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Berichterstatter:

Prof. Dr. Hans-Peter Kriegel, Ludwig-Maximilians-Universität München

Prof. Dr. Johannes Gehrke, Cornell University (USA)



ii



Acknowledgment

A lot of people supported and encouraged me while I was working at my

thesis. I am very grateful for all the help I got during this time. Unfortu-

nately, I can only mention some of them here, but my dearest thanks goes,

of course, to all of them.

First of all, I want to express my warmest thanks to my supervisor

Professor Dr. Hans-Peter Kriegel who convinced me to come to his group

and then made sure that I never regretted this step. Without the productive

and inspiring working atmosphere he created, this work could never have

been done. I also want to thank Professor Johannes Gehrke who readily

agreed to act as the second referee to this thesis.

This work was inspired by many fruitful discussions and cooperations

with my colleagues. Without them this work could never have grown. I’m

very grateful for all the support I got during the past years and of course, not

to forget, for all the fun we had. A special thanks goes to my colleagues Dr.
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Haddad, Heribert Mühlberger, Claudia Plant and Thomas Müller.

Last but not least, I like to express my deepest thanks to my husband,

my family and my friends who always believed in me, sometimes more than

I did.

Karin Kailing

Munich, August 2004.



Abstract

The tremendous amount of data produced nowadays in various application

domains such as molecular biology or geography can only be fully exploited

by efficient and effective data mining tools. One of the primary data mining

tasks is clustering, which is the task of partitioning points of a data set into

distinct groups (clusters) such that two points from one cluster are similar

to each other whereas two points from distinct clusters are not.

Due to modern database technology, e.g. object relational databases, a

huge amount of complex objects from scientific, engineering or multimedia

applications is stored in database systems. Modelling such complex data

often results in very high-dimensional vector data (”feature vectors”). In

the context of clustering, this causes a lot of fundamental problems, com-

monly subsumed under the term ”Curse of Dimensionality”. As a result,

traditional clustering algorithms often fail to generate meaningful results,

because in such high-dimensional feature spaces data does not cluster any-

more. But usually, there are clusters embedded in lower dimensional sub-

spaces, i.e. meaningful clusters can be found if only a certain subset of fea-

tures is regarded for clustering. The subset of features may even be different

for varying clusters.

In this thesis, we present original extensions and enhancements of the

density-based clustering notion to cope with high-dimensional data. In

particular, we propose an algorithm called SUBCLU (density-connected

Subspace Clustering) that extends DBSCAN (Density-Based Spatial C lus-

tering of Applications with N oise) to the problem of subspace clustering.

SUBCLU efficiently computes all clusters of arbitrary shape and size that

would have been found if DBSCAN were applied to all possible subspaces
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vi 0 Abstract

of the feature space. Two subspace selection techniques called RIS (Ranking

Interesting Subspaces) and SURFING (SUbspaces Relevant For clusterING)

are proposed. They do not compute the subspace clusters directly, but gen-

erate a list of subspaces ranked by their clustering characteristics. A hier-

archical clustering algorithm can be applied to these interesting subspaces

in order to compute a hierarchical (subspace) clustering. In addition, we

propose the algorithm 4C (Computing Correlation Connected C lusters)

that extends the concepts of DBSCAN to compute density-based correla-

tion clusters. 4C searches for groups of objects which exhibit an arbitrary

but uniform correlation.

Often, the traditional approach of modelling data as high-dimensional

feature vectors is no longer able to capture the intuitive notion of similar-

ity between complex objects. Thus, objects like chemical compounds, CAD

drawings, XML data or color images are often modelled by using more com-

plex representations like graphs or trees. If a metric distance function like

the edit distance for graphs and trees is used as similarity measure, tradi-

tional clustering approaches like density-based clustering are applicable to

those data. However, we face the problem that a single distance calculation

can be very expensive. As clustering performs a lot of distance calculations,

approaches like filter and refinement and metric indices get important. The

second part of this thesis deals with special approaches for clustering in

application domains with complex similarity models. We show, how appro-

priate filters can be used to enhance the performance of query processing

and, thus, clustering of hierarchical objects. Furthermore, we describe how

the two paradigms of filtering and metric indexing can be combined. As

complex objects can often be represented by using different similarity mod-

els, a new clustering approach is presented that is able to cluster objects

that provide several different complex representations.



Abstract (in German)

Innovative Technologien und neueste Methoden zur Datengewinnung in ver-

schiedenen Teilbereichen der Wissenschaft, wie z.B. Biowissenschaften, Medi-

zin, Astronomie, Geographie, erzeugen eine wahre Flut an Rohdaten. Um

dieser Flut Herr werden zu können, werden dringend effiziente und effek-

tive Methoden zur automatischen Datenanalyse und zur Wissensextraktion

(Data Mining) benötigt. Ein äußerst wichtiges Teilproblem des Data Min-

ing ist das Clustering. Beim Clustering sollen die Objekte einer Datenbank

in (a priori unbekannte) Gruppen, auch Cluster genannt, eingeteilt werden,

so dass zwei Objekte aus einem gleichen Cluster möglichst ähnlich zueinan-

der und zwei Objekte aus unterschiedlichen Clustern möglichst unähnlich

zueinander sind.

Dank moderner Datenbanktechnologien, z.B. objekt-relationale Daten-

banken, lassen sich heute beliebig komplexe Objekte in großen Mengen ver-

walten. Die Modellierung solch komplexer Objekte führt häufig zu sehr

hochdimensionalen Merkmalsvektoren. Dies verursacht im Kontext Clus-

tering eine Menge von grundsätzlichen Problemen, die mit dem Ausdruck

”Curse of Dimensionality” (Fluch der Dimensionalität) zusammengefasst

werden. Die Folge ist, dass die Objekte in hochdimensionalen Räumen

stark streuen, und nicht mehr sinnvoll zu clustern sind. Dennoch gibt es

meistens Cluster in verschiedenen Teilräumen niedrigerer Dimensionalität

(Unterräume), d.h. die Daten clustern, wenn man gewisse (teilweise unter-

schiedliche) Attribute ausblendet.

Im ersten Teil dieser Arbeit werden spezielle Verfahren vorgestellt, die

auf das Problem des Clusterings hochdimensionaler Daten zugeschnitten

sind. Es wird ein dichtebasiertes Unterraum-Clusteringverfahren präsentiert,
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das in der Lage ist, Cluster beliebiger Form und Größe in Teilräumen zu

finden. Zusätzlich werden zwei Verfahren vorgestellt, die die Unterraum-

cluster nicht direkt berechnen, sondern eine Liste geeigneter Unterräume

erzeugen. In diesen interessanten Unterräumen kann dann ein hierarchischer

Clustering-Algorithmus eingesetzt werden, um ein hierarchisches Unterraum-

Clustering zu erzeugen. Da hochdimensionale Daten sehr häufig auch starken

Korrelationen unterliegen, wird außerdem ein Clusteringverfahren eingeführt,

das gezielt nach Gruppen von Objekten mit einer einheitlichen Korrelation

sucht.

Oft reicht die traditionelle Modellierung der Daten als Merkmalsvek-

toren nicht mehr aus, um die intuitive Ähnlichkeit der Objekte adäquat

auszudrücken. Daher verwendet man für komplexe Daten wie Moleküle,

CAD-Zeichnungen, XML-Daten, Websites oder Farbbilder häufig komplexere

Modellierungsformen wie zum Beispiel Graph- oder Baumdarstellungen, um

diese Daten geeignet zu repräsentieren. Lässt sich auf dieser Repräsentation

eine metrische Abstandsfunktion finden, so können für ”punktartige” Ob-

jekte konzipierte Clustering-Algorithmen weiter genutzt werden. Einzelne

Distanzberechnungen können in diesem Fall jedoch sehr teuer sein und

müssen daher geeignet unterstützt werden. Da beim Clustering meist sehr

viele Distanzberechnungen nötig sind, spielen Ansätze wie Filterverfeine-

rungstechniken und metrische Indizes hier eine große Rolle. Im Rahmen

der Arbeit wurden spezielle Verfahren für komplex modellierte Objekte en-

twickelt. Es wird gezeigt, wie die Anfragebearbeitung auf hierarchischen

Objekten mit Hilfe geeigneter Filter beschleunigt werden kann. Außerdem

beschäftigt sich dieser Teil damit, wie die beiden Ansätze Filterverfeinerung

und metrische Indizes kombiniert werden können. Da für ein komplexes

Objekt häufig mehrere unterschiedliche Repräsentationen vorliegen, wird

zusätzliche ein Verfahren vorgestellt, das in der Lage ist, Objekte zu clustern,

für die beliebig viele verschiedene komplexe Repräsentationen existieren.
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Chapter 1

Introduction

Due to the enormous amount of data in various application domains, the

requirements of database systems have changed. Techniques to analyze the

given information and find so far hidden knowledge are mandatory to draw

maximum benefit from the collected data. Knowledge Discovery in Da-

tabases (KDD) is an interdisciplinary field, aimed at extracting valuable

knowledge from large databases. At the core of the KDD process is the

Data Mining step which embraces many data mining methods. One of them

is clustering, the central topic of this thesis. In this chapter, the KDD pro-

cess is introduced and discussed in detail. Afterwards we describe the data

mining step in more detail, and review the most important and influential

methods of data mining. As this thesis focuses on clustering complex ob-

jects, we give a short overview over the special requirements for clustering

complex objects. The chapter concludes with an outline of this thesis.

3
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Data

Patterns

Knowledge

Selection

Preprocessing

Transformation

Data Mining

Interpretation / 

Evaluation

Figure 1.1: An overview of the steps comprising the KDD process.

1.1 Knowledge Discovery in Databases, Data Min-

ing, Clustering

Modern methods in several application domains such as molecular biology,

astronomy, geography, etc. produce a tremendous amount of data. Since all

this data can no longer be managed without the help of automated analysis

tools, there is an ever increasing need for efficient and effective data mining

methods to make use of the information contained implicitly in that data.

Knowledge Discovery in Databases is the non-trivial process of identi-

fying valid, novel, potentially useful, and ultimately understandable patterns

in data [FPSS96]. The KDD process (see Figure 1.1 for an illustration) is

an interactive process and consists of an iterative sequence of the following

steps:

• Selection: Creating a target data set by selecting a subset of the data

or focusing on a subset of attributes.

• Preprocessing and Transformation: Finding useful features to

represent the data, e.g. using dimensionality reduction or transforma-

tion methods to reduce the number of attributes or to find invariant

representations for the data.

• Data Mining: Searching for patterns of interest in the particular

representation of the data: classification rules or trees, association
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rules, regression, clustering, etc.

• Interpretation and Evaluation: Applying visualization and knowl-

edge representation techniques to the extracted patterns. It is possible

that the user has to return to previous steps in the KDD process if

the results are unsatisfactory.

The core step of the KDD process is the application of a data mining

algorithm. Hence, the notions ”KDD” and ”Data Mining” are often used in

the same way. Actually, most of the research done in the field of knowledge

discovery is about data mining algorithms. The following broad definition

of data mining can be found in [FPSS96]:

Data Mining is a step in the KDD process consisting of applying data

analysis and discovery algorithms that, under acceptable computational ef-

ficiency limitations, produce a particular enumeration of patterns over the

data.

The different data mining algorithms that have been proposed in the

literature can be classified according to the following primary data mining

methods ([HK00]):

• Association Analysis: Discovering association rules, showing attribute-

value conditions that occur frequently together in a given data set.

• Classification and Prediction: Learning a function that maps (clas-

sifies) a data item into one of several predefined classes.

• Clustering: Identifying a set of categories or clusters to describe the

data.

• Characterization and Discrimination: Finding a compact de-

scription for a subset of the data or comparing a particular subset

of the data with comparative subsets.

• Outlier Detection: Finding outliers, i.e. data objects that do not

correspond to the general behavior or model of the data.

• Evolution Analysis: Describing and Modelling regularities or trends

for objects whose behavior changes over time.
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One of the primary data mining tasks is clustering (sometimes also called

segmentation) which is intended to help a user discovering and understand-

ing the natural structure or grouping in a data set. In particular, clustering

is the task of partitioning objects of a data set into distinct groups (clusters)

such that two objects from one cluster are similar to each other, whereas

two objects from distinct clusters are not.

Clustering has been studied extensively in statistics for many years (see

e.g. [Eve81]). A similar approach in machine learning is called unsupervised

learning (see e.g. [Fis87, CKS+88]). These well-known techniques are usually

very inefficient on large databases and also assume that all objects to be

clustered can be kept in main memory at the same time. Thus, clustering

has recently received a lot of attention in the database community (e.g.

[NH94, ZRM96, GRS98, SEKX98, AGGR98, AY00]).

Existing clustering algorithms can broadly be classified into hierarchical

and partitioning clustering algorithms [JD88]. Partitioning clustering algo-

rithms construct a flat (single level) partition of a database DB of n objects

into a set of k clusters. Hierarchical algorithms decompose a database DB

of n objects into several levels of nested partitionings (clustering), generally

represented by a tree that iteratively splits DB into smaller subsets. In such

a hierarchy, each node of the tree represents a cluster of DB.

1.2 Complex Objects

In recent years, an increasing number of applications has emerged, pro-

cessing large amounts of complex, application specific data objects [Jag91,

AFS93, GM93, FBF+94, FRM94, ALSS95, KSF+96, BBB+97, BK97, KKS98,

Kei99, AKKS99, PM99, SKK01, NJ02, KBK+03, KKM+03]. As cluster-

ing relies on a notion of similarity among database objects, an appropriate

similarity measure must be defined for each application domain. However,

defining the similarity of complex objects, such as car parts, proteins or text

documents, is a non trivial task. In the following, we will shortly review

two common techniques to define the similarity between complex objects.

A widely used class of similarity models is based on the paradigm of feature

vectors. The basic idea is that by a feature transformation, the objects are
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(h, w, a, b, c)

ax2+bx+c

h

w
h

w
a

bc

Figure 1.2: The idea of feature transformation.

mapped onto a feature vector in an appropriate multidimensional feature

space. The similarity between two objects is then measured through the

proximity of the respective feature vectors.

If this feature-based approach is not able to capture the intuitive notion

of similarity between objects, more complex similarity measures like the

edit distance for graphs or trees are necessary. Usually, complex objects are

then represented in some sort of application specific metric space. In this

thesis, we concentrate on application domains which belong to one of the

two approaches and do not regard application domains where non-metric

data spaces are involved.

1.2.1 Complex Objects Represented as Vector Data

A common solution in application domains such as multimedia, medical

imaging, molecular biology, computer aided design, marketing, purchasing

assistance, etc. is the so-called feature transformation. For each data ob-

ject, a given number (d) of numeric features is extracted (see Figure 1.2

for an illustration). Thus, the objects of a database are transformed into

d-dimensional feature vectors, i.e. data objects are represented by points in

a d-dimensional vector space. Then, the similarity between two objects is

measured through the proximity of the respective feature vectors, e.g. us-

ing the Euclidean distance measure. Examples of feature-based similarity

include color histograms for image data [HSE+95], Fourier coefficients for

time series data [AFS93] or 3D shape histograms for 3D objects [AKKS99].

The problem we address in this thesis is that feature vectors often get very

high-dimensional which leads to several problems for clustering algorithms.
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samples (e.g. time slots)

genes
expression level 

of this gene in the 
respective sample

Figure 1.3: Gene expression data matrix: schematic view (left), visualiza-

tion of a sample raw data excerpt (right).

Often, traditional clustering approaches which cluster the data, taking all

features into account, produce no meaningful results. Nevertheless, interest-

ing clusters can be found if not all features of the feature vectors are taken

into account, i.e. the data sets often contain interesting clusters which are

hidden in various subspaces of the original feature space. Additionally, the

data may cluster differently if different subspaces are examined.

Gene expression data is a prominent example for that phenomenon. Mi-

croarray chip technologies enable a user to measure the expression level of

thousands of genes simultaneously. Roughly speaking, the expression level

of a gene is a measurement for the frequency the gene is expressed. Usually,

gene expression data appear as a matrix where the rows represent genes, and

the columns represent samples (e.g. different experiments, time slots, test

persons). The value of the i-th feature of a particular gene is the expression

level of this gene in the i-th sample (see Figure 1.3 for an illustration).

It is interesting from a biological point of view to cluster both the rows

(genes) and the columns (samples) of the matrix, depending on the re-

search scope. Clustering the genes is the method of choice if one searches

for co-expressed genes, i.e. genes, whose expression levels are similar. Co-

expression usually indicates that the genes are functionally related. If one

searches for homogeneous groups in the set of samples, the problem is to
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cluster the samples. For example in cancer diagnostics, the samples may

represent test persons. The ultimate goal of the clustering is then to distin-

guish between healthy and sick patients.

When clustering the genes to detect co-expressed genes, one has to cope

with the problem that usually the co-expression of the genes can only be

detected in subsets of the samples. In other words, different subsets of

the attributes (samples) are responsible for different co-expressions of the

genes. When clustering the samples to identify e.g. homogeneous groups of

patients, this situation is even worse. As various phenotypes, e.g. hair color,

gender, cancer, etc., are hidden in varying subsets of the genes, the samples

could usually be clustered differently according to these phenotypes, i.e. in

varying subspaces.

1.2.2 Complex Objects Represented as Arbitrary Metric Data

Sometimes the similarity between complex objects can not be captured by

a feature transformation. In this case, the use of more complex similarity

models like the edit distance for graphs or trees are necessary. The re-

mainder of this section presents three metric similarity models for complex

objects and points out the challenges for clustering in such application do-

mains. As this is an extremely broad field, we do not make any claim to

completeness. The main purpose of this section is to motivate that their are

lots of applications where the objects can no longer be represented as one

single feature vector. In the following, we shortly review three examples of

complex similarity models used in the evaluation parts of this thesis.

Sets of Feature Vectors. For CAD applications, suitable similarity

models can help to reduce the cost of developing and producing new parts

by maximizing the reuse of existing parts. In [KBK+03], an effective and

flexible similarity model for complex 3D CAD data is introduced which

helps to find and group similar parts. It is not based on the traditional

approach of describing one object by a single feature vector. Instead an

object is mapped onto a set of feature vectors, i.e. an object is described by

a vector set (see Figure 1.4 left for an illustration). The cover sequence model

introduced in [Jag91, JB92] is extended by generating several representations
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complex 
objects

complex 
models

complex distance measure

Figure 1.4: Examples of complex metric data.

for each object, resulting in a set of feature vectors for each object. In the

experimental evaluation the authors show that this approach is superior to

techniques using only one feature vector for each object.

Tree-Structured Data. In addition to a variety of content-based at-

tributes, complex objects typically carry some kind of internal structure

which often forms a hierarchy. Examples of such tree-structured data in-

clude chemical compounds, CAD drawings, XML documents or websites

(see Figure 1.4 center for an illustration). For similarity search and there-

fore clustering, it is important to take into account both, the structure and

the content features of such objects. A successful approach is to use the

edit distance for tree structured data. However, as the computation of this

measure is NP-complete [ZSS92], constrained edit distances like the degree-2

edit distance [ZWS96] have been introduced. They were successfully applied

to trees for web site analysis [WZCS02], structural similarity of XML doc-

uments [NJ02], shape recognition [SKK01] or chemical substructure search

[WZCS02].

Graphs. Attributed graphs are another natural way to model structured

data (see Figure 1.4 right for an illustration). As graphs are a very general

object model, graph similarity has been studied in many fields. Similarity

measures for graphs have been used in systems for shape retrieval [HCH99],

object recognition [KKV90] or face recognition [WFKvdM97]. For all those
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measures, graph features, specific to the graphs in the application, are ex-

ploited in order to define graph similarity. Most known similarity measures

for attributed graphs are either limited to a special type of graph or com-

putationally extremely complex, i.e. NP-complete. Therefore, they are un-

suitable for searching or clustering large collections. In [KS03], the authors

present a new similarity measure for attributed graphs, called edge matching

distance. They demonstrate, how the edge matching distance can be used

for efficient similarity search in attributed graphs.

Challenges for Clustering. Clustering relies on computing the dis-

tance between objects and, thus, the complexity of the above mentioned

similarity models has a severe influence on the efficiency of the clustering

algorithms. Especially for density-based clustering, range queries must be

supported efficiently to reduce the runtime of clustering. Another challenge

for clustering is that often there are multiple representation forms for each

object. Proteins, for example, are characterized by an amino acid sequence,

a secondary and a tertiary structure. Therefore, the clustering algorithm

should be able to take the information of more than one representation into

account.

1.3 Basic Notations

Let DB be a data set of n objects. Except for the third part of the thesis

we assume the following:

DB is a database of d-dimensional feature vectors (DB ⊆ IRd). All

feature vectors have normalized values, i.e. all values fall into [0, attrRange]

for a fixed attrRange ∈ IR+. We call those feature vectors points. Let

A = {a1, . . . , ad} be the set of all attributes ai of DB. Any subset S ⊆ A
is called a subspace. The cardinality of S (|S|) is called the dimensionality

of S. The projection of a point p into a subspace S ⊆ A is denoted by

πS(p). The distance function is denoted by dist. We assume that dist

is one of the Lp-norms. The ε-neighborhood of a point p is defined by

Nε(p) = {x ∈ DB | dist(p, x) ≤ ε}. The ε-neighborhood of a point in a

subspace S ⊆ A is denoted by N S
ε (p) := {x ∈ DB | dist(πS(p), πS(x)) ≤ ε}.
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The value of the i-th attribute (1 ≤ i ≤ d) of P is denoted by pi (i.e.

P = (p1, . . . , pd)T).

1.4 Outline of the Thesis

The starting point of this thesis is the density-based clustering approach,

in particular the concepts of density-connected clusters underlying the algo-

rithms DBSCAN (Density-Based Spatial C lustering of Applications with

N oise) [EKSX96]. We propose new techniques to cope with the challenges

clustering complex objects as described in Section 1.2 imply. The thesis is

organized as follows:

Part I deals with the preliminaries.

Chapter 1 should give the reader a short introduction to the broader

context of this thesis.

Chapter 2 provides a brief overview over existing clustering algorithms

and introduces the density-based clustering notion underlying DBSCAN. As

mentioned above, the concepts described in this chapter form the basis of

the techniques proposed in this thesis.

Part II presents new techniques to cope with the challenges of clustering

in high-dimensional feature spaces.

Chapter 3 extends the density-based clustering concepts to the problem

of subspace clustering. Based on monotonicity properties for density-based

clusters, we present SUBCLU (density-connected SUBspace CLU stering), a

density-based subspace clustering algorithm. A broad experimental evalua-

tion of SUBCLU shows its superior accuracy compared to existing subspace

clustering algorithms.

Chapter 4 presents an extension of SUBCLU called RIS (Ranking Inter-

esting Subspaces for Clustering) which does not directly compute the sub-

space clusters. Instead RIS ranks all interesting subspaces according to

a certain quality criterion. Afterwards the hierarchical clustering algorithm

OPTICS (Ordering Points To Identify the C lustering S tructure) is applied

to the top-ranked subspaces.
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Chapter 5 further explores the idea of subspace selection for clustering.

An algorithm SURFING (SUbspaces Relevant For clusterING) is presented

which is able to rank the subspaces of a data set according to their hierarchi-

cal clustering structure. A comparative evaluation of SUFRING, RIS and

SUBCLU reveals that SURFING in combination with OPTICS is able to

gain significantly more information than SUBCLU and RIS in combination

with OPTICS.

Chapter 6 proposes a novel correlation clustering algorithm called 4C

(Computing Correlation Connected C lusters) which is based on a combi-

nation of density-based clustering and principal component analysis. First,

the concept of correlation-connected clusters is formalized. Then, we present

the details of the 4C algorithm. An experimental evaluation compares 4C to

several competing clustering algorithms, showing its superior performance.

Part III deals with the problems complex similarity measures present to

clustering.

Chapter 7 uses images as a motivating example for the new challenges

complex objects present to clustering algorithms.

Chapter 8 shows, how the information of different representations can

be integrated into the clustering process of complex objects. The density-

based clustering notion is extended to handle multi-represented objects. The

evaluation shows that this approach yields more accurate results than using

only one single representation.

Chapter 9 presents filters for tree-structured data and shows that they

successfully reduce the runtimes of queries on hierarchical data, like images

or web sites. This is extremely important for clustering algorithms like

DBSCAN which rely on computing range queries for each database object.

Chapter 10 shows how the combination of filtering and metric indexing

can further enhance the performance of range query processing.

Part IV concludes this thesis.

Chapter 11 summarizes and discusses the major contributions of the

thesis. It concludes with pointing out some future research directions.
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Chapter 2

Density-Based Clustering

Many clustering algorithms have been proposed. This thesis is especially

based on the density-based clustering approach which turned out to be one

of the most effective and also efficient ones. The chapter starts with a short

overview of recently proposed clustering algorithms. After that, a detailed

introduction to the density-based clustering notion is given. In particular,

we introduce the notion of density-connected sets underlying the algorithm

DBSCAN (Density-Based Spatial C lustering of Applications with N oise)

[EKSX96]. The chapter concludes with two extensions to DBSCAN, namely

OPTICS (Ordering Points To Identify the C lustering S tructure) [ABKS99]

and BOSS (Browsing OPTICS-Plots for S imilarity Search) [BKKP04], and

points out the advantages of density-based clustering.

15
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2.1 General Clustering Approaches

In the past decade, many algorithmic solutions for the problem of clustering

have been proposed. The choice of the clustering algorithm depends both

on the type of data and the particular application. In this section, we will

provide a brief overview of existing clustering approaches together with a

short list of reference methods. According to [HK00] they can broadly be

classified into the following categories:

2.1.1 Partitioning Algorithms

Partitioning clustering algorithms compute a “flat” partition of the data

into a given number of clusters, i.e. a unique assignment of each data object

to a cluster. The number of clusters k is often a user specified parameter.

Typically, partitioning algorithms start with an initial partitioning of the

database into k clusters which may be user-defined or randomly generated.

The initial partitioning is then iteratively optimized by moving objects from

one group to another. The general criterion of a good partitioning is that

objects in the same cluster are ”close”, whereas objects of different clusters

are ”far apart”. If the clustering quality does not decrease after an iteration,

i.e. converges, the clustering algorithms terminate. Most applications adopt

one of the following two heuristic methods. The k-means algorithm repre-

sents each cluster by the mean value of all objects in the cluster, whereas the

k-medoids algorithm represents each cluster by one of the objects located

near the center of the cluster.

Partitioning algorithms usually converge to local minima and therefore

may miss the “best” clustering in terms of cluster quality. In addition, these

algorithms tend to produce clusters of spherical shapes and are rather sen-

sitive to noise, since all objects of the database are assigned to a cluster. A

further drawback of these algorithms is the sensitivity to the input param-

eter k, because the number of clusters is usually not known before. Sample

algorithms are k-means [McQ67], PAM [KR90], and CLARANS [NH94].
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Figure 2.1: A dendrogram (right) for a sample data set (left).

2.1.2 Hierarchical Algorithms

Hierarchical clustering algorithms compute a hierarchical decomposition of

the data objects instead of a unique assignment of data objects to clusters.

The hierarchical clustering structure is usually visualized by using a tree

representation, a so-called dendrogram (cf. Figure 2.1). Each leaf of a den-

drogram corresponds to one data object, whereas the root represents the en-

tire database. Each node in the dendrogram represents a cluster containing

all objects of the leaf nodes below this node. Each level of the dendrogram

represents a clustering of the database. A bottom-up algorithmic scheme to

construct a dendrogram starts with placing each object in the database into

a unique cluster (leaf nodes) and then merges in each step the pair of clus-

ters having the minimal distance until all data objects are contained in one

cluster. In [Bou96] several definitions of the distance between two clusters

(e.g. single link [Sib73]) are discussed. It is shown that each approach yields

the same result in terms of clustering quality.

2.1.3 Density-Based Methods

Density-based methods search for regions of high point density that are

separated by regions of lower point density. These algorithms usually need

two input parameters; one specifying a volume and a second one specifying a

minimum number of points. Using these two parameters, a density threshold

is specified. Sets of objects must exceed this density threshold to be detected

as clusters. The pioneering density-based approach is DBSCAN [EKSX96]



18 2 Density-Based Clustering

which is founded on the notion of density-connected sets. Since this cluster-

ing notion is the basis of this thesis, we will present the concepts underlying

DBSCAN in more detail in Section 2.2. The combination of density-based

clustering and hierarchical concepts is presented in [ABKS99]. There, the

algorithm OPTICS is proposed to compute a density-based hierarchical de-

composition of the data. In particular, OPTICS computes the clustering of

DBSCAN for a broad range of parameter settings in a single scan over the

data.

2.1.4 Grid-Based Methods

Grid-based methods divide the data space into a finite number of cells that

form a grid structure. The clustering is then performed on the grid struc-

ture. The main advantage of this approach is its fast processing time which

is typically independent from the number of data objects. However, grid-

based approaches heavily depend on the resolution and the positioning of

the grid. STING [WYM97] is a typical example of a grid-based method.

Other techniques are CLIQUE [AGGR98], WaveCluster [SCZ98] or Opti-

Grid [HK99].

2.1.5 Model-Based Methods

Model-based clustering methods attempt to optimize the fit between the

given data and some mathematical model. Such methods are often based

on the assumption that each object is drawn from one of k underlying prob-

ability distributions. Often, objects are assigned to one of the k clusters

using a maximum likelihood decision. An example of such a model-based

algorithm is the EM-algorithm [DLR77].

2.2 Foundations of Density-Based Clustering

The density-based notion is a common approach for clustering, used by var-

ious algorithms such as DBSCAN [EKSX96], DBCLASD [XEKS98], DEN-

CLUE [HK98], and OPTICS [ABKS99]. All these methods search for regions

of high density in a feature space that are separated by regions of lower den-
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Figure 2.2: Convex (left) and arbitrarily (right) shaped clusters.

sity. The approaches presented in this thesis are particularly based on the

formal definitions of density-connected clusters underlying the algorithm

DBSCAN [EKSX96]. As illustrated in Figure 2.2, the density-connected

clustering notion is capable of finding clusters of arbitrary shapes. In the

following, we introduce the concepts necessary to find all density-connected

clusters of a given data set.

Definition 2.1 (ε-neighborhood)

Let ε ∈ IR+
0 , o ∈ DB. The ε-neighborhood of o, denoted by Nε(o), is defined

by

Nε(o) = {x ∈ DB | dist(o, x) ≤ ε}.

Based on the two input parameters (ε and k), dense regions can be

defined by means of core objects:

Definition 2.2 (core object)

Let ε ∈ IR+
0 , k ∈ IN . An object o ∈ DB is called core object, denoted by

Coreε,k(o) if its ε-neighborhood contains at least k objects, formally:

Coreε,k(o) ⇔ |Nε(o) | ≥ k.

Clusters contain core objects, located inside a cluster, and border ob-

jects, located at the border of the cluster (see Figure 2.3(a) for an illus-

tration). In addition, a cluster should form a dense region and thus, all

objects within a cluster should be “connected”. Using the concept of con-

nectivity, any core object o can be used to expand a cluster. To find all

density-connected objects of o the following concepts are used.
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Definition 2.3 (direct density-reachability)

Let ε ∈ IR+
0 , k ∈ IN . An object p ∈ DB is directly density-reachable from

q ∈ DB if q is a core object and p is an element of Nε(q), formally:

DirReachε,k(q, p) ⇔ Coreε,k(q) ∧ p ∈ Nε(q).

The concept of direct density-reachability is depicted in Figure 2.3(b).

