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Preface

“In my view, economic theory is "just" an arena for the investigation of

concepts we use in thinking about real-life economic situations. [...] Through

the investigation of these concepts, we try to better understand reality, and

the models provide a language that enables us to think about economic

interactions in a systematic way. ”

A. Rubinstein (2012), Introduction

This dissertation is special in the sense that it contains three distinct topics from seemingly

entirely different areas of economics: Decision theory, Agency theory, and Macroeconomics.

Thus, at first glance, it consists of three projects concerning scenarios without any common

features. Especially in times of increased specialization with regard to the own field of exper-

tise, such a mixture of projects containing not only topics from Microeconomics in form of

individual decision making and Game theory but also aggregate behavior of the overall econ-

omy might appear surprising.

From a high-level overview, however, there exist at least two connected unifying elements.

First, all projects represent applications of economic theory to real-life questions and puz-

zles in economics. Using economic theories based on specific assumptions regarding human

and/or other economic entities’ behavior permits economists to explore complex problems

within a simplified representation by focusing on the essentials. It provides an elegant tool

and a commonly comprehensible language to analyze real-life economic issues. In essence,

the use of economic models to study economic interactions presents a mode of thought that

is not restricted to one specific area of economics only but that is broadly applicable. To say it

with the words of John Maynard Keynes (1938): "Economics is a science of thinking in terms of
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PREFACE

models joined to the art of choosing models which are relevant to the contemporary world."

Second, strongly related to the first point, there is the author’s general and broad interest in

basically all economic topics. In fact, the first point enabled and fueled the second. Early

on during my Bachelor’s program, I recognized the beauty and elegance of economic models

to express and exemplify real-life phenomena. It was an astonishing experience to discover a

new technique that enabled me to analytically think about individual decision making, strate-

gic interaction among economic agents, as well as the behavior of an economy as a whole. The

fascination of learning a method applicable to setups in Microeconomics as well as Macroe-

conomics has remained to this day. For me, economic models have always been more than

a summary of numbers or variables: they are applied logic and exhibit meaning that can be

expressed in form of mathematical equations and graphs. When applied sophisticatedly, they

represent a valuable analytical tool able to shed light on various puzzling economic phenom-

ena in different areas and to provide answers to problems we face in reality. In this disserta-

tion, I aim to accomplish exactly that.

All chapters included in this work are based on self-contained papers and can be read inde-

pendently of each other. They are complemented by separated appendices and a joint bibli-

ography I present at the end of this dissertation. In what follows, I provide an overview of the

main points developed in each chapter, respectively.

In Chapter 1, I analyze the consequences arising if individuals overstate the representative-

ness of finite random sample data, i.e., the consequences of individuals being ignorant about

the existence of random errors associated with randomly drawn samples. Decades of re-

search in psychology as well as in economics have shown that human beings tend to be "semi-

sophisticated" statisticians at best and tend to be prone to apparently "irrational" behavior.

Figuring out in what way exactly individuals fail to behave as sophisticated statisticians might

thus lead to explanations for observed deviations from the behavior postulated by the theory

of strict rationality. The focus of my approach lies on probabilistic assessments of an uncer-

tain future event, preceding actual decision making. I show how beliefs based on random

error neglect are systematically flawed and stand in contrast to those made by rational agents,

or as I call them in this chapter: sophisticated statisticians.

In contrast to the vast majority of literature, I do not assume perception biases or the simple
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PREFACE

use of heuristics as an explanation for rather particular behavioral fallacies. In my approach,

all individuals are fully capable of using the best-possible unbiased estimation strategies in

each context. Further, they do not specify the underlying model incorrectly. For example,

they do not assume a linear regression model while the true connection of two variables is

quadratic. However, they do not behave like fully rational agents because they fail to account

for the existence of random errors when dealing with limited sample data. In other words, they

believe their sample estimates – mean and variance in the context of a static random variable

or intercept and slope parameter in the context of regression analysis – to be constants, not

random variables.

The rather simple assumption of individuals naively extrapolating from sample properties to

distribution properties has great explanatory power concerning statistical fallacies. It can ac-

count for various well-established empirical phenomena, such as framing effects, overpreci-

sion, overinflated skepticism about other people’s opinions, misperception of differences in

groups, and unjustified belief in the persistence of trends.

Further, I show how this theoretical set-up can be incorporated into existing economic mod-

els. One example is the bidding behavior in auctions. This theory can explain why overbid-

ding is a more prominent feature in First-Price Sealed-Bid auctions than underbidding. Addi-

tionally, it illustrates why people who, according to the standard theory, bid too little, deviate

stronger from the rational bidding behavior than those who bid too much.

In addition to its explanatory power and its broad applicability, this theory has the advantage

of specifying the degree by which individuals neglecting random errors deviate from rational

assessments: it lies entirely in the size of the samples these individuals consider. If the indi-

vidual only considers enough realizations, his probabilistic assessment will be approximately

close to the one of a sophisticated statistician. This might offer a way to easily improve peo-

ples’ predictions and the resulting actions: even though the actual neglect may not be cured,

increasing the officially required number of outcomes an individual has to consider before

forming an opinion can significantly improve the resulting behavior.

In Chapter 2, which is joint work with Annemarie Gronau (LMU), we show how a principal

should optimally apply the concept of Autonomy Support as a non-monetary incentive to an

agent in order to increase the likelihood of successful innovative activity. Autonomy Support
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refers to actions and management methods of, for example, a supervisor to encourage inde-

pendent choices and the initiative of employees. Further, it is supposed to provide meaning

and on-the-job training, and, most importantly, renounce to put any form of pressure on the

agent to take certain actions (Stone et al., 2009).

Within firms, workers frequently exhibit hands-on experience with products and production

processes. As a result, they may have implicit and unique knowledge to improve them. For

example, they might be suited best to fully understand customers’ wishes and finding ways to

(creatively) meet them. Hence, encouraging their creativity can lead to meaningful improve-

ments for the production and the design of a new product and consequentially, its ability to

compete with other products. A vast amount of literature has shown, however, that compa-

nies can only make limited use of monetary incentives to encourage these innovations; such

explicit incentives are only valid tools to incentivize target-oriented solutions to specific prob-

lems but not for unconstrained innovations needing proper creativity. Thus, relying solely on

monetary incentives deprives a company of the full innovative potential of its workforce. In

practice, the workers under consideration are not specifically employed for completing cre-

ative tasks. It is the environment at work that influences whether they feel free to think about

new ideas and process improvements, and further, whether they feel safe enough to share

these ideas with their superiors. In other words, their environment influences whether they

dare to challenge the status quo by being creative.

In contrast to the majority of literature in organizational economics, our focus lies not on one

specific management practice, but on the general behavior of a leader that fosters and invites

novel ideas. We argue that leadership behavior that is successful in instilling such innovative

activity is Autonomy Supportive.

To illustrate our point, we develop a theoretical model in which a representative agent enters a

firm with an initial level of Autonomy Support, e.g., from prior education or previous employ-

ment. We assume, however, that the level of Autonomy Support does not remain constant

over time: a single act of encouragement does not plausibly motivate innovation indefinitely.

Thus, we assume that the level of Autonomy Support an agent possesses depreciates over time

at a given rate. As a result, the investments in Autonomy Support must be made repeatedly

to remain effective, capturing the necessity of ongoing leadership behavior in a working rela-

tionship. We account for this repeated setup by modeling the interaction of a principal with
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an agent, not in a static, but a dynamic two-period interaction setup.

Our results generate several different investment patterns: First of all, we find that the princi-

pal invests just enough to achieve a level that provides optimal innovative effort by the agent

after observing his initial endowment of Autonomy Support. This captures the intuition that

while some individuals need extensive investments in the form of encouragement and skill

training, for others, shorter (but nevertheless regular) meetings might suffice. In other words,

leadership behavior must adapt to the specific requirements of an employee. Second, we find

that for extremely low and/or high initial levels of Autonomy Support, the principal does not

provide a positive amount. The reason is that either, the agent’s requirements present invest-

ments that are too high and thus, too costly for the principal, or that an agent simply does not

need additional support to facilitate his innovative activity. Third, we show that the specific

investment dynamics are subject to the principal’s discounting of future periods’ payoffs and

the rate by which the agent’s Autonomy Support depreciates: the principal in our model be-

gins the relationship with comparably high amounts of investments if she does not discount

future periods too strongly and her support has a longer-lasting effect.

In Chapter 3, which is joint work with Markus Epp (University of Freiburg), we analyze whether

central bankers should be rewarded for keeping interest rates up and whether monetary policy

should “keep its powder dry” in anticipation of deteriorating economic conditions. These re-

quests are in contrast to the optimal monetary policy framework in typical models of macroe-

conomic stabilization, where monetary policy cannot be stored and where interest rates are

the instrument and not a goal of stabilization. Given the central bank has a dual mandate

with a certain degree of freedom in putting weights on price stability and economic activity,

our results are as follows.

First, letting a non-committing central banks’ objective function also host explicit preferences

for keeping interest rates above their natural level, the associated precautionary interest rate-

setting (PIRS) creates a dry powder paradox: incentivizing higher nominal interest rates only

leads to on average lower nominal interest rates in equilibrium. The reason is that such an in-

centive causes a deflationary bias, lowering average inflation and output gaps, which in turn

influence rational expectations strongly enough to push nominal interest rates down.

This deflationary bias, however, helps to address the time inconsistency problem, which arises
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when the central bank cannot credibly commit and the steady-state output level is distorted.

A positive incentive to keep nominal interest rates above zero counters the inflationary bias

in this case and leads to a combination of inflation and output gap that is welfare optimal for

society. We show that the optimal PIRS-weight inducing this allocation has closed-form ex-

pressions.

Although the benefits of PIRS arising from the time inconsistency problem vanish under com-

mitment, the effects imposed on average inflation by an explicit weight on keeping interest

rates above their natural level may still provide a rationale for using it. Our finding illustrates

the Fisherian nature of the long-run biases in the New Keynesian model: higher nominal in-

terest rates drive inflation in the long-run. Hence, when the objective actually is to create

some leeway away from the zero lower bound, such a reward might help to accomplish that

goal. Nevertheless, not-considering a potentially binding effective lower bound, there is no

welfare-based argument for a positive weight on keeping interest rates at higher levels. The

reason is that the ability to commit enables the central bank to overcome the time inconsis-

tency bias in the long-run without any additionally needed tools.

Further, we show how PIRS might prove to be a valuable strategy for a central bank to avoid the

scenario of "fiscal dominance", in which interest expenses of a government cannot be covered

by tax collection or rollovers quickly enough, such that a central bank would have to sacrifice

its policy instrument to avoid government-insolvency.
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Chapter 1

Random Error Neglect:

A theory of random samples and flawed

conclusions

1.1 Introduction

Dealing with uncertainty is relevant for many economic settings. Predicting the next realiza-

tion of a random process and quantifying the risk associated with this forecast is essential

for investment decisions, purchases, procurement, gambling or even getting married. In the

past, people had to rely on the auguries of higher authorities, like the Oracle of Delphi, to gain

some insight into a "God-given" future. But ever since the first developments of probability

theory in the 17th century by Blaise Pascal and Pierre de Fermat, more and more analytical

approaches were devised.

In contrast to today’s highly sophisticated algorithms using machine learning tools handling

huge amounts of data, individuals usually have only limited information based on, for exam-

ple, their own experiences or those made by acquaintances. Alternatively, they might face

binding resource or cognitive constraints when collecting data. Hence, it is of great impor-

tance to understand how single individuals form beliefs about an uncertain future based on

limited data. In general, statistical (or econometric) theory offers ways about how to do so

in a sophisticated manner. In particular, it prescribes how to deal with the innate risk-taking
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RANDOM ERROR NEGLECT

associated with sampling, or to be more precise, the potential perils arising when forming as-

sessments based on a limited number of data points. When using the average of a sample

to guess about a future realization, one always has to account for how reliable the calculated

sample average is. When forming beliefs based on sample data, the question is how represen-

tative the sample under consideration truly is.

If individuals are well aware of these issues and thus, form beliefs the same way a sophisticated

statistician would, their assessments concerning an uncertain future will not be systematically

flawed. However, decades of research in psychology as well as in economics have shown that

human beings tend to be "semi-sophisticated" statisticians at best (see Kahneman (2011) for

an overview). As a result, their probabilistic assessments, as well as the resulting behavior,

tend to show significant flaws. Figuring out in what way exactly individuals fail to behave

like sophisticated statisticians might thus lead to explanations for observed "misbehaving"

(Thaler and Ganser, 2015).

In this chapter, I address the question about the consequences arising if individuals overstate

the representativeness of a finite random sample, i.e. individuals neglecting the existence of

random errors associated with randomly drawn samples. I argue that, depending on the size

of the random sample, the resulting probability assessments of a Random Error Neglecting

Agent (henceforth: RENA) are severely flawed. Random error neglect implies that an agent

displays unjustifiably high trust in his estimates of the population parameters derived from

his sample data. This can be exemplified best by the famous joke statisticians frequently use

about a group of blind men who want to assess the shape of an elephant by all touching differ-

ent parts of it: all men believe in a different shape and properties of the animal, dependent on

whether a man touches just the trunk or just the abdominal parts because each of them fully

trusts his own limited experience and ignores the possibility that there is more to be known.

This chapter shows how the assumption of individuals neglecting the random error of sam-

ples causes deviations from the rational, i.e. statistically sophisticated, assessment. Further,

I delineate the extent of these deviations. I demonstrate that within this rather simple speci-

fication lies great explanatory power: the theory can serve as an endogenous explanation for

well-established empirical findings like framing effects, overconfidence of individuals in form

of overprecision, excessive distrust with respect to other people’s opinions, the disbelief in the

regression-to-the-mean phenomenon, unjustified beliefs in the persistence of trends as well

8
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as irrational bidding behavior in First-Price Sealed-Bid auctions. Furthermore, the theoretical

set-up is easily applicable to various other canonical economic settings considering decision

making under uncertainty.

The chapter proceeds as follows. In Section 1.2, I present a discussion of related literature, fol-

lowed by the underlying assumptions and properties of the theory in Section 1.3. In Section

1.4, I show how naive reliance on formally unbiased estimators can lead to flawed parameter

assessments. In Section 1.5, I depict how negligence concerning the random error affects an

individual’s certainty of future outcomes when predicting the next realization of one or more

static random variables. Section 1.6 extends the analysis shown in Section 1.5 by also consid-

ering the case of predictions made via regression analysis. It exemplifies that the theory is also

applicable to dynamic random processes. Section 1.7 shows how the theory of RENA can be

applied in economic models dealing with bidding behavior in auctions. Section 1.8 concludes

the chapter.

1.2 Related Literature

While overall contributing to the vast and steadily growing literature in psychology and (be-

havioral) economics about how humans form beliefs of uncertain events and how they might

be influenced by cognitive biases, this section focuses on the areas this theory most directly

contributes to. Generally, it contributes to research conducted to evaluate how human beings’

probabilistic judgements about the future contrast with the basic implications of probability

theory (Kahneman et al., 1982; Gilovich et al., 2002).

The RENA in this model relies only on the data in his own sample to predict future outcomes.

Hence, the theory is in line with findings psychological literature emphasizing how individ-

ual’s probabilistic beliefs are driven by observed frequencies (Dougherty et al., 1999; Sieck

and Yates, 2001; Nilsson et al., 2005).

The literature most closely related to this theory is the one analyzing the "Law of Small Num-

bers" and the associated gambler’s fallacy (Tversky and Kahneman, 1971; Rapoport and Bude-

scu, 1997; Mullainathan, 2002; Rabin, 2002; Rabin and Vayanos, 2010). This brand of research

states that individuals know the true data-generating-process (DGP) and believe that its stochas-

tic characteristics will be present and reflected in all (small) samples. As a result, individuals
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are prone to believe in the "Law of Averages" (Ellenberg, 2014, p. 73): they discount the likeli-

hood of observing unlikely events because they think unlikely events will always average out,

even in the short run. Take the example of multiple flips of a fair coin: after observing five coin

flips in a row resulting in heads, an individual who is subject to the gambler’s fallacy believes

the next toss yields tails with significantly higher probability than heads. Thus, such an indi-

vidual knows the true probability distribution and draws flawed conclusions concerning the

possible shape of random samples.

The approach presented here follows a related logic in the sense that individuals behave like

all samples fully represent the distribution they were drawn from. However, the thought pro-

cess and direction of inference are completely reversed: in my approach, the agent does not

know the true DGP and its properties. All he knows is his sample data. His error then results

from false extrapolation: the agent believes that the population’s parameters cannot differ

from those he calculated with the help of his random sample. Hence, the individual’s mistake

lies in the inferences he makes about the properties of the DGP, not vice versa. Additionally, in

my approach, the actual significance of an agent’s fallacy is dependent on the actual sample

size which is unaccounted for by the theory of the "Law of Small Numbers".

Furthermore, the implications I derive are fully in line with Tversky and Kahneman (1974),

stating that individuals appear to be insensitive to the fact that random variation is depen-

dent on the sample size when comparing the informativeness of two samples with different

size. Nevertheless, the context considered here is different. In this approach, no difference in

informativeness between samples is evaluated. In fact, the RENA behaves as if no other sam-

ple but his own exists.

In a broader sense, this approach also contributes to the literature of Anchoring (Tversky

and Kahneman, 1974) and, similarly, the central tendency bias (Crosetto et al., 2020). Gen-

erally speaking, both theories state that individuals tend to stick too much to their initial best

guesses, for example, of the mean, and then fail to adjust their judgement sufficiently away

from it. The theory of the RENA can be interpreted as providing a rationale on why people ap-

pear like they tend to focus “too much” on their initial estimates (here: their point predictor)

and what might determine the extent of this bias. In this sense, this theory can serve as an

endogenization about how an anchor is formed and why individuals appear to be excessively

confident in it.

10



RANDOM ERROR NEGLECT

Further, this approach contributes to the extensive literature about overprecision as a form of

Overconfidence (Moore et al., 2015; Simon and Kim, 2017). Overprecision has been used as

an explanation for empirical findings/patterns in, for example, political decision making (Or-

toleva and Snowberg, 2015), asset valuation and trading decisions at the stock market (Odean,

1999) or managerial behavior (Simon and Houghton, 2003; Malmendier and Tate, 2008). This

theory contributes to this body of literature by offering an endogenous explanation not only

for observations in line with this bias but also its origins. In this approach, overprecision does

not arise from motivational factors like wishful thinking, which is in line with existing evi-

dence (Logg et al., 2018). Neither does it arise due to the use of a biased estimation strategy

concerning the data variability of a population (Kareev et al., 2002), for which the empirical

findings are mixed (Kaesler et al., 2016). Rather, it may be a symptom originating in judge-

ments suffering from negligence with respect to the random error.

1.3 The Random Error Neglecting Agent

The theory considered in this chapter specifies how an agent suffering from random (or sam-

pling) error neglect forms a belief about the likelihood of a future event under uncertainty. I

simply assume that an agent wants to make a probabilistic assessment as correctly as possi-

ble. No other preferences will be modeled explicitly, i.e. no explicit utility function is derived.

In contrast to the model of fully rational agents which are most prominent in economic mod-

els, I assume that no agent has a perfect understanding of the underlying DGP and its param-

eters, be it the first and second moment of a probability distribution or the slope and intercept

parameters of a regression function. The majority of situations in reality do not allow for per-

fect knowledge of the underlying distribution. Hence, the more realistic scenario is when the

true DGP is unknown, or even cannot be known by a single agent. It is more interesting to

consider how predictions based on random samples are forged since inferences, as well as

forecasts, are generally derived by using limited data collected from the unobservable true

distribution.

Thus, throughout this chapter, it is assumed that individuals do not perfectly understand all

properties of a random variable X , i.e. its exact distribution and the respective parameters.

They only consider a finite random sample, consisting of n fully random draws from this dis-

11
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tribution. This sample is denoted by G = {A1, ..., An}, with Ai representing a discrete data point

of sample G .

Note that I do not make an explicit assumption about where G actually comes from. One pos-

sible source might be the notion of Gennaioli and Shleifer (2010) who use a purely "mental

model" originating from Kahana (2014). It states that in their long run memory, individuals

are capable of storing the true DGP. However, when making decisions, people rely on their op-

erative or short-term memory which only has a bounded capacity due to cognitive limitations

or external factors like time constraints. Thus, coming back to the model in this chapter, you

could think of the random sampling process as being purely "mental" in this case. In con-

trast to Gennaioli and Shleifer (2010), this sampling process is not spoiled by a perceptive bias

that lets the agent consider only specific data points. In my case, the likelihood of a discrete

outcome to be considered by the agent depends only on its true probability of realization.

Another way to interpret this model’s set-up would be to think of an agent who actually has

access to physical data in form of a random sample that he or somebody else has drawn from

the population he does not or cannot know without incurring prohibitively high cost. Never-

theless, even though both notions appear rather different, the important point in both cases is

that the agent does not suffer from any perception bias and thus, does not deliberately under-

weight or ignore some realizations. Thus, his sample can be considered to be fully randomly

drawn from the population.

I further assume that individuals are capable of always applying the best possible estimation

strategy for a problem in hand. In other words, they use the same estimation strategy as a

sophisticated statistician who knows and understands the respective theoretical background

perfectly. This implies, for example, the use of unbiased maximum likelihood estimators for

making guesses about a distribution’s parameters like mean and variance which in turn will

then be used to predict a future outcome and its certainty. This setting serves the purpose to

eliminate the simple use of heuristics or biased estimation strategies as potential drivers for

the presented results.1 The used optimal estimation strategies depend on the specific context

and thus, will be stated explicitly in the following sections.

1 There is an ongoing debate about whether individuals use biased estimation strategies. For example, in the
psychological literature, it is frequently postulated that individuals systematically underestimate the true
Variance of a Random variable (Kareev et al., 2002). However, the evidence for this claim is rather mixed and
not conclusive (Konovalova and Le Mens, 2018).
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So far, there is no difference between the assessment strategy of a rational, i.e. statistically

sophisticated, agent considering a sample and the one of a RENA. However, the way how both

kinds of agents treat and understand their estimates once they are calculated is different. The

crucial assumption here is that the statistically sophisticated agent understands that her es-

timators are random variables: their exact realization depends on the specific sample data

drawn from the population. Thus, those estimates follow their own distribution with their

own dispersion, implying uncertainty that needs to be accounted for when using them for

making statistical inferences. Take, for example, the simple case of a normally distributed

random variable X with mean µ and variance σ2. When estimating the mean of X , the max-

imum likelihood estimator is the arithmetic mean of a random sample, i.e. m = 1
n

∑n
i=1 Ai .

The sample mean m, however, is not a constant value, but normally distributed with mean µ

and variance σ2

n . Its variance term captures the random error, the potential variations in the

realizations of m for different samples.

The RENA, however, naively thinks that his assessments of the parameters based on the sam-

ple data are equivalent to the true population parameters. Hence, he is either assumed to be

not capable or just to be too ignorant to understand the statistical property that a random

sample (with specific parameters) is not a perfect representation of the underlying popula-

tion’s distribution. In other words, he is negligent about the random error innate in estimates

established via limited data. Statistically speaking, he confuses unbiasedness with correct-

ness. This is per se problematic because unbiasedness does not mean that every single indi-

vidual’s guess is correct.2 It just means that on average, this estimator will yield the true value.

