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Zusammenfassung

Diese Dissertation beschätigt sich mit der Frage nach der Existenz einer offenen Stringfeldthe-
orie, welche auf der Quantenebene ohne eine Kopplung an den geschlossenen String konsis-
tent ist. Dies soll durch eine Einschränkung auf planare Feynman Graphen geschehen. Ziel
ist eine Formulierung einer solchen Theorie in der mathematischen Sprache der Homotopieal-
gebren zu finden. Anschließend untersuchen wir ob sich eine solche Formulierung auch auf
allgemeine Eichfeldtheorien, insbesondere im Limes großer Eichgruppen übertragen lässt.
Zum Schluss gehen wir auf Probleme einer solchen Formulierung ein, und wie sich diese
durch eine Erweiterung weg von Beschränkung auf rein planare Graphen beheben lassen.

Diese Arbeit soll gleichzeitig als ausgedehnte Einführung in die Theorie des Batalin-
Vilkovisky Formalismus dienen. Wir betrachten verschiedene mathematische Aspekte dieses
Formalismus und dessen Bezug zu Homotopiealgebren.
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Abstract

This thesis is concerned about the existence of a open-string field theory that is consistent
at the quantum level without coupling to the closed string. We want to achieve this via a
restriction to planar Feynman graphs. Our aim is to formulate this theory in the mathemat-
ical language of homotopy algebras. We further ask whether such a formulation is applies
also to general gauge theories, in particular in the limit of large gauge groups. Finally, we
will discuss the problems of such a formulation, as well as how these can be solved by lifting
the restriction to planar diagrams only.

This work should also serve as an extensive introduction to the Batalin-Vilkovisky for-
malism. We look at different mathematical aspects of this formalism and its relation to
homotopy algebras.
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danken, die er während der Zeit, die ich in seiner Forschungsgruppe verbracht habe, aufge-
bracht hat. Ich kann mir kaum einen besseren Doktorvater vorstellen. Ebenso danke ich
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1. Introduction

1.1. Gauge Theories and the Batalin-Vilkovisky Formalism

During the development of physics in the last century, quantum field theories crystallized as
the most effective tool to describe and predict physical processes. In high energy physics, the
standard model puts quarks and leptons as the building blocks of matter in our world. It also
describes their interaction in terms of the strong and the electroweak forces. This standard
model of particles and forces is formulated as a quantum field theory (QFT). But even away
from this fundamental level QFT is dominant as a language. When we zoom out of the scale
of quarks and gluons, we enter the realm of hadrons. In this picture, the atomic nucleus is
made up of baryons (protons and neutrons, but also more exotic objects are possible), which
are held together by mesons (most importantly pions). This model is also described by a
quantum field theory. At even larger scales, quantum field theories appear in solid state
physics. Finally, at astronomical and cosmological scales, we use general relativity, which
can be treated as a classical field theory.

Since quantum field theory is ubiquitous in physics, a proper understanding of it is of
course necessary. A major complication arises when the theory is a gauge theory. This means
that the theory is invariant under certain variations in the field variables. These variations
are called gauge symmetries of the theory. The physical quantities in a gauge theory are
independet of whether we use one set of fields or a gauge equivalent one. “Unfortunately”,
all the experimentally tested fundamental theories are gauge theories. Needless to say, it is
expected that a more fundamental theory is a gauge theory as well, which may possess even
more complicated gauge structure. A potential candidate is string (field) theory, which has
a gauge symmetry that is infinitely more complex (in at least two ways) than that of the
standard model.

A very simple example of a gauge theory is quantum electrodynamics, the theory of elec-
trons (or any electrically charged particle) interacting through electromagnetic forces. One
manifestation of this simplicity lies in the fact that photons, the mediators of the electro-
magnetic force, are electrically neutral (not charged) and therefore do not influence each
other directly. They can only do so using electrons and positrons as mediators. Because of
that reason the techniques we explore in this work are not needed in quantum electrody-
namics. Nevertheless, they can of course also be applied in this case. Things can change
when one considers theories with more than one force carrying particle (gauge bosons). Let
us add weak interactions to the game. We get three additional gauge bosons, abbreviated
by the letters W+,W−, Z. In addition to being electrically charged, they also possess a
“charge” called the weak isospin. All particles with weak isospin (like quarks and the gauge
bosons themselves) interact via the three gauge particles. In this way the gauge particles
can scatter even without creating fermions (matter particles) or photons.

The fundamental interaction among gauge bosons leads to inconsistencies when we treat
weak interactions the same way as electromagnetic interactions. The reason is that, naively,
gauge bosons related by gauge transformations contribute independently in these interac-
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1. Introduction

tions. The theory, all of the sudden, distinguishes between gauge bosons related by gauge
transformations. To obtain a good theory, one should introduce a mechanism that cancels
contributions coming from gauge equivalent bosons. A way, which was, according to [36],
originally proposed by R. Feynman1, is the introduction of certain fake particles. These
particles, now called ghosts, violate the spin-statistics theorem, since they are fermions of
even spin. The work of L.D. Faddeev and V.N. Popov [37] provided an explanation for their
appearance in terms of the path integral formulation of quantum field theory. When the
theory has a gauge symmetry, the integral has to be restricted to fields not related by gauge
transformations. From the experience with ordinary integrals they proposed that such a
restriction gives rise to a Jacobian determinant in the path integral. This determinant can
then be expressed in terms of the fake particle fields. In honor of their work, these fields are
now known as Faddeev-Popov ghosts.

The introduction of the ghost fields led to new insights into Yang-Mills theories. It was
already known that the gauge symmetry of quantum electrodynmaics leads to relations
among the physical observables of the theory. These relations are called Ward-Takahashi
identities. With the result of Faddeev and Popov, A.A. Slavnov [83] and J.C. Taylor [89]
generalized these to Yang-Mills theories. C. Becchi, A. Rouet, S. Stora [13, 14] and I.V.
Tyutin (unpublished) then observed that these new Slavnov-Taylor identities can be derived
by using a symmetry which involves the Faddeev-Popov ghosts. The symmetry is generated
by an odd (fermionic) operator Q, the BRST charge, which has the additional property that
it squares to zero. The mathematical theory behind such operators is called homological
algebra, a concept that we will meet repeatedly in this work.

In 1975, J. Zinn-Justin [98] introduced an even more elegant way to express the Slavnov-
Taylor identities. He introduced sources for the BRST transformations and defined a bilinear
structure {·, ·} on the space of functionals. The Slavnov-Taylor identities can then be neatly
encoded in the identity

{Γ,Γ} = 0, (1.1)

where Γ is the quantum effective action, i.e. the action where all quantum effects are
absorbed into the interactions and kinematics of the theory. I.A. Batalin and G.A. Vilkovisky
then further developed his results in a series of papers [7, 8, 9, 10, 11, 12]. They referred
to the sources for the BRST transformations as anti-fields and to the bilinear form {·, ·} as
the anti-bracket. The framework they developed is now called the Batalin-Vilkovisky (BV)
formalism/quantization. The central equation encoding the consistency of a quantum field
theory is the quantum master equation

1

2
{S, S} − i~∆S = 0, (1.2)

which is very similar to (1.1). BV quantization can be seen as a vast generalization to
the procedure developed by Faddeev and Popov. It can be applied to theories where the
Faddeev-Popov procedure fails, e.g. supergravity [60]. The BV treatment allows for field
dependent algebras of gauge transformations, which may have gauge symmetries themselves.

1A transcript of the lecture is available at [39]. It is mainly concerned about a quantum theory of gravity,
but he also commented on a similar mechanism in Yang-Mills theory, which is the general framework for
theories like that of the weak force.
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1.2. BV Formalism in String Field Theory

1.2. BV Formalism in String Field Theory

The BV approach is now an essential ingredient of string field theory, since it gives a geomet-
ric explanation for the condition of gauge invariance of the theory. Scattering amplitudes in
string theory are computed directly by integrals of functions over the moduli space of two
dimensional surfaces. The moduli space parametrizes the shape of these surfaces up to a
local rescaling (conformal transformations). String theory is a theory of S-matrices, that is,
it directly provides formulas for scattering amplitudes without relying on some underlying
field theory. The amplitudes are not derived by Feynman rules. The goal of string field
theory is to remedy this, i.e. to give a quantum field theory from which the S-matrices of
string theory derive from. This is done in the following way. Inside each moduli space of an
n-point scattering amplitude with g loops, one specifies a certain region to be the fundamen-
tal n-vertex with g internal loops Vg,n (for closed strings, this means that the vertex comes
with a relative factor of ~2g). The rest of the moduli space should then be covered by lower
vertices plus propagators. Geometrically, the propagators connect the vertices by attaching
tubes of varying length along some previously defined circles. When we write V =

∑
n,g Vn,g,

the condition that the space is covered exactly once is governed by the equation

∂V +
1

2
{V,V}+ ∆V = 0, (1.3)

which has the form of the quantum master equation. String field theory associates to each
Vg,n a vertex function Sg,nI and to the boundary operator ∂ the BRST differential Q. Under
this association, the form (1.3) of the BV equation is conserved. It becomes

QSI +
1

2
{SI , SI}+ ∆SI = 0, (1.4)

where SI =
∑
g,n S

g,n
I .

The earliest complete version of a string field theory is that for the open bosonic string
developed by Witten in [93]. One of its remarkable feature is that the theory is consistent
at the classical level with only a cubic vertex, i.e. Sn,g=0

I = 0 for all n 6= 3 (since the theory
is classical, it only considers vertices without internal loops). Shortly afterwards, he also
proposed a version for the open superstring in [92], which also has only a cubic interaction.
However, this interaction has singularities when considered in higher amplitudes. One res-
olution to this problem was proposed by T. Erler, S. Konopka and I. Sachs in [33], see also
[32, 34, 35, 61]. However, resolving the singularity resulted in the necessity to introduce
vertices of any valence.

A proper formulation and understanding of closed-string field theory only came after
Witten’s formulation of open-string field theory, since the moduli space of closed surfaces
is not so easily partitioned already at tree level. B. Zwiebach gave a prescription in [99] to
obtain such a partition, which applies even at the quantum level. Things are even worse here,
since already for the bosonic string we have that V(g,n) 6= 0 for all g and n.2 A complete
description of a string field theory of the closed string was given in [100]. A superstring
version of closed strings was only developed much later by A. Sen and collaborators, see
[27] for a review. Sen also established the use of the quantum effective action in string field
theory [81], which can, for example, be used to determine mass renormalizations.

2If we want to be precise we should say that we always have V0,1 = V0,2 = 0.
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1. Introduction

1.2.1. Open-Closed String Field Theory

Although open string field theory is much easier to handle as a classical theory, things change
if one considers it as a quantum theory. At the quantum level, the open string only exists
when coupled to the closed string due to ultraviolet divergences. To explain this point, we
should first talk about why UV divergences are absent in closed string theory. Naively, a
scattering process is in the UV when some length l on the surface describing the interaction
approaches zero. However, scale invariance allows us to rescale by this length. The limit
l → 0 then turns into l′ → ∞ for some other length l′. This limit describes an infrared
process and is therefore harmless. We could say that whenever a process approaches the
UV, we turn it into an IR process by rescaling. The absence of UV divergences is simply
due to the fact that there is no UV limit.

The story for the open string is basically the same. However, there is one crucial difference.
The rescaling can turn an open string process into a closed string process. We therefore
interpret potential UV divergences in the open string sometimes (but not always) as an
infrared closed string. Historically, this phenomenon was observed first as a gauge anomaly
in the open-string theory. A gauge anomaly means that a classical gauge symmetry does not
survive at the quantum level. This results in an inconsistent theory. It was then observed
by M. Green and J.H. Schwarz [47] that the anomaly can lifted if two things happen (Green-
Schwarz mechanism). First, the gauge group of the theory should be SO(2d/2), where d
is the spacetime dimension in which the string propagates (for the critical superstring it is
d = 10, while the critical bosonic string has d = 26). Second, the open string should interact
with a closed string. The fact that the gauge group is SO(2d/2) implies that the string
is necessarily unoriented, i.e. it has no preferred direction. We therefore should allow for
unoriented surfaces. Further, quantum effects of the closed string also introduces handles
(genus).

This discussion of course implies that a quantum field theory of open strings should also
include closed strings. For oriented bosonic strings this was discussed in [101].3 This was
afterwards extended to unoriented strings in [28]. Explicit constructions with HIKKO-type
vertices up to quartic order can be found in [63]. A one-loop calculation [5] confirmed
the necessity of SO(2d/2) for the bosonic string to that order. A theory with open-closed
superstrings was described recently in [38].

1.2.2. A Simple String Field Theory?

The BV formalism provides a good conceptual understanding of string field theories. How-
ever, we already pointed out that all theories, except the classical bosonic open string, have
an infinite number of vertices. For this reason, good computational progress was only made
for the classical bosonic open string, where a large variety of solutions to the equations of
motion was found. For all other theories, computations are usually done with the tools
provided by ordinary string theory.

Needless to say, a huge step would be made if we would be able bring any of the other string
field theories to a form which has only a finite number of vertices. For the closed bosonic
string, this means that we should find such a theory already at the classical level. Another
direction one can consider is to get a simple quantum theory of open strings. Of course, the
Green-Schwarz mechanism immediately renders a theory of open-strings incomplete, and we
are again facing an infinite number of vertices involving closed strings. However, there is

3This theory would have a gauge anomaly.
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a potential loophole. At one loop, there are three different types of surfaces, called planar,
unoriented and non-planar [48]. The non-planar diagram requires the closed string. On the
other hand, the anomaly in the planar and unoriented diagrams cancel exactly when the
gauge group is SO(2d/2). From this one may hope that a theory, of planar and unorientable
diagrams only, survives quantization without the closed string. This brings us to the first
question we want to answer in this work.

Question 1: Is it possible to have a quantum open-string field theory of planar diagrams
without the closed string?

Unfortunately, the answer to this question is negative for reasons we explain in section 4.

1.3. Homotopy Algebras in Field Theories

Another theme of this work will be about homotopy algebras, in particular the homotopy
versions of associative algebras and Lie algebras, as well as their quantum versions. Given
a classical field theory in the BV language, it immediately induces a homotopy Lie algebra
(L∞-algebra) for any solution of the equations of motion of the theory. In fact, these two
viewpoints are equivalent in many applications. When the space of fields is linear and
equipped with a constant anti-bracket, the BV theory induces a (cyclic) L∞-algebra. On
the other hand, any such cyclic L∞-algebra induces a BV theory with constant anti-bracket
(see [56]).

Homotopy algebras arise when one tries to combine an algebra structure on some vector
space (e.g. the space of fields) with a (co-)homological structure on that space and then asks
for equivalent descriptions. They have their roots in mathematics. Homotopy associative
algebras were introduced as a tool in topology by J. Stasheff in his thesis [85, 86]. They
gained popularity in physics when their role was discovered in classical open-string field
theory [43]. On the other hand, already before that it was observed that L∞-algebras
arises form the vertices in classical closed-string field theory [87, 100]. The mixed version of
classical open and closed strings was covered in [59]. Besides string field theory, L∞-algebras
are crucial in the deformation quantization of classical systems, see [62], and also, from a
purely mathematical point of view, in general deformation theory/moduli problems (see for
example [66]). In quantum physics, the structure to consider is called quantum (or loop)
homotopy algebras for obvious reasons. For closed-string field theory, they appear in the
form described in [68, 73]. Quantum open and open-closed string field theories are covered
for example in [53, 29]. The relevance of homotopy algebras for field theories other than
string field theory was emphazied in [54]. They received a broader attention among high
energy physicists and mathematical physicists in recent years [15, 4, 23, 22].

1.4. Quantum A∞-Algebras and Planar Field Theories

Classical open-string field theory can be formulated as an A∞-algebra. This approach proved
to be very useful in the formulation of a field theory of the open superstring [33]. In ordinary
field theories, A∞-algebras arise when one considers color-ordered diagrams (the word color
stems from quantum chromodynamics). The corresponding Feynman rules consists of only
those diagrams that can be drawn on a disc with external edges ending on the boundary and
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1. Introduction

such that edges do not overlap. For example, the s and t-channels of a four-point scattering
process have planar diagrams, while the u-channel is non-planar due to its overlapping legs.
The planar subsector encapsulates all the relevant properties of a classical field theory like
gauge invariance and unitarity. Moreover, the full theory can be obtained by symmetrization
over the incoming and outgoing states. From this point of view, the A∞-description is
simpler than the description by homotopy Lie algebras.

Color-order diagrams exist also at the quantum level. There, also non-planar diagrams
arise. One important observation by G. ’t Hooft [88] is that planar diagrams dominate
over non-planar ones when the dimension N of the fundamental representation of the gauge
group grows. The limit N → ∞ is known as the large N limit, and only planar diagrams
survive. We want to ask in this work whether this large N -limit exists as some kind of
self-contained homotopy algebra, without reference to the non-planar sector. This is the
second main question we want to answer.

Question 2: Is there a consistent planar subsector of the quantum version of A∞-algebras,
and is it realized by the large N limit of gauge theories?

We search for an answer to this question in chapter 5. There, we try to construct a
quantum A∞-algebra similar to a one way how quantum L∞-algebras are constructed. We
will see that this will give a theory whose products are most naturally expressed in terms of
planar diagrams. However, we will see that such a theory does not look like theory of planar
field theory diagrams. We will also explain how the large N -limit fails to give a consistent
homotopy algebra.

1.5. Overview

Chapter 2 starts with a short introduction on how differential graded algebra structures and
their homotopy versions appear in classical field theories. This will lay a foundation when
we traverse into the quantum world. We focus on the advantage of homotopy algebras over
ordinary algebras from a mathematical point of view, in particular their stability under quasi-
isomorphisms. The content of this part is well known to experts in the field. Nevertheless,
we always try to develop the theory from scratch and bring in our own thoughts whenever
possible. The second part of chapter 2 (starting with section 2.4) then turns to develop the
classical Batalin-Vilkovisky formalism. At this point, we will give several examples. These
also motivate some discussions about assumptions on the action functional S made in the
literature and whether some of these can or even should be dropped. However, these remain
conjectural. The two parts of chapter 2, i.e. homotopy algebras and the BV formalism, are
finally related in section 2.5.

In the beginning of chapter 3, we give an introduction to the quantum Batalin-Vilkovisky
formalism. One emphasis lies on revealing its relation to the path integral formalism. In
particular, we discuss the role of ghosts (section 3.2) and how to gauge fix (section 3.4). This
may help the reader to relate the BV approach to more conventional treatments of quantum
field theory. On the other hand, we assume that this is known to researchers who study
the BV approach, especially those who have some mathematical background. In section
(section 3.5), we discuss an approach to regularization that naturally arises when quantum
field theories are formulated in the BV language. 4 As an application, we compute the

4This approach is related to the concept of stubs in string field theory.
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1.5. Overview

anomaly of the chiral Schwinger model. We think that the advantage of this approach over
conventional methods is that the latter most of the time feel quite arbitrary. An extended
version of this is planned to be published. We conclude in section 3.6 by giving a definition
of quantum version of homotopy algebras, that is motivated by the quantum BV formalism.

Chapter 4 is concerned with Question 1 in this thesis. We first discuss the concept of
partitions of moduli spaces in string field theory. This part can be read quite independently
from the previous two chapters. However, some knowledge about the quantum Batalin-
Vilkovisky formalism is helpful, since the quantum master equation enters as a consistency
condition on partitions of moduli spaces. In section 4.4, we quickly discuss how this data
can then be turned into a quantum field theory. Answering Question 1 now amounts
to showing whether the Green-Schwarz anomaly can be made to vanish. A view on the
anomaly in terms of string field theory is given in section 4.6. We show how a theory of
planar diagrams avoids the closed string at one-loop level (section 4.6.1), but fails to do so
at higher loops (section 4.6.2).

In chapter 5, we develop an approach to answering Question 2. We mimic the construc-
tion of quantum L∞-algebras. The reader may want to recall the end of chapter 3 for that.
We develop a definition of higher order (co-)derivations in section 5.1 over non-commutative
algebras. It is shown that it is equivalent to a definition given previously in [16]. Our defi-
nition allows us to prove some theorems for this type of higher order derivations, which we
could not find elsewhere. We also point out some crucial differences to the commutative case
that will later show up as an obstruction for a positive answer to Question 2. In section
5.4, we give a definition of planar homotopy algebras based on higher order coderivations.
However, we point out that this definition does not give what we expect for a quantum field
theory. In section 5.5, we follow another route and apply the large N limit to a loop homo-
topy associative algebra, based on the latter one’s definition given in section 3.6. We will
see that we encounter a similar obstruction to the one we observed in section 5.4. On the
other hand, we show in section 5.6 that planar diagrams give gauge invariant S-matrices,
although we restrict to theories with cubic interactions. Finally, in section 5.7, we point
towards a consistent subsector of loop homotopy associative algebras, that sits between the
planar subsector and the full algebra.

The results of chapter 4 and 5 will be the content of another publication.
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2. Homotopy Algebras and the
Batalin-Vilkovisky Formalism

The first concept we discuss is that of homotopy associative algebras. As explained in the
introduction, this is a language useful in the descrption of open-string field theory and color-
ordered field theories. Closed-string field theory and general field theories have the structure
of a homotopy Lie algebra. For the most part in this chapter, we will be concerned about
the mathematical properties of homotopy algebras, but we try to draw the connection to
field theories whenever possible. The following should serve as a motivation from the point
of view of a physicist.

The very first concept we meet is that of a differential graded vector space (see the
appendix for a mathematical introduction to this concept). The vector space we will be
concerned about is a space of field F . The fact that it is graded means that we assign
an internal quantum number to elements (fields) in F , which we call ghost number. The
field space F contains more than what is usually considered as the space of fields (e.g.
gauge potentials Aµ in Yang-Mills) we may call F (0). In particular, F contains the gauge
parameters. We assign ghost number zero to all fields in the “classical” field space F .
The gauge parameters are given ghost number minus one. We call the subspace of gauge
parameters F (−1). Further, the field space is extended to include a space of anti-fields F1 of
ghost number one, as well as a space of anti-ghosts F2 of ghost number two. We will come
to their role in a moment.

For a moment let us pick Yang-Mills theory as a specific example to illustrate the ideas.
When interactions are turned off, the gauge transformation of a field Aµ ∈ F (0) reads

δAµ = ∂µc, (2.1)

where the gauge parameter c ∈ F(−)1 is function taking values in a Lie algebra. We introduce

a linear operator Q(−1) that turns a gauge parameter c into a gauge transformation of Aµ,
i.e.

(Q(−1)c)µ := ∂µc. (2.2)

The operator Q(−1) is now a map

F−1 Q(−1)

−→ F0. (2.3)

Since it raises the ghost number by one unit, we say that Q itself has ghost number one. A
fancy way of saying that we only want to consider fields up to gauge transformations is to
look at the quotient F (0)/ImQ.

In a classical field theory, we further want to restrict to Aµ that satisfy the equations of
motion. Without the presence of sources, the equation of motion (we still don’t consider
interactions) for Aµ reads

∂µ∂
µAν − ∂µ∂νAµ = 0. (2.4)

9



2. Homotopy Algebras and the Batalin-Vilkovisky Formalism

We again introduce an operator, which we call Q(0), that encodes the equation of motion.
We define

(Q(0)A)ν := ∂µ∂
µAν − ∂µ∂νAµ. (2.5)

We take its image to lie in F1, i.e. it takes values in anti-fields. In general, anti-fields will
be denoted by A∗µ. Since the equations of motion are gauge invariant, we have that

Q(0) ◦Q(−1) = 0. (2.6)

This property allows us to form the quotient H0(F) = kerQ(0)

ImQ(−1) , which we can identify as

gauge classes of fields satisfying equations of motion. The space H0(F) is what we actually
consider the set of physically measurable fields.

On anti-fields we define a third operator : F (1) Q
(1)

→ F (2) by

Q(1)A∗ = ∂µA∗µ. (2.7)

Note that again
Q(1) ◦Q(0) = 0, (2.8)

which encodes the Noether identities.
We can arrange this data in a sequence

0→ F (−1) Q
(−1)

→ F (0) Q
(0)

→ F (1) Q
(1)

→ F (2) → 0, (2.9)

where we adjoined the zero map on both ends. We can also combine Q to a single operator
of ghost number one on all of F . Equations (2.6) and (2.8) then combine to the single
identity

Q2 = 0. (2.10)

The data (F , Q) is one example of a differential graded vector space. In general, a graded
vector space is some vector space V which admits a decomposition

V =
⊕
n∈Z

V n. (2.11)

If v ∈ V n, we say that v has degree (or ghost number) n. We then say that V is also
differential, if it comes equipped with a map d : V → V raising the degree by one unit and
such that d2 = 0. We define the degree n cohomology to be the vector space Hn(V ) :=

ker d|V n
Im d|V n−1

. In our previous example, the zeroth cohomology contained the physical fields.

Up to now, we did not consider any interactions. We would like to treat interactions along
similar lines as the operator Q : F → F . For example, we describe a cubic interaction by a
product m2 : F ⊗F → F . If there is only a cubic interaction, the equations of motion then
read

QA+m2(A,A) = 0. (2.12)

Similar to what we did before, we want to include also gauge parameters to this product,
so that it also generates gauge transformations. If the gauge transformation is at most
quadratic, we write

δA = Qc+m2(c, A). (2.13)

One can now derive consistency conditions by demanding that the equations of motion are
gauge invariant. There are three.
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2.1. Homotopy Algebras

1. Q2 = 0.

2. Qm2(a, b) = (−)sm2(Qa, b) + (−)tm2(a,Qb), s, t ∈ Z.

3. m2 is a Lie bracket.

Here, the signs depend on the grading. If Q and m2 satisfy the above compatibility con-
ditions, we have the structure of a differential graded Lie algebra. We can conclude the
following. A gauge theory with only a cubic interaction has the structure of a differential
graded Lie algebra.

If the gauge theory contains also interactions and gauge transformations of higher or-
der, more compatibility conditions arise. In principle, we may have a theory that is non-
polynomial, i.e. one with interactions to any order. In this case, there is an infinite number
of conditions. In this case, the structure is called homotopy Lie algebra (or L∞-algebra)
by mathematicians. There is also another important type of homotopy algebra, called a
homotopy associative (A∞) algebra. It generalizes ordinary associative algebras in the sense
that it allows for more inputs. As explained in the introduction, they are important in open-
string field theory and color-ordered gauge theories. Below, we will be mostly concerned
with these.

2.1. Homotopy Algebras

Consider the data of a differential graded algebra (A,d,M). This means that A is a cochain
complex of vector spaces with differential d, and it comes equipped with a degree preserving
associative product M , which is compatible with d. This means that

dM(a, b) = M(da, b) + (−)aM(a,db). (2.14)

This condition makes sure that M descends to a product on cohomology.
Given a pair of differential graded algebras (A,dA,MA) and (B, dB ,MB), we define a

homomorphism to be a linear map φ : A → B, such that it is a homomorphism of cochain
complexes and, at the same time, of algebras. The former condition says that φ is of
degree 0 and that it commutes with the differentials, i.e. dBφ = φdA. The latter demands
φ(MA(a, b)) = MB(φ(a), φ(b)). These two conditions are such that φ gives an algebra
homomorphism between cohomologies.

One way to say that two differential graded algebras are the same is to ask for the existence
of an isomorphism between them. In most applications however, this is too strong. In the
end, what one really wants is that the cohomologies are the same, since they contain the
relevant data. This leads to the definition of a quasi-isomorphism. This is a homomorphism
φ : A→ B which becomes invertible when restricted to cohomologies.

We can go one step further and consider any two morphisms to be the same whenever
they are equal on cohomology. An a priori stronger notion of this is the following. Given two
morphisms f, g : (A,dA,MA) ⇒ (B, dB ,MB), we say that they are homotopic, if there exists
a map h : A→ B such that f − g = dBh+hdA. Some simple algebra shows that homotopic
maps are equal on cohomology. Fortunately, when working with complexes over vector
spaces, the converse is also true.1 The notion of homotopy is only superficially stronger, at
least for our purposes.

1This fact can be found in any standard textbook on homological algebra, e.g. [91].
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2. Homotopy Algebras and the Batalin-Vilkovisky Formalism

Suppose now that we have a quasi-isomorphism i : A→ B of differential graded algebras.
We can use the notion of homotopy to write this property algebraically. The map i is a quasi-
isomorphism if and only if there is another chain map p : B → A, such that p◦i is homotopic
to idA.2 We say that p is a homotopy inverse of i. The map p is then automatically also a
quasi-isomorphism. However, p cannot always be chosen such that it is a map of algebras.
Quasi-isomorphisms between algebras are therefore generically not invertible.

A related problem is the following. Suppose that we are given quasi-isomorphic complexes
A and B, and suppose B has a product MB compatible with its differential. Are we able
to define a product on A with this data? This is of course true if A and B happen to be
isomorphic. Moreover, we are definitely able to define a product on the cohomology H•(A),
since it is isomorphic to H•(B). To construct it, let i be a quasi-isomorphism from A to
B with homotopy inverse p. The product MA = p ◦MB ◦ (i ⊗ i) descends to a product
on H•(A) since p and i are assumed to be chain maps. We can try to give A an algebra
structure using MA. It is definitely compatible with the differential. On the other hand,
MA usually fails to be associative, as we can easily check. Let h be a homotopy from p ◦ i
to idA, i.e. 1− i ◦ p = hdA + dAh. The failure of MA being associative is then

MA(MA(a, b), c)−MA(a,MA(b, c)) =dH(a, b, c) +H(da, b, c) + (−)aH(a,db, c) (2.15)

+ (−)a+bH(a, b,dc), (2.16)

where

H(a, b, c) = p ◦MB(i(a), hMB(i(b), i(c)))− p ◦MB(hMB(i(a), i(b)), i(c)). (2.17)

This is a map H : A⊗3 → A of degree −1. When we strip off the inputs from the equations,
we see that

MA ◦ (idA ⊗MA)−MA ◦ (MA ⊗ idA) = dAH +HdA⊗3 . (2.18)

This means that MA ◦ (idA ⊗MA) is merely homotopic to MA ◦ (MA ⊗ idA). This weaker
notion still ensures that MA becomes associative when restricted to cohomology.

The story does not stop with the introduction of H. Consider products of four elements in
an associative algebra. There are two distinct ways to show that a(b(cd)) = ((ab)c)d, either
by moving the inner parentheses or the outer parentheses first. In the previous example,
there are therefore two distinct homotopies between the four element products made out of
MA. It turns out that these are again equal only up to a homotopy H ′, where H ′ : A⊗4 → A
is a map of degree −2. Needless to say, even the reader unfamiliar with this may guess that
this continues to happen in every negative degree.

The notion of a homotopy associative algebra, or A∞-algebra, encapsulates this behavior.
It demands that all associativity relations should hold up to homotopy, and that different
homotopies between the same objects are themselves related by homotopy. We give a first
property a homotopy associative algebra has to satisfy.

Property 2.1.1 (This is the content of Theorem 13 in [90]). Let (V,d) be a differential
graded vector space. An A∞-structure on V has for each k ≥ 2 a map Mk : V ⊗k → V
of degree 2 − k, such that the following holds. Denote by Pk(n) the linear subspace of
V ⊗n → V , which is generated by all compositions of the {Ml | l ≥ 2}, so that the result has
n inputs and is of degree −k. Consider the chain complex

...→ Pk(n)→ ...→ P2(n)→ P1(n)→ P0(n)→ 0, (2.19)

2The equivalence of these statements is again guaranteed by the fact that we work over vector spaces.
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2.1. Homotopy Algebras

where the arrows are the induced action of d on lin(V ⊗k, V ). The Mk are such that the
homology groups satisfy satisfies Hk(P•(n)) = 0 for k ≥ 1 and H0(P•(n)) is at most one-
dimensional.

Let us unravel this. The space P0(n) is spanned by all the ways we can write multiplication
of n elements using M2. For example, P0(3) contains M2 ◦ (M2⊗ idV ) and M2 ◦ (idV ⊗M2).
All of them should be related by the homotopies living in P1(n). So we demand that the
quotient P0(n)/dP1(n) is one-dimensional (it is zero dimensional in the degenerate case
M2 = 0). On the other hand, we want different homotopies between the same objects to
be themselves related by a homotopy of one level higher. Two level k homotopies produce
the same relation at level k − 1 if their difference is in ker(d|Pk(n)). A level k + 1 homotopy
between them exists exactly when they are in the image of d|Pk+1(n). This is the condition
Hk≥1(P•(n)) = 0.

Property 2.1.1 is not sufficient to describe A∞-algebras completely. It does not serve as a
definition. The reason is that, in order to achieve the vanishing of the homology groups, we
can in principle rescale the homotopies with arbitrary factors. For example, any rescaling
of (2.17) still leads to the vanishing of the H1(P•(n)). However, this ambiguity will be fixed
once we specified what the homomorphisms between A∞-algebras are. This also takes us
back to the original question concerning the invertability of quasi-isomorphisms between
differential graded algebras. Let us go back to our example were we failed to transport
a strictly associative algebra structure from a differential graded algebra (B, dB ,MB) to
a quasi-isomorphic vector space (A,dA). We now know that the proper thing to define is
a product on A which is associative up to homotopy. We would like to have a notion of
homomorphism, which allows us to relate the algebra B to the homotopy algebra A. The
way to to this is to allow for non-linear maps between A and B.

Definition 2.1.1 (section 1.6. in [90]). Define a homomorphism from an A∞-algebra
(A,dA, {Mk}) to another (B, dB , {Nk}) to be a collection of linear maps {fn : A⊗n → B}n≥1

of degree 1− n, such that the following holds.

N∑
k=1

∑
∑k
j=1 ij=N

Nk ◦ (fi1 ⊗ · · · ⊗ fik) =

N∑
k=1

N−k∑
i=0

(−)MkfN−k+1fN−k+1(id⊗iA ⊗Mk ⊗ id⊗N−k−iA ).

(2.20)
In the above we set M1 = dA and N1 = dB . We call an A∞-morphism {fn : A⊗n → B}n≥1

a (quasi-)isomorphism, if f1 is a (quasi-)isomorphism of cochain complexes.

Although the above rule looks messy, it is easy to remember. Loosely speaking, when
we commute the collection F = {fn}n≥1 through the collection N = {Nk}k≥1 we obtain
M = {Mk}k≥1. We may write N ◦ F = F ◦ M .3 We will later see that the following
conditions hold.

1. Any isomorphism of A∞-algebras has an inverse.

2. Any quasi-isomorphism of A∞-algebras has a homotopy inverse.

The second statement shows the advantage of working with A∞-algebras instead of associa-
tive algebras when the underlying space is a (co-)chain complex.

3We will later introduce a formalism where this becomes a algebraically exact statement.
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2. Homotopy Algebras and the Batalin-Vilkovisky Formalism

Remark 2.1.1. In this work we will also sometimes meet homotopy Lie (L∞) algebras. This
concept is not very different from its associative counterpart. Aside from skew symmetry,
the defining property of a Lie algebra is the Jacobi identity. For L∞-algebras we require that
this identity as well as all higher relations are true only up to homotopy. Given a graded
vector space V , for each number of inputs k ≥ 2, there is a single product

Mk : V ∧k −→ V. (2.21)

of degree 2 − k. Note that Mk is defined on the exterior power of V , so it is graded anti-
symmetric in its entries.

2.2. Diagrammatic Representation of Products

It has proven to be useful to represent the products of an A∞-algebra by trees. We denote
a product Mk : A⊗k → A by

Mk =

1 2 kk−1
· · ·

. (2.22)

We distinguish between its k leaves and its root. The leaves represent the k inputs of Mk.
The root represents its output. The numbers are there to remind us to which input a leave
corresponds. However, we will most of the time not display them. They are fixed by the
convention that the numbers grow from left to right.

The main advantage of this approach is that allows to write expressions involving mul-
tiple products in a simple way. For example, in a (strict) associative algebra, we display
associativity as

= . (2.23)

Similarly, we draw associativity up to homotopy as

∂ = − . (2.24)

Sometimes, it may happen that we have to insert linear operators between legs. For example
in (2.17), the triple product H depends on the homotopy h. We draw this as

= h − h . (2.25)
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2.3. Bar Construction of Homotopy Associative and
Homotopy Lie Algebras

2.3.1. Tensor (Co-)Algebra

We review the construction and properties of the tensor algebra. Given a finite dimensional
graded vector space V over C, we define the free tensor algebra to be the space TV =⊕

n≥0 V
⊗n, equipped with an algebra structure given by the tensor product. The free

tensor algebra can be desribed by the following universal property. Given a linear map
φ1 : V → A from a vector space V into an algebra A. Then there is a unique algebra
homomorphism φ : TV → A, such that

V TV

A

φ1 φ (2.26)

commutes. Therefore, we have a bijection linC(V,A) ∼= hom(TV,A). This also characterizes
derivations on TV using the following argument. Take A = TV . The universal property
tells us that LinC(V, TV ) ∼= hom(TV, TV ). A derivation δ on TV is an infinitesimal homo-
morphism φ : TV → TV , expanded around the identity. We write φ = id+εδ, where ε2 = 0.
At the infinitesimal level, the universal property then reads LinC(V, TV ) ∼= Der(TV ).4

Given a basis {xi}i∈I of V , its tensor algebra consists of finite sums of the form

n∑
k=0

fi1,...,ikx
i1 ⊗ · · · ⊗ xik . (2.27)

Infinite sums are allowed in the completion T̂ (V ) =
∏
k≥1 V

⊗k of T (V ). We can define a

topology on T̂ V . A sequence (fn)n∈N converges to zero, if each coefficient of fn becomes
equal to zero when n is large enough. This ensures that

lim
n→∞

n∑
k=0

fi1,...,ikx
i1 ⊗ · · · ⊗ xik =

∞∑
k=0

fi1,...,ikx
i1 ⊗ · · · ⊗ xik , (2.28)

where the left hand side is the limit of a sequence in TV ⊆ T̂ V , while the right hand side is
not in TV . On the other hand, the sequence ( 1

n )n∈N does not converge to 0 in this topology,
since the coefficient in zeroth power is never equal to zero.

Remark 2.3.1. The difference between a product
∏
i Vi and a sum

⊕
i Vi of vector spaces

Vi is technical. The former contains elements of the form (v1, v2, ...), where in principle
infinitely many of the vi’s are non-zero. On the other hand, we may write elements in

⊕
i Vi

as formal finite sums
∑N
i=1 vi, such that vi ∈ Vi. The sum is a subspace of the product in

the sense that there is an inclusion

N∑
i=1

vi 7→ (v1, ..., vN , 0, 0, ...). (2.29)

4The author learned about this viewpoint in [77]. When one wants do discuss graded derivations, one should
consider infinitesimal homomorphisms around the shifted identity (or suspension) map id : TV → TV [k].
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This suggests that we may also write elements in
∏
i Vi as infinite sums when the indexing set

happens to be countable. If the indexing set is actually finite, the above inclusion becomes
an isomorphism. We also want to emphasize that the product

∏
i is not the tensor product⊗

i.

Remark 2.3.2. In TV , the only invertible elements are those living in k = V ⊗0. On the
other hand, an element in T̂ V is invertible if and only if it has non-zero constant part, that
is, if it has a non-zero projection onto k. This can easily be seen by making use of the
geometric series (1− x)−1 =

∑
k≥0 x

k.

