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SUMMARY 

Chronic obstructive pulmonary disease (COPD) is a chronic lung disease characterized by an 

irreversible and progressive airflow limitation associated with an exaggerated inflammatory 

response of the lung. Lungs of COPD patients show an abnormal infiltration of innate and 

adaptive immune cells. In particular, the increased amount of CD8+ T cells has been shown to 

correlate with lung tissue injury and disease severity. COPD pathogenesis progresses with acute 

exacerbations, which refer to periods of worsening of respiratory capacities often due to pathogen 

infections of the lungs. COPD is currently one of the main causes of mortality worldwide and its 

burden is projected to increase, predicting that in ten years COPD will be the third leading cause 

of death. Cigarette smoke is the most important risk factor for the development of COPD. 

Cigarette smoke causes oxidative stress in the lung leading to repetitive challenges of the cellular 

protein homeostasis machinery and to adaptive immune responses.  

Protein homeostasis includes all cellular processes of synthesis, maturation, folding and 

degradation that occur during the life cycle of proteins and is responsible for maintaining 

proteome stability. The proteasome is the major proteolytic machinery in the cell and is 

responsible for the degradation of short-lived, but also misfolded and/or damaged proteins, 

therefore protecting the cell from proteotoxic stress. The proteasome trims intracellular proteins 

into small peptides that are eventually loaded into MHC class I grooves for presentation to the 

immune system via binding with CD8+ T cell receptors. Furthermore, the immunoproteasome is a 

type of proteasome induced during infections and particularly specialized in enhancing antigen 

presentation by producing peptides that efficiently bind MHC class I molecules.   

The first publication included in this thesis (Mossina et al. 2017) investigated the effects of acute 

cigarette smoke exposure in vitro on the proteome of alveolar lung epithelial cells. We observed 

an impaired proteome stability that consisted mostly of downregulation of secreted cellular 

proteins. In particular, we identified altered regulation of cellular proteins involved in extracellular 

matrix organization and wound-healing responses. This acute response of the lung epithelium to 

cigarette smoke could lead to a dysregulated lung epithelium secretome which may contribute to 

tissue destruction and remodeling as observed in COPD patients.  

The second publication of this thesis (Kammerl et al. 2016) studied the effects of cigarette smoke 

on immunoproteasome function in vitro in murine immune cells and in vivo in mice and in COPD 

patients. We observed reduced immunoproteasome mRNA levels in BAL cells and in isolated 

macrophages from COPD patients. Immunoproteasome activity was severely impaired, both in 

COPD lung tissue and in vitro in murine immune cells exposed to cigarette smoke extract. Most 

importantly, in murine immune cells, the decline in immunoproteasome activity was associated 

with reduced presentation of an immunoproteasome-dependent MHC class I epitope. The use of 

activity-based probes enabled us to monitor the ratio between single immunoproteasome active 

subunits and their standard proteasome counterpart. We observed that in isolated macrophages 

of mice that had been acutely exposed to cigarette smoke the activity shifted from immuno- to 

standard proteasome after 10 days of smoke exposure. Presentation of an immunoproteasome-
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dependent MHC class I epitope similarly followed the course of immunoproteasome activity, with 

a major impairment at day 10. Such dysfunction in MHC class I antigen presentation could 

contribute to the impaired clearance of pathogens in COPD lungs driving disease exacerbations.  

Taken together, our results show that cigarette smoke at non-toxic doses affects proteome 

stability and composition. We observed, particularly, that a dysfunctional proteome is a major 

response of the lung epithelium to acute cigarette smoke exposure. As an important player in 

proteome stability and antigen presentation, the immunoproteasome is as well affected by 

cigarette smoke. Reduced immunoproteasome activity and diminished presentation of an 

immunoproteasome-dependent MHC class I epitope establish a causal link between cigarette 

smoke and the altered immune system response that may also apply to COPD pathogenesis. In 

particular, alterations in the antigen presentation process may contribute to increase susceptibility 

to virus-induced exacerbations finally resulting in autoimmune responses. 
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ZUSAMMENFASSUNG 

Bei der chronisch obstruktiven pulmonalen Erkrankung (COPD) handelt es sich um eine 

chronische Lungenkrankheit, die charakterisiert ist durch eine progressive und irreversible 

Verminderung der Sauerstoff-Zufuhr. COPD ist derzeit eine der Haupt-Todesursachen weltweit. 

Vorhergesagt wird eine weitere Zunahme von COPD Fällen in den kommenden 10 Jahren, so 

dass voraussichtlich COPD-bedingte Todesfälle auf Platz 3 aller Todesursachen weltweit steigen 

werden. COPD ist assoziiert mit einer erhöhten inflammatorischen Immunantwort der Lungen. So 

zeigt das Lungengewebe von COPD Patienten eine vermehrte Infiltration von Immunzellen der 

adaptiven sowie angeborenen Immunantwort. Insbesondere die erhöhte Anzahl von CD8 

positiven T-Zellen im COPD Lungengewebe korreliert mit dem Schweregrad der Erkrankung und 

dem Ausmaß der Lungenschädigung. Eine wesentliche Verschlechterung des 

Krankheitszustands bei COPD Patienten wird bei sogenannten Exazerbationen beobachtet, 

welche häufig mit einer viralen oder bakteriellen Infektion einhergehen. Zigarettenrauch ist einer 

der Haupt-Risikofaktoren für die Entstehung von COPD und verursacht eine oxidative 

Schädigung des Lungengewebes, was zu einer Dysregulation der Proteinhomöostase in der Zelle 

und zu einer veränderten adaptativen Immunantwort beiträgt und somit die Pathogenese der 

COPD maßgeblich beeinflusst.  

Der Begriff Proteinhomöostase umfasst alle zellulären Prozesse von der Proteinsynthese, über 

die korrekte Proteinfaltung bis hin zum Proteinabbau in der Zelle und trägt damit wesentlich zur 

Funktion der Gesamtheit aller Proteine in der Zelle – dem Proteom – bei. Das Proteasom ist eine 

der Haupt-Proteinabbau Maschinerien der Zelle und spaltet alte und geschädigte Proteine in 

kleine Proteinfragmente, sogenannte Peptide. Damit trägt das Proteasom zentral zur 

Proteinqualitätskontrolle und dem Erhalt der zellulären Proteinphomöostase bei und schützt die 

Zelle vor Stress. Darüberhinaus werden die durch das Proteasom generierten Peptide zum Teil 

auf MHC Klasse I Molekülen auf der Zelloberfläche dem Immunsystem präsentiert und definieren 

das „Selbst“ der Zelle. CD8 positive T-Zellen erkennen fremde MHC Klasse I Antigene, wie sie 

zum Beispiel bei einer Virusinfektion durch den proteasomalen Abbau viraler Proteine entstehen, 

und können dann die virus-infizierte Zelle abtöten. Eine besondere Form des Proteasoms – das 

Immunoproteasom – ist darauf spezialisiert, diese antigenen Peptide effizient herzustellen, und 

trägt damit zu einer optimierten Immunantwort bei intrazellulären Infektionen bei.  

In der ersten Publikation dieser Arbeit wurde der in vitro Effekt von Zigarettenrauch auf das 

Proteom von Lungenepithelzellen untersucht (Mossina et al., 2017). Wir konnten eine veränderte 

Proteomstabilität beobachten, einhergehend mit einer verminderten Sekretion extrazellulärer 

Proteine. Insbesondere beobachteten wir eine reduzierte Freisetzung von Proteinen, welche die 

extrazelluläre Matrix und Wundheilungsprozesse regulieren. Diese akute Antwort des 

Lungenepithels auf Zigarettenrauch könnte zum pathologischen Gewebeumbau beitragen wie bei 

COPD Patienten beobachtet. 

Die zweite Publikation in dieser Dissertation (Kammerl et al., 2016) untersucht den Effekt  von 

Zigarettenrauch auf die Funktion des Immunoproteasoms in vitro, in vivo und in Lungengewebe 
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von COPD Patienten. Die Expression des Immunoproteasoms zeigte sich deutlich vermindert in 

Immunzellen der Lunge, die aus der bronchoalveolären Lavage von COPD Patienten isoliert 

worden waren. Die Aktivität des Immunoproteasoms war sowohl im COPD Lungengewebe wie 

auch nach in vitro Exposition von Immunzellen mit Zigarettenrauch-Extrakt signifikant reduziert. 

Diese verminderte Aktivität des Immunoproteasoms ging einher mit einer reduzierten MHC 

Klasse I Antigenpräsentation eines Immunoproteasom-spezifischen Epitops. Durch die 

Verwendung von activity-based probes (ABP) konnten wir die verschiedenen Standard- und 

Immunoproteasom-spezifischen Aktivitäten des Proteasoms quantifizieren und beobachteten hier 

eine Verschiebung der Aktivität in Lungenimmunzellen in Richtung Standardproteasom-

Untereinheiten nach 10 tägiger Zigarettenrauch Exposition in vivo. Diese verminderte 

Immunoproteasomaktivität war begleitet von einer reduzierten MHC Klasse I Antigenpräsentation. 

Unsere Daten deuten somit darauf hin, dass die durch Zigarettenrauch-induzierte Hemmung des 

Immunoproteasoms in Immunzellen der Lunge zu einer Veränderung der MHC Klasse I 

Antigenpräsentation beiträgt, welche bei Virusinfektionen der Lunge zu einer gestörten 

Immunantwort und zur Exazerbation der COPD führen könnte. 

Zusammengefasst lässt sich sagen, dass wir in dieser Arbeit zeigen konnten, das Zigarettenrauch 

bereits bei nicht-toxischen Konzentrationen zu einer veränderten Stabilität und Komposition des 

zellulären Proteoms führt und insbesondere eine akute Antwort des Lungenepithels mit einer 

veränderten Proteinsekretion auslöst. Das Immunoproteasom, ein zentraler Regulator der 

Proteomstabilität und MHC Klasse I Antigenpräsentation, wird durch Zigarettenrauch gehemmt, 

was mit einer veränderten adaptiven MHC Klasse I vermittelten Immunantwort einher geht. Diese 

Fehlfunktion trägt potentiell zu einer deregulierten Immunfunktion  bei COPD Patienten bei und 

führt möglicherweise zu einer erhöhten Suszeptibilität dieser Patienten gegenüber viralen 

Infektionen, die zu Exazerbationen und zur Progression der COPD beitragen könnten. 
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1 INTRODUCTION 

 

1.1 Pathogenesis of chronic obstructive pulmonary disease 

(COPD) 

Chronic obstructive pulmonary disease (COPD) is an umbrella term used to describe chronic lung 

diseases that cause progressive airflow limitation associated with an abnormal inflammatory 

response of the large airways and mucus hypersecretion (chronic bronchitis), wall thickening in 

the small airways together with tissue damage and disturbed repair (emphysema)1,2. These 

features of COPD result in patients’ chronic cough and impaired lung function, which normally 

worsen over years, remarkably decreasing the quality of life, with the possibility of leading to 

death. COPD is not curable. Medical treatments available nowadays can only relieve symptoms 

and slow down disease progression, reducing the risk of death1. The main risk for COPD is 

cigarette smoke (including second-hand exposure). However, other risk factors could increase the 

possibility of COPD development in non-smokers. These include maternal smoking, intrauterine 

growth retardation, frequent childhood respiratory infections, history of pulmonary tuberculosis, 

indoor and outdoor air pollution, occupational exposure and genetic susceptibility1. In most 

patients, COPD is associated with significant concomitant diseases (comorbidities, such as lung 

cancer, cardiovascular disease, osteoporosis, muscle weakness, and depression/anxiety) which 

increase its morbidity and mortality3. Moreover, COPD pathogenesis evolves and worsens with 

the disease exacerbations, described as periods of acute worsening of respiratory symptoms 

(exaggerated inflammatory processes, increased mucus production, marked air trapping and 

subsequent hyperinflation) that result in additional therapy.  

 

1.1.1 The burden of COPD 

COPD kills around 3 million people per year. The Global Burden of Disease Study 2015 estimated 

about 174 million cases of COPD, defining it as one of the main leading cause of morbidity and 

mortality worldwide4. It is currently the fourth leading cause of death, but its prevalence and 

burden are predicted to increase due to the high exposure to tobacco smoking and air pollutants 

and to the aging population. COPD is therefore projected to become the third leading cause by 

20305. Most studies classify COPD patients according to the “Global Initiative for Chronic 

Obstructive Lung Disease” (GOLD) definition of chronic airflow obstruction. Based on the GOLD 

criteria, COPD is diagnosed when FEV1/FVC (also called Tiffeneau index or FEV1%) is below 

70%, after administration of a bronchodilator. FEV1 (Forced Expiratory Volume) is the expired 

volume of air in one second measured after maximal inspiration, while FVC (Forced Vital 

Capacity) is the total expired volume of air measured in the same respiratory maneuver from 
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which the FEV1 is obtained6. According to the GOLD definition, COPD patients are divided into 

four stages (I-IV) on the basis of severity of airflow obstruction (mild, FEV1 >80% predicted, 

moderate FEV1 50-80% predicted, severe FEV1 30-50% predicted, and very severe FEV1 <30% 

predicted). Despite the high number of COPD cases documented in these studies, the global 

burden of COPD might be underestimated as surveys suggest that COPD is strongly 

underdiagnosed especially when determining factors are younger age, never smoking, lower level 

of education, absence of reported symptoms and very moderate severity of airflow limitation3,7. 

Currently, 60-85% of patients with a mild form of the disease are thought to remain undiagnosed1. 

Although COPD has been often diagnosed in men, prevalence in women is rising. Both the 

increase in tobacco smoking among women and the higher risk to indoor air pollution in low-

income countries contribute to the escalating number of women diagnosed with COPD. In fact, 

studies suggest that cigarette smoking may contribute only to half of the documented COPD 

cases8. Other risk factors, such as exposure to indoor smoke and particles from biomass fuel, 

have substantially increased in the past years. Currently, inhalation of indoor particulate matter 

pollution is estimated to contribute for 35% of COPD cases in low-income and middle-income 

countries3.  

 

1.1.2 Pathomechanisms of COPD  

The broad spectrum of clinical phenotypes in COPD reflects the complexity and the heterogeneity 

of this disease. The main clinical characteristic that affects all COPD patients is an airflow 

limitation that is not fully reversible. Such airflow limitation is due to a remodeling of the small 

airways (thickening of airway walls) and to an emphysematous lung parenchyma destruction, 

which causes the loss of the elastic recoil force that drives air out of the lungs3,9. The airway 

obstruction impedes proper lung emptying through expiration, trapping air in the lung and causing 

hyperinflation, which in turn reduces the inspiratory capacity, altogether resulting in 

breathlessness and limited exercise capacity typical of COPD9.  

Tobacco smoke remains the main cause of COPD worldwide. During the process of tobacco 

smoking, the lungs are constantly exposed to more than 4500 compounds contained in cigarette 

smoke (CS). Beside nicotine, heavy metals, carcinogens and toxins in general, tobacco smoke 

contains highly reactive oxidants (e.g. α,β-unsaturated aldehydes, reactive oxygen species (ROS) 

such as superoxide, nitric oxide and peroxyl organic free radicals) that cause lipid 

peroxidation2,9,10. Nowadays there is considerable evidence that cigarette smoke causes a shift of 

the oxidant-antioxidant balance in favor of oxidants11. This process, known as oxidative stress, 

involves in particular the airway epithelium, being the first line of defense in direct contact with the 

environment. The reactive compounds present in cigarette smoke can interact with and damage 

lipids, proteins, DNA, and organelles of the lung epithelial cells, causing direct injury and possible 

post-translational modifications (acetylation, nitrosylation, carbonylation). Intracellular ROS can 

cause, at high concentration, structural changes, such as lipid peroxidation, DNA strand breaks 
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and changes in enzymatic activities. At lower levels, ROS decrease cell proliferation and induce 

apoptosis and necrosis12. Beside epithelial cells, also alveolar lining fluid, local macrophages and 

pulmonary fibroblasts are primary targets for ROS activities. In turn, alveolar macrophages, lung 

neutrophils and fibroblasts may also become a second source of ROS, especially after stimulation 

with inflammatory cytokines13 .  

Tobacco oxidants not only have a detrimental effect on lung cells, but they can also damage 

through direct or indirect pathways components of the lung extracellular matrix (such as elastin 

and collagen) and interfere with their synthesis and repair9,14,15. This altered biogenesis and repair 

mechanisms is hypothesized to be one of the causes of the destruction of the connective tissue 

observed in the emphysematous lung. Moreover, breakdown of the connective tissue components 

might also be due to an imbalance created in the protease-antiprotease system of the lung 

induced by harmful substances of cigarette smoke9,16. In fact, noxious particles and irritants 

present in cigarette smoke attract inflammatory cells able to produce large amounts of proteases 

(e.g. protease 3, elastase and various matrix metalloproteases) that destroy connective tissue 

components. This results in the production of ECM (extracellular matrix) fragments that may act 

as chemokines attracting further inflammatory cells and perpetuating inflammation even after 

smoking cessation12. As a result, imbalanced protease-antiprotease promotes proteolysis 

potentially leading to the development of emphysema9,12.  

In the lung affected by COPD, the ECM is degraded but also airflow limitation is observed in 

response to exposure to tobacco particles and gases. Such reduced airflow is due to the 

inflammation of the epithelium and of the submucosal glands that provoke increased mucus 

production by the augmented numbers of goblet cells. Mucus hypersecretion together with 

reduced mucociliary clearance leads to airways obstruction and to alteration of the surface 

tension of the epithelial lining fluid, causing the facilitation of airways closure9,17. These processes 

lead to a clinical condition defined as chronic bronchitis characterized by increased cough and 

sputum production. Severely increased dyspnea, cough and mucus production are also the 

clinical manifestation of acute exacerbations14.  This acute aggravation of the respiratory 

capacities can occasionally occur in COPD patients and force them to be hospitalized. 

Susceptibility to exacerbation is defined by background inflammation in the lung tissue, status of 

the immune system, comorbidities, and presence of infectious pathogens. Respiratory tract 

infections, bacterial or viral, are actually responsible for driving the exacerbation process in more 

than half of the cases12. 

