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Preface

One cannot imagine modern economics without collecting and handling data. For
example, microeconomics works with data collected from individuals, households,
companies. Based on the data collected, one tries to find the best-fitted model among
the already existing ones or develop a new model, that may describe certain aspects
of economics on the micro-level more thoroughly. The theoretical basis of microeco-
nomics includes diverse models, that aim to maximize the profit of a company (see
Varian (1992), p.23), the total utility of the household (see Varian (1992), p.94), or
to find the optimal price that will equalize demand and supply on the certain market
(for competitive markets see Varian (1992), p.215, for monopoly see Varian (1992),
p.233).
The same methodology that connects data and theoretical model works for macroeco-
nomics. But it operates more with aggregate data on the state or country level. This
could be data on Gross Domestic Product, on Gross National Product, on inflation
rate or unemployment rate. But all the parts and branches of economics at some
point of the analysis refer to econometrics to handle the data observed. It provoked
the origin of microeconometrics, macroeconometrics, financial econometrics, spatial
econometrics. Each of the branches of econometrics demands approaches for the
specific assumptions and therefore treatment of the data. For example, the possibility
to work with the heteroscedasticity of the individuals and firms is the most vivid
requirement for the methods that are applied in microeconometrics (see Cameron,
Trivedi (2005), p.5).
Simultaneously, increasing amounts of data collected together with the computeriza-
tion in all life aspects provoked the progress in econometric science. New methods
for the treatment of large multidimensional statistics arose and thus, provided better
evidence, more effective estimations, and more exact forecasts. Given the growing
demand from a range of different branches of economics for the methods that may
efficiently analyze data and a supply from the statistics and econometrics, they
stimulate their mutual progress. And my dissertation contributes to this development,
outlined below.
To begin with, testing statistical hypotheses is one of the ways to verify the estimation
results, the choice of the model, or the significance of the independent variables
included in the model. Starting from the most popular Student’s t-test and Fisher
F -test, a huge variety of testing techniques are available nowadays for different
specifications (see Lehmann and Romano (2005) describing many of the existing
tests).
In this dissertation I aim to development of the joint tests for the parameters of the
multivariate normal distribution. Firstly, an exact test for mean and variance of the
normal distribution, constructed by Mood (1950), p.227, described and investigated
the issue for the univariate case. Univariate approaches were also presented by
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Douglas (1993), Jensen (1995), Arnold & Shavelle (1998), etc. In my master’s thesis,
I have also derived a joint test, called CCR, for the parameters of univariate normal
distribution (see Appendix 1.III). All of these tests were designed to verify whether
two univariate normal distributions (usually one of them is a sample distribution) are
close enough to say that they may be treated as equal. Extending the possibility to
test not only univariate but also multivariate normal distribution and its parameters
is the essential question that has appeared. My dissertation contributes to this subject
in various ways. In particular, Part 1 and Part 3 introduce new approaches to test
the parameters of the bivariate normal distribution with possible extension to the
multivariate case, and Part 2 suggest an implementation of the test to the panel data
models.
Following paragraphs provide a summary of all three Parts. Part 1 presents a CCR
approach for the bivariate normal distributions. Part 2 is the continuation of Part 1
for the further application of the CCR method in panel data models. Part 1 together
with Part 2 are self-contained and may be read independently. Part 3 presents the
other testing technique for parameters of the bivariate normal distribution, based
on the Mood test (Mood (1950), p.227). Part 3 is also self-contained and may be
read independently. Separate bibliographies, appendices, and programming codes
reproducing the algorithms are presented after each Part of the dissertation.
The first Part advances the CCR approach for using with the bivariate samples. It
constructs a measure, that allows checking whether the sample of bivariate random
vectors may originate from a normal distribution with some predefined parameter
values. Such a sample may be obtained as a composition of the data from two
variables. Testing this bivariate sample may describe the connections between two
variables (this connection is expressed in correlation coefficient), as well as the
individual characteristics of the variables (means and variances). A large piece of
the research in this Part is dedicated to 16 different cases of the CCR test measure.
On one hand, it establishes a smooth and unimodal measure. On the other hand,
the analysis of the cases gives a possibility to apply the CCR approach for testing
the distribution parameters both individually and jointly. Furthermore, in Part 1 I
propose a procedure for using the CCR test also for multivariate samples. Then I
analyze the properties of the derived bivariate CCR method concerning the shape
of the confidence set, the ratio of the rejected samples, robustness to samples from
non-normal distribution and samples with outliers. At the end of Part 1, I present an
example of how the CCR procedure may be implemented in Seemingly Unrelated
Regressions (SUR) models.
Second part of my dissertation contributes to the methods that test for serial correla-
tion in panel data models. A variety of such tests was developed in recent decades.
For example, Wooldridge-Drukker test (Wooldridge (2002) and Drukker (2003)), tests
based on the Lagrange Multiplier (Baltagi & Li (1995), Born & Breitung (2016)),
etc. The serial correlation test, developed in this dissertation, is based on the CCR
approach. I describe the testing scheme and compare it to the known testing tech-
niques. An important result that was obtained is the robustness of the test to panels
with heteroscedasticity. Unlike most of the other tests, the CCR-based test proved

2



itself as a method that may work with heteroscedastic panels, which is one of the
attributes of microeconomic data (Cameron, Trivedi (2005), p.5).
Third part of my dissertation advances another path for jointly testing the parameters
of the bivariate normal distribution. This path is based on the idea of Mood (1950),
who proposed a joint test for mean and variance of normal distribution by merging
two individual tests. I appealed to his work and combined two multivariate tests,
Hotelling t2 for the means and Wishart for the covariance matrix. As a result, a
joint mean-variance test for the bivariate normal distribution, named the bivariate
Mood test, was obtained. Additionally, the volume of the confidence set produced by
the bivariate Mood approach was minimized for different values of significance level
and sample size. Furthermore, Part 3 compared the bivariate CCR and Mood test
for the real significance levels, computation speed, shape of the confidence set, and
robustness to samples with outliers and from other distributions (i.e. not from the
normal one). The result of this comparison showed the bivariate Mood approach as a
good alternative to the CCR method, with a not optimal form of the confidence set,
but with a significant advantage in computation speed.
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Part 1 Confidence Regions for Bivariate Normal

Distributions. Approach Based on Cu-

mulative Distribution Function

1.1 Introduction

To study the behavior of a variable and understand how it depends on the other
variables, one usually has to construct a model that reflects real-world connections. It
is a necessity for the cases to start from the simpler ones (e.g. how distance depends
on velocity or how earnings depend on education level) up to more complex models
with nonlinear functional forms and big panel data.
Parameter estimation of the model is the next step that one has to do, either before
or after the model selection. During the estimation process one’s task is not only to
find values that fit the model, but also to construct confidence regions and check the
significance of the estimated values. Both of these tasks may be performed using
different tests. For example t-test and Wald test can check the significance of one or
group of the estimators, while F-test may even help one to select the model.
In this Part I will present an extended test called the Cumulative Distribution
Function Confidence Region (CCR). It may be used in testing and constructing joint
confidence sets for serial correlation, inter-temporal and cross-equation relations. This
makes it an essential instrument for the estimation of models in time-series analysis,
panel econometrics, portfolio analysis, etc. The CCR test works as an alternative to
portmanteau tests. For example, the Box-Pierce test for autocorrelation, introduced
by Box & Pierce (1970) and its improvement introduced by Ljung & Box (1978).
Furthermore, CCR test in this Part is a possible substitute for the LM based Breush-
Godfrey test, introduced by Godfrey (1978) and a range of tests, described by Born
& Breitung (2016).
The CCR test uses a technique that is based on the difference between the probability
densities of two distributions. Firstly, this approach was introduced in my master
thesis, but only for a univariate case. Find a brief description of a univariate CCR
approach in Appendix 1.III. In this Part I will extend the CCR method to the
bivariate case and demonstrate how it may be used on any finite dimensionality of
the sample. A proposed extension of the test is non-parametric and therefore its
generality makes it a good alternative to a multitude of existing tests. The CCR
approach also gives new testing opportunities, demonstrated in this Part.
To introduce hypothesis that CCR technique tests, suppose an independent and
identically distributed (iid) sample of m-dimensional random vectors {Xi}ni=1 =

X1,X2, ...,Xn from multivariate normal distribution with unknown parameters N(·, ·).
Additionally, note that mean is defined as ~µ ∈ Rm and covariance matrix is defined
as Σ ∈ Rm×m. Based on the given sample {Xi}ni=1, the CCR test checks whether
this sample with estimated mean ~µ1 and covariance matrix Σ1 may follow normal
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distribution with the proposed parameters (~µ2,Σ2). Therefore, the Null hypothesis is
formulated as (1.1):

H0 : (~µ1,Σ1) = (~µ2,Σ2) (1.1)

Given the Null hypothesis, defined in statement (1.1), one can also set up a confidence
region R(X) for a pair (~µ,Σ), as a set of all points, that are not rejected by H0 with
a given confidence level (1− γ), where γ is significance level. Formally this means
(1.2):

P ((~µ,Σ)) ∈ R(X)) = 1− γ (1.2)

To be able to perform the CCR test in the form, introduced in (1.1) and (1.2), three
important cases need to be separated. Firstly, the univariate case with m = 1, that is
described in Appendix 1.III. For a given sample of iid random numbers from Normal
distribution, it jointly tests whether sample parameters (mean and variance) may be
equal to some specified values. Implementation of the univariate CCR test resulted
in a confidence set in a form of an ellipse, which coincided with majority of the other
univariate tests. In fact, the CCR test was developed as an alternative for previously
existing univariate tests. For instance, the exact test derived by Mood (1950), p.227
as a conjunction of t-test and χ2-test, and an assortment of tests based on Lagrange
Multiplier (LM), introduced by Arnold & Shavelle (1998). Or, a test that uses
non-Euclidean properties of variance, introduced by Jensen (1995). Additionally Frey,
Marrero, Norton (2009) and Zhang (2017) derived confidence sets with a minimum
possible area.
A comparison of all these tests, with respect to their efficiency, computation speed,
confidence set area (using already mentioned tests designed to minimize this area),
robust properties and distribution misspecification showed CCR as one of the best
options and gave a motivation to expand CCR test for m > 1.
In bivariate case with m = 2, which is the main aim of Part 1, the CCR approach
(1.1) enables us to jointly test two means, two variances and a covariance between
dimensions of the bivariate random sample. These 5 mentioned parameters are
tested with the bivariate CCR method and produce a confidence set in a form of
5-dimensional ellipse. It is a natural extension of univariate confidence set with
the same properties. Such a massive increase in number of variables entangles the
procedure of the bivariate CCR method. Nevertheless, the multi-variability of the
CCR method brings many benefits. Firstly, with m > 1 there are no alternative
ways to test (1.1), except of bivariate Mood approach that will be described in
Part 3. Secondly, by restricting some parameters to be equal to a constant, one
can separately test means, variances or correlation coefficient of the sample. After
developing the CCR method for bivariate case in this Part, I also test it for efficiency,
the difference between real and theoretical significance level γ, robustness and stability
when working with non-normal samples and samples with outliers.
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The third case that I separate comes from the distinct advantage of the CCR method.
There is a possibility to extend it to m-dimensional case with any m > 2, which was
not possible in the alternative approaches, such as Frey, Marrero, Norton (2009) or
Arnold & Shavelle (1998) (they worked only with m = 1). In a situation when m > 2,
the CCR approach allows us to run the test (1.1) by arranging all possible pairs of
variables (totally

(
m
2

)
= m(m−1)

2 pairs) and testing them similarly as in the bivariate
case. Therefore, development of the CCR technique to multivariate case with m > 2

increases the complexity of the calculations with the speed of O(m2). This coincides
with the speed of increase of the number of parameters tested in (1.1) and makes the
CCR test reasonable to use in multivariate cases.
Such a pairwise performing of the CCR test helps to implement the approach and
interpret the results. Besides, in this Part I will exhibit how to apply the CCR
technique in Seemingly Unrelated Regressions (SUR) model, introduced by Zellner
(1962). In SUR models, connections between error terms of different equations is the
essential property on which estimation is based. Pairwise comparison of these error
terms helps to determine the group of independent equations and another group of
dependent ones. Hence, this comparative procedure serves also as a decision-making
tool. It divides all the equations into 2 groups, that may include more subgroups
with the same properties. One of the group may be empty as well. For the first
group one uses an estimation method that assumes independence between equations
to get better results, e.g. ordinary least squares (OLS). For the second group one
should apply a technique that allows dependencies between equations, e.g. feasible
generalized least squares (FGLS), to achieve better estimation results. Depending on
the correlations between error terms, the CCR approach applied in the SUR model
at the end presented a reasonable improvement in estimation results.
The derived CCR method is a general and extensive instrument, which provides an
alternative to already existing tests in standard situations. For instance, the Rao
distance based test, derived by Jensen (1995) or even basic t-tests. Simultaneously it
gives an opportunity to perform tests, construct confidence sets and make decisions
on nonstandard multidimensional problems and on large amounts of data.

1.2 Model Construction

1.2.1 Comparison of Univariate and Bivariate Cases

Before the introduction of the model in this subsection I show why there is a need
for an individual technique that constructs a bivariate confidence region and why
combining two or more univariate confidence regions is inadvisable.
Suppose there is a sample {Xi}ni=1 of two-dimensional iid random vectors. It is possible
to define and construct a separate confidence set for each of the two subsamples
{Xx,i}ni=1 and {Xy,i}ni=1 (here and further indexes x and y stand for the first and
second dimension of the vector). Firstly, merging two confidence sets does not
always give a possible confidence set for both dimensions, as it does not take the
correlation between x and y into account. Secondly, a confidence set for only one of
the dimensions is restricted because other variables are not taken into account. Thus,
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it provides the same confidence set for any value of the variable, that is not included.
Thirdly, merging separate confidence sets together does not take into account the
fractions of significance level for each of the sets. To illustrate my points, I plotted
confidence sets for univariate and bivariate cases on Figure 1.1.

Figure 1.1: Univariate and Bivariate CCR Confidence Sets in 3-D

On Figure 1.1 I plotted univariate and bivariate confidence regions for some arbitrary
sample, defined in R2. The univariate confidence set is for mean and variance
of dimension x, and bivariate is projected on the same parameters plus mean of
dimension y. It can be clearly seen that for different values of µy, the bivariate
method gives different confidence sets for mean and variance of x as a cross-section
of the volumetric figure. Univariate confidence set does not take dimension y into
account, producing the same confidence set for each value of µy. It does not have
any information about relations between variables, and if there is a strong positive or
negative correlation, the univariate technique does not react to this fact. Moreover,
the univariate confidence set distributes the non-rejection points only in (µx, σx)

dimensions. And does not take into account that some points outside of this 2-D
plane are more likely not to be rejected than the points that are already in the
univariate confidence set.
Therefore, development of a more complex bivariate technique is an expedient task
that may capture additional factors that influence the confidence set and p-values of
the test thus producing more effective procedure.

1.2.2 Derivation of the Test Measure W

In this subsection I describe a procedure of constructing measure W , that is used
for performing the CCR test. Additionally, I examine this measure for different
properties and convergence.
I start with an iid sample from normal distribution {Xi}ni=1 ∈ R2. This sample may
be described with its sample mean µ1 and covariance matrix Σ1. The aim of the CCR
technique is to check whether the supposed sample may be considered as a sample
from normal distribution with given parameters N(µ2,Σ2) and with a predefined
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significance level γ. Hence, I can construct two probability density functions (PDFs)
of the bivariate normal distributions, N(µ1,Σ1) and N(µ2,Σ2), for their further
comparison (1.3):

fi(x, y) =
1

2πσx,iσy,i

√
1− ρ2

i

e
− 1

2(1−ρ2
i
)

(
(xi−µx,i)

2

σ2
x,i

+
(yi−µy,i)

2

σ2
y,i

−
2ρi(xi−µx,i)(yi−µy,i)

σx,iσy,i

)

i = 1, 2

(1.3)

Plotting two PDFs from equation (1.3) in Figure 1.2 illustrates how they may intersect,
defining two regions where f1(x, y) has a higher likelihood and similarly where f2(x, y)

has a higher likelihood. The larger likelihood difference at each point ergo the smaller
probability for the sample to be drawn from the proposed distribution N(µ2,Σ2).

Figure 1.2: Intersection of Two PDFs of Bivariate Normal Distribution

Figure 1.2 gives the idea of how a measure W between two distributions may be
constructed. Divide the plain with a large number of vertical and horizontal lines.
Take some small rectangular region (M xi,M yj) from the domain of PDFs and
calculate the difference between probabilities of getting into this rectangle. For a
small enough region one can calculate this probability as the likelihood at one of the
points (xi, yj) of the rectangle multiplied by the area of the rectangle M xi∗ M yj . In
the next step, avoid negative values by defining W as the sum of absolute differences
of probabilities to get into each of the formed rectangles of the domain ((x, y) ∈ R2

for normal distribution). Equation (1.4) designates measure W and transforms it
from a function of probabilities to a function of PDFs using the definition of the
integral sums:
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W =
∞∑

i=−∞

∞∑
j=−∞

|P1ij − P2ij | =

∞∑
i=−∞

∞∑
j=−∞

|f1(xi, yj) M xi M yj − f2(xi, yj) M xi M yj |
Mxi,Myj>0 ∀i,j

=

∞∑
i=−∞

∞∑
j=−∞

|(f1(xi)− f2(xi))| M xi M yj
Mxi,Myj→0
−→∫ ∞

−∞

∫ ∞
−∞
|f1(x, y)− f2(x, y)|dxdy

(1.4)

For the next step remember, that the whole domain may be divided into 2 subsets,
depending on which of the PDFs is higher. Denote one of the regions by A, then
the second one is R2\A. Note that for symmetry reasons I do not define which of
the PDFs should have higher likelihood in the set A, but use absolute values instead.
Points, where f1(x, y) = f2(x, y), i.e. intersection of PDFs, either define a 2-D curve,
therefore have zero area, or cover the whole plane and give a degenerate case, when
two PDFs coincide. Using the region A and normalization property of PDF, simpler
formula for measuring W is obtained in equation (1.5):

W =

∫ ∞
−∞

∫ ∞
−∞
|f1(x, y)− f2(x, y)|dxdy =∣∣∣∣∣∣

∫∫
A

(f1(x, y)− f2(x, y))dxdy

∣∣∣∣∣∣+

∣∣∣∣∣∣∣
∫∫
R2\A

(f2(x, y)− f1(x, y))dxdy

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫∫
A

(f1(x, y)− f2(x, y))dxdy

∣∣∣∣∣∣+

∣∣∣∣∣∣
∫∫
A

((1− f2(x, y))− (1− f1(x, y)))dxdy

∣∣∣∣∣∣ =

2

∣∣∣∣∣∣
∫∫
A

(f1(x, y)− f2(x, y))dxdy

∣∣∣∣∣∣

(1.5)

From equation (1.5) I conclude that because of the normalization property, it does
not matter which of the PDFs is higher on the set A and one may integrate either
trough A or R2\A sets.

1.2.3 Properties of the Measure W

To be a measure for testing a hypothesis (1.1), W should observe certain properties.
Firstly, it describes distance in a non-Euclidean space. Following statement (1.6),
increasing the covariance matrix decreases the ’distance’ between two distributions,
assuming that the means stay unchanged. Because the variance-covariance matrix
describes the level of dispersion of the variable around the mean, increasing of the
dispersion level brings more likelihood to the points further from the mean and vice
versa. In degenerate case influence of means on W is removed and zero variance
produces the upper bound of measure W , while infinite variance provides W = 0.
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∀µ1, µ2, ∀||Σ̃|| > ||Σ|| :

W (N(µ1, Σ̃), N(µ2, Σ̃)) < W (N(µ1,Σ), N(µ2,Σ))
(1.6)

Secondly, W is a unimodal function of its parameters µ1, Σ1, µ2 and Σ2 with a
minimumW = 0 achieved at (µ1,Σ1) = (µ2,Σ2). This statement is clear for a general
case, because W becomes zero only when two PDFs overlap. However, restricting
some of the variables does not change the unimodality of W . This fact will be
presented in latter sections of Part 1.
Thirdly, measure W is symmetrical in means. Since normal distribution is also
symmetrical, changing the places of means of two distributions does not change their
intersection curve, therefore keeps measure W the same.
The next point is the boundedness of measure W . To show the possible bounds from
below and above, use the normalization property of PDF (1.7):

∫∫
A

f1(x, y)dxdy ∈ [0, 1] (1.7)

In equation (1.8) I use a term from (1.7) to derive the bounds of expression inside
the modulus in (1.5):

∫∫
A

(f1(x, y)− f2(x, y))dxdy =

∫∫
A

f1(x, y)dxdy −
∫∫
A

f2(x, y)dxdy

 ∈ [−1, 1]

(1.8)

Therefore, W is bounded with lower and upper bounds that are defined in (1.9).
In practice both of the bounds are unachievable because, as mentioned in the first
property of W , only degenerate cases with infinite and zero variances brings to the
lower and upper bounds respectively.

W = 2

∣∣∣∣∣∣
∫∫
A

(f1(x, y)− f2(x, y))dxdy

∣∣∣∣∣∣ ∈ [0, 2] (1.9)

Note that bounds defined for W in (1.9) also work as the bounds for critical values
(critical values will be derived in the latter sections of Part 1).
As a final point of this subsection I discuss the convergence properties of measureW for
sample size n and significance level γ. Following the Central Limit Theorem increased
number of observations n decrease the variance of sample mean µ1. Meaning that by
increasing n sample parameters will get closer to its theoretical values. Thus, measure
W , as well as critical values, monotonically decrease with n ↑. As a result, according
to the monotone convergence theorem bounded and monotonically decreasing measure
W converges to zero for n→∞. The same conclusion follows for critical values, that
converge to zero by increasing sample size n.
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A monotone decrease of measureW and critical values with the increase of significance
level γ follows directly from a sequence of nested confidence regions defined by measure
W . As significance level increase provokes the decrease of confidence region, each next
confidence region lies fully inside the old confidence region. As a result, confidence
regions are nested inside each other and with the significance level increase they
converge to the only common point. Therefore measureW and critical values converge
to zero with the increase of significance level γ.
To conclude this subsection, convergence and unimodality properties described here
allow us to use measureW as an instrument for testing joint mean-variance hypothesis
(1.1) and construct appropriate confidence regions.

1.2.4 Intersection of PDFs

The region of integration A for measuring W was previously defined as the set of
all points where one of the PDFs has a higher likelihood. Hence, the bounds of this
region may be obtained by equating two PDFs of bivariate normal distribution, given
in equation (1.10):

f1(x, y) = f2(x, y) (1.10)

Plugging in PDFs from (1.3) and rearranging similar terms provides a second order
curve in equation (1.11):

x2

(
1

2(1− ρ2
1)σ2

x1

− 1

2(1− ρ2
2)σ2

x2

)
+ y2

(
1

2(1− ρ2
1)σ2

y1

− 1

2(1− ρ2
2)σ2

y2

)
+

2xy

(
ρ2

2(1− ρ2
2)σx2σy2

− ρ1

2(1− ρ2
2)σx1σy1

)
+

2x

(
µx2

2(1− ρ2
2)σ2

x2

− ρ2µy2

2(1− ρ2
2)σx2σy2

− µx1

2(1− ρ2
1)σ2

x1

+
ρ1µy1

2(1− ρ2
1)σx1σy1

)
+

2y

(
µy2

2(1− ρ2
2)σ2

y2

− ρ2µx2

2(1− ρ2
2)σx2σy2

− µy1

2(1− ρ2
1)σ2

y1

+
ρ1µx1

2(1− ρ2
1)σx1σy1

)
+(

µ2
x1

2(1− ρ2
1)σ2

x1

+
µ2
y1

2(1− ρ2
1)σ2

y1

− ρ1µx1µy1

(1− ρ2
1)σx1σy1

− µ2
x2

2(1− ρ2
2)σ2

x2

−

µ2
y2

2(1− ρ2
2)σ2

y2

+
ρ2µx2µy2

(1− ρ2
2)σx2σy2

)
= log

(
σx2σy2

√
1− ρ2

2

σx1σy1

√
1− ρ2

1

)

(1.11)

Denote the second order curve from equation (1.11) as Ω for further use. However,
analysis and implementation of such a massive function is complicated. Thus, in the
next subsection I propose a procedure to simplify Ω by getting rid of correlations.

1.2.5 Transformation Procedure

Earlier I derived the intersection Ω of two PDFs from (1.3) and demonstrated that
this is a second-order curve. To simplify and decrease the number of different possible
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curve shapes as a result of intersection, I use linear transformation to switch to
another coordinate system. This transformation may affect distances and volumes,
but keep invariant the ratios between them. Additionally, I impose restrictions on
the Cartesian coordinates after the transformation:

• correlations ρ1 and ρ2 between pairs of random variables x1 and y1/ x2 and y2

respectively should be zeros

• normal distribution N(µ2,Σ2) should be standardized, i.e. µx2 = µy2 = 0 and
σx2 = σy2

In other words, I construct such a coordinate system that comparable distribution
N(µ2,Σ2) becomes standard normal for any hypothesis (1.1). Therefore, the measure
between two distributions W converts into W̃ - distance between the distribution
transformed from N(µ1,Σ1) and standard normal distribution. As far as linear
transformations will not affect ratios between volumes and distances, measure W̃ will
be just a scaled measure W with the same properties.
In the next step I present the transformation process of a new coordinate system.
Transformation coefficients are obtained by solving the next nonlinear system of
equations (1.12) for v11, v12, v21 and v22:



∑2
i=1

∑2
j=1 v1iv2jΣ1(i, j) = 0;∑2

i=1

∑2
j=1 v1iv2jΣ2(i, j) = 0;∑2

i=1

∑2
j=1 v1iv1jΣ2(i, j) = 1;∑2

i=1

∑2
j=1 v2iv2jΣ2(i, j) = 1

(1.12)

Where Σ1(i, j) and Σ2(i, j) are just the elements of covariance matrices. This type of
referring is used to simplify the notation of system (1.12). For example, Σ1(1, 1) = σ2

x1,
Σ2(1, 2) = ρ2σx2σy2.
The structure of system (1.12) is next. The first and second equations of the system
verify that correlations of transformed distributions will be zeros. The third and fourth
part are optional and help to avoid underidentification of the system by equating
variances of the comparable distribution N(µ2,Σ2) to 1.
Solution of system (1.12) may be obtained numerically using nonlinear solvers (e.g.
fsolve in MatLab). One can also use exact solution of this system:

• if σ2
y1ρ2σx2σy2 − ρ1σx1σy1σ

2
y2 6= 0

– define

D = (σ2
y1σ

2
x2 − σ2

x1σ
2
y2)2 − 4(ρ2σ

2
y1σx2σy2 − ρ1σx1σy1σ

2
y2)∗

(ρ1σx1σy1σ
2
x2ρ2σ

2
x1σx2σy2)

E =
σ2
x1σ

2
y2 − σ2

y1σ
2
x2 +

√
D

2(ρ2σ2
y1σx2σy2 − ρ1σx1σy1σ2

y2)

F =
2(ρ2σ

2
y1σx2σy2 − ρ1σx1σy1σ

2
y2)

σ2
x1σ

2
y2 − σ2

y1σ
2
x2 −

√
D

(1.13)
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– calculate the solution

v11 = 1√
σ2
x2+2Eρ2σx2σy2+E2σ2

y2

;

v12 = E√
σ2
x2+2Eρ2σx2σy2+E2σ2

y2

;

v21 = 1√
σ2
x2+2Fρ2σx2σy2+F 2σ2

y2

;

v22 = F√
σ2
x2+2Fρ2σx2σy2+F 2σ2

y2

;

(1.14)

• if σ2
y1ρ2σx2σy2 − ρ1σx1σy1σ

2
y2 = 0

– define

G = −σ
2
x1 + ρ1σx1σy1

σ2
y1 + ρ1σx1σy1

(1.15)

– calculate the solution

v11 = 1√
σ2
x2+2ρ2σx2σy2+σ2

y2

v12 = 1√
σ2
x2+2ρ2σx2σy2+σ2

y2

v21 = 1√
σ2
x2+2Gρ2σx2σy2+G2σ2

y2

v22 = G√
σ2
x2+2Gρ2σx2σy2+G2σ2

y2

(1.16)

Computed coefficients vij are the elements of linear transformation matrix V , which
defines new random variables in (1.17)-(1.18):

(
x̃

ỹ

)
= V

(
x1

y1

)
− V

(
µx2

µy2

)
∼ N

((
µx̃
µỹ

)
,

(
σ2
x̃ 0

0 σ2
ỹ

))
(1.17)

V

(
x2

y2

)
− V

(
µx2

µy2

)
∼ N

((
0

0

)
,

(
1 0

0 1

))
(1.18)

After the process of transformation, hypothesis (1.1) is reduced to (1.19), i.e. one
needs to compute the measure W̃ for comparison of converted sample {X̃i}ni=1 with
bivariate standard normal distribution, depending on 4 parameters: µx̃, µỹ, σ2

x̃, σ
2
ỹ .

H̃0 : (
−→̃
µ , Σ̃) = (

−→
0 , I) (1.19)

In the next stage intersection curve Ω̃ of two PDFs from hypothesis (1.19) is derived in
new coordinates. One plugs in zero correlations ρ1, ρ2 and unite standard deviations
of the comparable distribution σx2 and σy2 into the general formula of intersection
curve Ω (1.11). New intersection Ω̃ is defined in equation (1.20). It is a simplified
(comparing to Ω) second order curve with respect to (x̃, ỹ):
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(x̃− µx̃)2

2σ2
x̃

− x̃2

2
+

(ỹ − µỹ)2

2σ2
ỹ

− ỹ2

2
= log

(
1

σx̃σỹ

)
(1.20)

1.2.6 Calculation of Measure W̃

To compute after-transformation measure W̃ , all possible shapes of interception curve
Ω̃ are to be considered in Figure 1.3. The cases depend on the values of parameters
µx̃, µỹ, σx̃ and σỹ after the transformation. Degenerate case stands for the situation
of the same distributions with zero ’distance’ W between them.
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Figure 1.3: Extensive Tree for Cases of Intersection of PDFs that Define Measure W̃
for the CCR Approach

Next I go through all the 15 pure cases and provide form of curve Ω̃ that forms
an integration region for W̃ . The measure obtained from each of the cases is also
described and simplified where it is possible.

(1) Case 1 arises when only σỹ deviates from pattern (standard normal distribution).
Curve Ω̃ is given by equation (1.21):

ỹ1,2 = ± σỹ√
|1− σ2

ỹ |
log(σ2

ỹ) (1.21)

In this case the curve simplifies to two horizontal lines and produces a measure
(1.22):
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W̃ = 2|Fỹ(y1)− Fỹ(y2)− Φ(y1) + Φ(y2)| (1.22)

Where Fỹ(·) represents marginal cumulative distribution function (CDF) of ỹ
and Φ(·) represents CDF of standard normal distribution.

(2) Case 2 occurs when only µỹ differs from the mean of standard normal dis-
tribution. Then produced intersection curve Ω̃ is a horizontal line given by
(1.23):

y∗ =
µỹ
2

(1.23)

And derived measure in (1.24):

W̃ = 2|Fỹ(y∗)− Φ(y∗)| (1.24)

(3) The third case presents the situation where both mean and variance of second
variable ỹ deviate from standard normal. Then intersection Ω̃ is described by
two horizontal lines (1.25):

y1,2 =
µỹ

1− σ2
ỹ

± σỹ

√√√√( µỹ
1− σ2

ỹ

)2

−
log(σ2

ỹ)

1− σ2
ỹ

(1.25)

Thus, measure is given as (1.26):

W̃ = 2|Fỹ(y1)− Fỹ(y2)− Φ(y1) + Φ(y2)| (1.26)

(4) The fourth case illustrates the situation when only variance of x̃ differs from
1. Due to symmetry, this case is similar to the first one with Ω̃ simplified to 2
vertical lines in equation (1.27):

x̃1,2 = ± σx̃√
|1− σ2

x̃|
log(σ2

x̃) (1.27)

Measure W̃ is also the same, just with marginal CDF of x̃ instead of ỹ (1.28):

W̃ = 2|Fx̃(x1)− Fx̃(x2)− Φ(x1) + Φ(x2)| (1.28)
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(5) The fifth case is produced by both variances of x̃ and ỹ been different from 1.
Then PDFs’ intercept Ω̃ is an ellipse (1.29):

x̃2

a2
+
ỹ2

b2
= 1, with

a
2 =

σ2
x̃ log(σ2

x̃σ
2
ỹ)

σ2
x̃−1

b2 =
σ2
ỹ log(σ2

x̃σ
2
ỹ)

σ2
ỹ−1

(1.29)

And measure W̃ is a double integral (1.9) over the area A bounded by this
ellipse.

(6) Case number 6 describes the situation when the mean of one variable ỹ and
variance of the other variable x̃ deviate from standard normal. This gives an
intersect Ω̃ that takes the form of a parabola (1.30):

ỹ = ax̃2 + b, with

a =
1−σ2

x̃

2σ2
x̃µỹ

b = 1
2µỹ + log(σx̃)

µỹ

(1.30)

Further, measure W̃ is defined as a double integral (1.9) over the region A
bounded by a parabola. As stated previously, it does not matter whether
integrate over the area inside or outside the parabola.

(7) The seventh case sets up a situation when only the mean of variable x̃ coin-
cides with 0, which is the mean of standard normal distribution. Generated
intersection Ω̃ is showed in equation (1.31):

x̃2

c/a
+

(
y − µỹ

1−σ2
ỹ

)2
c/b

= 1, with


a = (1− σ2

x̃)/σ2
x̃

b = (1− σ2
ỹ)

2/σ2
ỹ

c = µ2
ỹ/(1− σ2

ỹ)− log(σ2
x̃σ

2
ỹ)

(1.31)

The shape of Ω̃, defined in equation (1.31), is an ellipse, if both variances are
simultaneously larger or smaller than 1. Otherwise, it takes a form of hyperbola.
This allows us to calculate measure W̃ using formula (1.9).

(8) In the eighth case the intersection curve behaves similarly to case (2), producing
a vertical line (1.32):

x∗ =
µx̃
2

(1.32)

And measure W̃ is also obtained as the absolute difference of two CDFs (1.33):
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W̃ = 2|Fx̃(x∗)− Φ(x∗)| (1.33)

(9) This case describes the behavior of intersection when mean of variable x̃ differs
from 0 and variance of ỹ differs from 1. Hence, the form of Ω̃ is a parabola,
defined in equation (1.34). The parabola is similar to the case (6), but rotated
around x̃ = ỹ line:

x̃ = aỹ2 + b, with

a =
1−σ2

ỹ

2σ2
ỹµx̃

b = 1
2µx̃ +

log(σỹ)
µx̃

(1.34)

Measure W̃ is calculated by integration over the area A bounded by this parabola
(1.9).

(10) The tenth case covers the situation with standard variances, but deviating means
for both of the variables and gives the line intersect, presented in equation
(1.35):

ỹ = ax̃+ b, with

a = −µx̃
µỹ

b =
µ2x̃
2µỹ

+ 1
2µỹ

(1.35)

Integrating in the equation (1.9) over one of the half-planes bounded by (1.35)
results in the desired measure W̃ .

(11) The eleventh case sets up a situation, when only the variance of x̃ equals 1,
while all the other parameters deviate from the standard normal distribution.
This gives an intersection Ω̃ in form of a parabola along x-axis (1.36):

x̃ = k(ỹ − a)2 + b, with


k = (1− σ2

ỹ)/(2σ
2
ỹµx̃)

a = µỹ/(1− σ2
ỹ)

b = µ2
ỹ/(2µx̃(σ2

ỹ − 1)) + 1
2µx̃ + log(σỹ)/µx̃

(1.36)

Measure W̃ is obtained by double integration, as defined in equation (1.9).
Region of integration A is bounded by given parabola (1.36).

(12) In case 12, restrictions are similar to those already described in case (3), but now
variable ỹ has a standard mean of 0 and a variance of 1. The second variable x̃
differs in both mean and variance from the comparable one in hypothesis (1.19).
This provides an intersection Ω̃ of the PDFs along two vertical lines (1.37):
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x̃1,2 =
µx̃

1− σ2
x̃

± σx̃

√(
µx̃

1− σ2
x̃

)2

−
log(σ2

x̃)

1− σ2
x̃

(1.37)

And W̃ is simplified to equation (1.38), using CDFs of the normal distribution:

W̃ = 2|Fx̃(x1)− Fx̃(x2)− Φ(x1) + Φ(x2)| (1.38)

(13) This case describes the situation when only the mean of variable ỹ coincides with
the right-hand side of the transformed hypothesis (1.19), making the picture
similar to the already described case (7) but 90 degrees rotated clockwise.
Obtained intersection Ω̃ is presented in equation (1.39):

(
x− µx̃

1−σ2
x̃

)2
c/a

+
ỹ2

c/b
= 1, with


a = (1− σ2

x̃)/σ2
x̃

b = (1− σ2
ỹ)

2/σ2
ỹ

c = µ2
x̃/(1− σ2

x̃)− log(σ2
x̃σ

2
ỹ)

(1.39)

The intersect may take elliptical form, if both σx̃ and σỹ are simultaneously
larger or smaller than 1, otherwise it is a hyperbola. And the measure W̃ is
calculated over the bounds, defined in (1.39).

(14) The fourteenth case inherits the properties of case (11), while only the variance of
variable ỹ coincides with standard normal distribution. Therefore, intersection
curve Ω̃ is the same parabola, but rotated counterclockwise to be along the
y-axis (1.40):

ỹ = k(x̃− a)2 + b, with


k = (1− σ2

x̃)/(2σ2
x̃µỹ)

a = µx̃/(1− σ2
x̃)

b = µ2
x̃/(2µỹ(σ

2
x̃ − 1)) + 1

2µỹ + log(σx̃)/µỹ

(1.40)

And measure W̃ is a double integral (1.9) over the area A bounded by the
parabola (1.40).

(15) The last case describes the situation when all the parameters differ from
the right-hand side of hypothesis (1.19). This gives the intersection curve Ω̃

presented in equation (1.20), with nothing to be reduced. To clearly see the
form of the curve, I rewrite it as equation (1.41):
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(x̃− a)2

b2
+

(ỹ − c)2

d2
= 1, with



a = µx̃
1−σ2

x̃

b2 =
σ2
x̃

1−σ2
x̃

(
µ2x̃

1−σ2
x̃

+
µ2ỹ

1−σ2
ỹ
− log(σ2

x̃σ
2
ỹ)

)
c =

µỹ
1−σ2

ỹ

d2 =
σ2
ỹ

1−σ2
ỹ

(
µ2x̃

1−σ2
x̃

+
µ2ỹ

1−σ2
ỹ
− log(σ2

x̃σ
2
ỹ)

)
(1.41)

Analysis of the curve Ω̃, defined in (1.41), showed that when both variances of x̃
and ỹ are smaller or larger than 1 at the same time, then the intersection is an
ellipse. Otherwise it takes the shape of a hyperbola. Measure W̃ as previously
is obtained by integrating over the region A, bounded by Ω̃ (1.9).

Described algorithm of obtaining W̃ may be used for the realization in software,
like MatLab, Python, etc. To optimize and clarify the computations, one should
additionally consider the area around the means. 3-σ rule may not give a sufficient
precision thus, I used 5-σ rule, which can guarantee a precision up to the 7th sign.
Then one should integrate only through the common area bounded by Ω̃ and 5-σ
region, and the remaining area may be negotiated. If the curve Ω̃ does not intersect
with the 5-σ region, then the compared distributions are too far away from each other
and hypothesis (1.19) may be rejected with p-value of less than 0.00001%.
Furthermore, all 15 cases, presented above not only simplify the calculations of test
measure W̃ , but also are useful in the simpler hypotheses, when one wants to compare
only some of the parameters. For example, case (8) compares only the means of
variable x̃ and may be used as an alternative to the t-test. Equivalently, case (1)
compares the variances of ỹ. Thus, one may apply it instead of the χ2-test.
Moreover, studies of W̃ showed that differentiation into the cases does not bring any
brakes to it, keeping W̃ a smooth function. This will be demonstrated in the next
subsections.

1.2.7 Critical Values

After the analysis of the possible cases that measure W̃ can follow, critical values
should be calculated. They will be used for decision making on hypothesis (1.19), as
well as construction of confidence sets. To find the critical values, I generated a range
of samples from normal distribution and calculated their measure W̃ in comparison
to the distribution from which these samples were generated. 10 million repetitions
were computed for each of the sample sizes n from 10 to 50000, producing altogether
120 million repetitions. Then the calculated measures were sorted in descending order
so that each ith quantile defines critical value for i% significance level. With a step
of 0.5% this procedure was performed to cover all the possible significance levels γ.
Table 1.1 presents an extract from the empirically obtained critical values for different
n and γ. The complete table comprises 2388 knots, for which the critical value was
computed. See Appendix 1.I for the full table.
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Table 1.1: Empirical Critical Values for the CCR Approach for Different Sample Sizes
n and Significance Levels γ

HH
HHHHn

γ 0.2 0.1 0.05 0.025 0.01 0.005

10 0.6619 0.7640 0.8536 0.9349 1.0315 1.0980
25 0.3942 0.4494 0.4983 0.5428 0.5973 0.6357
50 0.2739 0.3106 0.3426 0.3721 0.4077 0.4330
100 0.1922 0.2176 0.2396 0.2593 0.2833 0.3002
250 0.1209 0.1366 0.1502 0.1624 0.1772 0.1873
500 0.0854 0.0965 0.1061 0.1146 0.1249 0.1321
1000 0.0603 0.0681 0.0748 0.0808 0.0880 0.0930
2000 0.0426 0.0480 0.0525 0.0566 0.0623 0.0650
5000 0.0270 0.0306 0.0335 0.0363 0.0398 0.0419
10000 0.0191 0.0215 0.0236 0.0256 0.0278 0.0291
20000 0.0135 0.0151 0.0167 0.0181 0.0200 0.0210
50000 0.0085 0.0096 0.0106 0.0114 0.0124 0.0130

The effect of sample size and significance level on the measure W̃ , mentioned earlier
in the properties of W̃ , is clearly established in Table 1.1. Firstly, increasing n

decreases dispersion of the sample around the mean thus, also decreases critical values.
Secondly, decrease of the significance level γ has a positive effect on the confidence
level 1− γ, hence allowing more points to get into the confidence set and increasing
the critical value.
After the table of critical values was obtained, another question arises; what if one
demands a critical value that is not listed in the table? Exploring data may bring to
the case when the sample size is in between of two points, or a specific significance
level is requested. One may also need to obtain an exact p-value. Therefore, to use
CCR on the real data, one needs a continuous function that provides the critical value
for each possible point. As mentioned in properties of measure W , critical values
have an inverse relationship with sample size n, as well as with significance level γ.
Other dependencies may not be excluded at this point. Before the construction of
functional form, I plotted critical values for different significance levels γ and sample
sizes n. Investigation of critical values in Figure 1.4 provided the points for fixed
sample size n = 10, that showed a clear non-linear trend. The same shape of an
exponential function is observed for all n. Thus, for each fixed sample size it makes
sense to assume a form of a priori function as log(z) = f(log(γ)), with a critical value
denoted by z.
Next is the dependence of z on sample size n. Exploring critical values as a function
of sample size is presented in Figure 1.5. Different significance levels are marked on
the graphs. The shapes of figures in the upper row also look similar to an exponential
function. Therefore, in the lower row I plotted the same points, using logarithmic
scale for both critical values and sample sizes. The obtained result shows a clear
linear dependence after the logarithm was embedded. Thus, a priori function form
for fixed significance level is log(z) = f(log(n)).
Combining both of the prior functions into log(z) = f(log(n), log(γ)) gives a good
starting point in the estimation of the functional form, that fits the critical value
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Figure 1.4: Critical Value Points Estimated from the CCR Approach in Comparison
with a Function of Significance γ for Fixed n = 10

points the best. I explored different linear, logarithmic and exponential functions of
n and γ and ended up with 14 of them. All their combinations, totally 214 = 16384,
were monitored and estimated with OLS using 2388 knots from the extended table of
critical values (see Appendix 1.I). The obtained estimation results were compared for
the goodness of fit, using residual sum of squares (RSS), coefficients of determination
R2 and adjusted R2. I have extracted the best combinations for each number of
estimators from 1 to 14 and collected them in Table 1.2.

