
Representation Learning on
Complex Data

Dissertation zur Erlangung des Doktorgrades

an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig-Maximilians-Universität München

vorgelegt von

Julian Busch
aus Hamburg

München, den 16.03.2021

Tag der Einreichung: 16.03.2021

Erstgutachter: Prof. Dr. Thomas Seidl
Ludwig-Maximilians-Universität München

Zweitgutachter: Prof. Dr. Emmanuel Müller
Technische Universität Dortmund

Drittgutachter: Prof. Dr. Kristian Kersting
Technische Universität Darmstadt

Vorsitz: Prof. Dr. Albrecht Schmidt
Ludwig-Maximilians-Universität München

Tag der Disputation: 29.07.2021

Eidesstattliche Versicherung
(Siehe Promotionsordnung vom 12.07.2011, § 8, Abs. 2 Pkt. 5)

Hiermit erkläre ich an Eidesstatt, dass die Dissertation von mir selbstständig, ohne uner-
laubte Beihilfe angefertigt ist.

München, den 07.09.2021

Julian Busch

CONTENTS v

Contents

Abstract vii

Zusammenfassung ix

Acknowledgments xiii

1 Introduction 1
1.1 Thesis Statement . 1
1.2 Summary of Contributions . 3
1.3 Thesis Outline . 4

2 Fundamentals of Machine Learning 5
2.1 Machine Learning Tasks . 6
2.2 Inductive Bias . 7
2.3 Neural Networks . 7
2.4 Representation Learning . 10

3 Machine Learning on Graphs 13
3.1 Graph Learning Tasks . 14

3.1.1 Node Classification . 14
3.1.2 Graph Classification . 15
3.1.3 Graph Anomaly Detection . 17
3.1.4 Node Embedding . 18

3.2 Graph Neural Networks . 18
3.2.1 State of the Art . 20
3.2.2 Contributions . 21

3.3 Graph Learning Beyond Homophily . 23
3.3.1 State of the Art . 24
3.3.2 Contributions . 25

vi CONTENTS

4 Machine Learning on High-Dimensional Data 27
4.1 The Curse of Dimensionality . 28
4.2 Subspace Clustering . 28
4.3 State of the Art . 30
4.4 Contributions . 31

5 Concluding Remarks 33

References 37

List of Figures 51

A Contributing Publications 53

ABSTRACT vii

Abstract

Machine learning has enabled remarkable progress in various fields of research and appli-
cation in recent years. The primary objective of machine learning consists of developing
algorithms that can learn and improve through observation and experience. Machine
learning algorithms learn from data, which may exhibit various forms of complexity,
which pose fundamental challenges. In this thesis, we address two major types of data
complexity: First, data is often inherently connected and can be modeled by a single or
multiple graphs. Machine learning methods could potentially exploit these connections,
for instance, to find groups of similar users in a social network for targeted marketing
or to predict functional properties of proteins for drug design. Secondly, data is often
high-dimensional, for instance, due to a large number of recorded features or induced
by a quadratic pixel grid on images. Classical machine learning methods perennially fail
when exposed to high-dimensional data as several key assumptions cease to be satisfied.

Therefore, a major challenge associated with machine learning on graphs and high-
dimensional data is to derive meaningful representations of this data, which allow mod-
els to learn effectively. In contrast to conventional manual feature engineering methods,
representation learning aims at automatically learning data representations that are par-
ticularly suitable for a specific task at hand. Driven by a rapidly increasing availability
of data, these methods have celebrated tremendous success for tasks such as object de-
tection in images and speech recognition. However, there is still a considerable amount
of research work to be done to fully leverage such techniques for learning on graphs and
high-dimensional data.

In this thesis, we address the problem of learning meaningful representations for
highly-effective machine learning on complex data, in particular, graph data and high-
dimensional data. Additionally, most of our proposed methods are highly scalable, al-
lowing them to learn from massive amounts of data. While we address a wide range
of general learning problems with different modes of supervision, ranging from unsu-
pervised problems on unlabeled data to (semi-)-supervised learning on annotated data
sets, we evaluate our models on specific tasks from fields such as social network analysis,
information security, and computer vision.

The first part of this thesis addresses representation learning on graphs. While ex-

viii ABSTRACT

isting graph neural network models commonly perform synchronous message passing
between nodes and thus struggle with long-range dependencies and efficiency issues,
our first proposed method performs fast asynchronous message passing and, therefore,
supports adaptive and efficient learning and additionally scales to large graphs. Another
contribution consists of a novel graph-based approach to malware detection and classifi-
cation based on network traffic. While existing methods classify individual network flows
between two endpoints, our algorithm collects all traffic in a monitored network within
a specific time frame and builds a communication graph, which is then classified using
a novel graph neural network model. The developed model can be generally applied to
further graph classification or anomaly detection tasks. Two further contributions chal-
lenge a common assumption made by graph learning methods, termed homophily, which
states that nodes with similar properties are usually closely connected in the graph. To
this end, we develop a method that predicts node-level properties leveraging the distri-
bution of class labels appearing in the neighborhood of the respective node. That allows
our model to learn general relations between a node and its neighbors, which are not
limited to homophily. Another proposed method specifically models structural similarity
between nodes to model different roles, for instance, influencers and followers in a social
network. In particular, we develop an unsupervised algorithm for deriving node descrip-
tors based on how nodes spread probability mass to their neighbors and aggregate these
descriptors to represent entire graphs.

The second part of this thesis addresses representation learning on high-dimensional
data. Specifically, we consider the problem of clustering high-dimensional data, such as
images, texts, or gene expression profiles. Classical clustering algorithms struggle with
this type of data since it can usually not be assumed that data objects will be similar
w.r.t. all attributes, but only within a particular subspace of the full-dimensional ambient
space. Subspace clustering is an approach to clustering high-dimensional data based on
this assumption. While there already exist powerful neural network-based subspace clus-
tering methods, these methods commonly suffer from scalability issues and lack a theo-
retical foundation. To this end, we propose a novel metric learning approach to subspace
clustering, which can provably recover linear subspaces under suitable assumptions and,
at the same time, tremendously reduces the required number of model parameters and
memory compared to existing algorithms.

ZUSAMMENFASSUNG ix

Zusammenfassung

Maschinelles Lernen hat in den letzten Jahren bemerkenswerte Fortschritte in ver-
schiedenen Forschungs- und Anwendungsbereichen ermöglicht. Das primäre Ziel des
maschinellen Lernens besteht darin, Algorithmen zu entwickeln, die durch Beobachtung
und Erfahrung lernen und sich verbessern können. Algorithmen des maschinellen Ler-
nens lernen aus Daten, die verschiedene Formen von Komplexität aufweisen können,
was grundlegende Herausforderungen mit sich bringt. Im Rahmen dieser Dissertation
werden zwei Haupttypen von Datenkomplexität behandelt: Erstens weisen Daten oft
inhärente Verbindungen, die durch einen einzelnen oder mehrere Graphen modelliert
werden können. Methoden des maschinellen Lernens können diese Verbindungen poten-
ziell ausnutzen, um beispielsweise Gruppen ähnlicher Nutzer in einem sozialen Netzwerk
für gezieltes Marketing zu finden oder um funktionale Eigenschaften von Proteinen für
das Design von Medikamenten vorherzusagen. Zweitens sind die Daten oft hochdimen-
sional, z. B. aufgrund einer großen Anzahl von erfassten Merkmalen oder bedingt durch
ein quadratisches Pixelraster auf Bildern. Klassische Methoden des maschinellen Ler-
nens versagen immer wieder, wenn sie hochdimensionalen Daten ausgesetzt werden, da
mehrere Schlüsselannahmen nicht mehr erfüllt sind.

Daher besteht eine große Herausforderung beim maschinellen Lernen auf Graphen
und hochdimensionalen Daten darin, sinnvolle Repräsentationen dieser Daten
abzuleiten, die es den Modellen ermöglichen, effektiv zu lernen. Im Gegensatz zu
konventionellen manuellen Feature-Engineering-Methoden zielt Representation Learn-
ing darauf ab, automatisch Datenrepräsentationen zu lernen, die für eine bestimmte Auf-
gabenstellung besonders geeignet sind. Angetrieben durch eine rasant steigende Daten-
verfügbarkeit haben diese Methoden bei Aufgaben wie der Objekterkennung in Bildern
und der Spracherkennung enorme Erfolge gefeiert. Es besteht jedoch noch ein erhe-
blicher Forschungsbedarf, um solche Verfahren für das Lernen auf Graphen und hochdi-
mensionalen Daten voll auszuschöpfen.

Diese Dissertation beschäftigt sich mit dem Problem des Lernens sinnvoller Repräsen-
tationen für hocheffektives maschinelles Lernen auf komplexen Daten, insbesondere auf
Graphen und hochdimensionalen Daten. Zusätzlich sind die meisten hier vorgeschla-
genen Methoden hoch skalierbar, so dass sie aus großen Datenmengen lernen können.

x ZUSAMMENFASSUNG

Obgleich eine breite Palette von allgemeinen Lernproblemen mit verschiedenen Arten
der Überwachung adressiert wird, die von unüberwachten Problemen auf unannotierten
Daten bis hin zum (semi-)überwachten Lernen auf annotierten Datensätzen reichen, wer-
den die vorgestellten Metoden anhand spezifischen Anwendungen aus Bereichen wie
der Analyse sozialer Netzwerke, der Informationssicherheit und der Computer Vision
evaluiert.

Der erste Teil der Dissertation befasst sich mit dem Representation Learning auf
Graphen. Während existierende neuronale Netze für Graphen üblicherweise eine
synchrone Nachrichtenübermittlung zwischen den Knoten durchführen und somit mit
langreichweitigen Abhängigkeiten und Effizienzproblemen zu kämpfen haben, führt
die erste hier vorgeschlagene Methode eine schnelle asynchrone Nachrichtenübermit-
tlung durch und unterstützt somit adaptives und effizientes Lernen und skaliert zu-
dem auf große Graphen. Ein weiterer Beitrag besteht in einem neuartigen graphen-
basierten Ansatz zur Malware-Erkennung und -Klassifizierung auf Basis des Netzw-
erkverkehrs. Während bestehende Methoden einzelne Netzwerkflüsse zwischen zwei
Endpunkten klassifizieren, sammelt der vorgeschlagene Algorithmus den gesamten
Verkehr in einem überwachten Netzwerk innerhalb eines bestimmten Zeitraums und
baut einen Kommunikationsgraphen auf, der dann mithilfe eines neuartigen neuronalen
Netzes für Graphen klassifiziert wird. Das entwickelte Modell kann allgemein für weitere
Graphenklassifizierungs- oder Anomalieerkennungsaufgaben eingesetzt werden. Zwei
weitere Beiträge stellen eine gängige Annahme von Graphen-Lernmethoden in Frage, die
so genannte Homophilie-Annahme, die besagt, dass Knoten mit ähnlichen Eigenschaften
in der Regel eng im Graphen verbunden sind. Zu diesem Zweck wird eine Methode
entwickelt, die Eigenschaften auf Knotenebene vorhersagt, indem sie die Verteilung der
annotierten Klassen in der Nachbarschaft des jeweiligen Knotens nutzt. Das erlaubt dem
vorgeschlagenen Modell, allgemeine Beziehungen zwischen einem Knoten und seinen
Nachbarn zu lernen, die nicht auf Homophilie beschränkt sind. Eine weitere vorgeschla-
gene Methode modelliert strukturelle Ähnlichkeit zwischen Knoten, um unterschiedliche
Rollen zu modellieren, zum Beispiel Influencer und Follower in einem sozialen Net-
zwerk. Insbesondere entwickeln wir einen unüberwachten Algorithmus zur Ableitung
von Knoten-Deskriptoren, die darauf basieren, wie Knoten Wahrscheinlichkeitsmasse
auf ihre Nachbarn verteilen, und aggregieren diese Deskriptoren, um ganze Graphen
darzustellen.

Der zweite Teil dieser Dissertation befasst sich mit dem Representation Learning auf
hochdimensionalen Daten. Konkret wird das Problem des Clusterns hochdimension-
aler Daten, wie z. B. Bilder, Texte oder Genexpressionsprofile, betrachtet. Klassische
Clustering-Algorithmen haben mit dieser Art von Daten zu kämpfen, da in der Regel
nicht davon ausgegangen werden kann, dass die Datenobjekte in Bezug auf alle Attribute
ähnlich sind, sondern nur innerhalb eines bestimmten Unterraums des volldimension-

ZUSAMMENFASSUNG xi

alen Datenraums. Das Unterraum-Clustering ist ein Ansatz zum Clustern hochdimen-
sionaler Daten, der auf dieser Annahme basiert. Obwohl es bereits leistungsfähige, auf
neuronalen Netzen basierende Unterraum-Clustering-Methoden gibt, leiden diese Meth-
oden im Allgemeinen unter Skalierbarkeitsproblemen und es fehlt ihnen an einer theo-
retischen Grundlage. Zu diesem Zweck wird ein neuartiger Metric Learning Ansatz für
das Unterraum-Clustering vorgeschlagen, der unter geeigneten Annahmen nachweislich
lineare Unterräume detektieren kann und gleichzeitig die erforderliche Anzahl von Mod-
ellparametern und Speicher im Vergleich zu bestehenden Algorithmen enorm reduziert.

xii ZUSAMMENFASSUNG

ACKNOWLEDGMENTS xiii

Acknowledgments

My dissertation would not have been possible without the guidance and support, both
scientific and personal, I have received from numerous people over the recent years. I
am deeply grateful and wish to profoundly thank everyone who accompanied me on my
way.

First and foremost, I wish to thank my doctoral advisor Prof. Dr. Thomas Seidl. You
gave me the opportunity to take on this challenge, funded my position, and procured
an exceptionally open, friendly, and productive working atmosphere as the head of our
group. This work would not have been possible without the countless fruitful discussions
and your continued guidance, which allowed me to grow as a scientist.

I also wish to thank Prof. Dr. Emmanuel Müller and Prof. Dr. Kristian Kersting for
their interest in my work and their willingness to examine my dissertation as secondary
referees.

Deepest gratitude also goes to all of my former and current colleagues at the Database
Systems and Data Mining group and LMU Munich. Thank you for all your support, all the
fun, countless lunch and coffee breaks, and for sharing all the ups and downs through-
out the journey. I especially want to thank Felix Borutta, Evgeniy Faerman, Daniyal
Kazempour, Anna Beer, Max Berrendorf, Sebastian Schmoll, Florian Richter, Maximilian
Hünemörder, Ludwig Zellner, Prof. Dr. Matthias Schubert, and Prof. Dr. Peer Kröger. It
was a pleasure working with you all.

I further want to thank Philipp Schaefer and Prof. Dr. Volker Tresp from Siemens,
who gave me the opportunity for my internship. Special thanks also go to Dr. Jiaxing
Pi and Dr. Anton Kocheturov for supervising my work and to all other colleagues and
interns at Siemens, who made my time there an incredibly productive and pleasurable
experience.

A special thanks also go to Susanne Grienberger for supporting me in all administra-
tive matters, and to Franz Krojer for all technical support, and for keeping our computing
infrastructure from breaking down.

Finally, I wish to express my deepest gratitude to my family and friends, especially my
parents, Roland and Bettina, my brothers, Daniel and Florian, and my dearest partner,
Jing. Your continued support and encouragement kept me moving forward all this time.

xiv ACKNOWLEDGMENTS

1

Chapter 1

Introduction

Our knowledge springs from two fundamental
sources of the mind; the first is the capacity of
receiving representations (receptivity for
impressions), the second is the power of
knowing an object through these
representations (spontaneity of concepts).

Immanuel Kant

1.1 Thesis Statement

Machine learning has enabled remarkable progress in various fields, including science,
production and automation in industry, and data analytics in corporations, finance, mo-
bility, and healthcare. It has thus exerted a significant impact on the economy and society
as a whole and became a driving factor for its development. Machine learning aims at
developing algorithms that are able to learn and improve through observation and expe-
rience. As such, machine learning methods are fueled by data, which comes in a multi-
tude of different forms, ranging from scientific data sets to images, written and spoken
natural language, and data accumulated in social networks. An exponential increase in
data availability in recent years has made this transformation possible, but at the same
time, machine learning methods are faced with various forms of data complexity, which
pose fundamental challenges.

This thesis addresses two major types of data complexity: First, data is often inher-
ently connected and can be modeled by a single or multiple graphs. Machine learning
methods could potentially exploit these connections, for instance, to find groups of simi-
lar users in a social network for targeted marketing or to predict functional properties of

2 1. Introduction

Figure 1.1: A machine learning algorithm requires expressive features to provide accu-
rate predictions from the input data. Conventional approaches involve manual feature
extraction or engineering, which is challenging even for domain experts and is not guar-
anteed to lead to highly accurate predictions. Representation learning algorithms, on
the other hand, learn expressive features together with the prediction algorithm, such
that the learned features are optimized to be maximally useful to the algorithm. In this
thesis, we advance representation learning on graphs and high-dimensional data. The
illustrations on the top sketch a graph anomaly detection problem for malware detection
that we addressed in [BKTS21] and a non-linear subspace clustering problem that we
treated in [BFSS20].

proteins for drug design. Secondly, data is often high-dimensional, for instance, due to
a large number of recorded features, or induced by a quadratic pixel grid on images or
bag-of-words representations for texts which count occurrences of all words contained
in a dictionary. Classical machine learning methods perennially fail when exposed to
high-dimensional data as several key assumptions cease to be satisfied.

A major challenge associated with machine learning on graphs and high-dimensional
data is, therefore, to derive meaningful representations of this data, which allow models
to learn effectively. Conventionally, manual feature extraction or engineering is em-
ployed as a pre-processing step, connected upstream to the actual learning task. How-
ever, it is usually very challenging even for domain experts to determine representations
that are particularly meaningful or useful for a specific task. Driven by a rapidly increas-
ing availability of data, deep learning methods have celebrated tremendous success at
automatically learning representations that are optimized end-to-end towards the objec-
tive of a particular learning task instead of being pre-computed upstream. While deep
learning has remarkably advanced state-of-the-art for tasks such as object detection in
images and speech recognition, there is still a considerable amount of research work
to be done to leverage representation learning techniques for learning on graphs and
high-dimensional data.

The overarching research objective of this thesis consists in the development of al-
gorithms that are able to learn meaningful representations for highly effective machine
learning on complex data, in particular graphs and high-dimensional data. A visual

1.2 Summary of Contributions 3

summary of this thesis statement is provided in Figure 1.1. Additionally, most of our
proposed methods are highly scalable, allowing them to learn from massive amounts
of data. While we address a wide range of general learning problems with different
modes of supervision, ranging from unsupervised problems on unlabeled data to (semi-
)-supervised learning on annotated data sets, we evaluate our models on specific tasks
from fields such as social network analysis, information security, and computer vision.

1.2 Summary of Contributions

The first part of this thesis addresses representation learning on graphs. Common learn-
ing problems on graphs include unsupervised clustering and anomaly detection and
(semi-)supervised classification of graph nodes or entire graphs, for instance, to find
groups of similar social network users or to predict user interests or properties of whole
communities.

In recent years, graph neural network models have been established as state-of-the-
art approaches to these problems. While existing graph neural network models com-
monly perform synchronous message passing between nodes and thus struggle with
long-range dependencies and efficiency issues, our first proposed method performs fast
asynchronous message passing and, therefore, supports adaptive and efficient learning
and additionally scales to large graphs. Empirically, our method significantly improves
state-of-the-art on several semi-supervised document classification tasks.

Another contribution consists of a novel graph-based approach to malware detection
and classification based on network traffic. While existing methods classify individual
network flows between two endpoints, our algorithm collects all traffic in a monitored
network within a specific time frame and builds a communication graph, which is then
classified using a novel graph neural network model. Using this additional relational
information enables our algorithm to significantly boost detection and classification per-
formance on a benchmark dataset. Further, the developed algorithm can be generally
applied to further graph classification or anomaly detection tasks.

Two further contributions challenge a common assumption made by graph learning
methods, termed homophily, which states that nodes with similar properties are usually
closely connected in the graph. To this end, we develop a method that predicts node-
level properties leveraging the distribution of class labels appearing in the neighborhood
of the respective node. This allows our model to learn general relations between a node
and its neighbors, which are not limited to homophily to improve prediction accuracy on
data sets for document classification, interest prediction in a social network, and genre
prediction in a movie-actor network.

Another proposed method specifically models structural similarity between nodes to

4 1. Introduction

model different roles, for instance, influencers and followers in a social network. In par-
ticular, we develop an unsupervised algorithm for deriving node descriptors based on
how nodes spread probability mass to their neighbors and aggregate these descriptors
to represent entire graphs. In addition to improving downstream graph classification
accuracy on airline networks, biological and social network datasets, our method is ad-
ditionally highly efficient and scalable.

The second part of this thesis addresses representation learning on high-dimensional
data. Specifically, we consider the problem of clustering high-dimensional data, such as
images, texts, or gene expression profiles. Classical clustering algorithms struggle with
this type of data since it can usually not be assumed that data objects will be similar
w.r.t. all attributes, but only within a particular subspace of the full-dimensional ambient
space. Subspace clustering is an approach to clustering high-dimensional data based on
this assumption.

While there already exist powerful neural network-based subspace clustering meth-
ods, these methods commonly suffer from scalability issues and lack a theoretical foun-
dation. To this end, we propose a novel metric learning approach to subspace clustering,
which can provably recover linear subspaces under suitable assumptions and, at the
same time, tremendously reduces the required number of model parameters and mem-
ory compared to existing algorithms. In combination with an autoencoder, our method
is able to overcome the linearity assumption by automatically learning representations
that are particularly well-suited for linear subspace clustering. We evaluate our model on
an image clustering task where we achieve competitive clustering accuracy at a memory
reduction of multiple orders of magnitude, allowing our model to scale to data sets of
sizes that have been out of reach of existing algorithms.

1.3 Thesis Outline

The remainder of the thesis is structured as follows. Chapter 2 first provides necessary
background from the field of machine learning by introducing some of its fundamental
concepts. Based on this foundation, Chapter 3 briefly introduces the research area of
machine learning on graphs, provides an overview of the current state of the art, and
presents the contributions of this thesis to this field. Chapter 4 addresses machine learn-
ing on high-dimensional data. Again, we will first provide an overview of the field and
current state of the art and subsequently present the contributions to this field provided
by this thesis. Chapter 5 concludes with a summary and an outlook to potential future
work. Previous publications contributing to this cumulative dissertation are listed in
Appendix A, along with a clarification of the individual authors’ contributions.

5

Chapter 2

Fundamentals of Machine Learning

Machine learning is concerned with the study algorithms that are able to learn and im-
prove from observation and experience and aims to design and analyze such algorithms.
As a field of research, it is closely related to other areas, including statistics and math-
ematical optimization, which provide some fundamental concepts and methods. Data
mining is another closely related field concerned with the extraction of either regular
or irregular patterns from potentially large volumes of data but usually doesn’t involve
learning or adaptation. Machine learning, on the other hand, instead focuses on solving
specific tasks by learning from data. It is further related to artificial intelligence, which
focuses on intelligent agents that interact with some environment, whereas machine
learning also considers passive settings not involving any active agents. Applications for
machine learning methods are manifold and have contributed to driving developments
in science, industrial production and automation, and data analytics in corporations,
finance, healthcare, and mobility.

A distinctive feature of machine learning algorithms is that they perform tasks without
being explicitly told which exact steps to take. For instance, consider the problem of
detecting a cat in an RGB-image. One could think of a set of different rules to decide
whether the image shows a cat, for instance, by looking for certain key features such
as ears or whiskers. However, there is a potentially infinite variety of cats’ potential
appearances, and parameters such as position, rotation, illumination, and occlusion in
the image are subject to change. Thus, it is virtually impossible to solve this detection task
by deriving a set of specific rules. Instead, machine learning algorithms automatically
extract general rules on how to perform this detection task by learning from data, in this
case, example images showing cats.

6 2. Fundamentals of Machine Learning

2.1 Machine Learning Tasks

Different machine learning tasks can be categorized based on the amount of supervision
available to the algorithm. In a supervised learning setting, the available data consists
of pairs (x, y) ∈ X × Y with input space X and output space Y, i.e., each data point x
is annotated with a label y representing the desired output or prediction for that data
point. Machine learning algorithms often assume real vectors as input, i.e., X = Rd, but
inputs could also correspond to more complex objects, such as images or graphs. The
algorithm’s task is to learn a function f : X → Y from a given set of training pairs, which
produces correct predictions. A typical supervised learning task is classification, where
Y = {0, . . . , K} is a set of discrete class labels and the algorithm needs to predict the
correct class for each input. Classification problems with K = 2 are referred to as binary
classification. If K > 2, the problem called a multi-class classification problem. In case
there are multiple possible labels to predict for an input, the problem is referred to as
multi-label classification. Examples for supervised learning tasks include image recogni-
tion, where images are classified to represent different objects, automatic translation of
natural language, where sentences of source and target language are paired, and classi-
fication of protein molecule graphs according to their metabolic function.

In contrast to supervised learning, in an unsupervised learning setting, only the in-
puts x are given, and there are no target annotations available to the algorithm. The
algorithm’s task is to detect novel concepts which are not yet captured by any available
annotation. A common unsupervised task is clustering where the algorithm’s job is to
partition the inputs into meaningful groups, such that data objects in the same group are
similar to each other and objects in different groups are dissimilar to each other. These
groups may represent different concepts present in the data, for instance, in image clus-
tering, different objects that are represented by an image. The inverse task of finding
objects that are different from the typical behavior observed in the data, rather than reg-
ular concepts in the data, is referred to as anomaly detection. In a social network, users
could be clustered to detect communities of similar users for targeted marketing. On the
other hand, anomaly detection could reveal malicious fake users or bots, which behave
differently from regular users.

If annotations are only available for a relatively small portion of the data, the setting is
referred to as semi-supervised learning. In this case, the learning task is a supervised one,
but in addition to a relatively small number of labeled pairs, a larger amount of unlabeled
data is available. This unlabeled data can potentially improve learning performance since
it can reveal more insight into the underlying structure of the data. For instance, the task
of semi-supervised node classification in graphs will be introduced in Chapter 3 and
allows for, e.g., predicting users interests in social networks for targeted marketing or
classifying proteins according to their metabolic functions based on their interactions as

2.2 Inductive Bias 7

modeled by an interaction graph.
The contributions presented in this thesis include algorithms that can be employed to

solve machine learning tasks from all of the above categories.

2.2 Inductive Bias

For a machine learning algorithm to be successful, it is essential that the algorithm does
not merely memorize the given examples but is actually able to generalize meaningful
concepts from the data. To be able to do so, it is necessary to make some assumptions on
how to extract such concepts. Such assumptions are also referred to as inductive bias, and
different machine learning algorithms or classes of algorithms differ by their inductive
bias. For instance, different neural network architectures, such as dense, convolutional,
or recurrent networks, model different types of spatial or sequential relationships in
the data. In graph machine learning, the homophily assumption could be employed
as an inductive bias to reflect that similar predictions should be made for users closely
connected in a social network. In high-dimensional clustering, a typical assumption is
that data points in one cluster lie within the same subspace of the data space.

While it is always possible to design an arbitrarily complex machine learning algo-
rithm that solves a particular task without error on a given dataset, such an algorithm
would most probably not perform well on new unseen data. This behavior is also referred
to as over-fitting. On the other hand, if the algorithm is not complex enough, it is not
able to learn useful concepts and is thus prone to under-fitting. Thus, machine learning
algorithms need to be carefully designed to ensure that relevant patterns present in the
data can be captured and, at the same time, that the algorithm is neither too complex
nor too simplistic. This can be achieved by selecting an appropriate inductive bias.

Advantages of the algorithms contributed in this thesis over existing algorithms are
partly due to their respective inductive bias, which attempts to capture the nature of the
considered problem as accurately as possible.

2.3 Neural Networks

For many machine learning algorithms, learning is equivalent to minimizing a particular
cost function w.r.t. unknown model parameters. In this section, we illustrate this with
neural network models, which form the basis of many of the algorithms contributed in
this thesis. Neural networks form a class of very versatile models that can be employed
to solve a wide variety of tasks on different types of data by designing different network
architectures that capture specific inductive biases. Further, neural network training and
inference processes are commonly amenable to massive parallelization since they usually

8 2. Fundamentals of Machine Learning

x1 x2 x3 x4

z
(1)
1 z

(1)
2 z

(1)
3

y
(1)
1 y

(1)
2 y

(1)
3

z
(2)
1 z

(2)
2

y
(2)
1 y

(2)
2

W (1) ∈ R3×4

W (2) ∈ R2×3

z
(1)
i =

∑
j=1,...,4w

(1)
ij xj

y
(1)
i = q(1)

(
z
(1)
i

)

z
(2)
i =

∑
j=1,...,3w

(2)
ij y

(1)
j

y
(2)
i = q(2)

(
z
(2)
i

)

x1 x2 x3 x4

z
(1)
1 z

(1)
2 z

(1)
3

y
(1)
1 y

(1)
2 y

(1)
3

z
(2)
1 z

(2)
2

y
(2)
1 y

(2)
2

∂L

∂z
(1)
i

= ∂L

∂y
(1)
i

∂y
(1)
i

∂z
(1)
i

∂L

∂y
(1)
i

=
∑

j=1,2w
(2)
ji

∂L

∂z
(2)
j

∂L

∂z
(2)
i

= ∂L

∂y
(2)
i

∂y
(2)
i

∂z
(2)
i

∂L

∂y
(2)
i

Figure 2.1: Example of a two-layer MLP. For simplicity, the bias vectors have been omit-
ted. During the forward pass (left-hand side), a 4-dim. input vector x is first mapped to
a 3-dim. latent vector y(1) and subsequently to a 2-dim. output vector y(2). During the
backward pass (right-hand side), the corresponding gradients w.r.t. the loss function are
propagated in the backward direction to update the parameters matrices W (1) and W (2).

correspond to mostly matrix and vector algebra operations that can be mapped well to
GPU architectures and are thus able to leverage vast computational resources.

A basic neural network often used as a building block for more complex neural net-
work architectures is the Multi-Layer Perceptron (MLP). An MLP consists of multiple sub-
sequent layers, each of which can be formally written as

z(k) = W (k)y(k−1) + b(k) (2.1)

y(k) = q(k)
(
z(k)
)
, (2.2)

where the output y(k−1) ∈ Rhk−1 of the (k − 1)-th layer corresponds to the input of
the k-th layer and the input to the first layer is the original input vector x ∈ Rd. The
k−th layer applies an affine transformation with weight matrix W ∈ Rhk×hk−1 and bias
vector b ∈ Rhk , followed by a non-linear activation function q(k), which allows the model
to learn general non-linear functions. The output of the last layer represents the final
model output or prediction. An illustration of a two-layer MLP is provided in Figure 2.1.

Popular choices for the activation function of the hidden layers of the model include
the sigmoid function and the Rectified Linear Unit (ReLU). The output layer uses a task-

2.3 Neural Networks 9

dependent activation function. For classification problems, the softmax function

yi =
exp (zi)∑

j=1,...,K exp (zj)
(2.3)

is commonly used, where the number of output dimensions corresponds to the num-
ber of classes, the output dimension with the maximum activation indicates the predicted
class, and the outputs provided by softmax are normalized, such that they define a prob-
ability distribution over the classes.

The weight matrices and bias vectors of all layers together constitute the model’s
learnable parameters adjusted during training. Training corresponds to the minimization
of a loss function. For classification, a commonly used loss function is the cross-entropy
loss

L (x, ŷ) = −
∑

i=1,...,K

yi log ŷi, (2.4)

where ŷ ∈ {0, 1}K is a one-hot vector indicating the correct label of input xwith a one-
entry in the corresponding dimension and all remaining entries set to zero. The softmax
predictions by the model are given as y ∈ RK . Intuitively, the cross-entropy measures
the distance between the two probability distributions defined by y and ŷ, and the goal
is to minimize that distance. For a given training dataset, the loss can be averaged over
all training samples.

Neural networks are most commonly trained using first-order gradient descent opti-
mization methods. After evaluating the loss function for a set of samples, the gradient of
the loss function w.r.t. the model parameters is computed and used to update the model
parameters using an update rule similar to

w
(k)
ij ← w

(k)
ij − ν

∂L

∂w
(k)
ij

(2.5)

to update parameter w(k)
ij . Intuitively, the update performs a step in the direction of

the negative gradient, i.e., the direction of steepest descent of the loss function, and the
step size is determined by the learning rate ν. This update step is applied to all model
parameters simultaneously and repeated for multiple iterations. This procedure, given
appropriate parametrization and a well-defined learning problem, usually converges to
at least a local minimum, though theoretical convergence guarantees are usually difficult
to establish due to the complex structure and non-convexity of the underlying optimiza-
tion problems. Different variants of the basic gradient descent algorithm have been
introduced in the literature. Arguably, the most commonly used algorithm nowadays is
Adam [KB15], which additionally maintains individual learning rates for all parameters

10 2. Fundamentals of Machine Learning

and adapts these learning rates based on different moments of gradient magnitudes from
recent iterations.

The required gradients can be computed using a procedure called backpropagation.
The main idea is that, due to the sequential structure of stacked neural network layers,
the chain rule of differentiation can be used to iteratively compute gradients by propa-
gating back errors from the network output towards the input side. This is illustrated
on the right-hand side of Figure 2.1, where the term ∂L

∂y
(2)
i

denotes the derivative of the

loss function w.r.t. the model output y(2)i , and ∂y
(k)
i

∂z
(k)
i

corresponds to the derivative of the

activation function q(k) w.r.t. z(k)i . Writing δ
(k)
i = ∂L

∂z
(k)
i

, the derivatives w.r.t. the model

parameters can be obtained using, once again, the chain rule:

∂L

∂w
(k)
ij

=
∂L

∂z
(k)
i

∂z
(k)
i

∂w
(k)
ij

= δ
(k)
i

∂

∂w
(k)
ij


 ∑

l=1,...,hk−1

w
(k)
il y

(k−1)
l


 = δ

(k)
i y

(k−1)
j . (2.6)

That is, the gradient update for weight w(k)
ij depends on the backpropagated error

δ
(k)
i and the layer input y(k−1)j . It should be noted that much more elaborate models can

be trained using this scheme by defining a corresponding computation graph. Differen-
tiation can then be performed automatically, analogous to the simple backpropagation
algorithm for MLPs. High-performance libraries offering automatic differentiation on
GPUs include the Python libraries Tensorflow [ABC+16] and PyTorch [PGM+19], which
were also employed for most of the prototypical implementations of the algorithms pro-
posed in this thesis.

2.4 Representation Learning

A machine learning algorithm’s ability to solve a specific task and the algorithm’s ef-
fectiveness in doing so depend significantly on the representation of the input data the
algorithm is provided with. A common approach is to manually extract a set of features
from the raw data and provide these as inputs to the algorithm. For instance, to detect
objects in images, one could extract different low-level structures, such as edges, corners,
or different types of textures from the image. However, it is usually not clear at all which
features are particularly useful for the task, and defining higher-level features, such as
specific object parts, is extremely challenging due to sizeable possible variation.

Neural networks offer the possibility of learning representations end-to-end within
the model instead of fixing them a-priori. This is also referred to as representation learn-
ing. Intermediate latent representations learned by neural network layers can be inter-
preted as learned features of increasing complexity. An illustration of this concept is

2.4 Representation Learning 11

Figure 2.2: Learned hierarchical features in a deep neural network. After low-level fea-
tures, such as edges and textures, are detected, the model extracts successively higher-
level features, including different patterns, object parts, and finally prototypical ob-
ject representations. For different levels, a selection of features learned by GoogLeNet
[SLJ+15] from the ImageNet database [DDS+09] is shown. These visualizations were
provided by [OMS17].

provided in Figure 2.2. In early layers, the network extracts low-level representations
which form the basis of more high-level representations in the following layers. Learning
such representations of increasing complexity with neural networks has been termed in
literature as deep learning [GBCB16]. Deep learning profits from the flexibility of neural
networks combined with simple and robust gradient-based optimization, highly scalable
and efficient training and inference on GPUs, and availability of large amounts of data,
among other factors, and has celebrated major successes since the early 2010s, signif-
icantly pushing benchmark performance on tasks with considerable real-world impact,
such as object recognition in images, speech recognition, and machine translation. More
recently, deep learning has contributed to enabling technologies such as self-driving ve-
hicles, question-answer systems, and intelligent robots. These advancements have also
been enabled by different neural network architectures encoding different inductive bi-
ases, including convolutional neural networks, which are mainly used on image data, and
recurrent neural networks and transformer networks [VSP+17] for modeling sequential
data.

Though deep learning methods continue to significantly advance the state-of-the-
art for tasks beyond computer vision and natural language processing, there is still a
considerable research effort required to leverage representation learning techniques for
other complex types of data. This thesis contributes to this research effort by proposing
advanced representation learning algorithms for effective machine learning on graphs
and high-dimensional data.

12 2. Fundamentals of Machine Learning

13

Chapter 3

Machine Learning on Graphs

A graph is a general mathematical formalism that can be used to model connected data.
In its most simple form, a graph consists of a set of nodes and a set of edges connecting
these nodes, thereby expressing some relationship between the nodes. In many cases,
data is naturally organized as a graph. For instance, in a social network, users are con-
nected by friendship or follower edges. Communication networks can model physical
information networks or communication between different entities in general, e.g., e-
mail correspondence between employees in a company. Interaction networks emerge in
various fields and can model different interactions between entities, e.g., interactions
between proteins in metabolic processes. Even if a dataset is not explicitly organized
as a graph, a graph structure can be extracted from any dataset by connecting samples
that are similar in some sense. For instance, if no interactions between specific proteins
are known, protein molecules with similar chemical properties could be connected, and
their functions predicted based on the resulting graph. This requires a similarity function
s : X ×X → R where it is typically required that s is symmetric and that each data object
is maximally similar to itself.

Formally, a graph can be defined as G = (V,E), where V corresponds to the set of
nodes and E denotes the set of edges connecting the nodes. A graph can be directed or
undirected. For a directed graph, the edge set is given as E = {(vi, vj) | vi, vj ∈ V }. For an
undirected graph, the edges are unordered, i.e., E = {{vi, vj} | vi, vj ∈ V }. An undirected
graph can also be represented as a directed graph with the property that for each edge
(vi, vj) ∈ E, the backward edge (vj, vi) is also contained in E. Algebraically, a graph
can be represented as a (usually sparse) adjacency matrix A ∈ {0, 1}n×n with n = |V |
denoting the number of nodes and aij = 1 if and only if (vi, vj) ∈ E. The adjacency matrix
of an undirected graph is symmetric. Graphs can additionally be attributed. Commonly,
nodes in the graph can be annotated with feature vectors. These node feature vectors
can be collected as rows of a node feature matrix XV ∈ Rn×d. Similarly, edges can have
feature vectors assigned to them. An edge feature matrix can be denoted as XE ∈ Rm×d

14 3. Machine Learning on Graphs

(a) (b) (c) (d)

Figure 3.1: Depictions of different graph learning tasks: (a) Node classification on an
undirected graph with node attributes, (b) graph classification on undirected graphs, (c)
graph anomaly detection on directed graphs with edge attributes, (d) node embedding
on undirected graphs.

where m = |E| denotes the number of edges.
Representing a graph algebraically in terms of an adjacency matrix and optional fea-

ture matrices makes it possible to map mathematical operations emerging in graph learn-
ing tasks to GPU architectures and perform them jointly with neural network training.
Consequently, most graph neural network models can be trained highly efficiently on
GPUs.

3.1 Graph Learning Tasks

In this thesis, we consider various machine learning tasks on graphs with all different
levels of supervision. The four general learning tasks considered are depicted in Figure
3.1. The following briefly introduces these tasks along with a discussion of state-of-the-
art approaches.

3.1.1 Node Classification

The first task we consider is called semi-supervised node classification where we are given
a single graph G, a node feature matrix XV and an additional label matrix Y ∈ {0, 1}n×K .
Labels are provided only for a subset of the nodes, and the goal is to predict the labels
of the remaining nodes using the graph structure, the node features, and the labels
available for training. The unlabeled nodes are visible during training, making this task
semi-supervised. Classification can be binary, multi-class, or multi-label. An example
application is document classification, where documents, such as academic publications,
are linked by citation or co-authorship links, and each document has a bag-of-words
feature vector attached to it describing its content. Given labels for a few documents, the

3.1 Graph Learning Tasks 15

task is to label the remaining documents based on their field of research. Some of the
algorithms proposed in this thesis were evaluated on document classification benchmark
datasets.

Most existing approaches to semi-supervised node classification assume that close-
by nodes in the graph should have a similar label. This assumption is in line with the
so-called homophily [MSLC01] assumption, which states that actors in social networks
usually connect to other actors that share some similarity with them. Such an assumption
usually makes sense also for different types of networks.

Earlier semi-supervised node classification methods include label propagation meth-
ods [ZG02, ZGL03, ZBL+04] where the given labels are propagated through the graph for
multiple iterations. Thereby, each node collects the labels from all of its neighbors and
aggregates the received labels to update its own label. These steps are repeated until con-
vergence or for a maximum number of iterations. These methods are not able to employ
node attributes for classification. Some more recently proposed related methods related
to label propagation [SNB+08, NM16, YZM+17] suggest learning more refined classifi-
cation models for updating node labels based on the observed neighboring labels. By
propagating labels to neighbors, label propagation methods assume that close-by nodes
in the graph should have a similar label and thus rely on homophily.

Another approach involves explicit graph-based regularization [BNS06, WRMC12]
where the model’s loss function is augmented with a regularization term enforcing that
the model produces similar predictions for nodes that are close-by in the graph. These
methods are able to incorporate node attributes for classification. A potential downside
of this approach is that explicit regularization might impose too strong an inductive bias
and thus limit model capacity. This is avoided by another influential method [YCS16]
by predicting the graph context for a node in addition to its label instead of imposing
explicit regularization. This allows for predicting similar labels even for distant nodes in
the graph.

The majority of current state-of-the-art methods belong to the class of Graph Neural
Network models [BBL+17, GSR+17, BHB+18], which learn expressive node representa-
tions by aggregating node attributes among neighborhoods. Recently, these methods
have continuously advanced the state-of-the-art in graph learning as a whole, and most
of the contributions to graph learning provided in this thesis advance this approach.
Graph neural networks are discussed in more detail in Section 3.2.

3.1.2 Graph Classification

In supervised graph classification, the task is to classify entire graphs instead of single
nodes. The classifier is trained on a set of graphs G = {G1, . . . , GN}, optionally corre-
sponding node feature matrices XV 1, . . . , XV N , and a label matrix Y ∈ {0, 1}N×K . One

16 3. Machine Learning on Graphs

application that can be modeled as a graph classification task is toxicity prediction, where
graphs correspond to substance molecules annotated with chemical properties. The goal
is to predict whether a certain substance is toxic or not based on a training set of labeled
molecules.

Most existing graph classification approaches can be classified into two major cate-
gories, kernel-based methods and feature-based methods.

Kernel-based methods focus on deriving similarity models for pairs of graphs. Thereby,
node feature representations are typically learned implicitly, and classification is per-
formed by kernelized classification methods. For instance, the random-walk kernel
[BOS+05] starts random walks on both graphs simultaneously and counts the label se-
quences observed in both graphs. This precedure can be shown to be equivalent to
performing a single random walk on the product graph. Further classical graph-kernel
methods also count different sub-structures in the graph, e.g., label vectors resulting
from the Weisfeiler-Lehman isomorphism test [SSL+11], shortest paths [BK05], or sub-
graphs [SVP+09] of the two graphs. A problem with these classical graph-kernels is
that they are not able to consider correlations between the counted sub-structures. This
is addressed by more recent methods [YV15, NCC+16, AZRP18] by learning additional
representations of these sub-structures. A disadvantage that remains for kernel-based
methods, in general, is that they suffer from relatively high complexity and thus don’t
scale well. Some other methods focusing on similarity models for graphs directly define
metric spaces for graphs [SF83, NMV17, BI18]. The underlying problems being solved
by these methods are usually NP-hard and thus require heuristics.

