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Zusammenfassung (German Summary)

Lebende Organismen reagieren aktiv auf ihre Umwelt, sei es auf der Suche nach
Nahrung oder auf der Flucht vor Fressfeinden. Dazu müssen sie Signale aus
der Umgebung wahrnehmen und verarbeiten. Mikroorganismen, wie Bakteri-
en oder eukaryotische Zellen, nutzen dafür biochemische Signalnetzwerke aus
molekularen Schaltern. Einige dieser Signalnetzwerke müssen daher mechani-
sche Signale erkennen und mechanische Antworten liefern können. Die vor-
liegende Arbeit veranschaulicht in mehreren Kapiteln die Konsequenzen ei-
ner Kopplung zwischen Mechanik und Chemie. Nach einer allgemeinen Ein-
führung, die einige Hauptergebnisse herausgreift und in einen breiteren Kon-
text einordnet, werden in einer separatenmathematischen Einleitung nützliche
analytische Werkzeuge erläutert. Dieser gemeinsame Rahmen der Differential-
geometrie verbindet drei übergreifende Themen dieser Arbeit, wobei jedes The-
ma zwei Unterprojekte hat.

Mechanochemische Kopplung auf der Mikroskala. Beim Binden an eine
elastische Membran können Proteine diese über reziproke Kräfte verformen.
Wie wirkt sich dieser Effekt auf eine Reaktionskinetik aus, die das Zytosol
mit der Membran koppelt? Der Abschnitt II.1 “Mechanochemical Coupling
between Proteins and Membranes” zeigt, wie generische Wechselwirkungen
zwischen Proteinen und einer Membran letztere nicht nur verformen, sondern
auch zu einer nichtlinearen Selbstrekrutierung von Proteinen aus dem Zytosol
auf die Membran führen. Da nichtlineare Reaktionen ein zentrales Thema
musterbildender Systeme sind, könnten externe Stimuli über mechanische
Kooperativität zu einer Änderung der intrazellulären Signalmuster führen.
Durch Reaktionen angetriebene intrazelluläre Muster implizieren wiederum

Teilchenflüsse, welche im Fokus von Abschnitt II.2 “Protein Fluxes Induce Ge-
neric Transport of Cargo” liegen. In einer dichten Umgebung, wie auf der Zell-
membran, koppeln Teilchenflüsse über eine effektive Reibung, die durch hy-
drodynamische oder direkte Wechselwirkungen vermittelt wird. Dies führt zu
einem generischen diffusiophoretischen Effekt, bei dem Proteinmuster völlig
unbeteiligte Moleküle transportieren und sogar sortieren können. Diese Ergeb-
nisse legen nahe, dass Proteine mechanische Arbeit verrichten können, ohne
auf eine spezialisierte molekulare Maschinerie wie das Aktomyosin-Zytoskelett
zurückzugreifen.

Signaltransfer bei der Zellwanderung. Das Aktomyosin-Zytoskelett ist je-
doch unverzichtbar für die Zellwanderung. Zum Steuern dieser Maschinerie
verarbeiten Zellen externe Stimuli über mehrere Signalwege, sowohl mit po-
sitiven als auch mit negativen Rückkopplungen. In Abschnitt III.1 “Collective
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Cell Dynamics in Rigid Environments” werden diese komplexen Signalwege auf
nur zwei Rückkopplungen herunter gebrochen, die eine Polarisierung der (si-
mulierten) Zellen ermöglichen. Dieses Projekt zeigt, wie unter bestimmten Be-
dingungen eine Zellbewegung mit der Benetzung einer Oberfläche durch ein
aktives Tröpfchen gleichbedeutend ist.
Wenn einzelne Proteine Membranen durch Binden verformen können, dann

sollten Zellen entsprechend in der Lage sein, ein Substrat an dem sie haften zu
verformen. In der Tat dehnen und untersuchen Zellen aktiv ihre Umgebung,
indem sie aktiv an ihr ziehen. In Abschnitt III.2 “Cell Migration and Shape in
Soft Environments” wird unter der Prämisse dieser Zugkräfte untersucht, wel-
chen Einfluss Substratverformungen auf die Dynamik von Zellen haben. Sub-
stratdeformationen implizieren lokale Änderungen des Abstands zwischen den
Oberflächenliganden, an die eine Zelle binden kann, wodurch Gradienten an
Adhäsivität erzeugt werden. Infolgedessen können sich Zellen auf sehr weichen
Substraten festsetzen, indem sie adhäsive Inseln bilden, und können auf noch
weicheren Substraten sogar durch drastische Elongation die Rotationssymme-
trie brechen. Wenn sich viele Zellen auf demselben Substrat aufhalten, dann
können sie diese Effekte ausnutzen um Netzwerke zu bilden.

Wie Anisotropie die Morphogenese beeinflusst. Das Brechen der Rotati-
onssymmetrie bedeutet, dass Zellen eine anisotrope Spannung ausüben und ei-
ne besonders starke Kontraktilität in eine bestimmte Richtung zeigen. Folglich
können zelluläre Neuausrichtungen die Spannung auf Gewebeebene und damit
auch die Gewebeform regulieren. Der Abschnitt IV.1 “Collective Cell Migration
Affects Morphogenesis” zeigt, wie eine solche Neuorientierung von Zellen eine
Formveränderung vonminiaturisierten Organen bewirken kann. Anschließend
werden in Abschnitt IV.2 “Between Morphogenesis and Hydrodynamic Flows”
die Konsequenzen der zellulären Anisotropie und der Mechanik für die Hydro-
dynamik von Geweben untersucht. Eines der wichtigsten Ergebnisse ist, dass
sich eine Spannungsmodulation aufgrund von Zellneuausrichtung qualitativ
von einer isotropen Spannungsmodulation unterscheidet, und zwar durch die
Richtung, in die sich ein Gewebe bewegt. Interessanterweise können isotrope
Kontraktilitätsgradienten durch den Marangoni-Effekt und den resultierenden
hydraulischen Druck zu einer Ausbeulung des Gewebes in den kontraktilsten
Regionen führen. Dies könnte auch ein minimales Modell für eine aktive, vom
Zytoskelett einer Zelle angetriebene Exozytose darstellen. Ein weiteres Ergebnis
ist, dass elastische röhrenförmige Schalen die Zeitumkehrsymmetrie durchHys-
tereseeffekte brechen können, was gerichteten Transport ermöglichen könnte.
Es gibt also noch viel mehr zu entdecken!
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Summary
Living organisms actively respond to their surroundings, be it searching for food
or escaping from predators. These actions require detecting and processing en-
vironmental signals. Microorganisms, such as bacteria or eukaryotic cells, do so
via biochemical signaling networks of molecular switches. Then, some of these
signaling networks must be capable of detecting mechanical signals and facil-
itating mechanical responses. This thesis, structured into several chapters, il-
lustrates the consequences of coupling mechanics and chemistry. After giving a
general introduction that outlines some of themain results and places them into
a broader context, a separate mathematical introduction explains useful analyt-
ical tools and methods. This common framework of differential geometry ties
together three overarching themes of this thesis, each having two subprojects.

Mechanochemical coupling on the microscale. When binding to an elas-
tic membrane, proteins can induce deformations thereof by exerting reciprocal
forces. Then, what are the consequences of this effect for reaction kinetics that
couple the cytosol to the membrane? Section II.1 “Mechanochemical Coupling
between Proteins andMembranes” illustrates how generic interactions between
proteins and a membrane not only deform the latter but also lead to nonlinear
self-recruitment of proteins from the cytosol to the membrane. With nonlin-
ear reactions being a central theme of pattern-forming systems, external stimuli
could, via mechanical cooperativity, drastically change intracellular signaling
patterns.
In turn, intracellular pattern formation, via protein turnover and reactions,

implies particle fluxes—the center of attention in Section II.2 “Protein Fluxes
Induce Generic Transport of Cargo”. In particular, in any dense environment
such as on the cell membrane, particle fluxes will couple via effective friction,
mediated by hydrodynamic interactions or direct interactions among proteins.
This leads to a generic diffusiophoretic effect, where protein patterns can trans-
port and even spatially sort entirely unrelated molecules. Taken together, these
results suggest that proteins can perform mechanical work without relying on
specialized molecular machinery like the actomyosin cytoskeleton.

Integrating signals during cell migration. The actomyosin cytoskeleton is,
however, indispensable for the migration of cells. To control this machinery,
cells integrate external stimuli via several regulatory pathways that involve pos-
itive and negative feedback loops. In Section III.1 “Collective Cell Dynamics
in Rigid Environments”, these complex regulatory networks are represented in
terms of only two feedback loops that allow the (simulated) cells to polarize.
Furthermore, this project shows how, under certain conditions, cell motion is
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equivalent to an entirely different problem: active surface wetting by a liquid
droplet.
If proteins can deform membranes by binding, then the much larger cells

should do the same to a substrate to which they adhere. In fact, cells induce
strains and probe their environment by actively pulling and generating traction
forces. Section III.2 “Cell Migration and Shape in Soft Environments” takes
these traction forces as a premise for studying how substrate deformations af-
fect cell dynamics. In particular, substrate deformations imply local changes
in the distance between the surface ligands that a cell can adhere to, thus gen-
erating gradients of adhesiveness. Then, cells can trap themselves on very soft
substrates by creating adhesive islands and even break rotational symmetry via
profound elongation. When present on the same substrate, large populations of
cells can exploit these effects to form networks.

How anisotropy affects morphogenesis. Breaking rotational symmetry
means that cells exert anisotropic tension, showing particularly strong con-
tractility in some chosen direction. Consequently, cellular reorientations
can regulate the tension on a tissue level and thereby control tissue shape.
Section IV.1 “Collective Cell Migration Affects Morphogenesis” shows how
such a reorientation of cells can induce a shape transformation in miniaturized
organs. Then, Section IV.2 “Between Morphogenesis and Hydrodynamic
Flows” further studies the consequences of cellular anisotropy and mechanics
for the hydrodynamics of tissues. One of the main results is that a tension
modulation due to cell reorientation is qualitatively different from an isotropic
tension modulation by the very direction in which the tissue will move.
Interestingly, isotropic contractility gradients can, through the Marangoni
effect and hydraulic pressure, lead to a bulging out of the tissue in the most
contractile regions. Such effects could also provide a minimal model for active
cell cytoskeleton-driven exocytosis. Another result is that elastic tubular shells
can break time-reversal symmetry by exhibiting different hysteresis effects,
possibly enabling directed transport. Thus, there is much more to discover!
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I Non-Equilibrium Dynamics
in Biology

I.1 Activity Is a Matter of Life and Death

What is our life? The play of passion. Ourmirth? Themusic of division:
Ourmothers’ wombs the tiring-houses be, wherewe are dressed for life’s
short comedy. The earth the stage; Heaven the spectator is, who sits
and views whosoe’er doth act amiss. The graves which hide us from
the scorching sun are like drawn curtains when the play is done. Thus
playing post we to our latest rest, and then we die in earnest, not in jest.

Sir Walter Raleigh

Life is dynamic. All living beings self-organize, adapt, and autonomously re-
spond to external stimuli by performing work. To accomplish these tasks,

akin to complexmachines, biological organisms rely onmany smaller functional
subunits that act in concert. Their continued operation requires a steady supply
of energy through biological fuel and only stops at death. Higher forms of life
such as animals and plants have a hierarchical structure. They are subdivided
into different organs such as the brain, heart and skin (Reece et al., 2014; Carl-
son, 2019). These organs are complex biological composites of several macro-
scopic tissues, in turn consisting of many smaller cells (Reece et al., 2014). Each
cell has a life of its own that depends on the operation of even smaller subunits,
like the cell cytoskeleton, and organelles such as the cell core (Reece et al., 2014;
Phillips, Kondev, et al., 2012; Alberts, Bray, et al., 2014; Alberts, A. Johnson, et
al., 2014; Steven et al., 2016). The building blocks for these intracellular struc-
tures aremacromolecules such as proteins and lipids (Reece et al., 2014; Phillips,
Kondev, et al., 2012; Alberts, Bray, et al., 2014; Alberts, A. Johnson, et al., 2014).
When studying the various aspects of life, one therefore encounters a plethora
of systems that each have their own function. Figure I.1 depicts this cascade
of coupled systems across disparate length scales. In the following, I intend to
take the reader on a short expedition, starting at the macroscopic behavior of
an organism and then diving further into the depths of microscopic dynamics.
Along this journey, I give a concise and non-exhaustive overview of several re-
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Figure I.1: A living being consists of several coupled subsystems that form a hi-
erarchy across different length scales. The top left view shows the mammary
gland organ, which has a tree-like ductal structure terminating in alveolar
buds. This organ consists of many cells (top right view) that form a confluent
tissue (bottom left view). Each cell has a life of its own that is determined
by the microscopic dynamics of proteins (green, bottom right view). All of
these different components, and many others, contribute to the function of
the whole organism.

lated topics. Finally, wewill slowly resurfacewhile taking a closer look at several
phenomena that arise across different scales.

The seemingly endless complexity of life raises an important question: If two
subjects look and act differently, then are they really distinct or could both simply
be played by the same agent disguised with another mask? In this thesis, as we
study the macroscopic behavior of cells and the microscopic dynamics of pro-
teins, we find striking conceptual analogies. This suggests that there must exist
some generic principles that underlie the dynamics of distinct organisms.
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I.1 Activity Is a Matter of Life and Death

I.1.1 Multicellular Dynamics
Form begets function… One common point of all living beings is that they
clearly distinguish themselves from their surroundings through a sharp physi-
cal boundary. An example of such a boundary is the skin, a multicellular ep-
ithelium that protects animals from environmental hazards (Reece et al., 2014;
Carlson, 2019). In the case of individual cells, this pivotal role is played by their
membrane or a cell wall (Reece et al., 2014; Phillips, Kondev, et al., 2012; Al-
berts, Bray, et al., 2014; Alberts, A. Johnson, et al., 2014). Analogously, both
organs and organelles have well-defined boundaries that set them apart from
other functional subunits of the enclosing organism. Within this confinement,
the constituents that make up an organ or organelle can move and interact with
minimal outside interference. We summarize these points as follows: Abiophys-
ical boundary localizes and groups different yet related components into a larger
functional entity such as an organ or an organelle.
There are also cases where the boundary defines the very purpose of the organ

or organelle. For example, the shell-like vascular system of blood vessels and the
lymphatic system both have only one dedicated function: to facilitate efficient
advective transport lest the surrounding porous tissue would only allow slow
diffusive transport. This function tightly relates to the tubular morphology of
the vessels, making them pipelines for blood and lymphatic fluid (Reece et al.,
2014; Carlson, 2019), respectively. The blood itself, however, is a viscous fluid
whose diverse functions are not explicitly tied to its shape but rather to its com-
position. In particular, blood transports biological fuel in the form of sugar to
maintain a steady power supply throughout the organism, as well as several dif-
ferent cell types in suspension—erythrocytes, platelets and immune cells (Reece
et al., 2014; Carlson, 2019). Thus, it might seem that some biological functions
can be independent from morphology. But when looking at the bigger picture,
blood cannot fulfill its role without a vasculature that has a specialized shape.
Defects in this shape that can arise due to physical instabilities, such as bulges of
the vasculature, so-called aneurysms, can endanger the entire organism by lo-
cally jeopardizing its power supply (Herman, 2016). We therefore arrive at the
following conclusion: The ability of a functional entity to perform a task crucially
depends both on its composition and on the biophysical properties of its boundary.

…while functional activity begets form. In our examples so far, the differ-
ent biological components can behave like fluids such as blood or solids such
as blood vessels. Then, how does this distinction between fluid and solid affect
the dynamics and function of a tissue? In Section IV.1 “Collective Cell Migra-
tion Affects Morphogenesis”, we further investigate these concepts in the con-
text of mammary gland morphogenesis. Mammary glands are organs that also
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have a ductal structure (Wang et al., 2017). Their function is to provide milk
for the nourishment of mammal offspring (Reece et al., 2014; Carlson, 2019). To
study the dynamics of mammary gland development, we employ aminiaturized
and simplified version of the full organ, which we refer to as organoid (Linne-
mann et al., 2015). Such a mammary gland organoid, grown in a collagen gel
inside a Petri dish, has the following architecture. Active cells form a fluid-like
tubular epithelial shell at the interface between a passive fluid in the lumen
and a passive elastic solid in the surroundings (Fernández et al., 2021). Thus,
the entire dynamics of the organ are driven by the activity of cells. These cells
behave like anisotropic force dipoles that migrate due to an additional polar
motile force. As a consequence of cell motility, the epithelium switches from
collective oscillatory motion along the tube axis to collective rotations along the
tube circumference. We find that this switch in motile behavior and the cor-
responding reorientation of the anisotropic cells leads to a shape transforma-
tion, where spherical buds form at the end of the tubular organoid ducts (Fer-
nández et al., 2021). Such an active rearrangement of cells and the resulting
shape transformations could also be at play during embryogenesis of the fruit
fly Drosophila melanogaster (Streichan et al., 2018; Martin, 2020; Gheisari et al.,
2020) or other organisms (Wozniak and Chen, 2009; Münster et al., 2019). Fi-
nally, in Section IV.2 “Between Morphogenesis and Hydrodynamic Flows”, we
explicitly study the hydrodynamics of a boundary-driven fluid such as in the
case of mammary gland morphogenesis. Our results show that surface tension
gradients and cell motility can lead to a hydraulic pressure, which overcomes
the Laplace pressure, and drives outwards motion of the boundary in regions
of high tension. These counterintuitive findings could pose a mechanism for a
robust control of endocytosis and exocytosis in cells, through the contractility of
the actomyosin cytoskeleton.

From cellular activity and tissue dynamics… These findings raise the fol-
lowing question: How does collective cell behavior depend on the motility of indi-
vidual cells and their coupling via intercellular adhesions? We begin our inves-
tigation of these questions in Section III.1 “Collective Cell Dynamics in Rigid
Environments”, where we discuss a mesoscopic Cellular Potts model (Graner
and Glazier, 1992) for the collective migration of actively polarizing cells on a
rigid two-dimensional surface (Segerer et al., 2015; F. Thüroff et al., 2019). First,
we apply our model in the context of single cell motility, collective rotations of
cells in circular geometries, and wound healing (F. Thüroff et al., 2019). We
find that single cells first break symmetry by polarizing, followed by a persis-
tent random walk with ballistic motion on short timescales and diffusive mo-
tion on long timescales (F. Thüroff et al., 2019). In circular geometries, the polar
cells minimize viscous shear by migrating in cohesive groups, leading to collec-
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tive rotations (Doxzen et al., 2013; Segerer et al., 2015; F. Thüroff et al., 2019).
Conceptually, this observation resembles the flocking of polar particles that one
observes in the Vicsek model (Vicsek et al., 1995). The tendency to minimize
viscous shear also explains why collective rotations of polar cells emerge in the
mammary gland organoid, see Section IV.1 “Collective Cell Migration Affects
Morphogenesis”. Studying large extended tissues in the context of wound heal-
ing, we then find that the polarizing cells actively invade the cell-free region and
pull on the trailing cells (F. Thüroff et al., 2019).

…in soft deformable environments… However, cells in an organism mi-
grate in a soft environment as opposed to a rigid surface, and can also respond
to its mechanical properties (Discher et al., 2005). Therefore, in Section III.2
“Cell Migration and Shape in Soft Environments”, we further generalize our
Cellular Pottsmodel by accounting for the traction stresses that cells exert on a
soft substrate, and the resulting deformation thereof. Then, we investigate the
impact of substrate stiffness on both single cell motility and shape. Depending
on the mechanical properties of the substrate, we find qualitative differences
in phenomenology, where cells behave more like persistently migrating force
monopoles, self-trapping isotropic force dipoles, or elongating anisotropic force
dipoles (A. Goychuk, Brückner, et al., 2018). In our Cellular Pottsmodel, these
effects do not rely on a control of gene expression or metabolism through ex-
tracellular matrix rigidity (Bissell and Barcellos-Hoff, 1987; C. M. Nelson and
Bissell, 2006; Ge et al., 2021; Pandamooz et al., 2020; Jang et al., 2021) but arise
purely as a consequence of mechanical interactions.

…to self-organization of cells. Finally, using ourCellular Pottsmodel, we test
how a large population of cells should interact via the elastic substrate that they
adhere to. For soft substrates, where cells behave like anisotropic force dipoles,
we find that cells organize themselves into networks. Interestingly, similar net-
works also emerge during the in vitro study of angiogenesis (that is, the forma-
tion of vasculature) in tube-formation assays (Vailhé et al., 2001). Furthermore,
like in our simulations, in vitro tube formation depends on themechanical prop-
erties of the substrate (Saunders and Hammer, 2010; Rüdiger et al., 2020). Thus,
we conclude that the cells can use the deformable substrate for long-rangedme-
chanical communication (Reinhart-King et al., 2008; Winer et al., 2009; Sopher
et al., 2018; van Oers et al., 2014). From a purely theoretical point of view,
one can understand these results via the generic tendency of anisotropic force
dipoles in elastic environments to align into stringlike structures (Bischofs and
Schwarz, 2003; Bischofs, S. A. Safran, et al., 2004).
In this thesis, we focus on mechanical interactions during physiological pro-
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cesses. However, mechanics can also have important implications for patho-
logical conditions such as microbial infections. For example, bacterial biofilm
growth on elastic surfaces such as epithelia can lead to wrinkling (Fei et al.,
2020) or even mechanical disruption (Cont et al., 2020) of the infected surface.
Such morphological changes then facilitate further invasion of the bacteria into
the host. To summarize, it seems evident that cell activity and mechanics play a
crucial role for the dynamics of macroscopicmulticellular tissues, both in devel-
opment (Wozniak and Chen, 2009) and disease. In the following, we broaden
this perspective by discussing how biochemical self-organization can control
cellular dynamics, and thus shape. This lends to a general interplay between
biochemical patterns and mechanics (Vining and Mooney, 2017; Gross et al.,
2017; Hannezo and Heisenberg, 2019).

I.1.2 Intracellular Self-Organization
Cell activity requires biochemical signaling. So far, we have entirely fo-
cused on the macroscopic dynamics of tissues, in turn driven by the activity of
cells. Butwhat is themicroscopic origin of cell activity? To answer this question,
one has to take a closer look at the physiological processes that take place in cells.
For example, the cell cytoskeleton plays a central role in cell migration, division,
and intercellular adhesion (Théry and Bornens, 2006; Kunda and Baum, 2009;
Salbreux et al., 2012; Alberts, Bray, et al., 2014; Alberts, A. Johnson, et al., 2014;
Steven et al., 2016; Chugh and Paluch, 2018). Like a machine assembled from
many molecular building blocks, the cytoskeleton turns chemical energy into
mechanical work. The corresponding cytoskeletal forces are generated via actin
polymerization and actomyosin contractility—the latter is also involved inmus-
cle contraction hence the name (Alberts, Bray, et al., 2014; Alberts, A. Johnson,
et al., 2014; Steven et al., 2016). Thus, microscopic intracellular processes not
only affect tissue dynamics via cell motility, as we discuss in Chapter III “From
Cellular Dynamics to Self-Organization”, but can also directly lead to motion of
the whole organism.
In analogy to artificial machines with an on-off switch, cytoskeletal assembly

and actomyosin contractility are controlled by a myriad of regulatory proteins.
For example, the Rho family of small GTPases effectively controls cell migration
and shape through the cytoskeleton (Lauffenburger and Horwitz, 1996; Ridley,
2001; Ridley et al., 2003; Ridley, 2015; Lawson and Ridley, 2018). Through feed-
back mechanisms that involve complex reaction networks of these regulatory
proteins (Hodge and Ridley, 2016), the cytoskeleton responds to extracellular
mechanical stimuli (Marée, Jilkine, et al., 2006; Marée, Grieneisen, et al., 2012).
In Section III.1 “Collective Cell Dynamics in Rigid Environments”, we prune
these regulatory networks into two prototypic feedback loops to study both sin-
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gle and collective cell migration.
Apart from cell migration, small GTPases also partake in many other in-

tracellular processes such as cell division (Théry and Bornens, 2006; Alberts,
A. Johnson, et al., 2014; Alberts, Bray, et al., 2014; Steven et al., 2016). As
their name suggests, GTPases catalyze the hydrolysis of high-energy guanosine
triphosphate (GTP), a biochemical fuel similar to adenosine triphosphate
(ATP), into low-energy guanosine diphosphate (GDP). In particular, small
GTPases have two conformations, one active GTP-bound state and one inactive
GDP-bound state1 (Alberts, A. Johnson, et al., 2014). Guanine nucleotide
exchange factors (GEFs) catalyze GDP release and replacement by GTP, thus
switching GTPases into their active conformation (Halatek, Brauns, et al.,
2018). In contrast, GTPase activating proteins (GAPs) increase the intrinsic
GTP hydrolysis rate of GTPases, thus switching them into their inactive confor-
mation (Halatek, Brauns, et al., 2018). The conformational changes of GTPases
that occur during activation (effective phosphorylation via replacement of GDP
by GTP) and deactivation (effective dephosphorylation via GTP hydrolysis
to GDP) constitute a molecular switch, which is a recurrent concept in biol-
ogy (Phillips, 2020). This can lead to signaling cascades, where one molecular
switch “flips” another molecular switch by activating or deactivating it via
phosphorylation, similar to a network of stochastic transistors. To that end,
protein kinases mediate protein phosphorylation, while protein phosphatases
induce protein dephosphorylation (Alberts, A. Johnson, et al., 2014). These
interactions can lead to complex reaction networks such as for the Rho family
of small GTPases (Hodge and Ridley, 2016).
Having two conformations enables molecular switches not only to present a

key for turning parts of the intracellularmachinery on or off, but also to transmit
the required energy to do so. To maintain extended reaction networks between
such molecular switches under constant protein turnover, one has to provide
a constant supply of energy—but that alone is not enough. In addition, each
component has to operate with efficiency close to unity to minimize the energy
losses during each “flip” of the active switch state. Interestingly, in stark contrast
to artificial engines, for molecular machines it is indeed possible to achieve effi-
ciency close to unity under large thermal fluctuations (I. Goychuk, 2016). Then,
however, molecular machines have to operate close to thermal equilibrium so
that it is not easy to determine the axis of time for their irreversible dynamics.

Of biochemical patterns and particle fluxes. Several different types of
proteins can act as a molecular switch with two conformations, and interact

1 For somemolecules, the GTP-bound conformation is inactive and the GDP-bound conforma-
tion is active (Alberts, A. Johnson, et al., 2014).
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with other proteins to form reaction networks. Non-trivial reaction dynamics,
together with protein diffusion, then leads to the formation of intracellu-
lar patterns (Halatek, Brauns, et al., 2018) as was first recognized by Alan
Turing (Turing, 1952). In the past decades, several prominent examples of
biological pattern formation have spurred research. For example, the Rho
family of GTPases is involved in the regulation of the eukaryotic cytoskeleton,
as mentioned above (Lauffenburger and Horwitz, 1996; Ridley, 2001; Ridley
et al., 2003; Ridley, 2015; Lawson and Ridley, 2018). In particular, the Cdc42
family of GTPases, a subfamily of the Rho GTPases, plays a role in determining
the position of a new growth zone or bud site in Saccharomyces cerevisiae (D. I.
Johnson, 1999). Likewise, PAR proteins are key players for defining the
anteroposterior axis of the embryo in Caenorhabditis elegans (Goldstein and
Macara, 2007; Lang and Munro, 2017).
But intracellular regulation is not a special property that is reserved for eu-

karyotic cells. Rather, regulation is a signature of life in general, and thus also
takes place in prokaryotes. In this context, the bacterium Escherichia coli is a
paradigmatic model organism where Min protein oscillations were linked to
the correct placement of the bacterial division axis (de Boer et al., 1989; Hu
and Lutkenhaus, 1999; Raskin and de Boer, 1999; Lutkenhaus, 2007; Ramm,
Heermann, et al., 2019). At its heart, the Min system consists of only two pro-
teins, the ATPaseMinD and the ATPase activating proteinMinE (Raskin and de
Boer, 1999; Loose, Fischer-Friedrich, Ries, et al., 2008). The ATPase MinD, in
analogy to GTPases, has an active ATP-bound state and an inactive ADP-bound
state (Huang et al., 2003; Halatek and Frey, 2012). In the cytosol, MinD is ac-
tivated by binding ATP. Then, active MinD cooperatively binds to the bacte-
rial membrane, where it forms a positive feedback loop by recruiting even more
MinD from the cytosol (Huang et al., 2003; Halatek and Frey, 2012). Further-
more, membrane-boundMinD also recruits the ATPase activating proteinMinE
from the cytosol, thereby forming a MinDE complex with a high rate of ATP
hydrolysis (Huang et al., 2003; Halatek and Frey, 2012). Finally, this ATP hy-
drolysis leads to the inactivation of MinD via the loss of a phosphate group, and
the inactivated MinDE complex detaches from the bacterial membrane (Huang
et al., 2003; Halatek and Frey, 2012). Interestingly, MinE itself also has two con-
formations that regulate its activity (Park, W. Wu, et al., 2011; Park, Villar, et al.,
2017; Denk et al., 2018), thus making it a molecular switch. This property of
MinE is crucial for the robustness of MinDE patterns across a wide regime of
MinE to MinD concentration ratios (Denk et al., 2018).
To summarize, the different interactions betweenMinD,MinE, and themem-

brane lead to reactive fluxes with a continuous particle exchange between active
membrane-bound proteins and inactive cytosolic proteins. These reactive fluxes
then build up protein density gradients on the membrane and in the cytosol. In
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turn, protein density gradients correspond to diffusive fluxes, thus leading to a
closed cycle of fluxes that is driven by particle exchange. These relatively sim-
ple microscopic dynamics lead to a broad range of phenomena. In the bacillus
(that is, rod-shaped bacterium) Escherichia Coli, one observes pole to pole oscil-
lations (Hu and Lutkenhaus, 1999; Raskin and de Boer, 1999; Hale et al., 2001;
F. Wu et al., 2015). When reconstituting the Min system in vitro, one observes
traveling waves or stationary patterns on planar membranes (Loose, Fischer-
Friedrich, Ries, et al., 2008; Vecchiarelli et al., 2016; Glock et al., 2019). In ge-
ometric confinement in vitro that is similar to the shape of the bacterium Es-
cherichia Coli, one finds oscillations and striped patterns (Zieske and Schwille,
2014; Caspi and Dekker, 2016).
Yet there is more to these non-equilibrium protein dynamics than initially

met the eye, as they were shown to regulate the localization of passive and un-
related molecules (Ramm, Glock, et al., 2018; Shih et al., 2019). In Section II.2
“Protein Fluxes Induce Generic Transport of Cargo”, we trace this observation
back to a diffusiophoretic effect: the diffusive fluxes of membrane-bound pro-
teins confer an effectivemesoscopic friction that acts on othermembrane-bound
molecules, thus inducing their directed molecular transport (Ramm, A. Goy-
chuk, et al., 2021). It would be interesting to see whether such an unspecific
mechanical coupling between proteins can lead to alignment or synchroniza-
tion of biochemically distinct pattern-forming systems when placed in the same
geometry.

Of activity and form, yet again. Interestingly, theMin systemwas also shown
to induce deformations in giant unilamellar vesicles (Litschel et al., 2018; Fu
et al., 2021). Together with the transport of passive and unrelated molecules,
these findings suggest that pattern-forming systems of molecular switches such
as Min proteins can perform mechanical work without relying on specialized
proteins. Similarly, several polymers and proteins can induce membrane bend-
ing (Ford et al., 2002; Tsafrir et al., 2003; Lee et al., 2005; Gov and Gopinathan,
2006; Zimmerberg and Kozlov, 2006; Prinz and Hinshaw, 2009; Stachowiak et
al., 2012; McMahon and Boucrot, 2015; Jarsch et al., 2016; Gov, 2018; Yuan
et al., 2021), including proteins that contain Bin/Amphiphysin/Rvs (BAR) do-
mains (Zimmerberg andMcLaughlin, 2004; Peter et al., 2004; Bhatia et al., 2009;
Mim and Unger, 2012; Zhu et al., 2012; Prévost et al., 2015; Simunovic et al.,
2015). Taking a closer look at the mechanochemical coupling between proteins
and amembrane, in Section II.1 “Mechanochemical Coupling between Proteins
and Membranes” we find that membrane-bending proteins have the capacity
to induce self-recruitment, by cooperatively deforming the membrane into a
binding-favorable configuration. However, cell shape and membrane deforma-
tions are not only induced bymembrane-binding proteins but also driven by the
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actin cortex (Salbreux et al., 2012; Chugh and Paluch, 2018), which can generate
intracellular flows by contracting. The actin cortex and its ability to generate ac-
tive cytoskeletal forces is in turn regulated by the Rho family of GTPases, which
can for example result in cell migration (Lauffenburger and Horwitz, 1996; Ri-
dley, 2001; Ridley et al., 2003; Ridley, 2015; Lawson and Ridley, 2018). Taken
together, this leads to a general coupling between mechanics, hydrodynamics
and chemistry on the microscale (Goehring, Trong, et al., 2011; Goehring and
Grill, 2013; Schiffhauer and Robinson, 2017; Mietke, Jemseena, et al., 2019; Mi-
etke, Jülicher, et al., 2019), analogous to mechanochemical interactions during
morphogenesis (Vining andMooney, 2017; Gross et al., 2017; Petridou, Spiró, et
al., 2017; Brinkmann et al., 2018; Recho et al., 2019; Hannezo and Heisenberg,
2019).
On a final note, reaction-diffusion systems typically sense the geometry that

they are placed in (Halatek and Frey, 2012; F. Wu et al., 2015; Thalmeier et al.,
2016; Eroumé et al., 2021). Then, any mechanochemical coupling also directly
implies feedback mechanisms between biochemical patterns and geometry.
Such feedback mechanisms could occur during the surface contraction waves
that starfish oocytes of the species Patiria miniata exhibit, which are guided
by geometry (Wigbers et al., 2021). In Section I.3 “A Foundation for Patterns
in Adapting Organisms”, we recapitulate important concepts from differential
geometry for describing such a coupling between geometry and biochemical
pattern formation. These concepts also prove useful in the context of mam-
mary gland morphogenesis in Section IV.1 “Collective Cell Migration Affects
Morphogenesis” and Section IV.2 “BetweenMorphogenesis and Hydrodynamic
Flows”.

I.1.3 An Approach to Reconcile Disparate Scales

In the introduction so far, we have seen that living beings consist of smaller sub-
units, each with its own dynamics. These constituents can be as tiny as single
ions, much larger molecules such as proteins or can even be as large as whole
cells or clusters of cells. The human body, for example, is a dynamic assembly
of roughly 4 × 1014 cells (Milo and Phillips, 2015), each containing up to 1 × 109
proteins (Milo and Phillips, 2015) and many more other particles such as water
molecules. In turn, these small subunits then interact and form complex bio-
logical patterns across vastly different orders of magnitude in both space and
time. It is this cascade of different patterns and intertwining machineries that
gives rise to the complexity of life (Fig. I.1). Looking at the broader concepts,
one finds that there is some degree of recursion in life—both function-wise and
structure-wise.
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Recursion in function. As our introduction illustrates, mechanochemical
interactions are an example of a common theme both for microscopic self-
organization and for macroscopic morphogenesis. To further investigate the
role of mechanochemical interactions in biology, we take a two-fold approach
of descriptive and complementary methods: (i) starting from experimental
observations, we seek a minimal theoretical explanation thereof, and (ii) by
combining different theoretical concepts, we make predictions that can be
tested against experiments. Our goal is to explore different biological processes,
which give life its amazing ability to self-organize by consuming energy.

Recursion in structure. Biological organisms are subdivided into different
functional subunits, organs and tissues, which consist of smaller organisms,
cells. In turn, these cells are subdivided into organelles and other intracellu-
lar structures, which consist of proteins and lipids. Then, one can draw some
parallels when comparing naturally occurring life to artificial machines. Both
require a power supply to maintain their operation and both are similarly made
up of smaller subsystems like gears, springs, hydraulics, levers, motors, and con-
trollers. But there are also striking differences between artificial machines and
living beings, as the latter actively adapt to their environment by reorganizing
their functional subunits. Moreover, in contrast to artificial machines, an ex-
tended interruption of operation means permanent death2.
In the following, we use these similarities to cast different pattern-forming

systems into a common language. We make no explicit distinction between liv-
ing organisms and artificial machines, and instead refer to both as “active mat-
ter” or “active systems”. A single active system is then simply an “active agent”.
We begin by discussing in Section I.2 “The Fuel for Self-Organization” how an
active system is driven out of equilibrium, from a thermodynamic point of view.
This makes active matter fundamentally different from “passive matter”, which
is inanimate or dead. We then illustrate these concepts on a rudimentary pattern
that occurs in biology, a density difference between two membrane-separated
compartments. To provide a specific biological example, we finally consider
how plants generate biochemical fuel from electromagnetic energy.

2 Some organisms can survive or even thrive in extreme conditions, such as ex-
tremophiles (Rothschild and Mancinelli, 2001). This includes multicellular organisms,
as tardigrades can even survive in space (Jönsson et al., 2008).
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I.2 The Fuel for Self-Organization
I.2.1 A Thermodynamic Perspective on Activity
To illustrate how active matter is driven out of equilibrium, we consider a semi-
closed active system with a selectively permeable boundary, in an environment
at constant temperature 𝑇. The active system takes up chemical energy from
its environment via particle exchange 𝛿𝑁𝑖 and converts this chemical energy
into mechanical work3 𝛿𝑊 . In turn, mechanical work ultimately dissipates
into the environment via friction and the generation of heat 𝛿𝑄. All of these
processes correspond to fluxes of physical quantities across the selectively per-
meable boundary and can change the internal energy of the active system by
𝛿𝑈 . The active system must then obey the following energy conservation equa-
tion (Landau and Lifshitz, 1980):

𝛿𝑈 + 𝛿𝑊 = ∑
𝑖
𝜇𝑖 𝛿𝑁𝑖 + 𝛿𝑄 , (I.1)

where 𝜇𝑖 is the chemical potential of a fuel or waste product. Here, we have
flipped the conventional sign in front of 𝛿𝑊 to clarify that the system performs
work on the environment and not the other way around. According to the Clau-
sius inequality, 𝛿𝑄 ≤ 𝑇 𝛿𝑆, the heat production is bounded from above by the
entropy production 𝛿𝑆 weighted with the system temperature 𝑇. Note that in-
dividual molecular motors and proteins that partake in signaling events can in
principle operate with efficiency close to unity (I. Goychuk, 2016). This indi-
cates that the corresponding processes occur close to thermal equilibrium, so
that 𝛿𝑄 ≃ 𝑇 𝛿𝑆. However, if we do not have a grasp on the entropy of the sys-
tem and its environment, then this Eq. (I.1) leaves us little further insight.
The story is different if we perform a Legendre transformation of the internal

energy 𝑈 with the two conjugated variables of entropy 𝑆 and temperature 𝑇.
Then, the activity of the system corresponds to changes in the Helmholtz free
energy 𝐹 = 𝑈 − 𝑇𝑆, given by (Landau and Lifshitz, 1980):

𝛿𝐹 + 𝛿𝑊 ≤ ∑
𝑖
𝜇𝑖 𝛿𝑁𝑖 − 𝑆 𝛿𝑇 . (I.2)

We assume that the active system is in homeostasis, and that it maintains a
constant temperature4, so that 𝛿𝑇 = 0. Thus, one finds a posteriori that the
Helmholtz free energy corresponds to the maximal amount of energy that the
3 Such an active system could be an animal, for example. Note that plants also take up electro-
magnetic energy and convert it into chemical energy.

4 In a more general setting, one should also account for the heat generation due to biological
processes. Then, one would have to explicitly model the flow of heat.
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system can transform into mechanical work. However, Eq. (I.2) still accounts
for many processes that seemingly take place at the same time, where the ac-
tive system (i) stores free energy 𝛿𝐹, for example through mechanical deforma-
tions, (ii) performs mechanical work 𝛿𝑊 against some either passive or active
material, (iii) exchanges particles 𝛿𝑁𝑖 with chemical potential 𝜇𝑖 with the envi-
ronment, and (iv) possibly interconverts different particle species via metabolic
reactions.
Now, we disentangle Eq. (I.2) by defining pairs of conjugated processes. As we

have seen in the introduction so far, a living being is not an unstructured soup
where various possibly unrelated processes occur at the same time. Instead, an
organism is a well-organized soft machine, which is assembled of different cou-
pled functional components. These components are in turn regulated by cas-
cades of signaling networks. Because of this modular structure and temporal
order of events, we split the organism into several subsystems that can be either
active or passive, each with one task only. For example, the active actomyosin
cytoskeleton converts chemical energy in the form of fuel (that is, ATP) into
work and depleted fuel (that is, ADP), 𝛿𝑊 = (𝜇ATP − 𝜇ADP) 𝛿𝑁ATP. This work
can be dissipated via molecular friction. Analogously, the passive elastic mem-
brane can store mechanical work in elastic deformations, 𝛿𝐹 + 𝛿𝑊 = 0. Many
proteins such as ATP have an active configuration 𝑃∗𝑖 and an inactive configura-
tion 𝑃⚬𝑖 and are thus molecular switches (Phillips, 2020). Then, signaling events
between different molecular switches correspond to molecular work 𝛿𝑊 that
one switch performs to activate or inactivate a different switch. Such a change
of state is equivalent to a chemical potential change of the molecule.
Finally, we note that defining such conjugated processes is analogous to hav-

ing only pairwise interactions on a molecular scale. Different conjugated pro-
cesses can then interact via (imaginary) spatial boundaries or reactive bound-
aries, where the latter differentiates between two systems at the same position.
Next, we apply these ideas to a rudimentary biological pattern, crucial for the
fuel supply that powers living organisms.

I.2.2 Conjugated Processes During Fuel Generation
Density differences of solute particles between two sides of a membrane
(Fig. I.2a) are as crucial for life on Earth as they are ubiquitous. For a semiper-
meable membrane, such density differences correspond to an osmotic pressure
drop that gradually equilibrates via osmotic solute and solvent fluxes (Marbach
and Bocquet, 2019), thereby dissipating energy through friction. In contrast,
cells have a tight grip on these fluxes and use them in various physiological pro-
cesses, tightly regulating their volume as well as the concentration differences
across their membranes (Kay, 2017).
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In this section, we illustrate how living organisms can make use of such den-
sity differences to generate biochemical fuel. In spirit of the discussion in the
previous section, we consider the solutions on each side of the membrane as
ideal and well-mixed lattice gases where each particle has the same size. The
compartments on each side of the membrane, which we denote with the index
“±”, have 𝑁± available lattice sites of molecular volume 𝑣, respectively. The so-
lute occupies a fraction 𝜃± of the available space in each compartment, which
corresponds to 𝑁∗

± ≡ 𝜃±𝑁± lattice sites. The solvent fills the remainder of the
available space, 1 − 𝜃±, which corresponds to 𝑁 − 𝑁∗

± lattice sites. Then, each
compartment has the following free energy5:

𝐹± = 𝑁± 𝑘B𝑇 [𝜃± ln (𝜃±) + (1 − 𝜃±) ln (1 − 𝜃±)] . (I.3)

Now suppose that we take one solute particle from compartment “−” and put it
in compartment “+”. With the density of solutes given by 𝑐± ≔ 𝜃±/𝑣, this would
change the free energy of each compartment by

± 𝜇± = ± 𝜕𝐹±
𝜕𝑁∗

±
= ± 𝜕

𝜕𝑐±
( 𝐹±
𝑁±𝑣

) = ±𝑘B𝑇 [ln (𝑐±𝑣) − ln (1 − 𝑐±𝑣)] , (I.4)

which corresponds to the chemical potential of the solute particle. One can sim-
plify Eq. (I.4) if the density of solutes is sufficiently small, so that their occu-
pied volume fraction is negligible, 𝑐±𝑣 ≪ 1. To that end, we define the den-
sity in each compartment as the deviation from a mean value, 𝑐± = 𝑐0 ± Δ𝑐/2.
Then, we perform a Taylor expansion up to first order in small concentration
differences, Δ𝑐 ≪ 𝑐0, to obtain an approximate chemical potential difference of
Δ𝜇 = 𝜇+−𝜇− = −𝑘B𝑇Δ𝑐/𝑐0 between the two compartments. Thus, by exchang-
ing particles between the two compartments, we can either store or extract en-
ergy in the system by increasing or decreasing its free energy, respectively. Note
that for charged particles such as protons, moving the particles against an elec-
trostatic potential difference also stores additional energy proportional to their
charge.
Cells do precisely this. For example, plants and cyanobacteria use proton

pumps to build up an electrochemical potential difference between the two sides
of the thylakoidmembranes (Reece et al., 2014; Phillips, Kondev, et al., 2012; Al-
berts, Bray, et al., 2014; Alberts, A. Johnson, et al., 2014; Steven et al., 2016). This
process is fueled by the absorption of sunlight (electromagnetic energy) at pho-
tosystems I and II (Reece et al., 2014; Phillips, Kondev, et al., 2012; Alberts, Bray,
et al., 2014; Alberts, A. Johnson, et al., 2014; Steven et al., 2016). The latter also
splits water into protons, which further contribute to the electrochemical poten-
tial difference, and oxygen as a byproduct (Reece et al., 2014; Phillips, Kondev,
5 For polymer solutions, onewould formulate a Flory-Huggins theorywith an appropriate poly-
mer size factor (Huggins, 1941; Flory, 1942; de Gennes, 1979).
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Figure I.2: Exemplary uses of potential differences. Top row: Microscopic in-
tracellular systems. a) Cells build up an electrochemical potential difference
between two compartments separated by a membrane. b) By permitting par-
ticles (that is, protons; oversized depiction in red) to pass through ATP syn-
thase proteins (depicted in blue), cells exploit the electrochemical potential
difference to convert ADP into ATP. c) Without a membrane, particle den-
sity gradients relax via diffusion. Bottom row: Analogous macroscopic sys-
tems, where energy is not stored in electrochemical potential differences but
in gravitational potential differences.

et al., 2012; Alberts, Bray, et al., 2014; Alberts, A. Johnson, et al., 2014; Steven
et al., 2016). However, proton pumps can also be driven directly by light, such
as bacteriorhodopsin6 in archaea (Phillips, Kondev, et al., 2012; Alberts, Bray,
et al., 2014; Alberts, A. Johnson, et al., 2014), or by chemical reactions such as
in mitochondria (Reece et al., 2014; Phillips, Kondev, et al., 2012; Alberts, Bray,
et al., 2014; Alberts, A. Johnson, et al., 2014; Steven et al., 2016). Thus, the two
conjugated processes in this case correspond to (i) taking up chemical or elec-
trodynamic energy from the environment, and (ii) storing it in the free energy
of the system. This is analogous to a dam (or, more precisely, a pumped-storage
power plant), where one can store energy by increasing the amount of accumu-
6 Likemany biomolecules, bacteriorhodopsin is also amolecular switch (Phillips, 2020), which
takes on an excited configuration after photon absorption.
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lated water against the gravitational potential (Fig. I.2, bottom row).
Conversely, in a hydroelectric dam one can also extract the stored energy by

permitting water flow through a turbine connected to a generator (Fig. I.2b).
Cells do precisely this. After building up an electrochemical potential differ-
ence between two sides of a membrane, cells harvest this potential difference
by allowing proton fluxes through a biomolecule called ATP synthase. Across
the channel length of the ATP synthase, 𝐿, there is then an average chemical
potential gradient Δ𝜇/𝐿, which corresponds to a thermodynamic force. Similar
arguments apply for the electrostatic potential difference, which we here ne-
glect for simplicity. According to Onsager’s theory of non-equilibrium thermo-
dynamics (Balian, 2007), these thermodynamic forces induce a particle flux, 𝑗 =
−𝑐0 Δ𝜇/(𝜉𝐿), against the resistance of the ATP synthase, 𝜉. The ATP synthase is
an all-in-one turbine and generator, which draws on the proton fluxes to power
the phosphorylation of ADP to ATP, thereby storing chemical energy (Reece et
al., 2014; Phillips, Kondev, et al., 2012; Alberts, Bray, et al., 2014; Alberts, A.
Johnson, et al., 2014; Steven et al., 2016). Conceptually, this corresponds to an
inversion of the two conjugated processes that we have sketched in the previ-
ous paragraph: (i) take free energy from the system, and (ii) store it as chemical
energy in a biochemical fuel.
The biomolecule ATP then serves as the fuel for the formation of all biologi-

cal patterns. Therefore, one can conceptually represent the biomolecule ATP as
an activated fuel F∗ and the biomolecule ADP as a depleted fuel F⚬. Cells use
activated fuel to phosphorylate inactive proteins P⚬ into an activated configu-
ration P∗ (or vice versa), which we can represent with the following simplified
exchange reaction scheme:

P⚬ + F∗ −−−→ P∗ + F⚬ .

The difference between activated fuel (ATP) and depleted fuel (ADP) is that the
former has one phosphate group more than the latter.

I.2.3 From Osmotic Pressure Differences to
Diffusion

In the previous section, we have considered a density difference between two
membrane-separated compartments. We have linked this density difference
with a chemical potential gradient, across a channel that connects these two
compartments. Then, wehave calculated the resulting solute fluxes through this
channel. Now, we remove the membrane and instead consider density gradi-
ents in solution (Fig. I.2c). We tessellate the solution into infinitesimal compart-
mentswith imaginary boundaries. In each compartment, the chemical potential
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of a solute particle is given by Eq. (I.4). Adjacent compartments can have dif-
ferent compositions, which leads to chemical potential gradients (that is, ther-
modynamic forces). As before, thermodynamic forces induce particle fluxes ac-
cording toOnsager’s theory of non-equilibrium thermodynamics (Balian, 2007):

𝒋 = −𝑐 𝛁𝜇𝜉 = −𝑘B𝑇𝜉
1

1 − 𝑣𝑐 𝛁𝑐 , (I.5)

where 𝜉 is now the (Stokes) friction of a particle with the embedding fluid, and
𝑣 is the molecular volume. If the solute particles are present at small density
and occupy a negligible volume fraction, 𝑐±𝑣 ≪ 1, then one recovers Fick’s
first law of diffusion, 𝒋 = −𝐷𝛁𝑐, by taking into account the Einstein relation,
𝐷 = 𝑘B𝑇/𝜉.

I.2.4 A Primer on the Calculus of Variations
Finally, as a last warm-up exercise, we give a short primer on the calculus of vari-
ations. These concepts frequently recur in the remainder of the thesis and are
crucial for its understanding. For a more extensive treatise, we refer to (Gelfand
and Fomin, 2000; Courant and Hilbert, 2004).
In the previous two sections, we have considered the mixing free energy of

a (locally) well-mixed ideal fluid, to derive its local chemical potential. Specif-
ically, suppose that we spatially arrange different infinitesimal compartments,
each possibly having a different local density of solute particles, 𝑐(𝒙). The total
free energy of the system is then given by the functional 𝐹[𝑐] = ∫𝑑3𝒙𝑓(𝑐(𝒙)),
where 𝑓 ≡ 𝐹comp/𝑉comp is the free energy density of a compartment. Since the
free energy only depends on the local values of the density variable, 𝑐(𝒙), in
Paragraph “Conjugated Processes During Fuel Generation” we were easily able
to calculate the independent chemical potential in each infinitesimal compart-
ment, Eq. (I.4). This chemical potential indicates how a local addition or re-
moval of one particle will affect the free energy of the whole system.
Now, let us switch to different state variables, say, 𝑢(𝒙), for which the free

energy functional has a more complicated form7:

𝐹[𝑢] = ∫𝑑3𝒙 𝑓(𝑢(𝒙), 𝛁𝑢(𝒙), 𝛁2𝑢(𝒙),… ) . (I.6)

Such a free energy functional naturally arises in elasticity theory, for example.
Variational calculus then amounts to asking the following question: How will a
7 The following discussion remains fully valid if the free energy functional also depends on
other state variables. Then, one would consider changes in one state variable at a time in-
dependently of all other state variables. Constraints on the variables, such as conservation
laws, can then be imposed a posteriori. In this way, one can also extend the discussion to
vector-valued or tensor-valued state variables.
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slight change (that is, a variation) in the position-dependent state variable affect
the free energy functional of the whole system? To answer this question, one has
to first formalize what a variation means. Specifically, we consider a smooth
localized change of the state variable,

𝑢(𝒙) → 𝑢(𝒙) + 𝛿𝑢(𝒙) , (I.7)

where 𝛿𝑢(𝒙) ismaximal at some position𝒙0 and decays to zero at some infinites-
imal distance 𝜀 away from this position:

𝛿𝑢(𝒙) = 0 ∀𝒙∶ ‖𝒙 − 𝒙0‖ ≥ 𝜀 . (I.8)

With its smoothness property, we imply that the variation 𝛿𝑢(𝒙) is infinitely
differentiable, and that its derivatives also vanish at the distance 𝜀. Now, we can
determine how the functional, Eq. (I.6), changes upon such a variation. To that
end, we perform a Taylor expansion of the integrand8 in Eq. (I.6), and find:

𝛿𝐹 = ∫𝑑3𝒙 [ 𝜕𝑓𝜕𝑢
|||𝒙0
𝛿𝑢 + 𝜕𝑓

𝜕(𝛁𝑢)
|||𝒙0
⋅ 𝛁(𝛿𝑢) + 𝜕𝑓

𝜕(𝛁2𝑢)
|||𝒙0
𝛁2(𝛿𝑢) + …] . (I.9)

Here, wehave defined 𝛿𝐹[𝑢] ≔ 𝐹[𝑢+𝛿𝑢]−𝐹[𝑢]. After integrating by parts twice,
and then using the localization Eq. (I.8) as well as the smoothness property of
the variation 𝛿𝑢, one arrives at (Gelfand and Fomin, 2000; Courant and Hilbert,
2004):

𝛿𝐹 = ∫𝑑3𝒙 [𝜕𝑓𝜕𝑢 − 𝛁 ⋅ 𝜕𝑓
𝜕(𝛁𝑢) + 𝛁2 𝜕𝑓

𝜕(𝛁2𝑢) − …]
𝒙0
𝛿𝑢 . (I.10)

Then, one defines the term in the square brackets as the functional derivative
𝛿𝐹/𝛿𝑢. Functional derivatives and calculus of variations will be our faithful
companions in the following chapters, which allow us to ask: What happens
if we poke an organism?

8Note that we here imply 𝜕𝑓
𝜕(𝛁𝑢)

⋅ 𝛁(𝛿𝑢) ≡ ∑𝑖
𝜕𝑓

𝜕(𝜕𝑖𝑢)
𝜕𝑖(𝛿𝑢).
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I.3 A Foundation for Patterns in Adapting
Organisms

In this technical section, we review several key concepts of differential geometry
and tensor calculus. We frequently apply these concepts to three-dimensional
bodies and two-dimensional surfaces in the remainder of the thesis. With these
tools in hand, in the main part of the thesis we then go on to discuss several
problems involving elasticity theory and fluid mechanics, in a geometric con-
text. There are several books (Kreyszig, 1959; Lebedev and Cloud, 2003; Press-
ley, 2010; Frankel, 2011; Grinfeld, 2013; Tu, 2017) and reviews (Kamien, 2002;
Deserno, 2015) that give an extensive treatment of differential geometry and
tensor calculus. Analogously, there is also extensive literature on elasticity the-
ory (Timoshenko and Gere, 1961; Amenzade, 1979; Landau, Pitaevskii, et al.,
1986; Lai et al., 2010; Murea, 2018), fluid mechanics (Landau and Lifshitz, 1987;
Lai et al., 2010; Murea, 2018), andmembranemechanics (Seifert, 1997; Kamien,
2002; S. Safran, 2003; D. Nelson et al., 2004; Deserno, 2015; Guckenberger and
Gekle, 2017). Here, our main goal is to establish a self-contained mathematical
common ground that will accompany us through the remaining chapters. As
our second goal, we aim to give an intuitive understanding of the underlying
mathematical and physical concepts. To that end, we use index notation only
where necessary, and give all important results in index-free notationwhere pos-
sible.
We first set up a mathematical representation of a static geometry in an ar-

bitrary curvilinear coordinate system. Then, we turn to the calculus of varia-
tions, see Section I.2.4 “A Primer on the Calculus of Variations”, as a means
to describe changes in the geometry. We frequently present simple examples,
mostly for cylindrical and spherical geometries. In particular, we apply the re-
sults for cylindrical geometries in Section IV.1 “Collective CellMigrationAffects
Morphogenesis” and Section IV.2 “BetweenMorphogenesis and Hydrodynamic
Flows”.

I.3.1 Extrinsic and Intrinsic Coordinate Systems
Laboratory frame. From an abstract point of view, an actively moving organ-
ism is equivalent to a deforming geometry. To describe this geometry and all ac-
tive agents (for example, cells or myosin motors) within, we make an important
distinction between three coordinate systems, which we explain in this section.
The extrinsic coordinate system refers to the laboratory frame, orEulerian frame,
in which the deforming geometry is embedded. Thus, wewill also frequently re-
fer to the laboratory frame as embedding. Based on this laboratory frame, as the
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observers that we are, we can define and measure reference coordinates for all
active agents and geometric landmarks in the deforming geometry. Specifically,
we choose a three-dimensional Cartesian coordinate system, which is spanned
by an orthonormal basis with basis vectors ̂𝒆𝑖. The position of any point in the
laboratory frame in then specified by a three-component vector:

𝒙 = ∑
𝑖
𝑥𝑖 ̂𝒆𝑖 ≡ ⟦

𝑥1
𝑥2
𝑥3
⟧ , (I.11)

where the double-struck braces indicate embedding coordinates. This embed-
ding provides us not only with reference coordinates, but also with an intuition
of length. Specifically, the distance between a particle “1” and a particle “2” is
given by their Euclidean distance, Δ𝒙12 = ‖𝒙2 − 𝒙1‖.

Co-moving frame. In contrast, an intrinsic coordinate system refers to the co-
moving frame, or Lagrangian frame, of some tracer particle in the deforming
geometry. This tracer particle can be an active agent, a material coordinate of
some passive substance, or a geometric landmark. In the co-moving frame, we
assign local coordinates to the tracer particle and all points that lie in its vicin-
ity. We distinguish between two types of tracer particles, which (i) are either
in the body of our geometry (“bulk”), or (ii) lie on the boundary of our geome-
try (“surface”). Therefore, in general, we need two sets of intrinsic coordinate
systems:

𝝎⦁ ≡ [
𝜔1⦁
𝜔2⦁
𝜔3⦁
] , and 𝝎⚬ ≡ [𝜔

1
⚬

𝜔2⚬
] , (I.12)

where 𝝎⦁ ∈ ℝ3 refers to the bulk coordinates and 𝝎⚬ ∈ ℝ2 refers to the bound-
ary coordinates. Having two intrinsic coordinate systems can lead to a double

Example 1: Intrinsic Coordinates
Cylindrical Coordinates

One describes cylindrical coordi-
nates via the radial distance 𝑟 to
the centerline, the axial coordi-
nate 𝑧, and the azimuthal angle 𝜙:

𝝎⦁ ≡ [
𝑟
𝑧
𝜙
] , and 𝝎⚬ ≡ [𝑧𝜙] .

Spherical Coordinates

One describes spherical coordi-
nates via the radial distance 𝑟 to
the center point, the azimuthal
angle 𝜃 and the polar angle 𝜙:

𝝎⦁ ≡ [
𝑟
𝜃
𝜙
] , and 𝝎⚬ ≡ [𝜃𝜙] .
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allocation of mathematical symbols, since any physical quantity can be defined
either in the bulk or on the boundary. To avoid ambiguity, we use “⦁” as an in-
dicator for quantities in the bulk of the geometry. Analogously, we use “⚬” as an
indicator for quantities on the surface of the geometry. We drop these indicators
in cases where there is no ambiguity in interpretation, or in contexts that apply
identically to both coordinate systems.
Both the bulk and the boundary of our geometry are embedded in the lab-

oratory frame. Therefore, any point coordinate 𝝎 in the co-moving frame of a
tracer particle must have a corresponding position 𝒙 in the extrinsic coordinate
system. In return, any position in the extrinsic coordinate system also has at
least one point coordinate assigned to it in the co-moving frame. We refer to
this relation as a local chart, with a local surjective mapping (see Fig. I.3):

𝜞 ∶ 𝝎 ↦ 𝒙 . (I.13)

With local we mean that the co-moving frames of different tracer particles can
have different charts. As an example, one can imagine two nearby active agents
that explore and draw their own charts of their surroundings, but use differ-
ent landmarks and different length measures. Then, the local coordinate sys-
tem of one active agent does not naturally match the coordinate system of the
other active agent. Instead, both coordinate systems have to be stitched together
where they meet. For the two active agents to have matching charts, they have

Example 2: Mapping
Cylindrical Coordinates

The bulk mapping is given by:

𝜞⦁(𝝎⦁) = ⟦
𝑟 cos(𝜙)
𝑟 sin(𝜙)

𝑧
⟧ .

For any coordinate (𝑟, 𝑧, 𝜙), the
distance from the center must lie
within the domain bounds, 𝑟 ≤
𝑅(𝑧, 𝜙). The boundarymapping is
then given by:

𝜞⚬(𝝎⚬) = ⟦
𝑅(𝑧, 𝜙) cos(𝜙)
𝑅(𝑧, 𝜙) sin(𝜙)

𝑧
⟧ .

Spherical Coordinates

The bulk mapping is given by:

𝜞⦁(𝝎⦁) = ⟦
𝑟 sin(𝜃) cos(𝜙)
𝑟 sin(𝜃) sin(𝜙)

𝑟 cos(𝜃)
⟧ .

For any coordinate (𝑟, 𝜃, 𝜙), the
distance from the center must lie
within the domain bounds, 𝑟 ≤
𝑅(𝜃, 𝜙). The boundarymapping is
then given by:

𝜞⚬(𝝎⚬) = ⟦
𝑅(𝜃, 𝜙) sin(𝜃) cos(𝜙)
𝑅(𝜃, 𝜙) sin(𝜃) sin(𝜙)

𝑅(𝜃, 𝜙) cos(𝜃)
⟧ .
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𝜞⚬(𝝎⚬)

𝜔2⚬

𝜔1⚬

𝒕1

𝒕2
�̂�

Figure I.3: Parameterization of a two-dimensional surface in a three-
dimensional Cartesian embedding. This surface is defined by a local
surjective mapping 𝜞⚬(𝝎⚬)∶ ℝ2 ↦ ℝ3, and is locally spanned by two tangent
vectors 𝒕1 and 𝒕2. In later sections, we extend the local non-orthonormal
coordinate system on the surface with the local unit normal vector �̂�. Then,
we can not only describe the position of objects on the surface, but can also
describe the position of objects near the surface.

to agree on common navigation points (for example, celestial objects). Alterna-
tively, they could also rely on an external observer (like a satellite) to define an
extrinsic coordinate system.
Now suppose that a geometry is defined by several charts, each having an

intrinsic coordinate system 𝝎𝑖 ∈ Ω𝑖 with domainΩ𝑖, and a corresponding map-
ping𝜞𝑖 to the embedding. Then, the image of this geometry is given by the union
of all its extrinsic coordinates in the laboratory frame:

𝑋 =⋃
𝑖
{𝜞(𝝎𝑖) || 𝝎𝑖 ∈ Ω𝑖} . (I.14)

The boundary image is simply given by the boundary of the bulk image, 𝑋⚬ =
𝜕𝑋⦁. Finally, note that one particular geometry can have many different map-
pings that share the same image and thus the same shape. This freedom of choice
for the representation of the geometry allows us to make extensive use of trans-
formations that alter some local chart, see Section I.3.4 “Physical Quantities in
Curvilinear Coordinates”.