Table 1.2: Estimated Parameters for Functional Forms that are Potentially a Part of
the Function of Critical Values for the CCR Approach

N Const. log(γ) log(n) γ log(γ) γ n n log(γ) γ log(n) n log(n) γ2 log2(γ) n2 log2(n) eγ e−γ RSS R2

1 0.43 -0.51 170.58 0.83
2 1.63 -0.51 -1.90 7.56 0.9927
3 0.49 0.23 -0.51 0.51 1.36 0.9987
4 -0.26 0.26 -0.51 -0.98 0.83 1.07 0.9994
5 -17.13 -0.51 -10.17 -0.02 9.41 7.63 0.60 0.9994
6 -17.01 -0.57 -10.17 -0.02 0.01 9.41 7.63 0.38 0.9996
7 -83.42 0.24 -0.57 33.39 -38.63 0.01 25.08 58.99 0.31 0.9997
8 -83.45 0.24 -0.56 33.46 -0.01 -38.63 0.01 25.08 58.99 0.25 0.9998
9 -183.96 -0.56 -4.37 90.62 -0.01 -74.32 -0.01 0.01 43.14 140.44 0.21 0.9998
10 -183.90 -0.60 -4.37 90.62 0.00 -0.01 -74.32 -0.01 0.01 43.14 140.44 0.19 0.9998
11 -296.82 -1.63 -0.60 -14.64 159.03 0.00 -0.01 -107.49 -0.16 0.01 59.27 232.44 0.17 0.9998
12 -296.84 -1.63 -0.60 -14.64 159.07 0.00 0.00 -0.02 -107.49 -0.16 0.01 59.27 232.44 0.16 0.9999
13 -296.77 -1.63 -0.65 -14.64 159.07 0.00 0.00 -0.02 0.00 -107.49 -0.16 0.02 59.27 232.44 0.15 0.9999
14 -296.68 -1.63 -0.71 -14.64 159.07 -0.01 0.00 -0.02 0.00 -107.49 -0.16 0.00 0.04 59.27 232.44 0.15 0.9999

Table 1.2 demonstrates combinations of functions that were used. Other composite
functions that were also considered in the estimation are not displayed as they showed
worse performance comparing to the displayed models with the best fit.
The first thing to mention in Table 1.2 is significance of all parameters at the 1% level.
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Figure 1.5: Critical Values Estimated from the CCR Approach in Comparison with a
Function of Sample Size n in the Upper Graphs and Log of Sample Size log(n) in the
Below Graphs for Different Values of γ

Even small estimated values, for example for n and n log(n) (columns 7-8 of Table
1.2) are still highly significant. These coefficients are small, but not to be neglected,
because of different scales of the variables. For example, n goes up to 50000, while γ
is between 0 and 1. Since the best combination with respect to RSS and R2 is chosen
in each case, combinations with worse R2 are just skipped.
Secondly, even with two regressors one can already achieve R2 = 99% but residuals
are still too large, according to RSS (row 2 of Table 1.2). Therefore, it is logical to
include more regressors that take into account not only the variance from the sample
size and significance level, but also variance that comes from their interaction, as
γ log(n) and n log(γ) (columns 8-9 of Table 1.2).
Thirdly, if the regressor is included in the best fitted model, it does not mean that
it will still be included in more complex model with larger number of parameters.
For example, regressor γ (row 6 of Table 1.2) is included in the best model with 4
regressors, but not with 5 and neither with 6. Combinations with γ2 and log2(γ)

produce better goodness of fit for 5 and 6 regressors, as together they may take
care of the larger part of the variance than only γ. Starting from the model with 7
regressors, γ is back in the best fitted model.
Finally, including all regressors in case 14 gives the best R2 and smallest RSS.
However, does it make the model 14 the best choice? I used the F-test for comparison
of restricted and full model and analyzed the results to choose the overall best model.
The essential assumption for this test is nested structure, meaning that one model
(restricted) contains only the subset of terms of the other model (full). Unless some
of the pairwise comparisons do not work, as the models refuse nested structure, they
can still be compared. The procedure starts from the bottom full model with all the
regressors included. It can obviously be compared with all the previous models, as
they contain only the same variables as in the full model. Then the hypothesis for
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each pair of models can be formulated as H0: restricted model is preferable to the
full model. Therefore, non-rejection of H0 means that the full model does not bring
any significant improvement to estimation performance. And if H0 is rejected by the
F-test for each of the 13 restricted models, then the full model is the best choice for
estimation of functional form. Otherwise, I make one step up and consider second
to last model as full and so on, till I find the model which will be preferred to all
restricted models. The results of analysis with the F-test is presented in Table 1.3.

Table 1.3: F-Test Statistics for Comparison of Potential Critical Value Functions for
the CCR Approach

HHH
HHHN
N 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 0 30006 86450 73249 98476 124583 128464 133185 137580 140869 138092 135615 129835 121173
2 0 0 6332 4204 5375 6568 6565 6663 6777 6856 6651 6477 6155 5706
3 0 0 0 374.6 882.3 1197 1193 1212 1234 1248 1205 1170 1106 1018
4 0 0 0 0 1095 1267 1155 1120 1108 1098 1043 999.7 935.0 852.4
5 0 0 0 0 0 805.1 662.7 631.2 621.4 614.7 578.6 551.7 511.9 461.9
6 0 0 0 0 0 0 329.5 344.7 354.8 359.2 337.8 322.7 297.8 265.5
7 0 0 0 0 0 0 0 290.9 297.0 298.4 274.8 259.8 236.5 207.3
8 0 0 0 0 0 0 0 0 250.7 249.8 222.8 208.5 186.6 160.0
9 0 0 0 0 0 0 0 0 0 210.9 177.0 164.7 144.6 120.2
10 0 0 0 0 0 0 0 0 0 0 124.2 123.0 106.4 84.75
11 0 0 0 0 0 0 0 0 0 0 0 111.8 89.53 65.76
12 0 0 0 0 0 0 0 0 0 0 0 0 62.28 39.60
13 0 0 0 0 0 0 0 0 0 0 0 0 0 16.24
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Starting the analysis from the very right column of Table 1.3, I compared model 14
with all the others. The value of statistic 16.24, highlighted in the table, is inside of
the confidence interval for the F-test and H0 may not rejected with 1% significance in
comparison to model 13. Hence, the second column from the right, which compares
model 13 with all the others, is considered for further analysis with the F-test. Note
that n2, which is the only term, not included in the model 13, does not enter the other
model either, except of already rejected model 14. Therefore assumption about nested
structure of the models is not violated. H0 is this case was also non-rejected with a
1% significance in comparison with model 12 (see highlighted F-statistic 62.28 in the
second column from the right in Table 1.3). In the third step, I compared model 12
with 11 restricted models left. Assumption about nested structure of the models is
not violated in this situation. The terms n2 and n log(n) that were excluded from the
model 12, were also excluded from all the models 1-11. In this case null hypothesis
is rejected at a 1% significance level for each of the pairwise comparisons with the
models 1-11. Meaning that model 12 is significantly better in estimation performance
than the other 11 restricted models. Thus, making the model 12 preferable for the
restoring of functional form of critical value, with RSS = 0.16 and R2 = 99.99%

on more than 2000 observations. And the functional form estimated by model 12 is
displayed in equation (1.42):

z = eβ0+β4γ+β5n+β9γ2+β13eγ+β14e−γ ∗ γβ1+β3γ+β6n+β10 log(γ) ∗ nβ2+β7γ+β12 log(n)

(1.42)
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Betas in equation (1.42) are denoted in the order they appear in the highlighted
row 12 in Table 1.2. The intersection is denoted as β0, while β8 and β11 are skipped
as they show the effect of the functions n log(n) (column 10) and n2 (column 13)
respectively, excluded from the model 12.
Consequently, both measure W̃ and critical values are obtained. An investigation of
their properties and a comparison with theoretical results is the next step. Figure 1.6
presents the interaction of measure W̃ with 5% and 10% significance level, marked by
darker and lighter dashed lines respectively. Each graph illustrates how the value of
W̃ changes with the alteration of one parameter ceteris paribus. Set of points, where
measure W̃ is below the dashed line defines the corresponding confidence set (95% or
90%).

Figure 1.6: Behavior of Measure W̃ (Solid Lines) from the CCR Approach Compared
with the Critical Values for a 5% (Upper Dashed Lines) and a 10% (Lower Dashed
Lines) Significance Level with Different Restricted Parameters

In Figure 1.6 graphs come in pairs which describe how one parameter reacts to the
different values of the other parameters in terms of measure W̃ . Graph 1 shows how
the dynamics of measure W̃ depends on the mean of the first variable of random
vector, holding variance matrices of compared distributions the same. Minimum of
W̃ is achieved at zero mean, indicating that the comparable distribution also has
a zero mean. Thereafter, the confidence set is constructed around this point. The
second graph reveals the same situation, but with distinct variance matrices. As a
result, being far from the zero mean, measure W̃ is almost the same as in graph 1.
When the mean gets closer to zero, the influence of difference in variances has a clear
effect and strongly increases measure W̃ . The minimum is still at zero mean. But
W̃ does not reach critical value, neither for a 10% significance level, nor for a 5%.
Therefore, the confidence set is empty and a null hypothesis will be always rejected.
Graphs 3 and 4 demonstrate a similar case to the one in graphs 1-2, but for the mean
of the second variable of the vector. Displayed relations are the same, forming an
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unreachable confidence set, when variance matrices differ too much, and rejecting
a null hypothesis for any value of the mean. Another necessary aspect to mention
regarding graphs 1-4 is the symmetry with respect to the mean. Symmetry still holds
independently of the values of other parameters, contained in variance matrix.
Graphs 5-6, together with graphs 7-8, describe behavior of variances of the first and
second variable respectively. Graphs 5 and 7 display measure W̃ depending on variance
and holding both means equal to the ones in the comparable distribution. While
graphs 6 and 8 on contrary include means that alter from comparable distribution.
Note that in graphs 5-6 the comparable variance from hypothesis (1.1) is σ2

2 = 1.5,
while in graphs 7-8 this variance is σ2

2 = 4. Which may be also seen in the minimum
points of the graphs. Next, all 4 graphs are skewed, displaying the property of
’distance’ W̃ between two distributions with the increasing variance (formula (1.6)
describes this property). In other words, the right-hand side of all the graphs is lower
than the left-hand side. This occurs due to the fact that the increase of variance has
a negative effect on measure W̃ . However, the value of W̃ still grows, but much more
slowly.
The last two graphs demonstrate how W̃ depends on the correlation coefficient ρ
between two variables of one vector. Graph 9 is constructed assuming equal left and
right-hand side means of the null hypothesis (1.1), while graph 10 assumes that the
means are different. The minimum is achieved in the both graphs at the same point
of equal correlations ρ1 = ρ2 = 0.25, that are compared. However, in the case of
different means, measure W̃ does not manage to get as low as critical value. Therefore,
the means differ a lot and hypothesis will always be rejected, even if correlations are
the same.

1.2.8 Extension to Multivariate Case

Development of the CCR approach to samples of random vectors with more than
2 dimensions is highly profitable. It gives the possibility of applying CCR on large
amounts of data and simultaneously comparing any number of dimensions. There are
at least two ways to extend the CCR technique with respect to the dimensionality.
Firstly, computing measure W̃ as an absolute difference between multivariate PDFs
on the domain from Rm. However, the main complication of this approach is the
intersection of PDFs. The second order curve from equation (1.11) will get even
more complex in m-dimensional space with a growing number of different interaction
terms.
Another way to extend the CCR method is a pairwise comparison. One can easily
pick out two scalars from each vector of the sample {Xi}ni=1, find their means and
covariance matrix, making it possible to test this subsample. Then, all m(m−1)

2 pairs
of scalars from m-dimensional sample are compared. Hypothesis (1.1) for the full
sample is rejected, if at least for one of the pairs of scalar null hypothesis is rejected.
Otherwise hypothesis for the full sample may not be rejected. This extension of CCR
technique will be implemented further in the SUR example.
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1.3 Qualitative and Quantitative Analysis of Developed CCR Ap-
proach

In this section I describe the main qualities of the CCR method, which will also be
confirmed with computations. This includes: the form of confidence set, preciseness of
critical values and the significance level, reaction on non-standard normally distributed
samples and samples from other distributions, as well as effectiveness of approach
with respect to computation time.

1.3.1 Shape of the Confidence Region

The confidence region, produced by the CCR technique, includes the values of
parameters, where measure W is smaller than the critical value for some predefined
significance level γ. To visualize this set, I used Monte-Carlo simulations and generated
10 million uniformly distributed points in a 5-dimensional space (µx, σ

2
x, µy, σ

2
y , ρ).

Then I omitted points that were rejected by the CCR test in comparison with bivariate
standard normal distribution for n = 100 and γ = 0.1. This simulation resulted in
a figure, which I have projected on all possible 2-D planes. The center circles show
the parameters for which confidence set is constructed. Here I describe the most
interesting ones and all the others may be found in Appendix 1.II.
Figure 1.7 demonstrates the confidence set, projected on a (µx, σ

2
x) plane. It is

symmetrical in means and its shape is close to an ellipse. However, the larger upper
half makes it asymmetrical in variance. This comes from the non-Euclidean property
of variance. Increasing it produces more space for alteration of mean and therefore
also increases critical values from above.
Next, Figure 1.8 shows the cross section of confidence region by (µx, σ

2
y) plane. On

one hand, the figure remains symmetrical with respect to mean and has a larger
top half than a bottom half. On the other hand, its form is narrowed in the upper
part, in comparison to Figure 1.7, where the wider upper part stems from the effect
of increased variance. The smaller top part of Figure 1.8, compared to Figure 1.7,
is due to the fact that the effect of increasing the mean of x is to a lesser extent
compensated by increasing variance of y, than it was compensated by the variance of
x.
Furthermore, Figure 1.9 describes the joint behavior of variance of y together with
the correlation between x and y. A similar effect of compensated variance makes
Figure 1.9 larger from above, as the increase of variance provides more space for the
correlation to differ from zero.
Other cross-sections, that can be found in Appendix 1.II, show the symmetry with
respect to means and correlation, and keeping the effect of variance to enlarge the
upper part as well.

1.3.2 Significance Level

In this subsection real and theoretical significance levels are compared. This investi-
gation is possible since all the samples are generated from the known distribution
and the share of rejected samples defines the real significance level. In such a way
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Figure 1.7: Projection of the CCR Confidence Set on (µx, σ
2
x)-Plane (n = 100,

γ = 0.1)

empirically obtained critical values for specific significance level γ and sample size n
are examined to produce the same significance (as defined in Table 1.1) as well as in
extended tables of critical values in Appendix 1.I. As far as I also presented critical
values as a function of n and γ in equation (1.42), non-tabular values of n and γ are
used for the investigation as well. This control is important to determine whether
any bias related to critical values takes place in the CCR method.
Tables 1.4, 1.5 and 1.6 present the obtained real significance levels. For each of the
sample sizes n, 100.000 replications of the CCR test were performed.
Table 1.4 shows the results for small n’s up to 250. Table 1.5 shows the results for
larger n’s up to 1000. And Table 1.6 displays results for the largest sample sizes up
to 50.000.
A closer look at Table 1.4 demonstrates that for n = 10 (column 2) the maximum
deviation of real significance level from theoretical is slightly more than 1% for
γ = 0.5. And the accuracy slightly decreases with a larger sample size. For example,
for n = 100 (column 5) maximum deviation of real significance is 0.81% at γ = 0.3.
Columns 6 and 7 of Table 1.4 show real significances for non-tabular sample sizes
of 150 and 200. Even though the real significance levels of these two columns were
calculated with the critical value function from equation (1.42), they still present
reasonably precise results. The maximum deviation for n = 150 is around 2%, when
γ = 0.5, and for n = 200 the maximum deviation is 0.78% at γ = 0.3, which is even
better than for n = 100.
Table 1.5 has only 2 columns with tabular sample sizes: n = 500 and n = 1000. The
other 5 columns use estimated functional form of critical value. Nevertheless, the best
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Figure 1.8: Projection of the CCR Confidence Set on (µx, σ
2
y)-Plane (n = 100,

γ = 0.1)

Figure 1.9: Projection of the CCR Confidence Set on (ρ, σ2
y)-Plane (n = 100, γ = 0.1)

fitted real significance levels are presented for n = 400 (column 4) with maximum
deviation from the theoretical significance being equal to 0.44% at γ = 0.1. At the
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Table 1.4: Theoretical (Left Column) and Real Significance Levels of the CCR
Approach for Small Samples from n = 10 to n = 250

H
HHH

HHγ
n 10 25 50 100 150 200 250

0.99 0.9915 0.9910 0.9903 0.9918 0.9883 0.9905 0.9909
0.95 0.9505 0.9522 0.9543 0.9521 0.9458 0.9495 0.9500
0.9 0.8991 0.9034 0.9019 0.9005 0.8913 0.8997 0.8982
0.75 0.7516 0.7535 0.7502 0.7486 0.7408 0.7487 0.7454
0.5 0.5114 0.5018 0.4990 0.5012 0.4796 0.4991 0.4995
0.3 0.3106 0.2981 0.3028 0.3081 0.2834 0.2922 0.2999
0.2 0.2050 0.1987 0.2001 0.2030 0.1887 0.1944 0.1998
0.1 0.0979 0.1033 0.0982 0.0996 0.0919 0.0981 0.1002
0.05 0.0526 0.0537 0.0505 0.0512 0.0449 0.0490 0.0515
0.025 0.0268 0.0279 0.0260 0.0258 0.0204 0.0233 0.0244
0.01 0.0091 0.0105 0.0116 0.0107 0.0089 0.0102 0.0099

Table 1.5: Theoretical (Left Column) and Real Significance Levels of the CCR
Approach for Samples from n = 300 to n = 1000

HH
HHHHγ

n 300 350 400 450 500 750 1000

0.99 0.9909 0.9899 0.9901 0.9905 0.9905 0.9901 0.9885
0.95 0.9488 0.9488 0.9484 0.9539 0.9499 0.9515 0.9507
0.9 0.8970 0.9046 0.8989 0.9000 0.8974 0.9072 0.9001
0.75 0.7495 0.7567 0.7467 0.7509 0.7558 0.7646 0.7551
0.5 0.4955 0.5114 0.4972 0.5096 0.4995 0.5221 0.5003
0.3 0.2993 0.3080 0.3023 0.3096 0.2920 0.3195 0.2978
0.2 0.2024 0.2074 0.2018 0.2073 0.1961 0.2249 0.1986
0.1 0.0996 0.1023 0.1044 0.1027 0.0963 0.1203 0.0996
0.05 0.0515 0.0495 0.0501 0.0531 0.0457 0.0614 0.0504
0.025 0.0279 0.0242 0.0259 0.0272 0.0249 0.0329 0.0257
0.01 0.0110 0.0096 0.0107 0.0111 0.0100 0.0129 0.0104

same time, the furthest real significance value from the theoretical one is for case
n = 750 (column 2 from the right) that also uses non-tabular critical values. At
γ = 0.2 its deviation is 2.49% from the theoretical significance level.
Table 1.6 with its large sample sizes also demonstrates a very good outcome. Only
one case, in the whole table, differs from the theoretical significance level by more
than 1% for n = 10.000 and γ = 0.5.
Finally, an analysis of significance levels made in this subsection verifies two issues
in the CCR method. The first is the preciseness of the critical values table, derived
earlier. And the second issue is the correctness of functional form, that may be used
for not tabulated values of n and γ.

1.3.3 Robustness

In this section I investigate how precisely samples from different distributions may
be tested and how well they may produce confidence regions. Firstly, I take normal
distribution with non-standard parameters and generate a sample from it. Then I
calculate measure W , that compares this sample with the distribution from which it
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Table 1.6: Theoretical (Left Column) and Real Significance Levels of the CCR
Approach for Large Samples from n = 2000 to n = 50000

H
HHH

HHγ
n 2000 5000 10000 20000 50000

0.99 0.9893 0.9902 0.9889 0.9885 0.9913
0.95 0.9507 0.9497 0.9501 0.9474 0.9521
0.9 0.8957 0.8938 0.9017 0.9027 0.9011
0.75 0.7463 0.7445 0.7458 0.7558 0.7478
0.5 0.5030 0.4968 0.4883 0.5100 0.4991
0.3 0.2961 0.2915 0.2937 0.3065 0.3003
0.2 0.1972 0.1962 0.1961 0.2028 0.1991
0.1 0.0991 0.0953 0.0993 0.1085 0.1001
0.05 0.0529 0.0480 0.0480 0.0516 0.0476
0.025 0.0265 0.0231 0.0233 0.0248 0.0257
0.01 0.0099 0.0087 0.0091 0.0079 0.0093

was taken. After performing 100.000 replications I can obtain a critical value for this
exact distribution. Table 1.7 presents the results of this procedure performed for 7
normal distributions with different parameters, i.e. alternating correlation, variances
and means.
The first row of Table 1.7 gives significance levels for which critical values were
calculated. The second row exhibits critical values of standard normal distribution,
obtained earlier. And they are used as a template for comparison with the other
columns. The next 7 columns display all possible permutations of standard and
non-standard means, variances and covariance. To illustrate, column 3 gives critical
values for samples generated from normal distribution with µx = 7, µy = 3, σ2

x = 0.8,
σ2
y = 1.2 and ρ = −0.3/(

√
1.2 ∗ 0.8) = −0.306. This results in particularly precise

critical values, with the largest difference from template of 0.0006 for γ = 0.01. Other
distributions considered in Table 1.7 also provide precise critical values, with an
average deviation from the template of less than 0.0002.
The results demonstrated in Table 1.7 not only check the stability of the CCR test,
with respect to samples from non-standard normal distributions, they also check the
smoothness of measure W̃ since values of parameters of normal distribution cover
most of the 15 cases for which the measure was calculated in subsection 1.2.6.
The following aspect of the analysis covers the samples from non-normal distributions.
Table 1.8 portrays these results, with each column based on 100.000 replications. In
Table 1.8 I cover the most demanded values of γ (column 1). And in comparison to
the theoretical significance levels, I compute the real ones from the samples from the
t-distribution, the Poisson distribution and the samples with outliers.
Columns 2-5 of Table 1.8 show the ratios of rejected samples from the t-distribution
with growing degrees of freedom from 3 to 100. The essential property of t-distribution
is the convergence to normal one with increasing degrees of freedom. And this prop-
erty of t-distribution can be traced in the table: fractions of rejected samples converge
to the real significance levels with a growing number of degrees of freedom. When
number of degrees of freedom is 3 (column 2) and tails of t-distribution are extremely
thick then there is no possibility to perform the CCR test properly. For example, at
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Table 1.7: CCR Critical Values Obtained from Non-Standard Normal Distributions
in Comparison with the CCR Critical Values from Standard Normal Distribution
(Second Column)

γ
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0.99 0.0525 0.0525 0.0525 0.0526 0.0525 0.0523 0.0528 0.0521
0.975 0.0641 0.0641 0.0642 0.0641 0.0639 0.0642 0.0640 0.0638
0.95 0.0753 0.0752 0.0753 0.0751 0.0751 0.0754 0.0752 0.0754
0.9 0.0893 0.0893 0.0892 0.0891 0.0892 0.0891 0.0893 0.0892
0.85 0.0993 0.0994 0.0997 0.0992 0.0992 0.0989 0.0993 0.0994
0.8 0.1077 0.1078 0.1079 0.1076 0.1077 0.1075 0.1079 0.1079
0.75 0.1152 0.1154 0.1153 0.1150 0.1152 0.1151 0.1153 0.1152
0.7 0.1221 0.1223 0.1222 0.1219 0.1221 0.1219 0.1222 0.1220
0.5 0.1475 0.1475 0.1475 0.1476 0.1476 0.1470 0.1475 0.1474
0.25 0.1830 0.1827 0.1832 0.1832 0.1830 0.1828 0.1830 0.1827
0.1 0.2176 0.2178 0.2180 0.2178 0.2175 0.2174 0.2175 0.2173
0.05 0.2396 0.2397 0.2397 0.2399 0.2391 0.2394 0.2392 0.2393
0.025 0.2593 0.2591 0.2597 0.2597 0.2597 0.2590 0.2592 0.2592
0.01 0.2833 0.2827 0.2838 0.2831 0.2834 0.2838 0.2839 0.2840
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Table 1.8: CCR Real Significance Levels for Samples from t-Distribution, Poisson
Distribution and Samples with Outliers

γ t3 t10 t50 t100 Pois(3) Pois(10) 5% out 10% out 20% out
0.2 0.8891 0.3119 0.2212 0.2116 0.2346 0.2173 0.2009 0.2585 0.731

0.1000 0.8329 0.1871 0.1151 0.1089 0.1269 0.1101 0.0953 0.1427 0.5919
0.0500 0.7786 0.1064 0.0568 0.0509 0.0733 0.0552 0.0461 0.0764 0.4572
0.0250 0.7260 0.0611 0.0298 0.0244 0.0409 0.0278 0.0205 0.041 0.3444
0.0100 0.6607 0.0312 0.0120 0.0109 0.0182 0.0098 0.0128 0.0174 0.2315

a 10% predefined significance level, it rejects more than 83% of the samples. Even
at γ = 0.01, more than 66% of samples are rejected. The opposite situation may be
seen for 100 degrees of freedom (column 5). At a 10% significance level, only 10.89%

of samples from t100 are rejected. And at γ = 0.01, only 1.09% of the samples are
rejected.
Columns 6 and 7 of Table 1.8 describe the behavior of the CCR approach on samples
from the Poisson distribution. Although, Poisson distribution, as a discrete one,
cannot directly converge to the normal distribution, with increasing value of its
parameter λ, its probability mass function gets closer to the bell-shaped form of the
normal distribution. Hence, at λ = 3 the samples generated from Poisson distribution
are rejected with a bit higher rate than they should. For example, at γ = 0.05 more
than 7% of the samples are rejected. An increase of λ to 10 shows a reasonable
growth in preciseness of the CCR method. For a 5% significance level, slightly more
that 5.5% of the samples are rejected.
A study of the CCR approach on samples not from the normal distribution, demon-
strated that the method is sufficiently robust to the change of distribution. However,
for the distributions that are far from the normal bell-shaped form, CCR is not to be
used.
The last 3 columns of Table 1.8 present the results of using the CCR approach on
samples with outliers (5, 10 and 20% of outliers respectively). Outliers are added to
the sample as random numbers to avoid additional correlation in the sample. Based
on the last 3 columns, it is clearly seen that 20% of the outliers bring too much noise
to the sample and much more samples are rejected. For example, at γ = 0.2 more
than 73% of the samples are rejected (the last column from the right). With 10%

of outliers, results of the CCR method get closer to real significance levels, but still
errors are present. To illustrate, at γ = 0.2 almost 26% of samples are rejected. A
much better performance of the CCR approach is demonstrated on samples with 5%

of outliers. At a 20% significance level it rejects only 0.09% more samples, than it was
predefined by γ. Thus, even on the samples with a reasonable proportion of outliers
(around 5%), CCR can stay robust and correctly test the joint hypothesis (1.1).

1.3.4 Computation Time

The time, that the CCR method needs to calculate measure W and perform the test
is not a critical parameter for small samples. But when it comes to large amounts of
data, the computation speed of the algorithm should be also taken into account, as it
may play a crucial role. Therefore, in this subsection I check how the sample size
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affects computation time and whether it could be important in the implementation
of the CCR method.
Table 1.9 presents computation time1 for 100 replications of the CCR approach for
different sample sizes n.

Table 1.9: Computation Time for 100 Replications of the CCR Method for Different
Sample Sizes n

n 10 25 50 100 200 250 500
time (sec) 20.74 21.07 27.53 27.94 26.95 24.91 49.74

n 750 1000 2000 5000 10000 20000 50000
time (sec) 53.98 42.38 44.34 52.73 42.21 43.00 35.78

According to Table 1.9 one can distinguish two groups. The first aggregates n up
to 250 with the average time to perform 1 CCR test of 2− 3 seconds. The second
group, for n starting from 500, their computation time is doubled thus being around
4− 5 seconds for 1 repetition of the CCR test. But a further increase of the sample
size from 500 to 50.000 does not lead to any significant change in computation speed.
Actually, in this example performing CCR tests on samples of size 50.000 took 35.78

seconds. This is sufficiently less than the time spent on performing the same task on
samples of size 5000, which took 52.73 seconds.
Table 1.9 additionally investigates how non-tabular values of sample size influence the
computation speed. Samples of size 200 and 750 are out of critical values Table 1.1.
For these two entries in Table 1.9, there is no significant difference in computation
times compared to the others with tabular sample sizes. Although, for n = 750

computation time is the largest in the entire table, it took only 1.25 sec more to
calculate the CCR test on this samples than on the samples of size 5000.

1.4 Example

The CCR method presented in this Part may be used as an alternative for testing a
lot of issues in the fields of econometrics and economics. In this section I demonstrate
how it is applied to the choice of estimator in SUR models. Usually two main
estimation techniques are considered in SUR models: system OLS (SOLS) and
feasible generalized least squares (FGLS). Depending on the available correlation
across equations, one or another estimator will deliver better estimates: SOLS in
case of uncorrelated error terms between the equations, otherwise FGLS ia a more
efficient estimator. In the example I show how CCR is applied in order to choose the
correct estimator among the two.
Suppose there are two models with 5 equations each. Every equation includes 3
unique regressors. Therefore, 15 parameters β in each model are to be estimated.
In the first step for both of the models, I randomly define parameters β and two
covariance matrices Ω that describe cross-equation relations of error terms. Next
1000 observations for all 10 equations are generated, considering covariance matrices
Ω.

1Computer specifications: CPU Intel Core i5-6200U with 2.3 Ghz and 8 GB RAM type DDR4
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Table 1.10: Predefined Theoretical Covariance Matrices Ω for Use in CCR Approach
for 2 SUR Model Examples: without (Left Matrix) and with (Right Matrix) Significant
Correlations Between Equations

(a) SUR model 1

1 0.05 -0.1 0 0
0.05 1 -0.2 0 0
-0.1 -0.2 1 0.05 0
0 0 0.05 1 0.05
0 0 0 0.05 1

(b) SUR model 2

1 0.8 -0.1 0.45 0
0.8 1 -0.1 0 -0.2
-0.1 -0.1 1 0.5 0
0.45 0 0.5 1 0.15
0 -0.2 0 0.15 1

Tables 1.10a and 1.10b show the covariance matrices for both of the models. In the
first SUR I choose Ω so that only small correlations across equations are present. For
the second SUR I added considerably large correlations between equations 1 and 2
(0.8), 1 and 3 (0.45) and 3 and 4 (0.5).

Table 1.11: Comparison of p-Values from Testing the Correlations of Estimated
Covariance Matrices Ω̂ with the CCR Method for 2 SUR Models

(a) SUR model 1

0 0.998 0.211 0.998 0.999
0 0 0.18 0.894 0.999
0 0 0 0.999 0.999
0 0 0 0 0.948
0 0 0 0 0

∗ p<.1; ∗∗ p<.05; ∗∗∗ p<.001

(b) SUR model 2

0 0.001∗∗∗ 0.999 0.001∗∗∗ 0.997
0 0 0.999 0.991 0.358
0 0 0 0.001∗∗∗ 0.999
0 0 0 0 0.695
0 0 0 0 0

∗ p<.1; ∗∗ p<.05; ∗∗∗ p<.001

Tables 1.11a and 1.11b present the p-values of pairwise testing of error terms of the
equations with the CCR technique. I tested whether each pair of error terms may be
considered as uncorrelated, i.e. their covariance matrix is diagonal. In Table 1.11a
all p-values are larger than γ = 0.05, therefore the null hypothesis saying that there
is no correlation between error terms cannot be rejected. All the correlations in Ω

of the first SUR are insignificant. In the second SUR the same null hypothesis for
error terms following uncorrelated normal distribution should be rejected for 3 pairs:
equations (1, 2), equations (1, 3) and equations (3, 4). Their p-values in Table 1.11b
are smaller than the significance level γ = 0.05.
Moreover, the estimation of both SUR models is done with SOLS and FGLS. The
results are demonstrated in Tables 1.12a and 1.12b. As far as data was generated
using known theoretical parameters β, they may be easily compared with estimated
β̂SOLS and β̂FGLS .
Table 1.12a for the SUR model, with insignificant cross-equation correlations, shows
that FGLS produced better estimates only in 3 out of 15 cases (rows 1, 3 and 15).
Additionally, I compare the estimators by the sum of absolute differences from the
real β. For SOLS this sum is 0.442, while for FGLS it is 0.554 thus, making the
FGLS estimation 25% worse than the SOLS.
Table 1.12a, with 3 cross-equation correlations significantly different from zero, gives
the opposite results: FGLS is closer to real β in 11 out of 15 cases. The exceptions
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Table 1.12: Comparison of SOLS (β̂SOLS) and FGLS (β̂FGLS) Estimated Parameters
for 2 SUR Models with the Predefined Values β

(a) SUR model 1

# β β̂SOLS β̂FGLS
1 0 -0.0653 -0.0543
2 4 4.0953 4.1033
3 5 5.1311 5.1022
4 3 3.2711 3.3127
5 5 4.7820 4.7049
6 2 1.8485 1.8400
7 1 0.8536 0.8438
8 5 5.1020 5.1525
9 4 3.9187 3.8904
10 1 0.8272 0.8130
11 3 3.2828 3.3161
12 -5 -5.0450 -5.0509
13 -1 -1.1581 -1.1622
14 -3 -2.7493 -2.7392
15 0 0.1706 0.1688

(b) SUR model 2

# β β̂SOLS β̂FGLS
1 -1 -0.7058 -0.9487
2 -4 -4.0822 -3.9423
3 -2 -2.5043 -2.1540
4 -4 -3.9208 -3.9697
5 -2 -2.2211 -1.9609
6 2 2.1723 2.0216
7 -2 -2.0587 -2.1211
8 -2 -1.8336 -1.8537
9 -3 -2.9064 -2.7718
10 -5 -5.0055 -5.0657
11 4 3.9157 4.0577
12 -5 -4.8989 -4.9224
13 -4 -3.9290 -4.0052
14 3 2.9451 3.0983
15 -5 -4.9931 -4.9915

are rows 9, 10, 14 and 15, for which SOLS gives a better estimation. And the total
sum of absolute differences from β for SOLS is 0.498 while for FGLS it is 0.144. This
result in FGLS estimation being 71% better than SOLS.
In the real applications comparison, with unknown parameters β, this comparison is
impossible. But use of the CCR approach may help in the choice of a better estimator.
Results of this section demonstrate that small, negligible cross-equation correlations
of error terms imply the use of SOLS estimator. In the case of significant correlations,
the FGLS estimator is preferable, even if only some of the correlations between error
terms show their significance.

1.5 Conclusion

In this Part extension of the CCR approach to bivariate case was introduced. Bivariate
extension of the CCR approach is much more broad in its application than the
univariate version, presented in Appendix 1.III, since it covers not only the parameters
of a variable itself, but also relations to the other variables. Additionally, it gives the
opportunity to test samples of any dimensionality.
This technique is based on the absolute difference between two normal distributions
and is designed to jointly test mean vector and variance matrix. I presented how
measure W for the CCR approach is obtained, based on the different possible
intersections of PDFs of normal distribution. Furthermore, properties of measure W
were discussed and checked in the examples, including unimodality, smoothness and
convergence. The effect of decreasing ’distance’ between distributions with increasing
variance was discussed and demonstrated on the examples as well.
Next, the transformation method for measure W was introduced, that converts W to
the space with zero correlation. It simplified the form of the intersection curve and
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therefore computation of measure W . The transformation also showed how the CCR
approach may be applied to simpler hypotheses as an alternative to the t-test or the
χ2-test.
Besides, 2388 critical values for measureW were received for a wide number of sample
sizes from 10 to 50.000 and significance levels from 0.005 to 0.995. To cover the all
the possible values of n and γ between given intervals, I analyzed more than 16.000
different functional forms and choose the best one to fit. Chosen equation (1.42) for
critical values depending on n and γ provides R2 of 99.99%.
In the next section I studied the CCR approach for the shape of the confidence
region it produces, compared real and theoretical significance levels, investigated
CCR robustness properties and checked the efficiency with respect to its computation
time. The CCR method demonstrated good performance on the samples from non-
standard normal distribution. Therefore, proved the preciseness of transformation
and computed critical values. Application of the CCR approach on samples not from
the normal distribution demonstrated that it can be implemented, if the distribution
is close in shape to normal distribution, even if it is a discrete one. Additionally,
the CCR approach was tested on samples with outliers and demonstrated good
performance on the samples with 5% of outliers. Therefore, discussed properties of
the CCR approach make it possible to use in wide array of scientific fields for better
analysis and estimation of data.
In final section I showed how the CCR technique may be applied to SUR model
estimation, depending on the cross-equation relations. In both examples presented
here, CCR helped to make the correct choice of estimator. This improved the
estimations on average by 48%.
Further development vector of the CCR technique may be found in implementation to
problems in panel data econometrics (e.g. serial correlation testing) or portfolio theory
(mean-variance analysis), in which one could benefit from generic CCR approach to
problem solving.

37



References

Arnold, B., Shavelle, R., 1998. Joint confidence sets for the mean and variance of a
Normal distribution. The American Statistician; 52; 133-140.

Born, B., Breitung, J., 2016. Testing for Serial Correlation in Fixed-Effects Panel
Data Models. Econometric Reviews; 35; 1290-1316.

Box, G., Pierce, D., 1970. Distribution of Residual Autocorrelations in Autoregressive-
Integrated Moving Average Time Series Models. Journal of the American Statistical
Association; 65(332); 1509–1526.

Frey, J., Marrero, O., Norton, D., 2009. Minimum-area confidence sets for a Normal
distribution. Journal of Statistical Planning and Inference; 139; 1023-1032.

Godfrey, L., 1978. Testing Against General Autoregressive and Moving Average Error
Models when the Regressors Include Lagged Dependent Variables. Econometrica;
46; 1293–1301.

Jensen, U., 1995. A review of the derivation and calculation of Rao distances with an
application to portfolio theory. In Maddala, G., Phillips, P., Srinivasan, T. (eds.),
Advances in econometrics and quantitative economics. Blackwell; 2008; 413-462.

Ljung, G., Box, G., 1978. On a measure of lack of fit in time series models. Biometrika;
65(2); 297–303.

Mood, A., 1950. Introduction to the Theory of Statistics. McGraw-Hill; New York;
1950.

Zhang, J., 2017. Minimum volume confidence sets for parameters of normal distribu-
tions. AStA Advances in Statistical Analysis; 101; 309–320.

Zellner, A., 1962. An efficient method of estimating seemingly unrelated regres-
sion equations and tests for aggregation bias. Journal of the American Statistical
Association; 57(298); 348–368.