In contrast to kernel-based methods, feature-based methods focus on deriving ex-
pressive feature representations for graphs that can be used for classification. While
some methods [BKERF12] extract hand-crafted features, such as clustering coefficients
and centrality scores, to describe a graph, other methods rely on the SkipGram model
[MCCD13, LM14] to learn a representation of a graph by learning representations of sub-
structures of the graph [NCC+16, AZRP18, LRK18, NLN+18]. Another group of methods
[DZHL18, TMK+18] focuses on a graph’s spectral properties based on the eigenvalue
decomposition of its Laplacian matrix.

All of the above methods extract or learn graph representations or graph similar-
ity models in an unsupervised way, making them somewhat flexible. On the other hand,
learning representations end-to-end can improve classification accuracy by learning more
task-specific representations. Beyond node classification, graph neural networks can also
be employed to solve graph classification tasks by aggregating the learned node represen-
tations into a single graph representation used as the input for a prediction layer. While
graph neural networks rely on node attributes to learn representations, they can also be
applied to unattributed graphs using surrogate node attributes, such as node degree or
centrality [NAK16]. In contrast to the above methods, graph neural networks allow for

3.1 Graph Learning Tasks 17

learning graph representations end-to-end and, therefore, for improving classification
accuracy.

3.1.3 Graph Anomaly Detection

A further, more general task we consider is graph anomaly detection. While different vari-
ants of this more general problem exist [ATK15], we focus in the context of this thesis on
detecting anomalous graphs in a supervised and an unsupervised setting. The supervised
setting corresponds to a binary classification problem where we are given a set of labeled
graphs for training, and the goal is to label new graphs as either normal or anomalous.
Compared to other binary classification problems, class imbalance is commonly an issue
in supervised anomaly detection since the majority of graphs are, by definition, normal.
In the unsupervised setting, the training set is unlabeled and consists of normal and
anomalous graphs. The model’s task is to learn a concept of normality and to classify
new graphs as either normal or anomalous. Again, the number of anomalous graphs
is assumed to be small compared to the number of normal instances. As an exemplary
application, we can consider malware detection, where a communication graph can be
extracted from recorded network traffic [BKTS21]. The graph edges are annotated with
edge features describing individual communications, e.g., the number of packets sent or
the average packet length. The goal is to decide whether the recorded traffic is malicious
or benign.

For supervised anomaly detection, all graph classification methods discussed in Section
3.1.2 are, in principle, applicable. However, class imbalance should be taken into account
during training to ensure that the model learns to discriminate anomalous instances
adequately, e.g., by providing a class-balanced sub-sample of the whole dataset to the
model for training [HG09]. Similarly, it is important to evaluate anomaly detection
results using evaluation measures that adjust for class imbalance [CZS+16], not only in
the supervised case.

For unsupervised anomaly detection, one approach is to first extract or learn vector
space representations from the given graphs in an unsupervised way using methods
such as the unsupervised feature-based graph classification methods presented in Section
3.1.2 and to subsequently apply classical anomaly detection methods [CBK09]. Some
existing representation learning approaches rely on graph autoencoders to learn graph
representations for anomaly detection [Hsu17, GZAL18] instead, but focus on change
detection in graph streams. This thesis, on the other hand, contributes two representa-
tion learning methods for unsupervised anomaly detection using a graph autoencoder
and a graph one-class neural network.

18 3. Machine Learning on Graphs

3.1.4 Node Embedding

Another unsupervised problem we consider is the problem of unsupervised node embed-
ding. The objective is to learn feature representations of nodes in a single graph in an un-
supervised way for down-stream learning tasks, such as node classification or clustering.
The learned representations of two nodes should be similar if and only if the nodes are
similar w.r.t. the underlying graph structure, e.g., they are close-by or share similar roles
in the graph. Such real vector representations are required as input for many general-
purpose machine learning algorithms. The learned representations could be used for
various supervised and unsupervised tasks, making this approach very flexible. On the
other hand, prediction accuracy can usually be improved by learning representations
end-to-end, together with the down-stream prediction algorithm.

The majority of existing node embedding methods focus on homophily, i.e., nodes
are mapped to similar vector space representations if and only if they are close-by in the
graph. One pioneering work [PARS14] generates random walks and then learns node
representations from the generated walks using a SkipGram model. Thereby, nodes that
frequently appear close to each other in a random walk will be mapped to similar rep-
resentations. Further works have explored different possibilities to bias random walks,
e.g., to shift focus between macroscopic and microscopic views [GL16], consider connec-
tions between different types of nodes [DCS17], using attention to focus on informative
directions for exploration [AEHPARA18], or to avoid problems arising from specific struc-
tural graph properties [FBFM18]. Another work focuses on node neighborhoods instead
of random walks [TQW+15]. While these methods perform implicit matrix factoriza-
tion of a node co-occurrence matrix, other methods perform explicit matrix factorization
[CLX15]. Further works focus on aspects such as inductivity [HYL17], or uncertainty
[BG18].

This thesis contributes a highly-scalable unsupervised algorithm for learning expres-
sive structural node and graph representations. Other graph learning algorithms con-
tributed by this thesis learn node representations in an end-to-end fashion.

3.2 Graph Neural Networks

Graph neural networks (GNNs) [BBL+17, GSR+17, BHB+18] have emerged in recent
years as a state-of-the-art approach for learning graph representations for many different
graph learning tasks. They provide a powerful and flexible framework for learning node
and graph representations and are amenable to highly parallel computation on GPUs
[FL19].

While many works are motivated by a spectral graph theory perspective [BZSL14,
DBV16, BBL+17, MBM+17], most existing graph neural network algorithms can be ex-

3.2 Graph Neural Networks 19

pressed within a neural message passing framework [DMAI+15, LTBZ16, KMB+16, KW17,
GSR+17, HYL17]. The main idea is to propagate node feature vectors through the graph
such that each node aggregates feature vectors from its neighborhood. This procedure
is formalized in Algorithm 3.1 and visualized in Figure 3.2. Starting with an initial node
feature matrix H(0) = XV , node features are propagated to neighboring nodes for a to-
tal of K iterations. In each iteration k, each node vi receives messages φ(k)

j→i from all of
its neighbors vj, where φ(k) denotes a message function combining both nodes’ feature
vectors and the weight of the edge from vj to vi. Afterwards, vi aggregates the received
messages using an aggregation function AGGR and updates its feature vector from the
previous iteration using on this aggregate and an update function γ(k). All of the above
functions, φ(k), AGGR, and γ(k) are required to be differentiable. The aggregation func-
tion AGGR is additionally required to be permutation invariant. Note that with every
message passing iteration, vi receives information from one further k-hop neighborhood,
such that after K message passing iterations, vi’s feature vector aggregates features from
its K-hop neighborhood. A particularly simple and widespread instance of this frame-
work is the Graph Convolutional Neural Network (GNN) [KW17], which can be defined
by

φ
(k)
j→i =

ˆ̃AjiW
(k)h

(k)
j (3.1)

AGGR
(k)
i =

∑

vj∈N i

φ
(k)
j→i (3.2)

γ
(k)
i = q(k)

(
AGGR

(k)
i

)
, (3.3)

such that

H(k+1) = q(k)
(
ˆ̃AH(k)W (k)

)
. (3.4)

Thereby, ˆ̃A = D̃−1/2ÃD̃−1/2 corresponds to a symmetrically normalized version of the
adjacency matrix A of G with added self-loops, where Ã = A + I and D̃ denotes the
degree matrix of Ã. The message function φ(k) linearly transforms all feature vectors and
weighs each message by the corresponding edge weight ˆ̃aji. Incoming messages at each
node are summed up and updated using a non-linear activation function q(k), such as
ReLU for intermediate layers, or softmax for the final prediction layer. In summary, in
each GCN-layer, the node feature vectors are first transformed and then aggregated from
direct neighbors as a weighted sum. The symmetric normalization procedure ensures
that the scale of the feature vectors does not change after propagation. Self-loops are
added to the adjacency matrix to ensure that each node can also consider its own feature

20 3. Machine Learning on Graphs

Algorithm 3.1 Synchronous Message Passing

Input: Graph G, feature matrix H(0)

Output: Aggregated feature matrix H(K)

for k = 1, . . . , K do
Send messages
for vi ∈ V do

for vj ∈ N i do

φ
(k)
j→i = φ(k)

(
h
(k−1)
i , h

(k−1)
j , aji

)

end for
end for
Update node states
for vi ∈ V do

h
(k)
i = γ(k)

(
h
(k−1)
i ,AGGRvj∈N i

φ
(k)
j→i

)

end for
end for

vector from the previous iteration during aggregation.
The learned aggregated feature vectors can be used as input for a prediction layer to

solve node classification tasks. For graph classification, an additional pooling layer can
be introduced, which aggregates the learned node representations into a single graph
representation used as the input for a prediction layer [HYL17, YYM+18, XHLJ19].

3.2.1 State of the Art

While most works on graph neural networks focus on solving node classification
tasks, several works have additionally explored graph classification [NAK16, HYL17,
LRK18, YYM+18, XHLJ19] and link prediction [KW16, ZC18] tasks. Another line
of research focuses on learning appropriate weights for aggregation instead of just
using the weights provided by the (normalized) adjacency matrix. These methods
[TWOL18, VCC+18, LRK+19] propose different attention mechanisms to learn such
weights based on the two nodes’ feature vectors, between which the corresponding mes-
sage is sent. These attention mechanisms are inspired by the transformer architecture
[VSP+17], which introduced the idea of learning attention weights for different parts of
a sentence for automatic translation. While graph neural networks perform very well in
practice, their actual expressive power is still not very well understood. Several works
have explored this [XHLJ19, MRF+19] and proposed different architecture variants im-
proving expressive power in different directions. Despite their effectiveness, most graph
neural network models do not scale well to larger graphs. Scalability issues have been
addressed, e.g., by sub-sampling neighbors for propagation [CMX18], or by collapsing

3.2 Graph Neural Networks 21

Node
Classifica�on

Graph
Classifica�on

Figure 3.2: During message passing iteration k, node vi updates its feature vector by
first collecting incoming messages from all of its neighbors vj ∈ N i and subsequently
applying the aggregation and update functions. After all K message passing iterations
have been performed, node vi can be classified by feeding its representation h

(K)
i to a

classifier f , which is typically an MLP. Graph classification can be performed by pooling
representations of all nodes in the graph and feeding the pooled representation to a
classifier.

multiple message passing layers into a single one by using the K-hop random walk ma-
trix for propagation directly [WSZ+19]. Another approach [KBG19] also relies on the
K-hop random walk matrix, but with restarts, resulting in a power iteration approxima-
tion of the Personalized PageRank (PPR) matrix. For a more detailed presentation and
additional discussions on applications, we refer to a recent survey [WPC+20].

3.2.2 Contributions

Our first contribution addresses several shortcomings shared by existing graph neural
network models. First, long-range dependencies are not modeled effectively within the
synchronous message passing framework since each node sends messages to all neigh-
bors in each iteration. Thus, to send a single message from one node to another distant
node, all nodes need to send messages to all other nodes within that distance, even
though relatively few long-range dependencies are actually relevant. Apart from effi-
ciency issues, existing works [LHW18, XLT+18] have pointed out an over-smoothing
effect, which leads to node feature vectors losing more and more local information as
more and more message passing iterations are being performed. Secondly, propagation
is restricted to neighbors insideK-hop neighborhoods. Such neighborhoods draw a sharp
and somewhat artificial boundary and, therefore, might contain irrelevant neighbors and
miss important other nodes. Further, it is necessary to specify the number of message

22 3. Machine Learning on Graphs

passing iterations, which is somewhat unintuitive.
Our novel graph neural network model PushNet [BPS20] addresses these issues by

performing asynchronous message passing, instead of synchronous message passing,
such that information is pushed through the graph on demand rather than being pulled
indiscriminately from all neighbors. We define an asynchronous message passing scheme
that we prove to be equivalent to a single synchronous message passing iteration us-
ing not the direct neighbors, but neighbors given by Approximate Personalized PageRank
(APPR) [ABC+07]. Thus, our model is able to perform adaptive asynchronous message
passing and, at the same time, allows for highly parallel GPU computation within the
synchronous message passing framework.

Additionally, we propose several model variants that allow for flexibly trading off
accuracy and efficiency. A multi-scale approach combining propagation results over
different neighborhood sizes additionally improves accuracy and allows for simplified
hyper-parameter selection. Scalability can be ensured by adapting APPR-related hyper-
parameters of our model. In general, the hyper-parameters of our model can be set
rather intuitively.

We evaluate our method on five document classification benchmark datasets against
state-of-the-art graph neural network models and observe significantly improved clas-
sification accuracy. In contrast to competing methods, our model is able to leverage
individually adapted neighborhoods for all nodes instead of K-neighborhoods. At the
same time, some of our proposed model variants even provide faster runtime.

Our second contribution comprises a novel graph-based approach to network traffic-
based malware detection and classification and a corresponding graph neural network
model that we name Network Flow Graph Neural Network (NF-GNN) [BKTS21]. Mali-
cious software (malware) poses an increasing threat to information technology (IT) and
operational technology (OT) systems. Reliable detection and classification of malware is
thus a vital task to ensure the safety of such systems. While static approaches analyze
a binary executable, dynamic approaches analyze the actual observed behavior of an
application. More specifically, we focus on network traffic-based detection, where clas-
sification is based on network traffic generated by a candidate application. While there
already exist powerful machine learning approaches to this problem [GMP20], none of
the existing approaches leverages a graph structure to the best of our knowledge.

Our approach, on the other hand, first extracts an interaction graph from recorded
network traffic and subsequently classifies the resulting graph. In contrast to existing ap-
proaches that classify individual network flows between two network endpoints during
a specific time frame, we collect all traffic within a network during that time frame and
represent it by a directed graph with edge attributes. Each edge feature vector contains
summary statistics of packets sent. This results in a more holistic view of communi-
cation within the network and allows for leveraging intricate communication patterns.

3.3 Graph Learning Beyond Homophily 23

While some existing graph neural network models are able to leverage edge attributes
[WPC+20], none of the existing models is directly applicable to our setting.

To leverage communication graphs for malware detection and classification, we pro-
pose a novel graph neural network model that learns expressive representations of these
graphs by iteratively computing node features based on neighboring edges and updating
edge features based on incident nodes. Three variants of our model, a classifier, a graph
autoencoder, and a graph one-class neural network, are able to solve general supervised
and unsupervised graph anomaly detection tasks.

We evaluate our approach empirically on communication graphs extracted from a
mobile malware detection benchmark dataset. Each communication graph aggregates
network traffic generated during the execution of a single Android application instance
during a specific time frame. On supervised binary, malware category, and malware fam-
ily classification tasks, we improve accuracy over existing approaches by a large margin.
Additionally, we demonstrate that our approach provides very accurate detection per-
formance even in an unsupervised setting and settings with small amounts of available
data.

3.3 Graph Learning Beyond Homophily

As already briefly addressed above, homophily [MSLC01] in graphs refers to the as-
sumption that nodes connected in a graph share some similarity. In social networks,
users usually connect to other users, which have similar interests or share other com-
mon properties or traits. Such an assumption makes sense in many other settings as
well. For instance, nearby sensors in a sensor grid will usually produce similar readings.
Similarly, proteins interacting more closely with each other as indicated in a protein
interaction network could be expected to share a similar function. For node classifica-
tion, the homophily assumption states that close-by nodes in the graph should have the
same label. Unsupervised node embedding methods are called homophilic if they embed
closely-connected nodes to similar embedding vectors.

On the other hand, there are many applications for which either non-homophilic
relationships can be expected and a strong homophily assumption is not appropriate, or
different kinds of patterns are explicitly sought. Three different kinds of inductive bias
considered in this thesis are illustrated in Figure 3.3. For instance, in a social network,
users might also interact with other users expressing different opinions, disagreeing with
them, or engaging in discussions. Further, we might be explicitly interested in classifying
users w.r.t. their structural roles in the network, e.g., influencers or followers. Such roles
do not conform to homophily at all, and, in many cases, two connected users will have
very different roles.

24 3. Machine Learning on Graphs

(a) Homophily (b) Heterophily (c) Structural similarity

Figure 3.3: Different inductive bias for graph learning: Homophily (a) assumes that
neighboring nodes share the same labels, whereas heterophily (b) assumes that nodes
connect to each other according to specific label patterns. Structural similarity (c) relates
nodes with different structural roles in the graph, e.g., community nodes, bridge nodes,
hub nodes, or peripheral nodes.

It is thus vital to consider graph learning methods beyond the homophily assumption.
This thesis contributes two such methods.

3.3.1 State of the Art

While most of the graph learning techniques discussed above focus on homophily, many
existing approaches allow for or explicitly implement a non-homophilic inductive bias.

Graph neural network models are biased towards homophily by design. This is par-
ticularly true for convolutional models [KW17, CMX18, WSZ+19], since they effectively
average neighboring feature vectors based on weights provided by the adjacency matrix.
Other models, including attention-based models, allow for more flexible edge weights
and messages being sent between nodes. Still, they empirically perform poorly on non-
homophilic graphs, and developing graph neural networks without a strong homophilic
bias is actively researched [ZYZ+20].

In contrast to homophily, heterophiliy [Rog10] refers to individuals interacting with
other individuals that are dissimilar from themselves w.r.t. certain properties. In graph
learning, this corresponds to the assumption that neighboring nodes should have differ-
ent labels. For instance, users in a social network might engage in discussions with other
users that have different opinions on certain topics. In dating networks, the majority of
users connect to other users of the opposite gender. While classical label propagation
methods focus on homophily, some more recently proposed variants rely on heterophily
by propagating labels between nodes with similar adjacency vectors [Pee17], skipping ev-
ery second node during propagation [Pee17], or reinforcing propagation between nodes
with similar labels within their neighborhood [WTT13]. Similarly to label propagation,

3.3 Graph Learning Beyond Homophily 25

belief propagation methods [Pea82, KKK+11, GKF15] propagate labels between nodes.
For that, they rely on transition matrices that explicitly specify relationships between la-
bels, including homophily, heterophily, or mixed patterns, e.g., homophily among one
subset of labels and heterophily between another set.

Another relevant non-homophilic inductive bias establishes similarity between nodes
based on structural properties. Structural node embedding techniques, in contrast to their
homophilic counterparts, map nodes to similar representations if and only if they have
similar structural properties or fulfill similar structural roles in the graph. For instance,
in a social network, one might wish to identify influential users or users bridging dif-
ferent communities. In a network modeling communication within a company, different
employees’ roles, such as managers or secretaries, could be retraced and analyzed. This
can, for instance, be achieved by sampling random walks in a structural similarity graph
and learning a SkipGram model [RSF17], or by learning representations from neigh-
borhood degree sequences using a recurrent neural network [TCW+18]. Other works
focus more explicitly on role discovery [RA14], mostly based on hand-crafted features
[HGER+12]. Diffusion-based approaches to graph classification as discussed in Section
3.1.2 yield structural node representations and also allow for classifying whole graphs
based on their structural properties. Another work allows for flexible combinations of
homophilic and structural objectives [TMKM18].

3.3.2 Contributions

Our first contribution to this research direction investigates how different patterns among
labels, such as homophily, heterophily, or mixed patterns, can be learned by a graph
learning model itself instead of relying on fixed assumptions. Our proposed semi-
supervised node classification method Ada-LLD [FBBS18, FBBS20] learns such patterns
by classifying nodes based on the observed distribution of labels in a node’s neighbor-
hood and thereby automatically adapts its inductive bias. Consequently, our model is not
restricted to fixed patterns, such as those specified a-priori by label or belief propagation
methods, but is able to classify nodes based on different learned patterns. In contrast to
other models such as graph neural networks, these patterns are learned directly from the
observed labels and not inferred indirectly from node attributes.

The neighborhood over which label distributions are computed is determined us-
ing APPR. Similarly, as for PushNet, APPR helps avoid irrelevant neighbors inside the
K-neighborhood of a node and include relevant ones outside of it. Varying the hyper-
parameters of APPR makes it possible to compute label distributions over different ef-
fective neighborhood sizes and, therefore, to consider patterns at multiple scales. We
propose different model variants to combine label distributions over multiple scales for
prediction.

26 3. Machine Learning on Graphs

Empirically, we evaluate our model on three document classification tasks, a multi-
label interest group prediction task in a social network, a multi-label genre prediction
task in a movie-actor network, and several synthetic graphs with different predefined
label interaction patterns. We observe improved prediction accuracy over other com-
petitors that use only the graph structure for prediction and no further node attributes.
Multi-scale combinations of label distributions additionally improve performance.

The second contribution presented in this section allows for learning structural rep-
resentations of nodes and entire graphs in an unsupervised and particularly simple and
scalable fashion. The main idea behind our approach is to define the structural role of a
node based on how it assigns importance to its neighbors. For instance, a peripheral node
will assign a significant amount of importance to a single node it is connected to, while
a hub node will spread importance more evenly among many neighbors. Our method
APPR-Roles [BBFS17, BBF+19] derives a scalar representation for each node by comput-
ing the entropy of its APPR-vector. The entropy function is permutation invariant and
intuitively measures the distance from the unit distribution, i.e., the degree of spread
of importance among the node’s neighbors. The scalar representations can be visualized
easily, e.g., by coloring nodes in a drawn graph layout. We represent entire graphs by first
clustering all node representations from all graphs in the training dataset using k-Means,
where the cluster centroids can be viewed as prototypical roles. The representation of a
graph is then obtained by assigning each node representation in the graph to its near-
est centroid, counting each centroid’s occurrence in the graph, and using the resulting
count vector as a representation. Multi-scale role descriptors can be derived by varying
parametrization of APPR and concatenating the resulting entropy values.

We evaluate our approach empirically on several real-world datasets. Node classifi-
cation performance is evaluated on two airport traffic networks. Our model’s accuracy
closely follows the best competitor while being more than 2300 times faster in terms of
computation time. We further evaluate graph classification performance on five biolog-
ical and five social network datasets. Our model is able to improve accuracy compared
to competing methods by up to 10% on five datasets while exhibiting competitive per-
formance on the remaining datasets. Again, our model benefits from fast computation
time.

27

Chapter 4

Machine Learning on High-Dimensional
Data

For many machine learning tasks, the task-relevant data is represented by feature vectors,
where each data object is described by a d-dimensional numerical vector. Each of the
dimensions corresponds to a property or feature, and the value indicates the expression
of that feature for the respective data object. For instance, in a medical database, patient
data might include age, gender, body height, weight, and different measurements. In an
industrial context, a feature vector might describe the state of a machine, where each
dimensions corresponds to a sensor and the vector entries contain the sensor readings.

In many cases, data representations are naturally high-dimensional. For instance, an
image can be represented by a 2-dim. grid of pixels. When flattening the image into a
vector, each vector dimension corresponds to a pixel. Even at a relatively small image
resolution, the resulting vector will be high-dimensional. Textual documents can be rep-
resented as bag-of-words vectors by counting occurrences of each word in a dictionary.
Thereby, each dimension corresponds to a word, and the entry counts the number of
occurrences in the respective document. Since each document contains only very few
words in relation to the size of the whole dictionary, the resulting representations are
high-dimensional and sparse. Similarly, user interests can be represented in social net-
works as binary vectors, where a non-zero entry indicates interest in the corresponding
topic. In gene expression analysis, microarray data records expression levels of genes un-
der different conditions or experimental environments. Thereby, for each gene, a large
number of expression levels is recorded, resulting in a high-dimensional vector.

28 4. Machine Learning on High-Dimensional Data

4.1 The Curse of Dimensionality

High-dimensional data poses several characteristic challenges to machine learning al-
gorithms. These challenges are related to certain phenomena that arise in high-
dimensional spaces and are commonly summarized under the term curse of dimension-
ality [KKZ09]. Compared to lower-dimensional spaces, Euclidean geometry of higher-
dimensional spaces exhibits some peculiar and unintuitive effects. This is problematic
since machine learning algorithms operating on vector data exploit geometric proper-
ties of the data in one way or another. One problem is that norms and distances tend to
concentrate. It can be shown that the mean norm of a vector with independent and iden-
tically distributed (i.i.d.) dimensions grows logarithmically with the number of dimen-
sions, while the variance stays constant. That is, distances in high-dimensional spaces
grow larger and more and more alike and thus become less meaningful. Consequently,
the nearest neighbors of a data object tend to be increasingly random and become less
meaningful. Another problem is that large regions of a high-dimensional data space are
effectively empty. To illustrate this, consider a regular grid spanned over the data space.
The number of grid cells will grow exponentially with the number of dimensions, and
thus, given a limited amount of data objects, most grid cells will be empty. Similarly,
probability densities become more and more heavy-tailed, and relatively low-density
regions become increasingly important. Also related to this problem, the number of sam-
ples required to estimate a probability density accurately grows exponentially with the
number of dimensions. Finally, adding more and more dimensions increases the size
of the hypothesis space for a machine learning algorithm and thus makes it prone to
over-fitting.

The general problem posed by high-dimensional data to machine learning algorithms
can be roughly boiled down to the problem that interesting patterns in the data get ob-
scured by a large number of irrelevant or redundant dimensions. A standard approach
to remedy this problem thus consists of eliminating these dimensions. Many feature se-
lection and dimensionality reduction methods have been proposed to reduce the number
of dimensions globally. Further, supervised methods commonly employ regularization
techniques to counter the increasing size of the hypothesis space [HTF09].

4.2 Subspace Clustering

While global feature selection and dimensionality reduction methods constitute a default
approach to dealing with high-dimensional data, for clustering problems, it might not be
suitable to reduce the number of dimensions globally since clusters often do not appear
in the full-dimensional ambient space but are hidden in lower-dimensional subspaces.

4.2 Subspace Clustering 29

Figure 4.1: Face clustering using a deep subspace clustering model. For each person,
a number of images under different conditions, e.g., illumination or pose, are available.
In an ideal setting, the images of each person form a low-dimensional subspace, and the
subspace dimensions indicate different variations in the images, e.g., change of pose.
To account for potential non-linearity, an autoencoder neural network maps the input
images into a space that is optimized for linear subspace structure and reconstructs the
original images from their latent representations. The face images shown here were
taken from the ORL image database [SH94].

For instance, face images of a subject under fixed pose and varying lighting conditions
[BJ03], or images of hand-written digits with different rotations, translations, and other
natural transformations [HS98] have been shown to lie in low-dimensional subspaces.

For such applications, it makes sense to assume that the dataset was sampled from
a collection of lower-dimensional subspaces, rather than the full-dimensional ambient
space or a single lower-dimensional subspace. Formally, subspace clustering [Vid11] as-
sumes the rows of the data matrix X ∈ Rn×d to be sampled from a set of subspaces
{Si}Ki=1, where each subspace can be written as Si =

{
x ∈ Rd | ∃y ∈ Rdi : x = Uiy

}
,

where Ui ∈ Rd×di denotes the basis of subspace Si and y ∈ Rdi is a low-dimensional
representation of point x ∈ Rd. The goal is to correctly assign all points to their respec-
tive subspaces and, optionally, to recover the subspace bases. The number of subspaces
K and the subspace dimensions di are often assumed to be known.

While different variations of the general subspace clustering problem have been inves-
tigated in literature [KKZ09, Vid11], we focus on this variant since it is rather general,
e.g., it does not restrict subspaces to be axis-aligned, and it is especially amenable to
neural network-based representation learning techniques. This thesis provides a novel
subspace clustering algorithm that is particularly scalable and comes with a strong theo-
retical foundation.

30 4. Machine Learning on High-Dimensional Data

4.3 State of the Art

In recent years, methods relying on the so-called self-expressiveness property [EV09,
LLY10, LLY+12, LMZ+12, EV13, WXL13, FLXY14, JSL14, VF14, JSL15, YLRV16] have
established themselves as a state-of-the-art approach to subspace clustering. The main
idea behind these methods is that each point can be expressed by a linear combination of
other points from the same subspace. Based on this property, an n× n coefficient matrix
is learned, from which cluster labels can be extracted in a subsequent post-processing
step using spectral clustering. However, the quadratic number of parameters prevents
these methods from scaling beyond smaller datasets. The fact that the number of model
parameters depends on the number of data points further makes these models trans-
ductive and thus inapplicable to out-of-sample data unseen during training. In contrast,
our model requires only a constant number of parameters to provably provide the same
expressive power and is inductive, enabling it to cluster out-of-sample data.

In practice, the assumption that the data exactly fits in a set of linear subspaces is
often too strong, e.g., due to noise or additional non-linearity in the underlying data
generating process that has not been accounted for. Since the above methods are not
able to appropriately deal with non-linearity, several works propose to rely on kernels
[CL09, PVNV13, PV14, XTXD15, YGG+16] to learn an implicit transformation to a space,
in which the data fits into linear subspaces. However, it is usually not clear whether a
particular pre-defined kernel function is particularly for subspace clustering. More recent
methods [PXF+16, JZL+17, ZHF18, ZLY+19, KZK20] learn a suitable feature transforma-
tion explicitly in an end-to-end differentiable model. This idea is illustrated in Figure
4.1. Most notably, Deep Subspace Clustering Networks (DSC-Net) [JZL+17] introduced
the idea of modeling the coefficient matrix as a dense neural network layer, a so-called
self-expressive layer, and training it jointly with an autoencoder. As a result, the encoder
represents a feature transformation that has been optimized w.r.t. linear cluster struc-
ture in latent space. These methods, however, still rely on a full coefficient matrix and
spectral clustering, preventing them from scaling to larger datasets.

While several works have addressed the challenge of scalability, some of them are
either only able to detect linear clusters [YRV16, RA17]. Others rely on a k-Means-like
procedure, which requires good initialization and is sensitive to outliers [ZJH+18], or
still fully parametrize coefficient matrices, which need to be re-learned from scratch for
each new data batch, and come with no theoretical guarantees [ZJH+19]. In contrast,
our model is not only scalable but also suitable to detect non-linear clusters, can be
trained end-to-end with back-propagation, and provides a theoretical foundation.

4.4 Contributions 31

4.4 Contributions

This thesis contributes a novel self-expressiveness-based subspace clustering approach
using Siamese Subspace Clustering Networks (SSCN) [BFSS20] that is particularly scal-
able and, at the same time, is provably able to recover the same subspaces as existing
self-expressiveness-based subspace clustering methods. Instead of learning a quadratic
coefficient matrix directly, our algorithm instead uses a siamese neural network architec-
ture to learn a transformation that maps points into a latent space in which dot products
between points correspond to reconstruction coefficients. This constitutes, to the best of
our knowledge, the first metric-learning approach to subspace clustering. As a result, our
model incurs a quadratic reduction in the number of model parameters. Since the model
can be trained with mini-batches, the GPU memory footprint also reduces to a constant
size, allowing it to scale to large datasets. An additional classifier trained with self-
supervision from the siamese neural network and leveraging some unique geometrical
properties of our model further allows for clustering out-of-sample data in an inductive
fashion. Finally, to detect non-linear clusters, our model can easily be combined with
an autoencoder, which non-linearly maps the input data to a space optimized for linear
subspace clustering.

Empirically, we evaluate our model on a hand-written digit image clustering
task, where we achieve competitive clustering accuracy compared to existing self-
expressiveness-based methods. At the same time, our model can reduce the amount
of required GPU memory by multiple orders of magnitude, allowing our model to scale
to datasets that have been out of reach of existing algorithms.

32 4. Machine Learning on High-Dimensional Data

33

Chapter 5

Concluding Remarks

While machine learning has celebrated tremendous success in advancing various fields
of research and application in recent years, designing new algorithms that are able to
learn effectively from available data remains a challenging feat. Especially for complex
data objects, including graphs and high-dimensional data, it is vital to extract expressive
features that allow for highly-effective learning. While conventional manual feature en-
gineering methods already enable machine learning algorithms to learn from different
types of data, representation learning offers the possibility to automatically learn fea-
tures that are particularly useful for a task at hand and, therefore, to potentially boost
the performance of machine learning algorithms for many different tasks. Especially for
complex data, this potential is for from being exhausted yet, and more research work is
warranted to fully leverage representation learning techniques for these types of data.

In response to this research demand, this dissertation proposed several novel ap-
proaches to learning representations of complex data, in particular, graphs and high-
dimensional data, addressing multiple challenges associated with these types of data.
These methods allow for highly-effective learning, and most of them are additionally
highly scalable, allowing them to learn from massive amounts of data. While we ad-
dressed a wide range of general learning problems with different modes of supervision,
ranging from unsupervised problems on unlabeled data to (semi-)-supervised learning
on annotated data sets, we evaluated our models on specific tasks from fields such as
social network analysis, information security, and computer vision.

The first part of this thesis addressed representation learning on graphs. Modeling
data as a single or multiple graphs allows machine learning algorithms to leverage re-
lationships present in the data, for instance, to find groups of similar users in a social
network for targeted marketing or to predict functional properties of proteins for drug
design. Our first contribution advanced graph neural networks by introducing an asyn-
chronous message passing scheme, contrasting existing synchronous message passing
methods. Our approach makes message passing more adaptive and efficient, effectively

34 5. Concluding Remarks

handles long-range dependencies, and can scale even to large graphs. A second contri-
bution addressed the problem of malware detection and classification based on network
traffic. We proposed a novel graph-based approach that is able to leverage structurally
rich communication graphs in contrast to existing works that classify individual net-
work flows between two endpoints. For detection and classification, we proposed a
novel graph neural network model that can be applied to further graph classification or
anomaly detection tasks. Two further contributions challenged the homophily assump-
tion commonly made by graph learning methods, which states that nodes with similar
properties are usually closely connected in the graph. The first developed method pro-
posed predicting node-level properties based on the distribution of class labels appearing
in the respective node’s neighborhood. That allows our model to learn general relations
between a node and its neighbors, not limited to homophily. Another proposed method
specifically models structural similarity between nodes to model different roles, such as
influencers and followers in a social network. In particular, we developed an unsuper-
vised algorithm representing nodes based on how they spread probability mass to their
neighbors and aggregates node representations to representations for whole graphs.

Future work on representation learning on graphs could explore novel graph neural
network models beyond homophily that are able to effectively model different label pat-
terns or structural roles or learn appropriate combinations of different inductive biases.
Our asynchronous message passing network framework could be extended by additional
methods performing different kinds of push-based message passing or considering tem-
poral graphs. Our proposed malware detection approach could be extended to support
better explainability of predictions or explicitly model temporal dynamics. More gener-
ally, we plan to further investigate more powerful neighborhood aggregation methods in
graph neural networks apart from commonly used simple functions.

The second part of this thesis addressed representation learning on high-dimensional
data. More specifically, we considered the problem of clustering high-dimensional data,
such as images, texts, or gene expression profiles. Classical clustering algorithms strug-
gle with this type of data since objects are usually not similar w.r.t. to all dimensions of
the full-dimensional ambient space but only within a particular subspace of that space.
Subspace clustering is an approach to clustering high-dimensional data based on this as-
sumption. While there already exist powerful neural network-based subspace clustering
methods, these methods commonly suffer from scalability issues and lack a theoretical
foundation. To this end, we proposed a novel metric learning approach to subspace
clustering, which can provably recover linear subspaces under suitable assumptions and,
at the same time, tremendously reduces the required number of model parameters and
memory compared to existing algorithms.

Future work on representation learning on high-dimensional data could explore addi-
tional subspace clustering algorithms that are able to automatically learn the number of

REFERENCES 35

clusters and subspace dimensions from the data and are still highly effective and scalable.
Such methods could also be explored beyond the self-expressiveness property. Further,
adapting ideas and concepts from the field of self-supervised learning could be investi-
gated in more detail. While non-linear subspace clustering methods perform very well in
practice, it is currently not well understood for which data subspace clustering in latent
space is particularly useful, compared to, e.g., centroid-based clustering. In general, it
could be investigated which clustering models in latent space should be preferred based
on the manifold structure in the ambient space. Beyond clustering, representation learn-
ing methods could potentially improve performance on further tasks, such as anomaly
detection in high-dimensional data or learning on high-dimensional data streams.

36 REFERENCES

REFERENCES 37

References

[ABC+07] Reid Andersen, Christian Borgs, Jennifer Chayes, John Hopcraft, Vahab S
Mirrokni, and Shang-Hua Teng. Local computation of pagerank contri-
butions. In International Workshop on Algorithms and Models for the Web-
Graph, pages 150–165. Springer, 2007.

[ABC+16] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al. Tensorflow: A system for large-scale machine learn-
ing. In 12th {USENIX} symposium on operating systems design and imple-
mentation ({OSDI} 16), pages 265–283, 2016.

[AEHPARA18] Sami Abu-El-Haija, Bryan Perozzi, Rami Al-Rfou, and Alexander A Alemi.
Watch your step: Learning node embeddings via graph attention. Ad-
vances in Neural Information Processing Systems, 31:9180–9190, 2018.

[ATK15] Leman Akoglu, Hanghang Tong, and Danai Koutra. Graph based anomaly
detection and description: a survey. Data mining and knowledge discovery,
29(3):626–688, 2015.

[AZRP18] Bijaya Adhikari, Yao Zhang, Naren Ramakrishnan, and B Aditya Prakash.
Sub2vec: Feature learning for subgraphs. In Pacific-Asia Conference on
Knowledge Discovery and Data Mining, pages 170–182. Springer, 2018.

[BBF+19] Felix Borutta, Julian Busch, Evgeniy Faerman, Adina Klink, and Matthias
Schubert. Structural graph representations based on multiscale local net-
work topologies. In IEEE/WIC/ACM International Joint Conference on Web
Intelligence and Intelligent Agent Technology, 2019.

[BBFS17] Felix Borutta, Julian Busch, Evgeniy Faerman, and Matthias Schubert.
Towards learning structural node embeddings using personalized pager-
ank. In Lernen, Wissen, Daten, Analysen (LWDA) Conference Proceedings,
Rostock, Germany, September 11-13, 2017, 2017.

38 REFERENCES

[BBL+17] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre
Vandergheynst. Geometric deep learning: going beyond euclidean data.
IEEE Signal Processing Magazine, 34(4):18–42, 2017.

[BFSS20] Julian Busch, Evgeniy Faerman, Matthias Schubert, and Thomas Seidl.
Learning self-expression metrics for scalable and inductive subspace clus-
tering. NeurIPS Workshop: Self-Supervised Learning - Theory and Practice,
2020.

[BG18] Aleksandar Bojchevski and Stephan Günnemann. Deep gaussian embed-
ding of graphs: Unsupervised inductive learning via ranking. In 6th In-
ternational Conference on Learning Representations (ICLR), pages 1–13,
2018.

[BHB+18] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-
Gonzalez, Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti,
David Raposo, Adam Santoro, Ryan Faulkner, et al. Relational in-
ductive biases, deep learning, and graph networks. arXiv preprint
arXiv:1806.01261, 2018.

[BI18] Jose Bento and Stratis Ioannidis. A family of tractable graph distances.
In Proceedings of the 2018 SIAM International Conference on Data Mining,
pages 333–341. SIAM, 2018.

[Bis06] Christopher M Bishop. Pattern recognition and machine learning. Springer,
2006.

[BJ03] Ronen Basri and David W Jacobs. Lambertian reflectance and linear sub-
spaces. IEEE transactions on pattern analysis and machine intelligence,
25(2):218–233, 2003.

[BK05] Karsten M Borgwardt and Hans-Peter Kriegel. Shortest-path kernels on
graphs. In Proceedings of the 5th IEEE International Conference on Data
Mining (ICDM’05), pages 8–pp, 2005.

[BKERF12] Michele Berlingerio, Danai Koutra, Tina Eliassi-Rad, and Christos Falout-
sos. Netsimile: A scalable approach to size-independent network similar-
ity. arXiv preprint arXiv:1209.2684, 2012.

[BKTS21] Julian Busch, Anton Kocheturov, Volker Tresp, and Thomas Seidl. Nf-
gnn: Network flow graph neural networks for malware detection and
classification. In 33rd International Conference on Scientific and Statistical
Database Management (SSDBM), 2021.

REFERENCES 39

[BNS06] Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Manifold regular-
ization: A geometric framework for learning from labeled and unlabeled
examples. Journal of machine learning research, 7(11), 2006.

[BOS+05] Karsten M Borgwardt, Cheng Soon Ong, Stefan Schönauer, SVN Vish-
wanathan, Alex J Smola, and Hans-Peter Kriegel. Protein function pre-
diction via graph kernels. Bioinformatics, 21(suppl 1):i47–i56, 2005.

[BPS20] Julian Busch, Jiaxing Pi, and Thomas Seidl. Pushnet: Efficient and adap-
tive neural message passing. In 24th European Conference on Artificial
Intelligence (ECAI), 2020.

[BZSL14] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spec-
tral networks and deep locally connected networks on graphs. In 2nd
International Conference on Learning Representations (ICLR), 2014.

[CBK09] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detec-
tion: A survey. ACM computing surveys (CSUR), 41(3):1–58, 2009.

[CL09] Guangliang Chen and Gilad Lerman. Spectral curvature clustering (scc).
International Journal of Computer Vision, 81(3):317–330, 2009.

[CLX15] Shaosheng Cao, Wei Lu, and Qiongkai Xu. Grarep: Learning graph repre-
sentations with global structural information. In Proceedings of the 24th
ACM international on conference on information and knowledge manage-
ment, pages 891–900, 2015.

[CMX18] Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: fast learning with graph
convolutional networks via importance sampling. In 6th International
Conference on Learning Representations (ICLR), 2018.

[CZS+16] Guilherme O Campos, Arthur Zimek, Jörg Sander, Ricardo JGB Campello,
Barbora Micenková, Erich Schubert, Ira Assent, and Michael E Houle. On
the evaluation of unsupervised outlier detection: measures, datasets, and
an empirical study. Data mining and knowledge discovery, 30(4):891–927,
2016.

[DBV16] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convo-
lutional neural networks on graphs with fast localized spectral filtering.
In Proceedings of the 30th International Conference on Neural Information
Processing Systems, pages 3844–3852, 2016.

40 REFERENCES

[DCS17] Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. metapath2vec:
Scalable representation learning for heterogeneous networks. In Pro-
ceedings of the 23rd ACM SIGKDD international conference on knowledge
discovery and data mining, pages 135–144, 2017.

[DDS+09] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Ima-
genet: A large-scale hierarchical image database. In 2009 IEEE conference
on computer vision and pattern recognition, pages 248–255. Ieee, 2009.

[DMAI+15] David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael
Gómez-Bombarelli, Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P
Adams. Convolutional networks on graphs for learning molecular fin-
gerprints. In Proceedings of the 28th International Conference on Neural
Information Processing Systems-Volume 2, pages 2224–2232, 2015.

[DZHL18] Claire Donnat, Marinka Zitnik, David Hallac, and Jure Leskovec. Learn-
ing structural node embeddings via diffusion wavelets. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pages 1320–1329, 2018.

[EV09] Ehsan Elhamifar and René Vidal. Sparse subspace clustering. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition,
pages 2790–2797, 2009.

[EV13] Ehsan Elhamifar and René Vidal. Sparse subspace clustering: Algorithm,
theory, and applications. IEEE transactions on pattern analysis and ma-
chine intelligence, 35(11):2765–2781, 2013.

[FBBS18] Evgeniy Faerman, Felix Borutta, Julian Busch, and Matthias Schubert.
Semi-supervised learning on graphs based on local label distributions. In
Proceedings of the 14th International Workshop on Mining and Learning
with Graphs (MLG), 2018.

[FBBS20] Evgeniy Faerman, Felix Borutta, Julian Busch, and Matthias Schubert.
Ada-lld: Adaptive node similarity for node classification using multi-
scale local label distributions. IEEE/WIC/ACM International Joint Confer-
ence on Web Intelligence and Intelligent Agent Technology (WI-IAT), 2020.
©2020 IEEE. Reprinted, with permission, from Evgeniy Faerman, Felix
Borutta, Julian Busch, and Matthias Schubert, Ada-lld: Adaptive node
similarity for node classification using multi-scale local label distribu-
tions, IEEE/WIC/ACM International Joint Conference on Web Intelli-
gence and Intelligent Agent Technology (WI-IAT), 2020.