Of note, the unbalanced proteolysis that contributes to the development of emphysema takes 

place extracellularly. On the other hand, smoke also affects proteolytic processes within the 

cell18,19. Indeed, damaged or misfolded proteins can accumulate upon exposure to ROS and 

toxins of the cigarette smoke thereby challenging cellular protein homeostasis and protein quality 

control mechanisms. 
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1.2 Protein homeostasis and the proteasome system 

1.2.1 Quality control and protein homeostasis 

Cellular integrity relies on the correct folding of its proteins in order to maintain the cellular 

processes that are necessary to preserve normal physiology protecting the cell and organism 

from disease pathology. Protein folding, its maintenance and repair in case of misfolding is the 

task of protein homeostasis20.  More specifically, protein homeostasis (also called proteostasis) 

refers to the integrated biological pathways that affect the levels of biogenesis, conformational 

stability, trafficking and degradation of protein within the cell. Proteostasis maintenance is 

necessary for preservation of a functional proteome and therefore for proper cell viability and 

growth, resistance to environmental stress and to homeostasis perturbations caused by 

pathogens21,22. Failure to maintain protein homeostasis results in diseases associated with protein 

misfolding, development of protein aggregates and improper protein degradation23,24. Indeed, 

mechanisms by which protein homeostasis is ensured include, above all, protein stabilization 

(folding) and protein degradation (proteolysis) (Fig. 1). These mechanisms, altogether defined as 

posttranslational quality control, are modulated by specific chaperones and proteases22. 

Molecular chaperones can help in the initial folding of proteins through the binding to exposed 

hydrophobic domains on proteins, therefore preventing the possible formation of insoluble protein 

aggregates. Subsequent ATP-triggered release from the chaperone promotes folding into the 

functional conformation25.  
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Figure 1 – Protein homeostasis. Protein homeostasis includes all cellular processes of synthesis, 

maturation, folding and degradation that occur during the life cycle of proteins. After protein synthesis or 

protein misfolding, exposed hydrophobic regions can be bound by chaperones that help the protein to reach 

its native confirmation in the cytosol as well as in other cellular compartments, such as endoplasmic 

reticulum or mitochondria. If proper folding is not possible, the protein is returned into the pool of non-native 

proteins, perhaps able to rebind to another chaperone. Sustained protein misfolding and/or inability of 

reaching the proper functional conformation induces protein degradation, mostly through the ubiquitin 

proteasome pathway. When both the chaperone and the proteasome systems fail, misfolded or partially 

folded proteins will aggregate into insoluble and nonfunctional inclusions that are removed through 

autophagy. Degradation products obtained after autophagy or proteasomal degradation are recycled for 

synthesis of new proteins26. 

 

When correct folding fails and upon irreparable protein damage, the process of degradation is 

initiated. Two major protein-degradation systems have evolved in the cell: the ubiquitin-

proteasome system (UPS) for degradation of specific and soluble proteins, and the autophagy-

lysosome pathway (ALP) for clearance of protein aggregates22,27. Autophagy (which literally 

means “self-eating”) involves sequestration of substrates into double-membraned vesicles and 

subsequent fusion with the lysosome, where the cargo is degraded by specific hydrolases21. 

While proteolysis of large and insoluble inclusions as well as of damaged and unwanted 

organelles relies on autophagy, the degradation of specific and soluble proteins is carried out by 

the ubiquitin-proteasome system. 

If the amount of proteins that have to be degraded exceeds the proteolytic capacity of the cell, 

damaged or misfolded proteins accumulate. An increased load of misfolded proteins in the 

endoplasmic reticulum (ER) induces the so-called “ER stress”. In general, ER stress can be 

induced by oxidants, a decrease in ER calcium, or hypoxia, all of which impair protein folding in 

the lumen of the ER28. Upon ER stress the cells evolve an adaptive response named the 

“unfolded protein response (UPR)”, which consist of a series of transcriptional, translational and 

post-translational events, whose aim is to slow down protein synthesis on one hand, and on the 

other to increase protein folding and/or degradation29,30. The various processes of the UPR are 

meant to reverse the ER stress. If ER stress is chronic or severe, the UPR activates signaling 

pathways that will promote cell apoptosis29–31.  

 

1.2.2 The ubiquitin proteasome system. 

One of the main proteolytic systems involved in protein homeostasis is the ubiquitin-proteasome 

system. The proteasome is the major regulatory protein complex for “regulated proteolysis of 

short-lived proteins” (i.e. proteins that control cell cycle, cell differentiation, DNA repair, stress 

response, gene expression and apoptosis), but also for degradation of misfolded or damaged 

proteins32,33. The proteasome is an ATP-dependent protease complex that recognizes its targets 

by the presence of a covalently linked chain of at least four ubiquitin molecules 
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(polyubiquitination) and binds them through one of its ubiquitin receptors33. It is a 2.5 MDa 

multisubunit complex, consisting of a catalytic core (i.e. 20S proteasome or core particle, CP) and 

two terminal regulatory sub-complexes (i.e. 19S proteasome or regulatory particle, RP)34. The 

19S RP binds one or both ends of the CP to form the 26S (RP-CP) or 30S (RP-CP-RP) 

proteasome, respectively. Beside the regulatory particle 19S, four other alternative regulatory 

particles are known: PA28αβ, PA28γ, PA200, and PI31. Similar to the 19S, these regulators can 

bind to one or both sides of the 20S CP35. The regulatory particles are important for the 

modulation of substrate specificity, its entry into the CP and turnover rate35.  

The CP is a barrel-shaped structure formed by 28 subunits, arranged into four rings. Each ring 

consists of seven distinct α and β subunits, organized in a α7-β7-β7-α7 configuration32. Three 

β-type subunits of each inner ring (β1, β2, and β5) have catalytically active threonine residues 

with different peptide cleavage specificity:  β1 preferring to cleave after acidic residues (caspase-

like activity, C-L), β2 after tryptic residues (trypsin-like activity, T-L) and β5 after hydrophobic 

residues (chymotrypsin-like activity, CT-L)33. Through these three distinct catalytic activities, the 

proteasome degrades proteins into small peptides that range in size from 4 to 20 amino acids36. 

Some of these peptides are further degraded into amino acids by cytosolic peptidases, some 

others will instead be trimmed to 8-11 residues for binding to major histocompatibility complex 

(MHC) class I molecules that will transport the peptide to the plasma membrane and present it to 

the immune system through binding to the T cell receptor (TCR)37,38. In immune cells and upon 

interferon-γ (IFN-γ) induction, the three constitutively active subunits are substituted by three 

alternative catalytic proteasome subunits, also called immunosubunits: the low molecular mass 

polypetides 2 and 7 (LMP2  or β1i and LMP7 or β5i), and the multicatalytic endopeptidase 

complex subunit 1 (MECL-1 or β2i) (Fig. 2)35,37,39. After expression, immunosubunits are 

preferentially incorporated into freshly synthesized 20S core particles giving rise to a new type of 

proteasome known as the immunoproteasome37,39. The replacement of the β1 subunit with the β1i 

immunosubunits enhances the chymotrypsin-like activity of the immunoproteasome, enforcing the 

generation of peptides with hydrophobic C-terminal residues, more efficient at binding MHC class 

I molecules39. In addition to constitutive and immunoproteasomes, mixed proteasome have been 

described (Fig. 2)35,40. Each of these intermediate-type proteasomes, consisting partially of 

constitutive and partially of immunosubunits, exhibit slightly different enzymatic activities, 

increasing the variety of the peptide pool produced by the proteasome40. Finally, in cortical thymic 

epithelial cells (cTECs) another type of proteasome is expressed. The t20S thymoproteasome 

contains the two immunosubunits LMP2 and 

MECL-1 and a thymus-specific catalytic 

subunit (β5t). Thymoproteasomes are 

important for positive selection of T cells.  

 

Figure 2 – Variety of proteasome 

subpopulations. The catalytic subunits β1, β2, 

and β5 of the constitutive 20S CP (c20S) can be 
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replaced in response to inflammatory signals, by the immunosubunits LMP2, MECL-1, and LMP7, 

respectively, to form the immunoproteasome (i20S). In cortical thymic epithelial cells, the catalytic subunit 

β5t (thymus-specific) together with LMP2 and MECL-1 can assemble the thymoproteasome (t20S)35. 

 

1.2.3 Function of immunoproteasome and antigen presentation in shaping 

the immune response  

Cell surface MHC class I molecules present antigenic peptides to the immune system. The 

generation of these peptides requires a multi-step process that includes the degradation of 

proteins by the proteasome and further trimming by aminopeptidases into peptide fragments of an 

appropriate size (8-11 residues in length) for transport through the transporter associated with 

antigen processing (TAP) into the ER (Fig. 3)38. Once in the ER, the peptides bind into the groove 

of MHC class I molecules, which are then transported through the Golgi and finally to the plasma 

membrane where they present the epitopes for binding to TCR.  

Although standard proteasomes are able to generate MHC class I epitopes, immunoproteasomes 

generate antigenic peptides with improved binding capacity using alternative cleavage sites. This 

leads to the production of a set of peptides qualitatively more prone in adapting at the TAP-

dependent transport and at the MHC class I requirements for stable binding37,39. 

Immunoproteasomes not only have a role in generating MHC class I ligands that are more 

efficient for cytotoxic T cell (also known as cytotoxic T lymphocyte, CTL, or activated CD8+ T cell) 

stimulation, but can shape the immune response also by influencing T cell differentiation41.  

 

Figure 3 – MHC class I antigen presentation. Soluble 

proteins are degraded by the proteasome into peptides 

that are then transported into the ER lumen by the 

transporter for antigen processing (TAP). In the ER, MHC 

class I-peptide binding is required for stabilization of the 

MHC class I molecules and following release from the ER 

and transport to the plasma membrane. Once at the 

plasma membrane, the complex MHC class I-peptide can 

bind the T-cell receptor of CD8+ T cells and eventually 

induce proper immune response38.  

 

In fact, immunoproteasomes have an important role in peptide presentation in the thymus for 

shaping the TCR repertoire. As previously mentioned, the thymoproteasome (an 

immunoproteasome-like type of proteasome with a special β5t subunit) has a function in the 

positive selection of T cells that takes place in the cortex of the thymus. T cells are at first 

positively selected for the ability to recognize self-MHC class I molecules37. Such selection is 

based on a weak interaction between TCR and MHC molecules that bind self-peptides. In this 
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context, β5t-containing proteasomes inefficiently produce peptides with hydrophobic C-termini, 

leading to a weak binding to MHC class I molecules and therefore a faster TCR off-rate necessary 

for T cell survival and commitment to either CD4+ or CD8+ T cell lineage41,42. On the other hand, 

the immunoproteasome expressed in the medullary thymic epithelial cells (mTECs) is responsible 

for the production of self-peptides that bind strongly to MHC class I molecules allowing the 

negative selection, thanks to which T cells that recognize autoantigens through a strong TCR-

MHC binding are eliminated37,41. Once selected, the naïve CD8+ T cells migrate to lymph nodes 

where they wait to be activated by antigen presenting cells (APCs). Professional APCs include 

dendritic cells and macrophages and are essential for presentation of viral or bacterial antigens to 

naïve T cells and for induction of an effective adaptive immune response. APCs mainly expresses 

immunoproteasomes and are able to engulf infected apoptotic or necrotic cells at the site of 

infection37. After processing foreign proteins via the immunoproteasome, APCs will then mature, 

present on the surface viral or bacterial antigens bound to MHC class I molecules and travel to 

the draining lymph node. Here, the APCs will activate CD8+ T cells, through the binding MHC-

TCR and with the help of co-stimulatory molecules. Once activated in CTLs, the CD8+ T cells will 

clonally expand and move back to the site of infection where, once they recognize the foreign 

antigen that evoked their activation, they will exert a specific cytotoxic immune response. To this 

purpose, infected cells upregulate the immunoproteasome via IFN-γ at the site of infection in 

order to stimulate proteolysis and increase the chance of presenting the proper foreign antigen 

needed for the binding with a specific CTL that will start an immune response aimed at killing the 

infected cells and at limiting pathogen replication and diffusion37,39,43. Immunoproteasome 

therefore are extremely important in shaping the immune response first by contributing to the 

process of negative T cell selection, and secondly by mounting an adaptive response upon viral 

or bacterial infection. 

 

1.3 Tobacco smoke is the main risk factor for COPD 

Worldwide, the most commonly encountered risk factor for COPD development remains tobacco 

smoking (which counts for about 37% of the global burden)44, although occupational, outdoor and 

indoor air pollution are more and more becoming other important risk factors8. Despite the 

continuous efforts made to reduce cigarette smoke exposure, more than one billion people 

continue to smoke. About 50% of them will develop COPD, and 1-5% will develop a smoking-

related malignancy (i.e. lung cancer)10. Furthermore, cigarette smoke increases the risk for 

respiratory infections and stimulates and worsens other lung diseases (i.e. asthma) in individuals 

who are exposed to second-hand smoke10.  
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1.3.1 Effects of tobacco smoke on protein homeostasis 

Proteostasis can be significantly challenged in response to pathogens encounter and to 

environmental stressors such as smoking26,45. Cigarette smoke can alter protein homeostasis at 

different levels, including protein synthesis, folding, function, aggregation and degradation. Lung 

cell proteostasis has to face constantly the exposure of the respiratory epithelium to the noxious 

particles of cigarette smoke. The excessive amounts of reactive oxygen species, carcinogens and 

free radicals present in cigarette smoke are known to trigger oxidant stress in lung cells. 

Repetitive oxidative stress challenge on cellular proteostasis might cause modification and 

aggregation of proteins that cannot be degraded by the UPS46–48. At the same time, protein 

aggregates might overwhelm and dysregulate the autophagy-lysosomal degradation pathway49, 

thereby inducing ER stress. At least two studies have identified accumulation of insoluble 

ubiquitinated proteins in vivo in COPD lung tissue and mice lungs exposed to cigarette smoke18,50. 

Moreover, two in vitro studies from our group  and Somborac-Bacura et al. observed that 

exposure of A549 alveolar lung epithelial cells to the extract or to the gas phase of cigarette 

smoke, respectively, caused an accumulation of polyubiquitinated proteins both in the soluble and 

insoluble cellular fractions50,51. Similar findings have been demonstrated in alveolar macrophages 

exposed to cigarette smoke extract or in alveolar macrophages isolated from smokers52 and in 

vivo in the lungs of cigarette smoke-exposed mice50. These results suggest a decrease in the 

cellular protein degradation capacity as a possible cause of the accumulation of soluble and 

insoluble aggregates of ubiquitinated proteins. Indeed, studies from our group and others showed 

a decreased proteasome function in alveolar lung epithelial cells upon exposure to cigarette 

smoke extract50,51. Similar results were observed also in bronchial epithelial cells and in vivo in 

mice lungs exposed to cigarette smoke50. Yamada and colleagues identified a possible role of the 

decreased proteasomal activity in the pathogenesis of COPD. In their mouse model with reduced 

proteasomal CT-L activity, they observed accelerated development of cigarette smoke-induced 

pulmonary emphysema53. It has been suggested that inhibition of the proteasome and the 

accumulation of misfolded ubiquitinated proteins upon exposure to CS is directly linked to the 

formation of protein aggregates in cultured airway epithelial cells and to the accumulation of 

autophagosomes in smokers’ alveolar macrophages47,52. These studies show that cigarette 

smoke affects not only the UPS, but also the ALP. Cigarette smoke also has been associated with 

increased cytosolic free calcium, suggesting the possibility that depletion of ER calcium may 

contribute to the development of ER stress28.  

When misfolded proteins accumulate inside the ER, the UPR activates a series of transcriptional 

and translational events, whose final purpose is i) to lower the rate of protein synthesis and 

enhance folding capacity ii) to promote disposal of irreversibly misfolded proteins iii) to trigger cell 

apoptosis if ER stress cannot be reversed28,31. In this respect, it has been proposed that cigarette 

smoke not only raises the load of misfolded proteins in the ER, but concomitantly may affect the 

ER folding and protein degradation capacity by directly targeting pathways and proteins involved 

in protein homeostasis, thereby triggering a UPR. Kenche and colleagues showed that a variety 
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of cigarette smoke components modifies and thereby affects the enzymatic activity of protein 

disulfide isomerase, an essential ER chaperone needed for proper protein folding54. Additional 

studies in alveolar epithelial cells, bronchial epithelial cells, and lung fibroblasts showed that 

cigarette smoke exposure induces the activation of the UPR-dependent PERK signaling pathway, 

and the overexpression of several UPR proteins (such us the regulators BiP and eIF2α, the 

chaperone GRP78, and the transcription factors ATF4 and Nrf2)55–57. Similar results were 

obtained analyzing human lung from smokers, where the upregulation of the chaperones GRP78, 

calnexin, calreticulin, and PDI has been observed30,55. For all these emerging evidence, an 

imbalanced protein homeostasis is hypothesized to contribute to the development of COPD. In 

this perspective and according to Bouchecareilh and colleagues, challenges to the protein folding 

are initiating events for the onset of COPD (Fig. 4)45. At first, ROS from cigarette smoke cause 

damage to cytosolic and ER-resident proteins, activating the UPS, the ALP, and ultimately the 

unfolding-protein response, further challenged by the declined function of both protein 

degradation machineries. If exposure to cigarette smoke persists over years, the chronic 

activation of proteostasis responses may result in oxidative inflammation, cellular death, protein 

aggregation and cellular dysfunction; all characteristics typical for COPD24. Repetitive challenges 

to the protein homeostasis system might lead to the decline of the proteostatic capacity and 

ultimately to its failure during normal aging24,45.  

Importantly, protein homeostasis, through the process of autophagy and antigen presentation, 

interacts closely with the immune system which also plays an important role in the onset of 

COPD37,39,58.  

 

Figure 4 – Cigarette smoke affects protein 

homeostasis. The highly reactive compounds 

of cigarette smoke cause modification of 

proteins that have to be degraded via the UPS 

or via the ALP in case of formation of protein 

aggregates. Cigarette smoke affects directly 

both degradation pathways, finally leading to 

accumulation of misfolded proteins, ER stress 

and ultimately to the UPR. Repetitive 

challenges to the proteostatic machinery might 

in the end cause its failure and the onset of 

COPD.  