The RENA, however, falsely relies on his estimates as if they had no variability when forming

an opinion about the likelihood of an outcome. In the context of the example from above, the

RENA does not understand that m has a variance σ2

n which is larger than zero for finite n. One

can think of this type of agent as some naive individual who just has read about optimal esti-

mation strategies and wants to apply them to a data set without understanding the statistical

properties of the methods.

2 Taken the laws of probability as given, it is very likely that not a single estimate hits the correct expected
value.
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1.4 General problems of confusing random variables with constants

One could be tempted to think that when agents are using the maximum likelihood estimator,

i.e. the best possible estimator, and the true parameters are not or cannot be known, they use

the "second-best option" available and thus, the RENAs behavior and drawn inferences are al-

ways indistinguishable from those of a fully rational individual who is using limited data from

a random sample {A1, ...., An}. However, as I show in this section, this logic is only partially

correct. Consider a random variable X that is normally distributed with mean µ and variance

σ2. The ML estimator of µ in this case is the sample mean, i.e. m = 1
n

∑n
i=1 Ai . As a result,

when just estimating the true mean, neither type of agent makes a systematic/biased estima-

tion since E(m) = µ. Another way to phrase this is that both, the estimates of large groups

of RENAs in which the individuals aggregate all available information from the idiosyncratic

samples should be as correct as those made by a large group of fully rational agents. This re-

sult, however, does not hold generally for all estimations made by using m:

Proposition 1

Consider the case in which a RENA makes an estimate not based on the sample mean m

but on a function f(m).

1. If f(m) is linear, the RENA’s estimate is still correct on average.

2. If f(m) is strictly convex or strictly concave, the RENA’s estimate is systematically biased.

Proposition 1 shows a potential problem: what if the agents are tasked with making an esti-

mation based on a function f of their sample mean, instead of just estimating µ via m?

Given f is linear, the unbiasedness result still applies.3 If, on the other hand, f is strictly con-

vex or strictly concave, this result no longer holds. As Jensen’s inequality (Jensen, 1906) states,

if f is strictly concave, E( f (X )) < f (E(X )) holds for X being a random variable, and vice versa,

for f being strictly convex, E( f (X )) > f (E(X )). Thus, applying non-linear functions to random

variables is non-trivial concerning biasedness.

The RENA, however, is ignorant about this property because he is ignorant about his estimate

being a random variable. He believes that his sample estimate is equivalent to the true pa-

3 It can be shown that for any linear function f , E [ f (m)] = f (E [m]) = f (µ) (Fahrmeir et al., 2016).
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rameter of the distribution since he neglects the random error. Thus, he falsely believes that

applying a function to his estimate is equivalent to applying a function to a constant with no

variation. Hence, when tasked with making a statistical inference by using a non-linear func-

tion of, for example, the sample mean, his estimate will be biased on average.

In contrast, the rational agent will not make such a mistake because she is aware of the above-

stated statistical property.

This finding has two implications. First, it shows a limit to the phenomenon called "Wisdom

of the Crowds" (WotC). WotC states that collecting information from various individuals can-

cels individual noise and leads to on average correct assessments and improved decisions,

especially in comparison to choices made by a single decision maker (Surowiecki, 2005). For

a group of individuals consisting of RENAs, however, this only holds for as long as the task

in hand does not require the use of non-linear functions of their sample estimates. Else, the

group’s assessment will be systematically biased.

Second, related to the first point, this theory shows a potential channel about how framing

effects (Tversky and Kahneman, 1989; Paese et al., 1993) concerning the specific way a ques-

tion is asked may affect a decision maker. My theory states that two different questions both

requiring the use of the same estimate may lead to different results with respect to average

correctness of the responses. Consider the stylistic example in which question 1 asks: "What

is the average return per month of Stock X?" while question 2 asks: "How many months will

you on average have to hold Stock X to collect an overall return of B?" Given a finite sample

of monthly returns for Stock X, the arithmetic mean is an unbiased estimator of the required

mean rate of return and hence, a RENA’s answer to question 1 will on average be correct. The

second question, however, leads the agent to use the inverse of the arithmetic mean, which is

a strictly convex function. Thus, a RENA’s answer to question 2 will be on average too high, i.e.

on average, the amount of months necessary will not be estimated correctly.

Hence, even without the necessity of stimulating an emotional response (Cassotti et al., 2012)

or the use the availability heuristic (Tversky and Kahneman, 1973; Folkes, 1988), this theory

states that framing might have an effect simply because of random error neglect and well-

known statistical properties.
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1.5 Flawed Conclusions about the Predictability of the Future

In this section, I show how the RENA’s probabilistic assessment of a future realization of one

or more random variables differs from the one made by a rational agent. In some sense, it is an

extension to the previous section, where the results followed from agents using their estimated

mean rate to answer specific questions about the central-tendency parameter of an unknown

distribution, or, in other words, about the average outcome of a future random draw.

In contrast, the focus in this section lies on interval predictions, used to quantify the degree

of uncertainty associated with an unbiased point predictor as the sample mean. There are

several reasons for making this distinction. First, the true likelihood that a future realization

of a continuously distributed random variable hits exactly its true mean value is equal to zero

(given a non-zero population dispersion). Hence, some degree of uncertainty always needs to

be accounted for.

Second, for some discrete distributions, the mean itself will never be an actual realization (for

example, when rolling a dice). Hence, just relying on point predictions when forecasting the

future is unsophisticated in most cases.

Considering a random sample drawn from the true distribution with sample size n > 1, it

appears only reasonable that even the RENA who believes the sample to contain all neces-

sary/available information will notice these uncertainties for his calculated mean rate, at least

to some degree. The question then is, if and how much the assessment of a RENA about the

uncertainty of his predictions differs from the one of a rational agent. An intuitive way to show

those differences is to compare the respective average prediction errors both types of agents

calculate. Those are an integral component for, e.g., the specification of all kinds of certainty

intervals. Thus, another way of depicting the different assessments would be to show discrep-

ancies in the calculation of the bounds of such intervals.

Confidence vs. Prediction Intervals

It is important to note at this point that, when speaking of certainty intervals in this context, I

generally refer to prediction intervals (PIs), or as they are sometimes called coverage intervals

(Vardeman, 1992; Poulson et al., 1997). The reason for using this type of interval instead of
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the more famous confidence interval (CI) in this context is that when dealing with an uncer-

tain outcome of a future event, the primary goal is not to establish confidence bounds for the

estimates of the parameters of a distribution. Given a sample mean m, when predicting the

future, there is only limited insight in knowing the degree of certainty by which this sample-

specific estimate captures the true mean.

A prediction interval on the other hand gives information about a range of values, the next ob-

servation will fall in at a given degree of certainty. Specifically, a 95% PI centered at the sample

mean m states a 95% likelihood that the value drawn next from the same distribution will be

contained in this interval. For further clarification of the differences, consider the following

exemplary question. Assume you want to predict the time you need to go to work the next

day based on your collected data from the last months. A confidence interval only tells you

that your true average travel time lies – for a given level of certainty – between X and Y min-

utes. A prediction interval on the other hand will tell that the next trip will take between X and

Y minutes for a given level of certainty. Hence, it is logical to use a PI instead of a CI in this

context.

1.5.1 Overoptimism concerning own predictions

First, I show how a RENA’s uncertainty-assessment is flawed when predicting the next real-

ization of a single random variable, even though he uses an unbiased estimator as a point

predictor.

Consider a random variable X that follows a normal distribution with mean µ and variance

σ2. The first parameter refers to the central tendency, the second one to the dispersion of the

distribution. Further, assume a random sample drawn from this distribution consisting of n

points of data. The task is to make a prediction for the next draw from this distribution, i.e.

the value of An+1 and to specify the associated prediction error. How does the assessment of

the RENA look like in this context in comparison to a rational, i.e. statistically sophisticated,

agent?
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Proposition 2

Given that X ∼ N (µ,σ2) and {A1, ..., An} is a fully randomly drawn sample consisting of n

realizations of X . In this case, the RENA underestimates the true prediction error for the

next realization of X by a factor
(
1+ 1

n

)
.

I assume here that the RENA makes no systematic estimation mistake for the first and second

moment of the distribution. He always uses the best possible unbiased estimator as a founda-

tion for his predictions. Thus, he calculates his sample mean according to m = 1
n

∑n
i=1 Ai and

the sample dispersion according to s2 = 1
n−1

∑n
i=1(Ai −m)2. Hence, on average, neither mean

nor variance will be systematically over- or underestimated.4

The problem is, however, that he believes that all relevant information is contained in his ran-

dom sample. In other words, he believes he considers the whole data dispersion when in fact

he only has an estimate in form of the sample dispersion. Since in his opinion, there is no

other source of uncertainty in this case, he believes his prediction error to be just s2. Or to

phrase it differently, he believes that any future draw An+1 has a mean m and a variance s2.

As a result, on average, the RENA’s belief about the prediction error is equal to E [s2] =σ2. This

assessment, however, contains the problem: the RENA does not think about m and s2 as sam-

ple dependent random variables but as constants.

A rational agent, when using the same sample for a prediction of the next random draw from

this population while not knowing its true parameters will not only consider the randomness

coming from the population dispersion (σ2, or its estimate s2). She will also incorporate the

random error coming from the estimate itself : when using m as the center of a prediction,

you have to account for the fact that it is a random variable following its own distribution and

having its own variation. If X ∼ N (µ,σ2), then m ∼ N (µ, σ
2

n ). This implies that the lower the

sample size under consideration is, the more likely are substantial deviations from the true

population characteristic, which carry over to forecasts made on this foundation.

Hence, as shown in von Auer (2005), the true uncertainty is captured by the variance of the

point prediction, i.e. V ar [m − An+1]. As is shown in Appendix (A.1), this true variance for a

prediction concerning a future draw An+1 is given byσ2
(
1+ 1

n

)
. By comparison, it follows that

4 The proof of unbiasedness for both estimators is omitted here but can be found in any introductory statistics
book, for example, Fahrmeir et al. (2016).
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the true average prediction error is larger than the average of the RENA’s assessment5 by a fac-

tor n+1
n > 1, proving Proposition 2.

Thus, the smaller the sample size, the stronger is the effect of neglecting the random error and

the more error prone are the probabilistic inferences drawn by the RENA. Generally speaking,

for any finite n > 1, the RENA believes the future to be more predictable than is statistically jus-

tifiable because he neglects a significant source of the prediction error in form of the random

error contained in his sample estimates. This neglect would, for example, manifest in Pre-

diction Interval bounds being calculated too narrowly. Hence, they will differ from the ones

made by a rational agent by
√

1+ 1
n , which can be quite significant given n is not too large.6

To phrase it differently, for finite sample sizes, a RENA suffers from overprecision (Bazerman

and Moore, 2012; Moore and Schatz, 2017), which in this context means that the RENA has

statistically unjustified confidence about his knowledge of the outcomes of random events.

This result yields direct implications to various fields of economics dealing with decision mak-

ing under uncertainty. A prominent example is contract theory, dealing with the optimal de-

sign of incentive schemes by a principal who requires an agent to complete a given task. The

result presented above implies that efficient incentivization for a non-risk-neutral agent to ex-

ert effort when the outcome is uncertain requires more than knowledge about the agent’s true

degree of risk tolerance or aversion. In the standard case (Milgrom and Roberts, 1992, Chapter

7), the optimal "pay-for-performance" rate for a risk-averse agent does not only depend on his

effort cost function and his degree of risk-aversion but also on the variation of the outcome.

If the agent is a RENA, in addition to being risk-averse, his judgement of the uncertainty is

flawed and the risk is underestimated. Thus, even though he is risk-averse, this theory states

that an agent who neglects random errors in his probabilistic assessments is willing to accept

more convex incentivization schemes and thus a higher risk than standard theory would sug-

gest. In line with e.g. Silver (2012), this theory thus states that overprecision may take shape in

form of understatements of risk and a failure of self-protection against it by decision makers,

like managers or investors.

5 The use of a biased estimator for the population variance, i.e. s′2 = 1
n

∑n
i=1(Ai −m), only amplifies this result.

6 See Geisser (1993) on the correct specification of interval bounds for Prediction Intervals given population
mean and variance are unknown.
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1.5.2 Inordinate Scepticism concerning different views

The overprecision problem shown in the previous section, however, does not hold universally.

Interestingly, it is only present when it comes to the evaluation of the own prediction’s accu-

racy. When being tasked with the evaluation of a forecast provided, for example, by another

agent, the theory states that the RENA will suffer from exactly the opposite problem:

Proposition 3

Assume that a RENA is provided with an exogenously derived predictor z for the next real-

ization of X . In this case, the RENA overestimates the true prediction error of z on average

by a factor n
n−1 .

Proposition 3 states that the RENA will on average overestimate the prediction error of a

forecast not made by himself. In other words, he will be unjustifiably sceptic about the accu-

racy of such a predictor.

To see this, assume that there exists an independent point predictor z to be evaluated. The

agent has no information about how and on what basis z has been calculated, he just takes

it as externally determined.7 Further, as he believes to have calculated the true parameters

already, he does not adjust his own prediction but just evaluates the likelihood – or error – of

the external prediction by comparing it to the data points in his sample.

Appendix (A.2) shows that, as a result, the RENA on average underestimates the reliability of

z by a factor n
n−1 in comparison to the correct evaluation. Again, especially for small n, this

can be a quite significant deviation. It follows that the bounds of his intervals specified for

z are too broadly calculated, in other words, he suffers from underprecision in this case. The

reason for this result lies in the fact that his neglect of the random error in his estimation of the

sample-moments, being the main driver for overprecision in the previous section, now works

as a counter-effect for his belief in the accuracy of z. To phrase it differently: Because the RENA

is too optimistic about his own prediction’s accuracy, he is excessively pessimistic concerning

7 Note further, that this also implies that no additional assumption about the quality of an externally provided
predictor is made, i.e. the quality of the results does not depend on the actual "correctness" of z. You could
for example assume, that an expert’s assessment is significantly closer to the true parameterµ than a random
guess provided by an individual totally unfamiliar with the problem in hand. The RENA, however, does not
attach any weight for – potentially spurious – competence.
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those made by others.

Stating this testable hypothesis about how different individuals treat a prediction made by

themselves in contrast to those made by other agents, for example, their colleagues/other

team-members, this theory also contributes to the economic literature regarding how agents

perceive and evaluate the opinion/advice stated by others and how they update their beliefs

thereupon (Harvey and Fischer, 1997; Bonaccio and Dalal, 2006). There is robust evidence

that individuals tend to rely more on their own assessments and show higher doubt with re-

spect to the judgmental accuracy of third party advisors (Van Swol and Sniezek, 2005; Gino

and Schweitzer, 2008; Mannes, 2009). The most prevalent explanation attempts to explain

this phenomenon relies on various forms of "personal motivation", for example, whether a

decision maker is "powerful" (Tost et al., 2012), whether there exists some kind of personal

bond between the decision maker and the other agent (Kadous et al., 2013) or whether this

mindset is subconsciously created to sustain a feeling of one’s superiority over another per-

son, maybe even an expert. This theory offers a different explanation of why individuals may

devaluate other people’s beliefs that is not routed in motivational reasons: simply because

people have too much faith in their own sparse data. They just do not take into account that

their results might be random and there is more to be known.

1.5.3 The case of two random variables: inaccurate assessment of (future) differences

So far, I have only considered predictions made for the next realization of a single static ran-

dom variable. The theoretical approach presented in this chapter, however, can easily be ex-

tended to the case in which an agent has the objective of assessing the differences of two

distributions’ properties as a foundation for a decision to be taken. Consider, for example, a

manager whose goal it is to access the superiority of a product’s quality over another. This can

be the case in a pharmaceutical context, when a decision has to be made about what specific

medication yields superior results. It also might be a provider of an internet platform who

wants to evaluate the effectiveness of a newly adopted merchandising method concerning

changes in user behavior.8

In both cases, it is important to estimate the first and the second moments of the respective

8 Statistically speaking, a case like the first example is considered to be an independent two-sample test, the
latter a dependent (paired) two-sample test (Imbens and Rubin, 2015).
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distributions correctly in order to figure out potentially significant differences in the means of

both distributions. Furthermore, it is vital to calculate the bounds of future mean-differences

for future samplings, for example, conducted by a regulatory agency or simply the next cus-

tomer who compares two goods produced by different firms (Hahn, 1977). Thus, in terms of

prediction, the task in hand is to establish the upper and/or lower bounds which contain the

future difference in (mean-)performance with a (reasonably) high certainty level.

Consider the case of two potentially related random variables X and Y , for example, the qual-

ities of two products, which are normally distributed with given means and variances, i.e. X ∼
NX (µX ,σ2

X ) and Y ∼ NY (µY ,σ2
Y ). The co-variance between the two variables is denoted by

σX ,Y . 9

The RENA thinks about both distributions only in the form of two randomly drawn samples.

Each sample is drawn from the two distributions, respectively. For the sake of simplicity, it is

assumed that both samples have the same size n. Let G1 = {A1, A2, ...An} be the sample drawn

from NX and G2 = {B1,B2, ...,Bn} from NY . As before, the RENA is fully capable of calculat-

ing the arithmetic means and sample standard deviations accurately and without bias. Let

them be denoted as (mX , sX ) for the first and (mY , sY ) for the second sample. Comparing both

sample means (mX −mY ) yields again an unbiased estimator for the true mean difference

(µX −µY ).

However, the negligence concerning the random error, now present for both samples under

consideration, again leads to flawed conclusions for the RENA:

Proposition 4

1. Assume that µX >µY . Given that the distance between both means is not too high, there

is a statistically significant chance that a RENA will be certain that µY >µX .

2. Assume that µX = µY = 0. Then, on average, the RENA will expect at least one mean to

be significantly larger than zero, given the sample size n is not too large.

3. On average, the RENA underestimates the true prediction error of his forecast based on

mX −mY by a factor 2
(n+1

n

)
.

9 For independent random variables, it holds that σX ,Y = 0, which does not change the results presented
below.
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First, Proposition 4 states that due to mY and mX being random variables and given that there

exist a sufficiently large range of values covered by both distributions,10 there is a significant

chance that a RENA will hold false beliefs about what average is higher. To state it intuitively

by using the example from above in which an agent wants to find out which of two products

has superior quality: there is a positive probability that he is certain that the product with

lower average-quality is superior.

Second, using this example further, Proposition 4 states that there is a significant chance that

the RENA will expect an average quality of one of the goods that is exaggeratedly high, given

the samples are not too large. To show this, consider the case in which µx = µy = 0. Further,

for simplicity and without loss of generality, assume that σ2
X = σ2

Y = 1, i.e. both products are

qualitatively equivalent because both variables follow a standard normal distribution. This

implies that both of the RENA’s mean estimates, mX and mY , are random variables that follow

the same normal distributions, which is N (0, 1
n ). Hence, just comparing the two arithmetic

means of the two samples is like conducting two independent random draws from the same

distribution. Finding the highest mean is then statistically equivalent to finding the largest of

two order statistics for this distribution. Using the approximation formula by Blom (1958) to

calculate the respective expected value,11 the expected mean of the highest of the two order

statistic of a random variable distributed according to N (0, 1
n ) is equal to 0.58 1p

n
. Thus, espe-

cially for small n, it is significantly higher than zero, the true average value of both random

variables. Note, however, that this result does not contradict the statement of unbiasedness

from before. The reason lies in the fact that the theory just states, that one of the products

can falsely be judged superior, not that it has to be always the same product for all agents.12 A

RENA will expect a higher quality of one of the products than would be justified in this case.

Hence, the final realization is likely to lead to some kind of "disappointment".

Third, Proposition 4 states that a RENA ignores the potential fluctuations in the difference of

sample means. As a result, his predictive inference again suffers from overprecision in the

sense that he underestimates the prediction error of his forecast based on mX −mY . In com-

10 I.e. µi ±µ j ≤ 3σi , i , j ∈ {X ,Y } and j 6= i .
11 Explicitly given for a random variable X following a normal distribution with mean µ and variance σ2 by
µ+Φ−1

( r−α
N−2α+1

)
σ, with N being the sample size, r the r th largest order statistic and α being set equal to

0.375.
12 In fact, the symmetry of the Normal distribution at hand guarantees that when aggregating all samples of all

RENAs, these misestimations will cancel out perfectly.
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parison to the prediction problem with only one random outcome the overprecision problem

even increases because in this case, the RENA suffers from an increased effect of the random

error neglect. As is shown in Appendix (A.3), under the simplifying assumption of equal vari-

ances of the two random variables, this implies that the miscalculation of the prediction error

by the RENA is on average exactly twice as high as in the previous section. Speaking in terms

of Statistical Intervals: to calculate the upper and lower bound of a prediction interval, the

RENA will on average use a correction factor that is too small and needs to be multiplied by√
2 (n+1)

n .

Generally speaking, he specifies prediction intervals too narrowly and thus, exhibits too much

confidence in the predictive power of his initial point-estimate of the mean-differences. Hence,

this theoretical set-up postulates that agents who suffer from random error neglect tend not

only to perceive but also to predict significant differences in outcomes/products more often

than it would be statistically justified. Especially in combination with the possible assessment

errors of the true parameters outlined above, this may lead to seriously flawed conclusions.

To illustrate that point, suppose the most extreme case of a RENA with n = 1, meaning that

both samples consist of only one random draw (i.e. G1 = A1 and G2 = B1). Neglecting the fact

that these are only samples of the true populations, the RENA believes that the two data points

are the only realizations possible. He calculates mX = A1, mY = B1 and sX = sY = 0.

Assuming that both random variables follow a continuous (normal) distribution, the likeli-

hood of A1 = B1 is equal to zero. As a result, such a RENA will always believe that (significant)

differences between the two variables (for example, product qualities) exist and will exist in

all future samples. In other words, not only is a RENA in danger of rejecting the hypothe-

sis "µX −µY = 0" too often, he also falsely believes that mean-differences measured in future

samples will resemble his own estimate for this difference (mX −mY ) too strongly.

Such kind of overoptimism offers an explanation for, e.g., unjustified beliefs of economic

agents in a product’s superiority in quality (Spiller and Belogolova, 2017) or the persistence

of gender-stereotypes/social norms (Bursztyn et al., 2018)
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1.6 RENAs and Regression Analysis: False Faith in Trends

In the previous section, I focused on prediction problems concerning the next realization of

one or two static random variables. In this section, I demonstrate that the theory of the RENA

can also be applied for predictions made via regression analysis, especially time-series fore-

casts.

It is important to consider this area because, especially in business, when predicting, for ex-

ample, the quarterly sales of a company, it is not only important to understand the factors

influencing the outcome under consideration but also to what extent they do. Further, con-

sidering predictions of ex-ante unknown outcomes, it is often vital to specify the degree of

certainty by which the estimated connection will uphold, or particularly, considering time-

series analysis, how time-persistent it will be. Using this prediction method is particularly

appealing because as Jayachandran (1983) or Box et al. (2015) show, autoregressive processes

of the form xt = ρxt−1 + εt , with |ρ| < 1 and x0 = 0, can also be expressed in form of a linear

regression model. Hence, the following section can be seen as an extension of the previously

presented theory to prediction tasks considering the next outcomes of stochastic processes,

too.