Let V ∗ be the dual of V , with dual basis {x∗i }i∈I . Then, T (V ∗) is the linear dual of T̂ (V ).
Define the pairing

〈·, ·〉 : T (V ∗)⊗ T̂ (V )→ k (2.30)

The tensor product on T̂ (V ) induces a coproduct ∆ : T (V ∗) → T (V ∗) ⊗ T (V ∗) through
〈f, a · b〉 = 〈∆f, a⊗ b〉. It acts on basis elements by deconcatenation

∆(x∗1 ⊗ · · · ⊗ x∗n) =

n∑
k=0

(x∗1 ⊗ · · · ⊗ x∗k)⊗ (x∗k+1 ⊗ · · · ⊗ x∗n). (2.31)

The parentheses indicate how we think of it as an element of T (V ∗)⊗ T (V ∗). When k = 0
or n, we define ( ) = 1 ∈ k. Associativity of the tensor product implies coassociativity of ∆.
This property reads

(id⊗∆) ◦∆ = (∆⊗ id) ◦∆. (2.32)

We denote T (V ∗) with the coproduct ∆ by T c(V ∗). T c(V ∗) has a counit ε : T c(V ∗) → C

given by the obvious projection. It satisfies

(idT c(V ∗) ⊗ ε) ◦∆ = (ε⊗ idT c(V ∗)) ◦∆ = idT c(V ∗) (2.33)

Given any vector space V , we want to give a universal property describing the coalgebra
T c(V ). However, there is a small technical difficulty which forces us to restrict the class of
coalgebras. We begin with the definition of a coaugmented coalgebra.

Definition 2.3.1. A coalgebra (C,∆, ε) with counit is a vector space C over a field k, such
that ∆ : C → C ⊗C is coassociative as in (2.32), and the counit satisfies ε : C → k satisfies
(2.33). We say that C is coaugmented, if it comes equipped with a coaugmentation map
η : C → k, such that ε ◦ η = idk. A morphism of coaugmented coalgebras is a linear map

φ : (C,∆C , εC , ηC)→ (D,∆D, εD, ηD), (2.34)

such that ∆D ◦ φ = (φ⊗ φ) ◦∆C , εD ◦ φ = εC , and φ ◦ ηC = ηD.

We will occasionally use higher powers ∆n : C → C⊗n of the coproduct defined by
∆n = (id⊗∆) ◦∆n−1 and ∆2 = ∆.

The tensor coalgebra T c(V ) has a coaugmentation map η given by the inclusion k →
T c(V ). For any coaugemented coalgebra C, it follows that there is natural isomorphism
C ∼= k⊕ ker ε. This allows us to define the reduced coproduct ∆ on C := ker ε by

∆(x) = ∆(x)− 1⊗ x− x⊗ 1. (2.35)
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Definition 2.3.2. Let (C,∆, ε) be a coaugmented coalgebra and C as above. Define
Fn(C) = ker ∆n. C is called conilpotent, if

C =
⋃
n≥2

Fn(C). (2.36)

Elements p ∈ ker ∆ satisfy ∆(p) = 1 ⊗ p + p ⊗ 1. In this case, p is called primitive. The
condition that C is conilpotent is equivalent to saying that any x ∈ C splits into primitive
elements by applying ∆ finitely many times. Clearly, ker ∆n+1 =

⊕n
k=1 V

⊗k in the case of
the tensor coalgebra T c(V ). Hence, the tensor coalgebra is conilpotent.

We are finally set up to state the universal property of the tensor coalgebra. Let C be
a conilpotent coalgebra and V a vector space. For any linear map φ1 : C → V , there is a
unique morphism of coaugmented coalgebras φ : C → T c(V ), such that

T c(V )

C V

φ

φ1

(2.37)

commutes. This implies in particular that we have a bijection Hom(T cV, T cV ) ∼= Lin(T cV, V ).
The infinitesimal version of this involves the dual to the notion of a derivation.

Definition 2.3.3. Let (C,∆) be a coalgebra. A linear map δ : C → C is called a coderiva-
tion, if it satisfies the co-Leibniz rule

∆ ◦ δ = (δ ⊗ idC + idC ⊗ δ) ◦∆. (2.38)

Remark 2.3.3. A graded coalgebra with coderivation δ such that δ2 = 0 is called a differ-
ential graded coalgebra for obvious reasons.

We denote the space of coderivations from C to itself by Coder(C). We have a linear
isomorphism Coder(T cV, T cV ) ∼= Lin(T cV, V ). We give an explicit description of the map
D : Lin(T cV, V )→ Coder(T cV, T cV ). Let mk ∈ Lin(V ⊗k, V ) ⊆ Lin(T cV, V ). Then,

D(mk)(a1 ⊗ · · · ⊗ an) =

n−k∑
i=0

(−)mk(a1+...+ai−1)a1 ⊗ · · · ⊗ ai ⊗mk(ai+1, ..., ai+k)⊗ ai+k+1 ⊗ · · · ⊗ an. (2.39)

As it is clear from the commutative diagram in (2.37) the inverse relation is obtained by
projecting the output of a coderivation to V ⊆ T c(V ). If (V,d) is a differential graded vector
space, we can lift d to coderivation on T c(V ). This defines a differential graded vector space
(T c(V ),d), such that d acts as a coderivation.

2.3.2. Symmetric Tensor (Co-)Algebra

To describe L∞-algebras, we need the symmetric tensor (co-)algebra. Given a vector space
V , we define it to be the quotient of TV modulo the two-sided ideal I generated by elements
of the form a ⊗ b − (−)abb ⊗ a. We write S(V ) = T (V )/I and denote its product by �.

17



2. Homotopy Algebras and the Batalin-Vilkovisky Formalism

There is also a completed version Ŝ(V ) = T̂ (V )/I, which has S(V ∗) as its linear dual. The
product on Ŝ(V ) induces a coproduct ∆ : S(V ∗)→ S(V ∗)⊗ S(V ∗), defined by

∆(x1�· · ·�xn) =
∑
k≥0

∑
σ∈S(n)

(−)ε
1

k!(n− k)!
(xσ(1)�· · ·�xσ(k))⊗(xσ(k+1) · · ·�xσ(n)), (2.40)

where (−)ε is the sign obtained by permuting the elements with σ ∈ S(n). We write
(Sc(V ),∆) for the symmetric tensor coalgebra of a vector space V . The symmetric tensor
coalgebra has the same universal property as the tensor coalgebra, but with respect to coaug-
mented cocommutative algebras. It follows that both homomorphisms and coderivations are
uniquely determined by their restriction to lin(ScV, V ).

2.3.3. A Definition of Homotopy Associative and Homotopy Lie
Algebras

We will use the machinery introduced above to give a compact definition of homotopy
associative algebras. The very similar case of homtopy Lie algebras will be discussed further
below.

Definition 2.3.4. Let (V,d) be a differential graded vector space. An A∞-structure on V
is a degree one coderivation M on T c(V ), such that M is zero on k⊕ V , and (d +M)2 = 0.
We denote the triple of this data defining an A∞-algebra by (V,d,M).

The coderivation d +M gives T c(V ) the structure of a differential graded coalgebra. This
suggests an even more efficient definition of A∞-algebras. We could say that an A∞-algebra
over V is the pair (T c(V ),M) equipped with a degree one coderivation M so that M |V ⊗0 = 0
and it makes T c(V ) into a differential graded coalgebra. One can find this definition also
in the literature (e.g. [58]). The case M |V ⊗0 6= 0 is also considered. One then refers to
them as weak A∞-algebras. The reason why we prefer definition 2.3.4 is because it makes
the structure of V as a differential graded vector space explicit, and the term “homotopy”
refers to homotopies with respect to this differential.

At this point, it may not be immediately obvious how definition 2.3.4 relates to our discus-
sion in the beginning of this chapter. To make the connection, recall that the coderivation
M equivalent to a map TV → V . This means that we can write

M =
∑
k≥2

mk, (2.41)

where mk is determined by a map mk : V ⊗k → V . The mk are the products and homotopies
appearing in our original description of A∞-algebras, up to a difference in degree. Since M
is of degree one, so are the mk. By making the shift V → V [−1], the map mk : V [−1]⊗k →
V [−1] becomes of degree 2− k, which matches the convention introduced in section 2.1 (see
also appendix A).

Property 2.1.1 gave an indirect description of A∞-algebras, but we refrained from giving
an direct formula of the A∞-relations, i.e. the relations among d and the mk. They can be
read off the condition (d + M)2 = 0. Fortunately, to find them we don’t have to compute
the action of (d +M)2 on all of T c(V ). We can make our lives a bit easier by noticing that,
since d + M is of odd degree, we have (d + M)2 = 1

2 [d + M,d + M ]. Further, the space
of coderivations is closed under taking commutators, as it is the case of derivations of an
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algebra. So (d +M)2 is also a coderivation, independent of whether it vanishes or not. But
this implies that (d +M)2 = 0 is equivalent to π1 ◦ (d +M)2 = 0, where π1 : T c(V )→ V is
the canonical projection. Independent of the approach, (d + M)2 = 0 produces an infinite
set of conditions. We state the first three.

d2(a) =0, (2.42)

d(m2(a, b)) =−m2(da, b)− (−)am2(a,db), (2.43)

d(m3(a, b, c)) =−m3(da, b, c)− (−)am3(a,db, c)− (−)a+bm3(a, b,dc)

−m2(m2(a, b), c)− (−)am2(a,m2(b, c)). (2.44)

...

Equation (2.43) and (2.44) are essentially (2.14) and (2.18), up to signs which come from
the relative shift in degree.

We now come to the definition of A∞-morphisms.

Definition 2.3.5. A mapping Φ : (V,dV ,MV )→ (W, dW ,MW ) is an A∞-morphism if the
following two things hold.

1. Φ is a coalgebra morphism from T c(V ) to T c(W ) such that Φ|V ⊗0 = 0.

2. Φ commutes with the A∞-structure, that is (dW +MW ) ◦ Φ = Φ ◦ (dV +MV ).

Since Φ is a coalgebra morphism, it is determined by a linear map F : T c(V ) → W
through F = πW1 ◦ Φ, where πW1 : T c(W )→W is the canonical projection. We write

F =
∑
n≥0

Fn, (2.45)

where Fn ∈ Lin(V ⊗n,W ) ⊆ Lin(T c(V ),W ). We will henceforth refer to the collection
{Fn}n≥0 as the components of F or, equivalently, of Φ. The condition Φ|V ⊗0 = 0 means
that F0 = 0. Morphisms with F0 6= 0 are also considered and are called weak A∞-morphisms
by some authors.

The approach to A∞-algebras just described is known as the bar construction. It has the
obvious advantage that both the A∞-relations and the composition of A∞-morphisms can
be written in a nice compact form. The drawback of this approach is that it disguises the
interplay between algebra and homotopy theory.

Let us talk a bit more about A∞-morphisms. The components Fn : V ⊗n → W are of
degree 0. To make the connection to our first definition of A∞-morphisms, we again shift
the degrees of the vector spaces by one unit. Then, Fn : V [−1]⊗n → W [−1] is of degree
1 − n. Also, we define (quasi-)isomorphisms as in definition 2.1.1. This means that we
call F : T c(V ) → W a (quasi-)isomorphism, if F1 : V → W is a (quasi-)isomorphism of
differential graded vector spaces.

Remark 2.3.4. This definitions of quasi-isomorphisms and isomorphisms does not look
natural when we think of A∞-algebras as a certain class of differential graded coalgebras.
The common definition is of course that an isomorphism is a morphism which has an inverse.
Similarly, a quasi-isomorphism should have an inverse on cohomology. Fortunately, an
F : T c(V ) → W is a (quasi-)isomorphism in this sense, if and only if F |V : V → W is
a (quasi-)isomorphism.
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Lemma 1 (Invertability of isomorphisms between tensor coalgebras). Let F : T c(V )→W
be a linear map of degree zero such that F0 = 0. F defines an isomorphism of coalgebras if
and only if F |V : V →W is invertible as a linear map.

Proof based on [64]. If F : T c(V )→ W has an inverse G : T c(W )→ V , then G1 is a linear
inverse of F1. On the other hand, suppose we are given a F : T c(V ) → W with invertible
F1, and let G : T c(W )→ V be any linear map. The composition G ◦ F : T c(V )→ V is

(G ◦ F )n =
∑
k≥0

∑
i1+...+ik=n Fk

GikGi1

· · · · · ·

· · ·
. (2.46)

It is convenient to draw this without reference to the components,

G ◦ F =

F

GG

· · · · · ·

· · ·
. (2.47)

We want to define G such that it is an inverse of F . Let us denote the linear part of G by
g. We obviously need g = F−1

1 . Let F ′ be F , except F ′1 = 0. The inverse of F can now be
recursively constructed in the following way.

G =

G

−F ′−F ′

g gg g· · · · · ·

· · · , (2.48)

with initial condition G1 = g and Gk 6=1 = 0.

Remark 2.3.5. The condition F0 = 0 is necessary since otherwise each Gn would consist
of an infinite sum. In principle, it may be possible to obtain an inverse in the more general
case F0 6= 0 if one has a good notion of convergence of these sums.

Remark 2.3.6. Pictorially, G defined in (2.48) consists of all tree level Feynman diagrams
with propagator g and vertices −Fk≥2. The propagators are not amputated, so g enters also
in the external legs.

We saw that an A∞-isomorphisms F , in the sense that F−1
1 exists, are invertible as

coalgebra morphisms. Clearly, the inverse morphism will automatically be a chain map if F
is. Hence, A∞-isomorphisms are isomorphisms of differential graded coalgebras. The same
holds true when one considers quasi-isomorphisms in each setting. To see why this is true,
we need a little bit more theorems, which we defer to the next section.

We now also discuss the definitions of homotopy Lie algebras and their morphisms. They
are obtained from the definition of homotopy associative algebras by using the symmetric
coalgebra Sc(V ) instead of T c(V ).
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Definition 2.3.6. An L∞-structure on a differential graded vector space (V,d) consists of
a degree one coderivation M on Sc(V ), such that M is zero on k ⊕ V , and (d + M)2 = 0.
We denote this data by a triple (V,d,M).

Remark 2.3.7. We again have a shift in degree in this definition with respect to the
original description we gave in the introduction to this chapter in remark 2.1.1. To relate to
that convention, we apply the shift V 7→ V [−1]. In the bar construction, the coderivation
induces/is equivalent as set of graded symmetric maps Mk : V �k → V . The degree shift
turns them into anti-symmetric maps V [−1]∧k → V [−1] under the décalage isomorphism,
see appendix A.

Definition 2.3.7. A mapping Φ : (V,dV ,MV ) → (W, dW ,MW ) is an L∞-morphism if the
following hold.

1. Φ is a coalgebra morphism from Sc(V ) to Sc(W ) such that Φ|V ⊗0 = 0.

2. Φ commutes with the L∞-structure, that is (dW +MW ) ◦ Φ = Φ ◦ (dV +MV ).

Lemma 2. A linear map F : Sc(V )→ W with F |k = 0 defines a an isomorphism between
symmetric tensor coalgebras if and only if F |V : V →W is invertible.

Proof. The proof is very similar to the associative case. It can be found in [64].

2.3.4. The Homological Perturbation Lemma and the Homotopy
Transfer Theorem

The homological perturbation lemma is a powerful tool to transfer (co-)homological structure
from one chain complex to another, so that the two complexes are homotopy equivalent in
the end (see [26] for a nice treatment of this lemma). As the name suggests, it does so
perturbatively. That is, it assumes that we are already given a homotopy equivalence data.
Recall that this means that for a given pair of complexes (A,dA) and (B, dB), we have

i : (A,dA) � (B, dB) : p, (2.49)

where p and i are quasi-isomorphisms such that

1− i ◦ p = dBh+ hdB , (2.50)

with some fixed homotopy h.
Let δ : B → B be of degree one and such that (dB + δ)2 = 0. δ can be thought of a

perturbation of the cohomological structure on B. We further demand that (1−δh)−1 exists.
The homological perturbation lemma now tells us that there exists a perturbed homotopy
equivalence data

i′ : (A,dA + δ′) � (B, dB + δ) : p′, (2.51)

1− i′ ◦ p′ = (dB + δ) ◦ h′ + h′ ◦ (dB + δ). (2.52)

The perturbed data is

i′ = i+ h(1− δh)−1δi, (2.53)

p′ = p+ p(1− δh)−1δh, (2.54)

h′ = h+ h(1− δh)−1δh, (2.55)

δ′ = p(1− δh)−1δi. (2.56)
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Recall that we used a homotopy equivalence data to derive the first homotopy in an
A∞-structure from a differential graded algebra structure, where the homotopy is given by
(2.17). As a first application, let us see whether we can use the perturbation lemma to
directly compute all the higher homotopies. To apply it, we need to make use of the bar
construction of A∞-algebras. Suppose we are given a differential graded vector space (V,dV )
and an A∞-algebra (W, dW ,MW ), such that (V,dV ) and (W, dW ) are homotopy equivalent
as differential graded vector spaces. As before, let us denote this data by

i : (V,dV ) � (W, dW ) : p, hdW + dWh = 1− i ◦ p. (2.57)

This homotopy equivalence induces a homotopy equivalence on the tensor coalgebras

I : (T c(V ),dV ) � (T c(W ),dW ) : P, (2.58)

where I = i ◦ π1 : T c(V ) → W and P = p ◦ π1 : T c(W ) → V lift to coalgebra morphisms.
There is a homotopy H from 1 to I ◦ P . It acts on W⊗n by

H =

n∑
k=1

(i ◦ p)⊗k−1 ⊗ h⊗ id⊗n−kW . (2.59)

It extends diagonally to a degree minus one map H : T c(W )→ T c(W ).
To apply the perturbation lemma, we view MW as a perturbation of the coderivation

dW on T c(W ). The lemma then provides us the perturbed data I ′, P ′, H ′,M ′V . One could
conclude that we found an A∞-structure on V . But we should be careful. The lemma only
tells us that dV + MV gives T c(V ) the structure of a cochain complex. To conclude that
(T c(V ),dV +MV ) defines an A∞-structure, we should check that MV is a coderivation. It
would further be nice to have that I ′ and P ′ are A∞-morphisms, which amounts to showing
that they are coalgebra morphisms.

Remark 2.3.8. We should also make sure that (1 − δh)−1 exists. One way is to ensure
its existence is to write (1 − δh)−1 =

∑
k≥0(δh)k and demand that a sequence converges

if terms with fixed number of inputs become ultimately constant. Note that this demands
that δ starts with a term with at least two inputs. This notion of convergence excludes weak
A∞-algebras.

The above checks are not trivial at all. It was pointed out in [50] that a crucial condition for
the (co-)algebra structures to be preserved by the perturbation lemma is that the homotopy
data is a strong deformation retract. This is the same data as (2.49) and (2.50), plus the
additional side conditions

pi = idA, hi = 0, h2 = 0. (2.60)

In this setup, A can be thought of as a sub-complex of B, which is homotopy equivalent to
B. The homotopy h contracts B into A. So whenever we have a strong deformation retract,
the homological perturbation lemma tells us that we have a transfer of A∞-structures and
a homotopy equivalence data

I ′ : (T c(V ),dV +N ′) � (T c(W ),dW +M ′) : P ′. (2.61)

Further, one can show that the above data also is a strong deformation retract [26].
The more general case is treated by the homotopy transfer theorem, see for example [90]

and [64], section 10.3.
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Theorem 1 (Homotopy Transfer Theorem, HPT). Let be i : (V, dV ) ↔ (W, dW ) : p
be an homotopy equivalence of differential graded vector spaces, with homotopy h. Given
an A∞-structure on (W, dW ), there is an A∞-structure on V together with an A∞-quasi-
isomorphism i′ : V →W extending i.

We state the explicit formula for the transferred structure diagrammatically. Let MW :
T c(W ) → W be the A∞-structure on W . The induced structure MV on V is recursively
defined as follows. Let

T =

MW

1+hT1+hT

· · · · · ·

· · ·
, (2.62)

with initial condition T = 0. Define (MV )n = p ◦ Tn ◦ i⊗n, which is the induced A∞-
structure on V . The A∞-quasi-isomorphism i′ : T c(V ) → W is induced from i′1 = i1 and
i′n = h ◦ Tn ⊗ i⊗n when n ≥ 2.

Unlike the homological perturbation lemma, the homotopy transfer theorem does not
provide a homotopy inverse p′ of i′. As we will see, a homotopy inverse always exists.
However, it is not guaranteed to be a perturbation of p, by which we mean that it reduces
to p when MW = 0.

To conclude, let us talk about the ideal theorem one would like to have. This was described
for example in [67], where this was called the ideal perturbation problem.

Definition 2.3.8 (Ideal Perturbation Problem). Let (A,dA) and (B, dB) be (co-)chain
complexes together with a two-way homotopy equivalence between them. This means that
we are given the following.

i : (A,dA) � (B, dB) : p, dBh+ hdB = 1− i ◦ p, dBl + ldB = 1− p ◦ i. (2.63)

The ideal perturbation problem then asks: Given a perturbation δ of dB , does there exist
a perturbation δ′ of dA together with perturbed data p′, i′, h′, l′ giving us again a two-way
homotopy equivalence?

Remark 2.3.9. The difference to the assumption in the homological perturbation lemma
is that we also take another homotopy l as the data. A strong deformation retract, with
l = 0, is a special case of it.

It was proven in [67] that the IPP has in general no solution. Furthermore, an obstruction
was given for it to have a solution. The obstruction can be forced to vanish if one changes
the initial homotopy

L→ L− p(iL−Hi), (2.64)

or, equivalently, a similar shift in H. Hence, the IPP has a solution if one allows for a
shift in the initial data. When one forgets about the homotopy L afterwards, one gets the
statement of the HPL.

Unfortunately, even with the solution to the HPP, (co-)algebra structures are not pre-
served. A way to circumvent this problem was given in [55] (the authors also derived the
shift (2.64) solving the HPP). They used the mapping cylinder of i to reduce the problem
of perturbing a single homotopy equivalence to the perturbation of two strong deformation
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retracts. Recall that the mapping cylinder of a map chain map α : (X,dX) → (Y, dY ) is a
complex Zα, where

Znα = Xn ⊕Xn+1 ⊕ Y n, (2.65)

equipped with the differential

d(x, x′, y) = (dx− x′,−dx′,dy + α(x′)). (2.66)

The cylinder Zα admits a strong deformation retract onto Y , and, if α is a homotopy
equivalence, a strong deformation retract onto X. Because there are difficulties in giving
the cylinder of maps between (co-)algebras itself a (co-)algebra structure, the authors of [55]
restricted this construction to free tensor (co-)algebras in the end. This works in the case of
A∞-algebras. A perturbation of differential (co-)algebra structures can then be obtained by
doing two perturbations, one into and one from the mapping cylinder. The algebra version
of this statement is theorem (2.3∗) in [55].

Remark 2.3.10. The argument does not apply for L∞-algebras. Given an (ordinary)
retract, which means that we only have pi = idA, one can always make a shift in the
homotopy data to obtain a strong deformation retract (this fact is mentioned for example
in [4]). However, the homotopy transfer theorem also applies for L∞-algebras. The HTT
does not demand a retract. From this it looks like that there should be a way to proof the
general homotopy transfer theorem from the homological perturbation lemma also in this
general case, maybe along the same lines as in [55], i.e. by finding a good cylinder of maps
between commutative (co-)algebras.

2.3.5. The Minimal Model

Among all the A∞-structures one can construct with the HTT, the most important is ar-
guably the structure an A∞-algebra induces on its cohomology. We recall its construction.

Suppose we have an A∞-algebra (V,d,M). Let H(V ) be the cohomology of V with respect
to d. To apply the HTT, we must construct a homotopy equivalence between V and H(V ).
Since V is a vector space, things are particularly simple. Any cochain complex of vector
spaces admits a splitting

V n = Bn(V )⊕Hn(V )⊕Bn+1(V ), (2.67)

where Bn are the coboundaries in degree n, i.e. Bn = Im(d|V n−1). In this picture, the
differential acts by inclusion

Bn+1 ↪→ V n+1, (2.68)

see [91]. Therefore, we can always find a strong deformation retract,

i : (H(V ), 0) � (V,d) : p, (2.69)

where the homotopy h : V n → V n−1 is given by the inclusion reversing (2.68).
The existence of a strong deformation retract allows us to apply the HPL. As pointed out

in the last section, its advantage over the HTT is that it gives us a quasi-isomorphism from
V to H(V ) between the perturbed structures. We denote this by

I∞ : (H(V ), 0, H(M)) � (V,d,M) : P∞. (2.70)
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Definition 2.3.9. The A∞-algebra (H(V ), 0,MH) is called the minimal model of (V,d,M).

Theorem 2 (Theorem 10.4.7 in [64]). Given a quasi-isomorphism

F : (V, dV ,M)→ (W, dW , N), (2.71)

there exists a quasi-isomorphism G : (W, dW , N) → (N, dN ,M), which is inverse to F on
cohomology.

Proof. Denote by

I∞ : (H(V ), 0, H(M)) � (M,d, V ) : P∞ (2.72)

and

J∞ : (H(W ), 0, H(N)) � (W, dW , N) : Q∞ (2.73)

the strong deformation retracts on the respective cohomologies. The composite

F ′ = Q∞ ◦ F ◦ I∞ (2.74)

is an A∞-morphism. Since F is a quasi-isomorphism, its linear part is a quasi-isomorphism
of differential graded vector spaces. This implies that the linear part of F ′ is an isomorphism,
hence it admits an inverse G′ by lemma 1. The composite G = I∞ ◦ G′ ◦ Q∞ is a quasi-
isomorphism of the type we were looking for.

There exists an improvement to the theorem we just stated. With a proper notion of
homotopy, we will see that G is in fact a homotopy inverse to F . The notion of homotopy is
naturally obtained by thinking of A∞-algebras as differential graded coalgebras. Applying
the HPL to strong deformation retracts automatically gives us a strong homotopy retract
in the perturbed data, which, in particular, is a homotopy equivalence.

Corollary 1. The maps F and G in theorem 2 are homotopy inverse to each other.

Proof. Recall that G = Q∞ ◦G′ ◦ I∞, where G′ is the inverse of F ′ = Q∞ ◦ F ◦ I∞. In the
following, we write ∼= whenever equality holds up to homotopy. We know that I∞◦P∞ ∼= idV
and J∞ ◦Q∞ ∼= idW , since we obtained these by application of the HPL. We compute

G ◦ F = I∞ ◦G′ ◦Q∞ ◦ F ∼= I∞ ◦G′ ◦ F ′ ◦ P∞ = I∞ ◦ P∞ ∼= idV , (2.75)

F ◦G = F ◦ I∞ ◦G′ ◦Q∞ ∼= J∞ ◦ F ′ ◦G′ ◦Q∞ = J∞ ◦Q∞ ∼= idW . (2.76)

Theorem 2 together with corollary 1 imply that any A∞-quasi-isomorphism admits an
inverse up to homotopy. This is not true for quasi-isomorphisms of differential graded
algebras. This property is actually a way to define homotopy algebras. It is, up to iso-
morphisms, the minimal extension of the notion of a differential graded algebra, such that
quasi-isomorphisms become invertible. In the mathematical literature, this statement is
formulated as follows. One can show that the category of A∞-algebras with morphisms up
to homotopy equivalence is equivalent to the homotopy (or derived) category of differential
graded algebras, see theorem 8 in [90].
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M2 ◦ (M2 ⊗ id) M2 ◦ (id⊗M2)
M3

Figure 2.1.: The complex P•(3).

2.3.6. A∞-Products as Polytopes

Recall the description of A∞-algebras given by property 2.1.1. For each number of inputs
n, we had a chain complex

→ ...→ P2(n)→ P1(n)→ P0(n)→ 0. (2.77)

For fixed n, this chain complex is isomorphic to the representation of a certain n− 2 dimen-
sional polytope as a finite cell complex. It has a single top dimensional face associated to
the one dimensional space Pn−2(n) spanned by the A∞ product Mn. Each Mn consists of
a single closed n − 2 dimensional cell, that is it is a compact contractible subset of Rn−2.
Compositions of products are translated to the cartesian product of topological spaces. With
this, the A∞-relations give rise to a unique cellular decomposition of these polytopes.

We will describe this explicitly up to M5. The product M2 is a contractible subset of R0.
Hence, it is necessarily a point. It follows that also all compositions of the M2 are points. The
space P0(3) is spanned by two of these points given by the compositions M2 ◦ (M2⊗ id) and
M2 ◦ (id⊗M2). The A∞-relation tells us that they are the boundary of the one-dimensional
object M3. We therefore conclude that M3 ∈ P1(3) is a line. In degree n ≥ 2, we have that
Pn(3) = 0. We conclude that, as a cell complex, P•(3) consists of single 1-cell connecting
two 0-cells. This is depicted in figure 2.1.

The next complex on the list is P•(4). The space P0(4) is a zero dimensional space and
consists of all the cubic powers of M2. There are five of them. Therefore, P0(4) consists
of five 0-cells. P1(4) contains all the ways we can combine a single M2 with a single M3.
Since M2 is a point and M3 is a line, their topological representations are again lines. There
are again five of them. When we connect these lines along their common 0-cells, we obtain
a single closed loop, which forms the boundary of a pentagon. Finally, this loop is the
boundary of the 2-cell M4 ∈ P2(4). Therefore, the complex P•(4) is a pentagon, together
with its canonical decomposition into five 0-cells, five 1-cells and a single 2-cell. Pictorially,
this is shown in figure 2.2.

At this point, it is obvious how to build up P•(k) for any k. First, we list all the 0-cells.
Then, we list all the 1-cells and glue them along their common 0-cells. We continue this by
gluing, for any n, all the n-cells along their common n− 1-cells. For P•(5), this means that
we have 14 0-cells, 20 1-cells, 9 2-cells and a single 3-cell. Out of all the two cells, three of
them are are obtained by composing M3 with itself. These 2-cells are therefore rectangles.
The remaining six consist of compositions of M2 with M4, which are topologically the same
as M4 and therefore pentagons. A picture of the resulting polytope can be found in [90],
exercise 16.

Geometrically, the property that the homology groups of P•(n) vanish in non-zero degree
is easily understood. All the polytopes are contractible to a point. They contract onto an
ordinary associative algebra, where, for any n, all the zero cells in P0(n) are identified.
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M2 ◦ (M2 ⊗ id) ◦ (M2 ⊗ id⊗ id)

M2 ◦ (M2 ⊗ id) ◦ (id⊗M2 ⊗ id)M2 ◦ (id⊗M2) ◦ (M2 ⊗ id⊗ id)

M2 ◦ (id⊗M2) ◦ (id⊗M2 ⊗ id)M2 ◦ (id⊗M2) ◦ (id⊗ id⊗M2)

M4

M2 ◦ (id⊗M3)

M3 ◦ (id⊗ id⊗M2) M3 ◦ (id⊗M2 ⊗ id)

M2 ◦ (M3 ⊗ id)M3 ◦ (M2 ⊗ id⊗ id)

Figure 2.2.: The complex P•(4).

2.3.7. Cyclic Homotopy Algebras

A physically relevant subclass of A∞-algebras are cyclic A∞-algebras. We will see that the
products Mk : V ⊗k → V represent the interaction of k + 1 particles, i.e. Mk represents the
sum of all order (k+1)-terms in the Lagrangian. The interactions don’t distinguish between
incoming and outgoing particles. We therefore need a tool to compare the inputs to the
output of a product.

Definition 2.3.10. Let (V,d) be a differential graded vector space. An odd symplectic
structure on V is a degree −1 product ω : V ⊗ V → k, such that the following holds.

� ω is graded anti-symmetric, that is, ω(v, w) = −(−)(v−1)(w−1)ω(w, v).

� ω is non-degenerate.

� ω is compatible with the differential d. This means that ω(da, b) = −(−)aω(a,db).

Remark 2.3.11. As it is always the case with compatibility of a differential structure with
another structure, compatibility of ω with d implies that ω restricts to a symplectic form
on cohomology.

We can use ω to turn an output into an input. We define ωMk : V ⊗(k+1) → k by the
formula

(ωMk)(a0, ..., an) = ω(Mk(a0, ..., an−1), an). (2.78)

ωMk takes values in k. This allows us to think of S =
∑
k≥1 ωMk as a formal function on

the linear space V . We will later interpret S as a (perturbatively expanded) action of a field
theory.

Definition 2.3.11. A product Mk : V ⊗k → V is called cyclic, if ωMk is invariant under the
cyclic permuation of its inputs. An A∞-algebra or L∞-algebra (V,d,Mk) is called cyclic, if
it comes equipped with a symplectic form ω, such that the ωMk are cyclic.

Remark 2.3.12. Compatibility of ω with the differential d together with anti-symmetry of
ω implies that d is cyclically invariant.
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Remark 2.3.13. Products of L∞-algebras are already symmetric in their inputs. Cyclicity
then implies that ωM is symmetric in all its inputs.

We represent the application of ω to an Mk diagrammatically by an arc,

ωMk =

0 1 kk−1k−2
· · ·

. (2.79)

We also define an inverse operation. Non-degeneracy of ω implies that for a basis {ei}i∈I
there is a dual basis vector {e∗i }i∈I such that

ω(ei, e∗j ) = δij . (2.80)

We define ω−1 = e∗i ⊗ ei. We think of the bivector ω−1 as an inverse of ω. This is motivated
by the identity ω(a, e∗i )e

i = a = e∗iω(ei, a). We draw this as

a
=

a

=
a

. (2.81)

The straight line represents the identity. The simplectic form gave us a degree −1 map
ω : Hom(T cV, V ) → Hom(T cV,k). We can use ω−1 to define an inverse of this map. For
F ∈ Hom(V n+1,k), we define (ω−1F )(a1, a2, ..., an) = F (a1, ..., an, e

∗
i )e

i.
For any product Mk ∈ Hom(V ⊗k, V )→ V , not necessarily cyclic invariant, we use ω and

ω−1 to define a rotation of Mk. We denote this by Mk 7→ R[Mk]. Pictorially,

R


1 2 kk−1
· · ·

 =

1 k−12 k
· · ·

. (2.82)

If we define σ to be the permutation (σF )(a0, ..., ak) = F (ak, a0, ..., ak−1), then R = ω−1σω.
Cyclic invariance can be restated as R[Mk] = Mk.

Arbitrary compositions of products will not give cyclically invariant products. This follows
from the identity (c.f. [44])

R[Mm◦(id⊗k⊗Mn⊗id⊗(m−k−1))] =

{
(−)MmMnR[Mn] ◦ (id⊗(n−1) ⊗R[Mm]) when k = 1,

R[Mm] ◦ (id⊗k−1 ⊗R[Mn]⊗ id⊗(m−k))] else .

On the other hand, when we think of Mm and Mn as coderivations, their commutator
[Mm,Mn] is cyclically invariant. Finally, homotopy transfer restricts to cyclic A∞-algebras,
i.e. cyclic A∞-algebras give rise to cyclic A∞-algebras through the application of the homo-
topy transfer theorem, see [58], Corollary 6.14.
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2.4. The Batalin-Vilkovisky Formalism of Classical Gauge
Theory

In this section, we want to put the previous mathematical definitions and theorems into
the context of field theory. We can start by asking how field theories fit into homological
algebra. For people who know about quantization of gauge theories, the methods of BRST-
and BV-quantization will immediately come to mind. Both concepts are well known to have
a homological interpretation. However, let us be more basic for a moment. We will come
back to BV-quantization later.

Working with chain complexes is working with redundant information. We do manipula-
tions on the level of cochain complexes. But in the end, we are interested in the cohomology
groups. In mathematics, these redundancies are usually introduced to derive simple objects
from more complicated ones. For example, to any topological space X one can associate its
cohomology groups {Hn(X,R)}n≥0 with coefficients in some abelian group R. The coho-
mology groups are homotopy invariants, which implies a great loss of information about the
space X. On the other hand, topological spaces are often homotopy equivalent to simpler
ones, so determining cohomology groups can often be reduced to the study of simpler spaces.

In physics, the story is somewhat turned upside down. One introduces redundant infor-
mation to make life simpler. In a first course on Maxwell’s theory, students are told that,
while the primary object one works with is the gauge field A, the physically observable
quantities are the electric and magnetic field (equivalently, the field strength F = dA). The
redundant information manifests in the gauge invariance A → A + dλ. The advantage in
considering A lie in its simple transformation properties.

Aside from gauge invariance, another instance where redundant information occurs is
when one treats theories off-shell. This means that one does not demand fields to satisfy
equations of motion a priori. The advantage of this approach already shows up in classical
mechanics. Before even computing the Euler-Lagrange equations, one picks suitable gen-
eralized coordinates to simplify the problem as much as possible. In quantum field theory,
allowing the propagation of off-shell degrees of freedom is what made Feynman’s formulation
to quantum field theory much more accessible than that of Schwinger, see chapter 4 of [79]
for a short historical review.

2.4.1. Quasi-Isomorphisms in Field Theory

The goal of this section is to give a loose motivation why it is natural to consider the notion
of quasi-isomorphisms in field theory.

We explained the essential motivation for this already in the previous section. Field theo-
ries come with a rudandancies. They arise from gauge invariance and off-shell descriptions.
We would like to have a notion of an equivalence of theories, that is insensitive to redun-
dancies. When we store all relevant data in a cohomology of a theories, quasi-isomorphisms
between these theories, when they are realized as complexes, are the correct notion of an
equivalence of theories.

Without knowledge about the cohomological description of field theories, we can still guess
what quasi-isomorphisms should do. Firstly, the restriction of fields to solutions should be
a quasi-isomorphism.5 Secondly, gauge fixing some fields should also be given by a quasi-
isomorphism. We will see later that the Batalin-Vilkovisky formalism will do exactly that.

5This is true on the classical level. The quantum theoretic equivalent is to integrate out fields.
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2.4.2. Homotopy Intersections

We begin by the discussing the homological description of algebraic intersections. We will
see that this extends the notion of intersections in classical algebraic geometry.

Spaces in algebraic geometry are equivalently described by the algebra of functions on
that space. In the following, we will almost exclusively talk about the algebra of functions
rather than the underlying geometric space. The reason is that these algebras of functions
are easier to treat in the infinite dimensional setting, at least formally.

The basic building blocks in finite dimensional algebraic geometry are the n-dimensional
affine spaces An, whose algebra of functions are the polynomials in n variables. We will
usually work over the complex numbers. In this case, the algebra is denoted by C[x1, ..., xn],
but in general the polynomials can take values in any ring.

Subspaces are zero sets of a collection of functions. Given such a collection {fi}ki=1 ⊆
C[x1, ..., xn], the set (f1, ..., fk) := {

∑k
i=1 figi | gi ∈ C[x1, ..., xn]} is called the ideal generated

by the fi. We think of C[x1, ..., xn]/(f1, ..., fk) as an algebra of functions describing the set
of common zeros f1 = ... = fk = 0. The word intersection, as it appears in the title of
this section, is also sometimes used. One can think of C[x1, ..., xn]/(f1, ..., fk) as the space
obtained by intersecting the graphs of the functions {fk} with the graph of the zero function.

The algebra C[x1, ..., xn]/(f1, ..., fn) is generically larger than the set of functions obtained
by restriction of functions in C[x1, ..., xn] to the set theoretic subspace f1 = ... = fk = 0
of An. The reason is the following. Let V0 be the set of common zeros of the fi. De-
fine by I(V0) = {g ∈ C[x1, ..., xn] | g|V0

= 0} the ideal of functions vanishing on V0. Two
functions in C[x1, ..., xn] restrict to the same function on V0, if and only if their differ-
ence is in I(V0). We therefore can identify the algebra of functions on V0 with the quo-
tient C[x1, ..., xn]/I(V0). It is a trivial check that (f1, ..., fk) ⊆ I(V0). It follows that
C[x1, ..., xn]/I(V0) ⊆ C[x1, ..., xn]/(f1, ..., fn). The reverse inclusion can, however, fail. The
failure happens whenever the ideal (f1, ..., fk) is not radical. We say that an ideal I is radical,
if and only if C[x1, ..., xn]/I has no nilpotent elements.