REFERENCES 41

[FBFM18] Evgeniy Faerman, Felix Borutta, Kimon Fountoulakis, and Michael W Ma-
honey. Lasagne: Locality and structure aware graph node embedding. In
2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI),
pages 246–253. IEEE, 2018.

[FL19] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning
with pytorch geometric. arXiv preprint arXiv:1903.02428, 2019.

[FLXY14] Jiashi Feng, Zhouchen Lin, Huan Xu, and Shuicheng Yan. Robust sub-
space segmentation with block-diagonal prior. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 3818–3825,
2014.

[GBCB16] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio.
Deep Learning, volume 1. MIT Press Cambridge, 2016.

[GKF15] Wolfgang Gatterbauer Stephan Günnemann, Danai Koutra, and Christos
Faloutsos. Linearized and single-pass belief propagation. Proceedings of
the VLDB Endowment, 8(5), 2015.

[GL16] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning
for networks. In Proceedings of the 22nd ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages 855–864, 2016.

[GMP20] Daniel Gibert, Carles Mateu, and Jordi Planes. The rise of machine learn-
ing for detection and classification of malware: Research developments,
trends and challenges. Journal of Network and Computer Applications,
153:102526, 2020.

[GSR+17] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and
George E Dahl. Neural message passing for quantum chemistry. In In-
ternational Conference on Machine Learning, pages 1263–1272. PMLR,
2017.

[GZAL18] Daniele Grattarola, Daniele Zambon, Cesare Alippi, and Lorenzo Livi.
Learning graph embeddings on constant-curvature manifolds for change
detection in graph streams. stat, 1050:16, 2018.

[HG09] Haibo He and Edwardo A Garcia. Learning from imbalanced data. IEEE
Transactions on knowledge and data engineering, 21(9):1263–1284, 2009.

[HGER+12] Keith Henderson, Brian Gallagher, Tina Eliassi-Rad, Hanghang Tong,
Sugato Basu, Leman Akoglu, Danai Koutra, Christos Faloutsos, and Lei

42 REFERENCES

Li. Rolx: structural role extraction & mining in large graphs. In Pro-
ceedings of the 18th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 1231–1239, 2012.

[HS98] Trevor Hastie and Patrice Y Simard. Metrics and models for handwritten
character recognition. Statistical Science, pages 54–65, 1998.

[Hsu17] Daniel Hsu. Anomaly detection on graph time series. arXiv preprint
arXiv:1708.02975, 2017.

[HTF09] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements
of statistical learning: data mining, inference, and prediction. Springer
Science & Business Media, 2009.

[HYL17] William L Hamilton, Rex Ying, and Jure Leskovec. Inductive represen-
tation learning on large graphs. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, pages 1025–1035,
2017.

[JSL14] Pan Ji, Mathieu Salzmann, and Hongdong Li. Efficient dense subspace
clustering. In IEEE Winter Conference on Applications of Computer Vision,
pages 461–468. IEEE, 2014.

[JSL15] Pan Ji, Mathieu Salzmann, and Hongdong Li. Shape interaction matrix
revisited and robustified: Efficient subspace clustering with corrupted
and incomplete data. In Proceedings of the IEEE International Conference
on computer Vision, pages 4687–4695, 2015.

[JZL+17] Pan Ji, Tong Zhang, Hongdong Li, Mathieu Salzmann, and Ian Reid. Deep
subspace clustering networks. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, pages 23–32, 2017.

[KB15] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic op-
timization. In 3rd International Conference on Learning Representations
(ICLR), 2015.

[KBG19] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann.
Predict then propagate: Graph neural networks meet personalized pager-
ank. In 7th International Conference on Learning Representations (ICLR),
2019.

[KKK+11] Danai Koutra, Tai-You Ke, U Kang, Duen Horng Polo Chau, Hsing-
Kuo Kenneth Pao, and Christos Faloutsos. Unifying guilt-by-association

REFERENCES 43

approaches: Theorems and fast algorithms. In Joint European Confer-
ence on Machine Learning and Knowledge Discovery in Databases, pages
245–260. Springer, 2011.

[KKZ09] Hans-Peter Kriegel, Peer Kröger, and Arthur Zimek. Clustering high-
dimensional data: A survey on subspace clustering, pattern-based cluster-
ing, and correlation clustering. Acm transactions on knowledge discovery
from data (tkdd), 3(1):1–58, 2009.

[KMB+16] Steven Kearnes, Kevin McCloskey, Marc Berndl, Vijay Pande, and Patrick
Riley. Molecular graph convolutions: moving beyond fingerprints. Jour-
nal of computer-aided molecular design, 30(8):595–608, 2016.

[KW16] Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv
preprint arXiv:1611.07308, 2016.

[KW17] Thomas N Kipf and Max Welling. Semi-supervised classification with
graph convolutional networks. In 5th International Conference on Learn-
ing Representations (ICLR), 2017.

[KZK20] Mohsen Kheirandishfard, Fariba Zohrizadeh, and Farhad Kamangar.
Multi-level representation learning for deep subspace clustering. In Pro-
ceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision, pages 2039–2048, 2020.

[LHW18] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph
convolutional networks for semi-supervised learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 32, 2018.

[LLY10] Guangcan Liu, Zhouchen Lin, and Yong Yu. Robust subspace segmenta-
tion by low-rank representation. In Proceedings of the 27th International
Conference on International Conference on Machine Learning, pages 663–
670, 2010.

[LLY+12] Guangcan Liu, Zhouchen Lin, Shuicheng Yan, Ju Sun, Yong Yu, and Yi Ma.
Robust recovery of subspace structures by low-rank representation. IEEE
transactions on pattern analysis and machine intelligence, 35(1):171–184,
2012.

[LM14] Quoc Le and Tomas Mikolov. Distributed representations of sentences
and documents. In International conference on machine learning, pages
1188–1196. PMLR, 2014.

44 REFERENCES

[LMZ+12] Can-Yi Lu, Hai Min, Zhong-Qiu Zhao, Lin Zhu, De-Shuang Huang, and
Shuicheng Yan. Robust and efficient subspace segmentation via least
squares regression. In European conference on computer vision, pages
347–360. Springer, 2012.

[LRK18] John Boaz Lee, Ryan Rossi, and Xiangnan Kong. Graph classification
using structural attention. In Proceedings of the 24th ACM SIGKDD Inter-
national Conference on Knowledge Discovery & Data Mining, pages 1666–
1674, 2018.

[LRK+19] John Boaz Lee, Ryan A Rossi, Sungchul Kim, Nesreen K Ahmed, and
Eunyee Koh. Attention models in graphs: A survey. ACM Transactions on
Knowledge Discovery from Data (TKDD), 13(6):1–25, 2019.

[LTBZ16] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated
graph sequence neural networks. In 4th International Conference on
Learning Representations (ICLR), 2016.

[MBM+17] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan
Svoboda, and Michael M Bronstein. Geometric deep learning on graphs
and manifolds using mixture model cnns. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 5115–5124,
2017.

[MCCD13] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient
estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781, 2013.

[MRF+19] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton,
Jan Eric Lenssen, Gaurav Rattan, and Martin Grohe. Weisfeiler and leman
go neural: Higher-order graph neural networks. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 33, pages 4602–4609,
2019.

[MSLC01] Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of
a feather: Homophily in social networks. Annual review of sociology,
27(1):415–444, 2001.

[NAK16] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning
convolutional neural networks for graphs. In International conference on
machine learning, pages 2014–2023. PMLR, 2016.

REFERENCES 45

[NCC+16] Annamalai Narayanan, Mahinthan Chandramohan, Lihui Chen, Yang Liu,
and Santhoshkumar Saminathan. subgraph2vec: Learning distributed
representations of rooted sub-graphs from large graphs. Proceedings of the
12th International Workshop on Mining and Learning with Graphs (MLG),
2016.

[NLN+18] Dang Nguyen, Wei Luo, Tu Dinh Nguyen, Svetha Venkatesh, and Dinh
Phung. Learning graph representation via frequent subgraphs. In Pro-
ceedings of the 2018 SIAM International Conference on Data Mining, pages
306–314. SIAM, 2018.

[NM16] Sharad Nandanwar and M Narasimha Murty. Structural neighborhood
based classification of nodes in a network. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 1085–1094, 2016.

[NMV17] Giannis Nikolentzos, Polykarpos Meladianos, and Michalis Vazirgiannis.
Matching node embeddings for graph similarity. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 31, 2017.

[OMS17] Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. Feature visu-
alization. Distill, 2017. https://distill.pub/2017/feature-visualization.

[PARS14] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online
learning of social representations. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages
701–710, 2014.

[Pea82] Judea Pearl. Reverend bayes on inference engines: a distributed hierar-
chical approach. In Proceedings of the Second AAAI Conference on Artificial
Intelligence, pages 133–136, 1982.

[Pee17] Leto Peel. Graph-based semi-supervised learning for relational networks.
In Proceedings of the 2017 SIAM International Conference on Data Mining,
pages 435–443. SIAM, 2017.

[PGM+19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. Pytorch: An imperative style, high-performance deep learn-
ing library. Advances in Neural Information Processing Systems, 32:8026–
8037, 2019.

46 REFERENCES

[PV14] Vishal M Patel and René Vidal. Kernel sparse subspace clustering. In 2014
ieee international conference on image processing (icip), pages 2849–2853.
IEEE, 2014.

[PVNV13] Vishal M Patel, Hien Van Nguyen, and René Vidal. Latent space sparse
subspace clustering. In Proceedings of the IEEE international conference on
computer vision, pages 225–232, 2013.

[PXF+16] Xi Peng, Shijie Xiao, Jiashi Feng, Wei-Yun Yau, and Zhang Yi. Deep sub-
space clustering with sparsity prior. In Proceedings of the Twenty-Fifth
International Joint Conference on Artificial Intelligence, pages 1925–1931,
2016.

[RA14] Ryan A Rossi and Nesreen K Ahmed. Role discovery in networks.
IEEE Transactions on Knowledge and Data Engineering, 27(4):1112–1131,
2014.

[RA17] Mostafa Rahmani and George K Atia. Innovation pursuit: A new ap-
proach to subspace clustering. IEEE Transactions on Signal Processing,
65(23):6276–6291, 2017.

[Rog10] Everett M Rogers. Diffusion of innovations. Simon and Schuster, 2010.

[RSF17] Leonardo FR Ribeiro, Pedro HP Saverese, and Daniel R Figueiredo.
struc2vec: Learning node representations from structural identity. In Pro-
ceedings of the 23rd ACM SIGKDD international conference on knowledge
discovery and data mining, pages 385–394, 2017.

[SF83] Alberto Sanfeliu and King-Sun Fu. A distance measure between at-
tributed relational graphs for pattern recognition. IEEE transactions on
systems, man, and cybernetics, (3):353–362, 1983.

[SH94] Ferdinando S Samaria and Andy C Harter. Parameterisation of a stochas-
tic model for human face identification. In Proceedings of 1994 IEEE work-
shop on applications of computer vision, pages 138–142. IEEE, 1994.

[SKB+18] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg,
Ivan Titov, and Max Welling. Modeling relational data with graph convo-
lutional networks. In European semantic web conference, pages 593–607.
Springer, 2018.

[SLJ+15] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew

REFERENCES 47

Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 1–9, 2015.

[SNB+08] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Gal-
ligher, and Tina Eliassi-Rad. Collective classification in network data. AI
magazine, 29(3):93–93, 2008.

[SSL+11] Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt
Mehlhorn, and Karsten M Borgwardt. Weisfeiler-lehman graph kernels.
Journal of Machine Learning Research, 12(Sep):2539–2561, 2011.

[SVP+09] Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and
Karsten Borgwardt. Efficient graphlet kernels for large graph comparison.
In Artificial Intelligence and Statistics, pages 488–495, 2009.

[TCW+18] Ke Tu, Peng Cui, Xiao Wang, Philip S Yu, and Wenwu Zhu. Deep re-
cursive network embedding with regular equivalence. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pages 2357–2366, 2018.

[TMK+18] Anton Tsitsulin, Davide Mottin, Panagiotis Karras, Alexander Bronstein,
and Emmanuel Müller. Netlsd: hearing the shape of a graph. In Pro-
ceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 2347–2356, 2018.

[TMKM18] Anton Tsitsulin, Davide Mottin, Panagiotis Karras, and Emmanuel Müller.
Verse: Versatile graph embeddings from similarity measures. In Proceed-
ings of the 2018 world wide web conference, pages 539–548, 2018.

[TQW+15] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu
Mei. Line: Large-scale information network embedding. In Proceedings
of the 24th international conference on world wide web, pages 1067–1077,
2015.

[TWOL18] Kiran K Thekumparampil, Chong Wang, Sewoong Oh, and Li-Jia Li.
Attention-based graph neural network for semi-supervised learning.
arXiv preprint arXiv:1803.03735, 2018.

[VCC+18] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Lio, and Yoshua Bengio. Graph attention networks. In 6th Interna-
tional Conference on Learning Representations (ICLR), 2018.

48 REFERENCES

[VF14] René Vidal and Paolo Favaro. Low rank subspace clustering (lrsc). Pattern
Recognition Letters, 43:47–61, 2014.

[Vid11] René Vidal. Subspace clustering. IEEE Signal Processing Magazine,
28(2):52–68, 2011.

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Atten-
tion is all you need. Advances in Neural Information Processing Systems,
32:6000–6010, 2017.

[WPC+20] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang,
and S Yu Philip. A comprehensive survey on graph neural networks. IEEE
transactions on neural networks and learning systems, 2020.

[WRMC12] Jason Weston, Frédéric Ratle, Hossein Mobahi, and Ronan Collobert.
Deep learning via semi-supervised embedding. In Neural networks: Tricks
of the trade, pages 639–655. Springer, 2012.

[WSZ+19] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and
Kilian Weinberger. Simplifying graph convolutional networks. In Inter-
national conference on machine learning, pages 6861–6871. PMLR, 2019.

[WTT13] Bo Wang, Zhuowen Tu, and John K Tsotsos. Dynamic label propagation
for semi-supervised multi-class multi-label classification. In Proceedings
of the IEEE international conference on computer vision, pages 425–432,
2013.

[WXL13] Yu-Xiang Wang, Huan Xu, and Chenlei Leng. Provable subspace clus-
tering: When lrr meets ssc. Advances in Neural Information Processing
Systems, 26:64–72, 2013.

[XHLJ19] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How pow-
erful are graph neural networks? In 7th International Conference on
Learning Representations (ICLR), 2019.

[XLT+18] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi
Kawarabayashi, and Stefanie Jegelka. Representation learning on graphs
with jumping knowledge networks. In International Conference on Ma-
chine Learning, pages 5453–5462. PMLR, 2018.

[XTXD15] Shijie Xiao, Mingkui Tan, Dong Xu, and Zhao Yang Dong. Robust ker-
nel low-rank representation. IEEE transactions on neural networks and
learning systems, 27(11):2268–2281, 2015.

REFERENCES 49

[YCS16] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-
supervised learning with graph embeddings. In International conference
on machine learning, pages 40–48. PMLR, 2016.

[YGG+16] Ming Yin, Yi Guo, Junbin Gao, Zhaoshui He, and Shengli Xie. Kernel
sparse subspace clustering on symmetric positive definite manifolds. In
proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 5157–5164, 2016.

[YLRV16] Chong You, Chun-Guang Li, Daniel P Robinson, and René Vidal. Oracle
based active set algorithm for scalable elastic net subspace clustering. In
Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pages 3928–3937, 2016.

[YRV16] Chong You, Daniel Robinson, and René Vidal. Scalable sparse subspace
clustering by orthogonal matching pursuit. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 3918–3927,
2016.

[YV15] Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In Pro-
ceedings of the 21th ACM SIGKDD international conference on knowledge
discovery and data mining, pages 1365–1374, 2015.

[YYM+18] Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L Hamil-
ton, and Jure Leskovec. Hierarchical graph representation learning with
differentiable pooling. In Proceedings of the 32nd International Conference
on Neural Information Processing Systems, pages 4805–4815, 2018.

[YZM+17] Wei Ye, Linfei Zhou, Dominik Mautz, Claudia Plant, and Christian Böhm.
Learning from labeled and unlabeled vertices in networks. In Proceedings
of the 23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 1265–1274, 2017.

[ZBL+04] Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston, and
Bernhard Schölkopf. Learning with local and global consistency. Advances
in neural information processing systems, 16(16):321–328, 2004.

[ZC18] Muhan Zhang and Yixin Chen. Link prediction based on graph neural
networks. In Proceedings of the 32nd International Conference on Neural
Information Processing Systems, pages 5171–5181, 2018.

[ZG02] Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unla-
beled data with label propagation. 2002.

50 REFERENCES

[ZGL03] Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. Semi-supervised
learning using gaussian fields and harmonic functions. In Proceedings of
the 20th International conference on Machine learning (ICML-03), pages
912–919, 2003.

[ZHF18] Pan Zhou, Yunqing Hou, and Jiashi Feng. Deep adversarial subspace
clustering. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 1596–1604, 2018.

[ZJH+18] Tong Zhang, Pan Ji, Mehrtash Harandi, Richard Hartley, and Ian Reid.
Scalable deep k-subspace clustering. In Asian Conference on Computer
Vision, pages 466–481. Springer, 2018.

[ZJH+19] Tong Zhang, Pan Ji, Mehrtash Harandi, Wenbing Huang, and Hongdong
Li. Neural collaborative subspace clustering. In International Conference
on Machine Learning, pages 7384–7393. PMLR, 2019.

[ZLY+19] Junjian Zhang, Chun-Guang Li, Chong You, Xianbiao Qi, Honggang
Zhang, Jun Guo, and Zhouchen Lin. Self-supervised convolutional sub-
space clustering network. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 5473–5482, 2019.

[ZYZ+20] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu,
and Danai Koutra. Beyond homophily in graph neural networks: Current
limitations and effective designs. In Proceedings of the 34th International
Conference on Neural Information Processing Systems, 2020.

List of Figures

1.1 A machine learning algorithm requires expressive features to provide ac-
curate predictions from the input data. Conventional approaches involve
manual feature extraction or engineering, which is challenging even for
domain experts and is not guaranteed to lead to highly accurate predic-
tions. Representation learning algorithms, on the other hand, learn ex-
pressive features together with the prediction algorithm, such that the
learned features are optimized to be maximally useful to the algorithm.
In this thesis, we advance representation learning on graphs and high-
dimensional data. The illustrations on the top sketch a graph anomaly
detection problem for malware detection that we addressed in [BKTS21]
and a non-linear subspace clustering problem that we treated in [BFSS20]. 2

2.1 Example of a two-layer MLP. For simplicity, the bias vectors have been
omitted. During the forward pass (left-hand side), a 4-dim. input vector
x is first mapped to a 3-dim. latent vector y(1) and subsequently to a
2-dim. output vector y(2). During the backward pass (right-hand side),
the corresponding gradients w.r.t. the loss function are propagated in the
backward direction to update the parameters matrices W (1) and W (2). . . 8

2.2 Learned hierarchical features in a deep neural network. After low-level
features, such as edges and textures, are detected, the model extracts suc-
cessively higher-level features, including different patterns, object parts,
and finally prototypical object representations. For different levels, a se-
lection of features learned by GoogLeNet [SLJ+15] from the ImageNet
database [DDS+09] is shown. These visualizations were provided by
[OMS17]. 11

3.1 Depictions of different graph learning tasks: (a) Node classification on an
undirected graph with node attributes, (b) graph classification on undi-
rected graphs, (c) graph anomaly detection on directed graphs with edge
attributes, (d) node embedding on undirected graphs. 14

52 LIST OF FIGURES

3.2 During message passing iteration k, node vi updates its feature vector by
first collecting incoming messages from all of its neighbors vj ∈ N i and
subsequently applying the aggregation and update functions. After all K
message passing iterations have been performed, node vi can be classified
by feeding its representation h

(K)
i to a classifier f , which is typically an

MLP. Graph classification can be performed by pooling representations of
all nodes in the graph and feeding the pooled representation to a classifier. 21

3.3 Different inductive bias for graph learning: Homophily (a) assumes that
neighboring nodes share the same labels, whereas heterophily (b) as-
sumes that nodes connect to each other according to specific label pat-
terns. Structural similarity (c) relates nodes with different structural roles
in the graph, e.g., community nodes, bridge nodes, hub nodes, or periph-
eral nodes. 24

4.1 Face clustering using a deep subspace clustering model. For each per-
son, a number of images under different conditions, e.g., illumination or
pose, are available. In an ideal setting, the images of each person form
a low-dimensional subspace, and the subspace dimensions indicate differ-
ent variations in the images, e.g., change of pose. To account for potential
non-linearity, an autoencoder neural network maps the input images into
a space that is optimized for linear subspace structure and reconstructs the
original images from their latent representations. The face images shown
here were taken from the ORL image database [SH94]. 29

53

Appendix A

Contributing Publications

Most contributions presented in this dissertation have been invented, evaluated, and
published at LMU Munich under the supervision of the author’s doctoral advisor Prof.
Dr. Thomas Seidl, and in collaboration with colleagues from the Database Systems and
Data Mining group. Some contributions have been developed at Siemens Technology,
Princeton, NJ, USA, in collaboration with the author’s colleagues there, and some have
received partial funding from the Munich Center for Machine Learning. All contribu-
tions have been previously published. The list of publications, including remarks on the
individual authors’ contributions, is provided below.

The first contribution on asynchronous message passing for graph neural networks
has been published as

[BPS20] Julian Busch, Jiaxing Pi, and Thomas Seidl. Pushnet: Efficient and adaptive
neural message passing. In 24th European Conference on Artificial Intelli-
gence (ECAI), 2020.

This work was done during an internship at Siemens Technology, Princeton, NJ, USA.
The ideas were developed, implemented, and evaluated by the author. The author also
prepared the manuscript. Jiaxing Pi and Thomas Seidl contributed to discussions and
offered feedback.

The contribution related to network traffic-based malware detection and classification
using a novel graph neural network model has been published as

[BKTS21] Julian Busch, Anton Kocheturov, Volker Tresp, and Thomas Seidl. Nf-gnn:
Network flow graph neural networks for malware detection and classifica-
tion. In 33rd International Conference on Scientific and Statistical Database
Management (SSDBM), 2021.

The article has received a best paper runner-up award. This work was also developed
at Siemens Technology, Princeton, NJ, USA, during the same internship. The method

54 A. Contributing Publications

was conceptualized, implemented, and evaluated by the author, who also prepared the
manuscript. Anton Kocheturov engaged in discussions, provided feedback, assisted ex-
perimental evaluation, and helped to prepare the manuscript. Volker Tresp and Thomas
Seidl contributed to discussions and offered feedback.

The graph learning approach adapting to general relations between nodes beyond
homophily by leveraging local label distributions was first published as a preliminary
version. The full version was published later at a different venue:

[FBBS18] Evgeniy Faerman, Felix Borutta, Julian Busch, and Matthias Schubert.
Semi-supervised learning on graphs based on local label distributions. In
Proceedings of the 14th International Workshop on Mining and Learning with
Graphs (MLG), 2018.

[FBBS20] Evgeniy Faerman, Felix Borutta, Julian Busch, and Matthias Schubert. Ada-
lld: Adaptive node similarity for node classification using multi-scale local
label distributions. IEEE/WIC/ACM International Joint Conference on Web
Intelligence and Intelligent Agent Technology (WI-IAT), 2020. ©2020 IEEE.
Reprinted, with permission, from Evgeniy Faerman, Felix Borutta, Julian
Busch, and Matthias Schubert, Ada-lld: Adaptive node similarity for node
classification using multi-scale local label distributions, IEEE/WIC/ACM
International Joint Conference on Web Intelligence and Intelligent Agent
Technology (WI-IAT), 2020.

The full version of the article received the best student paper award. The idea for this
approach was developed by Evgeniy Faerman and Felix Borutta. The author contributed
to discussions, supported implementation, and experimental evaluation, and contributed
to the preparation of the manuscript. Matthias Schubert engaged in discussions and
offered feedback.

The unsupervised graph learning method for deriving structural node and graph de-
scriptors was first published as an extended abstract. The full version of the article was
published later at a different venue:

[BBFS17] Felix Borutta, Julian Busch, Evgeniy Faerman, and Matthias Schubert. To-
wards learning structural node embeddings using personalized pagerank.
In Lernen, Wissen, Daten, Analysen (LWDA) Conference Proceedings, Rostock,
Germany, September 11-13, 2017, 2017.

[BBF+19] Felix Borutta, Julian Busch, Evgeniy Faerman, Adina Klink, and Matthias
Schubert. Structural graph representations based on multiscale local net-
work topologies. In IEEE/WIC/ACM International Joint Conference on Web
Intelligence and Intelligent Agent Technology, 2019.

The ideas have been developed by the author, together with Felix Borutta and Evgeniy
Faerman. Implementation and evaluation were done by the author and Felix Borutta.
Adina Klink implemented and evaluated early prototypes as part of her bachelor’s thesis.
Matthias Schubert contributed to discussions and provided feedback.

The scalable deep subspace clustering model based on metric learning has been pub-
lished as

[BFSS20] Julian Busch, Evgeniy Faerman, Matthias Schubert, and Thomas Seidl.
Learning self-expression metrics for scalable and inductive subspace clus-
tering. NeurIPS Workshop: Self-Supervised Learning - Theory and Practice,
2020.

Conceptualization, implementation, evaluation, and preparation of the manuscript
were done by the author. Early prototypes were implemented and evaluated as part
of the master’s theses of Veronika Sonntag and Tobias Kreuzholz. These theses were
supervised by the author and Evgeniy Faerman, who also contributed to discussions.
Matthias Schubert and Thomas Seidl engaged in discussions and provided feedback.

PushNet: Efficient and Adaptive Neural Message Passing
Julian Busch 12 and Jiaxing Pi 1 and Thomas Seidl 2

Abstract. Message passing neural networks have recently evolved
into a state-of-the-art approach to representation learning on graphs.
Existing methods perform synchronous message passing along all
edges in multiple subsequent rounds and consequently suffer from
various shortcomings: Propagation schemes are inflexible since they
are restricted to k-hop neighborhoods and insensitive to actual de-
mands of information propagation. Further, long-range dependencies
cannot be modeled adequately and learned representations are based
on correlations of fixed locality. These issues prevent existing meth-
ods from reaching their full potential in terms of prediction perfor-
mance. Instead, we consider a novel asynchronous message passing
approach where information is pushed only along the most relevant
edges until convergence. Our proposed algorithm can equivalently
be formulated as a single synchronous message passing iteration us-
ing a suitable neighborhood function, thus sharing the advantages of
existing methods while addressing their central issues. The result-
ing neural network utilizes a node-adaptive receptive field derived
from meaningful sparse node neighborhoods. In addition, by learning
and combining node representations over differently sized neighbor-
hoods, our model is able to capture correlations on multiple scales.
We further propose variants of our base model with different induc-
tive bias. Empirical results are provided for semi-supervised node
classification on five real-world datasets following a rigorous evalu-
ation protocol. We find that our models outperform competitors on
all datasets in terms of accuracy with statistical significance. In some
cases, our models additionally provide faster runtime.

1 Introduction
As a natural abstraction of real-world entities and their relationships,
graphs are widely adopted as a tool for modeling machine learning
tasks on relational data. Applications are manifold, including docu-
ments classification in citation networks, user recommendations in
social networks or function prediction of proteins in biological net-
works.

Remarkable success has been achieved by recent efforts in formu-
lating deep learning models operating on graph-structured domains.
Unsupervised node embedding techniques [33, 39, 7, 15, 34] employ
matrix factorization to derive distributed vector space representations
for further downstream tasks. In settings where labels are provided,
semi-supervised models can be trained end-to-end to improve per-
formance for a given task. In particular, graph neural network mod-
els [5, 14, 2] have been established as a de-facto standard for semi-
supervised learning on graphs. While spectral methods [6, 10, 28, 5]
can be derived from a signal processing point of view, a message

1 Siemens Corporate Technology, Princeton, NJ, USA
jiaxing.pi@siemens.com

2 Ludwig-Maximilians-Universität München, Munich, Germany
{busch, seidl}@dbs.ifi.lmu.de

(a) (b) (c)

(d) (e) (f)

Figure 1: Features of the central node are pushed through the graph
until convergence (1a–1e). Equivalently, each node performs a single
aggregation step over a node-adaptive neighborhood with importance
weights shown for the central node in (1f).

passing perspective [11, 26, 18, 21, 16, 14] has proved especially
useful due to its flexibility and amenability to highly parallel GPU
computation [13]. Further recent works have considered additional
edge features [14, 36], attention mechanisms [41, 40, 24], addressed
scalability [8, 42] and studied the expressive power of graph neural
network models [43, 29].

While the above techniques may serve as a basis for modeling
further tasks such as link prediction [20, 45] or graph classifica-
tion [31, 23], we focus on semi-supervised node classification in this
work. Given a graph G = (V,E), a feature matrix X ∈ Rn×d and a
label matrix Y ∈ Rn×c, the goal is to predict labels for a set of un-
labeled nodes based on graph topology, node attributes and observed
node labels. If no node attributes are available, auxiliary features such
as one-hot vectors or node degrees may be used, depending on the
task at hand. All graphs considered in the following are undirected,
however, extension to directed graphs is straightforward.

Despite their success, existing neural message passing algorithms
suffer from several central issues. First, information is pulled indis-
criminately from k-hop neighborhoods which will include many ir-
relevant nodes and miss important ones. In particular, long-range de-
pendencies are modeled ineffectively, since unnecessary messages
do not only impede efficiency but additionally introduce noise. Fur-
ther, interesting correlations might exist on different levels of lo-
cality which makes it necessary to consider multi-scale representa-
tions. These issues prevent existing neural message passing algo-
rithms from reaching their full potential in terms of prediction per-

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

Algorithm 1 Synchronous Message Passing

Input: Graph G, feature matrix H(0)

Output: Aggregated feature matrix H(K)

for k ∈ [K] do
Send messages
for i ∈ V do

for j ∈ N i do
φ
(k)
j→i = φ(k)

(
h
(k−1)
i , h

(k−1)
j , aji

)

end for
end for
Update node states
for i ∈ V do

h
(k)
i = γ(k)

(
h
(k−1)
i ,AGGRj∈N i φ

(k)
j→i

)

end for
end for

formance.
To address the above issues, we propose a novel push-based neu-

ral message passing algorithm which propagates information on de-
mand rather than indiscriminately pulling it from all neighbors. We
show that it can be interpreted equivalently as either an asynchronous
message passing scheme or a single synchronous message passing
iteration over sparse neighborhoods derived from Approximate Per-
sonalized PageRank. Thereby, each node neighborhood is personal-
ized to its source node, providing a stronger structural bias and re-
sulting in a node-adaptive receptive field. Both views are illustrated
in Figure 1. Consequently, our model benefits from the existing syn-
chronous neural message passing framework while providing addi-
tional advantages derived from its asynchronous message passing in-
terpretation. In contrast to existing synchronous methods, our model
further eliminates the need of stacking multiple message passing lay-
ers to reach distant nodes by introducing a suitable neighborhood
function. It additionally supports highly efficient training and is able
to learn combinations of multi-scale representations.

2 Neural Message Passing Algorithms
Neural message passing algorithms follow a synchronous neighbor-
hood aggregation scheme. Starting with an initial feature matrix
H(0) ∈ Rn×h, for K iterations, each node sends a message to each
of its neighbors and updates its own state based on the aggregated
received messages. Borrowing some notation from [13], we formal-
ize this procedure in Algorithm 1 where φ(k) is a message function,
AGGR is a permutation invariant aggregation function and γ(k) is an
update function. All of these functions are required to be differen-
tiable.

One of the most simple and widespread representatives of this
framework is the Graph Convolutional Network (GCN) [21] which
can be defined via

φ
(k)
j→i = ˆ̃AjiW

(k)h
(k)
j (1)

AGGR
(k)
i =

∑

j∈N i

φ
(k)
j→i (2)

γ
(k)
i = q(k)

(
AGGR

(k)
i

)
(3)

such that

H(k+1) = q(k)
(

ˆ̃AH(k)W (k)
)

(4)

whereH(0) = X , q(k) is a non-linearity (ReLU is used for hidden

layers, softmax for the final prediction layer), ˆ̃A = D̃−1/2ÃD̃−1/2

is a symmetrically normalized adjacency matrix with self-loops and
Ã = A + I with degree matrix D̃. Note that due to self-loops each
node also aggregates its own features. Normalization preserves the
scale of the feature vectors. In each GCN layer, features are trans-
formed and aggregated from direct neighbors as a weighted sum.

While various models which can be formulated in this framework
have achieved remarkable performance, a general issue with syn-
chronous message passing schemes is that long-range dependencies
in the graph are not modeled effectively. If N i denotes the one-hop
neighborhood of node i (which is commonly the case), then each
message passing iteration expands the receptive field by one hop.
For a single node to gather information from another node of dis-
tance K, K message passing iterations need to be performed for all
nodes in the graph. Sending a large number of unnecessary messages
does not only result in unnecessary computation but further intro-
duces noise to the learned node features. On the same note, [44] and
[25] pointed out an over-smoothing effect. [44] showed that with an
increasing number of layers, node importance in a GCN converges to
the graph’s random walk limit distribution, i.e., all local information
is lost.

2.1 Asynchronous Message Passing
Instead of passing messages along all edges in multiple subsequent
rounds, one might consider an asynchronous propagation scheme
where nodes perform state updates and send messages one after an-
other. In particular, pushing natively supports adaptivity, since in-
stead of just pulling information from all neighbors, nodes are able
to push and receive important information on demand. This motivates
our push-based message passing framework (Algorithm 2).

Algorithm 2 Asynchronous Push-based Message Passing

Input: Graph G, feature matrix H(0)

Output: Aggregated feature matrix H
Initialize Φi for all i ∈ V
while not converged do

Select next node i ∈ V
Update node state
hi ← γ (hi,Φi)
Send messages
for j ∈ N i do

φi→j = φ (hi, hj ,Φi,Φj , aij)

Φj ← AGGR
(
Φj , φi→j

)

end for
reset Φi

end while

First, it is important to note that each node needs to aggregate in-
coming messages until it is selected to be updated. For that purpose,
we introduce aggregator states Φi ∈ Rh which contain novel unpro-
cessed information for each node. After it is used by a node to update
its state and it has pushed messages to its neighbors, the aggregator
state is reset until the node receives more information and becomes
active again. Further note that the aggregator states naturally lend
themselves to serve as a basis for selecting the next node and for a
convergence criterion, based on the amount of unprocessed informa-
tion. The functions φ, AGGR and γ fulfill the same roles and share
the same requirements as their synchronous counterparts. Though not

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

Algorithm 3 Local Push Message Passing (LPMP)

Input: Graph G, feature matrix H(0), parameters α ∈ (0, 1), ε > 0
Output: Aggregated feature matrix H

Initialize dense matrix H = zeros(n, h)
for k ∈ V do

Φi = δi,khi for all i ∈ V
while maxi∈V ||Φi|| > ε||hk|| do

hi ← hi + αΦi
for j ∈ N i do

Φj ← Φj + 1−α
dj

Φi

end for
Φi = 0

end while
end for

specifically indicated, in principle, different functions may be used
for different iterations.

As a particular instance of this framework, we propose Local Push
Message Passing (LPMP) (Algorithm 3). For the next update, the
node with the largest aggregator state is selected, since it holds the
largest amount of unprocessed information. Similarly, convergence is
attained if each node has only a small amount of unprocessed infor-
mation left. Note that all state updates are additive and no learnable
transformations are applied in order to effectively treat long-range
dependencies and retain flexibility. Feature transformations may be
applied before or after propagation. Further, in each iteration of the
outer loop, only the features of node k are diffused through the graph
in order to avoid excessive smoothing which might occur when mul-
tiple features are propagated at the same time over longer distances
in the graph. Also, all iterations of the outer loop are independent of
each other and can be performed in parallel. Remaining details of the
algorithm will be motivated and explained below.

We further wish to point out that the synchronous framework does
not consider any notion of convergence but instead introduces a
hyper-parameter for the number of message passing iterations. An
early work on Graph Neural Network (GNN) [35] applies contrac-
tion mappings and performs message passing until node states con-
verge to a fixed point. However, neighborhood aggregation is still
performed synchronously.

Finally, further instances of the general push-based message pass-
ing framework may be considered in future work. We focus on this
particular algorithm due to its nice interpretation in terms of exist-
ing push algorithms (as detailed below), its favorable properties and
since we observed it to perform well in practice.

3 Pushing Networks
The LPMP algorithm described above is inspired by local push al-
gorithms for computation of Approximate Personalized PageRank
(APPR) [17, 3] and, in particular, we will show in the following
how it can be equivalently described as a single synchronous mes-
sage passing iteration using sparse APPR neighborhoods. Thus, the
proposed message passing scheme effectively combines the advan-
tages of existing synchronous algorithms with the benefits of asyn-
chronous message passing described above.

3.1 Personalized Node Neighborhoods
Personalized PageRank (PPR) refers to a localized variant of PageR-
ank [32] where random walks are restarted only from a certain set

of nodes. We consider the special case in which the starting distribu-
tion is a unit vector, i.e., when computing PPR-vector πi of node i,
walks are always restarted at i itself. Formally, πi can be defined as
the solution of the linear system

πi = αei + (1− α)πiArw (5)

where ei ∈ Rn denotes the ith unit vector, Arw = D−1A de-
notes the random walk transition matrix of G, and the restart prob-
ability α ∈ (0, 1) controls the locality, where a larger value leads
to stronger localization. The PPR vectors for all nodes can be stored
as rows of a PPR-matrix Π ∈ Rn×n. Intuitively, πij corresponds to
the probability that a random walk starting at i stops at j where the
expected length of the walk is controlled by α. The vector πi can be
interpreted as an importance measure for node i over all other nodes
where πij measures the importance of j for i. Since these measures
are not sparse and global computation of Π would require O(n2)
operations, we consider local computation of APPR instead. In par-
ticular, we refer to the Reverse Local Push algorithm [1], since it
comes with several useful theoretical properties. Complexity of com-
puting the whole matrix P is reduced to O(n/αε) [1], i.e., linear in
the number of nodes. The parameter ε > 0 controls the quality of
approximation, sparsification and runtime where a larger value leads
to sparser solutions. For a more in-depth discussion, we refer to [1].

3.2 PushNet
Based on the above neighborhood function, we propose the following
neural message passing algorithm:

Definition 1 (PushNet) Let f and g be MLPs parametrized by θf
and θg , respectively, h1, h2, h3 denote hidden dimensions, P =[
P (α1), . . . , P (αK)

]
∈ RK×n×n be a tensor storing precomputed

APPR matrices for different scales α1 ≥ · · · ≥ αK and AGGR de-
note a differentiable scale aggregation function. Given input features
X ∈ Rn×d, the layers of PushNet are defined as

H(0) = f (X; θf) ∈ Rn×h1 (6)

H(1) = PH(0) ∈ RK×n×h1 (7)

H(2) = AGGR
(
H(1)

)
∈ Rn×h2 (8)

H(3) = g
(
H(2); θg

)
∈ Rn×h3 (9)

In most cases, h3 = c, such that H(3) provides the final predic-
tions for each node over c classes. In general, PushNet might also be
applied to different graph learning problems such as graph classifi-
cation, where learned node representations are pooled and labels are
predicted for whole graphs. However, we leave these further applica-
tions to future work.

To draw the connection between synchronous and asynchronous
message passing, we show that the base variant of PushNet with no
feature transformations and a single scale α is equivalent to LPMP
(Algorithm 3):

Theorem 1 Let α ∈ (0, 1) and ε > 0 be fixed, f, g,AGGR be iden-
tity functions andK = 1. ThenH(3) = H whereH(3) = PX is the
output of PushNet and H is the output of LPMP.

The main idea is that instead of propagating features directly as
in LPMP, we can first propagate scalar importance weights as in Re-
verse Local Push and then propagate features in a seconds step. Thus,

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

all discussion on LPMP are directly applicable to PushNet, including
adaptivity, effective treatment of long-range dependencies and avoid-
ance of over-smoothing. We wish to point out that an additional inter-
pretation of adaptivity can be derived from the perspective of Push-
Net: APPR-induced neighborhoods of different nodes are sparse and
directly exclude irrelevant nodes from consideration, in contrast to
commonly used k-hop neighborhoods. In this sense, APPR is adap-
tive to the particular source node. To the best of our knowledge, no
existing neural message passing algorithm shares this property.

In practice, it is favorable to not propagate features using LPMP,
but to pre-compute APPR matrices such that features are propagated
only once along all non-zero APPR entries and there is no need to
propagate gradients back over long paths of messages. Thus, Push-
Net benefits from the existing synchronous neural message passing
framework while providing additional advantages derived from its
asynchronous interpretation.

3.3 Learning Multi-Scale Representations

Additional properties of PushNet compared to LPMP include fea-
ture transformations f and g which may be applied before and after
feature propagation. Since the optimal neighborhood size cannot be
assumed to be the same for each node and patterns might be observed
at multiple scales, we additionally propagate features over different
localities by varying the restart probability α. The multi-scale rep-
resentations are then aggregated per node into a single vector such
that the model learns to combine different scales for a given node. In
particular, we consider the following scale aggregation functions:

• sum: Summation of multi-scale representations. Intuitively, sum-
aggregation corresponds to an unnormalized average with uniform
weights attached to all scales.

AGGR
(
H(1)

)
=
∑

k∈[K]

P (αk)H(0) ∈ Rn×h1 (10)

Note that due to distributivity, PushNet with sum aggregation re-
duces to propagation with a single matrix P =

∑
k∈[K] P

(αk),
i.e., features can be propagated and additively combined over an
arbitrary number of different scales at the cost of only a sin-
gle propagation. Thereby, the non-zero entries in P are given
by nz (P) =

⋃
k∈[K] nz

(
P (αk)

)
. However, usually the number

of non-zero entries nnz (P) will be close to nnz
(
P (αK)

)
, since

nodes considered at a smaller scale will most often also be consid-
ered at a larger scale. Thus, complexity will be dominated by the
largest scale considered.

• max: Element-wise maximum of multi-scale representations. The
most informative scale is selected for each feature individually.
This way, different features may correspond to more local or more
global properties.

AGGR
(
H(1)

)
= max
k∈[K]

P (αk)H(0) ∈ Rn×h1 (11)

• cat: Concatenation of multi-scale representations. Scale combina-
tion is learned in subsequent layers. The implied objective is to
learn a scale aggregation function which is globally optimal for
all nodes.

AGGR
(
H(1)

)
= ‖

k∈[K]
P (αk)H(0) ∈ Rn×(K·h1) (12)

3.4 The PushNet Model Family
We wish to point out several interesting special cases of our model.
In our default setting, prediction layers will always be dense with a
softmax activation. If hidden layers are used, we use a single dense
layer with ReLU activation.

• PushNet. The general case in which f and g are generic MLPs.
As per default, f is a single dense hidden layer and g is a dense
prediction layer.

• f = id. No feature transformation is performed prior to propaga-
tion. In this case, H(2) needs to be computed only once and can
then be cached, making learning extremely efficient. The follow-
ing sub-cases are of particular interest:

– PushNet-PTP. The sequence of operations is ”push – transform
– predict”. In this case, g is a generic MLP, consisting of 2
layers per default.

– PushNet-PP. The model performs operations ”push – predict”
and uses no hidden layers. Predictions can be interpreted as the
result of logistic regression on aggregated features. This ver-
sion is similar to SGC [42] with the difference that SGC does
not consider multiple scales and propagates over k-hop neigh-
borhoods.

– LPMP. In this setting, g = id and K = 1, i.e., no feature
transformations are performed and features are aggregated over
a single scale. This setting corresponds to LPMP, cf. Theorem
1. Note that this model describes only feature propagation, no
actual predictions are made.

