite efficient.

For aggregated statistics, weight is often attached to data, so it decays over time. This
damped window approach puts the most weight on recent data, and older objects fade
and disappear from the sample. This technique maintains a very recent representation
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while still keeping a small amount of almost outdated behavior.
Discrete objects like event data utilize tilted pyramidal discarding schemes to establish

a large base of recent data objects and few outdated objects. A cascade of pushes towards
the pointy end is triggered for each update, and the last spire is discarded.

AMTICS [39] establishes multi-level clusterings to derive a hierarchy of density-connected
clusters. For the individual levels, micro-cluster structures store statistical data to define
the cluster features. These are updated incrementally and decay overtime to forget dep-
recated cluster data. In the second step of TESSERACT [42][43], the anomaly baseline
containing mean, and variance for various temporal relations between activities are main-
tained incrementally using exponentially weighted moving averages.

1.5 Collective Temporal Anomaly Detection
Singular outlier detection focuses on identifying critical anomalies that deviate from the
majority of process executions. This task is critical if these individual deviations drastically
disrupt the process, and their avoidance has high importance. Frauds and extreme failures
are the main drivers for this discipline. Ignoring or overlooking these effects lead to high
expenses. On the contrary, collective anomalies are very distinct from outliers and
more similar to small clusters. Hence, the detection is very different. The most intuitive
approach to define collective anomalies is density. The primary requirement is a distance
metric between objects, which is often achieved by using vector data directly or introducing
a metric representation of objects.

Regarding process cases, the objects of interest in this area do not possess a canonical
vector representation. Due to the high likelihood of different case lengths, only vectorizing
event data does not suffice. In [53], Song et al. proposed trace profiles, which transforms
the trace data into vectors of equal length. The basic variant contains counts of activity
occurrences as activity profiles, but they also developed an extension to embed further
data like resources. These profiles are then used in various clustering techniques (k-means,
quality threshold clustering, agglomerative hierarchical clustering, self-organizing maps)
and using different distance functions (Euclidean, Hamming, Jaccard).

Already in [53], the authors extend their work due to the inadequate representation of
the sequence data. Instead of activities, they recommend using transitions like tuples of ac-
tivities to embed events’ consecutive ordering. In [54], we propose profiling, which embeds
temporal deviations of relations to discover patterns regarding the temporal perspective.

1.5.1 Density-Based Clustering
We define local density for each object as the number of neighbors below a certain distance
threshold based upon a distance function. If objects exceed a minimum density threshold
level, they establish a cluster. DBSCAN[17][51] adds all points in their proximity to this
cluster and repeats this procedure cascadingly. Therefore, we do not have to specify the
number of expected clusters a priori. On the other hand, the parameter choice is challenging
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since selecting suitable values for the neighborhood size, and the minimum contained
points is not intuitive. As an extension to resolve this issue, OPTICS[3] compares various
density levels in a hierarchical model. It highlights the data’s clustering structure to
determine suitable parameters for density-based clustering as a visualization tool. In Fig.
1.7, we illustrate the application of OPTICS. On the left side, points are plotted using
a three blob generator model. Colored as red, green, and blue regions, we illustrate the
expected clustering. OPTICS represents the dataset as a two-dimensional plot. Each object
is represented on the x-axis. The height correlates with the required neighborhood size,
such that this object can start a cluster. Objects are ordered by proximity to their nearest
object. Hence, troughs in the plot represent higher density areas, which any density-based
clustering technique yields as clusters. High dividing peaks between two troughs represent
a considerable distance between both clusters. Steep ascents or descents indicate sharper
boundaries of the clusters.

Figure 1.7: Three blob clusters are generated. Green indicates a cluster apart. The red
cluster is spatially distributed and sparser than the others. Colored in blue, a dense cluster
interferes with the red cluster. OPTICS visualizes this dataset on the right. We highlighted
the colors above the corresponding troughs.

1.5.2 Cluster Anomalies
Regarding deviations, we assume that processes do not contain a vast number of severely
abnormal cases. This assumption is typically applied to conformance checking. Cases
with a high conformance score form the majority of process executions. Considering the
difference between conformance scores as distance, this central partition of the process
traces will cluster around the highest conformance score. Towards the lowest conformance
score, the objects are sparsely distributed at an increasing rate. Process operators introduce
mechanisms into processes to constrain deviations and force cases to conform to the model.
However, there will always be exceptional cases, which cannot be handled according to the
model. Due to their rarity, it is not practical or efficient to reduce the model‘s generalization
by embedding rare deviating behavior to the model[59].