The metric encodes the concept of length. So far, we have defined the
bulk and the boundary of our geometry, setting the stage for the shape and
mechanochemical dynamics of the organism. In doing so, we have distin-
guished between extrinsic coordinates in the embedding (laboratory frame)
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and intrinsic coordinates in the co-moving frame of some tracer particle. Next,
we explain how to measure lengths in this co-moving frame.
To that end, we place ourselves as observers into the co-moving frame of the

tracer particle. From our perspective, we keep track of two nearby particles9 la-
beled “1” and “2”. Not knowing that the nearby particles can move, we choose
them as landmarks with immutable intrinsic coordinates: particle “1” has co-
ordinates 𝝎 and particle “2” has coordinates 𝝎 + 𝑑𝝎. This argument can be
extended to an arbitrary number of particles in the vicinity. Then, the motion
of all particles is encoded in the surjective mapping 𝜞(𝝎), which defines their
(extrinsic) position in the laboratory frame. Meanwhile, the intrinsic position
of all particles, and thus the domain of the mapping, remains invariant in the
co-moving frame. Therefore, only the mapping 𝜞 , which describes the embed-
ding into an extrinsic coordinate system, carries information about the physical
position of particles relative to our reference frame.
Now, we extract the information that the mapping 𝜞 holds about the geo-

metric positions of particles and their distances in the embedding. As before,
we consider two particles labeled “1” and “2”, with intrinsic coordinates 𝝎 and
𝝎+ 𝑑𝝎 in our co-moving reference frame. By performing a Taylor expansion of
the mapping 𝜞 , we then find that the distance vector between the two particles
is to linear order given by:

𝑑𝒙 = 𝜞(𝝎 + 𝑑𝝎) − 𝜞(𝝎) = ∑
𝑖
( 𝜕𝜞𝜕𝜔𝑖

) 𝑑𝜔𝑖 . (I.15)

Thus, our co-moving reference frame is spanned by the following basis vectors
(see Fig. I.3):

𝒃𝑖 =
𝜕𝜞⦁
𝜕𝜔𝑖⦁

, or 𝒕𝑖 =
𝜕𝜞⚬
𝜕𝜔𝑖⚬

, (I.16)

depending on whether our tracer particle lies in the bulk “⦁” or on the surface
“⚬” of the geometry. For clarity, we use distinct representations for the basis
vectors in the bulk of the geometry, 𝒃𝑖, and for the tangent vectors on the surface
of the geometry, 𝒕𝑖, where possible. These basis vectors span the local vector
space and are, in general, neither normalized nor orthogonal. In some cases
that equally apply to both the bulk and the boundary, we use a placeholder for
the basis vectors, 𝝀⦁,𝑖 ≡ 𝒃𝑖 and 𝝀⚬,𝑖 ≡ 𝒕𝑖; this is the case in Section I.3.4 “Physical
Quantities in Curvilinear Coordinates”.
For an index-free representation, we define the two bases that parameterize

the bulk and the surface of the geometry as follows:

𝑽⦁ ≔ 𝑩 = [𝒃1, 𝒃2, 𝒃3] , and 𝑽⚬ ≔ 𝑻 = [𝒕1, 𝒕2] . (I.17)
9Our position could also coincide with one of these two particles. Then, the particle would lie
at the origin of the co-moving frame.
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Example 3: Basis Vectors
Cylindrical Coordinates with Rotational Symmetry

The bulk basis vectors are given by:

𝒃𝑟 = ⟦
cos(𝜙)
sin(𝜙)
0

⟧ , 𝒃𝑧 = ⟦
0
0
1
⟧ , and 𝒃𝜙 = ⟦

−𝑟 sin(𝜙)
𝑟 cos(𝜙)

0
⟧ .

The boundary tangent vectors are given by:

𝒕𝑧 = ⟦
𝜕𝑧𝑅(𝑧) cos(𝜙)
𝜕𝑧𝑅(𝑧) sin(𝜙)

1
⟧ , and 𝒕𝜙 = ⟦

−𝑅(𝑧) sin(𝜙)
𝑅(𝑧) cos(𝜙)

0
⟧ .

Note that these bulk basis vectors and boundary tangent vectors are or-
thogonal, but not normalized.

Spherical Coordinates with Rotational Symmetry

We abstain from giving an example here because the corresponding vec-
tors are quite long and do not give additional insight. As for the cylindri-
cal geometry, the bulk basis vectors and the boundary tangent vectors are
orthogonal, but not normalized.

As before, “⦁” refers to the bulk of the geometry while “⚬” refers to the surface
of the geometry. Using these bases, the distance vector between the two par-
ticles “1” and “2” is given by 𝑑𝒙 = 𝑽 ⋅ 𝑑𝝎. The squared Euclidean distance
between the two particles “1” and “2” is then given by (Kreyszig, 1959; Kamien,
2002; Lebedev and Cloud, 2003; Pressley, 2010; Frankel, 2011; Grinfeld, 2013;
Deserno, 2015; Tu, 2017):

‖𝑑𝒙‖2 = 𝑑𝝎𝑇 ⋅ 𝑽 𝑇 ⋅ 𝑽 ⋅ 𝑑𝝎 = 𝑑𝝎𝑇 ⋅ 𝒈 ⋅ 𝑑𝝎 , (I.18)

where we have defined the metric tensor as 𝒈 ≔ 𝑽 𝑇 ⋅ 𝑽 . Equation (I.18) is valid
both for the bulk and for the surface of our geometry.
Our discussion so far shows that intrinsic coordinates in the co-moving frame

a priori share no information about physical distances and lengths. In particu-
lar, one can imagine these intrinsic coordinates as the indices of a space-filling
mesh, which by themselves have no physical meaning. The concept of a physi-
cal length is then endowed by an embedding in an extrinsic coordinate system
(laboratory frame). Such an embedding implies amapping from the intrinsic co-
ordinates in the co-moving frame to the extrinsic coordinates in the laboratory
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Example 4: Metric
Cylindrical Coordinates with Rotational Symmetry

The bulk metric and the boundary metric are given by:

𝒈⦁ = [
1 0 0
0 1 0
0 0 𝑟2

] and 𝒈⚬ = [1 + (𝜕𝑧𝑅)2 0
0 𝑅2] .

Note that this is an orthogonal coordinate system, but not orthonormal.

Spherical Coordinates with Rotational Symmetry

The bulk metric and the boundary metric are given by:

𝒈⦁ = [
1 0 0
0 𝑟2 0
0 0 𝑟2 sin2(𝜃)

] and 𝒈⚬ = [𝑅
2 + (𝜕𝜃𝑅)2 0

0 𝑅2 sin2(𝜃)] .

Note that this is an orthogonal coordinate system, but not orthonormal.

frame. This, however, does not preclude that an active agent could make length
measurements along geodesics10 and angle measurements, just like people do
on the surface of Earth. To make such measurements, the active agent does not
need to be aware of the embedding at all, yet the very existence of the embed-
ding will affect the measurements. For example, the surface of the Earth looks
approximately flat from the perspective of a person. Then, this person could
define a local orthonormal frame on the surface, which would be a very good
approximation if the person considers lengths that are much smaller than the
size of the geometry (that is, Earth). In its local orthonormal frame, the person
will expect Euclidean geometry to hold. Thus, the person will expect that the
sum of all angles in a triangle adds to 180 degrees, that locally parallel straight
lines never intersect, that two straight lines can only intersect once, and so on.
However, if the person tries to expand its local orthonormal frame to describe
the whole geometry, then it will be met with failure. In particular, on the curved
surface of Earth, one can define three geodesic lines with pairwise intersections
at right angles, locally parallel straight lineswill intersect, straight lines intersect
twice, and so on. Then, by doing such measurements on the surface of Earth,
the person can extract information about its embedding, like the curvature of

10 A geodesic is the shortest path between two points in a particular geometry, for example be-
tween two points on a surface.
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Earth’s surface (Frankel, 2011).
Here, however, we do not bother with extracting information about the em-

bedding from an unwitting active agent’s perspective. Instead, being observers
aware of the embedding, we have the freedom to switch between the co-moving
frame of the active agent and the laboratory frame of the embedding. Then,
by constructing the local metric, we can define the Euclidean distance that the
active agent travels between two points. In doing so, we also construct a lo-
cal basis that spans the co-moving frame. For example, a co-moving frame in
the bulk is spanned by three non-orthonormal basis vectors 𝒃𝑖 forming a par-
allelepiped, while on the surface it is spanned by two non-orthogonal tangent
vectors 𝒕𝑖 forming a parallelogram. By using the metric, we can then compute
local integration measures such as volume and surface elements (Capovilla et
al., 2003; Frankel, 2011; Deserno, 2015):

𝑑𝑉 = √det 𝒈⦁ 𝑑𝜔1⦁ 𝑑𝜔2⦁ 𝑑𝜔3⦁ , and 𝑑𝑆 = √det 𝒈⚬ 𝑑𝜔1⚬ 𝑑𝜔2⚬ . (I.19)

As before, “⦁” refers to the bulk of the geometry while “⚬” refers to the surface of
the geometry. With the definition of the metric tensor Eq. (I.18), we can rewrite
Eq. (I.19) as follows:

𝑑𝑉 = det(𝑽⦁) 𝑑𝜔1⦁ 𝑑𝜔2⦁ 𝑑𝜔3⦁ , and 𝑑𝑆 = det(𝑽⚬) 𝑑𝜔1⚬ 𝑑𝜔2⚬ . (I.20)

I.3.2 Transformations in Curvilinear Coordinates
In our discussion so far, we have shown how one can describe a complex ge-
ometry through a set of charts. Furthermore, we have seen how one can com-
pute length measures in the bulk and on the surface of this geometry. Now,
we introduce two handy coordinate system transformations that will make our
lives easier in the remainder of the thesis: basis orthonormalization and basis
rotation. In particular, without giving explicit mathematical forms, we discuss
important mathematical properties of these two transformations. All of our dis-
cussion is based on our freedom of choice when constructing a representation of
some geometry, as discussed in Section I.3.1 “Extrinsic and Intrinsic Coordinate
Systems”. In particular, one can define different charts, which have correspond-
ingmappings𝜞 to the embedding and thus different bases𝑽 , but share the same
geometric image, see Eq. (I.14). We exploit this property to switch between dif-
ferent representations of the same geometrical and physical objects, always on
the lookout for routes to simplify our description.

Basis orthonormalization. As before, we place ourselves as observers into
the co-moving reference frame of some tracer particle. Suppose that we start
with the most general case, where the co-moving frame is spanned by some
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non-orthonormal basis 𝑽 . While this representation is a natural choice given
an existing mapping 𝜞 from the intrinsic coordinates in the co-moving frame to
the embedding, it is hardly intuitive. In particular, to even get a sense of length,
one has to first determine the metric tensor, see Eq. (I.18). In stark contrast,
the Cartesian coordinate system of the embedding is easy to grasp: all position
coordinates have intuitive units of length, and all coordinate axes are indepen-
dent. Given our freedom for the representation of the geometry, however, what
we can do is to simply define a different local coordinate system that spans the
co-moving frame of our tracer particle. For our intuition from the Cartesian co-
ordinate system to carry over, we choose a local coordinate system that has an
orthonormal basis 𝑽⦹. Thus, the metric of our new coordinate system takes the
form of an identity mapping:

𝒈⦹ = 𝑽 𝑇
⦹ ⋅ 𝑽⦹ = 𝑰 . (I.21)

This new coordinate system is not required to represent the whole geometry
faithfully, as we can stitch together all the charts that represent the space around
different particles, see Eq. (I.14).
Now, we have an additional coordinate system, which seems like a compli-

cation at first. However, based on our intuition for the orthonormal coordinate
system with the basis 𝑽⦹, we can derive important relations that must hold for
the non-orthonormal coordinate system with a basis 𝑽 . To do so, we introduce
the following basis transformation, which is an invertible linear map:

𝑽⦹ = 𝑽 ⋅ 𝑶 . (I.22)

This orthonormalization𝑶 takes the following specific form in the bulk “⦁” and
on the surface “⚬” of our geometry:

𝒃⦹,𝑘 = ∑
𝑖
𝒃𝑖 𝑂⦁,𝑖𝑘 , and 𝒕⦹,𝑘 = ∑

𝑖
𝒕𝑖 𝑂⚬,𝑖𝑘 . (I.23)

As before, 𝒃𝑖 ∈ 𝑩 ≡ 𝑽⦁ refer to the basis vectors in the bulk and 𝒕𝑖 ∈ 𝑻 ≡ 𝑽⚬ refer
to the tangent vectors on the surface. The components of the orthonormaliza-
tion matrix are given by 𝑂𝑖𝑘.
Such a local orthonormalization changes the coordinate system and thus the

intrinsic coordinates of all particles in the co-moving frame. To illustrate this,
we again consider two specific particles labeled “1” and “2”. In the original non-
orthonormal coordinate system, these two particles have intrinsic coordinates
𝝎 and 𝝎 + 𝑑𝝎, respectively. In the new orthonormal coordinate system, they
have intrinsic coordinates 𝝎⦹ and 𝝎⦹ + 𝑑𝝎⦹, respectively. However, this is just
a matter of representation, because an orthonormalization cannot change the
physical positions in the embedding, 𝒙 and 𝒙 + 𝑑𝒙, of the particles “1” and “2”,
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respectively. As a consequence, the distance vector between the twoparticles “1”
and “2” must be the same both in the orthonormal and in the non-orthonormal
co-moving coordinate system:

𝑑𝒙 = 𝑽⦹ ⋅ 𝑑𝝎⦹ = 𝑽 ⋅ 𝑑𝝎 . (I.24)

This implies that the intrinsic coordinates in the co-moving frame transform as
follows under orthonormalization:

𝑑𝝎⦹ = 𝑶−1 ⋅ 𝑑𝝎 . (I.25)

As the identity metric, Eq. (I.21), and our discussion indicate, the transformed
intrinsic coordinates in the new orthonormal basis naturally represent physical
lengths and distances, where ‖𝑑𝝎⦹‖2 = ‖𝑑𝒙‖2. Therefore, in the following we
refer to 𝑑𝝎⦹ as the arc distance vector.
Finally, we note that there is a direct relationship between the orthonormal-

izationmatrix and themetric in the non-orthonormal coordinate system. Using
the definitions of the metric tensor, Eq. (I.18), and of the basis transformation
under orthonormalization, Eq. (I.22), we find:

𝒈 = 𝑶−𝑇 ⋅ 𝑶−1 , and 𝒈−1 = 𝑶 ⋅ 𝑶𝑇 , (I.26)

for the metric tensor 𝒈 and its inverse 𝒈−1, respectively. The above equation and
the definition of the metric tensor itself, Eq. (I.18), both show that the metric
tensor and its inverse are symmetric.

Basis rotation. As before, we place ourselves as observers into the co-moving
reference frame of some tracer particle. Now, we are interested in rotating the
local coordinate system until, for example, its axes align with some local axes
of symmetry. By exploiting such symmetries, we can drastically simplify our
local description. To do so, we apply the rotationmatrix 𝑹 to the vector 𝒗 in the
embedding, as follows:

𝒗↺ = 𝑹 ⋅ 𝒗 . (I.27)
This operation results in a rotated vector 𝒗↺ with the same length as the original
vector, ‖𝒗↺‖ = ‖𝒗‖. If we apply the same rotation to a second vector 𝒖, then the
angle between the two vectors 𝒖 and 𝒗 remains unaffected, 𝒖 ⋅ 𝒗 = 𝒖↺ ⋅ 𝒗↺.
Therefore, a rotation of the whole basis that spans the co-moving frame,

𝑽↺ = 𝑹 ⋅ 𝑽 , (I.28)

will preserve the lengths of the basis vectors as well as their relative angles. As
a consequence, the local metric is invariant with respect to rotations,

𝒈↺ = 𝑽 𝑇
↺ ⋅ 𝑽↺ = 𝑽 𝑇 ⋅ 𝑽 = 𝒈 , which implies 𝑹𝑇 ⋅ 𝑹 = 𝑰 . (I.29)

This shows that the transpose of a rotation matrix is equal to its inverse.
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Projection of a vector. Suppose that we are interested in extracting the part of
a vector𝒗 that is parallel to some other (reference) vector𝒏. The reference vector
points in the direction �̂� = 𝒏/‖𝒏‖. We obtain this component by projecting our
vector,

𝑷⦷ ⋅ 𝒗 = (�̂� ⊗ �̂�) ⋅ 𝒗 = �̂� (�̂� ⋅ 𝒗) , (I.30)

where “⊗” refers to an outer product (also called tensor product or dyadic prod-
uct). Here, the outer product corresponds to amatrix product between a column
vector 𝒖 (𝑁×1matrix) and a row vector 𝒗𝑇 (1×𝑁 matrix), 𝒖⊗𝒗 ≡ 𝒖⋅𝒗𝑇 . When
we express vectors via matrices, the symbol “⋅” identifies a matrix multiplica-
tion. Because this trick can cause a clash with the notation of an inner vector
product, we only use it in two places of the present thesis, and explicitly state
where we do so.
Now suppose that we are interested in extracting the part of a vector 𝒗 that

is perpendicular to some other (reference) vector 𝒏. For this purpose, we again
project our vector,

𝑷⦹ ⋅ 𝒗 = (𝑰 − �̂� ⊗ �̂�) ⋅ 𝒗 , (I.31)

where 𝑰 is the identity mapping. This is equivalent to projecting the vector 𝒗
onto the surface defined by the normal vector �̂�.

I.3.3 Measuring the Shape of a Surface
So far, we have shown in Section I.3.1 “Extrinsic and Intrinsic Coordinate
Systems” how one can describe a complex geometry through a set of charts
and how to compute length measures in this geometry. We have also discussed
how one can describe the same geometry through different parameterizations,
see Eq. (I.14). But how do the geometry and, in particular, its surface look like?
To answer this question, we put the two coordinate system transformations,
basis orthonormalization and basis rotation, which we have introduced in
Section I.3.2 “Transformations in Curvilinear Coordinates”, to good use. For a
more detailed treatise, we refer to (Kreyszig, 1959; Kamien, 2002; Lebedev and
Cloud, 2003; Pressley, 2010; Frankel, 2011; Grinfeld, 2013; Deserno, 2015; Tu,
2017).

Unit normal vector on the surface. As our first step, we extend the non-
orthonormal coordinate system on the surface of our geometry by introducing
the unit normal vector (Fig. I.3):

�̂� ≔ ± 𝒕1 × 𝒕2
√det 𝒈⚬

. (I.32)
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𝜔1⚬
𝒕1

�̂�

𝑧

Figure I.4: Side view of a two-dimensional surface in a three-dimensional
Cartesian embedding. We extend the local non-orthonormal coordinate sys-
tem on the surface with the local unit normal vector �̂�, which points away
from the bulk of the geometry (blue gradient). By doing so, we can describe
the position of objects near the surface. Furthermore, this allows us to param-
eterize the distance 𝑑 that the surface curves away, at the surface coordinate
𝝎⚬ + 𝑑𝝎⚬, from the tangent plane at the surface coordinate 𝝎⚬.

By definition, the unit normal vector is normalized and orthogonal to both tan-
gent vectors. However, the direction of the unit normal vector is not uniquely
defined. Here, we choose the convention that the unit normal vector points out-
wards, that is, away from the geometry (Fig. I.4). Using the unit normal vector,
we can now not only describe points that lie strictly on the tangent plane of our
geometry, but also points that are close but at a finite distance from the surface.
The ability to do so is crucial for our next step.

The shape tensor of a surface. Finally, we determine the shape of the sur-
face. To that end, just as we have done in Paragraph “The metric encodes the
concept of length” (Section I.3.1), we again place ourselves as observers into the
co-moving frame of some tracer particle. We keep track of two nearby parti-
cles labeled “1” and “2”, which have intrinsic coordinates 𝝎⚬ and 𝝎⚬ + 𝑑𝝎⚬. In
Paragraph “The metric encodes the concept of length” (Section I.3.1), we have
described the distance vector between the particles “1” and “2”. To that end, we
have used a Taylor series of the surjective mapping 𝜞(𝝎⚬) from the intrinsic co-
ordinates in the co-moving frame to the extrinsic coordinates in the embedding,
see Eq. (I.15). By doing so, we have determined the basis 𝑻 with tangent vectors
𝒕𝑖 ∈ 𝑻 that span the tangent plane of the surface, see Eq. (I.16). Now, we ask:
How far is the particle “2” away from the tangent plane at the position of the par-
ticle “1”? To answer this question, we again perform a Taylor expansion of the
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surjective mapping, but this time keep all terms up to first nonlinear order:

𝑑𝒙 = 𝜞⚬(𝝎⚬ + 𝑑𝝎⚬) − 𝜞⚬(𝝎⚬) = ∑
𝑖
(𝜕𝜞⚬
𝜕𝜔𝑖⚬

) 𝑑𝜔𝑖⚬

+ 1
2 ∑𝑖,𝑘

( 𝜕2𝜞⚬
𝜕𝜔𝑖⚬𝜕𝜔𝑘⚬

) 𝑑𝜔𝑖⚬ 𝑑𝜔𝑘⚬ . (I.33)

We obtain the distance 𝑧 between particle “2” and the tangent plane, by project-
ing the distance vector between the two particles onto the (unit) normal vector
of the tangent plane, 𝑷⦷ ⋅ 𝑑𝒙 = 𝑧 �̂�. Thus, the distance between particle “2”
and the tangent plane is given by (Kreyszig, 1959; Kamien, 2002; Lebedev and
Cloud, 2003; Pressley, 2010; Frankel, 2011; Grinfeld, 2013; Deserno, 2015; Tu,
2017)

𝑧 = �̂� ⋅ 𝑑𝒙 = 1
2 ∑𝑖,𝑘

�̂� ⋅ ( 𝜕2𝜞⚬
𝜕𝜔𝑖⚬𝜕𝜔𝑘⚬

) 𝑑𝜔𝑖⚬ 𝑑𝜔𝑘⚬ =
1
2 𝑑𝝎

𝑇
⚬ ⋅ 𝒉 ⋅ 𝑑𝝎⚬ , (I.34)

where we have defined the components of the shape tensor 𝒉 as fol-
lows (Kreyszig, 1959; Kamien, 2002; Lebedev and Cloud, 2003; Pressley,
2010; Frankel, 2011; Grinfeld, 2013; Deserno, 2015; Tu, 2017):

ℎ𝑖𝑘 ≔ �̂� ⋅ ( 𝜕2𝜞⚬
𝜕𝜔𝑖⚬𝜕𝜔𝑘⚬

) = �̂� ⋅ ( 𝜕𝒕𝑖
𝜕𝜔𝑘⚬

) = −𝒕𝑖 ⋅ (
𝜕�̂�
𝜕𝜔𝑘⚬

) . (I.35)

Here, we have first inserted the definition of the tangent vectors, Eq. (I.16), and
then used �̂� ⋅ 𝒕𝑖 = 0. Because the particle labeled “2” is a point on the surface,
Eq. (I.34) gives a measure for the out-of-plane bending of the surface. Thus,
Eq. (I.35) defines the shape of the surface.

The two principal curvatures of a surface. To gain some intuitive insight
from Eq. (I.35), we make use of the orthonormalization matrix, which is dis-
cussed in Paragraph “Basis orthonormalization” (Section I.3.2). Specifically, in
addition to the local non-orthonormal basis 𝑻 in the co-moving frame, we also
introduce the local orthonormal basis 𝑻⦹ = 𝑻 ⋅ 𝑶, see Eq. (I.22). To preserve
lengths and distances between particles in the embedding, the intrinsic coordi-
nates must transform inversely under orthonormalization, 𝑑𝝎⦹ = 𝑶−1 ⋅ 𝑑𝝎⚬, see
Eq. (I.25). Thus, starting from Eq. (I.34), we arrive at the following expression
for the out-of-plane bending of the surface:

𝑧 = 1
2 𝑑𝝎

𝑇
⦹ ⋅ 𝑶𝑇 ⋅ 𝒉 ⋅ 𝑶 ⋅ 𝑑𝝎⦹ =

1
2 𝑑𝝎

𝑇
⦹ ⋅ 𝒉⦹ ⋅ 𝑑𝝎⦹ , (I.36)
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where we have defined the shape tensor in the orthonormalized basis as 𝒉⦹ ≔
𝑶𝑇 ⋅𝒉⋅𝑶. Here, 𝑑𝝎⦹ represents the arc distance vector between our two particles
labeled “1” and “2” in the co-moving frame, ‖𝑑𝝎⦹‖2 = ‖𝑑𝒙‖2, because we have
orthonormalized the corresponding basis.
Both the shape tensor 𝒉 and its orthonormalized counterpart 𝒉⦹ are real-

valued symmetricmatrices, as one can see fromEq. (I.35). Therefore, theremust
exist a rotation𝑹 that diagonalizes the orthonormalized shape tensor 𝒉⦹, which
then takes the following form:

𝒉↺ = 𝑹𝑇 ⋅ 𝒉⦹ ⋅ 𝑹 ≡ [𝜅1 0
0 𝜅2

] . (I.37)

We refer to 𝜅1 and 𝜅2 as principal curvatures. Thus, by using appropriate basis
transformations, one can find an orthonormal basis where the deviation from
the tangent plane is given by 𝑧 = 1

2𝜅1 (𝑑𝜔1↺)2 +
1
2𝜅2 (𝑑𝜔2↺)2. This can be seen by

inserting Eq. (I.37) into Eq. (I.36) while taking into account the rotation.
While this may sound complicated at first, there is actually no need to search

for specific basis transformations. In particular, one can cyclically permute the
arguments in the trace of the rotated and orthonormalized shape tensor,

𝜅1 + 𝜅2 = tr (𝑹𝑇 ⋅ 𝑶𝑇 ⋅ 𝒉 ⋅ 𝑶 ⋅ 𝑹) = tr (𝑶𝑇 ⋅ 𝒉 ⋅ 𝑶) = tr (𝒉 ⋅ 𝑶 ⋅ 𝑶𝑇) , (I.38)
to get rid of the rotation matrices and rearrange the orthogonalization matrices.
Similarly, because all involved terms are squarematrices, one can also rearrange
the arguments in the determinant of the rotated and orthonormalized shape
tensor,
𝜅1 𝜅2 = det (𝑹𝑇 ⋅ 𝑶𝑇 ⋅ 𝒉 ⋅ 𝑶 ⋅ 𝑹) = det (𝑶𝑇 ⋅ 𝒉 ⋅ 𝑶) = det (𝒉 ⋅ 𝑶 ⋅ 𝑶𝑇) , (I.39)

Example 5: Principal Curvatures
Cylindrical Coordinates with Rotational Symmetry

The two principal curvatures are given by:

𝜅𝑧 =
𝜕2𝑧𝑅

√1 + (𝜕𝑧𝑅)2
3 , and 𝜅𝜙 = −1𝑅

1
√1 + (𝜕𝑧𝑅)2

.

Spherical Coordinates with Rotational Symmetry

The two principal curvatures are given by:

𝜅𝜃 = −1𝑅
1 + 2(𝜕𝜃𝑅/𝑅)2 − 𝜕2𝜃𝑅/𝑅

√1 + (𝜕𝜃𝑅/𝑅)2
3 , and 𝜅𝜙 = −1𝑅

1 − (𝜕𝜃𝑅/𝑅) cot 𝜃
√1 + (𝜕𝜃𝑅/𝑅)2

.
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in an analogous way. By using Eq. (I.26) to relate the orthonormalizationmatrix
to the inverse metric tensor, 𝑶 ⋅ 𝑶𝑇 = 𝒈−1, we then find that the total curvature
and the Gaussian curvature (Kreyszig, 1959; Kamien, 2002; Lebedev and Cloud,
2003; Pressley, 2010; Frankel, 2011; Grinfeld, 2013; Deserno, 2015; Tu, 2017),

𝐻 = 𝜅1 + 𝜅2 = tr (𝒉 ⋅ 𝒈−1) , and 𝐾 = 𝜅1 𝜅2 = det (𝒉 ⋅ 𝒈−1) , (I.40)

are basis-invariantmeasures of the surface shape. Note that our sign convention
for the curvatures suggests that a surface has positive curvature if it is bent to-
wards its (outwards-pointing) unit normal vector; this means that a sphere has
negative curvature.

I.3.4 Physical Quantities in Curvilinear
Coordinates

So far, we have shown in Section I.3.1 “Extrinsic and Intrinsic Coordinate
Systems” how one can describe a complex geometry through a set of charts
and how to compute length measures in this geometry. Furthermore, in
Section I.3.2 “Transformations in Curvilinear Coordinates” we have introduced
two coordinate system transformations: basis orthonormalization and basis
rotation. In Section I.3.3 “Measuring the Shape of a Surface”, we have then
determined the shape of a two-dimensional surface that is embedded in a
three-dimensional Cartesian space. In this section, we continue to put the
above concepts to good use. We first introduce the physical quantities that
we want to describe: scalar fields, vector fields and tensor fields. Then, we
show how to compute derivatives of these physical quantities in curvilinear
coordinates, which is essential for any physical theory. For a more detailed
treatise, we refer to (Kreyszig, 1959; Lebedev and Cloud, 2003; Pressley, 2010;
Frankel, 2011; Grinfeld, 2013; Tu, 2017).

Fields and Physical Quantities. We place ourselves as observers into the co-
moving reference frame of some tracer particle. Our reference frame is spanned
by the basis 𝑽 with basis vectors 𝝀𝑖 ∈ 𝑽 . In this reference frame, we now aim
beyond our initial description of positions and distances, towards a description
of interactions. To that end, we use fields. The most basic type of field that we
consider is a scalar field 𝑐(𝝎), which assigns a scalar value to the coordinate 𝝎.
This scalar field must be independent of parameterization, to have any physical
meaning. Examples of scalar fields include particle density fields, temperature
fields, pressure fields, andmany others. In particular, the density of particles is a
coarse-grained descriptionwherewe, instead of keeping track of each individual

33



I Non-Equilibrium Dynamics in Biology

particle and its position, rather tell how many particles are on average within a
given infinitesimal volume.
Another type of field that we consider is a vector field 𝒗(𝝎), which assigns a

vector value to coordinate 𝝎. We describe this field, in the bulk “⦁” and on the
surface “⚬” of our geometry, as follows:

𝒗⦁ = ∑
𝑖
𝑣𝑖⦁ 𝒃𝑖 , or 𝒗⚬ = ∑

𝑖
𝑣𝑖⚬ 𝒕𝑖 . (I.41)

As before, 𝒃𝑖 ∈ 𝑩 ≡ 𝑽⦁ refer to the basis vectors in the bulk and 𝒕𝑖 ∈ 𝑻 ≡ 𝑽⚬ refer
to the tangent vectors on the surface. This particular notation for the field vari-
ables is called contravariant notation: for any basis transformation that we apply
to the basis vectors (they co-vary), we have to apply the inverse transformation
to the vector components. Only then will the vector field have a physical mean-
ing, independent of parameterization. Examples of such fields include velocity
fields, momentum density fields, electrical fields, and many others.
The last type of field that we consider is a tensor field of rank 2. We describe

this field, in the bulk “⦁” and on the surface “⚬” of our geometry, as follows:

𝝈⦁ = ∑
𝑖,𝑘
𝜎𝑖𝑘⦁ 𝒃𝑖 ⊗ 𝒃𝑘 , or 𝝈⚬ = ∑

𝑖,𝑘
𝜎𝑖𝑘⚬ 𝒕𝑖 ⊗ 𝒕𝑘 . (I.42)

As mentioned earlier, “⊗” refers to an outer product (also called tensor prod-
uct). Just as we have discussed for the vector field, the tensor field must also be
independent of parameterization, to have any physical meaning. Examples of
such fields include stress and strain fields.
In the following, we illustrate how one can compute derivatives of these dif-

ferent fields. To simplify our notation, we use a placeholder 𝝀 ∈ 𝑽 for the basis
vectors that span the bulk and for the tangent vectors that span the boundary:

𝝀⦁,𝑖 ≡ 𝒃𝑖 , and 𝝀⚬,𝑖 ≡ 𝒕𝑖 . (I.43)

All results are equally applicable to the bulk and to the surface of the geometry.

Gradient of a scalar field in curvilinear coordinates. First, we determine
the gradient of a scalar field 𝑐 in a curvilinear co-moving frame, with a non-
orthonormal basis 𝑽 and basis vectors 𝝀𝑖 ∈ 𝑽 . This is necessary, for example,
to determine the net particle fluxes that arise due to diffusion. Analogously to
Section I.3.2 “Transformations in Curvilinear Coordinates”, we first construct a
local orthonormal coordinate system, with the basis 𝑽⦹ and basis vectors 𝝀⦹,𝑖 ∈
𝑽⦹.
We consider two points that are near each other in space: (i) The first point has

coordinates𝝎 in the local non-orthonormal basis and coordinates𝝎⦹ in the local
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orthonormal basis. Its position in the embedding is given by 𝒙. (ii) The second
point has coordinates 𝝎 + 𝑑𝝎 in the local non-orthonormal basis and coordi-
nates 𝝎⦹ + 𝑑𝝎⦹ in the local orthonormal basis. Its position in the embedding is
given by 𝒙+𝑑𝒙. The intrinsic coordinates in the orthonormal coordinate system
naturally represent lengths and distances, so that ‖𝑑𝝎⦹‖2 = ‖𝑑𝒙‖2. Therefore,
the arc distance vector between our two points is given by 𝑑𝝎⦹.
In the local orthonormal coordinate system, the local gradient of a scalar field

is then given by
𝛁𝑐 = ∑

𝑖

𝜕𝑐
𝜕𝜔𝑖⦹

𝝀⦹,𝑖 ≡
𝜕𝑐
𝜕𝝎⦹

⋅ 𝑽⦹ . (I.44)

Next, we generalize the above expression to our non-orthonormal coordinate
system with the basis 𝑽 . To that end, we consider the orthonormalization 𝑶,
which transforms our non-orthonormal basis to our orthonormal basis, 𝑽⦹ =
𝑽 ⋅ 𝑶, as defined in Eq. (I.22). Our basis transformation must preserve the
physical distances between different points, so that 𝝀⦹,𝑖 = ∑𝑙(𝜕𝜔𝑙/𝜕𝜔𝑖⦹) 𝝀𝑙, see
Eq. (I.24). Furthermore, we only have to deal with the change of the local basis
and the local coordinates, while the scalar field 𝑐must remain invariant to have
physical meaning. Then, by using the chain rule of differentiation, we obtain
the following interim expression:

𝛁𝑐 = ∑
𝑖,𝑘

𝜕𝑐
𝜕𝜔𝑘

𝜕𝜔𝑘
𝜕𝜔𝑖⦹

𝝀⦹,𝑖 = ∑
𝑖,𝑘,𝑙

𝜕𝑐
𝜕𝜔𝑘

𝜕𝜔𝑘
𝜕𝜔𝑖⦹

𝜕𝜔𝑙
𝜕𝜔𝑖⦹

𝝀𝑙 . (I.45)

To preserve the physical distances between different points, our basis transfor-
mationmust occur in tandemwith a coordinate transformation, 𝑑𝝎⦹ = 𝑶−1 ⋅𝑑𝝎,
see Eq. (I.25). This leads to the following relation between the coordinates and
the orthonormalization: 𝜕𝜔𝑘/𝜕𝜔𝑖⦹ = 𝑂𝑘𝑖. Thus, we finally arrive at the following
expression for the gradient of a scalar field in curvilinear coordinates (Kreyszig,
1959; Lebedev and Cloud, 2003; Frankel, 2011; Grinfeld, 2013):

𝛁𝑐 = ∑
𝑖,𝑘,𝑙

𝜕𝑐
𝜕𝜔𝑘𝑂𝑘𝑖𝑂𝑙𝑖𝝀𝑙 = ∑

𝑘,𝑙

𝜕𝑐
𝜕𝜔𝑘 𝑔

−1
𝑘𝑙 𝝀𝑙 ≡

𝜕𝑐
𝜕𝝎 ⋅ 𝒈−1 ⋅ 𝑽 , (I.46)

where we have used Eq. (I.26) to relate the orthonormalization matrix to the
inverse metric tensor,𝑶⋅𝑶𝑇 = 𝒈−1. The gradient of a scalar field is a vector field.

Gradient of a vector field in curvilinear coordinates. Now, we deter-
mine the gradient of a vector field 𝒗 in a curvilinear co-moving frame with
non-orthonormal basis 𝑽 and basis vectors 𝝀𝑖 ∈ 𝑽 . This is necessary, for
example, to determine the strain tensor of some elastic material. Analogous to
Section I.3.2 “Transformations in Curvilinear Coordinates”, we first construct
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a local orthonormal coordinate system with the basis 𝑽⦹ and basis vectors
𝝀⦹,𝑖 ∈ 𝑽⦹. We then proceed in full analogy to Paragraph “Gradient of a scalar
field in curvilinear coordinates”.
First, we define the gradient of a vector field in our local orthonormal coordi-

nate system as follows:

𝛁⊗ 𝒗 = ∑
𝑖

𝜕𝒗
𝜕𝜔𝑖⦹

⊗ 𝝀⦹,𝑖 = ∑
𝑖,𝑘

𝜕(𝑣𝑘 𝝀𝑘)
𝜕𝜔𝑖⦹

⊗ 𝝀⦹,𝑖 . (I.47)

As mentioned earlier, “⊗” refers to an outer product (also called tensor prod-
uct). Then, analogous to Paragraph “Gradient of a scalar field in curvilinear
coordinates”, we transform back from our local orthonormal basis 𝑽⦹ to the lo-
cal non-orthonormal basis 𝑽 in the co-moving frame. By doing so, we obtain
the following general expression for the gradient of a vector field in curvilinear
coordinates (Lebedev and Cloud, 2003; Frankel, 2011; Grinfeld, 2013):

𝛁⊗ 𝒗 = ∑
𝑘,𝑙
𝑔−1𝑘𝑙

𝜕𝒗
𝜕𝜔𝑘 ⊗ 𝝀𝑙 . (I.48)

Note that the partial derivative of the vector field also contains the change of the
local curvilinear basis as a function of intrinsic coordinates. The gradient of a
vector field is a tensor field of rank 2.

Divergence of a vector field in curvilinear coordinates. Next, we determine
the divergence of a vector field 𝒗 in a curvilinear co-moving frame with non-
orthonormal basis 𝑽 and basis vectors 𝝀𝑖 ∈ 𝑽 . This is necessary, for example,
to determine the divergence of particle fluxes. For reference, the divergence of

Example 6: Gradient of a Scalar Field
Cylindrical Coordinates

The gradient of a scalar field 𝑐 in the bulk is given by:

𝛁𝑐 = (𝜕𝑟𝑐) 𝝀𝑟 + (𝜕𝑧𝑐) 𝝀𝑧 +
1
𝑟2 (𝜕𝜙𝑐) 𝝀𝜙 .

Spherical Coordinates

The gradient of a scalar field 𝑐 in the bulk is given by:

𝛁𝑐 = (𝜕𝑟𝑐) 𝝀𝑟 +
1
𝑟2 (𝜕𝜃𝑐) 𝝀𝜃 +

1
𝑟2 sin2 𝜃

(𝜕𝜙𝑐) 𝝀𝜙 .
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a vector field in a local orthonormal coordinate system, with basis 𝑽⦹ and basis
vectors 𝝀⦹,𝑖 ∈ 𝑽⦹, is given by

𝛁 ⋅ 𝒗 = ∑
𝑖

𝜕(𝒗 ⋅ 𝝀⦹,𝑖)
𝜕𝜔𝑖⦹

. (I.49)

In principle, we could proceed in a similar way as we have done in Paragraph
“Gradient of a scalar field in curvilinear coordinates” and Paragraph “Gradi-
ent of a vector field in curvilinear coordinates”. However, as the mapping be-
tween intrinsic and extrinsic coordinates depends on the location, so does the
orthonormalization matrix. Alternatively, we could also take the trace of the
vector gradient, Eq. (I.48), to determine the divergence (Kreyszig, 1959; Lebe-
dev and Cloud, 2003; Frankel, 2011; Grinfeld, 2013). Both of these approaches
would, however, require us to explicitly account for the derivatives of the basis
vectors with respect to the coordinates.
Instead, here we choose to take a shortcut and define the divergence operator

through Gauss’s theorem. Gauss’s theorem states that the divergence of a vector
field in a volume element is given by the flux across its boundary:

∫𝑑𝑉 𝛁 ⋅ 𝒗 = ∑
𝑖
∮𝑑𝑺 ⋅ 𝝀𝑖 𝑣𝑖 . (I.50)

If we consider the bulk of the geometry, then the three basis vectors span a
parallelepiped. Analogously, if we consider the surface of the geometry, then
the two tangent vectors span a parallelogram. In both cases, the volume ele-
ment is given by 𝑑𝑉 = √det 𝒈 𝑑𝑛𝝎, where 𝑛 is the number of dimensions, see
Eq. (I.19). For the boundary integral, we integrate along the boundary of a par-
allelepiped (if we are in the bulk) or a parallelogram (if we are on the surface).

Example 7: Divergence of a Vector Field
Cylindrical Coordinates

The divergence of a vector field 𝒗 in the bulk is given by:

𝛁 ⋅ 𝒗 = 1
𝑟 𝜕𝑟(𝑟 𝑣

𝑟) + 𝜕𝑧𝑣𝑧 + 𝜕𝜙𝑣𝜙 .

Spherical Coordinates

The divergence of a vector field 𝒗 in the bulk is given by:

𝛁 ⋅ 𝒗 = 1
𝑟2 𝜕𝑟(𝑟

2 𝑣𝑟) + 1
sin 𝜃 𝜕𝜃(sin 𝜃 𝑣

𝜃) + 𝜕𝜙𝑣𝜙 .
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The boundary is spanned by a subspace of the basis 𝑽 , which has co-dimension
1. For example, if we consider the bulk of the geometry with a basis of three
vectors, then the boundary is always spanned by two of these three vectors. The
scalar product between the directed boundary element 𝑑𝑺 and another basis
vector 𝝀𝑖 is then given by 𝑑𝑺 ⋅ 𝝀𝑖 = 𝜀𝑖𝑘𝑙√det 𝒈 𝑑𝜔𝑘𝑑𝜔𝑙 (if we are in the bulk) or
𝑑𝑺 ⋅ 𝝀𝑖 = 𝜀𝑖𝑘√det 𝒈 𝑑𝜔𝑘 (if we are on the surface); 𝜀 is the Levi-Civita symbol.
With these considerations, we arrive at the following expression for the diver-
gence of a vector field in curvilinear coordinates (Kreyszig, 1959; Lebedev and
Cloud, 2003; Frankel, 2011; Grinfeld, 2013):

𝛁 ⋅ 𝒗 = ∑
𝑖

1
√det 𝒈

𝜕
𝜕𝜔𝑖 (√det 𝒈 𝑣

𝑖) . (I.51)

Equation (I.51) is also called the Voss-Weyl formula (Grinfeld, 2013). The diver-
gence of a vector field is a scalar field.

Divergence of a rank 2 tensor field in curvilinear coordinates. Finally, we
determine the divergence of a rank 2 tensor field 𝝈 in a curvilinear co-moving
framewith non-orthonormal basis𝑽 and basis vectors𝝀𝑖 ∈ 𝑽 . This is necessary,
for example, to determine the divergence of the stress tensor in linear elasticity
theory or fluid mechanics. For reference, the divergence of a rank 2 tensor field
in a local orthonormal coordinate system, with basis 𝑽⦹ and basis vectors 𝝀⦹,𝑖 ∈
𝑽⦹, is given by

𝛁 ⋅ 𝝈 = ∑
𝑖,𝑘

𝜕(𝝈 ⋅ 𝝀⦹,𝑖)
𝜕𝜔𝑖⦹

. (I.52)

We use the same shortcut as in Paragraph “Divergence of a vector field in curvi-
linear coordinates”, and find the following expression for the divergence of a
rank 2 tensor field in curvilinear coordinates (Lebedev andCloud, 2003; Frankel,
2011; Grinfeld, 2013):

𝛁 ⋅ 𝝈 = ∑
𝑖,𝑘

1
√det 𝒈

𝜕
𝜕𝜔𝑖 (√det 𝒈 𝜎

𝑖𝑘 𝝀𝑘) . (I.53)

The divergence of a rank 2 tensor field is a vector field.

I.3.5 Describing a Dynamic Geometry
In Section I.3.1 “Extrinsic and Intrinsic Coordinate Systems” and Section I.3.3
“Measuring the Shape of a Surface”, we have introduced themathematical tools
that are necessary to describe a static geometry. Then, we have discussed in
Section I.3.4 “Physical Quantities in Curvilinear Coordinates” how to describe
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Example 8: Divergence of a Rank 2 Tensor Field
Cylindrical Coordinates with Rotational Symmetry

The divergence of a rank 2 tensor field, 𝒇 = 𝛁⋅𝝈, is given by (Amenzade,
1979):

𝑓𝑟 = 1
𝑟 𝜕𝑟 (𝑟 𝜎

𝑟𝑟) + 𝜕𝑧𝜎𝑟𝑧 − 𝑟𝜎𝜙𝜙 ,

𝑓𝑧 = 1
𝑟 𝜕𝑟 (𝑟 𝜎

𝑟𝑧) + 𝜕𝑧𝜎𝑧𝑧 ,

𝑓𝜙 = 1
𝑟 𝜕𝑟 (𝑟 𝜎

𝑟𝜙) + 𝜕𝑧𝜎𝑧𝜙 +
2
𝑟 𝜎

𝑟𝜙 .

Note that we have here assumed that the tensor is symmetric.

Spherical Coordinates with Rotational Symmetry

The divergence of a rank 2 tensor field, 𝒇 = 𝛁⋅𝝈, is given by (Amenzade,
1979):

𝑓𝑟 = 1
𝑟2 𝜕𝑟 (𝑟

2 𝜎𝑟𝑟) + 1
sin 𝜃 𝜕𝜃 (sin 𝜃 𝜎

𝜃𝑟) − 𝑟 𝜎𝜃𝜃 − 𝑟 sin2 𝜃 𝜎𝜙𝜙 ,

𝑓𝜃 = 1
𝑟2 𝜕𝑟 (𝑟

2 𝜎𝑟𝜃) + 1
sin 𝜃 𝜕𝜃 (sin 𝜃 𝜎

𝜃𝜃) + 2
𝑟 𝜎

𝑟𝜃 − sin 𝜃 cos 𝜃 𝜎𝜙𝜙 ,

𝑓𝜙 = 1
𝑟2 𝜕𝑟 (𝑟

2 𝜎𝑟𝜙) + 1
sin 𝜃 𝜕𝜃 (sin 𝜃 𝜎

𝜃𝜙) + 2
𝑟 𝜎

𝑟𝜙 + 2 cot𝜙𝜎𝜃𝜙 .

Note that we have here assumed that the tensor is symmetric.

physical quantities in our geometry, and derivatives thereof. In this section, we
discuss how one can describe a dynamic geometry. Specifically, we treat gradual
deformations of the geometry by using the calculus of variations. These neces-
sary concepts pave the way towards describing complex interactions between
mechanics, chemistry, and geometry.

Deformation field in the embedding. We describe our (moving) geometry
by three distinct types of coordinate systems, as discussed in Section I.3.1 “Ex-
trinsic and Intrinsic Coordinate Systems”. In particular, we place ourselves as
observers into the co-moving frame of some tracer particle. In this co-moving
frame, we parameterize all material points in the bulk and on the surface of the
geometry via intrinsic coordinates 𝝎. Because our tracer particle can lie either
in the bulk or on the surface of our geometry, we need two intrinsic coordinate
systems. Each intrinsic coordinate 𝝎maps to an extrinsic position in the three-
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dimensional Cartesian embedding, 𝜞(𝝎).
To gain additional intuition, one can imagine the intrinsic coordinates 𝝎 as

the indices of an (infinitesimal)mesh that spans the geometry. Now, we consider
some position-dependent deformation field𝒖(𝝎) that displaces themesh nodes.
Because moving the mesh nodes does not affect their indices, the intrinsic coor-
dinates remain completely unaffected by deformations. Instead, deformations
move the extrinsic position of each material point from an initial position 𝒙 to a
different position �̃� in the deformed configuration:

�̃� = ̃𝜞(𝝎) = 𝜞(𝝎) + 𝒖(𝝎) = 𝒙 + 𝒖 , (I.54)

which we interpret as a change of the surjective mapping 𝜞 .

The strain as a variation of the metric. The co-moving reference frame of
our tracer particle is spanned by the basis 𝑽 with the basis vectors 𝝀𝑖 ∈ 𝑽 . In
our reference frame, we observe and keep track of two nearby particles labeled
“1” and “2”, which have intrinsic coordinates 𝝎 and 𝝎 + 𝑑𝝎. Now, as discussed
in Paragraph “Deformation field in the embedding”, we apply a deformation
field 𝒖 that does not change the intrinsic coordinates of our particles. How-
ever, the deformation field changes the extrinsic (that is, physical) coordinates
of the particles by displacing them in the three-dimensional Cartesian embed-
ding. Therefore, the distance vector between the particles labeled “1” and “2”
will change as well:

𝑑�̃� = ∑
𝑖
(𝝀𝑖 +

𝜕𝒖
𝜕𝜔𝑖 ) 𝑑𝜔

𝑖 = ∑
𝑖
(𝝀𝑖 +∑

𝑘,𝑙

𝜕𝒖
𝜕𝜔𝑘 𝑔

−1
𝑘𝑙 𝑔𝑙𝑖) 𝑑𝜔𝑖

= ∑
𝑖
(𝝀𝑖 +∑

𝑘,𝑙

𝜕𝒖
𝜕𝜔𝑘 𝑔

−1
𝑘𝑙 𝝀𝑙 ⋅ 𝝀𝑖) 𝑑𝜔𝑖 = (𝑰 +∑

𝑘,𝑙
𝑔−1𝑘𝑙

𝜕𝒖
𝜕𝜔𝑘 ⊗ 𝝀𝑙) ⋅∑

𝑖
𝝀𝑖 𝑑𝜔𝑖 . (I.55)

Here, we have proceeded in successive steps by (i) performing a Taylor expan-
sion of the distance vector up to linear order, (ii) squeezing in a Kronecker delta,
∑𝑙 𝑔−1𝑘𝑙 𝑔𝑙𝑖 = 𝛿𝑘𝑖, (iii) inserting the definition of the metric tensor, 𝑔𝑙𝑖 = 𝝀𝑙 ⋅ 𝝀𝑖,
see Eq. (I.18), and finally (iv) rearranging the different terms. By comparing
Eq. (I.55) with the expression for the gradient of a vector field in curvilinear co-
ordinates, Eq. (I.48), we find the following expression for the physical distance
vector between the particles labeled “1” and “2”, after we have applied a defor-
mation:

𝑑�̃� = (𝑰 + 𝛁⊗ 𝒖) ⋅ 𝑽 ⋅ 𝑑𝝎 = (𝑰 + 𝛁⊗ 𝒖) ⋅ 𝑑𝒙 . (I.56)
As it should be, the change of the physical distance vector between any twoparti-
cles, which occurs due to a deformation, is basis-independent and thus the same
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for any parameterization that we may choose. Then, the squared Euclidean dis-
tance between our particles “1” and “2” is given by:

‖𝑑�̃�‖2 = 𝑑𝝎𝑇 ⋅ 𝑽 𝑇 ⋅ [𝑰 + (𝛁⊗ 𝒖)𝑇] ⋅ [𝑰 + 𝛁⊗𝒖] ⋅ 𝑽 ⋅ 𝑑𝝎 = 𝑑𝝎𝑇 ⋅ ̃𝒈 ⋅ 𝑑𝝎 , (I.57)

where we have introduced the metric ̃𝒈 in the deformed configuration.
By defining the (nonlinear) Green-Lagrange strain tensor 𝑬 and its linearized

counterpart 𝜺 (Amenzade, 1979; Landau, Pitaevskii, et al., 1986; Lai et al., 2010;
Murea, 2018),

𝑬 ≔ 𝜺 + 1
2 (𝛁 ⊗ 𝒖)𝑇 ⋅ (𝛁 ⊗ 𝒖) , and 𝜺 ≔ 1

2 [(𝛁 ⊗ 𝒖)𝑇 + 𝛁⊗ 𝒖] , (I.58)

we find that the metric tensor in the deformed configuration is given by ̃𝒈 =
𝒈 + 2𝑽𝑇 ⋅ 𝑬 ⋅ 𝑽 . To proceed, we make use of the definition of the metric, 𝒈 =
𝑽𝑇 ⋅ 𝑽 , Eq. (I.18), and introduce the dual basis11 𝑽−1. Then, we find that the
relative variations of the metric are related to the Green-Lagrange strain tensor
by a similarity transformation:

𝛿𝒈 ⋅ 𝒈−1 = ( ̃𝒈 − 𝒈) ⋅ 𝒈−1 = 2𝑽 𝑇 ⋅ 𝑬 ⋅ 𝑽−𝑇 . (I.59)

This shows that the trace and the determinant of the strain tensor faithfully give
scalar basis-invariant measures for the deformation of a material:

tr[(𝛿𝒈 ⋅ 𝒈−1)𝑛] = tr[2𝑛 𝑬𝑛] , and det[(𝛿𝒈 ⋅ 𝒈−1)𝑛] = det[2𝑛 𝑬𝑛] , (I.60)

for all integer values of 𝑛. This property allows constructing a basis-invariant
free energy functional, which describes the energy stored in elastic deforma-
tions.

The strain rate as gradual changes of the metric. In Paragraph “The strain
as a variation of the metric”, we have explained how a deformation field 𝒖 will
change the metric tensor, and defined the strain tensor as a measure of this
change. Unless we are dealing with discontinuities such as cracks in the ma-
terial, a deformation does not appear instantaneously but rather through some
finite flow velocity, 𝛿𝒖 = 𝒗 𝛿𝑡. Based on Eq. (I.58), this leads to the following
expression for the strain rate tensor (Landau and Lifshitz, 1987; Lai et al., 2010;
Murea, 2018):

̇𝜺 = 1
2 [(𝛁 ⊗ 𝒗)𝑇 + 𝛁⊗ 𝒗] . (I.61)

11 The dual basis is an example of an orthonormalization matrix. One can confirm this by re-
placing all occurrences of the orthonormalization matrix with the dual basis in Paragraph
“Basis orthonormalization” (Section I.3.2).
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Example 9: Linearized Strain Tensor
Cylindrical Coordinates with Rotational Symmetry

The linearized strain tensor is given by (Amenzade, 1979):

[
𝜀𝑟𝑟 𝜀𝑟𝑧 𝜀𝑟𝜙
𝜀𝑧𝑟 𝜀𝑧𝑧 𝜀𝑧𝜙
𝜀𝜙𝑟 𝜀𝜙𝑧 𝜀𝜙𝜙

] = [
𝜕𝑟𝑢𝑟 (𝜕𝑧𝑢𝑟 + 𝜕𝑟𝑢𝑧)/2 𝜕𝑟𝑢𝜙/2

(𝜕𝑧𝑢𝑟 + 𝜕𝑟𝑢𝑧)/2 𝜕𝑧𝑢𝑧 𝜕𝑧𝑢𝜙/2
𝜕𝑟𝑢𝜙/2 𝜕𝑧𝑢𝜙/2 𝑢𝑟/𝑟3

] .

Note that the strain rate tensor has the same mathematical form.
Spherical Coordinates with Rotational Symmetry

We abstain from giving an example here because the corresponding com-
ponents of the tensor are quite long and do not give additional insight.

Equation (I.61) does not have a nonlinear equivalent, because higher orders of
the infinitesimal time step 𝛿𝑡 naturally vanish. Using the strain rate tensor, one
can define the viscous stress tensor that arises in fluids and solids in response
to gradual flows and deformations (Landau and Lifshitz, 1987; Lai et al., 2010;
Murea, 2018).

Gradual compression and dilation. If the metric tensor changes due to
a gradual deformation, then so does the infinitesimal volume element that
is spanned by the non-orthonormal basis 𝑽 with basis vectors 𝝀𝑖 ∈ 𝑽 .
In particular, the volume element is given by 𝑑𝑉 = √det 𝒈 𝑑𝑛𝝎, where
𝑛 is the number of dimensions, see Eq. (I.19). By using the expansion
√det(𝑰 + 2 ̇𝜺 𝛿𝑡) = 1 + tr( ̇𝜺) 𝛿𝑡 + 𝒪(𝛿𝑡2), we then find that the infinitesimal
volume element changes as follows (Timoshenko and Gere, 1961; Amenzade,
1979; Landau, Pitaevskii, et al., 1986; Landau and Lifshitz, 1987; Lai et al., 2010;
Murea, 2018):

𝛿(𝑑𝑉) = tr( ̇𝜺) 𝛿𝑡 𝑑𝑉 = (𝛁 ⋅ 𝒗) 𝛿𝑡 𝑑𝑉 . (I.62)

This result is used to describe incompressibility in fluid mechanics (Landau
and Lifshitz, 1987; Lai et al., 2010; Murea, 2018) and to separate bulk strain
from shear strain in infinitesimal elasticity theory (Timoshenko and Gere, 1961;
Amenzade, 1979; Landau, Pitaevskii, et al., 1986; Lai et al., 2010; Murea, 2018).
Equation (I.62) has another important consequence. If there is a conserved

quantity such as particle number𝑑𝑁 in a given volume element, then the change
of the corresponding particle density 𝑐 = 𝑑𝑁/𝑑𝑉 , due to compression or dila-
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tion, is given by:
𝛿𝑐 = 𝛿 (𝑑𝑁𝑑𝑉 ) = −(𝛁 ⋅ 𝒗) 𝑐 𝛿𝑡 . (I.63)

This leads to the continuity equation for conserved quantities, and is also valid
for vector fields or tensor fields that obey some conservation law. The momen-
tum density field 𝒑 is one example of such a conserved quantity.

Advection in the embedding. So far, we have discussed how gradual defor-
mations affect the metric tensor, the size of infinitesimal volume elements, and
how these changes translate to physical quantities in the co-moving frame of
some tracer particle. Now, we place ourselves back into the laboratory frame
and ask: How will the motion of our tracer particles, which we describe with the
velocity field 𝒗(𝒙), change the spatial distribution of our physical quantities in the
laboratory frame? Such advection can also show itself in the co-moving frame of
a tracer particle if there are fields that remain stationary in the laboratory frame.
Advection over some small time interval 𝛿𝑡maps all material positions 𝒙 to new
material positions, 𝒙 → 𝒙 + 𝒗 𝛿𝑡. Then, the value of an advected scalar density
field at position 𝒙 is given by:

𝑐(𝒙 − 𝒗 𝛿𝑡) = 𝑐(𝒙) − 𝛁𝑐 ⋅ 𝒗 𝛿𝑡 , (I.64)

where we have performed a Taylor expansion up to linear order in physical po-
sition 𝒙. By then using Eq. (I.46) for the gradient of a scalar field in curvilinear
coordinates, one finds:

𝛿𝑐 = −𝛁𝑐 ⋅ 𝒗 𝛿𝑡 = −∑
𝑖

𝜕𝑐
𝜕𝜔𝑖 𝑣

𝑖 𝛿𝑡 , (I.65)

where 𝝎 refers to the intrinsic coordinates in the co-moving frame. One can
proceed analogously for an advected vector field 𝒑 and use Eq. (I.48) for the
gradient of a vector field in curvilinear coordinates, to find:

𝛿𝒑 = −(𝛁⊗ 𝒑) ⋅ 𝒗 𝛿𝑡 = −∑
𝑖

𝜕𝒑
𝜕𝜔𝑖 𝑣

𝑖 𝛿𝑡 , (I.66)

where𝝎 refers to the intrinsic coordinates in the co-moving frame. Advection is
an essential part of fluid mechanics (Landau and Lifshitz, 1987; Lai et al., 2010;
Murea, 2018).

Variation of the surface. In our discussion so far, we have only considered
motion that occurs entirely within a given domain, for example in the bulk or
on the surface of our geometry. We refer to the corresponding displacements on
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𝛿𝑢

𝜔1⚬ 𝒕1

�̂�

Figure I.5: Side view of a two-dimensional surface in a three-dimensional
Cartesian embedding. We move the surface by some distance 𝛿𝑢 along its
unit normal vector. This is called a normal variation.

the surface, which move a given surface point to a different nearby point in the
tangent plane, as tangential variations. Because the tangent plane locally spans
the surface, see Eq. (I.15), tangential variations do not change the surface shape.
They do, however, affect the surface metric as described by the surface strain
tensor, Eq. (I.58), and the surface strain rate tensor, Eq. (I.61). Consequently, one
observes changes in surface area, Eq. (I.62), as well as the surface density of all
conserved quantities, Eq. (I.63), in the co-moving frame of some tracer particle.
Looking at the surface from the laboratory frame, one then finds advection of
scalar fields, Eq. (I.65), vector fields, Eq. (I.66), as well as tensor fields of higher
order.
But advection is not restricted to motion parallel to the surface only. In the

following, we discuss what happens if the surface moves by some small dis-
tance along its unit normal vector, thereby advecting all surface quantities out
of plane. To that end, as observers we again place ourselves into the co-moving
frame of some tracer particle on the surface. In this co-moving frame, all nearby
points are parameterized by intrinsic coordinates 𝝎⚬ and map to extrinsic (that
is, physical) coordinates in the Cartesian embedding 𝒙 ≡ 𝜞(𝝎⚬), as discussed in
Section I.3.1 “Extrinsic and Intrinsic Coordinate Systems”. Now, we introduce a
normal variation by some small distance 𝛿𝑢(𝝎⚬), whichmoves all surface points:

�̃�⚬ = ̃𝜞(𝝎⚬) = 𝜞(𝝎⚬) + 𝛿𝑢(𝝎⚬) �̂�(𝝎⚬) ≡ 𝒙 + 𝛿𝑢 �̂� , (I.67)

along the unit normal vector �̂� of the surface (Fig. I.5). Based on the new sur-
jective mapping ̃𝜞(𝝎⚬) from the intrinsic coordinates in the co-moving frame to
the extrinsic coordinates in the embedding, we now have to determine the new
metric tensor and the new shape tensor of the surface. To do so, we in prin-
ciple proceed analogously to Section I.3.1 “Extrinsic and Intrinsic Coordinate
Systems” and Section I.3.3 “Measuring the Shape of a Surface”. However, we
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have to keep in mind the little subtlety that both the normal vector �̂� and the
variation 𝛿𝑢 depend on their intrinsic coordinates 𝝎⚬.