As we want to be independent of the order of processing, we can only use

direct density-reachability for core objects. For border objects, this relation

is not symmetric.

To find all density-connected objects, we can now build the transitive

closure of direct density-reachability.

Definition 2.4 (density-reachability)

Let ε ∈ IR+
0 , k ∈ IN . An object p ∈ DB is density-reachable from q ∈ DB

if there is a sequence of objects p1, . . . , pn, p1 = q, pn = p such that pi+1 is

directly density-reachable from pi, formally:

Reachε,k(q, p) ⇔

∃p1, . . . , pn ∈ DB : p1 = q ∧ pn = p ∧

∀i ∈ {1, . . . , n− 1} : DirReachε,k(pi, pi+1).

Density-reachability is illustrated in Figure 2.3(c). Density-reachability

is still not symmetric in general. Thus, we finally introduce the concept of

density-connectivity.

Definition 2.5 (density-connectivity)

Let ε ∈ IR+
0 , k ∈ IN . An object p ∈ DB is density-connected to an object

q ∈ DB if there is an object o such that both p and q are density-reachable

from o, formally:

Connectε,k(q, p) ⇔

∃o ∈ DB : Reachε,k(o, q) ∧ Reachε,k(o, p).

Density-connectivity is a symmetric relation. Thus, searching for all

density-connected points is independent from the order of processing. The

concept is visualized in Figure 2.3(d).



2.2 Foundations of Density-Based Clustering 21

p q

k=5

(a) q is a core object and p a border

object.

p

q

k=5

(b) p is direct density-reachable

from q; q is not direct density-

reachable from p.

o

q

p

k=5

(c) p is density-reachable from q.

k=5
p

qo

(d) p and q are density-connected.

Figure 2.3: Concepts of DBSCAN.

Definition 2.6 (density-connected set)

Let ε ∈ IR+
0 , k ∈ IN . A non-empty subset C ⊆ DB is called a density-

connected set if all objects in C are density-connected in S, formally:

ConSetk
ε,(C) ⇔ ∀o, q ∈ C : Connectk

ε,(o, q).

Finally, a density-connected cluster is defined as a set of density-connected

objects which is maximal w.r.t. density-reachability.

Definition 2.7 (density-connected cluster)

Let ε ∈ IR+
0 and k ∈ IN . A non-empty subset C ⊆ DB is called a density-

connected cluster w.r.t. ε and k if all objects in C are density-connected and

C is maximal w.r.t. density-reachability, formally:

ConClusterε,k(C) ⇔
(1) Connectivity: ∀o, q ∈ C : Connectε,k(o, q).

(2) Maximality: ∀p, q ∈ DB : q ∈ C ∧Reachε,k(q, p) ⇒ p ∈ C.
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DBSCAN(SetOfObjects DB, Real ε, Integer k)

// each point in DB is marked as unclassified

generate new clusterID cid;

for each p ∈ DB do

if p.clusterID = UNCLASSIFIED then

if ExpandCluster(DB, p, cid, ε, k) then

cid := cid + 1;

end if

end if

end for

Figure 2.4: The algorithm DBSCAN.

Using these concepts, DBSCAN is able to detect arbitrarily shaped clus-

ters by one single pass over the data. To do so, DBSCAN uses the fact that

a density-connected cluster can be detected by finding one of its core objects

o and computing all objects which are density-reachable from o. The pseudo

code of DBSCAN is depicted in Figure 2.4.

The method ExpandCluster which computes the density-connected clus-

ter starting from a given core point, is shown in Figure 2.5.

The correctness of DBSCAN can be formally proven (cf. lemmata 1 and

2 in [EKSX96], proofs in [SEKX98]). Although DBSCAN is not in a strong

sense deterministic (the run of the algorithm depends on the order in which

the points are stored), both the run-time as well as the result (number of

detected clusters and association of core objects to clusters) are determinate.

Note that according to the definitions above border objects may be border

objects to more than one density-connected cluster. In this version a border

object is added to the first cluster where it is a border object. Dependent

on the application domain other solutions are possible. The worst case time

complexity of DBSCAN is O(n log n), assuming an efficient index and O(n2)

if no index exists.
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ExpandCluster(SetOfObjects DB, Object start, Integer cid, Real ε, Integer k) → boolean

SetOfObjects seeds := Nε(start);

if |seeds| < k then

start.clusterID := NOISE;

return false;

end if

for each o ∈ seeds do

o.clusterID := cid;

end for

remove start from seeds;

while seeds 6= ∅ do

o := first point in seeds;

neighbors := Nε()(o);

if |neighbors| ≥ k then

for each p ∈ neighbors do

if p.clusterID ∈ {UNCLASSIFIED, NOISE} then

if p.clusterID = UNCLASSIFIED then

insert p into seeds;

end if

p.clusterID := cid;

end if

end for

end if

remove o from seeds;

end while

return true;

Figure 2.5: The method ExpandCluster.

2.3 Extensions of Density-Based Clustering

Hierarchical Density-Based Clustering

DBSCAN computes a flat density-based decomposition of a database w.r.t. a

global density parameter, specified by ε and k. However, there may be clus-

ters of different density and/or nested clusters in the database (see Figure

2.6 for an illustration). In this case, the globally chosen density threshold

determines which clusters will be found and DBSCAN is not able to detect

all the clustering information contained in such data.

To overcome this problem, the density-connected clustering notion is
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Figure 2.6: Clusters with different density (left) and nested clusters (right).

extended by hierarchical concepts [ABKS99]. Based on these concepts, the

algorithm OPTICS is presented. The key idea is that (for a constant k-

value) density-based clusters w.r.t. a higher density (i.e. a lower value for

ε) are completely contained in density-based clusters w.r.t. a lower density

(i.e. a higher value for ε). Figure 2.7 illustrates this observation: C1 and

C2 are density-based clusters w.r.t. eps1 < eps2 and C is a density-based

cluster w.r.t. eps2, completely containing C1 and C2.

The algorithm OPTICS works like an extended DBSCAN algorithm,

computing the density-connected clusters w.r.t. all parameters εi that are

smaller than a generic value ε. In contrast to DBSCAN, OPTICS does not

assign cluster memberships, but stores the order in which the data objects

are processed and the information which would be used by an extended DB-

SCAN algorithm to assign cluster memberships. This information consists

of only two values for each object, the core distance and the reachability

distance. The core distance of a point q is the smallest threshold ε̂ ≤ ε such

C

C1 C2

eps1 eps2

Figure 2.7: Nested clusters of different density.
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Figure 2.8: Reachability plot (right) computed by OPTICS for a sample

2D data set (left).

that q is a core point w.r.t. ε̂ and k. The reachability distance of a point p

w.r.t. another point q is the smallest threshold ε̂ ≤ ε such that p is directly

density-reachable from q.

A great advantage of OPTICS is that the resulting cluster ordering can

be visualized very intuitively and clearly by means of a so-called reachabil-

ity plot. A reachability plot is a two-dimensional visualization of a cluster

ordering, where the points are plotted according to the sequence specified

in the cluster ordering along the x-axis, and for each point, the reachability

distance along the y-axis. Figure 2.8 (right) depicts the reachability plot

based on the cluster ordering computed by OPTICS for the sample two-

dimensional data set in Figure 2.8 (left). Intuitively, clusters are “valleys”

or “dents” in the plot, because sets of consecutive points with a lower reach-

ability value are packed more densely. In particular, to manually obtain a

density-based clustering w.r.t. any ε′ ≤ ε by visual analysis, one simply has

to cut the reachability plot at y-level ε′ (i.e. parallel to the x-axis). The

consecutive valleys in the plot below this cutting line contain the respective

clusters. An example is presented in Figure 2.8 (right): For a cut at the level

ε1, we find two clusters denoted as A and B. Compared to this clustering,

a cut at level ε2 would yield three clusters. The cluster A is split into two

smaller clusters denoted by A1 and A2 and cluster B decreased its size. This

illustrates, how the hierarchical cluster structure of a database is revealed

at a glance and can be easily explored by visual inspection.
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Figure 2.9: Browsing through cluster hierarchies.

Visually Mining through Cluster Hierarchies

In [BKKP04] the authors show how visualizing the hierarchical clustering

structure of a database of objects can aid the user in his time consuming task

to find similar objects. Based on reachability plots produced by OPTICS,

approaches which automatically extract the significant clusters in a hierar-

chical cluster representation along with suitable cluster representatives are

proposed. These techniques can be used as a basis for visual data mining.

The resulting interactive browsing tool is called BOSS (Browsing OPTICS-

Plots for S imilarity Search), which utilizes automatic cluster recognition

and extraction of cluster representatives in order to provide the user with

significant and quick information (see Figure 2.9 for an illustration). The

effectiveness and efficiency of this approach is for example shown for CAD

objects from a German car manufacturer.

2.4 Advantages of Density-Based Clustering

As this thesis focuses on extensions to the density-connected clustering no-

tion, we summarize here the most important advantages of the density-based

clustering. In particular, density-based clustering algorithms provide the

following advantages:

• They are able to find clusters of arbitrary size and shape.
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• They can be used for all kinds of metric data spaces and are not

confined to vector spaces.

• They are robust concerning outliers.

• They have proved to be very efficient and effective in clustering all

sorts of data.

• Parallel [EKS+98, KKG03] and distributed [JKP04] versions enhance

the efficiency.

• OPTICS is – in contrast to most other algorithms – relatively insen-

sitive to its two input parameters ε and k. The authors in [ABKS99]

state that the input parameters just have to be large enough to pro-

duce good results.
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Chapter 3

Density-Based Subspace

Clustering

We start this chapter with a review of current approaches for clustering high-

dimensional data. Such data sets often contain interesting clusters which

are hidden in various subspaces of the original feature space. Therefore, the

concept of subspace clustering has recently been addressed, which aims at

automatically identifying subspaces of the feature space in which clusters

exist. We introduce SUBCLU (density-connected Subspace Clustering), an

effective and efficient approach to the subspace clustering problem. SUB-

CLU is based on the concept of density-connectivity as described in Section

2.2. In contrast to existing grid-based approaches, it is able to detect ar-

bitrarily shaped and positioned clusters in subspaces. The monotonicity of

density-connectivity is used to efficiently prune subspaces in the process of

generating all clusters in a bottom-up way. Parts of the material presented

in this chapter have been published in [KKK04].

31
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3.1 Introduction

Traditional clustering algorithms often fail to detect meaningful clusters

because most real-world data sets are characterized by a high-dimensional,

inherently sparse data space. Nevertheless, the data sets often contain inter-

esting clusters which are hidden in various subspaces of the original feature

space.

A common approach to cope with the ”curse of dimensionality” for data

mining tasks, such as clustering, are methods to reduce the dimensional-

ity of the data space. In general, dimensionality reduction methods map

the whole feature space onto a lower-dimensional subspace of relevant at-

tributes in which clusters can be found. The feature selection is usually

based on attribute transformations by creating functions of attributes. Ex-

amples of such functions are: principal component analysis (PCA), also

called Karhunen-Loève transformation (KLT), used in multivariate statis-

tics, e.g. [Jol86]; methods based on singular value decomposition (SVD)

used in information retrieval, e.g. [BDL95], and in statistics, e.g. [Fuk90];

other transformations, for example based on wavelets [KCMP01] or low fre-

quency Fourier harmonics in conjunction with Parseval´s theorem [AFS93].

However, dimensionality reduction methods have major drawbacks: First,

the transformed attributes often have no intuitive meaning any more and

thus the resulting clusters are hard to interpret. Second, in some cases,

dimensionality reduction does not yield the desired results (e.g. [AGGR98]

present an example where PCA/KLT does not reduce the dimensionality).

Third, using dimensionality reduction techniques, the data is clustered only

in a particular subspace. The information of points clustered differently in

varying subspaces is lost.

A second approach for coping with clustering high-dimensional data is

projected clustering which aims at computing k pairs (Ci, Si)(0≤i≤k) where

Ci is a set of points representing the i-th cluster, Si is a set of attributes

spanning the subspace in which Ci exists (i.e. optimizes a given clustering

criterion), and k is a user defined integer. Representative algorithms include

PROCLUS [AP99] and ORCLUS [AY00] which are both related to k-means.

While the projected clustering approach is more flexible than dimensionality
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Figure 3.1: Drawback of the projected clustering approach.

reduction, it also suffers from the fact that the information of points which

are clustered differently in varying subspaces is lost. Figure 3.1 illustrates

this problem, using a feature space of four attributes A,B,C, and D. In the

subspace AB the points 1 and 2 cluster together with points 3 and 4, whereas

in the subspace CD they cluster with points 5 and 6. Either the information

of the cluster in subspace AB or in subspace CD will be lost.

In recent years, the task of subspace clustering was introduced to over-

come these problems. Subspace clustering is the task of automatically de-

tecting clusters in subspaces of the original feature space. In this chapter,

we introduce a density-connected approach to subspace clustering, over-

coming the problems of existing approaches mentioned beneath. SUBCLU

(density-connected Subspace Clustering) is an effective answer to the prob-

lem of subspace clustering.

The remainder of the chapter is organized as follows. In Section 3.2,

we review current subspace clustering algorithms and point out our contri-

butions to subspace clustering. The application of the density-connected

clustering notion to subspace clustering is presented in Section 3.3. Section

3.4 describes our algorithm SUBCLU in full detail. A broad experimental

evaluation of SUBCLU based on artificial as well as on real-world data sets

is presented in Section 3.5. Section 3.6 summarizes the chapter.
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3.2 Related Work and Contributions

3.2.1 Discussion of Recent Approaches for Subspace Clus-

tering

The pioneering approach to subspace clustering is CLIQUE (CLustering In

QUE st) [AGGR98]. CLIQUE is a grid-based algorithm, using an apriori -

like method to recursively navigate through the set of possible subspaces in

a bottom-up way. The data space is first partitioned by an axis-parallel grid

into equi-sized blocks of width ξ, called units. Only units whose densities

exceed a threshold τ are retained. Both ξ and τ are the input parameters of

CLIQUE. The bottom-up approach of finding such dense units starts with

one-dimensional dense units. The recursive step from (k − 1)-dimensional

dense units to k-dimensional dense units takes (k − 1) dimensional dense

units as candidates, and generates the k-dimensional units by self-joining

all candidates having the first (k− 2)-dimensions in common. All generated

candidates which are not dense are eliminated. For efficiency reasons, a

pruning criterion, called coverage, is introduced to eliminate dense units ly-

ing in less “interesting” subspaces as soon as possible. For deciding whether

a subspaces is interesting or not, the Minimum Description Length principle

is used. Naturally, this pruning bears the risk of missing some informa-

tion. After generating all “interesting” dense units, clusters are found as

a maximal set of connected dense units. For each k-dimensional subspace,

CLIQUE takes all dense units of this subspace and computes disjoint sets

of connected k-dimensional units. These sets are in a second step used to

generate minimal cluster descriptions. This is done by covering each set

of connected dense units with maximal regions and then determining the

minimal cover.

A slight modification of CLIQUE is the algorithm ENCLUS (EN tropy-

based CLUS tering) [CFZ99]. The major difference is the criterion used

for subspace selection. The criterion of ENCLUS is based on an entropy

computation of a discrete random variable. The entropy of any subspace S

is high when the points are uniformly distributed in S, it is lower the more

closely the points in S are packed. Subspaces with an entropy below an input

threshold ω are considered as good for clustering. A monotonicity criterion
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is presented which can be be used for a similar bottom-up algorithm as in

CLIQUE [CFZ99].

A more significant modification of CLIQUE is presented in [GNC99,

NGC01], introducing the algorithm called MAFIA (M erging of Adaptive

F inite IntervAls). MAFIA uses adaptive, variable-sized grids in each di-

mension. A dedicated technique based on histograms which aims at merging

grid cells is used to reduce the number of bins compared to CLIQUE. An

input parameter α is used as a so-called cluster dominance factor to select

bins which are α-times more densely populated (relative to their volume)

than the average. The algorithm starts to produce such one-dimensional

dense units as candidates and proceeds recursively to higher dimensions.

In contrast to CLIQUE, MAFIA uses any two k-dimensional dense units

to construct a new (k + 1)-dimensional candidate as soon as they share an

arbitrary (k − 1)-face (not only the first (k − 1) dimensions). As a con-

sequence, the number of generated candidates is much larger compared to

CLIQUE. Neighboring dense units are merged to form clusters. Redundant

clusters, i.e. clusters that are true subsets of higher dimensional clusters, are

removed.

A big drawback of all these methods is caused by the use of grids. In

general, grid-based approaches heavily depend on the positioning of the

grids. Figure 3.2(a) illustrates this problem for CLIQUE: Each grid cell by

itself is not dense if τ > 4, and thus, the cluster C is not found. On the

other hand if τ = 4, the cell with four points in the lower right corner just

above the x-axis is reported as a cluster. Clusters may also be missed if they

are inadequately oriented or shaped.

Another recent approach called DOC (Density-based Optimal projective

C lustering) [PJAM02] proposes a mathematical formulation for the notion

of an optimal subspace cluster, regarding the density of points in subspaces.

DOC is not grid-based but as the density of subspaces is measured using hy-

percubes of fixed width w, it has similar problems drafted in Figure 3.2(b).

If a cluster is bigger than the hypercube, some points may be missed. Fur-

thermore, the distribution inside the hypercube is not considered, and thus

it need not necessarily contain only points of one cluster.
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Figure 3.2: Drawbacks of existing subspace clustering algorithms.

3.2.2 Contributions

In this chapter, we propose a new approach which eliminates the problems

mentioned above and enables the user to gain all the clustering information

contained in high-dimensional data. Instead of using grids, we adopt the

notion of density-connectivity to the subspace clustering problem. This has

the following advantages:

• Our algorithm SUBCLU is able to detect arbitrarily shaped and posi-

tioned clusters in subspaces.

• In contrast to CLIQUE and its successors, the underlying cluster no-

tion is well defined.

• Since SUBCLU does not use any pruning heuristics like CLIQUE, it

provides for each subspace the same clusters as if DBSCAN is applied

to this subspace.
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3.3 Density-Connected Subspace Clustering

3.3.1 Clusters as Density-Connected Sets

Our approach SUBCLU is based on the formal definitions of density-connected

clusters underlying the algorithm DBSCAN. The original formal definition

of the clustering notion for the entire feature space were presented and dis-

cussed in Section 2.2. In the following, we adopt these definitions for the

problem of subspace clustering.

Definition 3.1 (ε-neighborhood in a subspace)

Let ε ∈ IR+
0 , S ⊆ A and o ∈ DB. The ε-neighborhood of o in S, denoted

by N S
ε (o), is defined by

N S
ε (o) = {x ∈ DB | dist(πS(o), πS(x)) ≤ ε}.

Definition 3.2 (core point in a subspace)

Let ε ∈ IR+
0 , k ∈ IN , and S ⊆ A. A point o ∈ DB is called core point in S,

denoted by CoreS
ε,k(o) if its ε-neighborhood in S contains at least k points,

formally:

CoreS
ε,k(o) ⇔ |N S

ε (o) | ≥ k.

Definition 3.3 (direct density-reachability in a subspace)

Let ε ∈ IR, k ∈ IN , and S ⊆ A. A point p ∈ DB is directly density-

reachable from q ∈ DB in S if q is a core point in S and p is an element of

N S
ε (q), formally:

DirReachS
ε,k(q, p) ⇔ CoreS

ε,k(q) ∧ p ∈ N S
ε (q).

Definition 3.4 (density-reachability in a subspace)

Let ε ∈ IR+
0 , k ∈ IN , and S ⊆ A. A point p ∈ DB is density-reachable from

q ∈ DB in S if there is a chain of points p1, . . . , pn, p1 = q, pn = p such

that pi+1 is directly density-reachable from pi, formally:

ReachS
ε,k(q, p) ⇔

∃p1, . . . , pn ∈ DB : p1 = q ∧ pn = p ∧

∀i ∈ {1 . . . n− 1} : DirReachS
ε,k(pi, pi+1).
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Definition 3.5 (density-connectivity in a subspace)

Let ε ∈ IR+
0 , k ∈ IN , and S ⊆ A. A point p ∈ DB is density-connected

to a point q ∈ DB in S if there is a point o such that both p and q are

density-reachable from o, formally:

ConnectS
ε,k(q, p) ⇔

∃o ∈ DB : ReachS
ε,k(o, q) ∧ ReachS

ε,k(o, p).

Definition 3.6 (density-connected set in a subspace)

Let ε ∈ IR+
0 , k ∈ IN , and S ⊆ A. A non-empty subset C ⊆ DB is called

a density-connected set in S if all points in C are density-connected in S,

formally:

ConSetS
ε,k(C) ⇔ ∀o, q ∈ C : ConnectS

ε,k(o, q).

Finally, a density-connected cluster is defined as a set of density-connected

points which is maximal w.r.t. density-reachability [EKSX96]. This defini-

tion can easily be adopted to clusters in a particular subspace.

3.3.2 Monotonicity of Density-Connected Sets

A straightforward approach would be to run DBSCAN in all possible sub-

spaces to detect all density-connected clusters. The problem is that the

number of subspaces is 2d. A more effective strategy would be to use the

clustering information of previous subspaces in the process of generating all

clusters and drop all subspaces that cannot contain any density-connected

clusters.

Unfortunately, density-connected clusters are not monotonic, i.e. if C ⊆
DB is a density-connected cluster in subspace S ⊆ A, it need not be a

density-connected cluster in any T ⊆ S. The reason for this is that in T the

density-connected cluster C may not be maximal w.r.t. density-reachability.

There may be additional points which are not in C but are density-reachable

in T from a point in C.
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However, density-connected sets are monotonic. In fact, if C ⊆ DB is a

density-connected set in a subspace S ⊆ A then C is also a density-connected

set in any subspace T ⊆ S.

Lemma 3.1 (monotonicity)

Let ε ∈ IR+
0 , k ∈ IN , o, q ∈ DB, C ⊆ DB, where C 6= ∅ and S ⊆ A. Then

the following monotonicity properties hold:

∀T ⊆ S :

(1) CoreS
ε,k(o) ⇒ CoreT

ε,k(o)

(2) DirReachS
ε,k(o, q) ⇒ DirReachT

ε,k(o, q)

(3) ReachS
ε,k(o, q) ⇒ ReachT

ε,k(o, q)

(4) ConnectS
ε,k(o, q) ⇒ ConnectT

ε,k(o, q)

(5) ConSetS
ε,k(o, q) ⇒ ConSetT

ε,k(o, q)

Proof.

(1) CoreS
ε,k(o) ⇔ |N S

ε (o) | ≥ k

⇔ |{x | dist(πS(o), πS(x)) ≤ ε}| ≥ k

⇔ |{x | p

√ ∑
ai∈S

(πai(o)− πai(x))p ≤ ε}| ≥ k

(T⊆S)⇒ |{x | p

√ ∑
ai∈T

(πai(o)− πai(x))p ≤ ε}| ≥ k

⇔ |{x | dist(πT (o), πT (x)) ≤ ε}| ≥ k

⇔ |N T
ε (o) | ≥ k

⇔ CoreT
ε,k(o)

(2) DirReachS
ε,k(o, q) ⇔ CoreS

ε,k(o) ∧ q ∈ N S
ε (o)

⇔ CoreS
ε,k(o) ∧ dist(πS(o), πS(q)) ≤ ε

⇔ CoreS
ε,k(o) ∧ p

√ ∑
ai∈S

(πai(o)− πai(q))p ≤ ε

(T⊆S) (1)
=⇒ CoreT

ε,k(o) ∧ p

√ ∑
ai∈T

(πai(o)− πai(q))p ≤ ε

⇔ CoreT
ε,k(o) ∧ dist(πT (o), πT (q)) ≤ ε

⇔ CoreT
ε,k(o) ∧ q ∈ N T

ε (o)
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⇔ DirReachT
ε,k(o, q)

(3) ReachS
ε,k(o, q) ⇔ ∃p1, . . . , pn ∈ DB : p1 = o ∧ pn = q

∧∀i ∈ {1 . . . n− 1} : DirReachS
ε,k(pi, pi+1)

(T⊆S) (2)
=⇒ ∃p1, . . . , pn ∈ DB : p1 = o ∧ pn = q

∧∀i ∈ {1 . . . n− 1} : DirReachT
ε,k(pi, pi+1)

⇔ ReachT
ε,k(o, q)

(4) ConnectS
ε,k(o, q) ⇔ ∃x ∈ DB : ReachS

ε,k(x, o) ∧ReachS
ε,k(x, q)

(T⊆S) (3)
=⇒ ∃x ∈ DB : ReachT

ε,k(x, o) ∧ReachT
ε,k(x, q)

⇔ ConnectT
ε,k(o, q)

(5) ConSetS
ε,k(C) ⇔ ∀o, q ∈ C : ConnectS

ε,k(o, q)
(T⊆S) (4)

=⇒ ∀o, q ∈ C : ConnectT
ε,k(o, q)

⇔ ConSetT
ε,k(C)

�

The monotonicity of density-connectivity is illustrated in Figure 3.3. In

Figure 3.3(a), p and q are density-connected via o in the subspace spanned

by attributes A and B. Thus, p and q are also density-connected via o in

each subspace A and B of AB. The inverse conclusion is depicted in Figure

3.3(b): p and q are not density-connected in subspace B. Thus, they are

also not density-connected in the superspace AB although they are density-

connected in subspace A via o.

The inversion of Lemma 3.1(5) is the key idea for an efficient bottom-

up algorithm to detect the density-connected sets in all subspaces of high-

dimensional data. We do not have to examine any subspace S if at least

one Ti ⊂ S contains no cluster, i.e. no density-connected set. On the other

hand, we have to test each subspace S if all Ti ⊂ S contain clusters whether

those clusters are maintained.
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Figure 3.3: Monotonicity of density-connectivity (the circles indicate the

ε-neighborhoods, k = 4).

3.4 The Algorithm SUBCLU

SUBCLU is based on a bottom-up, greedy algorithm to detect the density-

connected clusters in all subspaces of high-dimensional data. The algorithm

is presented in Figure 3.4. The following data structures are used:

• DBS denotes the database DB projected onto the subspace S.

• CS denotes the set of all density-connected clusters of DB in the sub-

space S w.r.t. ε and k, and can be computed by the method DBSCAN,

i.e. CS := DBSCAN(DBS , ε, k). Note that we assume here that the

noise set is not included in CS .

• Sl denotes the set of all l-dimensional subspaces, containing at least

one cluster, i.e. Sl := {S ⊆ A | |S| = l and CS 6= ∅}.

• Cl denotes the set of sets of all clusters in l-dimensional subspaces, i.e.

Cl := {CS |S ⊆ A and |S| = l}.

We begin with generating all one-dimensional clusters by applying DB-

SCAN to each one-dimensional subspace (STEP 1 in Figure 3.4).

For each detected cluster, we have to check whether this cluster is (or

parts of it are) still existent in higher dimensional subspaces. Due to Lemma

3.1, no other cluster can exist in higher dimensional subspaces. Thus, we
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SUBCLU(SetOfPoints DB, Real ε, Integer k)

// STEP 1 Generate all 1D clusters

S1 := ∅ // set of 1D subspaces containing clusters

C1 := ∅ // set of all sets of clusters in 1D subspaces

for each ai ∈ A do

C{ai} := DBSCAN(DB{ai}, ε, k) // set of all clusters in subspace ai;

if C{ai} 6= ∅ then // at least one cluster in subspace {ai} found

S1 := S1 ∪ {ai};
C1 := C1 ∪ C{ai};

end if

end for

// STEP 2 Generate (l + 1)-D clusters from l-D clusters

l := 1;

while Cl 6= ∅

// STEP 2.1 Generate (l + 1)-D candidate subspaces

CandSl+1 := GenerateCandidateSubspaces(Sl);

// STEP 2.2 Test candidates and generate (l + 1)-D clusters

for each cand ∈ CandSl+1 do

// Search l-dim subspace of cand with minimal number of points in the clusters

bestSubspace := ArgMin
s∈Sl∧s⊆cand

∑
Ci∈Cs |Ci|

Ccand := ∅;
for each cluster cl ∈ CbestSubspace do

Ccand = Ccand ∪DBSCAN(clcand, ε, k);

if Ccand 6= ∅ then

Sl+1 := Sl+1 ∪ cand;

Cl+1 := Cl+1 ∪ Ccand;

end if

end for

end for

l := l + 1

end while

Figure 3.4: The algorithm SUBCLU.
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GenerateCandidates(SetOfSubspaces Sl)

// STEP 2.1.1 Generate (l + 1)-D candidate subspaces

CandSl+1 := ∅;
for each s1 ∈ Sl do

for each s2 ∈ Sl do

if s1.attr1 = s2.attr1 ∧ . . . ∧ s1.attrl−1 = s2.attrl−1 ∧ s1.attrl < s2.attrl

then insert {s1.attr1, . . . , s1.attrl, s2.attrl} into CandSl+1;

end for

end for

// STEP 2.1.2 Prune irrelevant candidates subspaces

for each cand ∈ CandSl+1 do

for each s ⊂ cand with |s| = l do

if s /∈ Sl then delete cand from CandSl+1;

end if

end for

end for

Figure 3.5: The procedure GenerateCandidates.

search for each l-dimensional subspace S ∈ Sl all other l-dimensional sub-

spaces T ∈ Sl having (l−1) attributes in common and join them to generate

(l + 1)-dimensional candidate subspaces (STEP 2.1.1 of the procedure Gen-

erateCandidates in Figure 3.5). The set of (l + 1)-dimensional candidate

subspaces is denoted by CandSl+1.

For each candidate subspace S ∈ CandSl+1, Sl must contain each l-

dimensional subspace T ⊂ S, |T | = l. (cf. Lemma 3.1). Consequently, we

can prune all candidates having at least one l-dimensional subspace not

included in Sl (STEP 2.1.2 of procedure GenerateCandidates in Figure 3.5).

This reduces the number of (l + 1)-dimensional candidate subspaces.

In the last step (STEP 2.2 in Figure 3.4), we generate the (l + 1)-

dimensional clusters and the corresponding (l + 1)-dimensional subspaces,

containing these clusters. To do so, we use the l-dimensional subclusters

and the list of (l + 1)-dimensional candidate subspaces. For each candidate

subspace cand ∈ CandSl+1, we take one l-dimensional subspace T ⊂ cand

and simply call the procedure DBSCAN(clcand, ε, k) for each cluster cl in

T (cl ∈ CT ) to generate Ccand. To minimize the cost of the runs of DBSCAN

in cand, we choose that subspace bestSubspace ⊂ cand from Sl in which a
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minimum number of points is in the cluster, i.e.

bestSubspace := ArgMin
s∈Sl∧s⊆cand

∑
Ci∈Cs

|Ci|.

This minimize the number of necessary range queries during the runs of

DBSCAN in S. If CS 6= ∅, we add it to Cl+1 and add S to Sl+1.

Steps 2.1 to 2.3 are recursively executed as long as the set of l-dimensional

subspaces containing clusters is not empty.

The most time consuming part of our algorithm is the execution of all the

partial range queries on arbitrary subspaces of the data space. As DBSCAN

is applied to different subspaces, an index structure for the full-dimensional

data space is not applicable. Therefore, we apply the approach of inverted

files. Our algorithm provides an efficient index support for range queries on

each single attribute in logarithmic time. For range queries on more than

one attribute, we apply the range query to each separate attribute (index

structure) and generate the intersection of all intermediate results to obtain

the final result.

3.5 Performance Evaluation

We tested SUBCLU using several synthetic data sets and a real-world gene

expression data set. All experiments were run on a workstation with a 1.7

GHz processor and 2 GB RAM.