 

 

1.3.2 Effects of tobacco smoke on the immune system 

On the pathological level, COPD is considered a progressive immunological disorder, where an 

abnormal inflammatory response perpetuates even after smoking cessation, causing constant 
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tissue damage and impaired repair59. Several observations show that cigarette smoke affects 

both the innate and adaptive immune response. Tobacco smoke activates the innate immune 

system by triggering pattern recognition receptors (PRRs) (e.g.: Toll-like receptors-4 and -2) of 

alveolar macrophages, dendritic cells, and epithelial cells, through the release of endogenous 

intracellular molecules (such as proteins, DNA, ATP) from stressed or dying cells59. The 

recognition of such molecules, also called damage-associated molecular patterns (DAMPs) by 

PRRs induces the effector phase of innate immune responses. This consists in the release of 

cytokines (such as TNFα, IL-1, and -8) by epithelial cells and alveolar macrophages and in the 

infiltration of the mucosa, submucosa and glandular tissue by inflammatory cells (such as 

macrophages and neutrophils). Activated neutrophils and macrophages cause lung tissue 

destruction through the release of proteases and matrix metalloproteinases and the production of 

ROS and inflammatory mediators59,60. Besides neutrophils and macrophage recruitment, the 

presence of DAMPs and PAMPs (pathogen-associated molecular patterns released from 

incoming pathogens) leads to the maturation of immature dendritic cells that normally reside in 

the lungs. The number of cells of the adaptive immune system (namely CD4+ and CD8+ T cells, 

but also B cells) is increased in the lungs of patients with COPD61,62, emphasizing how the 

adaptive immune response is involved in the airway remodeling and pathogenesis of COPD. So 

far the predominant cell present in COPD lungs is the CD8+ T cell, which has been shown to 

correlate with the degree of tissue injury and disease severity63,64. As described by Cosio et al., 

the development of lung destruction in COPD might be facilitated by mechanisms of apoptosis 

mediated by CD8+ T cells62. Moreover, studies in mouse models of COPD have shown that CD8+ 

T cells accumulate in the lungs of mice chronically exposed to cigarette smoke and persists for six 

months after smoke cessation65. Mouse models have also been used to prove the importance of 

T cells in COPD development. Maeno and colleagues showed how CD8+ T cell-deficient mice 

were protected from the development of emphysema upon long-term exposure of cigarette 

smoke66. Recently, it has also been demonstrated that T cells, acquired from mice exposed to 

cigarette smoke, have the capacity of transferring emphysematous changes to unexposed mice67. 

In this study, co-transfer of CD8+ and CD4+ T cells was required and the process was antigen 

recognition-dependent, suggesting that COPD mechanisms might be driven also by an 

autoimmune component. In fact, it has been proposed that the persistence of a progressive 

pulmonary inflammation even after smoking cessation might be the consequence of a breakdown 

in self-tolerance rising from the tissue injury caused by tobacco smoke60. Relevant to the 

autoimmune hypothesis in COPD is the growing evidence for a role of autoreactive T and B cells. 

The presence of iBALT (inducible bronchus-associated lymphoid tissue) points to an adaptive 

immune response against specific antigens promoting autoimmune reactions that trigger chronic 

inflammation3,62,64. iBALT is a tertiary lymphoid tissue that forms in the lung after pulmonary 

inflammation and consists of lymphoid aggregates with resident T cells, B cells, and dendritic 

cells68,69. The formation of iBALT is associated with persistent exposure to antigens which causes 

chronic inflammation noted even years after smoking cessation64,68,70. Such antigens can arise 

both from direct damage of the epithelium, from extracellular matrix degradation products, and 
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from modified proteins upon exposure to cigarette smoke3,59. So far, several autoantibodies have 

been identified in COPD patients and in mouse models, including antibodies directed against 

elastin, epithelial cell antigens and carbonylated proteins, possibly modified upon cigarette smoke 

exposure61–75. Moreover, the absence of viral and bacterial products in the lymphoid aggregates 

suggests that the priming and clonal expansion of T and B cells is triggered by lung antigens62. 

Nonetheless, viral and bacterial infections bring a strong contribution to the development of 

COPD. Such infections, in fact, not only are regarded as the main cause of acute exacerbations in 

COPD, but they are important in amplifying and perpetuating the inflammatory process59,62.  

 

1.4 Objectives 

The main risk factor for the development of COPD is cigarette smoke, which exposes the lung to 

persistent oxidative stress, thereby inducing adaptive immune response, ER stress and 

imbalanced protein homeostasis.  

Considering the above mentioned studies, it is clear that cigarette smoke has an effect on the 

proteome, directly through oxidative modifications of the proteins, or indirectly through inhibition of 

proteasome functions and alteration of the degradation machinery in general. The effects of 

cigarette smoke will be most pronounced in the pulmonary epithelium, the first physical and 

protective barrier of the lung. In this context the first objective of this thesis is to investigate how 

proteome complexity is affected upon exposure to cigarette smoke. We used an in vitro model of 

human alveolar cells acutely exposed to cigarette smoke and cellular fractionation coupled to 

label-free quantitative mass spectrometry to investigate the effect of cigarette smoke on the 

proteome of the lung epithelium76.  

While maintaining protein homeostasis, the proteasome is concomitantly involved in shaping 

adaptive immune responses through the generation of MHC class I antigens. In particular, a 

specialized type of proteasome, the immunoproteasome, produces specific peptides in order to 

improve MHC class I antigen presentation. Antigen presentation plays a pivotal role in defending 

the lung from viral and bacterial infections that contribute to acute exacerbations in COPD 

patients. The second objective of this thesis is to characterize the impact of cigarette smoke on 

proteasome-dependent MHC class I antigen presentation and in COPD. To this aim we used in 

vitro and in vivo smoke exposure models to analyze immunoproteasome-specific MHC class I 

antigen presentation in lung immune cells and spleen. Immunoproteasome expression and 

activity was also investigated in vivo in bronchoalveolar lavage and lungs of COPD patients and in 

blood-derived macrophages exposed in vitro to cigarette smoke extract.  

. 
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Cigarette smoke is the most relevant risk factor for the development of lung cancer and
chronic obstructive pulmonary disease. Many of its more than 4500 chemicals are highly
reactive, thereby altering protein structure and function. Here, we used subcellular fractionation
coupled to label-free quantitative MS to globally assess alterations in the proteome of different
compartments of lung epithelial cells upon exposure to cigarette smoke extract. Proteomic
profiling of the human alveolar derived cell line A549 revealed the most pronounced changes
within the cellular secretome with preferential downregulation of proteins involved in wound
healing and extracellular matrix organization. In particular, secretion of secreted protein acidic
and rich in cysteine, a matricellular protein that functions in tissue response to injury, was
consistently diminished by cigarette smoke extract in various pulmonary epithelial cell lines
and primary cells of human and mouse origin as well as in mouse ex vivo lung tissue cultures.
Our study reveals a previously unrecognized acute response of lung epithelial cells to cigarette
smoke that includes altered secretion of proteins involved in extracellular matrix organization
and wound healing. This may contribute to sustained alterations in tissue remodeling as
observed in lung cancer and chronic obstructive pulmonary disease.
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1 Introduction

According to the World Health Organization (2015), around
6 million deaths are attributable annually to tobacco-related
diseases [1]. Tobacco smoking is the most relevant risk fac-
tor for a variety of lung diseases, including lung cancer and
chronic obstructive pulmonary disease (COPD). Cigarette
smoke contains more than 4500 chemicals, many of which
are free radicals that act strongly oxidizing, pro-inflammatory,
and carcinogenic [2, 3]. These effects are most pronounced
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Significance of the study

According to the World Health Organization, around 6
million deaths/year are attributable to tobacco-related dis-
eases among them lung cancer and chronic obstructive
pulmonary disease. More than 4500 reactive compounds
are found in cigarette smoke, which potentially alter pro-
tein structure, abundance, and function. Here, we analyzed
the proteomic changes induced by cigarette smoke in dif-
ferent compartments of lung epithelial cells. Subcellular
fractionation coupled to label-free quantitative MS revealed
that the most pronounced changes in lung alveolar cells

are observed within the cellular secretome. In particular,
we identified differential regulation of several proteins in-
volved in wound-healing responses and extracellular matrix
organization, among them secreted protein acidic and rich
in cysteine, a matricellular protein that functions in tissue
response to injury. A similar but distinct response was ob-
served in bronchial epithelial cells. This acute response of
lung epithelial cells to cigarette smoke may contribute to
the sustained alterations in tissue remodeling as observed in
lung cancer and chronic obstructive pulmonary disease.

in the pulmonary epithelium, the first barrier of the lung.
Cigarette smoke easily interacts with DNA, lipids, and pro-
teins and modifies them. In particular, cigarette smoke af-
fects expression and/or posttranslational modifications of
proteins, thereby altering their structure, abundance, and
function [3, 4].

Several proteomic studies have been applied to human
lung tissues and cells in order to identify and quantify pro-
tein alterations caused by exposure to cigarette smoke [3].
Most of these studies involved comparative 2D gel elec-
trophoresis coupled with MS. Some studies analyzed spu-
tum, bronchoalveolar lavage or epithelial lining fluids of
nonsmokers, healthy smokers, and COPD subjects identi-
fying alterations in mucin proteins and peptidase regula-
tors [5], differential regulation of proteins involved in tu-
mor growth and invasion [6], or in oxidative and inflam-
matory responses [5–9]. Proteomic analysis of lung tissue
from nonsmokers, current smokers, and ex-smokers revealed
cigarette smoke mediated induction of an unfolded pro-
tein response [10]. Although several proteomic studies have
been conducted on pulmonary human fibroblasts exposed
to cigarette smoke extract (CSE) [11] and on bronchial air-
way epithelium from current and never smokers [12], little is
known on the effect of cigarette smoke on alveolar epithelial
cells.

In this study, we investigated the effects of cigarette smoke
on the proteome of A549 human alveolar epithelial cells
by performing cellular fractionation coupled with label-free
quantitative MS (i.e. LC-MS/MS). Subcellular fractionation
enabled detection of proteins of low abundance, thus allow-
ing for improved sensitivity and identification of proteins
that would otherwise be difficult to quantify in a complex
cellular extract. Moreover, cellular fractionation also provides
unique data on compartment-specific alterations of protein
expression. This information can be particularly valuable as
it allows identifying proteins that may shuttle between one
subcellular compartment and the other upon exposure of cells
to cigarette smoke.

2 Materials and methods

2.1 Cell culture

A549 (human adenocarcinoma cell line) and MLE12 (SV40-
immortalized mouse alveolar cell line) cell lines were ob-
tained from ATCC (Manassas, USA). A549 were maintained
in DMEM (Life Technologies, Carlsbad, USA), MLE12 in
RPMI (Life Technologies), and 16HBE14o− human bronchial
epithelial cells (HBECs) were cultivated in minimum essen-
tial medium (MEM). Media was supplemented with 10% FBS
(PAA Laboratories, Cölbe, Germany) and 100 U/mL peni-
cillin/streptomycin (Life Technologies). Primary HBECs and
isolated mouse airways were obtained and cultivated as de-
scribed previously [13,14]. For cell fractionation and MS anal-
ysis, phenol red free media without FBS was used. Primary
mouse alveolar type II cells were isolated from C57BL6/N
mice (Charles River Laboratories, Sulzfeld, Germany) as pre-
viously described [15]. All cells were grown at 37�C in a hu-
midified atmosphere containing 5% CO2. All experiments
were repeated several times to obtain independent biological
replicates.

2.2 Preparation of CSE

Stocks of CSE were prepared by bubbling smoke from six
3R4F research-grade cigarettes (Tobacco and Health Re-
search Institute, University of Kentucky, Lexington, KY, USA)
through 100 mL of phenol-red free cell culture media as de-
scribed (see Supporting Information, [16]).

2.3 Preparation of three-dimensional ex vivo lung

tissue cultures and exposure to CSE

Three-dimensional ex vivo lung tissue cultures were prepared
from mouse lung tissue as published [17] and detailed in the
Supporting Information.

C© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.com
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Figure 1. Subcellular fractionation of A549 lung epithelial cells
exposed to cigarette smoke extract. (A) Experimental setup. (B)
Western blot analysis of cell compartment specific proteins.

2.4 Cytotoxicity and proliferation assays

Cytotoxicity of CSE was assessed using the 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) assay [16] and proliferation using the BrdU assay
(both Roche Diagnostics, Mannheim, Germany) [18].

2.5 Cell fractionation

Triplicates for each sample of A549, 16HBE14o−, and MLE12
cells were exposed to 50, 25, or 10% CSE, respectively,
for 24 h or to normal media. For each fraction, we used
2–4 million cells 24 h after seeding, which were prestarved
for 2 h. Cells were exposed for additional 24 h to serum-free
CSE-containing (treated) or normal media (control) (Fig. 1A).
Fractionation was carried out as previously described [19].
Briefly, cell supernatants were collected, filtered, and concen-
trated with Vivaspin 6 concentrators (Sartorius, Göttingen,
Germany). Cells were washed and surface proteins were la-
beled with biotin. After lysis, cells were scraped and cytoso-
lic and nuclear proteins were separated through differential
centrifugation while surface proteins were pulled down with
streptavidin beads.

2.6 Mass spectrometry

Protein concentration of the different fractions was measured
with Pierce BCA protein assay (Thermo Fisher Scientific,

Schwerte, Germany). Secreted, nuclear, and cytoplasmic pro-
teins were digested with Lys-C and trypsin with a filter-aided
sample preparation procedure as previously described [19,20]
and subjected to proteomic analysis. Biotinylated and affinity-
enriched surface proteins were digested with trypsin and PN-
GaseF directly on the streptavidin beads. LC-MS/MS analysis
was performed on an Ultimate 3000 nano-RSLC coupled to
a LTQ OrbitrapXL mass spectrometer (Thermo Fisher Scien-
tific) as described [21, 22]. The acquired spectra were loaded
to Progenesis LC-MS software (version 2.5; Nonlinear Dy-
namics) for label-free quantification and analyzed as pub-
lished [21, 22]. MS/MS spectra were used for identification
with Mascot (version 2.3; Matrixscience) as previously de-
scribed [19] using organism-specific proteins databases from
Ensembl (Ensembl mouse, release 75, 51 765 sequences; En-
sembl human, release 69, 96 556 sequences). Search param-
eters used were: 10 ppm peptide mass tolerance and 0.6 Da
fragment mass tolerance, one missed cleavage allowed, car-
bamidomethylation was set as fixed modification, methion-
ine oxidation, and asparagine or glutamine deamidation were
allowed as variable modifications. A Mascot-integrated de-
coy database search calculated an average false discovery of
<1% when searches were performed with a mascot percolator
score cut-off of 15 and an appropriate significance threshold
p. After inverse hyperbolic transformation (arcsinh function),
normalized abundances of proteins were used for statistical
analysis by Student’s t-test in order to identify proteins, which
were significantly altered after CSE treatment (p < 0.05).

2.7 GO cellular component enrichment analysis

The list of proteins identified in each fraction was subjected
to GO enrichment analysis using STRAP software [23].

2.8 Network analysis

Fifty-five significantly different and at least twofold altered
proteins after CSE treatment were fed into the Genomatix
GePS software (http://www.genomatix.de/index.html). The
interaction filter was set to “validated regulatory level” and
the generated network was extended with five proteins with
most frequent co-citation (gray).

2.9 Antibodies, Western blot, and quantitative

real-time RT-PCR

Details are provided in the Supporting Information.

2.10 Statistical analysis

Details on the statistical analyses used are given in the re-
spective figure legends. Statistical analysis was performed
using the GraphPad Prism software (version 5.00; GraphPad
Software, LaJolla, CA, USA).
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Figure 2. Cigarette smoke extract al-
ters the cellular secretome. (A) Vol-
cano plot showing the A549 pro-
teome exposed to 50% CSE for 24
h. Colored dots indicate proteins that
were significantly (p < 0.05) altered
by at least twofold. Gray dots repre-
sent proteins whose expression was
not significantly altered and/or was
less than twofold regulated com-
pared to control, n = 3. (B) Geno-
matix GePS network analysis of CSE-
regulated proteins: proteins down-
regulated (blue), proteins upregu-
lated (red), proteins used to extend
the network according to frequent
co-citation (gray). Unconnected pro-
teins were discarded.

3 Results

3.1 Fractionation of the A549 proteome allowed

identification of more than 2500 proteins

To investigate the effect of CSE on protein expression, A549
cells were exposed for 24 h to serum-free media containing
50% CSE (Fig. 1A). While metabolic activity and proliferation
were reduced, morphology of the cells was not grossly altered
indicating that this dose was well tolerated by A549 cells (Sup-
porting Information Fig. E1). To obtain large coverage of the
A549 proteome, we performed subcellular fractionation prior
to MS analysis into four main compartments: cellular super-
natant, plasma membrane, cytoplasm, and nucleus. Efficient
enrichment of compartment-specific proteins was confirmed
by Western blot analysis of cell compartment specific mark-
ers such as the integral membrane protein Na+/K+ ATPase,
the secretory matrix metalloproteinase-9, nuclear lamin A/C,
and cytoplasmic glyceraldehyde 3-phosphate dehydrogenase
(Fig. 1B). For each fraction, we performed LC-MS/MS anal-
ysis and subsequent label-free quantification resulting in the
identification of 2715 proteins (Supporting Information Ta-
ble E1). GO cellular component enrichment analysis revealed

that each fraction was clearly enriched for proteins of the re-
spective cellular compartment.

3.2 CSE predominantly alters protein expression in

the secretome of A549 cells

We next identified proteins that were differentially regulated
by CSE. For that, we considered only proteins that were unam-
biguously identified by at least two unique peptides (1839 pro-
teins, Supporting Information Table E1). Fifty-five of them
were significantly (p < 0.05) regulated by CSE with a mini-
mum of twofold change compared to controls (Fig. 2A and
Supporting Information Table E2), 41 of these were down-
regulated. Remarkably, the majority of CSE-regulated pro-
teins (29 of 55) belonged to the cellular secretome (Fig. 2A,
red dots). Most of these proteins are involved in the organi-
zation of the ECM such as fibrillin and collagens, proteins
of the transforming growth factor � (TGF-�) superfamily
(BMP1, LTBP2, LTBP3, and TGFB1), the ECM glycoproteins
EGF containing fibulin-like extracellular matrix protein 1, and
members of the secreted protein acidic and rich in cysteine
(SPARC) family (SPARC and SPOCK1). Subsequent network
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analysis using the Genomatix Pathway System Software iden-
tified concerted downregulation of proteins involved in TGF-
� signaling, wound-healing responses, as well as interferon-�
and tumor necrosis factor responsive proteins (Fig. 2B). We
did not observe any significant changes in the subcellular
distribution of these proteins in response to CSE exposure.
These data strongly indicate that nontoxic smoke exposure of
lung epithelial cells to CSE has an acute inhibitory effect on
the cellular secretome with reduced collagen expression and
impaired wound-healing responses.