Variation of the boundary metric. To find out how the metric tensor on the
boundary changes after applying our variation 𝛿𝑢, we first determine the new
tangent vectors on the surface, see Eq. (I.16):

̃𝒕𝑖 =
𝜕 ̃𝜞
𝜕𝜔𝑖⚬

= 𝒕𝑖 + ( 𝜕�̂�
𝜕𝜔𝑖⚬

) 𝛿𝑢 + �̂� (𝜕(𝛿𝑢)
𝜕𝜔𝑖⚬

) . (I.68)

As we have discussed in Section I.2.4 “A Primer on the Calculus of Variations”,
the variation is maximal at the intrinsic coordinates 𝝎⚬ where it is applied, and
decays to zero within some small physical distance away from this position.
Therefore, the last term in Eq. (I.68) must vanish12. The components of the
metric tensor, Eq. (I.18), after applying the variation, are then given by:

̃𝑔𝑖𝑘 = ̃𝒕𝑖 ⋅ ̃𝒕𝑘 = 𝒕𝑖 ⋅ 𝒕𝑘 + 𝒕𝑖 ⋅ (
𝜕�̂�
𝜕𝜔𝑘⚬

) 𝛿𝑢 + 𝒕𝑘 ⋅ (
𝜕�̂�
𝜕𝜔𝑖⚬

) 𝛿𝑢 . (I.69)

By then using the definition of the shape tensor, ℎ𝑖𝑘 = −𝒕𝑖 ⋅ (𝜕�̂�/𝜕𝜔𝑘⚬), see
Eq. (I.35), and its symmetry, we find that a normal variation directly affects
the surface metric as follows (Kreyszig, 1959; Zhong-can and Helfrich, 1989;
Capovilla et al., 2003; Deserno, 2015):

𝛿𝒈 ⋅ 𝒈−1 = ( ̃𝒈 − 𝒈) ⋅ 𝒈−1 = −2𝒉 ⋅ 𝒈−1 𝛿𝑢 . (I.70)

Comparing the above expression to Eq. (I.59), we then find that a normal varia-
tion directly induces strain when it changes the length measure on the surface:

𝛿𝑬 = −𝑻−𝑇 ⋅ 𝒉 ⋅ 𝒈−1 ⋅ 𝑻𝑇 𝛿𝑢 , (I.71)

where 𝑻 refers to the basis that spans the tangent plane with tangent vectors
𝒕𝑖 ∈ 𝑻. By virtue of Eq. (I.62), this surface strain affects the surface area of our
geometry, 𝛿(𝑑𝑆) = tr(𝛿𝑬) 𝑑𝑆, and the surface density of conserved quantities,
Eq. (I.63). To summarize, any movement by some distance 𝛿𝑢 along the unit
normal vector of the surface will induce the following change in surface area 𝑑𝑆
and (particle) density 𝑐 (Kreyszig, 1959; Pressley, 2010; Frankel, 2011; Grinfeld,
2013; Deserno, 2015):

𝛿(𝑑𝑆) = − tr(𝒉 ⋅ 𝒈−1) 𝑑𝑆 𝛿𝑢 = −𝐻 𝑑𝑆 𝛿𝑢 , and 𝛿𝑐 = 𝐻 𝑐 𝛿𝑢 . (I.72)
12Note that Eq. (I.69) actually follows from Eq. (I.68) in a more generic context, without a need
to invoke any specific properties of the variation 𝛿𝑢. The reason is that the unit normal vector
is perpendicular to the tangent vectors, �̂� ⋅ 𝒕𝑖 = 0.

45



I Non-Equilibrium Dynamics in Biology

One can intuitively understand these results by considering a balloon, which
has total curvature 𝐻 = 𝜅1 + 𝜅2 < 0. If one inflates the balloon, then its surface
area increases while the density of conserved material decreases due to stretch-
ing. For surfaces under isotropic tension, such a variation in surface area leads
to a Laplace pressure (S. Safran, 2003; D. Nelson et al., 2004). In Section IV.1
“Collective Cell Migration Affects Morphogenesis” and Section IV.2 “Between
Morphogenesis and Hydrodynamic Flows”, we generalize the Laplace pressure
to anisotropic surface tension, which arises from cell orientation.

Variation of the boundary shape. Finally, we investigate how the shape ten-
sor of the boundary changes in response to our variation 𝛿𝑢. We proceed by
breaking up our calculation into several small steps, to help us keep track of
subtleties that may arise. Taking the derivative of the post-variation tangent
vector, Eq. (I.68), and inserting our result into the definition of the shape ten-
sor, Eq. (I.35), we arrive at the following expression:

̃ℎ𝑖𝑘 = �̂� ⋅ ( 𝜕
̃𝒕𝑖

𝜕𝜔𝑘⚬
) = �̂� ⋅ [ 𝜕𝒕𝑖

𝜕𝜔𝑘⚬
+ 𝜕2�̂�
𝜕𝜔𝑖⚬𝜕𝜔𝑘⚬

𝛿𝑢 + �̂� 𝜕2(𝛿𝑢)
𝜕𝜔𝑖⚬𝜕𝜔𝑘⚬

] . (I.73)

Here, we have used �̂�⋅(𝜕�̂�/𝜕𝜔𝑖⚬) = 0 to cancel several contributions in the square
brackets13. In the following, we take a closer look and rewrite the remaining
terms in the square brackets.
To proceed, we again make extensive use of orthonormalization, as intro-

duced in Paragraph “Basis orthonormalization” (Section I.3.2) and applied in
various contexts so far. Specifically, we consider a transformation 𝑶 that maps
our non-orthonormal tangent basis to an orthonormal tangent basis, 𝑻⦹ = 𝑻 ⋅𝑶,
with orthonormal tangent vectors 𝒕⦹,𝑖 ∈ 𝑻⦹. Then, we express the identity map-
ping in terms of the orthonormal tangent vectors, 𝑰 = ∑𝑙 𝒕⦹,𝑙⊗𝒕⦹,𝑙. Furthermore,
we express the scalar product (inner product) through a formal matrix multipli-
cation between a row vector 𝒔𝑇 (1 × 𝑁 matrix) and a column vector 𝒓 (𝑁 × 1
matrix), 𝒔 ⋅ 𝒓 ≡ 𝒔𝑇 ⋅ 𝒓. Analogously, we also rewrite the tensor product (outer
product) as the formal matrix multiplication between a column vector 𝒔 (𝑁 × 1
matrix) and a row vector 𝒓𝑇 (1×𝑁 matrix), 𝒔⊗𝒓 ≡ 𝒔 ⋅ 𝒓𝑇 . When we express vec-
tors via matrices, the symbol “⋅” identifies a matrix multiplication. Because this
trick can cause a clash with the notation of an inner vector product, we only use
it in two places of the present thesis, and explicitly state where we do so. Taking
all of these considerations together, we rewrite the second term in the square

13 Alternatively, one can also simply drop all linear derivatives of the variation 𝛿𝑢, which is
maximal at the intrinsic coordinates 𝝎⚬ where it is applied.
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brackets of Eq. (I.73) as follows:

�̂� ⋅ 𝜕2�̂�
𝜕𝜔𝑖⚬𝜕𝜔𝑘⚬

= −( 𝜕�̂�
𝜕𝜔𝑖⚬

) ⋅ ( 𝜕�̂�
𝜕𝜔𝑘⚬

) = −( 𝜕�̂�
𝜕𝜔𝑖⚬

) ⋅ (∑
𝑙
𝒕⦹,𝑙 ⊗ 𝒕⦹,𝑙) ⋅ (

𝜕�̂�
𝜕𝜔𝑘⚬

)

≡ −(𝜕�̂�
𝑇

𝜕𝜔𝑖⚬
) ⋅ ( ∑

𝑙,𝑚,𝑛
𝒕𝑚𝑂𝑚𝑙 𝑂𝑇

𝑙𝑛 𝒕𝑇𝑛) ⋅ (
𝜕�̂�
𝜕𝜔𝑘⚬

) = − ∑
𝑚,𝑛

ℎ𝑖𝑚 𝑔−1𝑚𝑛 ℎ𝑛𝑘 , (I.74)

where we have used 𝑶 ⋅ 𝑶𝑇 = 𝒈−1 in the last step, see Eq. (I.26).
Now, we take a closer look at the third term in the square brackets of Eq. (I.73).

We start with the (as we will see a posteriori) closely related expression of the
Hessian of our variation in curvilinear coordinates, projected onto the basis 𝑻
of our non-orthonormal co-moving frame:

𝒕𝑇𝑚 ⋅ [𝛁 ⊗ 𝛁(𝛿𝑢)] ⋅ 𝒕𝑛 = ∑
𝑘,𝑙
𝑔−1𝑘𝑙 𝒕𝑚 ⋅ 𝜕[𝛁(𝛿𝑢)]

𝜕𝜔𝑘⚬
𝒕𝑙 ⋅ 𝒕𝑛 = 𝒕𝑚 ⋅ 𝜕[𝛁(𝛿𝑢)]𝜕𝜔𝑛⚬

= 𝒕𝑚 ⋅ 𝜕
𝜕𝜔𝑛⚬

[∑
𝑘,𝑙
𝑔−1𝑘𝑙

𝜕(𝛿𝑢)
𝜕𝜔𝑘⚬

𝒕𝑙] . (I.75)

Here, we have proceeded by (i) inserting the definition of the gradient of a vector
field, Eq. (I.48), (ii) using the definition of the metric tensor, 𝒕𝑙 ⋅ 𝒕𝑛 = 𝑔𝑙𝑛, see
Eq. (I.18), to get rid of several indices, and then (iii) inserting the definition of
the gradient of a scalar field, Eq. (I.46). Because the variation 𝛿𝑢 is maximal at
the intrinsic coordinates 𝝎⚬ where it is applied, its first-order partial derivatives
must vanish there, 𝜕(𝛿𝑢)/𝜕𝜔𝑘⚬ = 0. Only for such a scalar field that is maximal
at the point of expansion, does the following relation then hold:

𝒕𝑇𝑚 ⋅ [𝛁 ⊗ 𝛁(𝛿𝑢)] ⋅ 𝒕𝑛 = ∑
𝑘,𝑙

𝜕2(𝛿𝑢)
𝜕𝜔𝑛⚬𝜕𝜔𝑘⚬

𝑔−1𝑘𝑙 𝒕𝑚 ⋅ 𝒕𝑙 =
𝜕2(𝛿𝑢)
𝜕𝜔𝑛⚬𝜕𝜔𝑚⚬

. (I.76)

We strongly emphasize that this is only valid because the variation 𝛿𝑢 ismaximal
at the point of expansion. In all other cases, onemust account for the derivatives
of the tangent vectors, which constitutes the curvilinear property of our basis.
Finally, we insert our intermediate results, Eq. (I.74) and Eq. (I.76) back into

Eq. (I.73):
̃𝒉 = 𝒉 − 𝒉 ⋅ 𝒈−1 ⋅ 𝒉 𝛿𝑢 + 𝑻𝑇 ⋅ [𝛁 ⊗ 𝛁(𝛿𝑢)] ⋅ 𝑻 . (I.77)

Then, we arrive at the following expression for the variation of the shape ten-
sor (Zhong-can and Helfrich, 1989; Capovilla et al., 2003; Deserno, 2015):

̃𝒉 ⋅ ̃𝒈−1 − 𝒉 ⋅ 𝒈−1 = ̃𝒉 ⋅ 𝒈−1 ⋅ (𝑰 + 2𝒉 ⋅ 𝒈−1 𝛿𝑢) − 𝒉 ⋅ 𝒈−1

= (𝒉 ⋅ 𝒈−1)2 𝛿𝑢 + 𝑻𝑇 ⋅ [𝛁 ⊗ 𝛁(𝛿𝑢)] ⋅ 𝑻−𝑇 , (I.78)
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where we have used Eq. (I.70) to approximate themetric after applying our vari-
ation 𝛿𝑢. Thus, the first variation of the total curvature is given by (Zhong-can
and Helfrich, 1989; Capovilla et al., 2003; Deserno, 2015):

𝛿𝐻 = tr[(𝒉 ⋅ 𝒈−1)2] 𝛿𝑢 + 𝛁2(𝛿𝑢) = (𝐻2 − 2𝐾) 𝛿𝑢 + 𝛁2(𝛿𝑢) . (I.79)

This result is particularly important for calculating the bending stresses of a lipid
membrane, or of thin shells in general. In Section II.1 “Mechanochemical Cou-
pling between Proteins and Membranes”, we apply these concepts to study the
binding kinetics of membrane-deforming proteins.
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II Between Protein Patterns
andMechanics

II.1 Mechanochemical Coupling between
Proteins andMembranes

In this project, we draw a connection between two central themes of intracel-
lular dynamics: (i) mechanochemical interactions and (ii) protein pattern for-
mation via reactions and diffusion. Our main results are published in “Protein
Recruitment through IndirectMechanochemical Interactions”, Physical Review
Letters 123, 178101 (2019). We refer to pages 61–66 for a reprint of the main text
and to pages 67–73 for a reprint of the Supplementary Material. The following
serves as an introduction into the project and a summary of its main results,
for the convenience of the reader. Furthermore, we also discuss the theory in
light of the introduction to differential geometry in Section I.3 “A Foundation
for Patterns in Adapting Organisms”.

A note about the notation. To be consistent with the rest of the thesis, we
choose the notation 𝑐⚬ to indicate the surface density of proteins, instead of 𝑚
which was used in the original article (A. Goychuk and Frey, 2019). Further-
more, we denote themechanical rigidity coefficients with 𝑘 instead of 𝜅, because
the latter is reserved for curvatures in this thesis. Then, for the reaction rates, we
choose the notation 𝑟 instead of 𝑘, whichwas used in the original article (A. Goy-
chuk and Frey, 2019). Finally, we also denote the placeholder variable, which
can represent either total curvature or lipid density, with 𝜓 instead of 𝑢, because
the latter is reserved for deflections in this thesis.

II.1.1 Starting Point of the Project
General Scope and Relevance. In biological systems, coupling between me-
chanical and chemical degrees of freedom is a frequent motif. For example,
different polymers and proteins can bind to and deform lipid membranes (Ford
et al., 2002; Tsafrir et al., 2003; Lee et al., 2005; Gov and Gopinathan, 2006; Zim-
merberg and Kozlov, 2006; Prinz and Hinshaw, 2009; Stachowiak et al., 2012;
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McMahon and Boucrot, 2015; Jarsch et al., 2016; Gov, 2018; Yuan et al., 2021).
This includes proteins with Bin/Amphiphysin/Rvs (BAR) domains, which bend
the membrane to their curved shape through molecular interactions (Zimmer-
berg and McLaughlin, 2004; Peter et al., 2004; Bhatia et al., 2009; Mim and
Unger, 2012; Zhu et al., 2012; Prévost et al., 2015; Simunovic et al., 2015). Re-
markably, recent experiments show that the Min family of proteins can also de-
form giant unilamellar vesicles (Litschel et al., 2018; Fu et al., 2021). Given that
mechanochemical interactions between proteins and elastic membranes are so
abundant, inducing membrane deformations might not be an exclusive ability
of specialized proteins. Instead, because the forces that enable binding are re-
ciprocal, any protein that binds to phospholipid bilayer membranes could de-
form these membranes as a side effect. Then, what are the implications of such
mechanochemical interactions for intracellular dynamics?
It is known that by inducing deformations of elastic membranes via recipro-

cal forces, proteins can interactwith othermembrane-binding proteins (Phillips,
Ursell, et al., 2009; Weikl, 2018; Idema and Kraft, 2019). This coupling between
membrane-bound particles manifests in an effective pairwise attraction or re-
pulsion (Haselwandter and Phillips, 2013; Schweitzer and Kozlov, 2015; van der
Wel et al., 2016; Vahid and Idema, 2016), and can for example lead to sorting
according to particle size (Idema, Semrau, et al., 2010). Furthermore, as a con-
sequence of membrane-mediated pairwise interactions, the proteins can form
different aggregates (Idema and Kraft, 2019). For example, membrane-bound
particles can accumulate into clusters (Schmidt et al., 2008), align into bundles
and linear aggregates (Shlomovitz andGov, 2009; Vahid and Idema, 2016; Vahid,
Šarić, et al., 2017; Vahid, Dadunashvili, et al., 2019), generate tubularmembrane
protrusions (H. Zhao et al., 2011; Mesarec et al., 2016), or form lattice-like struc-
tures (Haselwandter and Wingreen, 2014; Olinger et al., 2016). Here, however,
we focus on an entirely different and independent type of dynamics. Instead
of considering particles that are permanently bound to a lipid membrane, we
investigate the binding and unbinding kinetics between a protein and a mem-
brane. Such particle exchange between the cytosol and the membrane is a cru-
cial mechanism for several protein pattern forming systems (Halatek, Brauns,
et al., 2018), which directly leads to our main question.

Research Question and Hypothesis. In pattern-forming systems, some
membrane-bound proteins favor the attachment of additional proteins to the
membrane, resulting in a phenomenon termed recruitment (Halatek, Brauns,
et al., 2018). For example, in the Escherichia Coli Min system, MinD recruits
both itself and MinE to the membrane. In three-dimensional solutions that are
not coupled to a two-dimensional surface, one would invoke classical theories
of binding cooperativity, where proteins can present multiple binding sites for
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ligands, to explain such nonlinear reaction rates (Hill, 1913; M. I. Stefan and
Le Novère, 2013). In a system such as ours, however, we have additional de-
grees of freedom that describe the mechanical conformation of the membrane.
Therefore, we hypothesize that through mechanochemical interactions with
the proteins, the membrane can mediate their cooperative binding.

II.1.2 Summary of theMain Results
Membrane-binding proteins change the mechanical conformation of the mem-
brane, by attaching via reciprocal interactions. This signifies a competition:
binding proteins yields an energy benefit, while membrane deformations incur
an energy cost. If the surface density ofmembrane-bound proteins is small, then
binding is unfavorable. But asmore proteins bind to and deform themembrane,
the membrane’s surface becomes more favorable for binding. Thus, one has a
positive feedback loop, where the binding rate of proteins to the membrane in-
creases nonlinearly with the surface density of already bound proteins.
These results constitute a novel and purely physical mechanism of protein co-

operativity, which does not rely on protein conformation changes and chemical
affinity between proteins. Our mechanism applies equally well to all proteins
that induce mechanical deformations of the membrane, and is therefore gen-
eral. We expect that the nonlinearity of protein recruitment can be tuned by
applying external stresses to the membrane, and thereby shifting its reference
configuration. This effect should drastically change the dynamics of pattern-
forming systems that rely on membrane-mediated recruitment via mechanical
interactions. Such pattern-forming systems would then be able to detect me-
chanical signals in the environment.

II.1.3 Technical Summary and Additional Discussion
Here, we discuss some of the more technical aspects of this project, which in-
volve differential geometry, variational calculus, and the calculation of first-
passage times.

The cost and benefit of protein binding. First, we investigate the binding
and unbinding dynamics between proteins and membranes by considering
pairwise interactions among lipids and proteins. Molecular interactions among
lipids endow the membrane with mechanical rigidity against stretching and
bending. Analogously, binding of proteins to the membrane requires molecular
interactions between lipids and proteins. To model crowding effects, we
also consider molecular interactions among proteins, which become relevant
at high protein surface density, 𝑐⚬. We treat the binding process itself as
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reversible, so that the heat generation is entirely determined by the entropy
production. Therefore, we can construct a Helmholtz free energy functional,
which describes the mechanochemical configuration of the membrane and the
membrane-bound proteins:

𝐹 = ∮𝑑𝑆 [𝑓mech(𝒖) + 𝑐⚬ 𝐸bind(𝒖) + 𝑓pp(𝑐⚬)] , (II.1)

where ∮𝑑𝑆 indicates a surface integral. Next, we take a closer look at the differ-
ent contributions to Eq. (II.1).
The first term in the square brackets of Eq. (II.1), 𝑓mech(𝒖), refers to the free

energy density of a deformed membrane with mechanical configuration 𝒖. We
treat lipid membranes as thin elastic sheets, with a bulk modulus 𝑘s that pe-
nalizes stretching and a bending modulus 𝑘b that penalizes bending (Helfrich,
1973; Seifert, 1997; S. Safran, 2003). To lowest order, the energy costs of pure
bending and pure stretching are then given by

𝑓stretch(𝜌) =
1
2 𝑘s (𝜌 − 𝜌0)2 , and 𝑓bend(𝐻) =

1
2 𝑘b (𝐻 − 𝐻0)2 , (II.2)

where 𝜌 is the surface density of lipids and 𝐻 is the total curvature of the sur-
face. The equilibrium configuration of the membrane is determined by a refer-
ence lipid density 𝜌0 and a spontaneous curvature 𝐻0 (Helfrich, 1973; Seifert,
1997; S. Safran, 2003). To make our theory as simple as possible, we neglect
any coupling between bending and stretching modes that may occur. This ap-
proximation is valid if: (i) stretching has a far greater cost than bending, so that
the surface area of a bent membrane remains approximately constant (Seifert,
1997), or (ii)we treat stretching as an isolated process in an approximately planar
membrane with negligible bending, or (iii) we consider a symmetric membrane
where bending and stretching must decouple because of the symmetry. Note
that in a more general setting, which we do not study here, one would have to
consider such a coupling (Seifert, 1997; S. Safran, 2003).
The second term in the square brackets of Eq. (II.1), 𝐸bind(𝒖), refers to the

binding energy of each protein, which depends on the mechanical configura-
tion of the membrane, 𝒖. We perform a Taylor expansion of the binding en-
ergy 𝐸bind(𝒖), to lowest order around the optimal membrane conformation 𝒖opt
where protein binding is strongest. The binding energy of each protein is then
weightedwith the surface density ofmembrane-bound proteins 𝑐⚬ to account for
the whole population of proteins. Finally, the last term in the square brackets,
𝑓pp(𝑐⚬), models interactions among proteins.

Eliminating the mechanical degrees of freedom. Based on Eq. (II.1), one
can then distinguish the following different degrees of freedom: (i) deforma-
tions of the membrane are mechanical degrees of freedom, while (ii) particle
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exchange due to the binding and unbinding dynamics of proteins corresponds
to chemical degrees of freedom. We are mainly interested in the chemical de-
grees of freedom, where cytosolic proteins diffuse a finite distance to the mem-
brane and bind there. Such binding events alter the number of proteins on the
membrane, and thereby the Helmholtz free energy, Eq. (II.1). Then, each pro-
tein that binds to the membrane has to either pay an energy cost or will reap an
energy benefit, which is given by its chemical potential (Landau and Lifshitz,
1980):

𝜇𝑐 =
𝛿𝐹
𝛿𝑐⚬

. (II.3)

If the mechanical and the chemical degrees of freedom are completely inde-
pendent, then the chemical potential coincides with the binding energy, 𝜇c =
𝐸bind(𝒖). However, this is not the case here: when proteins bind to the mem-
brane, they change its mechanical configuration 𝒖 and thus the binding energy
of all other nearby proteins. This relaxation of the mechanical degrees of free-
dom occurs via infinitesimal membrane motion, which is much faster than the
chemical dynamics. Therefore, we adiabatically eliminate the mechanical de-
grees of freedom as discussed next. To that end, we determine the mechanical
stresses that act on the membrane, by studying variations of the surface and its
free energy, Eq. (II.1). Note that the surface density of particles and the cur-
vature of the surface transform differently under variations, see Eq. (I.72) and
Eq. (I.79). Therefore, for a detailed description we have to distinguish between
membrane-stretching and membrane-bending proteins, as we discuss next.

Coupling between proteins and the membrane via stretching. Suppose
that the membrane-binding proteins insert an “anchor” into the lipid mem-
brane, which then locally interacts with the lipids and affects their local density.
As discussed in Paragraph “The cost and benefit of protein binding” and in (A.
Goychuk and Frey, 2019), in this case the free energy of the membrane and the
membrane-bound proteins is given by:

𝐹 = ∮𝑑𝑆 [12 𝑘s (𝜌 − 𝜌0)2 + 𝑐⚬ (𝐸opt +
1
2 𝜖s (𝜌 − 𝜌opt)2) + 𝑓pp(𝑐⚬)] , (II.4)

where 𝐸opt is the binding energy of a protein under optimal conditions, and 𝜖s
characterizes the sensitivity of the protein to the mechanical conformation of
the membrane. The binding of proteins to the membrane is strongest at the
“optimal” lipid density 𝜌opt. First, we ask: How will the insertion or removal of
a protein affect the mechanical conformation of the membrane? From Eq. (II.4),
it follows that insertion of a protein into the membrane will affect the chemi-
cal potential profile of lipids, 𝜇𝜌 = 𝛿𝐹/𝛿𝜌. In turn, gradients in this chemical
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potential correspond to the following thermodynamic forces:

− 𝛁𝜇𝜌 ≡ −𝛁[𝛿𝐹𝛿𝜌 ] = −𝛁 [𝑘s (𝜌 − 𝜌0) + 𝜖s 𝑐⚬ (𝜌 − 𝜌opt)] . (II.5)

These thermodynamic forces, −𝛁𝜇𝜌, according to Onsager’s theory of non-
equilibrium thermodynamics (Balian, 2007), drive lateral lipid fluxes along the
membrane. Thus, insertion of a protein into the membrane will induce lateral
redistribution of lipids until the lipid membrane reaches mechanical equilib-
rium. In mechanical equilibrium, the chemical potential of lipids 𝜇𝜌 should
adopt a constant value, which in principle is determined by external constraints
(for example, a fixed total area of the membrane). Here, we consider a large
(for all practical purposes infinite) membrane with equilibrated lipid density,
𝜌|𝜕𝑆 = 𝜌0, and vanishing protein density, 𝑐⚬|𝜕𝑆 = 0 in the far field. Then, the
membrane adopts the following mechanical conformation (A. Goychuk and
Frey, 2019):

𝜌 = 𝜌0 + (𝜌opt − 𝜌0)
𝜖s 𝑐⚬

𝑘s + 𝜖s 𝑐⚬
. (II.6)

If no proteins bind to the membrane, then the lipid density takes its reference
value, 𝜌0. Once more proteins bind to the membrane, the configuration of the
membrane will shift towards the lipid density that is preferred by the proteins,
𝜌opt.
Note that in this context, the chemical potential of the lipids acts as an effec-

tive surface tension, −𝜇𝜌, which becomes even more apparent if one considers
normal variations of the membrane. Then, we find that a displacement of the
surface by some small distance 𝛿𝑢 along its unit normal vector can only be coun-
teracted by the following externally applied stress1:

𝛿𝐹
𝛿𝑢 = [12 𝑘s (𝜌

2 − 𝜌20) + 𝜖s 𝑐⚬ 𝜌 (𝜌 − 𝜌opt) + 𝑐⚬
𝜕𝑓pp
𝜕𝑐⚬

− 𝑓pp] 𝐻 , (II.7)

where we have used Eq. (I.72) to account for the changes in surface area and
surface density of particles. By making the approximation that the surface den-
sity of lipids remains close to its reference value, 𝜌 ≈ 𝜌0, we find the following
expression:

𝛿𝐹
𝛿𝑢 ≈ [𝑘s (𝜌 − 𝜌0) + 𝜖s 𝑐⚬ (𝜌 − 𝜌opt)] 𝜌0𝐻 = 𝜇𝜌 𝜌0𝐻 . (II.8)

Here, we have also neglected protein-protein interactions under the condition
that they only become relevant at high surface density of proteins (that is,
protein-protein interactions are nonlinear). We find that Eq. (II.8) exactly
corresponds to a Laplace pressure with effective surface tension 𝜏 ≡ −𝜇𝜌 𝜌0.
1 The surface itself exerts a stress −𝛿𝐹/𝛿𝑢 onto its surroundings.
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Coupling between proteins and themembrane via bending. Now, suppose
that the interactions between the membrane-binding proteins and the mem-
brane induce bending of the latter, as is the case for proteins that contain BAR
domains (Zimmerberg and McLaughlin, 2004; Peter et al., 2004; Bhatia et al.,
2009; Mim and Unger, 2012; Zhu et al., 2012; Prévost et al., 2015; Simunovic et
al., 2015). As discussed in Paragraph “The cost and benefit of protein binding”
and in (A. Goychuk and Frey, 2019), in this case the free energy of themembrane
and the membrane-bound proteins is given by:

𝐹 = ∮𝑑𝑆 [12 𝑘b (𝐻 − 𝐻0)2 + 𝑐⚬ (
1
2 𝜖b (𝐻 − 𝐻opt)2) + 𝑓pp(𝑐⚬)] , (II.9)

where 𝐸opt is the binding energy of a protein under optimal conditions, and 𝜖b
characterizes the sensitivity of the protein to the shape of the membrane. The
binding of proteins to themembrane is strongest at the “optimal” curvature𝐻opt.
As before, we ask: Howwill the insertion or removal of a protein affect the shape of
the membrane? To answer this question, we again have to consider normal vari-
ations of the membrane, because tangential variations do not affect the shape of
a surface. Then, we find that a displacement of the surface by some small dis-
tance 𝛿𝑢 along its unit normal vector can only be counteracted by the following
externally applied stress (A. Goychuk and Frey, 2019):

𝛿𝐹
𝛿𝑢 = 1

2 𝑘b (𝐻 − 𝐻0) (𝐻2 − 4𝐾 + 𝐻𝐻0) + 𝜖b 𝑐⚬ (𝐻 − 𝐻opt) (𝐻2 − 2𝐾)

+ 𝛁2 [𝑘b(𝐻 − 𝐻0) + 𝜖b 𝑐⚬ (𝐻 − 𝐻opt)] + [𝑐⚬
𝜕𝑓pp
𝜕𝑐⚬

− 𝑓pp] 𝐻 . (II.10)

To arrive at above expression, we have used Eq. (I.72) to account for the changes
in surface area and surface density of particles, as well as Eq. (I.79) to account
for the changes in curvature. Note that accounting for the variation of the curva-
ture, Eq. (I.79), gives a term that is proportional to the Laplacian of the variation,
𝛁2(𝛿𝑢). To get rid of this term, one has to integrate the variation of the free en-
ergy, 𝛿𝐹, twice by parts, using the short introduction to the calculus of variations
in Section I.2.4 “A Primer on the Calculus of Variations”.
We assume that deflections of themembrane are small, so that themembrane

remains near its intrinsic curvature, 𝐻 ≈ 𝐻0. Furthermore, we assume that
the surface density of protein is sufficiently small, so that interactions among
proteins do not induce appreciable deformations of the membrane. Then, we
may linearize Eq. (II.10) to the following simplified expression:

𝛿𝐹
𝛿𝑢 ≈ 𝛁2 [𝑘b(𝐻 − 𝐻0) + 𝜖b 𝑐⚬ (𝐻 − 𝐻opt)] . (II.11)
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In mechanical equilibrium, the mechanical stresses should vanish, 𝛿𝐹/𝛿𝑢 =
0, leading to a shape equation that we can solve by integration. As before in
Paragraph “Coupling between proteins and the membrane via stretching”, we
here consider a large (for all practical purposes infinite) membrane. In the far
field, the curvature should be equilibrated, 𝐻|𝜕𝑆 = 𝐻0, and the protein density
should vanish, 𝑐⚬|𝜕𝑆 = 0. Then, the shape equation, 𝛿𝐹/𝛿𝑢 = 0, see Eq. (II.11),
is solved by (A. Goychuk and Frey, 2019):

𝐻 = 𝐻0 + (𝐻opt − 𝐻0)
𝜖b 𝑐⚬

𝑘b + 𝜖b 𝑐⚬
. (II.12)

First-passage time of protein binding. In Paragraph “Coupling between pro-
teins and the membrane via stretching” and Paragraph “Coupling between pro-
teins and themembrane via bending”, we have used the condition that mechan-
ical stressesmust vanish inmechanical equilibrium. By doing so, we have found
the equilibrium configuration 𝒖(𝑐⚬) of a membrane with 𝑐⚬ bound proteins per
unit surface area. In agreementwith (A.Goychuk andFrey, 2019), but in slightly
more detail, we have shown that the membrane adopts the following mechani-
cal configuration:

𝜓 = 𝜓0 + (𝜓opt − 𝜓0)
𝜖 𝑐⚬

𝑘 + 𝜖 𝑐⚬
, (II.13)

where 𝜓 ∈ {𝜌,𝐻} is a placeholder variable. Analogously, we have introduced
placeholder parameters for the rigidity of the membrane, 𝑘 ∈ {𝑘s, 𝑘b}, and for
the sensitivity of the proteins to themechanical conformation of themembrane,
𝜖 ∈ {𝜖s, 𝜖b}. We then adiabatically eliminate the mechanical degrees of free-
dom, so that the mechanical conformation of the membrane changes instantly
upon protein binding. Having eliminated the mechanical degrees of freedom,
the chemical potential 𝜇c = 𝛿𝐹/𝛿𝑐⚬ then becomes an effective binding energy
that takes into account bothmechanical and chemical interactions (A. Goychuk
and Frey, 2019):

𝜇𝑐 = 𝐸opt + [𝑐⚬
𝜕𝑓pp
𝜕𝑐⚬

+ 𝑓pp] +
1
2
𝜖 (𝑢opt − 𝑢0)2
(1 + 𝑐⚬ 𝜖/𝑘)2

. (II.14)

Now, all that is left is to determine the mean first passage time of a protein that
diffuses from the cytosol to the membrane, where it is absorbed by binding. To
that end, we have tomake some assumptions about the chemical potential land-
scape of a protein that diffuses in the cytosol and then approaches the mem-
brane. In (A. Goychuk and Frey, 2019), a piecewise linear approximation of the
chemical potential landscape was considered, provided that there is no energy
barrier that the protein has to cross before binding to the membrane. As we
discuss next, one can make very similar conclusions by instead considering a
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Figure II.1: a) A chemical potential profile with a barrier. A protein (filled blue
circle) starts in the cytosol (blue), and has to cross a chemical potential bar-
rier to enter the region (red) where attractive interactions with themembrane
(yellow) become relevant. By attaching to themembrane, proteins deform the
membrane into a more binding-favorable mechanical conformation, as in (A.
Goychuk and Frey, 2019). Therefore, the chemical potential at themembrane
shifts towards lower values (black arrow), and reduces the height of the chem-
ical potential barrier that the proteins have to overcome before binding to
the membrane. b) These changes in the chemical potential barrier lead to
a nonlinear increase of the binding rate as a function of the protein surface
density. This recruitment is especially pronounced if the proteins are more
sensitive to the mechanical conformation of the membrane. Here, we have
defined the binding energy difference between the reference configuration
of the membrane and the most binding-favorable configuration of the mem-
brane, Δ𝐸 = 1

2 𝜖 (𝑢opt − 𝑢0)2 . This figure is adapted from (A. Goychuk and
Frey, 2019) under the terms of the cb Creative Commons Attribution 4.0
International License, and modified to add a chemical potential barrier.

finite chemical potential barrier of magnitude 𝜇𝑐 + 𝐸barrier, which the protein
has to overcome before it can bind to the membrane (Fig. II.1a). To that end,
we assume that the chemical potential difference 𝐸barrier between the maximum
of the barrier and the chemical potential at the membrane is constant. Such a
chemical potential barrier (“activation barrier”) could arise, for example, if the
protein experiences some mechanical resistance when inserting an anchor into
the membrane.

Addendum: An activation barrier in the chemical potential profile. If
there is a large chemical potential barrier, with 𝐸barrier ≫ 𝜇𝑐, then the problem
of finding the first-passage time maps exactly to Kramers’ theory of reaction
kinetics (Kramers, 1940; Hänggi et al., 1990). Then, one obtains an Arrhenius
equation for the protein attachment rate (Arrhenius, 1889):

𝑟+ = 𝑟0 exp (−
𝜇𝑐
𝑘B𝑇

) , (II.15)

57

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


II Between Protein Patterns and Mechanics

where 𝑟0 is some reference rate that depends on the height of the chemical
potential barrier. Binding of proteins to the membrane leads to deformations
of the latter, and to a more binding-favorable environment. This reduces the
chemical potential barrier by shifting the chemical potential at the membrane
downwards (Fig. II.1a), leading to a positive feedback loop and recruitment of
proteins. Therefore, we find a nonlinear increase of the protein binding rate,
as a function of the surface density of membrane-bound proteins (Fig. II.1b).
In (A. Goychuk and Frey, 2019), the same result was obtained without explicitly
adding a potential barrier that a protein has to overcome before it can bind to
the membrane. Instead, the chemical potential directly at the membrane can
act like such a barrier if 𝜇𝑐 > 0, for small density of membrane-bound proteins.
On a final note, if the height of the chemical potential barrier is defined by a
constant offset relative to the chemical potential at the membrane, 𝜇𝑐 + 𝐸barrier,
then the detachment rate will be constant: 𝑟− = 𝑟0. This is different than in (A.
Goychuk and Frey, 2019), where the detachment rate was also affected by the
mechanical conformation of the membrane. Which of these models reflects
reality better, depends on the microscopic details of the molecular interactions.
However, the main result of a nonlinear surface density dependent attachment
rate (recruitment) is robust against these microscopic details.
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Some of the key proteins essential for important cellular processes are capable of recruiting other
proteins from the cytosol to phospholipid membranes. The physical basis for this cooperativity of binding
is, surprisingly, still unclear. Here, we suggest a general feedback mechanism that explains cooperativity
through mechanochemical coupling mediated by the mechanical properties of phospholipid membranes.
Our theory predicts that protein recruitment, and therefore also protein pattern formation, involves
membrane deformation and is strongly affected by membrane composition.
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Protein pattern formation is essential for the spatial
organization of intracellular processes [1]. Examples of
biological significance include Min oscillations that guide
the positioning of the Z ring to midcell in E. coli [2], the
roles of cell polarization in determining the position of a
new growth zone or bud site in S. cerevisiae [3] and the
anteroposterior axis of the embryo in C. elegans [4], and
spatiotemporal patterns formed by members of the Rho
family of GTPases in eukaryotic cells [5]. Such self-
organized patterns are the product of a dynamic interplay
between diffusion (both in the cytosol and on the mem-
brane) and biochemical reactions among proteins and
between proteins and the membrane. A crucial motif in
all of the biochemical reaction networks that drive these
processes is a nonlinear feedback mechanism, which is
generally termed recruitment. Here, membrane-bound
proteins facilitate the binding of other soluble proteins
from the cytosol to the membrane [1]. For example, in E.
coli, membrane-bound MinD is said to recruit both cyto-
solic MinD and MinE to the membrane. What, then, is the
physical basis for such cooperative binding between
proteins and the membrane? One could adopt a purely
chemical perspective and suggest an explanation based on
classical concepts of binding cooperativity [6,7]. However,
an indiscriminately high chemical affinity between recruit-
ing proteins would also promote protein aggregation in the
cytosol as an unwanted side effect. Then, to still facilitate
specific recruitment to the membrane, a possible strategy is
for individual proteins to change their conformation upon
binding to the membrane so as to become chemically affine

scaffolds for other proteins [8,9]. In addition to these
chemical interactions, binding of proteins to membranes
inevitably invokes forces that can lead to membrane
deformation.
Here, we show how such mechanochemical coupling can

lead to a mechanism for the cooperative recruitment of
proteins to phospholipid membranes and thereby provide
an alternative strategy for cooperative membrane binding.
The basic idea is very simple: Attractive forces between
proteins and phospholipids facilitate protein attachment to
the membrane. As equal and opposite forces must act on the
membrane as well, protein binding will induce mechanical
deformation of the membrane. Indeed, it is well known that
membrane shape changes can be caused by curvature-
inducing polymers and proteins [10–19] containing Bin-
Amphiphysin-Rvs (BAR) domains [20–26] and—as
recently shown [27]—also by the Min family of proteins.
Equilibrium theories of the coupling between proteins and
the membrane generally lead to membrane-mediated inter-
actions between membrane-bound proteins, as reviewed in
Refs. [28–30]. The physical origin of such interactions may
be a hydrophobic mismatch for integral proteins [31–35],
surface interactions that depend on curvature [24,25,32,36–
41], or membrane shape fluctuations [42,43]. Furthermore,
these interactions may also depend on the packing density
[44] and composition [45,46] of the membrane. Then,
proteins that are bound to the membrane effectively attract
or repel each other [47–50] and form different aggregates
[30,38,40,51–54]. Here, however, we do not focus on such
self-organization effects. Instead, we ask a different and
independent question, namely, how membrane deforma-
tions affect the affinity and kinetic (un)binding rates of
proteins. We propose a general protein recruitment mecha-
nism caused by indirect interactions facilitated through
mechanical deformations of the membrane.
As we are interested in quantifying the effect of

membrane-mediated interactions on the kinetic rates of

Published by the American Physical Society under the terms of
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protein membrane binding and unbinding, we need to
analyze the dynamics of proteins that are subject to both
cytosolic diffusion (with diffusion constant D) and a
chemical potential gradient μðxÞ caused by the mechano-
chemical interaction of proteins with the membrane. This is
described by a Smoluchowski equation [55,56] for the
cytosolic protein density cðx; tÞ:

∂tcðx; tÞ ¼ D∇2cðx; tÞ þ D
kBT

∇(cðx; tÞ∇μðxÞ): ð1Þ

As proteins diffuse freely in the cytosol and interact
with the membrane only within some narrow range d,
a typical spatial profile of the chemical potential is initially
flat in the cytosol (μ ¼ 0) and then monotonically
approaches that of the proteins at the membrane,
μmðm;uÞ ¼ δF½mðσÞ;uðσÞ�=δmðσÞ, where F denotes the
free energy functional describing the mechanochemical
interaction between proteins and the membrane [57]. In
general, F will depend on both the membrane’s protein
density mðσÞ and its mechanical state uðσÞ at position σ on
the membrane surface; see Fig. 1 for an illustration.
The local free energy density describing the mechano-

chemical coupling between proteins and the membrane is
determined by lipid-lipid and protein-lipid interactions.
We assume that a fluid phospholipid membrane can, on
a coarse-grained level, be considered as an elastically
deformable thin sheet, with bulk modulus κs, vanishing
shear modulus, and a bending modulus κb that is equal for
both principal curvatures [58]. For low levels of strain,
we separate the mechanical degrees of freedom (d.o.f.) of
the membrane into lateral stretching and out-of-plane
bending [59] and write each mechanical contribution to
the free energy as

fmechðuÞ ¼
1

2
κðu − u0Þ2: ð2Þ

Here, u ∈ fρ; Hg is a placeholder variable for the mechani-
cal state (conformation) of the membrane, κ ∈ fκs; κbg
denotes the respective membrane bulk and bending modu-
lus, and u0 denotes the equilibrium conformation (equi-
librium density or intrinsic spontaneous curvature [60]).
As outlined above, there are several factors that deter-

mine the interaction between proteins and the membrane.
Conceptually, one may distinguish between two limiting
cases [Fig. 1(b)]: (A) protein anchorage through a mem-
brane targeting domain that penetrates into the inner
leaflet of the phospholipid bilayer and induces lateral
membrane strain, or (B) protein attachment to the mem-
brane by surface interactions and membrane bending. In
both cases, the binding energy, EB ≥ Eopt, of a protein to
the membrane will depend on the mechanical state
(conformation) of the membrane, u. In particular, the
binding will be strongest, EB ¼ Eopt, for some optimal
mechanical state uopt, where it attains an optimal value

Eopt < 0 [Fig. 1(c)]. This optimal conformation can be
understood as a compromise between maximal attractive
interactions between proteins and lipids, and minimal steric
repulsion [Fig. 1(b)]. As the membrane becomes crowded
with proteins, the binding energy will be reduced due to
protein-protein interactions [61]. Given that the repulsive
part of the Lennard-Jones potential scales as ∝ r−12 at small
distances r, this may be accounted for by a factor 1þ γm6,
with γ < 0; note that the membrane protein density scales
as m ∝ r−2. Then, a Taylor expansion of the chemical free
energy density to lowest order in the membrane confor-
mation, u, yields

fchemðu;mÞ ¼ m

�
Eoptð1þ γm6Þ þ 1

2
ϵðu − uoptÞ2

�
; ð3Þ

where the parameter ϵ characterizes how strongly the
membrane conformation affects protein binding. As noted
above, there is a broad range of cytosolic proteins that bind
to lipid membranes in a curvature-dependent manner
[17,20–23,26,62]; cf. Fig. 1(b), lower panel. For example,
protein-curvature coupling can arise from bending proteins
to the local membrane curvature [25,37,39,40,63–65] or by
bending the membrane to the shape of the proteins in
order to maximize attractive interactions [Fig. 1(b)]. In the
following, we specifically consider proteins that couple to
the membrane curvature (sum of the two principal curva-
tures), u≡H, and discuss lipid-density-coupling proteins
in the Supplemental Material (SM) [66].

(a) (b)

(c)

FIG. 1. (a) We divide intracellular space into reaction compart-
ments (top), each containing one protein on average (blue dot),
and identify the distance from the membrane x as the reaction
coordinate. The proteins diffuse freely far away from the
membrane (x > d, blue area) and sense a chemical potential μ
close to the membrane (x < d, red area), which facilitates protein
binding. Membrane-bound proteins modulate the chemical po-
tential μ (arrow) and therefore induce a positive feedback in the
attachment rate kþ. (b) Exaggerated membrane deformation
illustrates protein interactions. Attachment occurs by (top)
insertion of an anchor into the inner leaflet or by (bottom)
deposition through attractive surface interactions. (c) In both
cases, the mechanical state change (arrows, u ∈ fρ; Hg)
influences both the energy density fmech (solid line) stored in
the deformation of the membrane and the binding energy of a
protein EB (dashed line).
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As mechanical d.o.f. relax much faster than protein
densities, we adiabatically eliminate the mechanical d.o.f.
by assuming ∂uf ¼ 0, where f ¼ fmech þ fchem [73]. This
yields a relation between the membrane conformation u
and the protein density m on the membrane: uðmÞ ¼
u0 þ ðuopt − u0Þm=ðm× þmÞ. Here, the ratio between
the mechanical modulus κ and the mechanochemical
coupling parameter ϵ defines a characteristic membrane
protein density: m× ¼ κ=ϵ. For low membrane protein
density, m < m×, the interaction between the lipids domi-
nates, and the mechanical state of the membrane is given by
the equilibrium value u0; cf. yellow symbols in Fig. 1(c).
With an increasing number of attached proteins, the
membrane gradually deforms and adopts the mechanical
state that is preferred by the proteins; cf. blue symbols in
Fig. 1(c). There is an interplay between a mechanical
energy cost that is lowest at the relaxed state of the
membrane, u0, and a binding energy gain that is highest
in the deformed state of the membrane, which is optimal
for protein binding, uopt. The difference of mechanical
free energy density and binding energy between the
membrane conformations preferred by the proteins and
the lipids reads Δf ≡ Δfmech ¼ 1

2
κðuopt − u0Þ2 and ΔE≡

ΔEB ¼ 1
2
ϵðuopt − u0Þ2, respectively.

Upon eliminating the mechanical d.o.f. using uðmÞ, the
interplay between chemical and mechanical terms becomes
obvious in the dependence of the free energy density on
membrane protein density [Fig. 2(a)],

f
Δf

¼ m̃
1þ m̃

þ m̃ð1þ γ̃m̃6ÞEopt

ΔE
; ð4Þ

where m̃ ≔ m=m× and γ̃ ≔ γ=m6
×. The first term encodes

free energy costs for membrane deformation through
protein binding. With increasing protein density m, this
contribution saturates, as the membrane deforms towards a
binding-favorable conformation, implying that the corre-
sponding mechanical free energy costs for binding of
additional proteins diminish. For intermediate membrane
protein densities, the benefit from protein binding [second
term in Eq. (4)] dominates. Finally, for very high protein
densities, protein binding becomes unfavorable due to
crowding (γ̃ < 0).
The chemical potential at the membrane, μm ¼ ∂mf, i.e.,

the energy needed to bind one additional protein to the
membrane, reads

μmðm̃Þ
Eopt

¼ 1þ 7γ̃m̃6 þ ΔE
Eopt

1

ð1þ m̃Þ2 : ð5Þ

In the absence of crowding effects, the chemical potential
approaches the optimal value Eopt < 0 for large protein
densities on the membrane, m ≫ m×, meaning that there is
an energy gain upon binding [Fig. 2(b), dashed lines].
Crowding counteracts this gain, such that protein binding at

high densities becomes unfavorable [Fig. 2(b), solid lines].
For low densities (m < m×), protein binding is also
disfavored, as there is a free energy cost for mechanically
deforming the membrane that is largest for low membrane
protein densities m; cf. the last term in Eq. (5). The
amplitude of this reduction is given by jΔE=Eoptj, which
we term the protein binding specificity, as proteins with a
higher specificity have a greater preference for mechanical
states other than the relaxed state of the membrane
[Fig. 2(b)]. The less specific the binding of a protein,
the smaller the changes in the chemical potential as a
function of the protein density on the membrane.
What, then, are the implications of these thermodynamic

considerations for the kinetics of protein binding and
detachment? To answer this question, one has to solve a
first-passage-time problem for a particle diffusing in a
chemical potential as described by the Smoluchowski
equation (1). This is a well-studied problem, which dates
back to Kramers’ theory of reaction kinetics [74]. For a
one-dimensional reaction coordinate x, with a reflective
boundary at x ¼ a and an absorbing boundary at x ¼ b, the
first-passage time is given by [55,56]

τ ¼ 1

D

Z
b

a
dxeþμðxÞ=kBT

Z
x

a
dye−μðyÞ=kBT; ð6Þ

where μðxÞ is the spatial profile of the chemical potential. In
Kramers’ classical escape problem, the reaction rate
depends on the height of the barrier that the particle has
to cross by diffusion to reach its target [74]. In our case,
however, there is no such barrier. Instead, as discussed
above, we expect the landscape to exhibit a monotonically
increasing or decreasing profile, depending on whether the
chemical potential at the membrane, μm, is larger or smaller
than the value in the bulk of the cytosol (μcyt ¼ 0); for an
illustration, see Fig. 1.
To estimate the kinetic rates, we simplify the geometry of

the cell as follows. We divide the space near the membrane
into small reaction compartments with respective sizes
given by the average distance ξ between proteins, such that
each compartment contains a single protein on average.

(a) (b)

FIG. 2. (a) Free energy density f=Δf and (b) membrane
chemical potential μm=Eopt plotted as a function of the density
of membrane-bound proteins, m=m×, for a series of different
protein binding specificities, jΔE=Eoptj, indicated in the graph.
Solid lines represent γ̃ ¼ −0.004; dashed lines represent a system
without crowding effects, γ̃ ¼ 0.
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Then, one may approximate a binding process as a
one-dimensional diffusion process: An initially unbound
protein diffusing in the cytosol enters one of these compart-
ments at a distance ξ from the membrane and, after some
time, encounters the membrane located at x ¼ 0. To
calculate the corresponding first-passage time, the mem-
brane is considered as an absorbing boundary. The cyto-
solic boundary of each compartment can effectively be
approximated as a reflective boundary since (on average)
there is always one protein within each compartment; i.e., a
protein leaving the compartment at x ¼ ξ is replaced by one
entering the compartment. Similarly, an unbinding process
may be idealized as a stochastic process, where an initially
bound protein detaches at x ¼ 0 (reflective boundary) and
leaves the compartment at x ¼ ξ (absorbing boundary).
Given our limited knowledge of the profile of the

chemical potential, we chose to approximate it by a
piecewise linear function [Fig. 1(a)]. The protein diffuses
freely (μ ¼ 0) at large distances from the membrane
(x > d). In the vicinity of the membrane (x < d), we
assume a linear profile μ ¼ μmð1 − x=dÞ. In the following,
we discuss—for simplicity—the case where ξ ¼ d. The
more general (and more realistic) case, where the protein
also crosses a preceding flat potential of length ξ − d > 0,
yields qualitatively similar results and is discussed in the
SM [66]. With these approximations, we can use Eq. (6) to
obtain an explicit analytic expression for the mean first-
passage times τ� of attachment and detachment [75]. The
corresponding kinetic rates, k� ¼ τ−1� , expressed in units of
the basic diffusion time τ ≔ 2D=ξ2, are found to be

k�τ ¼
1

2

�
μm
kBT

�
2
�
e�μm=kBT ∓ μm

kBT
− 1

�
−1
: ð7Þ

These rates exhibit a pronounced nonlinear dependence on
the membrane protein density (Fig. 3). Hence, protein
attachment and detachment are both cooperative processes,
owing to the mechanochemical coupling mediated by
membrane elasticity. By fitting the attachment rate,
Eq. (7), at low densities with kþ ≈ aþ bm̃n, we infer a
relationship between the protein specificity jΔE=Eoptj and
the (Hill) cooperativity coefficient n [Figs. 3(c) and 3(d)];
for an analysis in terms of Hill curves, refer to the SM [66].
Strong cooperativity (n > 1) occurs only for high protein
specificities, jΔE=Eoptj > 1. This implies that induction of
a membrane conformation that favors protein binding
requires the binding of a disproportionally large number
of proteins to the membrane. Therefore, in the deterministic
limit, proteins would not attach to the membrane at all
[Fig. 2(a), empty triangles and diamonds]. However,
stochastic binding events, while unlikely at low protein
densities, reduce the free energy cost of subsequent binding
events and thereby increase their likelihood. This positive
feedback leading to recruitment is a purely stochastic effect

and is related to nucleation during discontinuous phase
transitions.
To assess whether the proposed indirect cooperativity

mechanism could actually come into play at physiological
protein concentrations, we estimate its various parameters
from known literature values. For proteins with a mem-
brane curvature sensing domain, typical values for the
optimal curvature and binding energy are Hopt ¼ 0.1 nm−1

[21,76] and Eopt ≈ −5kBT [77]; we assume vanishing
spontaneous curvature (H0 ¼ 0). Across different studies,
the bending modulus of a phospholipid bilayer was
measured to be in the range of κ ≈ 10…50kBT, suggesting
a typical value κ ≈ 30kBT [28,78,79]. Taking a value
jΔE=Eoptj ¼ 2 for protein specificity where nonlinear
binding kinetics is significant (recruitment) [Fig. 3(d)],
the corresponding range of concentrations, m < m× ≈
3 × 104 μm−2, easily encompasses any physiological
value; the maximum packing density of proteins with size
10 nm is 1 × 104 μm−2.
In summary, we have shown that mechanochemical

coupling between proteins provides a possible mechanism
for the nonlinear binding kinetics (recruitment) of proteins
to the membrane. The effect originates from the interplay
between protein-lipid and lipid-lipid interactions, which
induce mechanical deformations of the membrane and
thereby alter the protein binding environment. As pro-
tein-lipid interactions become dominant with increasing
concentrations of membrane-bound proteins, the mem-
brane’s mechanical state becomes more favorable for
binding. This shows how cooperativity and the recruitment
of proteins can naturally emerge without any reliance on
direct chemical interactions and conformational changes.
The results should certainly be applicable to proteins that
are known to bend membranes, e.g., proteins containing

(a)

(c)

(b)

(d)

FIG. 3. Kinetic rates for membrane attachment kþτ (a) and
detachment k−τ (b) as a function of m̃ for Eopt ¼ −5kBT and a set
of protein specificities jΔE=Eoptj as in Fig. 2. Solid and dashed
lines represent γ̃ ¼ −0.004 and γ̃ ¼ 0, respectively. (c) For low
membrane protein concentrations m̃, the attachment rate can be
approximated by aþ bm̃n; corresponding fits are indicated by
the dotted lines. (d) The cooperativity coefficient n increases with
protein specificity jΔE=Eoptj.
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BAR domains [20–23,26]. As recent experiments have
unexpectedly shown that Min protein oscillations can lead
to oscillations in vesicle shape [27], we would argue that
our theory should also apply to the broad class of NTPases
that are essential for cellular protein pattern formation.
Thus, strain sensing and generation might not only be a
property of a few specialized proteins but might actually be
a prominent and perhaps general feature of membrane-
binding proteins. Further exploration of curvature sensing
during macroscopic pattern formation might be highly
rewarding [80–82]. Our theory predicts that one can alter
the recruitment exponent n of membrane-binding proteins
by tuning the protein specificity (possibly by changing the
membrane composition or introducing permanently bound
membrane-bending proteins). Such a change in coopera-
tivity should have a much stronger effect on emerging
protein patterns than the tuning of reaction rates because it
changes the nature of the nonlinear coupling. We would
expect profound changes in the protein dynamics that could
be explored using appropriately modified reaction-diffu-
sion models for various cellular systems [83–88], as well as
by experimentally tinkering with the composition of the
membrane. Finally, it would be highly interesting and
rewarding to quantify the mechanochemical effect for
specific membrane-binding proteins experimentally. This
would provide an interesting basis for theoretical models of
pattern-forming protein systems and contribute towards
revealing the universal role of membrane elasticity in
cellular functions.
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S.I. EQUIVALENT FORMS OF THE FREE
ENERGY DENSITY

In the literature one finds various equivalent represen-
tations of the free energy density describing the thermo-
dynamics of membrane-bound proteins that are coupled
to membrane curvature. This section serves to show how
these can be related to our model. As described in the
main text, the free energy density is given by

f(u,m) = 1
2κ (u−u0)2

+m
[
Eopt (1 + γ m6) + 1

2 ε (u− uopt)
2
]
. (S1)

Upon collecting all terms that depend on the membrane
deformation u, an equivalent form of the free energy is:

f(u, m̃) = 1
2κ (1 + m̃) (u− u×)2

+

[
m̃

1 + m̃
+ m̃

(
1 + γ̃ m̃6

) Eopt

∆E

]
∆f . (S2)

Here, we have defined a characteristic membrane pro-
tein density, m× =κ/ε, and rescaled our variables accord-
ingly, m̃ :=m/m× and γ̃ := γ/m6

×. In this form of the
free energy, the characteristic membrane conformation,
u× =u0 + (uopt−u0) m̃/(1+ m̃), directly gives the mem-
brane deformation minimizing the free energy. Moreover,
one can directly read off that protein attachment en-
hances the stiffness parameter: κeff = κ (1 + m̃). The
second line of Eq. (S2) represents a free energy density
contribution that only depends on the protein density but
not on the membrane conformation. This corresponds to
Eq. (4) in the main text, as u = u× minimizes Eq. (S2).

Next we show how one can use Eq. (S2) to obtain a
Helfrich bending energy containing a spontaneous cur-
vature that linearly depends on the membrane protein
density [1, 2]. We set u ≡ H and uopt ≡ Hopt, and
assume that the membrane is symmetric in the absence
of membrane-bound proteins. Then, the intrinsic sponta-
neous curvature of the membrane vanishes, u0 ≡ H0 = 0.
If the density of membrane-bound proteins is sufficiently
small, m̃� 1, then the first line of Eq. (S2) simplifies to:

1
2κ (H − m̃Hopt)

2 . (S3)

This term can be rewritten in terms of protein surface
coverage, θ = m/ms = m̃/m̃s, where ms is the surface
saturation density of proteins. We also rescale the opti-
mal curvature, Hopt/θ = m̃sHopt, to arrive at:

1
2κ (H − θHopt/θ)

2 . (S4)

The above expression is sometimes used when coupling
proteins to membrane curvature [1, 2].

S.II. ADDITIONAL FREE ENERGY
CONTRIBUTIONS

In the main text, we have restricted ourselves to re-
pulsive interactions between the proteins, frep = γm6,
mainly in order to bound the surface density of surface
proteins and to introduce a saturation coverage. Here, we
study the additional effects of entropic mixing of proteins
and attractive interactions between proteins. The main
conclusion drawn from the following analysis is: 1. Im-
portantly, in the high protein specificity and low protein
density regime, where we find protein recruitment in the
main text, both of these contributions have only minor
effects on the binding kinetics. 2. In the low protein
specificity and high protein density regime, both of these
contributions play major roles, as we will discuss below.

A. Mixing entropy of membrane-bound proteins

The free energy density including the mixing entropy
but neglecting repulsive interactions is given by

f(u,m) = 1
2κ (u−u0)2 +m

[
Eopt + 1

2 ε (u− uopt)
2
]

+ kBT
[
m ln

(
m
ms

)
+ (ms −m) ln

(
ms−m
ms

)]
, (S5)

where the second line denotes the mixing entropy contri-
bution, with ms as the saturation density of the mem-
brane. We proceed similar as described in the main text
by adiabatically eliminating the mechanical degrees of
freedom. Then, we find the following expression for the
chemical potential at the membrane:

µm(m̃)

Eopt
= 1+

∆E

Eopt

1

(1 + m̃)2
+
kBT

Eopt
ln

[
m̃

m̃s − m̃

]
, (S6)

where m̃s := m0/m× is the non-dimensionalized satura-
tion density. Comparing the chemical potentials, which
include contributions from (A) mixing entropy, Eq. (S6),
or (B) repulsion between proteins, Eq. (5) in the main
text, we find that both variants show strong repulsion at
high protein densities [Fig. S1a]. At low protein densi-
ties, we find that both chemical potential variants become
more similar as we increase protein specificity, thereby re-
ducing the relative weight of the entropic/repulsive terms
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FIG. S1. Comparison between the influence of mixing en-
tropy (solid lines), and explicit repulsive interactions between
proteins (dashed lines) on binding kinetics. Membrane chem-
ical potential (a), µm/Eopt, and kinetic attachment rate (b),
k+ τ , plotted as a function of the density of membrane-bound
proteins, m/m×, for a series of different protein binding speci-
ficities, |∆E/Eopt|, indicated in the graph. The optimal bind-
ing energy is given by Eopt =−5kBT , and the membrane sat-
uration concentration by m̃s = 2.0.

in Eqs. (S6) and (5), respectively [Fig. S1, compare solid
with dashed lines].

We proceed as described in the main text and use the
chemical potential at the membrane to determine the
protein binding rates. Analogously to the main text,
the protein attachment rates increase nonlinearly as a
function of membrane-bound protein density, for high
protein specificities and low protein densities [Fig. S1b,
crosses and empty triangles]. As discussed above, in this
regime, where recruitment can be observed, the mixing
entropy does not play a major role for the binding ki-
netics. However, for low protein specificities, the bind-
ing rates monotonically decrease (for all densities) with
increasing membrane-bound protein density [Fig. S1b,
filled markers], because the proteins always compete for
the available space. Note that, in contrast, in the main
text, the attachment rates only decrease when repulsive
interactions between proteins become dominant at high
protein densities [Fig. 2b].

B. Attractive interactions between proteins

Motivated by Ref. [2], we additionally study the ef-
fect of attractive interactions between membrane-bound
proteins, which could for example arise from a conforma-
tional change upon attachment to the membrane. Then,
the free energy density is captured by a (modified) Flory-
Huggins theory, including interactions between proteins
and the membrane:

f(u,m) = 1
2κ (u−u0)2 +m

[
Eopt + 1

2 ε (u− uopt)
2
]

+ kBT
[
m ln

(
m
ms

)
+ (ms −m) ln

(
ms−m
ms

)]
− χm2 ,

(S7)

where ms is the saturation density of the membrane and
χ encodes the strength of the attractive interactions be-
tween proteins. We proceed similar as described in the
main text by adiabatically eliminating the mechanical de-
grees of freedom. Then, we find the following expression

0 0.5 1 1.5 m̃

−
5

0
µ

m
/
E

op
t

0 0.5 1 1.5 m̃

0
2

4
6

τ
k
+

|∆E/Eopt| 8 4 2 1 0.5 0.25

(a) (b)

FIG. S2. Comparison between the influence of mixing en-
tropy with explicit attractive interactions between proteins
(solid lines), and explicit repulsive interactions between pro-
teins (dashed lines) on binding kinetics. Membrane chemical
potential (a), µm/Eopt, and kinetic attachment rate (b), k+ τ ,
plotted as a function of the density of membrane-bound pro-
teins, m/m×, for a series of different protein binding specifici-
ties, |∆E/Eopt|, indicated in the graph. The optimal binding
energy is given by Eopt =−5kBT , the membrane saturation
concentration by m̃s = 2.0, and the attractive interaction
strength between proteins is given by χ̃ = 2.5kBT .

for the chemical potential at the membrane:

µm(m)

Eopt
= 1 +

∆E

Eopt

1

(1 + m̃)2

+
kBT

Eopt
ln

[
m̃

m̃s − m̃

]
− 2 χ̃

Eopt
m̃ . (S8)

where m̃s := m0/m× is the non-dimensionalized satu-
ration density and χ̃ := χm× is the rescaled protein-
protein interaction strength. For small membrane-bound
protein densities, the contribution of attractive interac-
tions between proteins to the chemical potential vanishes,
as the last term in Eq. (S8) becomes negligible. Then,
one obtains a similar behavior as in Sec. S.II A [Fig. S2a,
compare solid with dashed lines]: with increasing protein
specificity, the chemical potential, Eq. (S8), approaches
the values from the main text, given by Eq. (5).