• PushNet-TPP. The setting is h1 = c and g = id, such that the
model first predicts class labels for each node and then propagates
the predicted class labels. This setting is similar to APPNP [22]
but with some important differences. APPNP considers only a sin-
gle fixed scale and does not propagate over APPR neighborhoods.
Instead, multiple message passing layers are stacked to perform
a power iteration approximation of PPR. The resulting receptive
field is restricted to k-hop neighborhoods. Note that cat aggrega-
tion is not applicable here.

3.5 Comparison with Existing Neural Message
Passing Algorithms

Existing message passing algorithms have explored different con-
cepts of node importance, i.e., weights used in neighborhood aggre-
gation. While GCN [21] and other GCN-like models use normal-
ized adjacency matrix entries in each layer, Simplified Graph Con-
volution (SGC) [42] aggregates nodes over k-hop neighborhoods in
a single iteration using a k-step random walk matrix. Approximate
Personalized Propagation of Neural Predictions (APPNP) [22] also
relies on a k-step random walk matrix but with restarts which can
be equivalently interpreted as a power iteration approximation of the
PPR matrix. Graph Attention Network (GAT) [41] learns a similar-
ity function which computes a pairwise importance score given two
nodes’ feature vectors. All of the above methods aggregate features
over fixed k-hop neighborhoods. PushNet on the other hand aggre-
gates over sparse APPR neighborhoods using the corresponding im-
portance scores.

Multi-scale representations have been considered in Jumping
Knowledge Networks (JK) [44] where intermediate representations
of a GCN or GAT base network are combined before prediction. The
original intention was to avoid over-smoothing by introducing these

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

|V| |E| d c avgSP maxSP

CiteSeer 2120 3679 3703 6 9.33 28

Cora 2485 5069 1433 7 6.31 19

PubMed 19717 44324 500 3 6.34 18

Coauthor CS 18333 81894 6805 15 5.43 24

Coauthor Physics 34493 247962 8415 5 5.16 17

Table 1: Dataset statistics including average and maximum shortest
path lengths considering only the largest connected component of
each graph.

skip connections. Similarly, [27] concatenate propagated features at
multiple selected scales. LD [12] uses APPR to compute local class
label distributions at multiple scales and proposes different com-
binations but is limited to unattributed graphs. PushNet varies the
restart probability in APPR to compute multi-scale representations
and combines them using simple and very efficient aggregation func-
tions. APPR-Roles [4] also employs APPR but to compute structural
node embeddings in an unsupervised setting. The idea of perform-
ing no learnable feature transformations prior to propagation was
explored already in SGC [42]. It allows for caching propagated fea-
tures, resulting in very efficient training, and is also used by PushNet-
PTP and PushNet-PP. LD [12] explored the idea of propagating class
labels instead of latent representations. Similarly, APPNP [22] and
PushNet-TPP propagate predicted class labels.

To the best of our knowledge, the only existing work consider-
ing asynchronous neural message passing is SSE [9]. Compared to
PushNet, SSE is pull-based, i.e., in each iteration a node pulls fea-
tures from all neighbors and updates its state, until convergence to
steady node states. To make learning feasible, stochastic training is
necessary. Further, the work focuses on learning graph algorithms
for different tasks and results for semi-supervised node classification
were not very competitive. In contrast, PushNet offers very fast de-
terministic training and adaptive state updates due to a push-based
approach.

4 Experiments
We compare PushNet and its variants against six state-of-the-art
models, GCN [21], GAT [41], JK [44] with base model GCN
and GAT, SGC [42], Graph Isomorphism Network (GIN) [43] and
APPNP [22] on five established node classification benchmark
datasets. For better comparability, all models were implemented us-
ing PyTorch Geometric [13] 3 and trained on a single NVIDIA
GeForce GTX 1080 Ti GPU.

4.1 Datasets
Experiments are performed on semi-supervised text classification
benchmarks. In particular, we consider three citation networks, Cite-
Seer and Cora from [37] and PubMed from [30], and two co-
authorship networks, Coauthor CS and Coauthor Physics from [38].
Statistics of these datasets are summarized in Table 1.

4.2 Experimental Setup
For the sake of an unbiased and fair comparison, we follow a rigor-
ous evaluation protocol, similarly as in [38] and [22]. 4 We restrict
3 https://github.com/rusty1s/pytorch geometric
4 Note that results for competing methods might differ from those reported in

related work due to a different experimental setup.

Hidden size Learning rate Dropout L2 reg. strength

GCN 64 0.01 0.5 0.001

GAT 64 0.01 0.6 0.001

SGC — 0.01 — 0.0001

GIN 64 0.01 0.6 —

JK-GCN (cat) 64 0.01 0.4 0.001

JK-GAT (cat) 64 0.01 0.4 0.001

APPNP (α = 0.1,K = 10) 64 0.01 0.5 0.01

PushNet (sum) 64 0.005 0.5 0.01

PushNet-PTP (sum) 64 0.005 0.3 0.1

PushNet-PP (sum) — 0.01 0.6 0.001

PushNet-TPP (sum) 32 0.01 0.5 0.01

Table 2: Optimal hyper-parameters for all models as determined by
a grid search on CiteSeer and Cora. Values in parentheses indicate
optimal model-specific hyper-parameters.

all graphs to their largest connected components and L1-normalize
all feature vectors. Self-loops are added and different normalizations
are applied to the adjacency matrices individually for each method
as proposed by the respective authors. For each dataset, we sample
20 nodes per class for training and 500 nodes for validation. The re-
maining nodes are used as test data. Each model is evaluated on 20
random data splits with 5 random initializations, resulting in 100 runs
per model and dataset. Using the same random seed for all models
ensures that all models are evaluated on the same splits.

Model architectures including sequences and types of layers, acti-
vation functions, locations of dropout andL2-regularization are fixed
as recommended by the respective authors. All remaining hyperpa-
rameters are optimized per model by selecting the parameter combi-
nation with best average accuracy on CiteSeer and Cora validation
sets. Final results are reported only for the test sets using optimal
parameters. All models are trained with Adam [19] using default pa-
rameters and early stopping based on validation accuracy and loss as
in [41] with a patience of 100 for a maximum of 10000 epochs.

For all PushNet variants, we fix the architecture as described in
the previous section. Dropout is applied to all APPR matrices and
to the inputs of all dense layers. However, for PushNet-PTP and
PushNet-PP dropout is only applied after propagation, such that
propagated features can be cached. L2-regularization is applied to all
dense layers. As a default setting, we consider three different scales
α ∈ {0.2, 0.1, 0.05} and ε = 1e−5. Due to memory constraints, we
use ε = 1e−4 on Physics dataset for all PushNet variants and on CS
and PubMed datasets for PushNet and PushNet-TPP. We further add
self-loops to the adjacency matrices and perform symmetric normal-
ization as in GCN. All APPR-matrices are L1-normalized per row.
We use the following parameter grid for tuning hyper-parameters of
all models:

• Number of hidden dimensions: [8, 16, 32, 64]
• Learning rate: [0.001, 0.005, 0.01]
• Dropout probability: [0.3, 0.4, 0.5, 0.6]
• Strength of L2-regularization: [1e-4, 1e-3, 1e-2, 1e-1]

Except for APPNP, all competitors useK = 2 propagation layers.
JK and GIN use an additional dense layer for prediction. For GAT
layers, the number of attention heads is fixed to 8. Optimal hyper-
parameters for all models are reported in Table 2.

4.3 Node Classification Accuracy
Accuracy/micro-F1 scores for all datasets are provided in Table 3. It
can be observed that our models consistently provide best results on

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

(a) CiteSeer (α = 0.05, ε = 1e− 5) (b) CiteSeer (ε = 1e− 5) (c) CiteSeer (α = 0.05)

Figure 2: Fraction of k-hop neighbors contained in APPR-neighborhoods for CiteSeer. (2a) shows all APPR neighborhoods for a fixed set-
ting, including mean and the closest k-neighborhood for reference. (2b) and (2c) demonstrate localization depending on α and sparsification
depending on ε, respectively.

GCN GAT JK-GCN JK-GAT SGC GIN APPNP PushNet PushNet-PTP PushNet-PP PushNet-TPP

CiteSeer 72.82± 1.48 73.82± 1.35 71.09± 1.66 71.76± 1.27 73.91± 1.30 70.81± 1.61 74.36± 1.44 75.08± 0.99 75.19± 1.15 75.17± 1.32 75.01± 1.11

Cora 81.07± 1.43 82.12± 1.41 79.57± 1.63 80.10± 1.52 80.13± 2.15 80.24± 1.54 83.58± 1.03 84.12± 1.08 83.41± 1.24 81.52± 1.40 84.23± 1.26

PubMed 78.29± 1.48 78.21± 1.60 77.23± 2.01 77.59± 2.25 77.00± 1.78 77.19± 1.75 79.61± 2.98 79.80± 1.39 80.22± 1.27 77.52± 2.05 80.10± 1.33

Coauthor CS 91.64± 0.62 90.20± 0.75 91.60± 0.54 92.20± 0.43 91.27± 0.58 91.46± 0.54 91.10± 1.12 92.40± 0.52 92.37± 0.40 91.04± 0.76 92.54± 0.34

Coauthor Physics 93.42± 0.63 93.43± 0.50 93.49± 0.56 o.o.m. o.o.m. 93.79± 0.49 93.96± 0.45 94.01± 0.53 93.97± 0.48 93.67± 0.55 94.09± 0.47

Table 3: Accuracy/micro-F1 scores on semi-supervised node classification datasets in terms of mean and standard deviation over 100 indepen-
dent runs. JK-GAT and SGC are out of GPU memory on the largest dataset, Coauthor Physics.

CiteSeer Cora PubMed Coauthor CS Coauthor Physics

Accuracy 4.18e-08 3.37e-07 1.20e-02 4.62e-11 3.45e-03

Macro-F1 3.91e-10 2.79e-04 2.22e-02 9.22e-12 2.12e-07

Table 4: P-values according to a Wilcoxon signed-rank test compar-
ing the best of our models with the best competitor on all datasets
with respect to accuracy/micro-F1 and macro-F1.

all datasets and that the strongest model, PushNet-TPP, outperforms
all competitors on all datasets. Improvements of our best model com-
pared to the best competing model are statistically significant with
P < .05 on all datasets according to a Wilcoxon signed-rank test. 5

P-values for all datasets are reported in Table 4. On CiteSeer and
PubMed, PushNet-PTP is able to push performance even further.
PushNet with feature transformations before and after propagation is
less performant but still outperforms all competitors on all datasets.
PushNet-PP, the most simple of our models, performs worst as ex-
pected. However, it is still competitive, outperforming all competi-
tors on CiteSeer. Boxplots shown in Figure 3 indicate that our models
generally exhibit small variance and are less prone to produce outlier
scores.

We argue that improvements over existing methods are primarily
due to push-based propagation. Figure 2a compares APPR neigh-
borhoods with k-hop neighborhoods in terms of the fraction of k-
neighbors considered. It can be seen that k-neighborhoods used by
competitors draw a sharp artificial boundary while APPR adaptively
selects nodes from larger neighborhoods and discards nodes from
smaller ones, individually for each source node. Visually, deviations
left to the boundary correspond to discarded irrelevant nodes, while
deviations on the right hand side indicate additional nodes beyond the
receptive field of competitors that can be leveraged by our method.
Stacking more message passing layers to reach these nodes would
degrade performance due to overfitting as demonstrated in [44] and
[25].

Among the competing methods, APPNP performs best in general,

5 In fact, results are significant withP < 0.01 on all datasets except PubMed.

providing best baseline performance on all datasets but CS where JK-
GAT achieves best results. GAT outperforms GCN on three datasets,
CiteSeer, Cora and Physics. JK performs worse than its respective
basemodel in most cases. Similar observations were already made in
[22]. SGC mostly performs worse than GCN due to its simplicity,
outperforming it only on CiteSeer. GIN also provides worse results
than GCN in most cases, possibly due to overfitting caused by larger
model complexity. It outperforms GCN only on Physics, providing
results similar to APPNP.

On CiteSeer, models using cached features perform very well,
even the simple models SGC and PushNet-PP which effectively per-
form linear regression on propagated raw features provide superior
performance. On the remaining datasets, the additional feature trans-
formation provided by PushNet-PTP is necessary to guarantee high
accuracy.

Macro-F1 scores reveal similar insights and are ommitted due to
space constraints.

4.4 Runtime

Figure 4 compares all methods based on average runtime per epoch
and accuracy. 6 SGC has lowest runtime on all datasets but runs
out of memory on Physics since it propagates raw features over k-
hop neighborhoods. PushNet-PP performs second fastest, followed
by PushNet-PTP which generally provides a good tradeoff between
runtime and accuracy. PushNet and PushNet-TPP are slower than
competitors but still provide comparable runtime at a superior level
of accuracy. Among the competitors, APPNP, GAT and JK-GAT re-
quire most computation time. JK-GAT also runs out of memory on
Physics.

6 We note that for APPNP and all PushNet variants, (A)PPR matrix com-
putation is not included in runtime analysis such that runtime comparison
is solely based on propagation, transformation and prediction for all com-
pared models. We consider (A)PPR computation as a preprocessing step,
since it is only required to be performed once per graph and can then be
reused by all models for this graph. Computation is very fast for each of the
considered graphs and can be performed on CPU.

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

G
C

N
G

AT
JK

-G
C

N
JK

-G
AT

SG
C

G
IN

AP
PN

P
Pu

sh
N

et
Pu

sh
N

et
-P

TP
Pu

sh
N

et
-P

P
Pu

sh
N

et
-T

PP

0.675

0.700

0.725

0.750

0.775
Ac

cu
ra

cy
CiteSeer

G
C

N
G

AT
JK

-G
C

N
JK

-G
AT

SG
C

G
IN

AP
PN

P
Pu

sh
N

et
Pu

sh
N

et
-P

TP
Pu

sh
N

et
-P

P
Pu

sh
N

et
-T

PP

0.75

0.80

0.85

Cora

G
C

N
G

AT
JK

-G
C

N
JK

-G
AT

SG
C

G
IN

AP
PN

P
Pu

sh
N

et
Pu

sh
N

et
-P

TP
Pu

sh
N

et
-P

P
Pu

sh
N

et
-T

PP

0.6

0.7

0.8

PubMed

G
C

N
G

AT
JK

-G
C

N
JK

-G
AT

SG
C

G
IN

AP
PN

P
Pu

sh
N

et
Pu

sh
N

et
-P

TP
Pu

sh
N

et
-P

P
Pu

sh
N

et
-T

PP

0.850

0.875

0.900

0.925
Coauthor CS

G
C

N
G

AT
JK

-G
C

N
JK

-G
AT

SG
C

G
IN

AP
PN

P
Pu

sh
N

et
Pu

sh
N

et
-P

TP
Pu

sh
N

et
-P

P
Pu

sh
N

et
-T

PP

0.92

0.93

0.94

0.95
Coauthor Physics

Figure 3: Accuracy/micro-F1 scores on semi-supervised node classification datasets aggregated over 100 independent runs.

10 2 10 1

0.72

0.74

CiteSeer

10 2 10 1

0.800

0.825

Cora

10 1

0.78

0.80

PubMed

10 1
0.90

0.92

Coauthor CS

10 1 100
0.93

0.94

Coauthor Physics

Runtime per epoch (s)

Ac
cu

ra
cy

GCN
GAT
JK-GCN
JK-GAT
SGC
GIN
APPNP
PushNet
PushNet-PTP
PushNet-PP
PushNet-TPP

Figure 4: Comparison w.r.t. average runtime per epoch in seconds vs. average accuracy.

su
m

m
ax

co
nc

at
0.

05 0.
1

0.
2

0.
4

0.
6

0.
8

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

1e
-0

8
1e

-0
7

1e
-0

6
1e

-0
5

1e
-0

4
1e

-0
3

1e
-0

2
1e

-0
1

0.0

0.1

0.3

0.4

0.6

R
un

tim
e

pe
r

ep
oc

h
(s

)

Figure 5: Effect of varying α for fixed ε = 1e−5 (left) and varying ε
for fixed α ∈ {0.05, 0.1, 0.2} with sum aggregation (right). Dashed
lines indicate average runtime per epoch in seconds.

4.5 Influence of Locality

To study the influence of the locality parameter α on the performance
of our models, we run experiments with our base model PushNet with
various single α values and different aggregations of multiple values.
Figure 2b illustrates how the fraction of k-neighbors considered for
propagation varies with α. Generally, a larger value leads to stronger
localization and the shape gets closer to a step function as for k-
neighborhoods. Figure 5 additionally shows the average performance
on CiteSeer and Cora. For single α, small values in {0.05, 0.1, 0.2}
achieve best accuracy. For larger α, runtime drops considerably but
at the cost of decreased accuracy and larger variance. Among multi-
scale aggregations, sum performs best. It slightly improves the per-
formance over single alphas and provides additional robustness, pro-
ducing smaller variance and no outlier scores. Runtime is very close
to the smallest single α considered. The remaining aggregation func-

tions lead to increased runtime and max does not even lead to an
increase of accuracy.

4.6 Influence of Sparsity
Similarly as α, the approximation threshold ε controls the effective
neighborhood size considered for propagation. We study the effect
on our models with a similar setup as above. Figure 2c illustrates
how a larger value of ε leads to stronger sparsification of APPR
neighborhoods. Variation leads to a shift of the curve, indicating that
neighbors with small visiting probabilities are discarded mostly from
k-neighborhoods with moderate or large k. Figure 5 shows that ac-
curacy remains relatively stable on CiteSeer and Cora, decreasing
monotonically for increasing ε. Simultaneously, runtime decreases
steadily. While smaller ε provide marginally better accuracy, our re-
sults suggest that ε may be increased safely to allow for faster run-
time and to account for limited GPU memory.

5 Conclusion
We presented a novel push-based asynchronous neural message pass-
ing algorithm which allows for efficient feature aggregation over
adaptive node neighborhoods. A multi-scale approach additionally
leverages correlations on increasing levels of locality and variants
of our model capture different inductive bias. Semi-supervised node
classification experiments on five real-world benchmark datasets ex-
hibit consistent improvements of our models over all competitors
with statistical significance, demonstrating the effectiveness of our
approach. Ablation studies investigate the influence of varying local-
ity and sparsity parameters as well as combinations of multi-scale
representations. In future work, we intend to investigate additional
instances of the push-based message passing framework, extensions
to dynamic graphs and applications to further tasks such as link pre-
diction and graph classification.

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

ACKNOWLEDGEMENTS

This work was done during an internship at CT RDA BAM IBI-US,
Siemens Corporate Technology, Princeton, NJ, USA.

REFERENCES
[1] Reid Andersen, Christian Borgs, Jennifer Chayes, John Hopcraft, Va-

hab S Mirrokni, and Shang-Hua Teng, ‘Local computation of pagerank
contributions’, International Workshop on Algorithms and Models for
the Web-Graph, (2007).

[2] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-
Gonzalez, Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti,
David Raposo, Adam Santoro, Ryan Faulkner, et al., ‘Relational in-
ductive biases, deep learning, and graph networks’, arXiv preprint
arXiv:1806.01261, (2018).

[3] Pavel Berkhin, ‘Bookmark-coloring algorithm for personalized pager-
ank computing’, Internet Mathematics, (2006).

[4] Felix Borutta, Julian Busch, Evgeniy Faerman, Adina Klink, and
Matthias Schubert, ‘Structural graph representations based on multi-
scale local network topologies’, WI, (2019).

[5] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and
Pierre Vandergheynst, ‘Geometric deep learning: going beyond eu-
clidean data’, IEEE Signal Processing Magazine, (2017).

[6] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun, ‘Spec-
tral networks and locally connected networks on graphs’, ICLR, (2014).

[7] Shaosheng Cao, Wei Lu, and Qiongkai Xu, ‘Grarep: Learning graph
representations with global structural information’, CIKM, (2015).

[8] Jie Chen, Tengfei Ma, and Cao Xiao, ‘Fastgcn: fast learning with graph
convolutional networks via importance sampling’, ICLR, (2018).

[9] Hanjun Dai, Zornitsa Kozareva, Bo Dai, Alex Smola, and Le Song,
‘Learning steady-states of iterative algorithms over graphs’, ICML,
(2018).

[10] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst, ‘Con-
volutional neural networks on graphs with fast localized spectral filter-
ing’, NeurIPS, (2016).

[11] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael
Bombarell, Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P Adams,
‘Convolutional networks on graphs for learning molecular fingerprints’,
NeurIPS, (2015).

[12] Evgeniy Faerman, Felix Borutta, Julian Busch, and Matthias Schubert,
‘Semi-supervised learning on graphs based on local label distributions’,
arXiv preprint arXiv:1802.05563, (2018).

[13] Matthias Fey and Jan Eric Lenssen, ‘Fast graph representation learning
with pytorch geometric’, arXiv preprint arXiv:1903.02428, (2019).

[14] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals,
and George E Dahl, ‘Neural message passing for quantum chemistry’,
ICML, (2017).

[15] Aditya Grover and Jure Leskovec, ‘node2vec: Scalable feature learning
for networks’, SIGKDD, (2016).

[16] Will Hamilton, Zhitao Ying, and Jure Leskovec, ‘Inductive representa-
tion learning on large graphs’, NeurIPS, (2017).

[17] Glen Jeh and Jennifer Widom, ‘Scaling personalized web search’,
WWW, (2003).

[18] Steven Kearnes, Kevin McCloskey, Marc Berndl, Vijay Pande, and
Patrick Riley, ‘Molecular graph convolutions: moving beyond finger-
prints’, Journal of computer-aided molecular design, (2016).

[19] Diederik P Kingma and Jimmy Ba, ‘Adam: A method for stochastic
optimization’, ICLR, (2015).

[20] Thomas N Kipf and Max Welling, ‘Variational graph auto-encoders’,
NeurIPS Bayesian Deep Learning Workshop, (2016).

[21] Thomas N Kipf and Max Welling, ‘Semi-supervised classification with
graph convolutional networks’, ICLR, (2017).

[22] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann,
‘Predict then propagate: Graph neural networks meet personalized
pagerank’, ICLR, (2019).

[23] John Boaz Lee, Ryan Rossi, and Xiangnan Kong, ‘Graph classification
using structural attention’, SIGKDD, (2018).

[24] John Boaz Lee, Ryan A Rossi, Sungchul Kim, Nesreen K Ahmed, and
Eunyee Koh, ‘Attention models in graphs: A survey’, TKDD, (2019).

[25] Qimai Li, Zhichao Han, and Xiao-Ming Wu, ‘Deeper insights into
graph convolutional networks for semi-supervised learning’, AAAI,
(2018).

[26] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel,
‘Gated graph sequence neural networks’, ICLR, (2016).

[27] Renjie Liao, Zhizhen Zhao, Raquel Urtasun, and Richard S Zemel,
‘Lanczosnet: Multi-scale deep graph convolutional networks’, ICLR,
(2019).

[28] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola,
Jan Svoboda, and Michael M Bronstein, ‘Geometric deep learning on
graphs and manifolds using mixture model cnns’, CVPR, (2017).

[29] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton,
Jan Eric Lenssen, Gaurav Rattan, and Martin Grohe, ‘Weisfeiler and
leman go neural: Higher-order graph neural networks’, AAAI, (2019).

[30] Galileo Namata, Ben London, Lise Getoor, Bert Huang, and UMD
EDU, ‘Query-driven active surveying for collective classification’,
MLG, (2012).

[31] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov, ‘Learn-
ing convolutional neural networks for graphs’, ICML, (2016).

[32] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd,
‘The pagerank citation ranking: Bringing order to the web.’, Technical
report, Stanford InfoLab, (1999).

[33] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena, ‘Deepwalk: Online
learning of social representations’, SIGKDD, (2014).

[34] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie
Tang, ‘Network embedding as matrix factorization: Unifying deepwalk,
line, pte, and node2vec’, WSDM, (2018).

[35] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuch-
ner, and Gabriele Monfardini, ‘The graph neural network model’, IEEE
Transactions on Neural Networks, (2009).

[36] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van
Den Berg, Ivan Titov, and Max Welling, ‘Modeling relational data with
graph convolutional networks’, ESWC, (2018).

[37] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Gal-
ligher, and Tina Eliassi-Rad, ‘Collective classification in network data’,
AI magazine, (2008).

[38] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and
Stephan Günnemann, ‘Pitfalls of graph neural network evaluation’,
NeurIPS Relational Representation Learning Workshop, (2018).

[39] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and
Qiaozhu Mei, ‘Line: Large-scale information network embedding’,
WWW, (2015).

[40] Kiran K Thekumparampil, Chong Wang, Sewoong Oh, and Li-Jia Li,
‘Attention-based graph neural network for semi-supervised learning’,
arXiv preprint arXiv:1803.03735, (2018).

[41] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana
Romero, Pietro Lio, and Yoshua Bengio, ‘Graph attention networks’,
ICLR, (2018).

[42] Felix Wu, Tianyi Zhang, Amauri Holanda de Souza Jr, Christopher
Fifty, Tao Yu, and Kilian Q Weinberger, ‘Simplifying graph convolu-
tional networks’, ICML, (2019).

[43] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka, ‘How
powerful are graph neural networks?’, ICLR, (2019).

[44] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-
ichi Kawarabayashi, and Stefanie Jegelka, ‘Representation learning on
graphs with jumping knowledge networks’, ICML, (2018).

[45] Muhan Zhang and Yixin Chen, ‘Link prediction based on graph neural
networks’, NeurIPS, (2018).

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

NF-GNN: Network Flow Graph Neural Networks for Malware
Detection and Classification

Julian Busch
busch@dbs.ifi.lmu.de

LMU Munich
Munich, Germany

Anton Kocheturov
anton.kocheturov@siemens.com

Siemens Technology
Princeton, NJ, USA

Volker Tresp
volker.tresp@siemens.com

Siemens AG
Munich, Germany

Thomas Seidl
seidl@dbs.ifi.lmu.de

LMU Munich
Munich, Germany

ABSTRACT
Malicious software (malware) poses an increasing threat to the se-
curity of communication systems as the number of interconnected
mobile devices increases exponentially. While some existing mal-
ware detection and classification approaches successfully leverage
network traffic data, they treat network flows between pairs of
endpoints independently and thus fail to leverage rich communica-
tion patterns present in the complete network. Our approach first
extracts flow graphs and subsequently classifies them using a novel
edge feature-based graph neural network model. We present three
variants of our base model, which support malware detection and
classification in supervised and unsupervised settings. We evaluate
our approach on flow graphs that we extract from a recently pub-
lished dataset for mobile malware detection that addresses several
issues with previously available datasets. Experiments on four dif-
ferent prediction tasks consistently demonstrate the advantages of
our approach and show that our graph neural network model can
boost detection performance by a significant margin.

CCS CONCEPTS
• Security and privacy → Intrusion/anomaly detection and
malware mitigation; • Computing methodologies → Super-
vised learning by classification; Neural networks; Anomaly
detection.

KEYWORDS
Graph Neural Networks, Malware Detection
ACM Reference Format:
Julian Busch, Anton Kocheturov, Volker Tresp, and Thomas Seidl. 2021. NF-
GNN: Network Flow Graph Neural Networks for Malware Detection and
Classification. In 33rd International Conference on Scientific and Statistical
Database Management (SSDBM 2021), July 6–7, 2021, Tampa, FL, USA. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3468791.3468814

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SSDBM 2021, July 6–7, 2021, Tampa, FL, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8413-1/21/07. . . $15.00
https://doi.org/10.1145/3468791.3468814

1 INTRODUCTION
Malicious software (malware) poses a significant threat to the secu-
rity of information technology (IT) and operational technology (OT)
in private and corporate environments. Along with an increasing
degree of digitalization and the rise of new technologies such as the
Internet of Things (IoT), an increasing number of devices, includ-
ing mobile devices, such as smartphones, and Industrial Control
Systems (ICS), become connected and thus are potential targets for
attacks. Accurate detection and classification of malware is thus a
vital task to ensure the security of such systems.

In this work, we focus on dynamic malware detection and classi-
fication. In contrast to static methods, which analyze a candidate
application’s source code or the structure of its executable, dynamic
methods execute the application in a controlled environment and
analyze dynamic behavior that can usually not be extrapolated
from static data. More specifically, we consider network traffic data
generated during the execution of the application, which provides
valuable insights into the dynamic and potentially malicious be-
havior affecting that application. However, in contrast to existing
works, which classify individual network flows between two end-
points, i.e., aggregated communication between the two endpoints
during some time frame, we construct a communication graph from
all recorded network flows between any two endpoints during that
time frame to obtain a rich representation of communication in
the network. To the best of our knowledge, no existing work has
considered this setting so far.

While classical machine learning methods have proven success-
ful for malware detection and classification [15], deep learning
approaches have not been studied as extensively. Deep learning
methods offer an additional advantage of automatically learning
suitable feature representations of the input data optimized for
the task at hand, in contrast to traditional feature engineering
approaches. Our novel edge feature-based graph neural network
model learns suitable representations from extracted network flow
graphs. Along with a base model for learning graph representations,
we propose three derived model variants, a graph classifier, a graph
autoencoder, and a one-class graph neural network, which are able
to perform supervised malware detection and classification and
unsupervised malware detection, respectively.

We evaluate our approach on a graph dataset that we extract
from network flow features obtained from traffic generated by an-
droid applications executed on real mobile devices. The original

121

SSDBM 2021, July 6–7, 2021, Tampa, FL, USA Busch, et al.

flow features are provided by [26]. The data was collected in a
carefully designed environment to account for several common
defects observed in previously used datasets. Instead of classify-
ing individual network flows, as the original work proposes, we
follow our graph-based approach and construct a flow graph for
each execution of a candidate application. Experiments on four
different prediction tasks, including supervised binary, category
and family classification, and unsupervised detection, consistently
demonstrate the significantly superior detection performance of
our approach. Our neural network model additionally boosts perfor-
mance compared to baselinemodels, even in settings with unlabeled
data and small amounts of available training data.

We summarize our contributions as follows:

• We propose, to the best of our knowledge, the first graph-
based approach to network traffic-based malware detection
and classification.

• We propose a novel method for extracting directed edge-
attributed flow graphs from sets of network flows recorded
in a monitored network.

• We propose a novel graph neural network model that effec-
tively learns representations from these graphs, utilizing the
graph topology and edge attributes.

• We provide an extensive experimental evaluation on a novel
flow graph dataset considering four different supervised and
unsupervised detection tasks.

2 RELATEDWORK
While static malware detection and classification methods analyze a
candidate application’s source code or the structure of its executable
file, dynamic methods execute the application in a controlled en-
vironment and analyze its behavior. Such behavior is difficult and
often impossible to extrapolate from static data. Further, static meth-
ods are commonly vulnerable to obfuscation techniques modifying
the code or structure of the executable. Our approach is a dynamic
one, focusing on network traffic data generated by a particular
candidate application during execution.

A comprehensive overview of existing machine learning meth-
ods for static and dynamic malware detection and classification
is provided by a recent survey [15]. Methods relying on network
traffic data mainly differ by which specific features are extracted
and which machine learning algorithm is used. To the best of our
knowledge, all existing approaches focus on classifying individ-
ual network traffic between two endpoints in a network, possibly
at different resolutions. For instance, [5] describes different res-
olution levels, ranging from single transactions over sessions to
flows and conversations. Thereby, a flow describes traffic associated
with a specific (Source-IP, Source-Port, Destination-IP,
Destination-Port, Protocol)-tuple within a particular time
frame and a conversation aggregates flows with the same Source-
and Destination-IP endpoints. Instead of focusing on bilateral flows
or conversations between two endpoints, our approach extracts a
graph from flows between any two endpoints in a monitored net-
work during a specific time frame to obtain a richer representation
of communication in the network.

Existing methods typically report high performance on datasets
that exhibit various common defects. The recently published CI-
CAndMal2017 dataset [26] has addressed these issues by providing
a sufficient number of malware samples from diverse malware
categories and families with a realistic distribution of benign and
malicious applications. Additionally, each application is executed
on an actual physical device instead of an emulator or a virtual
machine to accurately capture its actual behavior. Instead of classi-
fying network flows individually as proposed by the authors, we
instead extract network flow graphs from the given network traffic
features.

The results reported in [26] have been improved by adding new
dynamic API-call features and combining a dynamic prediction
model with a static prediction model [34]. Our model could be com-
bined with a static prediction model in a similar fashion. Improved
accuracy could also be achieved by predicting labels for conversa-
tions instead of individual flows [1], further mitigating the effect of
port randomization techniques. Our approach takes an additional
step ahead by classifying flow graphs modeling the communica-
tion between all endpoints instead of only pairs of endpoints. Two
further works [6, 12] reported malware detection results only for a
subset of the whole dataset.

Existing graph-based approaches to malware detection and clas-
sification mostly focus on static analysis, considering function call
graphs [18, 20, 23] or control graphs [4, 14]. Dynamic graph-based
approaches include [2], where graphs are constructed from instruc-
tion traces collected during execution, and [22], where system call
graphs are considered. The latter work is most related to our ap-
proach since a Graph Convolutional Neural Network (GCN) [25]
is used to learn node features. To the best of our knowledge, no
existing work has considered graph-based approaches based on
dynamically generated network traffic data.

Deep learning methods have not been investigated as exten-
sively as classical machine learning methods for network traffic-
based approaches. Existingmethods consider detection of endpoints
generating malicious traffic [29], intrusion detection [28], or ran-
somware detection [6]. To the best of our knowledge, no existing
deep learning-based malware detection and classification method
considers network flow graphs.

While our proposed approach includes a novel graph neural
network model for malware detection and classification, it could
be more generally employed to solve other graph classification
and graph anomaly detection tasks. Graph neural networks [3, 7,
8, 16, 25, 36–38, 40] have recently become a de-facto standard for
machine learning on graphs. The majority of these methods can be
described in a message-passing framework, as detailed in [16]. The
main idea is to iteratively propagate feature vectors through the
graph by passing messages between nodes such that a node’s repre-
sentation depends on feature vectors appearing in its neighborhood.
While most existing graph neural network models consider only
node attributes, our model focuses on edge attributes instead. Some
existing models consider edge attributes [17, 21, 24, 31, 33, 39], but
none of these models is directly applicable to our setting since they
either consider multi-relational graphs or focus on node attributes
and only utilize edge features to improve message passing between
nodes. Other existing models [27, 32, 42] focus on more specific
tasks which differ from our setting.

122

NF-GNN: Network Flow Graph Neural Networks for Malware Detection and Classification SSDBM 2021, July 6–7, 2021, Tampa, FL, USA

AGGR(,)

(a) Network Flow Graph Extraction (b) Real Network Flow Graph

Figure 1: From a set of network flows recorded during a specific time frame, a flow graph is constructed by adding directed
edges between all pairs of endpoints that communicated with at least one flow. Each flow is described by a feature vector
summarizing its corresponding network traffic. Edges in theflowgraph are annotatedwith these feature vectors, where feature
vectors of parallel flows are aggregated. The topology of a real flow graph extracted from network traffic generated during
execution of a FakeAV Scareware application is shown in (1b).

3 NETWORK FLOW GRAPH EXTRACTION
To decide whether a particular candidate instance of an application
is malicious, we collect all network traffic generated during the exe-
cution of that application instance within a given time interval after
installation. The resulting data consists of a set of network flows
described by feature vectors that can be extracted from pcap-files
using tools such as CICFlowMeter [13]. Thereby, each flow F de-
scribes network traffic associated with one particular (Source-IP,
Source-Port, Destination-IP, Destination-Port, Protocol)-
tuple during the considered time frame and has a feature vector
f ∈ Rd attached to it. Typical features include the number of
packets sent, mean and standard deviation of the packet length, or
minimum and maximum interarrival time of the packets.

From the resulting set of flows F , we extract a flow graph, where
the nodes correspond to endpoints in the network and edges model
communication between these endpoints. Instead of considering
(IP, Port)-tuples, we factor out the port information and consider
IP-endpoints for two main reasons:

(1) Apart from standard ports, port selection is often arbitrary
and could even be subject to port randomization techniques,
leading to arbitrary and potentially misleading graph struc-
ture.

(2) Empirically, we found (IP, Port)-graphs to be very sparse
and rather uninformative. In comparison, IP-graphs exhibit
much more interesting topologies.

More specifically, from a set of flows F , we extract a directed
graphG = (V ,E)where the nodes correspond to endpoints involved
in any flow F ∈ F and a directed edge is added for all pairs (si , ti)
for which there exists a flow Fi ∈ F with source and target IP si and
ti , respectively. The feature vector assigned to this edge aggregates
the feature vectors fi ∈ Rd of all flows Fi along this edge using
a set of five aggregation functions. For each feature, the shape of

the distribution of values along the edge is described using the
first four moments, namely the mean, standard deviation, skew and
kurtosis, and the median value. The aggregate values are computed
for each feature and then concatenated, resulting in a feature vector
xi ∈ R5d for each edge ei ∈ E. The flow graph extraction procedure
is illustrated in Figure 1a. Figure 1b shows an exemplary graph
extracted from real data.

Intuitively, the resulting graph captures how network traffic
flows between different endpoints in the monitored network during
a specific time frame. The graph structure reveals where traffic is
flowing, and the additional edge attributes describe how it is flowing.
Connecting individual flows in a graph provides a much richer
relational representation compared to treating flows individually.
Thus, we expect models learning from these graphs to perform
significantly better at detection and classification tasks than models
which classify individual flows. Our experimental results confirm
this intuition.

We wish to note that such graphs could potentially be used
for further applications, such as intrusion detection or identifying
devices generating malicious traffic.

4 NETWORK FLOW GRAPH NEURAL
NETWORKS

From a machine learning perspective, we consider two different
problems: Supervised graph classification and unsupervised graph
anomaly detection. To solve these problems, we introduce a novel
graph neural network model, which learns expressive representa-
tions from network flow graphs, along with three different variants
of that base model, a supervised graph classifier, an unsupervised
graph autoencoder, and an unsupervised one-class graph neural
network. The different model variants are illustrated in Figure 2c.

123

SSDBM 2021, July 6–7, 2021, Tampa, FL, USA Busch, et al.

+
+ MLP

(a) Node Update

MLP

(b) Edge Update

normal
anomaly

encoder

pooling

encoder

decoder

encoder

classifier

pooling

(c) Model Variants

Figure 2: Our model learns how endpoints in the network communicate with each other by sequentially updating node (2a)
and edge feature vectors (2b) by neural message passing. The learned representations are used by our three model variants, a
graph classifier, a graph autoencoder, and a graph one-class neural network, to solve supervised and unsupervised detection
tasks (2c).

While we focus on malware detection and classification in this
paper, the proposed models can be employed for general learning
problems on (directed) graphs with edge attributes.

4.1 Problem Setting
Formally, we are given a set of graphs G = {G1, . . . ,GN }, a set of
edge feature matrices Xi ∈ Rmi×d , i = 1, . . . ,N , wheremi = |Ei |,
and a label matrix Ŷ ∈ {0, 1}N×c providing a class label for each
graph, where c is the number of classes. For the sake of simplicity,
we restrict ourselves to directed graphs in the following, though our
models can be applied to undirected graphs in a straightforward
fashion. Further, it is not required that the input graphs share the
same topology,

In a supervised anomaly detection setting, class labels could be
binary (normal vs. anomalous) or multi-class (normal class and
different categories or families of anomalies). For supervised classi-
fication, a labeled training dataset is given as described above, and
the task is to train a model which accurately predicts labels for new
graphs not seen by the model during training. For unsupervised
anomaly detection, the training set is not labeled and consists of
normal data and (usually a relatively small fraction of) anomalous
data. The model is required to learn a concept of normality from
the training data and correctly classify new graphs as either being
normal or anomalous.

4.2 Learning Representations of Network Flow
Graphs

Each input instance for our model is a directed graph G = (V ,E)
with adjacency matrix A ∈ {0, 1}n×n and an edge feature matrix
X ∈ Rm×d , wherem := |E |. The representation learning part of
our model computes latent representations of the edges and nodes
in the graph and finally outputs a latent feature vector h(1) ∈ Rh

for each node in the graph. Such a vector intuitively describes how
the corresponding endpoint interacts with other endpoints in the
network. Depending on the availability of labels, variants of our
model compute either predictions or an anomaly score for an input
graph from its latent node feature vectors. The model is trained
end-to-end such that the latent representations are optimized to-
wards the specific task. Given an input graph with edge attributes,
our model performs the following feature transformation and prop-
agation steps to sequentially compute latent representations of the
graph’s nodes and edges:

E(0) = f1(X) ∈ Rm×h (1)

H (0) = f2
([ˆ̃Bin E(0), ˆ̃Bout E(0)]) ∈ Rn×h (2)

E(1) = f3

([
ˆ̃B
T
in H

(0), ˆ̃B
T
out H

(0),E(0)
])

∈ Rm×h (3)

H (1) = f4
([ˆ̃Bin E(1), ˆ̃Bout E(1),H (0)

])
∈ Rn×h , (4)

where [·, ·] denotes concatenation and f1, . . . , f4 are Multi-Layer
Perceptrons (MLPs) with appropriate input and output dimensions.
As per default, we use single-layer MLPs

fi (X) = q (XWi + bi) , (5)

whereWi and bi are the learnable parameters of the model and
q is a non-linear activation. We use ReLU activations and add
batch normalization. The propagation matrices ˆ̃Bin , ˆ̃Bout ∈ Rn×m
are obtained from the node-edge incidence matrices Bin ,Bout ∈
{0, 1}n×m with

(Bin)i j =
{
1 if ∃vk ∈ V : ej = (vk ,vi)
0 else

(6)

124

NF-GNN: Network Flow Graph Neural Networks for Malware Detection and Classification SSDBM 2021, July 6–7, 2021, Tampa, FL, USA

and

(Bout)i j =
{
1 if ∃vk ∈ V : ej = (vi ,vk)
0 else

, (7)

indicating in- and out-going edges for each node, by substituting
non-zero entries with normalized edge weights. Normalization is
applied to preserve the scale of the feature vectors. In particular, we
apply symmetric normalization to the adjacency as in [25] before
computing the node-edge incidence matrices, where the normalized
adjacency matrix is given as ˆ̃A = D̃−1/2ÃD̃−1/2 with Ã = A + I and
degree matrix D̃. Self-loops added for normalization are removed
again such that the graph structure remains unchanged. Illustra-
tions of the performed node and edge feature updates are provided
in Figure 2a and 2b, respectively.

The first network layer learns how endpoints interact with each
other directly by first applying a learnable feature transformation
to the original edge feature vectors (Equation 1) and subsequently
computing node representations by aggregating feature vectors
from neighboring edges (Equation 2). Notably, incoming and out-
going traffic is modeled separately for each node.

The second layer enables the model to learn how endpoints com-
municate indirectly with their 2-hop neighbors. In a first step, the
edge features are updated again by transforming the concatenated
feature vectors of the source and destination node and the edge
features from the previous layer (Equation 3). Concatenating the
edge features from the previous layer as residual connections [19]
gives this layer direct access to previously learned features and aids
in optimization. Such skip-connections have shown to improve the
performance of graph neural networks when applied to node fea-
tures [41], motivating us to apply them to edge features as well. The
edge feature update is followed by an update of the node features
using features of incoming and outgoing edges and skip-connected
node features from the first layer (Equation 4). These node repre-
sentations constitute the final output of our representation learning
module.

In principle, one could add more layers to the model in a simi-
lar fashion to model interaction between more distant endpoints.
However, the flow graphs considered in this paper usually have
a relatively small diameter, such that additional layers might not
result in improved performance but rather lead to over-fitting. In
our experiments, we observed the best performance with either
one or two layers.

4.3 Network Flow Graph Classifier
For supervised graph classification, we append two more layers to
the representation learning module. First, a pooling layer aggre-
gates all node feature vectors in the input graph to a single vector
describing the whole graph. The second layer predicts the graph
label from the pooled graph representation,

h = pool
(
H (1)

)
∈ Rh (8)

y = softmax (Wh + b) ∈ Rc . (9)

Above, pool denotes a pooling function, such as element-wise mean
or maximum, which aggregates all node representations into a sin-
gle embedding vector for thewhole graph. Predictions are computed
by a dense prediction layer with learnable parametersW ∈ Rc×h

and b ∈ Rc and a softmax activation. The model parameters are
then optimized w.r.t. the cross-entropy loss

LCLF (G) =
1

N · c
∑
Gi ∈G
j ∈1, ...,c

−yi j log ŷi j . (10)

We denote this model as NF-GNN-CLF.