Example 2.4.1. In physics, we are primarily interested in the space of critical points of an
action S, that is the set of points where the equations of motion dS are satisfied. Consider
for example

S(x, y) =
1

2
x2 +

1

3
(x+ y)3. (2.83)

The equations of motion are

∂xS = x+ (x+ y)2 = 0, ∂yS = (x+ y)2 = 0. (2.84)

The function (x+y) is not zero in the ring C[x, y]/(∂xS, ∂yS). However, since (x+y)2 = ∂yS,
it is nilpotent. In this case, the ring C[x, y]/(∂xS, ∂yS) is strictly larger than the space of
functions on the set ∂xS = ∂yS = 0. Indeed, the only point satisfying the equations of
motion is the origin, and functions on a single point are just numbers in C.

One viewpoint about the previous phenomenon is that the algebra C[x1, ..., xn]/(f1, ..., fk)
contains more information about how the set of common zeros is constructed than the
functions on that set. For example, the set xk = 0 for any k ≥ 1 in A1 is the origin. On
the other hand, the any two members of the family of algebras {C[x]/(xk)}k≥1 are never
isomorphic.

There is also a homological description of the spaces C[x1, ..., xn]/(f1, ..., fk). Since these
are quotients, it is natural to describe them by the homology in some complex. This is done
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as follows. For each fi, we adjoin an element x∗i of degree 1. We obtain the graded algebra
C[x1, ..., xn, x

∗
1, ..., x

∗
k]. We then define the boundary operator δ(x∗i ) = fi and extend it by

applying Leibniz’ rule.

Definition 2.4.1 ([3], section 3.2.3). Define the complex (K•(f1, ..., fk), δ) with

K•(f1, ..., fk) = C[x1, ..., xn, x
∗
1, ..., x

∗
k] (2.85)

as above. We call this complex the derived zero set of the functions f1, ..., fk.

Clearly, by construction we have that the homology in degree 0, H0(K•(f1, ..., fk)), is
equal to C[x1, ..., xn]/(f1, ..., fk). The higher homology groups capture the relations among
the fi. By a relation we mean a set of Ri ∈ C[x1, ..., xn], i = 1, ..., k, such that Rifi = 0.
In this case, δ(Rix∗i ) = 0, so Rix∗i defines a cycle in degree one. The degree one boundaries
are the trivial relations fifj − fjfi = 0. These are generated by the Rit = T ijfj , with
T ij = −T ji. Note that the Rt are exactly those relations which vanish when restricted to
C[x1, ..., xn]/(f1, ..., fk). We conclude that

H1(K•(f1, ..., fk)) =
Relations among the fi

Relations vanishing on C[x1, ..., xn]/(f1, ..., fk)
. (2.86)

Since H0(K•(f1, ..., fk)) = C[x1, ..., xn]/(f1, ..., fk), the derived zero sets contain more
information than the ordinary algebraic intersection. We previously considered the example
xk = 0 on C[x]. As a follow up on this, we could now consider that we impose a set of
equations xk1 = ... = xkn = 0, which we order according to k1 ≤ ... ≤ kn. The geometric
space is still the origin x = 0. The algebra of functions is C[x]/(xk1) = H0(K•(xk1 , ..., xkn)).
However, the higher homology groups now also remember in how often we have imposed
x = 0 (see the introduction to [65]).

What we gave here was a particular construction of the derived zero set. In general, there
are many different ways to construct the complex K•(f1, ..., fk). The general approach can
be described using the Tor groups. For any ring R, we saw that, given a ∈ R, we can
think of R/(a) as the subspace a = 0. Consider the space R/(a) as a module over R. The
intersection of two subspaces a = 0 and b = 0 is described by the tensor product

R/(a, b) ∼= R/(a)⊗R R/(b). (2.87)

The homological version of this tensor product is known as the derived tensor product. It
is denoted by

R/(a)⊗LR R/(b). (2.88)

To build it, choose a free6 resolution P • of R/(a). For example, we could use

P • : 0→ Rx∗
x∗ 7→a−→ R→ 0. (2.89)

We then define the derived tensor product to be the complex

R/(a)⊗LR R/(b) = P • ⊗R R/(b). (2.90)

A standard result in homological algebra is that this is independent of the choice of resolu-
tion, up to quasi-isomorphisms, see for example [91]. The homology groups of this complex
are denoted by

Hi(P
• ⊗R R/(b)) = TorRi (R/(a), R/(b)). (2.91)

6A projective resolution is, in fact, enough.
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They are called Tor(-sion) groups.
There are several mathematical reasons why one wants to consider the derived tensor

products over the ordinary tensor products. The first obvious reason is that TorR0 (A,B) =
A ⊗R B, so the derived tensor product is more general, since it contains the full ordinary
tensor product.7 Secondly, the derived tensor product gives long exact sequences. Given a
short exact sequence of R-modules,

0→ B → C → D → 0, (2.92)

there is a long exact sequence

...→ TorR1 (A,C)→ TorR1 (A,D)→ TorR0 (A,B)→ TorR0 (A,C)→ TorR0 (A,D)→ 0. (2.93)

These long exact sequences are useful since once we know the Tor groups of two of the
modules in {B,C,D}, we can determine the Tor group of the third. But most importantly,
derived intersections preserve quasi-isomorphisms. By this we mean the following. Suppose
B is quasi-isomorphic to C. We write B ' C. Then,

A⊗LR B ' A⊗LR C. (2.94)

This is not always true if we would use instead the ordinary tensor product. This is discussed
in [78]. In conclusion, if we want to consider quasi-isomorphisms as our notion of equivalence,
we should use the derived tensor product.

Since we are primarily interested in the critical locus of an action, we repeat the derived
construction explicitly again in that case. Suppose we are given an action S ∈ C[x1, ..., xn].
We are interested in the algebra of functions on dS = 0. Therefore, we consider two functions
f, g equivalent, if there is a vector field X, such that

f − g = dS(X) = X(S). (2.95)

This suggests that we consider vector fields to live in degree 1, and define a differential δ
acting on a vector field X by δ(X) = −X(S). This suggests the following definition.

Definition 2.4.2. We denote by Γ(An,ΛkTAn) the space of sections of the kth exterior
power of the tangent bundle of An. We define the derived critical locus of a function S on
An to be the complex

dcrit•(S) : ...→ Γ(An,Λ2TAn)→ Γ(An, TAn)→ C[x1, ..., xn]→ 0 (2.96)

with differential δX = −X(S) on X ∈ Γ(An, TAn), extended by Leibniz’ rule.

The complex dcrit•(S) has a natural algebra structure, which turns it into a differential
graded algebra. It is called the algebra of polyvector fields. It admits a degree −1 bracket,
the Schouten bracket. We denote it by { · , · }. It is the extension of the Lie bracket of vector
fields to polyvector fields. It turns dcrit•(S) into a Gerstenhaber algebra. As such, it has
the following properties.

� Anti-symmetry: {A,B} = −(−)(A−1)(B−1){B,A}.

� Leibniz rule: {A,BC} = {A,B}C + (−)(A−1)BB{A,C}.
7We already saw that the derived intersection of surfaces fi = 0 contains the ordinary intersection.
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� Jacobi identity:

(−)(A−1)(C−1){A, {B,C}}+(−)(B−1)(C−1){C, {A,B}}+(−)(A−1)(B−1){B, {C,A}} = 0.

A nice feature of the Schouten bracket is that the differential δ becomes the Hamiltonian
vector field with respect to S, i.e. δ = {S, · }.

Remark 2.4.1. The particular choice of resolution provided us a strict Gerstenhaber
bracket. In general, the induced Gerstenhaber structure is only up to homotopy, as it
is pointed out in [51].

2.4.3. Homotopy Quotients

Another basic construction on spaces is to take quotients. As for intersections, there exists
a homological version of that construction.

Assume that we have a Lie group G acting on a space M . This is given by a group
homomorphisms ρ : G → Diff(M). Let us provide a description of the quotient M/G. Let
us do this not in terms of the geometric space, but with respect to the functions on that
space. Let O(M) denote the algebra of functions on M . Infinitesimally, the Lie algebra g
acts on O(M) as derivation. The Lie group action of G induces a Lie algebra representation
ρ : g → Γ(M,TM). We identify the functions on the quotient M/G with the g-invariant
subspace of O(M). Our aim is therefore to find a description of that subspace.

First of all, a Lie algebra representation of g acting on O(M) is equivalent to a Ug-module
structure on O(M). Here,

Ug = Tg/([a, b]− (ab− ba)) (2.97)

is called the universal enveloping algebra of g. Its action on O(M) is induced by the obvious
action of Tg on O(M). Since ρ is a Lie algebra representation, i.e. ρ([a, b]) = ρ(a)ρ(b) −
ρ(b)ρ(a), this action descends to the quotient Ug. Let R denote the trivial U(g)-module.
As a vector space it is C, and U(g) acts as A(λ) = 0, A ∈ U(g), λ ∈ C. Having this set up,
we can describe the g-invariant subspace of O(M) by

LinUg(R,O(M)). (2.98)

The problem with this object is the same as it was for the ordinary tensor product. In gen-
eral, it does not preserve quasi-isomorphisms. This means that, given two quasi-isomorphic
representations, their g-invariant subspaces may not be quasi-isomorphic. To cure this, we
need a derived version of g-invariant subspaces (equivalently, derived G-quotients in the
geometric language8).

The trick to cure this the problem is to build a free resolution of the trivial representation
R over Ug. Let ε0 : Ug → C by the augmentation defined by projection onto g⊗0 inside
Ug. Ug is clearly free over itself, so we declare P0 = Ug to be the degree zero term in our
resolution. The degree one space P1 should be such that Im(δ : P1 → P0) = ker(ε0) = R.
The kernel is obviously the subspace of Ug with at least one power in g. We therefore define

P1 = Ug⊗C g
δ→ Ug = P0, (2.99)

8The title of this section is indeed called homotopy quotients, although what we determine is actually a
subspace (intersection). In the literature, one usually refers to the geometric side, although one often
does computations on the algebraic side. Whenever we switch between these two descriptions, quotients
become intersections, and vice versa.
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where δ multiplies g to Ug from the right. δ : P1 → P0 has a kernel. This is due to the
fact that elements in Ug are subject to the relation g1g2 − g2g1 = [g1, g2]. The kernel of δ
consists of elements of the form

Ag1 ⊗ g2 −Ag2 ⊗ g1 −A⊗ [g1, g2]. (2.100)

We can cancel these by defining P2 = Ug⊗C (g ∧ g) with the differential

δ(A⊗ (g1 ∧ g2)) = Ag1 ⊗ g2 −Ag2 ⊗ g1 −A⊗ [g1, g2]. (2.101)

From here on, the construction continues along the same lines. In degree k, we set Pk =
Ug ⊗C Λkg, and we define a differential similar to (2.101). Each Pk is free as a left Ug
module. The general proof that this construction gives a resolution of R can be found for
example in ([91], Theorem 7.7.2).

Definition 2.4.3. The derived quotient of M by G is described by the cochain complex

CE•(g,O(M)) := LinUg(P•,O(M)). (2.102)

It is called the Chevalley-Eilenberg cochain complex of the Lie algebra g with representation
O(M). The cohomology groups are often called Lie algebra cohomology.

Remark 2.4.2. The description of CE•(g,O(M)) can be simplified slightly. Given a k-
algebra A, a k-vector space V and a left A-module M , there is an isomorphisms

LinA(A⊗k V,M) ∼= Link(V,M). (2.103)

In our case,

LinUg(P•,O(M)) = LinUg(Ug⊗C Λ•g,O(M)) ∼= LinC(Λ•g,O(M)) ∼= O(M)⊗C Λ•g∗.

This allows us to forget about the role of the universal enveloping algebra, which was used
to construct CE•(g,O(M)).

Example 2.4.2. Let g = Γ(M,TM) be the Lie algebra of vector fields on a manifold M .
The complex CE•(Γ(M,TM), C∞(M)) is the de Rham complex. It is useful to keep this
example in mind when one wants to memorize the explicit formula for the differential. One
can simply use the coordinate-free formula of the de Rham differential.9

In degree zero, the cohomology consists of elements f ∈ O(M) satisfying ρ(a)f = 0 for all
a ∈ g. Hence, it is the subspace of g-invariant functions, i.e. the functions on the ordinary
quotient M/G. The derived quotient fully encodes the ordinary quotient.

2.4.4. The Batalin-Vilkovisky Formalism

We argued that there are two types of redundancies in field theories, gauge redundancies
and off-shell degrees of freedom. The Batalin-Vilkovisky (BV) construction can be divided
into two steps. The restriction to on-shell degrees of freedom by formation of a derived
critical locus, and the identification of gauge equivalences by forming a derived quotient. To

9The formula can be found in [91], Corollary 7.7.3.
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the knowledge of the author, the interpretation of BV theory in context of derived geometry
has been advocated primarily by K. Costello and O. Gwilliam, see [22, 51, 23].

Observables of a classical field theory are functions on a field space F0. To avoid unneces-
sary notational complications, we will denote a field by a single field variable φ(x), although
a general field theory usually depends of course on multiple fields. Let us call the space of
observables O(F0). We usually think of the observables as polynomials in the field variables
φ(x). In this case, an observable F ∈ O(M) of homogeneous degree n is of the form

F [φ] =

∫
dx1 · · · dxn F (x1, ..., xn)φ(x1) · · ·φ(xn). (2.104)

A functional derivative on F [φ] is defined by the rule δφ(x)
δφ(y) = δ(x − y). This allows us to

define also vector fields and forms on F0. Of course, in any concrete setting, one should
care about existence of all the integrals involved. Nevertheless, we will only be interested
in the algebraic nature of these operations and think of all the operations on the formal
level. A good setup for the discussion of analytic problems can be found in the appendix
of [42]. With potential analytic issues aside, the space O(F0) behaves much like polynomial
algebras in finite dimensions.

The laws of physics in a field theory are governed by an action S0 ∈ O(F0). The equations
of motion are the critical points of S0, dS0 = 0. We want to form the derived critical locus
of S0. Recall that this is, by definition, the complex

dcrit•(S0) = ...→ Γ(F0,Λ
nT (F0))→ ...→ Γ(F0, T (F0))→ O(F0)→ 0. (2.105)

An element in Γ(F0,Λ
nT (F0)) is of the form∫

dx1 · · · dxnF (φ, x1, ..., xn)
δ

δφ(x1)
· · · δ

δφ(xn)
(2.106)

with anti-commuting functional derivatives. Physicists usually write δ
δφ(x) = φ∗(x) and call

φ∗ the anti-field (of φ). Recall that the complex dcrit•(S0) has an odd Poisson bracket, the
Schouten bracket. In terms of fields and anti-fields, it acts as

{φ∗(x), φ(y)} =
δφ(y)

δφ(x)
= δ(x− y). (2.107)

We could have equivalently used this as a definition for the Schouten bracket. Its extension
to general elements in dcrit•(S0) is given by the formula

{F,G} =

∫
dx

δrF

δφ∗(x)

δG

δφ(x)
− δrF

δφ(x)

δG

δφ∗(x)
. (2.108)

The expression δrF
δφ(x) := (−)(F+1)φ δF

δφ(x) denotes the derivative from the right. The sign is

such that it satisfies graded Leibniz rule when we think of it as acting on functionals from
the right.

The complex dcrit•(S0), as we defined it, is homologous rather than cohomologous, i.e.
it has a differential of degree -1. We will now turn it into a cochain complex by defining
dcrit•(S0) = dcrit−•(S0). It becomes a graded algebra concentrated in non-positive degree.
This is necessary, since we want to reserve positive degrees for the Chevalley-Eilenberg
complex. The bracket { · , · } becomes of cohomological degree 1.
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We recall the interpretation of the first two cohomology groups of dcrit•(S0). Two func-
tionals F and G describe the same object in H0(dcrit•(S0)), if their difference can be written
as

G− F = −X(S0) = −
∫

dxX(φ, x)
δS0

δφ(x)
= {S0, X} (2.109)

for some vector field

X =

∫
dxX(φ, x)

δ

δφ(x)
. (2.110)

We define H0(dcrit•(S0)) = O(crit(S0)), the algebra of functions on the critical locus of S0.
The cohomology in degree -1, H−1(dcrit•(S0)), encodes the symmetries of S0. A vector

field Y is closed under the differential of dcrit•(S0), if Y (S0) = 0. On the other hand, it is
exact if it is of the form

Y =

∫
dxdyY (x, y)

δS0

δφ(x)

δ

δφ(y)
, Y (x, y) = −Y (y, x). (2.111)

These vanish on the solution space of S0. Symmetries of this kind are usually called trivial.
We quotient them out to obtain H−1(dcrit•(S0)). In doing so, H−1(dcrit•(S0)) becomes
the space of symmetries of S0 on crit(S0). Indeed, a pair of symmetries

X =

∫
dxX(φ, x)

δ

δφ(x)
, Y =

∫
dxY (φ, x)

δ

δφ(x)
, (2.112)

is equal on crit(S0), if their “components” X(φ, x), Y (φ, y) differ by a functional proportional
to the equations of motion. We want to stress that, in this way, the vector fields are
restricted to crit(S0) in the algebraic sense. They are taken modulo the ideal generated by
the equations of motions, rather than modulo the vanishing ideal of the set dS = 0.

The fact that H−1(dcrit•(S0)) encodes the symmetries of S shows that this space knows
about possible gauge symmetries of S0. We will give a construction to get rid of all gauge
symmetries in H−1(dcrit•(S0)). The reason is to do this is the following. The main mo-
tiviation for the construction presented here was to identify equivalent theories using the
notion of a quasi-isomorphism. One equivalence should be related to gauge fixing certain
fields. By passing from an action S0 to a gauge fixed action Sgf0 , the action will lose all
the gauge symmetries we fix. Therefore, there will be no trace of these symmetries left in
H−1(dcrit•(Sgf0 )). If we want dcrit•(Sgf0 ) to be quasi-isomorphic to dcrit•(S0), we should
get rid of these symmetries in H−1(dcrit•(S0)) as well.

Suppose that we have a group of gauge transformations G10 acting on field space F0

through a Lie algebra homomorphism ρ : G→ Γ(F0, TF0) from the Lie algebra G of G into
the space of vector fields on F0. We want to demote the vector fields in the image of ρ to
coboundaries in dcrit•(S0). Therefore, we put the elements of G in degree −2 and extend
the differential δcrit 7→ δcrit + δg by δg(a) = ρ(a) for all a ∈ G. This gets rid of all the gauge
symmetries in dcrit−1(S0).

Let us summarize what we have done so far. We build the graded vector space Sym(G•)⊕
Γ(F0,Sym(T [−1]F0)). The differential splits into two parts, δ = δcrit+ δg. We defined it on

10Let us emphasize that, in a gauge theory, G is not the gauge group G of that theory! Rather, it denotes
the set of all gauge transformations. This means that its elements are G-valued functions R1,3 → G; x 7→
g(x), or more generally sections of a bundle with fibers isomorphic to G. In order to not forget about
this distinction, we denote the group of gauge transformations by G, and reserve the letter G for gauge
groups of gauge theories.
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vector fields by δcritX = −X(S) and on gauge transformations a ∈ G by δg(a) = ρ(a). In
degree zero, the cohomology of this complex describes functions on the critical locus dS = 0.
In degree −1, the cohomology contains all symmetries that are neither trivial nor gauge.

We successfully described the space of on-shell fields in terms of the derived critical locus.
Let us now turn our attention towards the description of gauge invariant functionals. We
already discussed that the proper cohomological description is realized by the Chevalley-
Eilenberg complex CE•(G,O(F0)). Its zeroth cohomology consists of the gauge invariant
functionals.

Recall that Sym(G[1]∗)⊗O(F0) is the underlying space of the Chevalley-Eilenberg com-
plex. The elements of Sym(G[1]∗) are functions on G[1]. Coordinates on G[1] are called c-
ghosts. We denote them by Ci(x). In this notation, a general element in Sym(G[1]∗)⊗O(F0)
of degree n looks like∫

dx1 · · · dxn Fi1...in(φ, x1, ..., xn)Ci1(xn) · · · Cin(xn). (2.113)

In the BV formalism, one expresses the Chevalley-Eilenberg differential as a Hamiltonian
vector field, similar to what we have seen in case of differential of the derived intersection.
Let us define a Poisson bracket for ghosts. The natural pairing on G[2]⊕G[1]∗ gives rise to a
Poisson bracket on Sym(G[2]⊕G[1]∗). The variables dual to the c-ghosts Ci(x) are denoted
by C∗j (y). They are called anti-ghosts. We have already encountered them in our discussion
following the derived critical locus, where we used them to get rid of gauge symmetries in
the degree -1 cohomology H−1(dcrit(S)) of the derived critical locus. In terms of ghost and
anti-ghost variables, the Poisson bracket on Sym(G[2]⊕G[1]∗) reads

{F,G}gh =

∫
dx

δrF

δC∗i (x)

δG

δCi(x)
− δrF

δCi(x)

δG

δC∗i (x)
. (2.114)

The Chevalley-Eilenberg differential δCE consists of two parts. One is related to the Lie
bracket and the other one is related to the representation. Let us first look at the part of
δCE involving the representation. δCE differential on a functional F ∈ O(F0) is

δCEF =

∫
dxdy

δF

δφ(x)
Rj(φ, x, y)Cj(y). (2.115)

To write this as a Hamiltonian vector field, we need the Poisson bracket coming from the
Schouten bracket. We find that

δCEF = {S1, F}S , S1 = −ρ.11 (2.116)

The representation S1 = −ρ also serves another purpose. When we use the ghost/anti-ghost
Poisson bracket, it generates the differential δg on anti-ghosts. Explicitly,

δgC∗(x)i = {S1, C∗(x)}g =

∫
dyRi(φ, x, y)φ∗(y). (2.117)

∫
dyRj(φ, x, y)φ∗(y) is the vector field representing the element C∗(x)i ∈ G∗.

11The reader may worry in which sense the action S0 + S1 is a function. Since the representation is a map
ρ : G → Γ(F0, TF0), we can view S1 as a function on G ⊗ T ∗[−1]F0. This will become clear further
below when we define the space of fields.
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On ghosts Ci(x) ∈ G∗, δCE acts as

δCECi(x) =

∫
dydz T ijk(φ, x, y, z)Cj(y)Ck(z). (2.118)

In terms of variables, the Lie bracket can be expressed as

[ · , · ] =

∫
dxdydz C∗i (x)T ijk(φ, x, y, z)Cj(y)Ck(z) =: S2. (2.119)

We observe that
δCECi(x) = {S2, Ci}gh. (2.120)

Hence, the Lie bracket generates δCE on ghosts via the Poisson bracket { · , · }gh.

Remark 2.4.3. We may call the T ijk(φ, x, y, z) the structure constants of the algebra of
gauge transformations G. In a gauge theory with gauge algebra g, they read

T ijk(φ, x, y, z) = T ijkδ(x− y)δ(x− z), (2.121)

where the T ijk are the structure constants of the algebra g.

We finally combine the Chevalley-Eilenberg differential with differential of the derived
critical locus. We define the total field space

F = T ∗[−1]F0 ⊕G[1]⊕G[2]∗. (2.122)

Dually, its space of functions is

O(F) = Γ(F0,Sym(T [1]F0))⊕ Sym(G[1]∗ ⊕G[2]). (2.123)

This is the graded vector space underlying the Chevalley-Eilenberg complex and the derived
critical locus. Its grading is called the ghost number. There is also another useful grading,
the anti-field number. By definition it is minus the ghost number, if the ghost number is
negative and 0 otherwise. This means that φ∗ has anti-field number 1 and C∗i has anti-field
number two.

We equip O(F) with a Poisson bracket

{ · , · } = { · , · }S + { · , · }gh. (2.124)

We define the action S = S0 +S1 +S2, where S1 = −ρ and S2 = [ · , · ]. This action generates
the vector field

Q = {S, · }, (2.125)

which, as we have seen, contains the Chevalley-Eilenberg differential δCE , the differential
of the derived critical locus δcrit, as well as its extension δg. In fact, it contains even more.
Due to the presence of S2, the action of δg on anti-ghosts C∗(x) is extended. Further, S1

extends the action of δcrit on vector fields φ∗.
In case of Yang-Mills theory, the differential Q squares to zero. We define the complex

(O(F), Q). (2.126)

It is the complex describing Yang-Mills in the BV formalism. However, the Batalin-Vilkovisky
formalism was invented to describe theories with gauge symmetries more complex than those
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of Yang-Mills (for example supergravity). In these cases, the construction we presented is
not sufficient. In particular, the differential Q does not necessarily square to zero. This is
due to the fact that in some cases, the representation ρ is a Lie algebra representation only
up to equations of motion,

ρ([a, b]) = [ρ(a), ρ(b)] + δcrit(F ), (2.127)

for some functional F . Gauge algebras in theories where this happens are called open.
Another generalization allows for reducible gauge symmetries. These are symmetries where
the representation ρ has a kernel, or, in the case of open algebras, has elements in its domain
whose image is proportional to the equations of motion. In this case, one introduces ghosts
for ghosts, which deal with redundancies among gauge transformations.

The general story of BV quantization goes as follows. Start with a classical action S0.
Introduce anti-fields to describe its derived critical locus. Then account for all gauge symme-
tries similar as we did above. Finally, if the differential Q = {S, · } involving the extended
action does not square to zero, add further terms in higher anti-field number so that it
squares to zero. Observe that Q2 = 0 is equivalent to {S, S} = 0 by the Jacobi identity.
This motivates the following definition.

Definition 2.4.4. Given an algebra of functionals O(F) equipped with an odd Poisson
bracket { , }. We say that a functional F ∈ O(F) satisfies the classical master equation,
if

{F, F} = 0. (2.128)

In the light of this definition, properly extending S so that Q2 = 0 amounts to solving
the classical master equation. An action satisfying the classical master equation is then the
action of a BV theory.

Remark 2.4.4. It would be interesting to see whether the general BV construction has a
similar interpretation in terms of the derived critical locus and (some generalization of) the
Chevalley-Eilenberg complex. The author thinks that such a generalization can be achieved
by extending the Chevalley-Eilenberg complex from Lie algebras to L∞-algebras. It is easy
to see that such an extension exists whenever the Chevalley-Eilenberg complex is constructed
with respect to the trivial representation. In that case, the complex is just the dual of the
bar construction of an L∞-algebra. With a good notion of a representation of an L∞-
algebra, it may be possible to generalize this construction to non-trivial representations.
A definition of L∞-algebras acting on graded manifolds was given in [71]. This is not
completely sufficient, since this will not reproduce open algebras properly. We should rather
ask for representations into differential graded manifolds, so that the representation knows
about trivial transformations.

2.4.5. Solving the Classical Master Equation

A sufficient condition for solving the classical master equation is given in [41], which we
recall here. The condition is that the presence of anti-ghosts turns the complex

(Γ(F0,Sym(T [1]F0))⊕ Sym(G[2]), δg + δgh) (2.129)

into a resolution of its zeroth cohomology. By definition, this means that all non-zero
cohomologies are trivial.
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In [41] it was shown that, when the complex (QBV ,F−) is a resolution, a solution to the
master equation can be constructed perturbatively in anti-field number. On the other hand,
even when the (QBV ,F−) is not a resolution, a solution to the BV master equation may
still be obtainable. In the literature, it is often considered to be a necessary to construct a
resolution of the critical locus. However, in the following examples we want to argue that one
may not always want to remove all the lower cohomology groups, since some arise because
we have physical degrees of freedom instead of gauge degrees of freedom.

Example 2.4.3. Let us discuss what happens when we resolve the critical locus of S0.
We begin with a finite dimensional action S0, i.e. some function on a finite dimensional
manifold. We automatically have a resolution when their are no non-trivial symmetries. Let
us take for example

S(x, y) = xn + yn, n ≥ 2, (2.130)

as a function on the two dimensional plane. The derived intersection is described by the
complex

dcrit•(S) : 0→ R[x, y](∂x ∧ ∂y)→ R[x, y]∂x ⊕ R[x, y]∂y → R[x, y]→ 0 (2.131)

and differential QBV (∂i) = −∂iS. The equations of motion are xn−1 = 0 and yn−1 = 0.
Algebraically, this means that we take

H0(dcrit•(S)) = O(crit(S)) = R[x, y]/(xn−1, yn−1) (2.132)

as our space of on-shell functions. Let X = f(x, y)∂x + g(x, y)∂y be any vector field. It is a
symmetry of S if

fxn−1 + gyn−1 = 0, (2.133)

i.e. f = −g y
n−1

xn−1 . In order for X not to be singular, g should be proportional to xn−1.
Hence, the most general symmetries of S are generated by vector fields of the form

X = f(x, y)(yn−1∂x − xn−1∂y). (2.134)

But these vanish on O(crit(S)). This suggests that they are trivial, i.e. that they will not
contribute to H1(dcrit•(S)). Indeed, they are the image of the bi-vector fields of the form
f(x, y)∂x ∧ ∂y under the differential QBV . This tells us that H−1(dcrit•(S)) = 0. It is
an easy check that also H−2(dcrit•(S)) = 0. We find that the complex dcrit•(S) resolves
O(crit(S)). This is expected, since all equations of motion are independent and the solution
manifold is the single point x = y = 0.

Example 2.4.4. Consider the action

S1(x, y) = (x− y)n, n ≥ 2. (2.135)

It has an obvious shift symmetry (x, y) 7→ (x+ a, y+ a). Hence, we expect that the derived
critical locus will not be a resolution. The derived critical locus is again of the form

dcrit•(S1) : 0→ R[x, y](∂x ∧ ∂y)→ R[x, y]∂x ⊕ R[x, y]∂y → R[x, y]→ 0, (2.136)

with differential QBV (∂i) = −∂iS1. The space of on-shell functionals is

H0(dcrit•(S1)) = O(crit(S1)) = R[x, y]/(xn−1 − yn−1). (2.137)

40



2.4. The Batalin-Vilkovisky Formalism of Classical Gauge Theory

This time, the underlying geometric space is the diagonal {(x, y) ∈ R2 |x = y}. In particular,
it is of dimension one. This is obviously due to the fact that the equations of motion are
not independent. We have ∂xS1 = −∂yS1. It follows that all vector fields of the form
X = f(x, y)(∂x + ∂y) are in the kernel of QBV in degree -1. On the other hand, the trivial
vector fields are of the form

QBV (f(x, y)(∂x ∧ ∂y)) = f(x, y)(xn−1 − yn−1)(∂x + ∂y). (2.138)

The cohomology in degree -1 is H−1(dcrit•(S)) = O(crit(S1))(∂x+∂y). These are the vector
fields tangent to crit(S1). On the other hand, since (2.138) is zero only if f = 0, we find
that H−2(dcrit•(S)) = 0.

To get a resolution of O(crit(S1)), we should declare the symmetry (x, y) 7→ (x+ a, y+ a)
to be gauge. Recall that we achieve this by introducing an anti-ghost c∗ of degree -2 and
declare QBV (c∗) = ∂x + ∂y. This kills cohomology in degree -1. Since the anti-ghost c∗ is
even, the complex becomes unbounded in negative degree. We therefore may worry about
new cohomologies in lower degrees. Indeed, there are new cocycles of the form∫ c∗

0

dz g(x, y, z)(xn−1 − yn−1) + g(x, y, c∗)∂x ∧ ∂y. (2.139)

However, this is also a coboundary. It is the image of∫ c∗

0

dz g(x, y, z)∂y. (2.140)

This shows that we have a resolution of O(crit(S1)).

The BV formalism now tells us to also introduce ghosts and to add the Chevalley-Eilenberg
differential. This introduces a non-trivial condition on functions in degree zero. It is

QCE(f(x, y)) = (∂x + ∂y)f(x, y) = 0. (2.141)

This means of course that the gauge invariant functions depend only on the difference
x − y. The combined cohomology of QCE and QBV is isomorphic to R[x]/(xn−1). The
underlying geometry is again zero dimensional. This is of course expected, since the whole
one dimensional line is identified by the gauge symmetry.

From this example we see that, in finite dimensions, when we resolve the critical locus of
a function by introducing anti-ghosts, the space of physical fields (i.e. on-shell and modulo
gauge transformations) is always zero dimensional. Higher dimensional spaces only appear
when the number of independent equations is lower than the dimension of the ambient space.
But, as we have seen, building up a resolution will always lead to an identification of all
points on (a connected component in) the critical locus of S by gauge symmetries.

Example 2.4.5. Consider a free massless scalar field theory,

S[φ] =
1

2

∫
d4xφ(x)�φ(x). (2.142)

We assume for simplicity that all four spacetime dimensions are compactified to a circle,
so we don’t have to worry about convergence of the integral. The action has a symmetry
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under the shift φ→ φ+φ0, whenever φ0 satisfies the equations of motion �φ0(x) = 0. This
symmetry is generated by the vector field

X =

∫
d4xφ0(x)

δ

δφ(x)
. (2.143)

In this case, the derived critical locus of S0 has again cohomology in degree -1. The vector
field (2.143) is independent of φ, so it does in particular not vanish when φ is on-shell.
Therefore, it is not trivial. The derived critical locus is not a resolution of the space of
on-shell functionals. Also, we usually do not want to fix this through anti-ghosts, since we
consider fields satisfying the equations of motions to be physical degrees of freedom rather
than gauge degrees of freedom. Nevertheless, a solution to the master equation trivially
exists, since S already satisfies the master equation (as does any action without ghosts and
anti-fields).

Example 2.4.6. General relativity may be a physically observable example for a theory
where not all symmetries of the action are considered gauge symmetries. The pp-wave
spacetimes are exact solutions to the field equations in vacuum. Their metric is can be
written as

ds2 = H(u, x, y)du2 + 2dudv + dx2 + dy2, (2.144)

where H is an arbitrary function in u, x, y. The particular choice of coordinate system
is called Brinkmann coordinates. The metric solves the Einstein equations in vacuum if
(∂2
x + ∂2

y)H(u, x, y) = 0. It has non-zero curvature if the Hessian of H with respect to x
and y is non-zero.12 When H = 0, we obtain Minkowski spacetime. The function H, with
(∂2
x + ∂2

y)H(u, x, y) = 0, parametrizes solutions close to flat spacetime. If the solution has
non-zero curvature, it cannot be gauge equivalent (diffeomorphic) to flat spacetime.

Let us define the vector field

X =

∫
√
gd4xhµν(x)

δ

δgµν(x)
, (2.145)

where huu = H0 and hµν = 0 otherwise. It generates a shift of the uu-component of the
spacetime metric by H0. Let g(H) denote the metric (2.144). The vector field X defines a
symmetry of the Einstein-Hilbert action S[g] =

∫ √
gd4xR at all points of the form g(H),

as long as (∂2
x + ∂2

y)H0(x, y) = 0. We would like adapt X, so that it defines an element
in H−1(dcrit•(S)), i.e. to extend it such that it defines a symmetry everywhere. If this is
possible, general relativity would be an example of a theory where not all symmetries of the
action correspond to gauge degrees of freedom, i.e. where one does not want to resolve the
critical locus of S.

Let us emphasize again that the space O(crit(S0)) = H0(dcrit•(S)), which appears as the
degree zero cohomology of the derived critical locus, is the space of functions O(F0) modulo
the ideal generated by the equations of motion. As we pointed out before, this space is
sometimes bigger than the space of functionals obtained by restricting O(F0) to dS0 = 0. In
the literature, existence of a resolution of the space of functionals O(crit(S0)) usually comes
with the assumption that S is regular enough so that O(crit(S0)) is equal to the space of
functionals obtained by restriction to dS0 = 0, see for example [52] and [46]. In that case,
the vanishing ideal J is equal to the ideal I generated by the equations of motion. However,

12All these facts can be found for example in [82].
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the regularity assumption is no longer necessary if we are willing to work with O(F0)/I
rather than O(F0)/J .

The regularity assumption on S0 is satisfied whenever the Hessian of S0 is locally constant
on-shell. Assuming that all symmetries of S0 are gauge (meaning that we have a resolution of
O(crit(S0))), the propagator becomes invertible on non-gauge degrees of freedom , i.e. after
we impose a gauge. In physical theories however, the propagator is usually not completely
invertible, since, even after gauge fixing, we cannot invert it on fields satisfying the free
equations of motion. These fields serve as external states in S-matrices. Therefore, assuming
that S0 is regular would mean that this theory has no non-trivial S-matrices.

Let us illustrate this with a finite dimensional example. We already considered the action

S0(x, y) =
1

2
x2 +

λ

3!
(x+ y)3. (2.146)

The following two things are important.

� S0(x, y) has no gauge symmetries. Therefore, the derived critical locus dcrit•(S0) is
already a resolution.

� S0 is not regular at the origin.

Since S0 is not regular, the hessian ∂i∂jS0|x=y=0 has a kernel, which are the vectors along
the y-axis. Thinking of S0 as a field theory, we would say that the fields y are the physical
fields entering the S-matrix. Indeed, this example has non-trivial S-matrices. They are
represented by trivalent graphs with vertex factors λ and propagators equal to 1.

From this example it is clear that, in order for a theory to have non-trivial S-matrices, it
should not be regular. At the formal level, this is quite obvious. Assume that we can split
fields φ = φoff-shell + φon-shell, the on-shell fields will always enter in cubic order or higher.

To really see what is happening in field theories, it may be worth to study regularity of S0

with well founded analytic assumptions on the fields in the theory. After all, the question
whether or not a map is invertible depends on the domain it is defined on. With the tools
we have developed here, we really can only compare to the finite dimensional case, which of
course may hide important properties of more physical infinite dimensional field theories.

Let us repeat what we learned in this section. For finite dimensional theories, the critical
locus is resolved by δcrit + δg, if the space of solutions to the equations of motion modulo
gauge transformations is zero dimensional. Moreover, if the action functional is regular
on-shell, the space of functionals O(crit(S0)) is reduced, i.e. it is obtained by restricting
functionals to dS0 = 0. For non-regular action functionals, the space dS0 = 0 is still zero
dimensional. However, we say that it has infinitesimal directions. By this we mean the set
of tangent vectors, which we define to be the kernel of the hessian at a solution modulo
gauge transformations, may have non-zero dimensions. This is the space of free on-shell
fields, which enter in the S-matrix. Finally, if O(crit(S)) is not resolved, the underlying
geometric space has dimension bigger than 0. In this case we say that it admits finite
physical directions. The space of infinitesimal directions (tangents) can still be bigger, but
some of these directions may integrate finitely. We will later state a necessary and sufficient
condition for this to happen. One of the examples showed that gravity is a theory where
actual finite physical directions (pp-waves) exist. Since gravity is infinite dimensional, we
unfortunately cannot say whether this implies that a BV formulation of gravity should
not resolve the critical locus. Maiking a precise statement would require a more thorough
discussion about domains of definition in gravity.
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2.4.6. Symplectic Geometry in BV

The fact that the BV formalism has a Poisson bracket and the cohomological vector field
Q = {S, · } is Hamiltonian suggests that there exists a formulation in terms of symplectic
geometry. The difference to the symplectic geometry appearing in Hamiltonian mechanics
is now that the variables are graded and the symplectic form has a degree shift.13 The
symplectic viewpoint will be useful once we discuss gauge fixing.

Definition 2.4.5. Let M be a Z-graded manifold. We call a two-form ω an odd symplectic
structure on M if ω is closed, non-degenerate and of degree −1.

Just as in ordinary symplectic geometry, ω can be written locally in terms of Darboux
coordinates (c.f. [80]). This means that there is a there are local coordinates (xi, x∗i ), such
that

ω =
∑
i

(−)x
∗
i dx∗i ∧ dxi. (2.147)

This of course implies that |xi|+ |x∗i | = −1. Given a function F , we define its Hamiltonian
vector field XF via

(−)FdF = iXF ω. (2.148)

The sign conventions are such that i∂jdx
k = δkj . In that case, we have

XF =
∂rF

∂x∗i

∂

∂xi
− ∂rF

∂xi
∂

∂x∗i
. (2.149)

Therefore,
XF (G) = {F,G}. (2.150)

Remark 2.4.5. Most field theory examples are constructed on a linear space of fields with
constant symplectic structure, i.e. they are formulated in global Darboux coordinates from
the start. One instance where this is not the case is background independent open-string
field theory [95], which is now more commonly known as boundary string field theory. The
field theory manifold is parametrized by perturbations of the worldsheet (a disc) action
by operators inserted at the boundary. The symplectic structure is then just given by the
expectation value of a porduct of two boundary operators with respect to that worldsheet
action. This theory was studied by Ivo Sachs and the author in [20], where it was shown
that it directly reproduces the minimal model (in the A∞-sense) of open-string field theory.