3.3 CSE downregulates proteins involved in wound

healing and ECM organization in alveolar

epithelial cells

As A549 cells are human alveolar adenocarcinoma cells, we
next confirmed CSE-mediated regulation of the secretome
using a noncarcinoma lung alveolar epithelial cell line. For
that we analyzed the secretome of mouse alveolar epithelial
MLE12 cells by LC-MS/MS after exposure to CSE for 24 h.
CSE doses were adjusted according to the increased sensitiv-
ity of these cells to CSE as determined by MTT assay (Support-
ing Information Fig. E2) [15]. We identified and quantified
the abundance of more than 100 proteins that were differ-
entially regulated upon CSE exposure (Supporting Informa-
tion Table E4). Importantly, we again observed predominant
downregulation of proteins involved in ECM organization
and wound-healing responses such as bone morphogenetic
proteins, latent TGF-� binding proteins, and SPARC; thus,
confirming our data obtained with A549 cells.

Several of the ECM organizing proteins that were down-
regulated in both A549 and MLE12 cells were found to
be also regulated on the mRNA level in MLE12 alveolar
cells: mRNA expression of BMP1, progranulin (PGRN), and
SPARC were dose-dependently reduced with 10 and 25%
CSE, while LTBP3 was not downregulated on the mRNA level
(Fig. 3A). In addition, we observed concerted downregulation
of several other well-known ECM molecules and organizing
cytokines, i.e. fibronectin and TGF-�2 and 3, while collagen
I�1 and collagen IV�1 as well as TGF-�1 were not altered
(Fig. 3A). Downregulation of fibronectin was confirmed on
the protein level by 1.6-fold in our proteomics data of MLE12
cells.

For further validation of our proteomic data, we chose
two newly identified CSE-responsive target proteins: PGRN,
which functions as a wound-healing mediator in tissue regen-
eration [24,25], and SPARC, a major ECM organizing protein
[26, 27]. In our proteomic profiling, CSE exposure reduced
PGRN expression by fourfold in the secretome of MLE12 cells
(Supporting Information Table E4). Using a specific ELISA
for PGRN, we confirmed dose-dependent downregulation of
secreted PGRN in cellular supernatants of MLE12 cells by
CSE (Fig. 3B). Furthermore, the matricellular protein SPARC
was downregulated both in A549 and MLE12 proteomic pro-
filing by about twofold (Supporting Information Tables E2

Figure 3. Validation of the dose-dependent effects of CSE on se-
lected ECM organizers and wound-healing mediators. (A) Dose-
dependent effects of CSE (10 or 25%) on mRNA expression in
MLE12 cells after 24 h, normalized to housekeeper and controls
(ctrl), n = 3, mean ± SEM. (B) ELISA-based detection of secreted
progranulin in supernatants of MLE12 cells exposed to 10 or 25%
CSE for 24 h, n = 4, mean ± SEM. (C) Western blot analysis and
quantification of SPARC in MLE12 supernatants after exposure to
10 or 25% CSE for 24 h (n = 4); mean ± SEM. Amidoblack stain-
ing confirmed equal protein loading of cell culture supernatants.
One-way ANOVA with Dunnett’s multiple comparison test was
used.

and E4). Western blot analysis confirmed reduction of SPARC
protein levels in supernatants of MLE12 cells by about 65%
with 25% CSE (Fig. 3C). Of note, downregulation of SPARC
and also fibronectin was even more pronounced when fresh
medium was added to the MLE12 cells for recovery (Fig. 4A
and B), indicating that the observed transcriptional regula-
tion of wound-healing mediators effectively relays the acute
effects of CSE to sustained ECM matrix regulation.

We further confirmed reduced secretion of wound-healing
mediators by CSE in supernatants of primary mouse alveo-
lar type II cells: PGRN ELISA and Western blot analysis for
SPARC and fibronectin revealed significant downregulation
of these mediators also in primary alveolar epithelial cells
(Fig. 4C and Supporting Information Fig. E2 for MTT assay).
These data clearly indicate that acute exposure to cigarette
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Figure 4. CSE-mediated downregulation of SPARC, fibronectin,
and progranulin in primary mouse ATII cells. (A) Scheme of
MLE12 recovery experiment. (B) Western blot analysis and quan-
tification of SPARC and fibronectin after recovery (n = 3); mean
± SEM. (C) Representative Western blots and relative to control
(ctrl) quantification of SPARC and fibronectin protein expression
in primary mouse alveolar type II cells (pmATII) supernatants after
24-h exposure to 25% CSE; n = 3, mean ± SEM. (D) ELISA-based
detection of progranulin in supernatants of pmATII exposed to
25% CSE for 24 h, n = 3, mean ± SEM. One-way ANOVA with
Dunnett’s multiple comparison test was used.

smoke causes an altered alveolar epithelial response that in-
volves ECM remodeling and tissue injury mechanisms.

3.4 Acute CSE exposure alters expression of distinct

ECM organizers in bronchial epithelial cells

We also performed CSE exposure of a HBEC line, i.e. the
16HBE14o− cells, and subsequent LC-MS/MS analysis of
supernatants to investigate whether CSE induces a similar
response in bronchial epithelial cells. Twenty-four hours
exposure of 16HBE14o– cells to nontoxic doses of 10%
CSE (Supporting Information Fig. E2) induced only minor
changes in the supernatant with a total of 22 proteins more
than twofold differentially regulated (Supporting Information

Table E3). Among them were only two proteins with distinct
functions in ECM remodeling, i.e. matrix metalloproteinase-
2 (MMP2) and the tissue inhibitor of metalloproteinases
(TIMP) metallopeptidase inhibitor 1. Notably, there was only
a minor overlap of CSE-regulated proteins in 16HBE14o−

cells with those of A549 and MLE12 cells including vascu-
lar endothelial growth factor A, some cadherin, and TIMP
members. While TIMP1 and MMP2 were increased about
twofold by CSE in 16HBE14o– cells, TIMP2 and MMP2 were
markedly downregulated in A549 and MLE12 cells. As these
data suggested a differential responsiveness of bronchial ep-
ithelial cells to CSE compared to alveolar cells, we exposed
primary HBECs to nontoxic doses of CSE for 24 h to validate
this assumption [13,14]. On the RNA level, expression of sev-
eral ECM organizing molecules such as SPARC, fibronectin,
collagen I�1 and IV�1, as well as TGF-�2 and PGRN was
downregulated by CSE (Supporting Information Fig. E3A).
Total protein levels of fibronectin were also downregulated,
although not significantly, while SPARC levels were main-
tained as determined by Western blotting (Supporting Infor-
mation Fig. E3B). These data indicate that bronchial epithelial
cells also downregulate several ECM organizers in response
to CSE in a similar but distinct way compared to alveolar
epithelial cells.

3.5 Acute CSE exposure downregulates ECM

organizers and wound-healing mediators in ex

vivo lung tissues

To study the effect of cigarette smoke in a more physiolog-
ically relevant setting, we used isolated airways from mice
and exposed them to 10% CSE for 24 h. RNA expression of
both SPARC and fibronectin was significantly downregulated
by CSE exposure (Fig. 5A). Moreover, we exposed mouse
three-dimensional ex vivo lung tissue cultures to 5% CSE.
Very similar to our previous results, we observed predomi-
nant downregulation of several wound-healing mediators and
ECM organizing molecules on the mRNA level (Fig. 5B).
In particular, SPARC, fibronectin, collagen IV�1, and
TGF-�1 were downregulated. Reduced expression of SPARC
was also observed on the protein level (Fig. 5C). These results
clearly confirm an acute effect of CSE on matrix organizing
molecules and mediators of wound healing in the pulmonary
epithelium. We did not, however, detect any significant alter-
ation in SPARC and fibronectin levels in the lungs of mice
that had been smoked for 10 days possibly due to the low
basal SPARC expression in alveolar epithelial cells of the lung
(Supporting Information Fig. E4).

4 Discussion

In the present study, we used subcellular fractionation cou-
pled to label-free quantitative MS to identify compartment-
specific changes in the composition of the proteome of lung
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Figure 5. Regulation of ECM organizers and wound-healing me-
diators in ex vivo mouse lung tissue. (A) RT-qPCR analysis of
isolated mouse airways treated with 10% CSE for 24 h (n = 3,
unpaired t-test). (B) RT-qPCR analysis of 5% CSE-treated three-
dimensional ex vivo lung tissue cultures (3D-LTC) after 24 h
(n = 3, unpaired t-test). (C) Representative Western blot and rela-
tive (to control and �-actin housekeeper) quantification of SPARC
in 3D-LTC after exposure to 5% CSE for 72 h with n = 7; mean ±
SEM, unpaired t-test.

epithelial cells in response to acute and nontoxic CSE expo-
sure. This approach resulted in the identification of more
than 2500 proteins. Compared to other shotgun proteomic
studies of lung cells or tissues, our fractionation approach
thus increased total proteome coverage by at least threefold
[7, 9, 10, 12]. It also allowed us to identify the secretome as
the cellular compartment with the most prominent changes

in protein composition: while exposure of lung epithelial
cells to CSE did not influence overall subcellular distribution
of proteins, we observed distinct changes in the abundance
levels of secreted proteins in the supernatant fraction. Other
proteomic studies that analyzed epithelial lining fluids and
bronchoalveolar lavages upon cigarette smoke exposure did
not detect similar changes [7–9, 28]. This might be due
to the generally low abundance of these proteins and the
possibility of directional secretion as suggested recently by a
comprehensive proteomic study of the secretome of human
bronchial cells [29]. Gene enrichment analysis of differen-
tially expressed proteins in the secretome identified the genes
involved in ECM organization as mostly regulated. All pro-
teins in this pathway were downregulated including several
mediators of the TGF-� signaling pathway, ECM proteins
and regulators thereof. Concerted downregulation of TGF-�
signaling in response to cigarette smoke was confirmed
for the immortalized mouse alveolar epithelial MLE12 cells
on the mRNA and protein level. This finding, however,
is in contrast to other studies, which observed increased
secretion of TGF-� in alveolar and small airways epithelial
cells from smokers and COPD patients [30, 31]. Our data
obtained with alveolar and bronchial epithelial cells of
different origin, however, agree with previous observations
that cigarette smoke can inhibit the capacity of HBECs to
release TGF-� [32]. Contrasting findings might be due to the
different in vitro settings used for the exposure to cigarette
smoke. Importantly, our results support the hypothesis that
cigarette smoke inhibits wound repair in lung epithelial
cells [32, 33]. In particular, we observed smoke-mediated
downregulation of PGRN, a central wound-healing mediator
in tissue regeneration [24, 25], in the secretome of both
MLE12 and primary mouse ATII cells. As a wound-related
growth factor, PGRN promotes the granulation phase of
wound healing and supports vascularization and formation
of a fibronectin scaffold necessary for subsequent collagen
deposition [24]. Another protein that was downregulated in
lung epithelial cells in response to cigarette smoke is SPARC.
SPARC is a matricellular protein that binds several resident
proteins of the ECM and alters the activity of extracellular
proteases and growth factors. It thereby participates in the
assembly and organization of ECM and is essential for
proper wound-healing responses [26, 34]. Indeed, SPARC is
highly expressed during development and at sites of injury
and disease where tissues undergo constant repair and
remodeling [34, 35]. SPARC also alters ECM organization by
reducing levels of fibronectin via outside–in signaling [36].
In our study, both SPARC and fibronectin were significantly
downregulated by acute cigarette smoke exposure in vitro in
alveolar and bronchial epithelial cells as well as in ex vivo lung
tissue. As we did not observe any pronounced changes in
SPARC expression in mice that had been exposed to cigarette
smoke for 10 days, it is well feasible that the observed
changes in vitro might be initially counteracted in vivo by
adaptive changes. Upon chronic exposure to cigarette smoke,
however, altered secretion of ECM organizers may contribute
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to pathogenic lung tissue remodeling as observed in COPD
patients.

Taken together, our results show that lung epithelial cells
acutely respond to nontoxic doses of cigarette smoke by im-
paired secretion of key factors for wound healing and tissue
remodeling. This acute response of the pulmonary epithe-
lium to cigarette smoke may contribute to the detrimental
tissue damage observed in COPD patients. Indeed, it has
been suggested that tissue destruction in COPD patients is a
consequence of the inadequate capacity of damaged cells of
the lung to successfully repair lung tissue and maintain lung
structure [32, 33, 37].
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SUPPLEMENT: CIGARETTE SMOKE ALTERS THE SECRETOME OF LUNG EPITHELIAL CELLS  

 

SUPPLEMENT METHODS 

 

Preparation of Cigarette Smoke Extract (CSE): CSE was sterile filtered, aliquoted, and stored 

at -20 °C for further use. For the MLE12 cells, 6 cigarettes were smoked by bubbling smoke 

through 100 mL of RPMI phenol free medium (Life Technologies). Both stocks were considered 

as 100% CSE. For cell treatment, CSE stocks were serially diluted to the stated concentrations 

with full media without FBS. Control cells were maintained in a different incubator of cells exposed 

to CSE in order to avoid interaction with cigarette smoke volatile components.    

Primary murine alveolar epithelial type II (pmATII) cell isolation and culture: pmATII cells 

were isolated from C57BL6/N mice (Charles River Laboratories, Sulzfeld, Germany) as previously 

described [1]. After cell attachment, pmATII cells were cultured in DMEM supplemented with 10% 

FBS (PAA Laboratories), 2 mM L-glutamine, 1% penicillin/streptomycin (Life Technologies), 3.6 

mg/ml glucose (Applichem, Darmstadt, Germany), and 10 mM HEPES (PAA Laboratories). Cells 

were cultured up to 5 days at 37 °C in a humidified atmosphere containing 5% CO2. Purity of 

pmATII cells was assessed as described in Chen et al., [2]. Treatment medium for pmATII cells 

consisted of FBS-free DMEM supplemented with 1% penicillin/streptomycin, with or without 25% 

CSE.  

Preparation of three-dimensional ex vivo lung tissue cultures (3D-LTCs) and exposure to 

CSE:  3D-LTCs were prepared as previously described [3]. In short, healthy mice were 

anaesthetized and intubated. Lungs were flushed via the pulmonary artery and infiltrated with 

warm, low gelling temperature agarose. The lungs were excised and cooled on ice in cultivation 

medium before lobes were separated and cut with a vibratome to a thickness of 300 μm. The 3D-

LTCs were cultivated in DMEM-F12 medium supplemented with 0.1% fetal calf serum (FCS), 

antibiotics, and antimycotics. Individual 3D-LTCs were cultivated at 37°C at humidified conditions 

containing 5% (volume/volume) CO2 in 24-well plates under submerged conditions with changes 

of medium every other day. For CSE exposure 3D-LTCs were incubated with DMEM-F12 medium 

supplemented with 0.1% FCS, antibiotics, antimycotics, and 5% CSE. Slices exposed to CSE 

were kept in a different incubator than control slices in order to avoid interaction with CSE volatile 

components.  

GO Cellular Component enrichment analysis: The list of proteins identified in each fraction 

was subjected to GO enrichment analysis using STRAP software [4]. In order to better visualize 

fractionation efficiency, some GO Cellular Component subcategories were manually rearranged 

to the four main categories used for the fractionation (supernatant, plasma membrane, cytoplasm 

and nucleus). In particular, concerning all those proteins that were annotated under the GO 

category “Other” the following rules were applied: the GO category “Other" was not taken in  
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consideration if the protein was annotated also under another category, the protein was not 

considered for the enrichment analysis if “Other” was the unique annotation.  

Antibodies and Western blot: Anti-collagen antibody was obtained from Rockland 

Immunochemicals (Limerick, PA, USA). Anti-fibronectin and anti-LaminA/C were purchased from 

Santa Cruz Biotechnology (Dallas, USA). Anti-MMP9 was obtained from Millipore (Billerica, USA) 

and anti-Na+/K+ -ATPase from Santa Cruz Biotechnology. Anti-GAPDH and anti-SPARC 

antibodies were purchased from Cell Signaling (Danvers, USA) and anti-β-actin from Sigma-

Aldrich (St. Louis, USA).  

For Western blot analysis, 4 x 106 cells were seeded per well in 10 cm cell culture plates. 24h 

after seeding, cells were treated with different concentration of CSE. After 24h, cell supernatants 

were collected, filtered, and concentrated with Vivaspin 6 concentrators (Sartorius). Finally, the 

concentrated supernatant was supplemented with protease inhibitor cocktail (CompleteTM, 

Roche) and protein content was determined using the Pierce BCA protein assay kit (Thermo 

Scientific).  

For Western blot analysis of murine lungs, frozen whole lung tissue was homogenized using the 

Micro-Dismembrator (Sartorius) and lysed in RIPA buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 

1% Nonident P-40, 0.5% sodium deoxicholate, 0.1% SDS), supplemented with protease inhibitor 

cocktail. Protein content was then measured using the Pierce BCA protein assay kit (Thermo 

Scientific). 

Western blot analysis was performed as previously described [5], using 10% SDS gels and 

antibody dilutions according to manufacturer´s instructions. 

Quantitative real-time RT-PCR: Total RNA isolation, reverse transcription and quantitative PCR 

were performed as previously described [6]. The following gene-specific primers were used: 

forward PGRN: 5´-TCCTGCTTCCAGATGTCAGA-3´, reverse PGRN: 5´- 

CATCGTGTGTGAACCAGGTC-3´, forward SPARC: 5´- AAACATGGCAAGGTGTGTGA-3´, 

reverse SPARC: 5´-AAGTGGCAGGAAGAGTCGAA-3´, forward FN: 5´- 

GTGTAGCACAACTTCCAATTACGAA-3´, reverse FN: 5´- GGAATTTCCGCCTCGAGTCT-3´. 