4.4 Network Flow Graph Autoencoder
For unsupervised anomaly detection, autoencoder models often
perform well in practice [11]. In general, an autoencoder consists
of two neural network modules. While an encoder learns compact
and expressive representations of the model inputs, a decoder is
supposed to reconstruct the original inputs from their learned rep-
resentations. If the model is trained with exclusively or mostly
normal data, the reconstruction loss can be interpreted as an anom-
aly score, where instances incurring a larger reconstruction loss
are considered more anomalous.

We propose a graph autoencoder model where our representa-
tion learning module acts as an encoder. The latent node represen-
tations H (1) are then used to reconstruct the original edge feature
vectors of the graph using a decoder, which is a mirrored version
of the encoder:

E(2) = f5

([
ˆ̃B
T
in H

(1), ˆ̃B
T
out H

(1)
])

∈ Rm×h (11)

H (2) = f6
([ˆ̃Bin E(2), ˆ̃Bout E(2),H (1)

])
∈ Rn×h (12)

E(3) = f7

([
ˆ̃B
T
in H

(2), ˆ̃B
T
out H

(2),E(2)
])

∈ Rm×h (13)

E(4) = f8
(
E(3)

)
∈ Rm×h (14)

If the encoder uses only a single layer, the first layer of the
decoder (Equation 11–12) is dropped and the node embeddings
H (0) are used as input instead. The model parameters are optimized
w.r.t. a reconstruction loss

LAE (G) = 1
N

∑
Gi ∈G

1
mi

Xi − E
(4)
i

2
F
, (15)

where | | · | |F denotes the Frobenius norm. A similar loss was used
in [10] to reconstruct node attributes, whereas our model operates
on edge-attributed graphs. We denote this variant of our model as
NF-GNN-AE.

4.5 One-Class Network Flow Graph Neural
Network

Though autoencoder models perform well in practice, they don’t
optimize an anomaly detection objective directly. Deep SVDD [30]
combines Support Vector Data Description (SVDD) [35] with a neu-
ral network for anomaly detection in a learned latent space. The
main idea is to learn a transformation into a latent space such that
most instances are mapped into a hypersphere in that space, and
anomalous instances will fall outside of the hypersphere.

We propose a one-class graph neural network consisting of our
representation learning module and an additional pooling layer,

125

SSDBM 2021, July 6–7, 2021, Tampa, FL, USA Busch, et al.

which summarizes each input graph into a single feature vector, sim-
ilarly as for the supervised graph classifier. The model parameters
are optimized w.r.t. a one-class loss

LOC (G) = 1
N

∑
Gi ∈G

∥hi − µ∥22 +
λ

2

4∑
i=1

∥Wi ∥2F , (16)

where µ ∈ Rh denotes the center of the hyper-sphere in latent
space. The center is initialized with the mean embedding vector
of all graphs in G after the first forward-pass and does not change
thereafter. The second part of the loss regularizes the model param-
eters to limit model complexity. Bias vectors have been removed
from all layers to prevent trivial solutions [30]. We denote this
variant of our model as NF-GNN-OC.

5 EXPERIMENTS
We evaluate our approach on a graph dataset that we extract from
the network traffic data provided by the CICAndMal2017 dataset
[26]. We focus on this datasets since it addresses several common
defects shared by other existing datasets, allowing for a realistic and
meaningful evaluation. These issues are addressed by providing
a sufficient number of malware samples from diverse malware
categories and families with a realistic distribution of benign and
malicious applications. To accurately capture dynamic behavior,
each application is executed on an actual physical device instead of
an emulator or a virtual machine.

5.1 Dataset Preparation
Our extracted dataset consists of 2126 samples, where each sample
corresponds to one instance of an android application installed and
executed on a mobile phone. For each sample, all network flows
within the network during execution are captured. For each flow,
80 features are recorded, including, e.g., the number of packets sent,
mean and standard deviation of the packet length, and minimum
and maximum interarrival time of the packets. For a more detailed
description of the data collection process, we refer to [26].

For each sample, 3 different labels are available, a binary label
indicating whether the application is malicious or not, a category
label with 5 possible values indicating the general class of malware,
and a family label with 36 different values indicating the specific
type of malware. Malware families with fewer than 9 samples have
been removed to ensure a reasonable split into train, validation, and
test sets. Consequently, for the family prediction task, only 2071
samples are available.

For each sample, we extract a graph as described in Section 3
and remove the flow-id, timestamp, and endpoint IP and port infor-
mation from the feature set. Additionally, we remove all features
that are constant among all edges of all graphs, leaving 330 edge
features.

To be able to compare against baselines apart from flow- and
conversation-based methods and our graph neural network models,
we construct additional datasets, which represent each sample by a
single feature vector instead of a graph. We consider three different
feature sets:

(1) Flow Features For each sample, we aggregate the features
of all flows for this sample using the same aggregation func-
tions we used for deriving the edge feature vectors and con-
catenate the aggregates to a 318-dimensional feature vector.

(2) Graph Features To evaluate the importance of the graph
topology for the baseline models, we extract a set of struc-
tural features from each graph. In particular, we extract
2 global features (global clustering coefficient and assorta-
tivity) and 8 local node-features (degree, number of 2-hop
neighbors, clustering coefficient, avg. neighbor degree, avg.
neighbor clustering coefficient, number of edges in egonet,
number of edges leaving egonet, betweenness centrality)
that are aggregated over all nodes in the graph, again using
the same aggregation functions. All extracted graph features
are concatenated, leading to a 40-dimensional feature vector.

(3) Combined Features To provide access to both types of
features, we concatenate the flow and graph features to a
combined 358-dimensional feature vector for each sample.

Again, all constant feature columns have been removed. All
feature matrices, including the edge feature matrices for our model,
are standardized before training.

5.2 Supervised Malware Detection and
Classification

We consider three supervised tasks, binary, category, and family
classification. To ensure a fair and unbiased comparison, we follow
a rigorous evaluation protocol.

5.2.1 Experimental Setup. First, we split the dataset into a train,
validation, and test part. Each model is trained on the training set,
hyper-parameters are chosen based on validation set performance
using a grid search, and results are reported on the test set using
the optimal hyper-parameter values. All experiments are repeated
on 30 randomly generated splits, and mean and standard deviation
of the results are reported.

To ensure a balanced training set, we sample 100, 25, and 5
samples per class for training for binary, category, and family clas-
sification, respectively. For binary and category classification, 5%
of the remaining samples are sampled in a stratified fashion for
validation. The remaining samples are used for testing. For family
prediction, 20% of the non-training samples are chosen for valida-
tion to account for smaller class sizes. Stratification ensures that
smaller classes are represented appropriately in the validation set.

Again, to account for class imbalance, we report weighted preci-
sion, recall, and F1 scores. In all considered settings, we checked that
our models outperform the respective best competitor with statisti-
cal significance at P < 1e − 5 according to a Wilcoxon signed-rank
test.

We compare our model against 7 baseline algorithms with differ-
ent inductive bias, Support Vector Machine (SVM) with linear and
RBF-kernel, k-Nearest Neighbor Classifier (KNN), Decision Tree (DT),
Random Forest (RF), Adaboost (ADA) and a Multi-Layer Perceptron
(MLP) with up to two dense layers and ReLU and softmax activa-
tions. Additionally, we compare our graph-based approach against
two existing flow-based approaches [26, 34] and one conversation-
based approach [1]. Since no source code has been made available,

126

NF-GNN: Network Flow Graph Neural Networks for Malware Detection and Classification SSDBM 2021, July 6–7, 2021, Tampa, FL, USA

Weighted Recall Weighted Precision

Binary Category Family Binary Category Family

Flows [26] 88.30 48.50 25.50 85.80 49.90 27.50

Flows + Static + API Calls [34] 95.30 81.00 61.20 95.30 83.30 59.70

Conversations [1] 89.00 79.64 66.59 86.65 80.20 67.21

SVM-LIN 96.26 ± 2.12 72.83 ± 10.03 28.74 ± 15.56 96.72 ± 1.49 87.31 ± 0.80 90.35 ± 0.37

SVM-RBF 96.20 ± 1.51 85.42 ± 3.84 49.96 ± 16.20 96.64 ± 1.06 89.13 ± 2.18 91.52 ± 0.98

KNN 95.71 ± 2.05 78.10 ± 12.29 42.53 ± 17.86 95.75 ± 1.96 87.08 ± 2.40 90.92 ± 0.76

DT 92.65 ± 4.13 73.42 ± 12.19 45.98 ± 30.81 93.79 ± 2.80 85.63 ± 6.59 85.72 ± 18.57

RF 95.85 ± 2.00 84.30 ± 8.24 56.06 ± 19.60 96.24 ± 1.60 90.32 ± 2.60 91.67 ± 0.99

ADA 96.38 ± 1.62 76.02 ± 12.67 42.17 ± 28.82 96.67 ± 1.31 83.97 ± 6.72 87.88 ± 13.35

MLP 97.19 ± 1.19 85.69 ± 4.46 49.56 ± 17.75 97.29 ± 1.07 89.28 ± 2.49 90.23 ± 4.32

NF-GNN-CLF 99.42 ± 0.45 95.41 ± 1.48 91.37 ± 8.39 99.44 ± 0.44 96.14 ± 1.07 93.62 ± 2.52

Table 1: Weighted recall and precision scores for the three supervised tasks. For competing methods, we report the scores
provided by the respective authors. For our baselines and our model, scores are reported in terms of mean and standard
deviation over 30 independent data splits.

we report the scores provided by the respective authors. Results
have been provided only for a single data split.

For all neural network models, we use early stopping based on
validation set performance using a patience of 20 epochs and a max-
imum of 1000 epochs. The default learning rate for all MLP-models
is fixed as 1e − 3. For our model, we additionally apply dropout
regularization before each dense layer and on the propagation ma-
trices. All considered hyper-parameter values for all models are
provided in Appendix A.

Since the original feature vectors are rather high-dimensional,
we introduce an additional hyper-parameter for each baselinemodel
indicating whether or not to perform Principle Component Analysis
(PCA) as feature reduction before trainingwhere 95% of the variance
in the data is retained.

5.2.2 Detection and Classification Performance. Detection and clas-
sification results for all three tasks are reported in terms of weighted
recall and precision in Table 1. For each of our baseline model, the
best feature set (Flow, Graph, or Combined) has been chosen based
on validation set performance.

While some baselines perform notably weaker than others, we
can observe that all baseline models still exceed the best results
reported for flow classification in [26] in terms of both recall and
precision, in most cases by a large margin.

Flow classification with an added static detection model and
additional API-call features [34] performs better than some of our

weaker baselines, especially in terms of recall. However, this ap-
proach is outperformed in terms of precision by all our baselines
on category and family prediction. Our stronger baselines can out-
perform this approach, sometimes even by a large margin, except
in terms of recall for family classification. It is important to note
that [34] use additional data compared to our baselines and our
model. Our approach could, in principle, be extended to also use
this additional data and thus further boost performance.

Conversation-level detection [1] performs worse than [34], ex-
cept for family classification. This competitor outperforms all of
our baselines in terms of recall on the family classification task.
In terms of precision, however, all of our baselines outperform all
competitors by a significant margin.

The competitive and sometimes even vastly superior perfor-
mance of our baselines already supports the main motivation of
our approach to detect and classify malware using network flow
graphs. Notably, this performance has been achieved even under
a rigorous evaluation protocol and using relatively small training
sets. In comparison, the competitors have used training set sizes
between 60% and 80%.

Our proposed graph neural network model NF-GNN-CLF can
further boost performance significantly compared to the baselines.
It is able to significantly exceed the performance of all competitors
on all three tasks in terms of both recall and precision. In particular,
compared to the best competitor, recall can be improved by 4.12%,
14.41%, and 24.78% for binary, category, and family classification,

127

SSDBM 2021, July 6–7, 2021, Tampa, FL, USA Busch, et al.

SVM-LI
N

SVM-R
BF

KNN DT RF
ADA

MLP

NF-G
NN-C

LF
0.85

0.90

0.95

1.00

W
ei

gh
te

d
F1

Label = Binary

SVM-LI
N

SVM-R
BF

KNN DT RF
ADA

MLP

NF-G
NN-C

LF
0.7

0.8

0.9

1.0 Label = Category

SVM-LI
N

SVM-R
BF

KNN DT RF
ADA

MLP

NF-G
NN-C

LF
0.2

0.4

0.6

0.8

1.0 Label = Family

Flow
Graph
Combined
Raw Graph

Figure 3: Weighted F1 scores for the three supervised tasks using different feature sets. Results are reported in terms of mean
and standard deviation over 30 independent data splits.

1 2
Num Layers

0.90

0.95

1.00

W
ei

gh
te

d
F1

Binary
Category
Family

Figure 4: Performance of our model on supervised tasks
with different numbers of layers.

respectively. Precision is improved by 4.14%, 12.84%, and 26.41%.
We wish to note that in most cases, the best competitor [34] uses
additional data that is not available to our baselines and model.
Compared to the other two competitors, the performance gain is
even more significant. The largest improvement is achieved for the
family classification task with a performance increase of over 65%
compared to flow classification [26].

5.2.3 Importance of Different Feature Sets. To get more insight into
the importance of different feature sets for our baseline models,
we compare their performance in terms of weighted F1 score on
different feature sets in Figure 3. We can observe that almost all
baseline models perform best on the combined flow and graph
feature set.

As a notable exception, the linear SVM performs best on category
and family classification using only the graph features, and adding
flow features significantly hurts performance. However, even using
only graph features, this baseline still performs worst among all
baselines. Similarly, DT and ADA perform best using only graph
features for family classification but are also outperformed by other
baselines using the combined feature set. In most cases, the com-
bination boosts performance significantly over the best individual
feature set.

Our model operating on the raw graphs still outperforms all
baselines.

5.2.4 Influence of the Number of Network Layers. To further ex-
amine the influence of the number of layers on our model’s per-
formance, we compare different choices for the supervised clas-
sification tasks in Figure 4. We can observe that modeling 2-hop
interactions between endpoints can boost performance on the bi-
nary prediction tasks, while direct interactions are more crucial for
the remaining two tasks. In general, performance remains relatively
stable for different numbers of layers.

5.3 Unsupervised Malware Detection
We further evaluate our approach in a more realistic unsupervised
setting, where no labels are available for training.

5.3.1 Experimental Setup. Our experimental setup is the same as
in the supervised case with a few adjustments. To ensure a realistic
distribution of benign and malicious samples, we perform stratified
sampling to first split 20% of the samples for training and then 10%
of the remaining samples for validation. The remaining samples
are used for testing. All algorithms obtain access to the labeled
validation set for hyper-parameter optimization, but training is still
unsupervised. We evaluate detection performance using AUROC
since it inherently adjusts for class imbalance [9].

We evaluate against a set of popular baseline algorithms for
anomaly detection, One-class SVM (OC-SVM) with linear and RBF-
kernel, Local Outlier Factor (LOF), Kernel Density Estimation (KDE),
Isolation Forest (IF), Autoencoder with dense layers (MLP-AE) and
One-Class Neural Network with dense layers (MLP-OC). Again, all
considered hyper-parameter values are provided in the supplement.
Since the flow- and conversation-based competitors [1, 26, 34] only
consider supervised detection and classification, we are not able to
include them for comparison.

5.3.2 Detection Performance. Table 2 shows the detection results
for different feature sets. Results for different feature sets are addi-
tionally visualized in Figure 6. We can observe that several models
report better prediction performance using only structural graph
features. Thus, compared to the supervised setting, it is even more
important to consider the topology of the network flow graph.
While both neural network baselines, as well as KDE and IF already
exhibit high detection performance, our models can again boost
performance by a significant margin, demonstrating the importance

128

NF-GNN: Network Flow Graph Neural Networks for Malware Detection and Classification SSDBM 2021, July 6–7, 2021, Tampa, FL, USA

OC-SVM-LIN OC-SVM-RBF LOF KDE IF MLP-AE MLP-OC NF-GNN-AE NF-GNN-OC

Flow 57.17 ± 4.81 70.01 ± 1.90 73.15 ± 1.22 72.50 ± 1.03 70.39 ± 1.12 71.64 ± 1.20 81.29 ± 4.07 | |
Graph 54.60 ± 19.32 67.19 ± 2.89 58.57 ± 5.12 91.79 ± 0.66 90.73 ± 1.31 89.56 ± 0.77 94.00 ± 1.32 95.34 ± 0.85 96.75 ± 1.22

Combined 58.21 ± 4.83 76.07 ± 1.78 77.94 ± 1.56 86.60 ± 1.07 85.73 ± 2.21 83.04 ± 0.78 94.03 ± 4.47 | |

Table 2: AUROC scores for unsupervised malware detection in terms of mean and standard deviation over 30 independent
data splits. Our models use the raw graphs as input instead of the features extracted for the baseline models.

0.01 0.05 0.1 0.15 0.2
Train Fraction

0.6

0.8

1.0

AU
R

O
C

0.01 0.05 0.1 0.15 0.2
Train Fraction

0.900

0.925

0.950

0.975 NF-GNN-OC
NF-GNN-AE
MLP-OC
MLP-AE
IF
KDE
LOF
OC-SVM-RBF
OC-SVM-LIN

Figure 5: AUROC scores for unsupervised malware detection using different fractions of training samples. The right-hand
figure provides an enlarged view of the upper part of the left-hand figure.

OC-SVM-LI
N

OC-SVM-R
BF

LO
F

KDE IF

MLP
-A

E

MLP
-O

C

NF-G
NN-A

E

NF-G
NN-O

C

0.5

0.6

0.7

0.8

0.9

1.0

AU
R

O
C

Flow
Graph
Combined
Raw Graph

Figure 6: AUROC scores for unsupervised malware detec-
tion using different feature sets.

of learning suitable representations from network flow graphs. We
wish to emphasize that the performance of our unsupervised mod-
els, NF-GNN-AE and NF-GNN-OC, almost matches that of their
supervised binary classification counterpart, NF-GNN-CLF, even
without any labels provided for training.

5.3.3 Influence of the Training Set Size. In practice, there is often a
shortage of available training data, even unlabeled data. Thus, we
further investigate performance using different amounts of training
data where we gradually reduce the fraction of training samples
from 20% to 1%. For each training set size, a new grid search is
performed to determine the best hyper-parameters for each model.
Figure 5 shows that while some models perform worse with more

available training data, possibly due to overfitting to anomalies in
the training set, especially MLP-OC and NF-GNN-OC benefit from
more training data. For all training set sizes, both of our models
consistently outperform all competing baselines.

6 CONCLUSION
We proposed a novel network flow graph-based approach to mal-
ware detection and classification, where we monitor network traffic
generated by a candidate application and extract a flow graph,
which models communication between devices during the consid-
ered time frame. In addition, we proposed a novel edge feature-
based graph neural network model along with three different model
variants for supervised and unsupervised settings. Empirically, we
found that even baseline models operating on manually extracted
graph and flow features perform verywell in all settings. In addition,
our proposed models automatically learn suitable representations
of network flow graphs and can boost performance even further,
significantly outperforming all competitors on all tasks. Ablation
studies examined the influence of different feature sets, the number
of network layers, and training set size on detection and classifica-
tion performance. In future work, we plan to consider additional
network architectures, such as attention, model temporal dynamics,
and consider explainability of model decisions.

ACKNOWLEDGMENTS
This work was done during an internship at CT RDA BAM IBI-US,
Siemens Technology, Princeton, NJ, USA.

129

SSDBM 2021, July 6–7, 2021, Tampa, FL, USA Busch, et al.

REFERENCES
[1] Mohammad Abuthawabeh and Khaled Mahmoud. 2020. Enhanced android

malware detection and family classification using conversation-level network
traffic features. International Arab Journal of Information Technology 17 (2020),
607–614.

[2] Blake Anderson, Daniel Quist, Joshua Neil, Curtis Storlie, and Terran Lane. 2011.
Graph-based malware detection using dynamic analysis. Journal in computer
Virology 7, 4 (2011), 247–258.

[3] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez,
Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam
Santoro, Ryan Faulkner, et al. 2018. Relational inductive biases, deep learning,
and graph networks. arXiv preprint arXiv:1806.01261 (2018).

[4] Zahra Bazrafshan, Hashem Hashemi, Seyed Mehdi Hazrati Fard, and Ali Hamzeh.
2013. A survey on heuristic malware detection techniques. In The 5th Conference
on Information and Knowledge Technology. IEEE, 113–120.

[5] Dmitri Bekerman, Bracha Shapira, Lior Rokach, and Ariel Bar. 2015. Unknown
malware detection using network traffic classification. In 2015 IEEE Conference
on Communications and Network Security (CNS). IEEE, 134–142.

[6] Iram Bibi, Adnan Akhunzada, Jahanzaib Malik, Ghufran Ahmed, and Mohsin
Raza. 2019. An effective android ransomware detection through multi-factor
feature filtration and recurrent neural network. In 2019 UK/China Emerging
Technologies (UCET). IEEE, 1–4.

[7] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Van-
dergheynst. 2017. Geometric deep learning: going beyond euclidean data. IEEE
Signal Processing Magazine 34, 4 (2017), 18–42.

[8] Julian Busch, Jiaxing Pi, and Thomas Seidl. 2020. PushNet: Efficient and Adaptive
Neural Message Passing. In 24th European Conference on Artificial Intelligence
(ECAI).

[9] Guilherme O Campos, Arthur Zimek, Jörg Sander, Ricardo JGB Campello, Barbora
Micenková, Erich Schubert, Ira Assent, and Michael E Houle. 2016. On the
evaluation of unsupervised outlier detection: measures, datasets, and an empirical
study. Data mining and knowledge discovery 30, 4 (2016), 891–927.

[10] Keting Cen, Huawei Shen, Jinhua Gao, Qi Cao, Bingbing Xu, and Xueqi Cheng.
2020. ANAE: Learning Node Context Representation for Attributed Network
Embedding. arXiv preprint arXiv:1906.08745 (2020).

[11] Raghavendra Chalapathy and Sanjay Chawla. 2019. Deep learning for anomaly
detection: A survey. arXiv preprint arXiv:1901.03407 (2019).

[12] Rong Chen, Yangyang Li, andWeiwei Fang. 2019. Android malware identification
based on traffic analysis. In International Conference on Artificial Intelligence and
Security. Springer, 293–303.

[13] Gerard Draper-Gil, Arash Habibi Lashkari, Mohammad Saiful Islam Mamun,
and Ali A Ghorbani. 2016. Characterization of encrypted and vpn traffic using
time-related. In Proceedings of the 2nd international conference on information
systems security and privacy (ICISSP). 407–414.

[14] Parvez Faruki, Vijay Laxmi, Manoj Singh Gaur, and P Vinod. 2012. Mining
control flow graph as api call-grams to detect portable executable malware. In
Proceedings of the Fifth International Conference on Security of Information and
Networks. 130–137.

[15] Daniel Gibert, Carles Mateu, and Jordi Planes. 2020. The rise of machine learning
for detection and classification of malware: Research developments, trends and
challenges. Journal of Network and Computer Applications 153 (2020), 102526.

[16] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E
Dahl. 2017. Neural message passing for quantum chemistry. In International
Conference on Machine Learning. PMLR, 1263–1272.

[17] Liyu Gong and Qiang Cheng. 2019. Exploiting edge features for graph neural
networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 9211–9219.

[18] Mehadi Hassen and Philip K Chan. 2017. Scalable function call graph-based
malware classification. In Proceedings of the Seventh ACM on Conference on Data
and Application Security and Privacy. 239–248.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[20] Haodi Jiang, Turki Turki, and Jason TL Wang. 2018. DLGraph: Malware detec-
tion using deep learning and graph embedding. In 2018 17th IEEE international
conference on machine learning and applications (ICMLA). IEEE, 1029–1033.

[21] Xiaodong Jiang, Ronghang Zhu, Sheng Li, and Pengsheng Ji. 2020. Co-embedding
of Nodes and Edges with Graph Neural Networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence (2020).

[22] Teenu S John, Tony Thomas, and Sabu Emmanuel. 2020. Graph Convolutional
Networks for Android Malware Detection with System Call Graphs. In 2020 Third
ISEA Conference on Security and Privacy (ISEA-ISAP). IEEE, 162–170.

[23] Joris Kinable and Orestis Kostakis. 2011. Malware classification based on call
graph clustering. Journal in computer virology 7, 4 (2011), 233–245.

[24] Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel.
2018. Neural relational inference for interacting systems. In International Confer-
ence on Machine Learning. PMLR, 2688–2697.

[25] Thomas N Kipf and MaxWelling. 2017. Semi-supervised classification with graph
convolutional networks. In 5th International Conference on Learning Representa-
tions (ICLR).

[26] Arash Habibi Lashkari, Andi Fitriah A Kadir, Laya Taheri, and Ali A Ghorbani.
2018. Toward developing a systematic approach to generate benchmark android
malware datasets and classification. In 2018 International Carnahan Conference
on Security Technology (ICCST). IEEE, 1–7.

[27] Lu Lin and HongningWang. 2020. Graph Attention Networks over Edge Content-
Based Channels. In Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. 1819–1827.

[28] AL-Hawawreh Muna, Nour Moustafa, and Elena Sitnikova. 2018. Identification
of malicious activities in industrial internet of things based on deep learning
models. Journal of information security and applications 41 (2018), 1–11.

[29] Paul Prasse, Lukáš Machlica, Tomáš Pevnỳ, Jiří Havelka, and Tobias Scheffer.
2017. Malware detection by analysing network traffic with neural networks. In
2017 IEEE Security and Privacy Workshops (SPW). IEEE, 205–210.

[30] Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed
Siddiqui, Alexander Binder, Emmanuel Müller, and Marius Kloft. 2018. Deep
one-class classification. In International conference on machine learning. PMLR,
4393–4402.

[31] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan
Titov, and Max Welling. 2018. Modeling relational data with graph convolutional
networks. In European semantic web conference. Springer, 593–607.

[32] Chao Shang, Qinqing Liu, Ko-Shin Chen, Jiangwen Sun, Jin Lu, Jinfeng Yi, and
Jinbo Bi. 2018. Edge attention-based multi-relational graph convolutional net-
works. arXiv preprint arXiv:1802.04944 (2018).

[33] Martin Simonovsky and Nikos Komodakis. 2017. Dynamic edge-conditioned
filters in convolutional neural networks on graphs. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 3693–3702.

[34] Laya Taheri, Andi Fitriah Abdul Kadir, and Arash Habibi Lashkari. 2019. Exten-
sible android malware detection and family classification using network-flows
and API-calls. In 2019 International Carnahan Conference on Security Technology
(ICCST). IEEE, 1–8.

[35] David MJ Tax and Robert PW Duin. 2004. Support vector data description.
Machine learning 54, 1 (2004), 45–66.

[36] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2018. Graph attention networks. In 6th International
Conference on Learning Representations (ICLR).

[37] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian
Weinberger. 2019. Simplifying graph convolutional networks. In International
conference on machine learning. PMLR, 6861–6871.

[38] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
S Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE
transactions on neural networks and learning systems (2020).

[39] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
S Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE
transactions on neural networks and learning systems (2020).

[40] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How pow-
erful are graph neural networks?. In 7th International Conference on Learning
Representations (ICLR).

[41] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi
Kawarabayashi, and Stefanie Jegelka. 2018. Representation learning on graphs
with jumping knowledge networks. In International Conference on Machine Learn-
ing. PMLR, 5453–5462.

[42] Xikun Zhang, Chang Xu, Xinmei Tian, and Dacheng Tao. 2019. Graph edge convo-
lutional neural networks for skeleton-based action recognition. IEEE transactions
on neural networks and learning systems 31, 8 (2019), 3047–3060.

A HYPER-PARAMETER OPTIMIZATION
For the sake of a fair comparison, hyper-parameters of all models
are optimized by a grid search based on performance on a separate
validation set. For each algorithm, we consider a set of possible
values for each of its adjustable hyper-parameters. While some
common choices can be found in the literature, for the remaining
hyper-parameters, we determine potential values, which seemmost
promising within the available computational budget. The consid-
ered hyper-parameter values for all supervised models can be found
in Table 3. The values considered for the unsupervised models are
provided in Table 4.

130

NF-GNN: Network Flow Graph Neural Networks for Malware Detection and Classification SSDBM 2021, July 6–7, 2021, Tampa, FL, USA

Algorithm Parameter Values

Support Vector Machine (SVM) C [2−7, 2−6, . . . , 27]
γ (RBF-kernel) [2−7, 2−6, . . . , 27]

k-Nearest Neighbor Classifier (KNN) num. neighbors [1, 2, 3, 5, 8, 13, 21]
Decision Tree (DT) max. depth [2, 5, 10,None]

max. features [sqrt ,None]
Random Forest (RF) num. estimators [10, 100, 1000]

criterion [entropy,дini]
max. features [sqrt ,None]

Adaboost (ADA) num. estimators [10, 100, 1000]
learning rate [1e − 3, 1e − 2, 1e − 1, 1]

Multi-Layer Perceptron (MLP) num. layers [1, 2]
num. hidden [16, 32, 64, 128]
L2-reg. [0, 1e − 1, 1e − 2, 1e − 3, 1e − 4]

NF-GNN-CLF (ours) num. layers [1, 2]
num. hidden [16, 32, 64, 128]
learning rate [1e − 3, 1e − 2]
dropout prob. [0, 0.2, 0.4, 0.6]
pool [mean,add,max]

Table 3: Hyper-parameter values used in grid search for supervised algorithms.

131

SSDBM 2021, July 6–7, 2021, Tampa, FL, USA Busch, et al.

Algorithm Parameter Values

One-class SVM (OC-SVM) ν [1e − 2, 1e − 1]
γ (RBF-kernel) [2−10, 2−9, . . . , 210]

Local Outlier Factor (LOF) num. neighbors [1, 2, 3, 5, 8, 13, 21]
Kernel Density Estimation (KDE) bandwidth [20.5, 2, . . . , 25]
Isolation Forest (IF) num. estimators [10, 100, 1000]

max. features [256,None]
Autoencoder (MLP-AE) num. layers [1, 2]

num. hidden [16, 32, 64, 128]
L2-reg. [0, 1e − 1, 1e − 2, 1e − 3, 1e − 4]

One-class MLP (MLP-OC) num. layers [1, 2]
num. hidden [16, 32, 64, 128]
L2-reg. [0, 1e − 1, 1e − 2, 1e − 3, 1e − 4]

NF-GNN-AE (ours) num. layers [1, 2]
num. hidden [16, 32, 64, 128]
learning rate [1e − 3, 1e − 2]
dropout prob. [0, 0.2, 0.4, 0.6]
pool [mean,add,max]

NF-GNN-OC (ours) num. layers [1, 2]
num. hidden [16, 32, 64, 128]
learning rate [1e − 3, 1e − 2]
dropout prob. [0, 0.2, 0.4, 0.6]
pool [mean,add,max]

Table 4: Hyper-parameter values used in grid search for unsupervised algorithms.

132

Semi-Supervised Learning on Graphs Based on Local Label
Distributions

Evgeniy Faerman, Felix Borutta, Julian Busch, Matthias Schubert
Ludwig-Maximilians-Universität München

Munich, Germany
{faerman,borutta,busch,schubert}@dbs.ifi.lmu.de

ABSTRACT
Most approaches that tackle the problem of node classification con-
sider nodes to be similar, if they have shared neighbors or are close
to each other in the graph. Recent methods for attributed graphs
additionally take attributes of neighboring nodes into account. We
argue that the class labels of the neighbors bear important informa-
tion and considering them helps to improve classification quality.
Two nodes which are similar based on class labels in their neigh-
borhood do not need to be close-by in the graph and may even
belong to different connected components. In this work, we pro-
pose a novel approach for the semi-supervised node classification.
Precisely, we propose a new node embedding which is based on
the class labels in the local neighborhood of a node. We show that
this is a different setting from attribute-based embeddings and thus,
we propose a new method to learn label-based node embeddings
which can mirror a variety of relations between the class labels of
neighboring nodes. Our experimental evaluation demonstrates that
our new methods can significantly improve the prediction quality
on real world data sets.

KEYWORDS
Feature learning, Graph representations, Node embeddings, Node
classification
ACM Reference Format:
Evgeniy Faerman, Felix Borutta, Julian Busch, Matthias Schubert. 2018.
Semi-Supervised Learning on Graphs Based on Local Label Distributions.
In ACM Workshop@SIGKDD (MLG’18). ACM, London, UK, 8 pages.

1 INTRODUCTION
Graphs are the most general way to represent structured data. In
general, a set of entities with some given pairwise relationships
between them can be modeled as a graph G = (V ,E) with a cor-
responding node set V and an edge set E ⊆ V × V . Real-world
examples of graph-structured data are abundant and include social
networks, co-citation networks or biological networks.

In addition to the graph structure, further attribute information
may be provided for the entities described by the graph nodes. In
an attributed graph, each node vi ∈ V is associated with an at-
tribute vector fi ∈ Rd . For instance, social network users might be
enriched with personal information or documents in a co-citation

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MLG’18, August 2018, London, UK
© 2018 Copyright held by the owner/author(s).
.

network might be described by bag-of-words vectors. The increas-
ing relevance of graph-structured data has been accompanied by
an increased interest in learning algorithms which can leverage
underlying graph structure to make accurate predictions for the
modeled entities.

An important semi-supervised learning task on graphs is node
classification, where each node vi ∈ V can be associated with a
set of class labels (simply referred to as labels in the following)
represented by a label vector yi ∈ {0, 1}l where l is the number of
possible labels. Given a set of already labeled nodes in a graph, the
goal is to predict new likely labels for unlabeled nodes. The task is
semi-supervised in the sense that connectivity information about
the whole graph is available and at least some of the class labels
are already known. In the case of attributed graphs, attributes of all
nodes can additionally be used for prediction, including those of the
unlabeled nodes in the graph. Important applications include rec-
ommendation in social networks, where the node labels represent
user interests, or document classification in co-citation networks,
where the node labels indicate associated fields of research.

Approaches for node classification on graphs may employ ad-
ditional node attributes or operate on the graph structure alone.
Wewill refer to these approaches as attribute-based and connectivity-
based approaches, respectively. Among the most successful
connectivity-based methods are node embedding techniques [7,
9, 13, 16, 17, 21, 32, 33, 37, 40]. An underlying assumption of these
techniques is that nodes which are closely connected in the graph,
should have similar labels, which is commonly referred to as ho-
mophily [25]. Our method does not rely on the homophily assump-
tion, but is still able to relate close-by nodes. Furthermore, unlike
most node embedding techniques our new approach can be used to
classify nodes unseen during training. In the attribute-based setting
the graph structure can be incorporated in different ways, for in-
stance by using regularization [5, 41, 44, 45], combining attributes
with node embeddings [42], or aggregating them over local neigh-
borhoods [4, 8, 12, 20, 23, 26, 27, 39]. While regularization-based
methods rely on the homophily assumption and most of them are
not able to classify instances unseen during training, all other meth-
ods focus on node attributes. In addition to connectivity and node
attributes, the labels available during training further provide valu-
able information that is in general complementary to connectivity
and attribute features, and are useful to improve classification. In
general learning tasks on independent and identically distributed
(iid) data, labels indicate that an observation is sampled from a
particular distribution. However, in a graph we have non-iid data
and thus, the labels of connected objects allow for a novel use of
label information which has not been exploited before for learning
graph embeddings.

MLG’18, August 2018, London, UK E. Faerman, F. Borutta, J, Busch, M. Schubert

Figure 1: Consider a communication network with nodes
labeled according to their device type (user, server, data-
base, printer). Assume the labels for the database and printer
nodes in the right connected component are unknownwhile
the remaining labels are provided. Further node attributes
are not given. We can observe that the roles of printers
and databases are clearly defined by the labels of their
neighboring nodes, e.g., printers are not connected to server
nodes. Homophily-based methods would fail to classify
these nodes correctly, since their labels differ from their
neighbors. Further, connectivity alone does not explain the
roles, since for instance the printer and database in the left
part of the graph have the same degree and even their neigh-
bors have the same degrees.

In this paper, we propose a label-based approach to learn a node
embedding which allows for more accurate node classifications.
The main idea of our approach is that there often exists a correlation
between the labels of a node and the distribution of labels in its
local neighborhood. Thus, considering the local label distribution
when computing a node embedding can exploit this correlation to
improve the descriptiveness of the learned embedding. In Figure
1, we illustrate this for a typical case for which the label of a node
is determined by the labels of neighboring nodes and not by node
attributes or connectivity. As an additional example, the function of
a protein can be expected to correlate strongly with the functions of
interacting proteins. As mentioned above, we assume that the labels
of at least some of the neighboring nodes are known for each new
node with unknown labels. In the majority of applications, this is
realistic because new nodes usually connect to already known parts
of the network. For instance, new papers usually cite established
articles and new members of a social network will usually already
know multiple friends in the network to connect to.

Though labels can be considered as another type of node at-
tributes, there exists an important difference between labels and
attributes which prevents attribute-based embeddings to general-
ize well on label information. Though the attribute values of the
predicted node are allowed to be used for learning the embedding,
using the node labels even in an transitive way leads to overfitting
and a bad generalization performance of the learned embedding.
We will discuss these issues in more detail in Section 3 and intro-
duce a simple baseline method. In our new method, we aggregate
labels from relevant nodes directly and thus, we can completely
exclude any influence of the nodes’ own labels. In a first step, we
determine the relevant neighbors of a given node based on Ap-
proximate Personalized PageRank (APPR). Since this might be an
expensive task for large graphs, we use an adaption of the highly
efficient algorithm from [36]. After determining the neighborhood,
we compute the label distribution within the neighborhood and

classify the node based on this novel representation. We compare
our new representation to state-of-the-art graph embeddings based
on several benchmark datasets for node classification.

The remainder of the paper is structured as follows: After provid-
ing a formal problem definition for our approach in Section 2, we
introduce our new method in Section 3, starting with a discussion
on the possibility of incorporating label-based features into existing
models in Section 3.1. After a discussion of related work in Section
4, the performance of our model is evaluated experimentally and
compared to state-of-the-art methods in Section 5. Finally, Section
6 concludes the paper and proposes directions for future work.
2 PROBLEM SETTING
We consider (possibly directed) graphs G = (V ,E), with node set
V = {v1, . . . ,vn } and edge set E ⊆ V × V . A graph can be rep-
resented by an n × n adjacency matrix A = (ai j)vi ,vj ∈V , where
ai j ∈ R denotes the weight of the edge (vi ,vj). In case of an un-
weighted graph, ai, j = 1 indicates the existence and ai, j = 0 the
absence of an edge between vi and vj . Furthermore, we do not
allow self-links, i.e., ai,i = 0 for all nodes vi ∈ V . In an attributed
graph, additional node attributes are provided in the form of an
attribute vector fi ∈ Rd for each nodevi . The attribute information
for the whole graph can be represented by an n ×d attribute matrix
F, where the ith row of F corresponds tovi ’s attribute vector fi . Let
us note that an important difference between attributes and labels
is that attributes are usually known for all nodes, in particular those
nodes without known labels.

Our problem setting is semi-supervised node classification, where
the node set V is partitioned into a set of labeled nodes L and
unlabeled nodes U , such that V = L ∪U and L ∩U = ∅. Thereby,
each node vi ∈ V is associated with a label vector yi ∈ {0, 1}l ,
where l is the number of possible labels and an entry one indicates
the presence of the corresponding label for a certain node. The
labels available for training can be represented by an n × l label
matrix Ytrain, where the i’ths row of Ytrain corresponds to the label
vector yi of vi if vi ∈ L. For unlabeled nodes, we assign constant
zero vectors. The task is now to train a classifier using A, Ytrain
and possibly F which accurately predicts yi for each vi ∈ U . In
multi-class classification, each node is assigned to exactly one class,
such that yi = ej is the j’s unit vector, if vi is assigned to class j.
Multi-label classification denotes the general case, in which each
node may be assigned to one or more classes and the goal is to
predict all labels assigned to a particular node.
3 SEMI-SUPERVISED LEARNING ON GRAPHS

BASED ON LOCAL LABEL DISTRIBUTION
3.1 Labels as Attributes
The main idea of our approach is to learn a more descriptive node
representation by incorporating the known labels in the neigh-
borhood of a node. In the following, we will show why existing
methods are not suitable to consider this information. Methods
relying on neighborhood similarity [7, 9, 13, 16, 32, 37, 40] learn
representations in an unsupervised manner and thus, only rely
on the topology of the graph and not on attributes or labels. The
Planetoid-T model [42] considers labels by partly enforcing the
similarity between members of the same class and therefore, nodes
are related to each other based only on their own labels.

Semi-Supervised Learning on Graphs Based on Local Label Distributions MLG’18, August 2018, London, UK

Graph Neural Networks [24, 34] or Graph Convolution Networks
(GCN) [4, 8, 12, 20, 23, 26, 27, 39] are special cases of a Message
Passing Neural Network (MPNN) [14] which is a framework de-
scribing a family of neural network based models for attributed
graphs. All MPNN methods have in common that they use some
differentiable function to iteratively compute messages for each
node which are passed to all its neighbors. These messages build
an input to a differentiable update function which computes new
node representations h:

mt+1
v =

∑
w ∈N (v)

Mt (htv ,htw),

ht+1v = Ut (htv ,mt+1
v).

Here t denotes the current iteration, htv is the representation of
nodev in iteration t and vectorh0v corresponds to the input features
of node v . N (v) denotes the set of direct neighbors of node v ,Mt is
the message andUt the set of update functions. The obvious way
to integrate the neighborhood label information into an MPNN-
based prediction model is to include the label information into the
messages directed to the neighbors in the first iteration. However,
even after removing self-links each node would receive information
about its own labels already in the second iteration during training.
Thus, models learned on such representations overfit on the nodes’
own labels and do not generalize well in the inference step where
the node labels are unknown. The same applies to directed graphs
with cycles. Therefore, applying MPNN models to communicate
neighboring labels is restricted to one iteration only. We use a
corresponding model as a baseline for our experiments.

Note that this problem does not apply to label diffusion algo-
rithms [15, 19, 44, 45]. However, these methods infer node labels
based on majority vote in local neighborhoods and do not make
use of recurrent patterns in graph.

3.2 General Approach
To present our method for semi-supervised learning on graphs
using local label distributions we first outline an efficient algorithm
for computing node neighborhoods based on Approximated Person-
alized PageRank (APPR). Afterwards, we describe how to create
node representations based on the label distribution in the local
neighborhood based on APPR. Finally, the node representations
can be used as feature descriptors in arbitrary classification models.

The Personalized PageRank (PPR) corresponds to the PageRank
algorithm [31], where the probabilities in the starting vector s are
biased towards some set of nodes. The result is the “importance” of
all nodes in the graph from the viewpoint of the nodes in s .

The push algorithm described in [18] and [6] is an efficient way
to compute an approximation of the Personalized PageRank (APPR)
vector if the start distribution vector s is sparse. The idea behind the
push algorithm is only to consider a node in the local neighborhood
if the probability to visit the node is significantly larger than the
probability to visit any other node from the rest of the graph. This
leads to a sparse solution meaning that only relatively few nodes of
the underlying graph are contained in the resulting APPR vector.