3.5.1 Data Sets

We tested SUBCLU using synthetic as well as real-world gene expression

data sets.

Synthetic Data Sets. The synthetic data sets were generated by a

data generator. It permits to control the size and structure of the generated

data sets through parameters such as number and dimensionality of subspace

clusters, dimensionality of the feature space and density parameters for the

whole data set as well as for each cluster. In a subspace that contains a

cluster, the average density of data points in that cluster is much larger

than the density of points not belonging to the cluster in this subspace. In
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addition, it is ensured that none of the synthetically generated data sets

contain cluster in the full-dimensional space.

Spellman Data Set. The gene expression data set [SSZ+98] studies

the yeast mitotic cell cycle. We used only the data set of the CDC15 mutant.

The expression level of 6,000 genes was measured at 24 different time slots.

Since some genes have missing expression values and the handling of missing

values in gene expression analysis is a non-trivial task, we eliminated those

genes from our test data set. The resulting data set contains around 4,000

genes expressed at 24 different time slots.

3.5.2 Efficiency

We evaluated the efficiency of SUBCLU using several synthetic data sets.

All tests were run with k = 8 and ε = 2.0.

The scalability of SUBCLU w.r.t. the size of the data set, the dimension-

ality of the data set and the dimensionality of the hidden subspace clusters

are depicted in Figure 3.5.2. In all three cases, SUBCLU grows with an

at least quadratic factor. The reason for this scalability w.r.t. the size of

the data set is that SUBCLU performs multiple range queries in arbitrary

subspaces. As mentioned above, we can only support these queries, using

inverted files, since there is no index structure that can support partial range

queries in average case logarithmic time. The scalability w.r.t. the dimen-

sionality of the data set and w.r.t. the hidden subspaces can be explained by

the apriori -like bottom-up greedy algorithm used to navigate through the

space of all possible subspaces.

Let us note that we also implemented a parallel version of SUBCLU

to improve its scalability. All relevant subspaces of a certain dimensionality

can be processed parallel. Thus, the most time consuming part of SUBCLU,

the runs of DBSCAN in step 2.2 of our algorithm can be executed parallel.

Using a two processor workstation, the parallel version was on average by

a factor of 1.86 faster. Of course, the runtimes can be further decreased if

more than two processors are available.
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(a) Scalability w.r.t. the size of the data set.

(b) Scalability w.r.t. the dimensionality of the data

set.

(c) Scalability w.r.t. the maximum dimensionality of

the hidden subspace clusters.

Figure 3.6: Scalability of SUBCLU.
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Data set d dim. of N # input true clusters found by

clusters clusters SUBCLU CLIQUE

DS01 10 4 18999 1 1 1

DS02 10 4 27704 1 1 1

DS03 15 5,5 3802 3 3 1

DS04 15 3,5,7 4325 3 2 1

DS05 15 5,5,5 4057 3 3 1

DS06 15 4,4,6,7,10 2671 6 5 2

Table 3.1: Comparative evaluation of SUBCLU and CLIQUE: summary of

the results on synthetic data sets.

3.5.3 Accuracy

To evaluate the effectivity of SUBCLU, we compared it to CLIQUE [AGGR98].

Since CLIQUE is a product of IBM and its code is not easy to obtain, we

re-implemented CLIQUE according to [AGGR98]. In all accuracy experi-

ments, we run CLIQUE with a broad range of parameter settings and took

only the best results.

We applied SUBCLU and CLIQUE to several synthetic data sets which

we generated as described above. In each data set, several clusters are hidden

in subspaces of varying dimensionality. The results are depicted in Table

3.1. In almost all cases, SUBCLU computed the artificial clusters whereas

CLIQUE had difficulties in detecting all patterns properly.

We also applied SUBCLU to the Spellman data set in order to find

co-expressed genes. SUBCLU found many interesting clusters in several

subspaces of this data set. The most interesting clusters were found in the

subspaces spanned by time slots 90, 110, 130, and 190 as well as time slots

190, 270, and 290. The functional relationships of the genes in the resulting

clusters were investigated by using the public yeast genome database at

the Stanford University (Saccharomyces Genome Database, SGD: http:

//www.yeastgenome.org/).

The contents of four sample clusters in two different subspaces are de-

picted in Table 3.2. The first cluster (in subspace spanned by time slots 90,

110, 130, 190) contains several genes which are known to play a role dur-

http://www.yeastgenome.org/
http://www.yeastgenome.org/
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Gene Name Function

Cluster 1 (subspace 90, 110, 130, 190)

RPC40 subunit of RNA pol I and III, builds complex with CDC60

CDC60 tRNA synthesase, builds complex with RPC40

FRS1 tRNA synthesase

DOM34 protein synthesis, mitotic cell cycle

CKA1 mitotic cell cycle control

CPA1 control of translation

MIP6 RNA binding activity, mitotic cell cycle

Cluster 2 (subspace 90, 110, 130, 190)

STE12 transcription factor (regulation of cell cycle)

CDC27 regulation of cell cycle, possible STE12-site

EMP47 Golgi membrane protein, possible STE12-site

XBP1 Transcription factor

Cluster 3 (subspace 90, 110, 130, 190)

CDC25 starting control factor for mitosis

MYO3 control/regulation factor for mitosis

NUD1 control/regulation factor for mitosis

Cluster 4 (subspace 190, 270, 290)

RPT6 protein catabolism; builds complex with RPN10

RPN10 protein catabolism; builds complex with RPT6

UBC1 protein catabolism; subunit of 26S protease

UBC4 protein catabolism; subunit of 26S protease

MRPL17 component of mitochondrial large ribosomal subunit

MRPL31 component of mitochondrial large ribosomal subunit

MRPL32 component of mitochondrial large ribosomal subunit

MRPL33 component of mitochondrial large ribosomal subunit

SNF7 direct interaction with VPS2

VPS4 mitochondrial protein; direct interaction with SNF7

Table 3.2: Contents of four sample clusters in different subspaces.
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ing the cell cycle, e.g. DOM34, CKA1, CPA1, and MIP6. In addition, the

products of two genes in that cluster are part of a common protein complex.

The second cluster contains the gene STE12, identified by [SSZ+98] as an

important transcription factor for the regulation of the mitotic cell cycle.

In addition, the genes CDC27 and EMP47 which have possible STE12-sites

and are most likely co-expressed with STE12 are in that cluster. The third

cluster consists of the genes CDC25 (starting point for mitosis), MYO3 and

NUD1 (known for an active role during mitosis) as well as various other

transcription factors, e.g. CHA4, ELP3, required during the cell cycle. The

fourth cluster contains several mitochondrion related genes which have sim-

ilar functions. For example, the genes MRPL17, MRPL31, MRPL32, and

MRPL33 are four mitochondrial large ribosomal subunits, the genes UBC1

and UBC4 are subunits of a certain protease, and the genes SNF7 and VPS4

are direct interaction partners. This indicates a higher mitochondrial activ-

ity at these time slots which might be explained by a higher demand of

biological energy during the cell cycle (the energy metabolism is located in

mitochondrion).

Let us note that the described four clusters are only a representative

glance at the results SUBCLU yields when applied to the gene expression

data set. Each cluster contains additional genes with yet unknown function.

We also detected few clusters with no significant functional relationship

among the grouped genes. However, most of the resulting clusters con-

tained functional related genes, indicating that the detected co-expression is

biological meaningful. Since most clusters also contain genes which do not

have any annotated function yet, the results of SUBCLU might propose a

biologically interesting prediction for these unknown genes.

We also applied CLIQUE to the gene expression data set. We again

tested a broad range of parameter settings and compared SUBCLU to the

best results of CLIQUE. Since the parameter ξ of CLIQUE (width of grid

cells) affects the runtime of CLIQUE heavily, we were forced to run CLIQUE

with rather low values for ξ. As a consequence, CLIQUE was not able to

find any reasonable clusters in the gene expression data set. Let us note

that a more efficient implementation of CLIQUE would enable a better

parameter setting, i.e. higher values for ξ, and would thus also detect some
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of the clusters computed by SUBCLU. On the other hand, in real-world

data sets, such as gene expression data, it is most likely that the clusters

are not axis-parallel hypercubes. Thus, SUBCLU is much more suitable

than CLIQUE, due to the fact that the density-connected clustering notion

underlying SUBCLU is able to detect arbitrarily shaped (subspace) clusters.

3.6 Summary

In this chapter, we presented SUBCLU, a density-based subspace cluster-

ing algorithm for detecting clusters in high-dimensional data. Built on an

adaption of the density-connected notion of clusters underlying the algo-

rithm DBSCAN, we developed an efficient greedy algorithm to compute

all density-connected sets hidden in subspaces of high-dimensional data. A

comparison with CLIQUE empirically showed that SUBCLU outperforms

state-of-the-art subspace clustering algorithms concerning the quality. An

application of SUBCLU to real-world gene expression data yields biolog-

ically interesting and meaningful results, and thus demonstrates the very

usefulness of SUBCLU.



Chapter 4

Density-Based Subspace

Ranking

A drawback of subspace clustering algorithms like SUBCLU and CLIQUE

is the use of a global density threshold. As there is no obvious solution

for an efficient hierarchical extension of SUBCLU or CLIQUE, we propose

another solution. In this chapter we present a pre-processing step for tradi-

tional clustering algorithms which detects all interesting subspaces of high-

dimensional data containing clusters. Afterwards any clustering algorithm

can be applied, especially a hierarchical clustering algorithm like OPTICS.

We define a quality criterion for the interestingness of a subspace and pro-

pose an efficient algorithm called RIS (Ranking Interesting Subspaces) to

detect all such subspaces. A broad evaluation based on synthetic and real-

world data sets empirically shows that RIS is suitable to find all relevant

subspaces in large, high-dimensional, sparse data and to rank them accord-

ingly. The basic ideas contained in this chapter have been published in

[KKKW03].

51
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4.1 Introduction

The drawback of subspace clustering algorithms like SUBCLU and CLIQUE

is the use of a global density threshold. As we have seen in Section 2.3, us-

ing the hierarchical density-based algorithm OPTICS [ABKS99] clusters of

different density can be found in a single run of the algorithm. However, the

global density threshold used for SUBCLU leads to the fact that similar to

DBSCAN, SUBCLU is not able to detect clusters of different density in one

single run of the algorithm. The problem is that we need the global density

parameters to maintain the monotonicity which is needed for the efficiency.

In this chapter, we propose a first approach to overcome this problem. We

present a preprocessing step which selects all interesting subspaces, using

again a density-connected clustering notion. Thus, we are able to detect

all subspaces containing clusters of arbitrary size and shape. The remain-

der of this chapter is organized as follows. After shortly reviewing some

related work in Section 4.2, we define the “interestingness” of subspaces in

Section 4.3 and provide a quality criterion to rank the subspaces according

to their interestingness. Afterwards any clustering algorithm, especially the

hierarchical density-based algorithm OPTICS, can be applied to these sub-

spaces. In Section 4.4, we present an efficient algorithm called RIS (Ranking

Interesting Subspaces) for computing all those subspaces. A broad exper-

imental evaluation of RIS in combination with OPTICS based on artificial

as well as on gene expression data is presented in Section 4.5. Section 4.6

summarizes the chapter.

4.2 Related Work

In [DCSL02] a quality criterion for subspaces based on the entropy of point-

to-point distances is introduced. However, there is no algorithm presented

to compute the interesting subspaces. The authors propose to use a for-

ward search strategy which most likely will miss interesting subspaces or an

exhaustive search strategy which is obviously not efficient in higher dimen-

sional spaces. An experimental comparison with this technique can be found

in Section 5.4. For related work on subspace clustering refer to Section 3.2.
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4.3 Ranking Interesting Subspaces

4.3.1 Interestingness of a Subspace

Our approach to rate the interestingness of subspaces is again based on a

density-based notion of clusters. We use the core object property to decide

about the interestingness of a subspace. Obviously, if a subspace contains

no core object, it contains no dense region (cluster) and therefore contains

no relevant information for a density-based clustering algorithm.

Observation 1 The number of core objects of a data set DB (w.r.t. ε and

k) is proportional to the number of different clusters in DB and/or the size

of the clusters in DB and/or the density of clusters in DB.

This observation can be used to rate the interestingness of subspaces.

However, summing up all the core objects for each subspace delivers not

enough information. Even if two subspaces contain the same number of core

objects, the quality may differ. This is due to the fact that dense regions

contain objects which are no core objects but lie within the ε-neighborhood

of a core object and are thus, an essential part of the dense region. Therefore,

it is not only interesting how many core objects a subspace contains, but

also how many objects lie within the ε-neighborhood of these core objects.

In the following, the variable count[S] denotes the sum of all points lying

in the ε-neighborhood of all core objects in the subspace S. The number of

core objects in S is denoted by core[S]. If we measure the interestingness of

a subspace S according to its count[S] value and rank all subspaces accord-

ing to this quality value, two problems are not addressed. The first prob-

lem is that naturally with each dimension the number of expected objects

in the ε-neighborhood of an object decreases and thus, this naive quality

value favors lower dimensional subspaces over higher dimensional ones. To

overcome this problem, we introduce a scaling coefficient count[Tuniform]

that takes the dimensionality of the subspace S into account. We compute

the value count[Tuniform] assuming that T has the same number of objects

and the same dimensionality d as S and all objects in T are uniformly

distributed. For that purpose, we compute the volume of a d-dimensional
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ε-neighborhood, denoted by Voldε and the number of objects lying in Voldε ,

assuming uniform distribution.

Definition 4.1 (quality of a subspace)

The quality of a subspace S, measuring the interestingness of S is defined

by:

Quality(S) =
count[S]

n · Voldim[S]
ε ·n

attrRangedim[S ]

.

If dist is the L∞-norm, Voldε is a hypercube and can be computed by

Voldε = (2ε)d, or if dist is the Euclidian distance (L2-norm), Voldε is a hyper-

sphere and can be computed as given below:

Voldε =

√
πd

Γ(d/2 + 1)
· εd

where Γ(x + 1) = x · Γ(x), Γ(1) = 1 and Γ(1
2) =

√
π.

The second problem is the phenomenon that in high-dimensional spaces

more and more points are located on the boundary of the data space. The ε-

neighborhoods of these objects are smaller because they exceed the borders

of the data space. In [BBKK97] the authors show that the average volume

of the intersection of the data space and a hypersphere with radius ε can be

expressed as the integral of a piecewise defined function that is integrated

over all possible positions of the ε-neighborhood, i.e the core objects. For

our implementation, we choose a less complex heuristic to eliminate this

effect that is based on periodical extensions of the data space (cf. Section

4.4.2 for details).

For two arbitrary subspaces U, V ∈ IRd, our quality criterion has two

complementary effects which are summarized in the following observation:

Observation 2 Let U ⊃ V . Then the following inequalities hold:

1. core[U ] ≤ core[V ] and count [U ] ≤ count [V ].

2. If core[U ] = core[V ] and count [U ] = count [V ] then Quality(U) >

Quality(V ).
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p

A

B

(a) p core object in space AB →
p core object in subspace A and in

subspace B.

p

B

A

(b) p no core object in subspace A

→ p no core object in space AB.

Figure 4.1: Visualization of Lemma 3.1 (1) for k = 5 (2D feature space).

The first observation states that, while navigating through the subspaces

in a bottom-up way, at a certain point the core objects loose their core object

property due to the addition of irrelevant features and thus the quality

decreases. On the other hand, as long as we add relevant features (features

preserving the clustering structure) the quality increases.

4.3.2 General Idea of Finding Interesting Subspaces

A straightforward approach would be to examine all possible subspaces, e.g.

bottom-up. The problem is that the number of subspaces is 2d. Basically

all subspaces that do not contain any core object can be dropped since

they cannot contain any clusters. Furthermore, the core object condition is

decreasing strictly monotonic as we have seen in Lemma 3.1(1).

If an object o is a core object in S, then it is also a core object in any

subspace T ⊆ S w.r.t. the same ε and k. This is visualized in Figure 4.1(a).

The reverse conclusion is illustrated in Figure 4.1(b) and states: If an object

o is not a core object in T , then o is also not a core object in any superspace

S ⊃ T .

How this property helps to eliminate a lot of subspaces in the process of

generating all relevant subspaces in a bottom-up process will be presented

in the next sections.
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RIS(SetOfPoints DB, Real ε, Integer k)

Subspaces := emptySet;

for i from 1 to DB.size() do

Point := DB.get(i);

RelevantSubspaces := GenerateSubspaces(Point,DB);

Subspaces.add(RelevantSubspaces);

end for

Subspaces.prune();

Subspaces.sort();

Figure 4.2: The algorithm RIS.

4.4 Implementation of RIS

4.4.1 Algorithm

Given a set of objects DB and density parameters ε and k, RIS finds all

interesting subspaces and presents them to the user sorted according to their

quality. The pseudocode of the algorithm RIS is given in Figure 4.2. For each

object o ∈ DB, RIS computes a set of relevant subspaces, i.e. all subspaces

in which the core object condition holds for o. This step will be described in

detail in Section 4.4.2. Let us note that the algorithm can also be applied to

a sample of DB, e.g. for performance reasons (cf. Section 4.5.2). For each

detected subspace, statistical data are accumulated and this information is

merged for all objects. The detected subspaces are then pruned according

to certain criteria. In Section 4.4.3, these criteria will be discussed. Finally,

the subspaces are sorted for a more comprehensible user presentation. The

clustering in these subspaces can then be done by any clustering algorithm.

4.4.2 Efficient Generation of Subspaces

For a given object o ∈ DB, the method GenerateSubspaces finds all sub-

spaces S in which the core object condition holds w.r.t. ε and k. Formally,

it computes the following set: Ko := {T ⊆ A | CoreT
ε,k(o)}.

For the L∞-norm as distance function, the problem of finding the set

Ko is equivalent to the problem of determining all frequent item sets in the

context of mining association rules [AS94] and thus can be computed rather
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efficiently:

For each x ∈ DB a transaction Tx ⊆ A is defined such that

ai ∈ Tx ⇔ |πai(x)− πai(o) | ≤ ε for all i ∈ {1, . . . , d}.

Lemma 4.1

Ko = {T ⊆ A | SuppDB(T ) ≥ k
|DB|} where SuppDB(T ) = |{x∈DB |T⊆Tx}|

|DB|

Proof.

T ⊆ A ∧ |NT
ε (o)| ≥ k

⇔ T ⊆ A ∧ |{x ∈ DB | distL∞(πT (o), πT (x)) ≤ ε}| ≥ k

⇔ T ⊆ A ∧
|{x ∈ DB | ∀i ∈ {1, . . . , d} : ai ∈ T ⇒ |πai(o)− πai(x)| ≤ ε}| ≥ k

⇔ T ⊆ A ∧ |{x ∈ DB |T ⊆ Tx}| ≥ k ⇔ T ⊆ A ∧ SuppDB(T ) ≥ k
|DB| �

The method GenerateSubspaces extends the familiar Apriori [AS94]

algorithm in accumulating the statistical information for measuring the sub-

space quality, using the monotonicity of the core object condition (cf. Lemma

3.1). As mentioned before, we are extending the data space periodically to

ensure that all ε-neighborhoods have the same size. This can be done very

easily by changing the way the transactions are defined. Instead of only

checking if |πai(x)− πai(o)| ≤ ε, we have to check if |πai(x)− πai(o)| ≤ ε or

|πai(x)− πai(o)| ≥ attrRange − ε.

Let us note that the use of L∞-norm is no serious constraint. Obviously,

all objects that lie within the ε-neighborhood of an object according to the

L2 norm (Euclidean distance) also lie within the ε-neighborhood according

to the L∞ norm (cf. Figure 4.3). It follows that using the L∞ norm, we

will find at least those core objects (and thus those subspaces containing

clusters) which we would find when using the L2 norm. The only difference

is that, using the L∞ norm, we may find additional core objects. However,

the additional subspaces which would not have been found when using the

L2 norm have low quality values, anyway. In other words, using the L∞

norm, we obtain compared to any other Lp norm, p < ∞, false positives but

no false drops.
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Figure 4.3: ε-neighborhood of a sample core object p (e.g. for k = 5) using

L∞ and L2 norm.

4.4.3 Pruning of Subspaces

To reduce the number of computed subspaces we perform the following two

pruning steps.

Upward Pruning. If the quality value of a (k−1)-dimensional subspace

is high, then adding a noise attribute to this subspace may still result in a

relatively high quality value. As, in this case, we are not interested in the

resulting k-dimensional subspace, we can perform the following heuristic

upward pruning. Let S be a k-dimensional attribute space and Sk−1 :=

{T |T ⊂ S∧dim[T ] = k−1} be the set of all (k−1)-dimensional subspaces of

S. Let count be the mean count value of all T ∈ Sk−1 and s be the standard

deviation. Let maxdiff := max
T∈Sk−1

( | count[T ] − count| ) be the maximum

deviation of the count values of all T ∈ Sk−1 from the mean count value.

Then, the so-called bias-value can be computed as follows: bias = s
maxdiff .

If this bias-value falls below a certain threshold, we prune the k-dimensional

subspace S. Our experimental evaluations indicate that 0.56 is a good value

for this bias-criterion.

Downward Pruning. As we are only interested in the subspaces with

the highest quality, we can perform the following downward pruning step to

eliminate redundant subspaces: If there is a (k +1)-dimensional subspace S

with higher quality than the k-dimensional subspace T (S ⊃ T ), we delete

T .
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4.4.4 Determination of Density Parameters

A heuristic method, which we experimentally verified to be sufficient, sug-

gests k ≈ ln(n) where n is the size of the database. Then, ε must be chosen

depending on the value of k. In [EKSX96] a simple heuristics is presented

to determine the ε of the ”thinnest” cluster in the database (for a given

k). But as we do not know beforehand in which subspaces clusters will be

found, we cannot determine ε to find a single subspace with one particular

clustering. Quite the contrary, we want to choose the parameters such that

RIS detects subspaces which might have clusters of different density and

different dimensionality.

However, we can determine an upper bound for ε for a given value of

k. If we take uniform distribution as worst case, the ε-neighborhood of an

object should not contain more than k − 1 objects in the full-dimensional

space. Otherwise, all objects are core objects. In case of the L∞-norm, an

upper bound for ε can be computed as follows:

n · Voldε
attrRangedim

< k
L∞=⇒ ε <

attrRange

2
· dim

√
k

n

where dim = d. If we have any knowledge about the dimensionality of the

subspaces we want to find, we can further decrease the upper bound by

setting dim to the highest dimension of such a subspace.

This upper bound is very rough. Nevertheless, it provides a good indica-

tion for the choice of ε. Indeed, it empirically turned out that upperbound/4

is a reasonable choice for ε. Experiments on synthetic data sets show that

our suggested criteria for the choice of the density parameters are sufficient

to detect all subspaces containing clusters.

4.5 Performance Evaluation

We tested RIS, using several synthetic as well as a real-world data set. For

a description of the data used, refer to Section 3.5.1. The experiments were

run on a 1.7 GHz workstation with 2 GB RAM.

A subsequent clustering of the data sets in the detected subspaces was

performed for each experiment, using the hierarchical density-based cluster-
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ing algorithm OPTICS (cf. Section 2.3) to validate the interestingness of the

subspaces computed by RIS.

4.5.1 Efficiency Evaluation

The results of the efficiency evaluation are depicted in Figure 4.5.1. This

evaluation is based on several synthetic data sets. The experiments were run

with k = ln(n) and ε was chosen as suggested in Section 4.4.4. All runtimes

are in seconds.

RIS scales well w.r.t. the dimensionality of the subspaces containing

clusters. With increasing dimensionality of these subspaces, the runtime of

RIS grows with a linear factor. On the other hand, the scalability of RIS

w.r.t. the size n and the dimensionality d of the input data set is not linear.

With increasing n and d, the runtime of RIS grows with an at least quadratic

factor for rather large n and d, respectively. The reason for this scalability

w.r.t. the size n is that RIS performs multiple range queries without any

index support. There is again no index structure that efficiently supports

range queries in arbitrary subspaces. The observed scalability with respect

to d can be explained by the apriori -like navigation through the search space

of all subspaces.

4.5.2 Speed-up for Large Data Sets

Since the runtime of RIS is rather high, especially for large data sets, we

applied random sampling to accelerate our algorithm. In this case, the

loop in our algorithm (cf. Section 4.4.1 is executed only for a random sam-

ple of the database objects. Figure 4.5 shows that for a large data set of

n = 750, 000 data points, sampling yields a rather good speed-up. The data

set contained two overlapping four-dimensional subspace clusters, contain-

ing approximately 400,000 and 350,000 points. Even using only 100 sample

points, RIS had no problem to detect the subspaces of these two clusters.

For all sample sizes, these subspaces had by far the highest quality values.

Further experiments empirically show that random sampling can be suc-

cessfully applied to RIS in order to speed up the runtime of this algorithm,

paying a minimum loss of quality.
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(a) Scalability w.r.t. the size of the data set (d=10).
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(b) Scalability w.r.t. the dimensionality of the data
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(c) Scalability w.r.t. the dimensionality of the de-

tected subspaces (d=15, n=4,000).

Figure 4.4: Efficiency evaluation of RIS.
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Figure 4.5: Scalability of RIS w.r.t. the size of the random sample (d=10,

n=750,000).

4.5.3 Effectiveness Evaluation

Synthetic Data Sets. We evaluated the effectiveness of RIS, using sev-

eral synthetic data sets of varying dimensionality. The data sets contained

between two and five overlapping clusters in varying subspaces. In all exper-

iments, RIS detected the correct subspaces in which clusters exist and as-

signed the highest quality values to them. All higher dimensional subspaces

which were generated were removed by the upward pruning procedure.

Gene Expression Data. We also applied RIS to the Spellman data set

(cf. 3.5.1). The two top-ranked subspaces were the subspace spanned by

the time slots 90, 110, 130, and 190 and the subspace spanned by the time

slots 190, 270, and 290. Both subspaces played also a central role in the

evaluation of the algorithm SUBCLU (cf. Section 3.5.3). A clustering using

OPTICS in these two top-ranked subspaces provided several clusters and

in fact more information than SUBCLU yielded. This is due to the use of

a hierarchical clustering algorithm in the detected subspaces. For example,

the genes MRPL17, MRPL31, MRPL32, and MRPL33 (four mitochondrial

large ribosomal subunits) were clustered together with other mitochondrial

proteins SNF7 and VPS4 (which are direct interaction partners) by SUB-

CLU. However, several other genes that code for mitochondrial proteins,

e.g. MEF1, PHB1, CYC1, MGE1, ATP12, could be added to this cluster

because of the information OPTICS yielded in this subspace. Figure 4.6

illustrates the part of the cluster ordering generated by OPTICS in the par-
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MRPL17
MRPL31
MRPL32
MRPL33

UBC1
UBC4

VPS4
SNF7

...

CYC1
MGE1

PHB1
MEF1
ATP12
MCR1

Figure 4.6: Part of the reachability plot generated by OPTICS for the

subspace which was ranked second by RIS.

ticular subspace. It can be seen that the additional genes are less dense than

the core part of the cluster. To detect the entire nested cluster, the global

parameter setting for the SUBCLU run in Section 3.5.3 was too strict, i.e.

the ε-value was to small. However, running SUBCLU with a higher ε-value

adds also other non-related genes, i.e. noise points to the cluster.

Additionally, RIS combined with OPTICS found some clusters which

were not detected by SUBCLU. An excerpt of such a cluster is depicted in

Table 4.1. This cluster was again found in the subspace spanned by the time

slots 90, 110, 130, and 190 and contains several transcription related genes

that directly interact with each other. It was not detected by SUBCLU

because it does not fit the density threshold used for the SUBCLU run.

However, it yields a significant valley in the reachability plot generated by

OPTICS for that subspace. The functional relationship of the contained

genes is biologically meaningful and important.

In summary, RIS detects several subspaces containing several biologically

relevant co-expressions. All significant clusters SUBCLU has found were re-

produced by the combined application of RIS and OPTICS. Furthermore,

the application of the hierarchical algorithm OPTICS yielded new infor-
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Gene Name Function

RRP3 RNA splicing, builds complex with NPL3

NPL3 RNA splicing, builds complex with RRP3

TFA1 transcription elongation factor

SPT5 part of transcription elongation factor complex (TEFC)

CDC73 part of TEFC, builds complex with CKB1

CKB1 cell cycle transition gene, builds complex with CDC73

Table 4.1: A cluster missed by SUBCLU but detected by RIS/OPTICS.

mation such as extended nested clusters and additional clusters showing

different densities. By outperforming SUBCLU, the combined application

of RIS and OPTICS also yields superior accuracy than CLIQUE.

4.6 Summary

In this chapter, we introduced a preprocessing step for clustering high-

dimensional data. Based on a quality criterion for the interestingness of

a subspace, we presented an efficient algorithm called RIS to compute all

interesting subspaces containing dense regions of arbitrary shape and size.

Furthermore, the well-established technique of random sampling can be ap-

plied to RIS in order to speed up the runtime of the algorithm significantly

with a minimum loss of quality. The effectiveness evaluation shows that

a combination of RIS and OPTICS can be successfully applied to high-

dimensional real-world data, e.g. gene expression data in order to find co-

regulated genes.



Chapter 5

Advanced Subspace Selection

for Clustering

The previous chapter showed that the combination of the subspace selection

technique RIS and the hierarchical clustering algorithm OPTICS is supe-

rior to subspace clustering algorithms which are based on a global density

threshold. The problem that still remains is that RIS itself is again based

on a global density threshold. In this chapter, we present a feature selec-

tion technique called SURFING (SUbspaces Relevant For clusterING) that

finds all subspaces interesting for clustering and is independent from any

global density threshold. The sorting is based on a quality criterion, using

the k-nearest neighbor distances of the points to measure the hierarchical

clustering structure of a subspace. A broad evaluation based on synthetic

and real-world data sets demonstrates that SURFING is suitable to find all

relevant subspaces in large, high-dimensional, sparse data sets and produces

better results than comparative methods.

65



66 5 Advanced Subspace Selection for Clustering

5.1 Introduction

Recent density-based approaches to subspace clustering or comparable sub-

space selection methods (RIS) use a global density threshold for the def-

inition of clusters due to efficiency reasons. However, the application of

one global density threshold to subspaces of different dimensionality as well

as to all clusters in one subspace is rather unacceptable. The data space

naturally increases exponentially with each dimension that is added to a

subspace. The clusters in the same subspace may exceed different density

parameters or exhibit a nested hierarchical clustering structure. Therefore,

for subspace clustering, it would be highly desirable to adapt the density

threshold to the dimensionality of the subspaces or even better to rely on

a hierarchical clustering notion that is independent from a globally fixed

threshold.

In this chapter, we introduce SURFING (SUbspaces Relevant For clus-

terING), a feature selection method for clustering which does not rely on

a global density parameter. Our approach explores all subspaces exhibiting

an interesting hierarchical clustering structure and ranks them according to

a quality criterion based on the k-nearest neighbor distances of the points.

SURFING does not demand that the user specifies parameters that are hard

to anticipate such as the number of clusters, the (average) dimensionality of

subspace clusters or a global density threshold.

The remainder of this chapter is organized as follows. A quality crite-

rion for ranking the interestingness of subspaces is developed in Section 5.2.