We proceed as described in the main text and use
the chemical potential at the membrane to determine
the protein binding rates. Analogously to the main
text, for high protein specificities, we find a nonlinear
recruitment of proteins from the cytosol to the mem-
brane [Fig. S2b, crosses and empty triangles]. At low
protein densities, the contribution from the attractive
interactions between proteins becomes negligible. Then,
recruitment originates from the mechanochemical inter-
actions between proteins and membrane, as described in
detail in the main text. At high protein densities, where
mechanochemical contributions to the binding rates sat-
urate regardless of protein specificity, attractive interac-
tions between proteins becomes dominant and lead to
recruitment. Therefore, we conclude that cooperative
protein recruitment from the cytosol to the membrane
is obtained for the following cases (i) at low protein
densities by a highly specific mechanochemical coupling
between proteins and membrane (tunable nonlinear re-
cruitment), or (ii) at high protein densities by attractive
chemical interactions between proteins. Here, however,
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a

FIG. S3. Lattice gas model of a membrane with N lattice
sites of size a2. Most of the available sites are occupied by
Nl phospholipids (yellow), which exhibit strong attractive in-
teractions with other phospholipids. The remaining sites are
either occupied by Np protein anchors (blue), which bind to
the membrane through attractive interactions with phospho-
lipids, or remain empty.

we observe only a linear/sublinear increase of the attach-
ment rates with the membrane-bound protein density
[Fig. S2b, empty diamonds and pentagons, filled trian-
gles and diamonds].

S.III. PROTEIN BINDING THROUGH
ANCHOR INSERTION

In the main text, we have constructed a description of
protein-membrane interactions via symmetry arguments.
Then, we have argued that it applies to different types of
membrane deformations, like lateral strain by lipid den-
sity changes. However, one might ask how single proteins
can affect the local lipid density, given that any changes
of the lipid density in between membrane-targeting pro-
tein anchors should relax quickly. While this is cer-
tainly correct, at a finite density of membrane-bound
proteins, the free energy density is affected by three fac-
tors: (i) lipid-lipid interactions, (ii) protein-lipid interac-
tions, and (iii) the corresponding mixing entropy. In the
following, we derive such free energy, and thereby pro-
vide a more detailed rationalization for the description
of protein-lipid coupling.

We assume that the membrane can be described as
a ternary lattice gas consisting of Nl lipids, Np pro-
tein anchors, and N − Nl − Np unoccupied lattice sites
[Fig. S3]. In a lipid membrane, there should be much
more lipids than protein anchors or unoccupied lattice
sites: Nl � Np and Nl � N − Nl − Np. To make our
calculations as simple as possible, we assume that each
lattice site (size of a2) can be occupied by one of these
three key players. Then, the mixing entropy contribu-
tion to the free energy density of such a ternary mixture
is given by [3]:

fmix = kBT
[
ρ ln

(
ρ
ρs

)
+m ln

(
m
ρs

)

+ (ρs − ρ−m) ln
(
ρs−ρ−m

ρs

)]
, (S9)

where we have introduced the saturation density ρs =
1/a2, the lipid density ρ = Nl/(Na

2) and the protein
density m = Np/(Na

2). In addition to mixing entropy,
we assume that lipids strongly attract each other with
an interaction energy Ell � kBT . Furthermore, pro-
tein anchors and lipids also mutually attract each other
Elp > kBT ; this attraction should exceed thermal energy
to make protein binding favorable. In summary, we then
obtain the following Flory-Huggins free energy:

f = −Ell

ρs
ρ2 − Elp

ρs
ρm+ fmix . (S10)

We collect the terms in the mixing free energy, Eq. (S9),
into a protein mixing free energy density (this contribu-
tion does not depend on the lipid density),

fmix/m = kBT
[
m ln

(
m
ρs

)
+(ρs−m) ln

(
ρs−m
ρs

)]
, (S11a)

and the remainder, fmix/r = fmix − fmix/m,

fmix/r = kBT
[
ρ ln

(
ρ

ρs−ρ−m

)
+ (ρs −m) ln

(
ρs−ρ−m
ρs−m

)]
.

(S11b)
Then, given that membrane-bound protein densities
should be small, we expand the remainder fmix/r into a
Taylor series, to first order in m in the vicinity of m = 0:

fmix/r = fmix/ρ −mkBT ln
(
ρs−ρ
ρs

)
, (S11c)

where we have introduced the lipid mixing free energy
density

fmix/ρ = kBT
[
ρ ln

(
ρ
ρs

)
+ (ρs − ρ) ln

(
ρs−ρ
ρs

) ]
. (S11d)

In summary, for small membrane-bound protein densi-
ties, the free energy density is given by:

f = −Ell

ρs
ρ2 + fmix/ρ

+ fmix/m −m
[
Elp

ρs
ρ+ kBT ln

(
ρs−ρ
ρs

)]
. (S12)

For large attractive interaction energies between lipids,
the first line of Eq. (S12) will have a minimum at an
intrinsically preferred lipid density ρ0, which is close to
the saturation density. Then, we can expand the first
line of Eq. (S12) to second order in the vicinity of its
minimum:

− Ell

ρs
ρ2 + fmix/ρ ≈ 1

2κ(ρ− ρ0)2 + const . (S13)

In addition, we also expand the last term of Eq. (S12) to
second order in ρ in the vicinity of its minimum

ρopt = ρs

(
1− kBT

Elp

)
, (S14)

where Elp > kBT . Having done all that, we finally arrive
at an expression which is analogous to the one used in the
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main text (plus an expression that contains the mixing
entropy of proteins),

f = 1
2κ(ρ− ρ0)2 +m

[
Eopt + 1

2ε
(
ρ− ρopt

)2]
+ fmix/m ,

(S15)
where the optimal binding energy is given by

Eopt = kBT
(

1 + ln
Elp

kBT
− Elp

kBT

)
, (S16)

and the coupling between proteins and membrane is given
by

ε =
2E2

lp

ρ2
s kBT

. (S17)

Therefore, an explicit thermodynamic calculation yields
the same results that were obtained in the main text
through symmetry arguments. Effectively, this models a
situation where high lipid densities prevent anchor inser-
tion by steric repulsion, while low lipid densities lack the
attractive interaction between the lipids and the anchor
that is necessary for binding. Then, protein anchors,
which are inserted into the inner membrane leaflet, in-
duce bulk strain in the inner leaflet by increasing the
density of lipids, while leaving the outer leaflet unper-
turbed.

S.IV. REALISTIC CHEMICAL POTENTIAL
PROFILE

In the main text, we have considered the special case
where a protein interacts with the membrane across the
whole reaction compartment (ξ = d). Here we also dis-
cuss the general case ξ > d, where a protein diffuses freely
(flat chemical potential) in the region x ∈ [d . . . ξ], and
interacts (ramp potential) with the membrane within the
range x ∈ [0 . . . d]. Then, the kinetic rates for biding and
unbinding are given by:

k± τ = ξ2
(
(ξ − d)2 + 2 d2Γ2 ∓ 2d(ξ − d)Γ1

)−1
,(S18)

Γ2 =

(
kBT

µm

)2(
e±µm/kBT ∓ µm

kBT
− 1

)
, (S19)

Γ1 =

(
kBT

µm

)(
e±µm/kBT − 1

)
, (S20)

where µm is the chemical potential of membrane-bound
proteins and τ = ξ2/2D is the basic timescale of diffusion
across the compartment. For ξ → d we recover the case
discussed in the main text [Eq. (7)], while for d→ 0 there
is no spatial variation in the chemical potential and the
resulting kinetic rates reduce to k± = τ−1.

We will discuss a situation where the protein does not
interact with the membrane throughout most of the re-
action compartment (ξ − d� d); for specificity, we con-
sider ξ − d = 100 d. Then, we observe a much smaller
variation of the detachment rates compared to the main
text, where ξ − d = 0 [compare Fig. S4b with Fig. 3b].

This reduction can be explained as follows. After de-
tachment the protein starts diffusing in the chemical po-
tential landscape at the membrane. Therefore, to leave
the reaction compartment, the protein first has to tra-
verse the interaction range d, across which it interacts
with the membrane and senses a steep chemical poten-
tial [Fig. 1a, bottom panel]. The shorter the interaction
range d, the faster the protein leaves the steep chemical
potential and enters the region of free diffusion, which is
why for ξ − d � d the rate-limiting timescale given by
time τ that it takes to diffuse across the reaction com-
partment.

In contrast, as in the main text, the attachment rate is
a highly nonlinear function of the membrane-bound pro-
tein concentration m̃ [Fig. S4a]. This is surprising since
one might expect that, similar as for the detachment pro-
cess, diffusion in the extended flat region of the chemical
potential is the dominant rate-limiting factor. However,
this is not the case. To understand the origin for this dif-
ference, note that the boundary conditions of these two
processes are different. During unbinding, the protein
detaches from the membrane, whose reflective boundary
condition quickly drives the protein across the interaction
range d. The situation is genuinely different for the at-
tachment process, where the protein originates from the
bulk and first has to diffuse across the distance ξ − d to
reach the membrane. Then, near the membrane, the pro-
tein enters the interaction range d with its steep chemical
potential, which is repulsive for small membrane-bound
protein concentrations and only becomes attractive for
high protein concentrations. As there is no nearby re-
flective boundary (effectively driving the protein away
from it), the rate limiting factor of the attachment pro-
cess becomes the time needed to diffuse against the steep
chemical potential and to reach the absorbing boundary
at the membrane.

As discussed above, the detachment rate only varies
slightly depending on the membrane-bound protein con-
centration τ k− ∈ [0.7 . . . 1]. The nonlinear depen-
dence of the binding rate k+ on the membrane pro-
tein density m̃ is well approximated by a Hill-like curve:

0 0.5 1 1.5 m̃

0
0
.5

1
τ
k
+

0 0.5 1 1.5 m̃

0
0.
5

1
τ
k
−

|∆E/Eopt| 4 2 1 0.5 0.25 0.125

(a) (b)

FIG. S4. Membrane attachment and detachment rates of
proteins for Eopt = −5kBT and ξ − d = 100 d. Solid lines
represent γ̃ = −0.004; dashed lines represent γ̃ = 0. (a) The
attachment rate increases as a function of the concentration m̃
of membrane-bound proteins until the membrane saturates.
(b) The detachment rate remains more or less constant as a
function of the concentration m̃ of membrane-bound proteins.
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FIG. S5. Effective representation of binding cooperativity for
the parameter values in Fig. S4. (a) The fit τ (k+− k+|m̃=0) ≈
Am̃n/(Kn + m̃n) (indicated by the dotted lines) is in good
agreement with the attachment rate. (b) The scale factor
A, which indicates whether the attachment rate is constant
or follows a Hill-like curve, indicates a transition from a
diffusion-limited to a highly nonlinear attachment process at
a protein specificity |∆E/Eopt| ≈ 2. Both the cooperativ-
ity coefficient (c) and the apparent dissociation constant (d)
increase with the specificity of the protein |∆E/Eopt|. Note
that both measures only capture the prominent properties of
the attachment process when A ≈ 1.

τ (k+ − k+|m̃=0) ≈ Am̃n/(Kn + m̃n) [Fig. S5a], with
A ≈ 1 [Fig. S5b]. Similar as in the main text [cf.
Fig. 3d], this shows that proteins with a higher speci-
ficity |∆E /Eopt| show higher cooperativity n [Fig. S5c].
Here, the scale factor A indicates whether the attachment
rate is constant or nonlinear: k+ ≈ k+|m̃=0 if A = 0,
while k+ ≈ τ−1 m̃n/(Kn + m̃n) if A ≈ 1; note that
max(k+) ≈ τ−1 [cf. Figs. S4a, S5a]. We find that the
attachment process becomes highly non-linear above a
protein specificity |∆E/Eopt| ≈ 2. Then, both the coop-
erativity coefficient [Fig. S5c] and the apparent dissoci-
ation constant [Fig. S5d] increase with the specificity of
the protein.

Taken together, as in the main text, increasing pro-
tein density deforms the membrane towards a binding-
favorable conformation, and ultimately increases the at-
tachment rate in a pronounced nonlinear fashion.

S.V. VARIATIONAL TREATMENT OF THE
MEMBRANE

In this section, we sketch how one can extend the
model presented in the main text to describe membranes
of arbitrary shape. Furthermore, we show how gradi-
ents in membrane conformation drive in-plane flows of
membrane-bound proteins.

A. Shape equation for arbitrary deformations

In the main text, we have adiabatically eliminated the
mechanical degrees of freedom in the free energy by find-
ing the membrane conformation that locally minimizes
the free energy density. However, it is a priori not clear
why this should also correspond to the minimum of the
global free energy functional. In this section, we show
that the results obtained from the main text are valid as
long as membrane deformations are sufficiently small.

We assume that proteins couple to the membrane cur-
vature. Then, analogously to the main text, the free
energy density is given by:

f(u,m) = 1
2κ (H −H0)2

+m
[
Eopt + 1

2 ε (H −Hopt)
2
]

+ fPP(m) , (S21)

where fPP(m) models direct interactions between pro-
teins (which can be attractive, repulsive, or entropic).
Note that, in principle, one could also consider proteins
that couple to the lipid density in the membrane. Such a
coupling could be achieved by insertion of lipid-targeting
anchors into the inner leaflet of the membrane, while
leaving the outer leaflet unperturbed. To account for
such a coupling, one would separately consider the lipid
densities in both membrane leaflets, which leads to a
description of membrane deformations within the area-
difference-elasticity model [4]. Below, we will determine
an equation for the membrane shape that minimizes the
free energy functional associated with Eq. (S21).

In-plane motion arising from tangential stresses always
keeps the membrane shape fixed, while out-of-plane mo-
tion due to normal stresses changes the membrane shape.
Therefore, to find the equilibrium shape of the mem-
brane, one has to first determine the normal stresses act-
ing on its surface. This is achieved by considering a vir-
tual displacement of all surface points by an infinitesimal
distance ϕ orthogonal to the basis vectors that span the
membrane; this is called a variation. Such a variation af-
fects the free energy functional, F → F+δF , by changing
membrane curvature, H + δH, surface area, S + δS, and
surface protein density m+δm. Then, one can determine
the normal stress, σz = δF/δϕ, by a straight-forward cal-
culation involving variational calculus [5]:

σz = 1
2κ
(
H−H0

)
(H2−4K+HH0)+∆S

[
κ (H−H0)

]

+ εm
(
H −Hopt

)(
H2 − 2K

)
+ ∆S

[
εm (H −Hopt)

]

+H [m∂mfPP(m)− fPP(m)] , (S22)

where K denotes the Gaussian curvature and ∆S the sur-
face Laplacian operator. The above equation has three
main contributions, which we list below sorted by lines:

1. stress from bending the membrane away from its
intrinsic curvature [6–8],

2. stress from mechanochemical coupling between
proteins and membrane, and

Reprintofpublished
m
anuscript

II.1 Mechanochemical Coupling between Proteins and Membranes

71



6

3. stress from protein-protein interactions.

Note that the last line suggests that interactions between
proteins can lead to membrane deformations, for exam-
ple by protein crowding [9]. In mechanical equilibrium,
normal stresses on the membrane must vanish, σz = 0.
This yields the shape equation that minimizes the free
energy functional associated with Eq. (S21).

B. Shape equation for small deformations

Here, we use the results from Sec. S.V A to derive a
shape equation that is valid for sufficiently small curva-
tures. We assume that intrinsic membrane curvature,
H0, and membrane curvature, H, are both sufficiently
small, and therefore neglect the corresponding nonlinear
terms in Eq. (S22). Furthermore, we assume that direct
interactions between proteins do not significantly con-
tribute to membrane deformations, and therefore neglect
the third line of Eq. (S22). Then, the shape equation
dramatically reduces to a Laplace equation:

∆S

[
κ (H −H0) + εm (H −Hopt)

]
= 0 , (S23)

which can be easily solved by integrating twice. To that
end, we consider a large membrane with fixed curva-
ture, H|∂S = H0, and vanishing surface protein density,
m|∂S = 0, at the boundaries of integration. The only so-
lution to Eq. (S23) that always satisfies these boundary
conditions is given by

H = H0 + (Hopt −H0)
εm

κ+ εm
, (S24)

which is identical to the expression derived in the main
text. Therefore, we conclude that, as long as the curva-
ture induced by the proteins remains sufficiently small,
the results obtained in the main text can be applied to a
general spatially extended setting.

C. Tangential forces on the proteins

In the main text, we have neglected the effects of gra-
dients in membrane conformation and protein density on
the distribution of proteins. When one considers such
gradients, one finds that proteins can self-organize on
the membrane [10–18]. Specifically, for proteins that lo-
cally force the membrane to a given shape, one finds that
proteins with a symmetric curvature profile repel each
other on the membrane, while crescent-shaped proteins
can also attract each other [19]. Here, we consider pro-
teins that do not strictly enforce a density-independent
local curvature, but gradually deform the membrane with
increasing protein density. In that case, one finds attrac-
tive interactions between proteins that lead to the ac-
cumulation of proteins in regions of preferred curvature,
which we will briefly outline in this section.

Tangential displacements of surface points keep the
shape of the membrane (principal curvatures and sur-
face area) fixed, while translating the protein density
along the surface. Analogously to out-of-plane motion,
see Sec. S.V A, in-plane translations can also have an ef-
fect on the free energy, which then resulting in effective
tangential forces. We proceed by determining the chem-
ical potential, µm(m) = δF/δm, which is encodes how
a protein density variation affects the free energy func-
tional:

µm(m) = 1
2 ε (H −Hopt)

2

+ ε (H −Hopt)m∂mH + ∂mfPP(m) . (S25)

Here, the membrane curvature depends on the protein
density, as the mechanical degrees of freedom are
assumed to relax instantaneously. Each protein that
moves in the chemical potential, Eq. (S25), experi-
ences an in-plane force given by f = −∇Sµm(m).
This becomes relevant when one considers protein
self-organization on the surface (agglomeration towards
regions of preferred curvature) in addition to protein re-
cruitment, but has no effect on the binding kinetics itself.
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II.2 Protein Fluxes Induce Generic
Transport of Cargo

In Section II.1 “MechanochemicalCoupling betweenProteins andMembranes”,
we have focused on the binding dynamics of proteins that attach to amembrane.
Such a particle exchange between the cytosol and the membrane corresponds
to reactive fluxes perpendicular to the surface of the membrane. Now, we put
the spotlight on particle fluxes parallel to the surface of the membrane, which
are a crucial aspect of intracellular pattern formation. We find that net diffusive
fluxes of particles, driven by the generation of surface density gradients through
out-of-equilibrium reactions, can transport entirely unrelated molecules. Our
main results are published in “A diffusiophoretic mechanism for ATP-driven
transport without motor proteins”, Nature Physics 17, 850 (2021). We refer to
pages 83–108 for a reprint of the main text and to pages 109–168 for a reprint
of the Supplementary Material. All data are deposited in a publicly accessible
repository maintained by the Max Planck Society, see pages 171–197. The
following serves as an introduction into the project and a summary of its main
results, for the convenience of the reader.

Research Contribution. This project is also a part of the dissertation of Beat-
rice Ramm, who performed the experiments (Ramm, 2020). For this project, I
developed the entire theory and performed simulations using the finite element
method.

II.2.1 Starting Point of the Project
General Scope and Relevance. Cells organize and control their internal dy-
namics through protein patterns (Halatek, Brauns, et al., 2018). These protein
patterns can result from a dynamic interplay between reactive fluxes that build
up density gradients and diffusive fluxes that degrade density gradients (Ha-
latek, Brauns, et al., 2018). TheEscherichia coliMin system is a prime example of
such a pattern-forming reaction-diffusion system, which is based on the ATPase
MinD and theATPase activating proteinMinE (Raskin and de Boer, 1999; Loose,
Fischer-Friedrich, Ries, et al., 2008). The two proteins MinD and MinE form a
relatively simple reaction scheme based on reversiblemembrane binding, which
one can summarize as cycling between an active membrane-bound state and an
inactive cytosolic state (Huang et al., 2003; Halatek and Frey, 2012). In the cy-
tosol, MinD proteins first switch into an active conformation by exchanging
ADP with ATP, and then cooperatively bind to the bacterial membrane (Huang
et al., 2003; Halatek and Frey, 2012). In turn, membrane-bound MinD recruits
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moreMinD proteins as well asMinE proteins from the cytosol to themembrane.
The former constitutes a positive feedback loop, while the latter leads to the for-
mation ofMinDE complexes that ultimately detach from themembrane (Huang
et al., 2003; Halatek and Frey, 2012). These nonlinear reactions lead to a pref-
erential attachment of MinD in regions of high MinD surface density, and to a
preferential detachment of MinD in regions of low MinD (and high MinE) sur-
face density. Thus, the reactive fluxes perpendicular to the membrane surface,
and the resulting continuous exchange of particles between the membrane and
the cytosol, build up surface density gradients of proteins on the membrane as
well as cytosolic density gradients. This build-up of protein density gradients
drives diffusive fluxes, from regions of high protein density towards regions of
low protein density.
In Escherichia Coli, these reaction-diffusion dynamics result in pole to pole

oscillations (Hu and Lutkenhaus, 1999; Raskin and de Boer, 1999; Hale et al.,
2001; F. Wu et al., 2015), involved in regulating the placement of the bacterial
division axis (de Boer et al., 1989; Hu and Lutkenhaus, 1999; Raskin and de
Boer, 1999; Lutkenhaus, 2007; Ramm, Heermann, et al., 2019). To further ana-
lyze how these patterns form, the Escherichia ColiMin systemwas also reconsti-
tuted on planar membranes in vitro, where one observes traveling waves or sta-
tionary patterns (Loose, Fischer-Friedrich, Ries, et al., 2008; Vecchiarelli et al.,
2016; Glock et al., 2019). Placing the reconstituted in vitro Min system in geo-
metric confinement, similar in shape to the bacterium Escherichia Coli, one can
recover oscillations (Zieske and Schwille, 2014; Caspi and Dekker, 2016). But
the interior of a cell is not as “clean” as a reconstituted in vitro system. The for-
mer containsmany different densely packed protein species (van den Berg et al.,
2017), while the latter is a comparatively dilute solution in the bulk; only on the
membrane do the proteins occupy a high fraction of the available area (Loose,
Fischer-Friedrich, Herold, et al., 2011; Ramm, Glock, et al., 2018). Interestingly,
when taking the reconstituted in vitro system closer to its in vivo counterpart by
placing additional unrelated particles on the membrane, one observed that the
MinDE patterns could regulate the localization of these particles (Ramm, Glock,
et al., 2018; Shih et al., 2019). However, the physical mechanism that underlies
these observations remained to be uncovered.

Research Question and Hypothesis. In our joint experimental and theoreti-
cal project, we aim to answer the following question: What is the physical mech-
anism that allows MinDE protein patterns to induce cargo transport of unrelated
molecules? To that end, we devise four different hypotheses, which we test by
placing artificial cargo on the membrane and measuring its redistribution by
MinDE patterns. We choose experimental conditions where the MinDE pat-
terns form a quasi-steady state, which means that the mesoscopic appearance
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of the patterns remains constant over time although proteins continuously un-
dergo reactions on a microscopic scale.
Our first three hypotheses rely on thermodynamic mechanisms to describe

the distribution of the passive cargo in response to the protein patterns, but
these ultimately prove insufficient to explain the experimental observations of
our collaborators. First, depletion attraction is a classical thermodynamic effect
that can lead to the aggregation of larger particles in a field of smaller parti-
cles (Asakura and Oosawa, 1954). This effect can be relevant for biological phe-
nomena such as filament bundling (Marenduzzo et al., 2006). However, we ob-
serve no such aggregation of cargo in a homogeneous field of membrane-bound
MinD, thus ruling out our first hypothesis.
Second, the surface coverage ofmembrane-boundMinD is rather high, reach-

ing values of roughly 20%, while diffusion of the MinD proteins on the mem-
brane is very slow under the given conditions (Loose, Fischer-Friedrich, Herold,
et al., 2011). Therefore, in a drastic approximation, the MinD proteins could
act as roughly immobile obstacles for the cargo molecules, thus biasing their
diffusion by restricting the accessible areas. However, in this approximation
one would expect that the distribution of the cargo molecules in response to the
MinDE protein patterns should not depend on any intrinsic properties of the
cargo molecules themselves. Because this contradicts the experimental obser-
vations of our collaborators, we must also exclude our second hypothesis.
As our third and final thermodynamic hypothesis, we relax the approxima-

tion that the MinD proteins are immobile. Instead, only the spatial distribution
ofMinD proteins ismaintained by reactions, in the form of a continuous particle
exchange between cytosol and the membrane. Then, we ask: Since protein pat-
terns imply a well-defined inhomogeneous surface density of MinDE proteins, can
the resulting constraints on the mixing entropy lead to an effective repulsion of our
artificial cargo? To test this hypothesis, we proceed analogously as in Paragraph
“FromOsmotic Pressure Differences to Diffusion” (Section I.2.3), by tessellating
themembrane surface intomany infinitesimal compartments. In each compart-
ment, we consider the membrane-bound particles as a well-mixed lattice gas
with local particle densities 𝑐𝑖, where each artificial cargo molecule effectively
behaves like a polymer. This allows us to construct a free energy functional
𝐹 based on the Flory-Huggins theory of mixing (Huggins, 1941; Flory, 1942;
de Gennes, 1979). From this free energy functional, we then derive the local
chemical potential of each molecular species on the membrane, 𝜇𝑖 = 𝛿𝐹/𝛿𝑐𝑖.
The non-equilibrium reaction dynamics of the MinDE proteins build up and
maintain a fixed density distribution, 𝑐𝑝, and thus fixed chemical potential gra-
dients 𝛁𝜇𝑝 ≠ 0 for these active proteins. In contrast, the distribution of passive
cargo, 𝑐𝑔, relaxes towards a thermal equilibrium configuration with vanishing
chemical potential gradients, 𝛁𝜇𝑔 = 0. This condition allows us to determine
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the distribution of the passive cargo molecules in response to the active MinDE
protein patterns. We find that entropic mixing effects can, in principle, lead to
an effective repulsion of cargo molecules from regions with high MinD protein
density. However, the resulting redistribution of the cargo molecules is much
weaker than in the experiments done by our collaborators, which indicates that
our theory must still be missing something. In particular, as we discuss next,
the net diffusive fluxes of different membrane-bound particles couple via an ef-
fective mesoscopic friction.

II.2.2 Summary of theMain Results
All thermodynamic hypotheses fail to explain the experimental observations of
our collaborators, which suggests that a genuinely non-equilibriummechanism
could be at play. Therefore, we now explicitly consider the fluxes 𝒋𝑖 of each
species. According to Onsager’s theory (Balian, 2007), such fluxes arise in
response to chemical potential gradients (thermodynamic forces), 𝛁𝜇𝑖. Then,
as we have discussed in Paragraph “From Osmotic Pressure Differences to
Diffusion” (Section I.2.3), one can view the diffusion of a species 𝑐𝑖 as an
effective balance between thermodynamic forces,𝛁𝜇𝑖, and a friction 𝜉𝑖 with the
embedding fluid. In addition, the surface density of particles on the membrane
is so large that the mean-free path between any to membrane-bound particles is
only about 50Å. Then, the fluxes of different species can couple via an effective
“mesoscopic friction” 𝜁𝑖𝑘, which is mediated by hydrodynamic interactions or
direct interactions. Taken together, we then formulate a Maxwell-Stefan-like
effective force-balance equation for each molecular species (Maxwell, 1866;
J. Stefan, 1871; Krishna and Wesselingh, 1997):

− 𝛁𝜇𝑖 = 𝜉𝑖
𝒋𝑖
𝑐𝑖
+∑

𝑖,𝑘
𝑐𝑘 𝜁𝑖𝑘 (

𝒋𝑖
𝑐𝑖
− 𝒋𝑘
𝑐𝑘
) . (II.16)

Note that for vanishing coupling between the diffusive fluxes of different
species, 𝜁𝑖𝑘 → 0, Eq. (II.16) reduces to the equilibrium Flory-Huggins model
where the chemical potential gradients of passive species must vanish,𝛁𝜇𝑔 = 0.
This already leads to a redistribution of the passive cargo, in response to the
actively maintained spatial profile of the MinD proteins, albeit too weak to
explain the experimental results of our collaborators. In the case of a finite
coupling, 𝜁𝑖𝑘 ≠ 0, this redistribution is further superimposed by advective
transport, because protein fluxes establish an additional effective frictional
force on the cargo molecules. As it turns out, this mesoscopic frictional force is
the missing link of our previous equilibrium thermodynamic approach. Using
our non-equilibrium model, Eq. (II.16), we not only quantitatively explain the
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experimental observation of strong cargo redistribution by MinDE patterns,
but also predict sorting of different cargo species according to their interaction
strength with the protein fluxes. Furthermore, given that we formulated our
theory in terms of particle fluxes, it also applies to the more general situation of
dynamic protein patterns. In that case, we observe that traveling MinDE waves
elicit long-ranged cargo transport in the direction of the wave vector.
In a non-biological context, it is well known that density gradients of small

solute molecules can induce directed transport of large colloid particles (Ander-
son et al., 1982; Prieve, Anderson, et al., 1984; Abécassis et al., 2008; Palacci et
al., 2010; Paustian et al., 2015; Shin et al., 2016; Shi et al., 2016; Illien et al., 2017;
Prieve, Malone, et al., 2019; Marbach and Bocquet, 2019; Golestanian, 2019).
Our study presents an example that diffusiophoretic transport mechanisms can
actually occur in a biological setting. This agrees with other theoretical studies,
which have suggested that diffusiophoresis might play a role in a biological con-
text (Banigan et al., 2011; Agudo-Canalejo et al., 2018; Adeleke-Larodo et al.,
2019; Sear, 2019). Finally, we expect that similar effects could, in general, also
occur in any crowded environment such as the cell interior. However, many
other processes can occur in cells, so it is not clear what role diffusiophoresis
could play there: Can cells harness diffusiophoretic transport, or do they have to
work against it? The truth probably lies somewhere in between. Finally, we
hypothesize that unspecific mechanical coupling between proteins can lead to
alignment or synchronization of biochemically distinct pattern-forming systems
when placed in the same geometry. It would be interesting to test this hypothesis
experimentally by combining two biochemically distinct reconstituted pattern-
forming systems, once available.
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Spatiotemporal organization of cells generally emerges through 
redistribution and transport of molecules via motor proteins1, 
self-assembling cytoskeletal elements2 or self-organizing reac-

tion–diffusion systems3. Coupling of cargo to energy-dissipating 
NTPases that drive the transport is usually mediated by specific 
protein–protein interactions. Non-specific coupling of biomol-
ecules, by contrast, is poorly explored in biology and, so far, only 
a few examples of molecular transport based on purely physical 
mechanisms have been reported. For example, a study in mouse 
oocytes showed that actin-coated vesicles generated a pressure 
gradient that positioned large objects like the nucleoid in the cell 
centre4,5. In the Caenorhabditis elegans zygote, cortical flows were 
shown to couple to the PAR reaction–diffusion system via advective 
transport6. Another recent example comes from in vitro studies of 
the Escherichia coli Min system7,8.

The Min system, a paradigmatic model for pattern forma-
tion in biology, regulates the site of cell division in E. coli9–12. The 
core of this reaction–diffusion system consists of only two pro-
teins, the ATPase MinD and the ATPase activating protein MinE, 
which interact and reversibly bind to the membrane11,13. Despite 
this simple reaction scheme, the Min system exhibits rich dynam-
ics that have been explored in vivo9–11,14, reconstituted in vitro13,15,16 
and described by physical theories17–21. In the rod-shaped E. coli, 
MinDE oscillate from pole to pole10,11,14. In vitro, MinDE proteins 
form travelling surface waves or quasi-stationary patterns on planar 
artificial membranes13,15,16 and exhibit oscillations when geometri-
cally confined22,23. These dynamics can provide spatial cues for par-
ticular proteins. MinC specifically binds to MinD and thus follows 
its movements10,22,24–26. In turn, MinC constrains the localization of 
the main divisome protein FtsZ by inhibiting its polymerization27,28.

Besides this well-described patterning by specific interactions 
with clear physiological evidence, MinDE self-organization has 

recently shown an intriguing hidden function in vitro: MinDE reg-
ulated the localization of unrelated membrane-bound molecules in 
space and time in the absence of MinC/FtsZ7,8. These results sug-
gested that MinDE oscillations could further enhance cell division 
by prepositioning membrane proteins to the cell middle7. However, 
the underlying physics and the broader biological implications have 
remained unknown.

Here, through a joint experimental and theoretical investiga-
tion, we have deciphered the physical mechanism underlying this 
non-specific transport phenomenon. We quantitatively probed 
MinDE-dependent transport using a synthetic membrane-bound 
cargo based on composite DNA nanostructures. We discerned how 
the effective size (that is, membrane footprint) and diffusion coef-
ficient of the cargo, as well as the type of MinDE patterns, deter-
mine the transport that takes place. Exploiting these effects, we 
revealed that MinDE can even spatially sort different cargo species. 
Theoretical analysis of these data demonstrated a diffusiophoretic 
effect: an effective density-dependent inter-particle friction creates 
cargo transport along the diffusive fluxes of MinD proteins. This 
type of NTPase-driven diffusiophoresis might represent a generic 
active transport mechanism in cells that neither requires motor pro-
teins nor specific protein interactions. As such, it might be particu-
larly important for prokaryotes and could have been prevalent in 
early stages of life on Earth.

Probing MinDE-induced transport with a synthetic cargo
We set out to understand how MinDE dynamics can spatiotem-
porally regulate other membrane-bound, yet unrelated molecules 
(henceforth referred to as non-specific ‘cargo’) into patterns and 
gradients7,8. Specifically, we asked whether cargo transport can arise 
from MinDE patterns per se via thermodynamic forces, or whether 
it requires active processes and non-equilibrium particle fluxes.  

A diffusiophoretic mechanism for ATP-driven 
transport without motor proteins
Beatrice Ramm   1,4,6, Andriy Goychuk   2,6, Alena Khmelinskaia   1,5, Philipp Blumhardt1, 
Hiromune Eto   1, Kristina A. Ganzinger   3, Erwin Frey   2 ✉ and Petra Schwille   1 ✉

The healthy growth and maintenance of a biological system depends on the precise spatial organization of molecules within 
the cell through the dissipation of energy. Reaction–diffusion mechanisms can facilitate this organization, as can directional 
cargo transport orchestrated by motor proteins, by relying on specific protein interactions. However, transport of material 
through the cell can also be achieved by active processes based on non-specific, purely physical mechanisms, a phenomenon 
that remains poorly explored. Here, using a combined experimental and theoretical approach, we discover and describe a hid-
den function of the Escherichia coli MinDE protein system: in addition to forming dynamic patterns, this system accomplishes 
the directional active transport of functionally unrelated cargo on membranes. Remarkably, this mechanism enables the sorting 
of diffusive objects according to their effective size, as evidenced using modular DNA origami–streptavidin nanostructures. We 
show that the diffusive fluxes of MinDE and non-specific cargo couple via density-dependent friction. This non-specific process 
constitutes a diffusiophoretic mechanism, as yet unknown in a cell biology setting. This nonlinear coupling between diffusive 
fluxes could represent a generic physical mechanism for establishing intracellular organization.
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To experimentally address this question and test possible mecha-
nisms, we set up a highly controllable minimal in vitro platform.  
To this end, we reconstituted MinDE pattern formation on sup-
ported lipid bilayers (SLBs)13. For simplicity, we first chose con-
ditions under which initially chaotic, laterally moving MinDE  
waves transition into quasi-stationary labyrinth patterns16. To 
quantitatively assess the interaction between MinDE and cargo  
molecules on the membrane, we employed a synthetic cargo: a com-
posite object consisting of a DNA origami nanostructure as scaffold 
and streptavidin molecules that serve as modular building blocks 
and connectors to the membrane (Fig. 1a). In particular, the ori-
gami29 featured 7 dyes on the upper facet for visualization and 42 
sites at the bottom facet that could be specifically addressed for the 
incorporation of biotinylated oligonucleotide handles. These han-
dles in turn bound to streptavidin coupled to biotinylated lipids in 
the SLB.

When we initiated MinDE self-organization with ATP in the 
presence of this synthetic cargo, the cargo components—that is, 
the origami structures and streptavidin—reorganized into patterns 
from an initially homogeneous state (Fig. 1b,c, Supplementary Fig. 
1 and Supplementary Video 1). As expected, the origami and strep-
tavidin co-localized. Accordingly, in the following, origami fluores-
cence serves as a proxy for cargo localization. For the entire duration 
of the experiment, cargo always gathered in MinD-depleted regions, 
forming patterns that were anti-correlated to the MinDE patterns 
(Fig. 1b,c). Similarly, when we altered the established MinDE/cargo 
patterns by adding more MinE, the cargo channel reflected the 
changes in MinDE patterns, moving in an anti-correlated fashion 
(Supplementary Fig. 2 and Supplementary Video 2). By contrast, 
when MinE (which stimulates MinD ATP hydrolysis) was omit-
ted, MinD and the cargo molecules remained uniformly distributed 
(Extended Data Fig. 1). These findings indicate that the spatial het-
erogeneity of the cargo is not caused by depletion attraction, such 
as in filament bundling30. For one, depletion attraction should lead 
to aggregation of large particles (cargo), even in a homogeneous 
field of smaller particles (MinD)31. Furthermore, depletion attrac-
tion would imply a preferred agglomeration of cargo in regions of 
high MinD density, which we also did not observe (Supplementary 
Information). Hence, our data demonstrate that cargo transport is 
active, because it requires the presence of MinDE and ATP, and thus 
active MinDE self-organization.

Effective cargo size determines the extent of cargo 
demixing
Having shown that MinDE redistribute our synthetic cargo, we 
next exploited the modular nature of our cargo to systematically 
vary its interaction with MinDE. MinD and lipid-anchored strepta-
vidin both form a monomolecular layer of height ~5 nm on mem-
branes32,33, whereas the lower facet of the origami scaffold lies at 
~5–11 nm above the membrane (Supplementary Note 1). MinDE 
thus move on the membrane below the altitude of the origami  

scaffold and should mainly interact with the membrane-bound 
streptavidin. Hence, varying the number of streptavidin (n ∈ {1, 2, 5, 
15, 28, 42}) bound to the origami scaffold enables fine control over 
a large dynamic range of the membrane footprint or effective size 
of the cargo (henceforth cargo-n, Fig. 1). In this way, we modulated 
the interaction of the cargo-n with MinDE, as well as its diffusion 
on the membrane.

To quantitatively assess the interaction between MinDE and the 
respective cargo, we analysed the resulting, final quasi-stationary 
patterns (Fig. 1d and Extended Data Fig. 2). As a measure for 
molecule enrichment, we determined the Michelson contrast, 
(Imax − Imin)/(Imax + Imin), of the fluorescence images on a scale from 
zero for a homogeneous distribution to one for a binary distribu-
tion. Cargo patterns became much sharper with increasing cargo 
size (Fig. 1e and Extended Data Fig. 2). This increase in the contrast 
of cargo patterns was accompanied by sharper and also narrower 
MinDE patterns, as indicated by an increased region of pixels classi-
fied as MinD minima (Fig. 1f,g). Thus, MinDE dynamics dictate the 
localization of cargo on the membrane in a size-dependent manner, 
and are in turn also impacted by their presence. At first glance, these 
results could be interpreted as simply being a consequence of steric 
repulsion between cargo and MinDE. However, although a static 
gradient of accessible space would indeed induce a gradient of cargo 
molecules, this effect should be equal for all cargo species, irrespec-
tive of their effective size (Supplementary Information). Therefore, 
even though the diffusion of MinD on the membrane under the 
given conditions is very slow (D = 0.013 μm2 s−1)25, we conclude 
that MinD proteins do not simply act as immobile obstacles on the 
membrane that would bias cargo diffusion via static volume exclu-
sion, a second option for a thermodynamic force.

Thermodynamic forces cannot explain cargo transport by 
MinDE
As our experimental data disqualified both depletion attraction and 
static volume exclusion as possible explanations for cargo redistri-
bution, we wondered whether mobile MinD proteins could effec-
tively repel cargo in a size-dependent manner by imposing local 
constraints on the entropy of mixing. To test this third (thermo-
dynamic) hypothesis, we formulated a fully quantitative Flory–
Huggins theory (FH) without fitting parameters. Specifically, each 
origami scaffold crosslinks n streptavidin into a passive polymer-like 
cargo (Fig. 2a), while the remaining free streptavidin (for n < 15; 
Extended Data Fig. 2) behave independently (Supplementary 
Information). Given these constraints, we characterized the mem-
brane in terms of local surface densities of cg cargo, cs free streptavi-
din and cp MinD (Supplementary Table 1), assuming a well-mixed 
lattice gas on the microscopic scale. On the mesoscopic scale, we 
then asked ‘what is the equilibrium distribution of passive particles 
(cargo and free streptavidin) in the presence of a heterogeneous 
distribution of active MinD proteins?’ To answer this question,  
we used our FH model to calculate the corresponding chemical  

Fig. 1 | MinDE-driven cargo demixing depends on the effective size (membrane footprint) of the cargo. a, Schematic of the synthetic 
membrane-anchored cargo consisting of a DNA origami scaffold (20-helix bundle; 110 × 16 × 8 nm) and streptavidin building blocks. The DNA origami 
nanostructure illustrates the position of 7 dyes at the upper facet and 42 addressable sites for incorporation of biotinylated oligonucleotides at the lower 
facet. Biotinylated oligonucleotides bind to lipid-anchored streptavidin on the SLB. MinDE self-organize by concerted attachment and detachment to and 
from the membrane powered by ATP hydrolysis into ADP and Pi (inorganic phosphate). The self-organization assay is performed in an open chamber. 
b,c, Representative time series (b) and kymograph (along the line selection in b) (c) of MinDE self-organization inducing patterns of cargo-2 (1 μM MinD 
(30% EGFP-MinD), 1.5 μM MinE-His, 0.1 nM origami-Cy5 with two biotinylated oligonucleotides, Alexa568-streptavidin). d, Representative images and 
fluorescence intensity line plots (smoothed) of established MinDE labyrinth patterns and anti-correlated DNA origami and streptavidin patterns when no 
origami, cargo-2, cargo-15 or cargo-42 is present. The contrast of the resulting patterns and size of the MinD minima increase with increasing number of 
incorporated streptavidin per cargo. e–g, Box plots of the contrast of cargo (e), MinD patterns (f) and the fraction of pixels classified as MinD minima (g) 
when no origami, cargo-1, cargo-2, ..., or cargo-42 is present. Lines in box plots are medians, box limits are quartiles 1 and 3, whiskers are 1.5× interquartile 
range (IQR) and points are outliers. Data are from at least two independent experiments with total numbers of analysed images per condition N(No 
origami) = 32, N(Cargo-1) = 96, N(Cargo-2) = 41, N(Cargo-5) = 32, N(Cargo-15) = 94, N(Cargo-28) = 32, N(Cargo-42) = 87. Scale bars, 50 µm (b,c,d).
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potentials μi for each species (Supplementary Information). 
Furthermore, we assumed that the passive particles adopt a ther-
mal equilibrium state with vanishing chemical potential gradients 

(∇μg = ∇μs = 0) in an adiabatic response to the imposed steady-state 
distribution of active particles (∇μp ≠ 0). Our theoretical analy-
sis shows that entropic mixing effects can, in principle, create a  
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gradient of passive cargo in response to a gradient of active MinD, 
where the cargoes’ crosslinked streptavidin experience a weak 
entropic bias towards MinD-depleted regions (due to volume exclu-
sion effects). However, this effect will be partly compensated by 
the analogous entropic repulsion between origami scaffolds, which 
prevents high cargo densities, in stark contrast to our experimental 
observations (Fig. 2b,c and Extended Data Fig. 3). Consequently, we 
also rejected entropic mixing in fixed external (chemical potential) 
gradients as the mechanism underlying MinDE-dependent cargo 
transport.

coupling between particle fluxes explains cargo transport
Taken together, thermodynamic mechanisms alone cannot explain 
MinDE-induced cargo transport in our experiments, suggesting that 
the underlying mechanism is genuinely non-equilibrium in nature. 
Therefore, we generalized our equilibrium FH model to consider 
the non-equilibrium dynamics of particles. Specifically, MinDE 
gradients build up due to particle exchange between the bulk solu-
tion and membrane (reactive fluxes)16,18,19,21,25, leading to chemical 
potential gradients ∇μi on the membrane (thermodynamic forces). 
According to Onsager’s theory34, thermodynamic forces imply par-
ticle fluxes ji. Conceptually, diffusive fluxes on the membrane then 
arise from an effective force balance of thermodynamic and friction 
forces between the different macromolecules and lipids (with fric-
tion coefficients ξi). Furthermore, in a crowded environment such 
as the membrane surface in our experiments (mean free path of 
~50 Å; Supplementary Information), hydrodynamic or also direct 
interactions between particles can mediate a ‘mesoscopic friction’ 

that couples their respective fluxes (with coupling constants ζik). 
Using these arguments, we formulated a phenomenological theory 
where each membrane-bound species obeys a Maxwell–Stefan 
(MS)-like effective force-balance equation35,36:

∇μi + ξi
ji
ci +

∑

k ckζ ik

(

ji
ci −

jk
ck

)

= 0 . (1)

As before, the index i ∈ {p, g, s} refers to MinD proteins, cargo 
with bound streptavidin and free streptavidin, respectively. 
Although our theory is intrinsically dynamic (Methods), we first 
analysed the non-equilibrium steady state, ∂tci = 0, reflecting the 
quasi-stationary MinDE patterns. Then, cargo and streptavidin 
exhibit Brownian motion and relax to a thermal equilibrium state 
with vanishing fluxes jg = js = 0. The MinD protein patterns main-
tain a non-equilibrium steady state and finite protein fluxes jp ≠ 0 
via off-equilibrium chemical reactions (ATPase activity). In the 
absence of mutual friction between the macromolecules (ζik = 0), 
equation (1) reduces to the FH model (∇μg = ∇μs = 0), which read-
ily implies weak cargo redistribution in a static gradient of active 
proteins. As a decisive factor in addition to these entropic demixing 
effects, the presence of frictional coupling (ζik ≠ 0) between cargo 
and MinD leads to advective cargo transport by the non-equilibrium 
protein fluxes (jp ≠ 0) of MinD (Fig. 2a). The additional bias con-
ferred by these protein fluxes leads to cargo redistribution, which 
is much stronger than by equilibrium thermodynamic forces alone 
and thus quantitatively explains our experimental data (Fig. 2b,c 
and Extended Data Fig. 3).
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θp = 0.0825, θs = 0.149 and θo = 0.55; interaction parameter in terms of MinD coverage θ−1

×
= a

−1
p c

−1
×

= 220; (cargo-42) average coverages 
θp = 0.0825, θs = 0 and θo = 0.28; interaction parameter θ−1

×
= a

−1
p c

−1
×

= 620.
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MinDE impair cargo diffusion via mesoscopic friction
Next, we simplified our theoretical model by neglecting mem-
brane saturation effects (Supplementary Information), reducing the 
chemical potential of particles with size ai to μi ≈ kBT ln(aici). The 
force-balance equation, equation (1), then becomes a generalized 
Fick’s law:

jp ≈ −

kBT
ξp+cgζpg+csζps

∇cp ≡ −Dp (cg, cs)∇cp (2)

where the density-dependent diffusion coefficient of MinD, 
Dp(cg,cs), decreases through friction (that is, interactions) with cargo 
and streptavidin. For cargo with strong coupling ζpg, maintaining 
the diffusive fluxes that balance reactive protein turnover requires 
sharper protein gradients, which explains the progressively sharper 
and narrower MinDE patterns (Fig. 1f,g).

Assuming that the typically small number of free streptavidin 
(Supplementary Information) does not notably contribute to the 
dynamics, csζps ≪ cgζpg, one obtains a closed expression for the cargo 
distribution:

cg (cp) = c×W0
[

cg(0)
c× exp

(

cg(0)−cp
c×

)]

, (3)

with typical interaction density c× = ξp/ζpg. Fitting equation (3) to 
our experimental data (Fig. 3a,b and Extended Data Fig. 3), we dem-
onstrate that the coupling constant ζpg between MinD and cargo-n 
has a contribution from the origami scaffold and from the n incor-
porated streptavidin, ζpg = ζpo + nζps, explaining why cargo transport 
increases with the number of streptavidin per cargo (Fig. 1d–g).

To test our theoretical model experimentally, we performed 
single-particle tracking of cargo-2 and cargo-42, both in the pres-
ence and absence of MinD. In the former case, we emulated high 
MinD membrane densities in the maxima of MinDE patterns by 
adding 1 µM MinD and ATP, but no MinE. We found that the dif-
fusion coefficient of cargo-2 decreased from 0.65 ± 0.12 μm2 s−1 in 
the absence of MinD to 0.06 ± 0.02 μm2 s−1 at high MinD density 
(Fig. 3c). By contrast, the diffusion coefficient of cargo-42, which 
was already low in the absence of MinD (0.06 ± 0.02 μm2 s−1), 
hardly changed at high MinD density (0.036 ± 0.011 μm2 s−1) (Fig. 
3c). Subsequently, we used our fitted interaction parameters to 
predict the diffusion coefficient of cargo at high protein densi-
ties, based on the experimental values in the absence of proteins 
(Supplementary Information). Our predictions were in good quan-
titative agreement with our experimental findings, validating our 
model. At first, it might seem counterintuitive that MinD affects 
cargo-42 diffusion less than that of cargo-2, despite stronger fric-
tional coupling. However, even in the absence of MinD, cargo-42 
diffuses much slower than cargo-2 due to the friction between its 
many streptavidin and the membrane, which dominates over the 
additional friction with MinD. This observation highlighted the 
parameter interdependence that arises due to streptavidin serving 
both as building block and connector to the membrane and raised 
the question whether cargo transport is affected more by its effec-
tive size or its diffusion coefficient. To answer this, we employed 
an alternative membrane attachment strategy for the DNA origami 
scaffolds via cholesteryl moieties (Extended Data Figs. 4 and 5 and 
Supplementary Note 2). We found that cargoes with a larger mem-
brane footprint (that is, effective size) and at the same time similar 
diffusion as cargo-2 were strongly redistributed (Extended Data Fig. 
5 and Supplementary Note 2), corroborating that it is indeed the 
effective cargo size that determines the interaction with MinD. In 
conclusion, the dependence of the cargo diffusion coefficient on the 
ambient protein density is a direct experimental proof of friction 
between MinD and cargo and that the effective cargo size governs 
the corresponding friction coefficient.

MinDE spatially sort different cargo species
Can we use our obtained knowledge to selectively position cargo 
molecules, that is, to sort them according to their properties, along 
protein gradients? To answer this question, we placed two differ-
ently labelled cargo species, cargo-2 and cargo-42, in the same assay  
(Fig. 4a). We found, as predicted by our model (Fig. 4d), that cargo-
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42. Respective membrane footprints: MinD dimer ap = 25 nm2, DNA 
origami ao = 1,760 nm2. The colour-coded two-dimensional histogram 
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Fig. 2b, while the solid line (Fit) is a fit curve of our reduced model. 
b, Interaction parameter in terms of MinD coverage, θ−1

×
= a

−1
p c

−1
×

, 
obtained by the fitting procedure in a. The interaction linearly increases 
when more streptavidin is incorporated per cargo, starting from the 
base interaction of the origami scaffold. The dashed line indicates a 
linear fit of the interaction parameter θ−1

×
= (ζpo + nζps)/(apξp) as 

a function of n. In contrast to our initial estimate (Fig. 2c), entropic 
repulsion between cargo molecules was neglected for simplicity, 
thus probably underestimating the interaction parameter. c, Cargo 
molecule diffusion coefficient in the absence or presence of 1 µM MinD 
(1 μM MinD (30% EGFP-MinD), 0.1–1 pM origami-Cy3b with 2 or 42 
biotinylated oligonucleotides, non-labelled streptavidin, SLB: DOPC/
DOPG/biotinyl-CAP-PE 70/30/0.01 mol%), measured via single-particle 
tracking and predicted with the fitted interaction parameters from b. 
Cargo-42 typically diffuses slower than cargo-2 (indicated by a smaller 
diffusion coefficient Dg at 0 µM MinD). Increasing MinD density has a 
much stronger effect on cargo-2 than on cargo-42, both in theory and 
experiment. Points are mean values of individual measurements (M), line 
and error bars represent the mean value and standard deviation. Data 
were obtained from the number of sample chambers S(Cargo-2) = 7, 
S(Cargo-42) = 5, S(Cargo-2, MinD) = 4, S(Cargo-42, MinD) = 3; number of 
measurements M(Cargo-2) = 18, M(Cargo-42) = 13, M(Cargo-2,MinD) = 19, 
M(Cargo-42, MinD) = 10; number of analysed single-particle tracks 
N(Cargo-2) = 15,755, N(Cargo-42) = 19,481, N(Cargo-2, MinD) = 7,924, 
N(Cargo-42, MinD) = 4,542; average track length TL(Cargo-2) = 339, 
TL(Cargo-42) = 546, TL(Cargo-2, MinD) = 772, TL(Cargo-42, MinD) = 647; 
fraction of mobile DNA origami MF(Cargo-2) = 0.81, MF(Cargo-42) = 0.67, 
MF(Cargo-2, MinD) = 0.70, MF(Cargo-42, MinD) = 0.63.
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42 gathered in MinD-free regions and was framed by cargo-2  
(Fig. 4b,c, Supplementary Fig. 3 and Supplementary Video 3). Thus, 
cargo-42 exhibited a similar behaviour as when present in the assay 
alone. By contrast, the localization of cargo-2 relative to MinD changed 
when cargo-42 was also present (Figs. 1d and 4c). The observed spa-
tial separation of cargo species was not an artefact due to fluores-
cent channel crosstalk, dye selection or quenching (Extended Data  
Fig. 6). Hence, the clear MinDE-induced spatial sorting of cargo 
species according to their effective size further refutes thermody-
namic models (Fig. 4d), corroborating that MinDE indeed trans-
port molecules via friction.

MinDE waves direct net cargo transport via 
diffusiophoresis
Having confirmed diffusiophoretic transport in the context of 
quasi-stationary MinDE patterns, we turned to conditions where 
MinDE form travelling surface waves7,8. As in previous experi-
ments with lipid-anchored streptavidin alone7,8, MinDE waves 
induced anti-correlated patterns of our synthetic cargo-2 that were 
superimposed with macroscopic gradients across multiple MinDE 
wavelengths, indicating net transport (Fig. 5a). Consequently, 
cargo accumulated between opposing wavefronts (Fig. 5a and 
Supplementary Video 4). Despite their distinct appearance, station-
ary as well as moving MinDE patterns are maintained by the same 
kind of non-equilibrium reaction and diffusion fluxes16,18,19,21,25. 
Thus, we could directly apply our theory to this dynamic set-
ting, without further assumptions (Methods). We found that, in  
addition to the interaction between MinDE and cargo, macro-
scopic transport also requires matching timescales between MinDE 

wave propagation and cargo diffusion: cargo with small mobil-
ity cannot keep up with the MinDE wave. In agreement with our 
simulations (Fig. 5b), the slowly diffusing cargo-42 hardly formed 
long-ranged gradients (Fig. 5c and Supplementary Fig. 4), despite 
its strong frictional coupling to MinDE, supporting our prediction 
that low cargo mobility can limit macroscopic transport. This was 
further corroborated by the emergence of macroscopic gradients 
for cholesterol-anchored cargo-chol-2 and cargo-chol-15 (Fig. 5c 
and Supplementary Fig. 4), which display similarly high coupling 
to MinDE, but diffuse faster than cargo-42 (Extended Data Fig. 5).

Next, we exploited the geometry-sensitivity of MinDE waves 
that travel along the longest axis on geometrically patterned pla-
nar membranes with chromium barriers37. On these membranes, 
MinDE waves indeed transported cargo directionally along their 
wavevector, resulting in reproducible gradients (Fig. 5d,e, Extended 
Data Fig. 7 and Supplementary Videos 5 and 6). These density gra-
dients are clearly visible on the macroscopic scale, while directed 
movement of single cargo molecules cannot be discerned from 
diffusion (Extended Data Fig. 8 and Supplementary Note 3). This 
observation highlights the difference between ATP-driven diffusio-
phoresis and translational motor proteins.

Our findings raised the question of whether MinDE-dependent 
transport via diffusiophoresis could occur in vivo. To our knowl-
edge, no direct observation of this mechanism in E. coli has been 
reported, which may be attributed to bacterial sizes close to the 
optical resolution limit or specific interactions concealing such 
occurrence. Thus, we reconstituted MinDE oscillations together 
with inert model peripheral membrane proteins (mCh-MTS)7 in 
the evolutionary distant fission yeast Schizosaccharomyces pombe38 
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streptavidin). b,c, Representative images of individual and overlaid channels (b) and line plot (c) (smoothed) of the indicated selection of MinDE-induced 
sorting of cargo species. Scale bars, 50 μm. The experiment was performed three times under identical conditions. d, Spatial distribution of two cargo 
species in response to the (imposed) MinD profile. The phenomenological MS-type model allows for stronger reorganization of cargo molecules than the 
FH-type model. In particular, the phenomenological MS-type model predicts that cargo-2 accumulates between cargo-42 and MinD. Model parameters: 
average coverage of MinD proteins θp = 0.0825, streptavidin θs = 0, cargo-2 θo−2 = 0.26 and cargo-42 θo−42 = 0.26; interaction parameter (in terms 
of MinD coverage: θ−1

×
= a

−1
p c

−1
×

) of cargo-2 θ−1
×−2 = 220 and cargo-42 θ−1

×−42 = 620. Respective membrane footprints: MinD dimer ap = 25 nm2, 
streptavidin as = 25 nm2, DNA origami ao = 1,760 nm2 ≈ 70ap.
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(Fig. 5f, Extended Data Figs. 9 and 10 and Supplementary Videos 7 
and 8). We found that in this in vivo model system MinDE formed 
dynamic patterns with similar wavelength and velocity as in its 
native host E. coli11,12 (Supplementary Note 4) and, indeed, spatio-
temporally regulated mCh-MTS proteins on intracellular mem-
branes (Extended Data Fig. 10).

Diffusiophoresis drives molecular transport in biology
In conclusion, combining in vitro and in vivo reconstitution experi-
ments with theoretical modelling and analysis, we showed that the 
prokaryotic MinDE proteins can non-specifically transport and 
even sort membrane-bound cargo molecules by a diffusiophoretic 
effect: the diffusive fluxes of MinD and cargo couple via friction in a 
mechanical rather than thermodynamic fashion (Fig. 6). This pro-
cess is driven by ATP-consuming MinDE self-organization, which 

generates a net diffusive flux of MinD towards low densities. This 
flux establishes an effective frictional force on cargo, driving dif-
fusiophoretic cargo transport towards areas of low MinD density. 
Hence, the friction between cargo and MinD increases with the 
effective size of the cargo (for example, with the number of strepta-
vidin building blocks). The bare diffusion coefficient of cargo only 
becomes relevant in the case of dynamic MinDE waves where cargo 
diffusion has to ‘keep up’ with the MinDE waves to induce macro-
scopic gradients.

Similar transport effects have been reported previously in a 
non-biological context: diffusiophoresis generally refers to particle 
transport in fluids, induced by concentration gradients of small 
solutes39–49. Interestingly, diffusiophoresis was also treated in terms 
of particle fluxes48, suggesting that a flux-centred viewpoint may 
be appropriate for multicomponent mixtures out of equilibrium. 
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Fig. 5 | Directed net transport of cargo by MinDE waves via diffusiophoresis. a, Representative images of MinDE travelling surface waves that transport 
cargo-2 establishing long-range gradients (1 µM MinD, 5 µM His-MinE, 0.1 nM origami-Cy3b with two biotinylated oligonucleotides, non-labelled 
streptavidin). b, Simulation of cargo transport by a protein wave with skewed sinusoidal waveform (green, skewness γ = −0.9), which emulates MinD 
travelling waves (40 μm wavelength, 1.4 μm s−1 velocity) in one-dimensional geometry (the black arrow indicates the wavevector). After a very long 
simulation time of 28 h, we find only weak redistribution of cargo-42 compared with the strong redistribution of cargo-2. Interaction parameters are as 
in Fig. 3b, (bare) cargo diffusion coefficients Dg(0) as in Fig. 3c and the (bare) MinD diffusion coefficient is set to Dp = 0.425 μm2 s−1 (ref. 25). Both cargo 
coverages are set to θo = 0.55 (thus neglecting the reduced surface coverage of cargo-42) to improve comparability. Cargo coverages are averaged 
over the last 17 min. c, Representative images of MinDE inducing large-scale gradients of cargo-2, cargo-chol-2 and cargo-chol-15, but not of cargo-42 
(1 µM MinD, 5 µM His-MinE, 0.1 nM origami-Cy5 with 2 or 42 biotinylated oligonucleotides, non-labelled streptavidin or 0.1 nM origami-Cy3b with 2 or 
15 hybridizing oligonucleotides, 10 nM TEG-cholesteryl oligonucleotide). d, Representative time series and average of MinDE travelling surface waves 
transporting cargo-chol-2 along the wavevector when oriented along the longest axis on chromium-patterned SLBs e, Normalized average fluorescence 
intensity profiles of cargo along the wavevector in d. The bold coloured line represents the mean profile, generated from N = 56 membrane patches from 
three independent experiments. f, MinDE dynamics spatiotemporally regulates the model peripheral membrane proteins mCh-MTS(2xMinD) when 
reconstituted in the fission yeast S. pombe. Decreased fluorescence in the mCherry channel is highlighted by white asterisks. Arrows indicate wave 
direction. Scale bars, 50 µm (a,c), 25 µm (d) and 5 µm (f).
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A phenomenologically similar effect has been demonstrated in 
gases with the MS theory of diffusion35,36,50,51. In a biologically rel-
evant context, theoretical studies have suggested that diffusiopho-
resis might occur in enzyme chemotaxis52 and alignment53, during 
ParABS-mediated chromosome segregation in bacteria54 and that 
metabolism-dependent gradients of small molecules (for example, 
ATP) could induce transport of large particles55. The here described 
diffusiophoresis driven by protein patterns that are maintained by 
NTPase cycles might constitute a novel mechanism of coupling 
energy dissipation to active spatiotemporal positioning in cell biol-
ogy. Diffusiophoretic transport is presumably not a special feature 
of the E. coli MinDE system or reaction–diffusion systems in gen-
eral, but can potentially be exerted by any active system producing 
concentration gradients. For example, such a mechanism could be 
underlying the secretion-induced protein patterning that has been 
observed in fission yeast56 or be at play for the plethora of intracel-
lular (actin) waves in eukaryotes whose purpose and mode of action 
has remained elusive57. The mechanism might not even be limited 
to the membrane as a reaction surface, but potentially extends to 
other cellular surfaces and even cytosolic gradients. For example, 
the strong concentration gradients that are built up during liquid–
liquid phase-separation processes could potentially similarly impact 
other molecules58. We also propose that distinct pattern-forming 
systems sharing the same reaction space should align to minimize 
friction, even if their constituents are chemically independent. This 
could potentially link and synchronize pathways to increase their 
efficacy or provide a rescue mechanism against mutations affect-
ing the chemical coupling via specific interactions (for example, 
between MinC and FtsZ). That this non-specific means of transport 
was discovered and described in an in vitro reconstitution assay is 

not a coincidence, but highlights that the complexity of cells with 
more sophisticated and stronger specific interactions presumably 
masks such occurrence. Finally, simple as it is in comparison to 
eukaryotic, translational motor proteins, this mechanism could be 
interpreted as an alternative, more rudimentary mode of mechano-
chemical coupling and as such might be prevalent in prokaryotes 
and might have been present in early forms of life.
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Methods
Theoretical description in the presence of travelling waves. We have formulated 
our theory, equation (1), in terms of particle fluxes. Given these fluxes ji, the 
spatiotemporal dynamics of each molecular species is determined by the balance 
equation

∂tci + ∇ · ji = ri (…) , (4)

where ri signify reaction terms. We considered two species, passive cargo molecules 
cg that do not engage in reactions, rg = 0, and active MinD proteins cp. Instead 
of considering specific reaction terms, we assumed that the interplay between 
diffusive and reactive fluxes of MinDE leads to travelling waves. Then, we took 
these travelling MinD protein waves with wavelength λ and speed v:

cp (x, t) = cp
(

2π x − vt
λ

)

≡ cp (z) (5)

as a given. As specific waveform, we assumed a skewed sinusoidal curve (Fig. 5b):

cp (z) =
2
πγ

arctan
[

γ cos z
1 − γ sin z

]

, (6)

where the parameter γ ∈ [−1…1] determines the ‘skewness’ of the waveform. In 
principle, we could also choose a different waveform (for example, a sinusoidal 
curve that is skewed in the opposite direction). Choosing a different waveform does 
not change the general result of a macroscopic net transport along the wavevector, 
but it can change the magnitude of the transport because the local gradient 
magnitude is affected.