Assume that the true relationship between an outcome variable y and a predictor/explanatory

variable x is captured by a simple linear regression model (Angrist and Pischke, 2008):13

yt =α+βxt +εt (1.1)

where t ∈N is the (time-)index for a specific pair of observations (yt , xt ) and their correspond-

ing error term εt . α denotes the intercept, β the slope parameter. For (1.1) being the true

model, I implicitly assume that no relevant predictor variables are missing, xt itself is not ir-

relevant for explaining movements in yt , the relationship between (yt , xt ) indeed is linear and

α and β are constants for all observations. The reason to include a random error term in

equation (1.1) even if it depicts the correct model is to account for unforeseeable (economic)

shocks or idiosyncratic unobservables for an individual measurement. I assume that the error

13 Even though the model here appears to be rather simplistic, the same analysis can be replicated by using a
regression model with multiple explanatory variables, including, for example, a simple trend variable t or a
quadratic term. The results presented do not change, they only become more distinct. Hence, for the sake
of simplicity, I use the most basic version for my analysis.
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terms εt are normally distributed with zero mean, are not auto-correlated, are unrelated to

the predictor variables and all have a constant variance equal to σ2. In line with the previous

analysis, the RENA does not know the true model but relies on a finite sample of size T for his

estimates that is drawn fully randomly. Further, I again assume that he makes no systematic

estimation mistake, i.e. uses the best-possible estimation method for the task in hand. Thus,

in this case, he is assumed to use the Ordinary-Least-Squares (OLS) method to estimate the

parameters α and β. Formally, he chooses his parameter estimates α̂ and β̂ to minimize the

Sum of Squared Residuals, i.e.
∑T

t=1 e2
t =

∑T
t=1(yt − α̂− β̂xt )2. As shown in Rao (2009), the OLS

is the Best Unbiased Estimator given the assumptions made above. Hence, the agent does not

miss-specify the real model (for example, assuming a linear regression while the true relation

is non-linear), nor does his forecasting model suffer from overfitting.14 Further, potential mis-

takes in prediction do not stem from the use of a biased estimator or a distorted sampling

process but are solely based on random error neglect. Again, a problem arises due to the fact

that, even though he realizes that there is a certain dispersion or error in his sample (here de-

picted by the residuals et = yt − ŷt , with ŷt = α̂+ β̂xt ), he fails to understand that his estimates

α̂ and β̂ are random variables, following own distributions.15 Since their value depends on the

specific sample realizations, they are likely to differ for each random sample. This, however, is

neglected by the RENA since he thinks he captured the true model parameters. In other words,

he assumes that he fully understands the slope and the intercept for the relation of regressand

(y) and predictor (x) and all uncertainty concerning future-predictions comes from individual

random errors.

Again, he assumes his sample to represent all relevant properties, thus, he believes the vari-

ance of the residuals in his sample to be equal to the true dispersion of individual errors. As

in previous sections, I again assume that he captures the sample-error dispersion via an unbi-

ased estimator of the true variance of error terms. Under these circumstances, it is denoted by

s2 =
∑T

t=1 et

T−2 (von Auer, 2005). It may appear debatable that the agent is assumed to be sophis-

ticated enough to understand that he has to control for degrees of freedom for an unbiased

14 This term captures the problem of fitting the model more to the noise in the sample than to the real rela-
tionship. Generally speaking, an analysis suffers from overfitting if it corresponds too closely to a particular
sample set of data (for example, assuming too many explanatory variables to specify a regression function
that captures all data points with no residual error). Thus, it may fail to predict new observations reliably
(Backhaus et al., 2006).

15 Under the assumptions made above, α̂∼ N

(
α,σ2

[
1
T + x̄2∑T

t=1(xt−x̄)2

])
and β̂∼ N

(
β, σ2∑T

t=1(xt−x̄)2

)
.
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estimation while in all other aspects, he neglects the sample properties. Nevertheless, the rea-

son I chose this set-up follows the same logic as already outlined above. In particular, using a

biased variant like s2
b =

∑T
t=1 et

T only leads to the agent systematically underestimating the real

dispersion of error terms, which in turn only leads to further strengthening the results.

Now, think of an agent whose task it is to make a prediction for a new outcome yT+1 for the

relationship in place, given a certain value of xT+1.16 Once more, the goal is to compare the

reliability of a forecast made by a RENA with the sophisticated (rational) approach.

Proposition 5

The RENA underestimates the true error for a prediction made via regression analysis to

forecast the next outcome yT+1 based on xT+1 by a factor

(
1+ 1

T + (xT+1−x̄)2∑T
t=1(xt−x̄)2

)
.

The RENA bases his predictions on α̂ and β̂ while accounting for a possible error term. He

believes his possible prediction error just to be equal to his assessment of dispersion in error

terms s2 since all other sources of error are neglected by him. As a result, on average, a RENA

will consider the prediction error to be equal to E(s2) =σ2. In other words, while he accounts

for the possibility that in his prediction for yT+1 (given by α̂+ β̂xT+1 + εT+1) the error term

might take a value different from zero, he neglects the fact that both parameter estimates,

even though they are unbiased, might differ from the true values.

The sophisticated calculation, however, accounts for that. As is shown in the Appendix (A.4),

the correct expected prediction error is given by

σ2

(
1+ 1

T
+ (xT+1 − x̄)2∑T

t=1(xt − x̄)2

)
(1.2)

which proves Proposition 5.

In contrast to the RENA assessment, expression (1.2) shows the dependency of the true predic-

tion error on sample size as well as on the dispersion of the predictor-realizations. A prediction

can be considered more reliable, if the number of observations (T ) and the squared dispersion

16 Note that this forecasting procedure is called "Ex-post forecasting". "Ex- ante forecasting" refers to xT+1 as
unknown and to be predicted as well (Armstrong, 2001). Since the latter case only increases the uncertainty
under which a prediction has to be made, it only strengthens the results presented here and hence, is not
considered.
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Figure 1.6.1: Simulated Prediction Intervals with T = 20, σ= 16, α= 100 and β= 5.5.

around the sample mean,
∑T

t=1(xt − x̄)2, are large. Further, this expression shows that the un-

certainty of the prediction for yT+1 increases quadratically, the more distinct the respective

predictor variable xT+1 is from the realizations within the sample. Intuitively speaking, one

can be less certain of one’s prediction when one leaves the center of information one’s esti-

mates are based on. Speaking in terms of boundaries of prediction intervals of a given level of

significance, the bounds for a prediction of yT+1 resemble parabolas with a vertex at x̄.

The problem is that the RENA does not account for either of these sources of uncertainty. Not

only does he underestimate the prediction error because the random error is neglected, he

also ignores the issue of predicting a value that relies on a predictor far away from x̄, for exam-

ple, a prognosis referring to an outcome lying far in the future. As he believes to capture the

model accurately and his parameter estimates are constants, there is no reason to believe that

this will change, even for rather extreme predictors. Again referring to the subject of predic-

tion intervals: the bounds of certainty of which he believes contain a future value yT+1 given

xT+1 at a given level of confidence are not only too small, they can be represented as straight

lines running parallel to the estimated regression line. How large the discrepancies can actu-

ally be is graphically captured in Figure 1.6.1.

Hence, the consequence is an even stronger overprecision than in the sections before: it also

increases the more distant xT+1 is from the sample mean of the explanatory variable. This is
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of particular importance in the context of a time-series analysis: the further away in the future

a prediction based on a sample of current data lies, the more uncertainty must be taken into

account. The RENA, however, does not account for the increased uncertainty.

This has some notable consequences. Especially for a small amount of data, a RENA exhibits

faith in his trend-forecasts based on his estimates that is not statistically (and hence, not ratio-

nally) justifiable. Thus, such individuals are prone to fall for e.g. the hot hand fallacy (Gilovich

et al., 1985; Barberis and Thaler, 2003) stating that humans tend to believe that a sequence

of observed successes (basketball shots by a player, portfolio choices of an investor, etc.) is

likely to be followed by another success. To phrase it differently, this theory states that peo-

ple are prone to neglect the phenomenon called regression towards the mean first postulated

by Galton (1886). Loosely speaking, this phenomenon refers to the fact that future (long-run)

observations can tend towards the true mean of a stochastic process when current (small sam-

ple) measurements may show rather extreme realizations (i.e., outliers) due to randomness.

As Siegel (2015) shows, this phenomenon is, for example, observable for stock returns which

may show great volatility in the short run, with some being significantly above, others signif-

icantly below average, but are rather stable/similar in the long run. A RENA, however, is not

able to account for such smoothing in the long run because he considers his sample (and his

estimated parameters) to contain the ultimate truth about the respective connection. Hence,

he perceives the concept of a less volatile long run and a (more or less) stable conversion as

rather unlikely or implausible.17

To put this result in an economic context: managers using time-series-regression analysis

while suffering from the random error neglect will be exceedingly in danger of perceiving

the future rather as a replication of past events, ignoring that those particular events will –

with great likelihood – not occur again. Relying too much on a small set of (time-series) data

might provide a rationale for predictions like "There is no reason why anyone would want a

computer in their home", made in 1977 by Ken Olson, the Co-Founder and President of Dig-

ital Entertainment Corporation (Stansberry, 2011), just a few years ahead of IBM introducing

their first versions of personal computers and becoming undisputed market leaders. Another

even more well-known example is the famous economist Robert Malthus who predicted in the

17 Even if one does not account for the possibility that the underlying model might completely change for the
long run.
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18th century that in the future, food shortage and misery for mankind are inevitable (Malthus,

1798). Even though the trends at that time appeared to be supportive of Malthus’ argument

(linearly growing GDP while exponential population growth), that trend broke (in fact even

reversed for many western civilizations) due to, for example, the industrialization in the cen-

turies after Malthus’ death.

Metaphorically speaking, RENAs naively extrapolating a trend based on one sample of (time-

series) data are like car drivers who feel perfectly safe driving at high speed at night on an unlit

road going straight because they cannot imagine a bend. Thus, they are only safe for as long

as no curve appears. They do not consider that an estimated trend, even if captured correctly

for a time, is only pointing in the right direction for as long as the trend does not break.

1.7 RENAs and First-Price Sealed-Bid Auctions

Even though the focus of this chapter has been so far on how neglecting random errors in-

fluences an individual’s predictions of future outcomes, the theory presented is applicable to

various other contexts due to its general setting. Whenever an economic agent has to make a

decision based on an uncertain future and relies on a random sample instead of complete in-

formation of the random process, this theoretical approach may offer a possible explanation

for discrepancies in empirically observed behavior and the theory of rational agents. In the

following, this is illustrated by using the context of bidding behavior in auctions.

As is shown below, neglect of the random error in combination with limited data as choice-

foundation offers some interesting insights about why auction participants might differ in

their behavior from the theoretical predictions of the classical theory for single-object private-

value auctions. The results presented below do not hinge on risk preferences or emotions as

the most common explanatory factors used in the literature and for which existing evidence

is rather mixed.

I focus on First-Price Sealed-Bid (FPSB) auctions in this section, i.e. auctions, in which all bids

are handed in simultaneously and privately, the highest bidder wins the object and has to pay

her bid. The underlying framework used in this section is the canonical model as, for example,

described in Chapter 2 of Krishna (2009): M bidders with quasi-linear preferences18 compete

18 I.e., bidders are risk-neutral.
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in an auction for an object they have an individual valuation for. Let vi denote the valuation

of bidder i ∈ {1, ...M }. This valuation is private information of each bidder. The agents have

no budget constraints and want to maximize their expected utility with their bidding behavior.

The model is symmetric in a sense that all values are independently and identically distributed

according to some increasing distribution function F on some interval [a,b], with b > a ≥ 0.

For simplicity, it is assumed that the valuations are uniformly distributed with a = 0 and b = 1.

It can be shown that the symmetric utility maximizing bidding strategy played in equilibrium

in an auction with only rational agents is bidding the expected value of the second highest val-

uation, given the agent’s value is the highest. Mathematically, b∗
i = E [X (N )

1 |X (N )
1 < vi ], with

b∗
i being agent i ’s optimal bid, vi her valuation and X (N )

1 the highest order statistic out of N

(= M −1) other values, which is a random variable following a specific distribution dependent

on F . Note that this implies that no agent has an ex-ante incentive to deviate from this strategy

as long as he believes all others to behave this way.

How would the RENA behave in such a situation? As in earlier sections, I do not assume that

the RENA just follows a false model by assuming that he lacks important information about

the underlying structure. In this case, this means that he has no misguided priors about, for

example, the numbers of bidders, his own valuation, potentially correlated valuations or the

format of the auction. Further, considering the case that he is competing with rational agents,

he again uses the best possible action available and no "flawed heuristic" in the sense that

he, for example, just always bids his own valuation. Rather, I assume that he knows the sym-

metric bidding equilibrium strategy played by rational players and why it is played.19 Thus,

even if an agent i is a RENA, he will decide to bid according to b∗
i from above. In this sense,

he somewhat behaves like a naive reader of auction theory literature with no real understand-

ing of the strategic reasons determining the optimal bid. He just wants to behave "optimally"

given his prior that all others follow the same behavior. The following proposition states the

consequences for the bidding behavior of RENAs:

19 Implicitly, I thereby assume that he thinks of himself as rational and all others to be rational as defined in the
standard theory.
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Proposition 6

1. For a given valuation vi , a majority of RENAs will overbid in a FPSB auction, i.e. place a

higher bid than E [X (N )
1 |X (N )

1 < vi ]. In turn, a minority of RENAs will underbid.

2. The RENAs who underbid will do so by a significantly higher absolute amount than those

who overbid.

Proposition 6 states that the deviation from the fully rational behavior arises when a RENA

actually determines his bid: again in line with this model’s assumptions, he does not (or can-

not) know the true distribution of X (N )
1 and as a result, he cannot calculate the exact value of

E [X (N )
1 |X (N )

1 < vi ], given his valuation vi . Instead, he relies on a finite sample of X (N )
1 < vi and

then calculates the mean of this sample.20 In line with the potential sources of the sample pre-

sented in Section 1.3, he might either have a sample based on past experiences, is exogenously

provided with the data, or has the true distribution in his long-term memory but can only

consider finite data in this operative memory due to capacity constraints. Further, because

he neglects the fact of only considering finite random draws, he believes his calculation to be

equivalent to the true expectation of the order statistic X (N )
1 given that it is smaller than his

own valuation vi . Hence, instead of using all information of the respective probability density

f (X (N )
1 |X (N )

1 < vi ), he again only considers a finite amount of discrete realizations {A1, ..., An}

and naively believes to know it all.

This is particular problematic in this case because in contrast to e.g. the normal distribution,

f (X (N )
1 |X (N )

1 < vi ) is not symmetric around its mean but negatively skewed. This implies that

the measures of central tendency of this probability function are not aligned but dispersed,

i.e. median and mode are higher than the expected value. It is of particular importance in

this case that the mode of the distribution is located on the right hand side of the expected

value, because it points to the location with the highest concentration of probability mass for

a particular density function. In other words, the mode marks the location of a – in case of a

unimodal distribution global – maximum.

20 To some extent, a theory recently presented in Kasberger (2020) makes a similar assumption. However, in
contrast to my approach, it assumes rational bidders and focuses on different bidding strategies.
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Figure 1.7.1: Probability density functions of X (N )
1 for three different N , given vi = 0.5.
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Figure 1.7.1 exemplifies that for X ∼ U [0,1] and a given valuation,21 f (X (N )
1 |X (N )

1 < vi ) has

this property for varying numbers of N : the red line, depicting the distributions mode, always

lies on the right hand side of the dotted black line, depicting the expected value.

This statistical property is the foundation for the first point in Proposition 6: it states that ran-

dom samples drawn from this distribution are more likely to contain realizations close to the

mode. In terms of the graphic above, RENAs are more likely to randomly draw second-highest

valuations close to their own, strictly higher than the correct expected value. Further, this im-

plies that a majority of this type of agent will calculate a sample average that lies above the

expected Value of f
(

X (N )
1 |X (N )

1 < vi

)
. In turn, a minority will calculate a sample mean lower

than the correct value. For simplicity and illustration, consider the corner case in which there

is an infinite mass of RENAs with the same valuation who separately compete in an auction

with N other bidders and who all consider individual random samples with only one data

point, respectively. For example, for N = 20, the Law of Large Numbers states that around 62%

of RENAs will draw a value higher than E [X (20)
1 |X (20)

1 < vi ]. Because they think their estima-

tion of the true average to be fully correct, they follow the "optimal strategy" and place a bid

as high as this particular value. Thus, they will overbid. In turn, the theory also states that a

minority of RENAs (around 38% in this case) will underbid.22

The second part of Proposition 6 is directly related to the first point: Because overbidding is

stated to be more prominent than underbidding, those who underbid must do so by a sig-

nificantly higher absolute amount. The result arises because overall, the sample mean is an

unbiased estimator of E [X (N )
1 |X (N )

1 < vi ], which means that when all single data points of all

RENAs are aggregated to one big sample, this overall sample’s mean would be equivalent to

the true aggregate. This, however, is statistically only possible if the data points of the above-

mentioned minority represent more severe deviations from the true average than those of the

majority. Thus, this theory states that one should observe more significant divergences from

the symmetrically optimal bid b∗ by participants who underbid.

To the best of my knowledge, no "meta-study" exists so far explicitly calculating the shares of

over- and underbidders in all auctions using the same framework and comparing the respec-

tive amounts by which they deviate from the Risk-Neutral Nash-Equilibrium bidding strat-

21 Stating it explicitly, the respective probability density is in this case equal to 1
v N N xN−1.

22 The qualitative results do not change for N = 4, N = 9, or any other finite number N .
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egy. Although an empirical test might prove difficult due to the randomness, there exists

some evidence weakly in line with the results presented above. Overbidding appears to be

a prominent feature in FPSB auctions (Cox et al., 1988) and existing literature used explana-

tions like risk-averse bidders (Harrison, 1989) or emotions (Filiz-Ozbay and Ozbay, 2007; An-

dreoni et al., 2007) as a potential explanation for this phenomenon. However, in particular the

risk-aversion approach fails to explain (substantial) underbidding in such auction formats for

which also exists some evidence (Kirchkamp and Reiss, 2004; Ivanova-Stenzel and Sonsino,

2004).

1.8 Conclusion

In this chapter, I derive a new theory about individuals neglecting random errors to analyze

how they form beliefs about uncertain realizations of random events and how their resulting

conclusions are flawed. The theory presented in this chapter represents a synthesis of sta-

tistical theory and decision making by emphasizing how awareness of statistical properties is

essential for sophisticated probabilistic assessments and the resulting rational behavior.

Even though the estimation strategies in and of themselves are unbiased and hence, at least on

average accurate, RENAs still tend to make systematic mistakes when forming beliefs about

future outcomes. The problem can be considered to be some kind of misguided extrapola-

tion: when predicting the range for a future outcome by forming confidence bands, those

individuals underestimate the variation in potential realizations because they are too confi-

dent in their initial guesses made via the information from their samples. As a result, their

interval-boundaries are defined too narrowly. In other words, they consider the future to be

predictable to an extent that is rationally not justifiable. I further have shown how this mode

of thought can be transferred to already existing economic models. Moreover, due to its broad

specifications, the existing model can easily be modified by also including other biases. An

example would be an availability bias which lets the RENA put different weights on different

realizations in his sample such that some are just more salient. The resulting behavioral im-

plications should strongly resemble those from the literature about selective and limited recall

of information (Bordalo et al., 2016, 2017).

An interesting implication of this theory lies in a potential cure for the observed "misbehav-
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ior". In contrast to agents who are biased in form of a distorted perception of information

such that some data points with certain properties are just ignored, this theory states that the

mistakes an individual makes will decrease with the size of the sample he considers. Hence,

simply increasing the amount of data an agent uses for his assessment would lead to signif-

icant improvements. Given, for example, an employer fears that his employees are suffering

from this neglect, a potential remedy might be to require them to think of a certain number of

potential results their actions may cause to improve the overall outcome.

Even though I have shown that the theoretical predictions are in line with a variety of estab-

lished empirical findings, those present no conclusive evidence for the existence of random

error neglect. Thus, a desirable next step would be the design and conduct of an experiment

to either strengthen or debunk the central elements of this theory. Another potential area of

future research concerning theoretical extensions is to evaluate how RENAs might learn from

new data. The theory presented here is purely static and frequentistic without considering,

for example, if and how individuals might reconsider their initial estimates after they learned

that they actually made a mistake. If they incorporate the new realization in their sample,

the following guesses should become more and more sophisticated. However, that is just one

possible learning rule amongst many that may be considered.

The question on how humans form (and revise) beliefs about the future is and probably will

remain fascinating. The goal of this work is to contribute to a better understanding of how de-

viations from fully rational behavior might be explained. My hope is that future experimental

work is able to find evidence about the extent to which this theory’s setup and predictions are

valid.
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Chapter 2

Autonomy Support and Innovation*

“We don’t need bosses. We need servant leaders.

We need people to serve their teams and let their teams

come up with the best ideas.”

V. Narasimhan, CEO Novartis

in an interview with Gharib (2019)

2.1 Introduction

The aim of this chapter is to demonstrate optimal investment dynamics in leadership behav-

ior that fosters innovation. Our focus is the intensity in which an innovation encouraging

leadership behavior must be displayed over time and not one specific management practice.

Management practices matter for an organization’s success (Bloom et al., 2013; Bloom and

Van Reenen, 2010), and economics has generally focused on beneficial complementarities be-

tween different practices (Ichniowski et al., 1995), Ichniowski and Shaw (1999). Rather little re-

search in organizational economics (with only a few exceptions like Hermalin (1998)) focuses

on the individual and how she ensures successful implementation of the practices: the leader

and her behavior. Non-monetary incentives that enrich the traditional economics’ toolkit

of bonus schemes, e.g. providing workers with meaning to their job and raising awareness

that their impact matters has been shown to increase worker motivation (Cassar and Meier,

* This chapter is based on joint work with Annemarie Gronau (LMU) and was first published in Gronau (2020).
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2018; Levitt and Neckermann, 2014), are conveyed through the leader and her behavior to-

wards the workforce. Ichniowski and Shaw (2003) find that in less traditional and productivity-

enhancing practices, line workers interact more with supervisors and co-workers. As the effec-

tiveness of management practices depends on their perceived quality and not their quantity

(Edgar and Geare, 2005), attributes of leadership behavior that embody them are of particular

interest.

Innovation is one important contributor to an organization’s long-term competitiveness and

success. Monetary incentives work for constrained problems but seem ineffective for open,

unconstrained innovation characterized e.g. by a lack of ex-ante specified goals (Charness

and Grieco, 2018). In general, management practices stimulate innovative activity (Shipton

et al., 2006), but we are unaware of work on non-monetary incentives specifically aiming at

encouraging innovative activities of the workforce. We argue that leadership behavior can be

such a non-monetary incentive that instills innovative activity.

Workers in a hierarchical work relationship, who are not specifically employed to innovate,

refrain from sharing novel ideas if they fear questioning the status quo and resulting negative

consequences for themselves. They will speak up if they believe their ideas, and potentially

critique, is welcomed and taken seriously by management. The leadership behavior of their

supervisor can create a safe space where workers feel free to come up and share novel ideas.