In Section 5.3 we present our algorithm SURFING to rank all subspaces

that are relevant for clustering. A thorough experimental evaluation of the

performance of SURFING including a comparison to comparative subspace

clustering methods is presented in Section 5.4. Section 5.5 concludes the

chapter.
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5.2 Subspaces Relevant for Clustering

5.2.1 General Idea

The main idea of SURFING is to measure the “interestingness” of a subspace

w.r.t. its hierarchical clustering structure, independent from its dimension-

ality. Like most previous approaches to subspace clustering, we base our

measurement on a density-based clustering notion. Since we do not want to

rely on a global density parameter, we developed a quality criterion for rel-

evant subspaces built on the k-nearest neighbor distances (k-nn distances)

of the points in DB.

Definition 5.1 (k-nn distance in a subspace)

Let k ∈ IN (k ≤ N) and S ⊆ A. For a point o ∈ DB, the set of k-nearest

neighbors of o in a subspace S, denoted by NNS
k (o), is the smallest set that

contains (at least) k points from the database and for which the following

condition holds:

∀p ∈ NNS
k (o), q ∈ DB −NNS

k (o) :

dist(πS(o), πS(p)) < dist(πS(o), πS(q)).

The k-nn distance of a point o ∈ DB in a subspace S, denoted by nn-DistSk (o),

is the distance between o and its k-nearest neighbor, formally:

nn-DistSk (o) = max{dist(πS(o), πS(p)) | p ∈ NNS
k (o)}.

The k-nn distance of a point o indicates how densely the data space

is populated around o in S. The smaller the value of nn-DistSk (o), the

more dense the points are packed around o, and vice versa. If a subspace

contains a recognizable hierarchical clustering structure, i.e. clusters with

different densities and noise points, the k-nn distances of points should differ

significantly. On the other hand, if all points are uniformly distributed, the

k-nn distances can be assumed to be almost equal. Figure 5.1 illustrates

these considerations using a sample 2D subspace S = {a1, a2} and k = 3. In

Figure 5.1(a), the data exhibits a complex hierarchical clustering structure

in S. The corresponding 3-nn distances (sorted in ascending order) differ
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3-nn distance

objectsa1

a2

mean

(a) Hierarchical clustering structure in a 2D subspace(left); corresponding sorted

3-nn graph (right).

3-nn distance

a1 objects

mean
a2

(b) Uniform distribution in a 2D subspace (left); corresponding sorted 3-nn graph

(right).

Figure 5.1: Usefulness of the k-nn distance to rate the interestingness of

subspaces.



5.2 Subspaces Relevant for Clustering 69

significantly among the points. In Figure 5.1(b), the data are uniformly

distributed in S. The corresponding 3-nn distances are equal for all points.

Consequently, we are interested in subspaces where the k-nn distances

of the points differ significantly from each other, because the hierarchical

clustering structure in such subspaces will be considerably clearer than in

subspaces where the k-nn distances are rather similar to each other.

5.2.2 A Quality Criterion for Subspaces

As mentioned above, we want to measure how much the k-nn distances in

S differ from each other. To achieve comparability between subspaces of

different dimensionality, we scale all k-nn distances in a subspace S into

the range [0, 1]. Thus, we assume that nn-DistSk (o) ∈ [0, 1] for all o ∈ DB

throughout the rest of the chapter.

Two well-known statistical measures for our purpose are the mean value

µS of all k-nn distances in subspace S, i.e.

µS :=
∑

o∈DB nn-DistSk (o)
N

and its variance. However, the variance is not appropriate for our purpose

because it measures the squared differences of each k-nn distance to µS and

thus, high differences are weighted stronger than low differences. For our

quality criterion, we want to measure the non-weighted differences of each

k-nn distance to µS . Since the sum of the differences of all points above µS

is equal to the sum of the differences of all points below µS , we only take half

of the sum of all differences to the mean value, denoted by diffµS , which

can be computed by

diffµS =
1
2

∑
o∈DB

( |µS − nn-DistSk (o) | ).

In fact, diffµS is already a good measure for rating the interestingness

of a subspace. We can further scale this value by µS times the number of

points having a smaller k-nn distance in S than µS , i.e. the points contained

in the following set:

BelowS := {o ∈ DB |nn-DistSk (o) < µS}.
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Obviously, if BelowS is empty, the subspace contains uniformly dis-

tributed noise.

Definition 5.2 (quality of a subspace)

Let S ⊆ A. The quality of S, denoted by quality(S), is defined as follows:

quality(S) =

 0 if BelowS = ∅
diffµS

|BelowS |·µS
else.

The quality values are in the range between 0 and 1. A subspace where

all points are uniformly distributed, e.g. as depicted in Figure 5.1(b), has

a quality value of approximately 0, indicating a less interesting clustering

structure. On the other hand, the clearer the hierarchical clustering struc-

ture in a subspace S is, the higher is the value of quality(S). For example,

the sample 2D subspace in which the data is highly structured as depicted

in Figure 5.1(a) will have a significantly higher quality value. Let us note

that in the synthetic case where all points in BelowS have a k-nn distance

of 0 and all other points have a k-nn distance of 2 · µS , the quality value

quality(S) is 1.

In almost all cases we can detect the relevant subspaces with this quality

criterion, but there are two artificial cases rarely found in natural data sets

which nevertheless cannot be ignored.

First, there might be a subspace containing some clusters, each of the

same density and without noise, e.g. data set A in Figure 5.2. If the number

of data points in the clusters exceeds k, such subspaces cannot be distin-

guished from subspaces containing uniformly distributed data points spread

over the whole attribute range, e.g. data set B in Figure 5.2, because in both

cases the k-nn distances of the points will marginally differ from the mean

value.

Second, subspaces containing data of one Gaussian distribution spread

over the whole attribute range are not really interesting. However, the k-

nn distances of the points will scatter significantly around the mean value.

Thus, such subspaces cannot be distinguished from subspaces containing

two or more Gaussian clusters without noise.

To overcome these two artificial cases, we can temporarily insert some

randomly generated points before computing the quality value of a subspace.
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data set A data set B

% of additionally quality of data set

inserted points A B

0 0.13 0.15

0.1 0.15 0.15

0.2 0.19 0.15

0.5 0.31 0.15

1 0.38 0.15

5 0.57 0.15

10 0.57 0.15

Figure 5.2: Benefit of inserted points.

In cases of uniform or Gaussian distribution over the whole attribute range,

the insertion of a few randomly generated additional points does not sig-

nificantly affect the quality value. The k-nn distances of these points are

similar to the k-nn distances of all the other data points. However, if there

are dense and empty areas in a subspace, the insertion of some additional

points very likely increases the quality value, because these additional points

have large k-nn distances compared to those of the other points. The table

in Figure 5.2 shows the quality value of the 2D data set A depicted in Fig-

ure 5.2 w.r.t. the percentage of temporarily inserted random points. The

data set B in Figure 5.2 has no visible cluster structure and therefore the

temporarily inserted points do not affect the quality value. For example, 0.2

% additionally inserted points means that for n = 5, 000 10 random points

have been temporarily inserted before calculating the quality value.

Thus, inserting randomly generated points is a proper strategy to dis-
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tinguish (good) subspaces containing several uniformly distributed clusters

of equal density or several Gaussian clusters without noise from (bad) sub-

spaces containing only one uniform or Gaussian distribution. In fact, it

empirically turned out that 1% of additional points is sufficient to achieve

the desired results. Let us note that this strategy is only required if the sub-

spaces contain a clear clustering structure without noise. In most real-world

data sets, the subspaces do not show a clear cluster structure and often

have much more than 10% noise. In addition, the number of noise points is

usually growing with increasing dimensionality. In such data sets, inserting

additional points is not required. Since our quality criterion is very sensible

to areas of different density, it is suitable to detect relevant subspaces in

data sets with high percentages of noise, e.g. in gene expression data sets or

in synthetic data sets containing up to 90% noise.

5.3 Algorithm

The pseudocode of the algorithm SURFING is given in Figure 5.3. Since

lower dimensional subspaces are more likely to contain an interesting clus-

tering, SURFING generates all relevant subspaces in a bottom-up way, i.e.

it starts with all one-dimensional subspaces S1 and discards as many ir-

relevant subspaces as early as possible. Therefore, we need a criterion to

decide whether it is interesting to generate and examine a certain subspace

or not. Our above described quality measure can only be used to decide

about the interestingness of an already given subspace. An important in-

formation we have gathered while proceeding to dimension l is the quality

of all (l− 1)-dimensional subspaces. We can use this information to rate all

l-dimensional candidate subspaces Sl. We use the lowest quality value of

any (l − 1)-dimensional subspace as threshold. If the quality values of the

(l−1)-dimensional subspaces do not differ enough (it turned out empirically

that a difference of at least 1/3 is a reasonable reference difference), we take

half of the best quality value instead. Using this quality threshold, we can

divide all l-dimensional subspaces into three different categories:



5.3 Algorithm 73

SURFING(SetOfPoints DB, Integer k)

// 1-dimensional subspaces

S1 := {{a1}, . . . , {ad}};
compute quality of all subspaces S ∈ S1;

Sl := S ∈ S1 with lowest quality;

Sh := S ∈ S1 with highest quality;

if quality(Sl) > 2
3
· quality(Sh) then

τ := quality(Sh)
2

;

else

τ := quality(Sl);

S1 = S1 − {Sl};
end if

// k-dimensional-subspaces

k := 2;

create S2 from S1;

while not Sk = ∅ do

compute quality of all subspaces S in Sk;

Interesting := {S ∈ Sk|quality(S) ↑};
Neutral := {S ∈ Sk|quality(s) ↓ ∧ quality(S) > τ};
Irrelevant := {S ∈ Sk|quality(S) ≤ τ};
Sl := S ∈ Sk with lowest quality;

Sh := S ∈ Sk − Interesting with highest quality;

if quality(Sl) > 2
3
· quality(Sh) then

τ := quality(Sh)
2

;

else

τ := quality(sl);

end if

if not all subspaces irrelevant then

Sk := Sk − Irrelevant;

end if

create Sk+1 from Sk;

k := k + 1;

end while

Figure 5.3: The algorithm SURFING.
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Interesting Subspace: the quality value increases or stays the same

w.r.t. its (l − 1)-dimensional subspaces.

Neutral Subspaces: the quality decreases w.r.t. its (l − 1)-dimensional

subspaces, but lies above the threshold and thus might indicate a higher

dimensional interesting subspace.

Irrelevant Subspaces: the quality decreases w.r.t. its (l− 1)-dimensional

subspace and lies below the threshold.

We use this classification to discard all irrelevant l-dimensional subspaces

from further consideration. We know that these subspaces are not interesting

itself and, as our quality value is comparable over different dimensions, we

further know that no superspace of such a subspace will obtain a high quality

value compared to interesting subspaces of dimensionality l. Even if through

adding a “good” dimension, the quality value would slightly increase, it will

not be getting better than already existing ones.

However, before we discard an irrelevant subspace S of dimensionality l,

we have to test whether its clustering structure exhibits one of the artificial

cases mentioned in the previous section. For that purpose, if the quality of S

is lower than the quality of a subspace containing an l-dimensional Gaussian

distribution, we insert 1% random points and recompute the quality of S.

Otherwise, the clustering structure of S cannot get better through the inser-

tion of additional points. In case of a clean cluster structure without noise

in S, the quality value improves significantly after the insertion. At least

it will be better than the quality of the l-dimensional Gaussian distribution

and, in this case, S is not discarded.

If, due to the threshold, there are only irrelevant l-dimensional subspaces,

we do not use the threshold but keep all l-dimensional subspaces. In this

case, the information we have so far is not enough to decide about the

interestingness.
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(a) Parameter k = 1 (too small). (b) Parameter k = 10 (too big).

(c) Parameter k = 5 (adequate).

Figure 5.4: Influence of parameter k.

Finally, the remaining l-dimensional subspaces in Sl are joined if they

share any (l − 1)-dimensions to generate the set of (l + 1)-dimensional can-

didate subspaces Sl+1. SURFING terminates if the resulting candidate set

is empty.

SURFING needs only one input parameter k. The choice of k is rather

simple. If k is too small, the k-nn distances are not meaningful since points

within dense regions might have similar k-nn distance values as points in

sparse regions. This is illustrated in Figure 5.4(a) where the arrows denote

the distance of a point to its k-th nearest neighbor. If k is too high, the

same phenomenon may occur (Figure 5.4(b)). Obviously, k must somehow

correspond to the minimum cluster size, i.e. the minimal number of points

regarded as a cluster (Figure 5.4(c)).
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5.4 Evaluation

We tested SURFING on several synthetic and real-world data sets and eval-

uated its accuracy in comparison to CLIQUE, RIS and the subspace selec-

tion proposed in [DCSL02], in the following called Entropy. All experiments

were run on a 2.8 GHz workstation with 512 MB RAM. Again, we combined

SURFING, RIS and Entropy with the hierarchical clustering algorithm OP-

TICS [ABKS99] to compute the hierarchical clustering structure in the de-

tected subspaces.

Synthetic Data and Gene Expression Data.

We used again the data generator and the Spellman data set described in

Section 3.5.1.

Metabolome Data. In addition, we tested SURFING on high-dimen-

sional metabolic data, provided from the newborn screening program in

Bavaria, Germany. Our experimental data sets were generated from modern

tandem mass spectrometry. In particular, we focused on a dimensionality

of 14 metabolites in order to mine single and promising combinations of key

markers in the abnormal metabolism of phenylketonuria (PKU), a severe

amino acid disorder. The resulting database contains 319 cases designated

as PKU and 1,322 control individuals expressed as 14 amino acids and in-

termediate metabolic products, i.e. Ala, Arg, ArgSuc, Cit, Glu, Gly, Met,

Orn, Phe, Pyrglt, Ser, Tyr, Val and Xle. The task is to extract a subset of

metabolites that corresponds well to the abnormal metabolism of PKU.

5.4.1 Efficiency

The runtimes of SURFING applied to the synthetic data sets are summa-

rized in Table 5.1. In all experiments we set k = 10.

For each subspace, SURFING needs O(N2) time to compute for each

of the N points in DB, the k-nn distance. Again, there is no index struc-

ture which could support the partial k-nn queries in arbitrary subspaces in

logarithmic time. If SURFING analyzes m different subspaces, the overall

runtime complexity is O(m ·N2). Of course, in the worst case m can be 2d,

but in practice we are only examining a very small percentage of all possi-
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data d cluster N # subspaces time

set dim. m % (s)

02 10 4 4936 107 10.45 351

03 10 4 18999 52 5.08 2069

04 10 4 27704 52 5.08 4401

05 15 2 4045 119 0.36 194

06 15 5 3802 391 1.19 807

07 15 3,5,7 4325 285 0.87 715

08 15 5 4057 197 0.60 391

09 15 7 3967 1046 3.19 3031

10 15 12 3907 4124 12.59 15321

11 10 5 3700 231 22.56 442

12 20 5 3700 572 0.05 1130

13 30 5 3700 1077 0.0001 2049

14 40 5 3700 1682 1.5·10−7 3145

15 50 5 3700 2387 2.1·10−10 4255

16 15 4,6,7,10 2671 912 2.8 4479

Table 5.1: Results on synthetic data sets.

ble subspaces. Indeed, our experiments show that the heuristic generation

of subspace candidates used by SURFING ensures a small value for m (cf.

Table 5.1). For most complex data sets, SURFING computes less than 5%

of the total number of possible subspaces. In most cases, this ratio is even

significantly less than 1%. For data set 10 in Table 5.1 where the cluster

is hidden in a 12-dimensional subspace of a 15-dimensional feature space,

SURFING only computes 12.5% of the possible subspaces. Finally, for both

real-world data sets, SURFING computes even significantly less than 0.1%

of the possible subspaces (not shown in Table 5.1). The worst ever observed

percentage was around 20%. This empirically demonstrates that SURFING

is a highly efficient solution for the complex subspace selection problem.

5.4.2 Effectivity

Results on Synthetic Data. We applied SURFING to several synthetic

data sets (cf. Table 5.1). In all but one case, SURFING detected the correct

subspaces containing the relevant clusters and ranked them first. Even for
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data set 16, SURFING was able to detect 4 out of 5 subspaces contain-

ing clusters, although the clustering structure of the subspaces containing

clusters was rather weak, e.g. one of the 4-dimensional subspaces contained

a cluster with only 20 points, having an average k-nn distance of 2.5 (the

average k-nn distance for all points in all dimensions was 15.0). SURFING

only missed a 10-dimensional subspace which contained a cluster with 17

points, having an average k-nn distance of 9.0.

Results on Gene Expression Data. We tested SURFING on the gene

expression data set and retrieved a hierarchical clustering by applying OP-

TICS [ABKS99] to the top-ranked subspaces. We found many biologically

interesting and significant clusters in several subspaces. The functional re-

lationships of the genes in the resulting clusters were validated by using

the public Saccharomyces Genome Database1. Some excerpts from sample

clusters in varying subspaces found by SURFING applied to the gene ex-

pression data are depicted in Table 5.2. Cluster 1 contains several cell cycle

genes. In addition, the two gene products are part of a common protein

complex. Cluster 2 contains the gene STE12, an important regulatory fac-

tor for the mitotic cell cycle [SSZ+98] and the genes CDC27 and EMP47

which are most likely co-expressed with STE12. Cluster 3 consists of the

genes CDC25 (starting point for mitosis), MYO3 and NUD1 (known for an

active role during mitosis) and various other transcription factors required

during the cell cycle. Cluster 4 contains several genes related to the protein

catabolism. Cluster 5 contains several structural parts of the ribosomes and

related genes. Let us note that MPI6 is clustered differently in varying sub-

spaces (cf. Cluster 1 and Cluster 5). Cluster 6 contains the genes that code

for proteins participating in a common pathway.

Results on Metabolome Data. Applying SURFING to metabolic data,

we identified 13 subspaces considering quality values > 0.8. In detail, we

extracted 5 one-dimensional spaces (the metabolites ArgSuc, Phe, Glu, Cit

and Arg), 6 two-dimensional spaces (e.g. Phe-ArgSuc, Phe-Glu) and 3 three-

dimensional spaces (e.g. Phe-Glu-ArgSuc). Alterations of our best ranked

single metabolites correspond well to the abnormal metabolism of PKU

1http://www.yeastgenome.org/
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Gene Name Function

Cluster 1 (subspace 90, 110, 130, 190)

RPC40 builds complex with CDC60

CDC60 tRNA synthetase

FRS1 tRNA synthetase

DOM34 protein synthesis, mitotic cell cycle

CKA1 mitotic cell cycle control

MIP6 RNA binding activity, mitotic cell cycle

Cluster 2 (subspace 90, 110, 130, 190)

STE12 transcription factor (cell cycle)

CDC27 possible STE12-site

EMP47 possible STE12-site

XBP1 transcription factor

Cluster 3 (subspace 90, 110, 130, 190)

CDC25 starting control factor for mitosis

MYO3 control/regulation factor for mitosis

NUD1 control/regulation factor for mitosis

Cluster 4 (subspace 190, 270, 290)

RPT6 protein catabolism; complex with RPN10

RPN10 protein catabolism; complex with RPT6

UBC1 protein catabolism; part of 26S protease

UBC4 protein catabolism; part of 26S protease

Cluster 5 (subspace 70, 90, 110, 130)

SOF1 part of small ribosomal subunit

NAN1 part of small ribosomal subunit

RPS1A structural constituent of ribosome

MIP6 RNA binding activity, mitotic cell cycle

Cluster 6 (subspace 70, 90, 110, 130)

RIB1 participate in riboflavin biosynthesis

RIB4 participate in riboflavin biosynthesis

RIB5 participate in riboflavin biosynthesis

Table 5.2: Results on gene expression data.
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data # clusters/ # correct clusters/subspaces found by

set subspaces CLIQUE RIS Entropy SURFING

06 2 1 2 0 2

07 3 1 2 0 2

08 3 1 3 0 3

16 5 0 3 0 4

Table 5.3: Comparative tests on synthetic data.

[BBB+04]. We compared the results of SURFING to the results using

PCA.2. Only components with a eigenvalue > 1 were extracted. The vari-

max rotation was applied. PCA findings showed 4 components (eigenvalues

of components 1-4 are 4.039, 2.612, 1.137 and 1.033) that retain 63% of

the total variation. However, SURFING’s best ranked single metabolites

ArgSuc, Glu, Cit and Arg are not highly loaded (> 0.6) on one of four

extracted components. Moreover, combinations of promising metabolites

(higher dimensional subspaces) are not able to be considered in PCA. Par-

ticularly in abnormal metabolism, not only alterations of single metabolites

but more interactions of several markers are often involved. As our results

demonstrate, SURFING is more usable on metabolic data, taking higher

dimensional subspaces into account.

Influence of Parameter k. We reran our experiments on the synthetic

data sets with k = 3, 5, 10, 15, 20. We observed that if k = 3, SURFING

found the correct subspaces but did not rank the subspaces first (i.e. sub-

spaces with a less clear hierarchical clustering structure got a higher quality

value). In the range of 5 ≤ k ≤ 20, SURFING produced similar results

for all synthetic data sets. This indicates that SURFING is quite robust

regarding the choice of k within this range.

Comparison with CLIQUE. The results of CLIQUE applied to the syn-

thetic data sets confirmed the suggestions that its accuracy heavily depends

on the choice of the input parameters which is a non-trivial task. In some

cases, CLIQUE failed to detect the subspace clusters hidden in the data

but computed some dubious clusters. In addition, CLIQUE is not able to

detect clusters of different density. Applied to our data sets which exhibit

2The terms PCA, eigenvalue and eigenvector are described in Section 6.3
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several clusters with varying density, e.g. data set 16, CLIQUE was not able

to detect all clusters correctly but could only detect (parts of) one cluster

(cf. Table 5.3) — even though we used a broad parameter setting. A similar

result can be reported when we applied CLIQUE to the gene expression data

set. CLIQUE was not able to obtain any useful clusters for a broad range

of parameter settings. In summary, SURFING does not only outperform

CLIQUE by means of quality, but also saves the user from finding a suitable

parameter setting.

Comparison with RIS. Using RIS causes similar problems as CLIQUE.

Although the input parameters have slightly less impact, the quality of

the results computed by RIS also depends on the input parameters. Like

CLIQUE, in some cases RIS failed to detect the correct subspaces due to

the utilization of a global density parameter (cf. Table 5.3). For example,

applied to data set 16, RIS was able to compute the lower dimensional sub-

spaces, but could not detect the higher dimensional one. The application

of RIS to the gene expression data set is described in [KKKW03]. SURF-

ING confirmed these results but found several other interesting subspaces

with important clusters, e.g. clusters 5 and 6 in subspace 70, 90, 110, 130

(cf. Table 5.2). Applying RIS to the metabolome data set, the best ranked

subspace contains 12 attributes which represent nearly the full feature space

and are biologically not interpretable. The application of RIS to all data sets

was limited by the choice of the right parameter setting. Again, SURFING

does not only outperform RIS by means of quality, but also saves the user

from finding a suitable parameter setting.

Comparison with Entropy. Using the quality criterion Entropy in con-

junction with the proposed forward search algorithm in [DCSL02], none of

the correct subspaces were found. In all cases, the subspace selection method

stops at a dimensionality of 2. Possibly an exhaustive search examining all

possible subspaces could produce better results. However, this approach

obviously yields unacceptable runtimes. Applied to the metabolome data,

the biologically relevant one-dimensional subspaces are ranked low.
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5.5 Summary

In this chapter, we introduced a new method to subspace selection for clus-

tering called SURFING which is more or less parameterless and — in con-

trast to most recent approaches — does not rely on a global density thresh-

old. SURFING selects and ranks subspaces of high-dimensional data ac-

cording to their interestingness for clustering. We empirically showed that

the only input parameter of SURFING is stable in a broad range of settings.

SURFING does not favor subspaces of a certain dimensionality. A broad,

comparative experimental evaluation using synthetic and real-world data

sets shows that SURFING is an efficient and accurate solution to the com-

plex subspace clustering problem. It outperforms recent subspace clustering

methods in terms of effectivity.



Chapter 6

Correlation Clustering

The detection of correlations between different features in a set of feature

vectors is a very important data mining task because correlation indicates

a dependency between the features or some association of cause and ef-

fect between them. This association can be arbitrarily complex, i.e. one

or more features might be dependent from a combination of several other

features. Well-known methods like the principal components analysis can

perfectly find correlations which are global, linear, not hidden in a set of

noise vectors, and uniform, i.e. the same type of correlation is exhibited in

all feature vectors. In many applications such as medical diagnosis, molec-

ular biology, time sequences or electronic commerce, however, correlations

are not global since the dependency between features can be different in dif-

ferent subgroups of the set. In this chapter, we propose a method called 4C

(Computing Correlation Connected C lusters) to identify local subgroups

of the data points, sharing a uniform but arbitrarily complex correlation.

Our algorithm is based on a combination of PCA and density-based clus-

tering (DBSCAN), has a determinate result and is robust concerning noise.

A broad comparative evaluation demonstrates that for the task of correla-

tion clustering 4C is superior to methods such as DBSCAN, CLIQUE and

ORCLUS. The concepts described in this chapter have been published in

[BKKZ04].

83
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6.1 Introduction

A kind of hidden information that may be interesting to users are correla-

tions in a data set. A correlation is a linear dependency between two or more

features (attributes) of the data set. The most important method for de-

tecting correlations is the principal components analysis (PCA) also known

as Karhunen Loèwe transformation. Knowing correlations is also important

and valuable because with it the dimensionality of the data set can be con-

siderably reduced which improves both the efficiency of similarity search and

data mining as well as the accuracy. Moreover, knowing about the existence

of a relationship between attributes enables one to detect hidden causalities

(e.g. the influence of the age of a patient and the dose rate of medication

on the course of his disease or the coregulation of gene expression). The

information can also be used to gain financial advantage (e.g. in stock quota

analysis).

Methods such as PCA, however, are restricted because they can only be

applied to the data set as a whole. Therefore, it is only possible to detect

correlations which are expressed in all points or almost all points of the

data set. For a lot of applications this is not the case. For instance, in the

analysis of gene expression, we are facing the problem that a dependency

between two genes does only exist under certain conditions. Therefore, the

correlation is visible only in a local subset of the data. Other subsets may be

either not correlated at all or they may exhibit completely different kinds of

correlation (different features are dependent on each other). The correlation

of the whole data set can be weak even if for local subsets of the data strong

correlations exist. Figure 6.1 shows a simple example where two subsets of

two-dimensional points exhibit different correlations.

To the best of our knowledge both concepts of clustering (i.e. finding

densely populated subsets of the data) and correlation analysis have not

yet been addressed as a combined task for data mining. The most rele-

vant related approach is ORCLUS [AY00], but since it is k-medoid-based

it is very sensitive to noise and the locality of the analyzed correlations is

usually too coarse, i.e. the number of points taken into account for correla-

tion analysis is too large (cf. Sections 6.2 and 6.6 for a detailed discussion).
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(a) 2D view.

attribute 1 attribute 2

(b) Transposed view.

Figure 6.1: One-dimensional correlation lines.

In this chapter, we develop a new method which is capable of detecting

local subsets of the data which exhibit strong correlations and which are

densely populated (w.r.t. a given density threshold). We call such a subset

a correlation-connected cluster.

In lots of applications, such correlation-connected clusters are interest-

ing. For example, in E-commerce (recommendation systems or target mar-

keting) where sets of customers with similar behavior need to be detected

one searches for positive linear correlations. In DNA microarray analysis

(gene expression analysis) negative linear correlations express the fact that

two genes may be coregulated, i.e. if one has a high expression level, the other

one is very low and vice versa. Usually, such a coregulation will only exist

in a small subset of conditions or cases, i.e. the correlation will be hidden

locally in the data set and cannot be detected by global techniques. Figures

6.1 and 6.2 show simple examples how correlation-connected clusters can

look like. In Figure 6.1, the attributes exhibit two different forms of linear

correlation. We observe that if for some points there is a linear correlation

of all attributes, these points are located along a line. Figure 6.2 presents

two examples where an attribute z is correlated to the attributes x and y,

i.e. z = a + bx + cy. In this case, the set of points forms a two-dimensional

plane.

In this chapter we propose an approach that meets both the goal of clus-

tering and correlation analysis in order to find correlation-connected clus-

ters. The remainder of this chapter is organized as follows: In Section 6.2
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(a) 3D view.

attribute 1 attribute 2 attribute 3

(b) Transposed view of one plane.

Figure 6.2: Two-dimensional correlation planes.

we review and discuss related work. In Section 6.3 we formalize our notion

of correlation-connected clusters. Based on this formalization, we present

in Section 6.4 an algorithm called 4C (Computing Correlation Connected

C lusters) to efficiently compute such correlation-connected clusters. In Sec-

tion 6.5 we analyze the computational complexity of our algorithm while

Section 6.6 contains an extensive experimental evaluation of 4C. Section 6.7

concludes the chapter.

6.2 Related Work

Traditional clustering algorithms such as k-means or the EM-algorithm

search for spatial clusters which are spherically shaped. In [EKSX96] and

[BC00] two algorithms are proposed which are able to find clusters of arbi-

trary shape. However, these approaches are not able to distinguish between

arbitrarily shaped clusters and correlation clusters. The density-based clus-

tering approach of [EKSX96] was described in detail in Chapter 2.2. In

[BC00] the authors propose the algorithm FC (Fractal Clustering) to find

clusters of arbitrary shape. The paper presents only experiments for two-

dimensional data sets. So it is not clear whether the fractal dimension is

really stable in higher dimensions. Furthermore, the shapes of clusters de-

pend on the type of correlation of the involved points. Thus, in the case of

linear correlations, it is more target-oriented to search for shapes like lines

or hyperplanes than for arbitrarily shaped clusters.

As most traditional clustering algorithms fail to detect meaningful clus-
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ters in high-dimensional data, in the last years a lot of research has been

done in the area of subspace clustering. In the following, we are examin-

ing to what extent subspace clustering algorithms are able to capture local

data correlations and find clusters of correlated points. The principal axes

of correlated data are arbitrarily oriented. In contrast, subspace clustering

techniques like CLIQUE [AGGR98] and its successors MAFIA [GNC99] or

ENCLUS [CFZ99] or projected clustering algorithms like PROCLUS [AP99]

and DOC [PJAM02] only find axis-parallel projections of the data. In the

evaluation part we show that CLIQUE as one representative algorithm is

in fact not able to find correlation clusters. Therefore, we focus our atten-

tion to ORCLUS [AY00] which is a k-medoid related projected clustering

algorithm, allowing clusters to exist in arbitrarily oriented subspaces. The

problem of this approach is that the user has to specify the number of clus-

ters in advance. If this guess does not correspond to the actual number of

clusters, the results of ORCLUS deteriorate. A second problem, which can

also be seen in the evaluation part, is noisy data. In this case, the clusters

found by ORCLUS are far from optimal since ORCLUS assigns each point

to a cluster and thus cannot handle noise efficiently.

Based on the fractal (intrinsic) dimensionality of a data set, the authors

of [STTF02] present a global dimensionality reduction method. Correlation

in the data leads to the phenomenon that the embedding dimension of a data

set (in other words the number of attributes of the data set) and the intrinsic

dimension (the dimension of the spatial object represented by the data) can

differ a lot. The intrinsic (correlation fractal dimension) is used to reduce

the dimensionality of the data. As this approach adopts a global view on the

data set and does not account for local data distributions, it cannot capture

local subspace correlations. Therefore, it is only useful and applicable if the

underlying correlation affects all data points. Since this is not the case for

most real-world data, in [CM00] a local dimensionality reduction technique

for correlated data is proposed which is similar to [AY00]. The authors

focus on identifying correlated clusters for enhancing the indexing of high-

dimensional data only. Unfortunately, they do not give any hint to what

extent their heuristic-based algorithm can also be used to gain new insight

into the correlations contained in the data.
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Figure 6.3: Transposed view (left) and pattern-based cluster (right) of

some sample database objects.