Furthermore, for simplicity, we neglected membrane saturation effects 
(Supplementary Information), so that the chemical potential of a particle with size 
ai reduces to μi ≈ kBT ln(aici). This is the same assumption as in the derivation of the 
fitting function for the stationary patterns, equation (3), and hence has the same 
limitations at high particle densities. Taken together, the spatiotemporal dynamics 
of the passive cargo species is determined by the following transport equation:

∂tcg = −∇ · jg = ∇ ·

[

Dg
(1+cg/c×)∇cg+(cg/c×)∇cp
1+cg/c×+(Dg/Dp)(cp/c×)

]

, (7)

where the interaction density is given by c× = ξp/ζpg and the two diffusion 
coefficients are given by Dg = kBT/ξg and Dp = kBT/ξp. We used FEniCS59 to 
numerically solve equation (7) in a one-dimensional geometry with no-flux 
boundary conditions for the cargo.

Plasmids, strains and proteins. A list of all plasmids and primers is provided 
in Supplementary Tables 2 and 3. The plasmids pET28a-His-MinD_MinE13, 
pET28a-His-EGFP-MinD60, pET28a-His-MinE13 and pET28a-MinE-His16 were 
used for purification of His-MinD, His-EGFP-MinD, His-MinE and MinE-His, 
respectively, as described in detail previously61. In brief, proteins were expressed 
in E. coli BL21 (DE3) and then purified via Ni-NTA affinity and size-exclusion 
chromatography in storage buffer (50 mM HEPES/KOH pH 7.2, 150 mM KCl, 10% 
glycerol, 0.1 mM EDTA, 0.4 mM tris(2-carboxyethyl)phosphine (TCEP)). Proteins 
were snap-frozen in liquid nitrogen and stored in small aliquots until further use 
at −80 °C.

Plasmids for heterologous co-expression of MinD, MinE and model peripheral 
membrane proteins pREP41X-sfGFP-MinD, pREP42X-MinE, pREP41X_coex_
sfGFP-MinD_MinE, pREP42X-mCherry-BsMTS, pREP42X-mCherry and 
pREP42X-mCherry-BsMTS were constructed analogously to plasmids devised 
by Terbush and colleagues38. pREP41X and pREP42X, and the leucine and uracil 
auxotroph S. pombe strain FY61 [h- ura4-D18 leu1-32], were a kind gift from S. 
Forsburg, University of Southern California62. All constructs based on pREP41X 
and pREP42X express the respective proteins under the control of the inducible 
nmt1* promoter. For details see Supplementary Methods.

Reconstitution in S. pombe. Details of S. pombe culture and transformation are 
provided in the Supplementary Methods. For image acquisition, 5-ml cultures with 
selective medium were inoculated with the respective strains from glycerol stocks 
or plates and grown for 48–72 h at 30 °C. Cover slides were rinsed with ethanol and 
ddH2O, and further cleaned in a plasma cleaner with oxygen as the process gas. 
Subsequently, Grace Bio-LABs reusable culture well gaskets (diameter of 9 mm, 
GBL103240, Sigma-Aldrich) or sticky slides (#81818, ibidi) were attached to the 
clean cover slides. Poly-l-lysine solution (0.01%, P4707, Sigma-Aldrich) was added 
to the wells and incubated for more than 30 min. Wells were washed with the 
respective media once before 10–50 μl of cell suspension was added for microscopy 
at a constant room temperature of 23 °C.

DNA origami nanostructures. The elongated DNA origami nanostructure 
used here was previously designed and described in ref. 29. The 20-helix 
bundle with hexagonal lattice is based on the M13mp18 7,429-nucleotide-long 
scaffold plasmid (p7429; Bayou Biolabs) and was modified using CaDNAno63. 
Staple oligonucleotides, 5′-Cy3B/Cy5-functionalized oligonucleotides, the 

5′-cholesteryl-TEG functionalized oligonucleotides (high-purity, salt-free, 
Eurofins MWG Operon) and 5′-biotin-TEG functionalized oligonucleotides 
(Sigma-Aldrich) were purchased or diluted in Milli-Q ultrapure water at a 
concentration of 100 μM. Origami structures with 1–15 anchors were based on 
the previous design29, which was further modified for functionalization with 
42 anchors (Supplementary Fig. 5). The assembly of the origami structure was 
performed in a one-pot reaction mix as described previously29. In brief, the 
components were mixed at a final concentration of 20 nM p7429 scaffold plasmid 
and 200 nM staple oligonucleotides in folding buffer (5 mM Tris-HCl, 1 mM 
EDTA, 20 mM MgCl2, pH 8.0) and annealed in a thermocycler (Mastercycler) over 
a 41-h cooling scheme from 65 to 40 °C. Folded nanostructures were purified to 
remove excess staple strands by centrifugation (14,000g, three cycles for 3 min, 
one cycle for 5 min) in Amicon Ultra 100 kDa molecular weight cutoff filters 
(Merck Millipore) using reaction buffer (25 mM Tris-HCl pH 7.5, 150 mM KCl, 
5 mM MgCl2). The concentration of folded Cy5-labelled origami structures was 
estimated by fluorescence intensity measurements using a one-drop measurement 
unit of a Jasco FP-8500 spectrofluorometer and subsequent comparison with an 
intensity calibration curve obtained for free Cy5 dye corrected for the multiple 
labelling of the origami. Cy3B-labelled DNA origami concentration was measured 
by absorption at 260 nm on a NanoDrop spectrophotometer (ThermoFisher 
Scientific) and related to Cy5-labelled structures of known concentrations. 
Cy3B/Cy5-labelled DNA origami structures contained seven Cy3B/Cy5-labelled 
oligonucleotides attached to extended staples on the upper facet. At the lower 
facet, the biotin-functionalized origami contained multiple 18-nucleotide (nt) 
extensions that were hybridized with complementary 5′ biotin-TEG-functionalized 
oligonucleotides (5′ biotin-TEG-AACCAGACCACCCATAGC) at defined 
positions. DNA origami that were bound to the membrane via cholesteryl 
oligonucleotides contained single or multiple 18-nt extensions on the lower facet 
that can hybridize with the complementary 5′ TEG-cholesteryl-functionalized 
oligonucleotides (5′ chol-TEG-AACCAGACCACCCATAGC) supplied in the 
self-organization assay.

Preparation of SLBs. SLBs were prepared as described in detail in refs. 13,61. In 
brief, cover slides were rinsed with ddH2O and ethanol, and a plastic chamber 
was glued on top. Slides were further cleaned by plasma cleaning with oxygen as 
the process gas (model Zepto, Diener Electronic). Chloroform-dissolved lipids 
(Avanti Polar Lipids) were dried by a nitrogen stream and subsequently in a 
desiccator before slow rehydration at a concentration of 4 mg ml−1 in reaction 
buffer (25 mM Tris-HCl pH 7.5, 150 mM KCl, 5 mM MgCl2). Small unilamellar 
vesicles were generated by sonication in a bath sonicator and subsequently added 
to the cleaned reaction chambers at a concentration of 0.5 mg ml−1. After 4 min 
of incubation on a 37 °C warm heating block, the SLB was washed 10 times with 
a total of 2 ml of wash buffer (25 mM Tris-HCl pH 7.5, 150 mM KCl) to remove 
excess vesicles. All mentioned concentrations refer to the final volume of the 
reaction chamber of 200 µl. To prepare chambers for self-organization experiments 
with biotin-functionalized origami, the SLB was generated with a lipid composition 
of 69/30/1 mol% DOPC/DOPG/biotinyl-CAP-PE or with 70/30/0.01 mol% 
DOPC/DOPG/biotinyl-CAP-PE for single-particle tracking experiments and 
subsequently incubated with non-labelled or Alexa568-labelled streptavidin 
(ThermoFisher Scientific) at a final concentration of 1 µg ml−1. After incubation 
for 5–10 min, unbound streptavidin was removed by washing five times with a 
total volume of 1 ml of reaction buffer. The buffer was adjusted to a volume of 
100 μl and the origami was incubated at a final concentration of 0.1 nM for 10 min, 
before the buffer was adjusted to the final volume of 200 μl. To prepare chambers 
for self-organization experiments with cholesteryl-bound origami, the SLB was 
generated with a lipid composition of 70/30 mol% DOPC/DOPG. The buffer 
was adjusted to a volume of 100 µl and the 5′ TEG-cholesteryl-functionalized 
oligonucleotides for binding were added at a final concentration of 10 nM. 
Subsequently, the origami was added at a final concentration of 0.1 nM and 
incubated for 10 min, before buffer adjustment to 200 µl. For experiments involving 
more than one type of DNA origami, DNA origami species were premixed in 
DNA LoBind tubes (Eppendorf) before addition to the sample chamber at a 
final concentration of 50 pM for each DNA origami, keeping the overall DNA 
origami concentration at 0.1 nM. Note that at these experimental conditions, DNA 
origami does not bind non-specifically to the lipid membrane in the absence of 
biotin-TEG-anchors/streptavidin or cholesteryl-TEG-anchors, due to the high net 
negative charge of both the SLB and DNA origami64,65.

Chromium-patterned cover slides. Chromium-patterned cover slides for 
patterned SLBs66,67 were generated by photolithography and metal evaporation. 
Cover slides were first cleaned by rinsing with pure ethanol and ddH2O and 
subsequently by plasma cleaning with oxygen as the process gas (model Zepto, 
20–60 s, 40–50% power and 0.3 mbar). The vapour of bis(trimethylsilyl)amine 
(HDMS) was deposited on the cover slide for 2 min as adhesion promoter. 
Subsequently, positive photoresist (AZ ECI 3027, MicroChemicals) was 
spin-coated onto the cover slide (40 s, 4,000 r.p.m., start/stop acceleration 
2,000 r.p.m. s−1) resulting in an ~3-μm-thick layer of photoresist. After pre-baking 
(90 s, 90 °C) the photoresist was patterned using ultraviolet lithography (μPG101, 
Heidelberg Instruments) with a 10-mm write head, nominal output power 
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of 35 mW at a wavelength of 375 nm, before passing a 45% attenuation filter. 
Afterwards, the slides were post baked (60 s, 110 °C) before applying developer 
(AZ 351B, NaOH-based, diluted 1:4 (vol/vol), MicroChemicals) for 4 min. Finally, 
slides were rinsed with ddH2O and dried with a nitrogen stream. Chromium was 
deposited onto these slides by evaporation at 22–33 mA at a rate of ~1 Å s−1 to a 
final thickness of ~30 nm. After chromium deposition, the photoresist was lifted 
off in acetone with sonication for 5 min in a sonicator bath. Afterwards, slides were 
rinsed with isopropanol and dried with a nitrogen stream. SLBs were formed on 
the chromium-patterned slides as described above.

Self-organization assay. Self-organization assays were performed essentially as 
described in detail in ref. 61. In short, they were performed on preformed SLBs 
in 200 μl of reaction buffer (25 mM Tris-HCl pH 7.5, 150 mM KCl, 5 mM MgCl2) 
supplemented with 2.5 mM Mg-ATP (stock: 100 mM ATP, in 100 mM MgCl2, 
adjusted to pH 7.5) and at a constant room temperature of 23 °C. MinD was 
typically used at 1 μM (0.3 µM EGFP-MinD, 0.7 µM MinD) with either 1.5 μM 
MinE-His16 to generate quasi-stationary labyrinth patterns or 5 μM His-MinE7,13 
to generate regular travelling surface waves. Time series showing the initial 
development of patterns were acquired by starting the self-organization with 
Mg-ATP directly before image acquisition. Tile scans used for quantification of 
quasi-stationary patterns or gradients induced by regular travelling waves on 
unconstrained and patterned SLBs were acquired 30–60 min after the start of 
self-organization, in areas of the chamber that had not been imaged previously.

Single-particle tracking. Single-particle tracking of DNA origami was conducted 
at a concentration of DNA origami and anchors that can be described as diluted, 
so that interaction between individual DNA origami was minimized68. DNA 
origami was diluted in DNA LoBind tubes (Eppendorf) and added to a chamber 
at a final concentration of 0.1–1 pM (biotin-functionalized origami, SLB with 
70/30/0.01 mol% DOPC/DOPG/biotinyl-CAP-PE; cholesteryl functionalized  
origami, SLB with 70/30 mol% DOPC/DOPG, 0.1 nM 5′ TEG-cholesteryl- 
functionalized oligonucleotides). Owing to the superior brightness and 
photostability, single-particle tracking was exclusively performed using Cy3B- 
labelled DNA origami. To further reduce photobleaching and blinking as well 
as photopolymerization of MinD, single-particle tracking was performed in the 
presence of an oxygen scavenger system (3.7 U ml−1 pyranose oxidase, 90 U ml−1 
catalase, 0.8% glucose)69 and trolox. Experiments were performed in the absence of 
any protein or in the presence of 1 µM MinD (30% EGFP-MinD) and 2.5 mM ATP to 
emulate conditions in the MinD maxima in a simplified fashion. For single-particle 
tracking of cargo in the presence of MinDE travelling waves, 1 µM MinD (30% 
EGFP-MinD) and 5 µM His-MinE were used and tracking was performed more than 
30 min after starting the reaction with 2.5 mM ATP to obtain regular waves.

Microscopy. All images, except for single-particle tracking, were taken on a 
Zeiss LSM780 confocal laser scanning microscope using a Zeiss C-Apochromat 
×40/1.20 water-immersion objective, ×20 air objective for chromium-patterned 
SLBs or ×60/1.4 differential interference contrast (DIC) oil-immersion objective 
for S. pombe cells (all Carl Zeiss). Longer time series were acquired using the 
built-in autofocus system. All two- or three-colour images were acquired with 
alternating illumination for the 488/633 nm and 561 nm laser lines to avoid 
crosstalk. EGFP-MinD or sfGFP-MinD was excited using a 488 nm argon laser; 
Cy3B-labelled origami, Alexa568-streptavidin or mCherry in S. pombe were excited 
using a 561 nm diode-pumped solid-state (DPSS) laser and Cy5-labelled origami 
using a 633 nm He–Ne laser. Images were typically recorded with a pinhole size of 
2.6–4 Airy units for the EGFP and origami channels, 1 Airy unit for the streptavidin 
channel, 512 × 512-pixel resolution and a pixel dwell time of 1.27 μs. Time series 
were typically acquired with ~14-s intervals for unconstrained SLBs or 4-s intervals 
for chromium-patterned SLBs and S. pombe cells. For single-particle tracking of 
DNA, origami images were acquired on a custom-built total internal reflection 
fluorescence microscope (TIRFM)70 using a NIKON SR Apo TIRF ×100/1.49 
oil-immersion objective, constructed around a Nikon Ti-S microscope body (both 
Nikon). Two laser lines (490 nm (Cobolt Calypso, 50 mW nominal) and 561 nm 
(Cobolt Jive, 50 mW nominal), Cobolt AB)) were controlled in power and timing 
(AOTF, Gooch & Housego TF-525-250) and spatially filtered (kineFLEX-P-3-S-
405.640-0.7-FCS-P0, Qioptiq). The beam was further collimated, expanded (10×) 
and focused on the objective’s back aperture by standard achromatic doublet lenses. 
The TIRF angle was controlled by precise parallel offset of the excitation beam 
(Q545, PI). The emission light was notch-filtered to remove residual excitation light, 
spectrally separated by a dichroic beamsplitter (T555lpxr-UF1, Chroma Technology 
Cooperation), bandpass-filtered 525/50 and 593/46 (both Chroma), respectively, 
and repositioned on two halves of the electron-multiplying charge-coupled device 
(EMCCD) camera (Andor iXon Ultra 897, Andor Technologies). Images were 
recorded with Andor Solis software (version 4.28, Andor Technologies).

Image analysis. All images were processed using Fiji (version v1.52p), MATLAB 
(R2018a, The Math-Works) or Python (Python Software Foundation). Brightness 
or contrast adjustments of all displayed images were applied homogeneously.

For line plots, the images were smoothed with a Gaussian filter with pixel width 
of 2 in Fiji.

For the cross-correlation plots, the images were smoothed with a Gaussian 
kernel of pixel width 1. The theoretical models were formulated as boundary-value 
problems and solved in a one-dimensional geometry using a finite-difference 
scheme using SciPy71. Curve fitting was performed with lmfit72.

Single-particle tracking analysis. Analysis of single-particle tracking was 
conducted as described previously using previously established code73. In brief, a 
custom-written MATLAB code was used to detect DNA origami fluorescence in 
each frame and extract its position. Origami trajectories on the membrane were 
analysed using jump-distance analysis74,75. The distances between particle locations 
between subsequent frames were analysed and diffusion coefficients of particle 
ensembles were obtained by fitting the cumulative histograms. As, usually, some 
of the origami in the field of view were immobile and did not diffuse, cumulative 
histograms of obtained jump distances were fitted with two components, where 
for the second component the upper boundary was set to 0.1 µm2 s−1, and usually 
resulted in diffusion coefficients of less than 0.01 µm2 s−1.

Analysis of MinDE-dependent transport. Analysis of fluorescence intensities and 
contrast was essentially performed as described earlier7. In brief, tile scans were 
imported into Fiji, where the EGFP-MinD channel was used for segmentation 
to generate a binary mask of the patterns. The original non-modified images 
from the two or three spectral channels were analysed based on the binary mask 
using a custom-written MATLAB code. The average fluorescence intensity in 
the Alexa568-streptavidin or origami-Cy5 and EGFP-MinD spectral channel 
was obtained by pooling the means of individual images from one independent 
experiment. All means from one independent experiment and condition were 
pooled together. All fluorescence intensity values from one experimental set 
were normalized to the fluorescence intensity values obtained for the respective 
origami with one anchor. The Michelson contrast of the resulting cargo patterns 
was calculated for every individual image as the difference between the average 
intensity in the MinD minima and MinD maxima divided by the sum of the 
average intensities in the MinD maxima and minima. The contrast of the MinD 
patterns was calculated for every individual image as the difference between the 
average intensity in the MinD maxima and MinD minima divided by the sum of 
the average intensities in the MinDE minima and maxima.

Analysis of fluorescence profiles on chromium-patterned SLBs. Time-series from 
chromium-patterned SLB patches with regular travelling MinDE waves that aligned 
along the longest axis of the patch were selected and averaged in Fiji. The resulting 
average intensity of the cargo was plotted along the wavevector of the MinDE waves 
(that is, the longest axis of the patch) and exported as csv files. Subsequently, using 
MATLAB, the fluorescence intensity profiles were aligned at the beginning based on 
the increase of the signal, and the average profile was generated.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this Article.

Data availability
The raw images that support the findings of this study are available at Edmond with 
the identifier https://dx.doi.org/10.17617/3.5n or from the corresponding authors 
upon request. Source data are provided with this paper.

code availability
The code for the analysis is available at Edmond with the identifier https://dx.doi.
org/10.17617/3.5n or from the corresponding authors upon request.
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Extended Data Fig. 1 | Pattern formation of cargo depends on active self-organization by MinDE. a, Representative time series of MinD membrane 
binding on SLBs in the presence of cargo-2 and ATP, but in the absence of MinE (1 μM MinD (30% EGFP-MinD), 0.1 nM origami-Cy5 with 2 biotinylated 
oligonucleotides, Alexa568-streptavidin, ATP). Scale bars, 50 μm. b, Kymographs of the line selection indicated in a.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Extent of the MinDE-driven cargo demixing depends on the effective size (that is, membrane footprint) of the cargo. a, 
Representative images and fluorescence intensity line plots (smoothed) of established MinDE labyrinth patterns and anti-correlated DNA origami and 
streptavidin patterns when no origami or cargo-1, cargo-2, …, cargo-42 is present (1 μM MinD (30% EGFP-MinD), 1.5 μM MinE-His, with or without 0.1 nM 
origami-Cy5 with n biotinylated oligonucleotides, Alexa568-streptavidin). Panels “no origami, cargo-2, cargo-15 and cargo-42” are identical to Fig. 1d. 
Scale bars, 50 μm. b, Contrast of the resulting streptavidin patterns increases with increasing number of streptavidin incorporated into the cargo. Box plot 
lines are median, box limits are quartiles 1 and 3, whiskers are 1.5× interquartile range (IQR) and points are outliers. Mean fluorescence intensity of c, DNA 
origami, d, EGFP-MinD and e, Alexa568-streptavidin of patterns formed when no origami or cargo-1, cargo-2, …, cargo-42 is present; data is taken from 
the full image and normalised to the intensity of experiments containing cargo-1. Cross and error bars represent the mean value and standard deviation 
of two or more independent experiments with total number of analysed images per condition N(No origami)=32, N(Cargo-1)=96, N(Cargo-2)=41, 
N(Cargo-5)=32, N(Cargo-15)=94, N(Cargo-28)=32, N(Cargo-42)=87.
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Extended Data Fig. 3 | comparison between theory and experiment for different cargo molecules. a, Cross-correlation function between MinD coverage 
(θp) and DNA origami coverage (θo), for different cargo species. The color-coded 2D-histogram represents our experimental data of selected days (Exp), 
where the images were smoothed by a one-pixel-wide gaussian kernel. Solid and dashed lines correspond to two candidate models. The Flory-Huggins 
type model (FH), whose parameters are fully determined by our experiments, fails to account for cargo transport: the weak entropic sorting of streptavidin 
in an external gradient of proteins is not sufficient to overcome the strong repulsion of the bulky DNA origami scaffolds. Instead, we find that the 
phenomenological MS-type model, with an estimated interaction parameter, explains cargo transport. Model parameters: (cargo-n) average coverages 
θ
p
= 0.0825, θ

s
= max(0.165− 0.55n/70,0) and θ

o
= min(11.55/n,0.55); interaction parameter (in terms of MinD coverage) θ−1

×
= 200+ 10n. 

Surface coverages θ = ac and surface densities c are related via the particle size a. b, The color-coded 2D-Histogram represents our experimental data of 
selected days (Exp), while the solid line (Fit) is a fit curve of our reduced model (Supplementary Information section I.5 “Analytic solution and fitting of 
reduced model”).
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Extended Data Fig. 4 | MinDE induces pattern formation of cargo that is bound to the membrane via cholesteryl oligonucleotides. a, Schematic of the 
synthetic cargo consisting of a DNA origami scaffold that is bound to the membrane via cholesteryl moieties. DNA origami are bound via hybridization 
of DNA oligonucleotides at the indicated positions with the complementary TEG-cholesteryl oligonucleotides in the lipid membrane. b, Representative 
images and fluorescence intensity line plots (smoothed) of established MinDE labyrinth patterns and anti-correlated DNA origami patterns when 10, 25 
or 100 pM of cargo-chol2 or cargo-chol-15 are present (1 μM MinD (30% EGFP-MinD), 1.5 μM MinE-His with 10, 25 or 100 pM origami-Cy3b with 2 or 15 
hybridizing oligonucleotides, 10 nM TEG-cholesteryl oligonucleotide). Scale bars, 50 µm.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | MinDE-driven cargo demixing indeed depends on the effective size (membrane footprint) of the cargo and not on the diffusion 
coefficient. a, Cargo molecule diffusion coefficient in absence or presence of 1 µM MinD (with or without 1 µM MinD (30% EGFP-MinD), 0.1-1 pM 
origami-Cy3b with 2 or 15 hybridizing oligonucleotides, 0.1 nM TEG-cholesteryl oligonucleotide), as obtained from single particle tracking and predicted 
with the fitted interaction parameters obtained in h. Points are mean values of individual measurements (M), line and error bars represent the mean 
value and standard deviation. Left part identical to Fig. 3c. Data obtained from number of sample chambers S(Cargo-chol-2)=7, S(Cargo-chol-15)=5, 
S(Cargo-chol-2, MinD)=3, S(Cargo-chol-15, MinD)=2; number of measurements M(Cargo-chol-2)=16, M(Cargo-chol-15)=12, M(Cargo-chol-2, 
MinD)=14, M(Cargo-chol-15, MinD)=6; number of analysed single particle tracks N(Cargo-chol-2)=19,647, N(Cargo-chol-15)=23,365, N(Cargo-chol-2, 
MinD)=1,879, N(Cargo-chol-15, MinD)=8,338; average track-length TL(Cargo-chol-2)=303, TL(Cargo-chol-15)=353, TL(Cargo-chol-2, MinD)=964, 
TL(Cargo-chol-15, MinD)=749; fraction of mobile DNA origami MF(Cargo-chol-2)=0.85, MF(Cargo-chol-15)=0.87, MF(Cargo-chol-2, MinD)=0.73, 
MF(Cargo-chol-15, MinD)=0.67. Box plot of the contrast of b, cargo, c, MinD patterns, and d, of the fraction of pixels classified as MinD minima, when 
10, 25 or 100 pM of cargo-chol2 or cargo-chol-15 are present (1 μM MinD (30% EGFP-MinD), 1.5 μM MinE-His with 10, 25 or 100 pM origami-Cy3b 
with 2 or 15 hybridizing oligonucleotides, 10 nM TEG-cholesteryl oligonucleotide). Box plot lines are median, box limits are quartiles 1 and 3, whiskers are 
1.5× interquartile range (IQR) and points are outliers. Mean fluorescence intensity of e, DNA origami and f, EGFP-MinD of the full image, normalised to 
the intensity of experiments with 100 pM cargo-chol-15. Cross and error bars represent the mean value and standard deviation. g, Increased membrane 
density leads to an apparent increase in contrast. Data from three independent experiments with total number of analysed images per condition 
N(Cargo-chol-2, 10 pM)=48, N(Cargo-chol-2, 25 pM)=48, N(Cargo-chol-2, 100 pM)=64, N(Cargo-chol-15, 10 pM)=45, N(Cargo-chol-15, 25 pM)=48, 
N(Cargo-chol-15, 100 pM)=41. Lines represent median and quartiles 1 and 3 of cargo-2 and cargo-42 contrast for comparison. h, Interaction parameter 
(in terms of MinD coverage; surface coverages θ = ac and surface densities c are related via the particle size a) as obtained from our fitting procedure. 
The interaction for cargo-chol-2 and cargo-chol-15 is larger than for cargo with streptavidin building blocks. Left part is identical to Fig. 3b. The dashed 
line indicates a linear fit of the interaction parameter θ−1

×
 as a function of n. i, Representative images of individual and overlaid channels, and line plot 

of indicated selection of MinDE-induced sorting of cargo-chol-2 and cargo-chol-15 (1 μM MinD (30% EGFP-MinD), 1.5 μM MinE-His with 50 pM 
origami-Cy3b with 2 and 50 pM origami-Cy5 with 15 hybridizing oligonucleotides, 10 nM TEG-cholesteryl oligonucleotide). Scale bars, 50 μm.
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Extended Data Fig. 6 | The spatial sorting of cargo by MinDE according to the effective cargo size is not an artefact. a-c, Spatial sorting of cargo-2 and 
cargo-42 by MinDE also occurs when dyes are swapped. a, Schematic of the experimental setup. MinDE self-organization was performed in presence 
of two different cargo species with distinct fluorescent labels, cargo-2 with Cy5 and cargo-42 with Cy3B. b, Representative images and c, line plots 
of MinDE-induced sorting of cargo-2 and cargo-42 (1 μM MinD, 1.5 μM MinE-His, 50 pM origami-Cy5 with 2 biotinylated oligonucleotides, 50 pM 
origami-Cy3B with 42 biotinylated oligonucleotides, non-labelled streptavidin). Experiment was performed three times under identical conditions. d-i, 
MinDE-induced distributions of differentially labelled, but otherwise identical cargo are superimposable. d, and g, Schematic of the experimental setup: 
two identical cargoes are labelled with distinct dyes. Pattern formation is induced by addition of MinDE (1 μM MinD, 1.5 μM MinE-His, 50 pM origami-Cy5 
and 50 pM origami-Cy3B with either both 2 or both 42 biotinylated oligonucleotides, non-labelled streptavidin). Representative images and line plot of 
pattern formation in presence of e, f, two differently labelled cargo-2 and h, i, two differently labelled cargo-42. Experiments were performed two times 
under identical conditions. Scale bars, 50 μm.

NATuRE PHySicS | www.nature.com/naturephysics
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Extended Data Fig. 7 | Directed cargo transport by MinDE on chromium patterned bilayers. a,b,c, Representative time series and d,e,f, corresponding 
kymograph of MinDE traveling surface waves establishing cargo-chol-2 gradients from an initially homogeneous distribution on chromium patterned SLBs 
(1 µM MinD, 5 µM His-MinE, 0.1 nM origami-Cy3b with 2 hybridizing oligonucleotides, 10 nM TEG-cholesteryl oligonucleotide). g,k,m, Representative 
time-series and average of MinDE traveling surface waves and cargo-chol-2 gradient along the wave vector after regular waves have formed (>30 minutes 
of incubation), along the longest axis on chromium-patterned bilayers for three geometries and h,l,n, the respective normalised average fluorescence 
intensity profiles of cargo along the wave vector in g,k,m. Bold, colored line represents the mean profile, generated from N = 44, N = 27 and N = 13 
membrane patches, respectively. i, Wave velocity and j, wavelength of MinDE waves on chromium patterned bilayers in presence of cargo-chol-2 or 
cargo-chol-15 with N = 52 analysed membrane patches. Arrows indicate wave direction. Scale bars, 25 µm.
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Extended Data Fig. 8 | No directed cargo movement can be observed on the single particle level. Representative kymographs of MinD waves and a, 
single cargo-2 and b, single cargo-chol-2 molecules in presence of regular directional MinDE travelling waves (1 µM MinD (30% EGFP-MinD), 5 µM 
His-MinE, 0.1-1 pM origami-Cy3b with 2 hybridizing oligonucleotides and 0.1 nM TEG-cholesteryl oligonucleotide or with 2 biotinylated oligonucleotides, 
non-labelled streptavidin, SLB: DOPC/DOPG/Biotinyl-CAP-PE 70/30/0.01 mol%.).

NATuRE PHySicS | www.nature.com/naturephysics
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Extended Data Fig. 9 | MinDE self-organize in the fission yeast S. pombe at a similar spatiotemporal scale as in E. coli. a, Schematic of the plasmid 
employed for co-expression of sfGFP-MinD and MinE. b-d, Representative time-series and kymograph of S. pombe cells harbouring the co-expression 
plasmid for sfGFP-MinD and MinE, displaying MinD dynamics: b, travelling waves, c, pole-to-pole like oscillations and d, more complex dynamics. Analysis 
of e, the wavelength and f, wave velocity obtained from manually fitting the kymographs of cells displaying MinDE travelling waves. Lines represent the 
median and standard deviation. Data from three experiments with in total analysed cells e, N = 37 and f, N = 52. White boundaries represent cell outline 
obtained from average fluorescence images. g, No MinD dynamics can be observed when sfGFP-MinD is expressed in S. pombe in the absence of MinE. 
Scale bars, 2 µm.
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Extended Data Fig. 10 | MinDE spatiotemporally regulate model peripheral membrane proteins when reconstituted in S. pombe. a, Schematic of the 
plasmid used for expression of mCherry versions in S. pombe. Representative time-lapse and kymographs (over the entire cell length) of S. pombe cells 
expressing b, soluble mCherry, mCh which remains cytoplasmic, or a model peripheral membrane protein c, mCh-MTS(BsD) and d, mCh-MTS(2xMinD) 
which bind to membranes. Representative time-lapse and kymographs of S. pombe cells heterologously expressing sfGFP-MinD, MinE and e, mCh or f, 
mCh-MTS(BsD) or g, mCh-MTS(2xMinD). MinDE self-organization spatiotemporally regulates the model peripheral membrane proteins mCh-MTS(BsD) 
and mCh-MTS(2xMinD) highlighted by white arrows, but not mCh. Panel g is identical to Fig. 5f. White boundaries represent cell outline obtained from 
average fluorescence images. Scale bars, 5 μm.

NATuRE PHySicS | www.nature.com/naturephysics
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Supplementary Theoretical Description 

 

I. Chemical potential gradients induce flows, which couple by an out-of-

equilibrium diffusiophoretic mechanism 

Elaborating the brief description in the main text, we here explain our theory in full detail. 

First, we estimate the abundance of membrane-bound molecules, which provides important 

information for the correct formulation of our theory (sections I.1 “Large particle density in 

MinD-rich regions and large mean particle density” and I.2 “Cargo density is limited by 

abundance of streptavidin and origami”). Then, to formulate a theoretical model, we treat the 

population of membrane-bound molecules as a lattice gas. Specifically, we use the Flory-

Huggins theory of mixing to calculate the local chemical potential of each molecular species 

(section I.3 “Flory-Huggins theory of mixing: an equilibrium picture”). Finally, we consider 

chemical-potential-induced particle flows, and their coupling via an effective inter-particle 

friction (referred to as Maxwell-Stefan-like phenomenological approach, cf. section I.4 

“Phenomenological coupling between diffusive fluxes: an out-of-equilibrium picture”). In 

section I.5 “Analytic solution and fitting of reduced model”, we then reduce our model to find 

an analytic solution and to fit it to our experimental data. Based on our fitting parameters, we 

predict the diffusion coefficient of cargo in the presence of MinD from its measured value in 

the dilute limit (section I.6 “Diffusion coefficient of cargo molecules”). Section I.7 

“Determining the spatial distribution of multiple cargo species” then serves as a brief outline 

on how our theory can be extended by additional cargo species. 

1. Large particle density in MinD-rich regions and large mean particle density 

The MinD monomer density in the MinD maxima reaches a value of about 13 200 μm−2 1,2, 

which corresponds to a MinD dimer density of 6 600 μm−2. Since a single MinD dimer 

occupies approximately 25 nm2 on the membrane, this gives an estimated maximal surface 

coverage of 16.5%. Assuming a circular packing of the free areas around different MinD dimers 

(cf. illustration “Estimation of the mean free path between MinD dimers”), the mean free path 

between two MinD dimers is then estimated to be 2.7 MinD dimer radii, which corresponds 

to 67 Å.  

Re
pr
in
to
fp
ub
lis
he
d
m
an
us
cr
ip
t

II Between Protein Patterns and Mechanics

112



4 
 

For an assumed sinusoidal MinD profile, we estimate that on average 8.25% of the membrane 

is covered by MinDa. Furthermore, on average another 16.5% of the membrane is covered by 

streptavidin molecules, as measured by Fluorescence Correlation Spectroscopy-based image 

calibration2. A single streptavidin molecule occupies 25 nm2 on the membrane, like a MinD 

dimer. Thus, the mean free path between two arbitrary membrane-bound particles (MinD 

dimer or streptavidin) is 46 Å. To conclude, the above estimates show that the mean free path 

between any two membrane-bound particles is comparable to the particle size itself, which 

suggests that there are significant interactions between particles. 

2. Cargo density is limited by abundance of streptavidin and origami 

Each cargo molecule is a composite object consisting of a DNA origami scaffold and multiple 

streptavidin building blocks, which also serve as membrane tethers for the DNA origami 

 
a We base this estimate on the known value for the maximum MinD surface coverage and assume that the spatial 
distribution of MinD is a perfect sinusoidal curve. Computing the mean MinD coverage from the mean intensity 
can yield a slightly higher value of approximately 10% but does not significantly affect our results. 

 

Estimation of the mean free path between MinD dimers. We represent MinD dimers (or streptavidin 
molecules) by disks with radii 𝑅𝑅𝑝𝑝 ≈ 2.5 nm, and assume that around these disks there are circular 
“free regions” with radii 𝑅𝑅free which are devoid of other membrane-bound particles. These “free 
regions” can cover at most 𝜋𝜋/(2√3) ∼ 91% of the membrane. This estimate yields an average mean 
free path between membrane-bound particles of 46 Å (67 Å for the average distance between MinD 
dimers in the MinD maxima). Treating the MinD dimers (or streptavidin molecules) as square plates 
of size 5 × 5 nm2 instead of circular disks yields a very similar estimate for the average mean free path 
between membrane-bound particles of 51 Å (73 Å for the average distance between MinD dimers in 
the MinD maxima). 
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scaffolds (cf. Fig. 1a in the main text). A DNA origami scaffold can only bind to the membrane 

by binding to streptavidin molecules via their biotinylated oligonucleotide handles. The 

streptavidin molecules in turn are coupled to biotinylated lipids in the SLB. Hence, the total 

number of membrane-bound cargo (𝑁𝑁𝑔𝑔) should be limited by the abundance of both the 

number of DNA origami (𝑁𝑁𝑜𝑜+) in the assay and the available membrane-bound streptavidin 

(𝑁𝑁𝑠𝑠). In the following, we will estimate how many DNA origami are bound to the membrane 

via streptavidin (i.e. the abundance of cargo) as well as the abundance of free streptavidin 

molecules (i.e. those that are not linked to DNA origami).  

The amount of biotinylated lipids in the membrane determines the number of membrane-

bound streptavidin. The tetrameric streptavidin binds two to three biotinylated lipids 

simultaneously and as the streptavidin-biotin interaction is very strong the streptavidin off-

rate is negligible on the time-scales of our experiments3. Since we incubate the membrane 

with surplus streptavidin before we wash away any unbound streptavidin, we assume that all 

biotinylated lipids are bound to streptavidin. Hence, one can estimate the (average) 

streptavidin density from the molar fraction of biotinylated lipids (here 1%), their density and 

the streptavidin/biotinylated lipid binding valency (here 2.5)3 to be about 𝑐𝑐𝑠𝑠� ≈ 6.6 ×

103 μm−2. We previously also confirmed this density estimate using Fluorescence Correlation 

Spectroscopy-based image calibration2. For a membrane of size 𝐴𝐴, this yields a total of 𝑁𝑁𝑠𝑠 =

𝐴𝐴 𝑐𝑐𝑠𝑠�  streptavidin molecules that are bound to the membrane.  

The number of membrane-bound streptavidin molecules (𝑁𝑁𝑠𝑠) and the number of available 

DNA origami scaffolds (𝑁𝑁𝑜𝑜+) are constant for all experiments. Each DNA origami scaffold has 

𝑛𝑛 biotinylated oligonucleotide handles that can attach to membrane-bound streptavidin. 

Because of the strong binding between biotin and streptavidin we expect that all biotin-

streptavidin bonds are saturated (if there are sufficient DNA origami, each with 𝑛𝑛 biotinylated 

oligonucleotide handles, in the system) and that a membrane-bound streptavidin only binds 

to one biotinylated oligonucleotide at a timeb. If all DNA origami were to bind to the 

membrane, then this would correspond to an average density of 𝑐𝑐𝑜𝑜+���� = 𝑁𝑁𝑜𝑜+/𝐴𝐴. This would 

 
b Under the conditions used in our experiments, each membrane-bound streptavidin has a residual biotin binding 
valency of 1.53. This low residual valency, and also the spacing of individual biotinylated oligonucleotide handles, 
should prevent binding of multiple handles to one streptavidin. However, binding of multiple biotinylated 
oligonucleotide handles to one streptavidin cannot be entirely excluded for cargo with many handles and 
consequently smaller handle spacing, i.e. cargo-15, cargo-28 and cargo-42.  
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leave 𝑁𝑁𝑠𝑠 − 𝑛𝑛 𝑁𝑁𝑜𝑜+ freely diffusing (i.e. not linked to DNA origami scaffolds) streptavidin 

molecules on the membrane. In contrast, for large numbers of biotinylated oligonucleotide 

handles per origami (𝑛𝑛 > 𝑁𝑁𝑠𝑠/𝑁𝑁𝑜𝑜+), all streptavidin molecules would bind to DNA origami 

scaffolds. Then, the DNA origami scaffolds would compete for the available membrane-bound 

streptavidin molecules, due to volume exclusion effects between different DNA origamic and 

a strong entropic penalty for binding DNA origami to the membrane. This competition would 

effectively result in only 𝑁𝑁𝑔𝑔 = 𝑁𝑁𝑠𝑠/𝑛𝑛 membrane-bound DNA origami (corresponding to an 

average membrane-bound cargo density of 𝑐𝑐𝑔𝑔� = 𝑁𝑁𝑔𝑔/𝐴𝐴), while leaving 𝑁𝑁𝑜𝑜+ − 𝑁𝑁𝑔𝑔 DNA origami 

scaffolds unbound. Thus, we expect that the number of biotinylated oligonucleotide handles 

on the DNA origami (𝑛𝑛) determines the number (𝑛𝑛) of cross-linked streptavidin building blocks 

per DNA origami (cf. Figs. 1d and 2a in the main text), as this corresponds to the minimal 

amount of membrane-bound DNA origami that at the same time maximizes the number of 

biotin-streptavidin bonds. To summarize, the abundance (average concentration) of 

membrane-bound cargo is given by 𝑐𝑐𝑔𝑔� = min(𝑐𝑐𝑜𝑜+����, 𝑐𝑐𝑠𝑠� 𝑛𝑛⁄ ). 

With the given amount of streptavidin on the membrane and origami in the assay 

(Supplementary Table 1), we expect that all streptavidin molecules are bound to the 

biotinylated oligonucleotide handles on the DNA origami scaffolds for a number of handles 

𝑛𝑛 ≥ 𝑐𝑐𝑠𝑠�/𝑐𝑐𝑜𝑜+����  ≈ 21. Consequently, for origami with a larger number of biotinylated 

oligonucleotide handles such as 𝑛𝑛 = 28 or 𝑛𝑛 = 42 in our experiments (which is equivalent to 

a larger number of cross-linked streptavidin molecules), not all origami can bind to membrane-

bound streptavidin. Thus, we would expect a decrease of the surface density of DNA origami 

for 𝑛𝑛 > 21, and that in this case there are no free streptavidin molecules left on the 

membrane. In good agreement with these arguments, the average fluorescence intensity of 

DNA origami scaffolds in our experiments indicates that the average density of membrane-

bound streptavidin molecules is the limiting factor for the binding of DNA origami to the 

membrane for 𝑛𝑛 ≥ 15 (Extended Data Fig. 2c). Conversely, this means that for 𝑛𝑛 < 15 the 

limiting factor for the binding of DNA origami to the membrane is the abundance of DNA 

origami themselves. Then, all of the available DNA origami will bind to the membrane via 

 
c In our experiments, we observe that membrane-bound DNA origami scaffolds cover up to 55% of the membrane 
(based on the total amount of DNA origami scaffolds in the experimental assay).  
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streptavidin, resulting in an average coverage of 55%. As discussed above, at these densities 

one should expect significant volume exclusion effects. 

3. Flory-Huggins theory of mixing: an equilibrium picture 

In order to describe the thermodynamics of the free streptavidin molecules and the artificial 

cargo (i.e. streptavidin molecules that are crosslinked into an effective polymer) on the 

membrane, we formulated a Flory-Huggins theory4–6. To that end, we assumed that any 

(infinitesimally small) region on the membrane can (on the molecular scale) be described as a 

well-mixed lattice gas. On the mesoscopic scale, we then considered particle density gradients 

on the membrane surface. Then, we specifically asked: given a (externally imposed) 

heterogeneous distribution of active particles (i.e., we assume that there are stationary MinD 

protein density gradients on the membrane), what is the ensuing thermal equilibrium 

distribution of passive particles (cargo and free streptavidin molecules)? To answer this 

question, we determined the corresponding chemical potentials 𝜇𝜇𝑖𝑖 for each species as 

discussed next. 

In order to formulate a theoretical model, it is instructive to consider the architecture of the 

cargo molecules used in the experiments (see illustration “Conceptualized model geometry”). 

Each cargo molecule is a composite object, which consists of a DNA origami scaffold and 

multiple streptavidin building blocks. The lower facet of the rod-shaped DNA origami is located 

between 5 and 11 nm above the membrane (see Supplementary Note 1). The streptavidin 

building blocks also serve as membrane tethers with a height of roughly 5 nm. Furthermore, 

MinD proteins bind to the membrane and form a monomolecular layer about 5 nm high7. 

These geometric properties of the system imply that cargo transport is dominated by 

interactions between MinD and streptavidin. As a consequence of the architecture of our 

cargo molecules, there are two distinct interaction layers (see illustration “Conceptualized 

model geometry”): (𝜎𝜎) the proximal plane refers to the thin layer near the membrane, which 

has a height of 11 nm, and (𝜏𝜏) the distal plane refers to the thin layer above the proximal 

plane, which has a height of 8 nm. In our theoretical analysis, we considered these two layers, 

the proximal plane and the distal plane, as two distinct lattice gases that are strictly coupled 
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through the cargo molecules (which are present in both layers with a common local density 

𝑐𝑐𝑔𝑔 but distinct effective sizes 𝑎𝑎𝑔𝑔 and 𝑎𝑎𝑜𝑜). Here and in the following, we use the term “size” to 

refer to the 2D projected area of the different particles on the membrane (i.e. membrane 

footprint). We choose the lattice constants of the proximal plane (ℓ𝜎𝜎 = 5 nm, corresponds to 

the diameter of a typical MinD dimer or streptavidin molecule) and the distal plane (ℓ𝜏𝜏 =

16 nm, corresponds to the short side of the DNA origami) to match the typical length of the 

associated particles, respectively. 

Directly above the membrane (proximal plane 𝜎𝜎), each DNA origami scaffold crosslinks 

multiple streptavidin blocks into a polymer-like object 𝑔𝑔, which intersperses with MinD 

proteinsd 𝑝𝑝, free streptavidin molecules 𝑠𝑠, and solvent. Because streptavidin molecules and 

MinD dimers have a diameter of roughly 5 nm, we choose the lattice constant of the proximal 

 
d In the following, we neglect the distribution of MinE proteins. MinE proteins are recruited to the membrane by 
MinD proteins and therefore typically localize to the edge of MinD patterns. Therefore, we assume that MinD is 
a good proxy for the total distribution of MinDE proteins. 

 

Conceptualized model geometry (cf. Fig. 2a in the main text). a, Side view of the artificial cargo and 
MinD on the membrane. b, Isometric view of the artificial cargo and MinD on the membrane. Cargo 
molecules are composite objects which consist of a DNA origami scaffold (blue) and multiple 
streptavidin building blocks (magenta). The lower facet of the rod-shaped DNA origami is located 
between 5 and 11 nm above the membrane, from where the DNA origami body extends a further 8 
nm (see Supplementary Note 1). The streptavidin building blocks also serve as membrane tethers. 
Furthermore, MinD proteins (green spheres) bind to the membrane in a monomolecular layer of about 
5 nm height7. Therefore, we expect that cargo transport is dominated by interactions between MinD 
and streptavidin. This setup signifies two distinct interaction layers of the cargo with the proteins, 
which we indicate with the following labels: (σ) In the proximal plane, each DNA origami crosslinks 
multiple streptavidin blocks into a polymer-like object g, which intersperses with MinD proteins p, free 
streptavidin molecules s, and solvent. (τ) In the distal plane, we assume that only solvent surrounds 
the bulky DNA origami body o. We describe both interaction layers as lattice gases (indicated by the 
black grid), but with different lattice constants in the proximal and in the distal plane. MinDE protein 
density gradients introduce a bias to the diffusion of the cargo molecule (black arrow). 

Reprintofpublished
m
anuscript

II.2 Protein Fluxes Induce Generic Transport of Cargo

117



9 
 

plane accordingly: ℓ𝜎𝜎 = 5 nm. Then, each individual MinD dimer, free streptavidin molecule, 

and patch of solute occupies one lattice site of size (area) 𝑎𝑎𝜎𝜎 = ℓ𝜎𝜎2 . Cargo molecules with 𝑛𝑛 

streptavidin building blocks occupy 𝑛𝑛 lattice sites and therefore have an effective size of 𝑎𝑎𝑔𝑔 =

𝑛𝑛 𝑎𝑎𝜎𝜎 on the membrane. We assume that these four species of molecules form a lattice gas 

with a free energy density 𝑓𝑓𝜎𝜎, which is described by the Flory-Huggins theory of mixing4–6 

𝑓𝑓𝜎𝜎

𝑘𝑘𝐵𝐵𝑇𝑇
= �𝑐𝑐𝑖𝑖 ln 𝜃𝜃𝑖𝑖

𝑖𝑖

+ �𝑐𝑐𝑖𝑖𝜃𝜃𝑗𝑗  𝜒𝜒𝑖𝑖𝑗𝑗
𝑖𝑖,𝑗𝑗

 . (S1) 

Here, 𝑐𝑐𝑖𝑖 and 𝜃𝜃𝑖𝑖  refer to the surface density and surface coverage of each species (cargo 𝑔𝑔, free 

streptavidin 𝑠𝑠, MinD proteins 𝑝𝑝 and solvent 𝜚𝜚), respectively, while the Flory-Huggins 

parameters 𝜒𝜒𝑖𝑖𝑗𝑗 are a measure for the interaction energy between different molecular species. 

At this point, we assume that there is no direct attraction or repulsion between the different 

species (e.g. due to electrostatic interactions); thus, all of the interaction parameters between 

the different species must vanish: 𝜒𝜒𝑖𝑖𝑗𝑗 = 0. On the membrane, each lattice site is either 

occupied by cargo 𝑔𝑔, free streptavidin 𝑠𝑠, MinD proteins 𝑝𝑝, or solvent 𝜚𝜚. Specifically, cargo 

molecules occupy a local surface fraction 𝜃𝜃𝑔𝑔(𝒙𝒙) = 𝑛𝑛 𝑎𝑎𝜎𝜎 𝑐𝑐𝑔𝑔(𝒙𝒙) at a surface density of 𝑐𝑐𝑔𝑔(𝒙𝒙), 

free streptavidin molecules occupy a local surface fraction 𝜃𝜃𝑠𝑠(𝒙𝒙) = 𝑎𝑎𝜎𝜎 𝑐𝑐𝑠𝑠(𝒙𝒙) at a surface 

density of 𝑐𝑐𝑠𝑠(𝒙𝒙), and MinD proteins occupy a local surface fraction 𝜃𝜃𝑝𝑝(𝒙𝒙) = 𝑎𝑎𝜎𝜎 𝑐𝑐𝑝𝑝(𝒙𝒙) at a 

surface density of 𝑐𝑐𝑝𝑝(𝒙𝒙). Then, the solvent occupies the remainder of the surface at a local 

surface fraction 𝜃𝜃𝜚𝜚(𝒙𝒙) = 1 − 𝜃𝜃𝑔𝑔(𝒙𝒙) − 𝜃𝜃𝑠𝑠(𝒙𝒙) − 𝜃𝜃𝑝𝑝(𝒙𝒙), which corresponds to a local surface 

density of 𝑐𝑐𝜚𝜚(𝒙𝒙) = 𝜃𝜃𝜚𝜚(𝒙𝒙)/𝑎𝑎𝜎𝜎. By taking the derivative of the free energy density, Eq. (S1), with 

respect to the surface density of cargo molecules, one obtains the contribution of the proximal 

plane 𝜎𝜎 (near the membrane) to the total chemical potential of a cargo molecule:  

𝜇𝜇𝑔𝑔𝜎𝜎(𝒙𝒙)
𝑘𝑘𝐵𝐵𝑇𝑇

=
𝜕𝜕
𝜕𝜕𝑐𝑐𝑔𝑔

𝑓𝑓𝜎𝜎

𝑘𝑘𝐵𝐵𝑇𝑇
= ln�𝜃𝜃𝑔𝑔(𝒙𝒙)� − 𝑛𝑛 ln�1 − 𝜃𝜃𝑔𝑔(𝒙𝒙) − 𝜃𝜃𝑠𝑠(𝒙𝒙) − 𝜃𝜃𝑝𝑝(𝒙𝒙)�+ (1 − 𝑛𝑛) . (S2a) 

Here, 𝜃𝜃𝑔𝑔(𝒙𝒙) = 𝑛𝑛 𝑎𝑎𝜎𝜎 𝑐𝑐𝑔𝑔(𝒙𝒙) indicates the local surface fraction occupied by cargo molecules, 

𝜃𝜃𝑠𝑠(𝒙𝒙) = 𝑎𝑎𝜎𝜎 𝑐𝑐𝑠𝑠(𝒙𝒙) indicates the local surface fraction occupied by free streptavidin molecules, 

and 𝜃𝜃𝑝𝑝(𝒙𝒙) = 𝑎𝑎𝜎𝜎 𝑐𝑐𝑝𝑝(𝒙𝒙) indicates the local surface fraction occupied by MinD proteins. The 

second term of Eq. (S2a) corresponds to a volume exclusion effect, where a local increase of 

cargo density will lead to a local depletion of solvent. The size ratio between cargo and the 

solvent patches is given by (𝑛𝑛 𝑎𝑎𝜎𝜎)/ (𝑎𝑎𝜎𝜎), and contributes to this volume exclusion effect. The 

third term of Eq. (S2a) is a constant and thus drops out when one calculates the gradients of 

the chemical potential. Analogously, the chemical potential of a free streptavidin molecule is 
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given by  

𝜇𝜇𝑠𝑠𝜎𝜎(𝒙𝒙)
𝑘𝑘𝐵𝐵𝑇𝑇

=
𝜕𝜕
𝜕𝜕𝑐𝑐𝑠𝑠

𝑓𝑓𝜎𝜎

𝑘𝑘𝐵𝐵𝑇𝑇
= ln[𝜃𝜃𝑠𝑠(𝒙𝒙)]− ln�1 − 𝜃𝜃𝑔𝑔(𝒙𝒙) − 𝜃𝜃𝑠𝑠(𝒙𝒙)− 𝜃𝜃𝑝𝑝(𝒙𝒙)� . (S2b) 

The second term of Eq. (S2b) corresponds to a volume exclusion effect, where a local increase 

of streptavidin density will lead to a local depletion of solvent. The streptavidin molecules 

have the same size as the solute patches (𝑎𝑎𝜎𝜎), and thus there is no pre-factor before the 

volume exclusion term. Finally, the chemical potential of a membrane-bound MinD protein is 

given by 

𝜇𝜇𝑝𝑝𝜎𝜎(𝒙𝒙)
𝑘𝑘𝐵𝐵𝑇𝑇

=
𝜕𝜕
𝜕𝜕𝑐𝑐𝑝𝑝

𝑓𝑓𝜎𝜎

𝑘𝑘𝐵𝐵𝑇𝑇
= ln�𝜃𝜃𝑝𝑝(𝒙𝒙)� − ln�1 − 𝜃𝜃𝑔𝑔(𝒙𝒙) − 𝜃𝜃𝑠𝑠(𝒙𝒙) − 𝜃𝜃𝑝𝑝(𝒙𝒙)� . (S2c) 

The second term of Eq. (S2c) corresponds to a volume exclusion effect, where a local increase 

of MinD dimer density will lead to a local depletion of solvent. The MinD dimers have the same 

size as the solute patches (𝑎𝑎𝜎𝜎), and thus there is no pre-factor before the volume exclusion 

term. 

At an altitude of 11 nm above the membrane, the distal plane 𝜏𝜏 contains only DNA origami 

scaffolds and solvent. Because each DNA origami scaffold is 16 nm wide and 110 nm long, we 

choose the lattice constant of the proximal plane accordingly: ℓ𝜏𝜏 = 16 nm. Then, each DNA 

origami scaffold occupies roughly seven lattice sites with a total size of 𝑎𝑎𝑜𝑜 = 7 𝑎𝑎𝜏𝜏 (yielding a 

width of 16 nm and a length of 112 nm), while each patch of solute has an effective size of 

𝑎𝑎𝜏𝜏 = ℓ𝜏𝜏2.  Specifically, the DNA origami scaffolds occupy a local surface fraction 𝜃𝜃𝑜𝑜(𝒙𝒙) =

7 𝑎𝑎𝜏𝜏 𝑐𝑐𝑔𝑔(𝒙𝒙), at a local surface density of 𝑐𝑐𝑜𝑜(𝒙𝒙) = 𝑐𝑐𝑔𝑔(𝒙𝒙). Then, the solvent occupies the 

remainder of the distal plane at a local surface fraction 𝜃𝜃𝜚𝜚(𝒙𝒙) = 1 − 𝜃𝜃𝑜𝑜(𝒙𝒙), which corresponds 

to a local surface density of 𝑐𝑐𝜚𝜚(𝒙𝒙) = 𝜃𝜃𝜚𝜚(𝒙𝒙)/𝑎𝑎𝜏𝜏. Analogously to Eq. (S1), we assume that these 

two species of molecules form a lattice gas with a free energy density 𝑓𝑓𝜏𝜏, which is described 

by the Flory-Huggins theory of mixing4–6:  

𝑓𝑓𝜏𝜏

𝑘𝑘𝐵𝐵𝑇𝑇
= �𝑐𝑐𝑖𝑖 ln 𝜃𝜃𝑖𝑖

𝑖𝑖

+ �𝑐𝑐𝑖𝑖𝜃𝜃𝑗𝑗  𝜒𝜒𝑖𝑖𝑗𝑗
𝑖𝑖,𝑗𝑗

. (S3) 

Here, 𝑐𝑐𝑖𝑖 and 𝜃𝜃𝑖𝑖  refer to the surface density and surface coverage of each species (DNA origami 

𝑜𝑜 and solvent 𝜚𝜚), respectively, while 𝜒𝜒𝑜𝑜𝜚𝜚 is a measure for the interaction energy between the 

two species. As before, we assume that there is no direct interaction between the different 

species in the distal layer (e.g. due to electrostatic interactions); thus, the corresponding 

interaction parameter vanishes: 𝜒𝜒𝑜𝑜𝜚𝜚 = 0. Then, by taking the derivative of the free energy 
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density, Eq. (S3), with respect to the surface density of cargo molecules, we find the 

contribution of the distal plane 𝜏𝜏 (11 nm above the membrane) to the total chemical potential 

of a cargo moleculee:  

𝜇𝜇𝑔𝑔𝜏𝜏 (𝒙𝒙)
𝑘𝑘𝐵𝐵𝑇𝑇

=
𝜕𝜕
𝜕𝜕𝑐𝑐𝑔𝑔

𝑓𝑓𝜏𝜏

𝑘𝑘𝐵𝐵𝑇𝑇
= ln[𝜃𝜃𝑜𝑜(𝒙𝒙)]− 7 ln[1 − 𝜃𝜃𝑜𝑜(𝒙𝒙)]− 6. (S4) 

Here, 𝜃𝜃𝑜𝑜(𝒙𝒙) = 7 𝑎𝑎𝜏𝜏 𝑐𝑐𝑔𝑔(𝒙𝒙) refers to the surface fraction occupied by the bulky DNA origami 

scaffolds. 

The total chemical potential of a cargo molecule has a contribution from the proximal plane 

𝜎𝜎, Eq. (S2a), and a contribution from the distal plane 𝜏𝜏, Eq. (S4). To find an expression for this 

chemical potential, we integrated out the two interaction layers near the membrane. 

Specifically, we again started from the Flory-Huggins theory of mixing4–6, but now expressed 

the free energy density per volume in terms of the surface particle densities (in comparison, 

Eqs. (S1) and (S3) describe the free energy density per area). The proximal interaction layer 

has a thickness of 𝑑𝑑𝜎𝜎 = 11 nm and the distal layer has a thickness of 𝑑𝑑𝜏𝜏 = 8 nm. We 

neglected variations in the cross-sectional area of the different molecular species within the 

proximal and distal layers, respectively. We assumed that the local volumetric density of cargo 

is given by 𝑐𝑐𝑔𝑔/(𝑑𝑑𝜎𝜎 + 𝑑𝑑𝜏𝜏) in both layers, while the volume fraction that is locally occupied by 

cargo is given by the surface coverage in the corresponding interaction layer (𝜃𝜃𝑔𝑔 in the 

proximal layer, 𝜃𝜃𝑜𝑜 in the distal layer). We also applied these arguments for the MinD proteins 

(only present in the proximal layer at a volumetric density 𝑐𝑐𝑝𝑝/𝑑𝑑𝜎𝜎 and volume fraction 𝜃𝜃𝑝𝑝), free 

streptavidin molecules (only present in the proximal layer at a volumetric density 𝑐𝑐𝑠𝑠/𝑑𝑑𝜎𝜎  and 

volume fraction 𝜃𝜃𝑠𝑠) and the solvent patches in both interaction layers. Then, we integrated 

the free energy density per volume across both interaction layers to arrive at the free energy 

density per area. By taking the derivative of the resulting free energy density per area with 

respect to the surface density of cargo molecules, we found the following expression for the 

total chemical potential of a cargo molecule:  

 
e Here, we have approximated the DNA origami as a polymer with 7 segments. Alternatively, one could also treat 
the distal layer as an ideal solution (i.e. set the “polymer factor” to 1). This alternative choice does not affect our 
general results which will be discussed in more detail at the end of this section. Specifically, due to the resulting 
entropic repulsion between different DNA origami, entropic volume exclusion effects are not sufficient to explain 
the strong cargo gradients that we observed in our experiments (reaching near-saturation values in DNA origami 
coverage 𝜃𝜃𝑜𝑜 → 1 where the second term in Eq. (S4) and the equivalent third term in Eq. (S5) diverge 
logarithmically). 
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𝜇𝜇𝑔𝑔(𝒙𝒙)
𝑘𝑘𝐵𝐵𝑇𝑇

= ln�𝜃𝜃𝑔𝑔(𝒙𝒙)� − 𝑛𝑛 ln�1 − 𝜃𝜃𝑔𝑔(𝒙𝒙) − 𝜃𝜃𝑠𝑠(𝒙𝒙) − 𝜃𝜃𝑝𝑝(𝒙𝒙)� − 7 ln[1 − 𝜃𝜃𝑜𝑜(𝒙𝒙)] , (S5) 

where we have used 𝑑𝑑𝜎𝜎 (𝑑𝑑𝜎𝜎 + 𝑑𝑑𝜏𝜏)⁄ ln�𝜃𝜃𝑔𝑔(𝒙𝒙)� + 𝑑𝑑𝜏𝜏 (𝑑𝑑𝜎𝜎 + 𝑑𝑑𝜏𝜏)⁄ ln[𝜃𝜃𝑜𝑜(𝒙𝒙)] = ln�𝜃𝜃𝑔𝑔(𝒙𝒙)�+ 𝑐𝑐𝑠𝑠𝑐𝑐, 

and omitted all constant terms. Note that Eq. (S5) contains both a saturation term in the 

proximal layer (second term) as well as in the distal layer (third term). The chemical potentials 

of the streptavidin molecules, Eq. (S2b), and of the MinD proteins, Eq. (S2c), remain the same 

as calculated earlier, i.e. 𝜇𝜇𝑠𝑠(𝒙𝒙) ≡ 𝜇𝜇𝑠𝑠𝜎𝜎(𝒙𝒙) and 𝜇𝜇𝑝𝑝(𝒙𝒙) ≡ 𝜇𝜇𝑝𝑝𝜎𝜎(𝒙𝒙). 