This kind of leadership behavior is captured by the concept of Autonomy Support. Self-Deter-

mination Theory is an established construct in Social Psychology, and Autonomy herein is

defined as a feeling of volition and freedom that a person experiences e.g. at work (Gagné and

Deci, 2005). Autonomy Support is the degree to which the social context enables this feeling,

which in our model is the leadership behavior of the principal. Autonomy Support strikes

a balance between providing structure and granting freedom of thought, as it creates a safe

space for experimentation and failure (Pisano, 2019) which inspires innovation, unleashes

creative thinking and encourages workers to communicate their novel ideas.

Kaizen is an example for an Autonomy Supportive leadership behavior, and has received much

attention in operations management of the manufacturing sector for some time (see Singh

and Singh (2009) for a review). In the Kaizen philosophy, supervisors train workers in meth-

ods and Kaizen tools, invite ideas and offer feedback in a non-judgemental way, aiming at de-

veloping their workers to share their contributions for improvement and innovation in a safe
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environment (Quality-One International, 2015). Toyota adopted this innovation encouraging

management style with a view to continuous improvement and lean management, which re-

sulted in a strong comparative advantage over a competitor relying on controlling incentives

(Helper and Henderson, 2014). Operations management and people management go hand in

hand for a company’s success (Bloom et al., 2015). We focus on the intensity in which Auton-

omy Support must be provided, whether it be in operations or people management practices,

that encourages heterogeneous workers to thrive in innovative activities without a monetary

component.

We formalize Autonomy Support in a principal-agent model as an investment in leadership

behavior over time, as single interventions fade out eventually. We derive optimal investment

patterns in Autonomy Support that incentivize effort in creative, small scale innovation of the

workforce at the bottom of the hierarchy. The patterns are co-determined by the initial Auton-

omy Support levels of the agent and the rate at which support fades, as well as the benefit-cost

ratio and time discount factor of the principal. We find that the principal invests in Auton-

omy Supportive leadership behavior for almost all parameter constellations. Only if the agent

comes with extremely low or high initial levels of Autonomy Support does she refrain from

investment. We demonstrate that the principal engages in Autonomy Supportive leadership

behavior in accordance with the agent’s need to be lifted up as to become active in innova-

tion. Thereby, we contribute to the literature of managing innovation and the literature on

economic incentives with a view to the current debate on work and whether monetary re-

wards are sufficient for performance (Shiller, 2019).

We proceed as follows. First, we show the limited effectiveness of monetary incentives to fos-

ter small scale innovation. We then introduce the concept of Autonomy Support review the

literature on how it incentivizes innovative activity of the workforce. We then derive the the-

oretical model to trace optimal investments in Autonomy Support over time. We analyze the

resulting investment patterns and derive policy recommendation and future avenues for re-

search. Lastly, we conclude this chapter.
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2.2 Limited effectiveness of monetary incentives for small scale innovation

Small scale innovation describes small step improvements of products and processes. It is

also typically associated to originate from the part of the workforce who are not specifically

employed to innovate, but employees who find creative ways to improve a product or process

they are involved in. Small scale innovation can have an important impact on profits. For

example, a Walmart worker’s idea to use lighter one-step stools for loading trucks will save

$ 30 millions in costs from inefficient packing (Thomas, 2019). Customer needs to adapt a

product are identified through personal interaction of customer service executives (Bilsland

and Cumbers, 2018). While small scale innovation may be of particular interest to small and

medium sized companies that cannot maintain an R&D department (Rammer et al., 2009), it

is interesting for companies of all sizes to encourage small scale innovation.

An important question then is whether small scale innovation can be incentivized financially.

The seminal paper of Manso (2011) displays how an incentive scheme designed to tolerate

early failure and reward late successes does indeed encourage innovation, a result that is

backed up by a lab experiment in Ederer and Manso (2013). It is important to note that the

authors speak of innovation in terms of the contrast between exploitation and exploration.

Whether an agent is incentivized to exploit a given business situation or to explore a set of

business opportunities: neither qualifies as a creative, unconstrained situation. The recent

experimental literature suggests that monetary incentives increase the effort exerted and the

quantity and quality of ideas, but do not have an impact on creativity or originality. In fact,

they may even reduce creativity (Erat and Gneezy, 2016; Laske and Schröder, 2017). Gibbs

et al. (2017) find that with monetary rewards fewer individuals submit more ideas, suggesting

a trade-off where people refrain from sharing small and possibly far fetched ideas. The dif-

ferential impact of monetary incentives on the number of ideas generated and their degree

of creativity highlights that the innovation term is used broadly from new combinations of

known elements to creative, out-of-the-box approaches. Charness and Grieco (2018) distin-

guish between constrained and open creativity, and conclude that financial incentives only

work for constrained tasks. We adopt this distinction for the remainder of this chapter.

Further, we know that incentive schemes must be carefully designed as to avoid unintended

consequences. One major factor is the measurability of effort or output on which the mon-
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etary incentive is conditioned. But small scale innovation that improves products and pro-

cesses is hard to measure, in contrast to the launch of new products and techniques. For

example, small process improvements are likely to be tested at some departments and then

phased in for the entire organization, making it difficult to disentangle department effects.

Continuously changing the production process with small improvements is likely to be dis-

ruptive, such that a product is relaunched with a set of small improvements as, for instance,

Ikea’s ‘new’ Billy bookshelf. This renders it impossible to trace better performance to one im-

provement alone. Toyota’s productivity increase from Kaizen in the 1980s is attributed to its

general ability to foster small scale innovation (Helper and Henderson, 2014), but not to one

single improvement.

The operability of financial incentives for small scale innovation is therefore limited in ad-

dition to their inability to encourage open and creative ideas. This problem is amplified for

the workforce on the ground whose core job is not to contribute ideas. These workers are the

ones experiencing the production process first hand, have insight knowledge about the prod-

uct and work in customer service, which makes them acutely aware of potential problems.

But a variety of reasons can restrain them to voice a novel idea: they may fear repercussion

for challenging the status quo (Zhou and George, 2003), worry that an idea that does not work

out signals inability for the job, or are afraid that a successful idea can render their job useless.

In order to unleash the small scale innovation potential of their workforce, companies must

acknowledge and address these concerns, a task monetary incentives are unfit for.

2.3 How Autonomy Support incentivizes innovation

Leadership behavior is key for fostering small scale, open innovation of the workforce. Differ-

ent management practices coalesce in providing a safe space for workers to raise their ideas

and concerns, as well as welcoming and encouraging their ideas are characterized by this lead-

ership behavior. This holds particularly true for workers who are not specifically employed for

creative, innovative tasks, such as shop floor workers and customer advisers. These typically

work within an organizational structure of controlling guidelines, work processes, and dead-

lines that does not give space for ideation. The pressure they experience prevents creative

thinking, and “Numerous attempts at creativity get killed in their infancy because employ-
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ees fall victim to these emotions” [caused by pressure] (Zhou and George, 2003). The authors

make the case that a key determinant for creativity in the workplace is leadership and a super-

vision style that manages the workers’ emotions through empowerment and encouragement.

However, providing complete leeway, or no structure at all is unlikely to excite a worker to

engage in some innovative activity that actually results in improvements for the company.

Pisano (2019) rectifies this misunderstanding of an innovative organizational culture to be

just encouraging by emphasizing the balance that management must strike to truly innova-

tive improvements: there must be tolerance for failure, but not for incompetence; there must

be a willingness to experiment, but in a highly disciplined way; there must be collaboration,

but with individual accountability; there must be flat, but strong leadership: an innovative

organizational culture, he writes, must be “psychologically safe but brutally candid”.

The leadership behavior in an innovative organizational culture that achieves this balance is

one of Autonomy Support. We introduce the concept of Autonomy Support and provide a

literature review underlining its impact on innovation.

2.3.1 Autonomy Support

Autonomy Support is a concept from Self-Determination Theory. The underlying concept of

Autonomy refers to a feeling of volition and freedom (Gagné and Deci, 2005) when engaging in

an activity. Autonomy is thus overlapping but distinct from both its colloquial meaning of in-

dependence or the economic concept of intrinsic motivation. The latter two describe a person

who chooses independent of others, or chooses what he wants. Autonomy however means

that a person experiences a feeling of freedom while doing something even if the person may

not have chosen it for himself. This is particularly important for the work environment as a

worker has essentially never complete, independent choice of what to do. But he can expe-

rience a feeling of Autonomy because he is not controlled at work, or finds value in his work

and work environment. It seems perspicuous that a feeling of volition and freedom positively
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underpins creative thinking, and most people who ever tried to think out-of-the-box under

pressure and control (the opposite of Autonomy in Self-Determination Theory) would agree.2

Autonomy Support then is “the degree to which socializing agents take the tar-

get individual’s perspective; act in ways that encourage choice and self-initiation;

provide meaningful rationales and relevance; and refrain from using language or

displaying behaviours that are likely to be experienced as pressure toward partic-

ular behaviours” (Benita et al., 2014).

Autonomy Support goes beyond one or multiple specific management practices. The overall

leadership behavior of the supervisor that permeates management practices however can be

Autonomy Supportive. Reflecting the definition of Autonomy Support, Stone et al. (2009) ex-

patiate the following points outlining how practitioners can create autonomous motivation in

the long run:

- Asking open questions including inviting participation in solving important problems

- Active listening including acknowledging the employees’ perspective

- Offering choices within structure, including the clarification of responsibilities

- Providing sincere, positive feedback that acknowledges initiative, and factual,

non-judgmental feedback about problems

- Minimizing coercive controls such as rewards and comparisons with others

- Develop talent and share knowledge to enhance competence and autonomy

Indeed, this constitutes the balance of a successful the management style as described in

Pisano (2019). We now turn to the empirical evidence of how such an Autonomy Support-

ive management style facilitates innovative activity of the workforce in real life.

2 Assume the example of a Ph.D. student. He may research on whatever he chooses (independence), but that
does not necessarily mean that he is motivated, or successful. What does help him succeed is Autonomy
Support. Autonomy Support may come in the form of a supervisor who (a) enables and encourages him
to take initiative and choose, (b) offers advice, (c) shares his/her perspective and experience when solving
problems, and/or (d) offers the "bigger picture".
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2.3.2 Literature review: Autonomy Support and innovation

Our introductory example of Toyota’s Autonomy Supportive management style Kaizen ticks

all boxes of Stone et al. (2009)’s list above. Workers are trained in statistical methods and the

structure of the Kaizen process and Kaizen events such that they can make full use of it (Helper

and Henderson, 2014; Quality-One International, 2015). They also receive feedback and en-

couragement both from their supervisor and colleagues (Helper and Henderson, 2014). Be-

sides the continuously displayed leadership behavior, Toyota organized regular Kaizen events

structured to invite and harness ideas and provide room to improve them. These events can

be designed for broader knowledge gathering or brainstorming in a specific field, but in all

cases, it is the task of the management to provide structure and create a safe environment

(Early, 2012). Helper and Henderson (2014) attribute Toyota’s increased productivity at a time

when its rival’s GM productivity decreased to the small scale innovation incentivized by this

leadership behavior.

Autonomy Support is however not a direct result from an adopted management style alone,

but conditional on the behavior of the individual leader, such that differences within a com-

pany can arise. Amabile et al. (2004)’s study on the impact of perceived leadership support on

creativity showcases a vivid example for Autonomy Support, scrutinizing the widely diverging

impact of two ‘extreme’ micro-managing team leaders in a firm. Both individuals are micro-

managing in the sense that they are closely monitoring their team. One uses this management

practice only to communicate top level decisions down to them, which puts pressure on the

team. The other uses monitoring for immediate exchanges on upcoming challenges, con-

sults the team in decisions and ensures smooth cooperation between team and top manage-

ment. There is no independence in choice in either team, but in the latter the micro-manager

displays Autonomy Support in his leadership behavior. As a consequence, the authors find

that this team engages successfully in innovative activities. The controllingly monitored team

however is unsuccessful. They further record a positive and a negative spiral in each team

respectively. Autonomy Supportive leadership behavior manifests itself over time and has a

lasting effect. The leader invests over time in the relationship with its team to constitute a

coherent behavior. Besides the time component, this example pinpoints that Autonomy Sup-

port encompasses both “instrumental and socioemotional support” (Amabile et al., 2004) and
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that Autonomy Support and a tight structure are not mutually exclusive. One might argue that

because of the structure, the leadership behavior of the Autonomy Supportive team leader

was particularly important. This case also demonstrates that leadership behavior is not con-

ditional on one specific management practice.

A leader achieves a structure that creates a safe space such that a feeling of Autonomy and

innovative activity can arise by, for example, specifying only “issues to avoid” (Van de Ven,

1986), fostering a feeling of ownership (Dorenbosch et al., 2005) that leads to identification

with a leader such that workers follow (Yoshida et al., 2014). Psychological safety promotes

creativity, as shown e.g. in part time graduate students (Kark and Carmeli, 2009), and con-

tributes to a firm’s financial success through innovation, e.g. in a study of 163 Turkish firms

(Akgün et al., 2009). Mumford et al. (2002) conclude that if a leader balances structure and en-

couragement (being both “cheerleader” as well as “the most demanding critic”), workers “can

express their creative capacity”. Interestingly, Zhou and George (2001) find that an Autonomy

Supportive work environment encourages even dissatisfied workers to be creative. It allows

them to use channels to change something about their current situation. At the team level, a

leader provides and develops “a safe psychosocial climate and appropriate group processes”

(West, 2002) on both the individual and the team level through consultative participation,

clarifying objectives and encouraging positive feedback. The team members can then rein-

force Autonomy Support among one another (Gagné and Deci, 2005). The team leader’s role

is “orchestrating” these efforts (Mumford et al., 2002), and like a conductor, becoming part

of the group and ensuring that the members work harmoniously together. In the health care

sector, for example, this has been shown to increase quality of work and innovation (Borrill

et al., 2000).

An Autonomy Supportive leadership is beneficial also for workers who have a personal ten-

dency for creativity. Indeed, it falls short to assume that personal creativity alone achieves in-

novative activity (Mumford et al., 2002). Rather, personal creativity and an appropriate work

context complement each other in accomplishing this goal (Janssen et al., 2004). In the ab-

sence of non-controlling and supportive supervision creativity and patents actually decrease

(Oldham and Cummings, 1996). Creativity of workers unsure of their capabilities is unleashed

when management builds their confidence and serves as a role model (Tierney and Farmer,

2002), pointing towards the importance of Autonomy Support for blue collar workers. More
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complex jobs are assumed to spur worker’s interest and creativity. Even for those Shalley et al.

(2009) show that Autonomy Support has a positive impact on creativity regardless of whether

workers have a high or low degree of Autonomy or work in complex or less complex jobs. For

low Autonomy and less complex jobs the effect is just more pronounced.

As with other incentives, Autonomy Support must be properly designed and applied to ensure

the desired effect and prevent unintended consequences. It is insufficient to give workers pro

forma choice as to create an illusion of Autonomy. Experiments indicate that when workers’

decisions are not taken seriously it discourages effort: when workers are delegated to choose

which project to implement, but the leader overrules their decision, effort levels and transfers

(Sloof and von Siemens, 2019; Corgnet and Hernán González, 2013) plummet. A successful

manager must be able to change one’s mind when involving workers in the decision process

(Corgnet and Hernán González, 2013). Leadership behavior that is perceived as insincere or

intrusive has a negative impact on innovative behavior (Bammens, 2016). Autonomy Support

must also specifically aim at encouraging innovation. Ohly et al. (2006) find that while Auton-

omy Support inspires personal initiative, it does not increase creativity and innovation, and

ascribe this finding to the fact that supervisor support was not clearly targeted at innovation.

The company’s system of processing suggestions might have been misused to communicate

complaints.

This review highlights that Autonomy Support encompasses a variety of actions and behav-

iors of a leader, which can be displayed in a different operations and human management

practices. Autonomy Supportive leadership behavior must be authentic and offer both in-

strumental and emotional support. A one time Autonomy Supportive intervention is unlikely

to have a believable lasting effect, and fades over time. Therefore, it must be reinforced and

renewed. Regular efforts to provide Autonomy Support are necessary, and different behaviors

or intensities may be required at different points in time. While companies like Toyota incor-

porate a management style that targets at Autonomy Support, it eventually comes down to the

quality of the leadership behavior of the principal in question. We formalize these notions in

our model.
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2.4 A model of investments in Autonomy Support

2.4.1 Model setup

We investigate optimal investments in providing Autonomy Support of a principal with a view

to incentivize innovative activity of the worker. We expect optimal investments to vary over

time, as leadership behavior and actions required differ. For example, extensive methods

training or occasional feedback require behavior of different time intensity. We choose a two-

period model to incorporate this notion in a principal-agent model. It allows us to keep the

model as tractable as possible whilst capturing the dynamic aspect of Autonomy Support in-

vestments.

For the purpose of the research question, we concentrate only on innovative activity i of the

agent as inventivized through Autonomy Support by the principal. When the agent (he) en-

gages in innovative activity i the probability for his efforts to result in a successful innovation

increases according to the probability function

Pr (i ) = i

1+ i

with Pr (i ) ∈ [0,1) for i ≥ 0.

The agent experiences effort costs from innovative activity, which decreases in the amount of

Autonomy Support available to the agent. Prior discounted and current Autonomy Support

constitute this available amount. The discount factor δ accounts for the fact that Autonomy

Support investments fade out over time. A one period intervention does not carry indefinitely

into future periods with the same motivational power. We factor in the Autonomy Support

provided previously, either in employment or personal relationships, by assuming a personal

consolidated start level s̄ of an agent. Alternatively, the start value can be interpreted as the

agent’s personal autonomous motivation level for innovation prior to employment (Shalley

et al., 2009). Different agents therefore have different initial levels of s̄. The total value of
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Autonomy support s̄1 and s̄2 available to an agent in periods t = 1,2 is therefore given by

s̄1 = δs̄ + sa,1

s̄2 = δ2 s̄ +δsa,1 + sa,2

denoting the sum of the discounted start value s̄ and the principal’s investments in the prior,

discounted, and the current period.

The payoff the agent experiences from successful innovation is denoted as v A and normalized

to one. We understand this payoff to be the utility derived from being creatively active and

seeing one’s innovative activity come to fruition, not as a monetary reward. Taken together,

the agent’s utility as a function of his innovative activity i for periods t = 1,2 are

UA(i ,1) = v A
i

1+ i
− i

δs̄ + sa,1
= v A

i

1+ i
− i

s̄1
(2.1)

UA(i ,2) = v A
i

1+ i
− i

δ2 s̄ +δsa,1 + sa,2
= v A

i

1+ i
− i

s̄2
(2.2)

The principal (she) receives a payoff vP when the agent’s innovation is successful, and bears

costs c(sa,t ) = αsa,t from providing Autonomy Support at time t . α denotes the principal’s

marginal cost. Alternatively, it can be interpreted as her ability to provide Autonomy Support.

The principal is forward looking and accounts for the fact that Autonomy Support provided in

period 1 impacts innovative activity and thus innovation profit in both periods. The principal

discounts her profit in period 2 with β and includes it in her first period considerations. The

profit functions for periods t = 1,2 are

ΠP (sa,1,1) = vP
i

1+ i
−αsa,1 +βΠP (sa,2,2) (2.3)

ΠP (sa,2,2) = vP
i

1+ i
−αsa,2 (2.4)

We assume that the principal can perfectly observe the initial amount of Autonomy Support s̄

the agent enters the work relationship with. We look at situations in which the benefits from

Autonomy Support and its associated costs are such that the principal considers investment.

We achieve this by assuming that the benefit-cost ratio satisfies vP
α

> 2. The time line of the

model is as follows. In each period, the agent’s total Autonomy Support is depreciated before
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the principal has the opportunity to invest anew. Based on the currently available Autonomy

Support level, the agent chooses his innovation effort, and the payoffs of the period are real-

ized.

t = 0

s̄ δ

t = 1

sa,1 i1

payoffs

δ

t = 2

sa,2 i2

payoffs

end

The principal seeks to maximize her profits from innovation by optimally investing in the

agent’s Autonomy Support. We solve the maximization problem via Backward Induction be-

cause profits are time-interdependent through the investment choices.

2.4.2 Solving the model

Solving for period t = 2

While the principal takes future effects of her own current investment into account, the agent

is backward looking. He considers each period separately and only takes past investments

in his available Autonomy Support into account. In period t = 2, he maximizes UA(i ,2) from

Equation (2.2) by his choice of innovative activity i , resulting in

i∗2 = (δ2 s̄ +δsa,1 + sa,2)
1
2 −1 (2.5)

The agent’s innovative effort i∗2 depends on his initial Autonomy Support level, the discounted

previous and the current Autonomy Support investment by the principal. The agent only be-

comes active if there is overall enough Autonomy Support. If previous Autonomy Support is

low or heavily discounted such that δ2 s̄ +δsa,1 = 0, no innovative activity takes place if the

principal does not sufficiently invest in the current period t = 2. If the previous Autonomy

Support is high and/or is only mildly discounted, innovative effort is exerted even if the prin-

cipal does not invest in the current period at all, with sa,2 = 0.
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The principal maximizes ΠP (sa,2,2) from Equation (2.4) in order to derive her optimal invest-

ment sa,2, which results in

s∗a,2 =
( vP

2α

) 2
3 −δ2 s̄ −δsa,1 ≥ 0 (2.6)

s∗a,2 increases in profit vP from successful innovation and decreases in the marginal cost pa-

rameter α for providing Autonomy Support. The benefit-cost ratio vP
α also comes into play

when determining if the principal invests at all in the second period. Only if the agent’s ini-

tial Autonomy Support level and previous investment is low or heavily discounted such that

it does not exceed the benefit-cost ratio vP
α

, does the principal choose a positive investment

sa,2 > 0. Otherwise, the principal does not need to replenish the stock of Autonomy Support

and chooses sa,2 = 0.

The principal’s profit in period t = 2 when she engages in current Autonomy Support invest-

ments s∗a,2 > 0 is

Π∗
P,2(s∗a,2|s∗a,2 > 0) = vP

( vP
2α

) 1
3 −1( vP

2α

) 1
3

−α
( vP

2α

) 2
3 +α(δ2 s̄ +δsa,1)

= vP −3α
( vP

2α

) 2
3 +α(δ2 s̄ +δsa,1)

and for her optimal choice of s∗a,2 = 0

Π∗
P,2(s∗a,2|s∗a,2 = 0) = vP − vP

(δ2 s̄ +δsa,1)
1
2

> 0

Solving for period t = 1

The agent maximizes his utility UA(i ,1) of period t = 1 in Equation (2.1) by choosing

i∗1 = (δs̄ + sa,1)
1
2 −1 ≥ 0

The agent’s innovation effort in period t = 1 increases in both his initial Autonomy Support

level and the principal’s investment in the current period.
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When maximizing ΠP (sa,1,1) in Equation (2.3), the principal takes this and the discounted

future impact of her investments in period t = 1 for the subsequent period into account. Her

optimal investment choice is

s∗a,1 =
(

vP

2α(1−βδ)

) 2
3 −δs̄ ≥ 0 (2.7)

Her investment increases when the benefit-cost ratio increases and increases in how strongly

she values future periods, as described by β. The effect of the agent’s discount parameter δ is

ambiguous and will be part of the discussion on the different investment patterns. Contingent

on the parameter constellation, the principal may or may not invest in Autonomy Support in

period t = 1.