In [YWWY02] the move-based algorithm FLOC computing near-optimal

δ-clusters is presented. A transposed view of the data is used to show the

correlations which are captured by the δ-cluster model (see Figure 6.3 for

an illustration). Each data point is shown as a curve where the attribute

values of each point are connected. Examples can be seen in Figure 6.1(b)

and 6.2(b). A cluster is regarded as a subset of points and attributes for

which the participating points show the same or a similar tendency rather

than being close to each other on the associated subset of dimensions. The

δ-cluster model concentrates on two forms of coherence, namely shifting

(or addition) and amplification (or production). In the case of amplification

coherence, for example, the vectors representing the points must be multiples

of each other. The authors state that this can easily be transformed into

the problem of finding shifting coherent δ-cluster by applying a logarithmic

function to each point. Therefore, they focus on finding shifting coherent

δ-clusters and introduce the metric of residue to measure the coherency

among points of a given cluster. An advantage is that thereby they can

easily handle missing attribute values. But in contrast to our approach,

the δ-cluster model limits itself to a very special form of correlation where

all attributes are positively linear correlated. It does not include negative

correlations or correlations where one attribute is determined by two or

more other attributes. In this cases, searching for a trend is no longer
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possible as can be seen in Figure 6.1 and 6.2. Let us note that such complex

dependencies cannot be illustrated by transposed views of the data. The

same considerations hold for the very similar p-cluster model introduced in

[WWYY02] and two extensions presented in [PZC+03, LW03].

6.3 The Notion of Correlation-Connected Clus-

ters

In this section, we formalize the notion of a correlation-connected clus-

ter. Intuitively, a correlation-connected cluster is a dense region of points

in the d-dimensional feature space, having at least one principal axis with

a low variation along this axis. Thus, a correlation-connected cluster has

two different properties: density and correlation. The first aspect is dis-

cussed in detail in Chapter 2.2. In the following, we will first address the

second property and then merge these ingredients to formalize our notion of

correlation-connected clusters.

6.3.1 Correlation Sets

We want to identify correlation-connected clusters, i.e. regions in which the

points exhibit correlation, and distinguish them from usual clusters, i.e. re-

gions of high point density only. Thus, we are interested in all subsets of

points with an intrinsic dimensionality that is considerably smaller than the

embedding dimensionality of the data space, e.g. a line or a plane in a three

or higher dimensional space. There are several methods to measure the in-

trinsic dimensionality of a point set in a region such as the fractal dimension

or the principal components analysis. We choose PCA because the fractal

dimension appeared to be not stable enough in our first experiments.

The PCA determines the covariance matrix M = [mij ] with mij =∑
S∈S

sisj of the considered point set S, and decomposes it into an orthonor-

mal Matrix V called eigenvector matrix and a diagonal matrix E called

eigenvalue matrix such that M = VEVT. The eigenvectors represent the

principal axes of the data set whereas the eigenvalues represent the variance

along these axes. In case of a linear dependency between two or more at-

tributes of the point set (correlation), one or more eigenvalues are close to
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zero. A set forms a λ-dimensional correlation hyperplane if d−λ eigenvalues

fall below a given threshold δ ≈ 0. Since the eigenvalues of different sets

exhibiting different densities may differ a lot in their absolute values, we

normalize the eigenvalues by mapping them onto the interval [0, 1]. This

normalization is denoted by Ω and simply divides each eigenvalue ei by the

maximum eigenvalue emax. We call the eigenvalues ei with Ω(ei) ≤ δ close

to zero.

Definition 6.1 (λ-dimensional linear correlation set)

Let S ⊆ D, λ ∈ IN (λ ≤ d), EV = e1, ..., ed the eigenvalues of the covari-

ance matrix of S in descending order, i.e. ei ≥ ei+1, and δ ∈ IR+
0 (δ ≈ 0).

S forms an λ-dimensional linear correlation set w.r.t. δ if at least d − λ

eigenvalues of S are close to zero, formally:

CorSetλ
δ (S) ⇔ |{ei ∈ EV |Ω(ei) ≤ δ}| ≥ d− λ

where Ω(ei) = ei/e1.

This condition states that the variance of S along d − λ principal axes

is low and therefore the points of S form an λ-dimensional hyperplane. We

drop the index λ and speak of a correlation set in the following wherever it

is clear from context.

Definition 6.2 (correlation dimension)

Let S ∈ DB be a linear correlation set w.r.t. δ ∈ IN . The number of eigen-

values with ei > δ is called correlation dimension, denoted by CorDim(S).

Let us note that if S is a λ-dimensional linear correlation set, then CorDim(S)

≤ λ. The correlation dimension of a linear correlation set S corresponds to

the intrinsic dimension of S.

6.3.2 Clusters as Correlation-Connected Sets

A correlation-connected cluster can be regarded as a maximal set of density-

connected points that exhibit uniform correlation. We can formalize the

concept of correlation-connected sets by merging the two concepts: density-

connected clusters (cf. Definition 2.7) and correlation sets (cf. Definition
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6.1). The intuition of our formalization is to consider those points as core

points of a cluster which have an appropriate correlation dimension in their

neighborhood. Therefore, we associate each point P with a similarity matrix

MP which is determined by PCA of the points in the ε-neighborhood of P .

For convenience, we call VP and EP the eigenvectors and eigenvalues of P ,

respectively. A point P is inserted into a cluster if it has the same or a

similar similarity matrix like the points in the cluster. To achieve this goal,

our algorithm looks for points that are close to the principal axis (or axes)

of those points which are already in the cluster. We will define a similarity

measure M̂P for the efficient search of such points.

We start with the formal definition of the covariance matrix MP associ-

ated with a point P .

Definition 6.3 (covariance matrix)

Let P ∈ DB. The matrix MP = [mij ] with

mij =
∑

S∈Nε(P )

sisj (1 ≤ i, j ≤ d)

is called the covariance matrix of the point P . VP and EP (with MP =

VPEPVT
P ) as determined by PCA of MP are called the eigenvectors and

eigenvalues of the point P , respectively.

We can now define the new similarity measure M̂P which searches points

in the direction of highest variance of MP (the major axes). Theoretically,

MP could be directly used as a similarity measure, i.e.

distMP
(P,Q) =

√
(P −Q)MP (P −Q)T where P,Q ∈ DB.

Figure 6.4(a) shows the set of points which lies in an ε-neighborhood of

P using MP as similarity measure. The distance measure puts high weights

on those axes with a high variance whereas directions with a low variance

are associated with low weights. This is usually desired in similarity search

applications where directions of high variance have a high distinguishing

power and, in contrast, directions of low variance are negligible.

Obviously, for our purpose of detecting correlation clusters, we need

quite the opposite. We want to search for points in the direction of highest
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Figure 6.4: ε-neighborhood of a point P according to MP (a) and M̂P (b).

variance of the data set. Therefore, we need to assign low weights to the

direction of highest variance in order to shape the ellipsoid such that it

reflects the data distribution (cf. Figure 6.4(b)). The solution is to change

large eigenvalues into smaller ones and vice versa. We use two fixed values,

1 and a parameter κ � 1 rather than, for example, inverting the eigenvalues

in order to avoid problems with singular covariance matrices. The number

1 is a natural choice because then the length of the corresponding semi-axes

of the ellipsoid is epsilon. The parameter κ controls the ”thickness” of the

λ-dimensional correlation line or plane, i.e. the tolerated deviation.

This is formally captured in the following definition:

Definition 6.4 (correlation similarity matrix)

Let P ∈ DB and VP , EP the corresponding eigenvectors and eigenvalues

of the point P . Let κ ∈ IR+ be a constant with κ � 1. The new eigenvalue

matrix ÊP with entries êi (i = 1, . . . d) is computed from the eigenvalues

e1, . . . , ed in EP according to the following rule:

êi =

 1 if Ω(ei) > δ

κ if Ω(ei) ≤ δ

where Ω is the normalization of the eigenvalues onto [0, 1] as described above.

The matrix M̂P = VP ÊPVT
P is called the correlation similarity matrix. The

correlation similarity measure associated with point P is denoted by

distP (P,Q) =
√

(P −Q) · M̂P · (P −Q)T.
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Figure 6.5: Correlation ε-neighborhood.

Figure 6.4(b) shows the ε-neighborhood according to the correlation sim-

ilarity matrix M̂P . As described above, the parameter κ specifies how much

deviation from the correlation is allowed. The greater the parameter κ, the

tighter and clearer the correlations which will be computed. It empirically

turned out that our algorithm presented in Section 6.4 is rather insensitive

to the choice of κ. A good suggestion is to set κ = 50 in order to achieve

satisfying results. Thus, for the sake of simplicity, we omit the parameter κ

in the following.

Using this similarity measure, we can define the notions of correla-

tion core points and correlation-reachability. However, in order to define

correlation-connectivity as a symmetric relation, we face the problem that

the similarity measure in Definition 6.4 is not symmetric, i.e. distP (P,Q) =

distQ(Q,P ) does in general not hold (cf. Figure 6.5(b)). Symmetry, however,

is important to avoid ambiguity of the clustering result. If an asymmetric

similarity measure is used in DBSCAN, a different clustering result can be

obtained, depending on the order of processing, e.g. which point is selected

as the starting point. Although the result is typically not seriously affected

by this ambiguity effect, we avoid this problem easily by an extension of

our similarity measure. The trick is to consider both similarity measures

distP (P,Q) as well as distQ(P,Q) and to combine them by a suitable arith-

metic operation such as the maximum of the two. Based on these consider-

ations, we define the correlation ε-neighborhood as a symmetric concept:



94 6 Correlation Clustering

Definition 6.5 (correlation ε-neighborhood)

Let ε ∈ IR+
0 . The correlation ε-neighborhood of a point O ∈ DB, denoted

by N M̂O
ε (O), is defined by:

N M̂O
ε (O) = {X ∈ DB | max{distO(O,X), distX(X, O)} ≤ ε}.

The correlation ε-neighborhood is illustrated in Figure 6.5. Correlation

core points can now be defined as follows.

Definition 6.6 (correlation core point)

Let ε, δ ∈ IR+
0 and k, λ ∈ IN . A point O ∈ D is called correlation core

point w.r.t. ε, k, δ, and λ (denoted by Coreλ,δ
ε,k(O)) if its ε-neighborhood

is a λ-dimensional linear correlation set and its correlation ε-neighborhood

contains at least k points, formally:

Coreλ,δ
ε,k(O) ⇔ CorSetλ

δ (Nε(P )) ∧ |N M̂O
ε (O) | ≥ k.

Definition 6.7 (direct correlation-reachability) Let ε, δ ∈ IR+
0 and k, λ ∈

IN . A point P ∈ DB is direct correlation-reachable from a point Q ∈ DB

w.r.t. ε, k, δ, and λ (denoted by DirReachλ,δ
ε,k(Q,P)) if Q is a corre-

lation core point, the correlation dimension of Nε(P ) is at least λ, and

P ∈ N M̂Q
ε (Q), formally:

DirReachλ,δ
ε,k(Q,P ) ⇔

(1) Coreλ,δ
ε,k(Q)

(2) CorDim(Nε(P )) ≤ λ

(3) P ∈ N M̂Q
ε (Q).

Correlation-reachability is symmetric for correlation core points. Both

points P and Q must find the other point in their corresponding correlation

ε-neighborhood.

Definition 6.8 (correlation-reachability)

Let ε, δ ∈ IR+
0 (δ ≈ 0) and k, λ ∈ IN . A point P ∈ DB is correlation-

reachable from a point Q ∈ DB w.r.t. ε, k, δ, and λ (denoted by Reachλ,δ
ε,k(Q,P))

if there is a chain of points P1, · · ·Pn such that P1 = Q,Pn = P and Pi+1 is
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direct correlation-reachable from Pi, formally:

Reachλ,δ
ε,k(Q,P ) ⇔

∃P1, . . . ,Pn ∈ D : P1 = Q ∧ Pn = P ∧

∀i ∈ {1, . . . , n− 1} : DirReachλ,δ
ε,k(Pi, Pi+1).

The correlation-reachability is the transitive closure of direct correlation-

reachability.

Definition 6.9 (correlation-connectivity)

Let ε ∈ IR+
0 and k ∈ IN . A point P ∈ D is correlation-connected to a point

Q ∈ D if there is a point O ∈ D such that both P and Q are correlation-

reachable from O, formally:

Connectλ,δ
ε,k(Q,P ) ⇔

∃o ∈ D : Reachλ,δ
ε,k(O,Q) ∧ Reachλ,δ

ε,k(O,P ).

Correlation-connectivity is a symmetric relation. A correlation-connected

cluster can now be defined as a maximal correlation-connected set.

Definition 6.10 (correlation-connected set)

Let ε, δ ∈ IR+
0 and k, λ ∈ IN . A non-empty subset C ⊆ DB is called a

density-connected set w.r.t. ε, k, δ, and λ if all points in C are density-

connected and C is maximal w.r.t. density-reachability, formally:

ConSetλ,δ
ε,k(C) ⇔

(1) Connectivity: ∀O,Q ∈ C : Connectλ,δ
ε,k(O,Q)

(2) Maximality: ∀P,Q ∈ DB : Q ∈ C ∧Reachλ,δ
ε,k(Q,P ) ⇒ P ∈ C.

The following two lemmata are important for validating the correctness

of our clustering algorithm. Intuitively, they state that we can discover a

correlation-connected set for a given parameter setting in a two-step ap-

proach: First, choose an arbitrary correlation core point O from the data-

base. Second, retrieve all points that are correlation-reachable from O. This

approach yields the density-connected set containing O.
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Lemma 6.1

Let P ∈ DB. If P is a correlation core point, then the set of points which

are correlation-reachable from P is a correlation-connected set, formally:

Coreλ,δ
ε,k(P ) ∧ C = {O ∈ DB |Reachλ,δ

ε,k(P,O)}

⇒ ConSetλ,δ
ε,k(C).

Proof.

(1) C 6= ∅:
By assumption, Coreλ,δ

ε,k(P) and thus, CorDim(Nε(P )) ≤ λ.

⇒ DirReachλ,δ
ε,k(P, P )

⇒ Reachλ,δ
ε,k(P, P )

⇒ P ∈ C.

(2) Maximality:

Let X ∈ C and Y ∈ DB and Reachλ,δ
ε,k(X, Y ).

⇒ Reachλ,δ
ε,k(P,X) ∧Reachλ,δ

ε,k(X, Y )

⇒ Reachλ,δ
ε,k(P, Y ) (since correlation reachability is a transitive relation).

⇒ Y ∈ C.

(3) Connectivity:

∀X, Y ∈ C : Reachλ,δ
ε,k(P,X) ∧Reachλ,δ

ε,k(P, Y )

⇒ Connectλ,δ
ε,k(X, Y ) (via P ). �

Lemma 6.2 Let C ⊆ DB be a correlation-connected set. Let P ∈ C be a

correlation core point. Then C equals the set of points which are correlation-

reachable from P , formally:

ConSetλ,δ
ε,k(C) ∧ P ∈ C ∧Coreλ,δ

ε,k(P )

⇒ C = {O ∈ DB |Reachλ,δ
ε,k(P,O)}.

Proof.

Let C̄ = {O ∈ DB |Reachλ,δ
ε,k(P,O)}. We have to show that C̄ = C:

(1) C̄ ⊆ C: obvious from definition of C̄.

(2) C ⊆ C̄: Let Q ∈ C. By assumption, P ∈ C and ConSetλ,δ
ε,k(C).

⇒ ∃O ∈ C : Reachλ,δ
ε,k(O,P ) ∧Reachλ,δ

ε,k(O,Q)
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⇒ Reachλ,δ
ε,k(P,O) (since both O and P are correlation core points and

correlation-reachability is symmetric for correlation core points.)

⇒ Reachλ,δ
ε,k(P,Q) (transitivity of correlation-reachability)

⇒ Q ∈ C̄. �

6.4 The Algorithm 4C

In the following, we describe the algorithm 4C which performs one pass over

the database to find all correlation clusters for a given parameter setting.

The pseudocode of the algorithm 4C is given in Figure 6.6.

4C(SetOfPoints DB, Real ε,δ, Integer k,λ)

// assumption: each point in DB is marked as unclassified

for each unclassified O ∈ DB do

STEP 1. test Coreλ,δ
ε,k(O) predicate:

compute Nε(O);

if |Nε(O)| ≥ k then

compute MO;

if CorDim(Nε(O)) ≤ λ then

compute M̂O and N M̂O
ε (O);

test |N M̂O
ε (O)| ≥ k;

STEP 2.1. if Coreλ,δ
ε,k(O) expand a new cluster:

generate new clusterID;

insert all X ∈ N M̂O
ε (O) into queue Φ;

while Φ 6= ∅ do

Q = first point in Φ;

compute R = {X ∈ DB |DirReachλ,δ
ε,k(Q, X)};

for each X ∈ R do

if X is unclassified or noise then

assign current clusterID to X

if X is unclassified then

insert X into Φ;

remove Q from Φ;

STEP 2.2. if not Coreλ,δ
ε,k(O) O is noise:

mark O as noise;

Figure 6.6: The algorithm 4C.
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At the beginning, each point is marked as unclassified. During the run

of 4C, all points are either assigned a certain cluster identifier or marked

as noise. For each point which is not yet classified, 4C checks whether this

point is a correlation core point or not (see STEP 1 in Figure 6.6). If the

point is a correlation core point, the algorithm expands the cluster belonging

to this point (STEP 2.1). Otherwise the point is marked as noise (STEP

2.2). To find a new cluster, 4C starts in STEP 2.1 with an arbitrary corre-

lation core point O and searches for all points that are correlation-reachable

from O. Due to Lemma 6.2, this is sufficient to find the whole cluster con-

taining the point O. When 4C enters STEP 2.1, a new cluster identifier

“clusterID” is generated which will be assigned to all points found in STEP

2.1. 4C begins by inserting all points in the correlation ε-neighborhood of

point O into a queue. For each point in the queue it computes all directly

correlation-reachable points and inserts those points into the queue which

are still unclassified. This is repeated until the queue is empty.

As discussed in Section 6.3, the results of 4C do not depend on the order

of processing, i.e. the resulting clustering (number of clusters and association

of core points to clusters) is determinate.

6.5 Complexity Analysis

The computational complexity with respect to the number of data points as

well as the dimensionality of the data space is an important issue because

the proposed algorithms are typically applied to large data sets of high

dimensionality. The idea of our correlation-connected clustering method is

founded on DBSCAN, a density-based clustering algorithm for Euclidean

data spaces. The complexity of the original DBSCAN algorithm depends

on the existence of an index structure for high-dimensional data spaces.

The worst case complexity is O(n2), but the existence of an efficient index

can reduce the complexity to O(n log n) [EKSX96]. DBSCAN is linear in

the dimensionality of the data set for the Euclidean distance metric. To

enables user adaptability of the distance function, a quadratic form distance

metric can be applied instead of the Euclidean distance metric. In this case,

the time complexity of DBSCAN is O(d2 · n log n). In contrast, subspace
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clustering methods such as CLIQUE are known to be exponential in the

number of dimensions [AY00, AGGR98].

We begin our analysis with the assumption of no index structure.

Lemma 6.3 The overall worst-case time complexity of our algorithm on

top of the sequential scan of the data set is O(d2 · n2 + d3 · n).

Proof. Our algorithm has to associate each point of the data set with a

similarity measure that is used for searching neighbors (cf. Definition 6.4).

We assume that the corresponding similarity matrix must be computed once

for each point, and it can be held in the cache until it is no longer needed.

The covariance matrix is filled with the result of an Euclidean range query

which can be evaluated in O(d · n) time. Then the matrix is decomposed

by using PCA which requires O(d3) time. For all points together, we have

O(d · n2 + d3 · n).

Checking the correlation core point property according to Definition 6.6, and

expanding a correlation-connected cluster requires for each point the evalua-

tion of a range query with a quadratic form distance measure which can be

done in O(d2 · n). For all points together, including the above cost for the

determination of the similarity matrix, we obtain an worst-case time com-

plexity of O(d2 · n2 + d3 · n). �

Under the assumption that an efficient index structure for high-dimensional

data spaces [BKK96, BBJ+00] is available, the complexity of all range

queries is reduced from O(n) to O(log n). Let us note that we can use

Euclidean range queries as a filter step for the quadratic form range queries

because no semi-axis of the corresponding ellipsoid exceeds ε. Therefore,

the overall time complexity in this case is given as follows:

Lemma 6.4 The overall worst case time complexity of our algorithm on top

of an efficient index structure for high-dimensional data is O(d2 · n log n +

d3 · n).

Proof. Analogous to Lemma 6.3. �
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Figure 6.7: Scalability of 4C w.r.t. the database size.

6.6 Evaluation

In this section, we present a extensive evaluation of 4C. We implemented 4C

as well as the three comparative methods DBSCAN, CLIQUE, and ORCLUS

in JAVA. All experiments were run on a Linux workstation with a 2.0 GHz

CPU and 2.0 GB RAM.

6.6.1 Efficiency

According to Section 6.5, the runtime of 4C scales superlinear with the

number of input records. This is illustrated in Figure 6.7, showing the

results of 4C applied to synthetic two-dimensional data of variable size.

6.6.2 Effectiveness

We evaluated the effectiveness of 4C on several synthetic data sets as well

as on real-world data sets, including gene expression data and metabolome

data. In addition, we compared the quality of the results of our method to

the quality of the results of DBSCAN, ORCLUS, and CLIQUE. In all our

experiments, we set the parameter κ = 50 as suggested in Section 6.3.2.
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Dataset D
Cluster 1

Cluster 2

Cluster 3

Noise

Figure 6.8: Clusters found by 4C on a 10D synthetic data set. Parameters:

ε = 10.0, k = 5, λ = 2, δ = 0.1.

Synthetic Data Sets

We first applied 4C on several synthetic data sets (with 2 ≤ d ≤ 30) con-

sisting of several dense, linear correlations. In all cases, 4C had no problems

to identify the correlation-connected clusters. As an example, Figure 6.8

illustrates the transposed view of the three clusters and the noise 4C found

on a sample 10-dimensional synthetic data set consisting of approximately

1,000 points.

Real-World Data Sets

Gene Expression Data. We applied 4C to the gene expression data set

of [THC+99]. The data set is derived from time series experiments on the
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Sample Cluster 1 Sample Cluster 2

Sample Cluster 4Sample Cluster 3

Figure 6.9: Sample clusters found by 4C on the gene expression data set.

Parameters: ε = 25.0, k = 8, λ = 8, δ = 0.01.

yeast mitotic cell cycle. The expression levels of approximately 3,000 genes

are measured at 17 different time slots. Thus, we face a 17-dimensional data

space to search for correlations, indicating coregulated genes. 4C found 60

correlation-connected clusters with few coregulated genes. The clusters con-

tained between 10 and 20 genes, which is quite reasonable from a biological

perspective. The transposed views of four sample clusters are depicted in

Figure 6.9. All four clusters exhibit simple linear correlations on a subset

of their attributes. Let us note that we also found other linear correlations

which are rather complex to visualize. We also analyzed the results of our

correlation clusters (based on the publicly available information resources

on the yeast genome [Sac]) and found several biologically important impli-

cations. For example one cluster consists of several genes coding for proteins

related to the assembly of the spindle pole required for mitosis (e.g. KIP1,

SLI15, SPC110, SPC25, and NUD1). Another cluster contains several genes

coding for structural constituents of the ribosome (e.g. RPL4B, RPL15A,

RPL17B, and RPL39). The functional relationships of the genes in the

clusters confirm the significance of the computed coregulation.
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Figure 6.10: Clusters found by 4C on the metabolome data set. Parame-

ters: ε = 150.0, k = 8, λ = 20, δ = 0.1.

Metabolome Data. We applied 4C on a metabolome data set de-

scribed in [LNRvK+02]. The data set consists of the concentrations of 43

metabolites in 2,000 human newborns. The newborns were labeled accord-

ing to some specific metabolic diseases. Thus, the data set consists of 2,000

data points with d = 43. 4C detected six correlation-connected sets which

are visualized in Figure 6.10. Cluster one and two (in the lower left cor-

ner marked with “control”) consists of healthy newborns whereas the other

clusters consists of newborns having one specific disease (e.g. “PKU” or

“LCHAD”). The group of newborns suffering from “PKU” was split in three

clusters. Several sick as well as healthy newborns were classified as noise.
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Clusters found

by DBSCAN

Clusters found
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Figure 6.11: Comparison of 4C with DBSCAN.

Comparisons to Other Methods

We compared the effectiveness of 4C with related clustering methods, in

particular the density-based clustering algorithm DBSCAN, the subspace

clustering algorithm CLIQUE, and the projected clustering algorithm OR-

CLUS. For that purpose, we applied these methods on several synthetic data

sets including two-dimensional data sets and higher dimensional data sets

(d = 10).

Comparison with DBSCAN. The clusters found by DBSCAN and

4C applied to the two-dimensional data sets are depicted in Figure 6.11. In

both cases, DBSCAN finds clusters which do not exhibit correlations (and

thus are not detected by 4C). In addition, DBSCAN cannot distinguish

varying correlations which overlap, e.g. both correlations in data set B in

Figure 6.11, and treat such clusters as one density-connected set, whereas

4C can differentiate such correlations. We gain similar observations when

we applied DBSCAN and 4C on the higher dimensional data sets. Let us

note that these results are not unexpected since DBSCAN only searches for

density-connected sets but does not search for correlations and thus cannot

be applied to the task of finding correlation-connected sets.
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Comparison with CLIQUE. A comparison of 4C with CLIQUE

gained similar results. CLIQUE finds clusters in subspaces which do not ex-

hibit correlations (and are not detected by 4C). On the other hand, CLIQUE

is usually limited to axis-parallel clusters and thus cannot detect arbitrary

correlations. These observations occur especially with higher dimensional

data (d ≥ 10 in our tests). Again, these results are not unexpected since

CLIQUE only searches for axis-parallel subspace clusters (dense projections)

but does not search for correlations. This empirically supports the suspicion

that CLIQUE cannot be applied to the task of finding correlation-connected

sets.

Comparison with ORCLUS. A comparison of 4C with ORCLUS

resulted in quite different observations. In fact, ORCLUS computes clusters

of correlated points. However, since it is k-medoid based, it suffers from the

following two drawbacks: First, the choice of k is a rather hard task for real-

world data sets. Even for synthetic data sets where we knew the number of

clusters beforehand, ORCLUS often performs better with a slightly different

value of k. Second, ORCLUS is rather sensitive to noise which often appears

in real-world data sets. Since all points have to be assigned to a cluster, the

locality of the analyzed correlations is often too coarse, i.e. the subsets of

the points taken into account for correlation analysis are too large. As a

consequence, the correlation clusters are often blurred by noise points and

thus are hard to obtain from the resulting output. Figure 6.12 illustrates a

sample three-dimensional synthetic data set, the clusters found by 4C are

marked by black lines. Figure 6.13 depicts the points in each cluster found

by ORCLUS (k = 3 yields the best result) separately. It can be seen, that

the correlation clusters are — if detected — blurred by noise points. When

we applied ORCLUS to higher dimensional data sets (d = 10), the choice of

k became even more complex and the problem of noise points blurring the

clusters, i.e. a too coarse locality, simply cumulated in the fact that ORCLUS

often could not detect correlation clusters in high-dimensional data.
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Figure 6.12: Three correlation-connected clusters found by 4C on a 3D

data set. Parameters: ε = 2.5, k = 8. δ = 0.1, λ = 2.

Input Parameters

The algorithm 4C needs four input parameters which are discussed in the

following:

The parameter ε ∈ IR+
0 specifies the size of the local areas in which the

correlations are examined and thus determines the number of points which

contribute to the covariance matrix and consequently to the correlation sim-

ilarity measure of each point. It also participates in the determination of

the density threshold a cluster must exceed. Its choice usually depends on

the volume of the data space, i.e. the maximum value of each attribute and

the dimensionality of the feature space. The choice of ε has two aspects.

First, it should not be too small because in that case an insufficient number

of points contribute to the correlation similarity measure of each point and,

thus, this measure can be meaningless. On the other hand, ε should not

be too large because then some noise points might be correlation-reachable

from points within a correlation-connected cluster. Let us note that our

experiments indicated that the second aspect is not significant for 4C (in

contrast to ORCLUS).
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Figure 6.13: Clusters found by ORCLUS on the data set depicted in Figure

6.12. Parameters: k = 3, l = 2.
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The parameter k ∈ IN specifies the number of neighbors a point must

find in an ε-neighborhood and in a correlation ε-neighborhood to exceed the

density threshold. It determines the minimum cluster size. The choice of

k should not be to small (k ≥ 5 is a reasonable lower bound) but is rather

insensitive in a broad range of values.

Both ε and k should be chosen hand in hand.

The parameter λ ∈ IN specifies the correlation dimension of the correlation-

connected clusters to be computed. As discussed above, the correlation

dimension of a correlation-connected cluster corresponds to its intrinsic di-

mension. In our experiments, it turned out that λ can be seen as an upper

bound for the correlation dimension of the detected correlation-connected

clusters. However, the computed clusters tend to have a correlation dimen-

sion close to λ.

The parameter δ ∈ IR+
0 (where 0 ≤ δ ≤ 1) specifies the lower bound for

the decision whether an eigenvalue is set to 1 or to κ � 1. It empirically

turned out that the choice of δ influences the tightness of the detected cor-

relations, i.e. how much local variance from the correlation is allowed. Our

experiments also showed that δ ≤ 0.1 is usually a good choice.

6.7 Summary

In this chapter, we have proposed 4C, an algorithm for computing clusters

of correlation-connected points. This algorithm searches for local subgroups

of a set of feature vectors with a uniform correlation. Knowing a correlation

is potentially useful because a correlation indicates a causal dependency

between features. In contrast to well-known methods for the detection of

correlations like the principal components analysis, our algorithm is capable

to separate different subgroups in which the dimensionality as well as the

type of the correlation (positive/negative) and the dependent features are

different, even in the presence of noise points.

Our proposed algorithm 4C is determinate, robust with regard to noise,

and efficient with a worst case time complexity between O(d2 ·n log n+d3 ·n)

and O(d2 ·n2 +d3 ·n). In an extensive evaluation, data from gene expression

analysis and metabolic screening have been used. Our experiments show
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a superior performance of 4C over methods like DBSCAN, CLIQUE, and

ORCLUS.
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Part III

Clustering Complex Objects

in Arbitrary Metric Spaces
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Chapter 7

Similarity Models for Images

- A Motivating Example

As we have seen in the first part of the thesis, a common approach to model

data is to extract a vector of features from each object in the database and

then use the Euclidean distance between those feature vectors as similarity

measure for clustering. However, the effectiveness of this approach is highly

dependent on the quality of the feature transformation. In this chapter, we

will have a look at image data as one representative of complex objects where

such a feature transformation no longer yields the desired effects. For image

data, a lot of different aspects like color, texture, hue or saturation have

to be integrated into the similarity model. Additional, the problem arises

how to include the structural content information into the similarity model.

The chapter should give the reader an impression why new techniques for

clustering complex objects in arbitrary metric spaces are needed.

113
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Figure 7.1: Two similar images and the corresponding 112-dimensional

color histograms.