The symplectic structure allows us to talk about canonical transformations. These are
conveniently stated in terms of generating functions. They provide a coordinate transfor-
mation (xi, x∗i ) 7→ (Xi(x, x∗), X∗i (x, x∗)). We will only need a type 3 (in the sense of [45])
generating function of the form F3(x∗, X) = −x∗iXi − Ψ(X), where Ψ is some function of
degree −1. The coordinate transformations are

xi = −∂F3

∂x∗i
= Xi, X∗i = − ∂F3

∂Xi
= x∗i +

∂Ψ

∂Xi

∣∣∣∣
Xi=xi

. (2.151)

For this particular generating function it is obvious that the symplectic form is preserved.
The function Ψ is called the gauge fixing fermion.

13The Hamiltonian version of BV is called BFV (Batalin-Fradkin-Vilkovisky), which also has ghosts. Its
symplectic form extends the usual one defined on phase space. In this formulation, the symplectic form
has degree 0.
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2.4.7. More Field Theory Examples of BV Theories

We will here discuss the classical BV formulation of the two most standard gauge theories
in physics, namely Chern-Simons theory and Yang-Mills theory. These examples and their
BV formulation can also be found in [22].

Chern-Simons Theory: Let M be a three dimensional manifold and G a Lie group with
Lie algebra g. Before applying the BV procedure, the field space consists of connections A
of the bundle M ×G14. The classical field space is therefore F0 = C∞(M)⊗g. As usual, we
denote the gauge fields by A. Let us fix a g-invariant pairing (·, ·)g : g⊗ g → R. We define
a pairing (·, ·) on Ω•(M)⊗ g by

(α⊗ v, β ⊗ w) =

∫
M

α ∧ β(v, w)g. (2.152)

The Chern-Simons action can then be written as

S0 =

∫
M

1

2
(A,dA) +

1

6
(A, [A,A]). (2.153)

The gauge group consists of smooth functions from M into G. Therefore, G = C∞(M)⊗G
and G = C∞(M)⊗ g. Given an λ ∈ G, its action on a gauge connection A is

δA = dλ+ [λ,A]. (2.154)

The ghost fields therefore live in Ω0(M)⊗ g[1].
A nice feature of the BV formulation of Chern-Simons theory is that it can be obtained

from ordinary Chern Simons theory with essentially no extra effort. We simply have to
extend the field space F0 = Ω1(M) ⊗ g[1] to F = Ω•(M) ⊗ g[1]. We have the following
classes of fields.

1. Ghosts of degree -1 in Ω0(M)⊗ g[1].

2. Fields of degree 0 in Ω1(M)⊗ g[1].

3. Anti-fields of degree 1 in Ω2(M)⊗ g[1].

4. Anti-ghosts of degree 2 in Ω3(M)⊗ g[1].

Note that the grading is opposite to that of field variables. The anti-bracket is induced from
the degree -1 pairing (·, ·) : F ⊗ F → R15, which defines an odd symplectic form on F . Let
us denote a general element in F by A. The BV extended action is

S =

∫
M

1

2
(A,dA) +

1

6
(A, [A,A]). (2.155)

We expand A = C +A+A∗ +C∗. Here, the form degrees increase from zero (zero-form C)
to three (three-form C∗) from left to right. Beside the action S0, the BV extended action
contains the following two terms,

S1 = (A∗,dC + [C,A]), S2 =
1

2
(C∗, [C,C]). (2.156)

14For simplicity we work with a trivial G-bundle.
15As it stands, the inner product (·, ·) is symmetric in its entries. We therefore have to change some signs

to obtain a anti-symmetric form.
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These are exactly the terms we encountered in our introduction to the classical BV formal-
ism. S1 = −ρ generates the action of the Lie algebra G on fields and S2 = [·, ·] is the Lie
bracket.

Yang-Mills Theory: Let M be a four dimensional manifold. The fields in Yang-Mills are
the same as in Chern-Simons, namely connections on the bundle M ×G, where G is a Lie
group. Therefore, F0 = C∞(M)⊗g. Let A ∈ F0 a connection. Its field strength (curvature)
is given by

F = dA+
1

2
[A,A]. (2.157)

Yang-Mills theory requires a metric as an additional data over Chern-Simons theory. Given
a metric g we can the define the Hodge star ∗. Denote by (·, ·) the pairing defined in equation
(2.152). The Yang-Mills action takes the form

S0 =
1

2
(F, ∗F ). (2.158)

Since the gauge symmetry of Yang-Mills is the same as for Chern-Simons, the BV ex-
tended action is constructed essentially along the same lines as for Chern-Simons. The only
difference lies in the form degree of the additional fields, which changes since we now con-
sider a four dimensional manifold. We would still like to have (·, ·) as the symplectic form
inducing the anti-bracket. Therefore, anti-fields will necessarily be three-forms and, since
ghosts are g-valued functions, anti-ghosts are four-forms. As for Chern-Simons, we write
(A∗, C, C∗) for the additional fields. The extended action consists again of the terms

S1 = (A∗,dC + [C,A]), S2 =
1

2
(C∗, [C,C]). (2.159)

2.5. From Batalin-Vilkovisky to Homotopy Algebras

We recall the basic setup in BV. Let S be a BV action on a field space F . The space of
functionals O(F) comes equipped with a degree 1 Poisson bracket { · , · }. The action S
defines a cohomological vector field Q = {S, · }. The zeroth of the vector field Q in F are
the fields satisfying the equations of motion.

Let us analyze the local structure around a given solution φ0. Consider the tangent space
Tφ0
F . Since φ0 is a zero of Q, Q induces a linear map

Q1 : Tφ0
F → Tφ0

F . (2.160)

This is obtained by taking the Lie bracket with an arbitrary extension of a vector v ∈
Tφ0F . Because Q is cohomological, we have Q2

1 = 0. We therefore have a cochain complex
(Tφ0F , Q1). Its cohomology can be identified as the space of free on-shell fields in a given
background φ0. We call the complex (Tφ0

F , Q1) the tangent complex at φ0 inside the
differential graded manifold (F , Q). By passing to cohomology, we obtain the tangent space
H(Tφ0

F) to H(F) at φ0.
We argued before that, due to singularties, the vectors v ∈ H(Tφ0F) may or may not

extend finitely to curves inside H(F). To analyze this problem, we need to consider Q
beyond its linear part Q1. To this end, we expand Q as a Taylor series at φ0,

Q = Q1 +Q2 + ... . (2.161)
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The kth term defines a multilinear map Qk : (Tφ0
F)⊗k → Tφ0

F . It follows from Q2 = 0
that the Qk give Tφ0

F the structure of an L∞-algebra, see for example [18], appendix
C. Locally, a field theory can then be described equivalently as an L∞-algebra. Given an
L∞-structure (F , Q, {mk}k≥2), the equations of motion for a degree zero field a become the
Maurer-Cartan equation

Qa+
∑
k≥2

1

k!
mk(a, ..., a) = 0. (2.162)

On the other hand, gauge transformations connected infinitesimally by

δa = Qb+
∑
k≥2

1

(k − 1)!
mk(b, a, ..., a), (2.163)

where b is an element of degree −1. In fact, gauge transformations can be described as
solution to another Maurer-Cartan equation. We can combine our original L∞-algebra with
the differentical graded structure of the de Rham complex (Ω•([0, 1]),ddR). A general degree
0 element α ∈ Ω•([0, 1])⊗F can be written as

α = a(t) + dt b(t). (2.164)

The Maurer-Cartan equation on α then induces two separate equations,

1.

Qα(t) +
∑
k≥2

1

k!
mk(a(t), ..., a(t)) = 0 (2.165)

2.

dt ∂tα(t)− dtQb(t)− dt
∑
k≥2

1

(k − 1)!
mk(b(t), a(t), ..., a(t)) = 0. (2.166)

The first one tells us that a(t) satisfies the Maurer-Cartan equation for all t, while the second
one provides the infinitesimal gauge transformation (2.163). In this way, the family a(t) is
a homotopy between the solutions a(0) and a(1).

The consideration above reflects something we already know from the BV perspective. The
degree −1 ghost b16 generates gauge transformations for the physical field a. So what about
ghosts for ghosts? From our experience it is now easy to guess how they can be implemented.
We should allow for differential two forms. Arguably the simplest two dimensional space with
boundaries is the 2-simplex ∆2 := {(x, y, z) ∈ [0, 1]3|x+y+z = 1}. This is a straightforward
generalization of the unit interval [0, 1], which is the 1-simplex. We can now ask for solutions
to the master equation on F⊗Ω•(∆2). Higher gauge transformations are obtained similarly
by tensoring the L∞-algebra with the complex Ω•(∆n).

Remark 2.5.1. The convention to use the de Rham complex of simplices can be found for
example in [23]. Another convenient choice are of course (hyper-)cubes [0, 1]n like they are
used in reference [57].

Remark 2.5.2. Gauge transformations explain the role of ghosts (fields in negative degree)
in L∞-algebras. On the other hand, anti-fields (fields in positive degree) do not appear

16b has degree −1 since it is a field and not a field variable.
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in this way. They appear when one tensors the L∞-algebra with complexes that are non-
trivial in negative degree. In the spirit of derived moduli problems ([65, 23]) one uses local
differential graded artinian algebras that are concentrated in non-positive degree. The local
artinian rings are used to measure local properties up to some finite order. For example,

R = C[ε]/(εn) (2.167)

is local artinian. The solutions to the Maurer-Cartan equations of an L∞-algebra tensored
with R are the solutions to order εn−1. Things are similar when R comes in addition
equipped with a differential.

At the level of cohomology, we have a minimal L∞-algebra on H(Tφ0
F). We denote the

minimal L∞-algebra on H(Tφ0
F) as

Qmin = Qmin
2 +Qmin

3 + ..., . (2.168)

These maps have a physical interpretation. Qmin
k describes the tree level k+1-point (on-shell,

amputated) scattering amplitudes, cf. [73], section III.C for this statement in the (more
general) quantum case. From the viewpoint of deformation theory, the S-matrices measure
the failure of a tangent v ∈ H(Tφ0F) to integrate to a finite solution of the equations of
motion. Therefore, whenever a background φ0 has non-trivial S-matrices, the space H(F)
has a singularity at that point. The tangent space (the space of infinitesimal directions) is
bigger than the dimension of the space H(F).

2.5.1. Example: Deformations in φ3-theory

Consider a scalar φ3-theory

S[φ] =
1

vol(M)

∫
M

1

2
φ�φ+

λ

3!
φ3. (2.169)

The factor 1
vol(M) is put in for convenience. To keep things simple, we put the field φ on a

two dimensional torus M = S1 × S1. This allows us to expand the field in Fourier modes,

φ(t, x) =
∑
n,m∈Z

φn,me
−int+imx. (2.170)

The action becomes

S({φnm}) =
1

2

∑
n,m

φ−n,−m(n2 −m2)φn,m +
λ

3!

∑
n,m,k,l

φn,mφk,lφ−n−k,−m−l. (2.171)

The equations of motion are

∂S

∂φ−n,−m
= (n2 −m2)φn,m +

λ

2

∑
k,l

φk,lφn−k,m−l = 0. (2.172)

The homological vector field is therefore

Q = {S, · } = −
∑
n,m

(n2 −m2)φn,m
δ

δφ∗−n,−m
− λ

2

∑
k,l,n,m

φk,lφ−n−k,−m−l
δ

δφ∗−n,−m
. (2.173)
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Let us look at the local structure of Q around φ = 0. A general vector at that point can be
written as

X = vn,m
δ

δφn,m
+ v∗n,m

δ

δφ∗n,m
. (2.174)

In these coordinates, the Taylor coefficients of Q at 0 are

Q1 = −
∑
m,n

(n2 −m2)vn,m
δ

δφ∗−n,−m
, Q2 = −λ

2

∑
m,n,k,l

vk,lv−n−k,−m−l
δ

δφ∗−n,−m
, (2.175)

and Qk≥3 = 0. The check that these give rise to an L∞-algebra is trivial. Any combination
quadratic in the Qi is zero, since the tangent complex only has two non-zero degrees,

0 −→ (T0F)0 Q1−→ (T0F)1 −→ 0. (2.176)

We compute its cohomology. In degree zero, a vector vn,m
δ

δφn,m
is in kerQ1 if and only if

n = ±m. On the other hand, the image of Q1 in degree zero consists of vectors of the form∑
m,n

(n2 −m2)vn,m
δ

δφ∗−n,−m
. (2.177)

This tells us that, whenever n 6= ±m, a vector v∗n,m
δ

δφ∗n,m
∈ (T0F)1 is exact. We therefore

find that both H0(T0F•) and H1(T0F•) con be identified with fields satisfying the linear
equations of motion �φ = 0.

We now want to find conditions for a vector in H0(T0F•) to integrate to a finite solution.
We make a perturbative ansatz

φn,m =
∑
k≥1

εkφ(k)
n,m. (2.178)

To linear order in ε, the coefficient φ
(1)
n,m describes tangents. Form our study of the tangent

complex, we already know that these have to satisfy the linear equations of motion. To
quadratic order in ε, we obtain

(n2 −m2)φ(2)
n,m = −λ

2

∑
k,l

φ
(1)
k,lφ

(1)
n−k,m−l =: m2;m,n({φ(1)

k,l}, {φ
(1)
k,l}), (2.179)

or equivalently

φ(2)
n,m = − 1

(n2 −m2)
m2;m,n({φ(1)

k,l}, {φ
(1)
k,l}), n 6= |m|. (2.180)

A careful reader should be hesitant at this point, since something can go wrong here. Equa-
tion (2.179) can only be satisfied if m2;m,m and m2;m,−m, when restricted to free on-shell

fields, are zero for all m. This gives an obstruction for a vector φ
(1)
n,m to integrate to a second

order solution. The subset of m2;m,n with n = ±m is consists of exactly these maps which
restrict to H•(T0F•). They therefore define a map

m2;m,±m : H•(T0F•)⊗H•(T0F•)→ H•(T0F•). (2.181)
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Of degree 117. They are the components of the bilinear product of the minimal L∞-algebra
and obviously describe the cubic S-matrices. We can conclude the following. A first order
deformation at φ = 0 integrates to a second order deformation, if and only if the cubic
S-matrix of the first order deformation vanishes.

Let us do one more order. In order ε3, the equation of motion is

(n2 −m2)φ(3)
n,m = −λ

∑
k,l

φ
(2)
k,lφ

(1)
n−k,m−l = 2m2;n,m({φ(2)

k,l}, {φ
(1)
k,l}). (2.182)

Again, for this to be consistent we need that the right hand side is zero whenever m = ±n.

From (2.180), we know the dependence of φ
(2)
k,l in terms of φ

(1)
m,n for m 6= ±n. The values

of φn,±n can in principle be arbitrary. However, they since these components describe free
on-shell fields, these deformations are not very interesting. They are already covered by the

first order deformations. Because of this, we set φ
(2)
n,±n = 0 to zero. Expressing everything

in terms of tangents φ
(1)
n,m we obtain as a equation for the third order deformation

φ(3)
n,m = − 2

n2 −m2
m2;n,m({− 1

k2 + l2
m2;k,l({φ(1)

s,t }, {φ
(1)
s,t })}k 6=±l, {φ

(1)
k,l}) (2.183)

=: m3;n,m({φ(1)
k,l}, {φ

(1)
k,l}, {φ

(1)
k,l}), m 6= ±n, (2.184)

together with the condition

m3;m,±m({φ(1)
k,l}, {φ

(1)
k,l}, {φ

(1)
k,l}) = 0. (2.185)

The restriction of m3;n,m to m = ±n gives rise to a trilinear map

m3;m,±m : H•(T0F•)⊗H•(T0F•)⊗H•(T0F•)→ H•(T0F•), (2.186)

of degree 1, which we identify as the quartic S-matrix. It is the cubic product of the
minimal L∞-algebra. We can conclude that a first order deformation lifts to a third order
deformation, if both the cubic and the quartic S-matrix on the first order deformation vanish.

This generalizes to arbitrary order. We will see that the following is true in any BV theory.
An order k deformation exists, if all S-matrices to order k+ 1 vanish. This again shows the
relation between S-matrices and singular actions discussed in section 2.4.5.

2.5.2. General Deformations

We will now describe the general procedure to show the relation between S-matrices and
deformations.18 Let (O(F), Q = {S, · }) be the complex of a BV theory. Let φ0 be an
element of degree zero and a solution to the equations of motion. This implies that Q|φ0

= 0.
We look for perturbed solutions of the form

φ =
∑
k≥0

εkφk. (2.187)

The linear term φ1 describes tangents inside O(F) at φ0. As noted earlier, the assumption
that φ0 is a zero of Q implies that Q induces a differential Q1 : Tφ0

F → Tφ0
F , which

17The fact that we want to think of them as maps in degree 1 comes from the fact that the equations of
motion are the zeros of the cohomological vector field Q.

18We follow the procedure described in [58] for A∞-algebras, which applies similarly to L∞-algebras.
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2.5. From Batalin-Vilkovisky to Homotopy Algebras

turns (Q1, Tφ0
F) into a cochain complex. Equivalently, Q1 is the linear part in the Taylor

expansion

Q =
∑
k≥1

Qk (2.188)

of Q around φ0.
Since Tφ0

F is a vector space, there is a strong deformation retract i : H•(Tφ0
F) � Tφ0

F :
p. Recall that this means that we have a homotopy h : Tφ0

F → Tφ0
F , such that

hQ1 + hQ1 = 1− ip, pi = 1, hi = 0, h2 = 0. (2.189)

We will write P = ip. This map projects onto H•(Tφ0
F) as a subspace of Tφ0

F . By
the properties of a strong deformation retract, there are further projections Pt = Q1h and
Pu = hQ1. Since

P + Pt + Pu = 1, (2.190)

this gives a decomposition of Tφ0F into three independent subspaces. Explicitly,

(Tφ0
F)n = Hn(Tφ0

F)⊕Bn(Tφ0
F)⊕Bn+1(Tφ0

F)[1], (2.191)

where ImPu|(Tφ0F)n is identified with Bn+1(Tφ0
F)[1] under Q1. Non-zero tangents in ImPu

are therefore elements which are not annihilated by Q1. We call these unphysical, while we
refer to tangents in ImPt = B•(Tφ0F) as trivial and tangents in H•(Tφ0F) as physical. We
write

φ = φp + φt + φu. (2.192)

In the following, we write Q := Q1 and mk := Qk as we usually do for A∞-algebras. We
wish to solve the Maurer-Cartan equation

Qφ+
∑
k≥2

mk(φ, ..., φ) = 0. (2.193)

Before doing so, we impose the linear gauge hφ = 0. This is equivalent to setting φt = 0,
since

hφ = hφt and Qhφ = φt. (2.194)

Let us make a small comment about this choice. It is definitely a good gauge choice in a
theory with interactions turned off, since it picks a unique representative out of each gauge
orbit {φ + Qα}α.19 We then assume that it is also a good choice also for the interacting
theory. As a side result below we will observe that this is actually not completely true and
that there are in general residual gauge symmetries on the physical fields φp.

With the choice of gauge, we now write φgf = φu + φp. Plugging this into (2.193) then
gives

Qφu +
∑
k≥2

mk(φgf , ..., φgf ) = 0. (2.195)

Since φu = Puφu = hQφu, a solution to this equation satisfies

φu = −h
∑
k≥2

mk(φu + φp, ..., φu + φp). (2.196)

19One can even turn this around and say that a choice of homotopy h is a choice of gauge.
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We can solve this perturbatively. We take our ansatz (2.187) and write

φgf =
∑
k≥1

εkφgf,k. (2.197)

Since φgf,1 satisfies the linear equations of motion, we have φgf,1 = φp ∈ H•(Tφ0F). There-
fore, φu starts at order ε2. We can use this to repeatedly plug φu into the right hand side
of (2.196). This eliminates φu to arbitrarily high orders. We can therefore write

φu = −h
∑
k≥2

m̃k(φp, ..., φp). (2.198)

It is straightforward to see that the m̃k are the order k tree-level Feynman amplitudes with
vertices mk and propagator −h. We observe that they determine φu in terms of the tangents
φp.

We now check under what conditions is our φu a consistent solution. Plugging (2.196)
back into (2.195) implies that

0 = (−Qh+1)
∑
k≥2

mk(φgf , ..., φgf ) = (P+hQ)
∑
k≥2

mk(φgf , ..., φgf ) = P
∑
k≥2

mk(φgf , ..., φgf ),

where we used that
Q
∑
k≥2

mk(φgf , ..., φgf ) = −Q2φgf = 0, (2.199)

since we assume that φgf is a solution. Eliminating φu from (2.199) in favor of φp gives

0 =
∑
k≥2

Pm̃k(φp, ..., φp) =
∑
k≥2

mmin
k (φp, ..., φp). (2.200)

The mmin
k define the minimal A∞-structure on H•(Tφ0

F). It is now straightforward to
deduce from (2.200) that a tangent φp integrates to a solution of order εk, if all tree-level
S-matrices vanish to that order. Note that the minimal model also indicates that there may
be residual gauge freedoms on the level of cohomology not fixed by the condition hφ = 0.

Equation (2.200) is the Maurer-Cartan equation on the cohomology. We just saw that
solving the original Maurer-Cartan equation is equivalent to solving the minimal one. From
the homological point of view, this should not come as a surprise. Our philosophy is that
field theories (independent of whether we describe them in the BV language or as A∞/L∞-
algebras) are equivalent, if and only if they are quasi-isomorphic.

2.5.3. Chern-Simons and Yang-Mills Theory as L∞-Algebras

We saw that an L∞-algebra arises as the local description of BV theories around critical
points. This construction becomes very simple when the field space is already linear. In this
case, we can equivalently talk about the theories in the BV language or in the L∞ language.

Assume that we have a linear field space (F , ω), where ω is the symplectic form inducing
the anti-bracket. Given an L∞-algebra with differential d, products {mk}k≥2, and cyclic
with respect to ω. Then the action

S[φ] =
1

2
ω(φ, dφ) +

∑
k≥2

1

(k + 1)!
ω(φ,mk(φ, ..., φ)) (2.201)
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defines a classical BV action, i.e. solves the master equation with respect to the bracket
induced from ω.

Both Chern-Simons theory and Yang-Mills theory, as discussed in section 2.4.7, are already
formulated in this way. Let us first discuss the more simple Chern-Simons theory. Recall that
the field space was F = Ω•(M) ⊗ g[1], where g is some Lie algebra. The linear differential
is the de-Rham differential

d : Ω•(M)⊗ g[1]→ Ω•+1(M)⊗ g[1] (2.202)

and is obviously of degree 1. The product is induced by the Lie bracket on g,

[·, ·] : (Ωk(M)⊗ g[1])⊗ (Ωl(M)⊗ g[1])→ Ωk+l(M)⊗ g[1]. (2.203)

Without the shift g 7→ g[1], the bracket would be of degree 0. The shift, however, turns it
into a map of degree 1. All higher products are zero. The compatibility conditions therefore
reduce to those of a differential graded Lie algebra, which are obviously satisfied in this case.
Moreover, the products should be cyclic with respect to ω. This is guaranteed by the fact
that we defined (·, ·) as a integral (cyclicity with respect to d) and by a choice of g invariant
product (cyclicity with respect to [·, ·]).

Yang-Mills theory is a little bit harder to discuss since the form of the vertices are not
independent of ghost number the way they are in Chern-Simons. Let us first focus on the
classical part S0. We have

S0 =
1

2
(F, ∗F ) =

1

2
(dA, ∗F ) +

1

4
([A,A], ∗F ) =

1

2
(A,d ∗ F ) +

1

4
(A, [A, ∗F ]) (2.204)

=
1

2
(A,d ∗ dA) +

1

4
(A,d ∗ [A,A]) +

1

4
(A, [A, ∗dA]) +

1

8
(A, [A, ∗[A,A]]). (2.205)

From this we can read of the L∞-products on the gauge fields.

m2(A,B) = d ∗ [A,B] + [A, ∗dB] + [B, ∗dA] (2.206)

m3(A,B,C) = [A, ∗[B,C]] + [B, ∗[C,A]] + [C, ∗[A,B]], (2.207)

while the differential is
Q(A) = d ∗ dA. (2.208)

For all other combinations, we have that Q = d, m2 = [·, ·] and m3 = 0. The linear
differential Q gives rise to the complex

0 −→ Ω0(M)⊗ g
d−→ Ω1(M)⊗ g

d∗d−→ Ω3(M)⊗ g
d−→ Ω4(M)⊗ g −→ 0. (2.209)

Unlike Chern-Simons theory, the L∞ products of Yang-Mills are not universally defined
independent of the degree. We therefore need to check the L∞-relations explicitly for each
combination of inputs. This also allows us to determine relative signs.20 We begin with the
derivation property. Let C,D ∈ Ω0(M)⊗ g. Then m2(C,D) is again a zero form. Therefore
Q acts as the de-Rham differential and the derivation property follows immediately from
the derivation property of d on forms.

20In Chern-Simons theory, the signs can be fixed by using the decalange isomorphism (see appendix A) on
d and [·, ·]. The maps then automatically satisfy the L∞ relation when d and [·, ·] define a differential
graded Lie algebra. Since the maps in Yang-Mills are more involved, this argument cannot be applied
here.
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The next on the list is m2 on a field A and a ghost C. We find

Qm2(A,C) = d ∗ d[A,C] = d ∗ [dA,C]− d ∗ [A,dC] (2.210)

= [d ∗ dA,C] + [∗dA,dC]− d ∗ [A,dC] (2.211)

= −m2(QA,C)− d ∗ [A,dC]− [dC, ∗dA]− [A, ∗ddC] (2.212)

= −m2(QA,C)−m2(A,QC). (2.213)

To get the correct signs, we defined m2(QA,C) = −[QA,C]. Since QA and C are both odd,
this also tells us that m2(C,QA) = [C,QA] = [QA,C] = −m2(QA,C).

Consider now an anti-field (three-form) A∗ and a ghost C. Then,

Qm2(A∗, C) = −d[A∗, C] = −[dA∗, C] + [A∗,dC] (2.214)

= −m2(QA∗, C)− (−)A
∗
m2(A∗, QC). (2.215)

On the right hand side of the equation, we see that all the m2 act as [·, ·], i.e. there is no
extra minus sign.

The next natural candidates to put into Qm2 would be a anti-ghost and a ghost. However,
all terms in the derivation property are actually zero since we already exceed the maximal
form degree by one. We therefore now check Qm2 on two fields A and B.

Qm2(A,B) = d(d ∗ [A,B] + [A, ∗dB] + [B, ∗dA]) (2.216)

= [dA, ∗dB]− [A,d ∗ dB] + [dB, ∗dA]− [B, d ∗ dA] (2.217)

= −m2(QA,B)−m2(A,QB). (2.218)

Here we used that [dB, ∗dA] = −[∗dA,dB] = −[dA, ∗dB].

Just like the ghost/anti-ghost case, all other possible combinations vanish trivally due to
the fact that the form degree exceeds four. The next thing to check is therefore that m2

satisfies the Jacobi identity, up to the homotopy m3. The homotopy m3 is non-zero only if
all inputs are fields. Therefore, let A,B,C ∈ Ω1(M)⊗ g. We compute

Qm3(A,B,C) = d[A, ∗[B,C]] + cyclic

= [dA, ∗[B,C]]− [A,d ∗ [B,C]] + cyclic

= [dA, ∗[B,C]]− [A,m2(B,C)] + [A, [C, ∗dB]] + [A, [B, ∗dC]] + cyclic

= −[A,m2(B,C)] + [dA, ∗[B,C]]− [∗dA, [B,C]] + cyclic

= −[A,m2(B,C)] + cyclic = −m2(A,m2(B,C)) + cyclic. (2.219)

Again, we used that [dA, ∗[B,C]] = [∗dA, [B,C]]. Further, we combined [A, [C, ∗dB]] +
[A, [B, ∗dC]] with terms hidden in “cyclic” by using the Jacobi identity. This proves Jacobi
up to homotopy for these particular inputs. Note that we do not have any terms of the form
m3(QA,B,C) etc., since QA is an anti-field, and m3 is non-zero only if all inputs are fields.
On the other hand, this shows that we also have to check the identity when C is a ghost
field, since QC is then a field. We have

m3(A,B,QC) = [A, ∗[B, dC]] + cyclic. (2.220)
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This computation is by far the longest, so let us split it up a little bit.

[A, ∗[B, dC]] = −[A, ∗d[B,C]] + [A, ∗[dB,C]] = −[A, ∗d[B,C]] + [A, [∗dB,C]]. (2.221)

= −[A, ∗d[B,C]] + [[A, ∗dB], C] + [[C,A], ∗dB] (2.222)

[dC, ∗[A,B]] = d[C, ∗[A,B]]− [C, d ∗ [A,B]] = d ∗ [C, [A,B]]− [C,d ∗ [A,B]]. (2.223)

= d ∗ [[C,A], B] + d ∗ [[C,B], A]− [C,d ∗ [A,B]] (2.224)

[B, ∗[dC,A]] = [B, ∗d[C,A]]− [B, ∗[C, dA]] = [B, ∗d[C,A]]− [B, [C, ∗dA]] (2.225)

= [B, ∗d[C,A]]− [[B,C], ∗dA]− [C, [B, ∗dA]]. (2.226)

We wrote each product as a sum of three terms, therefore in total we have nine terms. Each
m2 on a field and a ghost is simply given by the commutator. On the other hand, m2 on
two fields is a sum of three terms. Hence,

m2(A,m2(B,C)) + cyclic (2.227)

also has a total number of nine terms. These are exactly equal to minus those we found
before. We found the correct L∞ relation also in this case.

For all other cases, we have that m3 = 0, so m2 should be satisfies the Jacobi identity
strictly. In most cases, all the m2 are given by the usual commutator bracket, which of
course satisfy Jacobi identity. There are two remaining cases with two fields and either an
anti-field or an anti-ghost. Because of the two fields, m2 on them is not given by the Jacobi
identity. However, for these combinations the Jacobi identity is trivially satisfied because
again the form degree is too high.

This concludes the check on the L∞ relations for Yang-Mills. As expected, all the rela-
tions are satisfied. However, the explicit computations where quite tedious. On the other
hand, the check that the Yang-Mills action satisfies the classical master equation is arguably
shorter.

2.5.4. From L∞-Algebras to A∞-Algebras in Field Theory

The scattering of four particles in Yang-Mills at tree level has the form

A = tr([T1, T2][T3, T4])Ms + tr([T1, T4][T2, T3])Mt + tr([T1, T3][T4, T2])Mu. (2.228)

In the above expression, Ms stands for the kinematic factor describing an s-channel process
12 → 34. Likewise, Mt and Mu describe the t-channel and u-channel. This expression is
symmetric under the simultaneous exchange of matrices Ti ↔ Tj and momenta pi ↔ pj , so
it has an S4 symmetry. For this to see one has to know that each kinetic factor Ms,t,u has
the same symmetry properties as the trace factor multiplying it. For example, in the case
of the s-channel,

Ms(p1, p2, p3, p4) = −Ms(p2, p1, p3, p4) = −Ms(p1, p2, p4, p3)

= Ms(p2, p1, p4, p3) = Ms(p3, p4, p1, p2). (2.229)

Further, different channels are related through crossing symmetries,

(2↔ 4) : Mt(p1, p2, p3, p4) = −Ms(p1, p4, p2, p3), (2.230)

(2↔ 3) : Mu(p1, p2, p3, p4) = −Ms(p1, p3, p2, p4). (2.231)
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Let us store the symmetry data inside the letters s, t, u. For this we write s = {[1, 2], [3, 4]}.
Here, for any two strings of numbers, a and b, [a, b] = ab − ba and {a, b} = ab + ba. The
product is given by string concatenation. Explicitly,

s = 1234− 2134− 1243 + 2143 + 3412− 4312− 3421 + 4321. (2.232)

Likewise, t = {[1, 4], [2, 3]}, and u = {[1, 3], [4, 2]}. S4 acts on s, t, u in the obvious way. This
allows us to write (2.228) in a very compact form,

A =
1

2

∑
σ∈S4

tr(Tσ(1)Tσ(2)Tσ(3)Tσ(4))Mσ(s), (2.233)

where M−i = −Mi for i = s, t, u.
The cyclic symmetry of the trace in (2.233) allows us two simplify further. In order to do

so, we split the sum by writing σ4 = σ3 · (1234)n, where σ4 is a general element in S4 and σ3

a permutes (234). This decomposition generates each permutation exactly once. The cycle
(1234) leaves the trace invariant, but interchanges s↔ −t. Therefore

A =
∑
σ∈S3

tr(T1Tσ(2)Tσ(3)Tσ(4))(Mσ(s) −Mσ(t)). (2.234)

The combination M = Ms −Mt is cyclically symmetric (it is invariant under (1234)). This
amplitude is called primitive or color-stripped in QCD.

Primitive amplitudes likewise exist for processes involving an arbitrary number of fields
ai in field space F . At tree level, they are maps

M : F⊗n+1 → C, (2.235)

graded symmetric under cyclic permutation of its entries. We can reconstruct the full
amplitude by defining

A(a0 ⊗ T0, ..., an ⊗ Tn) =
∑
σ∈Sn

± tr(T0Tσ(1) · · ·Tσ(n))M(a0, aσ(1), ..., aσ(n)), (2.236)

where the sign is determined by the permutation of the ai ⊗ Ti according to their degree.
From the viewpoint of homological algebra, the primitive amplitudes induce a minimal

cyclic A∞-structure. This structure can be deduced from a non-minimal A∞-structure given
by the vertices, from which the amplitudes are constructed via planar21 tree-level diagrams
only. For example, the four point scattering then consists of the s-channel and the t-channel,
as we have seen above.

2.5.5. Chern-Simons and Yang-Mills Theory as A∞-Algebras

Given a cyclic A∞-algebra on a symplectic vector space (V, ω) with differential Q and prod-
ucts {mk}k≥2, the action is defined to be

S(a) =
1

2
ω(a,Qa) +

∑
k≥2

1

k + 1
ω(a,m2(a, a)). (2.237)

21A graph with external edges is planar, if it can be put on a disc without overlapping lines, and such that
the external edges end on the boundary of the disc.
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Note that the symmetry factor is here merely 1
k+1 , in contrast to (2.201) before. It accounts

for the cyclic symmetry of the vertices.
As we have seen above, A∞-algebras can be obtained from field theories by consider-

ing only color-ordered/primitive diagrams. The amplitudes in this case are merely cyclic
symmetric instead in their entries instead of being fully symmetric.

As always, let us start simple and consider Chern-Simons theory. Recall that its action is
given by

S =
1

2
(A,dA) +

1

6
(A, [A,A]). (2.238)

We remember also that A contains all the fields of the BV extended formalism. It has only
a single L∞ product given by the Lie bracket

a⊗ b 7→ (−)a[a, b]. (2.239)

To obtain an A∞-algebra that reproduces Chern-Simons theory, we should find products,
so that, after symmetrization, the lowest product becomes the Lie bracket, while all higher
products become zero. Let us represent the underlying Lie algebra of the theory by a matrix
algebra. In this sense we can define products of Lie algebra elements. There are continuously
many choices for the product. We consider two extreme cases,

m2(a, b) = (−)aa ∧ b, m̃2(a, b) =
1

2
(−)a[a, b], (2.240)

but in principle any properly normalized linear combination of these two would also work.
The product m̃2 is not associative. So if we would like to use it, we should search for higher
products so that we have associativity at least up to homotopy. On the other hand, m2

clearly is associative, since

m2(m2(a, b), c) = (−)a+b+1m2(a, b) ∧ c = (−)b+1a ∧ b ∧ c = −a ∧m2(b, c) (2.241)

= −(−)am2(a,m2(b, c)), (2.242)

which is exactly associativity as we demand it for a degree one product. It is therefore
advantageous to take m2 as a product.

In terms of m2, the Chern-Simons action reads

S =
1

2
ω(A, QA) +

1

3
ω(A,m2(A,A)), (2.243)

which is obviously of the form (2.237). To make sense of this, we should of course demand
that ω is defined on the matrix algebra, which is the case for example when it is given by
the trace of the matrix representation. In this case, m2 is cyclic with respect to ω.

Remark 2.5.3. Open bosonic string field theory as defined by Witten in [93] was motivated
precisely by the associative algebra version of Chern-Simons. Cubic open-string field theory
has therefore an underlying differential graded associative algebra. On the other hand, by
taking the commutator with respect to the product, one can also give cubic open-string field
theory the structure of a differential graded Lie algebra.

For Yang-Mills theory, we take m2(a, b) = ±a∧b as long as not both a and b are fields/one-
form. The sign, which is dependent on the inputs, will be fixed by the A∞-relations. Also,
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m3(a, b, c) = 0 if at least one entry is not a field/one-form. On the other hand, if all entries
are fields, we define

m2(a, b) = d ∗ (a ∧ b) + a ∧ ∗db− (∗da) ∧ b, (2.244)

m3(a, b, c) = a ∧ ∗(b ∧ c)− (∗(a ∧ b)) ∧ c. (2.245)

We check the A∞ relations explicitly. Let c, d be ghosts. Then,

Qm2(c, d) = −d(c ∧ d) = −(dc) ∧ d+ c ∧ dd = −m2(Qc, d)− (−)cm2(c,Qd). (2.246)

Here we chose m2(c, d) = −c∧ d. In turn, the sign rules demand that m2(c, a) = −c∧ a and
m2(a, c) = a ∧ c for a field a and a ghost c. For this configuration, we have that

Qm2(a, c) = d ∗ d(a ∧ c) = (d ∗ da) ∧ c+ (∗da) ∧ dc− d ∗ (a ∧ dc)− a ∧ (∗ddc) (2.247)

= −m2(Qa, c)−m2(a,Qc). (2.248)

Here it was necessary to define m2(a∗, c) = −a∗ ∧ c for some anti-field a∗ and ghost c.
Note that this is consistent with what we found in the L∞-algebra treatment, where we had
m2(a∗, c) = −[a∗, c]. We continue with this combination,

Qm2(a∗, c) = −d(a∗ ∧ c) = −da∗ ∧ c+ a∗ ∧ dc = −m2(Qa∗, c)− (−)a
∗
m2(a∗, Qc). (2.249)

We find that we have to choose the following signs. m2(c∗, c) = c∗∧c and m2(a∗, a) = a∗∧a,
for some anti-ghost c∗, ghost c, and field a. Finally, the last non-trivial combination is the
product of two fields a and b. We have

Qm2(a, b) = d(d ∗ (a ∧ b) + a ∧ ∗db− (∗da) ∧ b) (2.250)

= da ∧ ∗db− a ∧ d ∗ db− (d ∗ da) ∧ b− da ∧ ∗db (2.251)

= −m2(Qa, b)−m2(a,Qb). (2.252)

All other derivation properties are trivially satisfied due to form degree exceeding four.
We also have to check associativity up to homotopy. The non-trivial cases are when

m3 6= 0. Let a, b, c be fields. We have

Qm3(a, b, c) = d(a ∗ (bc)− ∗(ab)c) = da ∗ (bc)− ad ∗ (bc)− (d ∗ (ab))c− ∗(ab)dc (2.253)

= (∗da)(bc)− ad ∗ (bc)− (d ∗ (ab))c− (ab) ∗ dc− a(∗db)c+ a(∗db)c (2.254)

= −m2(a, b)c− am2(b, c) = −m2(m2(a, b), c)−m2(a,m2(b, c)). (2.255)

Next take c not a field but a ghost. Since m3 is now non-commutative (in contrast to the
L∞-products), we should check the identity for Qc at any position in m3. In order to not
get bored, let us focus only on one. We take Qc to be in last entry. Then

m3(a, b,Qc) = a ∗ (bdc)− ∗(ab)dc (2.256)

= −a ∗ d(bc) + a(∗db)c− d(∗(ab)c) + (d ∗ (ab))c+ (∗da)bc− (∗da)bc (2.257)

= −a ∗ dm2(b, c) +m2(a, b)c− d ∗ (am2(b, c)) + (∗da)m2(b, c) (2.258)

= −m2(m2(a, b), c)−m2(a,m2(b, c)), (2.259)

which is the correct relation.
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Measurable effects in quantum physics are computed via expectation values of observables.
This is the quantum analog of evaluation of functionals on the equations of motion. Given
any functional f on field space F0, its expectation value is defined formally by the path
integral

〈f〉 =

∫
F0

∏
x

dφ(x)e
i
~S0[φ]f [φ]. (3.1)

Of course, this integral over the infinite dimensional space F0 is not defined. Therefore, we
proceed as usual in this situation and pretend that we work in the finite dimensional setup
and develop the quantum BV formalism there. The result will again lead to a cohomological
description of the integral (3.1), which makes sense also over field spaces.