In our experimental assay, ATP-consuming reactions continuously drive the MinDE protein 

distribution out of equilibrium and maintain a non-equilibrium, spatially non-uniform steady 

state that exhibits protein gradients (and fluxes)8–11. In stark contrast to the Min proteins, the 

cargo molecules and the free streptavidin molecules show only thermal Brownian diffusion 

while being bound to the membrane; they can be considered permanently bound to the 

membrane as they have a negligible detachment rate due to their strong membrane 

anchoring3. As a consequence, both the cargo molecules and free streptavidin molecules 

adopt a thermal equilibrium state, which is lacking any gradients in the chemical potentials 

(𝛁𝛁𝜇𝜇𝑔𝑔 = 𝛁𝛁𝜇𝜇𝑠𝑠 = 0). In other words, the (passive) Brownian particles in different regions of the 

membrane have identical chemical potentials in an adiabatic response to the externally 

imposed distribution of active particles, the MinD proteins: 𝛁𝛁𝜇𝜇𝑝𝑝 ≡ 𝛁𝛁𝜇𝜇𝑝𝑝𝜎𝜎 ≠ 0. Given these 

constraints regarding the spatial profile of the chemical potential, we then determined the 

distribution of all passive particles as follows. 

The constraint that the cargo molecules are in local thermal equilibrium, 𝛁𝛁𝜇𝜇𝑔𝑔 = 0, yields the 

following partial differential equation by taking the gradient of Eq. (S5) and using the chain 

rule for multivariable functions,  

� 
𝜕𝜕𝜇𝜇𝑔𝑔
𝜕𝜕𝜃𝜃𝑔𝑔

 
𝜕𝜕𝜃𝜃𝑔𝑔
𝜕𝜕𝜃𝜃𝑜𝑜

+
𝜕𝜕𝜇𝜇𝑔𝑔
𝜕𝜕𝜃𝜃𝑜𝑜

�  𝛁𝛁𝜃𝜃𝑜𝑜 +
𝜕𝜕𝜇𝜇𝑔𝑔
𝜕𝜕𝜃𝜃𝑠𝑠

 𝛁𝛁𝜃𝜃𝑠𝑠 +  
𝜕𝜕𝜇𝜇𝑔𝑔
𝜕𝜕𝜃𝜃𝑝𝑝

 𝛁𝛁𝜃𝜃𝑝𝑝 = 0 , (S6a) 

while the constraint 𝛁𝛁𝜇𝜇𝑠𝑠 ≡ 𝛁𝛁𝜇𝜇𝑠𝑠𝜎𝜎 = 0 directly implies, by using the chain rule for multivariable 

functions,  

𝜕𝜕𝜇𝜇𝑠𝑠𝜎𝜎

𝜕𝜕𝜃𝜃𝑔𝑔
 
𝜕𝜕𝜃𝜃𝑔𝑔
𝜕𝜕𝜃𝜃𝑜𝑜

 𝛁𝛁𝜃𝜃𝑜𝑜 +
𝜕𝜕𝜇𝜇𝑠𝑠𝜎𝜎

𝜕𝜕𝜃𝜃𝑠𝑠
 𝛁𝛁𝜃𝜃𝑠𝑠 +

𝜕𝜕𝜇𝜇𝑠𝑠𝜎𝜎

𝜕𝜕𝜃𝜃𝑝𝑝
 𝛁𝛁𝜃𝜃𝑝𝑝 = 0 . (S6b) 

The ratio 𝜕𝜕𝜃𝜃𝑔𝑔/𝜕𝜕𝜃𝜃𝑜𝑜 = 𝑎𝑎𝑔𝑔/𝑎𝑎𝑜𝑜 = (𝑛𝑛 𝑎𝑎𝜎𝜎)/(7 𝑎𝑎𝜏𝜏) ≈ 𝑛𝑛/70 is fully determined by the number  𝑛𝑛 of 

streptavidin blocks per cargo. Since a heterogeneous spatial distribution of proteins (Min 

pattern), i.e. 𝛁𝛁𝜃𝜃𝑝𝑝, is externally maintained, Eqs. (S6a) and (S6b) form a closed set of partial 
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differential equationsf in the variables 𝜃𝜃𝑜𝑜 and 𝜃𝜃𝑠𝑠 (together with the additional constraint that 

the average density of the different molecular species is conserved).  

Finally, we will now impose a (externally maintained) spatial distribution of MinDE proteins 

and solve Eqs. (S6a) and (S6b) with the constraint that the average density of the different 

molecular species is conserved (mass conservation). Note that neither the precise functional 

form of the MinDE protein coverage distribution 𝜃𝜃𝑝𝑝 nor the dimension of the geometry are 

important: In general, the equilibrium distribution of the cargo coverage will be determined 

by the distribution of MinD proteins and the abundance of all molecules in the assay, and 

therefore have the form 𝜃𝜃𝑜𝑜(𝜃𝜃𝑝𝑝,𝜃𝜃𝑝𝑝���,𝜃𝜃𝑜𝑜���,𝜃𝜃𝑠𝑠� ,𝑛𝑛). Similarly, the equilibrium distribution of the 

streptavidin coverage has the form 𝜃𝜃𝑠𝑠(𝜃𝜃𝑝𝑝,𝜃𝜃𝑝𝑝���,𝜃𝜃𝑜𝑜���,𝜃𝜃𝑠𝑠� ,𝑛𝑛). Thus, by using the (multivariable) 

chain rule of differentiation, one could fully eliminate all gradients from Eqs. (S6a) and (S6b): 

�
𝑛𝑛 𝑎𝑎𝜎𝜎
7 𝑎𝑎𝜏𝜏

 
𝜕𝜕𝜇𝜇𝑔𝑔
𝜕𝜕𝜃𝜃𝑔𝑔

 +
𝜕𝜕𝜇𝜇𝑔𝑔
𝜕𝜕𝜃𝜃𝑜𝑜

�  
𝜕𝜕𝜃𝜃𝑜𝑜
𝜕𝜕𝜃𝜃𝑝𝑝

 +
𝜕𝜕𝜇𝜇𝑔𝑔
𝜕𝜕𝜃𝜃𝑠𝑠

 
𝜕𝜕𝜃𝜃𝑠𝑠
𝜕𝜕𝜃𝜃𝑝𝑝

+
𝜕𝜕𝜇𝜇𝑔𝑔
𝜕𝜕𝜃𝜃𝑝𝑝

= 0 , (S6a⋆)

𝑛𝑛 𝑎𝑎𝜎𝜎
7 𝑎𝑎𝜏𝜏

 
𝜕𝜕𝜇𝜇𝑠𝑠𝜎𝜎

𝜕𝜕𝜃𝜃𝑔𝑔
 
𝜕𝜕𝜃𝜃𝑜𝑜
𝜕𝜕𝜃𝜃𝑝𝑝

+
𝜕𝜕𝜇𝜇𝑠𝑠𝜎𝜎

𝜕𝜕𝜃𝜃𝑠𝑠
 
𝜕𝜕𝜃𝜃𝑠𝑠
𝜕𝜕𝜃𝜃𝑝𝑝

+
𝜕𝜕𝜇𝜇𝑠𝑠𝜎𝜎

𝜕𝜕𝜃𝜃𝑝𝑝
= 0 , (S6b⋆)

 

and directly solve for the coverage of passive particles as a function of the protein coverage. 

Note that Eqs. (S6a⋆) and (S6b⋆) can also be obtained by directly setting 𝜇𝜇𝑔𝑔 = 𝑐𝑐𝑠𝑠𝑐𝑐 and 𝜇𝜇𝑠𝑠 =

𝑐𝑐𝑠𝑠𝑐𝑐, and expanding the resulting equations to first order in the protein coverage 𝜃𝜃𝑝𝑝. 

Alternatively, one can also obtain Eqs. (S6a⋆) and (S6b⋆) by integrating Eqs. (S6a) and (S6b) 

over an arbitrary infinitesimal line segment 𝑑𝑑𝒔𝒔, and perform a change of variables 𝑑𝑑𝒔𝒔 ⋅ 𝛁𝛁𝜃𝜃 =

𝑑𝑑𝜃𝜃. Since we were also interested in the spatial distribution of passive molecules, however, 

we translated Eqs. (S6a) and (S6b) into a boundary value problem, in a 1D geometry of length 

𝐿𝐿 ≡ 1. Specifically, this boundary value problem enforces the constraint that the average 

density of the different molecular species is conserved. We introduced two fields for the 

cumulative coverage (this corresponds to the cumulative mass for density fields) of DNA 

origami Θ𝑜𝑜 = 1
𝐿𝐿 ∫ 𝑑𝑑𝑑𝑑 𝜃𝜃𝑜𝑜(𝑑𝑑)𝑥𝑥

0  and streptavidin molecules Θ𝑠𝑠 = 1
𝐿𝐿 ∫ 𝑑𝑑𝑑𝑑 𝜃𝜃𝑠𝑠(𝑑𝑑)𝑥𝑥

0 , resulting in the 

additional two differential equations  

𝜃𝜃𝑜𝑜 = 𝐿𝐿 𝛁𝛁Θ𝑜𝑜 , (S6c)
𝜃𝜃𝑠𝑠 = 𝐿𝐿 𝛁𝛁Θ𝑠𝑠 . (S6d) 

 
f To keep the equations concise, we have chosen not to insert the partial derivatives of the chemical potentials 
with respect to particle coverage, 𝜕𝜕𝜇𝜇𝑖𝑖/𝜕𝜕𝜃𝜃𝑗𝑗. These partial derivatives are easily obtained from Eqs. (S2b) and (S5). 
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Thus, in summary, we have four partial differential equations (S6a), (S6b), (S6c) and (S6d) 

with the four boundary conditions Θ𝑠𝑠(0) = 0, Θ𝑠𝑠(𝐿𝐿) = 𝜃𝜃𝑠𝑠� (𝑛𝑛) , Θ𝑜𝑜(0) = 0, and Θ𝑜𝑜(𝐿𝐿) =

𝜃𝜃𝑜𝑜���(𝑛𝑛). As we have discussed in section I.2 “Cargo density is limited by abundance of 

streptavidin and origami”, the average coverage of free streptavidin molecules and cargo 

(equivalent to their density or abundance) depend on the number of streptavidin blocks per 

cargo molecule. Then, we imposed the following coverage distribution of proteinsg:  

𝜃𝜃𝑝𝑝 = 𝜃𝜃𝑝𝑝��� 2 cos �
𝜋𝜋 𝑥𝑥
2 𝐿𝐿

�
2

, (S7) 

and numerically solved the closed set of partial differential equations (S6a), (S6b), (S6c) and 

(S6d), as shown in Fig. 2b,c in the main text and Extended Data Fig. 3a. These results show 

that entropic mixing effects can in principle lead to transport of passive particles in a gradient 

of active particles (Fig. 2b,c in the main text and Extended Data Fig. 3a). However, this 

disagrees with our experiments where we observed a far stronger redistribution of the passive 

cargo molecules than entropic mixing would predict (Fig. 2b in the main text and Extended 

Data Fig. 3a). This observation can be explained as follows. The weak entropic sorting of the 

cargo’s small streptavidin blocks in a fixed gradient of MinD proteins originates from the 

second term in the proximal chemical potential of cargo, Eq. (S2a), and the equivalent second 

term in the total chemical potential of cargo, Eq. (S5), which corresponds to a volume 

exclusion term (free streptavidin molecules experience analogous entropic sorting according 

to Eq. (S2b)). Specifically, the fixed distribution of active MinD proteins constrains the local 

mixture of cargo, streptavidin molecules and MinD proteins. In response, the passive cargo 

and streptavidin molecules will distribute in such a way that maximizes the local area fraction 

that is occupied by solvent (mixing). However, just as there is volume exclusion between 

particles in the proximal layer 𝜎𝜎, there is also volume exclusion between particles in the distal 

layer 𝜏𝜏 which accommodates the DNA origami scaffolds (cf. illustration “Conceptualized model 

geometry”). Furthermore, the particles in the distal layer are much larger than the particles in 

the proximal layer. Thus, agglomeration of cargo is prevented by the second term in the distal 

chemical potential of cargo, Eq. (S4), and the equivalent third term in the total chemical 

 
g This specific choice serves to (roughly) approximate the spatial profile of MinD in the assay that contains cargo-
15, cargo-28 or cargo-42 (cf. Fig. 1d in the main text). There, roughly 30-50% of the raw image pixels can be 
classified as MinD-minima (Fig. 1g in the main text), which suggests an almost symmetric MinD profile. The spatial 
profile of MinD becomes increasingly asymmetric for cargo with decreasing number of streptavidin 𝑛𝑛. However, 
the precise form of the MinD profile should not be relevant, as the spatial dimension 𝒙𝒙 can be fully eliminated 
from Eqs. (S6a) and (S6b), cf. resulting Eqs. (S6a⋆) and (S6b⋆). 
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potential of cargo, Eq. (S5), which diverges logarithmically as the area fraction 𝜃𝜃𝑜𝑜 that is 

covered by DNA origami scaffolds approaches saturation, 𝜃𝜃𝑜𝑜 → 1. As the volume exclusion 

term in the distal chemical potential of cargo, Eq. (S4), that prevents cargo agglomeration (cf. 

the equivalent third term in the total chemical potential of cargo, Eq. (S5)) has a greater weight 

than the volume exclusion term in the proximal chemical potential of cargo, Eq. (S2a), which 

creates cargo gradients in response to the imposed distribution of MinD proteins (cf. the 

equivalent second term in the total chemical potential of cargo, Eq. (S5)), we conclude that 

mixing effects alone may never be sufficient to reach near-saturation densities (cf. section I.2 

“Cargo density is limited by abundance of streptavidin and origami”) like in our experiments. 

4. Phenomenological coupling between diffusive fluxes: an out-of-equilibrium picture 

As described in the main text, we next relaxed our previous assumption of fixed external 

chemical potential gradients and considered their dynamics. According to Onsager’s theory of 

nonequilibrium thermodynamics12, gradients in a chemical potential 𝛁𝛁𝜇𝜇𝑖𝑖 imply particle fluxes 

𝒋𝒋𝑖𝑖. In the present context, a possible candidate for a non-equilibrium process in a crowded 

environment is the coupling of particle fluxes through (mesoscopic) friction caused by non-

specific interactions between proteins and cargo molecules on the membrane. This 

phenomenological friction may originate from hydrodynamic interactions, or also from 

collisions given that the mean free path between membrane-bound particles is only about 50 

Å (see section I.1 “Large particle density in MinD-rich regions and large mean particle 

density”). In fluids, a frictional coupling between the diffusive fluxes of dilute solutes is 

mediated by hydrodynamic interactions (and a two-particle interaction potential) and has 

been predicted by Derjaguin13 (cf. section “Discussion of related non-equilibrium transport 

mechanisms”). In gases, a phenomenologically similar (but mechanistically distinct) coupling 

between diffusive fluxes originates from a direct momentum transfer due to binary collisions 

and has been predicted by the Maxwell-Stefan theory of diffusion14,15, as well as 

experimentally observed for three-component gas mixtures16,17. Since there are different 

microscopic mechanisms that can lead to a coupling between diffusive fluxes, we formulated 

a phenomenological theory where each species on the membrane obeys a Maxwell-Stefan-
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like effective force-balance equation14,15,h,i:  

𝛁𝛁𝜇𝜇𝑖𝑖 + 𝜉𝜉𝑖𝑖  
𝒋𝒋𝑖𝑖
𝑐𝑐𝑖𝑖

+ �𝑐𝑐𝑘𝑘 𝜁𝜁𝑖𝑖𝑘𝑘  �
𝒋𝒋𝑖𝑖
𝑐𝑐𝑖𝑖
−
𝒋𝒋𝑘𝑘
𝑐𝑐𝑘𝑘
�

𝑘𝑘

= 0 . � S8,
 1 in main text� 

Here, the index 𝑖𝑖 ∈ {𝑝𝑝,𝑔𝑔, 𝑠𝑠} refers to MinD proteins, cargo molecules with bound streptavidin, 

and free streptavidin molecules, respectively. Conceptually, the thermodynamic driving 

forces, caused by chemical potential gradients, are balanced by friction forces between the 

different macromolecules and lipid molecules (with friction coefficients 𝜉𝜉𝑖𝑖) as well as among 

the different macromolecules themselves (with coupling constants 𝜁𝜁𝑖𝑖𝑘𝑘). Note that, according 

to Onsager’s reciprocal relations12, the matrix of coupling constants must be symmetric: 𝜁𝜁𝑖𝑖𝑘𝑘 =

 𝜁𝜁𝑘𝑘𝑖𝑖 . Then, by summing the effective force balance equations for each particle species 

weighted with the respective particle concentration, one can verify that all friction forces due 

to particle-particle interactions cancel out. The underlying physical reason for these 

cancellations is the conservation law for the global momentum (i.e. global force balance). The 

last term in Eq. (S8) corresponds to a momentum transfer between any two particle species. 

On average, these momentum transfers must cancel out to satisfy momentum conservation. 

The second term in Eq. (S8) dissipates momentum into the membrane, and the first term in 

Eq. (S8) is a potential force which in our case originates from the free energy of mixingj. 

Since our experiments showed a nonequilibrium steady state, 𝜕𝜕𝑡𝑡𝑐𝑐𝑖𝑖 = 0, we continued to 

analyse the steady state of the model. While cargo and streptavidin molecules exhibit 

Brownian motion and relax to a thermal equilibrium state with vanishing fluxes 𝒋𝒋𝑔𝑔 = 𝒋𝒋𝑠𝑠 = 0, 

the MinD protein patterns are kept in a non-equilibrium steady state maintained by off-

equilibrium chemical reactions (ATPase activity). Because the fluxes of passive cargo and 

streptavidin molecules vanish, there is no need to consider a coupling 𝜁𝜁𝑠𝑠𝑔𝑔 between them. 

Furthermore, Eq. (S8) shows that the self-coupling coefficients 𝜁𝜁𝑖𝑖𝑖𝑖  are irrelevant for the mean 

field dynamics. For single molecules, however, such a self-coupling should lead to a density-

dependent self-diffusion coefficient, as has been observed for MinD by Loose et al.1 using 

 
h The last term in Eq. (S8) corresponds to an effective friction (i.e. momentum transfer) that is proportional to 
the velocity difference between the fluxes of different particle species. Note that one would use analogous terms 
to couple different fluids in dense multi-component liquids. 
i The validity of the phenomenological theory that is presented here is independent of the detailed microscopic 
mechanism, because it relies on very general Onsager-like arguments. Calculating the coupling coefficients from 
a microscopic picture is an interesting problem on its own, which is hinted at in section III.1 “Illustrative derivation 
of the diffusiophoretic drift velocity in 3D solutions”. 
j In general, the potential force can also contain contributions from electrostatic or other interactions between 
particles. 

Reprintofpublished
m
anuscript

II.2 Protein Fluxes Induce Generic Transport of Cargo

125



17 
 

single-particle tracking and for membrane-bound DNA origami using Fluorescence Correlation 

Spectroscopy18. 

Since the fluxes of the passive particles, cargo and streptavidin molecules, vanish (𝒋𝒋𝑔𝑔 = 𝒋𝒋𝑠𝑠 =

0), the fluxes of the MinD proteins are given by  

𝒋𝒋𝑝𝑝 = −
𝑐𝑐𝑝𝑝 𝛁𝛁𝜇𝜇𝑝𝑝

𝜉𝜉𝑝𝑝 + 𝑐𝑐𝑔𝑔 𝜁𝜁𝑝𝑝𝑔𝑔 + 𝑐𝑐𝑠𝑠 𝜁𝜁𝑝𝑝𝑠𝑠
 , (S9) 

where the chemical potential gradient of the MinD proteins is given by Eq. (S2c). After 

inserting Eq. (S9) back into the force balance equation, Eq. (S8), one obtains the following 

relations between the externally maintained chemical potential gradients of the active 

particles (MinD proteins) and the induced chemical potential gradients of the passive particles 

(streptavidin and cargo molecules), respectively:  

𝛁𝛁𝜇𝜇𝑔𝑔 = 𝜁𝜁𝑝𝑝𝑔𝑔 𝒋𝒋𝑝𝑝 = −
𝑐𝑐𝑝𝑝 𝜁𝜁𝑝𝑝𝑔𝑔

𝜉𝜉𝑝𝑝 + 𝑐𝑐𝑔𝑔 𝜁𝜁𝑝𝑝𝑔𝑔 + 𝑐𝑐𝑠𝑠 𝜁𝜁𝑝𝑝𝑠𝑠
 𝛁𝛁𝜇𝜇𝑝𝑝, (S10a)

𝛁𝛁𝜇𝜇𝑠𝑠 = 𝜁𝜁𝑝𝑝𝑠𝑠 𝒋𝒋𝑝𝑝 = −
𝑐𝑐𝑝𝑝 𝜁𝜁𝑝𝑝𝑠𝑠

𝜉𝜉𝑝𝑝 + 𝑐𝑐𝑔𝑔 𝜁𝜁𝑝𝑝𝑔𝑔 + 𝑐𝑐𝑠𝑠 𝜁𝜁𝑝𝑝𝑠𝑠
 𝛁𝛁𝜇𝜇𝑝𝑝. (S10b)

 

Here, the chemical potential gradient of the cargo molecules is given by Eq. (S5), the chemical 

potential gradient of streptavidin molecules is given by Eq. (S2b), and the chemical potential 

gradient of the MinD proteins is given by Eq. (S2c). Analogous to our numerical solution of the 

Flory-Huggins model (see section I.3 “Flory-Huggins theory of mixing: an equilibrium picture”), 

we formulated Eqs. (S10a) and (S10b) as a 1D boundary-value problem in a domain of size 

𝐿𝐿 ≡ 1, by introducing the two additional fields Θ𝑜𝑜 = 1
𝐿𝐿 ∫ 𝑑𝑑𝑑𝑑 𝜃𝜃𝑜𝑜(𝑑𝑑)𝑥𝑥

0  and Θ𝑠𝑠 = 1
𝐿𝐿 ∫ 𝑑𝑑𝑑𝑑 𝜃𝜃𝑠𝑠(𝑑𝑑)𝑥𝑥

0  

and their respective boundary conditions Θ𝑠𝑠(0) = 0, Θ𝑠𝑠(𝐿𝐿) = 𝜃𝜃𝑠𝑠� (𝑛𝑛), Θ𝑜𝑜(0) = 0, and 

Θ𝑜𝑜(𝐿𝐿) = 𝜃𝜃𝑜𝑜���(𝑛𝑛). As before, we imposed the distribution of MinD proteins (externally 

maintained by a reaction-diffusion system) as given by Eq. (S7). 

In the absence of mutual friction between the macromolecules (𝜁𝜁𝑖𝑖𝑘𝑘 = 0), Eq. (S8) reduces to 

the Flory-Huggins model (𝛁𝛁𝜇𝜇𝑔𝑔 = 𝛁𝛁𝜇𝜇𝑠𝑠 = 0) which implies weak cargo redistribution in a 

stationary gradient of active proteins. In contrast, in the presence of (frictional) coupling 

(𝜁𝜁𝑖𝑖𝑘𝑘 ≠ 0) between cargo molecules and MinD protein fluxes (𝒋𝒋𝑝𝑝 ≠ 0), the cargo molecules are 

not only redistributed due to entropic demixing effects, but in addition they are transported 

along protein gradients by these nonequilibrium protein fluxes. As consequence of this 

additional bias, cargo redistribution is significantly stronger than by equilibrium 

thermodynamic forces alone, which quantitatively explains our experimental data (Fig. 2b,c in 
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the main text and Extended Data Fig. 3a). We expect that individual streptavidin molecules 

experience a coupling 𝜁𝜁𝑝𝑝𝑠𝑠 to MinD fluxes, which arises from a mesoscopic friction. 

Consequently, we also expect that the coupling constant 𝜁𝜁𝑝𝑝𝑔𝑔 between MinD and a specific 

cargo has a contribution from the origami scaffold as well as from each of its 𝑛𝑛 streptavidin 

molecules:  

𝜁𝜁𝑝𝑝𝑔𝑔 = 𝜁𝜁𝑝𝑝𝑜𝑜 + 𝑛𝑛 𝜁𝜁𝑝𝑝𝑠𝑠 . (S11) 

This implies that the extent of cargo redistribution should increase with the number of 

streptavidin integrated into the cargo, as indeed observed in our experiments (Fig. 1e in the 

main text). This suggests that diffusiophoresis is not limited to the transport of large cargo, 

but can also explain the transport of small molecules (with similar size as MinD proteins), such 

as individual membrane-bound streptavidin molecules as reported in this study (Fig. 1d in the 

main text) and previous ones2,19. 

5. Analytic solution and fitting of reduced model 

To further elucidate the mechanism underlying MinDE-induced transport, we simplified our 

theoretical model. Specifically, we neglected membrane saturation effects (i.e. the second 

terms in Eqs. (S2a), (S2b), (S2c), (S4) and thus both the second and third terms in Eq. (S5)), so 

that the chemical potential of a particle with size 𝑎𝑎𝑖𝑖 reduces to 𝜇𝜇𝑖𝑖 ≈ 𝑘𝑘𝐵𝐵𝑇𝑇 ln(𝑎𝑎𝑖𝑖𝑐𝑐𝑖𝑖). Then, the 

effective force-balance equation, Eq. (S8), takes the form of a generalized Fick’s law for the 

MinD protein fluxes in the non-equilibrium steady state with a density-dependent diffusion 

coefficient 𝐷𝐷𝑝𝑝�𝑐𝑐𝑔𝑔, 𝑐𝑐𝑠𝑠�:  

𝒋𝒋𝑝𝑝 ≈ −
𝑘𝑘𝐵𝐵𝑇𝑇

𝜉𝜉𝑝𝑝 + 𝑐𝑐𝑔𝑔 𝜁𝜁𝑝𝑝𝑔𝑔 + 𝑐𝑐𝑠𝑠 𝜁𝜁𝑝𝑝𝑠𝑠
 𝛁𝛁𝑐𝑐𝑝𝑝 ≡ −𝐷𝐷𝑝𝑝�𝑐𝑐𝑔𝑔, 𝑐𝑐𝑠𝑠� 𝛁𝛁𝑐𝑐𝑝𝑝 . � S12,

 2 in main text� 

Because the number of free streptavidin is typically small (see section I.2 “Cargo density is 

limited by abundance of streptavidin and origami”), we assumed that free streptavidin 

molecules do not significantly contribute to the dynamics, 𝑐𝑐𝑠𝑠 𝜁𝜁𝑝𝑝𝑠𝑠 ≪ 𝑐𝑐𝑔𝑔 𝜁𝜁𝑝𝑝𝑔𝑔. After inserting Eq. 

(S12) back into the force balance equation, Eq. (S8), one obtains the following relation 

between cargo molecule and MinD protein gradients:  

𝛁𝛁𝑐𝑐𝑔𝑔 = −
𝑐𝑐𝑔𝑔

𝑐𝑐× + 𝑐𝑐𝑔𝑔
𝛁𝛁𝑐𝑐𝑝𝑝 , (S13) 

with typical interaction density 𝑐𝑐× = 𝜉𝜉𝑝𝑝/𝜁𝜁𝑝𝑝𝑔𝑔. In the equilibrium state, where the fluxes of 

cargo molecules vanish 𝒋𝒋𝑔𝑔 = 0, the distribution of the cargo molecules will be determined by 

the distribution of MinD proteins, the abundance of molecules in the assay, and the 
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interaction density 𝑐𝑐×. Therefore, the local cargo density will have the form 𝑐𝑐𝑔𝑔(𝑐𝑐𝑝𝑝, 𝑐𝑐×, 𝑐𝑐𝑔𝑔� , 𝑐𝑐𝑝𝑝� ). 

Thus, by using the chain rule of differentiation, one can fully eliminate all gradients from Eq. 

(S13) to obtain the following ordinary differential equation:  

𝜕𝜕𝑐𝑐𝑔𝑔
𝜕𝜕𝑐𝑐𝑝𝑝

= −
𝑐𝑐𝑔𝑔

𝑐𝑐× + 𝑐𝑐𝑔𝑔
. (S14) 

Alternatively, one can also obtain the ordinary differential equation (S14) by integrating Eq. 

(S13) over an arbitrary infinitesimal line segment 𝑑𝑑𝒔𝒔, and performing a change of variables 

𝑑𝑑𝒔𝒔 ⋅ 𝛁𝛁𝑐𝑐 = 𝑑𝑑𝑐𝑐. Eq. (S14) can be solved by integration, and yields the following relationship 

between the cargo molecule density and the MinD protein density:  

𝑐𝑐𝑔𝑔�𝑐𝑐𝑝𝑝� = 𝑐𝑐× 𝑊𝑊0 �
𝑐𝑐𝑔𝑔(0)
𝑐𝑐×

exp�
𝑐𝑐𝑔𝑔(0) − 𝑐𝑐𝑝𝑝

𝑐𝑐×
��  . � S15,

3 in main text� 

Here, 𝑊𝑊0 refers to the principal branch of the Lambert W-function, which is defined as the 

inverse function of 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 𝑒𝑒𝑥𝑥 (cf. illustration “Lambert W-function”). In terms of 

fluorescence intensities, 𝐼𝐼𝑔𝑔 = 𝛼𝛼𝑔𝑔𝑐𝑐𝑔𝑔 and 𝐼𝐼𝑝𝑝 = 𝛼𝛼𝑝𝑝𝑐𝑐𝑝𝑝, Eq. (S15) can be rewritten as  

𝐼𝐼𝑔𝑔�𝐼𝐼𝑝𝑝� = 𝑟𝑟 𝐼𝐼× 𝑊𝑊0 �
𝐼𝐼𝑔𝑔(0)
𝑟𝑟 𝐼𝐼×

exp �
𝐼𝐼𝑔𝑔(0)
𝑟𝑟 𝐼𝐼×

−
𝐼𝐼𝑝𝑝
𝐼𝐼×
��  , (S16) 

where we have defined the fluorescence ratio 𝑟𝑟 = 𝛼𝛼𝑔𝑔/𝛼𝛼𝑝𝑝 and the typical MinD intensity 

corresponding to the interaction density 𝐼𝐼× = 𝛼𝛼𝑝𝑝𝑐𝑐×. In our experiments, we controlled the 

abundance of all fluorescent molecules.  

Our experimental data were collected over a set of experiments performed on different days. 

Each set of samples (that were measured on a particular day) contains at least one 

  

 

Lambert W-function. The Lambert W-function is defined as the inverse function of 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 𝑒𝑒𝑥𝑥 and 
has two real branches, 𝑊𝑊0 and 𝑊𝑊−1. 
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measurement that was performed with cargo-1. Thus, as reference values for each day, we 

used the mean fluorescence intensities of the different channels in the cargo-1 samples. Then, 

we normalised all fluorescence channels to their respective reference values. Since the 

normalised average fluorescence intensity of the DNA origami is 1.0 for the cargo-1 samples 

and their average density is 313 μm−2 (assuming that all DNA origami bind to the membrane), 

we estimated the (normalised) fluorescence yield of a DNA origami/cargo molecule as 𝛼𝛼𝑔𝑔 ≈

3.2 × 10−3 µm2. The MinD monomer density in the MinD maxima reaches a value of about 

13 200 μm−2 1,2. Thus, by measuring the normalised fluorescence intensity in the MinD 

maxima (1.47, normalised to the average MinD fluorescence), we estimated the fluorescence 

yield of a MinD dimer as 𝛼𝛼𝑝𝑝 ≈ 2.2 × 10−4 µm2. This results in the following fluorescence 

ratio: 𝑟𝑟 ≈ 14.5. Having estimated the fluorescence ratio 𝑟𝑟 from our experiments, we then 

fitted Eq. (S16) to the experimental data, with 𝐼𝐼× as fit parameter (Fig. 3a in the main text and 

Extended Data Fig. 3b). Then, we determined the interaction parameter, 𝜃𝜃×
−1 = �𝑎𝑎𝑝𝑝𝑐𝑐×�

−1
=

𝐼𝐼×−1 (𝛼𝛼𝑝𝑝/𝑎𝑎𝑝𝑝) ∝ 𝜁𝜁𝑝𝑝𝑔𝑔; here, 𝛼𝛼𝑝𝑝 refers to the MinD fluorescence yield and 𝑎𝑎𝑝𝑝 refers to the size of 

a MinD dimer. Our fitting procedure confirmed our initial expectation 𝜁𝜁𝑝𝑝𝑔𝑔 = 𝜁𝜁𝑝𝑝𝑜𝑜 + 𝑛𝑛 𝜁𝜁𝑝𝑝𝑠𝑠, as 

can be seen from Fig. 3b in the main text and Extended Data Fig. 5hk. 

6. Diffusion coefficient of cargo molecules 

Our theory suggests that increasing the surface density of membrane-bound molecules (MinD, 

streptavidin, or cargo) will also increase the friction that each molecule experiences; 

specifically, Eq. (S8) states that each molecule not only transfers momentum to the 

membrane, but also to surrounding molecules. Thus, we expect that the diffusion coefficient 

of all molecules depends on the local density of membrane-bound molecules, as we have 

demonstrated with Eq. (S12) for the expected diffusion coefficient of MinD. To further 

validate our model, we determined the (mesoscopic) diffusion coefficient of the cargo 

molecules from our theory, and then compared these predictions with experimental data on 

the (microscopic) diffusion coefficient of cargo molecules that we obtained from single 

particle tracking.  

 
k The absolute value of the fitted interaction parameter is smaller than the value that we have estimated for our 
full model (cf. Supplementary Table 1), because we have neglected saturation effects in deriving our fit curve, 
Eq. (S16). As discussed in section I.5 “Flory-Huggins theory of mixing: an equilibrium picture”, saturation effects 
strongly counteract the buildup of cargo gradients and thus require a stronger coupling parameter 𝜁𝜁𝑝𝑝𝑔𝑔  to 
generate significant cargo gradients. 
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To obtain theoretical predictions, we neglected membrane saturation effects analogously to 

section I.5 “Analytic solution and fitting of reduced model”, so that the chemical potential of 

a particle with size 𝑎𝑎𝑖𝑖 reduces to 𝜇𝜇𝑖𝑖 ≈ 𝑘𝑘𝐵𝐵𝑇𝑇 ln(𝑎𝑎𝑖𝑖𝑐𝑐𝑖𝑖). Furthermore, because the number of free 

streptavidin molecules is typically small (see section I.2 “Cargo density is limited by abundance 

of streptavidin and origami”)l, we neglected the density of free streptavidin molecules (𝑐𝑐𝑠𝑠 ≈

0). Then, the effective force-balance equation, Eq. (S8), takes the form of a generalized Fick’s 

law for the cargo fluxes, where gradients in the cargo molecule density (𝛁𝛁𝑐𝑐𝑔𝑔) relax with a 

density-dependent diffusion coefficient 𝐷𝐷𝑔𝑔�𝑐𝑐𝑝𝑝�:  

𝒋𝒋𝑔𝑔 ≈ −
𝑘𝑘𝐵𝐵𝑇𝑇

𝜉𝜉𝑔𝑔 + 𝑐𝑐𝑝𝑝 𝜁𝜁𝑝𝑝𝑔𝑔
 𝛁𝛁𝑐𝑐𝑔𝑔 ≡ −𝐷𝐷𝑔𝑔�𝑐𝑐𝑝𝑝� 𝛁𝛁𝑐𝑐𝑔𝑔 . (S17) 

By substituting the typical interaction density 𝑐𝑐× = 𝜉𝜉𝑝𝑝/𝜁𝜁𝑝𝑝𝑔𝑔, the diffusion coefficient of cargo 

molecules in the dilute limit 𝐷𝐷𝑔𝑔0 = 𝑘𝑘𝐵𝐵𝑇𝑇/𝜉𝜉𝑔𝑔, and the diffusion coefficient of MinD proteins in 

the dilute limit 𝐷𝐷𝑝𝑝0 = 𝑘𝑘𝐵𝐵𝑇𝑇/𝜉𝜉𝑝𝑝, one obtains:  

𝐷𝐷𝑔𝑔�𝑐𝑐𝑝𝑝� ≈
𝐷𝐷𝑔𝑔0

1 + �𝐷𝐷𝑔𝑔0 𝐷𝐷𝑝𝑝0� ��𝑐𝑐𝑝𝑝 𝑐𝑐×⁄ �
 . (S18) 

We measured the diffusion coefficient of cargo-2 and of cargo-42, 𝐷𝐷𝑔𝑔0, in the dilute limit (Fig. 

3c in the main text). The diffusion coefficient of membrane-bound MinD proteins in the dilute 

limit was assumed to be 𝐷𝐷𝑝𝑝0 ≈ 0.425 µm2s−1, based on single particle tracking data from 

Loose et al1. Using these data and the interaction parameters that we obtained by fitting the 

reduced model, Eq. (S16), to the experimental data (cf. Fig. 3a in the main text and Extended 

Data Fig. 3b for examples of the fits as well as Fig. 3b in the main text and Extended Data Fig. 

5h for the fitted interaction parameters), we then predicted how the diffusion coefficient of a 

cargo molecule should change in the presence of MinD, in reference to its diffusion coefficient 

in the dilute limit. Comparing our prediction of the diffusion coefficient with experimental 

measurements, we found good agreement (Fig. 3c in the main text and Extended Data Fig. 

5a). Specifically, we also found that cargo with more streptavidin blocks is affected less by the 

 
l The assumptions made in section I.2 “Cargo density is limited by abundance of streptavidin and origami” should 
remain valid for the single particle tracking experiments even though the overall densities are about 100 times 
lower, as the ratio between membrane-bound streptavidin (biotinylated lipids) and DNA origami is kept similar:  
We use 100 times less biotinylated lipids (0.01%) and 100-1000 times less DNA origami than in the other 
experiments.  

Re
pr
in
to
fp
ub
lis
he
d
m
an
us
cr
ip
t

II Between Protein Patterns and Mechanics

130



22 
 

presence of MinD, because the base value of its diffusion coefficient (in the dilute limit) is 

much smaller (Fig. 3c in the main text and Extended Data Fig. 5a). 

7. Determining the spatial distribution of multiple cargo species 

The numerical computation of the cargo distributions in response to an imposed spatial profile 

of MinD, when multiple cargo species are present in the assay, were performed analogously 

to the numerical computations for only one cargo species by determining the corresponding 

boundary value problem. Specifically, note that in deriving our Flory-Huggins and 

phenomenological Maxwell-Stefan type models, we have already considered two passive 

species (cargo and streptavidin molecules). Adding one more cargo species does not introduce 

new physical concepts. Thus, it is straightforward to extend these equations by one additional 

chemical potential for the second cargo species (cf. Eqs. (S2a), (S2b), (S2c), (S4) and (S5)) and 

one additional equation for the flux of the second cargo species (i.e. so that there are three 

passive species), just by following the calculations that we have already presented for two 

passive speciesm. These calculations then yield an additional partial differential equation that 

determines the distribution of the third passive species in response to the spatial profile of 

MinD proteins (cf. Eqs. (S6a) and (S6b) for the Flory-Huggins type model and Eqs. (S10a) and 

(S10b) for the phenomenological Maxwell-Stefan type model). Similarly, this procedure also 

yields an additional partial differential equation for the cumulative coverage of the third 

species, cf. Eqs. (S6c) and (S6d), which enforces the mass conservation of the additional 

density field. Furthermore, for the sake of simplicity, we assumed equal abundance of all 

different cargo species on the membranen; analogously, in our experimental assays we also 

provided an equal abundance of different DNA origami (i.e. with different numbers of 

biotinylated oligonucleotide handles).  

 

 
m As the number of species increases, these equations become increasingly complicated. Thus, we used a 
symbolic math package (SymPy for Python)69 to determine the constitutive equations and translate them into 
matrix form. 
n In principle, it is possible that different cargo molecules (i.e. cargo molecules with different numbers of 
biotinylated oligonucleotide handles on the DNA origami) are present at different surface densities even though 
they have the same abundance in the assay. Specifically, DNA origami with more biotinylated oligonucleotide 
handles have a stronger binding to the membrane, while all DNA origami experience an entropic penalty for 
binding due to volume exclusion effects. Here, however, we have not considered a detailed theory of such a 
competitive binding as it mostly affects the time frame before the beginning of the actual experiments.  
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II. Discussion of alternative thermodynamic transport mechanisms 

In the following, we will first elaborate that neither depletion attraction (section II.1 

“Depletion attraction cannot explain cargo transport”) nor a volume exclusion by immobile 

MinD proteins (section II.2 “Static volume exclusion cannot explain cargo transport”) can 

explain the cargo transport phenomenon that we observed in our experiments. Then, we 

revisit our previous Flory-Huggins and phenomenological Maxwell-Stefan type theories, and 

ask how they behave in the limit of small densities (section II.3 “Flory-Huggins mixing in the 

limit of small densities”), i.e. when steric repulsion between different cargo molecules can be 

neglected on a mesoscopic scale. Finally, we discuss that we do not expect a significant impact 

of cargo on the MinDE reaction kinetics (section II.4 “Significant impact of cargo on MinDE 

reaction kinetics is unlikely”). 

1. Depletion attraction cannot explain cargo transport 

Depletion attraction arises from a classical entropic effect, where finite-sized molecules (like 

MinD) can access a larger spatial region if larger molecules (like DNA-Origami) “clump” 

together20; see Fig. 6 in the main text for an illustration. This results in effective (Asakura-

Oosawa) depletion forces20 that act on the larger molecules and which are proportional to the 

concentration of the smaller molecules, 𝑐𝑐𝑝𝑝. Phenomenologically, one can represent this 

depletion attraction as a negative pressure, 𝑝𝑝 ∝ −𝑐𝑐𝑝𝑝. If the concentration of the smaller 

molecule, 𝑐𝑐𝑝𝑝, is spatially heterogeneous, then this will result in effective pressure gradients, 

−𝛁𝛁𝑝𝑝 ∝ 𝛁𝛁𝑐𝑐𝑝𝑝. Consequently, one would expect depletion attraction to lead to an accumulation 

of cargo molecules in MinD-rich regions. Because this expectation contradicted our 

experiments, we concluded that depletion attraction plays no significant role for cargo 

transport. Furthermore, we did not observe depletion-force-induced aggregation of cargo 

molecules when MinD was homogenously distributed (Extended Data Fig. 1). 

2. Static volume exclusion cannot explain cargo transport 

To simplify our experimental setup as much as possible, suppose that membrane-bound MinD 

proteins act as static obstacles of size 𝑎𝑎𝑝𝑝 and surface density 𝑐𝑐𝑝𝑝. Then, such obstacles locally 

occupy a fraction 𝜃𝜃𝑝𝑝 = 𝑎𝑎𝑝𝑝𝑐𝑐𝑝𝑝 of the surface, thereby reducing the space accessible by the cargo 

molecules. In thermal equilibrium, cargo molecules spread uniformly across the accessible 

space, which implies 𝑐𝑐𝑔𝑔 ∝ 𝜃𝜃free = �1 − 𝜃𝜃𝑝𝑝� for the cargo molecule density. Formally, one way 
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that this expectation can be seeno is by solving for the steady-state solution of cargo diffusing 

in a porous medium:  

𝜕𝜕𝑡𝑡𝑐𝑐𝑔𝑔 = 𝛁𝛁�𝐷𝐷𝑔𝑔 𝜃𝜃free 𝛁𝛁�𝑐𝑐𝑔𝑔 𝜃𝜃free⁄ �� . (S19) 

A porous medium is best explained by comparing it to a sponge. Let us suppose that the pores 

in this sponge contain a solution. A concentration difference across nearby pores corresponds 

to an osmotic pressure and leads to solute fluxes between these pores. In the end, all pores 

will contain the same concentration of solute (𝑐𝑐𝑔𝑔 𝜃𝜃free⁄ ). Here, an onlooker that doesn’t know 

about the existence of these pores (e.g. if one were to only image radioactively labelled solute 

particles) will observe a local concentration of 𝑐𝑐𝑔𝑔, which will in general not be homogeneous. 

Eq. (S19) corresponds to the continuum limit of such a porous medium. In our case, MinD 

takes up space on the membrane, and thus the MinD-free areas can be interpreted as “pores”. 

Eq. (S19) then corresponds to Darcy’s law21, with a local osmotic pressure that is proportional 

to the local particle density 𝑐𝑐𝑔𝑔 𝜃𝜃free⁄  in each “pore”. This relation shows that protein gradients 

may induce cargo gradients solely by locally reducing the accessible space. However, it also 

implies that the resulting distribution of cargo molecules does not depend on any intrinsic 

features of the cargo molecules, contradicting our experimental observations (Fig. 1d-g in the 

main text). We conclude that MinD proteins do not act as static obstacles for the cargo 

molecules. 

3. Flory-Huggins mixing in the limit of small densities 

We have seen in section I.3 “Flory-Huggins theory of mixing: an equilibrium picture” that, in 

principle, entropic mixing effects may lead to a gradient of passive particles (cargo or 

streptavidin molecules) in response to a gradient of active particles (MinD proteins). This 

phenomenon originates from volume exclusion effects (cf. second term in the proximal 

chemical potential of cargo, Eq. (S2a), and the equivalent second term in the total chemical 

potential of cargo, Eq. (S5)) and the corresponding steric repulsion between diffusing cargo 

and diffusing MinD proteins. However, there must also be a steric repulsion between the bulky 

DNA-origami scaffolds of the cargo molecules (cf. second term in the distal chemical potential 

 
o Another way to see this expectation is by writing down the Flory-Huggins mixing entropy (cf. section I.3 “Flory-
Huggins theory of mixing: an equilibrium picture”) and the resulting equilibrium condition, but with the distinct 
difference that the MinD proteins may not move at all and thus reduce the accessible volume: 𝑓𝑓/(𝑘𝑘𝐵𝐵𝑇𝑇) =
𝜃𝜃free  ∑ (𝑐𝑐𝑖𝑖/𝜃𝜃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) ln(𝜃𝜃𝑖𝑖/𝜃𝜃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)𝑖𝑖 . This constrains the possible distribution of particles more strongly than only an 
imposed spatial profile of MinD, as we have done in section I.3 “Flory-Huggins theory of mixing: an equilibrium 
picture”. 
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of cargo, Eq. (S4), and the equivalent third term in the total chemical potential of cargo, Eq. 

(S5), which diverges logarithmically as the local cargo density approaches saturating values by 

covering the whole locally available membrane area), which counteracts the buildup of cargo 

gradients. Thus, as we have seen, at the particle densities in our experiments, mixing effects 

alone cannot account for the strong density gradients of passive particles. 

Yet, one may ask: what if the cargo density is much smaller than in our setup, so that 

mesoscopic volume exclusion effects between different DNA-origami scaffolds may be 

neglected? Then, we can drop the second term of Eq. (S4), which would diverge 

logarithmically at high densities and which is equivalent to the third term of Eq. (S5), so that 

the total chemical potential of membrane-bound cargo in our Flory-Huggins model is given by: 

𝜇𝜇𝑔𝑔(𝒙𝒙)
𝑘𝑘𝐵𝐵𝑇𝑇

= ln�𝜃𝜃𝑔𝑔(𝒙𝒙)� − 𝑛𝑛 ln�1 − 𝜃𝜃𝑔𝑔(𝒙𝒙) − 𝜃𝜃𝑠𝑠(𝒙𝒙) − 𝜃𝜃𝑝𝑝(𝒙𝒙)� , (S20a) 

where we have neglected constant contributions. The fraction of the area covered by the DNA 

origami scaffolds, 𝜃𝜃𝑜𝑜(𝒙𝒙), is related to the area fraction covered by the cargo’s streptavidin 

blocks, 𝜃𝜃𝑔𝑔(𝒙𝒙), as follows: 𝜃𝜃𝑜𝑜(𝒙𝒙) = 𝜃𝜃𝑔𝑔(𝒙𝒙) (7 𝑎𝑎𝜏𝜏)/(𝑛𝑛 𝑎𝑎𝜎𝜎). Furthermore, the chemical potential 

of free streptavidin molecules is given by (cf. Eq. (S2b)): 

𝜇𝜇𝑠𝑠(𝒙𝒙)
𝑘𝑘𝐵𝐵𝑇𝑇

= ln[𝜃𝜃𝑠𝑠(𝒙𝒙)] − ln�1 − 𝜃𝜃𝑔𝑔(𝒙𝒙) − 𝜃𝜃𝑠𝑠(𝒙𝒙) − 𝜃𝜃𝑝𝑝(𝒙𝒙)� . (S20b) 

We assume that the passive cargo molecules and the free streptavidin molecules reach an 

equilibrium state in an adiabatic response to the distribution of active MinD proteins, so that 

gradients in the chemical potential vanish, 𝛁𝛁𝜇𝜇𝑔𝑔(𝒙𝒙) = 0 and 𝛁𝛁𝜇𝜇𝑠𝑠(𝒙𝒙) = 0. Note that this 

equilibrium condition is equivalent to 𝜇𝜇𝑔𝑔(𝒙𝒙) = 𝑐𝑐𝑠𝑠𝑐𝑐 and 𝜇𝜇𝑠𝑠(𝒙𝒙) = 𝑐𝑐𝑠𝑠𝑐𝑐. Then, we solve the 

equation 𝜇𝜇𝑠𝑠(𝒙𝒙) = 𝑐𝑐𝑠𝑠𝑐𝑐 for 𝜃𝜃𝑠𝑠 and set the (general) boundary values 𝜃𝜃𝑠𝑠(0) and 𝜃𝜃𝑔𝑔(0) to obtain 

the following equation for the local amount of free streptavidin molecules:  

𝜃𝜃𝑠𝑠 =
𝜃𝜃𝑠𝑠(0)

1 − 𝜃𝜃𝑔𝑔(0) �1 − 𝜃𝜃𝑔𝑔 − 𝜃𝜃𝑝𝑝� . (S21a) 

By inserting Eq. (S21a) into Eq. (S20a), solving the equation 𝜇𝜇𝑔𝑔(𝒙𝒙) = 𝑐𝑐𝑠𝑠𝑐𝑐 for 𝜃𝜃𝑝𝑝 and setting 

the (general) boundary value 𝜃𝜃𝑔𝑔(0), this yields the following implicit equation for the local 

amount of cargo molecules:  

𝜃𝜃𝑝𝑝 = 1 − 𝜃𝜃𝑔𝑔�𝜃𝜃𝑝𝑝� − �1 − 𝜃𝜃𝑔𝑔(0)� �
𝜃𝜃𝑔𝑔�𝜃𝜃𝑝𝑝�
𝜃𝜃𝑔𝑔(0) �

1
𝑛𝑛

. (S21b) 
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As the illustration “Cross-correlation between cargo coverage and MinD coverage at very low 

cargo densities” shows, at large densities of MinD proteins (similar to our experiments) it 

would be possible to generate a gradient in the cargo molecules even without a 

diffusiophoretic mechanism if the density of cargo molecules is sufficiently small (one or two 

orders of magnitude smaller than in our experiments). 

In a cell, the density of MinD proteins is expected to be smaller than in our experimental setup. 

Thus, we have also tested in our model whether one would still expect a pattern in the passive 

cargo if the density of MinD was one order of magnitude smaller, and if the density of passive 

molecules was one or two orders of magnitude smaller than in our experiments. As the 

illustration “Low MinD and low cargo density” shows, a diffusiophoretic mechanism leads to 

much stronger gradients in the cargo molecules than entropic sorting effects.  

Our theoretical analysis in this section thus shows: if the cargo density is much smaller than in 

our experimental assay, then mixing effects can readily build up cargo gradients as long as the 

MinD density remains high (cf. illustration “Cross-correlation between cargo coverage and 

MinD coverage at very low cargo densities”). If the MinD density is also reduced compared to 

our experiments, then a diffusiophoretic mechanism is mandatory to create significant cargo 

gradients (cf. illustration “Low MinD and low cargo density”). 

 

  

Cross-correlation between cargo coverage and MinD coverage at very low cargo densities. To obtain 
this graph, we have used Eq. (S21b) and the relation 𝜃𝜃𝑜𝑜(𝒙𝒙) = 𝜃𝜃𝑔𝑔(𝒙𝒙) (7 𝑎𝑎𝜏𝜏)/(𝑛𝑛 𝑎𝑎𝜎𝜎) ≈ 𝜃𝜃𝑔𝑔(𝒙𝒙) (70/𝑛𝑛). 
Furthermore, we have assumed that the cargo molecules do not exceed (a) a coverage of 0.1, which 
is 1 order of magnitude smaller than the typical values in our experiments, or (b) a coverage of 0.01, 
which is 2 orders of magnitude smaller than the typical values in our experiments. 
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4. Significant impact of cargo on MinDE reaction kinetics is unlikely 

As the MinDE distribution was influenced by the presence of cargo, we wondered whether 

cargo may change the kinetic (un)binding rates of MinDE. To answer this question, we 

analysed the average fluorescence intensity of the patterns, i.e. the membrane density of the 

molecules. While we found that the density of streptavidin and MinD were relatively similar 

for all conditions, the density of membrane-bound DNA origami decreased by roughly 44% 

when we increased the number of streptavidin building blocks from 1 to 42 (Extended Data 

Fig. 2c-e). The latter suggested that the average density of membrane-bound streptavidin, 

which remained unaffected, is the limiting factor for binding of DNA origami to the membrane 

(see section I.2 “Cargo density is limited by abundance of streptavidin and origami” for 

details). As the presence of cargo did not change the average membrane density of MinD 

(Extended Data Fig. 2d), it is unlikely to significantly affect their (un)binding rates. 

Furthermore, cargo always accumulated in regions where both the MinD density and thus 

  
Low MinD and low cargo density. We tested our model in a regime where the MinD density is one 
order of magnitude smaller than in our experiments. a,b Cargo coverage one order of magnitude 
smaller than in our experiments. Model parameters: (cargo-2) average coverages 𝜃𝜃𝑝𝑝��� = 0.00825, 𝜃𝜃𝑠𝑠� =
0.0149 and 𝜃𝜃𝑜𝑜��� = 0.055; interaction parameter (in terms of MinD coverage) 𝜃𝜃×

−1 = 220 ; (cargo-42) 
average coverages 𝜃𝜃𝑝𝑝��� = 0.00825, 𝜃𝜃𝑠𝑠� = 0 and 𝜃𝜃𝑜𝑜��� = 0.028; interaction parameter (in terms of MinD 
coverage) 𝜃𝜃×

−1 = 620. Surface coverages 𝜃𝜃 = 𝑎𝑎 𝑐𝑐 and surface densities 𝑐𝑐 are related via the particle 
size 𝑎𝑎. c,d Cargo coverage two orders of magnitude smaller than in our experiments. Model 
parameters: (cargo-2) average coverages 𝜃𝜃𝑝𝑝��� = 0.00825, 𝜃𝜃𝑠𝑠� = 0.00149 and 𝜃𝜃𝑜𝑜��� = 0.0055; interaction 
parameter (in terms of MinD coverage) 𝜃𝜃×

−1 = 220 ; (cargo-42) average coverages 𝜃𝜃𝑝𝑝��� = 0.00825, 
𝜃𝜃𝑠𝑠� = 0 and 𝜃𝜃𝑜𝑜��� = 0.0028; interaction parameter (in terms of MinD coverage) 𝜃𝜃×

−1 = 620. Surface 
coverages 𝜃𝜃 = 𝑎𝑎 𝑐𝑐 and surface densities 𝑐𝑐 are related via the particle size 𝑎𝑎. 
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protein recruitment to the membrane are already low, and is thus unlikely to significantly 

hinder protein (un)binding. 

Cargo and streptavidin molecules have a strong membrane affinity and negligible detachment 

rates3. Therefore, MinD-induced detachment of cargo or streptavidin from the membrane is 

highly unlikely. 
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III. Discussion of related non-equilibrium transport mechanisms 

In the following, we will relate our Maxwell-Stefan-like phenomenological approach to 

diffusiophoresis to a commonly employed hydrodynamic theory for 3D solutions22–35 which 

was pioneered by Derjaguin13. In particular, we will follow the reasoning and calculations by 

Marbach & Bocquet31, as well as by Golestanian32 to derive a phoretic drift velocity for 

uncharged particles. We will place special emphasis on the assumptions underlying these 

calculations and discuss their validity for our experimental system. Taken together, the 

analysis below will show that diffusive fluxes are essential to obtain a finite diffusiophoretic 

drift velocity. 

1. Illustrative derivation of the diffusiophoretic drift velocity in 3D solutions 

We assume that the passive cargo molecules are much larger than the MinD proteins. This 

approximation should be appropriate for the DNA origami scaffold of the cargo molecules 

since we use DNA-Origami with a size of 110 × 16 nm and a MinD dimer has a size of 

5 × 5 nm (although this size difference creates only a weak length scale separation along the 

DNA-Origami’s long axis). However, this assumption may not be strictly valid for streptavidin 

moleculesp, which have roughly the same size as a membrane-bound MinD dimer (5 × 5 nm). 

Although the following calculations have limited applicability to our experimental setup with 

only weak length scale separation between cargo and solute (while being perfectly valid for 

colloidal systems), they will conceptually illustrate how diffusiophoretic transport may emerge 

from microscopic interactions. 

The approximation that the length scales of cargo and of the MinD dimer separate allows one 

to consider the MinD proteins as a solute field with density 𝑐𝑐𝑝𝑝, whose temporal evolution is 

given by the Smoluchowski equation,  

𝜕𝜕𝑡𝑡𝑐𝑐𝑝𝑝 = 𝛁𝛁 ⋅ �𝐷𝐷𝑝𝑝𝛁𝛁𝑐𝑐𝑝𝑝 + 𝑐𝑐𝑝𝑝
𝐷𝐷𝑝𝑝
𝑘𝑘𝐵𝐵𝑇𝑇

𝛁𝛁𝛹𝛹 − 𝑐𝑐𝑝𝑝𝒗𝒗� ≡ −𝛁𝛁 ⋅ 𝒋𝒋𝑝𝑝 . (S22) 

Here, 𝛹𝛹 denotes the interaction potential between the MinD proteins and the cargo, and 𝒗𝒗 

refers to the local advection velocity due to flow in the surrounding fluid. As we will show 

below, the interactions 𝛹𝛹 between MinD proteins and the cargo will induce a slip flow 𝒗𝒗 in 

 
p A more general treatment would require describing the hydrodynamic interactions between solute molecules 
with the Rotne-Prager tensor. Here, we will not carry out such a calculation, especially since additional caveats 
(discussed below in more detail) like the coupling between 2D fluid membrane and 3D aqueous solution apply. 
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the surrounding fluid. Furthermore, we put ourselves in the (moving) reference frame of a 

cargo molecule, and consider the cargo molecule as a rigid one-dimensional wall placed at 

position 𝑧𝑧 = 0. Since all particles involved in the process are small, we assume that the fluid 

dynamics is described by a stationary Stokes flow at low Reynolds number, 

𝜂𝜂Δ𝒗𝒗 − 𝛁𝛁𝑃𝑃 − 𝑐𝑐𝑝𝑝𝛁𝛁𝛹𝛹 = 0 , (S23a)
𝛁𝛁 ⋅ 𝒗𝒗 = 0 . (S23b) 

Here, the field 𝑃𝑃 denotes the local pressure in the fluid. The velocity field 𝒗𝒗 also advects the 

MinD proteins, cf. Eq. (S22). In the third term of Eq. (S23a), the body force acting on each 

MinD protein due to its interaction with the cargo molecule is transferred to the fluid, which 

drives the fluid flow 𝒗𝒗. 

There are several important reservations one might have with regard to the above approach: 

(i) First, the typical mean free path between two membrane-bound particles in our 

experimental system is only 46 Å, which amounts to roughly 15 water molecules. Continuum 

hydrodynamic approaches are typically valid down to a molecular scale of 10 Å, below which 

the microscopic properties of water (i.e. viscosity) begin to significantly deviate from its bulk 

properties36. Thus, if any two MinD dimers or streptavidin molecules come closer than 10 Å 

(which may happen fairly regularly given that their average distance is only 46 Å), then a 

continuum hydrodynamic theory loses its validity at such small scales and one needs a 

particle-based kinetic analysis. (ii) Second, the above theoretical approach (more specifically, 

Eq. (S23a)) is based on the assumption that the Reynolds number is small (𝑅𝑅𝑒𝑒 ≪ 1). With the 

Reynolds number given by 𝑅𝑅𝑒𝑒 = 𝑣𝑣𝐿𝐿
𝜂𝜂

, where 𝐿𝐿 is the typical length scale of the fluid flow, this 

requires a relatively small fluid flow velocity. To estimate whether this assumption is valid for 

our experimental setup, we have to investigate the typical velocity of the particles at the 

molecular scale. The typical length scale of the corresponding hydrodynamic problem is 𝐿𝐿 =

46 Å and the kinematic viscosity of water at 20°C is given by37 𝜂𝜂 = 1 × 10−6m2s−1. The typical 

velocity of the fluid between two membrane-bound particles should be in the range between 

the thermal velocity of these particles and the thermal velocity of water molecules. In the 

following, we will estimate the typical thermal velocity of a particle as the root mean square 

velocity:  
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�〈𝑣𝑣2〉 = �𝑓𝑓 𝑘𝑘𝐵𝐵𝑇𝑇
𝑚𝑚

, (S24) 

where 𝑓𝑓 refers to the number of translational degrees of freedom (𝑓𝑓 = 2 for 2D motion and 

𝑓𝑓 = 3 for 3D motion). MinD dimers have a molecular weight of 66 kDa, while streptavidin 

molecules (tetramers) have a molecular weight of 53 kDa. These membrane-bound molecules 

are confined to planar 2D motion and thus (at 20°C) move with a thermal velocity of 8.6 ms−1 

and 9.6 ms−1 for MinD dimers and streptavidin, respectively. Water has a molecular weight 

of 18 Da and may move in the whole 3D solution, thus with a thermal velocity of 637 ms−1. 

Consequently, the Reynolds number will typically be in a range between 𝑅𝑅𝑒𝑒 ∼ 0.04 (if the fluid 

moves at the thermal velocity of a MinD protein) and 𝑅𝑅𝑒𝑒 ∼ 2.9 (if the fluid moves at the 

thermal velocity of a water molecule)q. These estimates suggest that at the given length scales 

one might have to take into account the momentum terms of the Navier-Stokes equations, 

thus possibly invalidating Eq. (S23a). (iii) Third, the Knudsen number for the membrane-bound 

particles, which relates the molecular free path to the molecular scale (5 nm for a MinD dimer 

or a streptavidin molecule), is only 𝐾𝐾𝑛𝑛 ∼ 0.92. At such small length scales, any gas (which can 

also mean a gas of solutes) will begin to show hydrodynamic properties like viscosity. In the 

case of MinD proteins, this is suggested by the density-dependence of their diffusion constant, 

which decreases as the surface density of MinD increases1. For a gas, it is possible to derive 

these hydrodynamic properties from the Boltzmann equation with the Chapman-Enskog 

theory38,r. (iv) Fourth and finally, in the above approach one considers a single fluid only, while 

actually in our experimental setup there are two fluids with different viscosities: a 3D half-

space of water and a 2D lipid bilayer that contains membrane-bound molecules. 