Mice smoke exposure experiments: For smoke exposure experiments, BALB/cAnNCrl females 

were used (Charles Rivers Laboratories, Sulzfeld, Germany). Mice were smoked for 50 minutes 

once daily for 10 consecutive days. The smoke of 10 3R4F research-grade cigarettes (Tobacco 

and Health Research Institute, University of Kentucky) without filter was drawn into the exposure 

chamber using a peristaltic pump for each 50 min exposure cycle. Immediately after the last 

smoke exposure, mice were euthanized and samples were prepared. For immunohistochemistry, 

non-lavaged lungs were fixed with 4 % paraformaldehyde and embedded in paraffin. All animal 

procedures were conducted according to international guidelines and with approval of the 

Bavarian Animal Research Authority in Germany. 
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Immunohistochemistry: Immunohistochemistry was performed as previously described [7]. 

SPARC specific antibody (Cell Signaling) was used according to manufacturer´s instructions.  
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SUPPLEMENT FIGURES 

 

 

 

FIGURE E1 – Exposure of A549 lung epithelial cells to cigarette smoke extract. Metabolic 

activity of A549 cells exposed to different concentrations of CSE at different time points (n=3); 

mean ± SEM, two-way ANOVA and Bonferroni post-test (A). BrdU cell proliferation activity of 

A549 cells exposed to CSE for 24 h (n=4); mean ± SEM, one-way ANOVA and Dunnett´s post-

test (B) Light microscopy pictures of A549 cells before and after 24h exposure to 50% CSE (C). 
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FIGURE E2 – Comparative analysis of the dose dependent effects of cigarette smoke 

extract on metabolic activity of A549, MLE12, pmATII and 16HBE14o- cells. Cells were 

exposed to varying doses of CSE for 24 h with n=4 for A549, n=6 for ML12, n=3 for primary 

murine ATII cells (pmATII) and n=3 for 16HBE14o- cells and metabolic activity was assessed as a 

measure of cell viability.  
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FIGURE E3 – Regulation of ECM organizers in primary human bronchial epithelial cells. (A) 

RT-qPCR analysis of HBECs treated with 5 or 10% of CSE for 24h with n=2. (B) Representative 

Western blot and relative (to control and β-actin housekeeper) quantification of SPARC and 

fibronectin expression in HBECs after exposure to 5% CSE for 24h with n=3; mean ± SEM, 

unpaired t-test. 

 

 

 

 

 

 

 

 

 



RESULTS 

31 

 

SUPPLEMENT: CIGARETTE SMOKE ALTERS THE SECRETOME OF LUNG EPITHELIAL CELLS  

 

 

 

FIGURE E4 – Exposure of mice to cigarette smoke. Female mice were exposed to cigarette 

smoke for 10 days. Upon harvesting, lungs were perfused, fixed and paraffin-embedded for 

immunohistological analysis of SPARC expression (A). Pictures show two representative 

stainings for SPARC in lung sections of mice exposed to air (air ctrl) or cigarette smoke. An IgG 

antibody was used as a negative control (IgG ctrl) to control for specific staining of SPARC. (B) 

Western blot analysis of lung homogenates of air control (air ctrl) (n=4) and smoke exposed mice 

(n=12) for SPARC. Pictures show representative blots with relative quantification of SPARC 

protein expression normalized to expression of the housekeeping gene β-actin; mean ± SEM, t-

test. 
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Chronic obstructive pulmonary disease
(COPD) affects more than 200 million
people worldwide and is estimated to
become the third leading cause of death in
2030 (1). Tobacco smoking is considered to
be the main risk factor for COPD (1).
Bacterial and viral infections drive
exacerbations contributing to high
morbidity and mortality of patients with
COPD (2 4). The major adaptive immune
response against virus infected cells
involves major histocompatibility class I
(MHC I) mediated antigen presentation of
viral antigens to CD81 T cells. Virus
derived antigens are generated by the
ubiquitin proteasome system, mounted
onto MHC I molecules and exposed at the
cell surface to patrolling CD81 T cells.
These cytotoxic T cells then efficiently
eliminate virus infected cells as part of the
adaptive immune response (5).

The ubiquitin proteasome system
degrades more than 80% of all cellular
proteins (including old and damaged ones)
into small peptides. These are used for
recycling of amino acids but also for

presentation of MHC I epitopes to define
the “cellular self” toward the immune
system (6 8). The proteasome consists of a
barrel shaped 20S proteolytic core particle
that is activated by different proteasome
regulators, such as the 19S activator to form
the 26S, the main proteasome complex for
ubiquitin mediated protein degradation (9).
The 20S core is composed of four
heptameric rings comprised of a and
b subunits. In standard proteasomes, three
of the seven b subunits (b1, b2, and b5)
exhibit proteolytic activities. They can be
exchanged by their inducible counterparts
(i.e., low molecular mass protein [LMP] 2,
multicatalytic endopeptidase complex like 1
[MECL 1], and LMP7) to form the
immunoproteasome. Expression of
immunoproteasomal subunits is induced in
response to IFN g or tumor necrosis factor a
as part of the early innate immune
response to virus infections (10 12).
Immunoproteasomes are constitutively
expressed in immune cells compared with
very low basal expression in most
parenchymal cells (13). The newly
assembled immunoproteasomes have
altered cleavage kinetics compared with
their 20S standard counterparts (14), and
generate antigenic peptides that are
preferentially presented by MHC I
molecules (13) contributing to the efficient
elimination of infected cells via the adaptive
immune system (12, 13). Although several
studies, including ours, suggest impairment
of proteasome function by smoke exposure
and in COPD (15 18), the effect of
cigarette smoke on immunoproteasome
function and its role in COPD pathogenesis
have not been investigated so far.

In the current study, we analyzed the
effect of acute cigarette smoke exposure
on immunoproteasome expression in vitro
and in vivo, and in bronchoalveolar
lavage (BAL) cells from early stage and
from lungs of patients with end stage
COPD. Furthermore, we investigated the
functional effects of cigarette smoke on
immunoproteasome mediated antigen
presentation. Some of the results of these
studies have been previously reported in the
form of abstracts (19 21).

Methods

Human Lung Tissue and Cells
BAL cells were obtained as previously
described (22) with approval by the local

ethics committee of the Albert Ludwig
University Freiburg (No. 231/03). The use
of explanted human lung tissues and blood
from healthy donors was approved by
the University Hospital of the Ludwig
Maximilians University in Munich (Nos.
333 10 and 071 06 075 06). Human
macrophages were differentiated from
peripheral blood monocytes according to
Martinez and colleagues (23).

Animals
Tissues or cells were isolated from C57BL/6J
wild type, LMP2 / (Psmb9tm1Stl [24]), or
LMP7 / (Psmb8tm1Hjf [25]) mice with
C57BL/6J background. For smoke exposure
experiments, C57BL/6J wild type males or
BALB/cAnCrl females were used (Charles
River Laboratories, Sulzfeld, Germany). All
animal procedures were conducted
according to international guidelines and
with approval of the Bavarian Animal
Research Authority in Germany.

UTY-LacZ Assay
To measure T cell responses specific for
the male antigen UTY246–254 presented on
H 2Db, 0.5 13 105 cigarette smoke extract
(CSE) treated or freshly isolated cells from
male smoke exposed mice or control
animals were cocultured with the same
number of cells of the UTY246–254 specific
T cell hybridoma in 96 well plates. After
overnight incubation, cells were
centrifuged, medium was aspirated, and
cells were incubated in 150 µl LacZ buffer
(9 mM MgCl2, 0.15 mM chlorophenol red
b galactoside, 100 mM 2 ME, 0.125%
Nonidet P 40 in phosphate buffered saline)
at 378C until a color change was observed
(approximately 4 h). Colorimetric
measurement of LacZ activity was done
at 570 nm (reference wavelength at
620 nm) using a Sunrise plate reader
(Tecan, Männedorf, Switzerland). The
background signal of the cells was
subtracted and maximum induction was set
to 100%. Cells from female mice and
LMP2 or LMP7 deficient mice served as
controls.

Statistics and Software
Data were analyzed with ImageLab (Biorad,
Hercules, CA), ImageJ (http://imagej.nih.
gov/ij/), or Prism5 (GraphPad Software,
Inc., La Jolla, CA). Statistics were
performed using Prism5 with initial
Grubbs’ test for outliers and D’Agostino
and Pearson omnibus normality test.

At a Glance Commentary

Scientific Knowledge on the
Subject: Immunoproteasomes are
specialized types of proteasomes
involved in major histocompatibility
class I mediated adaptive immune
reactions. Although it has been shown
that cigarette smoke decreases
proteasome function in chronic
obstructive pulmonary disease
(COPD), the effect of smoke on
immunoproteasome function in
COPD has not been investigated.

What This Study Adds to the
Field: We show that
immunoproteasome expression and
activity is directly altered by cigarette
smoke in vitro and in vivo, resulting in
disturbed major histocompatibility
class I antigen presentation.
Because immunoproteasome
expression is down regulated and
immunoproteasome activity is
impaired in bronchoalveolar lavage
and total lungs of patients with COPD,
respectively, this may contribute to a
distorted adaptive immune response
in patients with COPD.
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Normally distributed data were analyzed
using parametric tests with appropriate post
hoc analysis, otherwise nonparametric tests
were chosen. P values less than 0.05 were
considered statistically significant. Details
on the statistics are given in the figure
legends. Additional details on the methods
are provided in the online supplement.

Results

Immunoproteasome and MHC I
Expression Is Reduced in BAL Cells of
Patients with COPD
Our previous study on immunoproteasome
expression in the lung identified alveolar
macrophages as the main cell type
expressing active immunoproteasomes (26).
We thus first analyzed immunoproteasome
expression in BAL cells of patients with
COPD (see Table 1 for the clinical
characteristics of these patients). Of
note, mRNA expression of all three
immunoproteasome subunits LMP2,
MECL 1, and LMP7 was significantly
decreased in total BAL cells from patients
with COPD compared with control
subjects. There was also a trend toward
down regulation of immunoproteasomes in
BAL cells of another smoke related chronic
lung disease, namely idiopathic pulmonary
fibrosis (IPF), which was, however, not
significant (Figure 1A). Cellular
composition of BAL cells was not
significantly different between control and
COPD groups, but clearly altered in
patients with IPF (see Figure E1 in the
online supplement). Independent evidence
for reduced immunoproteasome expression
in alveolar macrophages of patients with

COPD was obtained from published
microarray data confirming down
regulation of immunoproteasome
expression in patients with COPD
compared with nonsmokers and healthy
smokers (Figure 1B) (27). Of note, we
observed down regulation of all three
immunosubunits also in isolated alveolar
macrophages of patients with IPF as
determined by analysis of a publicly
available but unpublished microarray data
set (Figure 1C). In contrast, alveolar
macrophages from nonsmoking patients
with asthma had rather increased levels of
LMP2 and MECL 1 compared with the
smoking control subjects as revealed by
bioinformatical analysis of publicly
available array data (Figure 1D) (28).

These results suggest specific down
regulation of the immunoproteasome in
isolated alveolar macrophages of patients
with smoke related chronic lung diseases,
such as COPD and IPF. Because
immunoproteasomes play a pivotal role in
MHC I antigen presentation, we also
analyzed other components involved in the
MHC I antigen presentation machinery. We
observed uniform down regulation of
several genes encoding the MHC I heavy
chain molecules (i.e., HLA A, B, and C),
and components of the peptide loading
complex, such as transporter associated
with antigen presentation 1, in patients with
COPD compared with nonsmokers or
healthy smokers, respectively (Figure 1E;
see Figure E2). Several genes of the MHC I
antigen presentation machinery were also
found to be down regulated in alveolar
macrophages from patients with IPF
very similar to the COPD samples, whereas
these genes were unchanged or even

up regulated in alveolar macrophages from
subjects with asthma (see Figure E2 for an
overview).

CSE Impairs Immunoproteasome
Activity and MHC I Surface
Expression of Human Macrophages
To investigate whether immunoproteasome
function and MHC I antigen presentation
are concertedly regulated in response to
cigarette smoke, we exposed primary human
blood monocyte derived macrophages to
CSE and quantified cell surface MHC I
expression by flow cytometry. Of note,
nontoxic doses of CSE (see Figures E3A and
E3B) decreased surface MHC I expression
in cells from four out of five individual
blood donors after 6 hours (Figure 2A). We
next correlated MHC I surface expression
with immunoproteasome activity, and
labeled therefore live macrophages with a
set of activity based probes (ABPs) that
specifically attach to the active catalytic
b subunits allowing quantification of
individual activities depending on the
specificity of the probe. Of note, although
total proteasome activity was not grossly
altered, the activity of LMP7, the rate
limiting subunit for MHC I peptide supply
(25), was significantly reduced after 6 hours
of CSE exposure (Figure 2B; see Figure
E3C). Protein expression of proteasome
subunits and HLA A was not significantly
affected by CSE exposure except for LMP2
(see Figure E3D). These data demonstrate
that diminished immunoproteasome
activity goes along with reduced MHC I
surface expression on human blood derived
macrophages confirming previous data from
immunoproteasome knockout mice (25).
Moreover, we here provide first evidence

Table 1. Patient Characteristics

Group

BAL* (Figure 1A; see Figure E1) Lung Tissue† (Figure 6)
Control Subjects IPF P Value COPD P Value COPD

N 15 16 9 5
Sex, M/F 8/7 15/1 ,0.05‡ 9/0 ,0.05‡ 1/4
Age, yr, median (range) 59 (45–71) 68 (55–86) ,0.05x 67 (48–72) n.s.x 53 (44–63)
Smoking status, NS/ex-smoker 4/11 6/10 n.s.‡ 0/9 n.s.‡ n.a.
Pack-years, median (range) 12.5 (0–30) 15 (0–30) n.s.x 40 (20–60) ,0.001x n.a.
GOLD stage, I/II/III/IV n.a. n.a. 1/6/2/0 0/0/0/5

Definition of abbreviations: BAL bronchoalveolar lavage; COPD chronic obstructive pulmonary disease; GOLD Global Initiative for Chronic
Obstructive Lung Disease; IPF idiopathic pulmonary fibrosis; M/F male/female; n.a. not available; n.s. not significant; NS nonsmoker.
*BAL cells were obtained as previously described (23).
†According to European organ transplant guidelines, donors are anonymous.
‡Statistical analysis was performed using Fisher exact test compared with control subjects.
xStatistical analysis was performed using Kruskal Wallis test compared with control subjects.
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that immunoproteasome function is
impaired by an environmental insult (here
cigarette smoke) contributing to diminished
MHC I expression on the cell surface.

CSE Impairs Immunoproteasome-
mediated Antigen Presentation in
Splenic Immune Cells
To establish a causal link between
cigarette smoke mediated regulation of
immunoproteasome activity and

MHC I mediated antigen presentation, we
made use of a functional antigen presentation
assay that allows assessment of the specific
T cell response to the presentation of an
immunoproteasome dependent MHC I
epitope in C57BL/6 derived immune cells.
The male HY antigen UTY246–254 is
generated by immunoproteasome subunits
LMP2 and LMP7, and presented to the T cell
hybridoma reporter cell line UTY (29).
Antigen mediated activation of UTY

cells can be quantified by lacZ assays
because of the IL 2 promotor driven
b galactosidase expression.

To first validate the UTY246–254 antigen
presentation assay, splenocytes from female
or male wild type, male LMP2, or LMP7
knockout mice were isolated, then
coincubated with the UTY hybridoma cell
line and b galactosidase activity was
measured (Figure 3A). Only splenocytes
from male wild type mice specifically
activated the UTY T cells with a doubling
of the b galactosidase reporter signal. The
results from these experiments validate
the assay as an appropriate readout for
immunoproteasome dependent antigen
presentation.

Of note, treatment of male wild type
splenocytes with nontoxic concentrations of
CSE for 24 hours impaired UTY activation
already at the lowest dose of 5% CSE, and
full suppression of UTY activation was
achieved with 25% CSE (Figure 3B; see
Figure E4). Although expression of the
immunoproteasome subunits LMP2 and
LMP7 was not altered, overall proteasome
and immunoproteasome activities were
clearly reduced, as assessed by specific ABP
labeling (Figures 3C and 3D). Impaired
presentation of UTY246–254 in response
to increasing doses of CSE was also
confirmed for CD11c1 splenic dendritic
cells (Figure 3E).

CSE Impairs Immunoproteasome-
mediated Antigen Presentation in
Immune Cells of the Lung
We next exposed immune cells of the
lung (i.e., CD11c1 lung cells [mainly
composed of alveolar macrophages and
dendritic cells] and BAL cells of mouse
lungs [mainly alveolar macrophages]
[30]), to nontoxic doses of CSE and
performed UTY assays. Very similar to
our results obtained with splenic cells,
CSE exposure significantly reduced
antigen presentation of the UTY246–254

peptide both in BAL cells and CD11c1

immune cells of the lung (Figure 4; see
Figure E4). These in vitro data thus
reveal that immunoproteasome mediated

Figure 1. (Continued). (IPF) (n 13), and patients with COPD (n 9). Rpl19 was used as a housekeeping gene (mean6 SEM, one way analysis of
variance with Dunnett post hoc test, *P, 0.05, **P, 0.01). (B D) Microarray results from isolated alveolar macrophages of nonsmokers and (B) healthy
smokers and patients with COPD (27), (C) patients with IPF (GSE13896), and (D) healthy smokers and nonsmoking patients with asthma (28) for
immunoproteasome subunits LMP2 (PSMB9), MECL 1 (PSMB10), and LMP7 (PSMB8). (E) Analysis of the same samples as in B for genes encoding
human major histocompatibility class I genes HLA A, HLA B, and HLA C (B E: median, Mann Whitney U or Kruskal Wallis test with Dunn post hoc test,
*P, 0.05, **P, 0.01, ***P, 0.001). NS nonsmokers; rel. relative; S smokers.
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Figure 2. Cigarette smoke extract (CSE) impairs major histocompatibility class I (MHC I) antigen
presentation in human blood monocyte derived macrophages. (A) Human monocyte derived
macrophages (n 5 different donors) were treated with 5 or 50% CSE for 6 hours and stained with
anti MHC I antibody W6/32 or isotype control, and propidium iodide. Median fluorescence intensities
were determined on gated live single cells, and the isotype corrected median fluorescence intensity
(DMFI) was normalized to untreated cells in five independent experiments (100%; mean6 SEM, one
sample t test, *P, 0.05, ***P, 0.001). (B) The same samples as in A were labeled with activity based
probes MV151 (labeling all active subunits), LW124 (specific for b1 and low molecular mass protein
[LMP] 2), or MVB127 (specific for b5 and LMP7). Densitometric analysis combines data from
three different donors (replicates are shown in Figure E3C); values were normalized to untreated
cells (mean6 SEM; one sample t test [compared with 1]; *P, 0.05). ctrl control; MECL 1
multicatalytic endopeptidase complex like 1.
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MHC I presentation of UTY246–254

antigen follows immunoproteasome
activity, and immunoproteasome
dependent antigen presentation is
impaired by CSE.