3.1. Path Integral without Gauge Symmetries - The
Twisted de Rham Complex

The starting point of this section is de Rhams theorem. Let M be an n dimensional smooth
manifold without boundary. An integral of a k-form α ∈ Ωk(M) is defined over any singular
chain in Ck(M,R). Recall that a degree k singular chain C is a superposition

C =

N∑
i=1

λifi (3.2)

of continuous maps fi : ∆k →M from the k-simplex ∆k into M . The boundary map

∂ : Ck(M,R)→ Ck−1(M,R) (3.3)

is defined by the restriction of each fi to the boundary of ∆k. The integral of α over the
chain C in (3.2) is defined by ∫

C

α =

N∑
i=1

λi

∫
∆k

f∗i α, (3.4)

where f∗i α is the pullback of the form α to ∆k by fi. It follows that any k-form α defines
a linear map on Ck(M,R). Stokes theorem tells us that this is in fact a chain map φ :
Ω•(M)→ C•(M,R) into the space of singular cochains, the objects dual to singular chains.
We have the following theorem by de Rham.

Theorem 3 (de Rham). The map φ is a quasi-isomorphism.
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We assume that M is compact. In this case, the (co-)homologies are finite dimensional.
Our aim is to show that the computation of the de-Rham cohomology is equivalent to
computing integrals over closed forms. Let Ci be a basis of Hk(C•(M,R)) and αi a basis for
Hk(Ω•(M)). Since the two spaces are dual to each other, we can normalize the two bases
such that ∫

Ci

αj = δji . (3.5)

By assumption, any α ∈ Hk(Ω•(M)) can be written as

α =
∑
i

λiα
i. (3.6)

By our choice of normalization, the coefficients are

λi =

∫
Ci

α. (3.7)

We observe that once we know the cohomology class of a closed form α, we in principle also
know the values of all its integrals over k-dimensional subspaces of M without boundary.
Computing integrals is therefore equivalent to computing cohomologies.

As a special case, we look at the integration of top dimensional forms. It is well known
that Hn(Ω•(M)) ∼= R. Let ω be volume form with non-zero integral,∫

M

ω 6= 0. (3.8)

ω generates Hn(Ω•(M)). Given any other top form ω′, we can compute its integral relative
to ω by writing

ω′ = λω + dj, λ ∈ R. (3.9)

Clearly, λ =
∫
M
ω′∫

M
ω

. We can also use ω to define a volume on M . We are then able to

integrate functions over M . Similarly to what we did in (3.9), we can write

fω = λω + dj, (3.10)

where λ is the normalized integral ∫
M
fω∫

M
ω
. (3.11)

Most of the time, we will work with a twisted de Rham differential. This is motivated by
quantum field theory, where integrals are weighted by the phase e

i
~S0(x). On the level of the

de Rham complex, this induces the twist

d 7→ dt = e−
i
~S0de

i
~S0 = d +

i

~
dS ∧ . (3.12)

An integral with respect to the weighted measure e
i
~S0ω is computed by replacing d with dt

in equation (3.11).
We successfully encoded the weighted integral into the complex by introducing a twisted

differential. Our next goal is to also make the volume form ω part of the differential. This
procedure is described in [94]. To achieve this, we normalize our forms with respect to ω.
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On an n-dimensional manifold, any k-form can be obtained by contracting ω with n − k
vector fields. A more refined way is to say that we contract ω with a single polyvector field.
In this way, we obtain any k-form in a unique way. Another way of saying this is that ω
induces an isomorphism of C∞(M)-modules1

Ω•(M)[n] ∼= Γ(M,Symn−•(T [1]M)). (3.13)

This isomorphism allows us to turn Γ(M, Symn−•(T [1]M)) into a cochain complex. The
constant function 1 ∈ Γ(M,Sym0(T [1]M)) corresponds to our volume form ω. Therefore,
1 represents the cohomology class of ω. This is what we consider to be normalized with
respect to ω.

Remark 3.1.1. Another way to think about this was proposed in [94]. We can consider
1 ∈ Ω0(M) as the ground state in the fermionic space of forms. A coordinate one form
dxi serves as a creation operator. The adjoint annihilation operator is given by i∂i , the
inner derivation with respect to the partial derivative ∂

∂xi . They satisfy the usual anti-
commutation relations

{i∂i ,dxj} = δji , {dx
i,dxj} = {i∂i , i∂j} = 0. (3.14)

What we have is a lowest weight representation of a space of fermions. But we could equally
likely consider a highest weight representation. In this case, we would consider 1 as a state
of highest energy and multiplication by partial derivatives ∂

∂xi as an operation lowering its
energy. The result is the space of polyvector fields Γ(M,Sym•(T [1]M)). For a finite number
of fermions, their exists a state of highest energy in the lowest weight representation. This is
our volume form ω. It provides an isomorphism between the representations. An important
observation is that this is no longer true for an infinite number of fermions. Highest and
lowest weight representations are not equivalent. In infinite dimensions, an isomorphism
like (3.13) does not exist. We conclude that their are in general two notions of integration,
which are only equivalent in finite dimensions.

We want to see how the twisted differential dt translates through (3.13). As we did in
classical field theory, we call the odd directions of Γ(M,Sym•(T [1]M)) “anti-fields”, denoted
by x∗i . The isomorphism (3.13) φ can be described by an odd Fourier transform

α 7→ φ(α) =

∫
d(dxn)...d(dx1)ω−1(x)e−x

∗
i dxiα(xi,dxj). (3.15)

The integral over the odd dxi obeys the usual rules of Grassmann integration. The transfor-
mation is written in local coordinates. ω(x) is the component of the ω = ω(x)dx1∧ ...∧dxn.

The factor d(dxn)...d(dx1)ω−1(x)ex
∗
i dxi is coordinate independent.2 This makes sure that

α has the correct transformation properties. We also give the inverse transformation

f 7→ φ−1(f) =

∫
dx∗1...dx

∗
nω(x)ex

∗
i dxif(xi, x∗j ). (3.16)

As a consistency check we note that φ−1(1) = ω.

1It is not an isomorphism of commutative algebras.
2The author is aware of the fact that the Fourier transformation in reference [80] uses ω instead of ω−1.

However, with the former choice the transform φ(α) would depend on local coordinates, as one can easily
check in the case when α is a top form. Also, our convention coincides with reference [51].
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The odd Fourier transform has a property very similar to the even Fourier transform.
Let La denote the left-multiplication by an element a. We observe that φ ◦ Ldxi ◦ φ−1 =
(−)n+1 ∂

∂x∗i
and φ−1◦Lx∗i ◦φ = (−)n ∂

∂(dxi) . In other words, differentiation and multiplication

gets interchanged under a Fourier transform. With this property, we can determine how the
de Rham differential d acts on polyvector fields. We have

φ ◦ d ◦ φ−1 = φ ◦ Ldxi ◦
∂

∂xi
◦ φ−1 = (−)n+1Lω−1(x)

∂2

∂xi∂x∗i
Lω(x). (3.17)

We actually can get rid of the n dependence by recalling that φ is an isomorphism between
polyvector fields Γ(M, Sym•TM) and the shifted de Rham complex Ω•(M)[n], where natural
choice of differential on the latter is (−)nd. We define

∆(f)(xi, x∗j ) = −ω−1(x)
∂2

∂xi∂x∗i
(ω(x)f(xi, x∗j )). (3.18)

We call ∆ the BV-Laplacian. On a vector field X = Xix∗i , it acts as

∆(X) = −ω−1∂i(ωX
i) = −divX. (3.19)

The Fourier transform φ is a an isomorphism of modules. For this reason, we can compute
the effect of the shift coming from e

i
~S0 directly on the level of polyvector fields. We have

φ ◦ dt ◦ φ−1 = φ ◦ e− i
~S0de

i
~S0 ◦ φ−1 = −e− i

~S0∆e
i
~S0 = −∆− i

~
∂S0

∂xi
∂

∂x∗i
. (3.20)

There is something familiar from classical BV. The twist produces i
~{S0, · }, which is, up

to a prefactor, the differential computing the derived critical locus. In fact, in BV one
normalizes the differential by i~ to obtain

i~∆ + {S0, · }. (3.21)

Remark 3.1.2. It is not surprising that the critical locus appears as part of this differential.
First of all, we expect to obtain classical physics by setting ~ = 0. Furthermore, for non-zero
~ the main contribution in a path integral still comes from the classical trajectory.

Remark 3.1.3. An important property is that ∆ fully determines the anti-bracket. We
have the relation

∆(FG) = ∆(F )G+ (−)F {F,G}+ (−)FF∆G. (3.22)

We can think of { · , · } as a measure for the failure of ∆ to be of first order. The general
properties of ∆ are captured in the following two definitions.

Definition 3.1.1. Let A be a graded commutative algebra. A linear map ∆ : V → V is
called of second order, if

{a, b} := (−)a∆∆(ab)− (−)a∆∆(a)b− a∆b (3.23)

is of first order differential operator in both variables. This means that {a, · } and { · , b} act
as ordinary derivations.

Definition 3.1.2. A Batalin-Vilkovisky algebra is a graded commutative algebra A together
with a degree one second order differential operator ∆, such that ∆2 = 0.
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A simple exercise is to show the following.

Corollary 2. If a second order operator ∆ satisfies ∆2 = 0, then the bracket defined in
(3.23) has the following properties.

� { · , · } satisfies the graded Jacobi identity.

� ∆ is a derivation with respect to { · , · },

∆{a, b} = {∆(a), b}+ (−)(a+1){a,∆(b)}. (3.24)

Corollary 2 tells us that all necessary information is encoded in the Laplacian. The anti-
bracket together with its properties derive from it.

We stress again that in finite dimensions, the complex (Γ(M,Sym•T [1]M),−i~∆+{S0, · })
is still that of de Rham, with a measure weighted by the action S0. In degree −k, it computes
integrals over homology classes of subspaces with codimension k. From the path integral
point of view, it is therefore necessary to restrict to forms α, so that

d(e
i
~S0α) = 0. (3.25)

In the Fourier transformed language, this means that φ(α) is closed under the differential
−i~∆+{S0, · }. Closed elements in the algebra (Γ(M, Sym•T [1]M) are usually called gauge
invariant functions, although we did not yet include gauge symmetries. To this point it just
means that their integral is invariant under continuous deformations of the integration cycle.

3.2. Gauge Symmetries

Whenever gauge symmetries appear, we want to restrict the integral over a submanifold
which is transverse to the gauge orbits. Recall form the classical treatment that we describe
a symmetry by a representation ρ : g → Γ(M,TM) of a Lie algebra g. The image of ρ are
the vector fields that are tangent to the gauge orbit. We can produce a differential form on
a gauge slice by contracting a volume form ω with all the vectors in the image of ρ.

In dual picture of polyvector fields, a contraction with X translates to a left multiplication
by X. A volume form is represented by 1. Let a1, ..., ak be a basis of g[1]. A form on a
gauge slice is obtained by multiplication of 1 with all the tangents to the orbit ρ(ai), i.e.

ρ(a1) · · · ρ(ak). (3.26)

This contraction can actually obtained by doing an integral over g[1]. The kth power ρk

of our representation ρ defines a function on g[1] taking values in the space of polyvector
fields. A Grassmannian integration over g[1] precisely produces (3.26),∫

[dc1, ...,dck]ρk = ρ(a1) · · · ρ(ak).3 (3.27)

The Grassmannian integration automatically projects onto the kth power of c. We can
therefore also write ∫

[dc1, ...,dck]ρk = (i~)k
∫

[dc1 · · · dck]e−
i
~ρ. (3.28)

3We normalize the coordinates with respect to the basis {ai}, i.e. ci(aj) = δij .
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3. Quantum Homotopy Algebras and the Batalin-Vilkovisky Formalism

This motivates the shift S0 7→ S0 − ρ =: S0 + S1 at the quantum level. Also, writing e−
i
~ρ

instead of ρk allows for a transition to infinite dimensional integrals Lie algebras (like the
algebra G of gauge transformations), where we do not have a highest power k.

The upshot is that the proper integral in a gauge theory is∫
[dc1, ...,dck]ω dnx e

i
~ (S0+S1) (3.29)

We would like to have a cohomological theory computing these integrals. It should extend
the complex (Γ(M,Sym•T [1]M),−i~∆ + {S0, · }) developed for integrals without gauge
symmetries. We first want to put the ghost variables c on the same footing as the ordinary
variables x. We do a Fourier transformation with respect to the even variables dck.

To obtain the correct result, we need to mention that integrals in odd variables are not
taken over differential forms. The reason is that the dci are even variables, and therefore
there is no top form to integrate. This is related to what we have seen for bosonic variables.
In finite dimensions, highest and lowest weight representations over anticommuting creation
and annihilation operators are isomorphic. We mentioned that this is no longer true in
infinite dimensions, and it is more natural to consider highest weight representations in
order to have a top form. Over commuting variables, like the dci, there is no top form in the
lowest weight representation, even in finite dimensions. It is therefore necessary to use the
highest weight representation. Forms of this type are called integral forms in the literature,
in order to distinguish them from differential forms.

A top form ω should be annihilated by all the dci. This motivates the notation

[dc1, ...,dck] = δ(dc1) · · · δ(dck). (3.30)

The δ(dci) are anticommuting, unlike the dci. Descendants are obtained by differentiation
with respect to the ∂

∂dci . As usual, derivatives of delta functions are defined by the rule

f(ci,dci)∂ndciδ(dc
i) = (−)n(∂ndcif(ci, 0))δ(dci). (3.31)

The exterior derivative d = dci ∂∂ci acts on integral forms in the usual way. For example,

dδ(dci) = 0, d(ciδ(dci)) = dciδ(dci) = 0, d(ciδ′(dci)) = −δ(dci). (3.32)

We have Stokes’ theorem ∫
(dα)(ci,dci) = 0, (3.33)

for any integral form α(ci,dci).

Remark 3.2.1. For a given set of fermionic variables θi, one could also consider forms
which are differential in some dθi, while integral in the other. This is related to picture
number in string theory, where the picture number p of a form is defined to be minus the
number of δ(dθi) (including derivatives), see for example [96]. De Rham cohomology in
different picture numbers has been studied in [17]4.

We are now set up to do the Fourier transformation with respect to the dci. It is defined
by

φ :
∏
i

∂nidciδ(dc
i) 7→

∏
i

1

ni!
(c∗i )

ni , (3.34)

4Their picture number is minus the picture number considered in the physics literature.
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where, as we will see, the c∗i are the anti-ghosts appearing also in the classical description.
The effect of (left-)multiplication Ldci in the transformed space is

φ ◦ Ldci ◦ φ−1(
∏
j

(c∗j )
nj ) = −ni(ci)ni−1

∏
j 6=i

(c∗j )
nj . (3.35)

Ldci is transformed to the derivative − ∂
∂c∗i

, as we would expect. It is easy to see that the

same rule applies for higher powers in Ldci . This implies that the exterior derivative d on
ghosts gets mapped to the second order differential operator

∆gh = −
∑
i

∂2

∂ci∂c∗i
. (3.36)

This operator again determines the anti-bracket via (3.23), however this time with an addi-
tional minus sign. If we want (3.23) to hold also in this case, we should replace ∆gh 7→ −∆gh.

3.3. General Quantum BV Formalism

At the classical level, we saw that Q = {S0 + S1, · } may no longer square to zero. To
obtain a cohomological theory at the classical level, we add also terms in higher anti-ghost
number, so that S satisfies the classical master equation {S, S} = 0. Quantum physics now
also lead to introduction of a new operator, the second order Laplacian ∆. Its canonical
representation is

∆ =
∑
i

(−)φi+1 ∂2

∂φi∂φ∗i
, (3.37)

where φi runs over the whole set of fields plus ghosts. The operator ∆ represents the de
Rham differential in the Fourier transformed space. Since the integral is weighted by the
action S0 + S1, we obtain a twist

∆ 7→ (−i~)e−
i
~ (S0+S1)∆e

i
~ (S0+S1). (3.38)

For non-zero S1, this operator may no longer square to zero. This is related to the fact
that S1 is constructed such that it kills gauge directions of the integral form of physical
fields. The form is therefore no longer a top form and hence not necessarily closed. To check
closedness, we need to act with ∆ on the twisted measure e

i
~ (S0+S1),

∆(e
i
~ (S0+S1)) = e

i
~ (S0+S1)(

i

~
∆(S0 + S1)− 1

2~2
{S0 + S1, S0 + S1}). (3.39)

This motivates the following definition.

Definition 3.3.1. Given a BV algebra (A, ·,∆), we say that S(~) ∈ A⊗ C[[~]] satisfies the
quantum master equation, if

1

2
{S, S} − i~∆S = 0. (3.40)

Corollary 3. If S satisfies the quantum master equation, the operator

∆S := (−i~)e−
i
~S∆e

i
~S (3.41)

squares to zero. Furthermore,

∆S = −i~∆ + {S, · }. (3.42)
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Definition 3.3.1 and corollary 3 are the quantum analogs of the classical master equation
{S, S} = 0 and nilpotency of {S, · }. A solution S(~) to (3.40) is called quantum action.
It is a power series in ~. When S(~) solves the quantum master equation, then S(~ = 0)
automatically solves the classical one. To find a solution to the quantum master equation,
it is therefore a good idea to first find a solution S(~ = 0) of the classical master equation,
and then to determine S(~) perturbatively in ~.

Quantum anomalies can be identified as the obstructions to solve the quantum master
equation. In the path integral formalism, anomalies arise because the path integral measure
is not gauge invariant. Recall that S1 = −ρ, where ρ : g[−1] → Γ(M,T [1]M). In terms of
ghosts we can write ρ = −Xic

i, where Xi is a vector field generating a gauge transformation.
By acting on −ρ with ∆, we obtain

∆(−ρ) = −∆(Xi)c
i = div(Xi)c

i, (3.43)

where we used the fact that ∆ computes minus the divergence when acting on vector fields.
The divergence of a vector field Xi is defined to be the change of the volume form under Xi,

LXiω := div(Xi)ω, (3.44)

where LXi denotes the Lie derivative. We therefore can indeed identify ∆(S1) with the
change of the measure under gauge transformations. Adding ~ dependent terms to the
action so that the quantum master equation is satisfied then means that we change the
measure and/or the gauge transformations so that the former is again invariant.

3.4. Integration and Gauge Fixing

Let F be the field space of a BV theory with fields xi and anti-fields x∗i . We have a canonical
symplectic form

ω =
∑
i

(−)x
∗
i dx∗i ∧ dxi. (3.45)

Integration over a function f ∈ O(F) is defined to be∫
L
µf, (3.46)

where L is a Lagrangian submanifold with respect to ω and µ is some measure5. We still
pretend that we work in finite dimensions. In that case, a submanifold L ⊆ F is called
Lagrangian, if ω|L = 0 and dimL = 1

2 dimF . We recall a standard fact about the local
properties of a Lagrangian submanifold. Locally, we can describe L as the graph of a function
pj = Ψj(q), where P = {p1, ..., pn} is a subset of the all coordinates {x1, ..., xn, x∗1, ..., x

∗
n}

and Q = {q1, ..., qn} its complement. The fact that L is Lagrangian implies that whenever
xi ∈ Q, we have x∗i /∈ Q, and vice versa. Up to possible redefinition of coordinates by signs,
it follows that

ω =
∑
i

dpi ∧ dqi. (3.47)

5The local description of µ will be given below. A global approach can be described by considering half-
densities on F , which restrict to densities on L.
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In this form, it is an easy check that the 1-form ψidq
i is necessarily closed. We can therefore

locally write ψi = ∂ψ
∂qi = pi. We can conclude that, locally, any Lagrangian submanifold can

be described by a single function ψ. It is called the gauge fixing fermion and necessarily of
degree −1. The integration measure is µ = dq1 ∧ ... ∧ dqn.

To see whether we obtain something familiar, let us work out integration over a two
dimensional Lagrangian submanifold in a four dimensional superspace R2|2 concentrated in
degree 0 and −1. In that case, we should obtain ordinary integrals in the bosonic plane R2.

We have coordinates x, y, x∗, y∗. The symplectic form is

ω = −dx∗ ∧ dx− dy∗ ∧ dy. (3.48)

We want to look for a gauge fixing fermion ψ. The fact that it is necessarily of degree
−1 limits the possible choices. Also, it should depend only on two of the four coordinates.
Depending on that choice, we obtain three classes of possible ψ.

1. ψ1 = ψ(x, y). Since x and y are of degree zero, the only possible choice is ψ1 = 0.

2. ψ2 = ψ(x, y∗). The most general choice is ψ2 = y∗l(x). We could also equivalently
consider ψ2 = ψ(x∗, y).

3. ψ3 = ψ(x∗, y∗). The only possible gauge fixing fermions are of the form ψ3 = ax∗+by∗,
a, b ∈ R.

We wish to integrate functions F = f + gx∗ + hy∗ + kx∗y∗, such that ∆f = 0. A gauge
fixing fermion of the first type, ψ(x, y) = 0, considers (x, y) = (q1, q2) as position variables
and (x∗, y∗) = (−p1,−p2) as conjugate momenta. Since pi = ∂ψ

∂qi = 0, the function F gets

projected onto F = f(x, y), integrated over the (x, y)-plane. We obtain∫
pi=

∂ψ1
∂qi

F =

∫
dxdyf(x, y). (3.49)

When we think of the quantum BV complex as a Fourier transformed de Rham complex,
this result makes sense. Under Fourier transformation, f becomes the two form fdx ∧ dy.

Consider now a gauge fixing fermion of the form ψ2(x, y∗) = y∗l(x). The position variables
are (q1, q2) = (x, y∗) and their conjugate momenta are (p1, p2) = (−x∗,−y). The gauge fixing
fermion sets x∗ = −∂ψ∂x = −y∗l′(x) and y = − ∂ψ

∂y∗ = −l(x). This already suggests that we

will effectively integrate over the one dimensional space y = −l(x). The function F becomes

F |pi= ∂ψ

∂qi
= f(x,−l(x)) + y∗[h(x,−l(x))− l′(x)g(x,−l(x))]. (3.50)

Integration with respect to the odd variable y∗ projects F to the term proportional to y∗.
We find ∫

pi=
∂ψ2
∂qi

F =

∫
dx[h(x,−l(x))− l′(x)g(x,−l(x))] (3.51)

This is an ordinary integral of the one form dxh− dyg over y = −l(x). This is exactly the
form obtained from Fourier transforming the degree −1 part of F .

Gauge fixing with respect to ψ3 = ax∗ + by∗ forces x = −a and y = −b. Integration
amounts to evaluation of k at that point.

The above examples demonstrate how integration in the BV formalism reduces to ordinary
integration in the most simple cases. Arguably the most interesting case came from the
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gauge fixing fermion ψ2, where we were able to obtain integration over the graph y = −f(x).
Integrals along more general curves can be obtained by splitting the curves into regions where
they can be described by a graph and then integrate their using the appropriate gauge fixing
fermion. On the other hand, any integral over a Lagrangian submanifold described locally
by a gauge fixing fermion of type ψ2 represents a one dimensional curve in this way.

Remark 3.4.1. In the physics literature, the fields are usually taken as position variables
and the anti-fields as their conjugate momenta. Since the usual BV construction introduces
fields only in nonnegative degrees, one has to add new fields in negative degree to be able to
write down non-trivial gauge fixing fermions. These fields are called trivial pairs6 because
their action is completely decoupled from the rest of the fields. They become related to the
other fields only after gauge fixing.

Let us now discuss why Lagrangian submanifolds are the spaces we want to integrate.
This is the essence of the following theorem, whose statement and proof can found in [80].

Theorem 4. Consider a field space F , together with a symplectic form ω and associated
BV Laplacian ∆. We then have the following.

1. Given a fixed Lagrangian submanifold L of F , we have∫
L

∆(f) = 0, (3.52)

for any function f ∈ O(F).

2. Given a smooth family of Lagrangian submanifolds Lt, t ∈ [0, 1] and a function f ∈
O(F) such that ∆f = 0. Then, ∫

L0

f =

∫
L1

f. (3.53)

3.4.1. Perturbative Evaluation of Integrals

In quantum field theories, it is often only possible to evaluate path integrals perturbatively.
The perturbative expansion is expressed in terms of Feynman diagrams. The cohomological
nature of BV theory will allow us to rederive Feynman diagrams using the homological
perturbation lemma.

Let S be a BV action on a linear field space S. It satisfies the quantum master equation.
We split S = SF + SI , where SF is the free and classical part of S. Equivalently, SF is
determined by the fact that it is quadratic in the fields and independent of ~. The interacting
part SI should be such that its classical part (SI |~=0) starts at cubic order. We therefore
assume that the origin of our field space F is a solution to the classical equations of motion.

The integral we would like to evaluate is of the form∫
L
e
i
~ (SF+SI)f, (3.54)

where L is some subspace of field space F and f ∈ O(F). By a choice of basis Φi on field
space, we can write SF =

∫
Φi(x)Kij(x, y)Φj(y). The subspace L should be chosen such

6The word pair stems from the fact that one always has to introduce two fields and two anti-fields at a
time in order to be able to write down a non-zero action.
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that Kij becomes invertible on it. So what are the zero eigenvectors of Kij? Recall that SF
generates the linear differential QF = {SF , · }. QF therefore restricts to an operator on F .
If we identify F with its tangent space at the origin, we can write SF [φ] = ω(φ,QFφ). By
comparison we see that Kij(x, y) are the components of the bilinear form ω(φ,QFφ). By
non-degeneracy of ω, the zero eigenspace of K is the kernel of QF . We should therefore look
for an L transversal to kerQF . Since kerQF is linear, no harm is done when we choose L
to be linear as well. Transversality then is equivalent to

F = L ⊕ kerQF . (3.55)

An analogous way to describe L is the following.

Lemma 3. L is transversal to kerQF if and only if QF : L → ImQF [1] is an isomorphism.

Proof. This follows from the fact that

0 −→ kerQF −→ F
QF−→ ImQF [1] −→ 0 (3.56)

is exact, and therefore F = kerQF ⊕ ImQF [1] since we work with vector spaces.

From what we know from the last section, we would like to choose L to be Lagrangian
with respect to ω. As it turns out, this is often impossible. The reason is the following.
Since F = L ⊕ kerQF and kerQF

⊥ = ImQF , it follows that

F = L⊥ ⊕ ImQF . (3.57)

Therefore, any x ∈ kerQF has a unique decomposition x = x′+dy, where x′ ∈ L⊥∩kerQF .
This implies that we can identify H•(F , QF ) with kerQF ∩ L⊥. If we assume that L is
Lagrangian (L = L⊥), we could on the other hand conclude that kerQF ∩ L⊥ = 0 since

F = L ⊕ kerQF = L⊥ ⊕ kerQF . (3.58)

Hence, the obstruction for L to be Lagrangian is given by cohomology of QF .
Although we cannot choose L to be Lagrangian, it will be useful to put some restric-

tions on it (aside from its transversality to kerQF ). To have better control over the spaces
involved, we would like to introduce projectors. The splitting F = L ⊕ kerQF provides
orthogonal projections PL, PkerQ onto L and kerQF . We would further like to split kerQF
into cohomology and ImQF . A projection Pt onto the latter can be obtained from the de-
composition F = L⊥⊕ ImQF . Unfortunately, it is not generically true that Pt is orthogonal
to PL. The necessary and sufficient condition of orthogonality is provided by the following
lemma.

Lemma 4. The projectors Pt, PL are orthogonal, i.e. Pt ◦ PL = PL ◦ Pt = 0, if and only if
L ⊆ L⊥.

Proof. First of all, since imQF ⊆ kerQF , we always have

PL ◦ PL⊥ = (1− PkerQF )(1− Pt) = 1− PkerQF = PL (3.59)

It follows that PL ◦ Pt = PL ◦ PL⊥ ◦ Pt = 0 without further assumptions on L. The lemma
now follows from the fact that L ⊆ L⊥ is equivalent to P⊥L ◦ PL = PL, which is in turn
equivalent to Pt ◦ PL = 0.
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The condition L ⊆ L⊥ can be equivalently written as ω|L = 0. In symplectic geometry,
spaces having this property are called isotropic. This is the condition we want to put on
L. It is the closest we can get to L being Lagrangian. Another consequence of L being
isotropic is that L⊥ = L ⊕ (kerQF ∩ L⊥), which can be achieved by splitting elements in
L⊥ according to F = L ⊕ kerQF . It follows that

F = L ⊕ (L⊥ ∩ kerQF )⊕ ImQF . (3.60)

The space L⊥ ∩ kerQF can be reached by first projecting onto L⊥ with 1 − Pt and then
onto kerQ with 1 − PL. We therefore define a third projector Pp = (1 − PL)(1 − Pt). By
orthogonality of PL and Pt it follows that

1 = Pp + PL + Pt, (3.61)

which gives us the split (3.60). Recall that L⊥∩kerQF is a representation of the cohomology
of QF . For this reason we say that Pp projects onto physical fields. Likewise, we call the
image of Pt the trivial fields.

We can use the machinery developed above to obtain a direct sum decomposition of ω on
F . We have

ω = ωp + ω′. (3.62)

where ωp is the restriction to L⊥∩kerQF and ω′ is the restriction to L⊕ImQF . In fact, this
turns out to be true without assuming that L is isotropic, since (L⊕ImQF )⊥ = L⊥∩kerQF .7

The advantage of considering isotropic L lies in the observation that L is in fact Lagrangian
with respect to ω′, which defines a non-degenerate form on L ⊕ ImQF . We can therefore
think of integration over L as an ordinary BV integration in the space L⊕ ImQF . Physical
field in this case act as background fields. In this sense, the integration defines a map

a 7→ e
i
~Sp(a) :=

∫
e∈L

e
i
~ (ω(e,Qe)+SI(e+a)), (3.63)

see for example [22], chapter 5, lemma 2.7.1. This is in fact a special case of a more
general concept called the BV pushforward in [19].

Theorem 5 (Linear version of Theorem 2.9 in [19]). Given a field space F with symplectic
form ω, which is a sum of two symplectic vector spaces, i.e. F = F ′⊕F ′′ and ω = ω′+ω′′.
Given L, a Lagrangian subspace in F ′′, then L defines a map

∫
L : O(F) → O(F ′′), such

that ∫
L

∆f = ∆′′
∫
L
f, (3.64)

where f ∈ O(F). Further, given a family of Lagrangian subspaces Lt, t ∈ [0, 1] and a function
f such that ∆f = 0, then ∫

L1

f −
∫
L0

f = ∆′′g, (3.65)

for some function g on F ′′.

7Any orthogonality operation ⊥ with respect to a given bilinear form satisfies span(A,B)⊥ = A⊥ ∩ B⊥,
where A,B are some linear subspaces.
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For the case at hand, the theorem tells us that the integration defines a chain map between
the original theory with action W on F , and an action Sp on the space L⊥ ∩ kerQF of on-
shell fields. We will see below that this is in fact a quasi-isomorphism. The second statement
says that homotopic modifications of the integration cycle L lead to ∆p exact deformations

of the exponentiated action ei
Sp
~ , where ∆p is the Laplacian induced by ωp.

We will now give a homological interpretation of theorem 5. Recall that one condition on L
was that QF |L is an isomorphism onto ImQF . We therefore have an inverse H : ImQF → L.
The map H is necessarily of degree −1. Using the decomposition F = L ⊕ L⊥ ∩ kerQF ⊕
ImQF , we can extend H to a map on all of F . By construction, we have

QFH = Pt, HQF = PL, H2 = 0. (3.66)

It then follows that
{QF , H} = 1− Pp, (3.67)

i.e. H is a homotopy between Pp and the identity. If we denote by i : L⊥ ∩ kerQF → F the
inclusion and p : F → L⊥ ∩ kerQF the projection, we obtain a homotopy equivalence data,

i : (L⊥ ∩ kerQF , 0) � (F , QF ) : p. (3.68)

One can check that p◦i = 1, H ◦i = 0 and p◦H = 0, so H actually defines a strong deforma-
tion retract. Using the homotopy equivalence, we can apply the homological perturbation
lemma, where the perturbation is −i~∆ + {SI , · }. In [30], the following was shown.

Theorem 6 (Theorem 4 in [30]). The perturbed differential δ′ is of the form

δ′ = i~∆p − {Sp, · }. (3.69)

Remark 3.4.2. A priori it is not clear that the homological perturbation lemma produces
a differential of the form (3.69), meaning that it is a second order differential operator and
that the only second order contribution is given by ∆p.

The theorem tells us that the theory obtained from the homological perturbation lemma is
the same as the theory we got from integrating over L. An equivalent viewpoint is therefore
the following. Instead of actual integration, we can replace the notion of perturbative path
integral with an application of the perturbation lemma. The perurbative integral is then
given by the projection operator p′ : O(F) → O(L⊥ ∩ kerQF ) obtained from p : F →
L ∩ kerQF through the perturbation lemma. This also verifies a statement from earlier.
The path integral is indeed a quasi-isomorphism.

In the classical case, we saw that computing the minimal model of a theory amounts
to summing over tree level Feynman diagrams. The story here is similar. The vertices of
Sp consists of full Feynman amplitudes, including loops. Considering the relation of the
homological perturbation to path integrals, this is of course not surprising. Integrating over
L amounts to integrating out all off-shell degrees of freedom. The resulting effective action
should still reproduce the usual S-matrix elements. But since it has no propagator, the only
way to do so is when the vertices itself contain the full S-matrix.

3.4.2. Example: Gauge Fixing Electromagnetism without Trivial Pairs

Let us illustrate the gauge fixing procedure in the case of electromagnetism. The BV ex-
tended action has the form

S =

∫
−1

4
FµνF

µν −A∗µ∂µC =: S0 + S1. (3.70)
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Our goal is to gauge fix this theory and compare it to the action obtained by applying
the Faddeev-Popov procedure. The gauge condition in that case is given by an equation
F (Aµ, x) = 0. Locally, we can solve this for one of the components of Aµ. Let us assume
that that component is A0. Hence, there is a function G0(Ai, x), such that

F (G0(Ai, x), Ai(x), x) = 0. (3.71)

We can impose this constraint with the gauge fixing fermion

Ψ(A∗0, A
i) = −

∫
d4yA∗0(x)G0(Ai, x). (3.72)

It imposes

A0(x) = − δΨ

δA∗0
= G0(Ai, x), A∗j (x) = −

∫
d4yA∗0(y)

δG0(Ai, y)

δAj(x)
. (3.73)

We find that

S1 = −
∫

d4xA∗0(x)∂0C(x) +

∫
d4y d4xA∗0(y)

δG0(Ai, y)

δAj(x)
∂jC(x). (3.74)

We want to rewrite this in terms of F . We can differentiate (3.71) with respect to Ai. We
find

0 =

∫
d4y

δF (G0, Ai, x)

δA0(y)

δG0(Ai, y)

δAi(z)
+
δF (G0, Ai, x)

δAi(z)
. (3.75)

We define a new field variableB(x) of ghost number−1 throughA∗0(x) =
∫

d4yB(y) δF (G0,Ai,y)
δA0(x) .

This allows us to use (3.75) in S1. We find

S1|gf = −
∫

d4yd4xB(y)
δF (G0, Ai, y)

δA0(x)
∂0C(y)−

∫
d4yd4xB(y)

δF (G0, Ai, y)

δAj(x)
∂jC(x).

(3.76)
This has the form exactly as one finds in the Faddeev Popov approach. A more familiar
form may be

S1|gf = −
∫

d4yB(y)Q(F )(y), (3.77)

where Q is the BRST operator.

3.5. An Anomaly Computation

We conclude this chapter by giving an example for an anomaly computation. This will
also serve as some sort of introduction to string field theory, since we use a regularization
methods which draws heavily from the picture of geometric vertices in string field theory.

We recall the notion of an anomaly in field theory. We say that a theory has an anomaly,
if the theory has a symmetry at the classical level that is broken at the quantum level. In the
path integral formalism, the source of anomalies is a nonsymmetric measure. Such a measure
is usually defined through a certain regularization scheme. If the regularization scheme
preserves gauge invariance, anomalies cannot arise. For this reason, the vector symmetry of
fermions coupled to a gauge field can always be defined without having an anomaly, since
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we can apply either dimensional or Pauli-Villars regularization, both preserving the vector
symmetry. On the other hand, a chiral symmetry potentially has a anomaly. Neither of
the two schemes preserves this symmetry. Beside the chiral anomalies there can also be
a gravitational anomaly, since no known regularization scheme preserves diffeomorphism
invariance. The conformal anomaly in D 6= 26 bosonic string theory is an example of this.

We need to distinguish between anomalies of global symmetries and gauge symmetries.
The former are harmless. They result in physical processes at the quantum level excluded
at the classical level. For example, the neutral pion decays through a process forbidden at
the classical level. On the other hand, also gauge symmetries can suffer from anomalies,
which makes the theory inconsistent. This happens when only left-handed (equivalently
only right-handed) fermions couple to the gauge fields. In this case, one explicitly needs to
check that there is no anomaly is order to have a consistent theory, which fortunately is the
case in the theory of weak interaction.