38



Appendix 1.I: Tables

Table 1.13: Empirical Critical Values for the CCR Method for Different n and γ from
86.5% to 99.5%

H
HHH

HHn
γ 0.995 0.990 0.985 0.980 0.975 0.970 0.965 0.960 0.955

10 0.1499 0.1741 0.1903 0.2027 0.2133 0.2223 0.2304 0.2377 0.2443
25 0.0919 0.1065 0.1161 0.1238 0.1303 0.1358 0.1407 0.1451 0.1491
50 0.0640 0.0744 0.0811 0.0865 0.0909 0.0948 0.0982 0.1013 0.1042
100 0.0451 0.0525 0.0572 0.0610 0.0641 0.0668 0.0692 0.0714 0.0734
250 0.0285 0.0330 0.0360 0.0384 0.0404 0.0421 0.0437 0.0450 0.0463
500 0.0201 0.0233 0.0254 0.0271 0.0285 0.0298 0.0308 0.0318 0.0327
1000 0.0142 0.0164 0.0180 0.0192 0.0202 0.0210 0.0218 0.0225 0.0231
2000 0.0105 0.0119 0.0127 0.0134 0.0141 0.0147 0.0153 0.0159 0.0163
5000 0.0063 0.0072 0.0080 0.0087 0.0091 0.0094 0.0098 0.0101 0.0103
10000 0.0046 0.0053 0.0057 0.0061 0.0064 0.0067 0.0069 0.0072 0.0073
20000 0.0032 0.0038 0.0041 0.0043 0.0045 0.0047 0.0049 0.0050 0.0052
50000 0.0020 0.0023 0.0025 0.0027 0.0028 0.0030 0.0031 0.0032 0.0033

H
HHH

HHn
γ 0.950 0.945 0.940 0.935 0.930 0.925 0.920 0.915 0.910

10 0.2504 0.2561 0.2614 0.2665 0.2713 0.2760 0.2804 0.2847 0.2889
25 0.1528 0.1564 0.1597 0.1628 0.1657 0.1686 0.1713 0.1740 0.1765
50 0.1069 0.1093 0.1117 0.1139 0.1160 0.1180 0.1199 0.1218 0.1235
100 0.0753 0.0770 0.0786 0.0802 0.0816 0.0830 0.0843 0.0856 0.0869
250 0.0474 0.0486 0.0496 0.0505 0.0514 0.0523 0.0532 0.0540 0.0547
500 0.0335 0.0343 0.0350 0.0357 0.0364 0.0370 0.0376 0.0382 0.0387
1000 0.0237 0.0242 0.0248 0.0252 0.0257 0.0261 0.0265 0.0270 0.0273
2000 0.0167 0.0172 0.0175 0.0179 0.0182 0.0186 0.0189 0.0192 0.0195
5000 0.0106 0.0109 0.0111 0.0113 0.0116 0.0118 0.0120 0.0122 0.0124
10000 0.0075 0.0077 0.0078 0.0080 0.0081 0.0083 0.0085 0.0086 0.0087
20000 0.0054 0.0055 0.0056 0.0057 0.0058 0.0059 0.0060 0.0060 0.0061
50000 0.0033 0.0034 0.0035 0.0036 0.0036 0.0037 0.0038 0.0038 0.0039

H
HHH

HHn
γ 0.905 0.900 0.895 0.890 0.885 0.880 0.875 0.870 0.865

10 0.2928 0.2966 0.3005 0.3041 0.3076 0.3111 0.3146 0.3179 0.3212
25 0.1789 0.1813 0.1836 0.1858 0.1880 0.1901 0.1921 0.1942 0.1961
50 0.1252 0.1269 0.1285 0.1301 0.1316 0.1331 0.1345 0.1359 0.1373
100 0.0881 0.0893 0.0904 0.0915 0.0926 0.0936 0.0946 0.0955 0.0965
250 0.0555 0.0562 0.0569 0.0576 0.0583 0.0590 0.0596 0.0602 0.0609
500 0.0393 0.0398 0.0403 0.0408 0.0413 0.0417 0.0422 0.0426 0.0430
1000 0.0277 0.0281 0.0284 0.0288 0.0291 0.0294 0.0298 0.0301 0.0304
2000 0.0197 0.0200 0.0202 0.0204 0.0207 0.0209 0.0212 0.0214 0.0216
5000 0.0126 0.0128 0.0129 0.0131 0.0132 0.0134 0.0135 0.0137 0.0138
10000 0.0088 0.0089 0.0090 0.0091 0.0092 0.0094 0.0094 0.0095 0.0096
20000 0.0062 0.0063 0.0063 0.0064 0.0065 0.0065 0.0066 0.0067 0.0067
50000 0.0039 0.0040 0.0040 0.0041 0.0041 0.0042 0.0042 0.0043 0.0043
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Table 1.14: Empirical Critical Values for the CCR Method for Different n and γ from
73% to 86%

HH
HHHHn

γ 0.860 0.855 0.850 0.845 0.840 0.835 0.830 0.825 0.820

10 0.3243 0.3273 0.3304 0.3334 0.3363 0.3392 0.3420 0.3449 0.3476
25 0.1981 0.1999 0.2017 0.2036 0.2054 0.2072 0.2090 0.2107 0.2124
50 0.1387 0.1400 0.1413 0.1426 0.1438 0.1451 0.1463 0.1475 0.1487
100 0.0975 0.0984 0.0993 0.1002 0.1011 0.1020 0.1028 0.1037 0.1045
250 0.0615 0.0620 0.0626 0.0632 0.0638 0.0643 0.0649 0.0654 0.0659
500 0.0435 0.0439 0.0443 0.0447 0.0451 0.0455 0.0459 0.0462 0.0466
1000 0.0307 0.0310 0.0313 0.0316 0.0318 0.0321 0.0324 0.0326 0.0329
2000 0.0217 0.0220 0.0222 0.0224 0.0225 0.0227 0.0229 0.0231 0.0233
5000 0.0140 0.0141 0.0142 0.0143 0.0145 0.0146 0.0147 0.0149 0.0150
10000 0.0097 0.0098 0.0099 0.0100 0.0101 0.0102 0.0103 0.0104 0.0104
20000 0.0068 0.0069 0.0070 0.0070 0.0071 0.0071 0.0072 0.0073 0.0073
50000 0.0043 0.0044 0.0044 0.0045 0.0045 0.0045 0.0046 0.0046 0.0047

HH
HHHHn

γ 0.815 0.810 0.805 0.800 0.795 0.790 0.785 0.780 0.775

10 0.3504 0.3530 0.3557 0.3584 0.3610 0.3636 0.3661 0.3686 0.3712
25 0.2140 0.2157 0.2173 0.2189 0.2204 0.2220 0.2236 0.2251 0.2267
50 0.1499 0.1510 0.1521 0.1532 0.1544 0.1555 0.1565 0.1576 0.1587
100 0.1054 0.1062 0.1069 0.1077 0.1085 0.1093 0.1101 0.1108 0.1115
250 0.0664 0.0669 0.0674 0.0679 0.0684 0.0689 0.0694 0.0699 0.0704
500 0.0470 0.0473 0.0477 0.0480 0.0484 0.0487 0.0490 0.0494 0.0497
1000 0.0331 0.0334 0.0336 0.0339 0.0341 0.0344 0.0346 0.0349 0.0351
2000 0.0235 0.0237 0.0238 0.0240 0.0242 0.0244 0.0245 0.0248 0.0249
5000 0.0151 0.0152 0.0153 0.0154 0.0155 0.0155 0.0156 0.0157 0.0158
10000 0.0105 0.0106 0.0107 0.0108 0.0108 0.0109 0.0110 0.0111 0.0111
20000 0.0074 0.0074 0.0075 0.0076 0.0076 0.0077 0.0077 0.0078 0.0078
50000 0.0047 0.0047 0.0048 0.0048 0.0048 0.0049 0.0049 0.0049 0.0050

HH
HHHHn

γ 0.770 0.765 0.760 0.755 0.750 0.745 0.740 0.735 0.730

10 0.3737 0.3761 0.3786 0.3811 0.3835 0.3860 0.3883 0.3907 0.3931
25 0.2282 0.2297 0.2311 0.2326 0.2340 0.2355 0.2369 0.2383 0.2397
50 0.1597 0.1608 0.1618 0.1629 0.1639 0.1649 0.1659 0.1669 0.1678
100 0.1123 0.1130 0.1137 0.1145 0.1152 0.1159 0.1166 0.1173 0.1180
250 0.0708 0.0713 0.0718 0.0722 0.0726 0.0731 0.0735 0.0740 0.0744
500 0.0500 0.0504 0.0507 0.0510 0.0513 0.0517 0.0520 0.0523 0.0526
1000 0.0353 0.0356 0.0358 0.0360 0.0363 0.0365 0.0367 0.0369 0.0371
2000 0.0251 0.0253 0.0254 0.0255 0.0257 0.0259 0.0260 0.0261 0.0263
5000 0.0159 0.0160 0.0161 0.0163 0.0163 0.0164 0.0165 0.0166 0.0167
10000 0.0112 0.0113 0.0113 0.0114 0.0115 0.0116 0.0116 0.0117 0.0118
20000 0.0079 0.0079 0.0080 0.0080 0.0081 0.0081 0.0082 0.0082 0.0082
50000 0.0050 0.0050 0.0051 0.0051 0.0051 0.0052 0.0052 0.0052 0.0053
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Table 1.15: Empirical Critical Values for the CCR Method for Different n and γ from
59.5% to 72.5%

HH
HHHHn

γ 0.725 0.720 0.715 0.710 0.705 0.700 0.695 0.690 0.685

10 0.3954 0.3978 0.4001 0.4024 0.4047 0.4069 0.4092 0.4113 0.4136
25 0.2411 0.2425 0.2439 0.2453 0.2467 0.2480 0.2494 0.2508 0.2521
50 0.1688 0.1698 0.1708 0.1717 0.1727 0.1736 0.1746 0.1755 0.1765
100 0.1187 0.1194 0.1200 0.1207 0.1214 0.1221 0.1228 0.1234 0.1241
250 0.0748 0.0753 0.0757 0.0761 0.0766 0.0770 0.0774 0.0778 0.0782
500 0.0529 0.0532 0.0535 0.0538 0.0541 0.0544 0.0547 0.0550 0.0553
1000 0.0374 0.0376 0.0378 0.0380 0.0382 0.0384 0.0386 0.0388 0.0390
2000 0.0264 0.0266 0.0268 0.0269 0.0271 0.0272 0.0274 0.0275 0.0277
5000 0.0168 0.0169 0.0170 0.0171 0.0172 0.0173 0.0174 0.0175 0.0176
10000 0.0118 0.0119 0.0119 0.0120 0.0121 0.0122 0.0122 0.0123 0.0124
20000 0.0083 0.0083 0.0084 0.0084 0.0085 0.0085 0.0086 0.0086 0.0087
50000 0.0053 0.0053 0.0053 0.0054 0.0054 0.0054 0.0055 0.0055 0.0055

HH
HHHHn

γ 0.680 0.675 0.670 0.665 0.660 0.655 0.650 0.645 0.640

10 0.4159 0.4181 0.4203 0.4225 0.4248 0.4270 0.4292 0.4314 0.4336
25 0.2535 0.2548 0.2562 0.2575 0.2588 0.2600 0.2613 0.2627 0.2640
50 0.1774 0.1783 0.1793 0.1802 0.1811 0.1820 0.1829 0.1838 0.1847
100 0.1248 0.1254 0.1260 0.1267 0.1273 0.1280 0.1286 0.1292 0.1299
250 0.0786 0.0790 0.0794 0.0799 0.0803 0.0807 0.0811 0.0815 0.0819
500 0.0556 0.0559 0.0561 0.0564 0.0567 0.0570 0.0573 0.0576 0.0579
1000 0.0392 0.0394 0.0396 0.0399 0.0401 0.0403 0.0405 0.0407 0.0409
2000 0.0278 0.0280 0.0281 0.0282 0.0284 0.0285 0.0286 0.0287 0.0289
5000 0.0177 0.0177 0.0178 0.0179 0.0180 0.0181 0.0182 0.0183 0.0184
10000 0.0125 0.0125 0.0126 0.0127 0.0128 0.0128 0.0129 0.0129 0.0130
20000 0.0087 0.0088 0.0088 0.0088 0.0089 0.0089 0.0090 0.0090 0.0090
50000 0.0055 0.0056 0.0056 0.0056 0.0057 0.0057 0.0057 0.0057 0.0058

HH
HHHHn

γ 0.635 0.630 0.625 0.620 0.615 0.610 0.605 0.600 0.595

10 0.4357 0.4379 0.4401 0.4423 0.4445 0.4467 0.4489 0.4511 0.4532
25 0.2653 0.2666 0.2679 0.2692 0.2704 0.2717 0.2730 0.2743 0.2755
50 0.1857 0.1866 0.1875 0.1884 0.1893 0.1902 0.1911 0.1920 0.1928
100 0.1305 0.1312 0.1318 0.1324 0.1331 0.1337 0.1343 0.1350 0.1356
250 0.0823 0.0827 0.0831 0.0835 0.0839 0.0842 0.0846 0.0851 0.0854
500 0.0581 0.0584 0.0587 0.0590 0.0593 0.0596 0.0598 0.0601 0.0604
1000 0.0411 0.0413 0.0415 0.0416 0.0418 0.0420 0.0422 0.0424 0.0426
2000 0.0291 0.0292 0.0293 0.0295 0.0296 0.0297 0.0299 0.0300 0.0301
5000 0.0184 0.0185 0.0186 0.0187 0.0188 0.0189 0.0190 0.0190 0.0191
10000 0.0131 0.0131 0.0132 0.0133 0.0134 0.0134 0.0135 0.0136 0.0136
20000 0.0091 0.0091 0.0092 0.0092 0.0093 0.0093 0.0094 0.0094 0.0095
50000 0.0058 0.0058 0.0058 0.0059 0.0059 0.0059 0.0060 0.0060 0.0060
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Table 1.16: Empirical Critical Values for the CCR Method for Different n and γ from
46% to 59%

HH
HHHHn

γ 0.590 0.585 0.580 0.575 0.570 0.565 0.560 0.555 0.550

10 0.4554 0.4575 0.4597 0.4619 0.4641 0.4662 0.4684 0.4706 0.4728
25 0.2768 0.2781 0.2794 0.2807 0.2820 0.2833 0.2846 0.2859 0.2871
50 0.1937 0.1946 0.1955 0.1964 0.1973 0.1982 0.1990 0.1999 0.2008
100 0.1362 0.1369 0.1375 0.1381 0.1387 0.1393 0.1400 0.1406 0.1412
250 0.0858 0.0862 0.0866 0.0870 0.0874 0.0878 0.0882 0.0886 0.0890
500 0.0607 0.0609 0.0612 0.0615 0.0618 0.0620 0.0623 0.0626 0.0629
1000 0.0428 0.0430 0.0432 0.0434 0.0436 0.0438 0.0440 0.0442 0.0444
2000 0.0303 0.0305 0.0306 0.0307 0.0308 0.0309 0.0311 0.0312 0.0313
5000 0.0193 0.0194 0.0194 0.0195 0.0196 0.0197 0.0198 0.0199 0.0199
10000 0.0137 0.0138 0.0138 0.0139 0.0139 0.0140 0.0140 0.0141 0.0142
20000 0.0095 0.0096 0.0096 0.0096 0.0097 0.0097 0.0098 0.0098 0.0099
50000 0.0060 0.0061 0.0061 0.0061 0.0061 0.0062 0.0062 0.0062 0.0063

HH
HHHHn

γ 0.545 0.540 0.535 0.530 0.525 0.520 0.515 0.510 0.505

10 0.4749 0.4771 0.4793 0.4814 0.4836 0.4857 0.4879 0.4901 0.4923
25 0.2884 0.2897 0.2910 0.2923 0.2935 0.2948 0.2961 0.2974 0.2987
50 0.2017 0.2026 0.2035 0.2044 0.2053 0.2062 0.2071 0.2079 0.2088
100 0.1418 0.1424 0.1431 0.1437 0.1443 0.1449 0.1456 0.1462 0.1469
250 0.0894 0.0898 0.0902 0.0905 0.0909 0.0913 0.0917 0.0921 0.0925
500 0.0631 0.0634 0.0637 0.0640 0.0643 0.0645 0.0648 0.0651 0.0654
1000 0.0446 0.0448 0.0450 0.0452 0.0454 0.0456 0.0458 0.0460 0.0462
2000 0.0315 0.0316 0.0317 0.0319 0.0320 0.0322 0.0323 0.0324 0.0326
5000 0.0201 0.0201 0.0202 0.0203 0.0204 0.0205 0.0205 0.0206 0.0207
10000 0.0142 0.0143 0.0143 0.0144 0.0145 0.0145 0.0146 0.0146 0.0147
20000 0.0099 0.0099 0.0100 0.0100 0.0101 0.0101 0.0101 0.0102 0.0102
50000 0.0063 0.0063 0.0063 0.0064 0.0064 0.0064 0.0064 0.0065 0.0065

HH
HHHHn

γ 0.500 0.495 0.490 0.485 0.480 0.475 0.470 0.465 0.460

10 0.4945 0.4968 0.4991 0.5013 0.5036 0.5058 0.5081 0.5104 0.5127
25 0.3000 0.3013 0.3026 0.3039 0.3052 0.3066 0.3078 0.3092 0.3105
50 0.2097 0.2106 0.2115 0.2124 0.2133 0.2142 0.2152 0.2161 0.2170
100 0.1475 0.1481 0.1488 0.1494 0.1500 0.1507 0.1513 0.1519 0.1526
250 0.0929 0.0933 0.0937 0.0941 0.0945 0.0949 0.0952 0.0956 0.0961
500 0.0656 0.0659 0.0662 0.0665 0.0668 0.0670 0.0673 0.0676 0.0679
1000 0.0464 0.0466 0.0468 0.0470 0.0472 0.0474 0.0476 0.0478 0.0480
2000 0.0327 0.0329 0.0330 0.0331 0.0332 0.0334 0.0335 0.0336 0.0337
5000 0.0208 0.0209 0.0210 0.0211 0.0212 0.0213 0.0213 0.0214 0.0215
10000 0.0148 0.0148 0.0149 0.0149 0.0150 0.0151 0.0152 0.0152 0.0153
20000 0.0103 0.0103 0.0104 0.0104 0.0105 0.0105 0.0105 0.0106 0.0106
50000 0.0065 0.0066 0.0066 0.0066 0.0067 0.0067 0.0067 0.0067 0.0068
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Table 1.17: Empirical Critical Values for the CCR Method for Different n and γ from
32.5% to 45.5%

HH
HHHHn

γ 0.455 0.450 0.445 0.440 0.435 0.430 0.425 0.420 0.415

10 0.5150 0.5173 0.5196 0.5220 0.5243 0.5267 0.5291 0.5315 0.5339
25 0.3118 0.3132 0.3145 0.3159 0.3173 0.3186 0.3200 0.3214 0.3228
50 0.2179 0.2188 0.2198 0.2207 0.2216 0.2226 0.2235 0.2245 0.2254
100 0.1532 0.1539 0.1545 0.1552 0.1558 0.1565 0.1571 0.1578 0.1584
250 0.0965 0.0969 0.0973 0.0977 0.0981 0.0985 0.0989 0.0993 0.0998
500 0.0682 0.0685 0.0688 0.0690 0.0693 0.0696 0.0699 0.0702 0.0705
1000 0.0482 0.0484 0.0486 0.0488 0.0490 0.0492 0.0494 0.0496 0.0498
2000 0.0339 0.0340 0.0342 0.0344 0.0346 0.0347 0.0348 0.0350 0.0351
5000 0.0217 0.0217 0.0218 0.0219 0.0220 0.0221 0.0222 0.0223 0.0224
10000 0.0153 0.0154 0.0154 0.0155 0.0156 0.0156 0.0157 0.0158 0.0158
20000 0.0107 0.0107 0.0108 0.0108 0.0109 0.0109 0.0110 0.0110 0.0111
50000 0.0068 0.0068 0.0069 0.0069 0.0069 0.0070 0.0070 0.0070 0.0070

HH
HHHHn

γ 0.410 0.405 0.400 0.395 0.390 0.385 0.380 0.375 0.370

10 0.5363 0.5388 0.5413 0.5438 0.5462 0.5487 0.5513 0.5538 0.5563
25 0.3242 0.3256 0.3270 0.3283 0.3297 0.3311 0.3325 0.3339 0.3354
50 0.2264 0.2273 0.2283 0.2292 0.2302 0.2312 0.2322 0.2332 0.2342
100 0.1591 0.1598 0.1604 0.1611 0.1618 0.1625 0.1632 0.1639 0.1646
250 0.1002 0.1006 0.1010 0.1014 0.1019 0.1023 0.1027 0.1031 0.1036
500 0.0708 0.0711 0.0714 0.0717 0.0720 0.0723 0.0726 0.0729 0.0732
1000 0.0500 0.0502 0.0504 0.0506 0.0508 0.0510 0.0513 0.0515 0.0517
2000 0.0353 0.0354 0.0356 0.0357 0.0359 0.0360 0.0362 0.0363 0.0365
5000 0.0225 0.0226 0.0226 0.0228 0.0228 0.0230 0.0231 0.0232 0.0233
10000 0.0159 0.0160 0.0160 0.0161 0.0162 0.0162 0.0163 0.0164 0.0164
20000 0.0111 0.0112 0.0112 0.0113 0.0113 0.0113 0.0114 0.0115 0.0115
50000 0.0071 0.0071 0.0071 0.0071 0.0072 0.0072 0.0072 0.0073 0.0073

HH
HHHHn

γ 0.365 0.360 0.355 0.350 0.345 0.340 0.335 0.330 0.325

10 0.5589 0.5615 0.5641 0.5667 0.5694 0.5721 0.5748 0.5775 0.5803
25 0.3368 0.3383 0.3398 0.3413 0.3428 0.3443 0.3458 0.3474 0.3490
50 0.2352 0.2362 0.2372 0.2382 0.2392 0.2403 0.2413 0.2424 0.2434
100 0.1653 0.1660 0.1667 0.1674 0.1681 0.1688 0.1696 0.1703 0.1710
250 0.1040 0.1044 0.1049 0.1053 0.1058 0.1062 0.1067 0.1071 0.1076
500 0.0735 0.0738 0.0741 0.0744 0.0748 0.0751 0.0754 0.0757 0.0761
1000 0.0519 0.0521 0.0523 0.0526 0.0528 0.0530 0.0532 0.0535 0.0537
2000 0.0367 0.0368 0.0370 0.0372 0.0374 0.0376 0.0377 0.0378 0.0380
5000 0.0234 0.0234 0.0235 0.0236 0.0237 0.0238 0.0240 0.0241 0.0241
10000 0.0165 0.0165 0.0166 0.0167 0.0167 0.0168 0.0169 0.0169 0.0170
20000 0.0115 0.0116 0.0117 0.0117 0.0118 0.0118 0.0118 0.0119 0.0119
50000 0.0073 0.0073 0.0074 0.0074 0.0074 0.0075 0.0075 0.0075 0.0076
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Table 1.18: Empirical Critical Values for the CCR Method for Different n and γ from
19% to 32%

HH
HHHHn

γ 0.320 0.315 0.310 0.305 0.300 0.295 0.290 0.285 0.280

10 0.5830 0.5858 0.5887 0.5916 0.5945 0.5975 0.6005 0.6034 0.6065
25 0.3506 0.3522 0.3538 0.3554 0.3570 0.3586 0.3603 0.3620 0.3637
50 0.2445 0.2455 0.2466 0.2477 0.2488 0.2499 0.2510 0.2522 0.2534
100 0.1718 0.1725 0.1733 0.1741 0.1748 0.1756 0.1764 0.1772 0.1780
250 0.1081 0.1085 0.1090 0.1095 0.1100 0.1105 0.1110 0.1114 0.1119
500 0.0764 0.0767 0.0771 0.0774 0.0777 0.0781 0.0784 0.0788 0.0791
1000 0.0539 0.0542 0.0544 0.0546 0.0549 0.0551 0.0554 0.0556 0.0559
2000 0.0382 0.0383 0.0385 0.0387 0.0388 0.0390 0.0391 0.0393 0.0395
5000 0.0243 0.0244 0.0245 0.0246 0.0247 0.0248 0.0249 0.0250 0.0251
10000 0.0171 0.0171 0.0172 0.0173 0.0174 0.0174 0.0175 0.0176 0.0177
20000 0.0120 0.0121 0.0121 0.0122 0.0122 0.0123 0.0123 0.0124 0.0125
50000 0.0076 0.0076 0.0077 0.0077 0.0077 0.0078 0.0078 0.0078 0.0079

HH
HHHHn

γ 0.275 0.270 0.265 0.260 0.255 0.250 0.245 0.240 0.235

10 0.6095 0.6127 0.6159 0.6192 0.6224 0.6258 0.6292 0.6325 0.6360
25 0.3654 0.3672 0.3690 0.3708 0.3726 0.3743 0.3762 0.3780 0.3799
50 0.2545 0.2557 0.2569 0.2581 0.2593 0.2605 0.2617 0.2630 0.2644
100 0.1788 0.1796 0.1805 0.1813 0.1821 0.1830 0.1838 0.1847 0.1856
250 0.1125 0.1130 0.1135 0.1140 0.1145 0.1151 0.1156 0.1162 0.1167
500 0.0795 0.0798 0.0802 0.0806 0.0809 0.0813 0.0817 0.0821 0.0825
1000 0.0561 0.0564 0.0566 0.0569 0.0571 0.0574 0.0577 0.0579 0.0582
2000 0.0397 0.0399 0.0401 0.0402 0.0405 0.0407 0.0408 0.0410 0.0412
5000 0.0252 0.0253 0.0255 0.0256 0.0257 0.0259 0.0260 0.0261 0.0262
10000 0.0177 0.0178 0.0179 0.0180 0.0181 0.0181 0.0182 0.0183 0.0184
20000 0.0125 0.0126 0.0126 0.0127 0.0128 0.0128 0.0129 0.0130 0.0130
50000 0.0079 0.0080 0.0080 0.0080 0.0081 0.0081 0.0081 0.0082 0.0082

HH
HHHHn

γ 0.230 0.225 0.220 0.215 0.210 0.205 0.200 0.195 0.190

10 0.6395 0.6432 0.6468 0.6504 0.6541 0.6579 0.6619 0.6658 0.6699
25 0.3818 0.3838 0.3858 0.3879 0.3899 0.3920 0.3942 0.3964 0.3986
50 0.2657 0.2670 0.2683 0.2697 0.2711 0.2725 0.2739 0.2754 0.2768
100 0.1865 0.1874 0.1883 0.1893 0.1902 0.1912 0.1922 0.1932 0.1943
250 0.1173 0.1179 0.1185 0.1191 0.1196 0.1203 0.1209 0.1215 0.1221
500 0.0829 0.0833 0.0837 0.0841 0.0845 0.0850 0.0854 0.0858 0.0863
1000 0.0585 0.0588 0.0591 0.0594 0.0597 0.0600 0.0603 0.0606 0.0609
2000 0.0414 0.0416 0.0418 0.0420 0.0422 0.0424 0.0426 0.0428 0.0430
5000 0.0263 0.0264 0.0264 0.0266 0.0267 0.0268 0.0270 0.0271 0.0272
10000 0.0185 0.0186 0.0187 0.0188 0.0189 0.0190 0.0191 0.0192 0.0193
20000 0.0131 0.0131 0.0132 0.0133 0.0133 0.0134 0.0135 0.0135 0.0136
50000 0.0083 0.0083 0.0083 0.0084 0.0084 0.0085 0.0085 0.0086 0.0086
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Table 1.19: Empirical Critical Values for the CCR Method for Different n and γ from
5.5% to 18.5%

HH
HHHHn

γ 0.185 0.180 0.175 0.170 0.165 0.160 0.155 0.150 0.145

10 0.6739 0.6782 0.6825 0.6869 0.6915 0.6961 0.7009 0.7058 0.7107
25 0.4008 0.4031 0.4054 0.4078 0.4103 0.4129 0.4154 0.4181 0.4207
50 0.2783 0.2799 0.2815 0.2831 0.2847 0.2863 0.2881 0.2898 0.2917
100 0.1953 0.1964 0.1975 0.1986 0.1998 0.2010 0.2022 0.2034 0.2046
250 0.1228 0.1235 0.1241 0.1248 0.1255 0.1263 0.1270 0.1277 0.1285
500 0.0868 0.0872 0.0877 0.0882 0.0887 0.0892 0.0897 0.0903 0.0908
1000 0.0612 0.0616 0.0619 0.0622 0.0626 0.0629 0.0633 0.0637 0.0641
2000 0.0433 0.0435 0.0437 0.0440 0.0442 0.0445 0.0447 0.0449 0.0452
5000 0.0273 0.0275 0.0277 0.0278 0.0280 0.0282 0.0284 0.0285 0.0288
10000 0.0194 0.0195 0.0196 0.0197 0.0198 0.0199 0.0201 0.0202 0.0203
20000 0.0137 0.0138 0.0138 0.0139 0.0140 0.0140 0.0141 0.0142 0.0143
50000 0.0086 0.0087 0.0087 0.0088 0.0088 0.0089 0.0089 0.0090 0.0091

HH
HHHHn

γ 0.140 0.135 0.130 0.125 0.120 0.115 0.110 0.105 0.100

10 0.7159 0.7213 0.7268 0.7324 0.7382 0.7444 0.7507 0.7572 0.7640
25 0.4235 0.4264 0.4293 0.4324 0.4356 0.4389 0.4423 0.4457 0.4494
50 0.2936 0.2955 0.2974 0.2995 0.3016 0.3037 0.3060 0.3082 0.3106
100 0.2059 0.2072 0.2085 0.2099 0.2114 0.2129 0.2144 0.2160 0.2176
250 0.1293 0.1301 0.1309 0.1318 0.1327 0.1336 0.1345 0.1355 0.1366
500 0.0914 0.0920 0.0925 0.0931 0.0938 0.0944 0.0951 0.0958 0.0965
1000 0.0645 0.0649 0.0653 0.0657 0.0662 0.0666 0.0671 0.0676 0.0681
2000 0.0455 0.0457 0.0460 0.0462 0.0466 0.0469 0.0473 0.0476 0.0480
5000 0.0289 0.0291 0.0293 0.0295 0.0297 0.0299 0.0302 0.0303 0.0306
10000 0.0204 0.0205 0.0206 0.0208 0.0209 0.0210 0.0212 0.0213 0.0215
20000 0.0143 0.0145 0.0145 0.0146 0.0147 0.0148 0.0149 0.0150 0.0151
50000 0.0091 0.0092 0.0092 0.0093 0.0094 0.0094 0.0095 0.0095 0.0096

HH
HHHHn

γ 0.095 0.090 0.085 0.080 0.075 0.070 0.065 0.060 0.055

10 0.7710 0.7784 0.7862 0.7941 0.8026 0.8115 0.8209 0.8311 0.8417
25 0.4532 0.4572 0.4614 0.4657 0.4703 0.4752 0.4805 0.4860 0.4920
50 0.3132 0.3158 0.3185 0.3214 0.3244 0.3276 0.3309 0.3346 0.3384
100 0.2193 0.2211 0.2230 0.2249 0.2270 0.2293 0.2316 0.2340 0.2367
250 0.1376 0.1387 0.1399 0.1411 0.1424 0.1438 0.1452 0.1467 0.1484
500 0.0973 0.0980 0.0989 0.0997 0.1006 0.1016 0.1026 0.1036 0.1048
1000 0.0686 0.0692 0.0697 0.0704 0.0710 0.0717 0.0724 0.0731 0.0739
2000 0.0484 0.0488 0.0492 0.0496 0.0500 0.0503 0.0508 0.0512 0.0518
5000 0.0308 0.0311 0.0313 0.0316 0.0318 0.0322 0.0325 0.0328 0.0332
10000 0.0216 0.0218 0.0220 0.0222 0.0224 0.0226 0.0229 0.0231 0.0234
20000 0.0152 0.0153 0.0155 0.0156 0.0158 0.0160 0.0161 0.0163 0.0165
50000 0.0097 0.0098 0.0098 0.0099 0.0100 0.0101 0.0102 0.0104 0.0105
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Table 1.20: Empirical Critical Values for the CCR Method for Different n and γ from
0.5% to 5%

HHH
HHHn
γ 0.050 0.045 0.040 0.035 0.030

10 0.8536 0.8665 0.8805 0.8968 0.9145
25 0.4983 0.5053 0.5131 0.5217 0.5318
50 0.3426 0.3473 0.3525 0.3581 0.3645
100 0.2396 0.2427 0.2461 0.2499 0.2543
250 0.1502 0.1521 0.1542 0.1565 0.1592
500 0.1061 0.1074 0.1088 0.1105 0.1123
1000 0.0748 0.0757 0.0768 0.0779 0.0793
2000 0.0525 0.0532 0.0540 0.0548 0.0556
5000 0.0335 0.0340 0.0345 0.0350 0.0356
10000 0.0236 0.0240 0.0243 0.0247 0.0252
20000 0.0167 0.0169 0.0172 0.0175 0.0178
50000 0.0106 0.0107 0.0108 0.0110 0.0112

HHH
HHHn
γ 0.025 0.020 0.015 0.010 0.005

10 0.9349 0.9592 0.9899 1.0315 1.0980
25 0.5428 0.5565 0.5737 0.5973 0.6357
50 0.3721 0.3812 0.3926 0.4077 0.4330
100 0.2593 0.2654 0.2731 0.2833 0.3002
250 0.1624 0.1660 0.1706 0.1772 0.1873
500 0.1146 0.1172 0.1204 0.1249 0.1321
1000 0.0808 0.0826 0.0849 0.0880 0.0930
2000 0.0566 0.0581 0.0597 0.0623 0.0650
5000 0.0363 0.0372 0.0382 0.0398 0.0419
10000 0.0256 0.0262 0.0269 0.0278 0.0291
20000 0.0181 0.0186 0.0193 0.0200 0.0210
50000 0.0114 0.0116 0.0120 0.0124 0.0130
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Appendix 1.II: Figures

Figure 1.10: Projection of the CCR Confidence Set on (µx, µy)-Plane (n = 100,
γ = 0.1)
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Figure 1.11: Projection of the CCR Confidence Set on (µy, σ
2
y)-Plane (n = 100,

γ = 0.1)

Figure 1.12: Projection of the CCR Confidence Set on (ρ, µy)-Plane (n = 100, γ = 0.1)
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Figure 1.13: Projection of the CCR Confidence Set on (µx, ρ)-Plane (n = 100,
γ = 0.1)

Figure 1.14: Projection of the CCR Confidence Set on (σ2
x, µy)-Plane (n = 100,

γ = 0.1)
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Figure 1.15: Projection of the CCR Confidence Set on (σ2
x, ρ)-Plane (n = 100, γ = 0.1)

Figure 1.16: Projection of the CCR Confidence Set on (σ2
x, σ

2
y)-Plane (n = 100,

γ = 0.1)
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Appendix 1.III: CCR Approach for Univariate Normal Distribution

Primary Theory for CCR Approach

I start with the introduction of a theoretical background that will be used to derive
this technique. Assume two Normal distributions, N(µ1, σ

2
1) and N(µ2, σ

2
2). Their

PDFs look like (1.43):

fi(x) =
1√

2πσi
e
− (x−µi)

2

2σ2
i , i = 1, 2 (1.43)

If one plots both of the density functions on one coordinate plane, one gets a figure
similar to one displayed in Figure 1.17:

Figure 1.17: Density Functions of N(0, 1) and N(2, 1.44)

To determine the difference between two distributions, one can compare the probabil-
ities at each point where the densities are defined (domain). For this I will divide the
whole domain of the PDFs into many small intervals M xi. Measure W̆ is defined as a
sum of the absolute differences between the two probabilities in each of the intervals
of the domain. This is possible because of the fact that for Normal distribution
domain of the PDF is invariant for µ and σ2 and is a whole set of real numbers
f1,2 : R→ R+\{0}. It means that the domains are always the same for both density
functions. Thus, one can write (1.44)-(1.45):

W̆ =

∞∑
i=−∞

|P1i − P2i| =
∞∑

i=−∞
|f1(xi) M xi − f2(xi) M xi|

Mxi>0 ∀i
= (1.44)

∞∑
i=−∞

|(f1(xi)− f2(xi))| M xi
Mxi→0−→

∫ ∞
−∞
|f1(x)− f2(x)|dx (1.45)

Therefore, the aim is the difference in the areas of the PDFs. First, one can estimate
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the bounds for the obtained integral (1.45). The lower bound is naturally 0, because
the integrand is an absolute value and therefore non-negative. This is the case of
two Normal distributions with µ1 = µ2 and σ1 = σ2, when the difference inside the
modulus is 0. The upper bound is based on the normalization property of the PDF∫∞
−∞ f(x) = 1 and the subadditivity property of the absolute value |a+ b| ≤ |a|+ |b|.

Thus, according to (1.46)-(1.47), W̆ cannot exceed 2. However, 2 is in this case
unreachable since negative numbers and 0 are out of the range of the PDFs of Normal
distribution:

W̆ =

∫ ∞
−∞
|f1(x)− f2(x)|dx <

∫ ∞
−∞

(|f1(x)|+ | − f2(x)|)dx fi(x)>0 ∀i
= (1.46)∫ ∞

−∞
f1(x) +

∫ ∞
−∞

f2(x) = 2 (1.47)

Thus, W̆ ∈ [0, 2). Further, one has to eliminate the absolute values from (1.45). This
is not a trivial problem and it will be dealt with in the next subsection.

Computing the Function W̆

As was claimed, to be able to calculate W̆ , in the next step one has to get rid of the
modulus in (1.45). To do that, one has to find the interception points of the PDFs,
where the expression under the absolute value changes its sign. These points can
be found from the equation f1(x) = f2(x), assuming σ1 ≥ σ2 for convenience. One
can always rename the distributions and their parameters to achieve this inequality.
I distinguish two cases that define the number of interceptions. For σ1 > σ2 two
solutions are possible (1.48):

x1,2 =
σ2

1µ2 − σ2
2µ1

σ2
1 − σ2

2

± σ1σ2√
σ2

1 − σ2
2

√
(µ1 − µ2)2

σ2
1 − σ2

2

+ 2 log
σ1

σ2
(1.48)

For clarification I denote the roots of the equation so that x1 < x2. If σ1 = σ2, then
one proceeds to the second case where only one interception, and therefore only one
solution is possible (1.49):

x̆ =
µ1 + µ2

2
(1.49)

I do not consider a degenerate situation (µ1, σ1) = (µ2, σ2) since the distributions
are exactly the same and then W̆ , defined in (1.45), turns into 0. Hence the two
cases shown above claim that there are exactly two points of interception for different
variances and only one for the same variances.
Before the reestablishment of the derivation of W̆ , one has to mention that it is not
clear in which of the intervals (−∞, x1], (x1, x2] or (x2,∞) for 2 interceptions and
(−∞, x̆] or (x̆,∞) for 1 interception the integrand is smaller or larger than 0. It it
only for sure that it changes its sign. Hence, one has to calculate an absolute value
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of W̆ . I continue the calculation of the area difference, started in (1.45) for the case
σ1 > σ2, in the following way (1.50)-(1.53):

|W̆ | =
∣∣∣ ∫ ∞
−∞
|f1(x)− f2(x)|dx

∣∣∣ =
∣∣∣ ∫ x1

−∞
(f1(x)− f2(x))dx+ (1.50)∫ x2

x1
(f2(x)− f1(x))dx+

∫ ∞
x2

(f1(x)− f2(x))dx
∣∣∣ =

∣∣∣F1(x1)− F2(x1)+ (1.51)

(F2(x2)− F2(x1))− (F1(x2)− F1(x1)) + (1− F1(x2))− (1.52)

(1− F2(x2))
∣∣∣ = 2

∣∣F1(x1)− F1(x2)− F2(x1) + F2(x2)
∣∣ (1.53)

Where Fi(x) = F (x;µiσ
2
i ) is a CDF of the Normal distribution N(µi, σ

2
i ) for i = 1, 2

. For the case σ1 = σ2, according to equation (1.45), one obtains (1.54)-(1.56):

|W̆ | =
∣∣∣ ∫ ∞
−∞
|f1(x)− f2(x)|dx

∣∣∣ =
∣∣∣ ∫ x̆

−∞
(f1(x)− f2(x))dx+ (1.54)

∫ ∞
x̆

(f2(x)− f1(x))dx
∣∣∣ =

∣∣∣F1(x̆)− F2(x̆) + (1− F2(x̆))− (1.55)

(1− F1(x̆))
∣∣∣ = 2

∣∣F1(x̆)− F2(x̆)
∣∣ (1.56)

After completing the calculation of the area differences, one has to compare them to
some value, say α, so that if |W̆ | is smaller than this value then one can accept that
the distributions are the same for some confidence level 1− γ.

Estimation of the Critical Value α

Since the distribution of |W̆ | is unknown, specific α for the given γ is also unknown
and it is a natural step to try to forecast the behavior of α using theory. The critical
value α should decrease for a larger sample size n, because the sample variance
is inversely proportional to the sample size, meaning that larger n induces S2 to
decrease and therefore decreases the dispersion of the points around the mean. At the
same time, α should also decrease for growing significance level γ, as far as a larger γ
means that one leaves more points out of the confidence set. Now one can estimate
the behavior of alpha. To ensure these theoretical guesses I continue the calculations
for both cases (1.53) and (1.56) in equations (1.57) and (1.58) respectively:

−α
2
< F1(x1)− F1(x2)− F2(x1) + F2(x2) <

α

2
, σ1 > σ2 (1.57)

−α
2
< F1(x̆)− F2(x̆) <

α

2
, σ1 = σ2 (1.58)

As it is not possible to define the critical value α analytically, I simulated samples
with sizes ranging from 5 to 10000 and calculated α’s for different significance levels
γ. All this was done for number of replications, rp, from 104 for large n to 105 for
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small sample sizes. The results are introduced in Table 1.21. They confirm that
the estimated limits for W̆ were correct because all the critical values α got in the
interval (2, 0]. The critical values in Table 1.21 are descending for growing sample
size n and significance level γ, as it was predicted above by the theory.
Because Table 1.21 includes only the discrete points for critical value α, it would be
beneficial to have the results for any n and γ since it would raise calculation precision.
To do this, I used the bilinear interpolation method. Suppose that one wants to get a
critical value for n, γ such that they are located between known points: n1 < n < n2

and γ1 < γ < γ2. Then one can use the formula given in statement (1.59):

α(n, γ) =
1

(n2 − n1)(γ2 − γ1)
× (n2 − n, n− n1)×(

α(n1, γ1) α(n1, γ2)

α(n2, γ1) α(n2, γ2)

)
×

(
γ2 − γ
γ − γ1

)
(1.59)

As a result, the critical values α are defined for any n up to 10000 and for any
significance level γ from 1% to 99%. Therefore, in the next step I can define an
appropriate CCR confidence set.