On the contrary, building individual anomaly models is a common way to deal with
collective anomalies. The central property of such anomalies is a common pattern. The
patterns provide a fast classification of new objects into a particular anomaly class
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instead of the binary classification between in-control and abnormal objects. In [47], we
present an approach that clusters non-conforming traces regarding their structural devia-
tion from the central process behavior. Similar deviations are identified using conformance
checking, which usually highlights the deviating spot in addition to the conformance score.
Establishing a distance between those deviation patterns is the challenging part. Geodetic
distances determine the distance between two points based on a spatial reference system.
Using the process model as a spatial map, the distances between deviating states estab-
lish this type of spatial reference model precisely. Since we define the density of traces,
density-based clustering allocates the non-conforming traces into anomaly clusters. The
primary motivation for collective anomaly detection and non-conforming trace clustering
is the gained efficiency when undesired deviations occur. Instead of fixing individual and
critical anomalies, a solution for a complete deviation class can be developed. After this
potentially challenging step is completed, succeeding anomalies with the same character-
istics are repaired without additional resources besides the actual treatment. Anomaly
clustering also highlights the extends of anomalies. Especially in dynamic applications
with changing environments and conditions, there are not enough resources to deal with
all anomalies. However, if we cluster anomalies by identifying their characteristic patterns,
we can prioritize them according to severity and likelihood. In critical situations, risk
management relies on those insights to perform a thorough triage.

Regarding the accuracy, in collective anomaly detection, we should be careful with
traditional classification accuracy. There is typically a strong focus on F1-scores in the
literature. We should keep in mind that this score balances precision and recall to deter-
mine an overall accuracy[64]. Recall specifies the amount of identified anomalies versus
all existing ones. Precision, on the other hand, states how many anomalies are correct in
the result set. As discussed before, we apply collective anomaly detection, especially if
resources are scarce. In such a scenario, identifying all potential anomalies has no priority.
Finding the top-k most severe anomalies is sufficient, and the remaining candidates prob-
ably increased the detection costs while being neglected afterward. Applying detection
algorithms under this premise yields the conclusion that in big data analysis, precision
is more important than recall. This disparity is even more relevant for collective trace
anomalies. Since traces with many activities provide a large degree of freedom for different
deviations, anomaly clusters’ borders tend to be very fuzzy. In [40], this effect is discussed
more in detail. However, the center detection of such anomaly clusters is sufficient and
provides the insights to perform further steps like trace anomaly classification or root-cause
analysis.

1.6 Outline
The remainder of this thesis contains more in-depth discussions and technical proposals.
Beforehand, we will give a summary to assist the reader, hopefully. The chapters contain
multiple works, which are sorted by topic instead of chronological publication order. We
discuss approaches to deal with different kinds of anomalies like conformance checking and
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clustering, emphasizing temporal aspects. In addition to a brief outline, we also give one
research question (RQ) to highlight each approach’s motivating drive.

1.6.1 Anomalous Event Detection
In the next chapter, the considered tasks comprise the online discovery of process models
to derive valid activity relations. These are then observed to detect any abnormal temporal
shift of their executions. An on-demand report of temporal deviations is finally provided
as a Gantt chart with TESSERACT.

In StrProM[24], we collect case sequence data in a prefix tree. Using a case list to
monitor currently active cases and pointing to the prefix tree nodes, we can maintain this
data structure very efficiently. In a regular interval, the collected process data is trans-
formed into intermediate data to apply the Heuristics Miner[67]. The proposed method
works efficiently on an event stream and provides a landmark windowed process model of
sufficient quality for further analysis tasks. Here, we investigate how well we can sample
an event stream to derive process models with suitable fitness and precision (RQ1).

In TESSERACT[42][43], we collect event interim times, which are always possible to ex-
tract. Hence, we do not rely on specific interval event data. TESSERACT uses a modified
Cuckoo Hashing technique to collect the relations online and to adjust statistics like means
and variances. Each relation is observed during the event stream, and an adapting control
scheme tracks deviations. By normalizing each relation using z-scoring, the collected mean
and variance values modify the score to amplify stable relations and dampen noisy ones.
Assuming a Gaussian distribution, a suitable approximation for the vast number of ob-
served events, sudden drifts, and point-wise anomalies trigger an alert when they deviate
by a certain number of standard deviations. We can focus on particular relations by con-
sidering a previous mined process model to show the structural relations, e.g., StrProM.
Tesseract clarifies how quickly we can detect potential event duration anomalies (RQ2),
while the journal extension evaluates how TESSERACT can be applied in remaining time
prediction (RQ3).