The resulting profit in period t = 1, if she invests in Autonomy Support in both periods such

that s∗a,1 > 0 and s∗a,2 > 0, is

Π∗
P,1(s∗a,1 > 0) = vP − 1

vp

(2α(1−βδ)

2
3

−α
(

vp

(2α(1−βδ)

) 2
3 +αδs̄

+β
[

vP −3α
( vP

2α

) 2
3
]
+βδ

(
vp

(2α(1−βδ)

) 2
3

(2.8)

and for s∗a,1 = 0

Π∗
1 (s∗a,1 = 0) = vP −

(
1

δs̄

) 1
2 +βvP

(
1

δ2 s̄

) 1
2

(2.9)

2.4.3 Results: Autonomy Support investment patterns

We derive the investment patterns that emerge depending on the parameter constellations of

the benefit-cost ratio vP
α

, the agent’s depreciation rate of Autonomy Support δ, and the prin-

cipal’s discount factor β of future profits.3

The first broad distinction for the different patterns is the relationship between the agent’s

and principal’s future benefits from investing in Autonomy Support in the current period. The

3 The specific derivations for each case are stated in the Mathematical Appendices B.1 and B.2.
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condition core to this distinction is given by

1

δ
−
p
δ≶β (2.10)

as depicted in Figure 2.4.1, where 1
δ
−p

δ=β is delineated.

Figure 2.4.1: β- δ relationship

To the left of this line, 1
δ −

p
δ > β holds when either δ or β, or both simultaneously are low.

The agent discounts Autonomy Support at a high rate, and investments fade out strongly. The

principal does not value future payoffs highly. Intuitively, this translates to lower incentives to

invest in Autonomy Support and results in lower investments.

To the right of this line, 1
δ −

p
δ< β holds when β and δ are simultaneously high. This means

that the agent discounts Autonomy Support at a low rate, and investments last. The principal

values future payoffs strongly. Investing in the current period is beneficial for both. Intuitively,

this translates to higher incentives to invest Autonomy Support and results in higher invest-

ments in the given period.

In accordance with this distinction, we now describe the specific investments for low and for

high future benefit investment patterns.
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Low future benefit investment patterns under 1
δ
−p

δ>β

Pattern I: Investment in each period

The principal chooses a positive investment in period t = 1, s∗a,1 > 0, if the initial Autonomy

Support amount s̄i does not exceed (derived from Equation (2.7)) a threshold of

1

δ

(
vP

α

1

2(1−βδ)

) 2
3 > s̄i (2.11)

This means that the benefit-cost ratio vP
α of innovation is high enough to interest the principal

in encouraging innovative activity. However, the initial Autonomy Support amount is so low

that she chooses to invest in the first period. After the depreciation of s∗a,1 (in Equation (2.7))

the principal further invests s∗a,2 > 0 in period t = 2, if Equation (2.6) satisfies

s∗a,2 =
(

1

2

) 2
3 (vP

α

) 2
3 −δ2 s̄ −δs∗a,1

=
(

1

2

) 2
3 (vP

α

) 2
3

(
1−δ

(
1

1−βδ
) 2

3

)
> 0

which is always true for 1
δ
−p

δ>β as assumed for this section.

Rearranging the time-interdependent profit function of period t = 1 (Equation (2.8)) yields a

lower bound of s̄i that ensures positive expected profits from innovative activity for the prin-

cipal:

s̄i ≥ vP

α

1

δ

[
3

(
1

2

) 2
3 (vP

α

)− 1
3 −1

][
1+ βδ

α

(1−βδ)
2
3

+β
]
≡ XΠP1,1 ≥ 0 (2.12)

The initial amount of Autonomy Support s̄i must exceed this threshold, otherwise the princi-

pal does not find it optimal to add to it in the first and subsequent second period. Intuitively,

there must be some, but not too much Autonomy Support of the agent to build on such that

the principal, although inclined to invest little, finds it optimal to invest in both periods. In Fig-

ure 2.4.2, we see that depending on the initial Autonomy Support, the principal matches her

investment such that the agent achieves the s̄1 necessary to optimally exert effort in innova-

tive activity. The higher the initial level, the less must the principal touch it up. The emerging
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patterns are steadily decreasing (Pattern Ia in Figure 2.4.2) or hump-shaped (Pattern Ib).

The agent’s utilities in the respective periods are

UA(i∗,1) = 1− 2(
vP

2α(1−βδ)

) 1
3

+ 1(
vP

2α(1−βδ)

) 2
3

UA(i∗,2) = 1− 2( vP
2α

) 1
3

+ 1(
2 vP

2α

) 2
3

Pattern II: Investment only in second period

If the agent enters the company with an initial amount of Autonomy Support s̄i i that exceeds

the threshold in Equation (2.11), the principal does not invest in period t = 1 in the 1
δ−

p
δ>β

environment. However, she does invest in t = 2 as per Equation (2.6) if

1

δ2

(
1

2

) 2
3 (vP

α

) 2
3 > s̄i i (2.13)

or, phrased differently, if the initial Autonomy Support amount is sufficient to encourage in-

novative activity in the first period, but not in the second period.

The agent’s utilities become

UA(i∗,1) = 1− 2

(δs̄)
1
3

+ 1

(δs̄)
2
3

UA(i∗,2) = 1− 2( vP
2α

) 1
3

+ 1(
2 vP

2α

) 2
3

Pattern III: No investment

If the agent’s initial amount of Autonomy Support s̄i i i exceeds the threshold in Equation (2.11),

such that

s̄i i i ≥ 1

δ2

(
1

2

) 2
3 (vP

α

) 2
3

(2.14)
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it is sufficiently high to encourage innovative activity even if the principal does not invest in

either period. The agent’s utilities are

UA(i∗,1) = 1− 2

(δs̄)
1
3

+ 1

(δs̄)
2
3

UA(i∗,2) = 1− 2(
δ2 s̄

) 1
3

+ 1(
δ2 s̄

) 2
3

In contrast, if the initial level is so low that it falls short of the threshold XΠP1,1 in Equation

(2.12), then the principal optimally chooses not to invest in either period and no innovation

takes place. The agent’s utilities then are

UA(i∗,1) = 0

UA(i∗,2) = 0

No investments for a high and a low initial amounts and the resulting development of Auton-

omy Support levels are depicted in Pattern IIIa and Pattern IIIb in Figure 2.4.2.

Pattern Thresholds Investment

IIIb s̄ < XΠP1,1 no

I XΠP1,1 ≤ s̄i < 1

δ

(
vP

α

1

2(1−βδ)

) 2
3

t = 1,2

II
1

δ

(
vP

α

1

2(1−βδ)

) 2
3 ≤ s̄i i < 1

δ2

(
1

2

) 2
3 (vP

α

) 2
3

t = 2

IIIa
1

δ2

(
1

2

) 2
3 (vP

α

) 2
3 ≤ s̄i i i no

Table 2.4.1: Thresholds for low future benefit investment patterns

Table 2.4.1 displays an overview of the thresholds for all low future investment patterns. For

given parameter values the principal prefers investing only in the second period when the

agent’s initial level of Autonomy Support is high enough.
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Figure 2.4.2: Development of Autonomy Support for low future benefit investment patterns
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High future benefit investment patterns under 1
δ
−p

δ≤β

Pattern IV: Investment only in first period

With the relationship 1
δ
−p

δ≤β, it holds that

s∗a,2 =
(

1

2

) 2
3 (vP

α

) 2
3 −δ2 s̄ −δs∗a,1

=
(

1

2

) 2
3 (vP

α

) 2
3

(
1−δ

(
1

1−βδ
) 2

3

)
≤ 0

and the principal always optimally chooses s∗a,2 = 0.

Further, the principal invests in Autonomy Support in period t = 1 only if

1

δ

[
vP

2α

(
1+ βp

δ

)] 2
3 > s̄i v (2.15)

however, this equation takes a different value than in Pattern I.

Inserting s∗a,1, s∗a,2 in the time interdependent profit function of period t = 1, we can derive a

lower bound XΠP1,2 that ensures that the principal invests in t = 1:

s̄i v ≥ 1

δ

vP

α

[(
1

2(1−βδ)

2
3 (vP

α

)− 1
3

)
(2(1+ βp

δ
)2 +1)− (1+β)

]
≡ XΠP1,2 (2.16)

The resulting utilities for the agent are

UA(i∗,1) = 1− 2([
vP
2α

(
1+ βp

δ

)]) 1
3

+ 1([
vP
2α

(
1+ βp

δ

)]) 2
3

UA(i∗,2) = 1− 2([
δ vP

2α

(
1+ βp

δ

)]) 1
3

+ 1([
δ vP

2α

(
1+ βp

δ

)]) 2
3

The principal matches his investment to the agent’s initial level in the first period such that

he exerts optimal innovative effort in both periods. With varying initial levels, the pattern for

development over time can take the shape of Pattern IVa or Pattern IVb, steadily decreasing or

hump-shaped, as depicted in Figure 2.4.3.
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Pattern V: No investment

If the initial Autonomy Support exceeds the threshold in Equation (2.15)

s̄v ≥ 1

δ

[( vP

2α

)(
1+ βp

δ

)] 2
3

(2.17)

then it sufficiently big to encourage innovative activity in both periods without investments

by the principal. In contrast, if the initial amount of Autonomy Support is so small that it falls

short of the threshold in Equation (2.15), the principal does not find it worthwhile to invest in

Autonomy Support at all. For high or low initial levels, the investments are depicted in Patterns

Va and Vb in Figure 2.4.3, respectively.

The resulting utilities are as in Pattern III, albeit with parameters satisfying 1
δ
−p

δ≤β.

Table 2.4.2 displays an overview of the thresholds for high future benefit investment patterns.

For given parameter values the principal prefers investing only in the first period when the

agent’s initial level of Autonomy Support is high enough.

Pattern Thresholds Investment

Vb s̄ < XΠP1,2 no

IV XΠP1,2 ≤ s̄i v < 1
δ

[
vP
2α

(
1+ βp

δ

)] 2
3

t = 1

Va 1
δ

[
vP
2α

(
1+ βp

δ

)] 2
3 ≤ s̄v no

Table 2.4.2: Thresholds for high future benefit investment patterns
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Figure 2.4.3: Development of Autonomy Support for high future benefit investment patterns
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2.5 Discussion and implications

More attractive investments in Autonomy Support, let that be because of higher payoff vP or

lower cost α, naturally result in higher investments, and potentially investments in more time

periods, as can be seen in Tables 2.4.1 and 2.4.2.

For both β-δ relationships and a given benefit-cost ratio vP
α

, we find a certain substitutability4

between s̄ and the principal’s investments, following the literature that investments additively

impact a worker’s creative inclination (Hagger et al., 2015). The more the agent feels encour-

aged to be active in innovation at the start the work relationship, the less must the principal

invest in order to maintain that motivation. Substitutability does not infer, however, that for

individuals with high initial levels Autonomy Support investments are futile. Even for rather

high levels of initial Autonomy Support we find positive investments in at least one period by

the principal. This reflects the finding that it cannot be taken for granted that workers creative

at the beginning of a work relationship remain so (Mumford et al., 2002).

In those cases where the agent’s initial level and the level required to achieve the optimal in-

novation effort choice do not diverge too strongly, the principal matches their difference with

her investment as depicted in Figures 2.4.2 and 2.4.3. The difference is co-determined by the

rate at which the initial level and further investments are depreciated as well as the valuation

of the principal for future periods. Our model hence captures the notion that individuals have

different Autonomy Support requirements to succeed at different points in time, and that ap-

propriate intensity of Autonomy Support investments position them to be successful (Shalley

et al., 2009).

For those situations where the principal only invests in one of the two periods, the β-δ rela-

tionship determines in which period the investment is done. When the principal’s valuation

of the next period exceeds the depreciation term ( 1
δ
−p

δ≤ β), she invests ‘in advance’ in the

first period such that the Autonomy Support given carries over to the second period and still

encourages innovative activity. This reflects a result in the innovation management litera-

ture that Autonomy Support in the form of encouragement is particularly important at early

stages of an innovative project, while Autonomy Support in the form of partaking in the deci-

4 The model with complementarity between the initial level and investments is derived in the Mathematical
Appendix B.3. We show that complementarity only eliminates the u-shaped Pattern II and no investment
Pattern V for high initial levels of Autonomy Support. Else, our qualitative results remain unchanged.
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sion process and control over the implementation becomes more important in later periods

(Axtell et al., 2006). It seems plausible to assume that the latter is less time-intensive for the

principal and can be described by her lower investments in Autonomy Support at the later

period. This is also in accordance with a situation where the principal has a high valuation of

future periods: if she manages the entire project from the first creative idea up to the imple-

mentation, she likely is forward looking and rather invests in advance instead of supporting

her worker only at later stages of the project.

We observe the possibility of a u-shape of Autonomy Support investments in Pattern IIb when

either or both of β and δ are low ( 1
δ
−p

δ ≥ β). Although relying on the agent’s initial level in

the first period, the principal touches up the depreciated Autonomy Support in the second

period. This result is surprising: intuitively, one expects that the principal refrains from in-

vestments in the last period of the work relationship. The expected profit from innovation in

the second period is enough for her to make that investment nonetheless. Considering the

notion that the principal only provides Autonomy Support as required to achieve innovative

activity, the principal can optimally decide to let initial levels deteriorate and invest only in

the last period. As this result is possible even when the principal has all information and acts

rationally, it stands to reason that this case gains importance when the principal is not fully

informed. For example, a principal in a company that has not done Autonomy Support before

may not be fully aware of the potential benefits vP from innovative activity or the actual costs

α of providing support, or how quickly Autonomy Support discounts at rate δ. In the course of

managing her workforce, she learns about these dimensions and adjusts her optimal invest-

ment decision accordingly.

We find that the principal optimally chooses not to invest if the agent’s initial Autonomy Sup-

port level exceeds a high threshold (Equations 2.14, 2.17), that allows innovative activity with-

out any investments. These thresholds are key: the principal does not choose to invest be-

cause she does not see worth in Autonomy Support, but for a given benefit-cost ratio vP
α that

co-determines the thresholds it is not optimal for her to do so. This adds nuance to the notion

that some companies rely on agent’s creativity because they do not want to invest (Mumford

et al., 2002). Instead, they may not find it optimal, and workers still exert innovation effort. On

the reverse, the benefit-cost ratio may not allow the principal to invest and build up Auton-

omy Support in agents that arrive with a very low initial level.
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The intuition of the investment dynamics of our two-period model can easily be transferred

to a multiple period model. Investments then carry over to more than one subsequent period

and positively influence the principal’s profit potentially longer. As in our two-period model,

the principal only aims for a lower level of innovative activity i in the last period. With more

periods, her investments in earlier periods are higher and fade out towards the end of the re-

lationship. The distinction in our results with respect to the β-δ relationship becomes less

important. In either case, we expect a wave pattern of investments. In the low investment

case, the principal restocks the Autonomy Support depreciated from the previous period, and

in the high investment case, the principal invests in advance and lets it depreciate in the next

period. But this only matters for the initial investments. Afterwards, the principal ensures the

optimal long term innovative effort by maintaining it with her investments. This means that

at some point, the principal replenishes the depreciated Autonomy Support even of an agent

with a very high initial level. In the intermediate periods of the model, we expect rather sta-

ble expected profits and utilities from innovative activity. The picture is less clear for agents

who enter the company with such a low level of Autonomy Support that in our version, the

principal refrains from investment. With more periods, the threshold for not investing would

be lower, as the principal would forego more profits over time. This renders it potentially

interesting to build such a worker’s Autonomy Support "from scratch". Considering real life

employment relationships and life cycles, this seems plausible. Only under the conceivably

worst starting condition do investments in Autonomy Support not positively impact a per-

son’s activity and unleash creative potential. The notion that growth is inherently possible,

and desirable, for everyone is perfectly in line with Self-Determination Theory.

Thus far, the depreciation rate is assumed to be agent-specific. However, we can also under-

stand δ to be an environmental variable. Supervisors’ choice of providing Autonomy Support

has a strong impact on workers’ innovative efforts that can diverge even within a company

(Amabile et al., 2004), and Autonomy Support is relationship-specific between supervisor and

worker. If the company has an organizational structure prone to disrupting this relationship,

e.g. a tendency for unexpected job rotation or restructuring, at least part of the Autonomy

Support is lost because it is not necessarily attributed the company, but the specific supervi-

sor. The company then influences innovative activity not only through investments via the

supervisor, but also whether it allows these investments to last. This suggests that δ as an
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environmental variable is correlated with investments in Autonomy Support: the more eas-

ily the organizational structure disrupts supervisor-worker relationships, the more important

become supervisors’ investments. This interpretation can be incorporated in the model by

allowing investments in Autonomy support to also influence a period-specific depreciation

rate.

Our model further indicates that agents with varying start values of Autonomy Support derive

similar utilities from being innovatively active. Only those with start values so high that they

prevent further investments thrive above, while those with start values so low that no invest-

ments are made have no utility. This underlines our understanding that people value being

allowed to be creative, but also adds to the bigger notion that they value being autonomous:

not only appreciating results, but also the processes that lead to results (Benz and Frey, 2008).

Transferring our findings to real world scenarios indicates that for longer relationships, re-

flected in a multiple period scenario, Autonomy Support is more likely provided continuously.

The first investment, as in the first period of our model, depends on the β-δ relationship.

When they are high, such that both parties expect high future benefits, the supervisor en-

gages in sizable Autonomy Support investments right from the start. When one or both are

low, the principal anticipates low future benefits, such that the first investment is rather small.

As such, high Autonomy Support investments can be understood as part of an on-boarding

process where both parties expect the work relationship to last. We believe that screening for

Autonomy Support in the recruitment process occurs even in the absence of specific mea-

surements. Previous Autonomy Support is reflected in previous behaviors and choices of the

agent, which may at least be in part observable, e.g. in the CV or recommendation letters. In

an ongoing work relationship, the current need for Autonomy Support investments may be

detected by employing questionnaires for perceived Autonomy Support (Hagger et al., 2007;

Mageau et al., 2015) such that the principal can react to it. Even creative workers are in need of

an Autonomy Supportive leadership behavior (Mumford et al., 2002) to preserve their efforts.

Regarding the benefit-cost ratio, companies may be concerned about costs in training team

leaders in Autonomy Support5 as to introduce Autonomy Support. We would expect trained

team leaders to then actually have a lower marginal cost α. Even then, assessing the poten-

tial benefit from small scale innovation vP is hard, especially when a company has no prior

5 Fixed costs do not change the qualitative results of our model, but slightly shift the thresholds.
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experience in innovating. We believe this may be the most constraining factor in providing

Autonomy Support. In the example of Toyota and its opponent GM, GM apparently did not

believe its workforce capable of innovation resulting in profits, such that the thought of pro-

viding Autonomy Support may have never occurred.

In this chapter, we focus on investments in Autonomy Support that encourage innovative ac-

tivities. Autonomy and Autonomy Support however have been generally found to positively

impact well-being and performance of individuals (Gagné and Deci, 2005). A natural exten-

sion of our model is therefore to include a standard task. We make the case that Autonomy

Support must be properly designed to be encourage innovation. But as this involves looking

deeply into the task at hand and how to improve it, it seems obvious that even Autonomy Sup-

port tailored towards innovative activity would to some extend spill over to effort in the stan-

dard task. As this increases the principal’s profits from innovation and regular business from

the same investments, it amounts to an increase in vP in our model, resulting in higher invest-

ments, investments in more periods, and investments for agents with smaller initial amounts

of Autonomy Support. The interaction between standard and innovative task could, for exam-

ple, be captured by allowing successful innovation to directly reduce effort costs in the stan-

dard task. Additionally to the agent’s benefit from innovation v A, currently the utility from

being active, this generates a direct utility advantage. Generally, a model incorporating the

standard task needs to include a monetary exchange. As shown in the literature review, mon-

etary incentives do not facilitate generating creative ideas, posing the interesting question of

whether innovation efforts should be compartmentalized as to not be perceived to have mon-

etary rewards.

2.6 Conclusion

Our research contributes to the discussion on optimal management practices. Instead of iso-

lating the effect of a single management practice, we focus on the impact of Autonomy Sup-

portive leadership behavior on innovative effort. Leadership behavior is not contingent on

a specific management practice, it can or cannot arise within one structure (Amabile et al.,

2004), but may more readily appear in a management practice designed for support, such

as in our introductory example of Toyota’s Kaizen. Nonetheless, Autonomy Support fosters a
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feeling of Autonomy, an innovative action, only when given frequently, and in accordance to

the worker’s need. Providing this Autonomy Support is therefore an investment on behalf of

the supervisor.

In this chapter, we demonstrate the optimal investment patterns in Autonomy Support over

time that fosters small scale innovation. Small scale innovation describes creative, uncon-

strained innovative efforts of an agent. We review research showing that monetary incentives

are restricted in their effectiveness for unconstrained innovation but that an Autonomy Sup-

portive leadership behavior successfully instills innovative efforts. Leadership behavior un-

folds over time, as a single intervention’s effectiveness fades out over time. Informed by the

literature, we build a two-period model of the principal’s optimal investments in Autonomy

Support. We find that when the principal values future benefits from innovative effort, she

tends to invest already in the first period. When future benefits are not strongly valued, the

principal tends to retouch depreciated Autonomy Support levels in the second period. Our

model also suggests a certain substitutability between investments and the agent’s initial Au-

tonomy Support level, which he has accrued in previous (personal or professional) relation-

ships. However, screening for agents with high initial Autonomy Support, or creativity levels,

does not resolve the need to invest in Autonomy Supportive leadership behavior, echoing the

literature (Mumford et al., 2002). Expanding the results of our two-period model indicates that

even individuals with relatively high initial levels should be invested in at some point to pre-

serve their innovative efforts. Workers endowed with almost zero initial Autonomy support

receive no investments in our model; with a wide time horizon, investments in them become

more likely.

One can argue that some supervisors already manage their workforce intuitively in this way.

However, as a non-monetary incentive, Autonomy Support may have interactions with other

incentives and should be provided consciously and in a structured way. As is the case with

incentives in general, Autonomy Support must be tailored to be conducive to the desired out-

come, in our case innovation, and given in the required intensity. Our research contributes

thus to the discussion on non-monetary incentives, but we do not add yet another tool to the

incentive toolbox. The concept of Autonomy Support touches upon motivation through de-

cision rights, rewards, verbal praise and knowledge sharing, but encompasses these factors to

feed into a feeling of Autonomy that successfully instills motivation (Gagné and Deci, 2005).
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In this, Autonomy Support allows us to expand our understanding of how known incentives

effectively work together. We further point towards time dependent need and effectiveness of

incentives.