Realization of the Univariate CCR Confidence Set

Since the point of interest is the confidence set for a random sample, one redefines
(µ, σ2) = (µ1, σ

2
1) and (x, S2) = (µ2, σ

2
2) in (1.48), (1.49) and gains a fully determined

100(1− γ)% CCR confidence region in the next form (1.60), (1.61):

CCCR =
{

(µ, σ2) :
∣∣F (x1;µ, σ2)− F (x2;µ, σ2)− F (x1;m,S2)+

F (x2;m,S2)
∣∣ < α(n, γ)

}
, σ2 6= S2 (1.60)

CCCR =
{

(µ, σ2) :
∣∣F (x̆;µ, σ2)− F (x̆;m,S2)

∣∣ < α(n, γ)
}
, σ2 = S2 (1.61)

Because of using the absolute value of W̆ , shown in (1.56), one does not need the
condition σ1 > σ2 anymore, it could be changed to σ1 6= σ2 without any loss. This
was done in (1.60). After the description of the CCR technique, it is reasonable to
demonstrate an example of the confidence region obtained with the help of this ap-
proach. I simulated a random sample with 100 elements from N(0, 1) and constructed
a 90% CCR confidence set. The obtained result is displayed in Figure 1.18.
The introduced set looks like an ellipse, however this can not be specified by the
equation. This ’pseudo-ellipse’ has a center, marked by the circle in Figure 1.18. It is
shifted down, thus demonstrates the non-Euclidean property of variance. This leads
to the conclusion: CCR allows for more deviation in the mean for variances that are
larger than the sample variance.
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Table 1.21: Critical Values α for Calculation of the Univariate CCR Confidence
Regions of (µ, σ2)

H
H

H
H
H H

n
γ

0.
01

0.
02

5
0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
50

0.
75

0.
90

0.
95

0.
97

5
0.
99

5
1.
28

13
1.
14

06
1.
01

56
0.
86

72
0.
77

15
0.
70

41
0.
64

26
0.
58

98
0.
43

36
0.
27

34
0.
16

50
0.
11

52
0.
08

20
0.
05

08
10

0.
81

25
0.
72

66
0.
64

06
0.
55

08
0.
49

41
0.
44

87
0.
41

36
0.
38

31
0.
28

71
0.
18

16
0.
11

04
0.
07

71
0.
05

27
0.
03

52
15
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Figure 1.18: Univariate CCR Confidence Region for N(0, 1) with the Sample Size
n = 100 and Significance Level γ = 0.1
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Appendix 1.IV: MatLab Code

Main subroutine for CCR test:

1 function s i g n i f i c a n c e = CCR(mu1, C1 , mu2 , C2 , n)
2

3 % func t i on s i g n i f i c a n c e .m c a l c u l a t e s s i n g i f i c a n c e l e v e l a lpha f o r
t e s t i n g

4 % j o i n t hypo t h e s i s (mu1,C1) = (mu2,C2) wi th the sample s i z e n , us ing
CCR

5 % techn i que
6

7 % de f i n e accuracy eps
8

9 eps = 0 .0001 ;
10

11 s ign_given = 0 . 1 ; % de f i n e s i g n i f i c a n c e l e v e l
12

13 % ca l c u l a t e measure W
14

15 W = s t a t i s t i c 2 (mu1 ,C1 ,mu2 ,C2) ;
16

17 % f ind the exac t s i g n i f i c a n c e wi th b i s e c t i o n method
18

19 alpha_low = 0 . 0 0 1 ;
20 alpha_high = 0 . 9 9 9 ;
21 alpha = ( alpha_high + alpha_low ) /2 ;
22 c r i t_va l = r e g r e s s 2 (n , alpha ) ;
23 cr i t_val_high = r e g r e s s 2 (n , alpha_high ) ;
24 crit_val_low = r e g r e s s 2 (n , alpha_low ) ;
25

26 i f W < crit_val_low
27

28 % uncomment to see the t e s t i n g r e s u l t s in command window
29 disp ( ’ Hypothes is about the equa l i t y o f mean and covar iance <strong>

may be accepted</strong>’ ) ;
30 disp ( [ ’ with the s i g n i f i c a n c e p > ’ , num2str ( 0 . 9 9 ) , ’%’ ] ) ;
31

32 s i g n i f i c a n c e = 1−alpha_low ;
33 e l s e i f W > crit_val_high
34

35 % uncomment to see the t e s t i n g r e s u l t s in command window
36 disp ( ’ Hypothes is about the equa l i t y o f mean and covar iance <strong>

may not be accepted</strong>’ ) ;
37 disp ( [ ’ s i g n i f i c a n c e p < ’ , num2str ( 0 . 0 01 ) , ’%’ ] ) ;
38

39 s i g n i f i c a n c e = 1−alpha_high ;
40 else
41 while abs ( alpha_high − alpha_low ) > eps
42 i f W > cr i t_va l
43 alpha_low = alpha ;
44 alpha = ( alpha_high + alpha_low ) /2 ;
45 c r i t_va l = r e g r e s s 2 (n , alpha ) ;
46 e l s e i f W < cr i t_va l
47 alpha_high = alpha ;
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48 alpha = ( alpha_high + alpha_low ) /2 ;
49 c r i t_va l = r e g r e s s 2 (n , alpha ) ;
50 end
51 end
52

53 s i g n i f i c a n c e = 1−alpha ;
54

55 % uncomment to see the t e s t i n g r e s u l t s in command window
56 i f s i g n i f i c a n c e >sign_given
57 disp ( ’ Hypothes is about the equa l i t y o f mean and covar iance <

strong>may be accepted</strong>’ ) ;
58 disp ( [ ’ s i g n i f i c a n c e p = ’ , num2str( s i g n i f i c a n c e ∗100) , ’%’ ] ) ;
59 else
60 disp ( ’ Hypothes is about the equa l i t y o f mean and covar iance <

strong>may not be accepted</strong>’ ) ;
61 disp ( [ ’ s i g n i f i c a n c e p = ’ , num2str( s i g n i f i c a n c e ∗100) , ’%’ ] ) ;
62 end
63

64 end
65

66 end

Subroutine for calculation of the measure W̃ :

1 function W = s t a t i s t i c 2 (mu1 ,C1 ,mu2 ,C2)
2 % ca l c u l t e s the d i f f e r e n c e in areas o f two normal ly d i s t r i b u t e d random
3 % vec t o r s from R2:
4 % ( x1 ; y1 ) ~ N( [mux1 ;muy1 ] , [ sx1 ^2 , rho1∗ sx1 ∗ sy1 ; rho1∗ sx1 ∗sy1 , sy1 ^2])
5 % ( x2 ; y2 ) ~ N( [mux2 ;muy2 ] , [ sx2 ^2 , rho2∗ sx2 ∗ sy2 ; rho2∗ sx2 ∗sy2 , sy2 ^2])
6

7

8 % % Step 1 − f i nd t rans format ion c o e f f i c i e n t s to g e t r i d o f c o r r e l a t i o n
9 % C1 = [ sx1 ^2 , rho1∗ sx1 ∗ sy1 ; rho1∗ sx1 ∗sy1 , sy1 ^2 ] ;

10 % C2 = [ sx2 ^2 , rho2∗ sx2 ∗ sy2 ; rho2∗ sx2 ∗sy2 , sy2 ^2 ] ;
11 % mu1 = [mux1 ; muy1 ] ;
12 % mu2 = [mux2 ; muy2 ] ;
13 % v = Trans2 (mu1,C1 ,mu2,C2) ;
14

15 % Step 2 − c a l c u l a t e new parameters o f the Normal D i s t r i b u t i o n s to
compare

16 % (no c o r r e l a t i o n between v a r i a b l e s )
17

18 % Check f o r the c o r r e l a t i o n s f i r s t , whether we need a t rans format ion or
not

19

20 eps = 0.000001 ;% to compare r e a l numbers
21

22 i f (abs (C1(1 , 2 ) )<eps ) && (abs (C2(1 , 2 ) )<eps )
23

24 mux1 = mu1(1) ;
25 muy1 = mu1(2) ;
26 mux2 = mu2(1) ;
27 muy2 = mu2(2) ;
28 sx1 = sqrt (C1(1 , 1 ) ) ;
29 sy1 = sqrt (C1(2 , 2 ) ) ;
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30 sx2 = sqrt (C2(1 , 1 ) ) ;
31 sy2 = sqrt (C2(2 , 2 ) ) ;
32 % disp ("no trans format ion ") ;
33 else
34

35 [ nu1 ,O1,~ ,~ ] = Distr_new (mu1 ,C1 ,mu2 ,C2) ;
36

37 mux1 = nu1 (1) ;
38 muy1 = nu1 (2) ;
39 mux2 = 0 ;
40 muy2 = 0 ;
41 sx1 = sqrt (O1(1 , 1 ) ) ;
42 sy1 = sqrt (O1(2 , 2 ) ) ;
43 sx2 = 1 ;
44 sy2 = 1 ;
45 % disp (" t rans format ion ") ;
46 end
47

48

49 m = zeros (16 ,1 ) ;% check run o f a l l methods
50

51 %t i c
52 i f abs (mux1−mux2)<eps
53 mux = mux1 ;
54 clear mux1 mux2
55 i f abs ( sx1−sx2 )<eps
56 sx = sx1 ;
57 clear sx1 sx2
58 i f abs (muy1−muy2)<eps
59 muy = muy1 ;
60 clear muy1 muy2
61 i f abs ( sy1−sy2 )<eps %degenera te case
62 % disp ( ’ degenera te case ’ ) ;
63 m(16) = 1 ;
64 W = 0;
65 else %case 1 . 1 . 1
66 % disp ( ’ case 1 . 1 . 1 ’ ) ;
67 m(1) = 1 ;
68 y1 = muy − sy1∗ sy2∗sqrt ( log ( sy2 ^2/( sy1 ^2) ) /( sy2^2−sy1

^2) ) ;
69 y2 = muy + sy1∗ sy2∗sqrt ( log ( sy2 ^2/( sy1 ^2) ) /( sy2^2−sy1

^2) ) ;
70 W = 2∗abs (F( y1 ,muy, sy1 ) − F(y2 ,muy, sy1 ) − F(y1 ,muy, sy2 )

+ F(y2 ,muy, sy2 ) ) ;
71 end
72 else
73 i f abs ( sy1−sy2 )<eps %case 1 . 1 . 3
74 % disp ( ’ case 1 . 1 . 3 ’ ) ;
75 m(3) = 1 ;
76 sy = sy1 ;
77 clear sy1 sy2
78 y_star = (muy1 + muy2) /2 ;
79 W = 2∗abs (F( y_star ,muy1 , sy ) − F( y_star ,muy2 , sy ) ) ;
80 else %case 1 . 2 . 2
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81 m(6) = 1 ;
82 % disp ( ’ case 1 . 2 . 2 ’ ) ;
83 y1 = (muy1∗ sy2^2 − muy2∗ sy1 ^2) /( sy2^2 − sy1 ^2) − sy1∗ sy2

∗ . . .
84 sqrt ( ( (muy2 − muy1) /( sy2^2−sy1 ^2) )^2 + log ( sy2 ^2/(

sy1 ^2) ) /( sy2^2 − sy1 ^2) ) ;
85 y2 = (muy1∗ sy2^2 − muy2∗ sy1 ^2) /( sy2^2 − sy1 ^2) + sy1∗ sy2

∗ . . .
86 sqrt ( ( (muy2 − muy1) /( sy2^2−sy1 ^2) )^2 + log ( sy2 ^2/(

sy1 ^2) ) /( sy2^2 − sy1 ^2) ) ;
87 W = 2∗abs (F( y1 ,muy1 , sy1 ) − F(y2 ,muy1 , sy1 ) − F(y1 ,muy2 ,

sy2 ) + F(y2 ,muy2 , sy2 ) ) ;
88 end
89 end
90 else
91 i f abs (muy1−muy2)<eps
92 muy = muy1 ;
93 clear muy1 muy2
94 i f abs ( sy1−sy2 )<eps %case 1 . 1 . 2
95 % disp ( ’ case 1 . 1 . 2 ’ ) ;
96 m(2) = 1 ;
97 sy = sy1 ;
98 clear sy1 sy2
99 x1 = mux − sx1∗ sx2∗sqrt ( log ( sx2 ^2/( sx1 ^2) ) /( sx2^2−sx1

^2) ) ;
100 x2 = mux + sx1∗ sx2∗sqrt ( log ( sx2 ^2/( sx1 ^2) ) /( sx2^2−sx1

^2) ) ;
101 W = 2∗abs (F( x1 ,mux, sx1 ) − F(x2 ,mux, sx1 ) − F(x1 ,mux, sx2 )

+ F(x2 ,mux, sx2 ) ) ;
102 else %case 1 . 2 . 1
103 m(5) = 1 ;
104 % disp ( ’ case 1 . 2 . 1 ’ ) ;
105 W = 2∗abs (W1(mux,muy, sx1 , sx2 , sy1 , sy2 ) − W2(mux,muy, sx1 ,

sx2 , sy1 , sy2 ) ) ;
106 end
107 else
108 i f abs ( sy1−sy2 )<eps %case 1 . 2 . 3
109 % disp ( ’ case 1 . 2 . 3 ’ ) ;
110 m(7) = 1 ;
111 sy = sy1 ;
112 clear sy1 sy2
113 W = 2∗abs (W3(mux,muy1 ,muy2 , sx1 , sx2 , sy ) − W4(mux,muy1 ,

muy2 , sx1 , sx2 , sy ) ) ;
114 else %case 1 . 3 . 1
115 % disp ( ’ case 1 . 3 . 1 ’ ) ;
116 m(11) = 1 ;
117 W = 2∗abs (W9(mux,muy1 ,muy2 , sx1 , sx2 , sy1 , sy2 ) − W10(mux,

muy1 ,muy2 , sx1 , sx2 , sy1 , sy2 ) ) ;
118 end
119 end
120 end
121 else
122 i f abs ( sx1−sx2 )<eps
123 sx = sx1 ;
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124 clear sx1 sx2
125 i f abs (muy1−muy2)<eps
126 muy = muy1 ;
127 clear muy1 muy2
128 i f abs ( sy1−sy2 )<eps %case 1 . 1 . 4
129 % disp ( ’ case 1 . 1 . 4 ’ ) ;
130 m(4) = 1 ;
131 sy = sy1 ;
132 clear sy1 sy2
133 x_star = (mux1 + mux2) /2 ;
134 W = 2∗abs (F( x_star ,mux1 , sx ) − F( x_star ,mux2 , sx ) ) ;
135 else %case 1 . 2 . 4
136 % disp ( ’ case 1 . 2 . 4 ’ ) ;
137 m(8) = 1 ;
138 W = 2∗abs (W5(mux1 ,mux2 ,muy, sx , sy1 , sy2 ) − W6(mux1 ,mux2 ,

muy, sx , sy1 , sy2 ) ) ;
139 end
140 else
141 i f abs ( sy1−sy2 )<eps %case 1 . 2 . 6
142 % disp ( ’ case 1 . 2 . 6 ’ ) ;
143 m(10) = 1 ;
144 sy = sy1 ;
145 clear sy1 sy2
146 W = 2∗abs (W7(mux1 ,mux2 ,muy1 ,muy2 , sx , sy ) − W8(mux1 ,mux2 ,

muy1 ,muy2 , sx , sy ) ) ;
147 else %case 1 . 3 . 3
148 % disp ( ’ case 1 . 3 . 3 ’ ) ;
149 m(13) = 1 ;
150 W = 2∗abs (W13(mux1 ,mux2 ,muy1 ,muy2 , sx , sy1 , sy2 ) − W14(

mux1 ,mux2 ,muy1 ,muy2 , sx , sy1 , sy2 ) ) ;
151 end
152 end
153 else
154 i f abs (muy1−muy2)<eps
155 muy = muy1 ;
156 clear muy1 muy2
157 i f abs ( sy1−sy2 )<eps %case 1 . 2 . 5
158 % disp ( ’ case 1 . 2 . 5 ’ ) ;
159 m(9) = 1 ;
160 sy = sy1 ;
161 clear sy1 sy2
162 x1 = (mux1∗ sx2^2 − mux2∗ sx1 ^2) /( sx2^2 − sx1 ^2) − sx1∗

sx2 ∗ . . .
163 sqrt ( ( (mux2 − mux1) /( sx2^2−sx1 ^2) )^2 + log ( sx2 ^2/(

sx1 ^2) ) /( sx2^2 − sx1 ^2) ) ;
164 x2 = (mux1∗ sx2^2 − mux2∗ sx1 ^2) /( sx2^2 − sx1 ^2) + sx1∗

sx2 ∗ . . .
165 sqrt ( ( (mux2 − mux1) /( sx2^2−sx1 ^2) )^2 + log ( sx2 ^2/(

sx1 ^2) ) /( sx2^2 − sx1 ^2) ) ;
166 W = 2∗abs (F( x1 ,mux1 , sx1 ) − F(x2 ,mux1 , sx1 ) − F(x1 ,mux2 ,

sx2 ) + F(x2 ,mux2 , sx2 ) ) ;
167 else %case 1 . 3 . 2
168 % disp ( ’ case 1 . 3 . 2 ’ ) ;
169 m(12) = 1 ;
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170 W = 2∗abs (W11(mux1 ,mux2 ,muy, sx1 , sx2 , sy1 , sy2 ) − W12(mux1
,mux2 ,muy, sx1 , sx2 , sy1 , sy2 ) ) ;

171 end
172 else
173 i f abs ( sy1−sy2 )<eps %case 1 . 3 . 4
174 % disp ( ’ case 1 . 3 . 4 ’ ) ;
175 m(14) = 1 ;
176 sy = sy1 ;
177 clear sy1 sy2
178 W = 2∗abs (W15(mux1 ,mux2 ,muy1 ,muy2 , sx1 , sx2 , sy ) − W16(

mux1 ,mux2 ,muy1 ,muy2 , sx1 , sx2 , sy ) ) ;
179 else %case 1.4
180 % disp ( ’ case 1 . 4 ’ ) ;
181 m(15) = 1 ;
182 W = 2∗abs (W17(mux1 ,mux2 ,muy1 ,muy2 , sx1 , sx2 , sy1 , sy2 ) −

W18(mux1 ,mux2 ,muy1 ,muy2 , sx1 , sx2 , sy1 , sy2 ) ) ;
183 end
184 end
185 end
186 end
187 %toc
188 end

Subroutine for calculation of critical values, using derived functional form (1.42):

1 function z = r e g r e s s 2 (n , alpha )
2

3 % Note − alpha i s con f idence l e v e l
4 % using t a b l e o f c r i t i c a l v a l u e s Cri t2 t h i s f unc t i on uses a f un c t i o na l

form
5 % of (n , a lpa ) from cons t ruc t ed r e g r e s s i on (R^2=0.9992) to f i nd the

c r i t i c a l
6 % va lue f o r exac t g i ven a lpha ( con f idence l e v e l ) and sample s i z e n
7

8 load ( ’ r e s u l t s \ Reg r e s s i on_cr i t i c a l_va lue s . mat ’ , ’ beta ’ ) ;
9

10 z = exp(beta (1 ) + beta (2 ) ∗ log ( alpha ) + beta (3 ) ∗ log (n) + beta (4 ) ∗ alpha ∗
log ( alpha ) + . . .

11 beta (5 ) ∗ alpha + beta (6 ) ∗n + beta (7 ) ∗n∗ log ( alpha ) + beta (8 ) ∗ alpha ∗
log (n) + . . .

12 beta (9 ) ∗ alpha^2 + beta (10) ∗( log ( alpha ) )^2 + beta (11) ∗( log (n) )^2
+ . . .

13 beta (12) ∗exp( alpha ) + beta (13) ∗exp(−alpha ) ) ;
14

15 end

Subroutine for calculation of the transformation parameters from system (1.12):

1 function [ v ,d_mu] = Trans2 (~ , C1 , mu2 , C2)
2

3 % Ca l cu l a t e s the t rans format ion c o e f f i c i e n t s v and cons tant d_mu to
sw i t ch

4 % from the case N(mu1, C1) and N(mu2, C2) to the case o f non−co r r e t a l e d
5 % Random Vectors wi th second v a r i a b l e N(0 , I )
6 % Input data as two v e c t o r s (2∗1) o f means mu1, mu2 and two covar iance
7 % matr ices (2∗2) C1 , C2
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8 % check the uncorr by v∗C1∗v ’ and v∗C2∗v ’
9 %t i c

10

11 sx1 = sqrt (C1(1 , 1 ) ) ;
12 sx2 = sqrt (C2(1 , 1 ) ) ;
13 sy1 = sqrt (C1(2 , 2 ) ) ;
14 sy2 = sqrt (C2(2 , 2 ) ) ;
15 rho1 = C1(1 , 2 ) /( sx1∗ sy1 ) ;
16 rho2 = C2(1 , 2 ) /( sx2∗ sy2 ) ;
17

18 eps = 0 .00001 ;
19

20 i f abs ( sy1^2∗ rho2∗ sx2∗ sy2 − rho1∗ sx1∗ sy1∗ sy2 ^2)>eps
21

22 % Discriminant
23 D = ( sy1 .^2 . ∗ sx2 .^2 − sx1 .^2 . ∗ sy2 .^2) .^2 − . . .
24 4∗( rho2 . ∗ sy1 .^2 . ∗ sx2 . ∗ sy2 − rho1 . ∗ sx1 . ∗ sy1 . ∗ sy2 .^2) . . .
25 . ∗ ( rho1 . ∗ sx1 . ∗ sy1 . ∗ sx2 .^2 − rho2 . ∗ sx1 .^2 . ∗ sx2 . ∗ sy2 ) ;
26

27 % Aux i l i a r y v a r i a b l e s ( case 1)
28

29 phi1 = 1 ;
30 phi2 = ( rho1 . ∗ sx1 . ∗ sy1 . ∗ sx2 .^2 − rho2 . ∗ sx1 .^2 . ∗ sx2 . ∗ sy2 ) . . .
31 . / ( rho2 . ∗ sy1 .^2 . ∗ sx2 . ∗ sy2 − rho1 . ∗ sx1 . ∗ sy1 . ∗ sy2 .^2) ;
32 phi3 = ( sx1 .^2 . ∗ sy2 .^2 − sy1 .^2 . ∗ sx2 .^2 − sqrt (D) ) . . .
33 . / ( 2 ∗ ( rho2 . ∗ sy1 .^2 . ∗ sx2 . ∗ sy2 − rho1 . ∗ sx1 . ∗ sy1 . ∗ sy2 .^2) ) ;
34 phi4 = ( sx1 .^2 . ∗ sy2 .^2 − sy1 .^2 . ∗ sx2 .^2 + sqrt (D) ) . . .
35 . / ( 2 ∗ ( rho2 . ∗ sy1 .^2 . ∗ sx2 . ∗ sy2 − rho1 . ∗ sx1 . ∗ sy1 . ∗ sy2 .^2) ) ;
36

37

38 % % Aux i l i a r y v a r i a b l e s ( case 2)
39 %
40 % phi1 = 1;
41 % phi2 = ( rho1 .∗ sx1 .∗ sy1 .∗ sx2 .^2 − rho2 .∗ sx1 .^2 .∗ sx2 .∗ sy2 ) . . .
42 % ./ ( rho2 .∗ sy1 .^2 .∗ sx2 .∗ sy2 − rho1 .∗ sx1 .∗ sy1 .∗ sy2 ^2) ;
43 % phi3 = ( sx1 .^2 .∗ sy2 .^2 − sy1 .^2 .∗ sx2 .^2 + s q r t (D) ) . . .
44 % ./(2∗( rho2 .∗ sy1 .^2 .∗ sx2 .∗ sy2−rho1 .∗ sx1 .∗ sy1 .∗ sy2 .^2) ) ;
45 % phi4 = ( sx1 .^2 .∗ sy2 .^2 − sy1 .^2 .∗ sx2 .^2 − s q r t (D) ) . . .
46 % ./(2∗( rho2 .∗ sy1 .^2 .∗ sx2 .∗ sy2 − rho1 .∗ sx1 .∗ sy1 .∗ sy2 .^2) ) ;
47

48 % Transformation c o e f f i c i e n t s ( case 1)
49

50 b = phi4 ;
51 a = ones ( s ize (b , 1 ) , s ize (b , 2 ) ) ;
52 c = ones ( s ize (b , 1 ) , s ize (b , 2 ) ) ;
53 d = phi3 . / phi1 ;
54

55 % % Transformation c o e f f i c i e n t s ( case 2)
56 %
57 % a = phi1 ./ phi2 ;
58 % b = phi1 ./ phi3 ;
59 % c = phi2 ;
60 % d = phi2 .∗ phi3 ./ phi1 ;
61

63



62 e l s e i f abs ( sy1^2∗ sx2^2 − sx1^2∗ sy2 ^2)<eps
63

64 a = 1 ;
65 b = 1 ;
66 c = 1 ;
67 d = −(sx1 .^2 + rho1 . ∗ sx1 . ∗ sy1 ) . / ( sy1 .^2 + rho1 . ∗ sx1 . ∗ sy1 ) ;
68

69 else
70

71 sx1 = sx1+eps ;
72 a = 1 ;
73 b = 1 ;
74 c = 1 ;
75 d = −(sx1 .^2 + rho1 . ∗ sx1 . ∗ sy1 ) . / ( sy1 .^2 + rho1 . ∗ sx1 . ∗ sy1 ) ;
76

77 end
78

79 v = [ a , b ; c , d ] ;
80

81 % ad d i t i o n a l l y transform the s o l u t i o n so t ha t new covar iance matrix C2
w i l l

82 % be i d e n t i t y matrix and second vec to r s tandard normal ly d i s t r i b u t e d
83

84 C2_1 = v∗C2∗v ’ ;
85 k1 = sqrt (1/C2_1(1 , 1 ) ) ;
86 k2 = sqrt (1/C2_1(2 , 2 ) ) ;
87 r = [ k1 , 0 ; 0 , k2 ] ;
88 v = r ∗v ;
89

90 % ca l c u l a t e the cons tant term to make means o f the second Random
Var iab l e

91 % zeros
92

93 d_mu = v∗mu2 ;
94

95 %toc
96 end

Subroutines for different intersections, that define measure W̃ , according to Figure
1.3:

1 function out = W1(mux,muy, sx1 , sx2 , sy1 , sy2 )
2 % ca l c u l a t e s f i r s t par t o f the i n t e g r a l f o r the case 1 . 2 . 1
3

4 %a2 = 2∗ sx1^2∗ sx2^2∗ l o g ( sx2 ∗ sy2 /( sx1 ∗ sy1 ) ) /( sx2^2−sx1 ^2) ;
5

6 b2 = 2∗ sy1^2∗ sy2^2∗ log ( sx2∗ sy2 /( sx1∗ sy1 ) ) /( sy2^2−sy1 ^2) ;
7

8 out = i n t e g r a l 2 (@(x , y ) exp( −(((x − mux) .^2) /(2∗ sx1 ^2) + ( ( y − muy) .^2)
/(2∗ sy1 ^2) ) ) , . . .

9 mux − 4∗ sx1 , . . .
10 mux + 4∗ sx1 , . . .
11 @(x) max(muy − sqrt ( b2 − ( ( sy1^2∗ sy2 ^2∗( sx2^2−sx1 ^2) ) . . .
12 /( sx1^2∗ sx2 ^2∗( sy2^2−sy1 ^2) ) ) ∗(x − mux) .^2) . ∗ ( ( b2 − ( ( sy1^2∗ sy2

^2∗( sx2^2−sx1 ^2) ) . . .
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13 /( sx1^2∗ sx2 ^2∗( sy2^2−sy1 ^2) ) ) ∗(x − mux) .^2)>0) , muy − 4∗ sy1 )
, . . .

14 @(x) min(muy + sqrt ( b2 − ( ( sy1^2∗ sy2 ^2∗( sx2^2−sx1 ^2) ) / . . .
15 ( sx1^2∗ sx2 ^2∗( sy2^2−sy1 ^2) ) ) ∗(x − mux) .^2) . ∗ ( ( b2 − ( ( sy1^2∗ sy2

^2∗( sx2^2−sx1 ^2) ) . . .
16 /( sx1^2∗ sx2 ^2∗( sy2^2−sy1 ^2) ) ) ∗(x − mux) .^2)>0) , muy + 4∗ sy1 )

, . . .
17 ’Method ’ , ’ i t e r a t e d ’ ) ;
18

19 out = abs ( out ) /(2∗ pi∗ sx1∗ sy1 ) ;
20 %disp ( out )
21

22 end

1 function out = W2(mux,muy, sx1 , sx2 , sy1 , sy2 )
2 % ca l c u l a t e s second par t o f the i n t e g r a l f o r the case 1 . 2 . 1
3

4 a2 = 2∗ sx1^2∗ sx2^2∗ log ( sx2∗ sy2 /( sx1∗ sy1 ) ) /( sx2^2−sx1 ^2) ;
5

6 b2 = 2∗ sy1^2∗ sy2^2∗ log ( sx2∗ sy2 /( sx1∗ sy1 ) ) /( sy2^2−sy1 ^2) ;
7

8 out = i n t e g r a l 2 (@(x , y ) exp( −(((x − mux) .^2) /(2∗ sx2 ^2) + ( ( y − muy) .^2)
/(2∗ sy2 ^2) ) ) , . . .

9 mux − 4∗ sx2 , . . .
10 mux + 4∗ sx2 , . . .
11 @(x) max(muy − sqrt ( b2 − ( ( sy1^2∗ sy2 ^2∗( sx2^2−sx1 ^2) ) . . .
12 /( sx1^2∗ sx2 ^2∗( sy2^2−sy1 ^2) ) ) ∗(x−mux) .^2) . ∗ ( ( b2 − ( ( sy1^2∗ sy2

^2∗( sx2^2−sx1 ^2) ) . . .
13 /( sx1^2∗ sx2 ^2∗( sy2^2−sy1 ^2) ) ) ∗(x − mux) .^2)>0) , muy − 4∗ sy2 )

, . . .
14 @(x) min(muy + sqrt ( b2 − ( ( sy1^2∗ sy2 ^2∗( sx2^2−sx1 ^2) ) . . .
15 /( sx1^2∗ sx2 ^2∗( sy2^2−sy1 ^2) ) ) ∗(x−mux) .^2) . ∗ ( ( b2 − ( ( sy1^2∗ sy2

^2∗( sx2^2−sx1 ^2) ) . . .
16 /( sx1^2∗ sx2 ^2∗( sy2^2−sy1 ^2) ) ) ∗(x − mux) .^2)>0) , muy + 4∗ sy2 )

, . . .
17 ’Method ’ , ’ i t e r a t e d ’ ) ;
18

19 out = abs ( out ) /(2∗ pi∗ sx2∗ sy2 ) ;
20 %disp ( out )
21

22 end

1 function out = W3(mux,muy1 ,muy2 , sx1 , sx2 , sy )
2 % ca l c u l a t e s f i r s t par t o f the i n t e g r a l f o r the case 1 . 2 . 3
3

4 alpha = ( sx2^2 − sx1 ^2)∗ sy ^2/(2∗ sx1^2∗ sx2 ^2∗(muy1 − muy2) ) ;
5

6 c = (muy1 + muy2) /2 + sy^2∗ log ( sx1/ sx2 ) /(muy1 − muy2) ;
7

8 out = i n t e g r a l 2 (@(x , y ) exp( −(((x − mux) .^2) /(2∗ sx1 ^2) + ( ( y − muy1) .^2)
/(2∗ sy ^2) ) ) , . . .

9 mux − 4∗ sx1 , . . .
10 mux + 4∗ sx1 , . . .
11 @(x) max( alpha . ∗ ( x − mux) .^2 + c , muy1 − 4∗ sy ) , . . .
12 muy1 + 4∗ sign ( alpha ) ∗sy , . . .
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13 ’Method ’ , ’ i t e r a t e d ’ ) ;
14

15 out = abs ( out ) /(2∗ pi∗ sx1∗ sy ) ; % we take a b s o l u t e va lue o f out , because
wi th

16 % muy2>muy1 −> alpha<0 −> t a i l s o f
parabo la go

17 % down and we have inv e r s e i n t e g r a t i o n
i n t e r v a l

18

19 %disp ( out ) ;
20

21 end

1 function out = W4(mux,muy1 ,muy2 , sx1 , sx2 , sy )
2 % ca l c u l a t e s second par t o f the i n t e g r a l f o r the case 1 . 2 . 3
3

4 alpha = ( sx2^2 − sx1 ^2)∗ sy ^2/(2∗ sx1^2∗ sx2 ^2∗(muy1 − muy2) ) ;
5

6 c = (muy1 + muy2) /2 + sy^2∗ log ( sx1/ sx2 ) /(muy1 − muy2) ;
7

8 out = i n t e g r a l 2 (@(x , y ) exp( −(((x − mux) .^2) /(2∗ sx2 ^2) + ( ( y − muy2) .^2)
/(2∗ sy ^2) ) ) , . . .

9 mux − 4∗ sx2 , . . .
10 mux + 4∗ sx2 , . . .
11 @(x) max( alpha . ∗ ( x − mux) .^2 + c , muy2 − 4∗ sy ) , . . .
12 muy2 + 4∗ sign ( alpha ) ∗sy , . . .
13 ’Method ’ , ’ i t e r a t e d ’ ) ;
14

15 out = abs ( out ) /(2∗ pi∗ sx2∗ sy ) ; % we take a b s o l u t e va lue o f out , because
wi th

16 % muy2>muy1 −> alpha<0 −> t a i l s o f
parabo la go

17 % down and we have inv e r s e i n t e g r a t i o n
i n t e r v a l

18

19 %disp ( out ) ;
20

21 end

1 function out = W5(mux1 ,mux2 ,muy, sx , sy1 , sy2 )
2 % ca l c u l a t e s f i r s t par t o f the i n t e g r a l f o r the case 1 . 2 . 4
3

4 beta = ( sy2^2 − sy1 ^2)∗ sx ^2/(2∗ sy1^2∗ sy2 ^2∗(mux1 − mux2) ) ;
5

6 d = (mux1 + mux2) /2 + sx^2∗ log ( sy1/ sy2 ) /(mux1 − mux2) ;
7

8 out = i n t e g r a l 2 (@(x , y ) exp(−((x − mux1) .^2) /(2∗ sx ^2) − ( ( y − muy) .^2)
/(2∗ sy1 ^2) ) , . . .

9 max(d , mux1 − 4∗ sx ) , . . .
10 mux1 + 4∗ sign (beta ) ∗sx , . . .
11 @(x) max(muy − sqrt ( ( x−d) /beta ) , muy − 4∗ sy1 ) , . . .
12 @(x) min(muy +sqrt ( ( x−d) /beta ) , muy + 4∗ sy1 ) , . . .
13 ’Method ’ , ’ i t e r a t e d ’ ) ;
14
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15 out = abs ( out ) /(2∗ pi∗ sx∗ sy1 ) ; % we take a b s o l u t e va lue o f out , because
wi th

16 % mux2>mux1 −> beta <0 and we have in v e r s e
17 % in t e g r a t i o n i n t e r v a l
18

19 %disp ( out ) ;
20

21 end

1 function out = W6(mux1 ,mux2 ,muy, sx , sy1 , sy2 )
2 % ca l c u l a t e s second par t o f the i n t e g r a l f o r the case 1 . 2 . 4
3

4 beta = ( sy2^2 − sy1 ^2)∗ sx ^2/(2∗ sy1^2∗ sy2 ^2∗(mux1 − mux2) ) ;
5

6 d = (mux1 + mux2) /2 + sx^2∗ log ( sy1/ sy2 ) /(mux1 − mux2) ;
7

8 out = i n t e g r a l 2 (@(x , y ) exp(−((x − mux2) .^2) /(2∗ sx ^2) − ( ( y − muy) .^2)
/(2∗ sy2 ^2) ) , . . .

9 max(d , mux2 − 4∗ sx ) , . . .
10 mux2 + 4∗ sign (beta ) ∗sx , . . .
11 @(x) max(muy − sqrt ( ( x−d) /beta ) , muy − 4∗ sy2 ) , . . .
12 @(x) min(muy +sqrt ( ( x−d) /beta ) , muy + 4∗ sy2 ) , . . .
13 ’Method ’ , ’ i t e r a t e d ’ ) ;
14

15 out = abs ( out ) /(2∗ pi∗ sx∗ sy2 ) ; % we take a b s o l u t e va lue o f out , because
wi th

16 % mux2>mux1 −> beta <0, we have in v e r s e
17 % in t e g r a t i o n i n t e r v a l
18

19 %disp ( out ) ;
20

21 end

1 function out = W7(mux1 ,mux2 ,muy1 ,muy2 , sx , sy )
2 % ca l c u l a t e s f i r s t par t o f the i n t e g r a l f o r the case 1 . 2 . 6
3

4 k = −sy ^2∗(mux2 − mux1) /( sx ^2∗(muy2 − muy1) ) ;
5

6 b = (mux2^2 − mux1^2)∗ sy ^2/(2∗(muy2 − muy1) ∗ sx ^2) + (muy1 + muy2) /2 ;
7

8 out = i n t e g r a l 2 (@(x , y ) exp( −(((x − mux1) .^2) /(2∗ sx ^2) + ( ( y − muy1) .^2)
/(2∗ sy ^2) ) ) , . . .

9 mux1 − 4∗sx , . . .
10 mux1 + 4∗sx , . . .
11 muy1 − 4∗sy , . . .
12 @(x) min( k∗x + b , muy1 + 4∗ sy ) , . . .
13 ’Method ’ , ’ i t e r a t e d ’ ) ;
14

15 % out = i n t e g r a l 2 (@(x , y ) exp (−((( x − mux1) .^2) /(2∗ sx ^2) + (( y − muy1)
.^2) / . . .

16 % (2∗ sy ^2) ) ) , mux1−5∗sx , mux1+5∗sx , @( x ) max( k∗x+b ,mux1−5∗sx ) , mux1
+5∗sx ) ;

17

18

19 out = out /(2∗ pi∗ sx∗ sy ) ;
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20

21 %disp ( out ) ;
22

23 end

1 function out = W8(mux1 ,mux2 ,muy1 ,muy2 , sx , sy )
2 % ca l c u l a t e s second par t o f the i n t e g r a l f o r the case 1 . 2 . 6
3

4 k = −sy ^2∗(mux2 − mux1) /( sx ^2∗(muy2 − muy1) ) ;
5

6 b = (mux2^2 − mux1^2)∗ sy ^2/(2∗(muy2 − muy1) ∗ sx ^2) + (muy1 + muy2) /2 ;
7

8 out = i n t e g r a l 2 (@(x , y ) exp( −(((x − mux2) .^2) /(2∗ sx ^2) + ( ( y − muy2) .^2)
/(2∗ sy ^2) ) ) , . . .

9 mux2 − 4∗sx , . . .
10 mux2 + 4∗sx , . . .
11 muy2 − 4∗sy , . . .
12 @(x) min( k∗x + b , muy2 + 4∗ sy ) , . . .
13 ’Method ’ , ’ i t e r a t e d ’ ) ;
14

15 % out = i n t e g r a l 2 (@(x , y ) exp (−((( x − mux2) .^2) /(2∗ sx ^2) + (( y − muy2)
.^2) / . . .

16 % (2∗ sy ^2) ) ) , mux2−5∗sx , mux2+5∗sx , @( x ) max( k∗x + b , muy2−5∗sy ) ,
muy2+5∗sy , ’Method ’ , ’ i t e r a t e d ’ ) ;

17

18

19 out = out /(2∗ pi∗ sx∗ sy ) ;
20

21 %disp ( out ) ;
22

23 end

1 function out = W9(mux,muy1 ,muy2 , sx1 , sx2 , sy1 , sy2 )
2 % ca l c u l a t e s f i r s t par t o f the i n t e g r a l f o r the case 1 . 3 . 1
3

4 a = ( sx2^2 − sx1 ^2) /( sx1^2∗ sx2 ^2) ;
5

6 b = ( sy2^2 − sy1 ^2) /( sy1^2∗ sy2 ^2) ;
7

8 c = ( (muy2 − muy1) ^2) /( sy2^2 − sy1 ^2) + log ( ( sx2^2∗ sy2 ^2) /( sx1^2∗ sy1 ^2)
) ;

9

10 out = i n t e g r a l 2 (@(x , y ) exp( −(((x − mux) .^2) /(2∗ sx1 ^2) + ( ( y − muy1) .^2)
/(2∗ sy1 ^2) ) ) , . . .

11 mux − 4∗ sx1 , . . .
12 mux + 4∗ sx1 , . . .
13 @(x) max( (muy1∗ sy2^2 − muy2∗ sy1 ^2) /( sy2^2 − sy1 ^2) − . . .
14 sqrt ( c/b − a ∗( ( x−mux) .^2) /b) . ∗ ( ( c/b − a ∗( ( x−mux) .^2) /b)>0) ,

muy1 − 4∗ sy1 ) , . . .
15 @(x) min( (muy1∗ sy2^2 − muy2∗ sy1 ^2) /( sy2^2 − sy1 ^2) + . . .
16 sqrt ( c/b − a ∗( ( x−mux) .^2) /b) . ∗ ( ( c/b − a ∗( ( x−mux) .^2) /b)>0) ,

muy1 + 4∗ sy1 ) , . . .
17 ’Method ’ , ’ i t e r a t e d ’ ) ;
18

19 out = out /(2∗ pi∗ sx1∗ sy1 ) ;

68



20

21 %disp ( out ) ;
22

23 end

1 function out = W10(mux,muy1 ,muy2 , sx1 , sx2 , sy1 , sy2 )
2 % ca l c u l a t e s second par t o f the i n t e g r a l f o r the case 1 . 3 . 1
3

4 a = ( sx2^2 − sx1 ^2) /( sx1^2∗ sx2 ^2) ;
5

6 b = ( sy2^2 − sy1 ^2) /( sy1^2∗ sy2 ^2) ;
7

8 c = ( (muy2 − muy1) ^2) /( sy2^2 − sy1 ^2) + log ( ( sx2^2∗ sy2 ^2) /( sx1^2∗ sy1 ^2)
) ;

9

10 out = i n t e g r a l 2 (@(x , y ) exp( −(((x − mux) .^2) /(2∗ sx2 ^2) + ( ( y − muy2) .^2)
/(2∗ sy2 ^2) ) ) , . . .

11 mux − 4∗ sx2 , . . .
12 mux + 4∗ sx2 , . . .
13 @(x) max( (muy1∗ sy2^2 − muy2∗ sy1 ^2) /( sy2^2 − sy1 ^2) − . . .
14 sqrt ( c/b − a ∗( ( x−mux) .^2) /b) . ∗ ( ( c/b − a ∗( ( x−mux) .^2) /b)>0) ,

muy2 − 4∗ sy2 ) , . . .
15 @(x) min( (muy1∗ sy2^2 − muy2∗ sy1 ^2) /( sy2^2 − sy1 ^2) + . . .
16 sqrt ( c/b − a ∗( ( x−mux) .^2) /b) . ∗ ( ( c/b − a ∗( ( x−mux) .^2) /b)>0) ,

muy2 + 4∗ sy2 ) , . . .
17 ’Method ’ , ’ i t e r a t e d ’ ) ;
18

19 out = out /(2∗ pi∗ sx2∗ sy2 ) ;
20

21 %disp ( out ) ;
22

23 end

1 function out = W11(mux1 ,mux2 ,muy, sx1 , sx2 , sy1 , sy2 )
2 % ca l c u l a t e s f i r s t par t o f the i n t e g r a l f o r the case 1 . 3 . 2
3

4 a = ( sx2^2 − sx1 ^2) /( sx1^2∗ sx2 ^2) ;
5

6 b = ( sy2^2 − sy1 ^2) /( sy1^2∗ sy2 ^2) ;
7

8 c = ( (mux2 − mux1) ^2) /( sx2^2 − sx1 ^2) + log ( ( sx2^2∗ sy2 ^2) /( sx1^2∗ sy1 ^2)
) ;

9

10 out = i n t e g r a l 2 (@(x , y ) exp( −(((x − mux1) .^2) /(2∗ sx1 ^2) + ( ( y − muy) .^2)
/(2∗ sy1 ^2) ) ) , . . .

11 mux1 − 4∗ sx1 , . . .
12 mux1 + 4∗ sx1 , . . .
13 @(x) max(muy − sqrt ( c/b − a ∗( ( x−(mux1∗ sx2^2−mux2∗ sx1 ^2) /( sx2^2−sx1

^2) ) .^2) /b) . ∗ . . .
14 ( ( c/b − a ∗( ( x−(mux1∗ sx2^2−mux2∗ sx1 ^2) /( sx2^2−sx1 ^2) ) .^2) /b)>0) ,

muy − 4∗ sy1 ) , . . .
15 @(x) min(muy + sqrt ( c/b − a ∗( ( x−(mux1∗ sx2^2−mux2∗ sx1 ^2) /( sx2^2−sx1

^2) ) .^2) /b) . ∗ . . .
16 ( ( c/b − a ∗( ( x−(mux1∗ sx2^2−mux2∗ sx1 ^2) /( sx2^2−sx1 ^2) ) .^2) /b)>0) ,

muy + 4∗ sy1 ) , . . .
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17 ’Method ’ , ’ i t e r a t e d ’ ) ;
18

19 out = out /(2∗ pi∗ sx1∗ sy1 ) ;
20

21 %disp ( out ) ;
22

23 end

1 function out = W12(mux1 ,mux2 ,muy, sx1 , sx2 , sy1 , sy2 )
2 % ca l c u l a t e s second par t o f the i n t e g r a l f o r the case 1 . 3 . 2
3

4 a = ( sx2^2 − sx1 ^2) /( sx1^2∗ sx2 ^2) ;
5

6 b = ( sy2^2 − sy1 ^2) /( sy1^2∗ sy2 ^2) ;
7

8 c = ( (mux2 − mux1) ^2) /( sx2^2 − sx1 ^2) + log ( ( sx2^2∗ sy2 ^2) /( sx1^2∗ sy1 ^2)
) ;

9

10 out = i n t e g r a l 2 (@(x , y ) exp( −(((x − mux2) .^2) /(2∗ sx2 ^2) + ( ( y − muy) .^2)
/(2∗ sy2 ^2) ) ) , . . .