1.6.2 Anomalous Trace Detection
Traversing from events to traces, we then introduce the formerly mentioned temporal
deviation signatures[54]. These are then used in combination with density-based clustering
to mine collective anomalies regarding the temporal perspective. Similar to TESSERACT,
we collect pairwise event data and extract relation intervals. Also, we perform the same
z-scoring to gain normalized noise-adjusted temporal data. This collection forms a vector
space, which allows the applications of various techniques and vector distance functions.
Summing up, how can we aggregate the temporal characteristics of a process case (RQ4)?

Regarding TOAD[40], we apply density-based clustering to temporal vector data. Fol-
lowing the same concept of DBSCAN[17], OPTICS[3] provides a spectrum of clusterings
for any vector data. However, we do not aim for clusters since the most significant clus-
ter in this scenario will contain all traces without any major deviation. Instead, TOAD
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provides a visualization to identify the structure of the temporal behavior quickly. We
automatically extract small clusters of traces that are locally dense. Compared to their
broader neighborhood, these traces are perceived as dense since they share a common tem-
poral characteristic. Identifying a group of traces with shared deviations often leads to a
common root-cause. Further root-cause analysis and problem-solving are efficient from an
economic point of view compared to an individual analysis of each trace. TOAD answers
the questions, how to detect deviating trace clusters by density (RQ5).

1.6.3 Quickspotting Cluster Dynamics
In the fourth chapter, we will take a look at preliminary structure detection in online appli-
cations. The tools presented here assist the previous ones by visualizing an approximation
of data cohesion. A process operator receives coarse insights and can perform detailed
analysis steps as a result.

AMTICS[38][39] is an extension to OPTICS. In many scenarios, the first impression
of the data is all we need to decide on further steps. Do we want to start a thorough
investigation, or is more explorative mining sufficient? Which are useful starting values
for parameters? AMTICS returns an approximation of the cluster structure instead of
an accurate result like OPTICS. On the contrary, it is applied to a data stream, and the
observed density levels are adjusted anytime to react to changing conditions or focusing
on specific density regions. This stream analysis approach is not designed in particular
for process data and can process any metric data. In this context, however, we suggest
to apply it in combination with TOAD. AMTICS elaborates on how to visualize density
structure without extensive computation (RQ6) approximatively. The extension shows
how concept drifts are tracked by AMTICS (RQ7).

The next logical step of cluster quickspotting is to observe such structures’ dynamic
lifecycles in a data stream. OTOSO[41] applies density-based clustering to temporal devi-
ation signatures collected from event stream data. Several of the previous techniques are
adapted into one technique here. The found clusters are mined and stored to derive a vi-
sualization of the structures over time. Size, density, and relations over temporal distance
are visualized in one diagram, so a process owner comprehend the online process at first
glance. OTOSO illustrates how structures in processes can be visualized for event streams
(RQ8).

1.6.4 Model-Conformance-based Trace Clustering
In the fifth chapter, we perform trace clustering with unconventional distances to achieve
novel insights. We use conformance scores to align trace clusters first and identifying
collective anomalies of non-conform traces next.

Considering k-means, this very well-known clustering technique is admired in both re-
search communities and industrial users. In process mining, k-means is primarily used to
cluster vectorized case representations containing various cases’ characteristics. k-process
[45] performs, similarily to k-means, an iterative two-step approach but uses techniques
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from the process mining domain. Instead of using arithmetic means as cluster represen-
tatives, process models are mined. The alignment step applies conformance checks to
determine the best fitting models. k-process evaluates whether techniques in the process
mining domain are suitable for clustering by only relying on process-aware representations
(RQ9).

In [47], we also perform clustering. Here, we explicitly focus on non-conforming cases
only. In applications, process owners often discard non-conforming cases as undesired
executions. Instead of neglecting their potential, we aim for small clusters of cases that
have similar deviating behavior. The similarity is measured by using a shortest-path-based
distance function on the process model. The mined collective anomalies of non-conforming
cases provide a starting point for further tasks, which is more efficient than evaluating each
non-conforming case’s issues. The primary motivation here is how a process model can be
utilized as a geodetic distance reference model for collective anomaly detection (RQ10).