Algorithm 1 describes the computation of APPR using a variant
of the push operation on lazy random walk transition matrices
of undirected unweighted graphs. This algorithm was proposed
in [3], where APPR is used to partition graphs. We describe an

Algorithm 1 ApproximatePPR
Input: Starting vector s , Teleportation probability α , Approximation threshold ϵ
Output: APPR vector p
1: p = ®0, r = s
2: while r (u) ≥ ϵd (u) for some vertex u do
3: pick any u where r (u) ≥ ϵd (u)
4: push(u)
5: end while
6: return p

Algorithm 2 push
Input: Vertex u
1: p(u) = p(u) + (2α/(1 + α))r (u)
2: for v with (u, v) ∈ E do
3: r (v) = r (v) + ((1 − α)/(1 + α))r (u)/d (u)
4: end for
5: r (u) = 0

adapted version from [36] which converges faster. The algorithm
maintains two vectors: the solution vector p and a residual vector
r . The vector p is the current approximation of the PPR vector and
vector r contains the approximation error or the not yet distributed
probability mass. p(u) and r (u) are the entries in vectors p and
r corresponding to node u, d(u) is the degree of node u. In each
iteration the algorithm selects a node with sufficient probability
mass in vector r . This probability mass is spread between the node
entry inp and the entries of its direct neighbors in r . In each step, the
exact PPR is the linear combination of the current solution vector
p and the PPR solution for r , i.e., pr (s) = p + pr (r). The algorithm
can also be trivially adapted to directed graphs and graphs with
weighted edges.

3.2.1 Local Label Distribution. In our approach we first compute
the APPR vector for each node. Before APPR is computed for node
v , the corresponding entry s(v) in starting vector s is set to one and
all other entries to zero. Therefore, the APPR vector of v describes
the importance of local neighbors only from its point of view.

In the APPR result matrix APPR, each row corresponds to the
APPR vector of the corresponding node. The local label distribution
representation X ∈ Rn×l is computed by manipulating APPR such
that the diagonal is set to zero to exlude information about the
own labels and then multiplying the resulting matrix �APPR with
the label matrix Ytrain. The entry Xv yj can be interpreted as the
probability that a random walk starting from node v stops at a
neighbor with label yj .

The local label distribution can be used as a node embedding
vector which can be passed into an arbitrary classification algorithm.
In our experiments, we employ a multi-layer perceptron with three
layers, i.e., an input layer taking the local label distribution matrixX
as input, a dense hidden layer with 16 units and an ReLU activation,
and finally a dense layer retrieving the output. Formally, the hidden
layer H can be described as

H = ReLU (�APPR · Ytrain ·W1)
with W1 denoting the weight matrix. Note that the bias is omitted
for the sake of better readability.

4 RELATEDWORK
Numerous approaches for semi-supervised learning on graphs have
been proposed recently. These can be categorized into unsupervised
node embedding techniques and semi-supervised techniques.

MLG’18, August 2018, London, UK E. Faerman, F. Borutta, J, Busch, M. Schubert

4.1 Unsupervised Node Embedding
Lots of recent developments related to learning from structural
relationships have focussed on learning node embeddings, where
a latent vector representation is learned for each node, reflecting
its connectivity in the underlying graph. The learned node embed-
dings can be used as an input to a subsequent down-stream task,
such as node classification. Random walk based methods [16, 32]
sample a number of random walks from the graph and nodes are
related if they have common neighbors. LINE [37] is another vari-
ant, which considers direct first- and second-order proximities
instead of random walks. Graph2Gauss [7] learns similarity to hop
neighborhoods and embeds each node as a Gaussian distribution
to allow for uncertainty in the representation. GECS [2] uses con-
nections subgraphs to determine appropriate node neighborhood.
More closely related to our approach, LASAGNE [13] relies on
APPR to determine relevant context nodes. Other works perform
matrix factorization. For instance, GraRep [9] factorizes a sequence
of k-step log-probability matrices with SVD and concatenates the
resulting low-dimensional node representations to form the final
representations. Abu-El-Haija et al. propose matrix factorization
of random-walk occurrence matrix with different approaches to
determine context window size distribution [1]. SDNE [40] uses a
multi-layer auto-encoder model to capture non-linear structures
based on direct first- and second-order proximities. Authors of
[10] propose embeddings in hyperbolic space. HARP [11] addresses
the local minima problem and introduce an iterative scheme for
learning of node representations which can be used with different
embedding learning methods. An input graph is coarsened on dif-
ferent levels and node representations are learned starting with
the coarsest graph and learned embeddings are provided as initial-
izations for the embeddings of subsequent finer graphs. While the
above methods rely on the homophily assumption, struc2vec [33]
aims at learning representations which relate structurally similar
nodes instead of nodes which are close in the graph. It does so by
using degree sequences in neighborhoods of different sizes. All of
the above approaches are transductive in the sense that labels can
only be predicted for unlabeled nodes observed already at training
time. The GraphSAGE [17] framework introduces inductive node
embeddings. The basic idea is to learn an embedding function by
sampling and aggregating node attributes in local neighborhoods.
The embedding function can further be learned with a supervised
loss function. Inductive models are also obtained by considering
node attributes. Variational Graph Auto-Encoders [21] learn node
representations using a variational auto-encoder, where the en-
coder is a two-layer GCN. The model can be applied to attributed
and non-attributed graphs.
4.2 Semi-Supervised Learning on Graphs
Compared to separately optimizing steps in a semi-supervised learn-
ing pipeline, as is the case for semi-supervised learning with pre-
trained node embeddings, end-to-end training usually leads to bet-
ter performance on the supervised learning objective.

One direction is Laplacian Regularization, where the prediction
loss is augmented with an unsupervised loss function based on the
graph’s Laplacian matrix, encoding the homophily assumption that
close-by nodes should have the same label. Related approaches in-
cludeManifold Regularization [5], a kernel-based method, and Deep

Semi-Supervised Embedding [41] which incorporates node embed-
dings by augmenting neural network models with an embedding
layer. Both of these methods generalize to attributed graphs. The
ICA algorithm [30] starts with the observed labels and iteratively
classifies unlabeled nodes based on aggregated node attributes in
local neighborhoods. At the end of each phase, the nodes classified
with highest certainty are added to the ground truth for the next
phase. Label Diffusion methods [15, 19, 44, 45] are more closely re-
lated to our work. Similarly to our method they create embeddings
based on labels in local neighborhoods. The basic idea is based on
mincuts [15] and labels are inferred based on majority vote. There-
fore, Label Diffusion approaches do not exploit the effect of similar
label distributions in a graph. More recent methods, as proposed
in [29] and [43], also classify nodes based on labels in local neigh-
borhoods. They learn a model which predicts node labels from a
feature vector describing the local k-neighborhood. Both methods
assume unattributed graphs.

Instead of imposing regularization, Planetoid [42] combines the
prediction loss with node embeddings by training a joint model
which predicts class labels as well as graph context for a given node.
The graph context sampled from random walks as well as the set of
nodes with shared labels. This allows Planetoid to relate nodes with
similar labels even if they are not close in the graph. Thus, Planetoid
does not rely on a strong homophily assumption. In addition to a
connectivity-based variant, Planetoid-G, the authors propose two
further architectures, which incorporate node attributes. The trans-
ductive variant Planetoid-T starts with pre-trained embeddings and
alternately optimizes the prediction and embedding loss functions.
The inductive variant Planetoid-I on the other hand predicts the
graph context from the node features instead.

Another important direction which has recently gained increas-
ing attention is concerned with generalizing deep neural network
architectures to graph-structured domains. As the general approach
consists of incorporating graph structure into supervised learning,
these models assume an attributed graph. However, they can nat-
urally be applied to non-attributed graphs by using the identity
matrix as the attribute matrix. The vast majority of neural network
based models for semi-supervised learning on graphs can be de-
scribed within a message-passing framework. In a Message Passing
Neural Network (MPNN) [14], each node has a hidden state which
is updated iteratively during training. The initial hidden state of a
node corresponds to its attribute vector. In a first step, messages
from vi ’s neighborhood are received and aggregated, where a mes-
sage from neighbor vj depends on vi ’s and vj ’s hidden states. In a
second step, vi ’s state is updated by combining it with the aggre-
gated messages. An important special case are Graph Convolution
Networks [8, 12, 20, 23, 26, 27, 39] which aggregate node attributes
over local neighborhoods with spatially localized filters, similar to
classical convolutional networks on images [22]. The ChebNet [12]
aggregates messages from neighbors analogously to the eigenvec-
tors of the graph’s Laplacian matrix. The update function ignores
the previous state and applies a non-linear activation. The result-
ing filters are k-localized. The GCN [20] is a simplification of the
ChebNet, which only considers one-hop neighbors. Messages are
aggregated according to a normalized adjacency matrix. In the up-
date phase, the aggregated messages are multiplied with a learned

Semi-Supervised Learning on Graphs Based on Local Label Distributions MLG’18, August 2018, London, UK

filter matrix with a ReLU activation. For graph convolution net-
works, the number of message passing iterations corresponds to
the number of layers.

5 EVALUATION
We evaluate our approach by performing node-label prediction
and compare the quality in terms of micro F1 score for multiclass
prediction tasks, respectively micro F1 and macro F1 scores for
multilabel prediction tasks, against state-of-the-art methods.

For both tasks, we compare our model against the following
approaches:

• Adj: a baseline approach which learns node embeddings only
based on the information contained in the adjacency matrix

• GCN1_only_L: a GCN which applies convolution on label
matrix Y. We use one convolution layer on the adjacency
matrix without self-links, followed by a dense output layer1

• noFeat GCN2: the standard 2-layer GCN as published by Kipf
et al. [20] without using the node attributes

• DeepWalk: the DeepWalk model as proposed in [32]
• node2vec: the node2vec model as proposed in [16]
• Planetoid-G: the Planetoid variant which does not use at-
tribute information [42] 2

Our model is denoted as LD (short for Label Distribution). For
these experiments we train a simple feed-forward neural network
which takes the label distribution based representations as input
and retrieves class probabilities as output.

Note that we omit the comparison to label propagation [45] since
Yang et al. already showed that the Planetoid model outperforms
this approach [42].

5.1 Multiclass Prediciton
5.1.1 Experimental Setup. For the multiclass label prediciton

task we use the following three text classification benchmark graph
datasets [28, 35]:

• Cora. The Cora dataset contains 2’708 publications from
seven categories in the area of ML. The citation graph con-
sists of 2’708 nodes, 5’278 edges, 1’433 attributes and 7 classes.

• CiteSeer. The CiteSeer dataset contains 3’264 publications
from six categories in the area of CS. The citation graph
consists of 3’264 nodes, 4’536 edges, 3’703 attributes and 6
classes.

• Pubmed. The Pubmed dataset contains 19’717 publications
which are related to diabetes and categorized into 3 classes.
The citation graph consists of 19’717 nodes, 44’324 edges,
500 attributes and 3 classes.

For each graph, documents are denoted as nodes and undirected
links between documents represent citation relationships. If node
attributes are applied, bag-of-words representations are used as
attribute vectors for each document.

We split the data as suggested in [42], i.e., for labeled data our
training sets contain 20 randomly selected instances per class, the

1See 3.1 for the explanation why only one convolution layer makes sense
2Unless stated differently we use for all competitors the parameter settings as suggested
by the corresponding authors. Except for minor adaptations, e.g., to include label
information in the one layer GCN models or to make the Planetoid models applicable
for multilabel prediciton tasks, we use the original implementations as published by
the correpsonding authors.

test sets consist of 1’000 instances, and the validation sets contain
500 instances for each method. The remaining instances are used
as unlabeled data. For comparison we use the prediction micro F1
scores which we collected over 10 different data splits.

Since the numbers of iterations for sampling the graph contexts
and the label contexts for Planetoid are suggested only for the Cite-
Seer data set, we adapted these values relative to the number of
nodes for each graph. For node2vec, we perform grid searches over
the hyperparameters p and q with p,q ∈ {0.25, 0.5, 1.0, 2.0, 4.0} and
use window size 10 as proposed by the authors. For all models ex-
cept Planetoid unless otherwise noted, we use one hidden layer with
16 neurons and regularization, learning rate and training procedure
as in [20]. Considering our model, we use α ∈ {0.1, 0.2, . . . , 0.9} as
values for the teleportation parameter and ϵ = 1e−5 as approxima-
tion threshold to compute the APPR vectors for each node.

We present results computed on the test sets for the best per-
forming hyperparameters. The best performing hyperparameters
for all models are determined by using the validation sets.

5.1.2 Results. Figure 2 shows boxplots depicting the micro F1
scores we achieved for the multiclass prediction task for each con-
sidered model on the Cora, CiteSeer and Pubmed networks.

The baseline approach GCN1_only_L, i.e., the one layer GCN
model which only uses the label distributions of the neighboring
nodes to predict a node’s label, shows worst results among the
considered models. However, these scores are still promising that
the labels may improve the task of learning “good” representations.
The baseline method which considers the corresponding rows of the
adjacency matrix as node representations, i.e., Adj, achieves slightly
better results for all three datasets. For the GCN and Planetoid
models that do not make recourse to attribute information, i.e.,
noFeat GCN2, resp. Planetoid-G, the retrieved micro F1 values are
slightly lower than the ones achieved by DeepWalk and node2vec.
Our model improves the results produced by node2vec, whichmeans
that the label distributions are indeed a useful source of information,
although the baseline GCN1_only_L shows, especially for Pubmed,
rather poor results. This may be reasoned by the fact that this model
only considers the label distribution of a very local neighborhood (in
fact one hop neighbors). However, collecting the label distribution
from a more spacious neighborhood gives a significant boost in
terms of prediction accuracy. Indeed the best results for the LD
approach are reached for α = 0.1, which corresponds to a rather
spacious neighborhood exploration.

5.2 Multilabel Classification
5.2.1 Experimental Setup. We also perform multilabel node clas-

sifications on the following two multilabel networks:

• BlogCatalog [38]. This is a social network graph where
each of the 10,312 nodes corresponds to a user and the
333,983 edges represent the friendship relationships between
bloggers. 39 different interest groups provide the labels.

• IMDbGermany. This dataset is taken from [13]. It consists of
32,732 nodes, 1,175,364 edges and 27 labels. Each node repre-
sents an actor/actress who played in a German movie. Edges
connect actors/actresses that were in a cast together and
the node labels represent the genres that the corresponding
actor/actress played.

MLG’18, August 2018, London, UK E. Faerman, F. Borutta, J, Busch, M. Schubert

Adj
GCN1 only L

noFeat GCN2
DeepWalk

node2vec
Planetoid-G

LD
0.4

0.6

0.8

M
icr

o
F1

Sc
or

e

(a) Micro F1 scores for Cora.

Adj
GCN1 only L

noFeat GCN2
DeepWalk

node2vec
Planetoid-G

LD

0.2

0.4

0.6

M
icr

o
F1

Sc
or

e

(b) Micro F1 scores for CiteSeer.

Adj
GCN1 only L

noFeat GCN2
DeepWalk

node2vec
Planetoid-G

LD
0.2

0.4

0.6

0.8

M
icr

o
F1

Sc
or

e

(c) Micro F1 scores for Pubmed.

Figure 2: Micro F1 scores for the three benchmark data sets.

Adj
GCN1 only L

DeepWalk
node2vec

Planetoid-G
LD

LD+EMB
0.0

0.1

0.2

0.3

M
icr

o
F1

Sc
or

e

(a) Micro F1 scores for BlogCatalog.

Adj
GCN1 only L

DeepWalk
node2vec

Planetoid-G
LD

LD+EMB
0.00

0.05

0.10

0.15

0.20

M
ac

ro
F1

Sc
or

e

(b) Macro F1 scores for BlogCatalog.

Figure 3: Micro F1 and macro F1 for BlogCatalog.

Since the fraction of positive instances is relatively small for most of
the classes, we use weighted cross-entropy as loss function. There-
fore, the loss caused by erroneously classified positive instances
is weighted higher. We use weight 10 in all our experiments. For
the same reason we report micro F1 and macro F1 score metrics
to measure the quality of the considered methods. We compare
our model to the featureless models that we already used for the
multiclass experiments 3.

We split the data into training, validation and test set so that 70%
of all nodes were used for training, 10% for validation and 20% of
the data were used to test the model. Note that we could not use
stratified sampling splits for these experiments since we optimize
for all classes simultaneously instead of using one-vs-rest classifiers
4. The hyperparameter setting is as described above. For this set of
experiments we ran each model, except for Planetoid-G, 10 times
on five different data splits. Due to the long runtime of Planetoid-G
we trained this model only three times on two data splits.

3To adapt the Planetoid-G implementation for multilabel classification, we use a sigmoid
activation function at the output layer and also slightly changed the embedding
learning step. Entities that are used as context and have the same labels as the node
itself are sampled from all classes to which the node belongs to.
4That is why our results for node2vec and DeepWalk on the BlogCatalog network are
slightly worse than reported in [16]

Adj
GCN1 only L

DeepWalk
node2vec

Planetoid-G
LD

LD+EMB

0.2

0.4

0.6

0.8

M
icr

o
F1

Sc
or

e

(a) Micro F1 scores for IMDb Germany.

Adj
GCN1 only L

DeepWalk
node2vec

Planetoid-G
LD

LD+EMB

0.2

0.4

0.6

0.8

M
ac

ro
F1

Sc
or

e

(b) Macro F1 scores for IMDb Germany.

Figure 4: Micro F1 and macro F1 for IMDb Germany.

5.2.2 Results. The results for the BlogCatalog graph are shown
in Figure 3. For this network, only using the label information from
the direct neighborhood of a node is not useful to infer its labels,
c.f., GCN1_only_L. However, incorporating the label distribution of
somewhat larger neighborhoods as for our model (again, we also
use the APPR matrix calculated for small values of α to determine
the label distribution in neighborhoods that span more than 1-hop
neighbors) seems to improve the results for the prediciton task
significantly. In fact, our model achieves similar, but slightly worse
performance than node2vec and DeepWalk. Given these results, we
also combined the node embeddings based on local label distri-
butions with embeddings that capture structural properties. To
capture the structural properties we select a very simple approach:
we multiply an embedding matrix with the preprocessed adjacency
matrix as in Kipf et al. [20]. The embedding matrix is randomly
initialized. Note that the structural similarity is defined via direct
neighbors. The resulting representation is concatenated with the
hidden layer of the LD model and the rest of the LD model remains
the same. The embedding weights are learned jointly with the rest
of the model. The hidden layer H for the resulting model, denoted
as LD+EMB, can be formalized as

H = ReLU
([
EÂ,�APPR · Ytrain ·W1

])
,

Semi-Supervised Learning on Graphs Based on Local Label Distributions MLG’18, August 2018, London, UK

Feat
GCN2

Chebychev3
Planetoid-T

LD
0.00

0.25

0.50

0.75

M
icr

o
F1

Sc
or

e

(a) Micro F1 scores for Cora.

Feat
GCN2

Chebychev3
Planetoid-T

LD

0.2

0.4

0.6

M
icr

o
F1

Sc
or

e

(b) Micro F1 scores for CiteSeer.

Feat
GCN2

Chebychev3
Planetoid-T

LD
0.2

0.4

0.6

0.8

M
icr

o
F1

Sc
or

e

(c) Micro F1 scores for Pubmed.

Figure 5: Comparison against attribute-based methods: micro F1 scores for the three benchmark data sets.

with [·, ·] denoting the concatenation operation, E being the em-
bedding matrix and Â being the preprocessed adjacency matrix as
in [20]. Again, the bias is omitted for better readability. Having a
look at the scores for the LD+EMB model, this combination further
improves the outcome of the prediction.

For the IMDbGermany network, for which the results can be seen
in Figure 4, the labels of even very local neighborhoods are already
very expressive. Recalling how this network is constructed, we can
expect the latter fact and also the superior performance of ourmodel
over the two random walk based methods. Particularly noteworthy
for this network is the gain of accuracy that the combination of
information from both sources, label distribution and structural
properties, achieves.

5.3 Comparison to Attribute-Based Methods
To show the power of incorporating label information into the gen-
eration process for node embeddings, we also compare our model
against the following state-of-the-art attribute-based methods:

• Feat: a baseline approach which predicts node labels only
based on the node attributes without considering the under-
lying graph structure (borrowed from [42])

• GCN2: the standard 2-layer GCN as published in [20]
• Chebychev3: the spectral convolution method which uses
chebychev filters as presented in [12]; as in [20] we also use
3rd order chebychev filters

• Planetoid-T : the semi-supervised Planetoid frameworkwhich
uses attribute information as proposed in [42]

For this set of experiments, we again perform multiclass prediciton
on the three benchmark text classification datasets and report the
prediction accuracy in terms of micro F1 scores to measure the
quality of the retrieved node representations. Note that in contrast
to the competitors, our model still does not make use of the node at-
tribute information. The results are depicted in Figure 5 and clearly
show that our model can definitely compete with the attribute-
based methods and hence is a powerful alternative in cases when
no node attributes are present.

5.4 Impact of the α Parameter
Figure 6 depicts the micro F1 scores achieved for different values of
the teleportation parameter α on the three benchmark datasets. As
can be seen, particularly for the Pubmed network, the model is quite
sensitive to the choice of this parameter. Recall that the teleportation
parameter determines how far the neighborhood of each node shall
be taken into consideration to get the label distributions for each
node. Therefore it might make sense to set the α parameter to a

small value so that more labels are collected which in turn leads to
a more accurate estimation of the local label distribution. On the
other hand, this may not hold in every scenario, for instance if the
distribution of classes is heterogeneous, i.e., some classes may only
appear in areas of the graph where classes are concentrated locally,
while other classes may appear in areas where many classes are
mixed even within local neighborhoods. An interesting direction
for future work is therefore to optimize for some “good” α value in
a data-driven manner. This may be done either by pre-defining a
set of different values of α and approaching for the best of these, or
by trying to optimize for some “good” α value during the learning
procedure. Also, the underlying task, e.g., node classification, may
benefit from finding “good” values of α for each node individually
rather than relying on a global solution.

6 CONCLUSION
In this paper, we have introduced a novel label-based approach
for semi-supervised node classification. In particular, our method
aggregates labels from local neighborhoods using APPR. Most ex-
isting approaches consider nodes to be similar, if they are closely
related in the graph. Methods for attributed graphs additionally take
attributes of the neighboring nodes into account. In contrast, our
method can relate nodes even if they are not close-by in the graph
and makes more effective use of the labels provided for training to
improve the classification quality for graphs with and without node
attributes. It is further applicable to nodes unseen during train-
ing. The results of our experiments on various real-work datasets
demonstrate that local label distributions are able to significantly
improve classification results in the multiclass and multilabel set-
ting. Our model is even competitive with state-of-the-art models,
which take node attributes into consideration. In a first experiment
on multilabel datasets, we were already able to significantly boost
the performance by using a simple combination of our model with
node embeddings.

For future work, we plan to address the problem of selecting a
suitable teleportation parameter α . The α parameter controls the
extend of the considered local neighborhood and often has a sig-
nificant impact on the prediction quality. Performing a grid search
to determine a good parameter value is a time consuming task.
Furthermore, for different classes varying teleportation parameters
might yield the best results.

We also aim at further improving the prediction accuracy by fur-
ther investigating how to effectively combine label-based features
with different other kinds of features, such as node attributes, edge
attributes or node embeddings in a semi-supervised model. Our

MLG’18, August 2018, London, UK E. Faerman, F. Borutta, J, Busch, M. Schubert

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
α

0.6

0.7

0.8

M
icr

o
F1

Sc
or

e

(a) Micro F1 scores for Cora.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
α

0.3

0.4

0.5

0.6

M
icr

o
F1

Sc
or

e

(b) Micro F1 scores for CiteSeer.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
α

0.2

0.4

0.6

0.8

M
icr

o
F1

Sc
or

e

(c) Micro F1 scores for Pubmed.

Figure 6: Micro F1 scores for the three benchmark data sets when considering different locality levels for node neighborhoods.

approach could also be extended to solve additional graph learn-
ing tasks, such as link prediction or identification of nodes with
unexpected labels for detecting labeling errors or outlier nodes.

REFERENCES
[1] Sami Abu-El-Haija, Bryan Perozzi, Rami Al-Rfou, and Alex Alemi. 2017. Watch

your step: Learning graph embeddings through attention. arXiv preprint
arXiv:1710.09599 (2017).

[2] Saba A Al-Sayouri, Pravallika Devineni, Sarah S Lam, Evangelos E Papalexakis,
and Danai Koutra. 2016. GECS: Graph Embedding Using Connection Subgraphs.
(2016).

[3] Reid Andersen, Fan Chung, and Kevin Lang. 2006. Local graph partitioning using
pagerank vectors. In Proc. of IEEE FOCS. IEEE, 475–486.

[4] James Atwood and Don Towsley. 2015. Search-Convolutional Neural Networks.
CoRR abs/1511.02136 (2015). arXiv:1511.02136 http://arxiv.org/abs/1511.02136

[5] Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. 2006. Manifold regulariza-
tion: A geometric framework for learning from labeled and unlabeled examples.
Journal of machine learning research 7, Nov (2006), 2399–2434.

[6] Pavel Berkhin. 2006. Bookmark-coloring algorithm for personalized pagerank
computing. Internet Mathematics 3, 1 (2006), 41–62.

[7] Aleksandar Bojchevski and StephanGünnemann. 2017. Deep gaussian embedding
of attributed graphs: Unsupervised inductive learning via ranking. arXiv preprint
arXiv:1707.03815 (2017).

[8] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2013. Spectral
Networks and Locally Connected Networks on Graphs. CoRR abs/1312.6203
(2013). http://arxiv.org/abs/1312.6203

[9] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2015. Grarep: Learning graph repre-
sentations with global structural information. In Proc. of CIKM. ACM, 891–900.

[10] Benjamin Paul Chamberlain, James Clough, and Marc Peter Deisenroth.
2017. Neural Embeddings of Graphs in Hyperbolic Space. arXiv preprint
arXiv:1705.10359 (2017).

[11] Haochen Chen, Bryan Perozzi, Yifan Hu, and Steven Skiena. 2017. HARP: Hier-
archical Representation Learning for Networks. arXiv preprint arXiv:1706.07845
(2017).

[12] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convo-
lutional Neural Networks on Graphs with Fast Localized Spectral Filtering. In
Advances in Neural Information Processing Systems 29, D. D. Lee, M. Sugiyama,
U. V. Luxburg, I. Guyon, and R. Garnett (Eds.). 3844–3852.

[13] Evgeniy Faerman, Felix Borutta, Kimon Fountoulakis, and Michael W Mahoney.
2017. LASAGNE: Locality And Structure Aware Graph Node Embedding. arXiv
preprint arXiv:1710.06520 (2017).

[14] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E
Dahl. 2017. Neural message passing for quantum chemistry. arXiv preprint
arXiv:1704.01212 (2017).

[15] David F Gleich and Michael W Mahoney. 2015. Using local spectral methods to
robustify graph-based learning algorithms. In Proc. of the ACM SIGKDD. 359–368.

[16] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Feature Learning for
Networks. In Proc. of ACM SIGKDD. 855–864.

[17] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In NIPS. 1025–1035.

[18] Glen Jeh and Jennifer Widom. 2003. Scaling personalized web search. In Proc. of
the 12th WWW. ACM, 271–279.

[19] Thorsten Joachims. 2003. Transductive learning via spectral graph partitioning.
In Proc. of ICML. 290–297.

[20] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[21] Thomas N Kipf and Max Welling. 2016. Variational graph auto-encoders. arXiv
preprint arXiv:1611.07308 (2016).

[22] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E
Howard, Wayne Hubbard, and Lawrence D Jackel. 1989. Backpropagation applied

to handwritten zip code recognition. Neural computation 1, 4 (1989), 541–551.
[23] Ron Levie, Federico Monti, Xavier Bresson, and Michael M. Bronstein. 2017. Cay-

leyNets: Graph Convolutional Neural Networks with Complex Rational Spectral
Filters. CoRR abs/1705.07664 (2017). arXiv:1705.07664

[24] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. 2016. Gated
Graph Sequence Neural Networks. In ICLR.

[25] Miller McPherson, Lynn Smith-Lovin, and James M Cook. 2001. Birds of a feather:
Homophily in social networks. Annual review of sociology 27, 1 (2001), 415–444.

[26] Yann LeCun Mikael Henaff, Joan Bruna. 2015. Deep Convolutional Networks on
Graph-Structured Data. arXiv preprint arXiv:1506.05163 (2015).

[27] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodolà, Jan Svoboda,
and Michael M. Bronstein. 2016. Geometric deep learning on graphs and mani-
folds using mixture model CNNs. CoRR abs/1611.08402 (2016). arXiv:1611.08402
http://arxiv.org/abs/1611.08402

[28] Galileo Namata, Ben London, Lise Getoor, Bert Huang, and UMD EDU. 2012.
Query-driven active surveying for collective classification. In 10th International
Workshop on Mining and Learning with Graphs.

[29] Sharad Nandanwar and M Narasimha Murty. 2016. Structural neighborhood
based classification of nodes in a network. In Proc. of ACM SIGKDD. 1085–1094.

[30] Jennifer Neville and David Jensen. 2000. Iterative classification in relational data.
In Proc. AAAI-2000 Workshop on Learning Statistical Models from Relational Data.
13–20.

[31] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
PageRank citation ranking: bringing order to the web. (1999).

[32] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In Proc. of ACM SIGKDD. 701–710.

[33] Leonardo FR Ribeiro, Pedro HP Saverese, and Daniel R Figueiredo. 2017. struc2vec:
Learning node representations from structural identity. In Proc. of ACM SIGKDD.
ACM, 385–394.

[34] Franco Scarselli, MarcoGori, AhChung Tsoi, MarkusHagenbuchner, andGabriele
Monfardini. 2009. The graph neural network model. IEEE Transactions on Neural
Networks 20, 1 (2009), 61–80.

[35] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and
Tina Eliassi-Rad. 2008. Collective classification in network data. AI magazine 29,
3 (2008), 93.

[36] Julian Shun, Farbod Roosta-Khorasani, Kimon Fountoulakis, and Michael W.
Mahoney. 2016. Parallel Local Graph Clustering. Proc. VLDB Endow. 9, 12 (Aug.
2016), 1041–1052.

[37] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. Line: Large-scale information network embedding. In Proc. of WWW. ACM,
1067–1077.

[38] Lei Tang and Huan Liu. 2009. Relational learning via latent social dimensions. In
Proc. of ACM SIGKDD. ACM, 817–826.

[39] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2017. Graph Attention Networks. arXiv preprint
arXiv:1710.10903 (2017).

[40] Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural deep network embed-
ding. In Proc. of ACM SIGKDD. ACM, 1225–1234.

[41] Jason Weston, Frédéric Ratle, Hossein Mobahi, and Ronan Collobert. 2012. Deep
learning via semi-supervised embedding. In Neural Networks: Tricks of the Trade.
Springer, 639–655.

[42] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. 2016. Revisiting Semi-
Supervised Learning with Graph Embeddings. In Proc. of ICDM. 40–48.

[43] Wei Ye, Linfei Zhou, Dominik Mautz, Claudia Plant, and Christian Böhm. 2017.
Learning from Labeled and Unlabeled Vertices in Networks. In Proc. of ACM
SIGKDD. ACM, 1265–1274.

[44] Denny Zhou, Olivier Bousquet, Thomas N Lal, Jason Weston, and Bernhard
Schölkopf. 2004. Learning with local and global consistency. In Advances in
neural information processing systems. 321–328.

[45] Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. 2003. Semi-supervised
learning using gaussian fields and harmonic functions. In Proc. of ICML. 912–919.

Ada-LLD: Adaptive Node Similarity Using
Multi-Scale Local Label Distributions

Evgeniy Faerman, Felix Borutta, Julian Busch, Matthias Schubert
Ludwig-Maximilians-Universität München

{faerman, borutta, busch, schubert}@dbs.ifi.lmu.de

Abstract—In many applications, data is represented as a
network connecting nodes of various types. While types might
be known for some nodes in the network, the type of a newly
added node is typically unknown. In this paper, we focus
on predicting the types of these new nodes based on their
connectivity to the already labeled nodes. To tackle this problem,
we propose Adaptive Node Similarity Using Multi-Scale Local
Label Distributions (Ada-LLD) which learns the dependency of
a node’s class label from the distribution of class labels in this
node’s local neighborhood. In contrast to previous approaches,
our approach is able to learn how class labels correlate with
labels in variously sized neighborhoods. We propose a neural
network architecture that combines information from differently
sized neighborhoods allowing for the detection of correlations on
multiple scales. Our evaluations demonstrate that our method
significantly improves prediction quality on real world data
sets. In the spirit of reproducible research we make our code
available1.

I. INTRODUCTION

In many applications of node classification in graphs, we
encounter a semi-supervised setting in the way that the labels
for all nodes in an old state of the network are known and
we need to predict the labels of nodes freshly connected to
the network. For example, consider a career network where
users are labeled by potential job interests. Now, when a new
user enters the network, she/he would link to already known
users and we are interested to make a predictions on job
interests based on this connectivity. Because many real-life
graphs are characterized by high variations of patterns for the
same labels across the same graph [24], methods having a fixed
semantic interpretation of linked nodes often fail to model all
relevant relationships. For example, a head hunter would link
to companies and professionals but rather not to other head
hunters, whereas scientists often mostly link to other scientists.
However, such heterophily (see Fig. 1b), or homophily (see
Fig. 1a) assumptions, respectively, are rather strict and in
many applications not realistic, as for instance scientists may
also have other relationships than those to other scientists.
Moreover, such correlation patterns do not have to be fixed
for entities of the same type and over the entire network (see
Fig. 1c). For example, scientist at companies most likely have a
larger portion of business managers within their neighborhoods
than scientists from a university, although they may reside
in the same network and have the same types. In this paper,
we argue that purely homophily or heterophily-based methods

1https://github.com/adalld/wi2020

(a) (b)

(c)

Figure 1: Examples for Homophily (1a), Heterophily (1b)
and a combination of different label correlation patterns for
different instances of the same class (1c).

are limited when predicting node types based on complex
connection relationships. Therefore, our new method Adaptive
Node Similarity Using Multi-Scale Local Label Distributions
(Ada-LLD) aims at capturing various relationships between the
types in different levels of node neighborhoods. In particular,
our method uses Personalized Page Rank to describe the local
neighborhood of a node. Since a meaningful extension of this
local neighborhood often depends on the type of relationship,
we consider multiple neighborhoods each having a larger
extension then the previous one. After computing the label
distribution in each neighborhood, we propose trainable func-
tions to combine the local label distributions in each neigh-
borhood into a meaningful node description for classification.
For parameter optimization, we formulate these functions in
conjunction with the node classifier as neural network and
optimize them jointly using stochastic gradient descent. Since
Ada-LDD works on local neighborhoods it is not required
that the complete network is connected as required for label
propagation methods. In general, our method is applicable to
all nodes having a sufficient connectivity to already labeled
nodes which is a common setting in incrementally extended
networks. In our experiments, we show that Ada-LLD can
outperform various sate-of-the-art node classifiers on various
real-world graph data sets.

978-1-6654-1924-6/20/$31.00 ©2020 IEEE
DOI 10.1109/WIIAT50758.2020.00009

2
0
2
0
 I

E
E

E
/W

IC
/A

C
M

 I
n
te

rn
at

io
n
al

 J
o
in

t
C

o
n
fe

re
n
ce

 o
n
 W

eb
 I

n
te

ll
ig

en
ce

 a
n
d
 I

n
te

ll
ig

en
t

A
g
en

t
T

ec
h
n
o
lo

g
y
 (

W
I-

IA
T

)
| 9

7
8
-1

-6
6
5
4
-1

9
2
4
-6

/2
0
/$

3
1
.0

0
 ©

2
0
2
0
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9
/W

II
A

T
5
0
7
5
8
.2

0
2
0
.0

0
0
0
9

II. RELATED WORK

Numerous approaches related to semi-supervised node clas-
sification have been proposed recently. These can be catego-
rized into unsupervised and semi-supervised node embedding
techniques. Unsupervised node embedding techniques learn
a latent vector representations for each node in a graph.
Homophilic methods [3], [5], [7], [10], [11], [25], [28], [30],
[33], [35] relate nodes if they are close-by in the graph.
These methods mainly differ w.r.t. how node neighborhoods
are defined, e.g., based on different random walk strategies
or fixed k-hop distances. Compared to separate optimizing
steps in a semi-supervised learning pipeline, as is the case
for semi-supervised learning with pre-trained unsupervised
node embeddings, end-to-end training usually leads to better
performance on the supervised learning objective.

Label Diffusion [23], [32], [36]–[38] methods propagate
labels from labeled nodes until convergence and classify based
on majority vote. While classical methods [36]–[38] rely on
the homophily assumption, Cosine Label Propagation [23]
applies label propagation to a similarity graph constructed
from the cosine similarity of the nodes’ adjacency vectors. The
authors further propose 2-Step Label Propagation [23] that
skips immediate neighbors during label propagation. Dynamic
Label Propagation [32] extends label propagation by inducing
label correlation between nodes into the transition matrix to
reinforce propagation between nodes with similar label distri-
butions. In contrast to our approach, these label distributions
consider a node’s own labels and not labels occurring within
the node’s neighborhood. The Belief Propagation [8], [15],
[22] approaches also perform label propagation and addi-
tionally are able to model various label relationship patterns
like homophily, heterophily or mixed patterns. However, these
methods explicitly expect a parameterized transition matrix
that describes relationships between labels. This limits their
applicability, as such relationships might be rather complex.
Note, that our approach is able to learn these relationships.
Similarly to node embeddings, all of the above methods are

not able to make use of information in distant or disconnected
parts of a graph. Furthermore, graph diffusion methods do
not have separate training and inference steps and if the graph
changes, these methods have to be executed again. ICA and GS
algorithms [26] first train a relational classifier, which makes
the predictions based on labels of direct neighbors. The same
fixed classifier is iteratively used to assign labels to unlabeled
nodes and nodes labeled in previous iterations are utilized
for the classifications of the neighbors. The Planetoid model
[34] combines the prediction loss with node embeddings by
training a joint model that predicts class labels and graph
context for a given node. It samples context nodes from the
local neighborhood as well as possibly distant nodes with a
shared label.
A different but important direction is semi-supervised learn-

ing on attributed graphs. The vast majority of recently pro-
posed neural network based models can be described within
Message Passing Neural Network (MPNN) frameworks [9]. A

special case are Graph Convolution Networks (GCN) [1], [4],
[6], [14], [16]–[18], [20], [31] which aggregate node attributes
over local neighborhoods with spatially localized filters, sim-
ilar to classical convolutional networks on image data. Thus,
these methods are not able to learn direct correlations between
a node’s label and labels of neighboring nodes, be it homophily
or a general type of correlation. Similarly to our approach,
one might attempt to use MPNN in combination with class
labels instead of attributes. This would require to ensure that
a node will not at some point receive a message containing
information about its own class label. However, this will
happen after a sufficient number of message passing iterations
if a node is reachable from itself. This problem is non-trivial
since the MPNN framework requires the whole feature matrix
for the forward pass and computes updates based on all labeled
nodes in the training set. A naive approach of masking the
nodes’ own labels would result in a different feature matrix
for each node and therefore lead to infeasible training costs.

A. Comparison

We compare related methods for node classification w.r.t.
several key properties which describe different aspects of how
nodes can be related with each other for classification. In
addition to the discussion below, an overview is provided in
Table I.
Homophily. Whether the method is able to model ho-

mophily. MPNN and Ada-LLD are able to learn homophily,
but are not doing so explicitly. MPNN however is only able
to model homophily indirectly via additional node attributes.
The remaining methods can either be parametrized explicitly
to model homophily or focus on homophily by design.
Heterophily. Whether the method is able to model het-

erophily. MPNN and Ada-LLD are able to model heterophily,
but are not doing so explicitly. Again, MPNN is only able
to model heterophily indirectly via additional node attributes.
While Belief Propagation needs to be parametrized explicitly
to model heterophily, advanced Label Diffusion methods focus
on heterophily by design.
Adaptive. Whether the model is able to adaptively learn

appropriate node similarities without explicitly relying on
either homophily or heterophily. MPNN learns general cor-
relations only between a node’s label and additional node
attributes appearing in the neighborhood. Ada-LLD learns
such correlations directly from the neighboring node labels.
The other methods are not adaptive.
Local Variation. Whether the method is able to model

homophily or different heterophily patterns for the same label
at the same time. The only methods capable of modeling this
property are MPNN and Ada-LLD, where MPNN again relies
on additional node attributes.
Labels. Whether node similarity is modeled directly based

on labels. Homophilic graph embeddings are unsupervised and
only consider graph topology. MPNN models node similarity
based on node attributes. Planetoid considers labels directly
only via sampling of nodes with the same labels. Label
Diffusion and Belief Propagation consider labels directly by

Table I: Comparison to related node classification methods based on whether they fulfill (�) the desired key properties or not
(�). Parentheses indicate partial fulfillment.

Method Homophily Heterophily Adaptive Local Variation Labels Remote

Homophilic Node Embeddings [3], [5], [7],
[10], [19], [25], [28], [33], [35] � � � � � �

Label Diffusion [23], [32], [36]–[38] � � � � � �
Belief Propagation [8], [15], [22] � � � � � �
Planetoid [34] � � � � (�) (�)
MPNN [9] (�) (�) (�) � � �

Ada-LLD � � � � � �

diffusing them through the graph. Ada-LLD is the only method
which directly learns general correlations between a node’s
label and neighboring labels.
Remote. Whether information from different parts, or dis-

connected components, respectively, of the graph can be
incorporated to classify a node. MPNN and Ada-LLD are
location-invariant and thus able to learn correlations based on
the whole graph. Planetoid samples nodes with same class
labels from different parts of the graph but only in addition to
neighboring nodes. The remaining methods only take close-by
nodes into account.
In conclusion, none of the existing methods fulfills all of

the desired properties. Ada-LLD is the first method to support
adaptive learning of direct label-based node similarity for node
classification without a need of additional attributes.

III. ADAPTIVE NODE SIMILARITY USING LOCAL LABEL
DISTRIBUTIONS

Formally, our problem setting is semi-supervised node clas-
sification where we are given a graph G = (V,E), represented
by an adjacency matrix A ∈ Rn×n, and a label matrix Ytrain ∈
{0, 1}n×l indicating class memberships for all nodes. The goal
is to predict labels for a set of unlabeled nodes based on
graph topology and already observed node labels. Unlabeled
nodes correspond to constant zero rows in Ytrain. To exclude
trivial dependencies, we do not consider self-loops. Further,
we consider two sub-settings: In multiclass classification, each
node belongs to exactly one class. Multilabel classification
refers to the general case in which each node may be assigned
to one or more classes.

The Ada-LLD Model

The main idea of our approach is to learn general corre-
lations between a node’s label and the labels of neighboring
nodes. According to this intuition, our core model predicts the
label vector yi for a given node vi as

yi = f (aggr ({yj | vj ∈ N (vi)})) ,
where N (vi) denotes the neighborhood of vi, aggr is an
aggregation function and f is a classifier which predicts node
labels based on the aggregated neighboring node labels.
A sensible choice for aggr would be a weighted function

which does not treat any labels equally but assigns more

importance to labels of nodes which are more important to vi.
These considerations lead to local label distributions which
are used as input features to our model.
For the classifier f , our default choice is a neural network

with a single hidden layer H1 for which we introduce two
different alternatives. For prediction we use a fully connected
layer

H2 = q (WoutH1 + bout) , (1)

where Wout ∈ Rh×l is the weight matrix, bout ∈ Rl

denotes the bias and q is the softmax activation P (ci) =
exp (hi)/

∑l
j=0 exp (hj) in case of multi-class classification. If

the classification problem is a multi-label one, class proba-
bilities are computed using the sigmoid activation P (ci) =
1/(1+exp (−hi)). The resulting model is quite simple and effi-
cient, yet sufficiently expressive to provide accurate predic-
tions.