Cigarette Smoke Dynamically
Regulates Immunoproteasome
Function in BAL Cells In Vivo
Immunoproteasome mediated antigen
presentation was next analyzed in vivo using
male C57BL/6 mice that were acutely
exposed to cigarette smoke for 1, 3, and
10 days (for total and differential cell count,
see Figures E5A and E5B). Isolated alveolar
macrophages of smoke exposed mice
showed transient up regulation of
immunoproteasome expression with
highest protein levels after 3 days of smoke

exposure and subsequent reduction after
10 days of exposure to levels below those of
air exposed control animals (Figure 5A).
These dynamics of proteasome expression
were closely followed by transient activation
of standard and immunoproteasomes as
determined by ABP labeling of catalytic
subunits (Figure 5B). Notably, after 10 days
of smoke exposure, the activity of the
immunoproteasome subunits was reduced
resulting in a shift in the activity ratio from
immunoproteasome to their standard
proteasome counterparts (Figure 5C; see
Figure E5C). Analysis of UTY246–254 antigen
presentation in the C57BL/6 mice revealed
significant activation of the UTY T cell
response in BAL cells of 3 days smoke
exposed mice, which was lost after 10 days
of smoke exposure (Figure 5D). Antigen

presentation thus again closely followed the
course of immunoproteasome activity in vivo.

We confirmed the relative impairment
of immunoproteasome activity in isolated
alveolar macrophages of a second mouse
strain (i.e., BALB/c mice that had been
exposed to cigarette smoke for 10 days)
(see Figure E6A). Differential BAL count
revealed that BAL cells were mainly
composed of alveolar macrophages (see
Figure E6B). Of note, RNA expression of
all three immunoproteasome subunits
was significantly reduced in alveolar
macrophages (see Figure E6C), thus
resembling our data from human BAL of
patients with COPD (Figure 1A). In
summary, our in vivo data demonstrate
a direct effect of cigarette smoke on
immunoproteasome expression and activity
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Figure 3. Cigarette smoke extract (CSE) impairs immunoproteasome mediated antigen presentation of UTY peptide in antigen presenting cells of spleen
and lung. (A) Validation of the UTY246–254 peptide presentation assay. UTY cells are activated by immunoproteasome dependent presentation of the
male UTY246–254 peptide on splenocyte major histocompatibility class I (H 2Db) as quantified by measurement of reporter gene b galactosidase activity.
b Galactosidase activity of UTY cytotoxic T lymphocytes alone (UTY), coincubated with splenocytes (female or male wild type, male low molecular mass
protein [LMP] 2 or LMP7 knockout) or splenocytes alone was measured by colorimetric assay of substrate turnover. Data are combined results from three
independently performed experiments (splenocytes from several individual male mice were isolated, pooled, and divided for the different treatment
groups). Cell preparations and stimulations were repeated on different days. Results are normalized to the signal of maximum induction of UTY cells by
male splenocytes (mean1 SEM). (B) b Galactosidase activity of UTY hybridoma cells coincubated with male wild type splenocytes that had been treated
with increasing concentrations of CSE for 24 hours, displayed as percentage of maximum induction of control untreated splenocytes (n 3; mean1 SEM).
(C) Splenocytes were treated for 24 hours with the indicated CSE concentrations. Living cells were first incubated with activity based probe MV151 and
then lysed with RIPA buffer. Proteasome expression (immunosubunits LMP2 and LMP7; total 20S a subunits [a1 7]) and (D) activity were assessed by
immunoblotting and sodium dodecyl sulfate polyacrylamide gel electrophoresis, respectively. Results are representative for three independent
experiments. (E) b Galactosidase activity of UTY cells coincubated with isolated male CD11c1 splenic dendritic cells that had been treated with increasing
concentrations of CSE for 24 hours, displayed as percentage of maximum induction of control untreated cells (n 4; mean1 SEM). Statistical analysis:
one sample t test (compared with 100%) *P, 0.05, ***P, 0.001. b gal b galactosidase; ctrl control; f female; m male; MECL 1 multicatalytic
endopeptidase complex like 1; UTY UTY246–254 hybridoma cell line; wt wild type.
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in BAL cells. These changes depend on the
extent of smoke exposure and result in
altered MHC I antigen presentation.

Immunoproteasome Activity Is
Impaired in End-Stage COPD Lungs
but Not in Cigarette Smoke–exposed
Mice
We further investigated immunoproteasome
activity in explanted lung tissues from
patients with end stage COPD versus
control organ donors. Additionally, we
analyzed immunoproteasome function
in lungs of mice that were chronically
exposed to smoke for 4 months and had
developed smoke induced emphysema
(31). Of note, we did not observe any
change in RNA expression of standard
(a7) and immunoproteasome subunits
in COPD and donor lungs (Figure 6A).
Protein expression analysis of the
human samples revealed heterogeneous
expression levels but no significant
alterations in the immunoproteasome
subunits or total MHC I (Figure 6B;
see densitometric analysis in Figure E8).
Similarly, RNA and protein levels of
immunoproteasome subunits were not
grossly altered in lungs of smoke exposed
mice (see Figures E7A and E7B). On the
contrary, we observed a uniform decrease
in total proteasome activity in native
lysates of end stage COPD lungs as
determined by ABP analysis, allowing
us to attribute the loss of activity to the
standard and the immunoproteasome
proteolytic activities (Figure 6C).

We confirmed this striking impairment
of proteasome function using native gels
with substrate overlay assays and observed a

drastic and uniform impairment of both
20S and 26S proteasome activities in
COPD lung tissue compared with control
subjects. Reduced activity of the
proteasome complexes was assigned to
diminished 20S and 26S proteasome
formation, as determined by blotting of the
native gels for 20S and 26S proteasome
subunits, respectively. Of note, both
standard and immunoproteasome
activities were rather elevated in lungs of
chronically smoke exposed mice as
determined by ABP labeling and native gel
analysis (see Figures E7C and E7D).
These results indicate that in contrast to
end stage COPD lungs, emphysematous
lungs of smoke exposed mice are still
able to maintain standard and
immunoproteasome activities, an
observation that is well in agreement with
the different lung pathologies, showing
only minor changes in smoke exposed
mice but detrimental lung damage in
end stage COPD.

Discussion

We show for the first time that cigarette
smoke alters expression and activity of
immunoproteasomes in immune cells
in vitro and in vivo. Immunoproteasome
expression was specifically down
regulated in total BAL of patients
with COPD and in isolated alveolar
macrophages of patients with COPD
and IPF. Both standard and
immunoproteasome activities were
strongly impaired in end stage
COPD lung tissues. Importantly,

smoke mediated alteration in
immunoproteasome content resulted in
altered MHC I surface expression and
MHC I mediated presentation of an
immunoproteasome specific antigen.
The effect of cigarette smoke on
immunoproteasome mediated MHC I
antigen presentation may thus contribute
to a distorted adaptive immune response
in viral and bacterial exacerbations of
patients with COPD.

Regulation of the Immunoproteasome
by Cigarette Smoke and in COPD
Immunoproteasomes are constitutively
expressed in immune cells of the lung
as shown previously by us and others
(26, 32). Parenchymal expression of
immunoproteasomes is low but can be
rapidly induced upon virus infection (26).
We did not observe any up regulation of
immunoproteasome expression in lungs of
smoke exposed mice and end stage COPD
lungs. This is in accordance with the study
by Baker and colleagues (33) who analyzed
immunoproteasome expression in COPD
lungs. These data thus refute the notion
that immunoproteasomes are induced
as part of a protective oxidative stress
response (34), and rather support contrary
reports (35). In contrast to our observation,
Fujino and colleagues (36) reported
increased LMP2 and LMP7 RNA expression
in primary alveolar type II cells of
patients with early COPD stages. Despite
the absence of expressional alterations,
standard and immunoproteasome
activities were markedly impaired in
COPD lungs as determined by two
different activity assays (i.e., ABP and
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Figure 4. Cigarette smoke extract decreases UTY peptide presentation in antigen presenting cells of the lung. b Galactosidase activity of UTY reporter
cell line coincubated with (A) magnetic activated cell sorted CD11c1 lung cells or (B) bronchoalveolar lavage cells (.95% alveolar macrophages) from
male mice that had been treated with increasing cigarette smoke extract concentrations for 24 hours. Data are combined results of three to four
independent experiments normalized to the signal of maximum induction of untreated cells coincubated with UTY cells ( 100%) (mean1 SEM; one
sample t test [compared with 100%]; *P, 0.05). b Gal b galactosidase; ctrl control; UTY UTY246–254 hybridoma cell line.
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immunoproteasome activity that was
associated with diminished cell surface
expression of MHC I molecules. Treatment
of splenic and lung immune cells with CSE
not only reduced the activity of the
immunoproteasome but also impaired
MHC I mediated antigen presentation
of the immunoproteasome specific
UTY246–254 epitope to a T cell hybridoma.
This functional assay directly monitors
the immunologic consequences of
impaired immunoproteasome function
(29). CSE mediated impairment of
immunoproteasome activity thus most
likely prevents efficient generation of the
UTY246–254 epitope and surface expression
of these peptide/MHC I complexes
resulting in reduced T cell activation.

Proteasome mediated generation of
antigenic peptides is a rate limiting step for
MHC I antigen presentation, because
loading of antigenic peptide to the MHC I
binding groove stabilizes MHC I complexes
in the endoplasmic reticulum and enhances
their transport to the cell surface (13).
Accordingly, inhibition of the proteasome
impairs MHC I driven immune responses
toward lymphocytic choriomeningitis virus
infections (40) and mice lacking
immunoproteasome subunits have severely
impaired MHC I antigen presentation (41).
Our MHC I flow cytometry analysis of
human macrophages revealed a significant
acute reduction of MHC I surface
expression, whereas total MHC I expression
was not affected. These data may be
indicative for reduced MHC I complex
loading caused by impaired proteasome
activity. We cannot, however, rule out that
CSE alters MHC I surface expression by
other mechanisms related to oxidative or
endoplasmic reticulum stress (42). In
addition, CSE may also directly affect
peptide/MHC I interactions thereby
contributing to reduced T cell activation.
Indeed, Fine and colleagues (43) showed
that tobacco extract reduces membrane

HLA class I levels and concomitant
immune responses. This is in line with the
observation of significantly diminished
MHC I levels on alveolar macrophages of
smokers with COPD (44). In addition,
cigarette smoke may oxidatively
modify MHC I epitopes thereby reducing
their affinity to T cell receptors and
impacting T cell activation and
proliferation (45).

Our in vivo data revealed that BAL
cells from cigarette smoke exposed
mice had significantly increased
immunoproteasome activity and MHC I
antigen presentation after 3 days of
smoke exposure. After 10 days, antigen
presentation was still elevated, although to
a lesser extent and immunoproteasome
activity was reduced compared with
standard proteasome function. These
data suggest that longer smoke exposure
impairs immunoproteasome activity and
concomitant MHC I antigen presentation,
which still needs to be tested.

Data on MHC I antigen presentation in
COPD are limited, whereas innate and
MHC II mediated immune responses in
COPD are well studied (38). Several
lines of evidence support a role of
MHC I mediated antigen presentation for
the pathogenesis of COPD and in viral and
bacterial exacerbations (46): CD81 T cells
are abundantly present in COPD tissue
and chronic smoke exposure induces
proliferation of CD81 T cells in the lung
(47 49). Moreover, CD81 T cell depletion
or genetic ablation protects mice from
emphysema formation suggesting an
essential role of MHC I mediated immune
responses for smoke induced emphysema
development (50, 51). Cigarette smoke
generally dampens the host’s immune
system in its response to infections (52, 53)
because alveolar macrophages become less
responsive to IFN g and are less protective
against bacterial and viral infections (54).
Although the role of viral exacerbations in

IPF is not clear (55, 56), our analysis of
microarray data from isolated alveolar
macrophages of patients with IPF
suggests down regulation of not only the
immunoproteasome but also of some
MHC I molecules. Moreover, in an
unbiased bioinformatics approach that
compared the gene expression signatures
in isolated alveolar macrophages of
healthy smokers, smokers with COPD,
patients with IPF, and nonsmoking
patients with asthma, we observed uniform
down regulation of several genes involved
in antiviral immune responses that was
specific for macrophages from patients with
COPD and patients with IPF and not
evident in healthy smokers or patients with
asthma (data not shown). We thus envision
sustained dampening of antiviral immune
responses as a characteristic feature of
chronic smoke related lung diseases that
may add to an increased susceptibility of
patients with COPD and patients with IPF
to viral exacerbations.

In conclusion, we are the first
to provide evidence for a novel
pathomechanism involving dysfunction of
the immunoproteasome andMHC I antigen
presentation by cigarette smoke in lung
immune cells that may contribute to
impaired clearance of pathogens and to
sustained infections in smokers and
exacerbations in COPD and possibly also in
patients with IPF. n
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SUPPLEMENT: IMPAIRMENT OF IMMUNOPROTEASOME FUNCTION BY CIGARETTE SMOKE AND IN COPD  

 

SUPPLEMENT METHODS 

Microarray analysis: Microarray expression values were extracted with the robust multi-array 

average (RMA) procedure. Zero variance probe sets were removed and many-to-one probe sets-

to-gene relationships were resolved by retaining only the probe sets with the highest variance 

across all experimental conditions. The microarrays used in this study can be found under GEO 

accession GSE13896 (non-smokers, smokers, and COPD patients (E1)), GSE49072 (non-

smokers and IPF patients, for patient characteristics, see Supplementary Table E1), and 

GSE2125 (non-smokers, smokers, and non-smoking asthma patients (E2)). 

Human macrophages: Briefly, peripheral blood of healthy donors (n=5, non-smokers) was 

separated by ficoll density gradient centrifugation and monocytes were isolated using CD14+ 

microbeads (Miltenyi Biotec, Bergisch Gladbach, Germany). Monocytes were then cultivated at 5 

x 106 cells/4 ml in 6-well plates (AIM-V/1 % human serum). Recombinant human M-CSF (50 

ng/ml, R&D Systems, Minneapolis, MN, USA) was supplemented on days 0, 2 and 5. On day 7, 

M-CSF macrophages were harvested and reseeded at 0.4 x 106 cells/ml in CSE medium (AIM-

V/10 % FBS with indicated concentrations of CSE) for 6 h. Afterwards, cells were harvested for 

FACS and proteasome analysis. Cell viability after CSE incubation was determined by MTT assay 

or propidium iodide staining followed by FACS analysis.  

Flow cytometry: Cells were harvested and stained for MHC class I using hybridoma supernatant 

W6/32 (ATCC HB-95) and PE-labeled goat-anti-mouse IgG. Dead cells were determined using 

propidium iodide (Sigma-Aldrich, St. Louis, MO, USA). Analysis employed the LSRII cytometer 

(Becton-Dickenson, Franklin Lakes, NJ, USA) and FlowJo Software (TreeStar, Ashland, OR, 

USA). 

Smoke exposure of mice: Eight week old mice were exposed to cigarette smoke for 50 min 

once (“1 day” group), two days for two times 50 min and the third day once for the “3 days” group 

or once daily for 10 consecutive days (“10 days” group). The smoke of 10 3R4F research-grade 

cigarettes (Tobacco and Health Research Institute, University of Kentucky, Lexington, KY, USA) 

without filter was drawn into the exposure chamber using a peristaltic pump for each 50 min 

exposure cycle. The mean particle concentration was ~340 mg/m3. Directly after the last smoke 

exposure, mice were euthanized and samples were prepared. For immunohistochemistry, non-

lavaged lungs were  

fixed with 4 % paraformaldehyde and embedded in paraffin. Chronic exposure of mice was 

performed as described previously (E3).  

Mouse cell isolation and culture: All different primary mouse cell-types were cultured in RPMI 

1640 (Life Technologies, Carlsbad, CA, USA) supplemented with 10 % fetal bovine serum (FBS, 

Biochrom, Berlin, Germany) and 100 U/ml of penicillin/streptomycin (Life Technologies). Cells 

were grown at 37 °C in a humidified atmosphere containing 5 % CO2.  
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BAL: Mouse lungs were lavaged by inserting a cannula into the trachea and instilling 10 times 

500-800 µl of ice-cold sterile PBS into the lungs. Cells were collected and washed with ice-cold 

PBS before they were taken in culture. 

Lung cells: Following euthanasia, the lungs were removed and lung tissue was cut into small 

pieces with scissors and digested for 45 min at 37 °C in 1 mg/ml collagenase A (Roche, Basel, 

Switzerland) in RPMI medium. Samples were passed through a 40 µm nylon mesh (Corning, NY, 

USA) to obtain a single cell suspension. Remaining red blood cells were lysed using RBC Lysis 

Buffer (eBioscience). 

Splenocytes: Splenocytes were isolated by passing whole spleens through a 40 µm nylon mesh. 

Cells were washed with ice-cold PBS, centrifuged at 1000 rpm at 4 °C and remaining red blood 

cells were lysed using RBC Lysis Buffer (eBioscience). 1 x 105 cells per well were seeded in 96-

well plates in FBS-containing medium and CSE was added. 

Splenic DCs and Lung CD11c+ cells: CD11c positive cells were isolated using magnetic bead 

purification (CD11c+ Cell Isolation Kit, Miltenyi Biotec), according to the manufacturer`s 

instructions. 

UTY cell line: The T cell hybridoma cell line UTY, specific for the UTY246-254 peptide presented on 

H-2Db, was a kind gift from N. Shastri (University of California, Berkeley, CA, USA).  

Mouse bronchoalveolar lavage (BAL) cell analysis: For BALB/c total BAL cell analysis, 

cytospins from 3 x 500 µl lavages were performed, for C57BL/6J, lavages from 10 x 500-800 µl 

were counted. A maximum of 3 x 104 cells were used for cytospins. These were stained according 

to May-Grünwald (Merck, Whitehouse Station, NJ, USA) and cellular composition was assessed 

by counting 300 cells per slide.  