We also demonstrate that different leadership behavior intensity can constitute optimal Au-

tonomy Support, as optimal investments depend on the agent’s initial level. Leadership of

a team then entails that the same action inspires different levels of Autonomy Support for

each group member. It is therefore the responsibility of the team leader to understand which

actions and behaviors must be taken on a team and which on an individual level in order to

provide the Autonomy Support needed for each team member. With an Autonomy Supportive

leadership style, the supervisor outgrows the role of controlling the workforce; she becomes a

service provider who helps her team achieve the best for the entire organization.
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Chapter 3

The Dry Powder Paradox of Monetary

Policy*

3.1 Introduction

Should central bankers be rewarded for keeping interest rates up? And should monetary policy

“keep its powder dry” in anticipation of deteriorating economic conditions? The notion of dry

powder assumes that the maximum potential effectiveness of monetary policy is a state vari-

able that follows a stochastic process dependent on past (and future) use of it. In typical mod-

els designed for studying “optimal” monetary policy and its role for macroeconomic stabi-

lization, monetary policy cannot be stored and thus, interest rate setting is a state-contingent

equilibrium process, not a goal of stabilization itself. In this chapter, we shed light on the the-

oretical underpinning of this dry powder view and answer the question of whether a central

bank should set interest rates precautionarily according to the New Keynesian paradigm. A

central bank is said to set interest rates precautionarily if it has asymmetric preferences con-

cerning deviations of interest rates from their natural level.

The narrative of dry powder is prevalent across professionals and the public regarding both

monetary and fiscal policy. There are several instances where headlines after meetings of the

governing council of the Fed, the ECB, or the Bank of England make explicit reference to the

* This chapter is based on joint work with Markus Epp (University of Freiburg).
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argument.2 The argument resounds when economic conditions are expected to deteriorate

in the near future so that further interest rate cuts are expected to be necessary. While there

is some consensus about the notion of “fiscal space”, i.e. the limited capacity of governments

to run deficits (due to borrowing limits and Laffer curves in taxation revenues or seignorage),

the potential of interest rate cuts to amplify economic activity is, presumably, restrained by a

binding lower bound on the nominal interest rate as in (Brunnermeier and Koby, 2016), also

referred to as the reversal rate. Hence, a potential rationale for promoting the "dry-powder-

argument" might be that setting interest rates (precautionarily) above their natural level may

offer some leeway with respect to such a binding constraint.

Note that in this chapter, we do not attempt to answer the question of whether central banks

actually "keep their powder dry" and set interest rates precautionarily. This clearly is an em-

pirical question that goes beyond the scope of the present work. Further, we acknowledge

that finding conclusive evidence for this point may prove challenging because several fac-

tors impair the distinction of central banks’ motives: First, conflicting regional interests ob-

fuscate a clear distinction of fundamental components from deliberate precaution in driving

observed monetary policy, a problem particularly associated with heterogeneous monetary

unions like the eurozone. Second, central banks’ might exhibit hidden preferences for inter-

est rate smoothing.3

We do not attempt to settle the controversy around deviations of actual interest rate setting

from natural interest rates with this work, not to mention the associated difficulties arising

with estimations of the latter. Instead, we analyze institutional circumstances under which

precautionary interest rate setting (PIRS) may or may not occur as an equilibrium outcome in

the New Keynesian core model, as well as the welfare consequences when it does.

Given the central bank has a dual mandate with a certain degree of freedom in putting weights

on price stability and economic activity, our results are as follows: First, letting a discretionary

central banks’ objective function also host explicit preferences for keeping positive interest

rates, the associated PIRS yields the dry powder paradox: it leads to a deflationary bias and

lower output gaps which in turn lead to on average lower nominal interest rates.

2 See The Economist (2014) on Feb 6th: “Keeping its powder dry”; Goodman (2019) in Bloomberg.com on Dec
19th: “Bank of England Keeps Powder Dry as Brexit Moves Into Next Stage”, or Brzeski (2020) on Apr 30th:
"ECB: Keeping its powder dry".

3 Woodford (2003) shows that such behavior might be optimal even when society has no explicit preference
for smooth interest rates.
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Nevertheless, the created deflationary bias can be helpful when addressing the time inconsis-

tency problem, which arises when the central bank cannot commit to a policy plan and the

economy’s steady-state is distorted (or alternatively: perceived to be distorted). We show that

the welfare-optimal incentive for positive nominal interest rates has closed-form expressions.

If the central bank and society have asymmetric preferences with respect to their weights on

the output gap, depicted in their loss functions, the optimal incentive is strictly positive if the

central bank is less "conservative" in comparison. Further, if the preferences perfectly coin-

cide, the size of the optimal incentive is still strictly positive due to the welfare gains it provides

by being a tool to overcome the time inconsistency problem. Further, our analysis shows that

introducing the interest rate objective explicitly allows the central bank to balance its response

to shocks with its goal to obtain a certain deflationary bias.

However, the welfare gains due to PIRS arising from overcoming the time inconsistency prob-

lem vanish when a central bank can credibly commit. In this case, a higher incentive for pos-

itive nominal interest rates yields on average higher nominal interest rates which in turn lead

to higher inflation in the long-run. Hence, when the objective actually is to create some leeway

away from a binding zero lower bound – a case in which the central bank is unable to match

the decrease in the natural rate of interest with a proportional reduction in its policy interest

rate due to a binding constraint for the latter – such a reward might help to accomplish that

goal. In other words, given the central bank can credibly commit and thereby anchor expec-

tations, our theory states that a reward on positive nominal interest rates can be used to avoid

potential market fragilities at the zero(or effective)-lower bound (Fischer, 2016; Orphanides,

2020). Nevertheless, not-considering the existence of an effective lower bound, there is no

welfare-argument in this case for a positive weight on keeping interest rates at higher levels.

Additionally, our analysis elucidates the potential for PIRS to be a valid strategy for a central

bank having the objective of keeping control over its instruments to fulfill its mandate(s): it

can be a tool to avoid the scenario of "fiscal dominance", in which interest expenses of a gov-

ernment cannot be covered by tax collection or rollovers quickly enough, such that the cen-

tral bank might be tempted or even forced to sacrifice its main policy instrument to sustain

government-solvency.

The chapter is structured as follows: in Section 3.2, we review the related literature. Section

3.3 highlights the role of incentivizing a central bank for positive nominal interest rates in the
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New Keynesian model with discretionary and/or commitment policies, bringing about the dry

powder paradox as well as a resulting welfare analysis. Section 3.4 presents PIRS in a setup of

potential institutional conflict between a central bank and fiscal policy, in which its role for

disciplining public spending is analyzed. Section 3.5 concludes this chapter.

3.2 Related Literature

Our approach builds on several branches of literature analyzing welfare effects of interest rate

policy regimes by using the framework of the New Keynesian model, which presents the core

amongst various strands of DSGE models. First, our conducted welfare analysis is located in-

side the area of research assessing macroeconomic effects of commitment of a central bank

and the potentially inefficient outcomes implied by purely discretionary policies, in particu-

lar, in the presence of a (suboptimal) positive inflation bias due to time inconsistency (Kyd-

land and Prescott, 1977; Barro and Gordon, 1983; Walsh, 2003; Galí, 2018). As, for example,

the analysis of Clarida et al. (1999) shows, a central bank that is able to credibly commit to

a choice of an optimal monetary policy plan that simply is followed through afterwards can

overcome the inconsistency in hand and reduce the resulting welfare losses due to the pos-

sibility of stimulating the (rational) expectations of the economic agents about future output

gaps and inflation rates. In contrast, a central bank only capable of acting discretionary, i.e.

period-per-period, does not take into account the effect of its policy at one point in time on its

own objective in previous and later periods and thus, generates outcomes which are inferior

with respect to welfare, i.e. higher positive output gaps only a the expense of higher average

inflation.

In our approach, we show that the inclusion of an artificial optimally specified reward (or

weight) on keeping interest rates on average on a higher level for a central banker might serve

as a remedy for the welfare losses in the discretionary case by providing an incentive to reach

the desired lower average level of inflation.

Further, our analysis also contributes to the game-theoretical literature about how a govern-

ment/a society optimally delegates monetary policy to a central bank (Illing, 1997) and the

kind/degree of a central bank’s autonomy. According to Fischer (1995), one can distinguish

between goal independence and instrument independence. The first expression refers to a
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regime in which a central banker is elected by a government but afterwards is autonomous

in the determination of her goals. The latter expression refers to a scenario in which the goals

for a central bank are pre-specified, but it is free in its choice of instruments to reach them.

In its results, our approach can be interpreted in both ways: First, our set-up may represent

an attempt to optimally design a contract for central bankers (Persson and Tabellini, 1993;

Walsh, 1995; Svensson, 1997; Rostagno et al., 2019). The roots of this modelling approach lie

in contract theory, referring to an efficient incentivization of an agent by a principal. In the

context of monetary policy, this implies that a central bank gets an explicitly formulated con-

tract, specifying rewards dependent on a specified set of goals (Reis, 2013). The inclusion of

an explicit reward for higher interest rates is in line with such a modelling approach.

Nevertheless, our set-up can also be related to Rogoff (1985) who proposed the election of a

conservative central banker in presence of the issue of dynamic inconsistency. In contrast

to specifying a contract rewarding higher nominal interest rates, a government/society might

simply elect a central banker exhibiting preferences consistent with that goal. This point of

view is more in line with goal independence. After the delegation of monetary policy, such

a central banker is independent in picking her goals according to her preferences as well as

the instruments to reach it. Both types of modelling are in line with our analysis and do not

change the results presented below. Thus, we refrain from making an explicit choice about the

exact scenario.

In its results, our approach contributes to the literature evaluating optimal policies in the pres-

ence of a binding effective/zero lower bound (Eggertsson and Woodford, 2003; Jung et al.,

2005; Adam and Billi, 2007; Nakov, 2008; Nakata and Schmidt, 2019). With a zero lower bound

constraint, there is no guarantee that the central bank is capable of stabilizing the economy

in a downturn, leading, for example, to a reduction in output and an overall decrease in eco-

nomic welfare (Galí, 2018). The existence of a binding lower bound might be one of the in-

tuitive rationales for rewards for central bankers to sustain higher nominal interest rates in

the first place. Hence, our work contributes to this literature by showing that this policy, even

though it appears intuitive, potentially causes adverse effects on the average level of interest

rates. Thus, it cannot unequivocally be considered as appropriate to achieve the underlying

goal of gaining distance to a binding lower bound.

Furthermore, our approach contributes to the literature concerning optimal monetary policy
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design in the New Keynesian model in the presence of fiscal dominance, or the threat of un-

sustainable fiscal policies (De Resende and Rebei, 2008; Kumhof et al., 2010; Leith and Wren-

Lewis, 2013; Dufrénot et al., 2018). Our focus thereby is not so much on potential policies

providing a remedy given the state of fiscal dominance already occurred but about potential

measures a central bank can take to prevent such a situation in the first place.

3.3 The Dry Powder Paradox in the New Keynesian Model

To illustrate the dry powder paradox, we base our analysis on Gali’s structural framework (Galí,

2015, ch. 3-5) which became the industry standard of linear monetary policy analysis and the

point of departure for more intricate DSGE models. It consists of the following equations:

xt = Et xt+1 −σ−1[it −Etπt+1 − r e
t ] (3.1)

πt =βEtπt+1 +κxt (3.2)

where xt = yt − ye
t is the output gap defined as the deviation of the log of output from its ef-

ficient level ye
t , and where r e

t is the natural rate of interest consistent with the efficient level

of output. Our analysis thus allows for deviations of the desirable output gap from its natural

level yn
t . Both ye

t ≥ yn
t are assumed to be determined by structural parameters and technolog-

ical capacities consistent with a zero-inflation steady state. σ is the intertemporal elasticity of

substitution, β is the steady state discount factor and κ is function of technological parame-

ters.

This model is usually derived from households’ optimization on their intertemporal allocation

of consumption plus the labor-leisure trade-off, entering the optimal staggered price setting

of firms as a measure of marginal cost. After market-clearing (and log-linearization around a

zero-inflation steady state), the household’s Euler equation prescribes an IS-relationship (3.1)

while optimal price setting implies the well-known New Keynesian Phillips curve (3.2).

A second-order approximation of the consumer’s corresponding optimization problem yields

that social welfare losses relevant for monetary policy are proportional to the following func-
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tional expression (Woodford (2003), ch. 6; Galí (2015), ch. 5) after normalization:

L= E0

∞∑
t=0

βt
[

1

2

(
π2

t + α̂x2
t

)− λ̂xt

]
(3.3)

where α̂ and λ̂ are coefficients of structural parameters.4 Note that this welfare loss can be

expanded by using the variance decomposition of the unconditional second moment of infla-

tion and output:

L=
∞∑

t=0
βt

[
1

2

(
[E0πt ]2 + α̂[E0xt ]2 + α̂Var[xt ]+Var[πt ]

)− λ̂E0xt

]
(3.4)

which allows us to disentangle the losses created by the stochastic environment (represented

by ut and r e
t in the structural description (3.1) and (3.2)) from the average biases in policy-

making. These are relevant for comparing monetary policy frameworks consistent with iden-

tical responses to exogenous events.

In practice, central banks do not observe the structural parameters and thus have either dif-

ferent preferences than α̂ and λ̂ or incomplete knowledge about them. We denote the central

bank’s (potentially differing) preferences by α and λ. A central bank’s loss function consistent

with the dual mandate5 that has been mostly investigated in the literature is given by

LT = E0

∞∑
t=0

βt
[

1

2

(
π2

t +α(xt − x̄)2)] (3.5)

which is equivalent up to a constant with

LT = E0

∞∑
t=0

βt
[

1

2
(π2

t +αx2
t )−λxt

]
(3.6)

4 In Galí (2015), they are given by

α̂= ω̂

ε

(
σ+ ϕ+θ

1−θ
)

, λ̂= ω̂

ε
Φ

where Φ is the steady state distortion, 1−θ is the production elasticity of labor, ϕ is the Frisch-elasticity of
labor supply, ε the substitution elasticity of goods and ω̂ is a function that is strictly decreasing in the degree
of price stickiness, in the return to labour as well as the demand-elasticity. Similar proofs can be found
in King and Kerr (1996), Bernanke and Woodford (1997), Rotemberg and Woodford (1997), McCallum and
Nelson (1997).

5 Central banks’ legitimacy in most developed economies is mandated to price stability and the support of
economic growth aside maintenance of financial stability by means of liquidity provision.
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where λ=αx̄, and x̄ is the socially desired output gap.6

We will exemplify below whether a central bank could find it optimal to deliberately minimize

LP = E0

∞∑
t=0

βt
[

1

2
(π2

t +αx2
t )−λxt −δit

]
(3.7)

subject to (3.1) and (3.2). Since we are not interested in the dynamics at the lower bound itself

but in the leeway a central bank has towards a lower bound, we neglect the explicit zero-lower

bound constraint. The existence of such a lower bound only affects the relative comparison

between discretionary and commitment solutions. Note, however, that the term δit can be

interpreted as a reward for setting interest rates above the zero-level, i.e. above a lower bound

ī = 0.

We stick to the usual denomination of α as a measure of how “conservative” the central bank

is. In contrast, the parameter δ can be understood as a measure of how “Fisherian” the cen-

tral bank is: it determines the nominal interest rate that the central bank is willing to set on

average in order to anchor inflation expectations, given that long-run real interest rates are

determined exogenously.7 As will be illustrated, the Fisherian parameter allows the central

bank to disentangle long-run biases from a desired amount of “dry powder”, i.e. a long-run

distance from hitting the zero-lower bound.

In order to verify these results, we will compare welfare losses and desirability of parame-

ter δ in the central banks’ loss function to achieve socially preferred outcomes under uncer-

tainty concerning α̂ and λ̂. We start our analysis for two popular regimes of credibility: in

the first regime, the central bank cannot commit to paths of the interest rate, often referred to

as “discretionary” monetary policy; in the second regime, the central bank commits to state-

contingent paths of interest rates.

First, we will illustrate that the central bank can mitigate its time inconsistency problem that

occurs under discretion. This will allow the central bank to get closer to the optimal inflation-

ary (and thus output-)bias.

6 In the New Keynesian model with steady state distortions, i.e. a long-run equilibrium deviating from the
flexible price equilibrium, this “efficient” output gap arises naturally as a means to address inefficiently low
production due to monopolistic competition.

7 Put differently, δ is the relative weight a central banker puts on keeping the powder dry vis-a-vis its dual
mandate.
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3.3.1 Rational expectations equilibrium: The discretionary case

Suppose the central bank cannot credibly commit to paths of interest rates. As a result, the

central bank is only able to engage in per-period optimization. Following Galí (2015), the

central bank takes expectations to be predetermined and thus the structural constraints as

given

πt = κxt +νt ,

xt =−σ−1(it − r e
t )+γt .

which assumes that supply-side cost-pressure νt = βEtπt+1 +ut and demand-pull inflation

γt = Et xt+1+σ−1Etπt+1 are exogenously determined and thus are fixed values from the central

bank’s perspective.

The central bank thus solves

Et

[
min

{xt ,πt ,it }t≥0

{
Li

t

∣∣∣πt = κxt +νt , it = r e
t +σ(γt −xt )

}]

where i = {P,T } indicates the central bank’s interest rate regimes as in (3.7) and (3.6). We

neglect asymmetric inflation targets. Discretionary solutions can be found by looking at per-

period optimality. Hence, for PIRS we have

min
xt ,πt ,it

{
1

2
(π2

t +αx2
t )−λxt −δit

∣∣∣πt = κxt +νt , it = r e
t +σ(γt −xt )

}
(3.8)

Note that the New Keynesian IS curve is now required as a constraint since it is directly relevant

for the losses incurred by the central bank due to the direct effects of it via δ.

Interior solutions are characterized by

(α+κ2)xt +δσ−λ+κνt = 0
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which determines the output gap, inflation and the interest rate as

xt = λ−δσ
α+κ2

− κ

α+κ2
νt (3.9)

πt = κ(λ−δσ)

α+κ2
+ α

α+κ2
νt (3.10)

it = r e
t +

δσ2 −σλ
α+κ2

+σγt + σκ

α+κ2
νt (3.11)

Note thatδ= 0 generates the usual discretionary solution for a distorted steady state andλ> 0.

Further, (3.11) can be interpreted as a Taylor-type interest rate setting rule. Note also that ex-

pressions (3.9) - (3.10) exhibit the usual leaning-against-the-wind properties: aside from the

biases (constant terms in πt and xt ), the expressions multiplied with supply-side inflation

pressures νt imply the usual sacrifice ratio xt =−κ
απt .8

For comparison, the common solutions under discretion and in absence of steady state dis-

tortions are given by

xt =− κ

α+κ2
νt

πt = α

α+κ2
νt

which also illustrates that the reaction to variations of supply-sided inflation will be virtually

equivalent under the assumed new structure of the central bank’s loss function.9

The biases imply permanent positive/negative output gaps created by keeping the interest

rate significantly below/above the natural rate of interest. The reactions to supply-side driven

inflation νt = βEtπt+1 +ut and “demand shocks” γt = Et xt+1 +σ−1Etπt+1 also mean that the

Taylor principle is applied, since the coefficient on inflation expectations exceeds unity by

αβ/(α+κ2), which is larger than zero under the usual assumptions on parameters.

Inserting the explicit expressions for νt and γt , the dynamics of the equilibrium under the new

8 Hence, this type of monetary policy is observationally equivalent to typical inflation targeting: the model
predicts a negative empirical relationship between inflation and output gaps, as in McLeay and Tenreyro
(2020).

9 Without structural distortions or preferences over the instrument it , the interest rate rule needs to be speci-
fied by the researcher such that the model produces a unique solution. The proof of this result can be found
in Bullard and Mitra (2002). Galí (2015) discusses the regions of determinacy for several rules in ch. 4.
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specifications of λ,δ> 0 can be expressed independently from γt as a system

(α+κ2)

xt

πt

= A

Et xt+1

Etπt+1

+But +C

where

A =
0 −κβ

0 −αβ

 , B =
−κ
−α

 , C = [λ−δσ]

1

κ


which implies that A has eigenvalues that solve

ε

(
αβ

α+κ2
+ε

)
= 0 ⇒ ε1,2 =

{
0,− αβ

α+κ2

}

and hence the solution is unique when α(β−1) < κ2, which is true for the standard assump-

tions of the parameters, i.e. α > 0, β ∈ [0,1) and κ being non-negative. This property carries

over to variations of the model where νt has some exogenous stochastic component addi-

tional to inflation expectations.

The model’s solution can thus be computed by iterating the inflation solution forward and

inserting it back into the equation for the output gap, or simply using the method of undeter-

mined coefficients. Using the latter, the solutions of πt and xt can be expressed as

xt = x(δ)+χuut +χr r e
t

πt =π(δ)+ψuut +ψr r e
t

with intercepts x(δ), π(δ) and coefficients χu ,χr ,ψu ,ψr .

We highlight that the intercepts are functions of δ by specifying them as x(δ) and π(δ) which

are determined independently of shocks. To see this, note that the constant non-stochastic

solutions xt = x and πt =π are consistent with values

x(δ) = (1−β)(λ−δσ)

α(1−β)+κ2
(3.12)

π(δ) = κ(λ−δσ)

α(1−β)+κ2
(3.13)
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which are not dependent on the stochastic structure of the shocks. Note also that the typical

long-run Phillips curve holds and implies that there is no inflation-output trade-off in the long

run since x = 1−β
κ π.

Under the assumption of ut and r e
t following auto-regressive processes with persistence ρu

and ρr , respectively, expectations of πt and the output gap xt are given by

Et xt+1 = x(δ)+χuρuut +χrρr r e
t

Etπt+1 =π(δ)+ψuρuut +ψrρr r e
t

Plugging these solutions into (3.11) , we find that the interest rate rule can be expressed as

it = λ−σδ
α+κ2

∆+φr r e
t +φuut (3.14)

where∆= κ(α+κ2)
α(1−β)+κ2 . We abstract here from stating parameters χu ,χr ,ψu ,ψr and the resulting

φr ,φu explicitly since their exact specification is unimportant for the results in hand.

This solution for the equilibrium interest rate illustrates the dry powder paradox: the equi-

librium interest rates are lower despite the central bank’s incentive to set higher interest rates.

The reason is that the direct incentive to set higher interest rates, as expressed in (3.11), is more

than offset by reduced inflation and output expectations, anchored at lower average levels due

to the deflationary effect caused by δ > 0. Thus, the central bank will set lower interest rates

than it otherwise would. In other words, δ works as a counter to the inflationary bias created

by the steady state distortion and yields an incentive to tolerate deflation and negative output

gaps.

By iterating optimality conditions (3.9) and (3.10), it also becomes clear that δ affects only the

intercepts, not the responses of endogenous variables to exogenous variations in ut and r e
t .

Note that this solution is consistent with the Fisher-equation holding in the shock-free (that

is non-stochastic) steady state. In the long-run, the PIRS-Taylor-rule and the Fisher equation

both imply

it = r e
t +π(δ)
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which implies that nominal interest rates are determined by the stochastic process underlying

the natural rate of interest and the choice of δ. However, since π′(δ) < 0, not only the average

inflation rate is smaller under precautionary interest rate setting but also the nominal inter-

est rate, which is the essence of the dry powder paradox. There is no trade-off between the

Fisher effect and the typical impact of higher interest rates on inflation since in the rational

expectations equilibrium both effects point in the same direction.