11 mux2 − 4∗ sx2 , . . .
12 mux2 + 4∗ sx2 , . . .
13 @(x) max(muy − sqrt ( c/b − a ∗( ( x−(mux1∗ sx2^2−mux2∗ sx1 ^2) /( sx2^2−sx1

^2) ) .^2) /b) . ∗ . . .
14 ( ( c/b − a ∗( ( x−(mux1∗ sx2^2−mux2∗ sx1 ^2) /( sx2^2−sx1 ^2) ) .^2) /b)>0) ,

muy − 4∗ sy2 ) , . . .
15 @(x) min(muy + sqrt ( c/b − a ∗( ( x−(mux1∗ sx2^2−mux2∗ sx1 ^2) /( sx2^2−sx1

^2) ) .^2) /b) . ∗ . . .
16 ( ( c/b − a ∗( ( x−(mux1∗ sx2^2−mux2∗ sx1 ^2) /( sx2^2−sx1 ^2) ) .^2) /b)>0) ,

muy + 4∗ sy2 ) , . . .
17 ’Method ’ , ’ i t e r a t e d ’ ) ;
18

19 out = out /(2∗ pi∗ sx2∗ sy2 ) ;
20

21 %disp ( out ) ;
22

23 end

1 function out = W13(mux1 ,mux2 ,muy1 ,muy2 , sx , sy1 , sy2 )
2 % ca l c u l a t e s f i r s t par t o f the i n t e g r a l f o r the case 1 . 3 . 3
3

4 k = ( sy2^2 − sy1 ^2)∗ sx ^2/(2∗ sy1^2∗ sy2 ^2∗(mux1 − mux2) ) ;
5

6 a = (muy1∗ sy2^2 − muy2∗ sy1 ^2) /( sy2^2 − sy1 ^2) ;
7

8 b = sx ^2∗((muy2 − muy1) ^2) /(2∗( sy2^2 − sy1 ^2) ∗(mux2 − mux1) )+(mux1 +
mux2) /2 + sx^2∗ log ( sy2/ sy1 ) /(mux2 − mux1) ;

9

10 out = i n t e g r a l 2 (@(x , y ) exp( −(((x − mux1) .^2) /(2∗ sx ^2) + ( ( y − muy1) .^2)
/(2∗ sy1 ^2) ) ) , . . .

11 max(b , mux1 − 4∗ sx ) , . . .
12 mux1 + 4∗ sign ( k ) ∗sx , . . .
13 @(x) max( a − sqrt ( ( x − b) /k ) , muy1 − 4∗ sy1 ) , . . .
14 @(x) min( a + sqrt ( ( x − b) /k ) , muy1 + 4∗ sy1 ) , . . .
15 ’Method ’ , ’ i t e r a t e d ’ ) ;
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16

17 out = abs ( out ) /(2∗ pi∗ sx∗ sy1 ) ; % we take a b s o l u t e va lue o f out , because
wi th

18 % mux2>mux1 −> beta <0 and we have in v e r s e
19 % in t e g r a t i o n i n t e r v a l
20

21 %disp ( out ) ;
22

23 end

1 function out = W14(mux1 ,mux2 ,muy1 ,muy2 , sx , sy1 , sy2 )
2 % ca l c u l a t e s second par t o f the i n t e g r a l f o r the case 1 . 3 . 3
3

4 k = ( sy2^2 − sy1 ^2)∗ sx ^2/(2∗ sy1^2∗ sy2 ^2∗(mux1 − mux2) ) ;
5

6 a = (muy1∗ sy2^2 − muy2∗ sy1 ^2) /( sy2^2 − sy1 ^2) ;
7

8 b = sx ^2∗((muy2 − muy1) ^2) /(2∗( sy2^2 − sy1 ^2) ∗(mux2 − mux1) )+(mux1 +
mux2) /2 + sx^2∗ log ( sy2/ sy1 ) /(mux2 − mux1) ;

9

10 out = i n t e g r a l 2 (@(x , y ) exp( −(((x − mux2) .^2) /(2∗ sx ^2) + ( ( y − muy2) .^2)
/(2∗ sy2 ^2) ) ) , . . .

11 max(b , mux2 − 4∗ sx ) , . . .
12 mux2 + 4∗ sign ( k ) ∗sx , . . .
13 @(x) max( a − sqrt ( ( x − b) /k ) , muy2 − 4∗ sy2 ) , . . .
14 @(x) min( a + sqrt ( ( x − b) /k ) , muy2 + 4∗ sy2 ) , . . .
15 ’Method ’ , ’ i t e r a t e d ’ ) ;
16

17 out = abs ( out ) /(2∗ pi∗ sx∗ sy2 ) ; % we take a b s o l u t e va lue o f out , because
wi th

18 % mux2>mux1 −> beta <0 and we have in v e r s e
19 % in t e g r a t i o n i n t e r v a l
20

21 %disp ( out ) ;
22

23 end

1 function out = W15(mux1 ,mux2 ,muy1 ,muy2 , sx1 , sx2 , sy )
2 % ca l c u l a t e s f i r s t par t o f the i n t e g r a l f o r the case 1 . 3 . 4
3

4 k = ( sx2^2 − sx1 ^2)∗ sy ^2/(2∗ sx1^2∗ sx2 ^2∗(muy1 − muy2) ) ;
5

6 a = (mux1∗ sx2^2 − mux2∗ sx1 ^2) /( sx2^2 − sx1 ^2) ;
7

8 b = sy ^2∗((mux2 − mux1) ^2) /(2∗( sx2^2 − sx1 ^2) ∗(muy2 − muy1) )+(muy1 +
muy2) /2 + sy^2∗ log ( sx2/ sx1 ) /(muy2 − muy1) ;

9

10 out = i n t e g r a l 2 (@(x , y ) exp( −(((x − mux1) .^2) /(2∗ sx1 ^2) + ( ( y − muy1)
.^2) /(2∗ sy ^2) ) ) , . . .

11 mux1 − 4∗ sx1 , . . .
12 mux1 + 4∗ sx1 , . . .
13 @(x) min( k∗(x − a ) .^2 + b , muy1 − 4∗ sy ) , . . .
14 @(x) min( k∗(x − a ) .^2 + b , muy1 + 4∗ sy ) , . . .
15 ’Method ’ , ’ i t e r a t e d ’ ) ;
16
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17 out = abs ( out ) /(2∗ pi∗ sx1∗ sy ) ; % we take a b s o l u t e va lue o f out , because
wi th

18 % mux2>mux1 −> beta <0 and we have in v e r s e
19 % in t e g r a t i o n i n t e r v a l
20

21 %disp ( out ) ;
22

23 end

1 function out = W16(mux1 ,mux2 ,muy1 ,muy2 , sx1 , sx2 , sy )
2 % ca l c u l a t e s second par t o f the i n t e g r a l f o r the case 1 . 3 . 4
3

4 k = ( sx2^2 − sx1 ^2)∗ sy ^2/(2∗ sx1^2∗ sx2 ^2∗(muy1 − muy2) ) ;
5

6 a = (mux1∗ sx2^2 − mux2∗ sx1 ^2) /( sx2^2 − sx1 ^2) ;
7

8 b = sy ^2∗((mux2 − mux1) ^2) /(2∗( sx2^2 − sx1 ^2) ∗(muy2 − muy1) )+(muy1 +
muy2) /2 + sy^2∗ log ( sx2/ sx1 ) /(muy2 − muy1) ;

9

10 out = i n t e g r a l 2 (@(x , y ) exp( −(((x − mux2) .^2) /(2∗ sx2 ^2) + ( ( y − muy2
) .^2) /(2∗ sy ^2) ) ) , . . .

11 mux2 − 4∗ sx2 , . . .
12 mux2 + 4∗ sx2 , . . .
13 @(x) min( k∗(x − a ) .^2 + b , muy2 − 4∗ sy ) , . . .
14 @(x) min( k∗(x − a ) .^2 + b , muy2 + 4∗ sy ) , . . .
15 ’Method ’ , ’ i t e r a t e d ’ ) ;
16

17 out = abs ( out ) /(2∗ pi∗ sx2∗ sy ) ; % we take a b s o l u t e va lue o f out , because
wi th

18 % mux2>mux1 −> beta <0 and we have in v e r s e
19 % in t e g r a t i o n i n t e r v a l
20

21 %disp ( out ) ;
22

23 end

1 function out = W17(mux1 ,mux2 ,muy1 ,muy2 , sx1 , sx2 , sy1 , sy2 )
2 % ca l c u l a t e s f i r s t par t o f the i n t e g r a l f o r the case 1.4
3

4 ax = ( sx2^2 − sx1 ^2) /( sx1^2∗ sx2 ^2) ;
5

6 ay = ( sy2^2 − sy1 ^2) /( sy1^2∗ sy2 ^2) ;
7

8 bx = (mux1∗ sx2^2 − mux2∗ sx1 ^2) /( sx2^2 − sx1 ^2) ;
9

10 by = (muy1∗ sy2^2 − muy2∗ sy1 ^2) /( sy2^2 − sy1 ^2) ;
11

12 cx = ( (mux2 − mux1) ^2) /( sx2^2 − sx1 ^2) ;
13

14 cy = ( (muy2 − muy1) ^2) /( sy2^2 − sy1 ^2) ;
15

16 d = log ( ( sx2^2∗ sy2 ^2) /( sx1^2∗ sy1 ^2) ) ;
17

18 out = i n t e g r a l 2 (@(x , y ) exp( −(((x − mux1) .^2) /(2∗ sx1 ^2) + ( ( y − muy1)
.^2) /(2∗ sy1 ^2) ) ) , . . .
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19 mux1 − 4∗ sx1 , . . .
20 mux1 + 4∗ sx1 , . . .
21 @(x) max( by − sqrt ( ( cx + cy + d) /ay − ax ∗( ( x − bx ) .^2) /ay ) . ∗ . . .
22 ( ( ( cx + cy + d) /ay − ax ∗( ( x − bx ) .^2) /ay )>0) , muy1 − 4∗ sy1 ) , . . .
23 @(x) min( by + sqrt ( ( cx + cy + d) /ay − ax ∗( ( x − bx ) .^2) /ay ) . ∗ . . .
24 ( ( ( cx + cy + d) /ay − ax ∗( ( x − bx ) .^2) /ay )>0) , muy1 + 4∗ sy1 ) , . . .
25 ’Method ’ , ’ i t e r a t e d ’ ) ;
26

27 out = out /(2∗ pi∗ sx1∗ sy1 ) ;
28

29 %disp ( out ) ;
30

31 end

1 function out = W18(mux1 ,mux2 ,muy1 ,muy2 , sx1 , sx2 , sy1 , sy2 )
2 % ca l c u l a t e s second par t o f the i n t e g r a l f o r the case 1 .4
3

4 ax = ( sx2^2 − sx1 ^2) /( sx1^2∗ sx2 ^2) ;
5

6 ay = ( sy2^2 − sy1 ^2) /( sy1^2∗ sy2 ^2) ;
7

8 bx = (mux1∗ sx2^2 − mux2∗ sx1 ^2) /( sx2^2 − sx1 ^2) ;
9

10 by = (muy1∗ sy2^2 − muy2∗ sy1 ^2) /( sy2^2 − sy1 ^2) ;
11

12 cx = ( (mux2 − mux1) ^2) /( sx2^2 − sx1 ^2) ;
13

14 cy = ( (muy2 − muy1) ^2) /( sy2^2 − sy1 ^2) ;
15

16 d = log ( ( sx2^2∗ sy2 ^2) /( sx1^2∗ sy1 ^2) ) ;
17

18 out = i n t e g r a l 2 (@(x , y ) exp( −(((x − mux2) .^2) /(2∗ sx2 ^2) + ( ( y − muy2)
.^2) /(2∗ sy2 ^2) ) ) , . . .

19 mux2 − 4∗ sx2 , . . .
20 mux2 + 4∗ sx2 , . . .
21 @(x) max( by − sqrt ( ( cx + cy + d) /ay − ax ∗( ( x − bx ) .^2) /ay ) . ∗ . . .
22 ( ( ( cx + cy + d) /ay − ax ∗( ( x − bx ) .^2) /ay )>0) , muy2 − 4∗ sy2 ) , . . .
23 @(x) min( by + sqrt ( ( cx + cy + d) /ay − ax ∗( ( x − bx ) .^2) /ay ) . ∗ . . .
24 ( ( ( cx + cy + d) /ay − ax ∗( ( x − bx ) .^2) /ay )>0) , muy2 + 4∗ sy2 ) , . . .
25 ’Method ’ , ’ i t e r a t e d ’ ) ;
26

27 out = out /(2∗ pi∗ sx2∗ sy2 ) ;
28

29 %disp ( out ) ;
30

31 end

Subroutine for application of the CCR method in the SUR model:

1 % Example SUR model
2

3 clear a l l
4 % se t up model parameters
5 G=5; % number o f equa t i ons
6 k=3; % number o f r e g r e s s o r s
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7 N = 300 ; % number o f o b s e r va t i on s
8

9 % error term u~N(mu,Omega)
10 Omega = [1 0 .5 −0.7 0 .24 −0.33;
11 0 .5 1 −0.2 0 .45 0 . 2 8 ;
12 −0.7 −0.2 1 0 .25 0 . 1 7 ;
13 0 .24 0 .45 0 .25 1 0 . 3 5 ;
14 −0.33 0 .28 0 .17 −1.65 1 ] ;
15

16

17 % d = rand (G,1 ) ; % The d iagona l va l u e s
18 % t = t r i u ( bsx fun (@min , d , d . ’ ) .∗ rand (G) ,1) ; % The upper t r i a n g l a r random

va lu e s
19 % Omega = diag (d )+t+t . ’ ; % Put them to g e t h e r in a symmetric matrix
20 % for i =1:G
21 % Omega( i , i ) = 1 ;
22 % end
23

24

25 mu = zeros (G, 1 ) ;
26 u = mvnrnd(mu,Omega ,N) ;
27

28 % reg r e s s o r s f o r SUR
29 x_hat = rand (G∗N, k−1) ;
30 x_hat = [ ones (G∗N, 1 ) x_hat ] ;
31 X = zeros (G∗N,G∗k ) ;
32 for i =1:G
33 X(N∗( i −1)+1:N∗ i , k∗( i −1)+1:k∗ i ) = x_hat (N∗( i −1)+1:N∗ i , : ) ;
34 end
35

36 % % reg r e s s o r s f o r pane l
37 % x_hat = rand (N, k−1) ;
38 % x_hat = [ ones (N,1 ) x_hat ] ;
39

40

41 % rea l va l u e s o f the parameters
42 beta = round(rand (G∗k , 1 ) ∗10−5) ;
43

44 % ve c t o r i z e error terms f o r the model
45 v = zeros (N∗G, 1 ) ; % error term in vec t o r form
46 for i =1:G
47 for j =1:N
48 v (N∗( i −1)+j ) = u( j , i ) ;
49 end
50 end
51

52 % rea l model
53 y = X∗beta+v ;
54

55 % es t imate us ing SOLS
56 b = (X’∗X) \X’∗ y ;
57

58 % es t imate r e s i d u a l s
59 v_hat = y − X∗b ; % re s i d u a l s in vec t o r form

74



60

61 % separa t e r e s i d u a l s f o r each equat ion ( r e v e r s e v e c t o r i z a t i o n )
62 u_hat = zeros (N,G) ; % re s i d u a l s in martix form
63 for i =1:G
64 for j =1:N
65 u_hat ( j , i ) = v_hat (N∗( i −1)+j ) ;
66 end
67 end
68

69 Omega_hat = u_hat ’ ∗ u_hat/(N−G∗k) ;% est imated covar iance matrix
70 mu_hat = mean( u_hat ) ’ ;% est imated mean
71

72 % for i =1:G
73 % for j=i +1:G
74 % CCR(mu_hat ( [ i , j ] ) , Omega_hat ( [ i , j ] , [ i , j ] ) , mu( [ i , j ] ) , Omega ( [

i , j ] , [ i , j ] ) , N)
75 % end
76 % end
77

78 %disp ( ’ wi th zero co r r e l a t i on ’ ) ;
79 l =1;
80 p = zeros ( s ize (Omega) ) ;
81 for i =1:G
82 for j=i +1:G
83 disp ( [ ’ Case ’ num2str( l ) ’ : equat ion ’ ’<strong>’ num2str( i ) ’

</strong>’ ’ with equat ion ’ ’<strong>’ num2str( j ) ’</strong
>’ ] ) ;

84 p( i , j ) = CCR(mu_hat ( [ i , j ] ) , Omega_hat ( [ i , j ] , [ i , j ] ) , mu( [ i , j ] ) ,
[ Omega_hat( i , i ) , 0 ; 0 , Omega_hat( j , j ) ] , N) ;

85 l=l +1;
86 end
87 end
88

89

90 % disp ( ’ wi th es t imated mean ’ ) ;
91 % for i =1:G
92 % for j=i +1:G
93 % CCR(mu_hat ( [ i , j ] ) , Omega_hat ( [ i , j ] , [ i , j ] ) , mu_hat ( [ i , j ] ) ,

Omega ( [ i , j ] , [ i , j ] ) , N)
94 % end
95 % end
96 %
97 % disp ( ’ wi th es t imated mean and covariance ’ ) ;
98 % for i =1:G
99 % for j=i +1:G

100 % CCR(mu_hat ( [ i , j ] ) , Omega_hat ( [ i , j ] , [ i , j ] ) , mu_hat ( [ i , j ] ) , [
Omega_hat( i , i ) , Omega( i , j ) ; Omega( i , j ) , Omega_hat( j , j ) ] , N)

101 % end
102 % end
103

104

105 % es t imate wi th GLS and FGLS
106

107 b_GLS = (X’∗kron ( inv (Omega) , speye (N) ) ∗X) \(X’ ∗kron ( inv (Omega) , speye (N) ) ∗
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y ) ;
108 b_GLS = f u l l (b_GLS) ;
109 v_hat_GLS = y − X∗b_GLS;
110

111 b_FGLS = (X’∗kron ( inv (Omega_hat) , speye (N) ) ∗X) \(X’ ∗kron ( inv (Omega_hat) ,
speye (N) ) ∗y ) ;

112 b_FGLS = f u l l (b_FGLS) ;
113 v_hat_FGLS = y − X∗b_FGLS;
114

115 % Ta to compare the q u a l i t y o f e s t ima t ion by OLS, GLS and FGLS
116

117 VarNames = { ’ beta ’ , ’ b ’ , ’b_GLS ’ , ’b_FGLS ’ , ’ di f ference_OLS ’ , ’
dif ference_GLS ’ , ’ difference_FGLS ’ } ;

118 T = tab l e (beta , b , b_GLS, b_FGLS, abs (beta−b) , abs (beta − b_GLS) , abs (
beta − b_FGLS) , ’ VariableNames ’ , VarNames ) ;

119 disp (T) ;
120

121 % Sum of squared d i f f e r e n c e s between r e a l and es t imated r e g r e s s o r s
122

123 diff_OLS = (beta − b) ’∗ (beta − b) ;
124 diff_GLS = (beta − b_GLS) ’∗ (beta − b_GLS) ;
125 diff_FGLS = (beta − b_FGLS) ’∗ (beta − b_FGLS) ;
126

127 disp ( [ ’ t o t a l d ev i a t i on from r e a l beta in OLS i s : ’ num2str( diff_OLS ) ] ) ;
128 disp ( [ ’ t o t a l d ev i a t i on from r e a l beta in GLS i s : ’ num2str( diff_GLS ) ] ) ;
129 disp ( [ ’ t o t a l d ev i a t i on from r e a l beta in FGLS i s : ’ num2str( diff_FGLS )

] ) ;
130

131 disp ( [ ’GLS improved es t imat ion by ’ num2str ( (1 − diff_GLS/diff_OLS )
∗100) ’%’ ] ) ;

132 disp ( [ ’FGLS improved es t imat i on by ’ num2str ( (1 − diff_FGLS/diff_OLS )
∗100) ’%’ ] ) ;

133

134 % Sum of squared r e s i d u a l s and R^2 to compare
135

136 RSS_OLS = v_hat ’ ∗ v_hat ; % re s i d u a l sum of squares
137 RSS_GLS = v_hat_GLS’∗v_hat_GLS ;
138 RSS_FGLS = v_hat_FGLS’∗v_hat_FGLS ;
139

140 ESS_OLS = (X∗b − mean( y ) ) ’ ∗ (X∗b − mean( y ) ) ; % exp l a ined sum of squares
141 ESS_GLS = (X∗b_GLS − mean( y ) ) ’ ∗ (X∗b_GLS − mean( y ) ) ;
142 ESS_FGLS = (X∗b_FGLS − mean( y ) ) ’ ∗ (X∗b_FGLS − mean( y ) ) ;
143

144 R2_OLS = 1 − RSS_OLS/ESS_OLS; % R squared
145 R2_GLS = 1 − RSS_GLS/ESS_GLS;
146 R2_FGLS = 1 − RSS_FGLS/ESS_FGLS;
147

148 disp ( [ ’Sum of squared r e s i d u a l s f o r OLS i s : ’ num2str(RSS_OLS) ’ ; R
squared i s ’ num2str(R2_OLS) ] ) ;

149 disp ( [ ’Sum of squared r e s i d u a l s f o r GLS i s : ’ num2str(RSS_GLS) ’ ; R
squared i s ’ num2str(R2_GLS) ] ) ;

150 disp ( [ ’Sum of squared r e s i d u a l s f o r FGLS i s : ’ num2str(RSS_FGLS) ’ ; R
squared i s ’ num2str(R2_FGLS) ] ) ;

151
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152 % % For GLS I c a l c u l a t e the b e s t measure o f the goodness o f f i t − i t i s
153 % % a c o e f f i c i e n t o f c o r r e l a t i o n between the a c t ua l and the f i t t e d

va l u e s
154 % % of the dependent v a r i a b l e
155 %
156 % y_hat_OLS = X∗b ;
157 % y_hat_GLS = X∗b_GLS;
158 % y_hat_FGLS = X∗b_FGLS;
159 %
160 % GF_OLS = zeros (G,1 ) ;
161 % GF_GLS = zeros (G,1 ) ;
162 % GF_FGLS = zeros (G,1 ) ;
163 %
164 % for i =1:G
165 % GF_OLS( i ) = corr ( y (N∗( i −1)+1:N∗ i ) ,y_hat_OLS(N∗( i −1)+1:N∗ i ) ) ;
166 % GF_GLS( i ) = corr ( y (N∗( i −1)+1:N∗ i ) ,y_hat_GLS(N∗( i −1)+1:N∗ i ) ) ;
167 % GF_FGLS( i ) = corr ( y (N∗( i −1)+1:N∗ i ) ,y_hat_FGLS(N∗( i −1)+1:N∗ i ) ) ;
168 % end
169 %
170 % disp ( [ ’ Cor r e l a t i on s between the a c t ua l and the f i t t e d va l u e s f o r OLS

are : ’ num2str (GF_OLS(1) ) ’ , ’ num2str (GF_OLS(2) ) ’ , ’ num2str (
GF_OLS(3) ) ] ) ;

171 % disp ( [ ’ Cor r e l a t i on s between the a c t ua l and the f i t t e d va l u e s f o r GLS
are : ’ num2str (GF_GLS(1) ) ’ , ’ num2str (GF_GLS(2) ) ’ , ’ num2str (
GF_GLS(3) ) ] ) ;

172 % disp ( [ ’ Cor r e l a t i on s between the a c t ua l and the f i t t e d va l u e s f o r FGLS
are : ’ num2str (GF_FGLS(1) ) ’ , ’ num2str (GF_FGLS(2) ) ’ , ’ num2str (

GF_FGLS(3) ) ] ) ;
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Part 2 Approach for Testing Serial Correlation

in Panel Data Models, Based on a Joint

Mean-Variance CCR Test

2.1 Introduction

Popularity of panel data models has been increasing over the decades. Large amounts
of data collected and progress in the field of IT have lead to the development of new
methods, that can handle such types of data (see e.g. Baltagi (2008)). Some methods
stem from the cross-section analysis, such as Pooled Ordinary Least Squares (POLS),
and may be implemented in panels by extending the time dimension. Others were
expanded from time series methods (see e.g. Baltagi & Li (1995), Okui (2009)) by
adding new dimensions that deal not with one, but with many individuals. Different
assumptions, required to be fulfilled for the each of the methods, mean that a
researcher needs to analyze and sometimes transform the data before the model
estimation. For example, strict exogeneity is one of the assumptions that should be
fulfilled in order to apply widely used Fixed Effects and Random Effects models.
Serial correlation, i.e. correlation across different time periods, is one the problems
that may occur in the data and influence the bias and consistency of estimator. In
this Part I will present a new approach for testing the panel data for serial correlation.
This approach is based on the cumulative distribution function confidence region
(CCR) test from Part 1. It could be classified as a portmanteau test since it tests the
total randomness of the data w.r.t. the time periods, but not the interaction between
specific error terms.
Alternatives to be presented here to the CCR-based test for serial correlation are also
considered. A vast amount of existing tests for serial correlation may be found in the
literature. Starting from a portmanteau test by Box & Pierce (1970) with improvement
in the paper of Ljung & Box (1978), it was further improved for application in panels
by Okui (2009). Simultaneously, another branch of tests, based on the Lagrange
Multiplier (LM) statistic, arose. First the LM-test for serial correlation was proposed
in the paper of Breusch & Godfrey (1981) and then in the papers of Baltagi & Li
(1991) and Baltagi & Li (1995). LM-based methods continue to be under view with
more recent improvements by Born & Breitung (2016). More portmanteau tests were
presented by Inoue & Solon (2006), Jochmans (2019) and Wooldridge (2002), p.283
with its modification for heteroscedasticity and autocorrelation consistent (HAC)
standard errors in Drukker (2003). All the tests have different requirements for panel
data. For example, normality of the error terms for one of the specifications of the test
presented by Born & Breitung (2016). These alternative tests also possess different
asymptotic properties. For example, a test by Breusch & Godfrey (1981) converges
to the given limiting distribution only with a number of individuals and a number of
time periods growing to infinity.
In this Part I will demonstrate and compare performances and real significance levels
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of established tests and a new CCR-based test for serial correlation. The comparison
will be based on the panel data with different set ups for the number of time periods,
relations between error terms, including autoregressive processes that error terms will
follow, and heteroscedasticity issues. This comparison will be performed with the
help of Monte-Carlo generated panels and further, as an example, these tests will
also be applied to the real-data panel describing health satisfaction in Germany.
The results, obtained from the comparisons of the testing techniques, demonstrated
good performance of the CCR-based test on the panels with a small number of
time periods T (mention that T > 3). This result is possible, because the CCR
approach itself does not converge to any specific distribution, but already provides
sufficiently good results for such a small sample size. Furthermore, the CCR-based
test displayed robustness to the panels with heteroscedasticity across time in the error
terms. Robustness to a heteroscedastic panel expands the scope of the CCR-based
test. For example, microeconomic data does not usually possess homoscedastisity
properties thus, demands special methods; one of which may be the CCR-based test.
Finally, the CCR-based test for serial correlation is a good instrument to choose and
improve the estimation technique based on the feasible data. It is also profitable for
the panels with a small number of time periods available.

2.2 Existing Tests

2.2.1 Model Set Up

All the tests that will be discussed and compared in this Part start by establishing the
same model. Consider panel data with an outcome yit and a group of K regressors
xit with individuals i = 1, . . . N and time time t = 1, . . . T . Next, I assume that there
is no dependence across different individuals i, but there most likely is dependence
within individuals, i.e. across different time points of each separate individual. The
regression model in (2.1) is specified to analyze and estimate this data.

yit = x′itβ + ci + εit (2.1)

In the model (2.1) β is a K × 1 vector of unknown coefficients, ci is a vector of
time invariant individual effects. εit defines idiosyncratic error term, which is a
point of interest. On the one hand, εit is assumed to be independent of individual
effects ci (εit⊥ci) and across the individuals (εit⊥εjs ∀i 6= j; ∀t, s). On the other
hand, error terms may be correlated across time points of one individual. And this
introduces the general aim of all the tests for serial correlation: to check whether the
idiosyncratic error term is correlated within individuals, i.e. if Cov(εit, εis) = 0 ∀t, s.
More specifically, null hypotheses will be presented for each of the tests as they may
differ.
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2.2.2 Wooldridge-Drukker Test

The test, proposed by Wooldridge (2002), p.283, starts from the first difference of
residuals ∆ε̂it = ε̂it − ε̂i,t−1, estimated from equation (2.1) and using first difference
estimator. In the paper Wooldridge constructs a regression equation (2.2):

∆ε̂it = θ∆ε̂i,t−1 + ηit (2.2)

Based on the first difference equation for residuals (2.2), the null hypothesis for
the Wooldridge test claims no first order serial correlation of error terms, i.e. H0 :

Cov(εit, εi,t−1) = 0 ∀t = 2, . . . T . Under the null hypothesis, ordinary least squares
(OLS) estimation of the regression (2.2) gives parameter θ̂, which converges in
probability to -0.5. Therefore, test statistic is (2.3):

WD =
θ̂ + 0.5

ŝθ
(2.3)

ŝθ is a standard error of θ̂, estimated from the equation (2.2). To improve the test
statistic, Drukker (2003) suggests using heteroscedasticity and robust consistent
(HAC) standard errors, presented in the equation (2.4), as first differences of the
residuals ∆ε̂it are naturally correlated.

ŝθ =

√∑N
i=1

(∑T
t=3 ∆ε̂i,t−1η̂it

)2

∑N
i=1

∑T
t=3 ∆ε̂i,t−1

(2.4)

Wooldridge-Drukker WD statistic, calculated by plugging equation (2.4) into (2.2),
follows t-distribution with (T − 3) degrees of freedom. Hence, a restriction T > 3

is natural. Additionally, the restriction on T is needed, as soon as equation (2.4)
is treated with lagged differences, which leads to a loss of 2 time periods for every
individual.
Furthermore, the Wooldridge-Drukker test is robust to data with heteroscedasticity
across individuals but not across time points. Secondly, the Wooldridge-Drukker test
is not applicable to unbalanced panels (see Born & Breitung (2016)).

2.2.3 Box-Pierce and Consecutive Tests

A portmanteau test for autocorrelations in time series, first presented in Box & Pierce
(1970), has spawned a whole range of similar tests. All the tests were based on the
idea of summing up the weighted sample autocorrelations for different lags. The
next development of the test, by Ljung & Box (1978), provided a statistic, that was
closer to asymptotic distribution. However, both of the tests demonstrated quite
poor results for small T . On the other hand, both the Box-Pierce and Ljung-Box
approaches gave an opportunity to test, not only for the autocorrelation of the first
order, but for any order up to some p. For these reasons, Fu, Li, Fung (2002) and
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Okui (2009) presented their own modifications of Box-Pierce test, designed for panel
data. Additionally, Fu, Li, Fung (2002) proposed another modification for a small
number of time periods T . Equation (2.5) presents the statistic obtained by Okui
(2009) from the Box-Pierce test. And equation (2.6) presents another modification
from the same paper for panel data, but with the Ljung-Box test as a framework.
Null hypothesis is no autocorrelation up to order p.

QBP = NT

p∑
k=1

ρ̂2
k (2.5)

QLB = NT

p∑
k=1

T + 2

T − k

(
T − k
T

ρ̂k

)2

(2.6)

Where ρ̂k is asymptotically unbiased sample correlation between ε̂it and ε̂i,t−k, calcu-
lated from the sample covariance matrix. The term (T + 2)/(T − k) in QLB statistic
improves the size of the test, compared to QBP (see Ljung & Box (1978)). Both of
the statistics (2.5) and (2.6) follow χ2-distribution with p degrees of freedom. But
QLB corrects the bias of QBP and therefore is usually closer to χ2-distribution. In
addition, there is a natural restriction on number of time periods: T ≥ p+ 1 to test
the autocorrelations up to order p (T ≥ 2 for first order serial correlation).

2.2.4 LM-based Tests

Statistic, derived in Breusch & Godfrey (1981), was the first LM-based one to test
for the first order serial correlation. Thus, null hypothesis is defined as no first order
autocorrelation within individuals in the model (2.1). To compute this statistic, first
define for convenience new variables A and B in equations (2.7) and (2.8):

A =

∑n
i=1

(∑T
t=1 ε̃it

)2

∑N
i=1

∑T
t=1 ε̃

2
it

− 1 (2.7)

B =

∑N
i=1

∑T
t=2 ε̃itε̃i,t−1∑N

i=1

∑N
t=1 ε̃

2
it

(2.8)

Where ε̃it are the residuals of model (2.1), estimated with Pooled OLS. Then the
statistic of Breusch-Godfrey test is computed as (2.9):

LM =
NT 2

T − 1
B2 (2.9)

The Breusch-Godfrey statistic LM follows χ2 distribution with 1 degree of freedom,
or similarly,

√
LM follows standard normal distribution. However, this test has

significant limitations. Firstly, error terms should be homoscedastic and normally
distributed. Secondly, LM follows χ2 distribution only for large T , N , and T

N → 0.
Born & Breitung (2016) state that otherwise LM statistic posses a Nickel bias of the
OLS estimator, described by Nickell (1981). Nickel bias occurs due to demeaning of
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panel data. This provokes correlations between regressors and error terms.
To eradicate the bias in LM -statistic (2.9), Baltagi & Li (1995) proposes adjusted
test statistic LM∗, presented in equation (2.10):

LM∗ =
NT 2

(T − 1)(1− 2
T )

(
B − A

T

)2

(2.10)

LM∗ statistic follows χ2 distribution with 1 degree of freedom. Note that T ≥ 3

to avoid division by zero. Moreover, LM∗ in equation (2.10) corrects for the Nickel
bias, but still demands quite large N and T . When T is fixed, both of the statistics
produce huge errors. To avoid this limitation, Born & Breitung (2016) presented their
own statistic (2.11), which improves LM statistic from Breusch & Godfrey (1981),
presented in (2.9):

L̃M =

√
(T − 1)3

(T + 1)(T − 2)2

(
√
LM +

√
N

T − 1

)
(2.11)

The test statistic L̃M follows standard normal distribution. Additionally, it may be
used to test for serial correlation for fixed T but the restrictions for homoscedastic
and normally distributed error terms still hold. Furthermore, note that T ≥ 3 to
avoid zero in the denominator.
Another development of the LM-based test was achieved by Baltagi (2008), p.97,
where he showed that the similar LM statistic, as in (2.9), may be obtained using ε̂it
- residuals from the fixed effects (FE) estimation. Therefore, in Baltagi (2008), p.97
was defined another statistic (2.12):

LMFE =
NT 2

T − 1

∑N
i=1

∑T
t=2 ε̂itε̂i,t−1∑N

i=1

∑N
t=1 ε̂

2
it

(2.12)

Presented statistic LMFE follows χ2-distribution with 1 degree of freedom. However,
restrictions discussed for LM statistic, such as normality and homoscedastisity of
error terms, also apply to LMFE , as well as T ≥ 3.

2.3 CCR Approach in Testing Panel Data Models

In this section I present a new approach that tests for serial correlation across time
periods, which is based on the CCR test, presented in Part 1. Starting from the
equation (2.1), assume normality of error terms εit. For convenience, I use first
difference estimator with demeaning matrix QT , defined in (2.13):

QT = IT − 1T (1′T 1T )−11′T (2.13)

With identity matrix IT ∈ RT×T and vector of ones 1T ∈ RT×1 in (2.13). Note that
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matrix QT has rank (T − 1). Multiplication of equation (2.1) by QT will delete all
time invariant variables, including individual effects, and transform it into equation
(2.14), with new demeaned variables defined in (2.15). xi, yi and εi denote the data
for each individual i, collected through all time points t = 1, . . . T .

ÿi = ẍ′iβ + ε̈i, with: (2.14)
ÿi = QT ∗ yi
ẍi = QT ∗ xi
ε̈i = QT ∗ εi

(2.15)

Applying least squares estimator to demeaned model (2.14) produces parameter β̂FE ,
estimated with fixed effects. FE estimator is used for further calculation of residuals
ˆ̈εi in (2.16). In the next step residuals are implemented to find ˆ̈Ω - covariance matrix,
defined in (2.17). This covariance matrix captures interactions between time points
that are traced for all of the individuals.

ˆ̈εi = ÿi − ẍ′iβ̂FE (2.16)

ˆ̈Ω =
1

N

N∑
i=1

ˆ̈εi ˆ̈ε
′
i = QT ∗ Ω̂ ∗QT (2.17)

The second part of equation (2.17) includes matrix Ω̂, which is the covariance matrix
of non-demeaned model (2.1). Unless I do not calculate Ω̂, the right-hand side of
equation (2.17) clearly demonstrates that matrix ˆ̈Ω is obtained by multiplication of Ω̂

on the both sides with QT , which has a rank deficit. Thus, matrix Ω̂ is not restorable
from ˆ̈Ω in the general case. As a result, theoretical counterparts of covariance matrices
(normal and demeaned) follow the same property and it is not possible to recover
Ω from Ω̈. However, demeaned covariance matrix ˆ̈Ω cannot be used to test for
serial correlation, as it includes relations between demeaned parameters (Nickel bias).
Therefore, demeaned covariance matrix ˆ̈Ω does not reflect the real covariances between
time points. As a consequence, below I propose a 3-step procedure that develops a
pseudo-covariance matrix Ω̌ from ˆ̈Ω. Then, I demonstrate how matrices Ω̌ and Ω are
related to each other, so that pseudo-covariance matrix may be used to test for serial
correlation.

3-Steps procedure to derive a pseudo-covariance matrix Ω̌

Step 1 Denote the elements of desired matrix Ω̌ as σ̌ts, ∀t, s = 1, . . . T , with variances
on the diagonal σ̌2

t = σ̌tt. Similarly, ˆ̈σts, ∀t, s = 1, . . . T - the elements of
estimated with FE covariance matrix ˆ̈Ω, and variances on the diagonal are
ˆ̈σ2
t = ˆ̈σtt. Construct the system of equations (2.18):
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σ̌2
t + σ̌2

s = ˆ̈σ2
t + ˆ̈σ2

s − 2ˆ̈σts, t, s = 1, . . . T (2.18)

In (2.18) a system of linear equations is constructed. As soon as covariance
matrix is symmetrical, the system (2.18) is invariant to the interchange of t and
s. Thus, there are actually T (T − 1)/2 unique equations in the system (2.18)
and T unknowns (all the variances of the matrix Ω̌). Therefore, with T = 1

or T = 2 the system is underidentified and does not have a solution. With
T = 3 the system (2.18) is exactly identified and the solution always produces
a diagonal matrix Ω̌. When T > 3, the system (2.18) has more equations than
unknowns and the solution is derived by minimizing the total distance to all of
the equations. Hence, at this point a restriction T > 3 has to be established.
This fact will be strictly proved further.

Step 2 Before the second step additional notation should be introduced in (2.19):

Rt =

T∑
s=1

σ̌ts (2.19)

According to formula (2.19), Rt is the sum of all the covariances in column t
of the required covariance matrix Ω̌. Using new variables Rt, I can set up a
second system of equations (2.20):

T∑
k=1

Rk − 2TRt = T 2(ˆ̈σ2
t − σ̌2

t ), t = 1, . . . T (2.20)

The system of linear equations (2.20) consists of T unique equations and T

unknowns, Rt, t = 1, . . . T , and therefore has 1 solution.

Step 3 In the last step I use diagonal elements σ̌2
t , acquired in step 1 and column sums

Rt, obtained in the second step. Next, I calculate the missing non-diagonal
elements σ̌ts from the system (2.21):

σ̌ts =
1

T 2

(
T 2 ˆ̈σts + TRs + TRt −

T∑
k=1

Rk

)
, ∀t 6= s (2.21)

Computed on the first step σ̌2
t together with computed in this step σ̌st form a

pseudo-covariance matrix Ω̌, presented in (2.22). Obtained matrix Ω̌ is diagonal
and positive semi-definite.
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Ω̌ =


σ̌2

1 σ̌12 . . . σ̌1T

...
. . .

...
...

. . .
...

σ̌1T σ̌2T . . . σ̌2
T

 (2.22)

Furthermore, an important property of matrix Ω̌ is described in Proposition 1, that
is introduced below. This property allows one to use matrix Ω̌ to test for serial
correlation.

Proposition 1 Pseudo-covariance matrix Ω̌ will be diagonal (all the covariances
are insignificant), if and only if the covariance matrix Ω̂ is diagonal (its covariances
are insignificant).

Proof : The proof is illustrated in two parts: in the first part I assume the diagonal
form of Ω̂ and show that pseudo-covariance matrix Ω̌ is also diagonal. The second
part deals with the matrix Ω̂, including at least one covariance that may not be
rejected as insignificant. In this case matrix Ω̌ also has significant non-diagonal
elements. These two parts describe all possible cases and define the unambiguous
relation between Ω̂ and Ω̌.

Part 1: diagonal form of covariance matrix. In introduction to the first
case, assume that Ω̂ is diagonal at this point and is defined in (2.23). Note that
homoscedastisity is not required.

Ω̂ =


σ̂2

1 . . . 0
...

. . .
...