A very simple theory with a gauge anomaly is the chiral Schwinger model. This is chiral
quantum electrodynamics in two dimensions. It is given by the action

S0 =

∫ √
2ψ̄(i∂− +A−)ψ − 1

4
FµνF

µν . (3.78)

The field ψ̄ denotes the complex conjugate of ψ. Also, we use lightcone coordinates x± =
1√
2
(t± x). In the BV formalism, we account for the gauge symmetry by adding

S1 =

∫
icψ̄∗ψ̄ − icψ∗ψ −A∗µ∂µc. (3.79)

As it is now, the action of the BV Laplacian is not defined on S1. We can fix this by
considering a new action S′, which is equivalent to S0 + S1 on the classical level. It can be
constructed with the help of a homotopy with respect to the linear differential generated by
S0 + S1. The linear part reads

Q0 = {S(2), · } =

∫
x

√
2i∂−ψ(x)

δ

δψ̄∗(x)
+
√

2i∂−ψ̄(x)
δ

δψ∗(x)
+ ... , (3.80)

where we omitted everything that only involves the gauge field and the ghost, since they
will not be important for us. The reason is that the anomaly is completely due to the action
of the Laplacian on fermions. One way to regularize is through the introduction of a heat
kernel. This effectively means that we do a replacement

ψ 7→ Kψ := e−τ0�ψ, (3.81)

and similarly for the complex conjugate and all the anti-fields. This can be justified by
noting that e−τ0� is homotopic to the identity operator. The corresponding homotopy is

H = −i
√

2(

∫
x

∫ τ0

0

ψ̄∗(x)e−τ�∂+
δ

δψ(x)
+ ψ∗(x)e−τ�∂+

δ

δψ̄(x)
). (3.82)

One then computes

{Q0, H} =

∫
x

ψ(x)
δ

δψ(x)
−
∫
x

ψ(x)e−τ0�
δ

δψ(x)
+ ... (3.83)
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where the dots contain three more contributions which contain are obtained by replacing ψ 7→
(ψ∗, ψ̄, ψ̄∗). The operator

∫
x
ψ(x) δ

δψ(x) is the identity on field space, while
∫
x
ψ(x)e−τ0� δ

δψ(x)

is of course the heat kernel. An equivalent relation is the following. Write

P (x, y) = −i
√

2

∫ τ0

0

e−τ�∂+δ(x− y) (3.84)

and
K(x, y) = e−τ0�δ(x− y). (3.85)

Then, √
2i∂x−P (x, y) = δ(x− y)−K(x, y). (3.86)

Denote by V the field space of the spinor fields. We denote the homotopy equivalence
data by

i : (V,Q0) � (V,Q0) : p. (3.87)

There is some freedom in choosing p and i. All we need is that i ◦ p = K. We make a
symmetric choice. We define

K1/2ψ := e−
τ0
2 �ψ (3.88)

and pick p = i = K1/2. Similarly, we denote by K1/2(x, y) the integral kernel of K1/2.
The cohomological vector field {S0+S1, · } defines an L∞-algebra. The homotopy transfer

theorem provides a new L∞-structure related to the original one by the homotopy H. It is
obtained by constructing Feynman diagrams with propagator H and external legs K1/2. To
cubic order, the new action S′ is given by

S′cubic =
√

2ψ̄(z)K1/2(z, y)A−(y)K1/2(y, x)ψ(x) (3.89)

−iψ∗(z)K1/2(z, y)c(y)K1/2(y, x)ψ(x) (3.90)

−iψ̄(z)K1/2(z, y)c(y)K1/2(y, x)ψ̄∗(x). (3.91)

The above expression uses Einstein - de Witt integration convention, which we will use from
now on. If we had a homotopy also affecting the ghost and gauge field, then there would be
a similar external leg contribution for these fields. Unless K1/2 = 1, the above expression
gives a non-vanishing contribution to the master equation,

{S′cubic, S
′
cubic} = −

√
8iψ̄(u)K1/2(u,w)c(w)K(w, y)A−(y)K1/2(y, x)ψ(x) (3.92)

+
√

8iψ̄(u)K1/2(u,w)A−(w)K(w, y)c(y)K1/2(y, x)ψ(x) (3.93)

+2ψ∗(u)K1/2(u,w)c(w)K(w, y)c(y)K1/2(y, x)ψ(x) (3.94)

+2ψ̄∗(u)K1/2(u,w)c(w)K(w, y)c(y)K1/2(y, x)ψ̄(x). (3.95)

The induced quartic interaction exactly cancels this. It is

S′quartic = −(
√

2ψ̄(u)K1/2(u,w)A−(w) + iψ∗(u)K1/2(u,w)c(w)) (3.96)

P (w, y)(
√

2A−(y)K1/2(y, x)ψ(x) + ic(y)K1/2(y, x)ψ̄∗(x)). (3.97)

This can be checked by noting the following. First of all, we have that

Q0(
√

2ψ̄(u)K1/2(u,w)A−(w) + iψ∗(u)K1/2(u,w)c(w)) (3.98)

= −
√

2∂w−(ψ̄(u)K1/2(u,w)c(w)), (3.99)
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Q0(
√

2A−(y)K1/2(y, x)ψ(x) + ic(y)K1/2(y, x)ψ̄∗(x)) (3.100)

=
√

2∂y−(c(y)K1/2(y, x)ψ(x)). (3.101)

It follows that

Q0S
′
quartic = −

√
2ψ̄(u)K1/2(u,w)c(w)∂w−P (w, y)(

√
2A−(y)K1/2(y, x)ψ(x) (3.102)

+ic(y)K1/2(y, x)ψ̄∗(x))−
√

2(
√

2ψ̄(u)K1/2(u,w)A−(w) (3.103)

+iψ∗(u)K1/2(u,w)c(w))∂y−P (w, y)c(y)K1/2(y, x)ψ(x) (3.104)

We can now use (3.86) and obtain

Q0S
′
quartic = −iψ̄(u)K1/2(u,w)c(w)K(w, y)(

√
2A−(y)K1/2(y, x)ψ(x)+ (3.105)

ic(y)K1/2(y, x)ψ̄∗(x)) + i(
√

2ψ̄(u)K1/2(u,w)A−(w) (3.106)

+iψ∗(u)K1/2(u,w)c(w))K(w, y)c(y)K1/2(y, x)ψ(x). (3.107)

One can check that
2Q0S

′
quartic + {S′cubic, S

′
cubic} = 0. (3.108)

Hence, the quartic vertex exactly cancels the cubic vertex, as it should according to the
homotopy transfer theorem.

We can now move on and compute ∆S′ in cubic and quartic order. We find

∆S′cubic = −iK1/2(x, y)c(y)K1/2(y, x) + iK1/2(x, y)c(y)K1/2(y, x) = 0 (3.109)

and

∆S′quartic = −i
√

2K1/2(x,w)A−(w)P (w, y)c(y)K1/2(y, x) (3.110)

+i
√

2K1/2(x,w)c(w)P (w, y)A−(y)K1/2(y, x) = i
√

8K(y, w)c(w)P (w, y)A−(y). (3.111)

We used that K1/2(x, y)K1/2(x, z) = K(x, z) and P (x, y) = −P (y, x). This is of course a τ0
dependent expression. Let us see whether there is a universal part. We consider the limit
τ0 → 0. We have that

P (x, y) =
√

2iτ0∂x+δ(x− y) +O(τ2
0 ). (3.112)

Also,

K(x, y) =
1

4πiτ0
e−

(x−y)2
4τ0 . (3.113)

It follows that

∆S′quartic =
i

π

∫
x

c(x)∂+A−(x). (3.114)

3.5.1. Canceling the Anomaly by Introducing New Particles

The fact that ∆S 6= 0 does not necessarily imply that the theory has an anomaly. In
principle, it may happen that the we can introduce additional ~-dependent terms to S that
cancel ∆S through the classical part {S, S} of the master equation. If we would allow for
non-local term, we could even cancel the chiral anomaly. Consider

Snl =
~

2π

∫
x

A−(x)
∂+

∂−
A−(x). (3.115)
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Then, the gauge transformation of Snl exactly cancels the anomaly in the master equation.
Non-local terms in quantum field theories can be the result of integrating out fields. So we

may hope that integrating in new fields may cure the non-locality. Indeed, as it is pointed
out in [6], a Wess-Zumino term can cancel this. Let us introduce a scalar particle θ with
the usual kinetic term

Sθ,kin =

∫
x

1

2
(∂µθ(x))2. (3.116)

We couple it linearly to A− via

Sθ,int =

√
2~
π

∫
x

θ(x)∂+A−(x). (3.117)

Integrating out θ yields (3.115).
Introducing the new scalar particle has destroyed gauge invariance already at the classical

level. We can cure this by demanding that θ transforms as δθ =
√

~
2π c. With this choice,

the full quantum master equation is satisfied. The transformation of θ also cancels the
anomaly. This example is a baby version of the Green-Schwarz mechanism in string theory.
In this picture, the gauge field A− is the open string and the scalar field θ is the closed
string. What we saw above already reveals many features of the Green-Schwarz mechanism.
For example, the one-loop anomaly is canceled by introducing an interaction at tree level.
Also, the appearance of the factor

√
~ is very similar to string theory. In the latter case, the

interaction is proportional to ~.8

Remark 3.5.1. That the interaction between A and θ is linear is of course due to the fact
that the original anomaly ∆S only contains a single power of the gauge field. For every
extra two dimensions, the anomaly gets another power of A. In that process, the interaction
between A and θ becomes more and more non-linear. In the case of the superstring, which
lives in ten dimensional spacetime, the closed string interacts with both two and with four
open strings [48].

3.6. From Quantum BV to Quantum Homotopy Algebras

In section 2.5 we explored the relation between classical BV theory and homotopy algebras.
This correspondence carries over at the quantum level. The BV-Laplacian is essentially the
only difference between the classical and the quantum theory. We need a similar operation
for homotopy algebras. In terms of diagrams, this operator should create loops and in some
sense be determined by the sypmlectic structure ω.

3.6.1. Higher Order Coderivations over Commutative Coalgebras

A quantum structure on L∞-algebras can be introduced by extension of the bar construction.
This is described in reference [68]. Recall that a (classical) L∞-structure is defined as a
degree one coderivation on the symmetric tensor coalgebra Sc(V ) of a vector space V . We
will henceforth call ordinary coderivations to be of order one to make room for higher order

8In string theory, there are additional factors of ~. For example, a closed string loop contributes two powers
of ~, while the open string has only one power. On the other hand, open strings already interact with a
power of ~ at tree level. What we observe in our point particle example may be thought of as the square
root of the stringy case.
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coderivations. But before that, let us first consider the more familiar case of higher order
derivations. For commutative algebras, one approach is due to Koszul.

Definition 3.6.1. Given a k-linear endomorphism δ : A→ A on some graded commutative
k-algebra A, we can recursively define multilinear maps Ki : A⊗i → A through

K1(δ)(f) = δ(f),

Ki+1(δ)(f0, ...fi−1, fi) = Ki(δ)(f0, ..., fi−2, fi−1fi)−Ki(δ)(f0, ..., fi−2, fi−1)fi (3.118)

− (−)fi−1δfi−1Ki(δ)(f0, ..., fi−2, fi).

We call the multilinear maps Ki Koszul braces. One says that δ is a derivation of order i if
Ki+1(δ) = 0. We denote the space of order k derivations over A by Derk(A). We also define
Derl(A) = 0 if l < 0.

Remark 3.6.1. The map Ki+1 measures the failure of Ki to act as a derivation in any of
its entries. When A has a unit, derivations in this sense necessarily satisfy δ(1) = 0.

Proposition 1. The following is true on any commutative algebra A.

1. Derk(A) ⊆ Derk+1(A) for all k ≥ 0.

2. Derk(A) ◦Derl(A) ⊆ Derk+l(A).

3. [Derk(A),Derl(A)] ⊆ Derk+l−1(A).

Proof. See [1].

The notion of order k coderivation is obtained by dualizing order k derivations. Our main
interest lies in coderivations on the symmetric tensor algebra Sc(V ). In that case, an order
n coderivation is determined by its image in

∑
1≤k≤n V

�k.

Proposition 2. Given a linear map f : Sc(V ) →
∑

1≤k≤n V
�k, denote by f̃ : Sc(V ) →

Sc(V ) its extension by the inclusion
∑

1≤k≤n V
�k ↪→ Sc(V ). Define

D(f) = ∇2 ◦ (f̃ ⊗ 1) ◦∆2. (3.119)

Here, ∇2 is the product and ∆2 is the coproduct on the symmetric tensor algebra. Then,
D(f) defines an order k coderivation.

Proof. Proposition 3.4 in [68]. The way we write the formula for D(f) is taken from
Appendix A.2 in [73].

Remark 3.6.2. The above proposition is a generalization of the fact that order one coderiva-
tions are determined by its image in V ⊆ Sc(V ).

There exists also a generalization, which is due to Grothendieck (c.f. [2]). Given a
commutative algebra A, we define (left-)multiplication Lv by elements v ∈ A to be of order
zero. We then say that a linear map δ : A→ A is of order k, if [δ, vk] is of order k − 1. One
drawback is that order one derivations no longer satisfy Leibniz rule. Instead they satisfy
the more general identity

δ(ab) = δ(a)b+ (−)aaδ(b)− (−)aaδ(1)b. (3.120)

Note that this is necessary since a order one derivation no longer needs tp satisfy δ(1) = 0,
so consistency demands the extra term in (3.120). Given a derivation δ of any order in
the Grothendieck sense, we obtain a derivation of the same order in the Koszul sense by
redefining δ 7→ δ − Lδ(1).

77



3. Quantum Homotopy Algebras and the Batalin-Vilkovisky Formalism

3.6.2. Quantum Homotopy Lie Algebras

We now come to the definition of quantum homotopy Lie algebras in its most general form.
They are obtained by allowing higher order coderivations. We want to introduce ~ to
measure the quantumness of the coderivations. The rule is that, the higher the order of a
coderivation, the more it raises the order of ~. We first introduce ~ to the tensor coalgebra
by defining Sc(V )[[~]] := Sc(V )⊗ k[[~]]. We then write

Coder~(Sc(V )[[~]]) :=
∏
n≥1

~n+1 Codern(Sc(V )). (3.121)

Definition 3.6.2. A quantum homotopy Lie algebra on a vector space V is defined by a
degree one element

D ∈ Coder~(Sc(V )[[~]]), (3.122)

such that D2 = 0 and D(~ = 0)|V ⊗0 = 0. Algebras of this type are also called IBL∞
algebras, see [72].

Definition 3.6.3. An IBL∞ morphism F is determined by some linear function f ∈
Lin(Sc(V ),

∏
n≥1 ~n−1V �n) via

F =
∑
n≥1

1

n!
∇n ◦ f⊗n ◦∆n. (3.123)

Here, ∇n and ∆n denote the n-ary multiplication and comultiplication.

One may wonder why we should even bother introducing ~ as a parameter. There are
several reasons. First of all, the ~ = 0 part of the algebra defines an ordinary L∞-algebra.
Hence, by keeping track of ~, we can always reduce to the classical part of the quantum
theory. One may conjecture that we could simply take the order one part of D to obtain
the classical part. However, quantum effects generally introduce order one coderivations,
that are nevertheless proportional to powers of ~. This is not in contradiction with (3.121),
since any order one coderivation is also a coderivation of any higher order. Another reason
to keep ~ is that it introduces some additional structure. The problem is that almost any
linear map on Sc(V ) can be expanded in terms of an infinite sum of coderivations of any
order. To see why, let f : Sc(V ) → Sc(V ) be any linear map such that Im(f) ∩ V 0 = 0.
Take the part of f whose image lies in V and lift it to an order one derivation D1(f). We
then take f −D1(f), identify its part lying in V �2 and lift it to an order two coderivation.
Continuing this indefinitely allows us to write

f =
∑
k≥1

Dk(f). (3.124)

The limit is taken pointwise. Therefore, in the definition of quantum homotopy algebras
we could just take a degree one linear map D such that D2 = 0, without even bothering
about the notion of coderivations. A third reason to keep ~ is to have a better control over
convergence of infinite sums. We say that a sequence in Sc(V )[[~]] converges, if the sequence
converges in each fixed order ~. This notion permits tadpoles as long as they are at least
proportional to ~. This is the origin of the condition D(~ = 0)|V ⊗0 = 0.

The BV Laplacian is introduced to homotopy algebras as a second order coderivation.
Recall that classical BV theory induces an L∞ structure on the tangent space Tφ0

F at a
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classical solution to the equations of motion. Quantum effects can add ~ dependent terms
to it (this may destroy the classical L∞-relations). Further, the symplectic structure on F
induces a linear symplectic structure ω on Tφ0

F . Let ω−1 = e∗i � ei be its inverse (in the
sense of section 2.3.7). This in turn induces a map

ω−1 : Sc(Tφ0
F) −→ Tφ0

F � Tφ0
F , (3.125)

mapping numbers λ ∈ C to λe∗i � ei, and all other elements to zero. ω−1 now lifts to a
second order coderivation

θ := ~D(ω−1). (3.126)

The action of θ is actually rather simple to describe. It acts via left-multiplication by the
element ~e∗i � ei. Since we work with a graded commutative algebra and e∗i � ei is of degree
one, it immediately follows that θ2 = 0. We combine this with the linear differential Q and
the degree one coderivation D coming from the vertices to Dq = Q+D(~)− i~θ. It defines
a quantum L∞-structure if Dq squares to zero. Since Dq is a coderivation of order two,
2D2

q = [Dq, Dq] is of order three, and is therefore determined by its image in

Tφ0
F ⊕ (Tφ0

F)�2 ⊕ (Tφ0
F)�3. (3.127)

The following can be shown [68].

Proposition 3. Let Dq = Q + D(~) − i~θ as above and such that D2
q = 0. We have the

following.

1. D2
q is always zero in (Tφ0

F)�3.

2. The vanishing of D2
q in (Tφ0

F)�2 is equivalent to cyclicity of d +Dq.

By the above proposition, arguably the most non-trivial part to show is that D2
q = 0 in

Tφ0
F . This puts a condition on D(~) extending the classical L∞-relations D(~ = 0)2 = 0.

The condition on D(~) is the equivalent of the quantum master equation. This suggests
another, more restrictive definition of quantum homotopy Lie algebras, called loop homotopy
Lie algebras in [68].9

Definition 3.6.4. A loop homotopy Lie algebra on a odd symplectic differential graded
vector space (V [[~]],d, ω) is a cyclic degree one and order one coderivation D(~) such that

(d +D(~)− i~θ)2 = 0 (3.128)

and D(~ = 0)|V ⊗0 = 0.

It can be shown that any loop homotopy Lie algebra induces a loop homotopy Lie algebra
on cohomology via an IBL∞-morphism, see [73]. The algebra maps are the full quantum
S-matrices. The IBL∞-morphism is the equivalent of the perturbative path integral (3.63).

9The author does not know whether this distinction is standard in the literature.
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3.6.3. Quantum Homotopy Associative Algebras

We will now review the quantum version of homotopy associative algebras. Later in this
work, we will try to construct a planar version of it.

In terms of operads, loop homotopy associative algebras were defined in [29]. By re-
formulating it as a BV theory on a linear field space, the relations among the products
can be stated in the form of a quantum master equation. We recall the basic construc-
tion. Let σn = (12...n) ∈ Sn denote the cyclic permutation of n elements. We define
Cn(V ) = V ⊗n/(x ∼ σnx) and C(V ) =

⊕
n≥0 C

n(V ). Vertices are degree zero functions

f ∈
∏
k≥1

~k−1lin(C(V )�k,k). (3.129)

To define the quantum A∞-relations, we need a symplectic structure ω. Denote by ω−1 =
e∗i ⊗ ei its inverse in the sense described in section 2.3.7. We use it to define two types of
operations. Given two functions f1 ∈ lin(Ck(V ),k), f2 ∈ lin(Cl(V ),k), we define {f1, f2} ∈
lin(Ck+l−1(V ),k) by

{f1, f2}(a1, ..., ak+l−1) =
∑
σ

±f1(aσ(1), ..., aσ(l−1), e
∗
i )f2(ei, aσ(l), ..., aσ(k+l−1)), (3.130)

where the sum runs over all cyclic permutations σ of length k+ l− 1. The sign is the usual
sign determined by the permutation of graded objects. The second operation is

∆̃ : lin(C(V ),k)→ lin(C(V ),k)� lin(C(V ),k), (3.131)

where

∆̃(f)(a1, ..., ak)(b1, ..., bl) (3.132)

=
∑
σk,σl

−(−)ε+e
i(1+a1+...+al)f(e∗i aσk(1), ..., aσk(k), e

i, bσl(1), ..., bσl(l)). (3.133)

σk, σl denote the cyclic permutations as before, and (−)ε is the sign produced by the per-
mutation. By cyclic symmetry of f , this product is invariant under (a1, ..., ak)↔ (b1, ..., bl),
as it should be.

We extend the bracket {·, ·} to general elements by demanding that it satisfies Leibniz
rule with respect to the symmetric product. On the other hand, we inductively define

∆(fg) = ∆(fg) + (−)ff∆(g) + (−)f{f, g}, ∆(f) = ∆̃(f) when f ∈ lin(C(V ),k). (3.134)

This turns lin(
⊕

n≥0 C(V )�n, k) into a BV algebra. The loop A∞-relations on a differential
graded vector space (V,d) are then encoded in the quantum master equation

df +
1

2
{f, f} − i~∆(f) = 0. (3.135)

It would be nice to have a construction of quantum A∞-algebras that is similar to the
bar construction of the quantum L∞-algebras. This would require a good notion of higher
order coderivations on non-commutative algebras. In section 5.4 we will give one definition
and show that it naturally leads to an algebra of planar graphs. For the full non-planar
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case this does not suffice. On the other hand, it is quite obvious how to define the non-
commutative equivalent of θ. Recall that θ acted on Sc(V ) by left multiplication. We can
do something similar on T c(V ). However, the correct object is not the left multiplication of
the free tensor algebra, but rather a multiplication by shuffling in ei ⊗ e∗i into elements of
the form a1 ⊗ · · · ⊗ an. The shuffle product is actually commutative. It then immediately
follows that θ2 = 0, since θ is odd. We would then define a loop A∞-algebra to satisfy

(d +D(~)− i~θ)2 = 0, (3.136)

where d + D(~) is an ordinary coderivation of order one with respect to the coproduct on
the free tensor algebra T c(V ).

The shuffle product is in fact special with respect to the free tensor coalgebra T c(V ).
The shuffle product and the free coproduct combine to form a bialgebra. This statement
can be found for example in [49], Example 1.3.11 (this example states the dual version).
This property may be a hint that the definition of θ is indeed correct. This would also
be in agreement to what we find for quantum L∞-algebras. θ was defined by symmetric
multiplication, and the latter combines with symmetric comultiplication into a bialgebra.
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4. Geometric Vertices and String Field
Theory

In this section we want to answer the first question posed in the introduction. Is there a
quantum theory of open strings without the closed string? We begin by introducing Riemann
surfaces and moduli spaces, and how moduli spaces can be partitioned in terms of vertices
and propagators. The consistency of the partition is then stated in terms of a quantum BV
master equation. We then review how to obtain a quantum theory of strings from this data.
Then, in order to answer our original question, we ask whether there are partitions of the
moduli spaces of open-string diagrams without the necessity to rely on closed strings.

4.1. Unoriented Riemann Surfaces with Boundary

Let us first recall the definition of a Riemann surface. It is a two dimensional compact
manifold Σ, with a choice of local coordinates zi : Ui −→ C, such that the transition
functions

zj ◦ z−1
i : zi(Ui ∩ Uj) −→ C (4.1)

are holomorphic. A function f : Σ1 → Σ2 is holomorphic, if it is so in every chart. If f
is invertible, Σ1 and Σ2 isomorphic as Riemann surfaces. We will also consider surfaces
with boundary, which can be obtained by removing open discs from a given surface. On
a boundary, the coordinates are adapted so that they map into the upper half-plane, with
boundary points mapped to the real line.

Holomorphic transition functions automatically lead to oriented surfaces. To include non-
orientable surfaces, we should also allow for purely anti-holomorphic transition functions. A
simple example for such a surface is the Klein bottle, which can be obtained by considering
the quotient of the complex plane modulo the relations

z ∼ z + i, z ∼ z̄ + 1. (4.2)

The second identification forces some of the transition functions to be anti-holomorphic. An
automorphism is then a homeomorphism f , which is either holomorphic or anti-holomorphic
when expressed in local coordinates.

The next step is to allow punctures/marked points on a Riemann surface. This is an
object

(Σ, f, {s1, ..., sb}), (4.3)

where Σ is a Riemann surface. Define [n] := {1, ..., n}. f is an injective map f : [n]→ Σ−∂Σ
labeling n distinct points in the interior of Σ. Likewise, each si is an injective map si : [mi]→
∂Σ, such that each si maps into a different boundary component. Furthermore, we demand
that the labels are cyclically ordered with respect to an arbitrarily chosen orientation on the
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4. Geometric Vertices and String Field Theory

boundary (see figure 4.4).1 Given an isomorphism φ : Σ → φ(Σ) of Riemann surfaces, we
consider (Σ, f, {s1, ..., sb}) and (φ(Σ), φ ◦ f, {φ ◦ s1, ..., φ ◦ sb}) to be isomorphic.

To decide whether two Riemann surfaces are isomorphic, one can first check whether
their topologies agree. A well known result in the theory of topological manifolds is that
any compact topological surface can be build by taking a sphere and attaching g handles
and c crosscaps to it. Concretely, attaching handles can be done by cutting two holes into
a surface and join them with a cylinder. Crosscaps are created by cutting a single hole and
attaching a Möbius strip to it. Further, boundaries are created by cutting b additional holes.
Hence, a surface Σ can be characterized by the three numbers (g, c, b). These numbers are,
however, not unique. When g, c ≥ 1, there is an isomorphism (g, c, b) ∼ (g − 1, c + 2, b).
Two obtain a unique classification, one can for example restrict to c ≤ 2. We can further
add the marked points to the topological data. A surface is then uniquely characterized by
(g, c, b, n, {m1, ...,mb}).

Another advantage of the topological classification is that it is related to the dimension of

the moduli space Mn,{mi}
g,b,c , the space of complex structures (marked Riemann surfaces up

to isomorphisms). Its real dimension is

6g − 6 + 3b+ 3c+ 2n+m, (4.4)

whenever this number is bigger than zero. In the remaining exceptional cases, this number
merely states the dimension (moduli) minus the number of independent conformal Killing
vector fields (CKV). For completeness, let us state what happens in these cases (see [101, 28]).

� The sphere (g = 0, b = 0, c = 0) with n ≤ 3 closed string punctures has 6− 2n CKVs.

� The disc (g = 0, b = 1, c = 0) and the projective plane (g = 0, b = 0, c = 1) with m ≤ 3
open string punctures have 3−m CKVs.

� The disc and the projective plane with one closed string puncture and m ≤ 1 open
string punctures have 1−m CKVs.

� The torus (g = 1, b = 0, c = 0) with no punctures has 2 CKVs and 2 moduli.

� The annulus (g = 0, b = 2, c = 0), the Möbius strip (g = 0, b = 1, c = 1) and the Klein
bottle (g = 0, b = 0, c = 2) with no punctures have 1 CKV and 1 modulus.

4.2. Local Parametrizations

In this section, we introduce local parametrizations around punctures. Local parametriza-
tions will allow us to sew Riemann surfaces. Furthermore, these will tell us how conformally
dependent operators enter into correlators in string field theory.

Define

D = {z ∈ C | |z| ≤ 1}, DH = D ∩ {z ∈ C | Im z ≥ 0}, (4.5)

1If we would restrict to orientable surfaces only, we could demand that the cylic order is with respect to
the induced orientation on the boundary. Of course, for unorientable surfaces, we don’t have such an
induced orientation.

84



4.3. Geometric Vertices and Sewing Operations

1

2

3
4

5

mα

α

Figure 4.1.: Cyclic ordering of open string punctures on a boundary labeled by α.

the closed unit disc and the closed unit half-disc respectively. Fix a punctured Riemann
surface (Σ, f, {s1, ..., sb}). Local parametrizations are basically an extension of the maps f
and si specifying the punctures. By that we mean that we have analytic embeddings

F : D × [n] −→ Σ, Si : DH × [mi] −→ Σ, (4.6)

such that F |0×[n] = f and Si|0×[mi] = si. The Si should map the real lines to the boundary
of Σ, and in such a way that the boundary orientation goes in the positive direction. Further,
we restrict to those F, S1, ..., Sb, which have pairwise disjoint image. This is necessary if we
want to obtain a well defined self-sewing operation.

As in the case of punctured surfaces, we denote a Riemann surface with local parametriza-
tions by (Σ, F, {Si}). Given a holomorphic automorphism φ : Σ → φ(Σ), we consider
(φ(Σ), φ ◦ F, {φ ◦ Si}) to be equivalent to (Σ, F, {Si}). We denote the space of punctured

surfaces in the moduli space Mn,{mi}
g,b,c with local parametrizations by Pn,{mi}g,b,c . There is a

natural projection Pn,{mi}g,b,c →Mn,{mi}
g,b,c .

4.3. Geometric Vertices and Sewing Operations

Amplitudes in string theory are defined using integral forms over Mn,{mi}
g,b,c . In string field

theory, these get lifted to forms on Pn,{mi}g,b,c . Geometric vertices specify the integration
region over which these forms are integrated. We follow [25] and begin by considering

singular chains in Pn,{mi}g,b,c with real coefficients. These are formal superpositions

Vn,{mi}g,b,c =

n∑
k=1

~2g+b+cakfk (4.7)

of continuous maps fk : ∆nk → Pn,{mi}g,b,c over ak ∈ R. The functions take values in the
n-dimensional simplices,

∆n = {(x0, ..., xn) ∈ Rn+1 |
n∑
i=0

xi = 1, xi ≥ 0 ∀i}. (4.8)

Definition 4.3.1. A geometric vertex V is a finite superposition of chains of the form (4.7)
over real coefficients.
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4. Geometric Vertices and String Field Theory

Oriented sewing Action on topology
sewc, same surface (g, b, c) 7→ (g + 1, b, c)
sewc, different surfaces (g1, b1, c1)× (g2, b2, c1) 7→

(g1 + g2, b1 + b2, c1 + c2)
sewo, same surface, same boundary (g, b, c) 7→ (g, b+ 1, c)
sewo, same surface, different boundary (g, b, c) 7→ (g + 1, b− 1, c)
sewo, different surfaces (g1, b1, c)× (g2, b2, c) 7→

(g1 + g2, b1 + b2 − 1, c1 + c2)
Unoriented sewing
sewc, same surface (g, b, c) 7→ (g, b, c+ 2)
sewc, different surfaces (g1, b1, c1)× (g2, b2, c1)

7→ (g1 + g2, b1 + b2, c1 + c2)
sewo, same surface, same boundary (g, b, c) 7→ (g, b, c+ 1)
sewo, same surface, different boundary (g, b, c) 7→ (g, b− 1, c+ 2)
sewo, different surfaces (g1, b1, c)× (g2, b2, c) 7→

(g1 + g2, b1 + b2 − 1, c1 + c2)

Table 4.1.: Effect of sewing on topology (see [28], Table 1)

Remark 4.3.1. The above definition means that we allow for the images of the chains to

not be fixed. In other words, the images may consist of several different Pn,{mi}g,b,c .

The presence of local coordinates allows us to define a sewing operation. We can either sew
along bulk (interior) or boundary coordinates. Suppose we have two boundary coordinates
z and w. These can either be part of two different surfaces or a single surface. Since we
allow for unorientable surfaces, there are two kinds of sewing operations [28]

sewo : zw = −1, sewo : zw = 1. (4.9)

Similarly, if z and w are bulk coordinates, we set

sewc(θ) : zw = eiθ, sewc(θ) : zw = eiθ. (4.10)

Note that the parameter of the open string sewing operation is fixed by the condition that the
identification should happen on the upper half-plane. On the other hand, for closed string
punctures, the relative angle θ is not fixed. The effect of sewing on topology is summarized
in table 4.1.

The sewing operations are used to define a BV structure on the space of geometric vertices.
Before we can do that, we need a grading on the space of geometric vertices. Suppose a
singular chain V is defined only by maps from k-simplices. In this case, we define dimV := k.

The degree of a singular chain V into Pn,{mi}g,b,c of homogeneous dimension is then defined to
be [101, 28]

degV = dimMn,{mi}
g,b,c − dimV. (4.11)

In particular, this places those vertices in degree 0, which have the same dimension as the
moduli space they project to.

We want to consider a subclass of vertices which are graded symmetric under certain
relabelings of the local coordinates. First of all, we want that all vertices are invariant under
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arbitrary relabeling of the bulk punctures. Further, let V be a vertex with a boundary
having m local coordinates. Denote by C(V) the vertex where the m local coordinates are
relabeled cyclically, i.e. 1→ 2, 2→ 3, ...,m→ 1. We demand that

C(V) = (−)m−1V. (4.12)

Finally, let i, j be the labels of two different boundaries and denote by Pi,j the operation
that switches these labels. We demand

Pi,j(V) = (−)(mi+1)(mj+1)V, (4.13)

where mi denotes the number of punctures on the ith boundary.

Definition 4.3.2. We denote the graded vector space of geometric vertices by K. We call
vertices with the symmetry properties described above admissible. There is a projector
S : K → Ks onto admissible vertices.

Remark 4.3.2. The signs from the symmetry operations can be memorized by thinking of
boundary coordinates and boundaries themselves to be odd and bulk coordinates to be even.
This is consistent with string theory, since bosonic open strings always come accompanied
with the insertion of one odd ghost and bosonic closed strings with the insertion of two odd
ghosts. Boundaries can also described by a state which comes with three ghosts.

Given two vertices V,W, we define a sewing operation of boundary punctures

V ◦W (4.14)

in the following way. Let z be the last boundary coordinate on the last boundary of V and
w be the first boundary coordinate on the first boundary of W and identify via

SEWo =
1

2
(sewo + sewo). (4.15)

We define the boundary bracket as the projection of this product onto admissible vertices,

{V,W}o = S(V ◦W). (4.16)

Similarly, we define a self-sewing operation. We apply SEWo by pairwise picking boundary
punctures of the surface. We denote this operation by ∆o. Both {·, ·}o and ∆o have degree
one by formula (4.4).

For bulk punctures, we basically do the same. However, to obtain a degree one operation
we should include the whole family of angles in (4.19) to the new chain. The two operations
are denoted by {·, ·}c and ∆c. Finally, we combine all the operations into {·, ·} = {·, ·}c +
{·, ·}o and ∆ = ∆c + ∆o.

We are now ready to state the geometric master equation. The final ingredient is the
boundary operator ∂ on chains By (4.11) it is also of degree 1.

Definition 4.3.3. Given a degree 0 chain V, we say that V satisfies the geometric master
equation if

∂V +
1

2
{V,V}+ ~∆V = 0. (4.17)

Admittably, we introduced the geometric master equation in a rather hurried fashion. For
more details, the reader can consult [101, 28].
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Remark 4.3.3. With our definitions, we do not have a BV algebra, since we are lacking
a product. The latter could be introduced by defining it via the disjoint union of Riemann
surfaces. In this case, we should also allow for moduli spaces of surfaces with more than one
connected component.

Let us explain the meaning of the geometric master equation (4.17). We first introduce a
variant of the sewing operations (4.9) and (4.19) by introducing an additional real parameter
q. We define

sewo(q) : zw = −q−1, sewo(q) : zw = q−1 (4.18)

for the open-string sewing, and

sewc(q, θ) : zw = q−1eiθ, sewc(q, θ) : zw = q−1eiθ (4.19)

for the closed version. Note that, in order for this to be well defined, we need that q ≥ 1,
since our coordinates are restricted to the unit disc. When q = 1, we recover our original
definition. In that case, the sewing amounted to cutting out coordinate discs and sew them
along the generated boundaries. When q is greater than zero, we insert a strip/tube of
length τ = ln q in between. We interpret them as open and closed strings propagating
with proper time τ between the surfaces. In this way, the propagator is used to cover
the regions of the moduli space associated to infrared processes. In particular, the limit
τ → ∞ is the part where the propagating string goes on-shell. On the other hand, there
may be regions beyond the point q = 1 where the propagator has length zero. We need
geometric vertices to account for these regions. The condition that the geometric vertex
starts where the propagator ends is precisely the geometric master equation. The boundary
of a vertex ∂V should be where we transition to a region covered by propagators. On the
other hand, the boundary of propagator regions is where a propagator approaches length
zero. These boundaries are the surfaces obtained by the BV operations {W1,W2} and ∆W.
The geometric master equation says that the boundary of the fundamental vertex V agrees
with the boundaries of the regions where a propagator connects W1 to W2, or a propagator
connects W to itself.

4.4. A (Very Brief) Introduction to String Field Theory

A two dimensional conformal field theory associates amplitudes to the geometric vertices
by computing correlators on Riemann surfaces. A conformal field theory defines vertex
operators Ai and associates an amplitude

〈A1 · · ·Ak〉M (4.20)

for each fixed Riemann surface with parametrized punctures M ∈ Pn,{mi}g,b,c . The vertex
operators are inserted at the location of the punctures, so we should have k = n +

∑
imi.

If an Ai has non-zero conformal dimension, the amplitude depends on the choice of local
parametrizations.

Given a geometric vertex Vn,{mi}g,b,c with values in Pn,{mi}g,b,c , we define the string field theory
vertex to be

Vn,{mi}g,b,c (A1, ..., Ak) =

∫
Vn,{mi}g,b,c

dM 〈A1 · · ·Ak〉M , (4.21)
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where dM is some measure on Pn,{mi}g,b,c . They define the interaction part of the string field
theory action

SV(A) =
∑

n,{mi},g,b,c

Vn,{mi}g,b,c (A, ..., A), (4.22)

where
V =

∑
n,{mi},g,b,c

Vn,{mi}g,b,c . (4.23)

An important property is the following. Let Q be the BRST operator of the conformal field
theory that is obtained from Faddeev-Popov gauge fixing of the Diff ×Weyl symmetry. It
gives the following ward identity among amplitudes

Vn,{mi}g,b,c (Q(A1), ..., Ak)± ...± Vn,{mi}g,b,c (A1, ..., Q(Ak)) = ∂Vn,{mi}g,b,c (A1, ..., Ak). (4.24)

This follows from the fact that the integral form

dM 〈[Q,A1 · · ·Ak]〉 (4.25)

is exact. The BRST operator enters as the free part in the action,

SF (A) =
1

2
ω(A,Q(A)). (4.26)

The odd symplectic structure ω is naturally defined in terms of the conformal field theory,
where it is called the BPZ (Belavin, Polyakov, Zamolodchikov) inner product. It defines a
BV algebra structure, i.e. a Laplacian ∆SFT and an anti-bracket {·, ·}SFT . We can restate
(4.24) as

{SF , SV}SFT = S∂V (4.27)

Given two vertices V and W, we have the following relation

{SV , SW}SFT = S{V,W}, ∆SFTSV = S∆V . (4.28)

The following identity follows immediately

S∂V+ 1
2{V,V}+~∆V =

1

2
{SF + SV , SF + SV}SFT + ~∆SFTSV . (4.29)

We conclude the following. If V satisfies the geometric master equation, then SF + SV
satisfies the (euclidean) quantum master equation. One can also say that a 2d conformal
field theory defines a morphism between solutions to the quantum master equation, where
the morphism is given by

V 7→ SF + SV . (4.30)

4.5. Stubs in String Field Theory and Regularization

A nice concept arising from the geometric picture of the vertices is that of stubs. These can
be generated by a redefinition of the local parametrizations. We want to illustrate this with
the Witten vertex from bosonic open-string field theory [93].

The Witten vertex is an element of P0,{3}
0,1,0 , i.e. a disc with three parametrized boundary

punctures. It describes the interaction of three open strings. As a geometric vertex, it is a
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Figure 4.2.: The Witten vertex embeds three coordinate half-discs, labelled by (a,b,c) into
the Riemann surface (in this case a disc). The letter m marks the midpoint of
the semi-circle of each coordinate disc. All of them are mapped to the same
point on the disc. The colors indicate the images of the semi-circles. Here, they
are taken such that they overlap exactly.

chain from the zero dimensional simplex into P0,{3}
0,1,0 , which is the same as a point in P0,{3}

0,1,0 .
It is constructed such that the boundaries of the coordinate discs exactly meet, see figure
4.2.

Pictorially, we think of the actual interaction as that part of the surface, that is obtained
by removing the interiors of the coordinate discs. To see why this makes sense, we first recall
how the Riemann surfaces describe interactions of strings. The vertex operators, which are
inserted on the origin of the coordinate half-discs, create strings on the arc of the semi-
discs. These strings then interact by propagation on the Riemann surface. The region of
propagation is therefore exactly that part of the surface that is not covered by the coordinate
discs. In this picture, the Witten vertex describes an extreme case. The strings are created
exactly on top of each other. They interact without any intermediate propagation.

We can introduce a region of propagation by shrinking the images of the coordinate discs
inside the Riemann surface. Let f : DH → D, z 7→ f(z) be one of the local coordinates of
the Witten vertex. Given a real parameter q > 1, we define a new coordinate f̃(z) = f(z/q).
When we do this for all three coordinates, we end up with a picture like the one in figure
4.3. The string states are no longer created on top of each other. Before they interact, they
have to propagate over a certain part of the disc.