A. Local Label Distributions.

In many real-world graphs, most of the nodes can be reached
within a few steps and often only a small set of neighboring
nodes are important to a particular node. Considering a simple
neighborhood of node n such as the k-hop neighborhood may
lead to considering irrelevant nodes or missing important ones.
In other words, nodes having the same shortest path distance to
n might strongly vary in importance because only considering
a single path often does not allow to distinguish the connec-
tivity between nodes. In contrast, we propose to describe the
neighborhood of node n by Personalized PageRank (PPR). In
other words, we compute the visiting probability of all nodes
when starting a random walk at n and restart the random walk
at n with a teleportation likelihood α. Thus, the smaller α is,
the higher is the visiting probability of less connected nodes.
Local push-based algorithms [2], [13] can be used to

compute Approximate Personalized PageRank (APPR) very
efficiently for all nodes in a network and lead to sparse
solutions where small, irrelevant entries (rarely visited nodes)
are omitted. In particular, we consider the algorithm proposed
in [27] as outlined in Algorithm 1. The algorithm requires two
parameters to be set by the user. The teleportation parameter α
determines the effective size of the neighborhood of a source
node. The second parameter ε is a threshold which controls
approximation quality and runtime. Given the PPR-vector πi

and the label matrix Ytrain, we aggregate the neighboring

Algorithm 1 Compute LD(v, α, ε)

Input: Source node v, Teleportation probability α, Approxi-
mation threshold ε, Label matrix Ytrain

Output: Label distribution vector ld
1: // Compute APPR-vector for node v
2: p = �0, r = �0
3: r(v) = 1
4: while r(u) ≥ εd(u) for some vertex u do
5: pick any u where r(u) ≥ εd(u)
6: p(u) = p(u) + (2α/(1 + α))r(u)
7: for v with (u, v) ∈ E do
8: r(v) = r(v) + ((1− α)/(1 + α))r(u)/d(u)
9: end for
10: r(u) = 0
11: end while
12: // Compute label distribution vector ld for node v
13: p(v) = 0
14: ld = pYtrain

15: return ld

labels of vi as follows: ldi = πiYtrain ∈ Rl. The resulting
vector ldi is named label distribution vector of vi. Intuitively,
the entry ldi,j corresponds to the probability that a random
walk starting at vi stops at a node with label cj .

B. Architecture

In scenarios as in the head hunter example, it might be
useful to capture label information that occur on larger dis-
tance rather than being restricted to information given in the
direct neighborhood, which in turn can be more advantageous
e.g. in a social network. Moreover, it might happen that
different nodes can be described best when considering the
label information from differently sized neighborhoods rather
than using the same scale for all nodes. To this end, we
propose two architectures that combine label distributions
in different extensions. Our first model, LD AVG, tries to
determine an optimal global combination of label distributions
in different neighborhood extensions. Therefore, we combine
input features by taking the weighted average, where there is
a single weight per label distribution:

H1 = q ((γ1Xα1 + · · ·+ γkXαk
)Wavg + bavg) , (2)

Xαi
∈ Rn×l is label distribution matrix for single teleportation

parameter and [γ1 · · · γk] denotes the vector with learned
parameters.
The LD AVG model learns a single global weight for the

whole neighborhood extension and is therefore not able to
capture fine-granular dependencies between label distributions
in different neighborhoods. However, the importance of neigh-
boring labels can differ in the same neighborhood or there can
be relevant combinations of labels from different neighbor-
hoods. Therefore, for the more fine-granular combination of

label neighborhoods we also evaluate the LD CONCAT model
which concatenates input features:

H1 = q ([Xα1
, · · · , Xαk

]Wconcat + bconcat) , (3)

As an alternative, the different label distribution representa-
tions are preprocessed by a linear layer, where each label
distribution representation has its own preprocessing layer. The
resulting features are concatenated in the hidden layer:

H1 = q ([Xα1W1 + b1, · · · , Xαk
Wk + bk]) , (4)

For the last setting, one can additionally introduce an inductive
bias by sharing weights in the preprocessing layer for different
label neighborhoods:

H1 = q ([Xα1
Wshared + bshared, · · · , Xαk

Wshared + bshared]) .
(5)

The label distributions are combined in H1 and fed to the
fully connected prediction layerH2 (cf., Eq. 1). The final MLP
model is trained using Stochastic Gradient Descent (SGD) to
minimize the cross-entropy loss:

�(vi) =
l∑

j=1

−yi,j logPi,j ,

where Pi,j is the probability of class cj for node vi as predicted
by our model.

C. Complexity

The main steps of our algorithm are summarized in Algo-
rithm 2. The pre-computation as well as training steps are

Algorithm 2 Ada-LLD

Input: Graph G = (V,E), Label matrix Ytrain, Approxima-
tion threshold ε, Teleportation parameters {α1, . . . , αk}

Output: Trained classifier f
1: // Compute label distributions at each scale
2: declare X ∈ Rk×n×l

3: for αj ∈ {α1, . . . , αk} do
4: declare Xαj

∈ Rn×l

5: for vi ∈ V do
6: ldi ← Compute LD(vi, αj , ε) (see Algorithm 1)
7: Xαj

[i, :] = ldi
8: end for
9: X[j, :, :] = Xαj

10: end for
11: // Train classifier with SGD
12: f = H2(H1(X))
13: f ← SGD(f, Ytrain, �)
14: return f

both highly efficient and scale to large graphs. Computing
APPR for all k scales and all n source nodes requires O(kn/αε)
operations [27]. Computing label distributions requires O(km)
operations on average where m is the average number of non-
zero entries in an APPR-vector. Due to sparsity, it usually

Table II: Real-world datasets used throughout the experiments.
Datasets listed in the upper part are used for multiclass
classification, and datasets in the lower part are used for
multilabel classification.

Dataset Nodes Edges Classes

CORA 2’708 5’278 7
CITESEER 3’264 4’536 6
PUBMED 19’717 44’324 3

BLOGCATALOG 10’312 333’983 39
IMDB GERMANY 32’732 1’175’364 27

holds that m << n. Finally, training with SGD is again in
O(n).

IV. EVALUATION

We evaluate our approach by performing node classification
and compare the quality in terms of accuracy for multiclass
prediction tasks, respectively micro F1 and macro F1 scores
for multilabel prediction tasks. For both tasks, we compare
our models against the following approaches:
• GCN1 only L: a GCN [14] model that applies convolution
on the label matrix. We exclude self-links and use one
convolution layer, followed by a dense output layer 2

• GCN: a GCN model [14] with randomly initialized node
embeddings.

• GAT: the model from [31] with randomly initialized node
embeddings. Therefore it is similar to GCN, with the only
difference being that attention is used to compute the
weights for the neighborhood aggregation.

• DeepWalk: the DeepWalk model as proposed in [25]
• node2vec: the node2vec model as proposed in [10]
• Planetoid-G: the Planetoid variant that does not use node
attributes [34] 3

For the multiclass problems, we additionally compare against
the two-step label propagation approach proposed in [23] (2-
step LP). Finally, we demonstrate the ability of our method to
adapt to local label neighborhoods by using synthetic networks
that were generated with stochastic blockmodels. Each of those
datasets is designed to show the performance of our method
on networks that have different local label correlation patterns
within the local node neighborhoods.

A. Multiclass Classification.

We use the three benchmark graph datasets CORA, CITE-
SEER and PUBMED [21], [26]. All datasets are split as
suggested in [34], i.e., for labeled data our training sets
contain 20 randomly selected instances per class, the test sets

2We use only a single convolution layer due to the reason stated in Section
II

3Unless stated differently, we use the parameter settings as suggested by
the corresponding authors for all competitors. Except for minor adaptations,
e.g., to include label information in the one layer GCN model or to make
the Planetoid models applicable for multilabel prediction tasks, we use the
original implementations as published by the corresponding authors.

Table III: Accuracy values for each method and the three
considered benchmark graph data sets.

Method CORA CITESEER PUBMED

GCN1 only L 0.498±0.088 0.256±0.059 0.218±0.027
GCN 0.664±0.024 0.426±0.034 0.670±0.025
GAT 0.634±0.019 0.406±0.019 0.622±0.023
DeepWalk 0.700±0.019 0.477±0.022 0.726±0.019
node2vec 0.710±0.020 0.494±0.028 0.738±0.021
Planetoid-G 0.635±0.026 0.440±0.022 0.629±0.043
2-step LP 0.723±0.020 0.483±0.020 0.724±0.022

LD AVG 0.779±0.015 0.615±0.012 0.762±0.012
LD CONCAT 0.806±0.012 0.612±0.018 0.775±0.012

consist of 1’000 instances and the validation sets contain 500
instances, for each method. The remaining instances are used
as unlabeled data. We compute the micro F1 scores in 10
random data splits. Since the number of iterations for sampling
the graph contexts and the label contexts for Planetoid are
suggested only for the CiteSeer data set, we adapted these
values relative to the number of nodes for each graph. For
node2vec, we perform grid searches over the hyperparameters
p and q with p, q ∈ {0.25, 0.5, 1.0, 2.0, 4.0} and window size
10 as proposed by the authors. For the GCN and GAT models
we ranged the number of layers from 1 to 3, with all hidden
layers being of the same dimensionality in {16, 32, 64, 128}.
For all models except Planetoid unless otherwise noted, we
use one hidden layer with 16 neurons, the learning rate and
training procedure are used as proposed in [14]. Regarding
our models, we use α = [0.01, 0.5, 0.9] as values for the
teleportation parameter and ε = 1e−5 as approximation
threshold to compute the APPR vectors for each node. To
train our models, we perform grid search over the learning
rate parameter lr ∈ {1e−1, 1e−2, 1e−3, 1e−4} and the batch
size b ∈ {256, 512, 1024}. For the concatenation models we
use 16 or 32 hidden neurons per APPR matrix in the hidden
layer and report the best results over all model instances,
i.e., simply concatenating the input before feeding it to the
network, or concatenating the representation in the hidden
layer and differentiating between shared weight matrices and
independently trained weight matrices.

Table III shows the accuracy scores we achieved for the mul-
ticlass prediction task for each considered model on the three
benchmark datasets Cora, CiteSeer and Pubmed. Our models
improve the best results produced by node2vec which demon-
strates that label distributions learned from variously scaled
neighborhoods are indeed a useful source of information. The
evaluation for GCN1 only L shows, especially for Pubmed,
rather poor results. This is due to this model considering only
the label distribution of a very local neighborhood (in fact one-
hop neighbors). For the Cora and the CiteSeer networks, the
improvements of the micro F1 scores of LD CONCAT, when
comparing to the result of node2vec, are significant. Moreover,
for all datasets, our models perform similarly, which shows
that even our simple models with shared weights are able to
match the performance of more complex models.

B. Multilabel Classification.

The multilabel node classifications are performed on the two
multilabel networks BLOGCATALOG [29] and IMDB GER-
MANY [7]. As the fraction of positive instances is relatively
small for most of the classes, we use weighted cross-entropy
as loss function. Therefore, the loss caused by erroneously
classified positive instances is weighted higher. We use weight
10 in all our experiments. We report micro F1 and macro
F1 scores to measure the quality of the considered methods.
We compare our models to the attribute-less models that we
already used for the multiclass experiments4. We split the data
into training, validation and test set such that 70% of all nodes
were used for training, 10% for validation to determine the
best hyperparameter setting and 20% of the data were used as
test set to evaluate the models’ performance. As we observed
that the sensitivity to the number of training labels is similar
for all methods, we only report the results when using 70% of
the instances for training. We show experimental results where
we varied the number of training instances in Section IV-D.
Note that we could not use stratified sampling splits for the
experiments since we optimize for all classes simultaneously
instead of using one-vs-rest classifiers5. The hyperparameter
setting is as described above. For this set of experiments we
ran each model 10 times on five different data splits. Due to
the long runtime of Planetoid-G we trained this model only
three times on two data splits.
The results for the BlogCatalog and the IMDb Germany

networks are shown in Table IV. For the BlogCatalog network,
only using the label information from the direct neighborhood
of a node is not useful to infer its labels, c.f. GCN1 only L.
However, incorporating label distributions of somewhat larger
neighborhoods as for our models (again, we use the APPR
matrix calculated for small values of α to determine the
label distribution in neighborhoods that span more than 1-hop
neighbors) seems to improve the results for the prediction task
significantly. Compared to all competitors our models achieve
better performance for both micro and macro F1 scores. In fact,
the best among our models achieves a significant gain over
the best competitor, i.e., node2vec. For the IMDb Germany
network, the labels in the 1-hop neighborhood are already very
expressive. In this setting, our models outperform all of the
competitors significantly, except for the GAT model that shows
similar performance based on the micro F1 score.

C. Effect of Multi-Scale Neighborhoods.

Figure 2a shows the impact of the α parameter, resp. the
volume of the considered neighborhood, on the performance of
the different models. As an example, we took the BlogCatalog
network and ran our base model, i.e., H1 = q(XαW), with
H1 again describing the first hidden layer, q being the ReLU
activation function and Xα being the neighborhood label
distribution for a single value of α. Note that LD INDP

4To adapt the Planetoid-G implementation for multilabel classification, we
use a sigmoid activation function at the output layer.

5That is why our results for node2vec and DeepWalk on the BlogCatalog
network are slightly worse than reported in [10].

is the concatenation model that learns the weight matrices
for each α-neighborhood independently and concatenates the
resulting representations after the hidden layer (cf., Eq. 4),
while LD SHARED denotes the instance of the concatenation
model that shares weights across α-neighborhoods (cf., Eq. 5).
To demonstrate the superiority of combining label distributions
from differently sized neighborhoods, we compare the micro
F1 scores achieved with single neighborhoods to the one
achieved by using the combination of only three differently
sized neighborhoods, i.e., for α = [0.01, 0.5, 0.9], in Figure 2b.
The results show two things: (1) that the native label

distribution embeddings are quite sensitive to the choice of
α, and (2) that in addition to selecting a single optimal scale,
combining multiple scales further improves performance. Fi-
nally, we can summarize that in cases where no a priori
knowledge about “good” and “bad” locality levels is given
for a certain dataset, even a small set of α values which range
from “very local” (α close to 1) to “spacious” (α close to 0)
is already sufficient to get useful node representations due to
the models optimizing the combination of neighborhoods.

D. Different Label Patterns

To prove the intuition that our method actually adapts
to different local label patterns, we use synthetic networks.
Analogously to [23] we apply the stochastic block model
(SBM) [12] to generate networks with 8000 nodes and mean
degree 15. We define three types of nodes (classes) for each
network. The relationships between different classes can be
seen in Figure 3. The first network models homophily relations
(top left), the second models heterophily (top right), the third
models both types of relationships for different classes (bottom
left), and for the fourth graph, each class type is subdivided
into different groups to model locally mixing patterns of
heterophily and homophily (bottom right). We compare our
approaches to 2-step LP [23], which can model heterophily
and homophily.
As can be seen in Figure 3, our approaches clearly outper-

form 2-step LP on all networks. Thus, even if all classes follow
the same pattern it is beneficial to learn how labels relate to
each other rather than modeling it explicitly. It is particularly
interesting that for the most difficult case our simplest model
LD AVG performs worse than our concatenation model. This
demonstrates that it is indeed useful to explicitly capture label
distributions at multiple scales for each node individually.
Therefore, we conclude that considering different scales is
especially useful if labels do not follow a single pattern.

V. CONCLUSION

In this paper, we introduced Ada-LLD, a novel label-based
approach to semi-supervised node classification in graphs.
Our method aims at learning general correlations between a
node’s label and neighboring labels in an adaptive fashion. To
learn from such correlations at multiple scales, we propose
two different variants of our model both having a different
inductive bias. Our experimental results on various real-work

Table IV: Micro and Macro F1 scores for each method and the two multilabel graph data sets.

Method BLOGCATALOG IMDB GERMANY

Micro F1 Macro F1 Micro F1 Macro F1

GCN1 only L 0.008±0.005 0.009±0.006 0.647±0.002 0.288±0.011
GCN 0.316±0.009 0.161±0.010 0.909±0.001 0.819±0.003
GAT 0.315±0.015 0.152±0.015 0.915±0.007 0.878±0.021
DeepWalk 0.286±0.007 0.113±0.006 0.404±0.012 0.303±0.004
node2vec 0.294±0.007 0.125±0.001 0.412±0.007 0.318±0.005
Planetoid-G 0.068±0.004 0.059±0.003 0.147±0.014 0.109±0.005

LD AVG 0.324±0.005 0.217±0.007 0.860±0.010 0.862±0.011
LD CONCAT 0.349±0.007 0.204±0.008 0.914±0.011 0.918±0.009

(a) Micro F1 scores for single α values. (b) Comparing micro F1 scores of our models when using single α
values (dashed lines) vs combining three different α values (bars).

Figure 2: Effect of differently sized neighborhoods for label distribution models on the BlogCatalog network.

Figure 3: Block interaction matrices and corresponding results for different amounts of training instances. The color of the
blocks denotes the average number of edges linking nodes from class i to class j.

datasets demonstrate that local label distributions are able
to significantly improve node classification in multiclass as
well as in multilabel settings. In addition, we show that Ada-
LLD indeed profits from the label distributions in multiple
neighborhoods. For future work, we plan to further investigate
how to effectively combine label-based features with different
other kinds of features, such as node attributes, edge attributes
or node embeddings.

ACKNOWLEDGEMENT

This work has been funded by the German Federal Min-
istry of Education and Research (BMBF) under Grant No.

01IS18036A. The authors of this work take full responsibilities
for its content.

REFERENCES

[1] Atwood, J., Towsley, D.: Search-convolutional neural networks. CoRR
abs/1511.02136 (2015), http://arxiv.org/abs/1511.02136

[2] Berkhin, P.: Bookmark-coloring algorithm for personalized pagerank
computing. Internet Mathematics 3(1), 41–62 (2006)

[3] Bojchevski, A., Günnemann, S.: Deep gaussian embedding of attributed
graphs: Unsupervised inductive learning via ranking. arXiv preprint
arXiv:1707.03815 (2017)

[4] Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and
locally connected networks on graphs. CoRR abs/1312.6203 (2013),
http://arxiv.org/abs/1312.6203

[5] Cao, S., Lu, W., Xu, Q.: Grarep: Learning graph representations with
global structural information. In: Proc. of CIKM. pp. 891–900. ACM
(2015)

[6] Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural
networks on graphs with fast localized spectral filtering. In: Lee, D.D.,
Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R. (eds.) Advances
in Neural Information Processing Systems 29, pp. 3844–3852 (2016)

[7] Faerman, E., Borutta, F., Fountoulakis, K., Mahoney, M.W.: Lasagne:
Locality and structure aware graph node embedding. arXiv preprint
arXiv:1710.06520 (2017)

[8] Gatterbauer, W., Günnemann, S., Koutra, D., Faloutsos, C.: Linearized
and single-pass belief propagation. VLDB Endowment 8(5), 581–592
(2015)

[9] Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.:
Neural message passing for quantum chemistry. arXiv preprint
arXiv:1704.01212 (2017)

[10] Grover, A., Leskovec, J.: node2vec: Scalable feature learning for net-
works. In: Proc. of ACM SIGKDD. pp. 855–864 (2016)

[11] Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning
on large graphs. In: NIPS. pp. 1025–1035 (2017)

[12] Holland, P.W., Laskey, K.B., Leinhardt, S.: Stochastic blockmodels: First
steps. Social networks 5(2), 109–137 (1983)

[13] Jeh, G., Widom, J.: Scaling personalized web search. In: Proc. of the
12th WWW. pp. 271–279. ACM (2003)

[14] Kipf, T.N., Welling, M.: Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

[15] Koutra, D., Ke, T.Y., Kang, U., Chau, D.H.P., Pao, H.K.K., Faloutsos, C.:
Unifying guilt-by-association approaches: Theorems and fast algorithms.
In: Proc. of ECML PKDD. pp. 245–260. Springer (2011)

[16] Levie, R., Monti, F., Bresson, X., Bronstein, M.M.: Cayleynets: Graph
convolutional neural networks with complex rational spectral filters.
CoRR abs/1705.07664 (2017)

[17] Li, R., Wang, S., Zhu, F., Huang, J.: Adaptive graph convolutional neural
networks. arXiv preprint arXiv:1801.03226 (2018)

[18] Mikael Henaff, Joan Bruna, Y.L.: Deep convolutional networks on
graph-structured data. arXiv preprint arXiv:1506.05163 (2015)

[19] Misra, V., Bhatia, S.: Bernoulli embeddings for graphs. arXiv preprint
arXiv:1803.09211 (2018)

[20] Monti, F., Boscaini, D., Masci, J., Rodolà, E., Svoboda, J.,
Bronstein, M.M.: Geometric deep learning on graphs and man-
ifolds using mixture model cnns. CoRR abs/1611.08402 (2016),
http://arxiv.org/abs/1611.08402

[21] Namata, G., London, B., Getoor, L., Huang, B., EDU, U.: Query-driven
active surveying for collective classification. In: Workshop on Mining
and Learning with Graphs (2012)

[22] Pearl, J.: Reverend Bayes on inference engines: A distributed hierarchi-
cal approach. Cognitive Systems Laboratory, School of Engineering and
Applied Science, University of California, Los Angeles (1982)

[23] Peel, L.: Graph-based semi-supervised learning for relational networks.
In: Proc. of SDM. pp. 435–443. SIAM (2017)

[24] Peel, L., Delvenne, J.C., Lambiotte, R.: Multiscale mixing patterns in
networks. Proceedings of the National Academy of Sciences 115(16),
4057–4062 (2018)

[25] Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social
representations. In: Proc. of ACM SIGKDD. pp. 701–710 (2014)

[26] Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad,
T.: Collective classification in network data. AI magazine 29(3), 93
(2008)

[27] Shun, J., Roosta-Khorasani, F., Fountoulakis, K., Mahoney, M.W.:
Parallel local graph clustering. Proc. VLDB Endow. 9(12), 1041–1052
(Aug 2016)

[28] Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: Large-
scale information network embedding. In: Proc. of WWW. pp. 1067–
1077. ACM (2015)

[29] Tang, L., Liu, H.: Relational learning via latent social dimensions. In:
Proc. of ACM SIGKDD. pp. 817–826. ACM (2009)

[30] Tsitsulin, A., Mottin, D., Karras, P., Müller, E.: Verse: Versatile graph
embeddings from similarity measures. In: Proc. of WWW. pp. 539–548
(2018)

[31] Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio,
Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

[32] Wang, B., Tu, Z., Tsotsos, J.K.: Dynamic label propagation for semi-
supervised multi-class multi-label classification. In: Proceedings of the
IEEE international conference on computer vision. pp. 425–432 (2013)

[33] Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In:
Proc. of ACM SIGKDD. pp. 1225–1234. ACM (2016)

[34] Yang, Z., Cohen, W., Salakhudinov, R.: Revisiting semi-supervised
learning with graph embeddings. In: Proc. of ICDM. pp. 40–48 (2016)

[35] Zhang, Z., Cui, P., Wang, X., Pei, J., Yao, X., Zhu, W.: Arbitrary-
order proximity preserved network embedding. In: Proc. of SIGKDD.
pp. 2778–2786 (2018)

[36] Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Schölkopf, B.: Learning
with local and global consistency. In: Proc. of NIPS. pp. 321–328 (2004)

[37] Zhu, X., Ghahramani, Z.: Learning from labeled and unlabeled data with
label propagation (2002)

[38] Zhu, X., Ghahramani, Z., Lafferty, J.D.: Semi-supervised learning using
gaussian fields and harmonic functions. In: Proc. of ICML. pp. 912–919
(2003)

Towards Learning Structural Node Embeddings
using Personalized PageRank

Felix Borutta, Julian Busch, Evgeniy Faerman, Matthias Schubert

Ludwig-Maximilians-Universität München

In this abstract we present our work in progress on embeddings for nodes
in graphs representing their structural similarities. Intuitively, the more similar
the structural representations of the respective neighbors of two nodes, the more
structurally similar they are. An exemplary application is given by the task of
identifying the role of each node in the graph, which might for instance corre-
spond to the function of a protein within a protein-protein interaction network.
Modeling and developing formal definitions for concepts such as structural simi-
larity, structural identity and roles remain challenging problems. Existing works
either learn embeddings which are not able to appropriately model structural
similarity or identify roles based on hand-crafted features rather than learn-
ing important features directly from the input graph. Recent work1 proposes a
framework for learning a structural embedding vector for each node based on
the degree sequences of it’s neighbors within a k-hop distance. Two major draw-
backs of this approach are the cubic time complexity and the fact that different
k-hop neighborhoods are considered equally important. Note that in most cases
the closer neighbors are considered more important. In contrast, we compute
Personalized PageRank (PPR) for each node in the graph and use the resulting
vectors as node representations. PPRs are very fast to compute and effectively
capture the probability distribution over the corresponding neighborhoods. The
preliminary results in Table 1 prove our intuition: we simply sorted the raw PPR
vector of each node and used them as representations. However, the experiments
used in1 are of small practical relevance, as they use strongly artificial datasets.
Therefore, we also work on an appropriate evaluation framework.

Network
complete graph removed 30% of edges

struc2vec ppr struc2vec ppr
corresp. all corresp. all corresp. all corresp. all

Karate .012± .007 .517± .275 .0± .0 .082± .048 .381± .208 .532± .245 .102± .098 .209± .149

Barbell .008± .005 .171± .178 .0± .0 .066± .069 .012± .008 .166± .212 .041± .055 .159± .136

PPI − − .0± .0 .402± .225 − − .081± .098 .405± .229

Table 1. Experimental results on three mirrored networks with each having one bridg-
ing edge; the graph setting and setup for struc2vec is the same as in 1. ’corresp.’ shows
the mean cosine distances ± the standard deviation between the node embeddings
of the corresponding nodes, ’all’ shows the corresponding values when the distance is
measured pairwise between all embeddings. Note that struc2vec did not terminate after
3 weeks for the mirrored PPI network (7780 nodes, 77479 edges).

1 struc2vec: Learning Node Representations from Structural Identity. Figueiredo, Daniel R
and Ribeiro, Leonardo FR and Saverese, Pedro HP. accepted for KDD’17

Copyright © 2017 by the paper’s authors. Copying permitted only for private and academic purposes.
In: M. Leyer (Ed.): Proceedings of the LWDA 2017 Workshops: KDML, FGWM, IR, and FGDB.
Rostock, Germany, 11.-13. September 2017, published at http://ceur-ws.org

Structural Graph Representations based on Multiscale Local
Network Topologies

Felix Borutta
Ludwig-Maximilians-Universität

München
borutta@dbs.ifi.lmu.de

Julian Busch∗
Ludwig-Maximilians-Universität

München
busch@dbs.ifi.lmu.de

Evgeniy Faerman∗
Ludwig-Maximilians-Universität

München
faerman@dbs.ifi.lmu.de

Adina Klink
Ludwig-Maximilians-Universität

München
klink@cip.ifi.lmu.de

Matthias Schubert
Ludwig-Maximilians-Universität

München
schubert@dbs.ifi.lmu.de

ABSTRACT
In many applications, it is required to analyze a graph merely based
on its topology. In these cases, nodes can only be distinguished
based on their structural neighborhoods and it is common that
nodes having the same functionality or role yield similar neighbor-
hood structures. In this work, we investigate two problems: (1) how
to create structural node embeddings which describe a node’s role
and (2) how important the nodes’ roles are for characterizing entire
graphs. To describe the role of a node, we explore the structure
within the local neighborhood (or multiple local neighborhoods
of various extents) of the node in the vertex domain, compute the
visiting probability distribution of nodes in the local neighborhoods
and summarize each distribution to a single number by comput-
ing its entropy. Furthermore, we argue that the roles of nodes are
important to characterize the entire graph. Therefore, we propose
to aggregate the role representations to describe whole graphs for
graph classification tasks. Our experiments show that our new role
descriptors outperform state-of-the-art structural node representa-
tions that are usually more expensive to compute. Additionally, we
achieve promising results compared to advanced state-of-the-art
approaches for graph classification on various benchmark datasets,
often outperforming these approaches.

KEYWORDS
Representation Learning, Node Embedding, Graph Classification,
Structural Embeddings

ACM Reference Format:
Felix Borutta, Julian Busch∗, Evgeniy Faerman∗, Adina Klink, and Matthias
Schubert. 2019. Structural Graph Representations based on Multiscale Local
Network Topologies. In IEEE/WIC/ACM International Conference on Web
Intelligence (WI ’19), October 14–17, 2019, Thessaloniki, Greece. ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/3350546.3352505

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WI ’19, October 14–17, 2019, Thessaloniki, Greece
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6934-3/19/10. . . $15.00
https://doi.org/10.1145/3350546.3352505

1 INTRODUCTION
The increasing relevance of graph-structured data has been accom-
panied by an increased interest in algorithms that can leverage
underlying graph structure to make accurate predictions about the
modeled entities. In many scenarios no additional facts about en-
tities or properties of relationships are known. In such cases, the
only source of information for machine learning tasks like node and
graph classification is the graph topology. In this work, we consider
two problems, i.e., deriving structural node representations (or role
representations) based solely on the topological structure within the
local node neighborhoods, and using these role representations to
learn representations for entire graph structures in an unsupervised
manner.

First, we consider the problem of deriving role representations
for nodes based on the topological structure within the local neigh-
borhood. The idea is to capture the different functionalities of net-
work entities within vector representations such that entities that
play a similar role within the network end up close together in
the embedded space. Note that the notion of a role is generally
diverse and might describe influencers in a social network, or a
specific group of atoms in molecule networks that are likely to
bind to similar atomic substructures. In general, node representa-
tions describing the roles of the nodes within a graph are useful for
downstream classification or clustering tasks, e.g., they may give
valuable insights for real world tasks like drug design, identification
of influencers within social communities, link prediction, etc. To
introduce the problem more formally, we are given a set of graphs
G = {G1, . . . ,GN } with Gi = (Vi ,Ei) being a graph, V =

⋃N
i=1Vi

denoting the set of vertices and E =
⋃N
i=1 Ei being the set of edges.

The goal is to derive vector representations f (vj) ∈ Rd reflect-
ing the various roles of nodes vj ∈ V in a graph Gi ∈ G. Figure
1 illustrates the concept of node roles for airline networks. Note
that the color coding corresponds to the nodes’ roles. It can clearly
be seen that the role of a node (e.g. hub airport, airport with con-
nection to a single hub or an airport with connection to several
hubs) can be extracted from the node’s local neighborhood. We can
also see that these roles can be identified across different graphs
although the local neighborhoods may seem to be different, e.g.,
in terms of size. However, considering the local topology around
the nodes, it can also be seen that they are similar for those nodes

∗ These authors contributed equally.

91

WI ’19, October 14–17, 2019, Thessaloniki, Greece Borutta, Busch, Faerman, Klink and Schubert

Figure 1: Airline networks. Left: Scandinavian Airline; Right: Niki Air. Each node corresponds to an airport and edges connect
two airports if the airline operates a flight between them. The color coding corresponds to the role descriptors as determined
by our approach.

that have similar colors. The distinct property of node role repre-
sentations is that they should be independent of specific neighbors.
Therefore, nodes that are similar in the embedded space are not nec-
essarily closely connected and even may reside in different graphs.
In particular, given two nodes u,v ∈ V which have similar local
structural neighborhood patterns with respect to some similarity
measure, i.e., SN (u) ≈ SN (v), then the representation of u and v
shall be similar as well. However, defining an appropriate similarity
measure seems difficult since even the notion of local structural
neighborhood patterns is hard to grasp. In this paper, we argue that
the spread of probability mass under the node’s most relevant local
neighbors is a good characteristic for the node’s role. Similarly to
[11] we leverage the Approximate Personalized PageRank (APPR) to
effectively describe multiple locality structures around the vertices
and use the probability distribution vectors as a basis to quantify
the structural roles of the nodes. An important feature of our novel
node representation is that it is very efficient to compute and thus,
even suitable for large data sets.

The second task considered in this work is to learn vector repre-
sentations for entire graphs based on the nodes’ roles. Calculating
numerical vector representations for entire graph structures is par-
ticularly useful when considering tasks like graph classification.
Many applications, especially in biology or sociology, may benefit
from well-suited graph descriptors, e.g., for deciding whether a
particular molecule is toxic or not, or for identifying similar so-
cial groups. Formally, for graph classification, we are given a label
vector y ∈ {1, . . . ,K}N assigning each graph Gi ∈ G to one of
K classes. The goal is to learn a model, which accurately predicts
the class label yi given Gi . By using an unsupervised clustering
algorithm, we discretize the definition of roles and represent each
graph by a count vector for role types.

Our empirical evaluation demonstrates that our simple approach
outperforms advanced state-of-the-art role-based node represen-
tations. Furthermore, we show that even with straightforward ag-
gregation, we already outperform state-of-the-art approaches for
graph classification on the majority of the used evaluation datasets.
To summarize, the main contributions of this paper are as follows:

• A novel structure-based approach to determine role repre-
sentations for single nodes directly in the vertex domain.

• A novel approach for graph classification based on aggrega-
tion of node roles appearing in a graph.

• An extensive evaluation of our proposed role representations
as well as the derived graph representations.

2 RELATEDWORK
A variety of approaches have been proposed for solving different
problems related to our work. These can mainly be sorted into two
categories, node embedding and graph classification techniques.

2.1 Node Embedding
Node embedding techniques aim at deriving continuous vector
representations for nodes in a graph based on certain assumptions.
These techniques are unsupervised and the learned embeddings
can be incorporated for several downstream learning tasks.

Homophily-based approaches embed nodes such that nodes
which are close in the graph should also be close in the result-
ing embedding space and mainly differ in how they determine node
neighborhoods. While some methods, e.g., the ones presented in
[11, 13, 26, 32] rely on implicit matrix factorization, other methods
such as GraRep [8] perform explicit matrix factorization. More re-
cent methods focus on additional aspects like incorporating node
attributes [14] or uncertainty [5]. However, though they also learn
node representations in general, their objective is to embed nodes
such that the vector representations capture proximity rather than
structural properties.

In contrast, the idea of structural node embeddings is to relate
nodes if their connectivity patterns to their respective neighbors
exhibit similar structural properties. To this end, struc2vec [27]
trains a SkipGram model using degree sequences in neighborhoods
of increasing size. However, the method hardly scales in terms of
graph size. Similarly, DRNE [34] sorts neighboring nodes by their
degree and feeds the resulting sequences into an LSTM. The authors
show that in some special cases, the resulting embeddings satisfy
regular equivalence which recursively defines two nodes in a graph
to be role-equivalent if their neighbors have the same roles. While
such graph-based role definitions are rather strict and often do
not apply in the real world, we take a more flexible feature-based
embedding approach. RolX [15] is a feature-based approach which
relies on handcrafted structural features (such as node degree or
clustering coefficient) and computes soft-assignments of nodes to a
predefined number of roles using matrix factorization. For a more
in-depth discussion on role discovery, we refer to [28].

92

Structural Graph Representations using APPR WI ’19, October 14–17, 2019, Thessaloniki, Greece

A diffusion-based approach is taken by GraphWave [10], where
the graph is first transformed to the spectral domain in which
the signal is then filtered with a heat kernel. Approximation us-
ing Chebyshev polynomials of order up to k results in linear time
complexity and a k-localized filter. Node embeddings are derived
by aggregating the rows of the resulting wavelet coefficient ma-
trix while controlling the spread of the diffusion implied by the
heat kernel. For detecting patterns at multiple scales, embeddings
resulting from different scaling parameters are computed and con-
catenated. Though the heat kernel diffusion process resembles that
implied by PPR [9], an important difference is that our method
operates directly in the vertex domain. Furthermore, our method is
not restricted to k-hop neighborhoods.

2.2 Graph Classification
Methods for graph classification can be categorized into kernel-
based and feature-based methods.

Established graph kernels include the Random-Walk (RW) [7],
Shortest-Path (SP) [6], Weisfeiler-Lehman (WL) [29] and Graphlet
Kernel (GK) [30]. The first two methods rely on additional node
labels and count visits to nodes with a certain label in random
walks or via shortest paths, respectively. The WL kernel is based
on the Weisfeiler-Lehman graph isomorphism test and performs
a relabeling of initial node labels. The graphlet kernel counts oc-
currences of small induced non-isomorphic subgraphs and does
not consider additional node labels. A problem of those kernels is
that correlations between feature dimensions are not taken into
account. This problem is addressed, e.g., in [1, 21, 35] by learning
hidden representations of the substructures counted by the respec-
tive graph kernels. However, it should be noted that all of the above
methods suffer from rather high complexity. Other works focus
on directly specifying graph metric spaces. Such approaches are
usually NP-hard and rely on heuristics [2, 24].

Earlier works on feature-based graph classification rely on hand-
crafted features. NetSimile [4] extracts structural features (such as
node degree and clustering coefficient) for each node and aggregates
them per graph using different aggregation functions. Similar to
graphlet kernels, other works focus on describing graphs by decom-
posing them into subgraphs. Subgraph2vec [21] computes subgraph
embeddings using a SkipGram model. The more recent method
GE-FSG [22] represents graphs as bags of frequent subgraphs and
learns graph embeddings using a document embedding technique.
GAM [18] addresses the problems of scalability and noise by using
an attention model to focus on small and informative parts of a
graph. However, the method relies on additional node attributes.

DeepGraph [19] computes graph embeddings based on heat ker-
nel signatures. However, the final embeddings are trained end-to-
end for predicting network growth. In addition to the heat kernel
signature, NetLSD [33] further considers the wave kernel signature.
Similarly as in GraphWave, signatures of different scales are con-
catenated in order to obtain a multi-scale representation and a k-th
order approximation is performed to make the eigendecomposition
of the Laplacian scalable. Message Passing Networks [12] is a class
of neural networks models for graphs. The primary focus of these
methods lies on learning embeddings from node attributes and they
cannot be applied out-of-the-box to classify general non-attributed

Algorithm 1 APPR-Roles
Input: Graph G, Labels L , Teleportation probabilities α s, Approximation

threshold ϵ
Output: Classification modelm
1: role_descriptors = list()
2: for idx in range(G) do
3: v = G.getNode(idx)
4: embv = list()
5: for α in α s do
6: pαv = APPR(v, α, ϵ)
7: embv .append(entropy(pαv))
8: end for
9: role_descriptors.append(embv)
10: end for
11: m = LogisticRegression().fit(role_descriptors, L)
12: return m

graphs. Patchy-san [23] addresses this problem by considering aux-
iliary node labels such as degree or PageRank centrality.
3 APPR ROLES: STRUCTURAL NODE AND

GRAPH REPRESENTATIONS
Since our approach relies on the Approximate Personalized PageR-
ank for capturing structural properties within local node neighbor-
hoods, we briefly review its idea.

In general, Personalized PageRank can be viewed as a special
case of the PageRank algorithm [25], where the probabilities in the
starting vector are biased towards some set of nodes. We consider
the special case in which the starting vector is a unit vector, re-
sulting in personalized importance scores for the particular source
node. Doing this for all nodes in the graph, the PPR-vectors finally
can be stored as rows of a sparse PPR-matrix Π ∈ Rn×n . Local
push-based algorithms [3, 16] can be used to compute Approximate
Personalized PageRank (APPR) very efficiently and lead to sparse
solutions where small, irrelevant entries are omitted. In particular,
we consider the algorithm proposed in [31]. The algorithm requires
two parameters to be set by the user. The teleportation parameter α
determines the effective size of the neighborhood considered for the
source node. The second parameter ϵ is a threshold which controls
approximation quality and runtime. Note that the complexity for
this procedure is O(1/αϵ).

3.1 Entropy-based Node Descriptors
The APPR-vector pi of a node vi effectively models the connectiv-
ity of that node with respect to all other nodes in the graph as a
probability distribution, whereby the probability mass is concen-
trated only on vi ’s relevant neighbors. In principle, we could use
the APPR-vectors directly as node representations. This would lead
to the following feature space:

∆n =

{
p ∈ Rn≥0

�����
n∑
i=1

pi = 1
}
, (1)

which is known as the n-dimensional standard simplex. However,
the resulting representations model homophily rather than struc-
tural properties, since they encode the information to which in-
dividual nodes a particular source node is connected. In order to
make the representations location-invariant, we need to factor out
this information. Since location invariance in this case translates

93

WI ’19, October 14–17, 2019, Thessaloniki, Greece Borutta, Busch, Faerman, Klink and Schubert

Figure 2: Workflow for calculating the aggregated graph descriptors from role-based node descriptors.

to permutation invariance, we consider the quotient space

∆n
/
∼ =

{[p] �� p ∈ ∆n
}
, (2)

which corresponds to the set of equivalence classes [p] = {q ∈
∆n | p ∼ q} of the equivalence relation ∼ with p ∼ q ⇔ ∃P ∈ P :
p = qP where P =

{
P ∈ {0, 1}n×n

�� P1 = 1, PT 1 = 1
}
is the set of

permutation matrices. As a corresponding quotient map, we can
define f : ∆n → ∆n

/
∼ with f (p) = pPp which maps p to its

equivalence class by sorting it using the permutation matrix Pp
such that 1 ≥ f (p)1 ≥ · · · ≥ f (p)n ≥ 0.

Though the resulting sorted APPR-vectors qualify as structural
node descriptors, they are not well suited for further downstream
tasks since they are high-dimensional and sparse. Furthermore,
node descriptors would not be comparable among graphs with dif-
ferent numbers of nodes. To this end we need to perform some form
of aggregation. Our approach is based on the observation that, in
terms of APPR, the structural properties of two nodes differ mostly
based on the extent to which they spread their probability mass
throughout the graph. For instance, a community node will spread
its probability mass evenly to nodes within the same community,
whereas a peripheral node will strongly concentrate its probabil-
ity mass to one or very few nodes to which it is connected. The
above behavior can be accurately described by the Shannon entropy

H : ∆n
/
∼ → R with H (p) = −∑n

i=1 pi logpi where we use the
binary logarithm. In particular, it fulfills the following properties.

Theorem 3.1. For all p ∈ ∆n
/
∼ it holds that

(1) H (p) ∈ [0, logn].
(2) H (p) = 0 if and only if p = e1.
(3) H (p) = logn if and only if p = 1

n 1.
(4) H (p) = logn − DKL(p ∥ 1

n 1).
Intuitively stated, properties (1) to (3) state that the entropy is

minimized for a distribution with a single peak and maximized for
the uniform distribution. Property (4) states that the entropy can
be interpreted as the similarity to the uniform distribution in terms
of the Kullback-Leibler divergence. Our empirical results support
the usefulness of this intuition. A further advantage over other
applicable dimension reduction techniques is that we can describe
each node by a single scalar value which can be visualized directly
on a color map (as was done in Figure 1) and has a simple and
intuitive meaning. Note that the entropy function is symmetric, i.e.,

H (f (p)) = H (p) for all p ∈ ∆n . As a result, the APPR-vectors need
not be sorted and the entropy of a single node vi can be computed
in linear time with respect to the number of non-zero entries of pi .

Recalling that the teleportation parameter α in APPR controls
the effective neighborhood size, we detect roles on multiple scales
by computing APPR for multiple parameter values α ∈ {α1, . . . ,αl }
and concatenating for each node its corresponding l entropy values.
The final descriptor of node vi is then given as

fi =
[
H

(
p
(α1)
i

)
, . . . ,H

(
p
(αl)
i

)]T
∈ Rl . (3)

The entire procedure for calculating the role descriptors can be
summarized as outlined in Algorithm 1. The input for the method
is the entire graph dataset G, a list of node labels L , a list of
teleportation parameters αs, and the approximation threshold ϵ .
For each of the nodesv inG, the algorithm stacks the entropy-based
representations of the corresponding APPR vectors, denoted as pαv ,
to generate the role descriptor ofv , i.e., embv . The algorithm finally
fits a classification model on the collection of role descriptors and
retrieves the resulting model for node classification.