With these reservations in mind, we will in the following explore the consequences of the 

above approach to our experimental system. Despite the possible limitations in applicability, 

it will provide important conceptual insights into the mechanisms underlying diffusiophoresis. 

Thus, we will now turn to analyse the continuum approach for a cargo particle that is much 

 
q The lipid bilayer membrane is a fluid whose kinematic viscosity should be significantly larger than that of water. 
Specific values are 0.06 Pa s for the dynamic viscosity of a 5 nm thick membrane of DOPC70. Assuming a close 
packing of the phospholipids where each phospholipid takes up 10Å2, and taking the typical mass of a DOPC 
molecule71 as 786 Da, this results in a kinematic viscosity of 23 × 10−6m2s−1. Thus, any flow in the liquid upper 
leaflet of the supported lipid bilayer will be associated with smaller Reynolds numbers. 
r Here, a careful theoretical treatment would be needed. The Chapman-Enskog theory is typically applied to 
gases, where particles only interact via collisions. In our case, particles may also interact via hydrodynamic 
interactions. 
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larger than the MinD proteins. Due to the separation of length scales, we consider the surface 

of the cargo molecule as a solid wall (cf. illustration “Simplified geometry of a cargo which is 

surrounded by solute molecules and fluid”). The interaction potential, 𝛹𝛹(𝑧𝑧), should only 

depend on the relative distance between a MinD protein and the wall. We assume that the 

cargo is rigid and thus that the wall is impermeable, so that the flow velocity and the particle 

fluxes along the normal axis (𝑧𝑧-axis) vanish: 𝑣𝑣𝑧𝑧 = 0 and 𝑗𝑗𝑝𝑝,𝑧𝑧 = 0. Then, in the stationary case, 

Eq. (S22) reduces to a balance between a diffusive flux and an advective flux due to the 

interaction potential 𝛹𝛹(𝑧𝑧): 

𝐷𝐷𝑝𝑝𝜕𝜕𝑧𝑧𝑐𝑐𝑝𝑝 +
𝑐𝑐𝑝𝑝𝐷𝐷𝑝𝑝
𝑘𝑘𝐵𝐵𝑇𝑇

𝜕𝜕𝑧𝑧𝛹𝛹(𝑧𝑧) = 0 . (S25) 

By integrating this expression over 𝑧𝑧, one obtains a Boltzmann-like protein profile, 

𝑐𝑐𝑝𝑝(𝑧𝑧) = 𝑐𝑐∞ exp �−
𝛹𝛹(𝑧𝑧)
𝑘𝑘𝐵𝐵𝑇𝑇

� , (S26) 

where 𝑐𝑐∞ corresponds to the far-field concentration of the MinD proteins. Similarly, by using 

𝑣𝑣𝑧𝑧 = 0, the 𝑧𝑧-component (perpendicular to the interface defined by the cargo molecule) of 

the Stokes equations, Eq. (S23a), yields the following force balance equation between the 

pressure gradient and the potential force 𝜕𝜕𝑧𝑧𝛹𝛹: 

𝜕𝜕𝑧𝑧𝑃𝑃 = −𝑐𝑐𝑝𝑝𝜕𝜕𝑧𝑧𝛹𝛹 . (S27) 

Again, integrating once over 𝑧𝑧 yields an expression for the hydrodynamic pressure field: 

 
Simplified geometry of a cargo which is surrounded by solute molecules and fluid. We approximate 
the cargo molecule as a rigid wall by assuming that there is a length scale separation between cargo 
and solute. 

Reprintofpublished
m
anuscript

II.2 Protein Fluxes Induce Generic Transport of Cargo

141



33 
 

𝑃𝑃∞ − 𝑃𝑃(𝑧𝑧) = −𝑐𝑐∞� 𝑑𝑑𝑧𝑧′ 𝜕𝜕𝑧𝑧𝛹𝛹(𝑧𝑧′) exp �−
𝛹𝛹(𝑧𝑧′)
𝑘𝑘𝐵𝐵𝑇𝑇

� = −𝑐𝑐∞� 𝑑𝑑𝛹𝛹 exp �−
𝛹𝛹
𝑘𝑘𝐵𝐵𝑇𝑇

�
𝛹𝛹

𝛹𝛹∞

𝑧𝑧

∞
. (S28) 

Next, we require that the interaction potential vanishes in the far field, lim
𝑧𝑧→∞

𝛹𝛹(𝑧𝑧) = 𝛹𝛹∞ = 0, 

and thus obtain the following expression for the hydrodynamic pressure field  

𝑃𝑃(𝑧𝑧) = 𝑃𝑃∞ + 𝑘𝑘𝐵𝐵𝑇𝑇𝑐𝑐∞ �exp �−
𝛹𝛹(𝑧𝑧)
𝑘𝑘𝐵𝐵𝑇𝑇

� − 1� = 𝑃𝑃∞ + 𝑘𝑘𝐵𝐵𝑇𝑇�𝑐𝑐𝑝𝑝 − 𝑐𝑐∞� . (S29) 

Here, 𝑃𝑃∞ refers to the hydrostatic pressure in the far field, where the ambient fluid is at rest. 

In Eq. (S29), the term 𝑐𝑐𝑝𝑝𝑘𝑘𝐵𝐵𝑇𝑇 can be identified as a local osmotic pressure that is induced by 

interactions between MinD proteins and the cargo wall. As there is a density gradient of 

solutes in the far field, ∂𝑥𝑥𝑐𝑐∞, the resulting pressure gradient drives fluid flow parallel to the 

cargo surface, i.e. along the 𝑥𝑥-axis. Furthermore, since our simplified geometry consists of an 

infinite wall as the cargo surface, we assume that the fluid flow is translation invariant along 

the 𝑥𝑥-axis, 𝜕𝜕𝑥𝑥𝑣𝑣𝑥𝑥 ≡ 0 and therefore 𝜕𝜕𝑥𝑥2𝑣𝑣𝑥𝑥 ≡ 0 (i.e. we assume that variations along the 𝑥𝑥-axis 

are significantly smaller than variations along the 𝑧𝑧-axis because of the separation of length 

scales). Then, we obtain the following equation for the 𝑥𝑥-compotent of the velocity field: 

𝜂𝜂𝜕𝜕𝑧𝑧2𝑣𝑣𝑥𝑥 = 𝜕𝜕𝑥𝑥𝑃𝑃 = 𝑘𝑘𝐵𝐵𝑇𝑇 �exp�−
𝛹𝛹(𝑧𝑧)
𝑘𝑘𝐵𝐵𝑇𝑇

� − 1�  ∂𝑥𝑥𝑐𝑐∞ . (S30) 

This relation can be integrated using no shear stress boundary conditions in the far field, 

𝜕𝜕𝑧𝑧𝑣𝑣𝑥𝑥|𝑧𝑧→∞ = 0.  One obtains: 

� 𝑑𝑑𝑧𝑧 𝑧𝑧 𝜕𝜕𝑧𝑧2𝑣𝑣𝑥𝑥
∞

0
= [𝑧𝑧 𝜕𝜕𝑧𝑧𝑣𝑣𝑥𝑥]0∞ − � 𝑑𝑑𝑧𝑧 𝜕𝜕𝑧𝑧𝑣𝑣𝑥𝑥

∞

0
= −𝑣𝑣𝑥𝑥|𝑧𝑧→∞ + 𝑣𝑣𝑥𝑥(0) . (S31) 

Finally, we use no-slip boundary conditions at the cargo surface, 𝑣𝑣𝑥𝑥(0) = 0, to obtain the far-

field fluid slip velocity: 

𝑣𝑣𝑥𝑥|𝑧𝑧→∞ = −
𝑘𝑘𝐵𝐵𝑇𝑇
𝜂𝜂

� 𝑑𝑑𝑧𝑧 𝑧𝑧 �exp �−
𝛹𝛹(z)
𝑘𝑘B𝑇𝑇

� − 1�
∞

0
 𝜕𝜕𝑥𝑥𝑐𝑐∞ . (S32) 

Returning to the lab frame, the cargo slip velocity is given bys: 

𝑣𝑣𝑔𝑔 = +
𝑘𝑘𝐵𝐵𝑇𝑇
𝜂𝜂

� 𝑑𝑑𝑧𝑧 𝑧𝑧 �exp �−
𝛹𝛹(z)
𝑘𝑘B𝑇𝑇

� − 1�
∞

0
 𝜕𝜕𝑥𝑥𝑐𝑐∞ . (S33) 

 
s This is equivalent to assuming that the fluid is at rest in the far field, 𝑣𝑣𝑥𝑥|𝑧𝑧→∞ = 0, and computing the 
corresponding boundary velocity 𝑣𝑣𝑥𝑥(0). 
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For purely steric hard-sphere interactions between MinD and the cargo molecules,  

𝛹𝛹(𝑧𝑧) = �
∞, 𝑧𝑧 ≤ 𝑅𝑅𝑝𝑝
0, 𝑧𝑧 > 𝑅𝑅𝑝𝑝

(S34) 

we can explicitly perform the integral in Eq. (S33). Then, the diffusiophoretic slip is given by 

𝒗𝒗𝑔𝑔 = −
𝑘𝑘𝐵𝐵𝑇𝑇
𝜂𝜂

𝑅𝑅𝑝𝑝2

2
𝛁𝛁𝑐𝑐𝑝𝑝 . (S35) 

Thus, we have recapitulated the conceptual calculations by Marbach & Bocquet31, as well as 

by Golestanian32 to show how a density gradient of proteins can induce a diffusiophoretic drift 

(advection) via hydrodynamic interactions and an interaction potential. In the next section, 

we will discuss these results in depth. 

2. Diffusiophoretic drift requires solute fluxes 

At first glance, Eq. (S35) could be interpreted as a diffusiophoretic drift which is driven by a 

density gradient of solute molecules (in our case the MinD proteins). However, such an 

interpretation overlooks the fact that according to Fick’s laws, particle density gradients and 

fluxes are closely related. Using the Stokes-Einstein relation for the diffusion coefficient of the 

solute molecules (MinD, assuming spherical particles in 3D solution), 𝐷𝐷𝑝𝑝 = 𝑘𝑘𝐵𝐵𝑇𝑇/(6𝜋𝜋𝜂𝜂𝑅𝑅𝑝𝑝), and 

Fick’s first law, 𝒋𝒋𝑝𝑝 = −𝐷𝐷𝑝𝑝𝛁𝛁𝑐𝑐𝑝𝑝, Eq. (S35) can be rewritten as 

𝒗𝒗𝑔𝑔 = −3𝜋𝜋𝑅𝑅𝑝𝑝3 𝐷𝐷𝑝𝑝𝛁𝛁𝑐𝑐𝑝𝑝 = 3𝜋𝜋𝑅𝑅𝑝𝑝3 𝒋𝒋𝑝𝑝 . (S36) 

In this form, the equation for the diffusiophoretic slip velocity reveals that the diffusiophoretic 

drift of a cargo molecule (in 3D and at low densities) is directly related to the diffusive flux 

𝒋𝒋𝑝𝑝 of the solute molecules (MinD). Consequently, while from Eq. (S35) one could conclude 

that a finite gradient 𝛁𝛁𝑐𝑐𝑝𝑝 of solute molecules (MinD) is sufficient to observe a diffusiophoretic 

effect, Eq. (S36) shows that actually finite solute fluxes 𝒋𝒋𝑝𝑝 are required. To further elucidate 

this point, let us suppose that there are no fluxes of solute molecules in the laboratory frame, 

and that instead their spatial distribution is fully determined by some stationary trapping 

potential 𝑉𝑉t. Then the total flux of solute molecules in the laboratory frame becomes: 

𝐷𝐷𝑝𝑝𝜕𝜕𝑥𝑥𝑐𝑐𝑝𝑝 +
𝑐𝑐𝑝𝑝𝐷𝐷𝑝𝑝
𝑘𝑘𝐵𝐵𝑇𝑇

𝜕𝜕𝑥𝑥𝑉𝑉 ≡ 0 . (S37) 

 
t Such a trapping potential could be realized via an electrostatic field that selectively acts on charged solutes but 
does not affect the electrically neutral cargo. Typically, such an electrostatic field will lead to an electrophoretic 
current of the charged solutes. In a closed container, this electrophoretic current will eventually be balanced by 
a diffusive flux, yielding a steady state with a vanishing net flux of the charged solutes. 
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Inserting Eq. (S37) (flux-free steady state condition of the Smoluchowski equation in the 

laboratory frame) into Eq. (S22) (Smoluchowski equation in the co-moving frame of the cargo, 

in steady state and in addition also considering the trapping potential 𝑉𝑉), and using translation 

invariance of the interaction potential 𝛹𝛹 along the 𝑥𝑥-axis, this yields the following balance 

equation for the 𝑥𝑥-component of the flux of solute molecules in the co-moving frame of the 

cargo molecule: 

−𝑗𝑗𝑝𝑝,𝑥𝑥 = 𝐷𝐷𝑝𝑝𝜕𝜕𝑥𝑥𝑐𝑐𝑝𝑝 +
𝑐𝑐𝑝𝑝𝐷𝐷𝑝𝑝
𝑘𝑘𝐵𝐵𝑇𝑇

𝜕𝜕𝑥𝑥𝑉𝑉 − 𝑐𝑐𝑝𝑝𝑣𝑣𝑥𝑥 = −𝑐𝑐𝑝𝑝𝑣𝑣𝑥𝑥 . (S38) 

Thus, if the advective fluxes that arise from some potential 𝑉𝑉 and the diffusive fluxes balance 

in the laboratory frame, then the net flux in the co-moving frame will be determined solely by 

the velocity 𝑣𝑣𝑥𝑥 of the co-moving frame and the local density 𝑐𝑐𝑝𝑝. In addition, as before, we 

assume that the cargo is rigid and thus that the cargo wall is impermeable, so that the fluid 

flow velocity and the particle fluxes along the normal axis (𝑧𝑧-axis) vanish, 𝑣𝑣𝑧𝑧 = 0 and 𝑗𝑗𝑝𝑝,𝑧𝑧 = 0. 

Together with the steady-state condition, 𝜕𝜕𝑡𝑡𝑐𝑐𝑝𝑝 = −𝛁𝛁 ⋅ 𝒋𝒋𝑝𝑝 = 0, and the incompressibility of 

the fluid, 𝛁𝛁 ⋅ 𝒗𝒗 = 𝜕𝜕𝑥𝑥𝑣𝑣𝑥𝑥 + 𝜕𝜕𝑧𝑧𝑣𝑣𝑧𝑧 = 𝜕𝜕𝑥𝑥𝑣𝑣𝑥𝑥 = 0 (equivalent to the translation invariance that we 

have assumed before), this gives: 

𝛁𝛁 ⋅ 𝒋𝒋𝑝𝑝 = 𝑣𝑣𝑥𝑥 𝜕𝜕𝑥𝑥𝑐𝑐𝑝𝑝 = 0 . (S39) 

Thus, there is no diffusiophoretic slip velocity (𝑣𝑣𝑥𝑥 = 0) and the diffusiophoretic cross-mobility 

vanishes if there are no solute particle fluxesu. In that case, the distribution of cargo particles 

in response to the solute particles reduces to an equilibrium problem, which has been 

discussed in sections I.3 “Flory-Huggins theory of mixing: an equilibrium picture” and II.2 

“Static volume exclusion cannot explain cargo transport”. In summary, the main insight gained 

in this paragraph is that a diffusiophoretic slip of the cargo molecule can only occur if there 

are solute (MinD) fluxes. In contrast, in the absence of particle fluxes, the spatial distribution 

of all particles is determined solely by a free energy functional, i.e. by the laws of equilibrium 

thermodynamics. 

 
u Another way to see this is by starting with the hydrodynamic pressure field, Eq. (S29), but with a position-
dependent hydrostatic pressure in the far field: 𝑃𝑃(𝑥𝑥, 𝑧𝑧) = 𝑃𝑃∞(𝑥𝑥) + 𝑘𝑘𝐵𝐵𝑇𝑇�𝑐𝑐𝑝𝑝 − 𝑐𝑐∞�. Assuming that the fluid is at 
rest in the far field, where the interaction potential vanishes, the 𝑥𝑥-component of the Stokes equations, cf. Eq. 
(S23a), in the far field is then given by 𝜕𝜕𝑥𝑥𝑃𝑃∞ + 𝑐𝑐∞𝜕𝜕𝑥𝑥𝑉𝑉 = 0. If the distribution of solutes in the far field is 
determined by the potential 𝑉𝑉, cf. Eq. (S37), then the total driving force of the fluid vanishes, 𝜕𝜕𝑥𝑥𝑃𝑃(𝑥𝑥, 𝑧𝑧) +
𝑐𝑐𝑝𝑝𝜕𝜕𝑥𝑥𝑉𝑉 = 0, which implies a vanishing diffusiophoretic slip velocity (i.e. the boundary velocity 𝑣𝑣𝑥𝑥(0) vanishes). 
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3. Relation to our phenomenological approach to diffusiophoresis 

The hydrodynamic approach discussed in sections III.1 “Illustrative derivation of the 

diffusiophoretic drift velocity in 3D solutions” and III.2 “Diffusiophoretic drift requires solute 

fluxes” relies on the assumption that particle densities are small. In the following, we will 

compare these results to the corresponding results of our Maxwell-Stefan-like 

phenomenological theory in the limit of small densities. We will indicate analogous terms in 

square brackets. The hydrodynamic approach, Eq. (S35), yields the following relation for the 

net flux of cargo molecules: 

𝒋𝒋𝑔𝑔 = −𝐷𝐷𝑔𝑔𝛁𝛁𝑐𝑐𝑔𝑔 − 𝑐𝑐𝑔𝑔�3𝜋𝜋𝑅𝑅𝑝𝑝3��𝐷𝐷𝑝𝑝𝛁𝛁𝑐𝑐𝑝𝑝� . (S40) 

The corresponding current for the cargo molecules obtained from the Maxwell-Stefan-like 

phenomenological theory, Eq. (S8), in the limit of small densities (where self-diffusion is 

density-independent) and for two interacting particle species reads: 

𝒋𝒋𝑔𝑔 = −
𝑘𝑘𝐵𝐵𝑇𝑇
𝜉𝜉𝑔𝑔

𝛁𝛁𝑐𝑐𝑔𝑔 − 𝑐𝑐𝑔𝑔 �
𝜁𝜁𝑝𝑝𝑔𝑔
𝜉𝜉𝑔𝑔
� �
𝑘𝑘𝐵𝐵𝑇𝑇
𝜉𝜉𝑝𝑝

𝛁𝛁𝑐𝑐𝑝𝑝� . (S41) 

In our experiments, the resulting patterns are in a steady state (cf. Fig. 1b in the main text). 

The solute (MinD) molecules are in a nonequilibrium steady state with a finite flux 𝒋𝒋𝑝𝑝 ≠ 0, due 

to their ATP-driven membrane (un)binding dynamics. In contrast, the passive cargo molecules 

(which are permanently bound to the planar membrane) can only relax towards a thermal 

equilibrium state with vanishing fluxes 𝒋𝒋𝑔𝑔 = 0. 

Solving Eq. (S40) in the flux-free steady state, one finds that the distribution of cargo 

molecules in response to a gradient of proteins in a 3D solution is given by: 

𝑐𝑐𝑔𝑔�𝑐𝑐𝑝𝑝� = 𝑐𝑐𝑔𝑔(0) exp�−3𝜋𝜋𝑅𝑅𝑝𝑝2𝑅𝑅𝑔𝑔 𝑐𝑐𝑝𝑝� . (S42) 

We can rewrite this equation, Eq. (S42), in terms of the volume fraction that is occupied by 

solute, 𝜃𝜃𝑝𝑝 = 4
3
𝜋𝜋𝑅𝑅𝑝𝑝3𝑐𝑐𝑝𝑝, and obtain:  

𝑐𝑐𝑔𝑔�𝜃𝜃𝑝𝑝� = 𝑐𝑐𝑔𝑔(0) exp �−
9
4
𝑅𝑅𝑔𝑔
𝑅𝑅𝑝𝑝

 𝜃𝜃𝑝𝑝� . (S43) 

Analogously, Eq. (S41) yields 
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𝑐𝑐𝑔𝑔�𝑐𝑐𝑝𝑝� = 𝑐𝑐𝑔𝑔(0) exp �−
𝜁𝜁𝑝𝑝𝑔𝑔
𝜉𝜉𝑝𝑝

𝑐𝑐𝑝𝑝� = 𝑐𝑐𝑔𝑔(0) exp �−
𝑐𝑐𝑝𝑝
𝑐𝑐×
� , (S44) 

where we have defined the typical interaction parameter in the same way as in the main text 

𝑐𝑐×
−1 = 𝜁𝜁𝑝𝑝𝑔𝑔/𝜉𝜉𝑝𝑝. In the main text, we have then expressed the interaction parameter in terms 

of the solute size (2D projected area), 𝜃𝜃×
−1 = 1/(𝑎𝑎𝑝𝑝𝑐𝑐×), where the surface fraction occupied 

by solute is given by 𝜃𝜃𝑝𝑝 = 𝑎𝑎𝑝𝑝𝑐𝑐𝑝𝑝. 

We note that the stationary distributions that result from the 3D hydrodynamic theory, Eq. 

(S43), and from our Maxwell-Stefan-like phenomenological approach to particle diffusion on 

a 2D membrane, Eq. (S44), have identical mathematical form in the low-density limit. 

Furthermore, the corresponding transport equations that describe the dynamics before the 

onset of the steady state, Eqs. (S40) and (S41), are also formally equivalent. Keeping in mind 

all of our reservations concerning the applicability of the 3D hydrodynamic theory to our 

experimental setup (cf. section III.1 “Illustrative derivation of the diffusiophoretic drift velocity 

in 3D solutions”), we make a leap of faith and assume that Eqs. (S43) and (S44) are identical. 

Then, the interaction parameter 𝜃𝜃×
−1 would be given by  

𝜃𝜃×
−1 =

9
4
𝑅𝑅𝑔𝑔
𝑅𝑅𝑝𝑝

, (S45) 

where 𝑅𝑅𝑔𝑔 is the radius of a cargo particle and 𝑅𝑅𝑝𝑝 is the radius of a solute molecule (MinD 

dimer). For cargo molecules that are 22 times larger in diameter than the solute molecules 

(naively approximating the rod-like cargo as a sphere of radius 110 𝑛𝑛𝑚𝑚 and the MinD dimer 

as a sphere of radius 5 nm), this yields a value of 𝜃𝜃×
−1 ∼ 50. In comparison, our fitting 

procedure of the reduced model (cf. Fig. 3b in the main text and Extended Data Fig. 5h) yielded 

typical values around 𝜃𝜃×
−1 ∼ 10v, while in our full model we used typical values around 𝜃𝜃×

−1 ∼

300w. While this comparison between the interaction parameters that one would expect from 

a 3D hydrodynamic theory and our 2D interaction parameters neglects many important details 

like the geometry of the problem, it illustrates conceptually that hydrodynamic interactions 

between different particles might actually be sufficient to drive a diffusiophoretic drift in our 

experiments. Given the relevance of 2D surfaces (membranes) and membrane-bound proteins 

 
v To obtain our fit curves, we neglected entropic repulsion between different cargo molecules that arises due to 
volume exclusion. In doing so, our fitted parameters are likely smaller than the “true” interaction parameters. 
w As discussed in section I.3 “Flory-Huggins theory of mixing: an equilibrium picture”, for our full model we used 
a strong entropic repulsion term for the DNA origamis that originates from Flory-Huggins theory. Assuming an 
ideal solution instead yields a weaker repulsion and thus requires weaker interaction parameters. 
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for all forms of life, we believe that it might be interesting to generalize the current framework 

of diffusiophoresis31,32 to a 2D+3D hydrodynamic setting. 

In closing we would like to note that there may also be a second mechanism for the coupling 

of different particle fluxes, namely kinetic interactions.  Specifically, our simple estimates of 

the Reynolds number suggest that inertial effects may be significant. This is further underlined 

by the small mean free path between the involved membrane-bound particles of only 46 Å. 

For example, in the case of an ideally elastic frontal collision, the momentum transfer during 

a single collision event is given by 

Δ𝑝𝑝 = −2Δ𝑣𝑣
𝑚𝑚1𝑚𝑚2

𝑚𝑚1 + 𝑚𝑚2
. (S46) 

Such a momentum transfer via particle collisions directly yields the coupling term in Eq. (S8). 

To summarize, in this section we have discussed that the phenomenological coupling between 

particle fluxes in the Maxwell-Stefan-like phenomenological theory may originate from 

hydrodynamic interactions or from momentum transfer via direct interactions, yielding two 

microscopic mechanisms that can lead to a mesoscopic friction between different molecular 

species. 
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Supplementary Figures 

 

 

Supplementary Figure S1: MinDE induces pattern formation of cargo from an initially homogenous 
state. Representative time-series and kymograph (along line selection) of MinDE self-organization, 
which induces patterns of DNA origami and streptavidin when a, no origami, b, cargo-2, c, cargo-15 
and d, cargo-42 is present (1 μM MinD (30% EGFP-MinD), 1.5 μM MinE-His, in absence or presence of 
0.1 nM origami-Cy5 with 2, 15 or 42 biotinylated oligonucleotides, Alexa568-streptavidin). Panel b is 
identical to Figure 1b,c. Scale bars: 50 μm 
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Supplementary Figure S2: Changes in the MinDE patterns are mimicked by cargo. Representative 
time-series and kymograph showing changes in MinD and cargo molecule patterns in presence of a, 
cargo-1, b, cargo-2, c, cargo-15 and d, cargo-42 (1 μM MinD (30% EGFP-MinD), 1.5 μM MinE-His, 
origami-Cy5 with 1, 2, 15 or 42 biotinylated oligonucleotides, Alexa568-streptavidin) upon addition of 
more MinE (addition of 1.5 μM MinE-His). MinE addition directly before t = 0 s. Scale bars: 50 μm 
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Supplementary Figure S3: MinDE induces pattern formation of two distinct cargoes, cargo-2 and 
cargo-42, from an initially homogenous state. a, Representative time-series of MinD, cargo-2 and 
cargo-42 pattern formation. ATP is added to start self-organization directly before t=0 s (1 μM MinD 
(30% EGFP-MinD), 1.5 μM MinE-His, 50 pM origami-Cy3B with 2 biotinylated oligonucleotides, 50 pM 
origami-Cy5 with 42 biotinylated oligonucleotides, non-labelled streptavidin). Scale bars: 50 μm b, 
Kymographs of the line selection shown in a. 
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Supplementary Figure S4: Dynamic MinDE waves transport and sort cargo, establishing large-scale 
gradients. Representative images of large scale gradients originating from transport of a, cargo-2 and 
cargo-42 and b, cargo-Chol-2 and cargo-chol-15 (1 µM MinD, 5 µM His-MinE, with a, 0.1 nM origami-
Cy5 with 2 or 42 biotinylated oligonucleotides, non-labeled streptavidin or b, 0.1 nM origami-Cy3b with 
2 or 15 hybridizing oligonucleotides, 10 nM TEG-cholesteryl oligonucleotide) Scale bars: 50 μm. 
Overlaid images are identical to Figure 5c. c, Representative images of individual and overlaid channels 
of sorting of cargo-chol-2 and cargo-chol-15 by MinDE waves (1 μM MinD (30% EGFP-MinD), 5 μM His-
MinE with 50 pM origami-Cy3b with 2 and 50 pM origami-Cy5 with 15 hybridizing oligonucleotides, 10 
nM TEG-cholesteryl oligonucleotide). Scale bars: top, 500 μm; bottom, 50 µm. d, Wave velocity and 
wavelength of MinDE waves on unconstrained bilayers in presence of cargo-2, cargo-chol-2 or cargo-
chol-15 with N=17 analysed time-series. 
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Supplementary Figure S5. Design of the elongated 20-helix bundle DNA origami with 42 handle 
positions. The dye-modified and connector oligonucleotides required for fluorescence detection are 
highlighted in orange, the 42 possible positions for incorporation of biotinylated oligonucleotide 
handles for binding to streptavidin in purple, core staples in black and the M13 p7249 scaffold is 
coloured in blue. 
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Supplementary Tables 
 
Supplementary Table 1: Model Parameters and variables. Overview of the parameters and all 
dependent variables used in the Flory-Huggins type and phenomenological Maxwell-Stefan type 
theories. 
 

Parameter Value Explanation 

𝜃𝜃×
𝑜𝑜 200 Interaction parameter between origami 

scaffold and MinD, in terms of MinD 

coverage 

𝜃𝜃×
𝑠𝑠  10 Interaction parameter between streptavidin 

and MinD, in terms of MinD coverage 

n 1—42 Number of streptavidin attached to origami 

Estimated from experiments: 

𝜃𝜃𝑝𝑝��� 0.0825 Average MinD surface coverage. Derived 

from measured densities1,2. 

𝜃𝜃𝑜𝑜+����� 0.55 Average origami surface coverage (distal), if 

all available DNA origami in the assay (0.1 

nM) were to bind to the available 

streptavidin molecules.  

𝜃𝜃𝑠𝑠+����� 0.165 Average surface coverage of available 

streptavidin molecules (free + bound). 

Derived from measured densities2. 

Dependent variables: 

𝜃𝜃𝑜𝑜��� min(𝜃𝜃𝑜𝑜+�����,𝜃𝜃𝑠𝑠+����� 𝑎𝑎𝑜𝑜/𝑎𝑎𝑐𝑐) Average origami surface coverage (distal), 

which is limited by the density of available 

streptavidin molecules. 

𝜃𝜃𝑠𝑠�  𝜃𝜃𝑠𝑠+����� − 𝜃𝜃𝑜𝑜��� 𝑎𝑎𝑐𝑐/𝑎𝑎𝑜𝑜 Average surface coverage of free 

streptavidin molecules. 
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Supplementary Table 2. List of plasmids used in this study. 
 

Plasmid name Source 
pET28a-His-MinD_MinE 39 (Addgene # 133621) 
pET28a-His-EGFP-MinD 40 (Addgene # 133622) 
pET28a-His-MinE 39 
pET28a-MinE-His 41 (Addgene # 133623) 
pREP41X Susan Forsburg42 
pREP42X Susan Forsburg42 
pMBL-sfGFP-MinDMinE 41 
pET28a-mCherry-2xEcMTS 2 (Addgene # 133624) 
pET28a-mCherry-GGBSMTS 2 
pREP41X-sfGFP-MinD This study 
pREP42X-MinE This study 
pREP41X_coex_sfGFP-MinD_MinE This study 
pREP42X-mCherry-BsMTS This study 
pREP42X-mCherry This study 
pREP42X-mCherry-BsMTS This study 

 
 
Supplementary Table 3. List of primers used in this study. 
 

Name  Sequence 5’ to 3’ 
BR64 CTTGTACAGCTCGTCCATGCC 
BR223 GTTAAATCATACCTCGAGGGATCCACCATGAGCAAAGGAGAAGAACTTTTCAC 
BR224 GACATTCCTTTTACCCGGGGATCCTTATCCTCCGAACAAGCGTTTGAG 
BR225 GTTAAATCATACCTCGAGGGATCCACCATGGCATTACTCGATTTCTTTCTCTCG 
BR226 GACATTCCTTTTACCCGGGGATCCTTATTTCAGCTCTTCTGCTTCCGGTAAG 
BR227 GTTAAATCATACCTCGAGGGATCCACCATGGTGAGCAAGGGCGAG 
BR228 GACATTCCTTTTACCCGGGGATCCTTAAGAACGAACACCGAAGAAAGATTTG 
BR229 GATAATAATGGTTTCTTAGACGTGTCGATCGACTCTAGAGGATCAGAAAATTATC 
BR230 GAAAAGTGCCACCTGACGTGCATTACTAATAGAAAGGATTATTTCACTTCTAATTACACAAATTCCG 
KN_294 CAGAAACGCTGGTGAAAGTAAAA 
KN_312 TTTTACTTTCACCAGCGTTTCTG 
KN_644 GCATGGACGAGCTGTACAAGTAAGGATCCCCGGGTAAAAGGAATGTC 
KN_645 TTCCTTTTACCCGGGGATCCCCGCAAGCTTTTATCCTCCGAACA 
KN_646 GGATCCCCGGGTAAAAGGAATGTC 
KN_647 GATCCCTCGAGGTATGATTTAAC 
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Supplementary Methods 

Generation of plasmids 

DNA fragments and vector backbones were amplified by PCR or obtained by restriction 

enzyme digestion so that they contained 15-20 bp overlaps between adjacent fragments that 

were combined using the GeneArt Seamless Cloning and Assembly Enzyme Mix (Thermo 

Fisher Scientific, Waltham, USA). pREP41X-sfGFP-MinD encodes the E. coli MinD with an N-

terminal fusion of sfGFP, where the sfGFP-MinD coding region was amplified from pMBL-

sfGFP-MinDMinE41 (primer BR223/BR224) and the backbone was obtained by digesting 

pREP41X with BamHI. pREP42X-MinE encodes the E. coli MinE, where the MinE coding region 

was amplified from pMBL-sfGFP-MinDMinE41 (primer BR225/BR226) and the backbone was 

obtained by digesting pREP42X with BamHI. pREP41X_coex_sfGFP-MinD_MinE encodes 

sfGFP-MinD and MinE under the same promoter that is duplicated on the plasmid. It was 

generated by amplifying the backbone from pREP41X-sfGFP-MinD (primer KN_646/KN_647) 

and the MinE fragment from pREP42X-MinE (primer R229/BR230). pREP42X-mCherry-BsMTS 

encodes the C-terminal fusion of the B. subtilis MinD membrane targeting sequence (MTS) 

(GSGKGMMAKIKSFFGVRS; AA 254-268) to mCherry, where the mCherry- BsMTS coding region 

was amplified from plasmid pET28a-mCherry-GGBSMTS2 (primer BR227/BR228) and the 

backbone was obtained by digesting pREP42X with BamHI. pREP42X-mCherry encodes 

mCherry and was obtained by amplifying two regions from pREP42X-mCherry-BsMTS (primer 

KN_294/BR64, KN_312/KN_644). pREP42X-mCherry-2xEcMTS encodes the C-terminal fusion 

of two copies of the E. coli MinD MTS (GSGIEEEKKGFLKRLFGGGGSIEEEKKGFLKRLFGG; AA 256–

270) to mCherry and was obtained by amplifying two regions from pREP42X-mCherry-BsMTS 

(primer KN_294/KN_647, KN_312/KN_646) and the insert was amplified from pET28a-

mCherry-2xEcMTS2 (primer KN_645/BR227). 

S. pombe culture and transformation 

YES media was prepared from yeast extract (5 g/l), glucose (30 g/l) and adenine, histidine, 

leucine, uracil and lysine (each 225 mg/l). Selective medium was prepared from EMM broth 

(Formedium, Norfolk, Great Britain) supplemented with adenine, histidine, leucine, uracil and 

lysine (each 225 mg/l) from which either leucine, uracil or both were omitted for selection of 

S. pombe carrying pREP41X, pREP42X or both plasmids, respectively. Solid medium was 

prepared with 2% Difco Bacto Agar. 
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For transformation a 5 ml YES media pre-culture was inoculated with FY61 and grown at 30 

°C, 220 rpm for 16 h. A 50 ml YES culture was inoculated 1:200 from the pre-culture and grown 

at 30 °C, 220 rpm for 30-48 h until an OD600 of 0.5. Cells were pelleted by centrifugation (4 

°C, 4000 g, 10 min) and washed once with 25 ml 1x TE buffer (10 mM Tris-HCl pH 7.5, 1 mM 

EDTA). After another centrifugation step, cells were resuspended in 1 ml LiAC/1xTE buffer (10 

mM Tris-HCl pH 7.5, 1 mM EDTA, 100 mM Lithium Acetate pH 7.5) and incubated for 30 min 

at 30 °C. 200 μl of the suspension was transferred into a new tube and mixed with 20 μl of 

sonicated salmon sperm DNA (10 mg/ml, Agilent Technologies, Santa Clara, USA) as carrier 

and 1 μg plasmid, and subsequently incubated at room temperature for 10 min. Afterwards 

1.2 ml of PEG/LiAc/TE buffer was added (40% PEG4000, 10 mM Tris-HCl pH 7.5, 1 mM EDTA, 

100 mM Lithium Acetate pH 7.5) and the mixture was incubated for 3 min at 30 °C, 250 rpm. 

DMSO was added to a final concentration of 5%, before heatshock for 15 min at 42 °C. Cells 

were pelleted at 7000 g for 30 s, resuspended with 300 μl 1xTE buffer and spread on plates 

with the respective selective medium. After 3-5 days of incubation at 30 °C colonies were 

picked and restriked. Individual clones were picked and grown in selective medium to 

generate glycerol stocks (50% glycerol). 
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Supplementary Notes 

Supplementary Note 1: 

The lower facet of the 8 nm high DNA origami rod is located about 5-11 nm above the 

membrane, as it is bound to the membrane via several spacers: the dsDNA oligonucleotide 

linker, a TEG-biotin moiety and the streptavidin molecule. The length of the dsDNA linker can 

be estimated to about 6.1 nm taking into account the rise per basepair (bp) of 0.34 nm of B-

DNA43. The oligonucleotide is connected to the anchoring biotin moiety via TEG with a length 

of about 1.4 nm18. Thus, the total linker length can be estimated to be about 7 nm. As the 

persistence length of dsDNA is about 50 nm43–45, the dsDNA linker is rigid. However, the 

connection to the DNA origami is only single stranded giving the dsDNA linkers freedom for 

bending46. The height of membrane-bound streptavidin was measured to be ~4 nm47 in good 

agreement with measurements from EM/crystal structures48,49.  

Supplementary Note 2: 

To verify that it is indeed the effective cargo size (membrane footprint) rather than the 

number of membrane attachment sites (streptavidin building blocks), i.e. the membrane 

diffusion (Fig. 3c in the main text), that determines the extent of the cargo transport, we 

employed an alternative anchoring strategy for the DNA origami structures. The resulting 

cargo (cargo-chol) only consists of the DNA origami scaffold, in which we incorporated 

oligonucleotides at the bottom positions that could hybridize with oligonucleotides modified 

with a TEG-cholesteryl moiety that directly inserts into the lipid bilayer (Extended Data Fig. 4). 

As in the case for the composite cargo (consisting of a DNA origami scaffold and streptavidin 

building blocks) the total length of the linker is about 7 nm (6.1 nm dsDNA, 1.4 nm TEG moiety) 

and the connection of the linker to the DNA origami is single-stranded giving it freedom for 

bending. Hence, in this case the lower facet of the origami scaffold is located at an altitude of 

at most 7 nm above the membrane and thus the origami body can presumably directly interact 

with MinDE on the membrane. Increasing the number of attachment sites on cargo-chol from 

2 to 15 (cargo-chol-2 and cargo-chol-15) slowed diffusion in absence of MinDE similar to our 

observations for the composite cargo (Extended Data Fig. 5a) and in line with previous studies 

on membrane diffusion of DNA origami nanostructures18,46,50,51. Cargo-chol-2 and cargo-chol-

15 diffused slightly faster than the respective composite cargoes cargo-2 and cargo-42, which 

can presumably be explained by streptavidin binding 2-3 biotinylated lipids3. In the presence 
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of 1 µM MinD, both cargo-chol-2 and cargo-chol-15 are slowed similar to the composite 

cargoes, which indicates that they experience an additional friction due to the presence of 

MinD (Extended Data Fig. 5a). In contrast to the composite cargo, increasing the number of 

attachment sites on cargo-chol also strongly increased their ability to bind to the membrane 

(Extended Data Fig. 5e) as previously observed for cholesteryl-bound DNA origami 

nanostructures46,50. To account for these different membrane densities, we analysed the 

redistribution of cargo-chol-2 and cargo-chol-15 by MinDE at three different concentrations, 

determining the contrast of the resulting images and the interaction parameter (Extended 

Data Figs. 4b, 5b-d,h). While increasing membrane densities of cargo-chol-2 and cargo-chol-

15 were accompanied by increasing contrast, it is clear that even at the lowest densities of 

cargo-chol-2 the contrast is higher than that of cargo-2 which diffuses similarly fast as cargo-

chol2 (Extended Data Fig. 5g). At the highest membrane densities, the contrast of cargo-chol-

2 and cargo-chol-15 rather resembles that of cargo-42. By fitting the 2D histograms of the 

images, we determined the interaction parameters of cargo-chol-2 and cargo-chol-15 

(Extended Data Fig. 5h). The interaction parameter of cargo-chol-15 is slightly larger than that 

of cargo-chol-2, but both are on the same order of magnitude as that of cargo-42. When we 

let MinDE self-organize in the presence of differently labelled cargo-chol-2 and cargo-chol-15, 

we found that MinDE also induced sorting of these two cargo molecules. Similar to the 

composite cargoes, we found that the cargo with the higher interaction parameter, cargo-

chol-15 was localized to MinD-free regions and was framed by cargo-chol-2 (Extended Data 

Fig. 5i). Importantly, that cargo-chol-2, which diffuses similar or even slightly faster than cargo-

2 and one order of magnitude faster than cargo-42, interacts with MinD to a similar extent as 

cargo-42 shows that indeed the effective size of the cargo molecules determines the extent 

of the transport: the membrane footprint and thus the effective size of cargo-chol-2 is larger 

because presumably the entire origami scaffold with a membrane footprint of 1760 nm2 (110 

nm x 16 nm) interacts with MinD, whereas in the case of cargo-2 and cargo-42 mostly the 

streptavidin building blocks (membrane footprint of a single streptavidin: 25 nm2) interact 

with MinD (total membrane footprint of cargo-2: 50 nm2, cargo-42: 1050 nm2).  

Supplementary Note 3: 

Since we have demonstrated MinDE-induced cargo transport with experiment and theory, we 

wondered whether it is possible to directly observe biased cargo motion on a single cargo level 
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using single particle tracking. To this end we tracked single cargo molecules under conditions 

where regular unidirectional MinDE waves had formed (Extended Data Fig. 8). As in our 

simplified single-particle tracking setup (i.e. with a homogeneous density of MinD, Fig. 3c in 

the main text, Extended Data Fig. 5a), we found that particles seemed to diffuse faster when 

located inside the MinD minima, i.e. in regions with low MinD density, and slower in the MinD 

maxima. However, we could not detect any directed motion. To confirm these experimental 

results, we made a simple theoretical estimate whether it would be possible to discern 

diffusion from advection in a system such as ours.  

In the following, we specifically refer to our experimental realization where MinDE form 

traveling waves, because a stationary state with vanishing fluxes (while having the advantage 

of simplifying our analysis) only allows to reliably measure the stationary distribution of 

particles. In our experiments we have a true single particle tracking situation, i.e. a very low 

density of DNA origami molecules that do not interact with each other. In a situation with 

traveling waves, the MinDE gradients have a typical length scale of 40 µm (Supplementary Fig. 

S4). The waves themselves travel at a velocity of 1.4 µm s−1 and consist of both a forward-

pointing and a backward-pointing gradient. Therefore, each cargo molecule is subjected to a 

forward-pointing MinD gradient over a typical time scale of Δ𝑐𝑐 = 30 s per wave period, 

alternated with a backward-pointing gradient.  

For single particles, the mean squared displacement due to diffusion in 2D is given by 2𝐷𝐷𝑔𝑔Δ𝑐𝑐, 

and due to advection is given by �𝑣𝑣𝑔𝑔Δ𝑐𝑐�
2

. The typical diffusion constant of cargo-42 in our 

experiments is 𝐷𝐷𝑔𝑔−42 = 0.06 µm2s−1, while the typical diffusion constant of cargo-2 is 

𝐷𝐷𝑔𝑔−2 = 0.65 µm2s−1. Next, we will estimate the advection velocity 𝑣𝑣𝑔𝑔. Starting from Eq. (7) 

in the main text, 

𝜕𝜕𝑡𝑡𝑐𝑐𝑔𝑔 = −𝛁𝛁 ⋅ 𝒋𝒋𝑔𝑔 = 𝛁𝛁 ⋅ �𝐷𝐷𝑔𝑔
(1 + 𝑐𝑐𝑔𝑔/𝑐𝑐×) 𝛁𝛁𝑐𝑐𝑔𝑔 + (𝑐𝑐𝑔𝑔/𝑐𝑐×) 𝛁𝛁𝑐𝑐𝑝𝑝 

1 + 𝑐𝑐𝑔𝑔/𝑐𝑐× + (𝐷𝐷𝑔𝑔/𝐷𝐷𝑝𝑝)(𝑐𝑐𝑝𝑝/𝑐𝑐×)
� , � S47

7 in main text� 

we invoke the low-density limit (true single particle tracking situation). With this 

simplification, we obtain the following equation for the cargo flux: 

𝒋𝒋𝑔𝑔 = −𝐷𝐷𝑔𝑔𝛁𝛁𝑐𝑐𝑔𝑔 − 𝑐𝑐𝑔𝑔𝐷𝐷𝑔𝑔𝑐𝑐×
−1 𝛁𝛁𝑐𝑐𝑝𝑝 ≡ −𝐷𝐷𝑔𝑔𝛁𝛁𝑐𝑐𝑔𝑔 + 𝑐𝑐𝑔𝑔𝑣𝑣𝑔𝑔, (S48) 

where the interaction density is given by 𝑐𝑐× = 𝜉𝜉𝑝𝑝/𝜁𝜁𝑝𝑝𝑔𝑔. The first term of Eq. (S48) corresponds 

to diffusion and the second term corresponds to advection with an advection velocity of 𝑣𝑣𝑔𝑔 =
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−𝐷𝐷𝑔𝑔𝑐𝑐×
−1 𝛁𝛁𝑐𝑐𝑝𝑝. By expressing surface densities in terms of coverage, 𝜃𝜃𝑝𝑝 = 𝑎𝑎𝑝𝑝𝑐𝑐𝑝𝑝 and 𝜃𝜃× = 𝑎𝑎𝑝𝑝𝑐𝑐×, 

we may thus write the advection velocity as: 

𝑣𝑣𝑔𝑔 = −𝐷𝐷𝑔𝑔𝜃𝜃×
−1𝛁𝛁𝜃𝜃𝑔𝑔 . (S49) 

 

The typical effective interaction parameter is 𝜃𝜃×−2
−1 ∼ 5.6 for cargo-2 and 𝜃𝜃×−42

−1 ∼ 21.4 for 

cargo-42, as obtained from our fits (Fig. 3b in the main text). Overall, the MinD coverage is 

between 16.5% in the MinD maxima and 0% in the MinD minima. Thus, we may estimate the 

typical gradient of MinD coverage as �𝛁𝛁𝜃𝜃𝑝𝑝� ≈ 0.165/(20µ𝑚𝑚) = 0.00825 µ𝑚𝑚−1. Taken 

together, these estimates yield a typical advection velocity of 𝑣𝑣𝑔𝑔−2 ≈ 0.030 µm s−1 for cargo-

2 and 𝑣𝑣𝑔𝑔−42 ≈ 0.011 µm s−1 for cargo-42. Then, the dimensionless number 

𝑣𝑣𝑔𝑔Δ𝑐𝑐

�2𝐷𝐷𝑔𝑔Δ𝑐𝑐�
1/2 ≈ 0.14 for cargo-2, 0.17 for cargo-42 

informs us that diffusive transport is stronger than advective transport on the scale of a single 

molecule. We can also make analogous estimates for cargo-chol-2 (𝐷𝐷𝑔𝑔−𝑐𝑐2 = 0.89 µm2s−1, 

𝜃𝜃×−𝑐𝑐2
−1 = 21.7) and cargo-chol-15 (𝐷𝐷𝑔𝑔−𝑐𝑐15 = 0.24 µm2s−1, 𝜃𝜃×−𝑐𝑐15

−1 = 24.7), yielding 

dimensionless numbers of 0.65 and 0.39, respectively. 

Consequently, it is difficult to discern advection from diffusion on the single molecule level. 

Even if we assume that the true interaction parameter is one order of magnitude larger 

(because we typically underfit the interaction parameters due to neglecting large particle 

densities), this still only yields a dimensionless factor of order unity. Combined with the back-

and-forth motion of cargo due to the periodic nature of the MinDE waves, this would still make 

a distinction between advection and diffusion difficult. 

Supplementary Note 4:  

MinDE self-organization in vitro generally reproduces all features of their behaviour in vivo52, 

except that the patterns in vitro occur on an about 10 times larger length scale than those in 

vivo1,39,52–55. This difference is thought to arise from differences in the physico-chemical 

properties of the reaction environment. For example, crowding in solution has been shown to 

reduce the wavelength in vitro39,56,57. Similarly, we have shown here (Fig. 1g in the main text) 

and previously2 that crowding on the membrane reduces the length scale of the patterns in 

vitro. In order to test whether the difference in wavelength between in vitro and in vivo is 
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indeed caused by differences in the reaction environment, and whether MinDE patterns with 

a short wavelength would be able to regulate other proteins by diffusiophoresis under these 

more physiologically relevant conditions, we expressed MinDE as well as model peripheral 

membrane proteins2 heterologously in the fission yeast S. pombe. In the, from E. coli 

evolutionary distant, fission yeast, other proteins can be seen as close to inert in regard to E. 

coli MinDE and the larger size and higher protein levels in S. pombe facilitate detection of 

protein dynamics by fluorescence microscopy.  

Adapting a co-expression from Terbush et al.58 we first designed a plasmid for co-expression 

of E. coli sfGFP-MinD and MinE under the same, duplicated promoter (Extended Data Fig. 9a). 

S. pombe cells harbouring this plasmid displayed bright foci that were dynamic. Closer 

inspection revealed that MinD seemed to preferentially bind to intracellular membranes over 

the plasma membrane. The round vesicular structures stained by MinD most likely represent 

vacuoles59. Most cells displayed traveling wave dynamics (Extended Data Fig. 9b), but also 

more complex dynamics and pole-to-pole oscillations could be observed (Extended Data Fig. 

9c,d). In contrast, in regular sized E. coli MinDE usually perform pole-to-pole oscillations54,60, 

in elongated E. coli they exhibit multi-node standing waves54 and only in very rare cases 

traveling waves can be observed61. This deviation can be explained with the well-described 

geometry sensitivity of MinDE56,62–65 and the larger dimensions of an S. pombe cell compared 

to E. coli (S. pombe: 3.5 μm x 8-14 μm66; E. coli: 0.7-1 μm x 2.6-4.0 μm67): in E. coli cells whose 

shape was greatly altered by mutations or custom shaping in microstructures, traveling waves 

and complex dynamics can also be observed63–65. Analysis of cells exhibiting traveling wave 

dynamics, allowed us to obtain an estimate of the wavelength and velocity of the MinDE 

dynamics in S. pombe. Intriguingly, the wavelength of MinDE dynamics in S. pombe of (8.3±1.7) 

μm (Extended Data Fig. 9e) was similar to the wavelength that has been reported for MinDE 

dynamics in E. coli of about 8-11 μm52,54,55 and thus much smaller than the wavelength of 

MinDE self-organization in vitro1,2,39. The obtained velocity of (0.06±0.02) μm s-1 (Extended 

Data Fig. 9f) is lower than the values that have been reported for wave propagation on SLBs 

in vitro of about 0.1-0.6 μm s-1 1,2,39,53. The estimated oscillation period obtained from these 

values is about 140 s and thus slightly larger than the one reported for the dynamics in E. coli 

of about 40-120 s 52,54,63,68 which could be caused by differences in temperature, protein levels, 

density of anionic lipids, which are all factors reported to influence the velocity of wave 

propagation in vivo or in vitro52. 
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As a control that the observed dynamics were indeed ascribable to MinDE self-organization, 

we expressed sfGFP-MinD in the absence of MinE in S. pombe (Extended Data Fig. 9g). As 

expected, sfGFP-MinD seemed to localize to the same intracellular membranes, but the 

overall distribution was far more homogenous and showed no obvious dynamics. Thus, MinDE 

self-organization can be reconstituted in the fission yeast S. pombe. Having shown that MinDE 

self-organize in S. pombe at a similar length scale as in their native host E. coli, we set out to 

show that MinDE can also regulate other proteins via diffusiophoresis under these 

physiologically more relevant conditions. To this end we constructed a second expression 

plasmid, that could be maintained in S. pombe next to the co-expression plasmid for sfGFP-

MinD/MinE. For simplicity, we employed model peripheral proteins as cargo. We have 

previously shown that these proteins are also regulated by MinDE in vitro2: whenever MinD 

density was high, the density of the model peripheral membrane proteins was low. While 

these proteins have a much shorter membrane dwell time than the DNA origami 

nanostructures and thus are not subject to a net transport by MinDE2, we believe that they 

also experience diffusiophoretic transport resulting in their redistribution. For expression in S. 

pombe, we generated plasmids encoding one of three different mCherry versions analogous 

to the ones used for the in vitro study2: soluble mCherry (mCh), mCherry fused to the 

membrane targeting sequence (MTS) of the B. subtilis MinD (mCh-MTS(BsD)) and mCherry 

fused to a tandem repeat of the MTS of the E. coli MinD itself (mCh-MTS(2xMinD)) (Extended 

Data Fig. 10a). When expressed in S. pombe in the absence of MinDE, mCh-MTS(BsD) and 

mCh-MTS(2xMinD) homogenously bound to cellular membranes (Extended Data Fig. 10c,d) 

and the soluble mCh exhibited a homogenous cytoplasmic localization (Extended Data Fig. 

10b). When co-expressed with sfGFP-MinDE, the overall localization of all constructs was 

similar. Intriguingly, however, we found that wherever fluorescence intensity of MinDE was 

high, the intensity of mCh-MTS(BsD) and mCh-MTS(2xMinD) was reduced and vice versa 

(Extended Data Fig. 10f,g). In contrast, when MinDE was co-expressed with the soluble control 

protein mCh, no such changes in fluorescence intensity were observed (Extended Data Fig. 

10e). Hence, MinDE-dependent transport of proteins by diffusiophoresis also occurs, when 

MinDE dynamics are reconstituted in S. pombe. 
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00  MinDE protein patterns spatially organize
artificial cargo
The following notebooks serve the purpose of an interactive playground to explore our
experimental data, as well as different proposed models. We consider all models to be in
quasi-steady state, since the experimental system is also in a quasi-steady state.

1. Spatial organization of a single cargo species by MinDE: First, we investigate how a
single species of membrane-bound cargo is influenced by an externally maintained
gradient of MinD proteins.

A. 01_Experiment_1: In a first set of experiments, we explore the spatial patterning of
a single species of membrane-bound cargo. Each cargo binds permanently to the
membrane via a fixed number of biotin/streptavidin anchors.

B. 02_Theory_FH_a: As a first theoretical approach, we investigate with a Flory-
Huggins theory whether entropic effects can recapitulate the experimental
observations. The idea here is that the imposed gradient of MinD proteins
constrains the combinatorial entropy of mixing. We test this approach in two levels
of detail:

a. 03_Theory_FH_b: A simplified implementation of the Flory-Huggins model that
neglects saturation effects when surface coverage becomes large.

b. 04_Theory_FH_c: A more detailed implementation of the Flory-Huggins model
that considers saturation effects.

C. 05_Theory_MS_a: As a second theoretical approach, we investigate whether a
Maxwell-Stefan-like phenomenological model can recapitulate the experimental
observations. We test this approach in two levels of detail:

a. 06_Theory_MS_b: An implementation of the Maxwell-Stefan-like
phenomenological model that builds on 04_Theory_FH_c and thus considers
membrane saturation effects.

b. 07_Theory_MS_Fit: Again neglecting saturation effects, we derive a fit curve
from our Maxwell-Stefan-like phenomenological model and fit it to our
experimental data (cf. 01_Experiment_1). As expected from our Maxwell-Stefan-
like phenomenological model, we find that the interaction strength increases
linearly with the number of Streptavidin anchors.

2. Second, we investigate how two species of membrane-bound cargo are influenced by
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an externally maintained gradient of MinD proteins.

A. 08_Experiment_2: We find that cargo with different effective sizes sort in a
gradient of MinD proteins. These MinD proteins are maintained by biochemical
reactions.

B. 09_Theory_MS_Sorting: The Maxwell-Stefan-like phenomenological model
recapitulates cargo sorting.
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Spatial organization of a single cargo species
by MinDE
We observe the buildup of cargo gradients in the presence of MinDE patterns. These MinDE
patterns are driven out of equilibrium by biochemical reactions (Min cycling). Each cargo
binds permanently to the membrane via a fixed number of biotin/streptavidin anchors.

01  What can we observe in the experiments?
This notebook serves the purpose of an interactive playground to explore our experimental
data without comparing it yet to any proposed model. Therefore, we do not perform any
fitting procedures in this notebook, and instead rely on numerical techniques like the
generation of LOESS (locally estimated scatterplot smoothing) curves. Note that LOESS
curves should be used with care and only provide a visual guide, because they can be easily
skewed by outlier data.

To explore our experimental data, execute the code below. The "Images" tab contains
images of all three channels. The "Correlations" tab contains cross-correlation plots. The
"Quality" tab indicates whether we consider the system in quasi-steady state or not, and
whether the membrane had a good quality. The "Keyfile" tab contains contains a
spreadsheet with details of the experiments (e.g. the day of the experiments).

The cell below is non-editable. If you need to modify its contents, either make it editable or
copy its contents to a new cell.
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In [ ]: # Add directory above current directory to path
import sys; sys.path.insert(0, '..')

# Import necessary packages
from Source.Experiment import Data
from Source.Visual import Experiment_1S

path = '../Data/Experiments/1_Cargo-n/'
data = Data.Series(
    path = path, 
    extended = True,
)

explore = Experiment_1S.Explore(
    data,
    # Use this line to indicate the url of the jupyter notebook. 
    # Typically either "127.0.0.1:8888" or "localhost:8888".
    notebook_url = "127.0.0.1:8888", port = 5006
)
explore.run()
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Spatial organization of a single cargo species
by MinDE
We observe the buildup of cargo gradients in the presence of MinDE patterns. These MinDE
patterns are driven out of equilibrium by biochemical reactions (Min cycling). Each cargo
binds permanently to the membrane via a fixed number of biotin/streptavidin anchors.

02  Can we reproduce the experiments with a
Flory-Huggins model that is based on the
entropy of mixing?
The following notebooks serve the purpose of an interactive playground to test whether a
mixing-entropy based model can reproduce our experiments. In the present notebook, we
first explain the rationale that underlies this type of model.

The Flory-Huggins theory of solutions is a thermodynamic model that considers a polymer
solution as a lattice gas. Each lattice site has size , and each particle/polymer takes up an
area of , thus occupying  lattice sites. In our experiments, each DNA origami scaffold
crosslinks several streptavidin molecules into an effective polymer-like object.

We assume that there is no direct attraction or repulsion between different species (e.g. due
to electrostatic interaction), so that we can neglect the corresponding Flory Huggins
coupling parameters. Then, the Flory-Huggins free energy of mixing is determined solely by
entropic terms:

Here,  is the typical size of a solvent patch (i.e. a lattice site), while  and  are the sizes
and surface densities of all other particle species. The particle densitiy profile of one of the
species (MinD, active) is externally maintained by reactions (Min cycling), thus placing
constraints on the combinatorial entropy of mixing and the corresponding Flory-Huggins
free energy of mixing. With these constraints, we then determine the distribution of all other
(passive) species that minimizes the Flory-Huggins free energy of mixing. To do so, we
calculate the local chemical potential  that affects each particle:

a0

ai ai/a0

= ∑
i

ci log[aici] + [ ∑
i

aici] log[1 − ∑
i

aici] . (1)
f

kBT

1
a0

a0 ai ci

µi = ∂f/∂ci

= log[aici] + log[1 − ∑
i

aici] + cst . (2)
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Note that the second term of the above equation confers an effective volume exclusion
between different species. Gradients in a chemical potential, , correspond to effective
entropic forces, which act on all particle species and drive the system towards an equilbrium
steady state. The distribution of MinD proteins is maintained in a nonequilibrium steady state
by off-equilibrium biochemical reactions (Min cycling). If we neglect coupling between the
fluxes of different particles (we will lift this assumption in our Maxwell-Stefan-like
phenomenological approach, cf. 05_Theory_MS_a), then the steady state is reached once
gradients in the chemical potential of the passive particles vanish,  or ,
while the chemical potential gradient of the Min proteins remains finite . This
corresponds to the assumption that the passive particles (cargo, streptavidin) reach an
equilibrium steady state in an adiabatic response to the imposed distribution of active
particles (MinD proteins). The code that is executed in the following notebooks determines
numerically the corresponding surface densities of all passive particles in the equilibrium
steady state.

All parameters are based on values that we have approximated from the experiments. The
solvent in the proximal layer directly above the membrane is represented by patches with a

size of 25nm2 (equivalent to 0.01 in dimensionless quantities). Similarly, the solvent in the
distal plane directly above the proximal plane is represented by patches with a size of

roughly 250nm2 (equivalent to 0.1 in dimensionless quantities). MinD proteins occupy up to

16.5% of the membrane and have a size of 25nm2. Streptavidin molecules have an average

surface coverage of 16.5% of the membrane and a size of roughly 25nm2. DNA-Origami
scaffolds have a surface coverage of up to 55% (cytosolic side) and a cytosolic size of

1760nm2; the corresponding surface coverage and effective size in the proximal plane
depend on the number of anchors. The added mass (integrated density) of all DNA-Origami
should be constant; a model value of 0.79 corresponds to the surface coverages in the
experiments.

Considered models:

1. 03_Theory_FH_b: A simplified implementation of the Flory-Huggins model that neglects
saturation effects when surface coverage becomes large. Thus, we consider only
entropic effects in the proximal plane directly above the membrane, which correspond
to an effective volume exclusion between MinD proteins, free streptavidin molecules,
and streptavidin molecules that are crosslinked into effective polymers via the DNA
origami scaffolds.

2. 04_Theory_FH_c: A more detailed implementation of the Flory-Huggins model that
considers saturation effects. Thus, in addition to entropic effects in the proximal plane
directly above the membrane (due to volume exclusion), we also consider entropic
effects relating to the DNA-Origami scaffolds in the distal plane directly above the

∇µi

µi = cst. ∇µi = 0
∇µp ≠ 0
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proximal plane (due to volume exclusion). Furthermore, we also consider that the
density of membrane-bound cargo (DNA origami scaffolds with bound streptavidin) is
limited by the density of available membrane-bound streptavidin molecules.
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Spatial organization of a single cargo species
by MinDE
We observe the buildup of cargo gradients in the presence of MinDE patterns. These MinDE
patterns are driven out of equilibrium by biochemical reactions (Min cycling). Each cargo
binds permanently to the membrane via a fixed number of biotin/streptavidin anchors.

03  Simplified description of our Flory-
Huggins model, which only includes entropic
effects near the membrane
Based on the arguments in 02_Theory_FH_a, in this notebook we consider a simplified
version of our Flory-Huggins model. Specifically, we make two big assumptions:

1. We consider only entropic effects in the proximal plane directly above the membrane,
which correspond to an effective volume exclusion between MinD proteins, free
streptavidin molecules, and streptavidin molecules that are crosslinked into effective
polymers via the DNA origami scaffolds. We neglect entropic effects in the distal plance
directly above the proximal plane, which correspond to an effective volume exclusion
between the bulky DNA origami scaffolds. Note that the limitation of this assumption is
that the DNA origami scaffold in the distal plane is actually larger than the region taken
up by the (crosslinked) streptavidin anchors in the proximal plane. This assumption can
in principle lead to an oversaturation of the membrane surface (i.e. the DNA origami
scaffolds may cover more space than is actually available since we have neglected the
corresponding volume exclusion terms).