0 . . . σ̂2
T

 (2.23)

Then the estimated covariance matrix from the FE model ˆ̈Ω can be calculated, using
equation (2.17) with matrix QT , defined in (2.13). Obtained matrix ˆ̈Ω is presented
elementwise in (2.24):

ˆ̈σ2
t = 1

T 2

(
T (T − 2)σ̂2

t + tr(Ω̂)
)

ˆ̈σts = 1
T 2

(
−T (σ̂2

t + σ̂2
s) + tr(Ω̂)

) (2.24)

Where t, s = 1, . . . T ; t 6= s and tr(Ω̂) =
∑T

t=1 σ̂
2
t is the trace of matrix Ω̂. Non-

diagonal elements of matrix ˆ̈Ω, defined in (2.24), in general are not zeros. This fact,
clearly demonstrates that even when there is no serial correlation between time points,
covariance matrix of FE within estimation ˆ̈Ω will not be diagonal. The elements
of estimated matrix ˆ̈Ω, provided in (2.24), are used to run the 3-step procedure,
presented above, and define the pseudo-covariance matrix Ω̌. In the first step, one
plugs the elements of the matrix from (2.24) into the first step system of equations
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(2.18). After re-arranging the terms, this system transforms to (2.25):

σ̌2
t + σ̌2

s = σ̂2
t + σ̂2

s , t, s = 1, . . . T (2.25)

The obvious solution of the system (2.25) is elementwise equal terms from left and
right-hand sides (2.26):

σ̌2
t = σ̂2

t , t = 1, . . . T (2.26)

To verify that (2.26) is the only solution, assume that there exits a second, different
solution σ̌2∗

t , such that ∃t : σ̌2∗
t 6= σ̌2

t . For clarity, I assume that the first term
of the second solution σ̌2∗

1 = σ̂2
1 + φ > σ̂2

1 with φ > 0. Then, from the equation
σ̌2∗

1 + σ̌2∗
2 = σ̂2

1 + σ̂2
2 the new solution for the second term is σ̌2∗

2 = σ̂2
2 −φ < σ̂2

2 . Next,
from the equation σ̌2∗

2 + σ̌2∗
3 = σ̂2

2 + σ̂2
3 I conclude that σ̌2∗

3 = σ̂2
3 + φ > σ̂2

3. Finally,
from the equation σ̌2∗

1 + σ̌2∗
3 = σ̂2

1 + σ̂2
3 I should infer that σ̌2∗

1 = σ̂2
1 − φ < σ̂2

1. This
makes a contradiction to the assumption about the second solution σ̌2∗

1 > σ̂2
1. Hence,

there exists only one, unique solution to the system of equations (2.25) from step 1,
given in statement (2.26).
For the second step, I plug the derived elements of ˆ̈Ω (2.24) into the equation (2.20)
and calculate (2.27)-(2.28):

T∑
k=1

Rk − 2TRt = T 2(ˆ̈σ2
t − σ̌2

t ) = T (T − 2)σ̂2
t + tr(Ω̂)− T 2σ̌2

t (2.27)

T∑
k=1

Rk − 2TRt = −2T σ̂2
t + tr(Ω̂), t = 1, . . . T (2.28)

Sum up all the equations of the obtained system (2.28). Additionally, remember that
tr(Ω̂) =

∑T
t=1 σ̂

2
t . Then the solution for Rt is derived in (2.29)-(2.32):

T
T∑
k=1

Rk − 2T
T∑
t=1

Rt = −2T
T∑
t=1

σ̌2
t + Ttr(Ω̂) (2.29)

T∑
k=1

Rk = tr(Ω̂), plug this sum into (2.28): (2.30)

tr(Ω̂)− 2TRt = −2T σ̂2
t + tr(Ω̂) (2.31)

Rt = σ̂2
t , t = 1, . . . T (2.32)

After two steps it may be identified that on the diagonal of matrix Ω̌ stand the
variances σ̂2

t , and the sums of the columns of matrix Ω̌ are σ̂2
t as well. However, this

does not necessarily mean that all the other non-diagonal elements are zeros. They
may have different signs and thus compensate each other. Hence, the third step is
needed to investigate whether non-diagonal elements are truly zeros.
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In the third step, I plug the already calculated in statement (2.24) variables ˆ̈σst,
column sums Rt from (2.32) and the sum of Rt’s (2.30) into the system, defined in
(2.21). The computations are presented in (2.33)-(2.35):

σ̌ts =
1

T 2

(
T 2 ˆ̈σts + TRs + TRt −

T∑
k=1

Rk

)
(2.33)

σ̌ts =
1

T 2

(
−T σ̂2

t − T σ̂2
s + tr(Ω̂) + T σ̂2

s + T σ̂2
t − tr(Ω)

)
(2.34)

σ̌ts = 0, ∀t 6= s (2.35)

The result, obtained in (2.35) proves that the pseudo-covariance matrix Ω̌ will be
diagonal, if the initial matrix Ω̂ is diagonal. The end of part 1 of the proof.

Part 2: non-diagonal form of covariance matrix. The second part of the
proof proceeds in the same way, but now assumes that matrix Ω̂ is not diagonal, i.e.
there are covariances that are significantly different from zero. To simplify, I consider
the case with one non-zero covariance σ̂12 6= 0. Then matrix Ω̂ will have the next
form (2.36):

Ω̂ =


σ̂2

1 σ̂12 . . . 0

σ̂12
. . .

...
...

. . .
...

0 . . . 0 σ̂2
T

 (2.36)

Using just outlined matrix Ω̂, I can further derive the FE covariance matrix from the
equation (2.17). After the re-arrangement of the terms, the FE covariance matrix ˆ̈Ω

is obtained elementwise in (2.37):

ˆ̈σ2
t = 1

T 2

(
T (T − 2)σ̂2

t + κ2σ̂12 + tr(Ω̂)
)

ˆ̈σts = 1
T 2

(
−T (σ̂2

t + σ̂2
s) + κ1σ̂12 + tr(Ω̂)

) (2.37)

Where κ1 and κ2 are parameters defined in (2.38) as functions of dummies (2.39):

κ1 = (1− T )(j1 + j2 + (1− T )j1j2)

κ2 = 1− T (j1 + j2)
(2.38)

j1 = 1, if at least one of indexes (t, s) is equal to 1

j2 = 1, if at least one of indexes (t, s) is equal to 2
(2.39)

Next, the first step system of equations is calculated in (2.40)-(2.42) by plugging
matrix elements from (2.37) into (2.18):
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σ̌2
t + σ̌2

s = ˆ̈σ2
t + ˆ̈σ2

s − 2ˆ̈σts (2.40)

σ̌2
t + σ̌2

s =
1

T 2

(
T (T − 2)σ̂2

t + κ2σ̂12 + tr(Ω̂) + T (T − 2)σ̂2
s + κ2σ̂12+

tr(Ω̂) + 2T (σ̂2
t + σ̂2

s)− 2κ1σ̂12 − 2tr(Ω̂
) (2.41)

σ̌2
t + σ̌2

s = σ̂2
t + σ̂2

s +
2(κ2 − κ1)

T 2
σ̂12, t, s = 1, . . . T (2.42)

The system of linear equations for σ̂2
t , displayed in (2.42), differs by the last term from

the system, defined for the case of diagonal covariance matrix Ω̂. An investigation of
this term showed that it will turn into zero if κ1 = κ2.
In the specific case with the 3 time periods, system (2.42) needs additional investiga-
tion. On one hand, the equality of kappas is possible only when at least one of the
indexes (t, s) equals to 1 or 2. On the other hand, system (2.42) for T = 3 describes
the equations for pairs of time points (1,2), (1,3) and (2,3). For all 3 equations, these
pairs include either index 1 or 2. Thus, for T = 3 the system (2.42) drops out the last
term and coincides with the system (2.25), which is defined for uncorrelated case. As
a result, it is impossible to distinguish pseudo-covariance matrices with and without
correlations between elements for T = 3. Therefore, it is also impossible to test for
serial correlation on the pseudo-covariance matrix Ω̌, as it will be always diagonal.
This confirms the restriction, set on number of time periods T > 3.
The solution of the first step system (2.42) is presented in (2.43):

σ̌2
t = σ̂2

t , for t = 1, 2

σ̌2
t = σ̂2

t + ν, for t = 3, . . . T
(2.43)

Where a tail ν is defined as (2.44):

ν =
2(κ2 − κ1)

T 2
(A′A)−1A′1T (T−1)/2 (2.44)

With A - matrix of all 2-permutations of T without repetitions. In terms of dummies,
defined in (2.39), the solution of this system may be rewritten as in (2.45):

σ̌2
t = σ̂2

t + (1− j1 − j2)ν (2.45)

A calculation of the tail ν is complicated and not required for the proof. It stands
as an additional non-zero term to show that the solution differs from the one in the
uncorrelated case (2.26).
Applying the solution from the first step (2.45), the system of equations for the next
step is constructed in (2.46)-(2.48):
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T∑
k=1

Rk − 2TRt = T 2 ˆ̈σ2
t − T 2σ̌2

t (2.46)

T∑
k=1

Rk − 2TRt = T (T − 2)σ̂2
t + κ2σ̂12 + tr(Ω̂)− T 2σ̂2

t − T 2(1− j1 − j2)ν (2.47)

T∑
k=1

Rk − 2TRt = −2T σ̂2
t + κ2σ̂12 + tr(Ω̂)− T 2(1− j1 − j2)ν (2.48)

To proceed as in the uncorrelated case, and sum up all the equations (2.48) for
t = 1, . . . T , foremost one needs to find an expression for the sum of (1− j1 − j2)ν

(both dummies and tail ν depend on t). This expression is computed in (2.49)-(2.54)
by summing up all the T (T − 1)/2 equations of the system from the first step (2.42).
Note that on the left-hand side (LHS) of this system, each variance σ̌2

t occurs (T − 1)

times. Therefore LHS is (T − 1) times the sum of all variances. The same logic
applied to the RHS gives (T − 1) times the sum of all variances, which is the trace of
Ω̂.

∑
t,s

(
σ̌2
t + σ̌2

s

)
=
∑
t,s

(
σ̂2
t + σ̂2

s

)
+
T (T − 1)

2

2(κ2 − κ1)

T 2
σ̂12 (2.49)

(T − 1)
T∑
t=1

σ̌2
t = (T − 1)tr(Ω̂) +

(T − 1)(κ2 − κ1)

T
σ̂12 (2.50)

T∑
t=1

σ̌2
t = tr(Ω̂) +

(κ2 − κ1)

T
σ̂12 (2.51)

Remember the solution for σ̌2
t , given in (2.45), and plug it into (2.51):

T∑
t=1

(
σ̂2
t + (1− j1 − j2)ν

)
= tr(Ω̂) +

(κ2 − κ1)

T
σ̂12 (2.52)

tr(Ω̂) +

T∑
t=1

(1− j1 − j2)ν = tr(Ω̂) +
(κ2 − κ1)

T
σ̂12 (2.53)

T∑
t=1

(1− j1 − j2)ν =
(κ2 − κ1)

T
σ̂12 (2.54)

Additionally, compute the sum of κ2σ̂12 in (2.55) using the definition of κ2 from
(2.38):

T∑
t=1

κ2σ̂12 =

T∑
t=1

(1− T (j1 + j2))σ̂12 = (T − 2T )σ̂12 = −T σ̂12 (2.55)

After obtaining the expressions in (2.54) and (2.55), I use them to sum up all T
second step equations (2.48) and receive the sum of all column sums Rt in (2.56):
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T
T∑
k=1

Rk − 2T
T∑
t=1

Rt = Ttr(Ω̂) +
T∑
t=1

(
−2T σ̂2

t + κ2σ̂12 − T 2(1− j1 − j2)ν
)

(2.56)

−T
T∑
t=1

Rt = Ttr(Ω̂)− 2Ttr(Ω̂)− T σ̂12 − T 2 (κ2 − κ1)

T
σ̂12 (2.57)

T∑
t=1

Rt = tr(Ω̂) + (1− κ1 + κ2)σ̂12 (2.58)

Plug the sum of Rt from equation (2.58) into each of the equations of the system
(2.48) to obtain the solution for every Rt (2.59):

Rt = σ̂2
t +

1− κ1

2T
σ̂12 +

T (1− j1 − j2)

2
ν (2.59)

Equation (2.59) represents the solution of the second step system of equations. In
the final step, I use already computed variables ˆ̈σts, Rt, as well as the sum of Rt to
deal with the third step system (2.21) and figure out non-diagonal elements of the
matrix Ω̌. The solution is calculated in (2.60)-(2.62):

σ̌ts =
1

T 2

(
T 2 ˆ̈σts + TRs + TRt −

T∑
k=1

Rk

)
(2.60)

σ̌ts =
1

T 2

(
− T (σ̂2

t + σ̂2
s) + κ1σ̂12 + tr(Ω̂) + T σ̂2

t +
1− κ1

2
σ̂12+

T 2(1− j1 − j2)

2
ν + T σ̂2

s +
1− κ1

2
σ̂12 +

T 2(1− j1 − j2)

2
ν−

tr(Ω)− (1− κ1 + κ2)σ̂12

) (2.61)

σ̌ts =
κ1 − κ2

T 2
σ̂12 + (1− j1 − j2)ν (2.62)

Now the elements of pseudo-covariance matrix Ω̌ are defined in equations (2.45) and
(2.62). Non-diagonal elements σ̌ts turn into zero only when one of the indexes (t, s) is
1 or 2. All the other elements of pseudo-covariance matrix are significantly different
from zero, as σ̌12 is significant by assumption. Thus, in this case the matrix Ω̌ is not
diagonal.
Finally, it was demonstrated that the diagonal matrix Ω̂ always generates the diagonal
pseudo-matrix Ω̌. And vice versa, if Ω̂ does not possess diagonality properties, then
the pseudo-covariance matrix Ω̌ is also non-diagonal.�
Transformation and testing on the pseudo-covariance matrix is possible even for small
number of time periods T (starting from T = 4). For T going to infinity, the effect of
the first term in RHS of (2.62) does not negotiate due to its denominator T 2, because
the highest order of κ1 is also T 2. The second term of RHS does not converge to zero
as well, and the pseudo-covariance matrix preserves its significance of non-diagonal
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elements, even with a large number of time periods.
Proof of proposition 1, provided above, allows the application of the CCR technique
from Part 1 to test for serial correlation, using the pseudo-covariance matrix Ω̌,
computed with the 3-step procedure.
Testing for serial correlation, based on the CCR approach, proceeds as next. First
of all, assume that error terms εi ∈ RT×1 from model (2.1) are independent across
individuals and that they are normally distributed. Secondly, the CCR-based test
is performed pairwisely across time points. Hence, I divide a panel into T (T − 1)/2

groups of 2 cross-sections for 2 different time points. Denoting cross-sections of error
terms as εt, I get groups in the form (ε′t, ε

′
s)
′, for t, s = 1, . . . T, t 6= s. Each group

of 2 cross-sections is a bivariate sample for the CCR test. It therefore means that
each separate observation in a given bivariate sample has 2 error terms for a specific
individual i from 2 fixed time points t and s (same for each individual). Then, after
the calculation of the pseudo-covariance matrix Ω̌, I use this matrix to test each of
T (T − 1)/2 groups of bivariate samples of error terms to follow uncorrelated joint
normal distribution (2.63):

H0 :

(
εt

εs

)
∼ N

((
0

0

)
,

(
σ̌2
t 0

0 σ̌2
s

))
(2.63)

Note that in (2.63) I assume zero mean of error terms, which is their natural property.
The CCR test calculates the p-values for each of the T (T − 1)/2 tests, defined in
(2.63).
An overall null hypothesis for the whole panel implies no serial correlation (up to
order T − 1) in the panel data. This null hypothesis may not be rejected, if all of the
p-values from the pairwise testing (2.63) are larger than the predefined significance
level γ: min(p-value) > γ. Otherwise, an overall null hypothesis is rejected, if p-value
for at least one pair of error terms is smaller than the predefined significance level: ∃
p-value: p-value < γ.
As a result, in this section I derived and described the procedure for testing for serial
correlation in panel data, based on the CCR test. Its main advantage, as stated, is the
potential for its application in panel data models with a small number of time periods
and on the heteroscedastic panels (since no restrictions are set on the variance). In
the next section, I run and compare the properties of all of the serial correlation
testing methods, represented in this Part, together with the CCR-based technique.

2.4 Monte-Carlo Simulations

In this section I will present the performance of the tests, discussed in sections 2.2 and
2.3. The tests for serial correlation will be analyzed for their finite sample properties,
based on the panels with different parameters, simulated with the help of Monte-Carlo
method. I will start with the model (2.1), which is used to generate panel data. The
number of individuals is fixed to N = 500 and number of regressors to K = 10. The
number of time periods T varies and for every case I consider panels to have 5, 10,
20, 30 or 50 time periods. Regression parameters β are fixed integers from 1 to 10.
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Regressors xit are taken from standard normal distribution. Individual effects ci are
taken from standard normal distribution as well and are independent across N . But
individual effects are to be correlated with regressors. Therefore, I add a part of
the individual effect ci to each of the element of regressor vector xi to have a clear
correlation between them.
Table 2.1 displays the ratio of rejected panels, based on 10000 Monte-Carlo replications
for each case. Altogether, it cover 8 statistics, described above: Wooldridge-Drukker
WD (2.3), Ljung-Box QLB (2.6), Box-Pierce QBP (2.5), Breusch-Godfrey LM (2.9),
Baltagi-Li LM∗ (2.10), Born-Breitung L̃M (2.11), Baltagi Fixed Effects LMFE (2.12),
as well as the CCR-based one. Each method is applied in various situations. No serial
correlation in the data is assumed in case 1. Cases 2 and 3 describe the behavior of
the methods when the first order serial correlation is present in the data. In case 4,
the methods are used in the data with correlation included only between first and
second time points, while case 5 assumes a relatively small first order correlation and
larger second order serial correlation. Cases 6 and 7 cover the situation when the
panel contains heteroscedastic error terms across time without (case 6) or with serial
correlation (case 7).
The first case I consider, illustrates a control for real significance levels. The theo-
retical significance level is set to γ = 0.05. As this case assumes no correlation in
the data, each method should reject 5% of the simulated samples. The first part of
the Table 2.1 shows that the statistics, mentioned to give poor results for small T
(QLB, QBP , LM and LM∗), alter a lot from theoretical significance level γ = 0.05

for T = 5 and T = 10. Additionally, WD statistic also overestimates the significance
level for T = 5. With increasing number of time periods, all the methods get close to
the γ = 0.05.
Cases 2 and 3, in Table 2.1, present a situation where error terms follow an autore-
gressive process of order 1. A correlation between neighboring time periods equal to
0.05 in case 2 and 0.2 in case 3. Thus, a perfect test should reject all 100% of the
simulated panels. With a smaller correlation in case 2, the same 4 methods (QLB,
QBP , LM and LM∗), as in case 1, reject only a small fraction of the samples (around
22% for QBP , LM and LM∗ and 52, 2% for QLB). With a stronger serial correlation
= 0.2 in the case 3, all 8 methods reject almost 100% of the samples for T starting
from 10. With 5 time periods in the case 3, only the LM test does not produce
acceptable results thus rejecting only 7.2% of the samples.
Case 4 of Table 2.1 displays the reaction of the methods on only 1 correlation between
first and second time periods. The tests should reject all the panels in this case. It
appeared to be a problem for QLB, QBP and LM . However, the CCR, Wooldridge-
Drukker and the adjusted LM -methods perform well and reject almost all of the
samples.
In the fifth case, error terms follow the autoregressive process of order 2, as each
error term correlates with error terms from the two previous periods. Both of the
serial correlations are relatively small (0.01 for the first order and 0.05 for the second
order). Rejection of the simulated panels is more complicated in this case, as most
of the tests only check the existence of the first order serial correlation. QLB, QBP
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Table 2.1: Performance of 8 Methods for Testing for Serial Correlation in Panels
Subject to Predefined Correlations and Heteroscedasticity (Cases 6 and 7)

T WD QLB QBP LM LM∗ L̃M LMFE CCR

1. No correlation across time

5 0.075 0.159 0.011 0.016 0.013 0.055 0.055 0.052
10 0.052 0.095 0.077 0.028 0.021 0.051 0.052 0.054
20 0.046 0.047 0.045 0.049 0.049 0.05 0.052 0.048
30 0.048 0.047 0.044 0.043 0.045 0.045 0.044 0.042
50 0.051 0.053 0.055 0.052 0.054 0.053 0.054 0.052

2. First order serial correlation = 0.05

5 0.996 0.522 0.222 0.21 0.228 1 0.999 0.912
10 0.999 0.744 0.691 0.706 0.725 1 1 0.956
20 0.999 0.974 0.957 0.869 0.887 1 1 0.995
30 1 0.999 0.982 0.958 0.963 1 1 0.999
50 1 1 0.996 0.997 0.999 1 1 0.999

3. First order serial correlation = 0.2

5 1 0.999 0.978 0.072 0.998 0.992 0.886 0.914
10 1 0.999 0.989 0.552 0.999 1 0.991 0.999
20 1 1 0.999 0.999 0.999 1 0.999 1
30 1 1 1 0.999 1 1 1 1
50 1 1 1 1 1 1 1 1

4. One non-zero covariance σ12 = 0.5

5 0.999 0.126 0.017 0.339 1 1 0.895 0.991
10 0.999 0.183 0.041 0.781 1 1 0.997 0.999
20 1 0.058 0.059 0.992 1 1 0.999 1
30 1 0.095 0.04 0.999 1 1 1 1
50 1 0.092 0.076 1 1 1 1 1

5. Serial correlation of the first order = 0.01, of the second order = 0.05

5 1 0.679 0.211 0.081 1 1 0.999 0.234
10 1 0.967 0.785 0.343 1 1 0.999 0.849
20 1 0.999 0.974 0.981 1 1 1 0.998
30 1 1 0.999 0.998 1 1 1 0.999
50 1 1 1 0.999 1 1 1 1

6. Heteroscedasticity and no correlation across time

5 0.991 0.142 0.019 0.081 1 1 1 0.047
10 0.868 1 0.996 0.07 1 1 0.992 0.067
20 0.55 1 1 0.134 0.998 1 0.901 0.069
30 0.45 1 1 0.153 0.95 1 0.72 0.059
50 0.299 1 1 0.189 0.468 1 0.512 0.062

7. Heteroscedasticity across time and first order serial correlation = 0.2

5 1 0.817 0.54 0.073 1 1 0.986 0.841
10 1 1 1 0.083 1 1 0.069 0.916
20 1 1 1 0.015 1 1 0.996 1
30 1 1 0.459 0.006 1 1 1 1
50 1 0.696 0.72 0.005 1 1 1 1
Considered tests: Wooldridge-Drukker WD, Ljung-Box QLB , Box-Pierce QBP ,
Breusch-Godfrey LM , Baltagi-Li LM∗, Born-Breitung L̃M ,
Baltagi Fixed Effects LMFE , and CCR-based approach CCR
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and LM struggle with this modification for small T . The CCR approach produces
a big deviation when T is small, but starting from T = 20 it rejects almost all of
the samples. This could be explained by small autocorrelation coefficients (0.01 and
0.05), that are not rejected individually, but combined together they are rejected
for the samples with T larger than 20. A better performance shows WD and all 3
adjusted LM statistics.
For the last 2 cases, heteroscedasticity across time points is assumed. It results in a
lot of deviation in the methods. For example, case 6 also assumes no correlation and
ideally the rejection rate of the tests should be close to the theoretical significance
level γ = 0.05. Only the CCR-based test demonstrates this and rejects around 5% of
the samples. In case 7, when additional serial correlation is included, the compared
tests should reject null hypothesis. CCR rejects almost 100% of the samples. Other
methods, except of Box-Pierce QBP and Breusch-Godfrey LM , possesses similar
rejection rates close to 100%. Still all the other methods, except CCR, cannot be
used with heteroscedastic error terms, as they failed to test for serial correlation
correctly in case 6.
In summary, during the simulation studies the CCR-based test produced adequate
results in the situation of heteroscedastic error terms across time. However, the
CCR-based test demonstrated worse rejection rates for autoregressive process of order
2. This may be explained by relatively small serial correlations that CCR-based test
did not capture. Furthermore, the CCR-based test performs well in the case of only 1
correlation. This proves the fact, discussed above, that with increasing T significance
of non-diagonal elements does not vanish (2.62). Additionally, the adjusted LM tests
(LM∗, L̃M and LMFE) together with Wooldridge-Drukker test performed well in
situations with homoscedastic error terms (cases 1-5 of Table 2.1).

2.5 Example

In this section I will apply all 8 methods to the German Health Care Usage Data,
taken from the Journal of Applied Econometrics Archive2. This is an unbalanced
panel with 7293 individuals. To apply all the serial correlation tests, firstly I clean
up the data. After acquiring a balanced panel, I observed 887 individuals in 7 time
points (years 1984, 1985, 1986, 1987, 1988, 1991 and 1994), giving altogether 6209
observations. Based on this data I constructed the model (2.64):

newhsatit = β0 + β1incomeit + β2doctorit + β3femalei + β4handdumit+

β5educit + β6marriedit + ci + εit
(2.64)

With the variables

• newhsatit - recorded value of health satisfaction from 0 (low) to 10 (high)

• incomeit - log of hourly salary
2http://qed.econ.queensu.ca/jae/2003-v18.4/riphahn-wambach-million/
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• doctorit - dummy variable that = 1, if there were doctor visits in last three
months, otherwise = 0

• femalei - dummy, that = 1, if a person is female, otherwise = 0

• handdumit - dummy, that = 1, if the person is handicapped, otherwise = 0

• educit - years of schooling

• marriedit - dummy, that = 1, if the person is married, otherwise = 0

• ci - unobserved individual effect

• εit - idiosyncratic error term

All the methods were applied to the data to test for serial correlation. Obtained
p-values are presented in the Table 2.2.

Table 2.2: P-Values from Testing for Serial Correlation with 8 Methods in the German
Health Care Usage Data

WD QLB QBP LM LM∗ L̃M LMFE CCR

4.4409e-16 2.0743e-04 7.9755e-04 0.3316 0 0 8.0486e-07 1.0159e-06
Considered tests: Wooldridge-Drukker WD, Ljung-Box QLB , Box-Pierce QBP ,
Breusch-Godfrey LM , Baltagi-Li LM∗, Born-Breitung L̃M ,
Baltagi Fixed Effects LMFE , and CCR-based approach CCR

According to Table 2.2, the only outlier is the Breusch-Godfrey LM -test, with p-value
0.3316, which did not reject the null hypothesis about absence of serial correlation.
A reason for that may be not sufficient number of time periods T in the data for
implementation of this specific test. All the other approaches produced much smaller
p-values thus rejected the null hypothesis about the absence of serial correlation at a
1% significance level.
Furthermore, I tested all the possible combinations of the time points for the existence
of serial correlation (

(
7
6

)
= 7 cases for T = 6,

(
7
5

)
= 21 cases for T = 5 and

(
7
4

)
= 35

cases for T = 4). This allowed me to discover all the possible relations between time
points. The search among panels with 1 time period thrown away indicated serial
correlation in each of the 7 possible cases. But the search among panels reduced
to 5 time points allowed to pick out such a sub-panel that has only insignificant
correlations across time. As a result, the largest reduced panel with uncorrelated
error terms consists of the years 1984, 1985, 1986, 1987 and 1988. The rest of the
panel (years 1991 and 1994) may be estimated separately. Table 2.3 compares the
FE estimators for the full and reduced panels. T-statistics are presented in the
brackets. Estimators β̂1, β̂2 and β̂4 in Table 2.3 are significant at a 1% level for both
of the models. The effect of education β̂5 on the health satisfaction is insignificant
in both models, while the effect of being married on health satisfaction β̂6 becomes
insignificant in the reduced model. Note that β̂3 is not estimated, as femalei is
time-invariant.
One can notice a large difference between estimators for the full and reduced panel
in Table 2.3. For example, the effect of log of income on health satisfaction (β̂1)
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Table 2.3: Parameters Obtained from the FE Estimation for the Full and Reduced
Panels with 7 and 5 Years Respectively. T-Statistic is Given in Brackets

Estimated parameter Full panel Reduced panel

β̂1

-0.40068
(-2.8917)

0.20514
(2.7026)

β̂2

-0.65141
(-12.0515)

-0.5033
(-7.7493)

β̂4

-0.15367
(-2.8403)

-0.14804
(-2.5882)

β̂5

-0.13447
(-1.0142)

-0.069125
(-0.3409)

β̂6

0.32963
(2.7144)

0.14003
(0.7667)

in the full model is negative. In the reduced model this effect becomes positive,
demonstrating that the full model possibly estimated the effect of log of income with
the wrong sign. According to the reduced model, a 1% increase in the salary improves
the health satisfaction by approximately 0.002 c.p. This is an expected result, as
higher income for most of the individuals allows to improve quality of food, health
care and consumption in total, which may positively affect the health satisfaction.
Furthermore, the application of the FE estimator in the reduced panel decreased the
estimated parameters β̂5 and β̂6 approximately by half (in absolute values). However,
both of the parameters are not significant for the reduced model, according to the
t-statics. Table 2.3 implies that the negative insignificant effect of education on
health satisfaction, displayed in β̂5, was too strong and the reduced model has even
weakened it. On the contrary, according to the Table 2.3, the effect of being married
(β̂6) on the health satisfaction was positive and significant for the full panel. But it
appeared that the model with all 7 time periods has overestimated the effect of being
married, while reduced model has estimated it smaller by half and insignificant.
Finally, the study of the CCR-based method in comparison with the other approaches
on the real data example from German Health Care gave an opportunity to improve
the estimation (1 parameter decreased by half and become insignificant, another
parameter has changed its sign). Because of serial correlation tests, the improvement
was possible by only using the FE estimator, without implementation of more
complicated estimation techniques.

2.6 Conclusion

In this Part a new approach for testing panels for serial correlation was introduced. It
is a portmanteau test, based on the CCR technique for jointly testing means and co-
variances of normally distributed samples. Firstly, a 3-step transformation procedure
was introduced to obtain a pseudo-covariance matrix from the FE covariance matrix.
In Proposition 1 it was proved, that pseudo-covariance matrix will be diagonal, if and
only if the covariance matrix (usually unknown) of the model is diagonal. However,
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the pseudo-covariance matrix does not reflect the structure of the covariance matrix,
therefore cannot provide information about the correlation between two specific time
points. But it may state whether there is any correlation across time present in the
data. Next, the CCR-based test is performed pairwisely on all possible pairs from
the pseudo-covariance matrix. The final p-value of the test is defined as a minimum
among the p-values from the pairwise comparison. Further, the CCR-based test
appeared to perform well on the panels with small T . In addition, note the restriction
T > 3, proven in the Proposition 1. Besides, this test is well-fitted for the panels with
heteroscedasticity across time, as no restriction on the variances in different time
periods is set.
Moreover, I compared the CCR-based method with the other existing tests for serial
correlation, that were also described in this Part. Comparison proceeds with the
help of Monte-Carlo simulations of the panels with autoregressive error terms, with
correlation between specific time points and on the panels with heteroscedastic error
terms. Together with CCR-based test, good performance indicated the Wooldridge-
Drukker test and the adjusted LM -based tests. However, they are not adapted for
panels with time-heteroscedastic error terms.
The introduced example of application on German Health Care Usage Data demon-
strated how the testing methods may be applied in the real panel data models. Based
on the testing results, reduced panel with no correlation across time was estimated
and compared with the full panel, eventually improving the estimated parameters.
Alternatively, if the test rejects null hypothesis about absence of correlation in the
panel data, techniques like FE generalized least squares or dynamic panel data models
may be used.
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Appendix 2: MatLab Code

Main subroutine for testing and estimation of panel models with the CCR-based
method, with an input X(i).x ∈ RK×T - matrix of regressors collected for each
individual i = 1, . . . N , and y ∈ RT×N - dependent variable:

1 function p = CCR_Panel(X, y )
2

3 T = s ize (y , 1 ) ;
4 N = s ize (y , 2 ) ;
5 K = s ize (X(1) . x , 2 ) ;
6

7 % demeaning matrix
8

9 QT = eye (T) − ones (T, 1 ) ∗( ones (1 ,T) ∗ ones (T, 1 ) ) ^(−1)∗ ones (1 ,T) ;
10

11 % demean r e g r e s s i on by t a k ing out time in va r i an t parameters
12

13 y_dots = zeros (T,N) ;
14

15 for i =1:N
16 X( i ) . x_dots = round(QT ∗ X( i ) . x , 1 0 ) ;
17 y_dots ( : , i ) = round(QT ∗ y ( : , i ) ,10) ;
18 end
19

20 % sum up the matr ices f o r FE es t ima t i on
21

22 XX = 0 ;
23 Xy= 0 ;
24

25 for i =1:N
26 XX = XX + X( i ) . x_dots ’ ∗X( i ) . x_dots ;
27 Xy = Xy + X( i ) . x_dots ’ ∗ y_dots ( : , i ) ;
28 end
29

30 % f ind time−inva r i an t r e g r e s s o r s and d e l e t e them
31

32 ze r = 0 ;
33 z = 1 ;
34 for k=1:K
35 i f XX(k , : ) == zeros (1 ,K)
36 ze r ( z ) = k ;
37 z = z + 1 ;
38 end
39 end
40

41 i f ze r ~= 0
42 XX( zer , : ) = [ ] ;
43 XX( : , z e r ) = [ ] ;
44 Xy( ze r ) = [ ] ;
45 for i =1:N
46 X( i ) . x_dots ( : , z e r ) = [ ] ;
47 end
48 end
49
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50 % ca l c u l a t e FE es t ima to r s and e r ro r s
51

52 b_FE = XX\Xy ;
53

54 u_dots_hat = zeros ( s ize ( y_dots ) ) ;
55

56 for i = 1 :N
57 u_dots_hat ( : , i ) = y_dots ( : , i ) − X( i ) . x_dots∗b_FE;
58 end
59

60 mu_u_dots_hat = mean( u_dots_hat , 2 ) ;
61

62 % Estimate Omega f o r FE
63

64 Omega_hat = 0 ;
65

66 for i =1:N
67 Omega_hat = Omega_hat + u_dots_hat ( : , i ) ∗u_dots_hat ( : , i ) ’ ;
68 end
69

70 Omega_hat = Omega_hat/N;
71

72 % asympotic var iance sug . by Arrelano (1987)
73

74 XuuX = 0 ;
75

76 for i =1:N
77 XuuX = XuuX + X( i ) . x_dots ’ ∗ u_dots_hat ( : , i ) ∗u_dots_hat ( : , i ) ’∗X( i ) .

x_dots ;
78 end
79

80 Avar_FE = (XX\XuuX) /XX;
81

82 % Fixed E f f e c t s Genera l i zed Least Squares FEGLS
83

84 % de l e t e l a s t T ob s e r va t i on from x , y , u to avoid rank f a i l u r e
85

86 for i =1:N
87 X( i ) . x_dots1 = X( i ) . x_dots ( 1 :end−1 , :) ;
88 end
89

90 y_dots1 = y_dots ( 1 :end−1 , :) ;
91 u_dots_hat1 = u_dots_hat ( 1 :end−1 , :) ;
92

93 % es t imate Covariance matrix between time per i od s Omega
94

95 Omega_hat1 = 0 ;
96

97 for i =1:N
98 Omega_hat1 = Omega_hat1 + u_dots_hat1 ( : , i ) ∗u_dots_hat1 ( : , i ) ’ ;
99 end

100

101 Omega_hat1 = Omega_hat1/N;
102

101



103 % ca l c u l a t e FEGLS es t ima to r s
104

105 XOX = 0 ;
106 XOy = 0 ;
107

108 for i =1:N
109 XOX = XOX + (X( i ) . x_dots1 ’ /Omega_hat1) ∗X( i ) . x_dots1 ;
110 XOy = XOy + (X( i ) . x_dots1 ’ /Omega_hat1) ∗y_dots1 ( : , i ) ;
111 end
112

113 b_FEGLS = XOX\XOy;
114

115 % Preparat ions f o r t e s t i n g CCR. Because o f demeaning Omega_hat =
116 % QT∗Omega∗QT
117

118 % Assuming t ha t t h e r e i s no co r r e l a t i on , we s o l v e a system of f o r
sigma^2 from

119 % 1 to T. Equation f o r each upper non−diagona l e lement in Omega(symm. )
120 % sigma^2_i + sigma^2_j = Omega( i , i ) + Omega( j , j ) − 2∗Omega( i , j )
121 % Al toge t h e r we have T∗(T−1)/2 equa t i ons ( i =1,T; j =1,T; j>i ) wi th T
122 % unknowns . This w i l l work i f T>2
123

124 % ri gh t −hand s i d e
125

126 RHS = zeros (T) ;
127 for i =1:T
128 for j=i :T
129 RHS( i , j ) = Omega_hat( i , i ) + Omega_hat( j , j ) − 2∗Omega_hat( i , j ) ;
130 end
131 end
132

133 % form an equat ion A∗sigma=c and s o l v e i t
134

135 A = zeros (T∗(T−1)/2 ,T) ;
136 c = zeros (T, 1 ) ;
137 k=1;
138 for i =1:T
139 for j =1:T
140 i f RHS( i , j )~=0
141 A(k , i )=1;
142 A(k , j )=1;
143 c ( k ) = RHS( i , j ) ;
144 k=k+1;
145 end
146 end
147 end
148 Sigma_diag = (A’∗A) \A’∗ c ;
149

150 % Construct system i f T equa t i ons f o r d iagona l e lements , us ing t ha t we
know

151 % sigma^2_i f o r i =1,T, wi th unknowns R_i = sum( sigma ( i , : ) ) − sum of a l l
152 % sigmas wi th index i :
153 % sum(R_k)−2∗T∗R_i = B_ii − T^2∗sigma^2_i , f o r i from 1 to T
154
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155 % ri gh t −hand s i d e
156 B = Omega_hat∗(T^2) ;
157 c = diag (B)− T^2∗Sigma_diag ;
158

159 % l e f t −hand s i d e
160 A = ones (T) ;
161 for t=1:T
162 A( t , t ) = A( t , t ) − 2∗T;
163 end
164

165 R = A\c ;
166

167 % with matrix B and vec t o r R we can r e s t o r e Matrix Omega be f o r e
demeaning

168 % as sigma ( i , j ) = ((B( i , j ) + T∗R_i + T∗R_j − sum(R_k) ) /(T^2)
169 % No co r r e l a t i o n in unknown Omega <−> no c o r r e l a t i o n in Omega_rest
170 Omega_rest = zeros (T) ;
171 for i =1:T
172 for j =1:T
173 Omega_rest ( i , j ) = (B( i , j ) + T∗R( i ) + T∗R( j ) − sum(R) ) /(T^2) ;
174 end
175 end
176

177 % Apply CCR techn i que to check whether o b s e r va t i on s are c o r r e l a t e d in
time

178 % and whether i t makes sence to use FEGLS
179

180 l =1;
181 p = ones ( s ize (Omega_hat) ) ;
182 for t1=1:T−1
183 dt = 1 ;
184 while 1
185 %disp ( [ ’ Case ’ num2str ( l ) ’ : per iod ’ ’<strong >’ num2str ( t1 )

’</ strong >’ ’ wi th per iod ’ ’<strong >’ num2str ( t1+dt ) ’</
strong > ’]) ;

186 p( t1 , t1+dt ) = CCR(mu_u_dots_hat ( [ t1 , t1+dt ] ) , Omega_rest ( [ t1 , t1+
dt ] , [ t1 , t1+dt ] ) , mu_u_dots_hat ( [ t1 , t1+dt ] ) , [ Omega_rest ( t1 ,
t1 ) , 0 ; 0 , Omega_rest ( t1+dt , t1+dt ) ] , N) ;

187 p_vec ( l ) = p( t1 , t1+dt ) ;
188 l=l +1;
189 dt = dt + 1 ;
190 i f ( t1+dt )>T %| | p<s i g n i f i c a n c e
191 break
192 end
193 end
194 end
195

196 [ p_total , ind ] = min( min(p) ) ;
197 p = p_total ;
198 disp ( ’P−value f o r H0 : no c o r r e l a t i o n between time po in t s ’ ) ;
199 disp ( p_total ) ;
200

201 disp ( ind ) ;
202
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203 % es t ima t ion r e s u l t s i f be ta i s not known
204

205 % VarNames = { ’b_FE’ , ’b_FEGLS’ , ’ difference_FEGLS_and_FE ’ } ;
206 % Table = t a b l e (b_FE, b_FEGLS, abs (b_FEGLS − b_FE) , ’ VariableNames ’ ,

VarNames) ;
207 % disp ( Table ) ;
208 %
209 % d i f f = abs (b_FEGLS − b_FE) ’∗ ones ( s i z e (b_FE) ) ;
210 %
211 % disp ( [ ’ t o t a l d e v i a t i on o f FE from FEGLS i s : ’ num2str ( d i f f ) ] ) ;
212 % disp (Omega_rest ) ;

Subroutine for application of the CCR-based method on healthcare panel:

1 % Example pane l model
2

3 clear a l l
4

5 load hea l thca r e
6

7 for i=s ize (A, 1 ) : −1:1
8 i f A( i , 3 ) ~= 1984 && A( i , 3 ) ~= 1985 && A( i , 3 ) ~= 1986 &&.. .
9 A( i , 3 ) ~= 1987 && A( i , 3 ) ~= 1991

10 A( i , : ) = [ ] ;
11 end
12 end
13

14 T = length ( unique (A( : , 3 ) ) ) ; % time per i od s
15 N = s ize (A, 1 ) /T; % ind i v i d u a l s
16 s i g n i f i c a n c e = 0 . 0 5 ; % s i g n i f i c a n c e l e v e l f o r running CCR
17

18 y = reshape (A( : , 4 1 ) ,T,N) ; % regressand as a Matrix (T∗N) f o r e s t ima t ion
19 y ( isnan ( y ) )=0; % de l e t e NaN
20 y = double ( y ) ; % ad ju s t formats
21

22 x =[ ones (N∗T, 1 ) , A( : , 3 6 ) , A( : , 2 6 ) , A( : , 2 ) , A( : , 5 ) , A( : , 8 ) A( : , 9 ) ] ; %
reg r e s s o r s

23 x ( isnan ( x ) )=0; % de l e t e NaN
24 x = double ( x ) ; % ad ju s t formats
25 K = s ize (x , 2 ) −1; % number o f r e g r e s s o r s
26

27 for i =1:N % x as a s t r u c t u r e wi th wi th X( i ) − ind i v i dua l , f o r each i we
28 % have a X( i ) . x − (T∗(K+1)) matrix wi th K r e g s e s s o r s and

cons tant
29 % in T time per i od s
30 X( i ) . x = x ( ( i −1)∗T+1: i ∗T , : ) ;
31 end
32

33 c l e a r v a r s hea l thca r e_de s c r i p t i on hea l thca r e A
34

35

36 % demeaning matrix
37

38 QT = eye (T) − ones (T, 1 ) ∗( ones (1 ,T) ∗ ones (T, 1 ) ) ^(−1)∗ ones (1 ,T) ;
39
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40 % demean r e g r e s s i on by t a k ing out time in va r i an t parameters
41

42 y_dots = zeros (T,N) ;
43

44 for i =1:N
45 X( i ) . x_dots = round(QT ∗ X( i ) . x , 1 0 ) ;
46 y_dots ( : , i ) = round(QT ∗ y ( : , i ) ,10) ;
47 end
48

49 % sum up the matr ices f o r FE es t ima t i on
50

51 XX = 0 ;
52 Xy= 0 ;
53

54 for i =1:N
55 XX = XX + X( i ) . x_dots ’ ∗X( i ) . x_dots ;
56 Xy = Xy + X( i ) . x_dots ’ ∗ y_dots ( : , i ) ;
57 end
58

59 % f ind time−inva r i an t r e g r e s s o r s and d e l e t e them
60

61 ze r = 0 ;
62 z = 1 ;
63 for k=1:K+1
64 i f XX(k , : ) == zeros (1 ,K+1)
65 ze r ( z ) = k ;
66 z = z + 1 ;
67 end
68 end
69 XX( zer , : ) = [ ] ;
70 XX( : , z e r ) = [ ] ;
71 Xy( ze r ) = [ ] ;
72 for i =1:N
73 X( i ) . x_dots ( : , z e r ) = [ ] ;
74 end
75

76 % ca l c u l a t e FE es t ima to r s and e r ro r s
77

78 b_FE = XX\Xy ;
79

80 u_dots_hat = zeros ( s ize ( y_dots ) ) ;
81

82 for i = 1 :N
83 u_dots_hat ( : , i ) = y_dots ( : , i ) − X( i ) . x_dots∗b_FE;
84 end
85

86 mu_u_dots_hat = mean( u_dots_hat , 2 ) ;
87

88 % Estimate Omega f o r FE
89

90 Omega_hat = 0 ;
91

92 for i =1:N
93 Omega_hat = Omega_hat + u_dots_hat ( : , i ) ∗u_dots_hat ( : , i ) ’ ;
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94 end
95

96 Omega_hat = Omega_hat/N;
97

98 % asympotic var iance sug . by Arrelano (1987)
99

100 XuuX = 0 ;
101

102 for i =1:N
103 XuuX = XuuX + X( i ) . x_dots ’ ∗ u_dots_hat ( : , i ) ∗u_dots_hat ( : , i ) ’∗X( i ) .