3.2 Aggregated Graph Descriptors
Since our structural node descriptors are location-invariant and
thus transferable among different graphs, we are able to compare
whole graphs by comparing their respective sets of node descriptors.
However, simply collecting the node descriptors in a (ordered)
set for each graph is not a straightforward solution, since this
would result in different length representations for graphs with
different numbers of nodes. To this end, we propose the following
aggregation scheme to discretize the notion of roles: First we collect
node descriptors from all graphs in the training dataset and cluster
themwithk-Means [20]. The resulting cluster centers {µi ∈ Rl | i =
1, . . . ,k} can be interpreted as multi-scale role concepts appearing
in the dataset. In a second step, we assign each node v in a given
graph Gi to its nearest cluster center µ(v) and use the resulting
count vector

Fi =
[��{v ∈ Vi | µ(v) = µ j

}�� : j = 1, . . . ,k
]T ∈ Rk , (4)

as representation for that graph. One important advantage of these
graph descriptors is that they can be computed very efficiently,
i.e., in linear time w.r.t. the total number of nodes in the dataset.
Furthermore, the number of clusters k can be varied flexibly to
explore different numbers of roles in a graph. For a supervised

94

Structural Graph Representations using APPR WI ’19, October 14–17, 2019, Thessaloniki, Greece

Dataset |G| |L | ϕ |V | ϕ |E |
MUTAG 188 2 17.93 19.79
ENZYMES 600 6 32.63 62.14
NCI1 4110 2 29.87 32.30
NCI109 4127 2 29.68 32.13
PROTEINS 1113 2 39.06 72.82
IMDB-BINARY 2000 2 429.63 497.75
IMDB-MULTI 1500 3 13.00 65.94
REDDIT-BINARY 2000 2 429.63 497.75
REDDIT-12K 11929 11 391.41 456.89
REDDIT-5K 4999 5 508.52 594.87

Table 1: Benchmark datasets for graph classification. The up-
per part of the table contains biological networks, the lower
part of the table refers to social network datasets. |G| de-
notes the number of graphs, |L | is the number of classes and
ϕ |V |, resp. ϕ |E | is the average number of nodes, resp. edges.

objective, the hyper-parameter can simply be optimized over a
range of sensible values. However, other clustering techniques may
be employed for discretizing the continuous role descriptors, too.

Figure 2 visualizes the workflow for calculating the described
graph descriptors. The procedure consists of two blocks: in the first
block, the continuous role descriptors for each node are calculated.
Given the raw network – composed of multiple, differently sized
components which form graph structures on their own – as input,
we compute the stationary APPR distributions for each node. Next,
we derive the continuous role-based node descriptors by comput-
ing the entropy values of the distributions for each node. Stacking
these entropy values for each component results in differently sized
and thus incomparable vectors (or matrices in case of multiple α
values for the calculations of the APPR distributions). In order to
enable comparisons between differently sized subgraphs, we first
discretize the notion of roles by employing the k-means algorithm
on the continuous role descriptors in the second block of our pro-
cedure1. Secondly, for each of the subgraph structures, we count
the appearances of each role within the corresponding network to
construct equally-sized graph descriptors which can easily be used
for downstream tasks like classifications. Note that the example
depicts the procedure for a single value of α used for APPR. As
we show in the experiments section, richer representations can be
calculated by using multiple values for α .

4 EXPERIMENTS
In the following, we first investigate the performance of our new
node representations compared to node representations created
with RolX [15] which relies on hand-crafted features, the diffusion-
based method GraphWave [10] and the SkipGram-based struc2vec
[27] method. Afterwards, we evaluate the proposed graph repre-
sentations in graph classification tasks. We compare our approach
against state-of-the-art approaches including Deep Graph Kernels
(DGK) [35], the diffusion-based NetLSD [33] method and NetSimile
[4] which relies on hand-crafted features.

1In the figure, we used k = 3 as the number of roles.

4.1 Datasets
To empirically investigate the benefits of our approach for deter-
mining the role descriptors, we first use a barbell graph to compare
the performance of various structure based node representations.
The barbell graph consists of two fully connected components that
are connected by a long chain. Specifically, we use a barbell graph
that has ten nodes within each clique and a chain of length ten as il-
lustrated in Figure 3a. The goal of this experiment is to demonstrate
the ability of identifying different roles. In a second experiment,
we use the mirrored Karate network as already used in [10, 27].
In particular, this dataset consists of two copies of the Zachary’s
karate network with one edge connecting the two copies by link-
ing one randomly chosen node with its copy. We use this dataset
to demonstrate the performance of the embedding techniques in
terms of accuracy. Obviously, a node and its copy should end up at
the same position (or very close to each other) in the embedding
space as they have exactly the same roles. Finally, we employ two
real world datasets, i.e., the European and the American air traffic
networks used in [27]. These networks are unweighted and undi-
rected. Nodes represent airports which are connected if there have
been commercial flights during the time this dataset was recorded.
Both networks have four equally sized classes corresponding to
the relative level of activity of the airport. These datasets are used
to compare the performance in terms of accuracy as well as to
demonstrate the efficiency in terms of computation time.

For evaluating the performance of the proposed graph represen-
tations in terms of graph classification, we use several biological
and social networks which are taken from [17] (see Table 1).

4.2 Structural Node Embedding
We first consider the structural node embeddings and compare
the embeddings retrieved by our approach to the representations
retrieved by RolX, GraphWave and struc2vec. For all competitors,
we use the implementations and recommended configurations as
published by the authors. The α parameter for our approach is
ranged from 0.1 to 0.9 with a step size of 0.1. For each of the
parameters, we get a one dimensional descriptor for every node,
referred to as APPRrolesα=i . We also construct higher dimensional
representations by combining the node descriptors for all values
of α per node. We refer to this configuration as APPRrolesstacked .
The approximation threshold ϵ for the computations of the APPR
vectors is set to ϵ = 1E−4.

Barbell Graph. In Figure 3 we provide a visual analysis of how
well the APPR based node representations are able to embed the
structural properties of the node neighborhoods. Figure 3a depicts
the barbell graph while the remaining plots show 1-dimensional
structural node embeddings. For visualization purposes, we project
higher dimensional embeddings into 1-dimensional spaces by using
PCA to be able to discuss the outcomes in comparison to our 1-
dimensional representations. Therefore, we use the node identifiers
on the y-axes in our plots to spread the depicted 1-dimensional
embeddings along the y-axes such that they do not cover each
other. Figures 3b-3d show the structural node embeddings for the
competitors when projecting them onto the first principal compo-
nent and normalizing the values (cf. x-axes). The first three images
in the lower row depict the results for our approach when using
different values for α . Precisely, we show the normalized results for

95

WI ’19, October 14–17, 2019, Thessaloniki, Greece Borutta, Busch, Faerman, Klink and Schubert

(a) Barbell Graph (b) RolX (c) GraphWave (d) struc2vec

(e) APPRrolesα=0.9 (f) APPRrolesα=0.5 (g) APPRrolesα=0.1 (h) APPRrolesstacked

Figure 3: 1-dimensional node representations for the barbell graph. The y-axes show the node identifiers (i.e., numerical values
that we assigned to the nodes), the x-axes are the 1-dimensional node descriptors on [0,1] scale.

α ∈ {0.9, 0.5, 0.1}, which means that we range the exploration of
the node neighborhoods from local (α = 0.9) to spacious (α = 0.1).
In Figure 3h, we visualize the node embeddings when stacking the
descriptors for all values of α and projecting these embeddings into
1-dimensional space, again using PCA.

The first thing we want to emphasize is that it is difficult to say
which of the methods works best on this dataset since we do not
use any external evaluation measures in this experiment due to
lack of ground truth. What we can clearly see is that RolX and
GraphWave reveal only very few roles, i.e., most nodes of the chain
are considered to have the same role. This also applies to struc2vec
as we can identify three clusters in the 1-dimensional projection.
However, differently to the other methods, struc2vec identifies
the node in the center of the chain as an own role. Given our
representations, we can see that our approach is much more flexible
in terms of role identification. When using a rather large value
for α , i.e., defining roles only based on very local neighborhoods,
our method also considers the chain elements to have the same
role. However, when decreasing the value of α , i.e., enlarging the
neighborhoods based on which to define the roles, we can observe
that the roles of the elements in the chain are considered to differ
more and more. Nevertheless, the chain nodes that have the same
hop distance from the center of the chain are always considered
to have an equal role. Given that roles are not always defined
precisely, this is a very desirable property of our approach that RolX
or struc2vec cannot fulfill. GraphWave might be able to have this
flexibility but due to operating on the spectra of the graphs rather
than the vertex domain, it might be difficult to set the corresponding
parameter appropriately.

Summarizing the insights revealed by this experiment, we can
state that the choice of the value for α might have a significant
impact on the outcome. In other words, using a small α value leads
to an accurate distinction between node roles, while rather large
values of α do not distinguish as accurately between different roles.

Mirrored Karate Network. Next, we consider the mirrored
Karate network for which we measure the performance of the

embedding methods by doing 1-NN-range queries. Recall that this
network consists of two copies of the Zachary’s Karate network
and an additional edge which links a randomly chosen node with
its copy. Given a set of structural node embeddings E containing
one embedding for each node of the mirrored karate network, this
experiment aims at identifying the copy of the query node among
its 1-nearest-neighbors. Note that we call this query 1-NN-range
query to emphasize that the set of 1-nearest-neighbors might be
of size greater than 1. Precisely, we compute the nearest neighbor
o for each query point q ∈ E and subsequently perform a range
query around q with distance dist(o,q).

The results given in Table 2 show the accuracy and average size
of the queries’ candidate sets, i.e., ∅|C |. Except for struc2vec, all
methods achieve an accuracy of 100%. However, when considering
the precision that we measure by the size of the candidate set of
the 1-NN-range query, we can see that our approach gives the best
result on average.

Method Acc. ∅|C | Acc .
∅ |C |

RolX 1.00 6.59 0.151
GraphWave 1.00 6.56 0.152
struc2vec 0.56 3.00 0.186
APPRrolesα=0.1 0.96 4.53 0.211
APPRrolesα=0.2 1.00 4.62 0.216
APPRrolesα=0.3 0.99 5.62 0.175
APPRrolesα=0.4 1.00 5.00 0.200
APPRrolesα=0.5 1.00 5.44 0.183
APPRrolesα=0.6 1.00 4.91 0.203
APPRrolesα=0.7 0.93 4.35 0.212
APPRrolesα=0.8 1.00 5.76 0.173
APPRrolesα=0.9 1.00 6.32 0.158
APPRrolesstacked 1.00 4.97 0.201

Table 2: Results for the 1-NN-range queries on the mirrored
Karate network. ∅|C | denotes the average size of the candi-
date sets retrieved by the 1-NN-range queries.

96

Structural Graph Representations using APPR WI ’19, October 14–17, 2019, Thessaloniki, Greece

Method EUR Airports t in ms USA Airports t in ms
RolX 0.78±0.06 16747 0.77±0.05 66463
GraphWave 0.78±0.05 16596 0.77±0.04 263405
struc2vec 0.81±0.09 695616 0.84±0.05 830.94
APPRrolesα=0.1 0.77±0.03 375 0.75±0.00 772
APPRrolesα=0.2 0.76±0.03 337 0.75±0.01 530
APPRrolesα=0.3 0.75±0.01 209 0.76±0.03 431
APPRrolesα=0.4 0.75±0.01 .9 0.78±0.04 379
APPRrolesα=0.5 0.77±0.04 189 0.78±0.05 331
APPRrolesα=0.6 0.77±0.04 153 0.78±0.05 307
APPRrolesα=0.7 0.76±0.03 143 0.79±0.07 281
APPRrolesα=0.8 0.74±0.03 134 0.78±0.06 240
APPRrolesα=0.9 0.75±0.00 50 0.78±0.06 252
APPRrolesstacked 0.79±0.07 1788 0.80±0.07 3523

Table 3: Results for one-vs-rest classification.We report themean accuracy and standard deviation for each configuration. The
table also reports runtime measurements for creating the representations including preprocessing steps.

Airport Traffic Networks. The results for the two airport traf-
fic networks can be reviewed in Table 3. As proposed in [27] we
employ one-vs-rest classifications with 90-10 train-test splits and
report the mean accuracy and standard deviation over 10 runs. Ad-
ditionally, the table contains the runtimes in milliseconds for each
method including the preprocessing steps for struc2vec and our
approach. RolX and GraphWave do not have preprocessing steps if
executing their standard configurations2.

For both networks, we can notice that although our proposed
method outperforms RolX and GraphWave in terms of accuracy,
the scores achieved with struc2vec are slightly better. Note that the
results for the European airports network are comparable across all
methods. However, regarding the runtime our method clearly out-
performs the competitors. Compared to struc2vec our approach is
more than 2’300 times faster, even when considering the
APPRrolesstacked configuration, on the USA airports network3.
It should be noted that the accuracy of our approach might be
further improved by spending more time for preprocessing the
local neighborhoods. As we use an approximate version of the Per-
sonalized PageRank for engineering the local neighborhoods, it is
possible to decrease the approximation threshold to get more accu-
rate node descriptors. However, this comes at the cost of increased
computation time.

4.3 Graph Classification
We next show that the proposed node representations are well-
suited for graph classification when aggregating them for entire
graph structures. Therefore, we compare our graph representa-
tions against Deep Graph Kernels (DGK), NetLSD and NetSimile.
Though the authors of DGK present three kernel types, i.e., graphlet,
shortest path and Weisfeiler-Lehmann kernels, the latter two re-
quire additional node labels which are considered by none of the
other methods. For the sake of a fair comparison, we only compare
against graphlet kernels. For NetLSD, we use both presented con-
figurations, i.e., the variant that uses heat trace signatures, denoted

2Note that the standard configuration of GraphWave implements an automatic mode
for parameter selection. Thus, we must compare its runtime to APPRrolesstacked .
3The EUR Airports network consists of 399 nodes and 5995 edges. The USA Airports
network consists of 1190 nodes and 13599 edges.

as NetLSDHeat , as well as the variant that uses wave trace signa-
tures, denoted as NetLSDWave . Either way, we calculate the full
eigenspectra rather than using one of the proposed approximations.
Regarding our approach, we present the results for α = 0.1 and the
variant where we stack the representations for all values of α .

For all experiments in this section, we report the mean accu-
racy of 1-NN classifications over 10 runs. The results for DGK are
borrowed from the original paper since the method relies on a
Kernel-SVM with precomputed kernels and the authors used the
same evaluation setup.

Biological Networks. The results for the biological datasets are
listed in Table 4. On the first four datasets our approach achieves
better accuracy scores than the competitors. Indeed our approach
reaches gains of approx. 3% on MUTAG, 2.8% on ENZYMES, about
8.2% on NCI1 and over 10% on NCI109 compared to the best com-
petitor. For PROTEINS, the deep graph kernel method shows the
best accuracy. However, among the methods that we evaluate with
our classifier, our method achieves the best score.

Social Networks. Finally, considering the social networks, we
can observe similar results. As can be seen in Table 5, except for
IMDB-BINARY, our method outperforms all competitors for which
we applied the 1-NN classification. Though we want to note that
the deep graphlet kernel was slightly better on IMDB-MULTI when
using the evaluation method proposed in [35].

5 CONCLUSION
In this work, we presented a novel approach for defining struc-
tural node representations that describe the nodes’ roles within a
graph. We subsequently used these node representations to com-
pute meaningful vector representations for entire graph structures.
More precisely, we figured out that local, personalized PageRank
distributions encapsulate the structure of local node neighborhoods
and can be compressed to meaningful role descriptors. Compared
to previous approaches that tackle the problem of structural node
embeddings our approach is fast to compute and allows for much
flexibility in terms of identifying different node roles by simulta-
neously being quite simple to interpret. We show that these role
descriptors are expressive enough to achieve good performance
in terms of graph classification when aggregating them for entire

97

WI ’19, October 14–17, 2019, Thessaloniki, Greece Borutta, Busch, Faerman, Klink and Schubert

Method MUTAG ENZYMES NCI1 NCI109 PROTEINS
DGK 0.827±0.021 0.271±0.008 0.625±0.003 0.627±0.002 0.717±0.005
NetLSDHeat 0.841±0.032 0.367±0.042 0.665±0.014 0.647±0.018 0.649±0.023
NetLSDWave 0.809±0.055 0.265±0.042 0.611±0.012 0.603±0.016 0.603±0.028
NetSimile 0.833±0.034 0.387±0.046 0.676±0.019 0.663±0.018 0.602±0.023
PPRrolesα=0.1 0.871±0.043 0.340±0.033 0.704±0.019 0.699±0.014 0.665±0.042
PPRrolesstacked 0.858±0.043 0..9±0.046 0.732±0.012 0.734±0.013 0.644±0.028

Table 4: Accuracy in 1-NN classification on biological networks. Note that the DGK results are taken from [35] and report the
achieved classification accuracy when applying a SVM.

Method IMDB-BINARY IMDB-MULTI REDDIT-BINARY REDDIT-12K REDDIT-5K
DGK 0.670±0.006 0.446±0.005 0.780±0.004 0.322±0.001 0.413±0.002
NetLSDHeat 0.690±0.034 0.421±0.035 0.782±0.017 0.246±0.009 0.332±0.014
NetLSDWave 0.681±0.033 0.420±0.038 0.671±0.023 0.227±0.005 0.317±0.012
NetSimile 0.704±0.039 0.415±0.039 0.848±0.010 0.335±0.009 0.413±0.012
PPRrolesα=0.1 0.645±0.032 0.404±0.041 0.857±0.017 0.348±0.009 0.427±0.014
PPRrolesstacked 0.666±0.035 0.429±0.039 0.867±0.014 0.348±0.007 0.417±0.010

Table 5: Accuracy in 1-NN classification on social networks. Note that the DGK results are taken from [35] and report the
achieved classification accuracy when applying a SVM.

graph structures. Our experiments demonstrate that we can outper-
form state-of-the-art methods in both node classification as well as
graph classification tasks.

ACKNOWLEDGEMENTS
This work has been funded by the German Federal Ministry of
Education and Research (BMBF) under Grant No. 01IS18036A. The
authors of this work take full responsibilities for its content.

REFERENCES
[1] Bijaya Adhikari, Yao Zhang, Naren Ramakrishnan, and B Aditya Prakash. 2018.

Sub2Vec: Feature Learning for Subgraphs. In Proc. of PAKDD. Springer, 170–182.
[2] Jose Bento and Stratis Ioannidis. 2018. A Family of Tractable Graph Distances.

In Proc. of SDM. 333–341.
[3] Pavel Berkhin. 2006. Bookmark-coloring algorithm for personalized pagerank

computing. Internet Mathematics 3, 1 (2006), 41–62.
[4] Michele Berlingerio, Danai Koutra, Tina Eliassi-Rad, and Christos Faloutsos. 2012.

Netsimile: A scalable approach to size-independent network similarity. arXiv
preprint 1209.2684 (2012).

[5] Aleksandar Bojchevski and StephanGünnemann. 2017. Deep gaussian embedding
of attributed graphs: Unsupervised inductive learning via ranking. arXiv preprint
arXiv:1707.03815 (2017).

[6] Karsten M Borgwardt and Hans-Peter Kriegel. 2005. Shortest-path kernels on
graphs. In Proc. of ICDM. 8–pp.

[7] Karsten M Borgwardt, Cheng Soon Ong, Stefan Schönauer, SVN Vishwanathan,
Alex J Smola, and Hans-Peter Kriegel. 2005. Protein function prediction via graph
kernels. Bioinformatics 21, suppl_1 (2005), i47–i56.

[8] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2015. Grarep: Learning graph repre-
sentations with global structural information. In Proc. of CIKM. ACM, 891–900.

[9] Fan Chung. 2007. The heat kernel as the pagerank of a graph. Proceeddings of
the National Academy of Sciences 104, 50 (2007), 19735–19740.

[10] Claire Donnat, Marinka Zitnik, David Hallac, and Jure Leskovec. 2018. Learning
structural node embeddings via diffusion wavelets. In Proc. of KDD. ACM, 1320–
1329.

[11] Evgeniy Faerman, Felix Borutta, Kimon Fountoulakis, and Michael W Mahoney.
2018. Lasagne: Locality and structure aware graph node embedding. In Proc. of
WI). IEEE, 246–253.

[12] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E
Dahl. 2017. Neural message passing for quantum chemistry. In Proc. of ICML.
JMLR. org, 1263–1272.

[13] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Feature Learning for
Networks. In Proc. of KDD. 855–864.

[14] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In Proc. of NIPS. 1024–1034.

[15] Keith Henderson, Brian Gallagher, Tina Eliassi-Rad, Hanghang Tong, Sugato
Basu, Leman Akoglu, Danai Koutra, Christos Faloutsos, and Lei Li. 2012. Rolx:

structural role extraction & mining in large graphs. In Proc. of KDD. ACM.
[16] Glen Jeh and Jennifer Widom. 2003. Scaling personalized web search. In Proc. of

WWW. ACM, 271–279.
[17] Kristian Kersting, Nils M. Kriege, Christopher Morris, Petra Mutzel, and Marion

Neumann. 2016. Benchmark Data Sets for Graph Kernels. http://graphkernels.
cs.tu-dortmund.de

[18] John Boaz Lee, Ryan Rossi, and Xiangnan Kong. 2018. Graph Classification using
Structural Attention. In Proc. of KDD. ACM, 1666–1674.

[19] Cheng Li, Xiaoxiao Guo, and Qiaozhu Mei. 2016. DeepGraph: Graph structure
predicts network growth. arXiv preprint arXiv:1610.06251 (2016).

[20] Stuart Lloyd. 1982. Least squares quantization in PCM. IEEE transactions on
information theory 28, 2 (1982), 129–137.

[21] Annamalai Narayanan, Mahinthan Chandramohan, Lihui Chen, Yang Liu, and
Santhoshkumar Saminathan. 2016. subgraph2vec: Learning distributed represen-
tations of rooted sub-graphs from large graphs. arXiv preprint arXiv:1606.08928
(2016).

[22] Dang Nguyen, Wei Luo, Tu Dinh Nguyen, Svetha Venkatesh, and Dinh Phung.
2018. Learning graph representation via frequent subgraphs. In Proc. of SDM.

[23] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. 2016. Learning
Convolutional Neural Networks for Graphs. In Proc. of ICML. 2014–2023.

[24] Giannis Nikolentzos, Polykarpos Meladianos, and Michalis Vazirgiannis. 2017.
Matching Node Embeddings for Graph Similarity.. In Proc. of AAAI. 2429–2435.

[25] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
PageRank citation ranking: bringing order to the web. (1999).

[26] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In Proc. of KDD. 701–710.

[27] Leonardo FR Ribeiro, Pedro HP Saverese, and Daniel R Figueiredo. 2017. struc2vec:
Learning node representations from structural identity. In Proc. of KDD. 385–394.

[28] Ryan A Rossi and Nesreen K Ahmed. 2015. Role discovery in networks. IEEE
TKDE 27, 4 (2015), 1112–1131.

[29] Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn,
and Karsten M Borgwardt. 2011. Weisfeiler-lehman graph kernels. Journal of
Machine Learning Research 12, Sep (2011), 2539–2561.

[30] Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten
Borgwardt. 2009. Efficient graphlet kernels for large graph comparison. In
Artificial Intelligence and Statistics. 488–495.

[31] Julian Shun, Farbod Roosta-Khorasani, Kimon Fountoulakis, and Michael W.
Mahoney. 2016. Parallel Local Graph Clustering. Proc. of VLDB Endowment 9, 12
(Aug. 2016), 1041–1052.

[32] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. Line: Large-scale information network embedding. In Proc. of WWW. ACM,
1067–1077.

[33] Anton Tsitsulin, DavideMottin, Panagiotis Karras, Alex Bronstein, and Emmanuel
Müller. 2018. NetLSD: Hearing the Shape of a Graph. In Proc. of KDD.

[34] Ke Tu, Peng Cui, Xiao Wang, Philip S Yu, and Wenwu Zhu. 2018. Deep Recursive
Network Embedding with Regular Equivalence. In Proc. of KDD. ACM, 2357–
2366.

[35] Pinar Yanardag and SVN Vishwanathan. 2015. Deep graph kernels. In Proc. of
SIGKDD. ACM, 1365–1374.

98

Learning Self-Expression Metrics for Scalable and
Inductive Subspace Clustering

Julian Busch∗ Evgeniy Faerman Matthias Schubert Thomas Seidl

Ludwig-Maximilians-Universität München
Munich Center for Machine Learning (MCML)

{busch, faerman, schubert, seidl}@dbs.ifi.lmu.de

Subspace clustering has established itself as a state-of-the-art approach to clustering high-dimensional
data. In particular, methods relying on the self-expressiveness property have recently proved especially
successful. However, they suffer from two major shortcomings: First, a quadratic-size coefficient
matrix is learned directly, preventing these methods from scaling beyond small datasets. Secondly, the
trained models are transductive and thus cannot be used to cluster out-of-sample data unseen during
training. Instead of learning self-expression coefficients directly, we propose a novel metric learning
approach to learn instead a subspace affinity function using a siamese neural network architecture.
Consequently, our model benefits from a constant number of parameters and a constant-size memory
footprint, allowing it to scale to considerably larger datasets. In addition, we can formally show
that out model is still able to exactly recover subspace clusters given an independence assumption.
The siamese architecture in combination with a novel geometric classifier further makes our model
inductive, allowing it to cluster out-of-sample data. Additionally, non-linear clusters can be detected
by simply adding an auto-encoder module to the architecture. The whole model can then be trained
end-to-end in a self-supervised manner. This work in progress reports promising preliminary results
on the MNIST dataset. In the spirit of reproducible research, me make all code publicly available. 1

In future work we plan to investigate several extensions of our model and to expand experimental
evaluation.

1 Introduction

Subspace clustering [Vidal, 2011] assumes the data to be sampled from a union of low-dimensional
subspaces of the full data space. The goal is to recover these subspaces and to correctly assign
each data point to its respective subspace cluster. As a state-of-the-art approach to clustering high-
dimensional data, it enables a multitude of applications, including image segmentation [Ma et al.,
2007, Yang et al., 2008], motion segmentation [Kanatani, 2001, Elhamifar and Vidal, 2009, Ji et al.,
2016], image clustering [Ho et al., 2003, Elhamifar and Vidal, 2013] and clustering gene expression
profiles [McWilliams and Montana, 2014]. For instance, face images of a subject under fixed pose and
varying lighting conditions [Basri and Jacobs, 2003] or images of hand-written digits with different
rotations, translations and other natural transformations [Hastie and Simard, 1998] have been shown
to lie in low-dimensional subspaces.

Recently, self-expressiveness-based methods [Elhamifar and Vidal, 2009, Liu et al., 2010, Lu et al.,
2012, Elhamifar and Vidal, 2013, Liu et al., 2013, Wang et al., 2013, Feng et al., 2014, Ji et al., 2014,
Vidal and Favaro, 2014, Ji et al., 2015, You et al., 2016a] have proved especially successful. The main
idea is that each point can be expressed by a linear combination of points from the same subspace.
This property is used to learn a quadratic-size coefficient matrix from which cluster labels can be
extracted in a post-processing step using spectral clustering. The quadratic number of parameters
prevents these methods from scaling beyond small datasets and makes them transductive and thus

1https://github.com/buschju/sscn

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Figure 1: Data flow within our model. Square boxes denote tensors, rectangular boxes denote
functions, and dashed lines indicate parameter sharing. After being mapped into a space in which
the data fits better into independent linear subspaces using an encoder function enc, the data is
mapped into a space using a function h in which independent clusters are orthogonal and dot-products
corresponds to self-expression coefficients. Afterwards, the data is rotated into pre-defined axis-
aligned subspaces and assigned to clusters based on the orthogonal projection distance (upper path).
The original data is reconstructed from the self-expressed data in latent space by a decoder function
dec to ensure that the learned embeddings are compatible with the original data (lower path).

inapplicable to out-of-sample data unseen during training. In contrast, our model requires only a
constant number of parameters to provably provide the same expressive power. A classifier leveraging
the unique geometric properties of our model further makes it inductive and enables it to cluster
out-of-sample data.

In practice, we can usually not assume that the data exactly fits in linear subspaces, e.g., due to
noise or additional non-linearities in the underlying data generating process which was not accounted
for. Instead, we might rather assume the data to be situated on different non-linear sub-manifolds.
Some methods [Chen and Lerman, 2009, Patel et al., 2013, Patel and Vidal, 2014, Xiao et al., 2016,
Yin et al., 2016, Ji et al., 2017a] rely on the kernel trick to account for non-linearity. However, it is
usually not clear whether a particular pre-defined kernel function is particularly suitable for subspace
clustering. More recent methods [Peng et al., 2016, Ji et al., 2017b, Zhou et al., 2018, Zhang et al.,
2019a, Seo et al., 2019, Kheirandishfard et al., 2020] learn a suitable feature transformation explicitly
in an end-to-end differentiable model. In particular, Deep Subspace Clustering Networks (DSC-Net)
[Ji et al., 2017b] introduced the idea of modeling the coefficient matrix as a dense neural network
layer, called self-expressive layer, and training it jointly with an auto-encoder. As a result, the encoder
represents a feature transformation which has been optimized w.r.t. linear cluster structure in latent
space. Self-Supervised Convolutional Subspace Clustering Networks (S2ConvSCN) [Zhang et al.,
2019a] learn an additional classifier which can be applied to out-of-sample data but still rely on the
full coefficient matrix and spectral clustering. Our model on the other hand offers both, applicability
to out-of-sample data and scalability.

Several works have addressed the challenge of scalability but are either only able to detect linear
clusters [You et al., 2016b, Rahmani and Atia, 2017], rely on a k-means-like procedure which
requires good initialization and is sensitive to outliers [Zhang et al., 2018] or still fully parametrize
coefficient matrices which need to be re-learned from scratch for each new data batch and come with
no theoretical guarantees [Zhang et al., 2019b]. In contrast, our model is suitable to detect non-linear
clusters, can be trained end-to-end with back-propagation and provides a theoretical foundation.

In summary, we propose, to the best of our knowledge, the first metric learning approach to subspace
clustering, which enables a quadratic reduction of the number of parameters and memory footprint
compared to existing methods while maintaining theoretical performance guarantees. Our model is
applicable to out-of-sample data, suitable to detect non-linear clusters and can be trained end-to-end
with back-propagation.

2

2 Siamese Subspace Clustering Networks

In subspace clustering, we are given a set set of points {xi}Ni=1 ⊆ RdX sampled from a union of
subspaces {Si}Ki=1 of unknown dimensions and arranged as columns of a data matrix X ∈ RdX×N .
The goal is to recover these subspaces and to correctly assign each data point to its respective subspace
cluster. While there exist many different variants of self-expressive subspace clustering, we focus
here on a relaxed noise-aware version of Efficient Dense Subspace Clustering (EDSC) [Ji et al., 2014]:

Definition 1 (Efficient Dense Subspace Clustering [Ji et al., 2014]).

min
C∈RN×N

1

2
‖C‖2F +

λ

2
‖X −XC‖2F . (1)

where the i-th column of the N ×N coefficient matrix C contains the coefficients for expressing
xi. Regularization of C ensures that xi is expressed using only points from the same subspace.
Given the learned coefficient matrix, cluster assignments can be extracted in a post-processing
step by applying spectral clustering to the subspace affinity matrix A = |C| + |C|T . The unique
solution to this problem can be expressed in closed-form as the solution C∗ of the linear system(
I + λXTX

)
C = λXTX [Ji et al., 2014]. Let r := rank (X) = dim

(⊕K
i=1 Si

)
denote the rank

of X . In a noise-free setting, if the subspaces are independent, i.e., if r =
∑K
i=1 dim (Si), then C∗ is

guaranteed to be block-diagonal with C∗ij = 0 if xi and xj originate from different subspaces [Vidal
et al., 2008]. The corresponding solution is called subspace-preserving.

The central idea of our approach is to view subspace clustering from a metric learning perspective.
To this end, we employ a siamese neural network [Bromley et al., 1994] consisting of two identical
branches with shared weights and mirrored parameter updates which is optimized such that dot-
products in latent space correspond to self-expression coefficients:

Definition 2 (Siamese Dense Subspace Clustering).

min
θh

1

2
‖Q‖2F +

λ

2
‖X −XQ‖2F

s. t. Q = HTH, H = h (X; θh)

(2)

where Q ∈ RN×N contains the self-expression coefficients corresponding to dot-products of the
embeddings H ∈ RdH×N computed by the embedding function h. Note that weight sharing leads to
symmetric coefficient matrices. Even though the reduction of parameters compared to (1) is quadratic,
we can show that this model is able to recover the exact solution to the original subspace clustering
problem, even when h consists of only a single linear layer with a sufficient number of neurons. Note
that (2) is convex in this case.

Theorem 1. Let h(X) = WX , W ∈ RdH×dX , dH ≥ r, then (2) attains its global minimum

at W ∗ = R

√
λ
(
I − λ

(
Σ−2r + λI

)−1)
UTr where X = UrΣrV

T
r is the reduced SVD of X and

R ∈ St (dH , r) is an arbitrary orthonormal matrix. The unique optimal coefficient matrix Q∗ of (2)
corresponds to the unique solution of (1).

Above, St (n, p) =
{
X ∈ Rn×p | XTX = I

}
for n ≥ p denotes the Stiefel manifold which is

composed of all n × p orthonormal matrices. Since (2) leads to a well-studied optimal solution,
it can be analyzed directly within existing theory. In particular, it is guaranteed that under the
independence assumption and in a noise-free setting, (2) yields a subspace-preserving solution. Also
note that we don’t need to know the exact rank of X , it is sufficient to have an upper bound. Since
r ≤ ∑K

i=1 dim(Si), we can simply estimate the number of clusters K and the maximum cluster
dimension q and set dH = Kq and R ∈ St (dH , dH).

Since we can choose R arbitrarily from St (dH , dH) and still obtain the same optimal coefficient
matrix Q∗, we are able to optimize R on the Stiefel manifold w.r.t. to a cluster assignment objective
where we take advantage of the observation that points from independent clusters will have orthogonal
embeddings in H . To this end, we compute rotated embeddings Ĥ = RH and then classify points
by assigning them to their closest subspace w.r.t. orthogonal projection distance and applying the

3

ACC ARI NMI #Parameters GPU-Memory (GB)
DSC-Net 63.54± 0.00 57.42± 0.00 72.34± 0.00 100, 014, 991 2.71
SSCN 67.98± 3.40 58.53± 3.34 69.48± 2.38 66,291 (−99.93%) 0.19 (−92.96%)

SSCN-OoS 67.39± 3.38 57.10± 3.27 67.16± 2.34 66, 291 0.19

Table 1: Results on the MNIST dataset. Upper part: Transductive clustering of the 10,000 test images.
Lower part: Inductive clustering of the 60,000 out-of-sample training images using our previously
trained model. Note that our model did not see these images during training and that DSC-Net does
not support clustering out-of-sample data and would require more than 4.9B parameters and 39GB
of GPU-memory to cluster the whole dataset. All results are aggregated over 10 independent runs
with different random initializations. For better comparability, all models use the same pre-trained
auto-encoder. Results for DSC-Net exhibit no variation since the model uses constant initialization.

softmin function: yij = exp (−||ĥi−SjS
T
j ĥi||22)/∑K

k=1 exp (−||ĥi−SkS
T
k ĥi||22). The subspaces are fixed

a-priori to be axis-aligned and don’t need to be optimized. The matrix R is optimized such that
classifications agree with self-expression affinities. For now, we compute the coefficient matrix of
the training set using our trained model and then apply the same post-processing as in [Ji et al.,
2017b] to obtain pseudo-labels which are used to train the classifier using cross-entropy loss and the
Cayley-Adam algorithm [Li et al., 2020]. In future work, we plan to employ a triplet-loss [Hermans
et al., 2017] which does not rely on spectral clustering and to additionally optimize the remaining
model parameters with feedback from the classifier.

To account for non-linearity, we can simply add an auto-encoder to our model with the task of
mapping the original data into a dZ -dim. latent space in which the data better fits in linear subspaces
and additionally the independence assumption can be better satisfied. This non-linear transformation
is learned together with the rest of the model. We formalize our complete model in Definition 3.
Definition 3 (Siamese Subspace Clustering Network (SSCN)).

min
θe,θd,θh,R

1

2
‖Q‖2F +

λ1
2
‖Z − ZQ‖2F +

λ2
2

∥∥∥X − X̂
∥∥∥
2

F
+ λ3Lclf (R;X)

s. t. Q = HTH, H = h (Z; θh) ,

Z = enc (X; θe) , X̂ = dec (ZQ; θd)

(3)

Above, Z ∈ RdZ×N are non-linear embeddings of the input X computed by the encoder function
enc. After self-expression in latent space, X is reconstructed as X̂ ∈ RdX×N using dec, a decoder
function matching enc. The reconstruction loss ensures that the learned embeddings are actually
compatible with the original data and prevents trivial solutions. Note that training with the full data
batch X would lead to materialization of the full N ×N coefficient matrix Q. This is not an issue for
our model, however, since it can be trained with mini-batches and thus scale to large datasets. The
only requirements are that batches need to be sampled uniformly at random and that the batch-size
needs to be sufficiently large so that we sample enough instances from each class on average and thus
obtain a representative sample. An illustration of the data flow is provided in Figure 1.

3 Experiments

As a first proof of concept, we compare our model with DSC-Net [Ji et al., 2017b] on the MNIST
dataset [LeCun, 1998]. By default, we use a small convolutional auto-encoder and the same parameter
settings for both models wherever possible. For SSCN, we model h as a single linear layer without
bias as motivated above and train with a batch-size of 1000. The results are summarized in Figure 1.
We can see that our model provides competitive performance while drastically reducing the required
number of model parameters and GPU-memory. Even large amounts of out-of-sample data can be
clustered reliably without any memory overhead. All hyper-parameter values and complete code for
reproducing the reported results are provided in our public code repository. In future work we plan
to train our model end-to-end using a triplet-loss and additional feedback from the classifier to the
encoder and self-expression module. We further plan to evaluate on more datasets, with different
architectural choices and against more baselines.

4

Acknowledgments and Disclosure of Funding

This work has been partially funded by the German Federal Ministry of Education and Research
(BMBF) under Grant No. 01IS18036A. The authors of this work take full responsibilities for its
content.

References
R Basri and DW Jacobs. Lambertian reflectance and linear subspaces. TPAMI, 2003.

Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak Shah. Signature
verification using a" siamese" time delay neural network. NeurIPS, 1994.

Guangliang Chen and Gilad Lerman. Spectral curvature clustering (scc). IJCV, 2009.

Ehsan Elhamifar and René Vidal. Sparse subspace clustering. CVPR, 2009.

Ehsan Elhamifar and Rene Vidal. Sparse subspace clustering: Algorithm, theory, and applications.
TPAMI, 2013.

Jiashi Feng, Zhouchen Lin, Huan Xu, and Shuicheng Yan. Robust subspace segmentation with
block-diagonal prior. CVPR, 2014.

Trevor Hastie and Patrice Y Simard. Metrics and models for handwritten character recognition.
Statistical Science, 1998.

Alexander Hermans, Lucas Beyer, and Bastian Leibe. In defense of the triplet loss for person
re-identification. arXiv preprint arXiv:1703.07737, 2017.

J Ho, Ming-Husang Yang, Jongwoo Lim, Kuang-Chih Lee, and D Kriegman. Clustering appearances
of objects under varying illumination conditions. CVPR, 2003.

Pan Ji, Mathieu Salzmann, and Hongdong Li. Efficient dense subspace clustering. WACV, 2014.

Pan Ji, Mathieu Salzmann, and Hongdong Li. Shape interaction matrix revisited and robustified:
Efficient subspace clustering with corrupted and incomplete data. ICCV, 2015.

Pan Ji, Hongdong Li, Mathieu Salzmann, and Yiran Zhong. Robust multi-body feature tracker: a
segmentation-free approach. CVPR, 2016.

Pan Ji, Ian Reid, Ravi Garg, Hongdong Li, and Mathieu Salzmann. Adaptive low-rank kernel
subspace clustering. arXiv preprint arXiv:1707.04974, 2017a.

Pan Ji, Tong Zhang, Hongdong Li, Mathieu Salzmann, and Ian Reid. Deep subspace clustering
networks. NeurIPS, 2017b.

Ken-ichi Kanatani. Motion segmentation by subspace separation and model selection. ICCV, 2001.

Mohsen Kheirandishfard, Fariba Zohrizadeh, and Farhad Kamangar. Multi-level representation
learning for deep subspace clustering. WACV, 2020.

Yann LeCun. The mnist database of handwritten digits. http://yann.lecun.com/exdb/mnist/, 1998.

Jun Li, Li Fuxin, and Sinisa Todorovic. Efficient riemannian optimization on the stiefel manifold via
the cayley transform. ICLR, 2020.

Guangcan Liu, Zhouchen Lin, and Yong Yu. Robust subspace segmentation by low-rank representa-
tion. ICML, 2010.

Guangcan Liu, Zhouchen Lin, Shuicheng Yan, Ju Sun, Yong Yu, and Yi Ma. Robust recovery of
subspace structures by low-rank representation. TPAMI, 2013.

Can-Yi Lu, Hai Min, Zhong-Qiu Zhao, Lin Zhu, De-Shuang Huang, and Shuicheng Yan. Robust and
efficient subspace segmentation via least squares regression. ECCV, 2012.

5

Yi Ma, Harm Derksen, Wei Hong, and John Wright. Segmentation of multivariate mixed data via
lossy data coding and compression. TPAMI, 2007.

Brian McWilliams and Giovanni Montana. Subspace clustering of high-dimensional data: a predictive
approach. DMKD, 2014.

Vishal M Patel and René Vidal. Kernel sparse subspace clustering. ICIP, 2014.

Vishal M Patel, Hien Van Nguyen, and René Vidal. Latent space sparse subspace clustering. ICCV,
2013.

Xi Peng, Shijie Xiao, Jiashi Feng, Wei-Yun Yau, and Zhang Yi. Deep subspace clustering with
sparsity prior. IJCAI, 2016.

Mostafa Rahmani and George Atia. Innovation pursuit: A new approach to the subspace clustering
problem. ICML, 2017.

Junghoon Seo, Jamyoung Koo, and Taegyun Jeon. Deep closed-form subspace clustering. ICCV
Workshops, 2019.

René Vidal. Subspace clustering. IEEE Signal Processing Magazine, 2011.

René Vidal and Paolo Favaro. Low rank subspace clustering (lrsc). Pattern Recognition Letters,
2014.

René Vidal, Roberto Tron, and Richard Hartley. Multiframe motion segmentation with missing data
using powerfactorization and gpca. IJCV, 2008.

Yu-Xiang Wang, Huan Xu, and Chenlei Leng. Provable subspace clustering: When lrr meets ssc.
NeurIPS, 2013.

Shijie Xiao, Mingkui Tan, Dong Xu, and Zhao Yang Dong. Robust kernel low-rank representation.
IEEE transactions on neural networks and learning systems, 2016.

Allen Y Yang, John Wright, Yi Ma, and S Shankar Sastry. Unsupervised segmentation of natural
images via lossy data compression. CVIU, 2008.

Ming Yin, Yi Guo, Junbin Gao, Zhaoshui He, and Shengli Xie. Kernel sparse subspace clustering on
symmetric positive definite manifolds. CVPR, 2016.

Chong You, Chun-Guang Li, Daniel P Robinson, and René Vidal. Oracle based active set algorithm
for scalable elastic net subspace clustering. CVPR, 2016a.

Chong You, Daniel Robinson, and René Vidal. Scalable sparse subspace clustering by orthogonal
matching pursuit. CVPR, 2016b.

Junjian Zhang, Chun-Guang Li, Chong You, Xianbiao Qi, Honggang Zhang, Jun Guo, and Zhouchen
Lin. Self-supervised convolutional subspace clustering network. CVPR, 2019a.

Tong Zhang, Pan Ji, Mehrtash Harandi, Richard Hartley, and Ian Reid. Scalable deep k-subspace
clustering. ACCV, 2018.

Tong Zhang, Pan Ji, Mehrtash Harandi, Wenbing Huang, and Hongdong Li. Neural collaborative
subspace clustering. ICML, 2019b.

Pan Zhou, Yunqing Hou, and Jiashi Feng. Deep adversarial subspace clustering. CVPR, 2018.

6

	Abstract
	Zusammenfassung
	Acknowledgments
	Introduction
	Thesis Statement
	Summary of Contributions
	Thesis Outline

	Fundamentals of Machine Learning
	Machine Learning Tasks
	Inductive Bias
	Neural Networks
	Representation Learning

	Machine Learning on Graphs
	Graph Learning Tasks
	Node Classification
	Graph Classification
	Graph Anomaly Detection
	Node Embedding

	Graph Neural Networks
	State of the Art
	Contributions

	Graph Learning Beyond Homophily
	State of the Art
	Contributions

	Machine Learning on High-Dimensional Data
	The Curse of Dimensionality
	Subspace Clustering
	State of the Art
	Contributions

	Concluding Remarks
	References
	List of Figures
	Contributing Publications