Mouse alveolar macrophage analysis: BAL cells were prepared as described above, counted, 

and seeded into 24-well plates with RPMI medium supplemented with 10 % FBS. Cells were 

allowed to adhere for 30 min. Non-adherent cells were removed by washing twice with PBS. 

Adherent cells were directly lysed for mRNA or protein analysis or incubated with activity-based 

probes for 1 hour at 37 °C and were then lysed in RIPA buffer.  

Cigarette smoke extract (CSE) preparation: CSE was prepared as previously described (E4). 

Briefly, a CSE stock was prepared by drawing the smoke of two research-grade cigarettes (3R4F, 

Tobacco and Health Research Institute) through 50 ml of serum-free medium at RT. Eight of 

these preparations were pooled, sterile filtered through a 0.20 µm filter (Minisart, Sartorius Stedim 

Biotech, Göttingen, Germany), aliquoted, and stored at -20 °C until use. For each experiment, 

10 % FBS was added freshly. This solution was considered as 100 % CSE and diluted 

accordingly with serum-containing medium. 
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Cell viability: 

MTT assay: Metabolic activity was evaluated by a colorimetric MTT assay (Tetrazolium Blue, 

Sigma-Aldrich) as already described (E4, E5). 96-well plates were read on a SunriseTM plate 

reader (Tecan, Männedorf, Switzerland) using a wavelength of 570 nm. 

Trypan blue exclusion assay: Cell viability was assessed by the trypan blue exclusion method. 

The number of total and dead cells was counted in duplicates. Treatment of cells with a cell 

viability < 75 % was excluded. 

Quantitative real-time RT-PCR: Total RNA from cells was isolated using Roti®-Quick-Kit (Carl 

Roth, Karlsruhe, Germany). 100-1000 ng per sample of total RNA was reverse-transcribed using 

random hexamers (Life Technologies) and M-MLV reverse transcriptase (Sigma-Aldrich). 

Quantitative PCR was performed using the SYBR Green LC480 System (Roche Diagnostics, 

Mannheim, Germany) or fluorescent labeled probes were used as previously described (E6), 

gene-specific primer and probe sequences are listed in Table E2.  

Western blotting: Cell and tissue lysis with RIPA buffer as well as Western blot analysis was 

performed as previously described (E7), antibodies and dilutions are listed in Supplementary 

Table E3.  

Activity-based probe labeling: Activity of standard and immunoproteasome subunits was 

monitored by using a set of activity-based probes (ABP) (E8). The pan-reactive proteasome ABP 

MV151 (E9) was used for assessing of total and β2/MECL-1 activities, LW124 for β1/LMP2 

activity, and MVB127 was used to label β5/LMP7 (E10). 

Hyposmotic native lysates of lungs were labeled with ABPs as described previously (E7), except 

that instead of ddH20 for lysis of cells, we used TSDG buffer (10 mM Tris/HCl, 1.1 mM MgCl2, 

10 mM NaCl, 0.1 mM EDTA, 1 mM NaN3, 1 mM DTT, 2 mM ATP, 10 % v/v glycerol, pH 7.0) 

containing cOmplete protease inhibitors (Roche). 

Primary macrophages were directly labeled in full medium containing 0.5 µM MV151 or a 

combination of 0.25 µM LW124 and 1 μM MVB127 for 1-2 h at 37 °C, washed with PBS and lysed 

in RIPA buffer. 2 µg of protein were denatured with 6x Laemmli Buffer to a final 1x concentration 

for gel analysis or Western blotting. 

Native gel analysis and substrate overlay:  

Chymotrypsin-like proteasome activity in native cell lysates was assessed using the synthetic 

peptide substrate Suc-LLVY-AMC (Enzo Life Sciences, Farmingdale, NY, USA) and was 

performed as previously described (E4). Equal amounts of protein (15 µg) of hyposmotic lysates 

were diluted with 5x native loading buffer (50 % v/v glycerol, 250 mM Tris, 0.1 % w/v 

bromophenol blue, pH 7.5) and subjected to electrophoresis (4 h, 150 V, 4 °C) on 3-8 % non-

denaturing Tris-Acetate gels (Life Technologies). Proteasome activity was detected after 

incubating the gels for 30 min at 37 °C in substrate buffer (50 µM Suc-LLVY-AMC, 50 mM Tris,  
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pH 7.5, 10 mM MgCl2, 1 mM ATP, and 1 mM DTT). Gels were analyzed using the ChemiDoc 

XRS+  (Bio-Rad, Hercules, CA, USA) with an excitation wavelength of 380 nm and emission 

wavelength of 460 nm. Band intensity was quantified with the Image Lab software package (Bio-

Rad). Afterwards, proteins were denatured by incubation of the gel in solubilization buffer (2 % 

w/v SDS, 66 mM Na2CO3, 1.5 % v/v 2-ME) for 15 min and proteins were blotted onto PVDF 

membranes. 20S and 26S bands were identified by using antibodies detecting 20S α1-7 subunits 

and the 19S subunit Rpt5. 
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SUPPLEMENT TABLE 

TABLE E1: Controls and IPF patients’ data from microarray analysis GSE49072                 

(personal communication by Ivan Rosas) 

 
Controls 

(n=45) 

IPF 

(n=14) 
p-value 

Gender (m/f) 30/15 13/1 n.s.* 

Age (years; mean (SEM)) 48 (± 2) 62 (± 2) <0.001† 

Smoking status (NS/smoker) 45/0 5/9 n.s.* 

Pack years (median (range)) 0 7 (0-40) <0.01‡ 

* Statistical analysis was performed using Fisher’s exact test 

† Statistical analysis was performed using Student’s t-test 

‡ Statistical analysis was performed using Wilcoxon Signed Rank test (compared to 0) 
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TABLE E2: Primer sequences 

Name Acc. No. Forward Primer (5‘-3‘) Reverse Primer (5‘-3‘) 

Mouse (SYBR Green) 

Psmb8 NM_010724.2 TGCTTATGCTACCCACAGAGACAA TTCACTTTCACCCAACCGTC 

Psmb9 NM_013585.2 GTACCGTGAGGACTTGTTAGCGC GGCTGTCGAATTAGCATCCCT 

Psmb10 NM_013640.3 GAAGACCGGTTCCAGCCAA CACTCAGGATCCCTGCTGTGAT 

Rpl19 NM_001159483.1 CGGGAATCCAAGAAGATTGA TTCAGCTTGTGGATGTGCTC 

Human (SYBR Green, Figure 6A) 

PSMA3 NM_002788.3  ACAGTGTGAATGACGGTGCG GCAGCTTGCCTGGCTTTG 

PSMB8 NM_148919.3 AGTACTGGGAGCGCCTGCT CCGACACTGAAATACGTTCTCCA 

PSMB9 NM_002800.4 ATGCTGACTCGACAGCCTTT GCAATAGCGTCTGTGGTGAA 

PSMB10 NM_002801.3 TGCTGCGGACACTGAGCTC GCTGTGGTTCCAGGCACAAA 

RPL19 NM_000981.3 GAGACCAATGAAATCGCCAATG GCGGATGATCAGCCCATCTT 

    

Human (Fluorescent Reporter Probe, Figure 1A, E1A) 

Primer Forward Primer (5‘-3‘) Reverse Primer (5‘-3‘) Probe (5‘-3‘)* 

PSMB8 AGTACTGGGAGCGCCTGCT CCGACACTGAAATACGTTCTCCA TCGCAGATAGTACAGCCTGCATTCCTTGG 

PSMB9 CGTTGTGATGGGTTCTGATTCC GACAGCTTGTCAAACACTCGGTT CACCGCCTCGCCTGCAGACACT 

PSMB10 TGCTGCGGACACTGAGCTC GCTGTGGTTCCAGGCACAAA CCCGTGAAGAGGTCTGGCCGCTAC 

RPL19 GAGACCAATGAAATCGCCAATG GCGGATGATCAGCCCATCTT CAACTCCCGTCAGCAGATCCGGAA 

*Probes labeled with BHQ-1 (PSMA3-PSMB10) or TAMRA (RPL19) 
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TABLE E3: Antibodies for Western blotting 

Antibody Order number Manufacturer Dilution 

α1+2+3+5+6+7 ab22674 Abcam (Cambridge, UK) 1:1000 

β-Actin A3854 Sigma-Aldrich (St. Louis, MO, USA) 1:40 000 

β1 sc-67345 Santa Cruz (Dallas, TX, USA) 1:200 

HLA-A ab52922 Abcam 1:8000 

LMP2 ab3328 Abcam 1:1500 

LMP7 ab3329 Abcam 1:1500 

PSMA4 (α3) ab119419 Abcam 1:1000 

Tbp1 (Rpt5) A303-538A Bethyl Laboratories (Montgomery, TX, USA) 1:3000 
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SUPPLEMENT FIGURES 

 

 

 

FIGURE E1: BAL characterization of control subjects, COPD, or IPF patients. Cellular 

composition of human BAL obtained from control subjects, IPF, or COPD patients. (median, 

Kruskal-Wallis test with Dunn’s Post test, ** = p<0.01, *** = p<0.001). AM, alveolar macrophages; 

COPD, chronic obstructive pulmonary disease; IPF, idiopathic pulmonary fibrosis. 
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FIGURE E2: Microarray expression data from alveolar macrophages of smokers, COPD, 

IPF, and asthma patients. Summary of microarray results for genes related to MHC I antigen 

presentation in isolated alveolar macrophages of smokers, COPD, IPF, and asthma patients 

compared to non-smokers. Mann-Whitney-U or Kruskal-Wallis Test with Dunn’s Post Test. 
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FIGURE E3: Cigarette smoke extract effect on human macrophages. Metabolic activity and 

viability of human macrophages (n=5) 6 h after treatment with 5 or 50 % cigarette smoke extract 

compared to untreated cells were tested with (A) MTT or (B) propidium iodide-exclusion assay 

measured by FACS analysis. (C) Replicates of ABP-gels shown in Figure 2B. (D) Western blot 

and densitometric analysis of human macrophages after 6 h of 50 % CSE treatment (n=3) of 

standard proteasome subunits α3 and β1, as well as immunosubunits LMP2 and LMP7, and MHC 

I (HLA-A) normalized to β-Actin. Statistical analysis: mean +/- SEM, one-sample t-test (compared 

to 100 % (A,B) or 1 (D)), * = p<0.05, ** = p<0.01, *** = p<0.001). c, control.  
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FIGURE E4: Viability of primary cells exposed to cigarette smoke in vitro. Viability, 

measured by trypan blue exclusion assay or MTT, of splenocytes, CD11c+ splenic dendritic cells 

(DCs), CD11c+ lung cells, or BAL cells treated with increasing percentages of cigarette smoke 

extract for 24 h (mean + SEM, one-sample t-test, * = p<0.05). Shown are the combined data from 

two to three experiments, controls were set to 100 %. BAL, bronchoalveolar lavage; DC, dendritic 

cell 
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FIGURE E5: BAL characteristics of cigarette smoke-exposed C57BL/6 mice. (A) BAL total 

and (B) differential cell analysis for male C57BL/6 wt mice exposed to cigarette smoke for 1, 3, or 

10 days and controls (mean + SEM, One-Way-ANOVA with Dunnett’s Post test, * = p<0.05, *** = 

p<0.001, compared to control). (C) ABP-labeling of isolated macrophages from mice exposed to 

cigarette smoke for 10 days with probe LW124 detecting β1 and LMP2. BAL, bronchoalveolar 

lavage; d, day. 
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FIGURE E6: Immunoproteasome expression and activity in alveolar macrophages of 

cigarette smoke-exposed BALB/c mice. (A) Proteasome activity in isolated alveolar 

macrophages from female BALB/c mice exposed to cigarette smoke for 10 days compared to 

controls labeled with pan-reactive activity-based probe (ABP) MV151 or LMP2/β1-specific ABP 

LW124. Ratios of MECL-1/β2 or LMP2/β1 activities were analyzed by densitometry. Results are 

combined data from three (MV151) or two (LW124) independent experiments with several mice 

per group (mean +/- SEM, Student’s t-test ** = p<0.01, *** = p<0.001). (B) BAL total and 

differential cell analysis for BALB/c mice smoke-exposed for 10 days and air-exposed controls 

(mean +/- SEM, Student’s t-test (total cell count), median, Mann-Whitney-U test (differential cell 

count) ** = p<0.01). (C) mRNA analysis of immunoproteasome subunits LMP2, MECL-1, and 

LMP7 in alveolar macrophages isolated from control or smoke-exposed mice. Rpl19 was used as 

a housekeeping gene (median, Mann-Whitney-U test, * = p<0.05, ** = p<0.01, *** = p<0.001). AM, 

alveolar macrophage; BAL, broncholaveolar lavage; ctrl, control; n.d., not detected. 
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FIGURE E7: Cigarette smoke affects activity of proteasomes in the mouse lung. (A) 

qRT-PCR mRNA analysis of immunoproteasome subunits LMP2, MECL-1, and LMP7 in total 

lungs of control mice (n=8) and mice that have been exposed to cigarette smoke for 4 months 

(n=10), (mean +/- SEM, Student’s t-test). (B) Representative Western blot of total lung lysates of 

controls or cigarette smoke-exposed mice for immunosubunits LMP2 and LMP7. β-Actin served 

as loading control. Densitometric analysis from normalized data of two independent mouse 

experiments is shown (median, Mann-Whitney-U test). (C) Activity-based probe profiling of the 

same lungs as in (B): native lung lysates were labeled with pan-reactive ABP MV151 (labeling all 

six active proteasome sites) or LW124 (labeling LMP2 and β1), and separated on denaturing SDS  
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gels. Densitometric analysis of total activity (MV151 signal) and single subunit activity is 

normalized to the mean of controls activities, densitometric results are combined data from two 

independent experiments (mean +/- SEM, Student’s t-test, * = p<0.05). (D) Native gel analysis 

with chymotrypsin-like (CT-L) substrate overlay analysis and immunoblotting of native lung 

lysates to detect 26S (20S + 19S) proteasome complexes with an Rpt5 (19S subunit)-specific 

antibody. Densitometric analysis of chymotrypsin-like activity and 26S expression (Rpt5 signal) 

are shown, results are combined data from two independent experiments (mean +/- SEM, 

Student’s t-test, * = p<0.05). 
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FIGURE E8: Western blot analysis of human COPD tissue. (A) Western blot detecting total 

MHC I (HLA-A) in total lung lysate of donor or COPD tissue. (B) Densitometric analysis of 

Western blots shown in Figures 6B and E8A. COPD, chronic obstructive pulmonary disease; 

HLA, human leukocyte antigen; MHC I, major histocompatibility complex class I. 
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3 DISCUSSION 

Within the two presented publications, the biological consequence of exposure to cigarette smoke 

has been investigated in vitro in lung alveolar cells and in lung immune cells, and in vivo in mouse 

models and in lung tissue of COPD patients. More specifically, in the first study, the effects of 

cigarette smoke exposure were studied in the context of overall proteome alterations and protein 

homeostasis, while the second study focused on cigarette smoke-mediated effects on 

proteasome-dependent MHC class I antigen presentation. 

 

3.1 Tobacco smoke and protein homeostasis: implications for 

COPD 

3.1.1 Cigarette smoke, proteostatic stress and alterations of the cellular 

proteome  

The cellular proteome is a complex mixture of structural and regulatory proteins that requires to 

be kept in proper balance according to the functions and dynamic needs of the cell. Protein 

biogenesis and degradation machineries work to maintain proteome fidelity and a balanced 

protein flux within the cell (Fig. 5)81. Cigarette smoke, as previously mentioned, has inhibitory 

effects on the degradation capacity of the cell and thus potentially alters cellular localization and 

abundance of cellular proteins.  

 

 

 

Figure 5 – Dynamic control of proteome complexity.  In a balanced proteome, cellular mechanisms that 

contribute to protein anabolism and protein catabolism work together to execute the dynamic control of 

proteome complexity (left panel). Changes in protein degradation due to alterations in proteasome and 

autophagy functions, if not properly counteracted by protein production mechanisms, will lead to an 

imbalance in the proteome promoting proteotoxic stress (right panel)81. 
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To investigate protein homeostasis functionality and proteome fidelity upon exposure to cigarette 

smoke the most common methodology used is quantitative-MS (mass spectrometry) that allows 

identifying proteomic changes due to transient or chronic stress. In the past years, several 

proteomic studies have been applied to lung tissue and cells with the aim of identifying possible 

alteration in the abundance and in the posttranslational modification of proteins affected by the 

exposure to cigarette smoke82. Most of these studies involved 2D gel electrophoresis-MS analysis 

of in vivo samples, including sputum, lung tissue, bronchoalveolar lavage and epithelial lining 

fluids from non-smokers, healthy smokers and COPD subjects83–87 or from animal models88. 

Some recent studies investigated the effect of chronic cigarette smoke exposure on C57BL/6 

mice and lung cancer cells by complementing 2D gel electrophoresis-MS analysis with a liquid 

chromatography-tandem mass spectrometry workflow using isobaric mass tags89–91 or stable 

isotope labeling with amino acids in cell cultures (also known as SILAC)92,93. Other in vitro 

proteomic studies have been conducted on pulmonary human fibroblasts and bronchial airway 

epithelium cells exposed to cigarette smoke84,94–96. However, no study has investigated the effect 

of cigarette smoke in pulmonary epithelial cells forming the critical barrier between the internal 

and external environment and where reactive compounds of cigarette smoke will interact with and 

consequently modify lipids, nucleic acids and proteins82,97. In addition, in none of the previous 

studies cell compartment-specific-changes have been investigated. For this reason we used 

alveolar epithelial cells and subcellular fractionation coupled with label-free quantitative mass 

spectrometry to identify possible alteration in the cellular compartment-specific proteome. While 

we did not notice major alterations in the subcellular distribution of proteins upon exposure of 

alveolar epithelial cells to non-toxic doses of cigarette smoke, we observed the most prominent 

changes in the cellular secretome76.  As we did not observe any obvious sign of proteostatic 

stress upon cigarette smoke exposure, we cannot establish a direct connection between the 

altered abundance of secreted proteins and proteostatic stress responses. Proteomic changes 

might be due to a slight impairment in the secretion process as well as in the degradation 

machinery, as shown to occur in alveolar epithelial cells exposed to cigarette smoke50. By 

studying more deeply some altered proteins, we noticed that downregulation of proteins was 

reflected also on transcript levels, possibly indicating indirect effect of an imbalanced proteostasis. 