3.3.2 Welfare analysis: Overcoming the time inconsistency problem

In the present framework, the inflationary bias is a result of the temptation to address steady

state distortions using monetary policy, which will give rise to Kydland and Prescott’s popular

time inconsistency problem of discretionary policies (Kydland and Prescott, 1977). Consistent

with the model above, the central bank is said to have an inflationary bias when λ > 0. Note

that this inflationary bias is more aligned with society’s preferences the closer it is to λ̂> 0.

In what follows, we illustrate that the inflationary bias in the New Keynesian model arises pri-

marily because of the distortions to the steady state, which makes some deviation of inflation

from zero optimal. We thereby exploit that the reaction to exogenous shocks is equivalent un-

der all values of δ under discretionary policy (as illustrated by our results above).

First, note that the differences in welfare losses are proportional to the biases in (3.4), so that

welfare comparisons of different discretionary policy schemes come down to assessing differ-

ent values of δ in societies’ intertemporal loss function:

L=
∞∑

t=0
βt

[
1

2

(
[E0πt ]2 + α̂[E0xt ]2)− λ̂E0xt

]
= Ψ(α̂)

2(1−β)
π̄2 − λ̂

κ
π̄ (3.15)

where we exploit the following two points: (i) unconditional expectations E0πt coincide with

both the average inflation π̄ in a certainty-equivalent steady state, and the non-stochastic

steady state of the model (ii) the long-run Phillips curve prescribes x = 1−β
κ π̄, implying that

Ψ(α̂) := 1 + α̂[
(1−β)/κ

]2 > 1 and, most importantly, that society cannot attain xt = x̄ and

πt = 0 in the long-run in the presence of rational expectations.

As we have shown above, the discretionary central bank sets π̄ for a given δ and λ according

to expression (3.13).
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When society and central bank share the perception of an undistorted steady state x̄ = 0 (or

alternatively, λ̂ = λ = 0), expression (3.15) immediately implies that δ = 0 is unambiguously

optimal for welfare. If the natural level of output is not inefficiently low, a central bank is al-

ways capable to achieve zero inflation and no output gap on average, commonly referred to

as the Divine Coincidence (Blanchard and Galí, 2007). The inclusion of an incentive to keep

nominal interest rates higher on average in this case only leads to an artificially created defla-

tionary bias and negative output gaps which clearly is welfare inferior.

In contrast, suppose that the steady state is distorted so that society’s preferences have λ̂> 0,

which implies that policy frameworks with discretionary leaning-against-the-wind are evalu-

ated with regard to the trade-off expressed in (3.15). When the central bank adopts λ > 0 to

conform λ̂ > 0, optimal discretionary monetary policy produces the well-known inflationary

bias which for the given model is given by λ/((1−β)α+κ2) (see the discretionary solution

(3.10) for δ= 0). Under these circumstances, the deflationary bias created by δ> 0 can help to

offset the time inconsistency problem that arises.

Using λ̂ = α̂x̄, the bias optimal for society in inflation (and the associated bias in the output

gap) are:

π∗ = 1−β
κ

α̂

Ψ(α̂)
x̄, (3.16)

x∗ =
(

1−β
κ

)2 α̂

Ψ(α̂)
x̄ (3.17)

where we find π∗ by minimizing (3.15) with respect to π̄. Afterwards, we use the long-run

Philips curve to find x∗.

The results illustrate that in the presence of the long-run correlation between inflation and

output deviations, society cannot reach the allocation xt = x̄ and πt = 0 and thus picks the

middle ground with some inflation and some output stimulus.

Time inconsistency implies that a non-committing central bank reaching out for x̄ will fail to

achieve this goal if agents with rational expectations take the central bank’s per-period incen-

tives into account and will only achieve (3.16) by coincidence. Nevertheless, picking an op-

timal incentive scheme δ can remedy this situation: according to the biases in discretionary

solutions, equations (3.12), (3.13) show how the average inflation and output gap are deter-

mined for δ> 0.
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Hence, we can use, e.g., expressions (3.16) and (3.13) to solve π∗ = π(δ) for the optimal value

of δ. We find:

δ∗ = x̄

σ

[
αΨ(α̂)− α̂Ψ(α)+ α̂β

Ψ(α̂)

]
(3.18)

which is weakly positive if α≥ α̂, i.e. when the central bank puts more weight on output gaps

than society. The inequality holds only weakly because, as already mentioned above, δ∗ = 0 if

x̄ = 0: the time inconsistency problem does not arise if society and central bank agree that the

steady state is undistorted.

Another interesting result arises when the case of α= α̂ is considered, i.e. society and central

bank agree on the weight they put on a non-negative output gap. Expression (3.18) can be

used to quantify the time inconsistency bias since then

δ∗ = x̄

σ

[
αβ

Ψ(α)

]

holds. This result shows that the optimal reward for positive interest rates, depending on the

weight the central bank puts on the output gap aside structural parameters, is still positive.

The reason is that the deflationary bias created by δ represents a welfare improving counter-

effect to the inflationary bias innate to the time-inconsistency problem: if a central bank can-

not credibly commit, it fails to achieve the optimal inflation level π∗ without the additional

bias induced by δ because agents with rational expectations know that the central bank is sub-

ject to its per-period incentive to achieve x̄. A discretionary central bank with δ= 0 that would

announce to pursue an inflation target π∗ has an incentive to deviate to a higher level of infla-

tion to reach the desired output gap x̄. Since the economic agents hold rational expectations,

however, they would anticipate this deviation, leading to the inflation bias. Thus, a positive δ∗

addressing this bias by providing a credible incentive for the central bank to pursue π∗ is still

welfare improving, even when the preferences of society and central bank formally coincide.

Note that for the economy converging to the flexible price equilibrium, i.e. κ→ 0, this expres-

sion simply boils down to δ∗ = 0. The reason is that in this case, the New Keynesian Phillips

curve (expression (3.2)) states that there is no connection between a positive output gap and

inflation. Thus, a discretionary central bank can reach the desired output gap x̄ without infla-

tionary bias. This implies that there is no need for a positive δ in this case.
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3.3.3 Commitment solution: Fisher effects of interest rate rewards

When the central bank can commit, it will take implications for future inflation and output

gaps into consideration when choosing inflation and output today. It is well-known that cred-

ible commitments of the central bank to state-contingent paths of future interest rates help

the central bank to replenish the solution to the Ramsey problem of minimizing (3.6) subject

to (3.2), typically referred to as forward guidance solution. Hence the question here is not so

much about potential improvements of the reward δ but about the qualitative implications

such a reward may have on interest rate setting as well as on the “stock of dry powder”, i.e. the

distance from the zero/effective lower bound a central bank will have on average.

Again using the set-up presented in Galí (2015) as a foundation, the central bank’s optimiza-

tion scheme can be expressed by the following Lagrangian, when confronted with the incen-

tive to keep interest rates positive and the ability to commit to state-contingent plans:

L0 = E0

∞∑
t=0

βt
[

1

2
(π2

t +αx2
t )−λxt −δ[σ(xt+1 −xt )+πt+1 + r e

t ]+µt (πt −κxt −βπt+1 −ut )

]
(3.19)

where {µt }∞t=0 denotes a sequence of Lagrange multipliers.

Thus, the necessary conditions to characterize optimality are given by

αx0 −λ+δσ= κµ0

π0 +µ0 = 0

and, ∀t > 0

βt [αxt −λ+δσ−κµt ]−βt−1[δσ] = 0

βt [πt +µt ]−βt−1[δ+βµt−1] = 0

which is equivalent to

αxt −λ−δσ (1−β)

β
= κµt

πt +µt − δ

β
=µt−1
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Eliminating the Lagrangian multipliers, we get a single equation correlating inflation and out-

put gaps for all time periods t ≥ 0:

π0 = λ−δσ
2

−αx0,

πt = α

κ
[xt −xt−1]+ δ

β
, ∀t > 0

which shows that precautionary interest rate setting survives in the commitment solutions as

a permanent inflationary bias in all periods.

Given the ex ante equality of unconditional expectations E0xt = E0xt−1 inflation’s uncondi-

tional expectation must be given by

E0πt = δ

β
(3.20)

which illustrates that the central bank has an inflationary bias in this case. This can be at-

tributed directly to the Fisher effect: since the central bank can engineer higher nominal in-

terest rates in the future by increasing inflation expectations today it is tempted to move along

a higher average inflation path. This “backfiring” of the Fisher effect can be directly attributed

to the dependence of the IS curve (3.1) on real, not nominal interest rates: since the incentives

of central bankers to raise inflation are permanent, inflation expectations will be higher in ev-

ery equilibrium.

Now it is straightforward to show that the standard log-linearization of the inflation rate, i.e.

the definition πt = pt −pt−1, the starting value p−1 and the starting bias λ−σδ
2κ can be used to

iterate for a solution of the price level, such that the price level definition that suffers from

variations in the output gaps is given by:

p̃t = α

κ
xt (3.21)

where p̃t = pt − p̂t , and p̂t = p−1 + δ
β t + λ−σδ

2κ − 2α
κ which captures the result that the central

bank pursues a positive inflation target and has a sacrifice ratio between output gaps and the

deviation of the price level pt from its deterministic growth path δ
β

t . This is to say that the

central bank expects and commits to some constant price level appreciation.

Reformulating the IS-curve depicted in (3.1), note also that we can express the interest rate
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equation as

it = r e
t +Etπt+1 +σEt [xt+1 −xt ]

which can be rewritten with the help of the expectations of the optimality condition under

commitment. Thus, the following expression for the nominal interest rate can be derived:

it = r e
t +

δ

β
+

(
σ+ α

κ

)
Et [xt+1 −xt ] (3.22)

Using once again the ex-ante equality of unconditional expectations E0xt = E0xt−1, the un-

conditional expectation of it is given by

E0it = r e
t +

δ

β
(3.23)

Hence, due to the positive reward δ, the central bank gains on average higher nominal interest

rates at the cost of a positive inflationary bias when it can commit to a policy plan.

3.3.4 Discussion of results

The analysis presented above sheds some light on the different effects of a positive δ on the

optimal policy of a central bank and the corresponding welfare effects. In particular, when

considering the introduction of such an incentive, an important point to measure its effec-

tiveness is the ultimate goal for which it was introduced.

First, consider the case in which PIRS is considered to avoid interest rates coming to close to

an effective lower bound. Using our analysis from above, we have shown that whether the

resulting effect of introducing an incentive δ is inflationary or deflationary crucially hinges

on the central bank’s ability of commitment. I.e., whether a reward on higher interest rates

actually leads to higher interest rates depends on a central bank’s ability to commit to a policy

plan.

Given a central bank’s inability to commit, δ > 0 anchors inflation and output gap expecta-

tions on a lower average level. As a result, those effects overcompensate the direct effect on it

and lead to lower nominal interest rates, on average. Thus, when the goal of the policymaker

actually is to get some leeway away from an effective lower bound and the central bank can
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only act discretionary, δ> 0 is a counter-productive instrument because it leads to the above

mentioned dry powder paradox.

On the other hand, the commitment case obviates the Fisher effect, since commitment re-

moves the time inconsistency so that only the permanent effect of precautionary interest rate

setting inflation survives. If a δ > 0 is used in this case, the central bank is able to engage in

some "fine-tuning" of long-run inflation to its desired level, accompanied by higher average

nominal interest rates.

Second, consider the case of introducing PIRS to improve welfare. From a purely welfare-

oriented point of view, without considering the existence of a zero/effective lower bound, a

positive reward for nominal interest rates makes no sense in the commitment case: As e.g.

Galí (2015) shows, a central bank can address the time inconsistency problem without δ > 0

in such a case and reaches the social optimum. Using its optimal plan {πt , xt }∞t=0, it is able to

(asymptotically) reach an equilibrium with zero average inflation and no average output gap.

Since the public anticipates this outcome, this policy enables the central bank to achieve pos-

itive output gaps at lower inflation in the short-run.

If commitment is not an available option and assuming a distorted steady state, however, the

analysis above demonstrates that the deflationary bias a δ > 0 causes is welfare-enhancing

because it presents a counter effect to the inflationary bias of a central bank and thereby ad-

dresses the time inconsistency problem. This, of course, only holds for as long as a distorted

steady state, i.e. the positive inflationary bias, exists. In absence of this case, any incentive to

artificially set higher nominal interest rates is welfare inferior in comparison to e.g. the stan-

dard Taylor interest rate rule that is able to establish on average zero inflation and no output

gap in equilibrium (Woodford, 2003).

3.4 Strategic Reasons for Precautionary Interest Rate Setting

Does a reward for higher interest rates help the central bank to keep fiscal policy in check?

The underlying assumption of this question is that fiscal policy tends to run unsustainable

deficits, antagonizes stabilization attempts of central banks, or at least induces an amount of

economic activity inconsistent with the dual mandate of the central bank. A rich literature has
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studied these hypotheses and continuous to do so.10 Without taking a stand in these debates,

we study an extreme situation which arises when the central bank has to keep fiscal policy

afloat by monetizing deficits in the treasury: a situation that arises naturally even when the

government keeps deficits contained in expectations, but where the price stability mandate

urges increases in interest expenses which cannot be covered by tax collection or rollovers

quickly enough so that the central bank has to sacrifice its policy instrument to maintain the

solvency of the government. This situation is usually referred to as fiscal dominance and its

likelihood might depend positively on expansionary monetary policy followed by a quick and

significant turn to contractionary monetary policy. Piled-up fiscal deficits financed by debt

issuance during expansions then translate into higher interest expenses once the stance of

monetary policy is reversed. If the increase in public debt cannot be rolled over at the interest

rate set by the central bank, the treasury might face a self-enforcing spiral of insolvency. Hence

the question arises, whether the central bank can diminish chances for such a situation, for

example by providing additional incentives for debt consolidation, thereby encompassing its

dual mandate in a larger set of circumstances.

To answer this question within the New Keynesian model, we have to disclose the descrip-

tion of the government sector as is standard in the literature. First note that the structural

equations (3.1)-(3.2) above can be generalized to adhere fiscal policy, when interpreting xt as

the difference between deviations of total spending and potentials from their steady states (or

balanced growth paths).

The aggregate market-clearing condition (households’ budget identity) is

Yt =Ct +Gt (3.24)

In its log-linear version, it accommodates the New Keynesian model’s market-clearing

yt = ζct + (1−ζ)g t (3.25)

10 An early and very influential treatment of optimal fiscal policy was provided by Arrow and Kurz (1970). Cru-
cial contributions to the discussion of optimal fiscal policy rules are discussed in Leith and Wren-Lewis
(2000) and Leith and Wren-Lewis (2013).
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where ζ and 1− ζ are the relative sizes of the private sector and the government spending in

a steady state (since ct = Ct−C
Y , g t = Gt−G

Y ), respectively. The typical Phillips curves (3.2) and

IS-curves (3.1) apply but feature the adjusted output gap xt = yt − ye
t where

xt = ζct + (1−ζ)g t − ye
t (3.26)

and where consumption is determined via the Euler equation

ct = Et ct+1 −σ−1[it −Etπt+1 − r e
t ] (3.27)

The market-clearing condition obviates that by means of accounting, the central bank has to

rely both on public and private sector demand in achieving the (price-)stabilizing output gap

by exhausting production potentials ye
t . For a given level of private activity, the output gap will

only be closed for sufficient public demand. The interpretation of the IS-curve (3.1) is usually

such that a sequence of consumption expenditures {ct } enables the path of output gaps {xt }

in a Ricardian way, where paths of government expenditures, taxation, deficits and and pub-

lic debt levels are exogenous, i.e. do not affect the real allocation {ct }. This is consistent with

public debt not reflecting real wealth to the private sector such that private activity is fully de-

termined by monetary policy. Public debt titles are thus the (only) riskless vehicle available to

households to smooth consumption over the infinite lifetime of the representative agent. This

will allow us to let government expenditures be determined exogenously, which is consistent

with optimal fiscal policy as found by Benigno and Woodford (2003) as well as the stochas-

tic processes estimated for fiscal policy in the empirical literature (Jonsson and Klein, 1996;

Traum and Yang, 2011; Barhoumi et al., 2016).

When all expenditures are financed using nominal short-term debt Bt and the central bank

ensures solvency of the treasury in all states of the world, public debt evolves as

B n
t = (1+ it−1)B n

t−1 +PtGt (3.28)
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for a given B n
−1. Gt denotes real public expenditure (or primary deficits). Define real debt

Bt ≡ (1+it )B n
t

Pt
so that the law of motion (3.28) implies

Bt = 1+ it

1+πt
Bt−1 + (1+ it )Gt (3.29)

which deviates from its stationary value according to a log-linear approximation (see Wood-

ford (1998), equ. (2.9)) as

βbt =βit +bt−1 −πt + (1−β)g t (3.30)

We will assume below that monetary policy keeps the treasury afloat at all times in order to

maintain the treasury’s ability to cover real interest expenses to the public. The central bank

will thus be subject to a constraint on interest rate setting, which will also consistently peg the

default probability to zero in every equilibrium.

Fiscal Dominance

We follow Blanchard (2004) by specifying a risk premium on government debt which arises

due to a default probability pt on government debt.11 Given this probability, expected returns

on government bonds would equal (1+ i B
t )(1− pt ), where bonds are priced via i B

t such that

they compensate risk averse market participants:

1+ i B
t = 1+ it +σpt (3.31)

where σ is the measure of risk aversion. The central bank sets pt = 0 by credibly committing

to bail out outstanding (nominal) claims on the treasury and thus ensures i B
t = it in this equi-

librium. We assume that all such equilibria can be indexed by a maximum capacity for rolling

over debt,Ωt :

Bt −Bt−1 ≤Ωt (3.32)

11 This default probability might alternatively capture the quasi-default event of financial repression and other
pay-off relevant remedies to sovereign insolvency.
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which by (3.29) immediately translates into a constraint on real interest expenses, given public

spending and the inflation shield

(it −πt )Bt−1 ≤ (1+πt )[Ωt − (1+ it )Gt ] (3.33)

where we think ofΩt as the time-varying capacities of the government to issue new debt on fi-

nancial markets and service old debt by means of (non-distortionary and revenue-enhancing)

taxation.

As we have seen above, the discretionary central bank is subject to the dry powder paradox,

which lowers both average inflation and nominal interest rates. Alternatively, as in the com-

mitment case, both average inflation and nominal interest rates rise in response to an increase

in incentives δ. This same-sign characteristic implies that the total effect of δ on the likelihood

to breach this condition becomes a quantitative question.

For discretionary monetary policy, we obtain the following result: as is shown in the Appendix,

increasing δ will reduce the likelihood to enter the stage of fiscal dominance if the size of the

government sector is sufficiently large in comparison to the maximum rollover capacity in the

steady state (G > Ω
2 ). This finding is a result of the independence of real interest rates with

respect to δ and the fact that inflation affects the rollover limit and government expenditures

equally, while nominal interest rates affect the real value of government expenditures only.

Hence, there are two competing effects of higher values of δ: a common effect reducing gov-

ernment solvency due to lower inflation (first term on the RHS in (3.33)) but also a diminished

real cost of given government expenditures due to lower interest cost (second term in brackets

in (3.33)). Both effects are driven by the dry-powder paradox.

At first glance, these results appear to be somewhat counter-intuitive: in the discretionary

case, given a high level of government expenditures, the desirability of high values of δ does

not come from a disciplining effect of a positive δ on public expenditures. Rather, they orig-

inate from the lower average nominal interest rates, decreasing the direct costs of public ex-

penditures. Thus, these results hold because of the dry powder paradox we derived earlier.

Under commitment, the effects exactly revert: the increased cost of expenditures due to the

on average higher nominal interest rates only lead to an increased likelihood of entering the

stage of fiscal dominance for a central bank. Thus, under these circumstances, our theory
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states that a positive δ is an invalid tool for avoiding a situation of fiscal dominance.

Hence, there is again a trade-off involved with adopting rewards δ: under discretion, the

present framework predicts that δ helps reducing the likelihood of fiscal dominance scenar-

ios, but comes at the cost of a higher chance of encountering the zero-lower bound. Under

commitment, a central bank can gain additional leeway away from the lower bound, but only

at the expense of reduced government solvency.

3.5 Conclusion

Even though its validity is disputed by many economists, the argument that central banks

should "keep some powder dry" has sparkled the debate of monetary policy in the recent

episode of binding lower bounds on the nominal interest rate. Not assuming that the central

bank or professionals are irrational, the question arises why the narrative of storable nominal

interest rates is so resilient, in particular, when macroeconomic models suggest that higher

interest rates do not accomplish better stabilization, even in the presence of a binding lower

bound.

In this chapter, we have studied institutional and strategic rationales for the use of an explicit

incentive for a central bank to honor the DPA. We find that the structural rationale based on

its welfare improvement hinges on the commitment ability of a central bank as well as the ex-

istence of a distorted steady state in the discretionary case. But even though an explicit incen-

tive to increase nominal interest rates may help to overcome the time inconsistency problem,

it counter-intuitively is an invalid instrument to increase average nominal interest rates (i.e.,

gain some leeway away from a binding lower bound) because of the existing dry powder para-

dox: rational expectations with respect to inflation and the output gap are anchored at lower

average levels due to the deflationary bias this reward provides. This effect more than offsets

its direct positive effect on the nominal interest rate. Thus, PIRS only leads to average nominal

interest rates potentially moving even closer to an effective lower bound. Only if the central

bank can credibly commit to a policy plan, such a positive incentive can help to accomplish

higher average inflation rates due to higher nominal interest rates, as a result of the Fisherian

feature of the New Keynesian model.

Further, we have shown how setting interest rate precautionary can decrease the threat of
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fiscal dominance for a discretionary central bank. Interestingly, this result does not arise be-

cause of a disciplinary effect of PIRS on government expenditures. Rather, because it leads to

decreased real costs of expenditure for a government due to the existence of the dry powder

paradox. This result, however, was developed under the assumption that the path of govern-

ment spendings follows an exogenous process, rather than being determined endogenously.

Assuming that the government minimizes its own loss function would yield the best response

function, directly linking the optimal level of spending with the nominal interest rate level the

central bank sets. Thus, we think that considering feedback effects of interest rate setting on

public spending and strategic interaction between the government and fiscal policy is an in-

teresting avenue for extending the presented analysis.

To the best of our knowledge, there is no empirical study so far providing evidence on whether

central bankers actually honour the argument of keeping some "dry powder" when setting

their interest rates. We look forward to assessing the explanatory value of an interest rate pref-

erence for the actual conduct of monetary policy in future research.
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Appendix A

Random Error Neglect

A.1 Proposition 2: One sample prediction error

The statistically "correct" prediction error

According to von Auer (2005), the uncertainty associated with a prediction is captured by the

variance of the point prediction, i.e. V ar [m − An+1]. It can be expressed as

E [(m − An+1)2]−E [(m − An+1)]2 (A.1)

Since m is an unbiased estimator of the Expected value of An+1, and m and An+1 are indepen-

dent, this can be simplified to

E [(m −Xn+1)2] (A.2)

which is equivalent to

E [m2 −2mX +X 2
n+1]

=E [m2]−2E [m]E [Xn+1]+E [X 2
n+1]
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Knowing that for a random variable X , it holds that V ar [X ] = E [X 2]−E [X ]2, substitution leads

to the following expression

V ar [m2]+E [m]2 −2E [m]E [Xn+1]+V ar [Xn+1]+E [Xn+1]2

With m ∼ N (µ, σ
2

n ) and Xn+1 ∼ N (µ,σ2), I find that the above expression equals

σ2

n
+µ2 −2µ2 +σ2 +µ2

which is equivalent to
n +1

n
σ2

The RENAs assessment

In contrast, the RENA believes to consider all possible data points in his sample and uses the

true distribution parameters with no innate estimation uncertainty. Thus, as, for example,

Geisser (1993) shows, all prediction uncertainty of using the mean as a predictor for a future

outcome comes from the variance of the respective random variable to be predicted. The

RENA (naively) assesses it via his sample-dispersion. Thus, the RENA believes his prediction

error to be equivalent to his sample’s variance, i.e.