The process of rescaling the local coordinates is commonly called adding stubs. This
is because we can think of the process as gluing a small rectangles (tubes in the case of
closed strings) along each line that represents an incoming string. Each of these rectangles
represents a worldsheet that the incoming string has to transverse.

The effect on the spacetime theory is the following. Rescaling the local coordinates by q
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a
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Figure 4.3.: The Witten vertex (figure 4.2) with stubs. The images of the arcs do no longer
overlap on the disc. The shaded part shows the region of propagation.

amounts to the insertion of the operator

q−L0 = e−τ(�+m2). (4.31)

Here, q = ln τ and we indicated that the operator L0 acts as � +m2 in terms of spacetime
fields. The net effect is that the fields propagate an additional imaginary time t = iτ . Recall
that we used a similar operation when regularizing the chiral Schwinger model in section
3.5. There, we called the operator K and it was part of a homotopy equivalence data. The
same is true is string field theory. We have a homotopy

H =

∫ τ

0

dτ ′b0e
−τ ′L0 , (4.32)

where b0 is the zero mode of the Faddeev-Popov b-ghost on the worldsheet and it satisfies
{Q, b0} = L0. It follows that the addition of stubs can be described as a homological
perturbation. In particular, if the original theory satisfies either the classical or the quantum
master equation, then so does the theory with stubs.

Stubs in string field theory are a natural tool to regularize the Witten vertex in string
field theory. Unfortunately, they destroy the cubic nature of the theory. On the other hand,
stubs will make the appearance of the closed string explicit at the quantum level. This is
again similar to the anomaly computation in section 3.5.

We conclude by describing how stubs affect the covering of the moduli space in the ex-
ample of the five point interaction in bosonic open-string theory. The BV theory of open
string theory has an underlying A∞-algebra. From that structure, we can deduce that the
fundamental five-point vertex covers a pentagon-shaped region (recall the content of section
2.3.6). Adding stubs extends the region covered by the fundamental vertex, see figure 4.4.
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Figure 4.4.: A pentagon shaped region covering the moduli space of the disc with five bound-
ary punctures. The white region displays the covering of a the fundamental
vertex before the addition of stubs. After applying a homological perturba-
tion/adding stubs, the region gets extended. The light grey areas are the parts
covered by a cubic and a quartic vertex connected with a single homotopy. The
dark grey areas are covered by three cubic vertices connected with two homo-
topies (recall the diagrammatic representation of the transferred structure below
the homotopy transfer theorem in section 2.3.4). A similar picture in a related
context can be found in [97].
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2τ

π

Figure 4.5.: A representation of ∆V0,{3}
s;0,1,0. The arrows on the first and the last edge indicate

that they are identified. The diameter of the open string is normalized to π.
The motion of the open string is displayed in blue. It travels a length of 2τ on
the worldsheet before it closes the loop. The boundary puncture is not displayed
explicitly. It can be placed anywhere on the boundary by shift symmetry.

4.6. The Green-Schwarz Anomaly in String Field Theory

4.6.1. Cancellation at the One-Loop Level

For unoriented open-strings, there are three types of diagrams at the one-loop level. At
the level of Riemann surfaces, two of them come from the annulus. The annulus has two
boundaries and we distinguish between those surfaces where all punctures are on a single
boundary (planar), and those where this is not the case (non-planar). Since the annulus is
orientable, these diagrams are present also in a theory of oriented strings only. Exclusive to
unoriented strings is the Möbius strip. Since it has only one boundary, no further distinction
can be made that depends on the locations of the punctures.

Different geometric vertices are related by the fact that we want a solution to the geometric
master equation (4.17). Quantum anomalies arise whenever we are not able to cancel terms
of the form ∆V. Let us discuss this in the example of cubic bosonic open-string field theory.

We mentioned already before that it has a single cubic vertex, which we denote by V0,{3}
0,1,0 ,

since its underlying topology is the three-punctured disc. At the classical level, the vertex

V0,{3}
0,1,0 is enough to cover the whole moduli space. We would like to compute ∆V0,{3}

0,1,0 . The
sewing process is a superposition of sewo and sewo. The problem here is that both processes
result in a singular surface. Let us first consider sewo. It produces an annulus with zero
circumference. A regular surface can be obtained by introducing stubs. In the notation of

(4.31), we rescale the local coordinates by a parameter q. We call the new vertex V0,{3}
s;0,1,0.

The oriented part of ∆V0,{3}
s;0,1,0 results in annulus of length 2τ , where τ = ln q, see figure 4.5.

Similarly, the unoriented part is a Möbius strip of length 2τ , see figure 4.6.

Since ∆V0,{3}
s;0,1,0 results in two non-vanishing surfaces, their contribution should be canceled

by another surface in the geometric master equation. From surfaces with boundary punctures
only, we cannot get any contribution from the anti-bracket {·, ·}. On the other hand, we

can introduce two fundamental tadpole vertices V0,{1,0}
s;0,2,0 and V0,{1}

s;0,1,1 that cover the annulus
and Möbius strip with length parameter from 0 to 2τ . In that case, we would write

∂(V0,{1,0}
s;0,2,0 + V0,{1}

s;0,1,1)
?
= −~∆V0,{3}

s;0,1,0. (4.33)

This is, however, not completely satisfactory. We should be careful when writing ∂(V0,{1,0}
s;0,2,0 +
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2τ

π

Figure 4.6.: The Möbius strip analog of figure 4.5.

π

τ

Figure 4.7.: The annulus diagram as seen from the closed string perspective (red).

V0,{1}
s;0,1,1), since now the tadpole vertices contain the singular surfaces at one end of the

boundary. The problem has merely moved to another place. Here is where the closed string
comes to the rescue. What we do is the following. We first exclude all surfaces with length

parameter l ≤ τ from V0,{1,0}
s;0,2,0 and V0,{1}

s;0,1,1. This creates a new boundary at l = τ . From
there on, we describe the processes with the closed string. The picture is the following.
Consider figure 4.5 and 4.6 with a string not moving from left to right, but from the bottom
to the top, see figures 4.7 and 4.8. There, the string does not end on a boundary like an open
string, but rather forms a closed loop. From this point of view, we are looking at a closed
string. We can interpret them the following way. On the annulus (figure 4.7), a closed string
of length τ is created at one boundary, travels a distance2 of π, and is again annihilated at
the other boundary. On the other hand, when considering the Möbius strip (figure 4.8), a
closed string of length 2τ is created, travels for π

2 , and then annihilates itself.
We obtain an unambiguous notion of what we call closed string once we fix its length.

The standard choice of 2π (twice the length of the open string). Scale invariance of string
theory allows us to rescale figures 4.7 and 4.8 so that the length of the closed string is indeed
2π. In case of the annulus, we need to divide all length scales by τ

2π . On the other hand,
since the closed string on the Möbius strip is twice as long, we merely divide by τ

π . In the

new scale, the closed string now travels a distance of 2π2

τ on the annulus and π2

2τ on the
Möbius strip. An equivalent representation of the Möbius strip that makes the closed string
propagation more visible is shown in figure 4.9.

So how does the closed string help us? The advantage is that the distance the closed
string transverses now grows when τ approaches zero. This means that this region can

2In the picture of Riemann surfaces, it is most natural to use the word distance. From the field theory
point of view, we should replace the word “distance” with “proper time”.
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π

τ

Figure 4.8.: The Möbius strip from the point of view of the closed string (red). Note that,
in order to have a closed red line, we need to wind around the sheet twice.

2π

2τ
π2

Figure 4.9.: Another representation of the Möbius strip. In this case, the closed string (red)
is created at the lower boundary and annihilated at the upper crosscap. The
arrows on the upper horizontal line indicate how the two halves are identified
to form the crosscap. We already rescaled the picture so that the closed string
has length 2π.
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a b c

Figure 4.10.: The partition of the moduli space of the one-punctured annulus in terms of
open-closed vertices. Straight lines stand for open strings, wiggly lines repre-
sent closed strings. Black bullets denote a tadpole vertex. Region (a) is the

closed string tadpole V0,{0}
s;0,1,0 connected by a closed string propagator to the

open-closed interaction vertex V1,{1}
s;0,1,0. Region (b) is the fundamental one-loop

open string tadpole V0,{1,0}
s;0,2,0 . Region (c) is covered by the cubic interaction

V0,{3}
s;0,1,0 with a open-string self-loop. Since region (a) and (c) are represented

by a propagator, the moduli space continues to infinity in both directions.

be described by a propagator. The closed string allows us to introduce three new vertices

V1,{1}
s;0,1,0,V

0,{0}
s;0,1,0,V

0,{}
s;0,0,1. The first one, V1,{1}

s;0,1,0, is a disc with one bulk and one boundary
puncture. It describes a quadratic open-closed interaction vertex (this is similar to the
Wess-Zumino term in the chiral Schwinger model we encountered in 3.5). On the other

hand, V0,{0}
s;0,1,0 is a disc with one bulk puncture, while V0,{}

s;0,0,1 is a crosscap (also called the

real projective plane RP2) with one bulk puncture. They both constitute a closed sting

tadpole. We can now cover the region τ → 0 with the vertex V1,{1}
s;0,1,0 connected to V0,{}

s;0,0,1

and V0,{0}
s;0,1,0 by a closed string propagator. In terms of the geometric master equation, this

is

∂(V0,{1,0}
s;0,2,0 + V0,{1}

s;0,1,1) + {V0,{0}
s;0,1,0 + V0,{}

s;0,0,1,V
1,{1}
s;0,1,0}+ ~∆V0,{3}

s;0,1,0 = 0. (4.34)

All operations in the above are now well defined, since none of them produces a singular
surface. Figure 4.10 shows how the moduli space of the one-punctured annulus is covered
by the vertices we introduced. The same picture applies also to the one-punctured Möbius
strip.

So since we were able to solve the master equation, where is the anomaly? The short
answer is that there is none due to the closed string. However, we should talk about the fact
that our theory has tadpoles. In a field theory, the presence of tadpoles means that the we
cannot do perturbation theory, since the theory is not in a vacuum when all fields are zero.
The solution to this problem is that we first should shift the fields φ 7→ φ + φ0, so that all
terms linear in the fields (i.e. tadpoles) disappear. The field φ0 then defines a background
on which we can safely apply perturbation theory.

In the case of open-closed string field theory, there are is both an open-string and a
closed-string tadpole. Let us first talk about the open-string tadpole. This one does not
look problematic for the following reason. Its geometric vertex connects the intermediate
region between the open-string and the closed-string regime (region (b) in figure 4.10). But
from our analysis it is clear that this region can be shrunk to zero. To see this, recall that
in our parametrization, the vertex covered the interval [τ, 2τ ]. We can shrink this region
on both ends, by forcing either of the two regions (a) and (c) to cover a larger region. For
example, we could use the parameter

√
q instead of q to give stubs to the Witten vertex.
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The vertex would still be regularized. The closed-string area could also be increased by
shortening of the closed-string stubs.3 In this way, the open string tadpole disappears. On
the field theory side, this would correspond to a particular background shift that removes
the tadpole without affecting the spectrum of the theory.

Things are different in case of the closed string tadpole. The moduli space of both the
one-punctured disc and the projective plane is zero dimensional, so there is no possibility
in enlarging any regions in order to remove them. We need to get rid of them on the level
of the field theory. One approach would be to choose a conformal field theory that maps
the geometric tadpoles to zero. In other words, the CFT should be such that all one-point
functions on Riemann surfaces vanish. However, it is not clear whether this is possible for
all choices of geometric vertices, since one can always end up with a different string field
theory by changing local coordinates without affecting the CFT. In this way one may be
able to generate tadpoles simply by a redefinition of the vertices.

One way to get our hands on what we could call the “parametrization independent”
tadpole is to consider the limit where we make region (c) in figure 4.10 infinitely large. This
would correspond to the limit q → 1 (or τ → 0) in the regularization we applied to the
cubic vertex, hence it approaches again the original Witten vertex. The stubs then shrink
to zero length. On the other hand, we should adapt the closed string tadpoles, so that
regions (a) and (c) do not overlap (we assume that we already got rid of the open string
tadpole, i.e. there is no region (b)). This is achieved by shrinking the local coordinates
around the closed string puncture on both tadpoles to zero. In this process, closed-string
vertex operators inserted at the puncture are suppressed if they are not on-shell, i.e. if they
do not satisfy L0 = 0. Hence, we can restrict ourselves to on-shell operators when we ask
whether one-point functions in our CFT vanish. However, in this case it is already known
that, when the CFT corresponds to a string theory on flat spacetime, the tadpoles cancel if
and only if the gauge group is SO(2d/2), where d is the spacetime dimension of the string
theory. An argument based on closed string partition functions for the bosonic case can be
found in [74]. The superstring analog is found in [76].

Remark 4.6.1. The restriction to SO(2d/2) gets lifted if we do allow for Lie supergroups
as gauge groups. In the case of the Klein bottle, there is an infinite family SO(2d/2 +N,N)
of possibilities for the unoriented string. For the oriented string, one could also consider
GL(N,N). Open string tadpoles vanish in that case, since whenever there is a free boundary,
the amplitude gets a factor of tr(1), which is zero in the case of GL(n, n). This was used for
example in [24]. There, they considered the limit N → ∞ and referred to it as “large N”.
However, this is not a planar limit in the sense of ’t Hooft.

For general gauge groups, a physical interpretation is that the brane, on which the open
strings end, has non-zero energy density. We can interpret this as a non-zero cosmological
constant, which in turn leads to a non-trivial closed-string background, i.e. spacetime be-
comes curved. Therefore, the closed string in that case becomes necessary in open-string
theory in order to generate the curved background. Linearized gravity in the background of
the brane was computed in [75, 31].

Up to this point, the closed string does not seem to be necessary at the quantum level if we
restrict ourselves to SO(2d/2). However, since we only considered one-punctured surfaces,

3Without an explicit description of the vertices, it is ambiguous what we mean by a shortening of stubs, since
in that case, the we would have to increase the area covered by the local coordinates. With an explicit
metric, we could for example increase the area geodesically. On the other hand, local parametrizations
always provide a preferred choice of shrinking the domain of definition by simple rescaling.
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the non-planar diagram did not show up. To observe it, we should not forget that the

introduction of stubs induces higher order vertices, in particular a quartic vertex V0,{4}
s;0,1,0.

Let us draw once more from our experience with the chiral Schwinger model. There, the
regularization also amounted to introducing a quartic vertex in order to satisfy the classical
master equation. Consistency requires that the quartic vertex S′quartic vanishes when the
stub parameter goes to zero. On the other hand, we found that ∆S′quartic remains finite.
We expect a similar phenomenon for the open string. Hence, for the moment, we work

with a finite stub parameter. In this case, we get several contributions from ∆V0,{4}
s;0,1,0. First

of all, the twist sewing sewo always produces a two-punctured Möbius strip. The oriented
sewing instead gives two topologically distinct surfaces, depending on whether or not the
identified punctures are next to each other relative to the cyclic order. If we sew neighboring
punctures, one of the two boundaries will be empty and the resulting surface is planar. The
canceling of this surface in the geometric master equation involves the closed string tadpole.
The analysis goes along similar lines as before. On the other hand, sewing non-neighboring
punctures results in an annulus with a single puncture on each boundary. Similar to what

we did before, we could introduce a fundamental vertex V0,{1,1}
s;0,2,0 to govern the region where

the modulus of the annulus is small. However, we face a similar problem to what we had
before. The singular annulus is part of the vertex. So we interpret again the short open
string propagation as a long closed string propagation. The master equation in that case
reads

∂V0,{1,1}
s;0,2,0 +

1

2
{V1,{1}

s;0,1,0,V
1,{1}
s;0,1,0}+ ~∆V0,{4}

s;0,1,0 = 0. (4.35)

Notice that this equation involves the open-closed vertex we already introduced before.
In general, fundamental closed strings appear only in non-planar diagrams (apart from

tadpoles). Non-planar diagrams are those surfaces having more than one boundary that has
punctures. In that case, there are regions in moduli space where the corresponding surface
connects the two boundaries by a long tube. This corresponds to a process where several
incoming open strings turn into a closed string, and then become open strings again.

This suggests that a theory with planar diagrams, i.e. diagrams where only one boundary
has punctures, may avoid the closed string, as long as we assume in addition that the gauge
group is SO(2d/2). From a topological perspective, we would restrict ourselves to surfaces
of the form

V0,{n,0,...,0}
0,b,c , b ≥ 1, c ≥ 0, (4.36)

i.e. no interior punctures (closed string states) and no genus (closed string loops). On the
other hand, we have to allow for unorientable surfaces (c 6= 0), because we need SO(2d/2)
as our gauge group.

It is actually easy restrict the self-sewing operation ∆ to produce planar diagrams. Since
boundary punctures are cyclically ordered, we have a notion on whether punctures are
next to each other. If we restrict ∆ only to sew two neighboring punctures, all additional
boundaries created in that way will have no punctures.

However, we can already see that such a theory creates closed strings at higher loops.
The reason is that any surface with genus g and at least three crosscaps c is topologically
equivalent to a surface with genus g + 1 and number of crosscaps c − 2. So at the level of
three open string loops (b = 1, c = 3) and higher, the closed string pops up again, unless
we restrict to surfaces with c ≤ 24. However, if we would do that, the tadpole anomaly

4We will see below that, in fact, we would need to restrict to surfaces with c ≤ 1
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2π

τ

Figure 4.11.: The diagram where a closed string (red) is created at one crosscap, turns
into an open string, turns into a closed string again, which ultimately gets
annihilated at another crosscap. It is normalized so that the string has length
2π and travels for proper time τ . The rectangle in the middle is the boundary
on which open string punctures sit. This diagram is needed in order to cancel
the anomaly from the surface where the closed string ends in a boundary.

appears again at three loops. For example, we need the surface with b = 1, c = 3 to cancel
the tadpole anomaly in b = 2, c = 2. We are now able to draw the main conclusion we want
to give in this section.

Conclusion 1: There is no consistent string theory with planar and unorientable diagrams
only. In particular, the closed string is necessary to obtain a consistent theory of open strings
at the quantum level.

4.6.2. The Closed String Reappearing at Two Loops

Although we already saw that it is impossible to avoid the closed string, let us nevertheless
work out a specific example. We look at a surface with b = 1 and c = 2. This surface it
automatically planar in the sense that there is only one occupied boundary. Topologically,
a surface with two crosscaps is the Klein bottle. We cut a hole in it to have a boundary
where open strings can attach.

In the moduli space of the bordered Klein bottle, we consider two regions where the closed
string goes on-shell. We begin by considering the case where the closed string is created in
a crosscap and then annihilated in another one, see figure 4.11. This is the harmless case.
In fact, we actually need it in order to cancel the tadpole anomaly which sits in the region
where τ →∞.

Figure 4.11 has a dual representation. This is similar to what we saw at one loop, where
the open string diagram could be interpreted as a diagram for a closed string. We could call
this phenomenon an open-closed duality. In this case, there is a closed-closed duality5. In
figure 4.12, we look at the picture from right to left. In this picture, the closed string makes
a loop, although there is a small difference to the case when the surface has a genus. Here,
assume that we observe the closed string at a particular moment. Then, after it made one
loop, we do not observe the original closed string, but a mirror image of it. Only after a
second loop, we observe the string in its original form. This type of surface is obtained by

5Of course, we also have an open-closed duality here. The surface could also be interpreted as a process
involving open strings. After all, this was our original motivation to consider these types of diagrams
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2π

τ

Figure 4.12.: Another interpretation of figure 4.11. In this case, the closed string (red)
travels from right to left. It length 2τ and travels for a loop with distance π.
Note that the string gets mirrored each time it makes a full loop.

sewing V2,{n}
s;0,1,0 with the operation sewc. A propagator with both ends attached to V2,{n}

s;0,1,0

accounts for the region where τ → 0. We find what we already concluded in the last section.
The closed string cannot be avoided, even when we restrict to planar diagrams.

4.7. Does the Loop A∞-algebra know about the
L∞-algebra?

We will now turn to a related problem concerning the quantum version of A∞-algebras. First
of all, let us state that the classical part of the geometric master equation when restricted to
open strings (n = 0, g = 0, b = 1, c = 0) can be equivalently stated in terms of A∞-relations.
Similarly, open string field theory can be (and often is) described in terms of an A∞-algebra.
We saw that, at the quantum level, the open string needs the closed string. So we may want
to ask the question whether the quantum A∞-algebra needs an L∞ algebra to be consistent.

Since quantum A∞-relations are known to exist, the answer is of course negative. However,
we will see (at least for some particular cases) that there is a property, which we call non-
compactness, of the quantum A∞-relations that seems to be lifted when an L∞-algebra (
“closed strings”) is included. Recall that the classical A∞-relations have a representation in
terms of polytopes. To each product mk, we associate a polytope of dimension k − 2. The
A∞-relations describe the boundary of that polytope.

The property we want to point out is that all the polytopes are topologically compact
spaces. This follows simply from the fact that all of them admit a decomposition as a finite
CW-complex. The map m2 is a point, while m3 is a line with boundary the two points
m2 ◦ (m2 ⊗ id) and m2 ◦ (id ⊗ m2). At higher levels, compactness can be deduced from
the fact that we always need to introduce only a single product mk to kill all non-trivial
homologies at one level lower. This means that the k − 2 dimensional polytope consists of
a single k − 2 face representing mk, and the boundary [d,mk], which is, by induction, also
a finite CW complex.

At the quantum level, this fails already at lowest order. Let us extend the notation to
mk,l, where k is the number of inputs and l is an internal number which we can interpret as
the number of boundaries plus one. There is only a single point ∆m2,0. We want, however,
that it has trivial homology. This means that we need to introduce a vertex m0,1. The
vertex should be such that [d,m0,1] = ∆m2,0. If we want to represent it as a topological
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space, m0,1 would be a semi-infinite line with boundary point ∆m2. In particular, it is not
compact. However, we can make it compact again by adding a point at infinity. In the
language of string field theory, the closed string provides this point. Let us write mn

k,l if

the vertex has n closed-string insertions.6 We introduce a closed string tadpole m1
0,0 and an

open-closed vertex m1
1,0. We can then define m1

1,0 ◦m1
0,0 to be the point at infinity. Then,

[d,m0,1] +m1
1,0 ◦m1

0,0 + ∆m2,0 = 0 (4.37)

shows that the boundary of m0,1 has two points and is therefore a finite line.
The introduction of an L∞-algebra as part of our quantum A∞-algebra made the vertices

again compact. We now argue that we can expect that this phenomenon continuous to
exist at higher orders from what we know from string theory. There, the points at infinity
parametrize singular surfaces which would signalize that the open-string vertices suffer from
UV divergences. The closed string then removes the singular surfaces (points at infinity)
from the vertex regions. The regions covered by the fundamental vertices become compact.
Of course, the singular surfaces did not disappear. They are now covered by diagrams
involving closed string propagators. However, they are no longer part of any fundamental
vertex.

This undoubtedly has an important physical significance. After all, it is what makes string
theory free from UV divergences. On the other hand, it is not known to the author whether
this has any mathematical significance. It may be that finite CW complexes as models are
better behaved from the perspective of homotopy theory.

6We want to emphasize that the analysis here is independent of string field theory. We will nevertheless
use the string theory language for convenience, since we are already familiar with it.
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In this chapter we explore the possibility of a quantum theory of planar graphs. We did not
succeed in the case of open-string field theory because of the presence of unoriented strings.
For gauge field theories it is known however that in the limit where the gauge group becomes
large, the planar Feynman diagrams survive. This called the large N -limit. Again, in string
field theory we cannot take this limit because we are forced to work with SO(2d/2). Despite
that, we may hope that we obtain a planar theory in the large N -limit of generic quantum
field theories.

5.1. (Co-)derivations in Higher Orders for Noncommutative
Algebras

We want to mimic the bar construction of quantum L∞-algebras as it is described in section
3.6. In order to do this, we need a good notion of higher order (co-)derivations over non-
commutative algebras, in particular in the case of the free tensor algebra T̂ (V ) and coalgebra
T c(V ). The approach we take below is motivated by the following observation in the case
of the commutative tensor algebra Ŝ(V ). If we define derivations and coderivations in the
Koszul sense (definition 3.6.1), we have the following symmetry (see for example [21]). A
coderivation of arbitrary order with k inputs is an order k derivation. Likewise, a derivation
of arbitrary order with l outputs defines a coderivation of order l. For the simplest case,
this also holds automatically for derivations on the tensor algebra T̂ V . The coderivation lift
of a linear map δ : V → V is indeed a derivation with respect to the tensor product. We
would like to have a definition where this holds true also for higher order (co-)derivations
over ŜV .

We give a first definition. At the moment we still work in the realm of general non-
commutative algebras. We will later restrict our attention to the free tensor algebra.

Definition 5.1.1. Given an algebra A over C. Let δ ∈ LinC(A,A). We associate to δ a
collection of multilinear maps Bk(δ) : A⊗k → A, where k ≥ 1, inductively defined as follows.
We set B1(δ)(f) = δ(f), while we demand the higher maps to satisfy

B1(δ)(f1 · · · fn) =

n∑
l=1

n−l∑
i=1

(−)δ(f1+...+fi−1)f1 · · · fi−1Bl(δ)(fi, ..., fi+l)fi+l+1 · · · fn, (5.1)

for any f1, ..., fn ∈ A. We call δ a derivation of order k if Bk+1(δ) = 0 on all non-invertible
elements.

We will see below why we test the Bk only on non-invertible elements to find a proper
notion of order. The rule (5.1) is in a sense a generalization of the Leibniz rule. We view
δ : A → A as acting via the Leibniz rule in a first iteration. The higher products Bk(δ)
provide corrections to this rule. They also act via some kind of Leibniz rule, but instead
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they take multiple arguments at a time, instead of only one. This is reminiscent of the way
a coderivation with k inputs acts.

Another definition for higher order derivations in the purely associative case has already
been given before in [16], see also [69, 70]. In [16], each Bk(δ) was purely defined in terms
of δ.

B1(δ) = δ, (5.2)

B2(δ)(f1, f2) = δ(f1f2)− δ(f1)f2 − (−)f1δf1δ(f2), (5.3)

For k ≥ 3 the formula is

Bk(δ)(f1, ..., fk) = δ(f1 · · · fk)− δ(f1 · · · fk−1)fk − (−)f1δf1δ(f2 · · · fk)

+ (−)f1δf1δ(f2 · · · fk−1)fk. (5.4)

In [69], these maps were called Börjeson braces, after the author of [16]. The definition just
given has the advantage that it is more robust, since all braces are defined with respect to δ.
In contrast, from (5.1) it is not obvious whether or not it constrains some of the products to
be zero due to their interdependence. However, the two definitions are actually equivalent.
We will show that Börjeson’s definition is equivalent to (5.1).

Proposition 4. The Börjeson braces, as defined in equations (5.2−5.4), satisfy (5.1). The
other way around, any set of maps satisfying (5.1) are necessarily of the form (5.2 - 5.4).

Proof. We show this by induction. By definition, the Börjeson braces satisfy (5.1) when
n ∈ {1, 2}. Suppose that all the Börjeson braces Bk(δ)(f1, ..., fk) satisfy (5.1) for k ≤ n.
The induction step simply amounts to showing that certain sums partially cancel. We have

B1(δ)(f1 · · · fn+1) = Bn+1(δ)(f1, ..., fn+1) + δ(f1 · · · fn)fn+1 + (−)f1δf1δ(f2 · · · fn+1)

(5.5)

− (−)f1δf1δ(f2 · · · fn)fn+1 (5.6)

= Bn+1(δ)(f1, ..., fn+1) (5.7)

+

n∑
l=1

n−l∑
i=1

(−)m(f1+...+fi−1)f1 · · · fi−1Bl(δ)(fi, ..., fi+l)fi+l+1 · · · fn+1

(5.8)

+

n∑
l=1

n+1−l∑
i=2

(−)m(f1+...+fi−1)f1 · · · fi−1Bl(δ)(fi, ..., fi+l)fi+l+1 · · · fn+1

(5.9)

−
n∑
l=1

n−l∑
i=2

(−)m(f1+...+fi−1)f1 · · · fi−1Bl(δ)(fi, ..., fi+l)fi+l+1 · · · fn+1

(5.10)

=

n+1∑
l=1

n+1−l∑
i=1

(−)m(f1+...+fi−1)f1 · · · fi−1Bl(δ)(fi, ..., fi+l)fi+l+1 · · · fn+1.

(5.11)
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Hence also B1(δ) satisfies (5.1).
On the other hand, reading the above computation backwards shows the other direction.

In [16] it was proven that the Bk(δ), defined as maps A⊗k → A over some algebra A, form
an A∞-algebra over A, if they are generated by a δ such that δ2 = 0. The fact that this is
true may be reason to consider them as a good definition. Their commutative counterpart,
the Koszul braces, can be shown to form an L∞-algebra (c.f. [69]).

Other useful identities arise when one tries to express Bk(δ) purely in terms of Bk−1(δ).

Lemma 5. The following identities hold.

B2(δ)(f, g) = B1(δ)(fg)−B1(δ)(f)g − (−)fδfB1(g)

B3(δ)(f, g, h) = B2(δ)(f, gh)−B2(δ)(f, g)h = B2(δ)(fg, h)− (−)fδfB2(δ)(g, h)

Bk+2(δ)(f0, f1, ..., fk, fk+1) = B3(δ)(f0, f1 · · · fk, fk+1),

= Bk+1(δ)(f0, ..., fk · fk+1)−Bk+1(δ)(f0, ..., fk)fk+1,

= Bk+1(δ)(f0 · f1, ..., fk+1)− (−)f0δf0Bk+1(δ)(f1, ..., fk+1),

where k ≥ 1.

We don’t give a proof for these statements. The above relations explain why we want
to restrict to test only on non-invertible elements. Otherswise a derivation is not of second
order, i.e. B3 6= 0, the higher braces Bk(δ) will also be non-zero when applied to units, since

Bk+2(f, g, 1, ..., 1, h) = B3(f, g, h) for any k ≥ 1. (5.12)

There exists a quite brutal way to include invertible elements. This is done by considering
augmented algebras. If A is an algebra over a field k, we call a homomorphism ε : A→ k an
augmentation if it satisfies ε ◦ η = idk, where η : k→ A is the homomorphism representing
the unit in A. The augmentation allows us to project out the invertible part of an element
through the projector P = idA− η ◦ ε. We then could consider the braces Bk(δ) ◦P⊗k. The
drawback of this is that it yields more complicated relations than those given in lemma 5.
This is also the reason why we don’t want to consider this approach.

Remark 5.1.1. The condition for zero order derivations, B1(δ)(f) = δ(f) = 0, naively
does not seem to allow non-trivial order zero derivations. However, since we only test on
non-invertible elements, a map which is non-zero only on invertible elements is technically
of order 0. At first glance, this seems to be highly artificial. But, as we will see below, these
fit nicely into the classification of derivations on tensor algebras.

Remark 5.1.2. As we mentioned in the end of section 3.6.1, in the commutative case, zero
order derivations act by multiplication. In our case, multiplication from the left or from the
right is of order two.

Next we show that, like in the commutative case, derivations are closed under taking
commutators.

Proposition 5. Given an algebra, A, the spaces Derk(A) satisfy

[Derk(A),Derl(A)] ⊆ Derk+l(A), (5.13)

where the commutator is graded, i.e. [δ1, δ2] = δ1 ◦ δ2 − (−)δ1δ2δ2 ◦ δ1.
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Proof. Let δ1 and δ2 be a pair of linear maps on A. Using (5.1), a straightforward compu-
tation shows that

Bn([δ1, δ2]) =
∑

{(s,t)|s+t=n+1}

s+1∑
i=0

Bs(δ1)(id⊗i ⊗Bt(δ2)⊗ id⊗(s−i−1))− (−)δ1δ2(δ1 ↔ δ2).

(5.14)
In the following, we ignore the part of the commutator where the roles of δ1 and δ2 are
interchanged, since the argument for this part works along the same lines as below. Assume
n ≥ k + l. We necessarily need s > k or t > l to satisfy the constraint in the above sum.
Hence, if δ1 ∈ Derk(A) and δk ∈ Derl(A), the terms in the sum are zero when applied to
non-invertible elements, except for one case we now describe. Take s = k+ 1 and t = l. The
value of Bl(δ2) may be invertible. Hence, we cannot guarantee that

Bk+1(δ1)(id⊗i ⊗Bl(δ2)⊗ id⊗(s−i−1)) (5.15)

is always zero. On the other hand, the case s = k + 2, t = l will always give zero, since
Bk+2(δ1) = 0 when applied to a set of elements with at most one of them non-invertible.
This can be seen by using the formulas given in lemma 5 together with the fact that the
product of an invertible element with a non-invertible element is always non-invertible. We
can therefore conclude that Bn([δ1, δ2]) = 0 whenever n ≥ k + l + 1. By definition, this
means that [δ1, δ2] is of order k + l.

Remark 5.1.3. The anomalous behavior of the braces with respect to invertible elements
leads to a mismatch between the commutative and non-commutative versions of the above
proposition. Its commutative version reads

[Derk(A),Derl(A)] ⊆ Derk+l−1(A). (5.16)

In our case, this rule is only satisfied generally when k, l ∈ 1, 2. For k = l = 1, this is
not surprising, since (order one) derivations form a Lie algebra, even over non-commutative
algebras.

We now turn to the case when A = T̂ V . Using the relations we derived above, we can
give a concrete description of derivations of some order k. We know that Derk(T̂ V ) ⊆
Derk+1(T̂ V ), so whatever we call derivation of order k is also a derivation of order l > k. To
really distinguish derivations of different orders, we can look at the quotients sDerk(T̂ V ) =
Derk(T̂ V )/Derk−1(T̂ V ), which we call the space of strict derivations of order k. We will
show the following.

Proposition 6. The quotient sDerk(T̂ V ) is isomorphic to the space {δ ∈ Derk(T̂ V ) | δk(f) =
0 for all f ∈ T<kV }. We further have sDerk(T̂ V ) ∼= hom(V ⊗k, T̂ V ).

Proof. The statement of the proposition is trivially true for k = 0. Suppose δ is of order
k ≥ 1. We can define a derivation δk of order k by the formula

δk(a1⊗· · ·⊗an) =

n−k∑
i=0

(−)l(a1+...+ai)a1⊗· · ·⊗ai⊗Bk(δ)(ai+1, ..., ai+k)⊗ai+k+1⊗· · ·⊗an.

(5.17)
We also define it to be zero on less than k generators, so it has the property given in the
lemma. To proof that δk is of order k it suffices to show that Bl(δk) is zero on generators for
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all l > k, since we can always write Bl(δ)(f1, ..., fk+1) as superposition over TV of higher
braces acting on generators. We are left to compute

Bl(δ)(a1, ..., al) = δk(a1 · · · an)− δk(a1 ⊗ · · · ⊗ an−1)an − (−)δka1a1δk(a2 ⊗ · · · ⊗ an)
(5.18)

+ (−)δka1a1δk(a2 ⊗ · · · ⊗ an−1)an, (5.19)

which is straightforward to check that this vanishes whenever n > k. Note that δk(a1 · · · ak) =
Bk(δk)(a1, ..., ak), so it is not of order lower than k unless δ was of order lower than k.
The next step is to prove that δ − δk is of order k − 1. This follows immediately, since
Bl(δ− δk) = Bl(δ)−Bl(δk), and this difference is zero on generators for all l ≥ k. Therefore
it is zero on all inputs by the same argument as before.

The above proves that we can write any order k ≥ 1 derivation δ as δ = δk + δ′, where
δ′ ∈ Derk−1(TV ). We are left to show that all derivations in {δ ∈ Derk(T̂ V ) | δk(f) =
0 for all f ∈ T<kV } act like (5.17). Assume we have such a δ. Substract δk, which we define
using (5.17). Again, write δ− δk = B1(δ)−B1(δk) as a superposition of Bl≥1 on generators.
But these vanish, since for l < k, they are zero by definition of δ and δk, while for l ≥ k,
they are zero since δ − δk is of order k − 1. This proves that

sDerk(TV ) ∼= {δ ∈ Derk(TV ) | δk(f) = 0 for all f ∈ T<kV }. (5.20)

The isomorphism sDerk(T̂ V ) ∼= hom(V ⊗k, T̂ V ) is an immediate consequence.

Proposition 6 provides a complete characterization of the space Dern(T̂ V ). We have
Dern(T̂ V ) =

⊕n
k=0 sDerk(T̂ V ). A strict derivation of order k ≥ 1 is a map δk : V ⊗k → T̂ V ,

acting on T̂ V via formula (5.17). We also give another formula. Given a map f : V ⊗k → T̂ V ,
we can think of it as a map f : T̂ V → T̂ V by extending it to zero on all powers different
from k. We define D(f) ∈ Derk(T̂ V ) by

D(f) = ∇3 ◦ (idT̂ V ⊗ f ⊗ idT̂ V ) ◦∆3. (5.21)

It is straightforward to check that this reproduces (5.17). A remarkable feature of this
formula is that it is obviously invariant under taking its dual. This already hints to the
fact that there will be a duality between higher order derivations of the tensor product and
higher order coderivations of the tensor coproduct.

Remark 5.1.4. The commutative counterpart to this is a map f : V �k → SV , acting on
SV as

f = fi1...ik(a)
∂

∂ai1
· · · ∂

∂aik
. (5.22)

Here, a strict order k derivation is generated by kth powers of ordinary derivations. This
does not hold in our case. The action of the kth power of first order derivations over T̂ V
will generically not look like (5.17).

We should also discuss order zero derivations on T̂ V . As pointed out, these are maps
which are non-zero only on invertible elements. The invertible elements of T̂ V are exactly
those f ∈ T̂ V who satisfy π0(f) 6= 0, where π0 : T̂ V → C is the canonical projection. In
other words, they are the elements with non-zero constant part. Observe that to actually
have non-trivial order zero derivations, it is important to work on the completed T̂ V instead
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of TV . In TV , the only invertible elements are the constants. But these can always be
written as a sum of non-constant elements, e.g. 1 = (1 + x) − x, for some non-zero x ∈ V .
Using linearity, we could then conclude that order zero derivations are zero also on constants.

A contrary approach to order zero derivations would be to use (5.21) to define order zero
derivations as lifts of maps C → T̂ V . The statement of proposition 6 would then still be
true. It is, however, not possible to give a linear brace B1(δ) so that a lift δ0 under (5.21)
ever satisfies B1(δ) = 0. The most general expression for B1 we can write is

B1(δ)(a) = Xδ(a) + Y aδ(1) + Zδ(1)a, X, Y, Z ∈ C, (5.23)

as long as we want to preserve linearity in both arguments. But this does never vanish on
δ0, unless B1 = 0 or δ0 = 0 of course. On the other hand, δ0 satisfies B2(δ0 − δ0(1)) = 0,
so we can implement them by broaden our notion of order one derivations. Since this is
also considered for derivations on commutative algebras (see the end of section 3.6.1) this
appears to be a natural thing to do.

Fortunately, this does not destroy the hierarchy among derivations. Using the broader
notion of first order derivations, we still have Der1(A) ⊆ Der2(A). In fact, applying the shift
δ 7→ δ − δ(1) to the higher braces doesn’t do anything.

As it turns out, any linear map δ : T̂ V → T̂ V can be approximated by a sum of strict
derivations.

Corollary 4. Let δ ∈ Lin(T V̂ , T V̂ ). Then we can write

δ =

∞∑
k=0

δk, (5.24)

with δk ∈ sDerk(T V̂ ). The limit is taken pointwise.

Proof. Let δ0 be the map acting by multiplication of δ0(1) on C ⊆ T̂ V . Further, define δk≥1

via formula (5.17). Consider the difference

sn = δ −
n∑
k=0

δk. (5.25)

Using (5.1) it follows immediately that sn(a1 · · · ak) = 0 for all k ≤ n and ai ∈ V . Observe
that for any set of elements a1, ..., ak ∈ V , sn(a1⊗ · · · ⊗ ak) = 0 for n > k. This means that
lim

n→∞ sn(f) = 0 for any f ∈ T̂ V in the topology of T̂ V . Therefore,
∑n
k=0 δk converges

pointwise to δ.