x_dots ;
104 end
105

106 Avar_FE = (XX\XuuX) /XX;
107

108 % Fixed E f f e c t s Genera l i zed Least Squares FEGLS
109

110 % de l e t e l a s t T ob s e r va t i on from x , y , u to avoid rank f a i l u r e
111

112 for i =1:N
113 X( i ) . x_dots1 = X( i ) . x_dots ( 1 :end−1 , :) ;
114 end
115

116 y_dots1 = y_dots ( 1 :end−1 , :) ;
117 u_dots_hat1 = u_dots_hat ( 1 :end−1 , :) ;
118

119 % es t imate Covariance matrix between time per i od s Omega
120

121 Omega_hat1 = 0 ;
122

123 for i =1:N
124 Omega_hat1 = Omega_hat1 + u_dots_hat1 ( : , i ) ∗u_dots_hat1 ( : , i ) ’ ;
125 end
126

127 Omega_hat1 = Omega_hat1/N;
128

129 % ca l c u l a t e FEGLS es t ima to r s
130

131 XOX = 0 ;
132 XOy = 0 ;
133

134 for i =1:N
135 XOX = XOX + (X( i ) . x_dots1 ’ /Omega_hat1) ∗X( i ) . x_dots1 ;
136 XOy = XOy + (X( i ) . x_dots1 ’ /Omega_hat1) ∗y_dots1 ( : , i ) ;
137 end
138

139 b_FEGLS = XOX\XOy;
140

141 % Preparat ions f o r t e s t i n g CCR. Because o f demeaning Omega_hat =
142 % QT∗Omega∗QT
143

144 % Assuming t ha t t h e r e i s no co r r e l a t i on , we s o l v e a system of f o r
sigma^2 from

145 % 1 to T. Equation f o r each upper non−diagona l e lement in Omega(symm. )
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146 % sigma^2_i + sigma^2_j = Omega( i , i ) + Omega( j , j ) − 2∗Omega( i , j )
147 % Al toge t h e r we have T∗(T−1)/2 equa t i ons ( i =1,T; j =1,T; j>i ) wi th T
148 % unknowns . This w i l l work i f T>2
149

150 % ri gh t −hand s i d e
151

152 RHS = zeros (T) ;
153 for i =1:T
154 for j=i :T
155 RHS( i , j ) = Omega_hat( i , i ) + Omega_hat( j , j ) − 2∗Omega_hat( i , j ) ;
156 end
157 end
158

159 % form an equat ion A∗sigma=c and s o l v e i t
160

161 A = zeros (T∗(T−1)/2 ,T) ;
162 c = zeros (T, 1 ) ;
163 k=1;
164 for i =1:T
165 for j =1:T
166 i f RHS( i , j )~=0
167 A(k , i )=1;
168 A(k , j )=1;
169 c ( k ) = RHS( i , j ) ;
170 k=k+1;
171 end
172 end
173 end
174 Sigma_diag = (A’∗A) \A’∗ c ;
175

176 % Construct system i f T equa t i ons f o r d iagona l e lements , us ing t ha t we
know

177 % sigma^2_i f o r i =1,T, wi th unknowns R_i = sum( sigma ( i , : ) ) − sum of a l l
178 % sigmas wi th index i :
179 % sum(R_k)−2∗T∗R_i = B_ii − T^2∗sigma^2_i , f o r i from 1 to T
180

181 % ri gh t −hand s i d e
182 B = Omega_hat∗(T^2) ;
183 c = diag (B)− T^2∗Sigma_diag ;
184

185 % l e f t −hand s i d e
186 A = ones (T) ;
187 for t=1:T
188 A( t , t ) = A( t , t ) − 2∗T;
189 end
190

191 R = A\c ;
192

193 % with matrix B and vec t o r R we can r e s t o r e Matrix Omega be f o r e
demeaning

194 % as sigma ( i , j ) = ((B( i , j ) + T∗R_i + T∗R_j − sum(R_k) ) /(T^2)
195 % No co r r e l a t i o n in unknown Omega <−> no c o r r e l a t i o n in Omega_rest
196 Omega_rest = zeros (T) ;
197 for i =1:T
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198 for j =1:T
199 Omega_rest ( i , j ) = (B( i , j ) + T∗R( i ) + T∗R( j ) − sum(R) ) /(T^2) ;
200 end
201 end
202

203 % Apply CCR techn i que to check whether o b s e r va t i on s are c o r r e l a t e d in
time

204 % and whether i t makes sence to use FEGLS
205

206 p = zeros (T) ;
207 l =1;
208 for t1=1:T−1
209 dt = 1 ;
210 while 1
211 disp ( [ ’ Case ’ num2str( l ) ’ : pe r iod ’ ’<strong>’ num2str( t1 ) ’</

strong>’ ’ with per iod ’ ’<strong>’ num2str( t1+dt ) ’</strong
>’ ] ) ;

212 p( t1 , t1+dt ) = CCR(mu_u_dots_hat ( [ t1 , t1+dt ] ) , Omega_rest ( [ t1 , t1+
dt ] , [ t1 , t1+dt ] ) , mu_u_dots_hat ( [ t1 , t1+dt ] ) , [ Omega_rest ( t1 ,
t1 ) , 0 ; 0 , Omega_rest ( t1+dt , t1+dt ) ] , N) ;

213 l=l +1;
214 dt = dt + 1 ;
215 i f ( t1+dt )>T %| | p<s i g n i f i c a n c e
216 break
217 end
218 end
219 end
220

221 % es t ima t ion r e s u l t s i f be ta i s not known
222

223 VarNames = { ’b_FE ’ , ’b_FEGLS ’ , ’ difference_FEGLS_and_FE ’ } ;
224 Table = tab l e (b_FE, b_FEGLS, abs (b_FEGLS − b_FE) , ’ VariableNames ’ ,

VarNames ) ;
225 disp ( Table ) ;
226

227 d i f f = abs (b_FEGLS − b_FE) ’∗ ones ( s ize (b_FEGLS) ) ;
228

229 disp ( [ ’ t o t a l d ev i a t i on o f FE from FEGLS i s : ’ num2str( d i f f ) ] ) ;
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Part 3 Confidence Regions for Bivariate Normal

Distributions. Extension of Mood Ap-

proach

3.1 Introduction

Testing hypotheses and constructing confidence intervals are the essential tasks of
any model estimation. Testing the significance of the parameters and their combina-
tions together with testing joint significance of those parameters compose standard
instruments of the data analysis. T-test, F-test and χ2-tests are well-known to every
economist and econometrician and start the extensive list of tests designed for different
purposes.
In this Part I will describe a new approach for jointly testing means and variances/-
covariances of a sample of random vectors, based on the idea of a test, presented
by Mood (1950), p.227. This approach may be used as an additional or alternative
instrument of analysis in modern portfolio theory. Starting from Markowitz (1952),
who aimed to find the best ratio between expected return as a mean and variance
of return. Another constructive implementation is testing for serial correlation in
panels, as an alternative to approaches proposed by Ljung & Box (1978) or Born &
Breitung (2016).
I will formally describe a technique of testing whether the given sample from Rm

may follow multivariate normal distribution with the proposed parameters N(µ0,Σ0)

and with a predetermined significance level γ. Firstly, assume an independent and
identically distributed (iid) sample of random vectors {Xi}ni=1 = X1,X2, ...,Xn ∈ R2

from bivariate normal distribution with unknown parameters N(·, ·). Additionally,
note that mean is defined as µ ∈ R2 and covariance matrix is defined as Σ ∈ R2×2.
Therefore I will test whether the given sample {Xi}ni=1 may follow normal distribution
with the proposed parameters N(µ0,Σ0) as defined in Null Hypothesis in (3.1):

H0 : (µ,Σ) = (µ0,Σ0) (3.1)

An extension of this approach from bivariate to multivariate case is possible by jointly
testing each pair of dimensions of a sample {Xi}ni=1 from Rm. It will be also presented
in this Part and applied to the SUR model.
Most of the existing techniques were designed only for a univariate case of the
introduced test (3.1). For example, approaches described in Frey, Marrero, Norton
(2009) and Arnold & Shavelle (1998) may be applied only in univariate case. The
technique, outlined in Jensen (1995), is also constructed for a univariate case. It
may be expanded to a multivariate case, but this test is based on Rao distance and
therefore may not be expressed analytically for dimensionality m > 1. However,
in Part 1 Cumulative Distribution Function Confidence Region (CCR) approach
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for bivariate case of hypothesis (3.1) was introduced. Because of lack of equivalent
methods, CCR was only examined for the specific cases, such as testing for temporal
dependencies in Panel models. In Part 2 I applied CCR to find serial correlations in
Panels and compared this approach with LM based Breush-Godfrey test, introduced
by Godfrey (1978), with classic portmanteau test developed by Ljung & Box (1978),
and with the most modern approaches as well, like the test developed by Jochmans
(2019).
As a result of the analysis made above, I have designed a procedure of running a test
(3.1) in the multivariate case, based on the technique, introduced by Mood (1950),
p.227. Mood (1950) in his book takes the t-test for means and Wald test for variances
and merges them into one joint mean-variance test for univariate normal distribution.
Simultaneously Mood’s approach forms a confidence region as a part of a parabola,
restricted by two horizontal lines.
The procedure for testing normal distributions in the bivariate case uses the same
logic, as the univariate one. It sets up as a combination of a test for means with a test
for variances/covariances into one joint test. I have called this method the bivariate
Mood test. An approach for means, used by bivariate Mood method, is a Hotelling
t2-test, introduced by Hotelling (1931). This is an extension of the usual t-test for
vectors. The second is a Wishart test, which matches covariance matrices for equality.
It is based on the definition of the Wishart distribution (see for example Gupta &
Nagar (2000), p.87), and appears to be an extension of Gamma distribution. Wishart
distribution, as a matrix-represented, describes asymptotic properties of each element
of covariance matrix simultaneously. Merging the t2 and Wishart test establishes a
new joint Mood test for means and covariances of bivariate Normal distribution (3.1).
As mentioned, further bivariate Mood test may be also expanded to a multivariate
case by testing all m dimensions of the sample of random vectors {Xi}ni=1 pairwisely.
More technically, the distribution of Hotelling t2 is given by equation (3.2), where
new variable X is a sample mean of {Xi}ni=1, given in (3.3). The distribution of the
Wishart statistic is defined by equation (3.4) with S - sample covariance matrix of
{Xi}ni=1, corrected for bias (3.5). And the task that bivariate Mood approach solves
in this Part is connection of the both test (3.2) and (3.4) regarding the significance
level γ and dependencies with each other.

n(X− µ)Σ−1(X− µ) ∼ χ2
2 (3.2)

X =
1

n

m∑
i=1

Xi (3.3)

(n− 1)S ∼W2(n− 1,Σ) (3.4)

S =
1

n− 1

n∑
i=1

(Xi −X)(Xi −X)′ (3.5)

Thereafter I demonstrate in this Part how the bivariate Mood test (3.2)-(3.5) may be
decomposed into a system of 4 scalar random variables: z, h11, h22 and h22, which
are transformations of Hotelling and Wishart statistics. Distributions of these new
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random variables are given in (3.6)-(3.9) with fh12 - PDF of normal variance-mean
mixture, that uses gamma distribution as a mixing one.
The next section of the Part 3 illustrates how the bivariate Mood confidence region,
defined by (3.6)-(3.9), may be further simplified using affine transformations from
Part 1. This section is crucial in analyzing the shape of the confidence region, as
well as highlighting the subregions with a smaller probability density for further
comparison with the CCR method.
After the decomposition into scalars, the CCR and Mood techniques will be compared.
For these two tests, which may interchange with each other, the next section of
the Part 3 aims to analyze them with respect to computation speed, shape of the
confidence set (for bivariate case one has to deal with a 5-dimensional figures),
correspondence of theoretical and real significance level, reaction on non-standard
samples from the other distributions and samples with outliers. Analyses made in
this Part demonstrated a better efficiency of the Mood method w.r.t. computation
time, but worse behavior w.r.t. to the shape of confidence set, especially on larger
significance levels γ > 20%. Furthermore both the Mood and CCR approaches
indicated good results while testing their real significance level.
Another substantial point is that the bivariate Mood test is an exact test, while the
CCR is an approximate one. This gives real significance levels of the bivariate Mood
approach, that are following the theoretical distribution derived. On the contrary,
the CCR method only guarantees that the real significance level will be in some
predefined neighborhood of the theoretical significance level γ, but not converging to
it.
Analysis of the shapes of these two methods shows the CCR as the more effective
one. The bivariate Mood approach produces a confidence region in the form of a
generalized cylinder. The CCR method deals with a problem of edges of the cylinder,
that have lower probability density, and smoothen confidence region to the form of so
called ’pseudo-ellipse’, mentioned in Part 1.

nz ∼ χ2
2 (3.6)

(n− 1)h11 ∼ χ2
n−1 (3.7)

(n− 1)h22 ∼ χ2
n−1 (3.8)

(n− 1)h12 ∼ fh12(h12, n) (3.9)

Finally, in this Part I have derived a new Mood approach for jointly testing means and
variances/covariances of multivariate normal distribution. Then the Mood method
was analyzed and compared with the CCR technique with respect to the most
important parameters, including effectiveness, accuracy and robustness. Among them
CCR has resulted in being more effective w.r.t. shape. While the bivariate Mood
test, as an exact one, is more accurate on big sample sizes, as it is convergent to the
theoretical significance level γ.

111



3.2 Model Set Up

The construction of the bivariate Mood approach starts with the sample of iid random
vectors {Xi}ni=1 = X1,X2, ...,Xn ∈ R2. Each of the elements of the sample are
drown from bivariate normal distribution, but with unknown parameters µ and Σ.
One can also define sample mean X in (3.3) and sample variance matrix S in (3.5).
Null hypothesis, defined in (3.1) checks if the sample {Xi}ni=1 may follow normal
distribution with the proposed set of parameters (µ,Σ) and for the given significance
level γ.
Therefore, the task is to define a value for each set of a points (µ,Σ) that describes
how probable normal distribution with the proposed parameters N(µ,Σ) may be the
one from which our original sample {Xi}ni=1 was drawn. Based on this probability
and critical value, one can reject or non-reject Null hypothesis (3.1). Similarly, one
can construct confidence region R(X) in (3.10) as a locus of all points that will not be
rejected with a probability larger than 1− γ (probability of non-rejection of critical
value).

P ((~µ,Σ)) ∈ R(X)) = 1− γ (3.10)

3.2.1 Test for Mean

The first part of the bivariate Mood approach is based on the t2-test, first presented
by Hotelling (1931). In the notations introduced, it describes the joint relation of
two sample means of our sample X ∈ R2 to the proposed values µ ∈ R2 (3.11):

n(n− 2)

2(n− 1)
(X− µ)′S−1(X− µ) ∼ F2,n−2 (3.11)

In fact, Hotelling t2 measures the nonlinear distance between two means: sample
and population. The further population mean is located from the sample average,
the higher value this statistic will take. Based on Hotelling t2 ’distance’ (3.11) from
Johnson & Wichern (2002), p.235 I introduce another statistic z, that uses theoretical
variance matrix Σ instead of estimated matrix S (3.12):

n ∗ z = n(X− µ)′Σ−1(X− µ) ∼ χ2
2 (3.12)

According to (3.12), one still deals with a distance. And (3.12) is a pivotal quantity
as well, since it does not depend on the unknown parameters (see Wooldridge (2010)),
p.439. It is highly important that a one-sided χ2-test should be used, rejecting only
the points that are too far from each other, and therefore having a higher statistic.
Points that are extremely close to each other should not be rejected and they are not
rejected by one-sided test. Albeit two-sided χ2 test claims to reject them. Therefore,
a one-sided test will be used for (3.12).
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3.2.2 Test for Variance

The second part of the bivariate Mood test is based on the Wishart distribution.
First, assume that the sample of iid random variables {Xi}ni=1 ∈ R2 defined before
follows a zero mean normal distribution N(0,Σ). For this case Gupta & Nagar (2000),
p.88 proved that the sum of squared elements of our sample will follow the Wishart
distribution (3.13):

n∑
i=1

XiX
′
i ∼W2(n,Σ) (3.13)

In the next step one can switch back to the first sample {Xi}ni=1 drawn from a
normal distribution N(µ,Σ) and demean it. Then, according to Muirhead (1982),
p.86 estimation of the covariance matrix, defined in (3.5) will follow the Wishart
distribution with (n− 1) degrees of freedom (3.14):

n∑
i=1

(Xi −X)(Xi −X)′ = (n− 1)S ∼W2(n− 1,Σ) (3.14)

Many papers researching this topic claim that one may use both (3.13) and (3.14) as
an estimation for covariance matrix. To exemplify, Gupta & Bodnar (2014) mentions
that there is only a slight difference between (3.13) and (3.14). This Part uses an
unbiased estimator (3.5). Therefore, equation (3.14), which describes the distribution
of S, is preferable.
To use formula (3.14) as a statistic, one has to transform the left-hand side in the
way it follows the Wishart distribution, independent of parameter Σ. For this reason,
assume that Σ−

1
2 is existing and known. Then according to the properties of the

Wishart distribution, given in Gupta & Nagar (2000), p.90 one can rewrite the
distribution of S as (3.15), denoting the function H:

(n− 1) ∗H = (n− 1) ∗ Σ−
1
2 ∗ S ∗ Σ−

1
2 ∼W2(n− 1, I2) (3.15)

I2 in (3.15) is a 2×2 identity matrix. Thus, by achieving a function whose distribution
does not depend on the unknown parameters, one gets a pivotal quantity in (3.15).
What about the existence of Σ−

1
2 ? Firstly, Σ−1 exists as an inverse of covariance

matrix with no degenerate variables included (by set up). Note that the inverse
is positive definite (see Horn & Johnson (2013), p.438). Secondly, existence of the
square root is in common case not obvious, but here helps fact that Σ−1 is positive
definite. And Horn & Johnson (2013), p.439 proved the existence of a square root for
such matrices. Hence, for any Σ there always exists a matrix Σ−

1
2 .

Next, mention that in 2-dimensional case Σ is defined as (3.16). Here and further
indexes x and y stand for the first and second dimensions of the sample {Xi}ni=1 and
its functions. To calculate the matrix Σ−

1
2 I use a Cayley–Hamilton theorem and a

direct algorithm, derived in Levinger (1980). This method gives 4 roots, but two of
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them are defined in complex plane, which is not the point of interest. The other two
just have opposite signs. Since in (3.15) one multiplies by Σ−

1
2 twice, its sign does

not matter and I will further use a positive root of Σ−1 (3.17), given as a matrix Σ−
1
2

in (3.18):

Σ =

(
σ2
x ρσxσy

ρσxσy σ2
y

)
(3.16)

Σ−1 =

 1
(1−ρ2)σ2

x

−ρ
(1−ρ2)σxσy

−ρ
(1−ρ2)σxσy

1
(1−ρ2)σ2

y

 (3.17)

Σ−
1
2 =

√
1− ρ2σxσy√

σ2
x + σ2

y + 2σxσy
√

1− ρ2

(
Σ−1 +

1√
1− ρ2σxσy

I2

)
(3.18)

At this point one has two pivotal quantities: (3.12) and (3.15). As pivots, they
are also uncorrelated and independent, as follows from Greene (2002), p. 891. For
clarification of the next step, I merge their confidence intervals (3.19)-(3.20) together
and obtain (3.21):

P (n ∗ z ∈ A1) = P (n ∗ z < a) = 1− γ1 (3.19)

P ((n− 1)H ∈ A2) = P (b < (n− 1) ∗ Σ−
1
2 ∗ S ∗ Σ−

1
2 < c) = 1− γ2 (3.20)

(1− γ1)(1− γ2) = P (n ∗ z ∈ A1) ∗ P ((n− 1)H ∈ A2)

= P (n ∗ z ∈ A1, (n− 1)H ∈ A2) = 1− γ
(3.21)

Where A1 and A2 are some neighborhoods around X and S respectively. Pivot n ∗ z
in (3.19) is only bounded by a from the above, since it uses one-sided χ2-test, as was
mentioned before.
As a reminder, the Wishart distribution is a matrix one. Therefore, equation (3.20)
describes a matrix inequality. And to work with this inequality, one has to convert it to
a system of scalar inequalities by calculating (3.15) and its distributions element-wise.
Thus, I define elements of the sample covariance matrix S in (3.22) and elements of
the pivot H in (3.23). To mention both of the matrices are symmetrical.

S =

(
s11 s12

s12 s22

)
=

1

n− 1

(
(Xx −Xx)′(Xx −Xx) (Xx −Xx)′(Xy −Xy)

(Xx −Xx)′(Xy −Xy) (Xy −Xy)
′(Xy −Xy)

)
(3.22)

H = Σ−
1
2 ∗ S ∗ Σ−

1
2 =

(
h11 h12

h12 h22

)
(3.23)

Now, as Σ−
1
2 is calculated in equation (3.18) and S in (3.22), it is time to plug them

in function of H in (3.23). The result is quite bulky, therefore I provide the matrix
H element-wise in (3.24)-(3.26):
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h11 =
s11(σy +

√
1− ρ2σx)2 − 2s12ρσx(σy +

√
1− ρ2σx) + s22ρ

2σ2
x

(1− ρ2)σ2
x(σ2

x + σ2
y + 2σxσy

√
1− ρ2)

(3.24)

h12 = (s12ρ
2σxσy − s11ρσy(σy +

√
1− ρ2σx) + s12(σy +

√
1− ρ2σx)

(σx +
√

1− ρ2σy)− s22ρσx(σx +
√

1− ρ2σy))

/((1− ρ2)σxσy(σ
2
x + σ2

y + 2σxσy
√

1− ρ2))

(3.25)

h22 =
s22(σx +

√
1− ρ2σy)

2 − 2s12ρσy(σx +
√

1− ρ2σy) + s11ρ
2σ2
y

(1− ρ2)σ2
y(σ

2
x + σ2

y + 2σxσy
√

1− ρ2)
(3.26)

In the next step, marginal distributions of matrix elements h11, h12 and h22 may be
obtained by applying the Barlett decomposition technique for Wishart distribution,
designed by Kshirsagar (1959). I apply this procedure to the bivariate Wishart
distribution (3.27) that describes the behavior of matrix H. Following Barlett
decomposition, matrices A and L are obtained in (3.28), where L is a Cholesky
factorization of variance I2, which is still I2. Matrix A consists of two χ2-distributed
random variables with (n− 1) and (n− 2) degrees of freedom and standard normally
distributed random variable n21. All 3 random variables defined in A are jointly
independent by construction. Finally, plugging A and L in equation (3.27) gives the
element-wise distribution of H in equation (3.30).

(n− 1)H = LAA′L′ ∼W2(n− 1, I2) (3.27)

L =

(
1 0

0 1

)
, A =

(
c1 0

n21 c2

)
, (3.28)

c2
1 ∼ χ2

n−1, c2
2 ∼ χ2

n−2, n21 ∼ N(0, 1) (3.29)

(n− 1)H =

(
c2

1 c1n21

c1n21 c2
2 + n2

21

)
(3.30)

For the bivariate case, Kshirsagar (1959) showed that the elements h11, h22 and
h12 of the matrix H are uncorrelated and independent. Diagonal elements h11 and
h22 will follow χ2-distribution, given in equations (3.31)-(3.32). Distribution of h11

is obviously the same as in c2
1. Distribution of h22 develops from the definition of

χ2-distribution; adding one more independent normally distributed random variable
increases degrees of freedom from (n − 2) to (n − 1). Non-diagonal element h12

will follow a normal variance-mean mixture distribution (3.33). The PDF of this
distribution is given in (3.34), with gamma function Γ(·) and modified Bessel function
of the second kind K·(·). Note that there is a discontinuity point h12 = 0, but it
may be neglected as a part of a null set. For the PDF f(h12) this irregularity is
a removable discontinuity point, which may be eliminated by additionally setting
f(0) = lim

x0→0
(f(x0)).
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(n− 1)h11 ∼ χ2
n−1 (3.31)

(n− 1)h22 ∼ χ2
n−1 (3.32)

(n− 1)h12 ∼ fh12(h12, n) (3.33)

fh12(h12, n) =
|h12|

n−2
2

Γ(n−1
2 )
√

2n−2π
Kn−2

2
(|h12|), h12 6= 0 (3.34)

To give an understanding how h12 behaves, a short description of the derived pdf
fh12 will be provided. Firstly, it is symmetrical around the y-axis. This property
is obtained from normal distribution. Secondly, it follows the same bell-shaped
form, but with thicker tails, as may be seen on the Figure 3.1. Additionally, all
non-central moments of h12 may be calculated as the product of corresponding non-
central moments of normally distributed n21 and c1, which is χ-distributed, random
variables.

Figure 3.1: PDF of Non-Diagonal Element h12 from Wishart Distribution in Com-
parison with PDF of Normal Distribution for σ2 = 50

3.2.3 Merging Mean and Variance Tests Together

The next step in the construction of the confidence set (3.10) is linking statistic z
(3.12) with Wishart test statistics (3.31)-(3.33). Firstly, using the same notations as
in the Wishart distribution part, I plug inverse covariance matrix (3.17) in equation
(3.12) and get the scalar representation of statistic z in equation (3.35) with its
distribution in (3.36):
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z =
σ2
y

(
Xx − µx

)2
+ σ2

x

(
Xy − µy

)2 − 2ρσxσy
(
Xx − µx

) (
Xy − µy

)
(1− ρ2)σ2

xσ
2
y

(3.35)

nz ∼ χ2
2 (3.36)

After the disentangling of mean and variance inequalities, I can rewrite the confidence
set (3.21) as a combination of scalar inequalities. To do this, remember that the
elements of matrix H are jointly independent. z and H are also independent as pivots,
hence h11, h22, h12 and z compose a set of jointly independent random variables.
This allows me to write the confidence set in more detailed in (3.37). Note that h12

follows a distribution symmetrical around zero.

1− γ = P ((~µ,Σ) ∈ R(X)) =

P (nz < a, b < (n− 1)h11 < c, d < (n− 1)h22 < e,−f < (n− 1)h12 < f)

= P (nz < a) ∗ P (b < (n− 1)h11 < c) ∗ P (d < (n− 1)h22 < e)∗

P (−f < (n− 1)h12 < f) = (1− γ1)(1− γ2)(1− γ3)(1− γ4)

(3.37)

What about the selection of individual significance levels γi? Their choice and thus
subsequent allocation to upper and lower tails does influence the volume and the
amount of stretching and tightening of the confidence region. Furthermore, the
influence of ratio between γi on the volume of confidence set will be discussed in
subsection (3.2.6). However, the choice of γi in equation (3.37) does not influence
the overall significance level γ, since all the gammas should be chosen in the way
their confidence levels (1 − γi) multiply to the predefined confidence level (1 − γ).
Hence, without loss of generality, I let (1− γi) = 4

√
1− γ. The inverse statement for

recovering γ from γi however is not true. To find the overall significance level γ, one
should come up with the smallest possible confidence region that covers all the points
given by γi, keeping chosen proportion of individual gammas unchanged. In the case
considered all γi should be the same. Hence, a simple algorithm in (3.38) could be
used to treat with gammas.

γ is known =⇒ 1− γi = 4
√

1− γ

γi is known =⇒ 1− γ = (1−min(γi))
4

(3.38)

At this point I can write down the confidence region R(X), derived in this subsection,
as (3.39), and therefore set up a a procedure for joint (µ,Σ) test, defined in (3.1): a
sample {Xi}ni=1 is rejected by null hypothesis H0, if its sample mean X and sample
covariance S are not a part of the confidence set R(X).

R(X) =


((

µx
µy

)
,

(
σ2
x ρσxσy

ρσxσy σ2
y

))
:

z < a
n

b
n−1 < h11 <

c
n−1

d
n−1 < h22 <

e
n−1

− f
n−1 < h12 <

f
n−1

 (3.39)
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As a result, the confidence set derived in (3.39) represents a range of points (µx, µy, σx, σy, ρ)

in 5-dimensional space, such that each of the points may not be rejected by null
hypothesis (3.1).

3.2.4 Limiting Properties of Pivots z, h11, h22 and h12

To verify the correctness of functional forms of z, h11, h22 and h12, I examine the
limiting properties of these statistics, established in the previous subsections. The aim
of this subsection is to show that whenever sample parameters get closer to theoretical
values, statistics, determined earlier, will also get closer to the distributions these
statistics follow. This means that significance γi will tend to its maximum of 100%
when sample parameters get closer to theoretical values. In degenerate case when
sample and theoretical moments are exactly the same, statistics should be equal to
the mean of their limiting distributions.
I start with nz, which follows χ2

2-distribution (equations (3.35)-(3.36)). In this
case, only sample means are included in its formula and we limit only them to the
theoretical means. The result obtained in (3.40) is expected, since one-sided test on
χ2 achieves its maximum significance at zero point, when all the distribution is in
the right tail.

lim
Xx → µx

Xy → µy

(
σ2
y

(
Xx − µx

)2
+ σ2

x

(
Xy − µy

)2 − 2ρσxσy
(
Xx − µx

) (
Xy − µy

)
(1− ρ2)σ2

xσ
2
y

)

∗n = n
σ2
y ∗ 0 + σ2

x ∗ 0− 2ρσxσy ∗ 0

(1− ρ2)σ2
xσ

2
y

= 0

(3.40)
Behavior of h11 and h22 is exactly the same as far as they may be obtained from each
other by simple substitution of σx and σy. Therefore, I examine them together in
(3.41) by tending elements of sample covariance matrix S to respective elements of
covariance matrix Σ.

lim((n− 1)h11) = lim((n− 1)h22)

= (n− 1)
σ2
x(σy +

√
1− ρ2σx)2 − 2ρ2σ2

xσy(σy +
√

1− ρ2σx) + ρ2σ2
xσ

2
y

(1− ρ2)σ2
x(σ2

x + σ2
y + 2σxσy

√
1− ρ2)

= (n− 1)
σ2
y(1− ρ2) + σ2

x(1− ρ2) + 2σxσy(1− ρ2)
√

1− ρ2

(1− ρ2)(σ2
x + σ2

y + 2σxσy
√

1− ρ2)
= n− 1

(3.41)

According to the calculated result above, diagonal elements of matrix H tend to
n− 1, which is the mean of χ2

n−1. And this is the point where significance obtains
its maximum, because all the points are allocated to the left and right tails of the
distribution.
The limit of the non-diagonal element h12 is obtained in the same way as the diagonal
elements by tending sample variance to its theoretical counterpart. The result is
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lim((n − 1)(h12)) → 0 as may be anticipated, because the distribution h12 follows
(3.34) is symmetrical around zero and maximum of significance value sets naturally
in this point.
The results of the marginal analysis made in this subsection shows that approaching
the theoretical values of the distribution yields to the increase of significance value
γ and approaching its maximum of 100% when the sample and theoretical values
coincide.

3.2.5 Expanding the Bivariate Mood Technique to Multivariate Case

The bivariate Mood method, designed in this article, may be easily expanded to the
case of any dimensionality. This extension was not possible for a univariate Mood
test, but including correlation ρ in the bivariate test allows to apply Mood approach
on any two elements of the tested sample of random vectors.
The procedure is next. Assume that the considered sample {Xi}ni=1 has m > 2

dimensions. Splitting dimensions into pairs brings each pair to the case of bivariate
sample {Xk,l

i }ni=1 with k, l = 1, . . . ,m, k 6= l. And each of these sub-samples may
treated with a bivariate Mood test giving Cm2 = m(m−1)

2 tests to run in total. After
evaluating all the pairs of dimensions null hypothesis H0 : (µ,Σ) = (µ0,Σ0) should
be rejected if for all of them Hk,l

0 : (µk,l,Σk,l) = (µk,l0 ,Σk,l
0 ) is rejected. Otherwise null

hypothesis may not be rejected.
Obtaining a technique that may determine whether the sample follows normal distri-
bution with given parameters for any dimension size is quite valuable. Applications
in panel models, e.g. testing for serial correlation, is one of the use-cases (see Part 2).
Another example, following Arnold & Shavelle (1998), is construction of confidence
region for functions of mean and variance, as µ+ 2σ, µσ . These functions are widely
used in modern portfolio theory (e.g. the Markowitz model, see Markowitz (1952))
and the introduced technique may be used to construct confidence regions that deliver
significance levels for functions of µ and σ.

3.2.6 Transformation and Shaping Properties of Bivariate Mood Confi-
dence Set

In this subsection I will describe how bivariate Mood confidence sets may be simplified
with transformation, used in Part 1. Thereafter, I shall exhibit the shape and
geometrical properties of the bivariate Mood method. Additionally, in this subsection
I apply transformation to demonstrate the optimal choice of significance levels γi
with respect to the volume of confidence set.
The transformation starts from the sample {Xi}ni=1. In previous subsection I presented
how this sample may be tested on whether it follows normal distribution with the
given parameters N(µ0,Σ0). Using the transformation matrix V , defined in Part
1, equations (1.17)-(1.18), one can reduce the hypothesis tested (3.1) to the one
with a simpler structure in (3.42). The right-hand side of the hypothesis is mean
and covariance matrix of the transformed sample defined in (3.43). Note that
firstly, multiplication by matrix V also eliminates correlation between dimensions in
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transformed sample X̃. As a result, matrix Σ̃ is diagonal. Secondly, sample means of
{X̃i}ni=1 are zeros, as the sample was demeaned in (3.43).

H0 :

((
µ̃x
µ̃y

)
,

(
σ̃x

2 0

0 σ̃y
2

))
∼ (0, I2) (3.42)(

X̃x

X̃y

)
= V

((
Xx

Xy

)
−
(
Xx

Xy

))
(3.43)

Matrix V is defined from the system (3.44), where the elements of this matrix are vij .
Full analytical solution is described in detail in Part 1, equations (1.13)-(1.16) thus
not reported here.



∑2
i=1

∑2
j=1 v1iv2jS(i, j) = 0;∑2

i=1

∑2
j=1 v1iv2jΣ(i, j) = 0;∑2

i=1

∑2
j=1 v1iv1jΣ(i, j) = 1;∑2

i=1

∑2
j=1 v2iv2jS(i, j) = 1

(3.44)

The obtained matrix V , most importantly, provides the results of transformation
that reduces number of variables by 1 by fixing ρ = 0. This fact is used to simplify
pivots z, h11, h22 and h12. New functions are shown in (3.45) together with their
distributions, obtained earlier.

nz =
µ̃x

2

σ̃x
2 +

µ̃y
2

σ̃y
2 ∼ χ

2
2

(n− 1)h11 = (n− 1)
s̃11

σ̃x
2 ∼ χ

2
n−1

(n− 1)h22 = (n− 1)
s̃22

σ̃y
2 ∼ χ

2
n−1

(n− 1)h12 = (n− 1)
s̃12

σ̃xσ̃y
∼ fh12

(3.45)

The form of pivots in (3.45) is much simpler for analysis of confidence region in terms
of (µ̃x, µ̃y, σ̃x, σ̃y). Using critical values t11, t12, t21, t22 and t3 of the distributions
that pivots follow, one can obtain a system of inequalities (3.46) that identifies shape
and volume of the confidence set, as well as the location of the tested points inside
or outside of the region. Note that sigmas are positive, therefore the use of square
roots does not lead to loss of the solutions or any of their parts. What’s more,
inequality for h12 was skipped, because sample covariance matrix is diagonal after
the transformation, s̃12 becomes zero and this inequality always holds.

R(X̃) =


µ̃x2

σ̃x2
+

µ̃y2

σ̃y2
< t3

n√
(n−1) ˜s11

t12
< σ̃x <

√
(n−1) ˜s11

t11√
(n−1) ˜s22

t22
< σ̃y <

√
(n−1) ˜s22

t21

(3.46)

The confidence set, defined by inequalities in (3.46) is a 4-D figure with rectangle in
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(σ̃x, σ̃y) plane and ellipse in (µ̃x, µ̃y) plane. An example of such a confidence region is
demonstrated in Figures 3.2 and 3.3. I generate a sample of 200 random vectors from
bivariate normal distribution with means 4 and 5, unit variances and covariance equal
0.7, transform it and construct a confidence set for this sample at 1% significance
level. Stars on the plots stand for the theoretical parameters after the transformation,
from which vectors were sampled. Clearly seen from the graphs that these theoretical
values fall into the constructed confidence set and therefore cannot be rejected.
Another important question that transformation helps to solve is the choice of
individual significance levels γi. Till this point I assumed them to be the same
1 − γi = 4

√
1− γ. On the other hand, shares of each significance level do influence

volume of the confidence set. At the same time transformation introduced in this
subsection allows for straightforward calculation of the volume (4-D) in equation
(3.47):

Figure 3.2: Projection of the Mood Confidence Region on (σx, σy)-Plane (Inner
Rectangle) for Significance Level γ = 1% and Sample Size n = 200

V =

∫∫∫∫
R(X̃)

dµ̃xdµ̃ydσ̃xdσ̃y

=
π(n− 1)2s̃11s̃22t3(t12 − t11)(t22 − t21)

4nt11t12t21t22

(3.47)

The optimal choice of γi is performed next by simple search on the grid and selecting
the ratio of γi with the smallest generated volume. To mention, γ2, γ3 and γ4 should
be equal, as far as they are taken from the same Wishart distribution. Therefore,
significance is distributed among γ1 and all the other γi’s. The result of the grid
search is illustrated in Table 3.1. For each pair of sample sizes and total confidence
level (first two columns of Table 3.1) I provide optimal significance γ1 for pivot z
and optimal significances γ2−4 for all 3 pivots from Wishart distribution, h11, h12

and h22 in columns 3 and 4 of Table 3.1 respectively. Column 5 shows an aggregated
significance level of Wishart pivots and column 5 is the volume of the constructed
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Figure 3.3: Projection of the Mood Confidence Region for Significance Level γ = 1%
and Sample Size n = 200 on (µx, µy)-Plane

confidence region. The first thing to notice is the enormous size of the region for
sample size n = 10. This may happen due to difficulties in estimation of variance
from small samples. An increase of sample size quickly reduces confidence set, as
already may be seen for n = 50.
The next and the most important point is the allocation of significance to gammas.
When the sample size is small (n = 10), a huge share of significance is distributed to
γ2−4, producing optimal shares of significance that are close to equal. This supports
the earlier choice 1 − γi = 4

√
1− γ. However, for larger sample sizes allocation of

significances changes and optimal choice becomes close to 1− γ1 = (1− γ2)3. Hence,
the proportion of significance captured by Hotelling t2 and Wishart part becomes
the same. Columns 3 and 5 provide close results starting from n = 50 and justify
this allocation of significance. The fact that optimal shares of gamma change with
increasing sample size may be explained with the distributions pivots follow (see
(3.45)). While function z follows χ2 distribution with fixed degrees of freedom, h11

and h22 follow χ2 distribution that increases its degrees of freedom with increasing
sample size n, getting thinner tails and approaching normal distribution.
Therefore, to obtain minimum-volume bivariate Mood confidence set for sample size
n < 50, according to the analysis, set equal gammas γi = 1− 4

√
1− γ. With n ≥ 50

minimum-volume significance levels are γ1 = 1−
√

1− γ and γ2−4 = 1− 6
√

1− γ.
Concluding this subsection, transformation applied to the bivariate Mood method
may be very useful as a simplification instrument. Using it, the shape and volume of
confidence sets were demonstrated and optimal allocation of individual significances
γi was found. Application of this transformation technique also allows one to avoid
the distribution of sample covariance fh12 (3.34) in construction of confidence set,
which is quite resource-intensive for large sample sizes because of the modified Bessel

122



function in its functional form.

Table 3.1: Allocations of Individual Significance Levels γ1 and γ2−4 to Produce
the Smallest Mood Confidence Set for Sample Sizes n from 10 to 1000 and Overall
Confidence Level 1− γ from 0.8 to 0.99

n 1− γ γ1 γ2−4 1− (1− γ2)3 Volume

10

0.80 0.0720 0.0483 0.1379 3.5060
0.90 0.0320 0.0240 0.0702 7.3343
0.95 0.0140 0.0123 0.0365 13.8889
0.975 0.0065 0.0062 0.0186 24.2495
0.99 0.0024 0.0025 0.0076 45.9204

50

0.80 0.1040 0.0371 0.1071 0.0593
0.90 0.0480 0.0185 0.0546 0.1041
0.95 0.0230 0.0093 0.0276 0.1652
0.975 0.0110 0.0047 0.0142 0.2427
0.99 0.0042 0.0019 0.0058 0.3697

100

0.80 0.1080 0.0356 0.1031 0.0136
0.90 0.0500 0.0179 0.0526 0.0236
0.95 0.0240 0.0090 0.0266 0.0363
0.975 0.0120 0.0044 0.0132 0.0522
0.99 0.0046 0.0018 0.0054 0.0778

500

0.80 0.1120 0.0342 0.0991 0.0005
0.90 0.0520 0.0172 0.0506 0.0009
0.95 0.0260 0.0083 0.0246 0.0013
0.975 0.0125 0.0042 0.0127 0.0019
0.99 0.0050 0.0017 0.0050 0.0027

1000

0.80 0.1120 0.0342 0.0991 0.0001
0.90 0.0540 0.0165 0.0486 0.0002
0.95 0.0260 0.0083 0.0246 0.0003
0.975 0.0125 0.0042 0.0127 0.0005
0.99 0.0050 0.0017 0.0050 0.0007

3.3 Comparison of Bivariate Mood and CCR Confidence Regions

The CCR technique, introduced in Part 1 together with the bivariate Mood approach,
derived in this Part, are aimed to test the same joint hypothesis for mean and variance
of two-dimensional random sample. Assumptions for both methods are also the same,
requiring the sample to be iid from Normal distribution. Therefore, on one hand
these tests look same from the point of view of a person, who wants to apply them to
a specific problem. On the other hand, these tests differ in concept of construction of
confidence region. While the bivariate Mood test is an exact one and pivots follow
given distributions, CCR test is not. It can only get closer to the exact distribution
with a predefined precision. Thus, to give the possibility of objective choice, in this
section I analyze the CCR and Mood approaches with respect to their efficiency
of calculation speed, accuracy of significance level, shape of the confidence set and
robustness to non-normal samples and samples with outliers.
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3.3.1 Significance Level

One of the most important qualities of the test is to reject hypothesis with the
probability that meets the predefined significance level. Because of simulated data
used, the theoretical mean and covariance matrix are known. Therefore, it is possible
to check if the confidence region includes this point and calculate a fraction of samples
rejected to the total number of repetitions. Predefined (theoretical) significance level
should correspond with the calculated (real) one. To check how good theoretical
and real significances coincide, I replicated 100,000 samples for each of the different
sample sizes n from 10 to 50000 from standard bivariate normal distribution. For
each of the samples p-value, based on the known mean and covariance, was calculated
and compared with significance level γ. The fraction of samples with p-value< γ to
the total number of replications defines real significance level. The resulted shares for
the Mood and CCR techniques are displayed in Table 3.2. More detailed tables may
be found in Appendix 3.I.