1

n −1

n∑
i=1

(m − Ai )2

or, on average

E

(
1

n −1

n∑
i=1

(m − Ai )2

)
=σ2

Hence, comparing both errors, the RENA underestimates the true uncertainty by a factor

n
n+1 , proving Proposition 2.
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A.2 Proposition 3: Externally provided estimates

A.2.1 Correct assessment

In similar fashion to above, the accuracy of a fixed external predictor z is assessed. The correct

evaluation of the goodness of this constant as a predictor is

E [(z −Xn+1)2] (A.3)

which since z is exogenously given is equivalent to

z2 −2zE [Xn+1]+E [X 2
n+1]

=z2 −2zµ+V ar [Xn+1]+E [Xn+1]2

=z2 −2zµ+µ2 +σ2

=σ2 + (z −µ)2

A.2.2 The RENA’s assessment

In turn, the RENA evaluates z similar to the previous section by using his sample data only, i.e.

in expectation, his assessment can be expressed as

E [
1

n −1

n∑
i=1

(z − Ai )2]

applying some zero-trick, this expression can be rewritten as

E [
1

n −1

n∑
i=1

(z −m +m − Ai )2]

=E [
1

n −1

n∑
i=1

[(z −m)2 +2(z −m)(m − Ai )+ (m − Ai )2]

=E [
1

n −1

n∑
i=1

[(z −m)2 + 1

n −1

n∑
i=1

2(z −m)(m − Ai )+ 1

n −1

n∑
i=1

(m − Ai )2]

=E [
1

n −1

n∑
i=1

[(z −m)2]]+E [
1

n −1

n∑
i=1

2(z −m)(m − Ai )]+E [
1

n −1

n∑
i=1

(m − Ai )2]
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since m = 1
n

∑n
i=1 Ai and E [ 1

n−1

∑n
i=1(m − Ai )2] =σ2, this can be simplified to

σ2 +E [
1

n −1

n∑
i=1

[z2 −2zm +m2]]+E [2(z −m)
1

n −1

n∑
i=1

(m − Ai )]

Due to the definition of m,
∑n

i=1(m − Ai )] = 0. Thus, what remains is

σ2 +E [
1

n −1

n∑
i=1

[z2 −2zm +m2]]

=σ2 +E [
n

n −1
[z2 −2zm +m2]]

=σ2 + n

n −1
[E [z2]−2zE [m]+E [m2]]

=σ2 + n

n −1
[z2 −2zµ+V ar [m2]+E [m]2]

=σ2 + n

n −1
[z2 −2zµ+ σ2

n
+µ2]

which finally can be simplified to

n

n −1

(
σ2 + (z −µ)2) (A.4)

Hence, comparing both errors, the RENA overestimates the true uncertainty by a factor n
n−1 ,

proving Proposition 3. In other words, he suffers from underprecision.

A.3 Proposition 4: Two sample case

The statistically "correct" prediction error

The complete proof strongly resembles the one from the section before. The statistically cor-

rect calculation of the prediction error of mA −mB in this case is

E {[(mA −mB )− (X −Y )]2} (A.5)
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because E [mA] =µx and E [mB ] =µy and hence {E [(mA −mB )− (X −Y )]}2 = 0.

Expression (B.1) can be rewritten as

E [(mA −mB )2]−2E [(mA −mB )(X −Y )]+E [(X −Y )2]

⇔V ar (mA −mB )+E [mA −mB ]2 −2E [mA X +mB Y −mB X −mAY ]+V ar (X −Y )+E [X −Y ]2

It holds that V ar (X −Y ) =V ar (X )+V ar (Y )−2σX ,Y .

Further, V ar (mA−mB ) =V ar (mA)+V ar (mB ) since Cov(mA,mB ) = 0, because both estimates

come from independent samples.

As a result, the sophisticated prediction error is equal to

[
σ2

X +σ2
Y

] (n +1)

n
−2σX ,Y

or for σ2
X =σ2

Y : [
σ2

X

]
2

(n +1)

n
−2σX ,Y (A.6)

The RENAs prediction error

In contrast, the RENAs again (implicitly) calculates only the sample-dispersion around his

mean-differene estimate. Hence, on average:

E

[
1

n −1

∑
[(mA −mB )− (Ai −Bi )]2

]
(A.7)

Following a similar proof as in the earlier section, this is equal to

σ2
X +σ2

Y −2σX ,Y (A.8)

or simply V ar (X −Y ).

The direct comparison shows that the RENA underestimates future variation in sample means

by a factor of 2 n+1
n on average.
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A.4 Proposition 5: Predictions via Regression Analysis

The proof follows the same logic as the one presented in Chapter 11 in von Auer (2005). Let

ŷt+1 be the forecast of the unknown outcome yt+1 based on OLS-parameter estimates α̂ and β̂

as well as the known predictor xt+1. Mathematically, ŷt+1 = β̂xt+1+α̂ and yt+1 =α+βxt+1+εt+1.

The true prediction error can be calculated by

V ar (yt+1 − ŷt+1) = E
[
[(yt+1 − ŷt+1)−E(yt+1 − ŷt+1)]2] (A.9)

Because E [εt+1] = 0, E [α̂] =α and E [β̂] =β, (A.9) can be simplified to

V ar (yt+1 − ŷt+1) = E
[
(yt+1 − ŷt+1)2] (A.10)

And thus,

E
[
[xt+1(β− β̂)+ (α− α̂)+εt+1]2]

⇔E
[
[xt+1(β− β̂)+ (α− α̂)]2 −2εt+1(α− α̂)]−2εt+1(β− β̂)+ε2

t+1

]
⇔E

[
[xt+1(β− β̂)+ (α− α̂)]2]−2E [εt+1(α− α̂)]−2E [εt+1(β− β̂)]+E [ε2

t+1]

Because the sample-parameters as well as the true parameters are independent of the future

random error as well as E [[εt+1] = 0, it must hold that E [εt+1(α−α̂)] = 0 and E [εt+1(β− β̂)] = 0.

Further, E [ε2
t+1] =V ar (εt+1)+E [εt+1]2 =V ar (εt+1) =σ2

Hence, the expression above boils down to

σ2 +E
[
[xt+1(β− β̂)+ (α− α̂)]2]

which is equivalent to

σ2 +E
[
[xt+1(β− β̂)]2 + (α− α̂)2 +2xt+1(β− β̂)(α− α̂)

]
⇔σ2 +x2

t+1E [(β− β̂)2]+E [(α− α̂)2]+2xt+1E [(β− β̂)(α− α̂)]
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RANDOM ERROR NEGLECT

With E [(α− α̂)2] =V ar (α̂) and E [(β− β̂)2] =V ar (β̂), it transforms to

σ2 +x2
t+1V ar (β̂)+V ar (α̂)+2xt+1E [(β− β̂)(α− α̂)] (A.11)

which leaves the last part to be calculated explicitly.

E [(β− β̂)(α− α̂)]

⇔E [αβ− β̂α− α̂β+ β̂α̂]

⇔−αβ+E [β̂α̂]

with α̂ being the OLS estimator as thus α̂= ȳ − β̂x̄:

−αβ+E [β̂(ȳ − β̂x̄)]

⇔−αβ+ ȳE [β̂]− x̄E [β̂2]

⇔−αβ+ ȳβ− x̄[V ar (β̂)+β2]

⇔−αβ+β(ȳ −βx̄)− x̄[V ar (β̂)]

⇔−αβ+βα− x̄[V ar (β̂)]

⇔− x̄[V ar (β̂)]

Plugging this into expression (A.11), I get

σ2 +x2
t+1V ar (β̂)+V ar (α̂)−2xt+1x̄[V ar (β̂)]

with V ar (α̂) =σ2
(

1
T + x̄2∑T

t=1(xt−x̄)2

)
and V ar (β̂) = σ2∑T

t=1(xt−x̄)2 , we get finally get

σ2

[
1+ 1

T
+ (xt+1 − x̄)2∑T

t=1(xt − x̄)2

]
(A.12)

which concludes the proof.
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Appendix B

Autonomy Support and Innovation

B.1 Low future benefits

Pattern I: Conditions

For Pattern I with investments in each period, s∗a,1 > 0 and s∗a,2 > 0, given by Equations (2.6) and

(2.7), must hold. For this to be the case, neither can vP
α be too low (which holds by assumption

vP
α

> 2), nor can s̄ be too high, as is stated by condition in Equation (2.11), or too low, as is

stated in Equation (2.12). Also, the optimal s∗a,1 in Equation (2.6) cannot be too high, otherwise

the principal will not find it optimal to invest in period t = 2 as well. For s∗a,1 (Equation (2.7))

not to exceed the threshold level in period t = 2, the following condition must hold:

(
vP

2α(1−βδ)

) 2
3 −δs̄ < 1

δ

( vP

2α

) 2
3 −δs̄ (B.1)

where the RHS is derived by the inequality of s∗a,2 > 0. Simplification leads to

1

δ
−
p
δ>β

which is the necessary condition for Pattern I with investments in each period to exist.

The threshold condition in Equation (2.11) follows directly from s∗a,1 > 0 in Equation (2.7). The

threshold condition in Equation (2.12) follows directly from plugging the optimal investment
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levels s∗a,1 > 0 and s∗a,2 > 0 into the principal’s time-interdependent profit function (Equation

(2.3)) and solving for the s̄ guaranteeing the principal non zero profits for her investments.

Pattern II: Conditions

An investment in only the second period requires s∗a,1 = 0. Following Equation (2.7), this im-

plies 1
δ

(
vP
α

1
2(1−βδ)

) 2
3 ≥ s̄i . Further, it requires s∗a,2 > 0, implying that the condition in Equation

(2.13) must hold.

Hence, Pattern II only exists if s̄ ∈
[

1
δ

(
vP
α

1
2(1−βδ)

) 2
3

, 1
δ2

(1
2

) 2
3
( vP
α

) 2
3

)
. This set in only non-empty if

1

δ

(
vP

α

1

2(1−βδ)

) 2
3 < 1

δ2

(
1

2

) 2
3 (vP

α

) 2
3

Simplifying this inequality leads to the same condition as above:

1

δ
−
p
δ>β

Pattern III: Conditions

If s̄ > 1
δ2

(1
2

) 2
3
( vP
α

) 2
3 , Equation (2.6) states that s∗a,2 = 0 is optimal for the principal. Further,

since 1
δ
−p

δ > β, this fulfills the condition in Equation (2.14) and s̄ lies above the threshold

level ensuring s∗a,1 = 0. Hence, under this condition the principal will not invest in any period.

B.2 High future benefits

Pattern IV: Conditions

When future benefits are high for the principal, she wants to invest a positive amount in t = 1.

With 1
δ −

p
δ ≤ β, sa,1 is such that it exceeds Equation (B.1) and there are no investments are
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made in t = 2. With s∗a,2 = 0 the optimization problem of the principal in t = 1 becomes

maxsa,1

(δs̄ + sa,1)
1
2 −1

(δs̄ + sa,1)
1
2

vP −αsa,1 +β
[

vP − vP

(δ2 s̄ +δsa,1)
1
2

]
(B.2)

The resulting optimal level of sa,1 is then:

s∗a,1 =
[

vP

2α

(
1+ βp

δ

)] 2
3 −δs̄ (B.3)

We check our result by plugging s∗a,1 into the threshold level in period t = 2

s∗a,1 ≥
1

δ

( vP

2α

) 2
3 −δs̄

which simplifies to δ+p
δβ ≥ 1 or β ≥ 1p

δ
−p

δ, respectively. This holds as 1
δ −

p
δ ≤ β holds

and 1
δ ≥ 1p

δ
is true for δ ∈ (0,1).

The condition in Equation (2.15) follows directly from equation (B.3). The condition in Equa-

tion (2.16) follows directly from plugging the optimal investment levels s∗a,1 > 0 and s∗a,2 = 0

into the principals time-interdependent profit function (Equation (2.3)) and solving for the

s̄ guaranteeing the principal nonzero profits for her investment. These conditions therefore

describe Pattern IV.
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B.3 Model version with complements

Model setup

We show that except for the u-shaped Pattern II and the no investment Pattern V, the invest-

ment patterns in the main section emerge also under the assumption of complementarity. We

introduce complementarity by assuming that the agent’s initial level and the investments by

the principal multiply, implying that the principal only invests if the agent arrives with at least

a minimal positive s̄. The total value of Autonomy Support s̄1 and s̄2 available to the agent in

periods t = 1,2 becomes

s̄1 = s̄ · sa,1

s̄2 = s̄ ·δsa,1 + s̄ · sa,2

For the sake of simplicity, we assume that only Autonomy support provided by the principal is

discounted. The agent’s utility as a function of his innovative activity i for periods t = 1,2 are

UA(i ,1) = v A
i

1+ i
− i

s̄ · sa,1
= v A

i

1+ i
− i

s̄1

UA(i ,2) = v A
i

1+ i
− i

s̄ · (δsa,1 + sa,2)
= v A

i

1+ i
− i

s̄2

The principal’s profit functions for periods t = 1,2 are

ΠP (sa,1,1) = vP
i

1+ i
−αsa,1 +βΠP (sa,2,2)

ΠP (sa,2,2) = vP
i

1+ i
−αsa,2

We solve the model by Backward Induction.
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Solving the model

Period 2

The agent chooses the optimal level of i to maximize his utility UA(i ,2), resulting in

i∗2 = (s̄(δsa,1 + sa,2))
1
2 −1

i∗2 ≥ 0

Innovative activity in period t = 2, i∗2 , is only greater than zero if sa,2 ≥ 1− 1
s̄ −δsa,1.

If 1
s̄ +δsa,1 is large enough, the principal does not have to provide additional Autonomy Sup-

port in the second period to induce innovative effort by the agent. If investments in the first

period have vanished such that δsa,1 = 0, then sa,2 must be high enough to instill innovation

in the second period.

The principal maximizesΠP (sa,2,2), which with the agent’s choice becomes

maxsa,2

s̄(δsa,1 + sa,2))
1
2 −1

(s̄(δsa,1 + sa,2))
1
2

vP −αsa,2

in order to derive her optimal investment in the second period by taking the agent’s innovation

effort into account, which results in

s∗a,2 =
(

1

s̄

) 1
3 ( vP

2α

) 2
3 −δsa,1 ≥ 0 (B.4)

Similar to the main section, the optimal value of s∗a,2 decreases in α and increases in vP . The

principal only invests in Autonomy Support in the second period if her investment in the first

does not exceed the threshold 1
δ

(1
s̄

) 1
3 vP

2α

2
3 making additional investments unnecessary.
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Period 1

Optimizing UA(i ,1) leads to the agent’s optimal choice of innovative activity in period t = 1:

i∗1 = (s̄ · sa,1)
1
2 −1 ≥ 0

The principal takes i∗1 as well as the discounted future consequences of her choice of sa,1 into

account. She maximizesΠP (sa,1,1) which has become

maxsa,1

(s̄ · sa,1)
1
2 −1

(s̄ · sa,1)
1
2

vP −αsa,1 +βΠ̄2 +αβδsa,1

with Π̄2 = vP − vP

s̄
1
3
(

vP
2α

) 1
3
−α 1

s̄
1
3

( vP
2α

) 1
3 as a constant, and optimally chooses

s∗a,1 =
(

vP

2α(1−βδ)

) 2
3 1

s̄

1
3 ≥ 0 (B.5)

where (α−βδα) > 0, because δ,β< 1.

Results: Autonomy Support investment patterns

As in the main section, the investment patterns that emerge depend on the benefit-cost ratio

vP
α

, the agent’s depreciation rate of Autonomy Support δ and the principal’s discount factor β,

and can be distinguished by the relationship between β and δ.

Low future benefit investment patterns under β< 1
δ −

p
δ

When either or both β and δ are low, the principal has lower incentives to invest which results

in lower investments.
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Pattern A: Investment in each period

When the principal wants to lower investments, she may have to invest in each period. For

this, s∗a,1 must be smaller than the threshold level 1
δ

(1
s̄

) 1
3 vP

2α

2
3 such that s∗a,2 > 0 is optimal. It

follows that

s∗a,2 =
(

1

s̄

) 1
3 ( vP

2α

) 2
3 −δ

(
vP

2α(1−βδ)

) 2
3 1

s̄

1
3

=
(

1

s̄

) 1
3 ( vP

2α

) 2
3

[
1−δ 1

(1−βδ)

2
3

]
> 0

Since s̄ and
( vP

2α

)
are strictly positive, this expression holds for as long as β < 1

δ
−p

δ which is

the same necessary condition as in the main section with substitutability. However, there is

no explicit upper threshold s̄ that renders s∗a,1 to zero. Therefore, there is no u-shaped pattern

with complementarity.

Inserting s∗a,1 and s∗a,2 (from Equations (B.5) and (B.4)) into the profit function we derive the

principal’s payoff

Π∗
1 = vP − vP

vp

(2α(1−βδ)

2
3

−α
(

vP

2α(1−βδ)

) 2
3 1

s̄

1
3 +βδα

(
vP

2α(1−βδ)

) 2
3 1

s̄

1
3 +β

[
vP −3α

(
1

s̄

) 1
3 ( vP

2α

) 2
3

]

which we use to derive the sufficient condition that guarantees positive profits for the princi-

pal

s̄ ≥ 9

4

α

vP

[
(1−βδ)

2
3 +β

(1+β)

]3

The higher vP
α

, the lower s̄ can be without setting s∗a,1 = 0. The threshold depends negatively

on δ and β, as long as δ,β ∈ (0,1), which by assumption, they are. Hence, if s̄ is not too low

the principal invests a positive amount in both periods in the low future benefit investment

pattern.
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Pattern B: No investment

In Pattern A, we derive that the principal does not invest in period t = 1, s∗a,1 = 0, when

s̄ < 9

4

α

vP

[
(1−βδ)

2
3 +β

(1+β)

]3

Taking this into account in Equation (B.4), the optimal investment in period t = 2 must satisfy

s∗a,2 =
(1

s̄

) 1
3
( vP

2α

) 2
3 leading to the condition for a positive investment s∗a,2 > 0

s̄ ≥ 9

4

α

vP

We know that s̄ < 9
4
α

vP

[
(1−βδ)

2
3 +β

(1+β)

]3

, therefore we know that s̄ < 9
4
α

vP
must hold as well, because[

(1−βδ)
2
3 +β

(1+β)

]3

∈ [0.125,1] for δ,β ∈ [0,1].

It follows that for s̄ < 9
4
α

vP

[
(1−βδ)

2
3 +β

(1+β)

]3

the principal does not invest in either period, such that

s∗a,1 = s∗a,2 = 0.

High future benefit investment patterns under β≥ 1
δ −

p
δ

Pattern C: Investment only in first period

With high future benefits when both β and δ are high, the principal wants higher investments

in the first period. For β≥ 1
δ
−p

δ,

s∗a,2 =
(

1

s̄

) 1
3 ( vP

2α

) 2
3

[
1−δ 1

(1−βδ)

2
3

]
≤ 0

such that the principal never wants to invest in period t = 2 and chooses s∗a,2 = 0. Her maxi-

mization problem in period t = 1 becomes

maxsa,1

(s̄ · sa,1)
1
2 −1

(s̄ · sa,1)
1
2

vP −αsa,1 +β
[

vP − vP

(δs̄ · sa,1)
1
2

]
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resulting in the optimal investment in the first period of

s∗a,1 =
(

1

s̄

) 1
3 ( vP

2α

) 2
3
[

1+ βp
δ

] 2
3

(B.6)

This also exceeds the threshold 1
δ

(1
s̄

) 1
3 vP

2α

2
3 , guaranteeing that s∗a,2 in Pattern C is zero.

Comparison to the model version in the main section

For the low future benefits case, the principal either invests in both periods when the agent ar-

rives with a sufficiently high initial amount of Autonomy Support, or invests in neither period

if the agent does not. The u-shaped Pattern II in the main section does not emerge. Once the

agent’s Autonomy Support stock is too low, the principal has no incentive to top it up under

complementarity.

For high future benefits, the principal always invests, but only in the second period. The no

investment Pattern V in the main section does not emerge due to high future benefits. Be-

cause of the complementarity, her incentive to invest a lot ‘in advance’ pays off stronger in the

later period.

Although the complementarity version features a different core assumption, the main results

hold. First, the principal’s investments are lower the higher the existing level of Autonomy

Support, as
∂s∗a,2
∂s∗a,1

< 0 and
∂s∗a,2
∂s̄ < 0 for δ> 0. In a way, there is a certain degree of substitutabil-

ity even under the assumption of complementarity. Second, whether the principal invests in

each or only one period depends on the β-δ relationship. As in the main section, this relation-

ship is displayed by β≶ 1
δ
+p

δ reflecting the future benefits of investments.
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Appendix C

The Dry Powder Paradox of Monetary

Policy

Proof for Section 4

Fiscal Dominance: Discretionary Case

The constraint on real interest expenses is given by

(it −πt )Bt−1 ≤ (1+πt )[Ωt − (1+ it )Gt ] (C.1)

Using the definitions

g t = Gt −G

Y

bt = Bt −B

Y

ωt = Ωt −Ω
Y

we can rewrite this condition into

(it −πt )

[
bt−1 + B

Y

]
≤ (1+πt )

[
ωt + Ω

Y
− (1+ it )

(
g t + G

Y

)]
(C.2)
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Expanding and neglecting cross terms

(it −πt )
B

Y
≤ωt + (1+πt )

Ω

Y
− g t − (1+πt + it )

G

Y
(C.3)

multiplying by Y and collecting terms

it [B +G] ≤ (ωt − g t )Y +πt [B +Ω−G]+Ω−G (C.4)

which yields

it ≤ Ω−G

B +G
+ Y

B +G
(ωt − g t )+ B +Ω−G

B +G
πt (C.5)

Under discretion, the equilibrium has

it =π(δ)+φr r e
t +φuut

πt =π(δ)+ψuut +ψr r e
t

where, as before, π(δ) = κ(λ−δσ)
α(1−β)+κ2 . The approximated rollover condition after some reformu-

lations gets

ιc + ιr r e
t + ιuut + ιg (ωt + g t ) ≤π(δ)

[
B +Ω−G

B +G
−1

]
≡ S̄ (C.6)

where ιr , ιu , ιc , ιg are coefficients independent of δ. Since π′(δ) < 0 it must hold that

∂S̄

∂δ
> 0 ⇔ B +Ω−G

B +G
< 1 ⇔ G > Ω

2

which implies that δ diminishes the chances for encountering a fiscal dominance scenario

under discretion if the government sector is sufficiently large in comparison to the rollover

capacity.

If the sign of π′(δ) is reversed (as in the commitment case), the opposite is true.
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