1.6.5 Time-based Conformance Matching
In the last chapter, we return to the temporal perspective again by proposing an immediate
temporal conformance checking, suitable to speed up techniques that rely on loops of re-
peated checks. TADE [44] is premised on kernel density estimation and uses this statistical
model to estimate activity occurrence timestamps. Since KDE is a swift technique, both
regarding learning models and prediction, temporal conformance checking becomes com-
putationally very vast. TADE is the right choice for precomputation of non-conforming
cases, so the remaining cases have a larger budget to be evaluated more thoroughly. We
investigated how fast temporal conformance checking can be performed (RQ11).

Finally, we move to the process level and show how to match different processes with
potential different activity labeling. Clustering and anomaly detection tasks can be per-
formed at a very high level. Imagine having a portfolio of different processes, e.g., being
a company owning different sub-companies in different sectors and varying business mod-
els. Acquiring a new asset requires the adjustment of the former process to fit into the
portfolio. A matching of activity labels has to be performed. Besides, the new process’s
labeling originates from different sources, and matching might be impossible by relying
on the activity labels. LiProMA [46] demonstrates how to use the temporal occurrences
of activities for process profiling. These temporal profiles are matched using the Earth
Mover’s Distance, and potential label correlations are yielded. LiProMA evaluates how
well do timestamps characterize processes (RQ12).

1.7 Conclusion
In this thesis, we illustrate the discovery of patterns and structures from the temporal
process perspective. Singleton outliers and collective anomalies are derived in offline and
online settings. Focusing on temporal deviations, we observed some recurring aspects we
want to highlight here as three recommendations.
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Durations have to be treated context-aware in any case. Activities behave very specif-
ically and have different constraints and backgrounds. Hence, the activity durations and
activity relation interim times might differ by several orders of magnitude. E.g., automated
registration tasks require few milliseconds, while shipment tasks can take weeks to com-
plete. We often expect that high average durations imply high variances. There is a strong
perception bias since our intuition fools us by neglecting tiny temporal deviations while
amplifying deviations of large absolute intervals. This differential threshold from a psycho-
logical perspective is explained by Weber’s law[66]. Faulty activities with short durations
can get extended by multiple times and potentially stay unnoticed, which is even a more
severe issue. Long-term activities are observed more carefully. Service level agreements
usually regulate the complete case duration or at least specific milestones. Therefore, these
long-lasting activities have a greater impact on the completion time than short activities.
To counter this bias, one shall apply some type of standardization technique, e.g.,
0-1-normalization or z-scoring. In most cases, the number of events is sufficiently high to
assume an almost Gaussian distributed domain for the timestamps. Due to durations being
strictly positive, one has to be cautious with certain activities. If the average duration is
smaller than the variance, the assumption fails to be a suitable approximation. However,
the activity is also not a reliable deviation indicator then.

The majority of logged events are timestamped automatically. However, many processes
contain manual tasks, and at some point in time, somebody has to push a button. The
human interferences decrease the confidence of predictions by increasing the data variance.
Different operators with daily changing conditions and minor skills in performing tasks
completely reproducible are not expected to result in entirely accurate events that have
durations with low variance. If the variance is the problem for a particular task, and we can
neglect any creativity to perform it, we design robots to perform the job. The challenge is
not to identify the human-in-the-loop as the difficulty factor for any data mining task since
we are usually aware of it beforehand. The actual issue arises if we consider automated
timestamps and regard them as absolutely reliable. Individual design choices introduce
unwanted problems for later mining tasks and resulting in low data quality. Especially
for globally operating process owners, the used information systems should be based on a
mutual time reference model. Logging local time zones and daylight saving times introduces
an unnecessary complexity for the duration analysis. Further, the timestamps require a
suitable accuracy. Suppose the event log is only capable of storing events with a temporal
precision of minutes. In that case, activities below that threshold are impossible to evaluate,
and shorter loops of recurring activities cause unwanted duplicate entries. On the contrary,
being too precise without necessity is also not recommended. Finally, there is often a delay
between performing a task and logging it. There are technical reasons for a mismatch,
e.g., network latencies. Besides technical aspects, design mismatches are often overlooked.
Mismatches occur between different subprocesses or between processes of different but
interacting process owners. In that case, the exact time points need additional clarification.
For instance, an airline customer’s transportation service has been completed when he
claims his baggage at the destination airport. For the airport, the service is technically
finished after the customer leaves the building. If factions regard disparate points in time
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for the same tasks, this matching must be resolved before any analysis can be performed.
To sum this up, we advise to never blindly trust automated timestamps.