In fact, cumulative evidence indicates that the proteasome not only helps maintaining a stable 

proteome through posttranslational degradation, but also by affecting transcription and RNA 

stability and therefore regulating gene expression. For example, the proteolytic activity of the 

proteasome might influence location and lifetime of transcriptional activators, co-activators and 

repressors, leading to the hypothesis that changes in proteome stability might be indirectly 

responsible for altered transcriptional responses98,99. Previous studies have observed different 

gene expression profiles due to inhibition of proteasome function100,101. Bieler and colleagues 

identified more than 50 nuclear proteins altered upon chemical inhibition of the proteasome, with 
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particular enrichment of proteins involved in RNA splicing, binding and transport, emphasizing the 

role of the proteasome also in protein biogenesis102. In our study, about a fourth of the proteins 

significantly regulated by CSE were nuclear proteins with functions in splicing and translation 

cellular activities76. This observation further suggests that inhibition of the proteasome activity 

observed upon CSE exposure might alter the proteome balance by affecting the abundance of 

proteins involved in transcriptional process. The interplay between proteasome activity inhibition 

and reduced mRNA abundance should be further investigated.  

Tobacco smoke not only destabilizes the cellular proteome but it may also directly modify and 

impair protein complexes involved in protein control pathways. Indeed, in vitro exposure of 

purified 20S proteasomes to cigarette smoke extracts provoked a dose-dependent inhibition of 

proteasomal activity, leading to the conclusion that cigarette smoke can have a direct effect on 

the proteasome50. It is not fully understood how cigarette smoke alters proteasome activity. One 

possibility is that cigarette smoke affects the interaction of proteasome with proteasome 

alternative regulators (i.e.: PA28αβ, PA28γ, PA200 and PI31), directly through oxidative 

modifications or indirectly as a secondary effect of proteasome activity inhibition upon CS 

exposure, as suggested by our group103. Previous studies have shown that stability of the 26S 

complex is compromised upon oxidative stress induction104–106. Giving the fact that cigarette 

smoke influences the redox state of the cell, we hypothesized that the composition and the 

integrity of the proteasome are altered when exposed to tobacco smoke. Recently published data 

from our group107 show that cigarette smoke induces changes in the stability of proteasome 

complexes. We observed that 26S proteasome complexes become slightly instable in response to 

acute cigarette smoke exposure both in vitro (A549 cells) and in vivo (mice). More specifically, 

using proteomic approaches, we found diminished interactions of 19S subunits with 20S 

proteasome complexes, indicating a partial disassembly of 26S proteasomes upon CSE 

exposure. In addition, the composition of 26S proteasome isolated from A549 lung epithelial cells 

or from lung tissue of mice exposed to cigarettes smoke was analyzed by mass spectrometry. In 

both cases, the proteasome alternative regulators PA200 and PA28αβ were found to be less 

stably bound, suggesting that cigarette smoke affects the interaction of 26S proteasomes with 

alternative regulators. The 20S CP alone is ineffective in protein degradation, as the entry to the 

catalytic core is obstructed by the N-termini of the outer α-subunits35,108. The association with 

proteasome regulators therefore is particularly relevant because it determines the opening of the 

CP gate and subsequently proteasome activity and function. Meiners and colleagues proposed 

that proteasome complexes can be considered as dynamic building blocks that assemble or 

disassemble according to cellular needs and status35. The association of the 20S proteasome 

with the regulatory particles might represent a rapid mechanism by which the cell responds to 

some specific stimuli and signaling. According to our unpublished data, tobacco smoke appears 

to weaken the binding of regulators to the 20S CP which may contribute to the reduction in 
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proteasome activity observed in alveolar epithelial cells and mice upon acute tobacco smoke 

exposure50,51. Interestingly, the reduced interaction of the 20S proteasome with its regulators is 

not due to cigarette smoke-induced post-translational modifications (PTMs) of proteasome 

subunits, as in our study we didn’t identify any stable modification of proteasomal proteins107.  

A balanced proteome is achieved by regulated protein biogenesis involving transcriptional, 

splicing, mRNA stabilizing and folding processes and by controlled protein depletion mechanisms 

(UPS and ALP) and secretion processes (Fig. 5). The observation in our study that both proteins 

and mRNAs levels are altered suggests that cells exposed to cigarette smoke have lost their 

capacity of maintaining a balanced proteome. Cellular events observed upon exposure to 

cigarette smoke such as increased folding errors, impaired transcription rates, proteasome activity 

inhibition, accumulation of autophagosomes and decreased lysosomal function (as described in 

section 1.2.1) may contribute to proteome imbalance promoting proteotoxic stress. Further 

proteomic studies might help in identifying which proteins levels are altered upon tobacco smoke 

exposure and establish a causal relationship between those proteins and their implications for the 

development of the pathological characteristics typical of COPD.    

 

3.1.2 Implications of secretome alterations for COPD  

In our study, we observed the most prominent changes in the cellular secretome of human and 

murine alveolar epithelial lung cells, identifying in particular alterations in proteins involved in 

wound-healing response and ECM reorganization. More specifically, progranulin was found 

downregulated on protein and transcript levels in human and murine lung epithelial cell culture as 

well as in primary murine alveolar cells76. Progranulin is a wound-healing mediator needed for the 

formation of a fibronectin scaffold necessary for subsequent collagen deposition and proper tissue 

regeneration109,110. The reduce levels of progranulin indicates a possible impairment in the healing 

process of epithelial cells after acute exposure to cigarette smoke. Similarly, SPARC (secreted 

protein acidic and rich in cysteine) has been identified downregulated in our proteomic profiling 

and subsequently confirmed on protein and mRNA levels in both human and murine alveolar 

epithelial lung cells and in the more physiological relevant setting of the three-dimensional ex-vivo 

lung tissue cultures76. SPARC is a matricellular protein that does not contribute structurally to the 

ECM, but modulates interactions between cells and the extracellular environment. SPARC is 

highly expressed in tissues undergoing injury repair and/or development process111,112 and acts 

by binding several proteins resident of the extracellular matrix and concerting the activity of 

extracellular proteases and growth factors113. SPARC-null mice have several altered phenotypes, 

related to ECM dysregulation, i.e. skin and connective tissue of heart with less fibrillar collagen 

and osteopenia114,115. Giving its role as communicator at the cell-ECM interface, SPARC regulates 
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ECM assembly and deposition as well as growth factor signaling thereby contributing to 

pathological remodeling of the extracellular matrix. Moreover, several studies indicate a reciprocal 

regulation of SPARC and TGF-β (transforming growth factor-β), one of the main proteins that 

orchestrates ECM remodeling and whose superfamily members were also found downregulated 

in our proteomic profiling116,117. Although SPARC is quite well studied in the contest of lung cancer 

and pulmonary fibrosis, little is known about its role in other lung diseases characterized by ECM 

remodeling, such as COPD118. Our finding that SPARC expression is downregulated upon 

cigarette smoke exposure in alveolar epithelial lung cells suggests that its dysregulation might be 

connected to the aberrant extracellular matrix remodeling that is considered an hallmark of 

COPD119–121.  

Besides its role in extracellular matrix remodeling and wound repair, it has been proposed that 

SPARC might have a pleiotropic role in the immune and inflammatory response118. For example, 

SPARC null-mice show impaired leukocyte recruitment and in different disease models SPARC is 

associated to decreased or oppositely to enhanced immune and inflammatory responses122–126. 

These studies pose the question of the possible role of SPARC in the aberrant and persistent 

activation of the immune system in chronic diseases like COPD.   

 

3.2 Tobacco smoke and the immune system: implications for 

COPD  

MHC class I antigen presentation is the main mechanisms by which cells communicate to the 

immune system the presence of a foreign antigen. By producing peptides that efficiently bind 

MHC class I molecules, immunoproteasome are specialized types of proteasomes and central 

players in the process of antigen presentation. As for proteasomes, immunoproteasomes might 

as well be affected by cigarette smoke. The fact that immunoproteasomes have different cleavage 

capacities compared to standard proteasome, has posed the question on the possible different 

ability of immunoproteasomes in degrading oxidatively modified proteins. This question is still a 

matter of debate, as contrasting results have been reported127,128. In our study we investigated the 

expression and activity of the immunoproteasome upon cigarette smoke exposure. Confirming 

previous data on expression of the immunoproteasome129,130, our own results identified that both 

standard and immunoproteasome subunits are not altered in their expression level in end-stage 

COPD lung tissue131. Most importantly, while the expression was unaltered, we observed a 

pronounced decrease in both standard and immunoproteasome activity as determined by two 

different activity assays, namely the activity-based probe (ABP) labeling and the native gel 

analysis with chymotrypsin substrate overlay131. Similar results were obtained also in vitro when 
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murine splenocytes where exposed to non-toxic concentration of cigarette smoke extract. In fact, 

while the expression of the immunoproteasome subunits LMP2 and LMP7 was not altered, we 

observed proteasome and immunoproteasome decreased activities131. On the contrary, we 

noticed an overall increase of both standard and immunoproteasome activities in total lung tissue 

of mice chronically exposed to cigarette smoke 132. This result might be due to the fact that 

perhaps our murine model of chronic exposure does not fully reflect the complex features typical 

of end-stage COPD lungs. In alveolar macrophages of mice acutely exposed to cigarette smoke, 

however, both standard and immunoproteasome are dynamically regulated with increased 

expression and activity after 3 days of smoke exposure, followed by a decrease at day 10132. The 

dissimilarity of results obtained in vivo and in vitro, might be partially explained by the differences 

between CSE and full smoke.   

The altered regulation of immunoproteasome upon exposure to cigarette smoke is of particular 

relevance if we take in consideration that this protease is also one important player of the antigen 

presentation pathway. Indeed, immunoproteasomes not only are the main form of proteasome 

expressed in immune cells, but they also have altered cleavage kinetics that favor the generation 

of antigenic peptides preferentially presented by MHC class I molecules. As such, 

immunoproteasomes contribute in mounting a proper adaptive immune response against virus-

infected cells. Failure in generating this response could lead to impaired clearance of pathogens, 

sustained viral infections and susceptibility to bacterial diseases that are associated with COPD 

exacerbations (Fig. 6)12,62,133. This hypothesis is further corroborated by our observation that in 

human blood-derived macrophages exposed to cigarette smoke extract not only the activity of the 

immunosubunits LMP7 was decreased, but also the expression of MHC class I molecules on the 

cell surface131. In addition, our results showed that tobacco smoke impaired MHC-I mediated 

antigen presentation of a specific immunoproteasome epitope in splenic and lung antigen 

presenting cells131. This observation implies that cigarette smoke impairs not only 

immunoproteasome activity but also affects MHC class I antigen presentation and CD8+ T cell-

mediates immune response (Fig. 6). In accordance to our results, Kincaid E.Z. et al. showed that 

an immunoproteasome triple knock-out mouse, lacking all three immunoproteasome subunits, 

has severely impaired MHC class I antigen presentation134. Protecting specifically the 

immunoproteasome from the detrimental effects of tobacco smoke or compensating for the loss of 

its activity could be a potential mechanism to improve immune responses against infection and 

reduce the likelihood of exacerbation in COPD.      
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Figure 6 – Implications of immunoproteasome impairment in COPD   

In a healthy cell, viral particles are processed by the immunoproteasome that generates antigenic peptides 

preferentially loaded onto MHC class I molecules pockets. The antigenic peptides are therefore presented on 

the cell surface where they can interact with the immune system via CD8+ T cells and induce an effective 

adaptive immune response. In a COPD cell, cigarette smoke affects immunoproteasome activity and 

consequently reduces the generation of antigenic peptides that can be presented at the immune system via 

MHC class I molecules135.     

 

3.2.1 Potential consequences of altered immunoproteasome activity in 

autoimmune mechanisms of COPD 

CD8+ T cells infiltration of the lungs in response to cigarette smoke exposure is a feature of the 

chronic inflammation in COPD60,63. The fact that such inflammation persists even after smoking 

cessation suggests the possibility that there has been a break of tolerance of the immune system 

to self-proteins rising from the initial noxious stimuli60. The alteration in the immunoproteasome 

activity that we observed in our study131 might play a pivotal role in the induction of autoimmunity 

typical of COPD patients. 

As previously mentioned, the immunoproteasome operates in the negative selection of T cells 

that takes place in the thymus. If the activity of the immunoproteasome (and possibly of the 

thymoproteasome) is decreased upon exposure to tobacco smoke, the generation of the peptides 

required for the positive selection would be altered as well. The survival of T cell therefore could 

be diminished with a direct impact on the proper production of the CD4+ and CD8+ lineages. On 

the other hand, if the activity of the immunoproteasome fails during the process of negative 

selection, the MHC class I antigen repertoire, generated for the elimination of those T cells that 
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bind too strongly the complex MHC class I-peptide, would be altered and/or incomplete. This 

possible scenario is important in the process of autoimmunity, as some T cells that recognize 

autoantigens could escape the negative selection, migrate to the lymphonodes and be 

subsequently activated against “self” antigens. 

Immunoproteasome are highly expressed in APCs where they process cellular proteins, but also 

viral or bacterial proteins, presenting the resulting epitopes to naïve T cells for priming of active T 

cells and induction of an adaptive immune response. On the contrary, in most non-immune 

tissues the basal expression of immunoproteasome is very low43. This means that in normal 

conditions the priming of T cells occurs against peptides mostly produced by the 

immunoproteasome. CD8+ T cells would be therefore not activated against those epitopes that 

are instead produced by constitutive proteasomes, expressed by non APCs, in non-lymphoid 

organs and not in the presence of co-stimulatory cytokines43.  The data presented in our study 

indicate a dysfunction in immune cells of the lung as a consequence of exposure to cigarette 

smoke extract131. Under this condition, murine lung CD11c+ cells (which include macrophages 

and dendritic cells) failed in presenting an immunoproteasome-dependent MHC class I peptide. 

As a direct effect of the reduced immunoproteasome activity, professional antigen presenting cells 

of the lung would present on their surfaces more epitopes produced through standard 

proteasomes and the priming of T cells would occur against standard proteasome-derived self-

peptides. This would generate and perpetuate the production of autoreactive CD8+ T cells that 

cause an autoimmune attack against epitopes normally presented in uninflamed tissues43.  

There is finally a third possibility for an immunoproteasome-dependent induction of autoimmunity 

in COPD patients. Some PTMs, generated on proteins through the oxidative stress caused by 

cigarette smoke, might create new antigenic peptides for which immune tolerance does not exist 

(Fig. 7B, possibility a). The mechanisms of the breakdown of tolerance by post-translationally 

modified proteins are still not clear. One hypothesis is that some specific PTMs are not present 

during the selection process that occurs in the thymus. Autoreactive T-cells would then be 

allowed to escape the negative selection and migrate to the periphery136. There is the possibility 

that the post-translational modification alters the binding of the peptide to the MHC class I groove, 

but in some cases the presence of a PTM does not affect at all the binding peptide-MHC I137. 

Some modification might occur even after the association of the peptide with MHC class I 

molecules136 (Fig. 7B, possibility c). New antigenic peptides might arise not only by the addition of 

a PTM to a non-immunogenic peptide, but also by the generation of a new set of peptides. Amino 

acid modifications in fact could directly affect how proteins are processed by the 

immunoproteasome. PTMs might hide or expose cleavage sites normally recognized by the 

immunoproteasome, resulting in the creation of new autoantigens136,138 (Fig. 7b, possibility b). The 

decreased presentation of an immunoproteasome-dependent MHC I peptide observed in our 
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study131 might be due to the fact that a possible PTM impedes the cleavage of the proteins or 

alters the cleavage site for the production of the specific peptide. 

 

 

 

Figure 7 – Generation of new antigenic peptides – a hypothesis. A) In the absence of cigarette smoke, a 

protein is cleaved by the immunoproteasome into peptides subsequently loaded onto the MHC class I for 

presentation to the immune system. B) In the presence of cigarette smoke the proteins might be modified via 

oxidative stress (PTM represented as a star) and new antigenic peptides are generated. Peptides could have 

the same amino acid sequence and carry a PTM (a) or have a different amino acid sequence if the 

immunoproteasome recognizes a different cleavage site (b). In some cases, PTMs might even occur after 

the binding of the peptide into the MHC class I groove (c).  

 

The post-translational modification of antigens is one way by which immune tolerance might be 

bypassed. The identification of several autoimmune autoantibodies in COPD patients, including 

antibodies directed against carbonylated proteins, suggest not only that COPD can indeed be 

considered an autoimmune disease, but also that post-translationally modified proteins can be a 

relevant factor for the development of such disease73,74. The pathophysiological mechanisms of 

the autoimmune component in COPD have not been well studied. Whether it is the PTMs of 

proteins or a failure in the negative T cell selection process in the thymus, or a combination of 

both will have to be further investigated. 
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3.3 Conclusion and Outlook 

Future work should highlight the role of proteasome and immunoproteasome in the development 

and progression of COPD. Proteostasis and immune system are both affected in COPD patients. 

The decrease in proteasome activity observed upon exposure to cigarette smoke extract50 might 

have detrimental effects on cellular proteostasis and affects the abundance of protein expressed76 

resulting in a severe proteome imbalance and alteration in proteome composition. The 

progressive loss of proteome balance will in return overboard the proteostasis system further 

driving proteostatic stress typical of COPD.  

Similarly, reduced expression and activity of the immunoproteasome might affect the generation 

of the antigenic peptides that are presented to CD8+ T cells via MHC class I molecules. This 

would have consequences on the proper function of the immune system, contributing to impaired 

clearance of pathogens and susceptibility to exacerbations in COPD patients.  

In the light of our studies and previous observations, the evaluation of proteasome and 

immunoproteasome activities in blood immune cells of COPD patients should be further studied 

and might be considered as possible biomarker for the development of the disease. At the 

moment there are not predictive biomarkers for identification of individual at risk and their possible 

lung function deterioration. In particular, the profiling of immunoproteasome activity might 

correlate directly with the abnormal immune response of the COPD lung and could serve as 

biomarker for patients susceptible to sustained infections and exacerbation.  
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