7.1 Color-Based Similarity of Images

A natural way to search for color images in a multimedia database is based

on color distributions [HSE+95]. Two color images are defined to be sim-

ilar if they contain approximately the same colors. This is formalized by

means of a color histogram. After reducing and normalizing the color spec-

trum of the images to a manageable number of different colors, the images

are analyzed. For each color, the ratio of pixels which are correspondingly

colored is determined (cf. Figure 7.1). An obvious way to compare color

histograms is to interpret them as vectors in Euclidean space. This ap-

proach leads to the difficulty that all pairs of different colors are interpreted

as likewise dissimilar. In human perception, however, some colors are very

similar to each other, e.g. red and orange, whereas others are very dis-

similar, e.g. yellow and blue. The so-called cross-talk between similar col-

ors can be taken into account if instead of the Euclidean distance between

the histogram vectors the following quadratic form distance metric is used:

dA(x, y) =
√

(x− y) ∗A ∗ (x− y)T .

In this formula, the similarity matrix A contains the information which

colors are similar to each other and to what degree. The components aij of

the positive semi-definit matrix A denote the similarity of the components i

and j of the respective vectors. This definition of similarity in color images

is for example used by the QBIC system [FBF+94] or in [SK97].
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Figure 7.2: An image and its inherent structure.

7.2 Content-based Similarity of Images

Often, the user is not satisfied with getting images with a similar color, but

is interested in images with a similar content or structure. Thus, numerous

approaches for content-based image retrieval have been proposed in the lit-

erature. They are based on features like color [FBF+94], shape [MKL97] or

texture [CHH97]. In [FCE00] a graph-based approach similar to the one de-

scribed in Section 7.2.2 is used while in [TVJD95] an edit distance measure

is used to measure the similarity of topological arrangements. [SWS+00]

gives a nice overview of the different approaches.

Usually, images contain an inherent structure which may be hierarchi-

cal. An example can be seen in Figure 7.2. In the following, we describe

two models for image representation and similarity measurement which take

structural as well as content features like color into account [KKS04].

7.2.1 Image Representation as Containment Trees

To utilize the inherent structure of images for content-based retrieval, one

can model them as so-called containment trees. Containment trees model

the hierarchical containment of image regions within others (see Figure 7.3

for an illustration).

To extract the containment tree of an image, the image is first segmented

based on the colors of the regions. This is done by using a region growing

algorithm. The resulting segments are attributed with their color and size

relative to the complete image. In a second step, the containment hierarchy

is extracted from the set of segments by determining which regions are com-
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Figure 7.3: An image and its containment tree.

pletely contained in other regions. In this context, a region Rin is said to

be contained in a region Rcont if for every point p ∈ Rin and every straight

line L 3 p there exist two points o1, o2 ∈ Rcont with o1, o2 ∈ L and o1, o2

are on opposite sides of p.

To measure the similarity of containment trees, special similarity mea-

sures for attributed trees are necessary. A successful similarity measure

for attributed trees is the edit distance. Well-known from string matching

[Lev66, WF74], the edit distance is the minimal number of edit operations

necessary to transform one tree into the other. The basic form allows two

edit operations, i.e. the insertion and the deletion of a node. In the case of

attributed nodes, the change of a node label is introduced as a third basic

operation. A great advantage of using the edit distance as a similarity mea-

sure is that along with the distance value a mapping between the nodes in

the two trees is provided in terms of the edit sequence. The mapping can

be visualized and can serve as an explanation of the similarity distance to

the user.

However, as the computation of the edit-distance is NP-complete [ZSS92],

constrained edit distances like the degree-2 edit distance [ZWS96] have been

introduced. The main idea behind this distance measure is that only in-

sertions or deletions of nodes with a maximum number of two neighbors

are allowed. While yielding good results, the degree-2 edit distance is still

computationally complex and, therefore, of limited benefit for searching or

clustering in large databases. In Chapter 9, a filter and refinement architec-

ture for the degree-2 edit distance is presented to overcome this problem. A

set of new filter methods for structural and for content-based information

as well as ways to flexibly combine different filter criteria are presented.
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Figure 7.4: An image and its segmentation graph.

7.2.2 Image Representation as Segmentation Graphs

Graphs are another way to model images for content-based similarity search.

They were successfully used for shape retrieval [HCH99], object recognition

[KKV90] or face recognition [WFKvdM97]. In this section, we describe a

content-based image retrieval system based on graphs which are extracted

from images in a similar way as the trees in the preceding section.

To extract graphs from the images, they are segmented with a region

growing technique and neighboring segments are connected by edges to rep-

resent the neighboring relationship (see Figure 7.4 for an illustration). Each

segment is assigned four attribute values which are the size, the height and

width of the bounding box and the color of the segment. The values of the

first three attributes are expressed as a percentage relative to the image size,

height and width in order to make the measure invariant to scaling.

Most known similarity measures for attributed graphs are either limited

to a special type of graph or are computationally extremely complex, i.e.

NP-complete. Therefore, they are unsuitable for searching or clustering

large collections. In [KS03] the authors present a new similarity measure for

attributed graphs, called edge matching distance.

Definition 7.1 (edge matching distance)

Let G1(V1, E1) and G2(V2, E2) be two attributed graphs. Without loss

of generality, we assume that |E1| ≥ |E2|. The complete bipartite graph

Gem(Vem = E1 ∪ E2 ∪ ∆, E1 × (E2 ∪ ∆)), where ∆ represents an empty

dummy edge, is called the edge matching graph of G1 and G2. An edge

matching between G1 and G2 is defined as a maximal matching in Gem. Let

there be a non-negative metric cost function c : E1 × (E2 ∪∆) → IR+
0 . The
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edge matching distance between G1 and G2, denoted by dmatch(G1, G2), is

defined as the cost of the minimum-weight edge matching between G1 and

G2 with respect to the cost function c.

The authors demonstrate that the edge matching distance is a meaningful

similarity measure for attributed graphs and that it enables efficient cluster-

ing of structured data. In [KS03] there is also a filter-refinement architecture

and an accompanying set of filter methods presented to reduce the number

of necessary distance calculations during similarity search.

7.3 Combining Multiple Image Representations for

Clustering

As we have seen in the previous two sections, there are different ways to

represent image data. All those different similarity models for image data

have their own advantages and disadvantages. Using for example text de-

scriptions of images, one is able to cluster all images related to a certain

topic, but those images need not look alike. Using color histograms instead,

the images are clustered according to the distribution of color in the image.

But as only the color information is taken into account, a green meadow

with some flowers and a green billiard table with some colored balls on it

can obviously not be distinguished by this similarity model. On the other

hand, a similarity model taking content information into account might not

be able to distinguish images of different colors.

Traditional clustering algorithms are based on one representation space

and thus take only one of those representations into account during cluster-

ing. We argue that no single representation of an image models the intuitive

notion of similar images adequately. Thus, for clustering complex objects

like images it would be highly desirable to take different representations into

account. In the next chapter, we will show how density-based clustering can

be expanded to clustering complex objects like images, taking multiple rep-

resentations into account.



Chapter 8

Clustering

Multi-Represented Objects

with Noise

Traditional clustering algorithms are based on one representation space, usu-

ally a vector space. However, in a variety of modern applications, multiple

representations exist for each object. In the last chapter we have seen that

images can be represented using different similarity models. In this chap-

ter, we present an efficient density-based approach to cluster such multi-

represented data, taking all available representations into account. We pro-

pose two different techniques to combine the information of all available

representations dependent on the application. The evaluation part shows

that our approach is superior to existing techniques. Parts of this material

have been published in [KKPS04b, KKPS04a].
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Figure 8.1: Three different representations for a protein.

8.1 Introduction

Traditional clustering methods are based on one representation space, usu-

ally a vector space of features and a corresponding distance measure. But for

a variety of modern applications such as images, biomolecular data, CAD-

parts or multi-media files mined from the internet, it is problematic to find a

common feature space that incorporates all given information. Proteins for

example are characterized by an amino acid sequence, a secondary and a ter-

tiary structure. Additionally, protein databases such as Swissprot [BBA+03]

provide meaningful text descriptions of the stored proteins (see Figure 8.1

for an illustration). In CAD-catalogues, the parts are represented by some

kind of 3D model like Bézier curves, voxels or polygon meshes and addi-

tional textual information like descriptions of technical and economical key

data. Another example is biometric data which consist of speech patterns,

fingerprints and facial features. We call this kind of data multi-represented

data since any data object might provide several different representations.

To cluster multi-represented data, using the established clustering meth-

ods would require to restrict the analysis to a single representation or to

construct a feature space, comprising all representations. However, the re-

striction to a single feature space would not consider all available information

and the construction of a combined feature space demands great care when

constructing a combined distance function.
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In this chapter, we propose a method to integrate multiple represen-

tations directly into the clustering algorithm. Our method is again based

on the density-based clustering algorithm DBSCAN which is presented in

Section 2.2. Since our method employs a separated feature space for each

representation, it is not necessary to design a new suitable distance mea-

sure for each new application. Additionally, the handling of objects that

do not provide all possible representations is integrated naturally without

defining dummy values to compensate the missing representations. Last

but not least, our method does not require a combined index structure, but

benefits from each index that is provided for a single representation. Thus,

it is possible to employ highly specialized index structures and filters for

each representation instead of using very generally designed metric trees.

We evaluate our method for two example applications. The first is a data

set consisting of protein sequences and text descriptions. Additionally, we

applied our method to the clustering of images.

The rest of the chapter is organized as follows. After this introduction,

we present related work on clustering and data mining of multi-represented

objects and describe the feature spaces that are used in our experiments.

Section 8.3 formalizes the problem and introduces our new clustering method.

In our experimental evaluation that is given in Section 8.4, we introduce a

new quality measure to judge the quality of a clustering with respect to a

reference clustering and display the results achieved by our method in com-

parison with the other mentioned approaches. The last section summarizes

the chapter and presents some ideas for future research.

8.2 Related Work

8.2.1 Multi-Represented Data Mining

There are several problems that are closely related to the clustering of multi-

represented data. Data mining of multi-instance objects [WFP03] is based

on the precondition that each data object might be represented by more

than one instance in a common data space. However, all instances that are

employed are elements of the same data space and multi-instance objects
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were predominantly treated with respect to classification not to clustering.

A similar setting to the clustering of multi-represented objects is the

clustering of heterogenous or multi-typed objects [WZC+03, ZCM02] in web

mining. In this setting, there are also multiple databases, each yielding ob-

jects in a separated data space. Each object within these data spaces may

be related to an arbitrary amount of data objects within the other data

spaces. The framework of reinforcement clustering employs an iterative pro-

cess based on an arbitrary clustering algorithm. It clusters one dedicated

data space while employing the other data spaces for additional information.

It is also applicable for multi-represented objects. However, due to its de-

pendency on the data space for which the clustering is started, it is not well

suited to solve our task. Since, to the best of our knowledge, reinforcement

clustering is the only other clustering algorithm that is directly applicable to

multi-represented objects, we use it for comparison in our evaluation section.

8.2.2 Application Domains

In this section, we give a brief overview over the four data representations

we employ in our experimental evaluation. Proteins can be regarded as se-

quences of the 20 amino acids. Therefore, each sequence is mapped into a

436 dimensional feature space. The first 400 features are 2-grams of suc-

cessive amino acids. The last 36 dimensions are 2-grams of 6 exchange

groups that the amino acids belong to [DK02]. 2-grams (a subsequence of

length 2) are used to preserve the sequential character of the data. To com-

pare the derived feature vectors, we employ Euclidian distance. To process

text documents, we rely on projecting the documents into the feature space

of relevant terms. Documents are described by a vector of term frequencies

weighted by the inverse document frequency (TFIDF) [Sal89]. We employed

cosine distance to compare the TFIDF-vectors. For images, we use two dif-

ferent representations. The first representation is a 64-dimensional color

histogram. In this case, we use the weighted distance between those color

histograms, represented as a quadratic form distance function as described

in Section 7.1. The second representation are containment trees as described

in Section 7.2.
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8.3 Clustering Multi-Represented Objects

8.3.1 Preliminaries

Let DB be a database consisting of n objects. Let Ri(o) be a function

that maps the object o onto the representation i, where i is a form of

representation, e.g. a tree or a graph representation of the object o. Let

R := {R1, ..., Rm} be the set of different representations, existing for ob-

jects in DB. Each object o ∈ DB is therefore described by at most m

different representations, i.e. o := {R1(o), R2(o), ..., Rm(o)}. If all different

representations exist for o, than |o| = m else |o| < m. The distance func-

tion for a representation Ri is denoted by disti. We assume that disti is

symmetric and reflexive. In the following, we call the εi-neighborhood of an

object o in one special representation Ri its local ε-neighborhood w.r.t. Ri.

Definition 8.1 (local εi-neighborhood w.r.t. Ri )

Let o ∈ DB, εi ∈ IR+
0 , Ri ∈ R. The local εi-neighborhood w.r.t. Ri of o,

denoted by NRi
ε (o), is defined by

NRi
ε (o) = {x ∈ DB | disti(Ri(o), Ri(x)) ≤ εi}.

Note that εi can be chosen optimally for each representation.

8.3.2 General Idea of Clustering Multi-Represented Objects

The simplest way of clustering multi-represented objects is to select one

representation Ri and cluster all objects according to this representation.

However, this approach restricts data analysis to a limited part of the avail-

able information and does not use the remaining representations to find a

meaningful clustering. Another way to handle multi-represented objects is

to combine the different representations and use a combined distance func-

tion. Then any established clustering algorithm can be applied. However,

this approach yields several drawbacks. First of all, the feature spaces of

the different object representations might have various distance functions

that are specialized to a certain kind of data, but often are not applicable

to general data spaces. For example, for text objects the most established

distance measure is the cosine distance, whereas trees and sequences are
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often compared by variants of the edit distance. To combine these differ-

ent approaches of similarity into one common distance function is difficult

since certain distance functions like edit distance do not necessarily provide

a finite range of values. Thus, a normalization to achieve comparability

for each representation is a difficult task. Another problem of combined

distance functions is the handling of missing representations. The part of

the combined distance that relates to a missing representation has to be

considered somehow. A common approach is to define some dummy value.

However, the choice of such a dummy value might have a major influence on

the distance and thus has to be considered carefully. Last but not least, the

efficiency of processing ε-range queries strongly depends on the use of index

structures and filters. Since these index structures are also dependent on

the employed distance measures, building a common feature space usually

prohibits the use of specialized index structures. Therefore, for combined

data spaces only very general index structures like metric trees [CNBYM01]

are applicable.

The idea of our approach is to combine the information of all different

representations as early as possible, i.e. during the run of the clustering

algorithm, and as late as necessary, i.e.after using the different distance

functions of each representation. To do so, we adapt the core object property

proposed for DBSCAN. To decide whether an object is a core object, we use

the local ε-neighborhoods of each representation and combine the results

to a global neighborhood. Therefore, we must adapt the predicate direct

density-reachability proposed for DBSCAN. In the next two subsections, we

will show how we can use the concepts of union and intersection of local

neighborhoods to handle multi-represented objects.

8.3.3 Union of Different Representations

This variant is especially useful for sparse data. In this setting, the clus-

terings in each single representation will provide several small clusters and

a large amount of noise. Simply enlarging ε would relief the problem, but

on the other hand, the separation of the clusters would suffer. The union-

method assigns objects to the same cluster if they are similar in at least one

of the representations. Thus, it keeps up the separation of local clusters,
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Figure 8.2: Union method: local clusters and a noise object are aggregated

to a multi-represented cluster C.

but still overcomes the sparsity. If the object is placed in a dense area of

at least one representation, it is still a core object regardless of how many

other representations are missing. Thus, we do not need to define dummy

values. Figure 8.2 illustrates the basic idea.

We adapt some of the definitions of DBSCAN to capture our new notion

of clusters. To decide whether an object o is a union core object, we unite

all local εi-neighborhoods and check whether there are enough objects in

the global neighborhood, i.e. whether the global neighborhood of o is dense.

Definition 8.2 (union core object)

Let ε1, ε2, ..., εm ∈ IR+
0 , k ∈ IN . An object o ∈ DB is called union core

object, denoted by CoreUk
ε1,..,εm

(o) if the union of all local ε-neighborhoods

contains at least k objects, formally:

CoreUk
ε1,..,εm

(o) ⇔ |
⋃

Ri(o)∈o

NRi
ε (o) | ≥ k.

Definition 8.3 (direct union-reachability)

Let ε1, ε2, .., εm ∈ IR+
0 , k ∈ IN . An object p ∈ DB is directly union-reachable

from q ∈ DB if q is a union core object and p is an element of at least one

local NRi
ε (q), formally:

DirReachUk
ε1,..,εm

(q, p) ⇔ CoreUk
ε1,..,εm

(q)∧∃ i ∈ {1, ..,m} : Ri(p) ∈ NRi
ε (q).

The predicate direct union-reachability is obviously symmetric for pairs

of core objects if all disti are as demanded symmetric distance functions.
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Figure 8.3: Intersection method: a local clustering is divided into the

clusters C1 and C2.

Union-reachability and union-connectivity can be defined analogously to the

original DBSCAN. A union-connected cluster is then defined as a set of

union-connected objects which is maximal w.r.t. union-reachability. Thus,

given the parameters ε1, ..., εm and k, we can discover a union-connected

cluster in a two-step approach. First, we choose an arbitrary database object

o, satisfying the union core object property. Second, we retrieve all objects

that are union-reachable from o, thereby obtaining the cluster containing o.

8.3.4 Intersection of Different Representations

The intersection method is well suited for data where each representation in-

cludes different aspects of the data. In this case, clustering the data accord-

ing to only one representation will yield rather unspecific clusters, because

the data are only separated according to one specific aspect of the data.

For such data, the intersection-method requires that a cluster should con-

tain only objects which are similar according to all representations. Thus,

this method is useful if all different representations exist, but the derived

distances do not adequately mirror the intuitive notion of similarity. The

intersection-method is used to increase the cluster quality by finding purer

clusters. Figure 8.3 illustrates the basic idea.

To decide whether an object o is an intersection core object, we examine

whether o is a core object in each involved representation. Of course, we

use different ε-values for each representation to decide, if there are enough
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objects in the local ε-neighborhood. The parameter k is used to decide, if

there are enough objects in the global ε-neighborhood, i.e. the intersection

of all local neighborhoods contains at least k objects.

Definition 8.4 (intersection core object)

Let ε1, ε2, ..., εm ∈ IR+
0 , k ∈ IN . An object o ∈ DB is called intersection

core object, denoted by CoreISk
ε1,..,εm

(o) if the intersection of all its local

εi-neighborhoods contain at least k objects, formally:

CoreISk
ε1,..,εm

(o) ⇔ |
⋂

i=1,..,m

NRi
ε (o) | ≥ k.

Using this new property, we can now define direct intersection-reachability

in the following way:

Definition 8.5 (direct intersection-reachability)

Let ε1, ε2, ..., εm ∈ IR+
0 , k ∈ IN . An object p ∈ DB is directly intersection-

reachable from q ∈ DB if q is an intersection core object and p is an element

of all local Nε(q), formally:

DirReachISk
ε1,..,εm

(q, p) ⇔ CoreISk
ε1,..,εm

(q) ∧ ∀i = 1, ..,m : Ri(p) ∈ NRi
ε (q) .

All the other definitions can be defined analogously to DBSCAN as de-

scribed in Section 8.3.3. Figure 8.3 illustrates the effects of this method.

8.3.5 Determination of Density Parameters

In [EKSX96] a heuristic is presented to determine the ε-value of the ”thinnest”

cluster in the database. This heuristic is based on a diagram that represents

sorted knn-distances of all given objects. In the case of multi-represented

objects, we have to choose ε for each dimension separately, whereas k can

be chosen globally. The parameter k is determined by the user. Then, the

system computes the knn-distance diagrams for the given global k (one di-

agram for each representation). The user has to choose a so-called border

object o for each representation. The ε for the i -th representation is given by

the knn-distance of the border object of Ri. An example of a knn-distance

diagram is shown in Figure 8.4. Let us note that this method still allows

a certain range of ε-values to be chosen. The selection should mirror the
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Figure 8.4: A 2D sample data set (left) and the corresponding 3-nn distance

diagram (right).

different requirements of the proposed methods. For the union method, it

is more advisable to choose a lower or conservative value since its character-

istic demands that the elements of the local ε-neighborhood should really

be similar. For the intersection-method, the ε-value should be selected pro-

gressively, i.e. at the upper rim of the range. This selection reflects that the

objects of a cluster need not be too similar for a single representation, be-

cause it is required that they are similar with respect to all representations.

8.4 Performance Evaluation

To demonstrate the capability of our method, we performed a thorough

experimental evaluation for two types of applications. We implemented the

proposed clustering algorithm in Java 1.4. All experiments were processed

on a work station with a 2.6 GHz Pentium IV processor and 2 GB main

memory.

8.4.1 Deriving Meaningful Groupings in Protein Databases

The first set of experiments was performed on protein data that are repre-

sented by amino acid sequences and text descriptions. Therefore, we em-

ployed entries of the Swissprot protein database [BBA+03], belonging to

five functional groups (cf. Table 8.1) and transformed each protein into a

pair of feature vectors. To represent the text descriptions, we chose 100

words of medium frequency. To represent the sequence data the 436 2-gram
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Set 1 Set 2 Set 3 Set 4 Set 5

Name Isomerase Lyase Signal

Transducer

Oxidore-

ductase

Transferase

Classes 16 35 39 49 62

Objects 501 1640 2208 3399 4086

Table 8.1: Description of the protein data sets.

features already mentioned in Section 8.2 were used. Since Swissprot en-

tries provide a unique mapping to the classes of Gene Ontology [Con00], a

reference clustering for the selected proteins was available. Thus, we were

able to measure a clustering of Swissprot entries by the degree it reproduces

the class structure provided by Gene Ontology. To have an exact measure

for this degree, we employed the class entropy in each cluster. However,

there are two effects that have to be considered to obtain a fair measure of

a clustering with noise. First, a large cluster of a certain entropy should

contribute more to the overall quality of the clustering than a rather small

cluster providing the same quality. The second effect is that a clustering

having a 5% noise ratio should be ranked higher than a clustering having

the same average entropy for all its clusters, but contains 50% noise.

To consider both effects, we propose the following quality measure for

comparing different clusterings with respect to a reference clustering.

Definition 8.6 (quality measure)

Let O be the set of data objects, let C = {Ci|Ci ⊂ O} be the set of clusters

and let K = {Ki|Ki ⊂ O} be the reference clustering of O. Then we define:

QK(C) =
∑

Ci∈C

|Ci|
|O|

· (1 + entropyK(Ci))

where entropyK(Ci) denotes the entropy of cluster Ci with respect to K.

The idea is to weight every cluster by the percentage of the complete

data objects belonging to it. Thus, smaller clusters are less important than

larger ones and a clustering providing an extraordinary amount of noise can

contribute only the percentage of clustered objects to the quality. Let us

note that we add 1 to the cluster entropies. Therefore, we measure the ref-

erence clustering K with the quality score of 1 and a worst case clustering,
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Figure 8.5: Clustering quality and noise ratio.

e.g. no clusters are found at all, with the score of 0. To relate the quality

of the clustering achieved by our methods to the results of former meth-

ods, we compared it to 4 alternative approaches. First, we clustered text

and sequences separately, using only one of the representations. A second

approach combines the features of both representations into a common fea-

ture space and employs the cosine distance to relate the resulting feature

vectors. As the only other clustering method that is able to handle multi-

represented data, we additionally compared our methods to reinforcement

clustering [WZC+03, ZCM02]. We used DBSCAN as underlying cluster-

ing algorithm. For reinforcement clustering we ran 10 iterations and tried

several values of the weighting parameter α. The local ε-parameters were

selected as described above and we chose k = 2. To consider the different

requirements of both methods, for each data set a progressive and a conser-

vative ε-value was determined. All approaches were run for both settings

and the best results are displayed.

The left diagram of Figure 8.5 displays the derived quality for those

four methods and the two variants of our method. In all five test sets, the

union-method using conservative ε-values outperformed any of the other

algorithms. Furthermore, the noise ratio for each data set was between

16% and 28% (cf. Figure 8.5, right), indicating that the main portion of

the data objects belongs to some cluster. The intersection method using

progressive ε-parameters performed comparably well, but was too restrictive

to overcome the sparseness of the data as good as the union-method.
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Figure 8.6: Example of an image cluster.

8.4.2 Clustering Images by Multiple Representations

Clustering image data is a good example for the usefulness of the intersection-

method. As we have seen in the previous chapter, there are a lot of different

similarity models for images. Using our intersection approach one is able

to get the best out of all these different types of representations. Since the

similarity in one representation is not really sound, the intersection-method

is well-suited to find clusters of better quality for this application.

Experiments with Images from the Web

For our first test setting we used 2,150 images downloaded from the web. We

used two different representations based on color histograms and segmen-

tation trees, respectively. For the second representation, the images were

first divided into segments of similar color. In a second step, a tree was cre-

ated from those segments by iteratively applying a region-growing algorithm

which merges neighboring segments if their colors are alike. As we do not

have any class labels to measure the quality of our clustering, we can only
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describe the results we achieved. In general, the clusters we got when us-

ing both representations were more accurate than the clusters we got when

using each representation separately. Of course, the noise ratio increased

for the intersection-method. Figure shows one representative sample cluster

of images we found with the intersection-method. Using this method, very

similar images are clustered together, e.g. the images contained in the left

rectangle of Figure 8.6. When clustering each single representation, a lot of

additional images were added to the corresponding cluster. The right rect-

angles of Figure 8.6 display additional images that were grouped with the

corresponding cluster when clustering the images with respect to a single

representation. When using the intersection-method, only the most similar

images of both representations still belong to the cluster.

Experiments with TV-Images

For this experiments, our image database consisted of 1,000 color TV-images

which were segmented and transformed into trees and graphs in the way

described in the Sections 7.2.1 and 7.2.2. Again we used the intersection

method to combine the two representations and compared the result to the

results we got when clustering each representation separately.

The results we obtained when clustering the data using the graph or the

tree model were quite different. With the graph model, we obtained several

rather homogeneous clusters like the one depicted in Figure 8.7 but also very

diverse clusters like the one shown in Figure 8.8. In general, it was possible

to distinguish hockey images from the rest of the database rather well.

On the other hand, the use of the tree model only yielded one large and

unspecific cluster and much noise. Obviously, this model alone is ill-suited

for our image database.

But although the second model on its own did not yield any interesting

results, the combination of both approaches turned out to be effective. Fig-

ures 8.9 and 8.10 show typical clusters obtained with the combination of the

two models. As can be seen in Figure 8.9, the combination yielded more ho-

mogeneous clusters, as for example a cluster of insect images. Those images

belonged to a big and diverse cluster for the graph model. Additionally, the
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Figure 8.7: A typical homogenous cluster obtained with the graph model.

Figure 8.8: A typical diverse cluster obtained with the graph model.

Figure 8.9: A cluster of insects which could only be obtained with the

combined model.
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Figure 8.10: A cluster obtained with the combined model.

distinguishing power for the hockey images was preserved as shown in Figure

8.10. In general, the clusters we obtained when combining both representa-

tions were more accurate than the clusters we got using each representation

separately. Obviously, the noise ratio increased when we combined the two

representations.

8.5 Summary

In this chapter we discussed the problem of clustering multi-represented ob-

jects. A multi-represented object is described by a set of representations

where each representation belongs to a different data space. Contrary to ex-

isting approaches, our proposed method is able to cluster this kind of data

using all available representations without forcing the user to construct a

combined data space. The idea of our approach is to combine the infor-

mation of all different representations as early as possible and as late as

necessary. To do so, we adapted the core object property proposed for

DBSCAN. To decide whether an object is a core object, we use the local

ε-neighborhoods of each representation and combine the results to a global

neighborhood. Based on this idea, we proposed two different methods for

varying applications. For sparse data, we introduced the union-method that

assumes that an object is a core object if k objects are found within the

union of its local ε-neighborhoods. Respectively, we defined the intersection-

method for data where each local representation yields rather big and unspe-

cific clusters. Therefore, the intersection-method requires at least k objects

within the intersection of all local ε-neighborhoods of a core object. In
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our experimental evaluation we introduced an entropy based quality mea-

sure that compares a given clustering with noise to a reference clustering.

Employing this quality measure, we demonstrated that the union method

was most suitable to overcome the sparsity of a given protein data set. To

demonstrate the ability of the intersection method to increase the cluster

quality, we applied it to a set of images using different similarity models.
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Chapter 9

Efficient Filters for Tree

Structured Data

In Chapter 7, we have seen that a successful approach to model hierarchi-

cally structured objects is using a tree representation. However, the problem

of all similarity measures for attributed trees is their computational com-

plexity and thus they are not applicable for clustering large collections of

tree-structured objects. In this chapter, we propose a filter and refinement

architecture to overcome this problem. We present a set of new filter meth-

ods for structural and for content-based information in tree-structured data

as well as ways to flexibly combine different filter criteria. The efficiency of

our methods, resulting from the good selectivity of the filters is demonstrated

in extensive experiments with two real-world applications. The concepts de-

scribed in this chapter have been published in [KKSS04b, KKSS04a].

137



138 9 Efficient Filters for Tree Structured Data

9.1 Introduction

In addition to a variety of content-based attributes, complex objects typi-

cally carry some kind of internal structure which often forms a hierarchy.

Several similarity measures for trees have been proposed in the literature

[JWZ94, Sel77, Zha96]. These measures are well suited for hierarchical

objects and have been successfully applied to website analysis [WZCS02],

structural similarity of XML documents [NJ02], shape recognition [SKK01]

and chemical substructure search [WZCS02], for instance. However, a gen-

eral problem of all those measures is their computational complexity which

makes them unsuitable for large databases. The core idea of our approach

is to apply a filter criterion to the database objects in order to obtain a

small set of candidate answers to a query. Then the final result is retrieved

from this candidate set through the use of the original complex similarity

measure. This filter-refinement architecture reduces the number of expen-

sive similarity distance calculations and speeds up the search process. To

extend this concept to the new problem of searching similar tree structures,

efficient and effective filters for structural properties are required. In this

chapter, we propose several new filter methods for tree structures and also

demonstrate how to combine them with filters for content information in

order to obtain a high filter selectivity.

In the next section, we discuss several measures for structural similar-

ity. In Section 9.3, the concept of multi-step query processing is presented,

while Section 9.4 deals with our filter methods. Finally, we present an ex-

perimental evaluation of our filters in Section 9.5 before we conclude the

chapter.

9.2 Structural Similarity

Quantifying the similarity of two trees requires a structural similarity mea-

sure. There are several similarity measures for general graphs in the liter-

ature [BS98, CKS98, KKV90]. All of them either suffer from a high com-

putational complexity or are limited to special graph types. Papadopoulos

and Manolopoulos presented a measure based on certain edit operations for
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general graphs [PM99]. They use the degree sequence of a graph as feature

vector and the Manhattan distance between the feature vectors as similar-

ity measure. While their measure can be calculated efficiently, it is not

applicable to attributed graphs. Consequently, special distance measures

for labeled trees which exploit the structure and content of trees become

necessary. Jiang, Wang and Zhang [JWZ94] suggested a measure based on

a structural alignment of trees. They also prove that the structural align-

ment problem for trees is NP-hard if the degree of the trees is not bounded.