As a third observation, we advise to regard any temporal analysis and exciting
insights orthogonal to structural process mining results. Effects might occur in
both or more perspectives simultaneously. Of course, process owners prefer an aggregated
picture of their processes. Combined results based on structural and temporal mining
outcomes are intuitively auspicious and desirable if they yield a higher accuracy, higher
confidence, and more meaningful insights. We still have to factor in that using both per-
spectives returns an ensemble technique. Ensemble data mining is often useful if we rely
on a collection of multiple confident mining techniques. We apply ensembles that differ
in their technical means but share a common output, e.g., determining the conformance
score of a particular process case. Traditional process mining focuses mainly on structural
anomalies. Duplicates, illicit orderings, or otherwise, invalid control flow are likely results.
Using the time perspective for temporal conformance checking, we aim for unusual accel-
erations or delays that indicate a conformance issue. Developing a hybrid conformance
checking approach is delicate, needs a suitable application with the known correlation
between structural and temporal behaviors, and requires a meticulous balancing of all in-
volved perspectives. In the best case, we balance in favor of only one of the perspectives,
which yields a more inefficient hybrid approach than a structural process mining tech-
nique. However, in the worst case, anomalies might alert the applied techniques mutually
exclusive, leading to a vast omission of critical conformance infringements.

1.8 Future Work
The majority of the discussed approaches regard the temporal perspective individually and
independent of other perspectives. In the previous section, we recommended treating min-
ing of temporal results and workflow aspects separately at first. Nevertheless, developing
hybrid approaches is still rewarding and should be investigated under consideration of the
previously mentioned points. Instead of building a two-factor ensemble, discovered struc-
tural information is useful to augment temporal process mining approaches. In most of
the discussed approaches, we consider every relation of two sequential activities occurring
in the process cases. A better solution is based on an initial determination of milestone
activities for performance improvements. By relying on control-flow models, hub activ-
ities as effective centers between subprocesses provide meaningful candidates to establish
the relation set and lead to decreased computation times.

Turning the tables, results from the temporal process mining domain improve structural
discoveries. E.g., a detected temporal concept drift can indicate and finally lead to a
structural change. In this thesis, we show how to detect drifts. The challenge here
is not to blindly predict structural concept drifts but to classify temporal drifts before
announcing false predictions. Not every detected concept drift impacts the workflow, and
not every workflow change can be backtracked to a temporal concept drift. Techniques
for specific concept drift detection are required to throw a bridge between temporal and
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structural perspectives.
Process mining has a strong focus on generalization. Emphasis is put on frequent

process executions. In data mining, a novel research field emerged that considers rare
patterns in sequence and transaction databases[57][29]. Especially in medical applications
and in the security domain, rare patterns are an emerging research topic since detecting
those is very rewarding in terms of life savings and fraud avoidance[26]. Considering
collective anomalies, we slightly touched the surface of this topic. The rare patterns
of processes are infrequent trace sequences with mutual behavior. We investigate the
structural clusterings of non-conforming cases [47], and collective temporal anomalies [40].
By regarding only non-conforming cases, we already introduce a bias based on frequent
behavior into the analysis. Temporal anomaly detection is a method to identify dense
temporal patterns. Thus, it is limited to this perspective. A more in-depth analysis and
research on rare process patterns seem to be rewarding.

Rare and frequent patterns are not confined to complete process cases and end-to-
end process mining. Looking into partial cases, we discover more frequent subsequences
of traces due to the more specific behavior of smaller episodes[32]. Instead of episodes,
we can also pick various dimensions from a case representation and explore structures
regarding a particular selection of features. In data mining, we apply the paradigm known
as subspace clustering. Regarding density-based clustering, there are many approaches like
the grid-based techniques CLIQUE[1] and its adaptive upgrade MAFIA [21]. Interesting
candidate sets are generated using subprocess clustering. These sets yield more distinct
and significant patterns. Especially in temporal anomaly detection, investigating the entire
space of dimensions for activity relations is tedious. Various structures are neglected due to
the curse of dimensionality. E.g., focusing on frequent subspaces, we also include patterns
with correlations between episodes from process starts and ends.

Finally, we evaluate our approaches mainly on datasets with point-wise timestamps.
Considering intervals of activity lifecycle periods instead of relations between two
activities provides additional insights[11]. Previously, we only consider events without
lifecycles. Thus our approaches rely on event completions since this allows more general
evaluations as event logs usually contain at least one timestamp for each event. However, we
lose accuracy due to neglected idle times or other types of delay. A process’s performance is
determined more precisely by taking temporal activity correlations into account, as shown
in [31]. As process mining, while already quite mature, is a still-expanding research field,
more applications provide their data logs, and more interval event logs get available.
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