Table 3.2: Comparison of Theoretical Significance Levels with the Real Ones Obtained
from the Mood and CCR Approaches for Sample Sizes n from 10 to 1000 and Overall
Significance Level γ from 0.01 to 0.2

n γ CCR γreal Mood γreal

10

0.20 0.2050 0.1819
0.10 0.0979 0.0881
0.05 0.0526 0.0453
0.025 0.0268 0.0225
0.01 0.0091 0.0097

50

0.20 0.2001 0.1897
0.10 0.0982 0.0957
0.05 0.0505 0.0498
0.025 0.0260 0.0258
0.01 0.0116 0.0123

100

0.20 0.2030 0.1992
0.1 0.0996 0.0974
0.05 0.0512 0.0490
0.025 0.0258 0.0246
0.01 0.0107 0.0102

500

0.20 0.1961 0.1954
0.10 0.0963 0.1027
0.05 0.0457 0.0554
0.025 0.0249 0.0266
0.01 0.0100 0.0114

1000

0.20 0.1986 0.2030
0.10 0.0996 0.1010
0.05 0.0504 0.0537
0.025 0.0257 0.0253
0.01 0.0104 0.0106

Both of the methods give real significance levels that are pretty close to the theoretical
ones. Even for small sample sizes, both the CCR and Mood techniques are still
rejecting correctly. For sample size n = 10 the largest deviation of the real significance
from theoretical one is a little bit less than 2%, which is a reasonable fluctuation. For
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the large sample sizes the fluctuation decreases, e.g. when n = 500 the maximum
difference from the theoretical significance is 0.54%, made by the Mood approach
for γ = 0.05. However, on larger significance levels one can observe that the Mood
approach systematically rejects a little bit less samples than the CCR. Figure 3.4
clearly demonstrates this phenomenon. In the upper right corner the CCR and
Mood graphs almost coincide, while starting from roughly 1− γ < 0.8 Mood accepts
distinctly more samples than the CCR method. This fact may be explained by the
form of the confidence set of Mood method, that covers regions with lower probability
density. It will be discussed in more detailed in the next subsection. Nevertheless,
this fact does not play a significant role for most of the applications, since they work
with small significance levels. In the case of extremely small significance level required
(γ < 0.0001) I would propose to use the Mood method, because the significance level
of the CCR technique in this case may get close to the over mentioned precision of
CCR and bring additional noise to the test.

Figure 3.4: Acceptance of 1000 Randomly Generated Samples from the Mood and
CCR Approaches as a Function of Confidence Level 1− γ

3.3.2 Shape and Volume

Earlier in equation (3.39) I constructed a bivariate Mood confidence set for a random
normally distributed iid sample {Xi}ni=1. This set represents a collection of vectors
(µx, µy, σx, σy, ρ) in 5-dimensional space, so that every vector may not be rejected
as a set of parameters of normal distribution, from which the sample {Xi}ni=1 was
generated. In this section I will describe the Mood confidence set and compare it to
the CCR confidence set for both equal and optimal individual gammas w.r.t. the
volume of the region. The first point is a form of the set, considered in Proposition 1.

Proposition 1: Mood confidence region R(X) is a convex set.
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Proof : Assume that confidence set R(X) is not convex. It means that there exists
2 points A1(µx1,muy1, σx1, σy1, ρ1) ∈ R(X) and A2(µx2,muy2, σx2, σy2, ρ2) ∈ R(X),
such that on the interval A1A2 one can find a point B = αA1 + (1−α)A2, α ∈ (0, 1),
that does not belong to confidence set B /∈ R(X). Therefore, at least one of the
pivots z, h11, h22, h12 is rejected at point B, since it lies outside the of critical values
interval. Say pivot h22 is rejected. But this pivot at points h22(A1) and h22(A2) may
not be rejected, as A1 and A2 are from the confidence set. As far as critical values
define a continuous set, all the points between h22(A1) and h22(A2), among which is
point h22(B) also belong to the confidence set. This gives a contradiction. Hence, for
any two points of the confidence set R(X) their line segment also belongs to R(X),
which is the definition of convex set.�

Proposition 1 defines the Mood confidence set as a convex one, which is confirmed by
Figures 3.2 and 3.3. The transformation made in previous section showed the simpler
form of confidence set, but gave a good starting point for understanding the shape
of the primary confidence set. It will be a trapezoidal form in variances plane with
ellipse in means plane for every variance point.

Figure 3.5: Mood Confidence Sets, Projected on (µx, µy)-Plane for Different Values
of the Variances Entering the Same Confidence Set for γ = 0.1 and n = 500

Figure 3.5 demonstrates those ellipses for 5 different values of variances from the
confidence region. Figure 3.5 also indicates the benefit from testing means and
variances jointly: ellipses have a large common subset, but each one determines new
points that may not be rejected and throws away other points that should be rejected.
Even for small fluctuations of variances inside of the confidence set, one obtains new
specific confidence set for means.
To compare further Mood with CCR confidence region, I imposed them one on
another. Note that CCR approach produces ellipsoidal set, while Mood gives a
cylindrical set in 5-D. See Figure 3.6 for means and Figure 3.7 for variances. Sample
parameters are marked with center circles on the graphs.
Figure 3.6 shows that both methods produce ellipsoidal confidence sets for means
and for the CCR method it is slightly larger. However, as seen on Figure 3.7, CCR

126



Figure 3.6: Transformed Mood (Bounded by Solid Line) and CCR (Dotted Region)
Confidence Sets Projected on (µx, µy)-Plane for γ = 0.1 and n = 500

Figure 3.7: Transformed Mood (Inner Square) and CCR (Dotted Region) Confidence
Sets Projected on (σ2

x, σ
2
y)-Plane for γ = 0.1 and n = 500 (Left - Equal γi, Right -

Optimal γi)

and Mood approaches definitely produce different confidence sets for variances. The
CCR technique cuts the edges of the Mood confidence set, that are less likely to
occur, because they are further from the center of the region, marked with a red
circle. Due to the cutting edges of the Mood confidence set, the CCR approach can
add additional subsets from up, down, left and right that are more likely to appear.
Firstly, this infers that the CCR confidence set is more effective w.r.t. the shape of
the confidence set, unless it is not the exact one. Secondly, it infers why the Mood
method systematically rejected more samples than the CCR, as it was demonstrated
on Figure 3.4.
Additionally, the left and right graphs on Figure 3.7 show how the Mood confidence
set may be reduced by using optimal γi, derived in section 3.2.6. It makes the corners
slightly smaller, but does not get rid of them. Note that at the same time transferring
from the left to right graph increases the confidence set for means to keep the same
significance level. It implies that choice of γi has only an effect on the volume of
confidence set, but insignificant for total γ, and in applications one can simply use
γi = 1− 4

√
1− γ.

3.3.3 Computation Speed

The time that computers spend on running a certain algorithm decreases each year
with exponential speed. On the contrary, in the last decades analyses of big data
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problems arises, with tremendously increasing datasets. Therefore, it is logical to
compare the time that was spent checking the null hypothesis (3.1) with both the
Mood and CCR techniques. My analysis includes time that computer3 calculated
p-values for 100 replications of a randomly generated samples of different sizes. The
computation time will differ from computer to computer, but the ratios between
techniques will be invariant. The results (in seconds) are presented in Table 3.3.

Table 3.3: Computation Time from 100 Repetitions of the Mood and CCR Tests

n 10 50 100 500 1000
CCR (sec) 27,177 26,385 27,737 31,928 25,580
Mood (sec) 0,403 0,659 0,732 3,336 3,244

The first thing to be noticed from Table 3.3 is that the Mood approach computes
around 50 times faster than the CRR for small sample sizes n < 500. This fact is
mainly due to double integral that the CCR technique needs to compute every time.
One more factor that slows down the CCR method is transformation that is also
performed each time.
The second thing to mention from Table 3.3 is the increase of computation time
for the Mood method when sample size n > 500. Increase in sample size makes
more effective to use bivariate Mood method with transformation, which I do in
Table 3.3. This is due to Bessel function that is calculated for pivot h12. Even with
transformation the Mood approach still computes around 10 times faster than CCR.

3.3.4 Robustness

In this section I compare the Mood and CCR methods with respect to their stability
properties. Robustness checks are done in two parts: reaction on non-normal samples
and reaction on samples with outliers.
Non-normal samples were generated from two distributions. Bivariate t-distribution is
the first one, as it is the one that is close to normal. It has thicker tails, but converges
to normal distribution with increasing degrees of freedom. The second distribution
used for generating samples is bivariate Poisson. This is a discrete distribution, but
it also has a bell-shaped form of PDF. Among these distributions I also include
crucial cases: t distribution with 3 degrees of freedom (extremely thick tails) and
Poisson with parameter λ = 3 (skewed). Table 3.4 demonstrates real significance
levels, calculated on 100000 repetitions for the Mood and CCR approaches applied
on the non-normal samples. The sample size is fixed and equals to 250.
As expected, Table 3.4 shows too high real significance levels for t-distribution with
3 degrees of freedom (columns 2 and 3). Too thick tails force both techniques to
reject high number of samples. Even for t-distribution with 50 degrees of freedom
(columns 4-5) CCR still rejects more than 30% of the samples instead of 20%. But the
Mood approach is much better in this case; rejecting only 2.2% more of samples, thus
making it usable for t50-distribution. Columns 6-7 of Table 3.4, with deviation from
the real significance level of around 1%, show results that are as good as for normally
distributed samples. The last 4 columns demonstrate reactions of both approaches

3Computer specifications: CPU Intel Core i5-6200U with 2.3 Ghz and 8 GB RAM type DDR4
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Table 3.4: Real Significance Levels Produced by the Mood and CCR Approaches for
the Samples from t-Distribution and Poisson Distribution with Different Number of
Degrees of Freedom

γ
t3 distr. t50 distr. t100 distr. Poiss(3) distr. Poiss(10) distr.

CCR Mood CCR Mood CCR Mood CCR Mood CCR Mood
0.200 0.889 0.892 0.312 0.222 0.212 0.209 0.235 0.232 0.217 0.214
0.100 0.833 0.834 0.115 0.119 0.109 0.106 0.127 0.125 0.110 0.110
0.050 0.779 0.776 0.057 0.061 0.051 0.054 0.073 0.068 0.055 0.057
0.025 0.726 0.713 0.030 0.031 0.024 0.027 0.041 0.033 0.028 0.028
0.010 0.661 0.649 0.012 0.014 0.011 0.012 0.018 0.016 0.010 0.011

on Poisson distributed samples. Even with parameter λ = 3, both distributions
show reasonably good results with deviation that does not exceed 3.5%, although the
samples are generated from skewed distribution. With parameter λ increased to 10,
skewness almost disappears and real significance levels become comparable to those
from the normal distribution (see Table 3.2).
For comparison of the CCR and Mood techniques on samples with outliers, I generated
normally distributed samples and randomly added fluctuations to part of the elements
of the sample. This gave samples with 5%, 10% and 20% of outliers. Table 3.5
presents real significance levels calculated on such samples. Adding fluctuations was
randomly assigned to elements of the sample for not to provoke serial correlations in
data.

Table 3.5: Real Significance Levels Produced by the Mood and CCR Approaches
from the Samples with Outliers

γ
5% outliers 10% outliers 20% outliers
CCR Mood CCR Mood CCR Mood

0.200 0.201 0.193 0.259 0.253 0.731 0.662
0.100 0.095 0.098 0.143 0.138 0.592 0.506
0.050 0.046 0.053 0.076 0.076 0.457 0.375
0.025 0.021 0.026 0.041 0.041 0.344 0.275
0.010 0.013 0.009 0.017 0.019 0.232 0.180

Including random outliers to samples may seriously harm real significance levels.
Already 20% of outliers make it impossible to use both the Mood and CCR techniques,
as illustrated in the last 2 columns of Table 3.5. But with 5% of outliers, both methods
still return real significance levels that differ from the theoretical ones by less than
1%(columns 2-3).
To conclude this subsection, both Mood and CCR showed satisfactory results in
robustness checks with slightly better stability in the Mood approach. But still both
tests may be used on samples close to normal and with a moderate number of outliers
(5%-10%).

3.4 Applications

The application of the bivariate Mood technique includes estimation, testing hypoth-
esis and construction of confidence regions. An extension of the Mood method to a
multivariate case provides new scopes of application. For example, an approach for
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testing for serial correlation in Panel Data Models, designed in Part 2 is based on
the CCR technique and may be also used with the Mood method. According to a
comparison made in the previous section, the Mood approach performs better than
CCR with respect to the computation speed. Faster calculations may be crucial for
large datasets, as the number of tests to be performed growth exponentially with
number of time periods in panel.
Another application of the multivariate Mood technique is a SUR (seemingly unrelated
regressions) model. I simulated a SUR model in MatLab with 5 equations. Each
equation includes 5 unique regressors. Next, 300 observations were generated for each
regressor in each equation. And using regressors, dependent variables were calculated
for every case. Additionally, I randomly included correlations between error terms of
the equations. Starting from OLS estimation, Table 3.6 displays estimated covariance
matrix Ω̂. Estimated covariance matrix describes cross-equation connections and
based on it I run a Mood test on each pair of equations. With Mood test I compare
whether the error terms of each two equations may follow normal distribution with
zero correlation. Obtained result is presented in Table 3.7. At 10% significance
level 3 pairs are rejected: equation 3 and 4 with p-value 9.18%, equations 3 and
5 with p-value 1.1%, equations 4 and 5 with p-value 4.62%. Therefore, for all 3
mentioned pairs covariance is significantly different from zero, and considered SUR
system of 5 equations has covariance matrix that shows cross-equation correlations.
Further this system may be estimated by parts, as far as first two equations have
insignificant correlations with the other equations. Thus, they form an independent
subsystem, which may be estimated separately with OLS, while last three equations
should be estimated with method that captures correlations between equations, for
example feasible generalized least squares (FGLS). Computing described SUR model
separately for parts with and without correlation between equations helped to improve
estimators by roughly 20%, comparing to FGLS estimation of the whole SUR model.

Table 3.6: Estimated Covariance Matrix Ω̂ from the SUR Model to be Used in the
Mood Method

1 2 3 4 5
1 0.8766 0.1025 0.1139 0.0249 -0.0023
2 0.1025 1.1323 0.0186 -0.0265 -0.0537
3 0.1139 0.0186 0.9211 0.1206 0.1754
4 0.0249 -0.0265 0.1206 0.9214 0.1473
5 -0.0023 -0.0537 0.1754 0.1473 1.1035

Table 3.7: P-Values for each Pair of Equations Obtained Using the Estimated Matrix
Ω̂ with the Mood Method

1 2 3 4 5
1 0 0.2685 0.1099 0.9814 1.0000
2 0 0 0.9963 0.9856 0.8752
3 0 0 0 0.0918∗ 0.0110∗∗

4 0 0 0 0 0.0462∗∗

5 0 0 0 0 0
∗ p<.1; ∗∗ p<.05; ∗∗∗ p<.001
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3.5 Conclusion

The bivariate Mood method, derived in this Part, is aimed to jointly test means
and variances and to construct confidence set for samples from bivariate normal
distribution. This is an exact test, based on linking Hotelling t2 and Wishart
distribution. Test statistics, derived for the Mood test, were examined for limiting
properties to check the convergence of method. Using derived joint statistic, confidence
region was arranged, examined and optimized with respect to its volume. It appeared
that for small sample sizes minimum-volume confidence set is obtained by equalizing
all individual gammas: γi = 1− 4

√
1− γ. But for larger sample sizes n > 50 equal

shares of significance for t2 and Wishart part produce minimum-volume confidence set:
γ1 = 1−

√
1− γ and γ2−4 = 1− 6

√
1− γ. Further analysis of the shape of confidence

region showed that the Mood test can additionally be used for improvement of
confidence sets constructed for means only. Furthermore, the Mood approach was
expanded to multivariate case, allowing one to test samples of any dimensionality.
In the next section Mood was also compared with an existing technique, called CCR.
The results showed that on the one hand, the Mood approach is much more effective
than the CCR with respect to computation time as well as performing slightly better
with non-normal samples and samples with outliers. On the other hand, because of
the angular shape of the confidence region, the Mood method slightly overestimates
real significance level for theoretical significance γ > 20%. As a result, the Mood
approach was demonstrated to be a good alternative to the CCR test, outperforming
it in terms of computation time.
Application of the Mood technique was demonstrated on SUR model. Because of
detected cross-equation relations with the Mood method, the whole system was
divided into 2 parts and estimated using OLS and FGLS estimators. Implementation
of this procedure helped to improve the estimation of the SUR model by roughly
20%.
Further development and application of the bivariate Mood approach are possible in
any brunch of economics, where estimation and testing is used. For example, portfolio
analysis or panel econometrics.
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Appendix 3.I: Tables

Table 3.8: Theoretical Significance Levels γ vs. Real Significance Levels for the Mood
and CCR Approaches. Sample Sizes n = 10, 25, 50

γ CCR Mood CCR Mood CCR Mood
n=10 n=25 n=50

0.99 0.9915 0.9913 0.991 0.9901 0.9903 0.9915
0.95 0.9505 0.9493 0.9522 0.9516 0.9543 0.9536
0.9 0.8991 0.9009 0.9034 0.8999 0.9019 0.9027
0.75 0.7516 0.7489 0.7535 0.7454 0.7502 0.7484
0.5 0.5114 0.4882 0.5018 0.4903 0.499 0.494
0.3 0.3106 0.2816 0.2981 0.294 0.3028 0.2888
0.2 0.205 0.1819 0.1987 0.1982 0.2001 0.1897
0.1 0.0979 0.0881 0.1033 0.0986 0.0982 0.0957
0.05 0.0526 0.0453 0.0537 0.0499 0.0505 0.0498
0.025 0.0268 0.0225 0.0279 0.0255 0.026 0.0258
0.01 0.0091 0.0097 0.0105 0.0106 0.0116 0.0123

Table 3.9: Theoretical Significance Levels γ vs. Real Significance Levels for the Mood
and CCR Approaches. Sample Sizes n = 100, 150, 200

γ CCR Mood CCR Mood CCR Mood
n=100 n=150 n=200

0.99 0.9918 0.9907 0.9883 0.9886 0.9905 0.991
0.95 0.9521 0.954 0.9458 0.9449 0.9495 0.95
0.9 0.9005 0.9013 0.8913 0.8946 0.8997 0.9024
0.75 0.7486 0.7477 0.7408 0.7487 0.7487 0.7477
0.5 0.5012 0.5001 0.4796 0.5011 0.4991 0.4984
0.3 0.3081 0.2982 0.2834 0.3007 0.2922 0.2906
0.2 0.203 0.1992 0.1887 0.2014 0.1944 0.1942
0.1 0.0996 0.0974 0.0919 0.0993 0.0981 0.0967
0.05 0.0512 0.049 0.0449 0.0496 0.049 0.0479
0.025 0.0258 0.0246 0.0204 0.0241 0.0233 0.0251
0.01 0.0107 0.0102 0.0089 0.0098 0.0102 0.0104
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Table 3.10: Theoretical Significance Levels γ vs. Real Significance Levels for the
Mood and CCR Approaches. Sample Sizes n = 250, 300, 350

γ CCR Mood CCR Mood CCR Mood
n=250 n=300 n=350

0.99 0.9909 0.9905 0.9909 0.9901 0.9899 0.9916
0.95 0.95 0.9466 0.9488 0.9505 0.9488 0.9505
0.9 0.8982 0.8963 0.897 0.9013 0.9046 0.8996
0.75 0.7454 0.7518 0.7495 0.7463 0.7567 0.7500
0.5 0.4995 0.497 0.4955 0.4994 0.5114 0.4996
0.3 0.2999 0.3024 0.2993 0.3046 0.308 0.2975
0.2 0.1998 0.2014 0.2024 0.2034 0.2074 0.1996
0.1 0.1002 0.1027 0.0996 0.1052 0.1023 0.0988
0.05 0.0515 0.0554 0.0515 0.0533 0.0495 0.0486
0.025 0.0244 0.0266 0.0279 0.0286 0.0242 0.0233
0.01 0.0099 0.0114 0.011 0.0108 0.0096 0.0092

Table 3.11: Theoretical Significance Levels γ vs. Real Significance Levels for the
Mood and CCR Approaches. Sample Sizes n = 400, 450, 500

γ CCR Mood CCR Mood CCR Mood
n=400 n=450 n=500

0.99 0.9901 0.9873 0.9905 0.9893 0.9905 0.9884
0.95 0.9484 0.9513 0.9539 0.9496 0.9499 0.9473
0.9 0.8989 0.9007 0.9000 0.8989 0.8974 0.8983
0.75 0.7467 0.7500 0.7509 0.7486 0.7558 0.7504
0.5 0.4972 0.5000 0.5096 0.5032 0.4995 0.5005
0.3 0.3023 0.2989 0.3096 0.3021 0.2920 0.3005
0.2 0.2018 0.2014 0.2073 0.2004 0.1961 0.1954
0.1 0.1044 0.0998 0.1027 0.0984 0.0963 0.1027
0.05 0.0501 0.0490 0.0531 0.0489 0.0457 0.0554
0.025 0.0259 0.0268 0.0272 0.0248 0.0249 0.0266
0.01 0.0107 0.0097 0.0111 0.0110 0.0100 0.0114

Table 3.12: Theoretical Significance Levels γ vs. Real Significance Levels for the
Mood and CCR Approaches. Sample Sizes n = 750, 1000, 2000

γ CCR Mood CCR Mood CCR Mood
n=750 n=1000 n=2000

0.99 0.9901 0.9905 0.9885 0.9897 0.9893 0.9903
0.95 0.9515 0.9491 0.9507 0.9500 0.9507 0.9501
0.9 0.9072 0.8996 0.9001 0.9001 0.8957 0.9005
0.75 0.7646 0.7506 0.7551 0.7509 0.7463 0.7503
0.5 0.5321 0.5012 0.5003 0.5016 0.5030 0.4991
0.3 0.3295 0.2988 0.2978 0.3005 0.2961 0.2998
0.2 0.2249 0.2014 0.1986 0.2030 0.1972 0.1999
0.1 0.1203 0.1007 0.0996 0.1010 0.0991 0.0995
0.05 0.0614 0.0499 0.0504 0.0537 0.0529 0.0517
0.025 0.0329 0.0248 0.0257 0.0253 0.0265 0.0241
0.01 0.0129 0.0098 0.0104 0.0106 0.0099 0.0095

135



Table 3.13: Theoretical Significance Levels γ vs. Real Significance Levels for the
Mood and CCR Approaches. Sample Sizes n = 5000 to 50000

γ CCR Mood CCR Mood CCR Mood CCR Mood
n=5000 n=10000 n=20000 n=50000

0.99 0.9902 0.9893 0.9889 0.9896 0.9885 0.9900 0.9913 0.9913
0.95 0.9497 0.9489 0.9501 0.9499 0.9474 0.9474 0.9521 0.9501
0.9 0.8938 0.8998 0.9017 0.9003 0.9027 0.8996 0.9011 0.9000
0.75 0.7445 0.7497 0.7458 0.7498 0.7558 0.7511 0.7478 0.7494
0.5 0.4968 0.5015 0.4883 0.5004 0.5100 0.4991 0.4991 0.5000
0.3 0.2915 0.2998 0.2937 0.3004 0.3065 0.3008 0.3003 0.3002
0.2 0.1962 0.1990 0.1961 0.1989 0.2028 0.2003 0.1991 0.2004
0.1 0.0953 0.1015 0.0993 0.0991 0.1085 0.1000 0.1001 0.0997
0.05 0.0480 0.0512 0.0480 0.0493 0.0516 0.0502 0.0476 0.0498
0.025 0.0231 0.0248 0.0233 0.0245 0.0248 0.0236 0.0257 0.0267
0.01 0.0087 0.0086 0.0091 0.0097 0.0079 0.0099 0.0093 0.0081
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Appendix 3.II: MatLab Code

Main subroutine:

1 function p = Mood_mult(meanX, varX , mu, C, n)
2

3 % func t i on t ha t performs mu l t i v a r i a t e Mood t e s t wi th H0 :
4 % (muX, SigmaX)=(mu,C) f o r X − sample o f 2−diment iona l random vec t o r s
5 % second par t − sample mean and var iance o f X as an input ( to co in s i d e
6 % with CCR func t i on )
7 % t h i s i s par t 2
8

9 % input :
10 % meanX − sample mean o f X
11 % varX − sample variance−covar iance Matrix o f X
12 % mu − (2∗1) vec t o r o f means which we want to compare wi th sample means
13 % C − (2∗2) var iance matrix ( symmetrica l and p o s i t i v e d e f i n i t e ) which

we
14 % want to compare wi th sample var iance
15 % n − sample s i z e
16

17 i f C(1 ,2 )~=C(2 ,1 ) | | det (C)<0 | | C(1 , 1 )<0 | | C(2 , 2 )<0
18 error ( ’ i n c o r r e c t data ’ ) ;
19 end
20

21

22 i f n<=300 % to avoid modi f ied Besse l f unc t i on f o r l a r g e n ,
t rans format ion i s used f o r n>300

23

24 % de f i n e s t a t i s t i c s
25 % de f i n e averages
26 x_av = meanX(1) ;
27 y_av = meanX(2) ;
28

29 % de f i n e es t iamted var iance as s t a t i s t i c
30 S1 = varX ;
31

32 % de f i n e va l u e s t ha t are t e s t e d as a s c a l a r s
33 mux = mu(1) ;
34 muy = mu(2) ;
35 sigmax = sqrt (C(1 , 1 ) ) ;
36 sigmay = sqrt (C(2 , 2 ) ) ;
37 rho = C(1 ,2 ) /( sigmax∗sigmay ) ;
38

39 % de f i n e f unc t i on s o f s t a t i s t i c t h a t we use to run t e s t
40

41 h11 = (S1 (1 , 1 ) ∗( sigmay + sqrt(1−rho^2)∗sigmax )^2 − 2∗S1 (1 , 2 ) ∗ rho∗
sigmax ∗( sigmay + sqrt(1−rho^2)∗sigmax ) + S1 (2 , 2 ) ∗ rho^2∗sigmax^2)
/ . . .

42 ((1−rho^2)∗sigmax^2∗( sigmax^2 + sigmay^2 + 2∗ sigmax∗sigmay∗sqrt
(1−rho^2) ) ) ;

43

44 h12 = (S1 (1 , 2 ) ∗ rho^2∗sigmax∗sigmay − S1 (1 , 1 ) ∗ rho∗sigmay ∗( sigmay +
sqrt(1−rho^2)∗sigmax ) + S1 (1 , 2 ) ∗( sigmay + sqrt(1−rho^2)∗sigmax )
∗( sigmax + sqrt(1−rho^2)∗sigmay ) − S1 (2 , 2 ) ∗ rho∗sigmax ∗( sigmax +
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sqrt(1−rho^2)∗sigmay ) ) / . . .
45 ((1−rho^2)∗sigmax∗sigmay ∗( sigmax^2 + sigmay^2 + 2∗ sigmax∗sigmay

∗sqrt(1−rho^2) ) ) ;
46

47 h22 = (S1 (1 , 1 ) ∗ rho^2∗sigmay^2 − 2∗S1 (1 , 2 ) ∗ rho∗sigmay ∗( sigmax + sqrt
(1−rho^2)∗sigmay ) + S1 (2 , 2 ) ∗( sigmax + sqrt(1−rho^2)∗sigmay ) ^2)
/ . . .

48 ((1−rho^2)∗sigmay^2∗( sigmax^2 + sigmay^2 + 2∗ sigmax∗sigmay∗sqrt
(1−rho^2) ) ) ;

49

50 z = ( sigmay^2∗(mux − x_av)^2 + sigmax^2∗(muy − y_av)^2 − 2∗ rho∗
sigmax∗sigmay ∗(mux − x_av) ∗(muy − y_av) ) / . . .

51 ((1−rho^2)∗sigmax^2∗sigmay^2) ;
52

53 % ca l c u l a t e p va l u e s f o r each func t i on de f ined p r e v i o u s l y
54

55 p1 = 1 − ch i 2 cd f ( ( n−1)∗z , 2 ) ;
56

57 p2 = 2∗min( ch i 2 cd f ( ( n−1)∗h11 , n−1) ,1 − ch i 2 cd f ( ( n−1)∗h11 , n−1) ) ;
58

59 p3 = 2∗min( ch i 2 cd f ( ( n−1)∗h22 , n−1) ,1 − ch i 2 cd f ( ( n−1)∗h22 , n−1) ) ;
60

61 p4 = 2∗min( cov_cdf ( ( n−1)∗h12 , n−1) , 1 − cov_cdf ( ( n−1)∗h12 , n−1) ) ;
62

63 p_min = min ( [ p1 , p2 , p3 , p4 ] ) ; % f ind the po in t t h a t i s the f u r t h e r s t
from sample va l u e s . This po in t d e f i n e s t o t a l c r i t i c a l l e v e l

64

65 p = 1 − (1 − p_min) ^4;
66

67 %p = [ p1 ; p2 ; p3 ; p4 ; p ; z ; h11 ; h22 ; h12 ] ;
68

69 else
70 [mu, C, meanX, varX ] = Distr_new ( mu, C, meanX, varX ) ; % g i v e s new

va l u e s t ha t need to be compared :
71 % H0 : ( nu1 ,O1)=(nu2 ,O2) ;
72 % with O1 and O2 d iagona l
73 % de f i n e s t a t i s t i c s
74 % de f i n e averages
75 x_av = meanX(1) ;
76 y_av = meanX(2) ;
77

78 % de f i n e es t iamted var iance as s t a t i s t i c
79 S1 = varX ;
80

81 % de f i n e va l u e s t ha t are t e s t e d as a s c a l a r s
82 mux = mu(1) ;
83 muy = mu(2) ;
84 sigmax = sqrt (C(1 , 1 ) ) ;
85 sigmay = sqrt (C(2 , 2 ) ) ;
86

87 h11 = S1 (1 , 1 ) /( sigmax^2) ;
88

89 h22 = S1 (2 , 2 ) /( sigmay^2) ;
90
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91 z = ( sigmay^2∗(mux−x_av)^2 + sigmax^2∗(muy−y_av) .^2) . / ( sigmax^2∗
sigmay^2) ;

92

93 p1 = 1 − ch i 2 cd f ( ( n−1)∗z , 2 ) ;
94

95 p2 = 2∗min( ch i 2 cd f ( ( n−1)∗h11 , n−1) ,1 − ch i 2 cd f ( ( n−1)∗h11 , n−1) ) ;
96

97 p3 = 2∗min( ch i 2 cd f ( ( n−1)∗h22 , n−1) ,1 − ch i 2 cd f ( ( n−1)∗h22 , n−1) ) ;
98

99 p_min = min ( [ p1 , p2 , p3 ] ) ; % f ind the po in t t h a t i s the f u r t h e r s t
from sample va l u e s . This po in t d e f i n e s t o t a l c r i t i c a l l e v e l

100

101 p = 1 − (1 − p_min) ^3; % to the power o f 4 , as f a r as h_12 par t
a lways ho lds , but i t s t i l l t a k e s par t in ob t a in ing gamma

102

103 end
104

105 end

Transformation subroutines for bivariate Mood approach:

1 function [ nu1 ,O1, nu2 ,O2 ] = Distr_new (mu1 ,C1 ,mu2 ,C2)
2

3 % der i v e s new parameters o f the d i s t r i b u t i o n s a f t e r the t rans format ion
o f

4 % Random Var iab l e s N(mu1, C1) and N(mu2, C2) to N(nu1 ,O1) and N(nu2 ,O2)
.

5 % Idea o f the t rans foramt ion i s to g e t O1 − diagona l , O2 = I , nu2 = 0.
Uses

6 % Trans_2 to c a l c u l a t e t rans format ion c o e f f i c i e n t s and cons tant
7

8 [ v ,d_mu] = Trans2 (mu1 ,C1 ,mu2 ,C2) ;
9

10 nu1 = v∗mu1 − d_mu;
11 nu2 = v∗mu2 − d_mu;
12 O1 = v∗C1∗v ’ ;
13 O2 = v∗C2∗v ’ ;
14 end

1 function [ v ,d_mu] = Trans2 (~ , C1 , mu2 , C2)
2

3 % Ca l cu l a t e s the t rans format ion c o e f f i c i e n t s v and cons tant d_mu to
sw i t ch

4 % from the case N(mu1, C1) and N(mu2, C2) to the case o f non−co r r e t a l e d
5 % Random Vectors wi th second v a r i a b l e N(0 , I )
6 % Input data as two v e c t o r s (2∗1) o f means mu1, mu2 and two covar iance
7 % matr ices (2∗2) C1 , C2
8 % check the uncorr by v∗C1∗v ’ and v∗C2∗v ’
9 %t i c

10

11 sx1 = sqrt (C1(1 , 1 ) ) ;
12 sx2 = sqrt (C2(1 , 1 ) ) ;
13 sy1 = sqrt (C1(2 , 2 ) ) ;
14 sy2 = sqrt (C2(2 , 2 ) ) ;
15 rho1 = C1(1 , 2 ) /( sx1∗ sy1 ) ;
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16 rho2 = C2(1 , 2 ) /( sx2∗ sy2 ) ;
17

18 eps = 0 .00001 ;
19

20 i f abs ( sy1^2∗ rho2∗ sx2∗ sy2 − rho1∗ sx1∗ sy1∗ sy2 ^2)>eps
21

22 % Discriminant
23 D = ( sy1 .^2 . ∗ sx2 .^2 − sx1 .^2 . ∗ sy2 .^2) .^2 − . . .
24 4∗( rho2 . ∗ sy1 .^2 . ∗ sx2 . ∗ sy2 − rho1 . ∗ sx1 . ∗ sy1 . ∗ sy2 .^2) . . .
25 . ∗ ( rho1 . ∗ sx1 . ∗ sy1 . ∗ sx2 .^2 − rho2 . ∗ sx1 .^2 . ∗ sx2 . ∗ sy2 ) ;
26

27 % Aux i l i a r y v a r i a b l e s ( case 1)
28

29 phi1 = 1 ;
30 phi2 = ( rho1 . ∗ sx1 . ∗ sy1 . ∗ sx2 .^2 − rho2 . ∗ sx1 .^2 . ∗ sx2 . ∗ sy2 ) . . .
31 . / ( rho2 . ∗ sy1 .^2 . ∗ sx2 . ∗ sy2 − rho1 . ∗ sx1 . ∗ sy1 . ∗ sy2 .^2) ;
32 phi3 = ( sx1 .^2 . ∗ sy2 .^2 − sy1 .^2 . ∗ sx2 .^2 − sqrt (D) ) . . .
33 . / ( 2 ∗ ( rho2 . ∗ sy1 .^2 . ∗ sx2 . ∗ sy2 − rho1 . ∗ sx1 . ∗ sy1 . ∗ sy2 .^2) ) ;
34 phi4 = ( sx1 .^2 . ∗ sy2 .^2 − sy1 .^2 . ∗ sx2 .^2 + sqrt (D) ) . . .
35 . / ( 2 ∗ ( rho2 . ∗ sy1 .^2 . ∗ sx2 . ∗ sy2 − rho1 . ∗ sx1 . ∗ sy1 . ∗ sy2 .^2) ) ;
36

37

38 % % Aux i l i a r y v a r i a b l e s ( case 2)
39 %
40 % phi1 = 1;
41 % phi2 = ( rho1 .∗ sx1 .∗ sy1 .∗ sx2 .^2 − rho2 .∗ sx1 .^2 .∗ sx2 .∗ sy2 ) . . .
42 % ./ ( rho2 .∗ sy1 .^2 .∗ sx2 .∗ sy2 − rho1 .∗ sx1 .∗ sy1 .∗ sy2 ^2) ;
43 % phi3 = ( sx1 .^2 .∗ sy2 .^2 − sy1 .^2 .∗ sx2 .^2 + s q r t (D) ) . . .
44 % ./(2∗( rho2 .∗ sy1 .^2 .∗ sx2 .∗ sy2−rho1 .∗ sx1 .∗ sy1 .∗ sy2 .^2) ) ;
45 % phi4 = ( sx1 .^2 .∗ sy2 .^2 − sy1 .^2 .∗ sx2 .^2 − s q r t (D) ) . . .
46 % ./(2∗( rho2 .∗ sy1 .^2 .∗ sx2 .∗ sy2 − rho1 .∗ sx1 .∗ sy1 .∗ sy2 .^2) ) ;
47

48 % Transformation c o e f f i c i e n t s ( case 1)
49

50 b = phi4 ;
51 a = ones ( s ize (b , 1 ) , s ize (b , 2 ) ) ;
52 c = ones ( s ize (b , 1 ) , s ize (b , 2 ) ) ;
53 d = phi3 . / phi1 ;
54

55 % % Transformation c o e f f i c i e n t s ( case 2)
56 %
57 % a = phi1 ./ phi2 ;
58 % b = phi1 ./ phi3 ;
59 % c = phi2 ;
60 % d = phi2 .∗ phi3 ./ phi1 ;
61

62 e l s e i f abs ( sy1^2∗ sx2^2 − sx1^2∗ sy2 ^2)<eps
63

64 a = 1 ;
65 b = 1 ;
66 c = 1 ;
67 d = −(sx1 .^2 + rho1 . ∗ sx1 . ∗ sy1 ) . / ( sy1 .^2 + rho1 . ∗ sx1 . ∗ sy1 ) ;
68

69 else
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70

71 sx1 = sx1+eps ;
72 a = 1 ;
73 b = 1 ;
74 c = 1 ;
75 d = −(sx1 .^2 + rho1 . ∗ sx1 . ∗ sy1 ) . / ( sy1 .^2 + rho1 . ∗ sx1 . ∗ sy1 ) ;
76

77 end
78

79 v = [ a , b ; c , d ] ;
80

81 % ad d i t i o n a l l y transform the s o l u t i o n so t ha t new covar iance matrix C2
w i l l

82 % be i d e n t i t y matrix and second vec to r s tandard normal ly d i s t r i b u t e d
83

84 C2_1 = v∗C2∗v ’ ;
85 k1 = sqrt (1/C2_1(1 , 1 ) ) ;
86 k2 = sqrt (1/C2_1(2 , 2 ) ) ;
87 r = [ k1 , 0 ; 0 , k2 ] ;
88 v = r ∗v ;
89

90 % ca l c u l a t e the cons tant term to make means o f the second Random
Var iab l e

91 % zeros
92

93 d_mu = v∗mu2 ;
94

95 %toc
96 end

Subroutine for computing volume of the bivariate Mood confidence region. Inputs
are the random sample X and critical values tij :

1 function V = Mood_volume(X, t11 , t12 , t21 , t22 , t3 )
2

3 S = cov (X) ;
4 n = s ize (X, 1 ) ;
5

6 V = pi∗ t3 ∗(n−1)^2∗S (1 , 1 ) ∗S (2 , 2 ) ∗( t12−t11 ) ∗( t22−t21 ) /(4∗n∗ t11 ∗ t12 ∗ t21 ∗
t22 ) ;

7 end

Subroutine for computing the optimal ratio of individual significance levels γi w.r.t.
the volume of the confidence region:

1 %subrou t ine t ha t computes opt imal a l l o c a t i o n o f gamma w. r . t . the
sma l l e s t

2 %volume
3 N = [10 50 100 500 1000 ] ;
4 G = [ 0 . 2 0 .1 0 .05 0 .025 0 . 0 1 ] ;
5 O = zeros ( length (N) ∗ length (G) ,3 ) ;
6

7 q = 1 ; % counter
8 for j 1 = 1 : length (N)
9 for j 2 = 1 : length (G)

10 % ca l c u l a t e average volume on 1000 i t e r a t i o n s and e f f e c t i v e gammas f o r
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11 % given sample s i z e N and gamma G
12 opt = zeros (1000 ,3) ;
13 for r = 1:1000
14 n = N( j1 ) ; % s i z e o f a sample
15 X = mvnrnd ( [ 0 ; 0 ] , [ 1 0 ; 0 1 ] , n ) ;
16 k = 50 ; % pi e c e s we brake gamma
17

18 gamma = G( j2 ) ;
19 for i =1:k−1
20 gamma1( i ) = gamma − i ∗gamma/k ;
21 gamma2( i ) = 1 − ((1−gamma) /(1−gamma1( i ) ) ) ^(1/3) ;
22 t11 = ch i2 inv (gamma2( i ) /2 ,n−1) ;
23 t12 = ch i2 inv (1 − gamma2( i ) /2 ,n−1) ;
24 t21 = t11 ;
25 t22 = t12 ;
26 t3 = ch i2 inv (1−gamma1( i ) , 2 ) ;
27 V( i ) = Mood_volume(X, t11 , t12 , t21 , t22 , t3 ) ;
28 end
29 [~ , a ] = min(V) ;
30 opt ( r , : ) = [ gamma1( a ) ,gamma2( a ) , V( a ) ] ;
31 end
32

33 O(q , : ) = mean( opt ) ;
34 q = q + 1 ;
35 end
36 end

Auxiliary subroutine that calculates the inverse marginal CDF of the covariance of
Wishart distribution, presented in equation (3.34):

1 function [P, y_min ,y_max ] = cov_cdf (y , n)
2

3 % CDF of the d i s t r i b u t i o n o f covar iance in Wishard d i s t r i b u t i o n
4

5 f = @(x ) (abs ( x ) ) . ^ ( ( n−1)/2) . / (gamma(n/2) . ∗ sqrt ( 2 .^ ( n−1) . ∗ pi ) ) . ∗ besselk
( ( n−1)/2 ,abs ( x ) ) ;

6

7 % search f o r the boundary max , s t r a t i n g from which pdf i s not de f ined
wi th

8 % copmputer p r e c i s i on and i s = 0
9 y_max1 = 1/n ;

10 y_max2 = n^2;
11 eps = 0 .0001 ;
12

13 while 1
14 y_mid = (y_max1 + y_max2) /2 ;
15 i f isnan ( f (y_mid) ) | | i s i n f ( f (y_mid) )
16 y_max2=y_mid ;
17 else
18 y_max1=y_mid ;
19 end
20 i f (abs (y_max2 − y_max1)<eps )
21 break ;
22 end
23 end
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24 y_max = y_max1 ;
25

26 % search f o r the boundary min , s t r a t i n g from which pdf i s i n f i n i t y wi th
27 % computer p r e c i s i on
28

29 y_min1 = 0 ;
30 y_min2 = y_max ;
31 eps = eps^2;
32

33 while 1
34 y_mid = (y_min1 + y_min2) /2 ;
35 i f isnan ( f (y_mid) ) | | i s i n f ( f (y_mid) )
36 y_min1 = y_mid ;
37 else
38 y_min2 = y_mid ;
39 end
40 i f (abs (y_min2 − y_min1)<eps )
41 break ;
42 end
43 end
44 y_min = y_min2 ;
45

46 % de f i n e CDF fo r each po in t
47 i f y>=y_max
48 P=1;
49 e l s e i f (y<y_max) && (y>y_min)
50 P = 1 − i n t e g r a l ( f , y , y_max) ;
51 e l s e i f (y<=y_min) && (y>=−y_min)
52 P = y∗(1 − 2∗ i n t e g r a l ( f , y_min ,y_max) ) /(2∗y_min) +1/2;
53 e l s e i f (y>−y_max) && (y<−y_min)
54 P = i n t e g r a l ( f ,−y_max, y ) ;
55 e l s e i f y<=−y_max
56 P=0;
57 end
58

59 i f isnan (P) | | i s i n f (P)
60 P = 0 . 5 ;
61 end
62

63 end
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