Selkow [Sel77] presented a tree-to-tree editing algorithm for ordered labeled

trees. It is a first step towards the most common approach to measure

tree similarity, the edit distance. The edit distance, well-known from string

matching [Lev66, WF74], is the minimal number of edit operations neces-

sary to transform one tree into the other. There are many variants of the

edit distance, depending on which edit operations are allowed. The basic

form allows two edit operations, i.e. the insertion and the deletion of a tree

node. The insertion of a node n in a tree below a node p means that p be-

comes the parent of n and a subset of p’s children become n’s children. The

deletion of a node is the inverse operation to the insertion of the node. In

the case of attributed nodes, as they appear in most real-world applications,

the change of a node label is introduced as a third basic operation.

Definition 9.1 (edit sequence, cost of an edit sequence)

An edit operation e is the insertion, deletion or relabeling of a node in a tree

t. Each edit operation e is assigned a non-negative cost c(e). The cost of a

sequence of edit operations S = 〈e1, . . . , em〉, c(S) is defined as the sum of

the cost of each edit operation in S, i.e. c(S) = c(e1) + . . . + c(em).

Definition 9.2 (edit distance)

The edit distance between two trees t1 and t2, ED(t1, t2) is the minimum

cost of all edit sequences that transform t1 into t2: ED(t1, t2) = min{c(S)|S
a sequence of edit operations transforming t1 into t2}.

A great advantage of using the edit distance as a similarity measure is

that along with the distance value a mapping between the nodes in the two

trees is provided in terms of the edit sequence. The mapping can be vi-

sualized and can serve as an explanation of the similarity distance to the
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user. This is especially important in the context of similarity search, as

different users often have a different notion of similarity in mind. Here, an

explanation component can help the user to adapt weights for the distance

measure in order to reflect the individual notion of similarity. However,

Zhang, Statman and Shasha showed that computing the edit distance be-

tween unordered labeled trees is NP-complete [ZSS92]. Obviously, such a

complex similarity measure is unsuitable for large databases. To overcome

this problem, Zhang proposed a constrained edit distance between trees,

the degree-2 edit distance. The main idea behind this distance measure is

that only insertions or deletions of nodes with a maximum number of two

neighbors are allowed.

Definition 9.3 (degree-2 edit distance)

The edit distance between two trees t1 and t2, ED2(t1, t2), is the minimum

cost of all degree-2 edit sequences that transform t1 into t2 or vice versa. A

degree-2 edit sequence consists only of insertions or deletions of nodes n with

degree(n) ≤ 2 or of relabelings: ED2(t1, t2) = min{c(S)|S is a degree-2 edit

sequence transforming t1 into t2}.

One should note that the degree-2 edit distance is well defined in the

sense that two trees can always be transformed into each other using only

degree-2 edit operations. This statement is true because it is possible to

build any tree using only degree-2 edit operations. As the same is true for

the deletion of an entire tree, it is always possible to delete t1 completely

and then build t2 from scratch, resulting in a distance value for this pair of

trees. In [ZWS96] an algorithm is presented to compute the degree-2 edit

distance in O(|t1||t2|D) time, where D is the maximum of the degrees of t1

and t2 and |ti| denotes the number of nodes in ti. Whereas this measure

has a polynomial time complexity, it is still too complex for the use in large

databases. To overcome this problem, we extend the paradigm of filter-

refinement architectures to the context of structural similarity search.
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Figure 9.1: The filter-refinement architecture.

9.3 Multi-Step Query Processing

The main goal of a filter-refinement architecture, as depicted in Figure 9.1, is

to reduce the number of complex and time consuming distance calculations

in the query process. To achieve this goal, query processing is performed

in two or more steps. The first step is a filter step which returns a number

of candidate objects from the database. For those candidate objects the

exact similarity distance is determined in the refinement step and the objects

fulfilling the query predicate are reported. To reduce the overall search time,

the filter step has to fulfill certain constraints. First of all, it is essential

that the filter predicate is considerably easier to determine than the exact

similarity measure. Second, a substantial part of the database objects must

be filtered out. Obviously, it depends on the complexity of the similarity

measure which filter selectivity is sufficient. Only if both conditions are

satisfied, the performance gain through filtering is greater than the cost for

the extra processing step.

Additionally, the completeness of the filter step is an important prop-

erty. Completeness in this context means that all database objects satisfying

the query condition are included in the candidate set or in other words, it

must be guaranteed that there occur no false drops during the filter step.

Available similarity search algorithms guarantee completeness if the distance

function in the filter step fulfills the following lower-bounding property. For

any two objects p and q a lower-bounding distance function dlb in the filter

step has to return a value that is not greater than the object exact dis-

tance de of p and q, i.e. dlb(p, q) ≤ de(p, q). With a lower-bounding distance

function it is possible to safely filter out all database objects which have a

filter distance greater than the current query range because the similarity

distance of those objects cannot be less than the query range.
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Using a multi-step query architecture requires efficient algorithms which

actually make use of the filter step. Agrawal, Faloutsos and Swami proposed

such an algorithm for range search [AFS93]. In [SK98] a multi-step algorithm

for k-nearest-neighbor search is presented which is optimal in the sense that

the minimal number of exact distance calculations are performed during

query processing.

9.4 Structural and Content-Based Filters for Un-

ordered Trees

In this section, we introduce several filtering techniques that support effi-

cient similarity search for tree-structured data. We learned from preliminary

experiments that single-valued features including the height of a tree, the

number of nodes, or the degree of a tree, are of limited use. Therefore we

propose the use of feature histograms in order to represent the structural

information of trees. The advantage of this extension is that there is more

information provided to the filter step for the purpose of generating can-

didates and, thus, the discriminative power is increased. Additionally, a

variety of multidimensional index structures and efficient search algorithms

are available for vector data including histograms. The particular feature

histograms which we propose in the following are based on the height, the

degree or the label of individual nodes.

9.4.1 Filtering Based on the Height of Nodes

A promising way to filter unordered trees based on their structure is to take

the height of nodes into account. A very simple technique is to use the

height of a tree as a single feature. The difference of the height of two trees

is an obvious lower bound for the edit distance between those trees, but this

filter clearly is very coarse, as two trees with completely different structure

but the same height cannot be distinguished by this filter.

A more fine-grained and more sensitive filter can be obtained by creating

a histogram of node heights in a tree and using the difference between those

histograms as a filter distance. A first approach is to determine the distance
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Figure 9.2: A single insertion can change the distance to the root for several

nodes.

of each node in the tree to the root node and then store the distribution of

those values in a histogram. Unfortunately, the distance between two such

histograms is not guaranteed to be a lower bound for the edit distance or the

degree-2 edit distance between the original trees. As can be seen in Figure

9.2, the insertion of a single node may change the height of all nodes in its

subtree. Thus, the number of affected histogram bins is only bounded by

the height of the tree.

Therefore, we propose a different approach to consider the height of a

node. Instead of the distance of a node from the root, its leaf distance is

used to approximate the structure of a tree.

Definition 9.4 (leaf distance)

The leaf distance dl(n) of a node n is the maximum length of a path from n

to any leaf node in the subtree rooted at n.

Based on this definition, we introduce the leaf distance histogram of a

tree as illustrated in Figure 9.3.

3 1 1

0 1 2

Figure 9.3: Leaf distance of nodes and leaf distance histogram.
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0  1  2  3  4
3  1  1  1  0

An MLP of 
the root node

Figure 9.4: A maximum leaf path.

Definition 9.5 (leaf distance histogram)

The leaf distance histogram hl(t) of a tree t is a vector of length k = 1 +

height(t) where the value of any bin i ∈ 0, . . . , k is the number of nodes that

share the leaf distance i, i.e. hl(t)[i] = |n ∈ t, dl(n) = i|.

For the proof of the following theorem, the definition of a maximum leaf

path is useful:

Definition 9.6 (maximum leaf path)

A maximum leaf path (MLP) of a node n in a tree t is a path of maximum

length from n to a leaf node in the subtree rooted by n.

An important observation is that adjacent nodes on an MLP are mapped

to adjacent bins in the leaf distance histogram as illustrated in Figure 9.4.

Theorem 9.1 For any two trees t1 and t2, the L1-distance of the leaf dis-

tance histograms is a lower bound of the edit distance of t1 and t2:

L1(hl(t1), hl(t2)) ≤ ED(t1, t2).

Proof. Given two arbitrary trees t0 and tm, let us consider an edit sequence

S = 〈S1, . . . , Sm〉 that transforms t0 to tm. We proceed by induction over

the length m = |S|. If m = 0, i.e. S = 〈〉 and t0 = tm, the values of

L1(hl(t0), hl(tm)) and of c(S) both are equal to zero. For m > 0, let us
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assume that the lower-bounding property already holds for the trees t0 and

tm−1, i.e. L1(hl(t0), hl(tm−1)) ≤ c(〈S1, . . . , Sm−1〉). When extending the

sequence 〈S1, . . . , Sm−1〉 by Sm to S, the right hand side of the inequality is

increased by c(Sm) = 1.

The situation on the left hand side is as follows. The edit step Sm may

be a relabeling, an insertion or a deletion. Obviously, the effect on the leaf

distance histogram hl(tm−1) is void in case of a relabeling, i.e. hl(tm) =

hl(tm−1), and the inequality L1(hl(t0), hl(tm)) = L1(hl(t0), hl(tm−1)) ≤ c(S)

holds.

The key observation for an insert or a delete operation is that only a

single bin is affected in the histogram in any case. When a node ν is inserted,

it is clear that for all nodes below the insertion point the leaf distance does

not change. Only the leaf distance of any predecessor of the inserted node

may or may not be increased by the insertion. Therefore, if ν does not belong

to an MLP of any of its predecessors, only the bin affected by the inserted

node is increased by one. This means that in the leaf distance histogram

exactly one bin is increased by one. On the other hand, if an MLP of any

of the predecessors of ν containing ν exists, then we only have to consider

the longest of those MLPs. Due to the insertion, this MLP grows in size

by one. As all nodes along the MLP are mapped into consecutive histogram

bins, exactly one more bin than before is influenced by the nodes on the MLP.

This means that exactly one bin in the leaf distance histogram changes due

to the insertion. As insertion and deletion are symmetric operations, the

same considerations hold for the deletion of a node.

The preceding considerations hold for all edit sequences transforming a

tree t1 into a tree t2 and particularly include the minimum cost edit sequence.

Therefore, the lower-bounding relationship immediately holds for the edit

distance ED(t1, t2) of two trees t1 and t2, too. �

It should be noticed that the above considerations do not only hold

for the edit distance but also for the degree-2 edit distance. Therefore,

the following theorem allows us also to use leaf-distance histograms for the

degree-2 edit distance.
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Theorem 9.2 For any two trees t1 and t2, the L1-distance of the leaf dis-

tance histograms is a lower bound of the degree-2 edit distance of t1 and

t2:

L1(hl(t1), hl(t2)) ≤ ED2(t1, t2)

Proof. The proof can be done analogously to the proof of theorem 9.1.

Given two arbitrary trees t0 and tm, let us consider an edit sequence S =

〈S1, . . . , Sm〉 that transforms t0 to tm. We proceed by induction over the

length m = |S|. If m = 0, i.e. S = 〈〉 and t0 = tm, the values of

L1(hl(t0), hl(tm)) and of c(S) both are equal to zero. For m > 0, let us

assume that the lower-bounding property already holds for the trees t0 and

tm−1, i.e. L1(hl(t0), hl(tm−1))

≤ c(〈S1, . . . , Sm−1〉). When extending the sequence 〈S1, . . . , Sm−1〉 by Sm

to S, the right hand side of the inequality is increased by c(Sm) ≥ 1. If

an inner node is inserted or deleted, the costs c(Sm) are 1 for inserting the

node plus the cost for the necessary reconstruction of the tree, because only

degree-2 edit operations are allowed. In all other cases c(Sm) = 1.

The situation on the left hand side of the equation is equal to the proof

of theorem 9.1. �

Theorem 9.1 and 9.2 also allow us to use leaf distance histograms as

a filter for the weighted edit and weighted degree-2 edit distance. This

statement is justified by the following considerations. As shown above, the

L1-distance of two leaf distance histograms gives a lower bound for the insert

and delete operations that are necessary to transform the two corresponding

trees into each other. This fact also holds for weighted relabeling operations,

as weights do not have any influence on the necessary structural modifica-

tions. But even when insert/delete operations are weighted, our filter can be

used as long as there is a smallest possible weight wmin for an insert or delete

operation. In this case, the term (L1(hl(t1), hl(t2))∆wmin) is a lower bound

for the weighted edit and degree-2 edit distance between the trees t1 and t2.

Since we assume metric properties as well as the symmetry of insertions and

deletions for the distance, the triangle inequality guarantees the existence

of such a minimum weight. Otherwise, any relabeling of a node would be

performed cheaper by a deletion and a corresponding insertion operation.
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Figure 9.5: Folding techniques for histograms: The technique of Pa-

padopoulos and Manolopoulos (top) and the modulo folding technique (bot-

tom).

Moreover, structural differences of objects would be reflected only weakly if

structural changes are not weighted properly.

Histogram Folding. Another property of leaf distance histograms is

that their size is unbounded as long as the height of the trees in the database

is also unbounded. This problem arises for several feature vector types,

including the degree histograms presented in Section 9.4.2. Papadopoulos

and Manolopoulos [PM99] address this problem by folding the histograms

into vectors with fixed dimension. This is done in a piecewise grouping

process. For example, when a 5-dimensional feature vector is desired, the

first fifths of the histogram bins is summed up and the result is used as

the first component of the feature vector. This is done analogously for

the rest of the histogram bins. The above approach could also be used

for leaf distance histograms, but it has the disadvantage that the maximal

height of all trees in the database has to be known in advance. For dynamic

data sets, this precondition cannot be fulfilled. Therefore, we propose a

different technique that yields fixed-size n-dimensional histograms by adding

up the values of certain entries in the leaf distance histogram. Instead of

summing up adjacent bins in the histogram, we add up those with the same

index modulo n, as depicted in Figure 9.5. This way, histograms of distinct

length can be compared, and there is no bound for the length of the original

histograms.
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Definition 9.7 (folded histogram)

A folded histogram hfn(h) of a histogram h for a given parameter n is a

vector of size n where the value of any bin i ∈ 0, . . . , n− 1 is the sum of all

bins k in h with k mod n = i, i.e.

hfn(h)[i] =
∑

k=0...(|h|−1)∧k mod n=i

h[k].

The following theorem justifies to use folded histograms in a multi-step

query processing architecture.

Theorem 9.3 For any two histograms h1 and h2 and any parameter n ≥ 1,

the L1-distance of the folded histograms of h1 and h2 is a lower bound for

the L1-distance of h1 and h2:

L1(hfn(h1), hfn(h2)) ≤ L1(h1, h2).

Proof. Let len = n·dmax(h1,h2)
n e be the length of h1 and h2. If necessary, h1

and h2 are extended with bins containing 0 until |h1| = len and |h2| = len.

Then the following holds:

L1(hfn(h1), hfn(h2))

=
n−1∑
i=0

∣∣∣∣∣∣∣∣
∑

k=0...((|h1|−1)

∧k MOD n=i

h1[k]−
∑

k=0...((|h2|−1)

∧k MOD n=i

h2[k]

∣∣∣∣∣∣∣∣
=

n−1∑
i=0

∣∣∣∣∣∣
(len DIV n)−1∑

j=0

h1[i + j · n]−
(len DIV n)−1∑

j=0

h2[i + j · n]

∣∣∣∣∣∣
≤

n−1∑
i=0

(len DIV n)−1∑
j=0

|h1[i + j · n]− h2[i + j · n]|

=
len∑
j=0

|h1[k]− h2[k]

= L1(h1, h2)

�
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9.4.2 Filtering Based on the Degree of Nodes

The degrees of the nodes are another structural property of trees which

can be used as a filter for the edit distances. Again, a simple filter can

be obtained by using the maximal degree of all nodes in a tree t, denoted

by degreemax(t), as a single feature. The difference between the maximal

degrees of two trees is an obvious lower bound for the edit distance as well

as for the degree-2 edit distance. As before, this single-valued filter is very

coarse and using a degree histogram clearly increases the selectivity.

Definition 9.8 (degree histogram)

The degree histogram hd(t) of a tree t is a vector of length k = 1+degreemax(t)

where the value of any bin i ∈ 0, . . . , k is the number of nodes that share the

degree i, i.e. hd(t)[i] = |n ∈ t, degree(n) = i|.

Theorem 9.4 For any two trees t1 and t2, the L1-distance of the degree

histograms divided by three is a lower bound of the edit distance of t1 and t2:

L1(hd(t1), hd(t2))
3

≤ ED(t1, t2).

Proof. Given two arbitrary trees t0 and tm, let us consider an edit se-

quence S = 〈S1, . . . , Sm〉 that transforms t0 into tm. We proceed by induc-

tion over the length of the sequence m = |S|. If m = 0, i.e. S = 〈〉 and

t0 = tm, the values of L1(hd(t0),hd(tm))
3 and of c(S) both are equal to zero. For

m > 0, let us assume that the lower-bounding property already holds for t0

and tm−1, i.e. L1(hd(t0),hd(tm−1))
3 ≤ c(〈S1, . . . , Sm−1〉). When extending the

sequence 〈S1, . . . , Sm−1〉 by Sm to S, the right hand side of the inequality is

increased by c(Sm) = 1. The situation on the left hand side is as follows.

The edit step Sm may be a relabeling, an insert or a delete operation. Obvi-

ously, for a relabeling, the degree histogram hd(tm−1) does not change, i.e.

hd(tm) = hd(tm−1) and the inequality L1(hd(t0),hd(tm))
3 = L1(hd(t0),hd(tm−1))

3 ≤
c(S) holds.

The insertion of a single node affects the histogram and the L1-distance

of the histograms in the following way:

1. The inserted node n causes an increase in the bin of n’s degree. That

may change the L1-distance by at most one.
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2. The degree of n’s parent node p may change. In the worst case this

affects two bins. The bin of p’s former degree is decreased by one while

the bin of its new degree is increased by one. Therefore, the L1-distance

may additionally be changed by no more than two.

3. No other nodes are affected.

From the above three points it follows that the L1-distance of the two his-

tograms hd(tm−1) and hd(tm) changes by at most three. Therefore, the fol-

lowing holds:

L1(hd(t0), hd(tm))
3

≤ L1(hd(t0), hd(tm−1)) + 3
3

L1(hd(t0), hd(tm))
3

≤ L1(hd(t0), hd(tm−1)
3

+ 1

L1(hd(t0), hd(tm))
3

≤ c(〈S1, . . . , Sm−1〉) + 1

L1(hd(t0), hd(tm))
3

≤ c(〈S1, . . . , Sm−1, Sm〉)

L1(hd(t1), hd(t2))
3

≤ ED(t1, t2)

�

As the above considerations also hold for the degree-2 edit distance,

theorem 9.4 holds analogously for this similarity measure.

9.4.3 Filtering Based on Node Labels

Apart from the structure of the trees, the content features, expressed through

node labels, have an impact on the similarity of attributed trees. The node

labels can be used to define a filter function. To be useful in our filter-

refinement architecture, this filter method has to deliver a lower bound for

the edit cost when transforming one tree into the other. The difference be-

tween the distribution of the values within a tree and the distribution of the

values in another tree can be used to develop a lower-bounding filter. To

ensure efficient evaluation of the filter, the distribution of those values has

to be approximated for the filter step.

One way to approximate the distribution of values is to use histograms.

In this case, an n-dimensional histogram is derived by dividing the range
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Figure 9.6: A single relabeling operation may result in a label histogram

distance of two.

of the node label into n bins. Then, each bin is assigned the number of

nodes in the tree whose value is in the range of the bin. To estimate the

edit distance or the degree-2 edit distance between two trees, half of the

L1-distance of their corresponding label histograms is appropriate. A single

insert or delete operation changes exactly one bin of such a label histogram.

A single relabeling operation can influence at most two histogram bins. If

a node is assigned to a new bin after relabeling, the entry in the old bin is

decreased by one and the entry in the new bin is increased by one (cf. Figure

9.6). Otherwise, a relabeling does not change the histogram. This method

also works for weighted variants of the edit distance and the degree-2 edit

distance as long as there is a minimal weight for a relabeling operation. In

this case, the calculated filter value has to be multiplied by this minimal

weight in order to gain a lower-bounding filter.

This histogram approach applies to discrete label distributions very well.

However, for continuous label spaces, the use of a continuous weight function

which may become arbitrarily small, can be reasonable. In this case, a

discrete histogram approach can not be used. An example for such a weight

function is the Euclidean distance in the color space, assuming trees where

the node labels are colors. Here, the cost for changing a color value is

proportional to the Euclidean distance between the original and the target

color. As this distance can be infinitely small, it is impossible to estimate

the relabeling cost based on a label histogram as in the above cases.
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Figure 9.7: Filtering for continuous weight functions.

More formally, when using the term ’continuous weight function’, we

mean that the cost for changing a node label from value x1 to value x2 is

proportional to |x1 − x2|. Let maxdiff be the maximal possible difference

between two attribute values. Then |x1 − x2| has to be normalized to [0, 1]

by dividing it through maxdiff , assuming that the maximal cost for a single

insertion, deletion or relabeling is one. To develop a filter method for at-

tributes with such a weight function, we exploit the following property of the

edit distance measure. The cost-minimal edit sequence between two trees

removes the difference between the distributions of attribute values of those

two trees. It does not matter whether this is achieved through relabelings,

insertions or deletions.

For our filter function we define the following feature value f(t) for a

tree t:

f(t) =
|t|∑

i=1

|xi|

Here xi is the attribute value of the i-th node in t and |t| is the size of tree t.

The absolute difference between two such feature values is an obvious lower

bound for the difference between the distribution of attribute values of the

corresponding trees. Consequently, we use

dfilter(t1, t2) =
|f(t1)− f(t2)|

maxdiff
.

as a filter function for continuous label spaces, see Figure 9.7 for an illus-

tration. Once more, the above considerations also hold for the degree-2 edit

distance.
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To simplify the presentation, we assumed that a node label consists of

just one single attribute. But usually a node will carry several different

attributes. If possible, the attribute with the highest selectivity can be

chosen for filtering. In practice, there is often no such single attribute. In

this case, filters for different attributes can be combined with the technique

described in the following section.

9.4.4 Combining Filter Methods

All of the above filters use a single feature of an attributed tree to approx-

imate the edit distance or degree-2 edit distance. As the filters are not

equally selective in each situation, we propose a method to combine several

of the presented filters.

A first idea to combine several filters is to create a multidimensional

histogram for the cross-product of the value range of the filters. This yields

a cross-product histogram whose bins contain the number of nodes in a tree

with a certain feature combination. However, this approach fails because the

edit distance between two trees cannot be estimated from the differences of

two such histograms. The reason for this observation is that unlike in the

one-dimensional case, an indeterminable number of entries in the histogram

may change upon a single edit operation. For example, consider a combina-

tion of a height and a degree histogram. A single insertion may change the

leaf distance of all predecessors of the inserted node. The number depends

on the insertion point and cannot be determined in advance. Additionally,

the predecessors may have different degrees and therefore the affected his-

togram bins can be distributed over the entire histogram. Consequently,

the number of affected bins cannot be estimated. Therefore, it is impossible

to derive a lower bound for the edit distance between two trees from the

distance for their respective cross-product histograms.

Hence, we follow the different approach of combining the results of the

existing methods which also allows us to integrate our filter for continuous

weight functions. A very flexible way of combining different filters is to fol-

low the inverted list approach, i.e. to apply the different filters independently

from each other and then intersect the resulting candidate sets. With this
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approach, separate index structures for the different filters have to be main-

tained, and for each query a time-consuming intersection step is necessary.

To avoid those disadvantages, we concatenate the different filter histograms

and filter values for each object and use a combined distance function as a

similarity function.

Definition 9.9 (combined distance function)

Let C = di be a set of distance functions for trees. Then, the combined dis-

tance function dc is defined to be the maximum of the component functions:

dC(t1, t2) = max{di(t1, t2)}.

Theorem 9.5 For every set of lower-bounding distance functions

C = {dlow(t1, t2)}, i.e. for all trees t1 and t2 di(t1, t2) ≤ ED(t1, t2), the

combined distance function dC is a lower bound of the edit distance function

dED:

dC(t1, t2) ≤ ED(t1, t2).

Proof. For all trees t1 and t2, the following equivalences hold:

dC(t1, t2) ≤ ED(t1, t2) ⇔

max{di(t1, t2)} ≤ ED(t1, t2) ⇔

∀di : di(t1, t2) ≤ ED(t1, t2)

The final inequality represents the precondition. �

Justified by theorem 9.5, we apply each separate filter function to its cor-

responding component of the combined histogram. The combined distance

function is derived from the results of this step.

Again, the above considerations also hold for the degree-2 edit distance.

Therefore, theorem 9.5 allows us to use the combined histogram distance

function with the degree-2 edit distance as similarity measure, too.
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9.5 Experimental Evaluation

For our tests, we implemented a filter-refinement architecture according to

the optimal multi-step k-nearest-neighbor search approach as proposed in

[SK98]. We used k-nearest neighbor queries instead of directly showing re-

sults for range queries. Since for k-nearest neighbor queries the result set

size is known beforehand, the interpretation of the experimental results is

easier. Naturally, the positive effects, which we show in the following ex-

periments for k-nearest neighbor queries, also hold for range queries and

for all data mining algorithms based on range queries or k-nearest neighbor

queries, e.g. density-based clustering, k-nearest neighbor classification. As

similarity measure for trees, we implemented the degree-2 edit distance al-

gorithm as presented in [ZWS96]. The filter histograms were organized in

an X-tree [BKK96] or an M-tree [CPZ97] in case of combined histograms.

All algorithms were implemented in Java 1.4 and the experiments were run

on a workstation with a Xeon 1,7 GHz processor and 2 GB main memory

under Linux.

To show the efficiency of our approach, we chose two different applica-

tions: an image database and a database of websites which are described in

the following.

9.5.1 Image Databases

The images we used for our experiments were taken from three real-world

databases: a set of 705 black and white pictographs, a set of 8,536 com-

mercially available color images and a set of 43,000 color TV-Images. We

extracted trees from those images in a two-step process. First, the images

were divided into segments of similar color by a segmentation algorithm.

In the second step, a tree was created from those segments by iteratively

applying a region-growing algorithm which merges neighboring segments if

their colors are similar. This is done until all segments are merged to a single

node. As a result, we obtain a set of labeled unordered trees where each

node label describes the color, size and horizontal as well as vertical exten-

sion of the associated segment. Table 9.1 shows some statistical information

about the trees we generated.
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number number of nodes height maximal degree

of images max min Ø max min Ø max min Ø

commercial images 8,536 331 1 30 24 0 3 206 0 18

TV-images 43,000 109 1 24 13 0 3 71 0 11

pictographs 705 113 3 13 2 1 1 112 2 12

Table 9.1: Statistics of the image data set.

For the first experiments, we used label histograms as described in Sec-

tion 9.4.3. To derive a discrete label distribution, we reduced the number of

different attribute values to 16 different color values for each color channel

and 4 different values each for size and extensions. We used a relabeling

function with a minimal weight of 0.5. Later on we also show some exper-

iments where we did not reduce the different attribute values and used a

continuous weight function for relabeling.

Comparison of our Filter Types.

For our first experiment we used 10,000 TV-images. We created a 10-

dimensional height and a 10-dimensional degree histogram and combined

them to a 20-dimensional height/degree histogram as described in Section

9.4.4. We also built a 24-dimensional combined label histogram which con-

sidered the color, size and extensions of all node labels (6 attributes with

histograms of size 4). Finally, the 34-dimensional combination of this com-

bined label histogram and the 10-dimensional height histogram was taken

as another filter criterion.

We ran 100 k-nearest-neighbor queries (k = 1, 10, 20, 50) for each of our

filters. Figure 9.8 shows the selectivity of our filters, measured in the average

number of candidates with respect to the size of the data set. The figures

show that filtering based solely on structural (height or degree histogram)

or content-based features (label histogram) is not as effective as their com-

bination. Figure 9.8 also shows that for this data the degree filter is less

selective than the height filter. The method which combines the filtering

based on the height of the nodes and on content features is most effective.

Figure 9.8 additionally depicts the average runtime of our filters compared
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Figure 9.8: Runtime (a) and number of candidates (b) for k-nn queries on

10,000 color TV-images.
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to the sequential scan. As one can see, we reduced the runtime by a factor

of up to 5. Furthermore, the comparison of the two diagrams in Figure 9.8

shows that the runtime is dominated by the number of candidates, whereas

the additional overhead, due to the filtering, is negligible.

Influence of Histogram Size.

In a next step we tested to what extent the size of the histogram influences

the size of the candidate set and the corresponding runtime. The results

for nearest neighbor queries on 10,000 color TV-images are shown in Figure

9.9. With increasing dimension, the number of candidates as well as the

runtime decrease. The comparison of the two diagrams in Figure 9.9 shows

that the runtime is again dominated by the number of candidates, while the

additional overhead, due to higher dimensional histograms, is negligible.

Scalability of Filters versus Size of Data Set.

For this experiment, we united all three image data sets and chose three

subsets of size 10,000, 25,000 and 50,000. On these subsets we performed

several representative 5-nn queries. Figure 9.10 shows that the selectivity of

our structural filters does not depend on the size of the data set.

Runtimes for the Creation of the Filters

For each filter criterion we created an X-tree or an M-tree storing the filter

histograms. Figure 9.11 shows the runtimes for the creation of these trees for

10,000 color images. Even for the most complex filter criterion the creation

time is rather moderate.

The creation also scales well with an increasing number of images. For

example, the creation of an M-tree for 28-dimensional combined height and

label histograms of 50,000 images took 733 seconds.

Comparison of Different Filters for a Continuous Weight Function.

As mentioned above, we also tested our filters when using a continuous

weight function for relabeling. For this experiment, we used again 10,000

TV-images. Figure 9.12 shows the results averaged over 200 k-nn queries.
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Figure 9.9: Influence of dimensionality of histograms.
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Figure 9.12: Runtime (a) and number of candidates (b) when using a

continuous weight function.
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In this case, both the height histogram and the label filter are very selective.

Unfortunately, the combination of both does not further enhance the run-

time. While there is a slight decrease in the number of candidates, this is

used up by the additional overhead of evaluating two different filter criteria.

Comparison with a Metric Tree.

In [CNBYM01] other efficient access methods for similarity search in metric

spaces are presented. In order to support dynamic data sets, we maintain

the filter histograms in data structures that can be updated at any time.

Therefore, we chose to compare our filter methods to the M-tree which

analogously is a dynamic index structure for metric spaces. We implemented

the M-tree as described in [CPZ97], using the best split policy mentioned

there.

The creation of an M-tree for 1,000 tree objects already took more than

one day, because of the split policy that has quadratic time-complexity.

On the other hand, the time for the creation of the filter vectors was in

the range of a few seconds. As can be seen in Figure 9.13, the M-tree

outperformed the sequential scan for small result set sizes. However, all of

our filtering techniques significantly outperform the sequential scan and the

M-tree index for all result set sizes. This observation is mainly due to the

fact that the filtering techniques reduce the number of necessary distance

calculations far more than the M-tree index. This behavior results in speed-

up factors between 2.5 and 6.2 compared to the M-tree index and even higher

factors compared to a simple sequential scan. Consequently, our multi-step

query processing architecture is a significant improvement over the standard

indexing approach.
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Figure 9.13: Runtime (a) and number of distance computations (b) of

filter methods compared to the M-tree.
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Figure 9.14: Part of a website tree.