We are finally able to give a definition of higher order coderivations over T c(V ), which
was the original goal of this section. We dualize Börjesons definition (5.4) instead of (5.1),
since the former leads to shorter expressions.

Definition 5.1.2. Given a linear map δ : T c(V ) → T c(V ), we define a collection of linear
maps Bk(δ) : T c(V )→ T c(V )⊗k, k ≥ 2 by the formula

Bk(δ) = ∆k ◦δ− (id⊗∆k−1 ◦δ)◦∆2− (∆k−1 ◦δ⊗ id)◦∆2 +(id⊗∆k−2 ◦δ⊗ id)◦∆3. (5.26)

We call δ an order k coderivation if Bk+1(δ) is zero when projected onto T c0 (V )⊗· · ·⊗T c0 (V ).1

In the case of k = 1, we obtain the usual notion of a coderivation. The space of order k
coderivations on T c(V ) is denoted by Coderk(TV ).

1This is dual to testing the Börjeson only on non-invertible elements.
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The properties of higher order coderivations in thise sense follows from dualizing the
statements about derivations. In particular, we have the following.

Corollary 5. There is an isomorphism hom(TV, V ⊗k) ∼= sCoder(TV ). The isomorphism
is realized by

f 7−→ D(f) = ∇3 ◦ (idTV ⊗ f ⊗ idTV ) ◦∆3. (5.27)

As noted before, there is an obvious duality between derivations on coderivations.

Corollary 6. Given a map f : V ⊗k → V ⊗l, k, l ≥ 1. f defines both a strict derivation of
order k and a strict coderivation of order l via the lift (5.27).

5.2. Some Examples of Derivations in Higher Orders

We want to discuss some examples of higher order derivations on T̂ V . Of course, the
reader can construct an infinite number of examples using (5.27). We will therefore consider
examples which are not of this form in an obvious manner.

The first type of map we consider is left/right multiplication by an element in X ∈ T̂ V .
Let LX : T̂ V → T̂ V be X acting by left multiplication. It is immediately obvious that LX
is neither of order zero nor of order one. Let us check whether it is of order 2. We compute

B3(LX)(f, g, h) = Xfgh−Xfgh− (−)XffXgh− (−)−XffXgh = 0. (5.28)

We see that LX is in fact of order 2. The same is true for right multiplications. We find
this example particularly interesting since (left) multiplication is what is usually considered
to be of order 0 when working with commutative algebras.

According to our analysis, we should be able to write LX as a sum of strict derivations.
In order zero, it obviously acts as

1 7→ X, (5.29)

and zero on V ⊗k≥1. In order one, it acts on a ∈ V as

a 7→ X ⊗ a, (5.30)

and extended as a derivation on all of T̂ V . If X = x1 ⊗ · · · ⊗ xk, we may draw this
diagrammatically as

a

x1 x2 xk a
· · ·

(5.31)

In order two, its action is defined using the bilinear brace B2. It is

B2(LX)(a1, a2) = Xa1a2 −Xa1a2 − (−)a1Xa1Xa2 = −(−)a1Xa1Xa2. (5.32)

Pictorially,

−

a b

a x1 xk b
· · ·

. (5.33)
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Another example we want to have a look at is the following. Let again X ∈ T̂ V . When
we think of it as a map C → T̂ V , we can lift it using (5.27). We denote the lift by D(X).
It acts on generators as

D(X)(a1 ⊗ · · · ⊗ an) =

n+1∑
i=0

(−)X(a1+...+ai−1)a1 ⊗ · · · ⊗ ai−1 ⊗X ⊗ ai ⊗ · · · ⊗ an. (5.34)

We have Bk≥3(D(X)) = 0, which is straightforward to check on generators using (5.34).
Therefore, D(X) is of degree 2. The splitting into strict derivations turns out to give almost
the same as the splitting of LX . In fact, B2(LX) = B2(D(X)). They only differ in order 1,
where D(X) acts as

a

x1 x2 xk a
· · ·

+

a

a x1 x2 xk
· · ·

. (5.35)

This shows where equation (5.27) does not meet the expectation that a function V ⊗k → T̂ V
lifts to a derivation of order k also in the case k = 0.

5.3. The Anomalous Behavior of the Braces with Respect
to Invertible Elements

We saw in 5.1 that, in order to obtain a good notion of higher order derivations, we need
to restrict the vanishing condition of the braces to non-invertible elements. This was due to
the fact that Bk(g, 1, ..., 1, h, l) = B3(g, k, l). This also lead to the observation that

[Derk(A),Derl(A)] ⊆ Derk+l(A), (5.36)

while we would expect Derk+l−1(A) on the right hand side in analogy to what happens for
derivations over commutative algebras.

We would avoid all this trouble if we would restrict to algebras without units. We would
never need to mention the phrase “on non-invertible elements”. On top of that, we would
indeed have

[Derk(A),Derl(A)] ⊆ Derk+l−1(A). (5.37)

Also, for A = T̂0V :=
∏
k≥1 V

⊗k, formula (5.27) would apply without the exception of lifts

of maps C→ T̂ V .
There is, however, a reason why we will work on T̂ V instead of T̂0V (dually, we work on

T c(V ) instead of T c0 (V )). We obviously would exclude derivations with non-zero image in
C ⊆ T̂ V . Even when we are willing to pay that price, there is also an issue on the coalgebra
side. The dual notion of a derivation with image in C is the lift of an element X ∈ T c(V )
under (5.27). This would actually restrict to a map T c0 (V ) → T c0 (V ), so it would not be
excluded from the start. However, it will not be a coderivation of any definite order. On
the other hand, it would have a finite order on T c(V ) according to corollary 6. The reason
for this is that when switching from T c(V ) to T c0 (V ), one needs to replace the coproduct ∆
in the definition of the co-Braces Bk with the reduced coproduct ∆. This already happens
when one only considers order 1 coderivations defined by elements m0 ∈ V , as one would
for weak A∞-algebras.
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Figure 5.1.: A planar graph. In this way we may display a connected contribution obtained
by repeated application of four coderivations.

5.4. Definition of Planar Quantum Homotopy Algebras

We now come to the definition of what we would call a planar quantum homotopy algebra.

Definition 5.4.1. A planar quantum homotopy algebra on a graded vector space V consists
of a degree one linear map D on T c(V ) of the form

D ∈
∞∏
k=0

~k Coderk+1(TV ) (5.38)

such that D(~ = 0)|V 0 = 0 and D2 = 0.

The coderivation lift from corollary 5 makes it apparent why it is natural to interpret
coderivations as planar graphs. Given an element v1 ⊗ · · · ⊗ vn and a map f : V ⊗k → V ⊗l,
the coderivation lift of f acts as

v1⊗· · ·⊗vn 7→
n−k+1∑
s=0

(−)(v1+...vs−1)fv1⊗· · ·⊗vs−1⊗f(vs, ..., vs+k−1)⊗vs+k⊗· · ·⊗vn. (5.39)

In figure 5.1 shows how parts of the composition of four coderivations are depicted. We now
would like to introduce an operation that is similar to the second order coderivation entering
loop L∞-algebras. The natural candidate is ω−1 = e∗i ⊗ ei, or rather its lift θ = D(ω−1)
to a second order coderivation. An argument on why θ is a likely candidate comes from
what we know from string field theory. Recall that empty boundaries are created from ∆
whenever it connects neighboring punctures on a single boundary. But this is precisely what
θ does. With this settled, let us mimic definition 3.6.4. Given a differential graded vector
space (V,d) and a first order coderivation M(~) on T c(V ), we would like to impose

(D(d) +M(~)− i~θ)2 = 0. (5.40)

Now since D := D(d) + M(~) − i~θ is of order two, its square D2 = 1
2 [D,D] is at most of

order four by the dual of proposition 5. Here, we cannot avoid the anomalous behavior of
our definition of higher order coderivations. The problem is that θ is a lift of an element of
T c(V ), i.e. it is a map with no inputs. But the fact that D2 is generally of order four reveals
another problem. The only order four contribution comes from θ2. Hence, a necessary
condition for (5.40) to hold is that θ to square to zero. But it is easy to see that this is not
the case. In fact

θ2 = D((−)e
∗
i e∗i ⊗ e∗j ⊗ ej ⊗ ei). (5.41)
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We find that it is not possible to obtain a planar quantum version of A∞-by adding an
operation that creates loops by connecting neighboring inputs. On the other hand, we may
still consider 5.4.1 as a good definition. However, it is most likely that this is too general in
order to have a good application in any form of quantum field theory.

5.5. The Large N Limit

Let us now take another route and explore the large N limit of a Yang-Mills in the color-
ordered language. We may be lucky and obtain a good notion of a planar quantum algebra
by considering the N → ∞ limit of the full non-planar algebra. Let us first recall why
only planar Feynman diagrams survive in that limit. In the A∞ formulation of Yang-Mills,
vertices come accompanied by traces

trf (TATBTC), trf (TATBTCTD), (5.42)

where the TA are a basis for the Lie algebra normalized such that

trf (TATB) =
1

2
δAB . (5.43)

By trf , we mean that the trace is taken in the fundamental representation. This is just a
choice of inner product on the Lie algebra. Whenever there is a propagator connecting two
legs, the Lie algebra matrices are identified an summed over. For example, connecting two
cubic vertices leads to expressions like

tr(TATBTC) tr(TCTDTE). (5.44)

Suppose now for a moment that we work with U(N). In evaluating the traces above, we use
the Fierz identity

TA
abTA

cd =
1

2
δadδbc. (5.45)

We now use the double line notation of ’t Hooft to display this identity graphically.

a d
b c

(5.46)

The lines represent the delta functions. Let us do a similar thing for other gauge groups. If
we consider SU(N) instead, the Fierz identity is

TA
abTA

cd =
1

2
δadδbc − 1

2N
δabδcd. (5.47)

In this case, we would draw

a d
b c

− 1

N
a d
b c

. (5.48)

Another interesting case is SO(N). We have

TA
abTA

cd =
1

2
δadδbc − 1

2
δacδbd. (5.49)
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In the double line notation, this is

a d
b c

− a d
b c

. (5.50)

At this point, we can draw a connection to open-string theory. We can think of the two lines
as actual boundaries of a strip. The propagator in the U(N) case is just the strip. On the
other hand, if we work with SO(N), we add a twisted propagator. This is the equivalent to
the twist sewing producing the unoriented surfaces in open-string theory.

We represent an external state with matrix TA
ab by

A
a

b
(5.51)

In this picture, let us evaluate the four-point scattering with cubic vertices at tree level. We
write (5.44) in components,

TA
abTB

bcTC
caTC

deTD
efTE

fd =
1

2
TA

abTB
bcTD

cfTE
fa − x

2
TA

abTB
bcTTE

cf
TTD

fa
(5.52)

=
1

2
trf (TATBTDTE)− x

2
trf (TATBT

T
E T

T
D). (5.53)

Here, x = 0 for U(N) and x = 1 for SO(N). We denoted by AT the transposed of a matrix
A. Diagrammatically, this is

B

A E

D

− x

B

A E

D

. (5.54)

Whenever fundamental indices (small letters) are contracted, we connected them by a single
line. The pictures in the above equation are again very reminiscent of what we saw in string
theory. Both pictures look topologically like a disc with four open strings attached to its
boundary. Also, we notice that the states D and E enter with inverse orientation in the
second diagram relatively to how the enter in the first. This is of course just a way to
say that the matrices TD and TE get transposed. On the other hand, since we obtain this
contribution only in the SO(n) case, we have that TTD = −TD and TTE = −TE . We could
say that the states in SO(n) are twist invariant (up to a sign). This is also the case in open
string theory. In unoriented string theory, we only allow for twist invariant states (c.f. [74]).

In the large N limit, all of the diagrams discussed above enter equally, since at no point
did we pick up a factor trf (1). In the double line picture, there was no free boundary, i.e.
no closed single-line loop. The pictures in (5.54) are straightforwardly generalized to tree
level amplitudes with any number of external states. It is easily seen that no free boundaries
appear along that way. Things change when we include loops. We consider the group theory
factor in the gluon self-energy. It is

trf (TCTATD) trf (TCTBTD) + trf (TCTDTA) trf (TCTBTD) =: A1 +A2. (5.55)

113



5. A planar quantum A∞-algebra

We evaluate A1 and A2 with the help of the Fierz identities. We find

A1 =
1

4
trf TA trf TB −

x

2
trf (TAT

T
B ) +

x2

4
trf (1) trf (TATB), (5.56)

A2 =
1

4
trf (1) trf (TATB)− x

2
trf (TAT

T
B ) +

x2

4
trf (TA) trf (TB). (5.57)

Like before, x = 0 is U(N) and x = 1 is SO(N). In both cases, we have a contribution that
scales with N . Their origin become clear in the double line notation.

trf TA trf TB =

B

A
=

B

A

, trf (TAT
T
B ) =

B

A

,

(5.58)

trf (1) trf (TATB) =

B

A

=

B

A
. (5.59)

We observe the following. In trf (A)trf (B) we have two disjoint boundaries. One is ending
in the external state A, the other one in B. These give the traces over A and B. Further,
we see that trf (ABT ) has only a single boundary with both states A and B attached. At
last, there is also trf (1) trf (AB). It has two boundaries, and one of them has no external
state attached. Therefore, this last one is the only one that scales with N . The structure
is clearly the same as in open-string theory at one-loop. There is a planar, an unorientable
and a non-planar diagram.

We now combine A1 and A2 and find

A1 +A2 =
N

4
(1 + x2) trf (AB)− x trf (ABT ) +

1

4
(1 + x2) trf (A) trf (B). (5.60)

Note that, apart from a factor of two, the only difference between U(N) and SO(N) is
the unorientable diagram. This one gets suppressed along with the non-planar diagram
when we send N to infinity. So for large N , the theories with gauge groups U(N) and
SO(N) essentially become the same (apart from the fact that U(N) has more gauge bosons
than SO(N) at fixed N). This also holds at higher loop level. Unorientable diagrams will
always come with fewer traces and will therefore always be suppressed. The dominating
contribution will always come from a diagram with maximal number of traces (boundaries)
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5.5. The Large N Limit

and such that only one boundary is occupied with external states. Both SO(N) and U(N)
have these. Therefore, in the following we can pretend to work with U(N) without loosing
anything interesting.

Let us now consider gauge theory as a full quantum A∞-algebra and see what happens
to the quantum A∞ relations when we take the limit N → ∞. We use the definition we
gave in section 3.6.3. A general quantum A∞-algebra has products with internal loops, i.e.
products which inherently involve multiple traces, including “empty” traces trf (1). Out of
these, only the planar products will survive the large N limit. For example, let us consider
quartic one-loop vertices with group theory factors

f2,2 = trf (AB) trf (CD), and f4,0 = trf (1) trf (ABCD). (5.61)

When N → ∞, f2,2 becomes negligible. In a large N limit of quantum A∞, we therefore
simply discard f2,2. We also assume that the theory satisfies the quantum master equation
for all N . It follows that

Qf +
1

2
{f, f} − i~∆(f) = 0. (5.62)

is also true when N →∞. There is, however, one crucial difference between taking the large
N on the products and the large N on the relations. The relations involve ∆. Let us take
a look again at f2,2, the product we discarded previously. Before taking the planar limit, it
enters into the master equation. The action of ∆ identifies inputs pairwise. We obtain

∆(f2,2)(AB) = 2 trf (ATC) trf (BTC) + 2 trf (TCTC) trf (AB) = trf (AB) +N2 trf (AB).
(5.63)

Both contributions only have a single occupied boundary. However, the first one was ob-
tained by identifying two seperate boundaries. From the perspective of string field theory,
we would say that this vertex has a genus. So there is only a single boundary which is
occupied by two fields, and no empty boundary that would contribute a factor of N . On the
other hand, identifying two legs on the same boundary led to a quadratic sacling in N . We
created a new boundary by identifying two adjacent fields on a single boundary. Moreover,
by removing all fields from one of the original boundaries, we created another free boundary.
This is problematic. In the large N limit of the master equation, we would no longer discard
the factor N2 trf (AB). Also, in general it is needed to cancel contributions coming from
both {f, f} and df . Consider f1,2(A,B,C) = trf (A) trf (BC) and f1,0(A) = trf (1) trf (A).
{f1,0, f1,2} then would have a contribution of the form N2 trf (AB). At the same time, a
fundamental vertex f2,0,0 = N2 trf (AB) would also contribute via df2,0,0. If we would only
have a contribution from {f1,0, f1,2}, the large N limit would not be problematic, since we
would also discard f1,2 from the start. But a non-zero f2,0,0 would survive N →∞.

We find that, in order to have a planar solution to the quantum master equation, we
should at least have dg = 0 for all planar vertices g with internal loops. However, such a
solution would in most cases be useless from the perspective of homotopy theory. We may
want to apply a homotopy transfer in order to integrate out some fields. But also, as we
have seen, we can use the homotopy transfer to regularize the theory. But we cannot expect
that the condition dg = 0 is preserved under homotopies.

The difficulties we observed here are actually related to the problem that θ2 6= 0 we found
in section 5.4. Graphically, we would draw this as a double arc,

θ2 = . (5.64)
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5. A planar quantum A∞-algebra

Its action on a vertex M : V ⊗n → V can be expressed in terms of commutators,

[θ, [θ,M ]] =
1

2
[[θ, θ],M ] = [θ2,M ]. (5.65)

Let us display this as a sequence of applications on a five-point vertex.

7−→ 7−→ . (5.66)

There are of course also contributions where θ connects other inputs, but these add up to
zero after θ acts the second time. In the non-planar sector, we obtain another contribution
in the following way.

7−→ 7−→ . (5.67)

By degree reasons, this exactly cancels (5.66). Notice that the product appearing in the
intermediate step of (5.67) is non-planar. It has two boundaries, one has two inputs, while the
other one has only one. The final step then restored planarity of the product by connecting
the legs on the two-input boundary. This process created two free boundaries at a time in
the same way we obtained two powers of N by a single application of ∆. The absence of
this process in a planar theory leads to a violation of both the quantum master equation
(5.62) and to the condition we proposed previously in (5.40).

5.6. Gauge Invariance of Planar Amplitudes

We gave several arguments why a consistent planar subsector of loop A∞-algebras does not
exist. So does this mean that one should abandon the planar limit all together? In the
literature, the planar limit is usually taken at the level of amplitudes. One consistency
condition for the amplitudes is gauge invariance. Recall that amplitudes can be obtained
as the minimal model of homotopy algebras. In the particular case of loop L∞-algebras,
the chain map between a theory and its minimal model is the perturbative path integral,
as we saw in section 3.4.1. However, this form of the amplitudes does not allow for a
check of gauge invariance, since the fields are already restricted to cohomology of the linear
differential Q. We therefore need amplitudes that are defined on Q-exact states (at least). A
straightforward way to do this is to remove the projector p and the inclusion i from external
legs. As a reminder, we recall that the maps p and i entering the definition of the minimal
model are parts of a homotopy equivalence

i : (H(V ), 0) � (V,Q) : p. (5.68)

between a differential graded vector space (V,Q) and its cohomology H(V ). In this way,
amplitudes are even defined on unphysical states (states that are not Q-closed). In this
setup, gauge invariance of amplitudes amounts to showing that amplitudes are invariant
under Q-exact shifts

φ 7→ φ+Qλ. (5.69)
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5.6. Gauge Invariance of Planar Amplitudes

To lowest order, this is equivalent to saying that amplitudes, when expressed as maps Γ :
T c(V )→ V , commute with Q. Hence, gauge invariance is proven by showing that [Q,Γ] = 0.

Without any further assumptions, [Q,M ] = 0 is generally not true even when a theory is
gauge invariant by conventional means. The crucial assumption we need is that amplitudes
vanish when one propagator (homotopy h) is replaced by the projector i ◦ p. For example,
this is generally is believed to be true in string theory, where amplitudes are assumed to
vanish in the infrared limit of the moduli space. We want to stress that certain graphs do
not need to vanish individually under h 7→ i ◦ p, but only their sum has to.

We now want to show that planar graphs are indeed gauge invariant. However, we make
two rather strong simplifications. First of all, we consider a theory with cubic vertices only.
This implies that we never have to consider the effect of [Q, ·] on vertices. All non-zero
contributions come from [Q, ·] acting on a homotopy h. The second simplification deals
with the action on the homotopy. We assume that graphs vanish individually under the
replacement h 7→ i ◦ p. The net effect is that whenever we have a [Q, h] = 1− i ◦ p, we can
drop the i ◦ p.

Planar graphs are defined according to the following recursive definition

Γ

· · ·
=

m2

1+hΓ 1+hΓ

· · · · · ·

+

· · ·

m2

1+hΓ h . (5.70)

The initial condition is Γ = 0. From that on, we grow the graph by repeatedly applying the
rule (5.70).

The first thing we need to proof is cyclicity.

Proposition 7. Assuming that the cubic vertex m2 is cyclic, the graphs defined via (5.70)
are also cyclic.

Proof. We prove this by induction over the number of vertices n. For n = 1, the only graphs
are the vertex itself, which we assume to be cyclic, and the tadpole, which has no leaves
and hence is trivially cyclic. Now assume that we have proven cyclicity up to n = k and
consider a graph Γ with k + 1 vertices. We rotate it using ω. To make use of the induction
hypothesis, we want to write Γ using the rule (5.70), so that it is expressed in terms of
graphs with at most k vertices. We have to be careful with tadpoles when we do this, since
ω−1 cannot attach to a tadpole. Write Γi for the part of Γ with i inputs. Further, define
Γ′ = Γ − Γ0, Γ′′ = Γ′ − Γ1 and Γ′′′ = Γ − Γ2. Note that, in order to proof cyclicity of Γ it
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suffices to do so for Γ′, since any tadpole diagram is trivially cyclic. We have

Γ′

· · ·

=
m2

1+hΓ1+hΓ′

· · ·· · ·

+
m2

1+hΓ′hΓ0

· · ·

(5.71)

+
m2

hhΓ′′

· · ·

(5.72)

We carelessly used the letter Γ on both sides of the equation, however it should be clear how
this is to be read. Both sides should contain only these graphs so the result is a graph with
k+1 vertices. For example, the number of vertices of the two 1+hΓ of the tree contribution
on the right hand side should add up to k. By the induction hypothesis, all the objects
appearing on the right hand side are cyclic. We can use this to kill the external arcs.

m2

1+hΓ′hΓ0

· · ·

=

m2

Γ′

hΓ0

h· · · +
m2

hΓ0

, (5.73)

m2

hhΓ′′

· · ·

=

Γ′′

h h

m2

· · ·
(5.74)

m2

1+hΓ1+hΓ′

· · ·· · ·

=

m2

1+hΓ

· · ·

+
m2

Γ′

1+hΓ

h· · ·

· · ·

(5.75)

The strategy now is to expand the graphs one more time and identify cyclically rotated
subgraphs. These will have at most k vertices, and therefore will be cyclically invariant by
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assumption.

m2

Γ′

1+hΓ

h· · ·

· · ·

=
m2

1+hΓ′

1+hΓ

h

m2

1+hΓ

· · ·· · ·

· · ·

+
m2

hΓ0

1+hΓ

h

m2

1+hΓ′

· · ·

· · ·

+
m2

hΓ′′

1+hΓ

h

m2

h

· · ·

· · ·
(5.76)

m2

Γ′

hΓ0

h· · · =

m2

1+hΓ′

hΓ0

h

m2

1+hΓ

· · ·· · · +

m2

hΓ0

hΓ0

h

m2

1+hΓ′

· · · +

m2

hΓ′′

hΓ0

h

m2

h

· · · (5.77)

Γ′′

h h

m2

· · ·
=

hΓ′′

h h

m2

m2

1+hΓ

· · ·· · ·
+

hΓ0

h h

m2

m2

hΓ′′

· · ·
+

1+hΓ1

h h

m2

m2

1+hΓ′

· · ·
(5.78)

+
hΓ′′′

h
h

m2

m2

h

· · ·
(5.79)

Σ = hΓ′r

m2

1+hΓ

· · ·· · ·

+ hΓ0

m2

hΓ′r

· · ·

+

m2

hΓ′′rh

· · ·

(5.80)

The above is supposed to be read as follows. The letter Σ denotes the sum of all the three
graphs above of it. It itself is stated as a sum of graphs, each of which is the sum of the
graphs appearing straight above of it. The subscript r says that the graph is cyclically
rotated. By the induction hypothesis, they are cyclically invariant and so the subscript can
be dropped.

We are almost there. We did not include two very simple graphs in the above. With the
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graphs in Σ, they combine to

hΓ′

m2

1+hΓ

· · ·· · ·

+

m2

1+hΓ

· · ·

= 1+hΓ′

m2

1+hΓ

· · ·· · ·

(5.81)

hΓ0

m2

hΓ′

· · ·

+
m2

hΓ0

= hΓ0

m2

1+hΓ′

· · ·

(5.82)

We obtain Γ′ by adding up all the remaining graphs.

1+hΓ′

m2

1+hΓ

· · ·· · ·

+ hΓ0

m2

1+hΓ′

· · ·

+

m2

hΓ′′h

· · ·

= Γ′

· · ·
(5.83)

Theorem 7. Assuming that ∂h = [Q, h] = 1, the graphs defined by (5.70) are gauge invari-
ant.

Proof. We assume we have already been able to show gauge invariance for all graphs up
to a fixed number of vertices n. We then take a graph with n + 1 vertices, and expand it
using the recursive definition. On the right hand side, we then only have graphs with up to
n vertices. By the induction hypothesis, the action of ∂ = [Q, ·] is then zero on these. We
therefore only get contributions only when ∂ acts on propagators h.

∂Γ

· · ·
=

m2

Γ 1+hΓ

· · · · · ·

+

m2

1+hΓ Γ

· · · · · ·

+

· · ·

m2

hΓ +

· · ·

m2

hΓ (5.84)

We already made use of one of the A∞-relations, which is ∂m2 = 0. The next step is to use
the recursive definition of Γ in (5.84) again, so that we can apply (m2)2 = 0. There will be
a total of eight graphs. We can distinguish some of them through their number of explicit
loops (loops that are actually drawn, we don’t count loops hidden in the various Γ). There
are two grahps with zero loops, four with one loop, and again two with two loops. We begin
with zero loops. They add up to

m2

m2

1+hΓ 1+hΓ

1+hΓ

· · ·

· · · · · ·

+

m2

m2

1+hΓ1+hΓ

1+hΓ

· · ·

· · ·· · ·

. (5.85)
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Since (m2)2 = 0, this vanishes. Two of the one-loop graphs are

m2

m2

1+hΓ′ h

1+hΓ

· · ·

· · ·

+

m2

m2

1+hΓ′ 1+hΓh

· · · · · ·

. (5.86)

We can rearrange the vertices of the left graph using the cyclicity of Γ,

m2

m2 1+hΓ

1+hΓ′h

· · ·

· · ·
+

m2

m2

1+hΓ′ 1+hΓh

· · · · · ·

. (5.87)

These cancel again by (m2)2 = 0. The argument for the other two one-loop graphs works
the same (they are the mirror images of the graphs above). We also omitted two graphs
with explicit tadpoles. They can be shown to vanish along similar lines. Finally, we have in
two loops

m2

m2

hΓ′′

h

h

· · ·

+

m2

m2

hΓ′′

h

h

· · ·

, (5.88)

which again adds to zero.

5.7. A Larger Subsector of Loop Homotopy Associative
Algebras

A consistent planar subsector of loop homotopy associative algebras does not exist. We saw
that the main reason for this was that θ2 6= 0 in (5.40). Equivalently, we could say that
restricting ∆ in (5.62) to connect only neighboring punctures also produces an operation
that does not square to zero. The reason is that we miss the operation pictured in equation
(5.67). If we want some consistent restriction of ∆, we should make sure that an operation
like (5.67) is included. This can in fact be achieved. Consider an operation ∆̃ that only
connects legs that sit on the same boundary. It is straightforward to see that this operation
squares to zero.

To get a clearer picture about what ∆̃ does, let us look at what happens to geometric
vertices in terms of their topology. According to table 4.1, connecting punctures on different
boundaries always reduces the total number of boundaries by one unit. At the same time,
it increases the genus. Dropping these operations allow us to stay at surfaces of genus zero,
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but admits surfaces with any number of boundaries. Punctures are distributed among them
without any restrictions.

Of course to obtain a consistent string theory, we should include the closed string to cancel
anomalies. Also, we saw that unoriented strings give rise to non-zero genus at higher loops.
We therefore should restrict to oriented strings only. But this means that we necessarily
work on a curved background, since our gauge group cannot be SO(2d/2). This would be a
theory of oriented quantum open strings coupled to classical closed strings. At the massless
level, this is a quantum theory of gauge fields coupled to classical gravity.

Remark 5.7.1. During the final stages of this work, the author found out that, in the
context of oriented open-closed string theory, this subsector was already mentioned in [101],
in particular equation (3.2.4).

The subsector just described may also be studied outside of string field theory, for example
in the context of non-chiral gauge theories, since these never have an anomaly. On these, ∆̃
always increases the number of traces. It would be interesting to see whether this does only
allow for “unoriented” gauge groups like SO(N).
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Let us recall the two original questions that motivated this work. The first one was concerned
about planar string field theory.

Question 1: Is it possible to have a quantum open-string field theory of planar diagrams
without the closed string?

The following answer was given in section 4.

Conclusion 1: There is no consistent string theory with planar and unorientable diagrams
only. In particular, the closed string is necessary to obtain a consistent theory of open strings
at the quantum level.

We can summarize the essential argument in two sentences. The tadpole anomaly can
only be canceled when the unoriented string is included. However, the unoriented string
creates closed strings appearing in loops.

The non-polynomial nature of closed-string field theory makes it difficult to include the
closed string to the quantum open string beyond the conceptual level. Of course, a mayor
step would be made if someone is able to find a polynomial formulation. However, it is
shown in [84] that a cubic theory cannot be obtained in terms of the standard method of
decomposing of the moduli space with geometric vertex.

The second main question was concerned about the existence of a planar subsector of
A∞-algebras at the quantum level.

Question 2: Is there a consistent planar subsector of the quantum version of A∞-algebras,
and is it realized by the large N limit of gauge theories?

We did not give a conclusion to this question, yet, but we will do so now. First of all, we
saw that the large N limit of planar field theories cannot exist. The reason is that there
are in general non-planar vertices that nevertheless give rise to planar Feynman graphs.
Another way of saying this is the following. Given a vertex M and a the BV Laplacian ∆,
it is generally not true that

lim
N→∞

∆M = ∆ lim
N→∞

M, (6.1)

since ∆M may be planar while M is not. In this case, the right hand side of (6.1) may
be zero, while the left hand side is not. It then can happen that the quantum master
equation is not zero when restricted to planar vertices only. The latter statement is of
course independent of the Large N limit and can be taken as an answer to the first part of
question 2. A consistent planar subsector of A∞-algebras does not exist.

However, not all results where negative. By mimicking the construction of quantum L∞-
algebras in terms of higher order coderivations, we were able to give a reasonable definition
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of what we could call a planar homotopy algebra. There is still some work to do. First of
all, one should provide a good definition of morphisms of these algebras. These morphisms
should naturally arise under the application of the homological perturbation lemma when
transferring the algebra structure to the cohomology of the underlying differential graded
vector space. Apart from a more complete description, it would also be nice to have an
application of this type of algebra.

We also commented on the existence of a larger subsector of loop A∞-algebras. Further,
from the string field theory point of view it looks like that this algebra can be coupled to a
classical L∞-algebra. It the future, it may be interesting to study these further.
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A. Graded Vector Spaces and the
Décalage Isomorphism

A Z-graded vector space over a field k is a collection of k-vector spaces, V = {V (n) |n ∈ Z}.
It is convenient to combine them into a single vector space V =

⊕
n∈Z V (n). If v ∈ V (n), we

define its degree by deg(v) = n. If there is no point of confusion, we usually will write simply
v instead of deg(v). Homomorphisms between graded vector spaces V and W are collections
of linear maps f(n) : V (n) → W (n). They themselves combine into a linear space denoted
by hom(V,W ). It has the structure of a (degree zero) vector space. It can be embedded into
the graded space lin(V,W ), which is defined by lin(V,W )(n) =

⊕
k∈Z hom(V (k),W (k+n)),

where in this case, hom(V (k),W (k+n)) is the space of linear maps from V (k) to W (k+n)
in the sense of ordinary vector spaces. Note that hom(V,W ) = lin(V,W )(0).

Given two graded vector spaces V an W , we define their tensor product

(V ⊗W )(n) =
⊕
k+l=n

V (k)⊗W (l). (A.1)

Graded vector spaces differ from their ungraded counterpart in how the natural isomorphism
V ⊗W ∼= W ⊗ V is implemented. It is defined by

σV,W : V ⊗W −→W ⊗ V,
v ⊗ w 7−→ (−)vww ⊗ v. (A.2)

This is usually called the Koszul sign rule. The ground field k defines the unit of the tensor
product, when we interpret it as a graded vector space in degree zero, i.e. k(0) = k and
k(n) = 0 otherwise. Given a graded vector space V , we define its dual V ∗ = lin(V,k). Note
that V ∗(n) ∼= lin(V (−n),k).

When evaluating tensor powers of functions, we have to be careful with signs. To get
consistent signs, we use the following convention. Consider the evaluation map

ev : lin(V,W )⊗ V −→W, (A.3)

f ⊗ v 7−→ f(v), (A.4)

which we defined without any signs. Note that ev lives in degree zero in the graded vector
space lin(lin(V,W )⊗ V,W ). Now, let us use this map as a basis to fix signs. For example,
we want to know how the isomorphism W ⊗ V ∗ ∼= lin(V,W ) is implemented. We demand
that

lin(V,W )⊗ V W ⊗ V ∗ ⊗ V

W

ev

∼=

id⊗ev (A.5)

commutes. From this one can see that the element

w ⊗ α ∈W ⊗ V ∗ (A.6)
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corresponds to the map
v 7→ wα(v) (A.7)

in lin(V,W ). the other hand, the isomorphism lin(V,W ) ∼= V ∗⊗W has a sign. α⊗w defines
the linear map

x 7→ (−)αwwα(x) = (−)αwα(x)w = (−)xwα(x)w. (A.8)

The sign naturally arises since we have to move x past α.
Moving on, consider now

(V ⊗W )∗ ⊗ (V ⊗W ) (W ∗ ⊗ V ∗ ⊗ V )⊗W

[0].

∼=

ev ev◦(ev⊗id) (A.9)

Following this diagram, one finds that α⊗β ∈W ∗⊗V ∗ is identified with v⊗w 7→ β(v)α(w).
Again, the isomorphism (V ⊗ W )∗ ∼= V ∗ ⊗ W ∗ involves a sign coming from the natural
isomorphism V ∗⊗W ∗ ∼= W ∗⊗ V ∗. Finally, we use these two observations to determine the
isomorphism lin(A ⊗ B, V ⊗W ) ∼= lin(A, V ) ⊗ lin(B,W ). For this, consider the following
chain of identifications

lin(A⊗B, V ⊗W ) ∼= (V ⊗W )⊗ (A⊗B)∗ ∼= V ⊗W ⊗B∗ ⊗A∗ (A.10)
σW⊗B∗,A∗∼= (V ⊗A∗)⊗ (W ⊗B∗) ∼= lin(A, V )⊗ lin(B,W ). (A.11)

When we use the isomorphism σW⊗B∗,A∗ in the intermediate step produces signs. For a
fixed pair f ∈ lin(A, V ), g ∈ lin(B,W ), their tensor product acts as

(f ⊗ g)(v ⊗ w) = (−)gvf(v)g(w). (A.12)

An easy way to memorize this is that, in going from left to right, we have to move v past g.
In general, when evaluating expressions, we rearrange the objects in a way so that functions
are to the left of the element they act on, using the isomorphism σ−,−. We then apply the
evaluation map to each pair. The sign is then solely produced by σ−,−.

We will now introduce the décalage isomorphism, where we follow [40]. An important
operation one meets when working with graded vector spaces is the degree shift. This
process is called suspension. Given a graded vector V , we define another graded vector
space V [n] via

V [n](k) = V (n+ k). (A.13)

We naturally identify
k[1]⊗ V ∼= V [1]. (A.14)

Note that this implies that the identification V ⊗k[1] ∼= V [1] is given by v 7→ (−)vv. Further,
the natural isomorphism

(V [1])⊗k ∼= V ⊗k[k] (A.15)

is given by
v1 ⊗ · · · ⊗ vn 7→ (−)

∑n
i=1(n−i)viv1 ⊗ · · · ⊗ vn. (A.16)

There is a canonical action Sn × V ⊗n → V ⊗n induced by the natural transformation
σV,W : V ⊗ W → W ⊗ V . We can define the symmetric tensor power V �n to be the
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invariant of V ⊗n under the action Sn. Similarly the exterior tensor power V ∧n is the
invariant subspace of V ⊗n under the action of Sn twisted by the sign (−)σ of permutations
σ ∈ Sn.

We can arrange the even and odd action of Sn together with the isomorphism (A.16) into
the following commutative diagram

(V [1])⊗n (V )⊗n[n]

(V [1])⊗n (V )⊗n[n]

∼=

σ (−)σσ

∼=

. (A.17)

It follows that (A.16) induces an isomorphism

dec : (V [1])�n ∼= V ∧n[n]. (A.18)

This is the first version of the décalage isomorphism. We can further use

lin(V,W [k]) ∼= lin(V,W )[k] (A.19)

to obtain an identification

dec : lin(V ⊗n,W ) ∼= lin((V [1])⊗n,W [l])[k − l], (A.20)

where
dec(f)(v1, ..., vn) = (−)nf+

∑n
i=1(n−i)vif(v1, ..., vn). (A.21)

This in particular induces

dec : Hom(V ⊗n, V ) ∼= Hom((V [1])⊗n, V [1])[n− 1], (A.22)

and
dec : Hom(V ∧n, V ) ∼= Hom((V [1])�n, V [1])[n− 1]. (A.23)

We will meet these identifications when discussing homotopy algebras. For example, math-
ematicians often prefer to work over anti-symmetric maps when discussing L∞-algebras.
This is because its a direct generalization of how ordinary Lie algebras are defined. The Lie
bracket is a degree zero anti-symmetric map. On the other hand, we could as well define it
as a graded symmetric map of degree one via the décalage isomorphism. This is convention
naturally arises from the bar construction as well as the BV formalism.
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B. Chain complexes over Vector Spaces

Chain complexes exist in general for any abelian group. In this work we will, however, only
meet chain complexes over vector spaces, so we restrict to this case.

Definition B.0.1. A chain complex is a collection of vector spaces V (i) together with maps
∂i : V (i)→ V (i− 1), such that ∂i−1 ◦ ∂i = 0. Equivalently, a chain complex can be defined
as a graded vector space V and a degree −1 map ∂ : V → V such that ∂2 = 0. A morphism
is a degree zero map f : (V, ∂V ) → (W,∂W ) such that f ◦ ∂V = ∂W ◦ f . In that case, f is
called a chain map. A cochain complex is dual to a chain complex, that is ∂ is of degree one.

We will refer to chain complexes over vector spaces as differential graded vector spaces.
An important notion is that of (co-)homology.

Definition B.0.2. Given a differential graded vector space (V, ∂), we define its homology
H(V ) := ker ∂

Im ∂ . It has the structure of a graded vector space. Elements in ker ∂ (Im ∂) are
called ∂-closed (∂-exact).

An important property of homology is that it is functorial. This means that a chain map
f : (V, ∂V )→ (W,∂W ) induces a linear map H(f) : H(V )→ H(W ) on homology.
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