9.5.2 Website Graphs

As demonstrated in [WZJS94], the degree-2 edit distance is well suitable for

approximate website matching. In website management it can be used for

searching similar websites. In [EKS02] website mining is described as a new

way to spot competitors, customers and suppliers in the world wide web.

By choosing the main page as the root, one can represent a website as a

rooted, labeled, unordered tree. Each node in the tree represents a webpage

of the site and is labeled with the URL of that page. All referenced pages are

children of that node and the borders of the website where chosen carefully.

See Figure 9.14 for an illustration.

For our experiment, we used a compressed form of the 207 websites

described in [EKS02], resulting in trees that have 67 nodes on average. We

ran 5-nn-queries on this data. The results are shown in Figure 9.15. We

notice that even if the degree filter produces a lot more candidates than the

height filter, it results in a better runtime. This is due to the fact that it
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Figure 9.15: Average runtime and number of candidates for 5-nn queries.
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filters out those trees, where the computation of the degree-2 edit distance

is especially time-consuming. Using the combination of both histograms,

the runtime is reduced by a factor of 4.

9.6 Summary

In this chapter, we presented a new approach for efficient similarity search

in large databases of tree structures. Based on the degree-2 edit distance as

similarity measure, we developed a multi-step query architecture for simi-

larity search in tree structures. For structural as well as for content-based

features of unordered attributed trees, we suggested several filter methods.

These filter methods significantly reduce the number of complex edit dis-

tance calculations which are necessary for similarity search. The main idea

behind our filter methods is to approximate the distribution of structural

and content-based features within a tree by means of feature histograms.

Furthermore, we proposed a new technique for folding histograms and a

new way to combine different filter methods in order to improve the filter

selectivity. We performed extensive experiments on two sets of real data

from the domains of image similarity and website mining. Our experiments

showed that filtering significantly accelerates the complex task of similarity

search for tree-structured objects. Moreover, it turned out that no single

feature of a tree is sufficient for effective filtering, but only the combination

of structural and content-based filters yields good results.
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Chapter 10

Combining Metric Indexing

and Filtering

The general problem of many similarity measures for complex objects is

their computational complexity which makes them unusable for large data-

bases. As we have already seen, this is a strong handicap for all approaches

where many similarity range queries have to be performed, e.g. for clustering

multi-represented objects. In this chapter, we combine and extend the two

techniques of multi-step query processing, presented in the previous chap-

ter, and metric index structures to improve the performance of range query

processing. The efficiency of our methods is demonstrated in extensive ex-

periments on real-world data including graphs, trees and vector sets. Parts

of this material have been published in [KKPS04a].

167
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10.1 Introduction

Density-based clustering algorithms like DBSCAN or OPTICS (cf. Chapter

2) and the techniques presented in the previous chapters are based on range

queries for each database object. As each range query requires a lot of

exact distance calculations, these algorithms are only applicable to large

collections of complex objects if those range queries are supported efficiently.

When clustering complex objects, the necessary distance calculations are

usually significantly more expensive than the necessary disk accesses. So

the ultimate goal for enhancing the efficiency of clustering is to save as

many distance calculations as possible.

One approach to improve the performance of range queries is to use a

filter-refinement architecture as described in the previous chapter. Another

possibility is the use of a metric index structure. In [CNBYM01] several

efficient access methods for similarity search in metric spaces are presented.

In most real-world applications a static index structure is not acceptable, so

dynamic index structures like the M-tree [CPZ97] are applied.

In this chapter, we show that those concepts can beneficially be combined

and that through the combination a significant speed-up compared to both

separate approaches can be achieved. We discuss how the two approaches

can be combined and present some other techniques to improve the efficiency

of range query processing. Filters can easily be used to speed up the cre-

ation and the traversing of a metric index structure like the M-tree [CPZ97].

Additionally, caching can be used to prevent that the same distance calcula-

tions are performed more than once. As DBSCAN [EKSX96], for example,

is only interested in getting all objects in the ε- neighborhood of a given

query object, but does not need to know the actual distances, we introduce

the concept of ”positive pruning” to save further distance calculations.

The remainder of the chapter is organized as follows. In Section 10.2

we present our techniques used to save costly distance calculations while

performing range queries. The performance gain of our new techniques is

presented in Section 10.3, while Section 10.4 concludes the chapter.



10.2 Efficient Range-Queries on Complex Objects 169

10.2 Efficient Range-Queries on Complex Objects

As we have seen in the previous chapter (cf. Section 9.3), multi-step query

processing can be used to reduce the number of costly object distance calcu-

lations. A second concept to improve the performance of query processing

on complex objects are metric index structures. Several index structures for

pure metric spaces have been proposed in the literature (see [CNBYM01]

for an overview). A well-known dynamic index structure for metric spaces

is the M-tree [CPZ97]. The M-tree, which is explained in detail in Sec-

tion 10.2.1, aims at providing good I/O-performance as well as reducing the

number of distance computations. In the following, we will demonstrate

the ideas for range queries with the M-tree as index structure and arbitrary

filters fulfilling the lower-bounding criterion. It has to be noted that the

techniques can also be applied to similar metric index structures like the

Slim-tree [TTSF00].

This section is organized as follows. After introducing the necessary

concepts for similarity range queries using the M-tree, we present the concept

of ”positive pruning” in Section 10.2.2. In Section 10.2.3, we combine the

two worlds of direct metric index structures and multi-step query processing

based on filtering. Furthermore, we show in this section that filters cannot

only be used for improving the query response time of an M-tree, but also

for efficiently creating an instance of an M-tree. In Section 10.2.4, we show

how caching can be applied to accelerate the processing of similarity range

queries.

10.2.1 Similarity Range Queries using the M-tree

The M-tree (metric tree) [CPZ97] is a balanced, paged and dynamic index

structure that partitions data objects not by means of their absolute posi-

tions in the multidimensional feature space, but on the basis of their relative

distances in this feature space. The only prerequisite is that the distance

function between the indexed objects is metric. Thus, the M-tree’s domain

of applicability is quite general, and all sorts of complex data objects can

be organized with this index structure.

The maximum size of all nodes of the M-tree is fixed. All database ob-



170 10 Combining Metric Indexing and Filtering

jects Od or references to them are stored in the leaf nodes of an M-tree along

with their feature values and the distance d(Od, P (Od)) to their parent ob-

ject P (Od). Inner nodes contain so-called routing objects which correspond

to database objects to whom a routing role was assigned by a promoting al-

gorithm that is executed whenever a node has to be split. Additional to the

object description and the distance to the parent object, routing objects Or

also store their covering radius r(Or) and a pointer ptr(T (Or)) to the root

node of their subtree, the so-called covering tree of Or. For all objects Od in

this covering tree, the condition holds that the distance d(Or, Od) is smaller

or equal to the covering radius r(Or). This property induces a hierarchical

structure of an M-tree, with the covering radius of a parent object always

being greater than or equal to all covering radii of their children and the

root object of an M-tree storing the maximum of all covering radii.

Range queries are specified by a query object Oq and a range value ε

by which the answer set is defined to contain all the objects Od from the

database that have a distance to the query object Oq of less than or equal

to ε:

Definition 10.1 (similarity range query)

Let O be a domain of objects and DB ⊆ O be a database. For a query object

Oq ∈ O and a query range ε ∈ IR+
0 , the similarity range query simRange :

O×IR+
0 7→ 2DB returns the set

simRange(Oq, ε) = {Od ∈ DB|dist(Od, Oq) ≤ ε}.

Given a query object Oq and a similarity range parameter ε, a similar-

ity range query simRange(Oq, ε) starts at the root node of an M-tree and

recursively traverses the whole tree down to the leaf level, thereby pruning

all subtrees which certainly contain no result objects.

A description of simRange in pseudocode and the recursive procedure

rangeSearch used to traverse the M-tree is given in Figure 10.1.

The subtree of a routing object Or can be pruned if the absolute value

of the distance of the routing object’s parent object Op to the query object

Oq, d(Op, Oq), minus the distance between Or and Op is greater than the

covering radius of Or plus ε:
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1 simRange(queryObject Oq, range ε) → ResultSet

2 result = NIL;

3 rangeSearch(root, Oq, ε);

4 return result;

1 rangeSearch(Node N , queryObject Oq, range ε)

2 Op := parent object of node N ;

3 if N is not a leaf then

4 for each Or in N do

5 if |d(Op, Oq)− d(Or, Op)| ≤ r(Or) + ε

6 then

7 compute d(Or, Oq);

8 if d(Or, Oq) <= r(Or) + ε then

9 rangeSearch(ptr(T (Or), Oq, ε);

10 end if

11 end if

12 end for

13 else

14 for each Od in N do

15 if |d(Op, Oq)− d(Od, Op)| ≤ ε then

16 compute d(Od, Oq);

17 if d(Od, Oq) ≤ ε then

18 add Od to result;

19 end if

20 end if

21 end for

22 end if

Figure 10.1: Pseudocode description of similarity range search on M-trees.
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Figure 10.2: Positive pruning for the M-tree.

|d(Op, Oq)− d(Op, Or)| > r(Or) + ε.

A proof for this is given in [CPZ97]. Thus, as the distance between Op

and Oq has already been computed when accessing a node N , subtrees can

be pruned without further distance computations (see line 5 of the algorithm

in Figure 10.1).

10.2.2 Positive Pruning

A hierarchical index structure, like the M-tree, is composed of directory

nodes with routing objects Or which represent all objects in their respec-

tive subtree T (Or). For all objects O ∈ T (Or), d(Oq, Or) ≤ r(Or) holds.

Efficient processing of range queries on the original M-tree is based on the

concept of ”negative pruning”. During the query processing, certain subtrees

are excluded from the search based on the following formula: d(Oq, Or) >

r(Or) + ε (see line 7 of the algorithm in Figure 10.1).

In this section, we introduce the concept of ”positive pruning”. If a

directory node is completely covered by the query range, we can report all

objects on the leaf level of the M-tree without performing any cost intensive

distance computations (cf. Figure 10.2).
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1 rangeSearch(Node N , queryObject Oq, range ε)

...

7 compute d(Or, Oq);

7a if d(Or, Oq) + r(Or) ≤ ε then

7b report all objects in T (Or);

8 else if d(Or, Oq) <= r(Or) + ε then
...

Figure 10.3: Adaptation of similarity range search on M-trees for positive

pruning.

Lemma 10.1 Let Oq ∈ O be a query object and ε ∈ IR+
0 a query range.

Furthermore, let Or be a routing object in an M-tree with a covering radius

r(Or) and a subtree T (Or). Then the following statement holds:

d(Or, Oq) + r(Or) ≤ ε ⇒ ∀O ∈ T (Or) : d(O,Oq) ≤ ε

Proof. The following inequalities hold for all O ∈ T (Or) due to the triangle

inequality and due to d(Or, Oq) + r(Or) ≤ ε:

d(O,Oq) ≤ d(O,Or) + d(Or, Oq)

≤ r(Or) + d(Or, Oq) ≤ ε.

�

In the case of negative pruning, we skip the recursive tree traversal of

a subtree T (Or) if the query range does not intersect the covering radius

r(Or). In the case of positive pruning, we skip all the distance calculations

involved in the recursive tree traversal if the query range completely covers

the covering radius r(Or). In this case, we can report all objects stored in

the corresponding leaf nodes of this subtree without performing any fur-

ther distance computations. Figure 10.3 shows how this concept can be

integrated into the original method rangeSearch as depicted in Figure 10.1.

This approach is very beneficial for accelerating density-based clustering

on complex objects. DBSCAN, for instance, only needs the information

whether an object is contained in simRange(Oq, ε) = {O ∈ DB|d(O,Oq) ≤
ε} but not the actual distance of this object to the query object Oq.
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10.2.3 Combination of Filtering and Indexing

The M-tree reduces the number of distance calculations by partitioning the

data space even if no filters are available. Unfortunately, the M-tree may

suffer from the navigational cost related to the distance computations dur-

ing the recursive tree traversal. On the other hand, the filtering approach

heavily depends on the quality of the filters.

When combining both approaches, these two drawbacks are reduced.

We use the filter distances to optimize the required number of exact object

distance calculations needed to traverse the M-tree. Thereby, we do not

save any I/O cost compared to the original M-tree, as the same nodes are

traversed, but we save a lot of costly distance calculations that are necessary

for the traversal. In the following, we call this combination filtering M-

tree. This filtering M-tree stores the objects along with their corresponding

filter values within the M-tree. A similarity query based on the filtering

M-tree always computes the filter distance values prior to the exact distance

computations. If a filter distance value is already a sufficient criterion to

prune branches of the M-tree, we can avoid the exact distance computation.

If we have several filters, the filter distance computation always returns the

maximum value of all filters.

The pruning quality of the filtering M-tree benefits from both the quality

of the filters and the clustering properties of the index structure. In the

following, we will show that the number of distance calculations used for

range queries as well as for the creation of an M-tree can be optimized by

using lower-bounding filters.

Range Queries

Similarity range queries are used to retrieve all objects from a database which

are within a certain similarity range from the query object (cf. Definition

10.1). By computing the filter distance prior to the exact distance, we can

save many distance computations. Based on the following lemma, we can

prune many subtrees without computing the exact distances between a query

object Oq and a routing object Or (cf. Figure 10.4).
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Figure 10.4: Similarity range query based on the filtering M-tree.

Lemma 10.2 Let O be a set of objects and DB ⊆ O a database. Further-

more, let do, df : O×O 7→ IR+
0 be two distance functions for which df lower

bounds do, i.e. ∀O1, O2 ∈ O : df (O1, O2) ≤ do(O1, O2) holds. Let Oq ∈ O,

ε ∈ IR+
0 . For each routing object Or ∈ DB with covering radius r(Or) ∈ IR+

0

and subtree T (Or) the following statement holds:

∀O ∈ T (Or) : (df (Oq, Or) > r(Or) + ε)

⇒ do(Oq, O) > ε.

Proof. As ∀O1, O2 ∈ O : df (O1, O2) ≤ do(O1, O2) holds, the following

statement is true:

df (Oq, Or) > r(Or) + ε ⇒ do(Oq, Or) > r(Or) + ε.

Based on the triangle inequality and our assumption that do(O,Or) ≤
r(Or), we can prove the above lemma as follows:

df (Oq, Or) > r(Or) + ε

⇒ do(Oq, Or) > r(Or) + ε

⇒ do(Oq, Or)− r(Or) > ε

⇒ do(Oq, Or)− do(O,Or) > ε

⇒ do(Oq, O) > ε

�
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1 rangeSearch(Node N , queryObject Oq, range ε)

...

5 if |d(Op, Oq)− d(Or, Op)| ≤ r(Or) + ε

6 then

6a compute df (Or, Oq)

6b if df (Or, Oq) <= r(Or) + ε then

7 compute d(Or, Oq);

8 if d(Or, Oq) <= r(Or) + ε then
...

15 if |d(Op, Oq)− d(Od, Op)| ≤ ε then

15a compute df (Od, Oq)

15b if df (Od, Oq) ≤ ε then

16 compute d(Od, Oq);

17 if d(Od, Oq) ≤ ε then
...

Figure 10.5: Adaptation of similarity range search on M-trees for filtering.

Let us note that a similar optimization can be applied to the objects

stored on the leaf level with the assumption that their ’covering radius’ is

0. Figure 10.5 shows how this concept can be integrated into the original

method rangeSearch of Figure 10.1.

Construction of an M-tree

Filters can also be used for accelerating the creation of an M-tree.

Insert. They can be used to accelerate the function which decides which

tree to follow during the recursive tree-traversal of the insert operation. The

main idea is that we sort all objects according to the filter distance and

then walk through this sorted list. Thereby, we first test those candidates

which might not lead to an increase in the covering radius. If we detect a

routing object for which no increase is necessary, we postpone the reporting

of this object. We first investigate all routing objects which are closer to the

given query object and possibly also do not have to increase their covering

radius. If several of those routing objects exist, we take the one closest to

the inserted object. If no such routing object exists, we walk through the list

until we have found the routing object which leads to a minimal increase
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of its covering radius. Let us note that this idea is closely related to the

optimal multi-step k-nearest neighbor search algorithm [SK98].

Split. If a node overflow occurs due to an insertion, the node has to be

split adequately. The ’ideal’ split strategy should promote two new routing

objects such that for the resulting regions volume and overlap are minimized.

Several different strategies for splitting a node are described in [CPZ97].

There the authors show that in most cases it is the best strategy to minimize

the maximum of the resulting covering radii. This strategy, which is called

mM Rad, is also the most complex in terms of distance computations. It

considers all possible pairs of objects and after partitioning the set of entries

promotes the pair of objects for which the maximum of the two covering

radii is minimal. Given a set of n entries and two routing objects, the

generalized hyperplane decomposition is used to assign each of the n objects

to one of the two routing objects. Although this leads to unbalanced splits,

experimental results show that it is superior to techniques resulting in a

balanced distribution.

The filter distances can also be used to speed up the split of an M-tree

node. The main idea is that we generate a priority queue containing pairs

of promoting objects based on the filter distances. We walk through this list

and if we detect that the mM Rad value based on the filters is higher than the

best already found mM Rad value based on exact distance computations,

we can stop. Thus, we do not necessarily have to test all O(n2) pairs of

promoting objects. Again this approach is similar to [SK98]. Furthermore,

if we test two actual promoting objects Op1 and Op2, we have to assign an

object O either to Op1 or to Op2. This test can be accelerated by computing

first the actual distance between O and the promoting object for which the

filter distance is smaller. If the resulting exact distance is still smaller than

the filter distance to the other promoting object, we can save on the second

exact distance computation.
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10.2.4 Caching Distance Calculations

In this section, we present a further technique which helps to avoid costly

distance computations for index construction and query processing.

Cache-Based Construction

If we have to cope with distance computations which are more expensive

than accessing secondary storage, we suggest to store the already processed

distance computations to disk. Especially when splitting the same overflow-

ing node repeatedly, accessing stored distance computation values can speed

up the insertion process since otherwise the same distances are computed

several times.

Cache-Based Range Queries

Efficient query processing of range queries also benefits from the idea of

caching distance calculations. During the navigation through the M-tree

directory, the same distance computations may have to be carried out several

times. Although each object O is stored only once on the leaf level of the

M-tree, it might be used several times as routing object. Furthermore,

we often have the situation that distance calculations carried out on the

directory level have to be repeated at the leaf level.

As shown in Figure 10.1, a natural way to implement range queries is

by means of recursion resulting in a depth-first search. We suggest to keep

all distance computations in main memory which have been carried out on

the way from the root to the actual node. After leaving the node, i.e. when

exiting the recursive function, we delete all distance computations carried

out at this node. This limits the actual main memory footprint to O(h · b)
where h denotes the maximum height of a tree and b denotes the maximum

number of stored elements in a node. Even in multi-user environments this

rather small worst-case main memory footprint is tolerable. The necessary

adaptations of the rangeSearch algorithm are drafted in Figure 10.6.
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1 rangeSearch(Node N , queryObject Oq, range ε)
...

6 distCache(N, Or, Oq);
...

16 distCache(N, Od, Oq);
...

22 end if

22a deleteCache(N);

distCache(Node N , Object O1, Object O2) → float

result = hashtable.lookup(O1, O2);

if result = null then

result = compute d(O1, O2);

hashtable.add(N, O1, O2,result);

end if

return result;

deleteCache(Node N)

hashtable.delete(N);

Figure 10.6: Adaptation of similarity range search on M-trees for caching.

10.3 Evaluation

To show the efficiency of our approach, we chose the applications and data

types described in Section 1.2 and performed extensive experiments. All

algorithms were implemented in Java 1.4 and the experiments were run on a

workstation with a Xeon 1.7 GHz processor and 2 GB main memory under

Linux. We implemented the M-tree as described in [CPZ97]. As in all

cases, the time for distance calculations was dominating the runtime of a

range query, we only show the number of distance calculations and not the

runtime.

10.3.1 CAD Vector Set Data

For the experiments with this data type, we used the similarity model pre-

sented in [KBK+03], where CAD objects were represented by a vector set
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consisting of 7 vectors in 6D. All experiments were carried out on a data set

containing 5,000 CAD objects from an American aircraft producer. As dis-

tance measure between sets of feature vectors we used the minimal matching

distances which can be computed in O(k3), where k denotes the cardinality

of the point set, using the Kuhn-Munkres [Kuh55, Mun57] algorithm. As

filter we used the centroid filter introduced in [KBK+03].

Creation of the M-tree

The generation of the optimized M-tree was carried out without caching

(cf. Figure 10.7) and with caching (cf. Figure 10.8). Without caching, the

number of necessary distance calculations is very high due to the repeated

splitting of nodes. Note that the number of distance calculations for one

node split is quadratic w.r.t. the number of elements of this node. In this

case, our nodeSplit algorithm only needs 1/4 of the distance calculations

while still producing the same M-tree. If we apply caching, the overall

number of required distance computations is much smaller. This is due

to the fact that many distance values necessary for splitting a node can be

fetched from disk. In this case, our findSubTree function allows us to reduce

the number of required distance calculations even further, i.e. the number

of distance computations is bisected. To sum up, both optimizations, which

are based on the exploitation of available filter information, allow us to build

up an M-tree much more efficiently.

Range Queries

Figure 10.9 and 10.10 show in which way the different approaches for range

query processing depend on the chosen ε-value. Figure 10.9 shows that for

the investigated data set the original M-tree is the worst access method for

all ε-values. On the other hand, the pure filter performs very well. For

this data set, reasonable ε-values for density-based clustering would be ∼ 1

for DBSCAN and ∼ 2 for OPTICS. In this parameter range, our approach

clearly outperforms both the filter and especially the original M-tree.

In Figure 10.10 one can see that for small ε-values we benefit from the

filtering M-tree, whereas for higher values we benefit from caching and pos-
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Figure 10.7: Creation without caching distance calculations.
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Figure 10.9: Comparison of our best technique to M-tree and filtering for

vector set data .
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itive pruning.

Furthermore, we clustered the data set using OPTICS [ABKS99] which

forms the basis for the visual data mining tool presented in Section 2.3.

With a suitable parameter setting for OPTICS, we achieved a speed-up of

16% compared to the centroid filter, 33% compared to the original M-tree,

and 104% compared to the sequential scan. Let us note that the average

cardinality of the result set of each range query was almost 2,000 which

limits the best achievable speed-up to 150%.

10.3.2 Image Data

As we have seen in Chapter 7, image data is a good example for multi-

represented complex data. In Chapter 8 it is shown that the presented

approach for clustering multi-represented objects is able to get the best out

of different types of representations. For this multi-represented clustering

algorithm it is very important that the necessary range queries are supported

efficiently. Here we present some experiments for image data represented

as trees or graphs. For this representations the efficiency of range query

processing is especially important because of the complex similarity measure.

Tree Structured Image Data.

We used the tree description of images as presented in Section 7.2.1. As

similarity measure for the resulting trees, we used again the degree-2 edit

distance and the filter refinement architecture as described in Chapter 9. We

used a sample set of 10,000 color TV-Images. For the experiments, we chose

reasonable epsilon values for the multi-represented clustering algorithm.

Figure 10.11 shows that we achieve a significant speed-up compared to

the original M-tree. As can be seen, we also outperform the pure filtering

approach.

Graph Structured Image Data.

We used the graph description of images as presented in Section 7.2.2

and the edge matching distance and the image data set as described in

[KS03]. The filter presented in this paper is almost optimal, i.e. the number

of unnecessary distance calculations during query processing is very low.

Even in this case, our technique is as good as the filter.
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Figure 10.11: Comparison of our best technique to M-tree and filtering for

tree structured data.
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To show the robustness of our approach with respect to the filter selec-

tivity, we reduced it in a stepwise process. We weighted the original filter

distances with constant factors to decrease the filter selectivity. Figure 10.12

shows that independent from the filter selectivity our approach outperforms

the original M-tree by a factor of almost 2 and is at least as good as the

pure filtering approach.

10.4 Summary

In this chapter, we showed that there are a lot of interesting application areas

for density-based clustering of complex objects. Density-based clustering is

based on similarity range queries where the similarity measures used for

complex objects are often computationally very complex which makes them

unusable for large databases. To overcome the efficiency problems, metric

index structures or multi-step query processing are applied. We combined

and extended these approaches to achieve the best from two worlds. More

precisely, we presented three improvements for metric index structures, i.e.

positive pruning, the combination of filtering and indexing, and caching. In a

broad experimental evaluation based on real-world data sets we showed that

our approach achieves a significant speed-up for similarity range queries. By

means of our new techniques, the clustering of complex multi-represented

objects can be extended to larger databases.
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Chapter 11

Summary and Future

Research Directions

Within the KDD process, data mining is the application of algorithms to

discover patterns and trends in large databases. Clustering is one of the

most important data mining tasks. The methods and concepts presented in

this thesis contribute to the field of clustering complex objects. This chapter

summarizes the main contributions of this thesis (Section 11.1) and shows

some directions for future work (Section 11.2).

189



190 11 Summary and Future Research Directions

11.1 Summary of Contributions

The rapidly increasing amount of data stored in databases requires efficient

and effective data mining methods to gain new information contained in the

collected data. Clustering is one of the primary data mining tasks and aims

at detecting subgroups of similar data objects. This thesis contributes to the

field of clustering complex objects. New and original solutions, extending

the density-based clustering approach, are proposed. In the following, we

give a detailed summary of these contributions.

11.1.1 Clustering High-Dimensional Vector Data

Part II dealt with the problem of subspace clustering which is an active area

of research. After discussing recent work on clustering high-dimensional

data, we presented how the density-based clustering approach can be ex-

tended to clustering high-dimensional data.

The algorithm SUBCLU (density-connected Subspace Clustering) was

proposed which automatically and efficiently computes all “flat” subspace

clusters DBSCAN would have found if applied to all possible subspaces.

SUBCLU was applied to a real-world gene expression data set, outperform-

ing comparative subspace clustering approaches in terms of effectivity and

yielding a significant amount of important biological information.

Additionally, two subspace selection techniques, RIS (Ranking Interesting

Subspaces) and SURFING (SUbspaces Relevant For clusterING) were pro-

posed for the subspace clustering problem. RIS and SURFING rank the

subspaces according to their clustering quality instead of directly comput-

ing the subspace clusters. Afterwards a user can choose some subspaces

from a list sorted by clustering quality and apply his own (e.g. hierarchical)

clustering algorithm to the particular subspaces. The advantage of RIS and

SURFING is that they can be combined with a hierarchical clustering algo-

rithm. The combination of RIS or SURFING with OPTICS was applied to

gene expression data, yielding further important insights that were missed

by SUBCLU.

Furthermore, we combined the density-based clustering notion with prin-

cipal component analysis, a primitive to measure correlation. Based on
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this combination, a formalization of correlation-connected clusters was pre-

sented. We proposed an efficient algorithm called 4C (Computing Correlation

Connected C lusters) to compute such correlation-connected clusters and

applied this method on a gene expression data set and on a metabolome

data set. 4C shows a significant accuracy gain compared to other clustering

methods.

In summary, we proposed four new techniques for clustering high-dimen-

sional data which extend the density-based clustering notion. The benefit of

the proposed methods is that the advantages of the powerful density-based

clustering model are conserved.

11.1.2 Clustering Complex Objects in Arbitrary Metric Spaces

Often, complex objects can not be represented by a feature transformation.

In this case, more complex similarity models are used to capture the intuitive

notion of similarity. Part III dealt with the challenges of clustering such

complex data in arbitrary metric spaces.

First, a new solution to handle multi-represented complex objects was

presented. A lot of complex objects provide more than one form of represen-

tation to capture the intuitive notion of similarity. Using our new approach

for multi-represented data, more information is available during the cluster-

ing process and thereby more accurate clusters are generated.

Afterwards we addressed the efficiency aspect of this new approach. As

most multi-represented objects have complex similarity measures, the exe-

cution of the necessary range queries has to be supported efficiently. We

showed how a filter-refinement architecture can be used to enhance the run-

time of query-processing for tree-structured objects. Therefore, we presented

several filters, i.e. structural and content-based filters, for the degree-2 edit

distance, one of the common similarity measures for tree-structured objects.

The evaluation part showed that filtering significantly accelerates the run-

time of query processing for images or websites represented as trees.

To further improve the performance of range query processing on com-

plex objects, we combined the approach of filter-refinement with metric in-

dexing. We demonstrated how filters can be used to improve the perfor-
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mance of metric indices like the M-tree. Additionally, we proposed positive

pruning and caching to enhance the efficiency of range query processing with

the M-tree. Our experiments with three different complex similarity models

showed a significant speed-up.

To sum up, by means of our new techniques, clustering can be extended

to larger collections of complex objects. Compared to existing approaches,

using only one representation for clustering, we increased the effectivity of

clustering complex objects.

11.2 Potentials for Future Work

At the end of this thesis let us emphasize that our work opens up a wide

range of potentials for future work.

For the clustering of high-dimensional vector data, we want to point out

two interesting research directions.

In part II of this thesis, we concentrated on the effectivity of clustering

high-dimensional data. We did not address the efficiency of the four pre-

sented approaches. All of them are based on the execution of partial range

queries (range queries in arbitrary subspaces of the original data space) or

partial k-nearest neighbor queries (k-nearest neighbor queries in arbitrary

subspaces of the original data space). To date, there is no index structure

efficiently supporting those queries in arbitrary subspaces. Thus, an im-

portant approach for future work is the development of new techniques to

support partial range or partial k-nearest neighbor queries. An open ques-

tion is, for example, if traditional index structures which originally cannot

be applied to this problem can be adopted to solve this problem.

Another encouraging research direction is to further examine the idea of

correlation clustering. While 4C is an interesting and promising algorithm

for correlation clustering, there are still unsolved problems. Currently, 4C

can only detect correlations of a fixed correlation dimension. However, two

k-dimensional correlations can, for example, form a (k + 1)-dimensional

correlation. It would be interesting to investigate how the concepts of

correlation-connected clusters could be extended to find correlation hierar-

chies. Furthermore, searching for non-linear correlations is another impor-
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tant research direction. Combining the density-based clustering notion with

other correlation primitives like fractal dimension or Hough transformations

might be a promising approach.

Let us point out two interesting directions for future research in the field

of clustering complex arbitrary metric data.

The presented approach for clustering multi-represented data can be

extended in many directions. First of all, combining more than two rep-

resentations poses the interesting question if all representation should be

intersected or united. One can of course imagine a combination of the in-

tersection or union method. It would be interesting to investigate how the

user can be aided in his task to find out which technique is best suited

for his data. Another interesting challenge is to extend our method to an

multi-instance and multi-represented clustering. In this setting, each object

may be represented by several instances in some of the representations. And

again, a hierarchical version of this approach would be highly desirable.

In the last chapter we introduced an optimized M-tree. One could imag-

ine to use this optimized M-tree for effectively and efficiently navigating

through arbitrary metric data sets, similar to the approach BOSS presented

in Section 2.3. Each directory node of an M-tree consists of objects repre-

senting all elements stored in the corresponding spherical subtrees. Thus,

the tree itself can be regarded as a hierarchical clustering which, addition-

ally, efficiently supports all kinds of similarity queries. Furthermore, the

optimizations introduced in this paper allow to build up an optimized M-

tree much more efficiently than carrying out a complete hierarchical density-

based clustering. In order to increase the quality, i.e. to minimize the overlap

between subtrees of the optimized M-tree, one could carry out update opera-

tions similar to update operations on Slim-trees [TTSF00], i.e. use a variant

of the slim-down algorithm trying to keep the tree tight. Of course the

trade-off between quality and efficiency of this new dynamic data-mining

browsing tool had to be elaborated.
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