2. The density of free streptavidin molecules is constant and independent of the number of
streptavidin molecules that can bind to a single DNA origami scaffold.

!  Important
The sorting efficiency (i.e. the absolute density difference between enriched and
depleted regions on the membrane) in this model is best for cargo with small numbers
of streptavidin molecules bound to each DNA origami scaffold. This spectacularly
contradicts our experiments. Therefore, this model cannot explain our
experimental observations.

Note that the density of membrane bound cargo (DNA origami scaffolds with bound
streptavidin) can in principle exceed the saturation density in this model. To correct
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this, we will lift the above-mentioned assumptions in the next notebook,
04_Theory_FH_c.

"  Info
Note that here the "Streptavidin"-channel corresponds to free (i.e. not bound to DNA
origami scaffolds) streptavidin!

#  Code
Click to show code for running the numerical optimization (not necessary since pre-

computed data is already provided).

To explore our numerical data, execute the code below. The cell below is non-editable. If you
need to modify its contents, either make it editable or copy its contents to a new cell.

In [ ]: # Add directory above current directory to path
import sys; sys.path.insert(0, '..')

# Import necessary packages
import numpy as np
from Source.Visual import Model_1S
from Source.Model import Particles

particles = Particles.particles

# Visualize
with np.load('../Data/Numeric/FloryHuggins_1_inf.npz') as data:    
    r, x, y_all = data.values()
    explore = Model_1S.Explore(
        particles, r, x, y_all,
        # Use this line to indicate the url of the jupyter notebook. 
        # Typically either "127.0.0.1:8888" or "localhost:8888".
        notebook_url = "127.0.0.1:8888", port = 5006
    )
    explore.run()
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Spatial organization of a single cargo species
by MinDE
We observe the buildup of cargo gradients in the presence of MinDE patterns. These MinDE
patterns are driven out of equilibrium by biochemical reactions (Min cycling). Each cargo
binds permanently to the membrane via a fixed number of biotin/streptavidin anchors.

04  Detailed description of our Flory-Huggins
model, which includes entropic effects both
near and further away from the membrane
Based on the arguments in 02_Theory_FH_a, in this notebook we consider a more detailed
version of our Flory-Huggins model. Specifically, we now lift the two big assumptions that we
have made in 03_Theory_FH_b:

1. As before, we consider entropic effects in the proximal plane directly above the
membrane, which correspond to an effective volume exclusion between MinD proteins,
free streptavidin molecules, and streptavidin molecules that are crosslinked into
effective polymers via the DNA origami scaffolds. In addition, we now also consider
entropic effects in the distal plance directly above the proximal plane, which correspond
to an effective volume exclusion between the bulky DNA origami scaffolds. This will
strictly prevent oversaturation of the membrane surface (i.e. the DNA origami scaffolds
may never cover more space than is actually available).

2. The DNA origami scaffolds attach to the membrane by binding to streptavidin
molecules. Therefore, the density of free streptavidin molecules shrinks with increasing
number of biotinylated sites on the DNA origami scaffolds that can crosslink with
streptavidin. We assume that each site on a DNA origami scaffold that can bind to a
streptavidin molecule will actually do so to maximize the attractive interactions with the
membrane. Then, the density of membrane-bound cargo (DNA origami scaffolds with
bound streptavidin) has an upper bound, which is given by the streptavidin density
divided by the number of biotinylated sites on each DNA origami scaffold.

!  Important
This model does NOT allow the strong redistribution of cargo (specifically, cargo
with small numbers of streptavidin molecules bound to each DNA origami
scaffold) that is observed in our experiments, cf. 01_Experiment_1. Similarly, it
also does NOT allow a strong redistribution of free streptavidin molecules.
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Furthermore, we observe that the DNA-Origami densities never become depleted,
in stark contradiction to our experiments. Taken together, neither the simplified
Flory Huggins theory presented in 03_Theory_FH_b nor the generalized Flory
Huggins theory presented in this notebook can explain our experiments.
Therefore, this type of theory must be missing something!

In fact, so far we have neglected dynamic effects like a coupling between the fluxes of
different particles due to mesoscopic friction. We will lift this assumption in the next
notebook, 05_Theory_MS_a.

"  Info
Note that here the "Streptavidin"-channel corresponds to free (i.e. not bound to DNA
origami scaffolds) streptavidin!

#  Code
Click to show code for running the numerical optimization (not necessary since pre-

computed data is already provided).

To explore our numerical data, execute the code below. The cell below is non-editable. If you
need to modify its contents, either make it editable or copy its contents to a new cell.

In [ ]: # Add directory above current directory to path
import sys; sys.path.insert(0, '..')

# Import necessary packages
import numpy as np
from Source.Visual import Model_1S
from Source.Model import Particles

particles = Particles.particles

# Visualize
with np.load('../Data/Numeric/FloryHuggins_1_010.npz') as data:    
    r, x, y_all = data.values()
    explore = Model_1S.Explore(
        particles, r, x, y_all,
        # Use this line to indicate the url of the jupyter notebook. 
        # Typically either "127.0.0.1:8888" or "localhost:8888".
        notebook_url = "127.0.0.1:8888", port = 5006
    )
    explore.run()
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Spatial organization of a single cargo species
by MinDE
We observe the buildup of cargo gradients in the presence of MinDE patterns. These MinDE
patterns are driven out of equilibrium by biochemical reactions (Min cycling). Each cargo
binds permanently to the membrane via a fixed number of biotin/streptavidin anchors.

05  Can we reproduce the experiments with a
phenomenological flux-based model?
The following notebooks serve the purpose of an interactive playground to test whether a
Maxwell-Stefan-like phenomenological model that is based on particle fluxes can reproduce
our experiments. In the present notebook, we first explain the rationale that underlies this
type of model.

In a previous notebook, 02_Theory_FH_a, we have sketched how one can derive the chemical
potential of a membrane-bound particle from the Flory-Huggins free energy of mixing, .
Then, each particle is affected by the following local chemical potential :

where  is the typical size of a solvent patch, while  and  are the sizes and surface
densities of all other particle species. As discussed before, the particle densitiy profile of
one of the species (MinD, active) is externally maintained by reactions (Min cycling), thus
placing constraints on the combinatorial entropy of mixing, the corresponding Flory-Huggins
free energy of mixing and the resulting chemical potentials. The second term of the above
equation confers an effective volume exclusion between different species (in the proximal
plane directly above the membrane: MinD proteins, free streptavidin molecules, streptavidin
molecules that are crosslinked into effective polymers via the DNA origami scaffolds, and
solvent; in the distal plane directly above the proximal plane: only DNA origami scaffolds and
solvent). As we have done in the previous notebook, 04_Theory_FH_c, we here consider
entropic effects in both the proximal plane directly above the membrane and in the distal
plane directly above the proximal plane.

Gradients in a chemical potential, , correspond to effective entropic forces, which act
on all particle species and drive the system towards an equilbrium steady state. In the
previous notebooks (02_Theory_FH_a, 03_Theory_FH_b and 04_Theory_FH_c), we have
assumed that the passive particles (cargo, streptavidin) reach an equilibrium steady state in

f

µi = ∂f/∂ci

= log(aici) + log[1 − ∑
i

aici] + cst , (1)
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kBT
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an adiabatic response to the imposed distribution of active particles (MinD proteins). Now,
we will relax this assumption. Specifically, according to Onsager's theory of nonequilibrium
thermodynamics, chemical potentials  always imply particle fluxes . Since we are now
dealing with an intrinsically dynamic theory, we account for the friction between membrane-
bound particles and the membrane, and in addition also a mesoscopic friction between
different particle species. Such an effective inter-particle friction can arise, for example,
from direct particle-particle interactions (i.e. collisions) or hydrodynamic interactions. Then,
the effective Maxwell-Stefan-like force balance equation for each particle species reads:

where the first term covers thermodynamic forces, the second term covers friction between
particles and the membrane, and the last term couples the fluxes of different particle
species. Note that the interaction parameter  correponds to an effective friction between
particle species  and . Furthermore, note that the term in square brackets corresponds to
a velocity difference (slip) between the fluxes of any two species. We assume that the
imposed distribution of MinD proteins is in a nonequilibrium steady state that is maintained
by off-equilibrium biochemical reactions (i.e. reactive fluxes due to Min cycling between
membrane and bulk solution) and diffusive fluxes on the membrane surface . In
contrast, the passive particles (streptavidin and cargo) do not partake in reactions and
remain permanently bound to the membrane. Therefore, the passive particles will approach
a thermal equilibrium state with vanishing fluxes . The code that is executed
in the following notebooks exploits this property to numerically determine the corresponding
surface densities of all passive particles. Note that for vanishing coupling parameters, 

, this model reduces to our Maxwell Stefan theory, cf. 04_Theory_FH_c.

All parameters are based on values that we have approximated from the experiments. The
solvent in the proximal layer directly above the membrane is represented by patches with a

size of 25nm2 (equivalent to 0.01 in dimensionless quantities). Similarly, the solvent in the
distal plane directly above the proximal plane is represented by patches with a size of

roughly 250nm2 (equivalent to 0.1 in dimensionless quantities). MinD proteins occupy up to

16.5% of the membrane and have a size of 25nm2. Streptavidin molecules have an average

surface coverage of 16.5% of the membrane and a size of roughly 25nm2. DNA-Origami
scaffolds have a surface coverage of up to 55% (cytosolic side) and a cytosolic size of

1760nm2; the corresponding surface coverage and effective size in the proximal plane
depend on the number of anchors. The added mass (integrated density) of all DNA-Origami
should be constant; a model value of 0.79 corresponds to the surface coverages in the
experiments.

Considered models:

∇µi ji

−∇µi − ξi − ∑
k

ζikck [ − ] = 0 , (2)
ji
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ck
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ji = 0, ∀i ≠ p
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1. 06_Theory_MS_b: Full implementation of our phenomenological Maxwell-Stefan-like
model based on the chemical potentials in 04_Theory_FH_c.

2. 07_Theory_MS_Fit: Again neglecting saturation effects, we derive a fit curve from our
Maxwell-Stefan-like phenomenological model and fit it to our experimental data (cf.
01_Experiment_1). As expected from our Maxwell-Stefan-like phenomenological model,
we find that the interaction strength increases linearly with the number of Streptavidin
anchors.
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Spatial organization of a single cargo species
by MinDE
We observe the buildup of cargo gradients in the presence of MinDE patterns. These MinDE
patterns are driven out of equilibrium by biochemical reactions (Min cycling). Each cargo
binds permanently to the membrane via a fixed number of biotin/streptavidin anchors.

06  Detailed implementation of our Maxwell-
Stefan-like phenomenological model

!  Agreement with experiments
This model ALLOWS reaching the range of DNA-Origami densities (coverages)
that we have observed in our experiments, cf. 01_Experiment_1. Specific examples
of experimental data sets that one can use for comparison:

"file_5", which corresponds to 42 Anchors and to a mean coverage of 0.15,
reaching coverages up to 0.5.
"file_23", which corresponds to 42 Anchors and to a mean coverage of 0.35,
reaching coverages up to 1 (full coverage).

Furthermore, we observe that the DNA-Origami densities CAN become depleted,
in full agreement with the experiments. In addition, we also observe that the
redistribution if free streptavidin molecules is also significantly stronger than in
the Flory-Huggins model, 04_Theory_FH_c, thus providing better agreement with
our experiments.

"  Code
Click to show code for running the numerical optimization (not necessary since pre-

computed data is already provided).

To explore our numerical data, execute the code below. The cell below is non-editable. If you
need to modify its contents, either make it editable or copy its contents to a new cell.

Snapshotofsupplem
entary

data

II.2 Protein Fluxes Induce Generic Transport of Cargo

187



In [ ]: # Add directory above current directory to path
import sys; sys.path.insert(0, '..')

# Import necessary packages
import numpy as np
from Source.Visual import Model_1S
from Source.Model import Particles

particles = Particles.particles

# Visualize
with np.load('../Data/Numeric/MaxwellStefan_1_010.npz') as data:    
    r, x, y_all = data.values()
    explore = Model_1S.Explore(
        particles, r, x, y_all,
        # Use this line to indicate the url of the jupyter notebook. 
        # Typically either "127.0.0.1:8888" or "localhost:8888".
        notebook_url = "127.0.0.1:8888", port = 5006
    )
    explore.run()
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Spatial organization of a single cargo species
by MinDE
We observe the buildup of cargo gradients in the presence of MinDE patterns. These MinDE
patterns are driven out of equilibrium by biochemical reactions (Min cycling). Each cargo
binds permanently to the membrane via a fixed number of biotin/streptavidin anchors.

07  Fitting the experimental data with a
simplified flux-based model
We have seen that our experimental data is best explained by a phenomenological model
that accounts for interactions between the diffusive fluxes of particles, in the form of a
mesoscopic friction (cf. 05_Theory_MS_a). In the present notebook, we will fit our
experimental data (cf. 01_Experiment_1) with a drastically simplified model that neglects
volume exclusion effects both in the proximal and in the distal layer. Furthermore, we only
account for a single cargo species (DNA origami), and therefore neglect coupling between
MinD proteins and free streptavidin molecules. While these are indeed drastic
simplifications, they allow us to find an analytic solution for the cross-correlation function
between the distributions of MinD proteins and DNA origami.

First, we will determine how interactions with DNA origami affect the diffusive flux of MinD
proteins. With the simplifications outlined above, the chemical potential of a particle with a
size of  and a surface density of  is given by . Therefore, we consider the
following effective force balance equation for MinD proteins (cf. 05_Theory_MS_a):

where  and  denote MinD proteins and cargo molecules (DNA origami scaffolds with
bound streptavidin), respectively. Here, the first term corresponds to thermodynamic forces
that gradually equilibrate gradients in chemical potential (cf. 02_Theory_FH_a and
05_Theory_MS_a), which in this case is equivalent to an equilibration of particle density
gradients. Cargo molecules are chemically inert and permanently bound to the membrane,
so that any net flux  can only occur parallel to the surface of the membrane. Therefore, as
mentioned in 05_Theory_MS_a, all net fluxes of cargo molecules must vanish in steady state.
However, for MinD proteins, the story is different. MinD proteins can detach from the
membrane and form a reaction cycle. Therefore, diffusive fluxes of MinD on the membrane
can be counteracted by reactive fluxes.

ai ci kBT log(aici)

−kBT − ξp − ζpg cg [ − ] = 0 , (1)
∇cp

cp

jp

cp

jp

cp

jg

cg

p g

jg
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With these conditions in mind (  and ), we find the following equation for the
diffusive fluxes of the Min proteins:

Therefore, we find that the diffusion of MinD proteins becomes slower with increasing
concentration of cargo molecules, which explains why we observe narrower MinD patterns
on supported lipid bilayers with membrane-bound DNA-Origami. There is also a converse
effect: the higher the concentration of MinD proteins on the supported lipid bilayer, the
slower the diffusion of DNA-Origami; we have directly observed this phenomenon in
experiments.

From our full phenomenological Maxwell-Stefan-like model, cf. 06_Theory_MS_b, we have
found that an imposed distribution of MinD proteins easily induces density gradients of
cargo molecules. These density gradients then in turn correspond to a space-dependent
diffusion coefficient of MinD, which we can determine from our full phenomenological
Maxwell-Stefan-like model, cf. 06_Theory_MS_b:

!  We see that a large density of cargo drastically reduces the diffusive flux of
MinD proteins.

"  Code
Click to show code for generating this figure.

jg = 0 ∇cp ≠ 0

jp = − ∇cp . (2)
kBT

ξp + ζpg cg
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Analogously to MinD proteins, the effective force balance equation for cargo molecules is
given by:

where, as before, the first term corresponds to thermodynamic forces that drive the system
towards equilibrium. As discussed above, the diffusive fluxes of the cargo molecules must
vanish in steady state, . Then, the effective forces that are exerted on cargo
molecules through mesoscopic friction with the net diffusive fluxes of MinD proteins, 
(cf. last term of the above equation), are balanced by a build-up of cargo molecule gradients
and the corresponding thermodynamic forces (first term of the above equation). Finally, we
obtain the following relation between gradients in cargo density and gradients in MinD
density:

As discussed above, the distribution of cargo molecules is stationary (steady state) and is
only influenced by MinD proteins. Therefore, the concentration of cargo molecules must be a
function of the local concentration of MinD proteins alone, , and some additional
global parameters like the total amount of the different species. Therefore, we rewrite the
above equation as

The solution to the above ODE is given by the principal branch of the Lambert W-Function:

where we have introduced the typical interaction density . In the experiments,
we do not have direct access to the actual surface densities. Instead, we measure
fluorescence intensity values, which are proportional to the surface densities, 
and . Therefore, we will fit the following equation:

to the intensity cross-correlations obtained in our experiments, cf. 01_Experiment_1. Here,
we have defined: . Having normalized the fluorescence intensities, we estimate
the ratio of fluoresence intensities, , to be .

−kBT − ξg − ζpg cp [ − ] = 0 , (3)
∇cg

cg

jg

cg

jg

cg

jp

cp

jg = 0
jp ≠ 0

∇cg = −∇cp . (4)
ζpg cg

ξp + ζpg cg

cg ≡ cg(cp)

= − . (5)
∂cg

∂cp

ζpg cg

ξp + ζpg cg

cg(cp) = c×W [ exp( )] , (6)
cg(0)

c×

cg(0) − cp

c×

c× = ξp/ζpg

Ig = αgcg

Ip = αpcp

Ig(Ip) = r I× W [ exp( − )] (7)
Ig(0)
r I×

Ig(0)
r I×

Ip

I×

I× = αpc×

r = αg/αp r ≈ 14.5

Snapshotofsupplem
entary

data

II.2 Protein Fluxes Induce Generic Transport of Cargo

191



"  Code
Click to show code for getting the fluorescence ratio.

"  Code
We have also performed experiments with a different anchoring strategy via

cholesteryl moieties. Since these measurements do not have a streptavidin channel,
they cannot be explored with the code below. For this alternative anchoring strategy, we
have also performed a fitting procedure, but with a slightly different fluorescence ration
of . Click to show code for getting the fluorescence ratio.r ≈ 13.9

In [ ]: # Add directory above current directory to path
import sys; sys.path.insert(0, '..')

# Import necessary packages
from Source.Experiment import Data
from Source.Experiment import Fit
from Source.Visual import Experiment_1F

path = '../Data/Experiments/1_Cargo-n/'
data = Data.Series(
    path = path, 
)
fits = Fit.Series(
    path = path, 
    series = data, 
    ratio = 14.5,
    smooth = 1)
explore = Experiment_1F.Explore(
    data, fits,
    # Use this line to indicate the url of the jupyter notebook. 
    # Typically either "127.0.0.1:8888" or "localhost:8888".
    notebook_url = "127.0.0.1:8888", port = 5006
)
explore.run()
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In [ ]:  
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Spatial organization of multiple species by
MinDE
We observe the buildup of cargo gradients in the presence of MinDE patterns. These MinDE
patterns are driven out of equilibrium by biochemical reactions (Min cycling). Each cargo
binds permanently to the membrane via a fixed number of biotin/streptavidin anchors.

We find that MinDE protein patterns allow the sorting of different cargo species.

08  What can we observe in the experiments?
This notebook serves the purpose of an interactive playground to explore our experimental
data without comparing it yet to any proposed model. Therefore, we do not perform any
fitting procedures in this notebook.

To explore our experimental data, execute the code below. The "Images" tab contains
images of all three channels. The "Correlations" tab contains cross-correlation plots. The
"Keyfile" tab contains contains a spreadsheet with details of the experiments (e.g. the day of
the experiments).

The cell below is non-editable. If you need to modify its contents, either make it editable or
copy its contents to a new cell.

In [ ]: # Add directory above current directory to path
import sys; sys.path.insert(0, '..')

# Import necessary packages
from Source.Experiment import DataFolder
from Source.Visual import Experiment_2S

path = '../Data/Experiments/5_Two-species_Cargo-n/'
data = DataFolder.Series(
    path = path, 
)

explore = Experiment_2S.Explore(
    data,
    # Use this line to indicate the url of the jupyter notebook. 
    # Typically either "127.0.0.1:8888" or "localhost:8888".
    notebook_url = "127.0.0.1:8888", port = 5006
)
explore.run()
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Spatial organization of multiple species by
MinDE
We observe the buildup of cargo gradients in the presence of MinDE patterns. These MinDE
patterns are driven out of equilibrium by biochemical reactions (Min cycling). Each cargo
binds permanently to the membrane via a fixed number of biotin/streptavidin anchors.

We find that MinDE protein patterns allow the sorting of different cargo species.

09  Maxwell-Stefan-like phenomenological
model recapitulates spatial sorting of different
cargo species by MinDE patterns

!  Agreement with experiments
This model ALLOWS sorting of different cargo species as observed in the
experiments! Therefore, we find that the Maxwell-Stefan-like phenomenological can
explain our experimental findings. In contrast, the Flory Huggins model alone cannot do
so.

"  Code
Click to show code for running the numerical optimization (not necessary since pre-

computed data is already provided).

To explore our numerical data, execute the code below. The cell below is non-editable. If you
need to modify its contents, either make it editable or copy its contents to a new cell.
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In [ ]: # Add directory above current directory to path
import sys; sys.path.insert(0, '..')

# Import necessary packages
import numpy as np
from Source.Visual import Model_2S
from Source.Model import Particles

particles = Particles.particles
particles = particles.append({**Particles._cargo_origami, 'key':'2'}, ignore_index
particles.loc[particles.description=='DNA-Origami', 'total_mass'] = 0.4

with np.load('../Data/Numeric/MaxwellStefan_2_010.npz') as data:    
    r, x, y_all = data.values()
    explore = Model_2S.Explore(
        particles, r, x, y_all,
        # Use this line to indicate the url of the jupyter notebook. 
        # Typically either "127.0.0.1:8888" or "localhost:8888".
        notebook_url = "127.0.0.1:8888", port = 5006
    )
    explore.run()
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III From Cellular Dynamics
to Self-Organization

III.1 Collective Cell Dynamics in Rigid
Environments

So far, in Chapter II “Between Protein Patterns andMechanics” we have focused
mainly on processes related to intracellular organization and pattern formation.
Now, we will switch gears and instead put the spotlight on one possible conse-
quence of intracellular organization: cell migration. To that end, we develop a
generalization of the discrete Cellular Potts model (Graner and Glazier, 1992)
that aims at describing the migration of polar cells, both as single entities and
in collectives, on two-dimensional surfaces. Our main results are published
in “Bridging the gap between single-cell migration and collective dynamics”,
eLife 8, e46842 (2019). We refer to pages 209–228 for a reprint of the main text
and to pages 229–248 for a reprint of the SupplementaryMaterial. The following
serves as an introduction into the project and a summary of its main results, for
the convenience of the reader.

Research Contribution. This project is also a part of the dissertation of Flo-
rian Thüroff, who developed the original implementation of the model (F. P.
Thüroff, 2014). During my studies, I continued the development and reimple-
mented the model. In particular, I devised the cell division algorithm that is
discussed in (F. Thüroff et al., 2019), reinterpreted the model as the active sur-
face wetting process of a droplet, and motivated the model by mapping it to
a first-passage-time problem. Then, I used these results, as discussed in Sec-
tion III.2 “Cell Migration and Shape in Soft Environments”, to determine the
traction stresses that the simulated cells exert on the surface, thus leading to
substrate deformations.

A note about the notation. To be consistent with the rest of the thesis, we
denote themechanical rigidity coefficients with 𝑘 instead of 𝜅, because the latter
is reserved for curvatures in this thesis. We denote the cytoskeletal update rate

https://doi.org/10.7554/eLife.46842
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with 𝑟𝜖 instead of 𝜇, because the latter is reserved for chemical potentials in this
thesis. We discuss ourmodel in terms of the Helmholtz free energy of a spatially
extended cell.

III.1.1 Starting Point of the Project
Cell migration plays a crucial role during the development and homeostasis of
an organism. If the organism receives a wound, then at the re-epithelialization
stage the cells in the epidermis will proliferate and collectively migrate into
the cleft, thus closing the wound and restoring the integrity of the organism’s
skin (Rodrigues et al., 2019). In vitro, one can recreate these processes in so-
called wound-healing assays, where two fronts of confluent tissue are separated
by a cell-free area (Friedl, Hegerfeldt, et al., 2004; Friedl andGilmour, 2009; Pou-
jade et al., 2007). Furthermore, cell migration not only plays a role for wound
closure, but is also relevant for inflammatory processes where immune cells
clean the wound of pathogens (Rodrigues et al., 2019). To do so, individual im-
mune cells have to first reach the wound bymigrating through the tissue, which
is a crucial step for any inflammatory response (Friedl andWeigelin, 2008). Cell
migration also occurs during development, where stem cells have to first reach
their correct position before differentiating for example into neurons (Reece et
al., 2014), or as a driver of morphogenesis (Lecaudey and Gilmour, 2006). The
unpleasant side of cell migration is that it also plays a role in disease-related pro-
cesses such as cancer metastasis (Yamaguchi et al., 2005; Spatarelu et al., 2019).
Because cell migration occurs in so many life-related processes, there is a gen-
eral interest in studying its physical underpinnings. To that end, a large number
of successful theoretical models were developed over the years, some aimed at
understanding single-cell dynamics (Marée, Jilkine, et al., 2006; Mogilner, 2009;
Shao, Rappel, et al., 2010; Marée, Grieneisen, et al., 2012; Ziebert, Swaminathan,
et al., 2012; Ziebert and Aranson, 2013; Camley, Y. Zhao, et al., 2013; Albert and
Schwarz, 2014; Dietrich et al., 2018; Brückner et al., 2019) and some aimed at
understanding the dynamics of tissues (B. Szabó et al., 2006; A. Szabó, Ünnep,
et al., 2010; Kabla, 2012; Sepúlveda et al., 2013; Basan et al., 2013; Banerjee et
al., 2015; Alt et al., 2017; Tarle et al., 2017). Models that can resolve both single
and collective cell migration can be largely categorized into two groups, namely
phase-field models that describe each cell as a continuous field variable (Shao,
Rappel, et al., 2010; Ziebert, Swaminathan, et al., 2012; Shao, Levine, et al., 2012;
Camley, Y. Zhao, et al., 2013; Camley, Zhang, et al., 2014; Löber et al., 2015) and
Cellular Pottsmodels that discretize cells into different tiles (Graner andGlazier,
1992; A. Szabó, Ünnep, et al., 2010; Kabla, 2012; A. Szabó and R. M. Merks,
2013; van Oers et al., 2014; Segerer et al., 2015; Niculescu et al., 2015; Albert and
Schwarz, 2016; Rens and R. M. H. Merks, 2017).
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III.1.2 Goal of the Project
Our aim is to develop a versatile and extensible model, which can efficiently de-
scribe the dynamics of both single cells and cell collectives. We then apply our
model to several exemplary cases to test its validity. Studying single cell motil-
ity, we find that individual cells break symmetry by polarizing. Then, each cell
performs a persistent random walk with ballistic motion on short timescales
and diffusive motion on long timescales. Placing multiple cells into a circular
confinement, we find that the polar cells minimize viscous shear by migrating
in cohesive groups. Therefore, we observe collective rotations on circular mi-
cropatterns, starting from small groups of cells (Segerer et al., 2015) all the way
to large cell collectives. Finally, studying large extended tissues in the context
of wound healing, we find that the polarizing cells actively invade the cell-free
region and pull on the trailing cells. Because the leading cells pull on the trailing
cells, we find that stress typically propagates from the front towards the back of
the tissue, leading to X-shaped kymographs of the traction stress as a function
of position and time. This mode of invasion is markedly different compared to
dynamics that are dominated by cell proliferation.

III.1.3 Technical Summary
Elasticity and homogeneous contractility of a cell. We consider the
dynamics of a contractile three-dimensional cell, which remains round in
suspension and whose deformations are subject to elastic constraints. This
three-dimensional cell can make contact with a two-dimensional surface that
is spanned by the two tangent vectors ̂𝒆𝑥 and ̂𝒆𝑦, forming a Cartesian basis.
We only consider a single substrate contact of topological genus 0, that is, a
simply connected contact area with zero holes that has an area 𝐴(𝑡) and is
bounded by a perimeter 𝑃(𝑡). Driven by the contractility of the cell’s actin
cortex (Salbreux et al., 2012; Chugh and Paluch, 2018) and the elastic properties
of its membrane and cytoskeleton, the contact area will collapse to a point when
the cell becomes spherical. During these processes, the cell performs work,
which it draws from a Helmholtz free energy that we assume to be a quadratic
function of the contact area and perimeter:

𝐹el = 𝑘𝐴 𝐴2(𝑡) + 𝑘𝑃 𝑃2(𝑡) . (III.1)

Here, the parameters 𝑘𝐴 and 𝑘𝑃 both model the elastic properties and the ho-
mogeneous contractility of the cell.

Adhesion and force generation. When the cell makes contact with a surface,
it can form adhesions via integrin molecules (Charras and Sahai, 2014; De Pas-
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calis and Etienne-Manneville, 2017). This leads to an effective temporary glue-
ing of the cell to the surface, which we henceforth also refer to as “substrate”. As
we will see, our model is completely equivalent to the wetting dynamics of an
active fluid droplet on a surface. For this reason, we also refer to “adhesion” as
“wetting”. We describe this wetting through the chemical potential difference
between a substrate-bound integrin molecule and a free integrin molecule, the
substrate adhesion energy Δ𝜇ad < 0. The total adhesion energy of the cell is
then given by:

𝐹ad = ∫𝑑2𝒙 Δ𝜇ad 𝑐ad(𝒙) , (III.2)

where 𝑐ad(𝒙) is the density of substrate-bound integrin molecules. Note that if
adhesions can undergo maturation, growing and strengthening over time (Ber-
shadsky et al., 2006), then the chemical potential of an adhesion can also be a
function of time and space, Δ𝜇ad(𝒙, 𝑡). Given our discussion in Paragraph “Cou-
pling between proteins and the membrane via stretching” (Section II.1.3), we
can also interpret the substrate adhesion energy of each integrin molecule as a
(negative) tension1. This analogy will become important in the next two para-
graphs. But first, we turn the spotlight to the cell cytoskeleton, which enables
the cell to generate active forces and propel itself forward after forming adhe-
sions with the substrate (Lauffenburger and Horwitz, 1996; Pollard and Borisy,
2003; Mogilner, 2009; Mogilner and Keren, 2009). The cell cytoskeleton gener-
ates two active stress contributions on the substrate, which we discuss next.

Inhomogeneous contractility of the cell cytoskeleton. The actin cortex is
a network of polar actin filaments that slide relative to each other due to the
activity of myosin motors (Salbreux et al., 2012; Gross et al., 2017; Chugh and
Paluch, 2018). On a coarse-grained level, we therefore consider the actin cortex
as a meshwork of contractile (or extensile) rods, each having one end pointing
in the direction

̂𝒆𝜃 = cos(𝜃) ̂𝒆𝑥 + sin(𝜃) ̂𝒆𝑦 , (III.3)

and the other end pointing in the opposite direction. We assume that each rod
obeys local force balance between its two ends, leading to the following popula-

1 In our model, we account for intercellular adhesions in an analogous way, by invoking a neg-
ative line tension between neighboring cells. We then implement intercellular shear friction
by making the cost for breaking cell-cell contacts higher than the energy benefit for making
new contacts, thus dissipating energy.
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tion averaged tension tensor2:

𝝉crt(𝒙) = ∫
𝜋

−𝜋
𝑑𝜃 𝑃(𝒙, 𝜃) 𝜏(𝒙) ̂𝒆𝜃 ⊗ ̂𝒆𝜃 , (III.4)

where 𝑃(𝜃) is the angular distribution of the rods and 𝜏(𝒙) encodes their con-
tractile (or extensile) properties. This means that each individual rod only per-
forms work when it contracts along the direction ̂𝒆𝜃, and does nothing in the
perpendicular direction. In general, the contractility 𝜏(𝒙) will depend on the
local density of cytoskeletal material and myosin motors.
If wemake the drastic approximation of an isotropic distribution of contractile

rods, 𝑃(𝒙, 𝜃) = 1/(2𝜋) , then the tension tensor simplifies to

𝝉crt(𝒙) = 𝜏(𝒙) 𝑰 . (III.5)

Since the contractility 𝜏(𝒙) depends on the local density of cytoskeletal ma-
terial, a lowest order approximation yields 𝜏(𝒙) ∝ 𝑐ad(𝒙). Now, we remind
on the equivalence between the substrate adhesion energy of each integrin
molecule and an effective negative tension. On these grounds, we can absorb
the (isotropic) active tension, Eq. (III.5), into a modified form of Eq. (III.2) with
remapped chemical potential, Δ𝜇ad → Δ𝜇ad + 𝜏/𝑐ad.

The cell cytoskeleton generates pushing forces. The actin network can gen-
erate directed pushing forces on the membrane via assembly and disassembly
of cytoskeletal structures (Pollard and Borisy, 2003; Mogilner, 2009). For a spa-
tially extended body such as a cell, we can model these pushing forces as the
gradient of some pseudo-(chemical)-potential, which we do not specify further.
Taking all of our arguments together, we treat cell migration on a substrate as an
effective active wetting process3. To that end, we redefine the substrate adhesion
energy, Eq. (III.2), to take into account the generation of active stresses by the
cell cytoskeleton:

𝐹ad ≔ −∫𝑑2𝒙 𝜖(𝒙, 𝑡) 𝜌(𝒙) . (III.6)

Here, 𝜖(𝒙, 𝑡) > 0 is the effective “strength” of each adhesion. In the follow-
ing, we also refer to 𝜖(𝒙, 𝑡) as the “polarization field”, because it determines cell
polarity. We represent the corresponding effective surface density of substrate
2We will encounter a very similar tension tensor in Section IV.1 “Collective Cell Migration
Affects Morphogenesis”.

3 Active wetting was recently used to describe the transformation of extended epithelial tissues
from two-dimensional monolayers to a three-dimensional spherical shape (Pérez-González
et al., 2019). Furthermore, substrate wetting was also recently studied in the context of cell
migration, by modeling the dynamics of the vertical cross-section of a cell (Cao et al., 2019).
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adhesions (and cytoskeletal structures) with the variable 𝜌(𝒙) ≡ 1/𝑎(𝒙), where
𝑎(𝒙) is the effective area of a substrate adhesion at position 𝒙. This will be-
come crucial whenwe study cell migration on soft deformable substrates in Sec-
tion III.2 “Cell Migration and Shape in Soft Environments”. For now, we con-
sider rigid substrates with a constant and homogeneous size of substrate adhe-
sions, 𝑎(𝒙) = const. Finally, the effective local substrate adhesion energy, 𝜖(𝒙, 𝑡),
is regulated in space and time by intracellular signaling cascades. Through these
intracellular signaling cascades, the cell is continuously driven out of equilib-
rium.

Protrusion and retraction as a first-passage-time problem. The non-
equilibrium activity of a cell shows itself via protrusions and retractions, where
the cell changes its contact area with the substrate, by some small variation 𝛿𝐴
and 𝛿𝑃. To simulate these dynamics, we tessellate the substrate into hexagonal
tiles of area 𝛿𝐴 ≡ 𝑎(𝒙), but their specific shape is of no significance. What is
important is that the cell can reap (or has to pay) an effective free energy benefit
(or loss) for changing its configuration4:

𝛿𝐹 = 𝛿𝐹el + 𝛿𝐹ad = [2 𝑘𝐴 𝐴 + 2𝑘𝑃 𝑃
𝛿𝑃
𝛿𝐴 − 𝜖(𝒙, 𝑡) 𝜌(𝒙)] 𝛿𝐴 , (III.7)

via creating or relinquishing substrate contacts. For the purpose of our simula-
tions, we treat each hexagonal tile as one adhesion. Then, making or breaking
contact with a hexagonal tile (equivalent to particle exchange) is associatedwith
the following chemical potential difference:

Δ𝜇𝜖(𝒙) = [2 𝑘𝐴 𝐴 + 2𝑘𝑃 𝑃
𝛿𝑃
𝛿𝐴] 𝑎(𝒙) − 𝜖(𝒙, 𝑡) , (III.8)

between having an engaged substrate contact, “+” and a disengaged substrate
contact, “−”.
Now, we consider the dynamics of making and losing adhesions as a first-

passage-time problem, where the cell has to first overcome a large potential bar-
rier. Such a potential barrier could arise, for example, if the cell has to first
deform the membrane at no benefit before it can make a protrusion. Analogous
to the discussion in Section II.1 “Mechanochemical Coupling between Proteins
andMembranes”, our problem thenmaps exactly to Kramers’ theory of reaction
kinetics (Kramers, 1940; Hänggi et al., 1990). Then, one obtains an Arrhenius
equation for the protrusion or retraction rate (Arrhenius, 1889):

𝑟±
𝑟0
= exp (∓Δ𝜇𝜖𝑘B𝑇

) , (III.9)

4Note that 𝛿𝑃/𝛿𝐴 = −𝜅, where 𝜅 is the curvature of the boundary (projected onto the sub-
strate).

204



III.1 Collective Cell Dynamics in Rigid Environments

where 𝑟0 is some reference rate that depends on the height of the chemical poten-
tial barrier. Because we can freely choose the time stepping of our simulations,
we make it sufficiently large so that many forward and backward reactions can
occur during each time step. Then, each adhesion is in local thermal equilib-
rium and we can interpret the rate of forward and backward reactions, 𝑟±/𝑟0,
as the Boltzmann weight of finding an engaged substrate contact, “+”, or a dis-
engaged substrate contact, “−”. In our simulations, we choose the Metropolis
algorithm, which also fulfills the condition of local detailed balance. These pro-
trusion and retraction dynamics continuously take the cell closer to equilibrium
in our model. To then drive the cell out of equilibrium, we need to inject en-
ergy through a different process that cannot be mapped to gradient dynamics.
In our simulations, we realize this by continuously updating the effective ad-
hesion energy, 𝜖(𝒙), via out-of-equilibrium reactions. This process mimics the
active remodeling of the cell cytoskeleton, as discussed next.

Intracellular signaling regulates effective substrate wetting. To drive its
motion, the cell continuously builds up and degrades cytoskeletal structures
in a complex sequence of different feedback mechanisms (Lauffenburger and
Horwitz, 1996). For example, the cell can detect extracellular mechanical stim-
uli through integrin (and other) molecules, which subsequently regulate the
Rho family of GTPases (Schwartz and Shattil, 2000; Parsons et al., 2010; Hodge
and Ridley, 2016). In turn, the Rho family of GTPases regulates the cytoskele-
ton (Lauffenburger and Horwitz, 1996; Ridley, 2001; Ridley et al., 2003; Ridley,
2015; Lawson and Ridley, 2018). Here, we do not describe the complex reaction
networks of all these different protein species in full detail. Instead, we only fo-
cus on the generic property of such reaction networks to havemultiple feedback
mechanisms, positive or negative alike, which allow the cell to detect mechan-
ical stimuli (Marée, Jilkine, et al., 2006; Marée, Grieneisen, et al., 2012). Using
this rationale, we simplify the complex feedback processes that take place during
cell migration (Lauffenburger and Horwitz, 1996; Schwartz and Shattil, 2000;
Parsons et al., 2010). To that end, we introduce a bookkeeping field in each cell,
𝑚(𝒙), which integrates all signals within a given timewindow (the discrete time
step of our simulations). This bookkeeping field measures whether the cell has
performed more protrusions, 𝑚(𝒙) > 0, or more retractions, 𝑚(𝒙) < 0, within
the signaling distance 𝑅. Using the bookkeeping field 𝑚(𝒙), we then construct
two prototypic feedback loops, where protrusive activity reinforces the effective
adhesion of the cell to the substrate, while retractive activity does the opposite.
Assuming that the cell cytoskeleton is remodeled with a typical rate 𝑟𝜖, we then
update the “polarization field” as follows:

𝜕𝑡𝜖(𝒙, 𝑡) = 𝑟𝜖 [(𝜖0 +
Δ𝜖
2 sgn𝑚(𝒙)) − 𝜖(𝒙, 𝑡)] , (III.10)
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where 𝜖0 is the reference value for the polarization (average polarization field)
and Δ𝜖 is the polarizability (maximum cell polarity). It is this non-equilibrium
reaction which drives the out-of-equilibrium dynamics of our in silico cell.

Model limitations. In our model, we have merged the dynamics of cell-
substrate adhesion and force generation by the actomyosin cytoskeleton into a
single field, 𝜖(𝒙, 𝑡). Furthermore, we have drastically simplified all intracellular
signaling processes into only two feedback loops. In further research, it would
be interesting to investigate these processes in greater detail. Furthermore,
here we have assumed a rigid substrate that does not permit deformations.
In Section III.2 “Cell Migration and Shape in Soft Environments”, we lift this
assumption.
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Bridging the gap between single-cell
migration and collective dynamics
Florian Thüroff†, Andriy Goychuk†, Matthias Reiter, Erwin Frey*

Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience,
Department of Physics, Ludwig-Maximilians-Universität München, Munich, Germany

Abstract Motivated by the wealth of experimental data recently available, we present a cellular-
automaton-based modeling framework focussing on high-level cell functions and their concerted
effect on cellular migration patterns. Specifically, we formulate a coarse-grained description of cell
polarity through self-regulated actin organization and its response to mechanical cues.
Furthermore, we address the impact of cell adhesion on collective migration in cell cohorts. The
model faithfully reproduces typical cell shapes and movements down to the level of single cells,
yet allows for the efficient simulation of confluent tissues. In confined circular geometries, we find
that specific properties of individual cells (polarizability; contractility) influence the emerging
collective motion of small cell cohorts. Finally, we study the properties of expanding cellular
monolayers (front morphology; stress and velocity distributions) at the level of extended tissues.

Introduction
Cell movements range from uncoordinated ruffling of cell boundaries to the migration of single cells
(Ridley et al., 2003) to the collective motions of cohesive cell groups (Friedl and Gilmour, 2009).
Single-cell migration enables cells to move towards and between tissue compartments – a process
that plays an important role in the inflammation-induced migration of leukocytes (Friedl and Weige-
lin, 2008). One can distinguish between amoeboid and mesenchymal migration, which are charac-
terized by widely different cell morphologies and adhesive interactions with their respective
environments (Friedl, 2004; Lämmermann and Sixt, 2009). Cells may also form cohesive clusters
and mobilize as a collective (Trepat et al., 2009; Angelini et al., 2011; Doxzen et al., 2013;
Deforet et al., 2014; Vedula et al., 2012; Marel et al., 2014). This last mode of cell migration is
known to drive tissue remodelling during embryonic morphogenesis (Lecaudey and Gilmour, 2006)
and wound repair (Poujade et al., 2007).

Despite this broad diversity of migration modes, there appears to be a general consensus that all
require (to varying degrees) the following factors: (i) Cell polarization, cytoskeletal (re)organization,
and force generation driven by the interplay between actin polymerization and contraction of acto-
myosin networks. (ii) Cell-cell cohesion and coupling mediated by adherens-junction proteins which
are coupled to the cytoskeleton. (iii) Guidance by chemical and physical signals. The basic functional-
ities implemented by these different factors confer on cells the ability to generate forces, adhere
(differentially) to each other and to a substrate, and respond to mechanical and chemical signals.
However, a fully mechanistic understanding of how these basic functionalities are integrated into sin-
gle-cell migration and coordinated multicellular movement is still lacking.

Here, we present a computational model which enables us to study cell migration at various
scales, and thus provides an integrative perspective on the basic cell functions that enable the emer-
gence of collective cell migration. While a variety of very successful modeling approaches has been
used to describe single-cell dynamics (Mogilner, 2009; Marée et al., 2006; Marée et al., 2012;
Shao et al., 2010; Ziebert et al., 2012; Ziebert and Aranson, 2013; Camley et al., 2013;
Albert and Schwarz, 2014; Dietrich et al., 2018; Goychuk et al., 2018) or the movements of
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extended tissues (Szabó et al., 2006; Szabó et al., 2010; Kabla, 2012; Sepúlveda et al., 2013;
Basan et al., 2013; Banerjee et al., 2015; Alt et al., 2017; Tarle et al., 2017), these models are
hard to reconcile with each other. Models that focus on single cells are typically difficult to extend to
larger cell numbers, largely due to their computational complexity. On the other hand, approaches
which are designed to capture the dynamics at the scale of entire tissues generally adopt a rather
coarse-grained point of view, and are therefore difficult to transfer to single cells or small cell
cohorts. At present there are two partly competing and partly complementary approaches to bridge
the gap between single-cell migration and collective dynamics, namely phase-field models
(Shao et al., 2010; Ziebert et al., 2012; Shao et al., 2012; Camley et al., 2014; Camley and Rap-
pel, 2014; Löber et al., 2015), and cellular Potts models (CPMs) (Szabó et al., 2010; Kabla, 2012;
Szabó and Merks, 2013; van Oers et al., 2014; Segerer et al., 2015; Niculescu et al., 2015;
Albert and Schwarz, 2016; Rens and Merks, 2017) first introduced by Graner and Glazier (1992).

Box 1. A simple description of complex cells?

Mammalian cells are made up of around 109 interacting proteins (Milo and Phillips, 2015) in
an aqueous compartment enclosed by a lipid bilayer membrane. A substantial fraction of these
proteins is devoted to the structural support of the cell. The cytoskeletal systems that perform
this function also mediate elastic deformations of the cell through stresses induced by motor
proteins. Cell migration is enabled by transient, transmembrane attachment of the cytoskele-
ton to external structures (extracellular matrix or a substrate) via integrins, and regulated by
various signaling pathways. To gain insights into such a complex system, we simplify these net-
works, each comprised of many interacting components, into coarse building blocks, which
might seem arbitrary at first, but serve to qualitatively capture generic features of the underly-
ing machinery. These generic and qualitative building blocks allow us to finally arrive at a
quantitative description of cell dynamics.

Building on and generalizing the CPM (Graner and Glazier, 1992), we present a cellular automa-
ton model that is designed to capture essential cellular features even in the context of the migration
of single cells and of small sets of cells. At the same time, it is computationally efficient for simula-

tions with very large cell numbers (currently up to Oð104Þ cells), thus permitting investigations of col-
lective dynamics at the scale of tissues. Our model reproduces the most pertinent features of cell
migration even in the limiting case of solitary cells, and is compatible with a wealth of experimental
evidence derived from both small cell groups and larger collectives made up of several thousand
cells. Specifically, by studying the characteristics of single-cell trajectories and of small cell groups
confined to circular territories, we demonstrate that persistency of movements is significantly
affected by cell stiffness and cell polarizability. Moreover, we investigate the dynamics of tissues in
the context of a typical wound-healing assay (Poujade et al., 2007; Trepat et al., 2009; Serra-
Picamal et al., 2012), and show that the model exhibits the recurring mechanical waves observed
experimentally (Serra-Picamal et al., 2012), a feature which we attribute to the coupling between
cell-sheet expansion and cell-density-induced growth inhibition.

Computational model
Model geometry
We consider cells that adhere to a two-dimensional surface, spanned by the coordinates ðx; yÞ,
through some contact area (Figure 1A). Membrane protrusions and retractions, which determine
cell motion and shape (Pollard and Borisy, 2003; Lauffenburger and Horwitz, 1996), correspond
to size and shape changes of the surface contact area. We assume that processes that take place at
the cell boundary drive cell motion, and therefore disregard the cell body, which extends into the z-
direction. In our computational model, we tesselate the available surface into a honeycomb lattice,
where each hexagon corresponds to a discrete adhesion between the cell and the substrate. Then,
protrusion and retraction events correspond to the gain and loss of hexagons at the boundary of the
substrate contact area, respectively. The occurrence of these events is determined by a Monte Carlo
scheme gradually minimizing an effective energy, H, which is associated with the cell configuration.
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The cell is perpetually driven out of equilibrium by active reorganization of its actomyosin network

and focal adhesions.

Coarse-grained cellular mechanics
As discussed above, the configuration of a cell at any given time t is associated with a substrate con-

tact area AðtÞ and perimeter PðtÞ. We assume that the membrane and cortex deformations of each

cell are constrained by the elastic energy

HcontðtÞ ¼ kA A
2ðtÞþkP P

2ðtÞ ; (1)

where kA and kP are cell-type-specific stiffness parameters, similar to the original implementation of
the CPM (Graner and Glazier, 1992). If the cell does not form adhesions to the substrate, then

membrane and cortex contractility will round up the cell body, thereby collapsing the substrate con-

tact area into a contact point.

polarization field ε

protrusionretraction

B

A C

a
p

p
ro

a
ch

re
st

st
a
te

�
�
� �
��
�

� �
� �

� � � �
� �
�
� �
�
�Ƿ Ƿ

ǷǷ

� �
���

��
��
�

��
�
��
��

���

��

−∆ε/2

+∆ε/2

protrusion event

update ε

1
M

C
S

(accu
m

u
lated

)

n
ex

t
M

C
S

p
olarization

fi
eld

ε
−

ε
0

Figure 1. Illustration of the computational model with the pertinent simulation steps. (A) Illustration of a small cell

cohort that adheres to a surface (ðx; yÞ-plane). The polarization field, !, is defined on the contact surface with the

adhesion plane. The magnitude of the polarization field, which is indicated by the colorbar in Figure (C), encodes
the local strength of cell-substrate adhesions and emulates the local mass of force-generating (pushing)

cytoskeletal structures. Cell-cell adhesions are indicated in red. (B) Cytoskeletal structures respond to external

mechanical stimuli through reaction networks involving different feedback loops. We greatly simplify these

complex processes into two prototypic feedback loops, which break detailed balance and drive cell migration, as

follows. The polarization field induces membrane protrusions and inhibits retractions. In turn, protrusions increase

the polarization field (positive feedback) and therefore the likelihood of further protrusive activity, while retractions

decrease the polarization field (negative feedback). In the absence of mechanochemical signals, the polarization

field approaches its rest state. (C) Zoom-in to a common boundary shared between the substrate contact areas of

three cells (bounded by the red lines), each represented by a contiguous set of occupied grid sites (hexagons).

Top left: The upper right corner of the lower left cell (source cell) initiates a protrusion event against a neighboring

element in the cell to its right (target cell), as indicated by the arrow, in an attempt to displace it. The success of

each such attempted elementary event depends on the balance between contractile forces, cytoskeletal forces,

and cell adhesion. Top right: If the protrusion event is successful, then the levels of regulatory factors are

increased (decreased) in integer steps, at all lattice sites inside the source (target) cell that lie within a radius R of

the accepted protrusion event (as indicated by the plus and minus signs). Bottom right: During the course of one

MCS, different levels of regulatory factors accumulate locally within each cell, with positive levels of regulatory

factors (green plus signs) promoting a build-up of cytoskeletal structures, negative levels of regulatory factors (red

minus signs) causing degradation of cytoskeletal structures, and neutral levels of regulatory factors (white zero

signs) causing relaxation towards a resting state, as indicated in the lower left image. The color code indicates

local levels of cytoskeletal structures, !.
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Gripping the surface through the cell cytoskeleton
Detachment of the cell from the substrate is counteracted by focal adhesions, where the cell cyto-

skeleton is connected to the underlying substrate by integrins. Cellular protrusions are driven by out-
ward pushing forces generated by the assembly and disassembly of cytoskeletal structures

(Pollard and Borisy, 2003; Mogilner, 2009). As a first approximation, we subsume all of these com-
plex dynamic processes, like the formation/degradation of focal adhesions and the assembly/disas-

sembly of cytoskeletal structures, into a single time-dependent and spatially resolved internal field
for each cell, !ðx; tÞ. This polarization field emulates the mass of force-generating cytoskeletal struc-

tures in the associated hexagon, at position x, which results in an effective, locally regulated, adhe-
sion energy between cell and substrate. Consequently, the total energy associated with this

polarization field is given by

HcytoðtÞ ¼%
X

x

!ðx; tÞ : (2)

The polarization field must vanish at positions that are not occupied by a cell. Therefore, a retrac-
tion is associated with an energy penalty due to the loss of a substrate adhesion. Consequently, a

protrusion, where one source hexagon ‘conquers’ a nearby target hexagon, is associated with an
energy gain due to an increase of the substrate contact area. Here, we assume that the newly incor-

porated hexagon has the same polarization field as its conqueror.
There are several biological factors that constrain the local density of actin filaments, myosin and

focal adhesions, whose limited availability corresponds to an upper bound on the polarization field.
Furthermore, we assume that there is some minimal attachment energy associated with adhesions

that prevents the cells from detaching from the substrate, which implies a lower bound on the polar-
ization field. This motivates to introduce cell-type-specific bounds for the polarization field:

!ðx; tÞ 2 ½!0 % D!=2; !0 þ D!=2', where !0 is the average polarization field and D! is the maximum cell
polarity.

Active self-regulation of the cytoskeleton
Assembly and disassembly of cytoskeletal structures are controlled by a myriad of accessory proteins
(Lauffenburger and Horwitz, 1996; Ridley et al., 2003). These regulatory proteins form a reaction

network involving different feedback mechanisms, which allow cytoskeletal structures to respond to
external mechanical stimuli (Marée et al., 2006; Marée et al., 2012). Furthermore, cytoskeletal

structures like integrins play a role in the spatiotemporal control of these regulatory proteins
(Schwartz and Shattil, 2000). Here, we refrain from formulating a detailed reaction-diffusion model

that accounts for the interactions between all of these contributing players. Instead, we assume that
the internal chemistry of the cell will generically produce protein patterns, with a typical length scale

R, which locally up- or down-regulate cellular cytoskeleton and focal adhesion (dis)assembly. Then,
we greatly simplify these complex processes (Lauffenburger and Horwitz, 1996; Schwartz and

Shattil, 2000; Ridley et al., 2003) into two prototypic feedback loops (Figure 1B,C):

A. The polarization field locally promotes outward motion of the membrane, because it contains
a contribution from the local amount of actin filaments. Membrane protrusions facilitate the
formation of substrate adhesions and further polymerization of actin filaments, leading to a
positive feedback on the polarization field within a range R.

B. The polarization field also locally inhibits inward motion of the membrane, by emulating the
local adhesion strength of the cell to the substrate. If a membrane retraction is successful,
then the loss of substrate adhesions locally further increases cell contractility, leading to a neg-
ative feedback on the polarization field within a range R.

In the absence of regulatory signals, we assume that the polarization field decays to a fixed value,
! ! !0, which corresponds to a resting state of the cell cytoskeleton and focal adhesions. For the

sake of keeping our model as simple as possible, we assume that all protein patterns have the same

range R, and that the regulation of the cell cytoskeleton and focal adhesions follows a single time-

scale that corresponds to an update rate ". Because at heart, our model is only based on generic

feedback loops with a certain signaling range R, we would argue that any model with similar feed-

back should, in general, lead to similar cell behavior. Indeed, mutually repressing feedback loops

(Marée et al., 2006) and mutually activating feedback loops (Shao et al., 2010; Ziebert et al.,
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2012; Albert and Schwarz, 2016) are crucial recurring motifs among multiple cell migration studies.

Notably, these theoretical approaches all recover comparable cell behavior even when the model

setup seems quite different at first glance:

1. Cell migration couples mechanochemically to a scalar field (Shao et al., 2010), if stresses in
the cell are isotropic; this is analogous to the present study.

2. Cell migration couples mechanochemically to a vector field (Marée et al., 2006;
Ziebert et al., 2012), if stresses in the cell are anisotropic.

3. Cell migration couples to a single polarity vector (Albert and Schwarz, 2016), if propulsive
forces are distributed homogeneously throughout the cell. However, this simplification of the
former two cases cannot account for the formation of multiple competing lamellopodia/
pseudopods.

These different modeling approaches (of varying complexity) surprisingly yield a universal phe-
nomenology. The puzzling similarity between these models suggests generic common features that

determine cell shape and motility: mechanical constraints like cell elasticity and mechanochemical

feedback mechanisms that break detailed balance, maintain cell polarity and drive cell motion.

Intercellular adhesion and friction
In addition to internal remodeling of the cytoskeleton, adhesion of cells to neighboring cells and to

the substrate plays a key role in explaining migratory phenotypes (Mogilner, 2009; Friedl and Gil-

mour, 2009). From a mechanical point of view, the implications of cell adhesion are two-fold:

1. Cell adhesion supports growth of cell-cell and cell-matrix contacts and may thus be described
in terms of effective surface energies. In our computational model, cell-matrix contacts are
readily accounted for by the polarization field, !. In addition, we associate the formation of
cell-cell adhesions with an energy benefit B, which we call cell-cell adhesion parameter.

2. Once formed, adhesive bonds anchor the cell to the substrate and to neighboring cells. During
cell migration, these anchoring points must continuously be broken up and reassembled
(Webb et al., 2002; Gumbiner, 2005) and, hence, provide a constant source of
energy dissipation. Therefore, we assume that the cost for rupturing an existing cell-cell adhe-
sion, Bþ DB>B, exceeds the gain from forming a new cell-cell adhesion. Then, the dissipative
nature of cell-cell adhesions is accounted for by the cell-cell friction parameter DB. Similarly,
cell-matrix contacts can also provide a source of dissipation, which is further discussed in
Appendix 2.

Environmental cues
The polarization field, !, readily includes contributions from cell-substrate adhesions, which are

locally up- or down-regulated by the cell. These cell-substrate adhesions require the abundance of

surface ligands, which serve as substrate tethers that the cell can attach to, and which are not neces-

sarily distributed homogeneously. By substrate micropatterning, one can arrange areas where the

cell is likely to adhere to the surface, and no-go-areas, where the cell adheres less (or cannot adhere

at all). To replicate such environmental cues, we introduce a second scalar field ’ðxÞ, whose value is

taken to reflect the relative availability of substrate sites at which focal adhesions between cell and

substrate can be formed. Here, we have chosen to model micropatterns as impenetrable walls; we

locally add a large energy penalty, ’ ( 0, to the polarization field (! ! !þ ’), that a cell has to pay

for trespassing onto a no-go-area. However, it is equally valid to treat ’ as a multiplicative constant

modulating the polarization field (! ! ’ !), where ’ ¼ 0 models a local inability of the cell to attach

to the substrate. Analogously to cell-cell contacts, we account for the dissipative nature of cell-sub-

strate adhesions by associating the breaking of such contacts with an additional energy cost D.

Tissue growth by cell division
In the description so far, the cells are arrested in the cell cycle (mitostatic). To investigate the effect

of cell proliferation on tissue dynamics, we introduce a simplified three-state model of cell division.

Cells start off in a quiescent state, in which their properties remain constant over time. The cell sizes

fluctuate around an average value determined by the cell properties and the local tissue pressure.

Cell growth typically arrests at large cell densities, in a phenomenon coined contact inhibition of pro-

liferation (Stoker and Rubin, 1967; Puliafito et al., 2012; Pavel et al., 2018). Since large cell
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densities correspond to a small spread area for each individual cell, this implies that cell growth is
arrested below a critical threshold size (AT). Upon exceeding this threshold size due to size fluctua-
tions, cells leave the quiescent state and enter a growth state. The duration of the quiescent state is
thus a random variable, whose average value depends on the tissue pressure, and lower pressure
(due to a lower cell density) leads to a shorter quiescent state. During the subsequent deterministic
growth state of duration Tg, cells double all of their cellular material and thus double in size. We

model this growth as a gradual decrease in the effective cell contractility (kA and kP). As there is no
a priori reason to assume that a cell’s migratory behavior should depend on its size, we constrain the
parameters accordingly; this is described in detail in Appendix 2. After having grown for a
duration Tg, cells switch to a deterministic division state of duration Td. During division, cells strongly

contract, which leads to mitotic rounding and a drastic decrease of their contact area with the sub-
strate (Jones et al., 2018; Lock et al., 2018). In principle, a decrease of cell contact area could also
lead to perturbations of the stress field in the monolayer. Here, however, we neglect the decrease
of the cell spreading area, as the division phase is short compared to the growth phase. We expect
that a drastic increase of cell contractility also leads to a loss of polarity in the cell’s migratory
machinery. Therefore, each cell reduces its polarizability to zero (D! ! 0) in order to utilize its cyto-
skeleton for the separation of the cellular material, leading to mitotic rounding. At the end of the
division state, each dividing cell splits into two identical daughter cells, whose properties and param-
eters are identical to the mother cell’s initial values in the quiescent state. Finally, the daughter cells
re-initialize migration from an unpolarized state. For a detailed and more technical description we
refer the interested reader to Appendix 1.

Results

Persistent migration of single cells
The macroscopic properties of cell clusters and tissues emerge from an interplay between many indi-
vidual cells. Then, what determines the mechanical and migratory features of these individual cells?
In our computational model, we have studied this question by screening its multidimensional param-
eter space. For such a brute force approach to be numerically feasible, one must first distinguish rel-
evant parameters (these determine the resulting dynamics) from irrelevant parameters. Specifically,
in our extended cellular Potts model, there are reference parameters whose sole purpose is to con-
trol the spatial and temporal discretization of the numerical model:

1. The cytoskeletal update rate endows the cellular Potts model with a reference timescale and
determines the temporal discretization. In this study, we have set " ¼ 0:1.

2. The average polarization field !0 encodes the energy gain for creating new cell-substrate adhe-
sions, while the area stiffness kA represents the energy cost for increasing the substrate con-
tact area. Then, the number of hexagons occupied by the cell is proportional to the ratio
!0=kA. If we use a desired cell area as reference value, then the ratio !0=kA controls the spatial
discretization of the cell. To study the migration of single cells and small cell cohorts, we have
set the average polarization field to !0 ¼ 225 and the area stiffness to kA ¼ 0:18.

3. In cellular Potts models, which are Monte-Carlo simulations, the reference energy of fluctua-
tions is determined by an effective temperature. In this study, we have set kBT ) 1.

Furthermore, we used a large computational grid with 9 * 104 sites and periodic boundary condi-
tions to study the migration of single cells. This leaves three parameters that control cell motility in

the absence of cell-substrate dissipation: cell polarizability D!, cell contractility kP and signalling

radius R. However, it is not clear yet whether all of these are independent relevant parameters. In

fact, in the following sections it will become clear that cell polarizability and contractility are degen-

erate parameters (in the sense that the phenomenology only depends strongly on their ratio, which

is the corresponding relevant parameter).

Cell persistence increases with polarizability
First, we investigated the impact of varying levels of cell perimeter stiffness kP and maximum cell
polarity D! on the cell’s migratory patterns (Figure 2—video 1), at a fixed signaling radius R ¼ 5. To
assess the statistics of the cell trajectories, we recorded the cell’s orientation v̂ðtÞ ) vðtÞ=kvðtÞk (v:
cell velocity) and (geometrical) center of mass position RðtÞ during a total simulation time of
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Tsim ¼ 104 Monte-Carlo steps (MCS). For each set of parameters, we performed 100 statistically inde-

pendent simulations, from which we computed the mean squared displacement,

MSDðtÞ ) h½Rðt þ tÞ % RðtÞ'2i, and the normalized velocity auto-correlation function,

CðtÞ ) hv̂ðt þ tÞ * v̂ðtÞi. Here, h. . .i denotes an average with respect to simulation time t as well as

over all 100 independent simulations.
These computer simulations show that the statistics of the migratory patterns is well described by

a persistent random walk model (Stokes et al., 1991; Wu et al., 2014) with its two hallmarks: a

mean square displacement that exhibits a crossover from ballistic to diffusive motion (Figure 2A),

and on sufficiently long time scales an exponential decay of the velocity autocorrelation function

CðtÞ / e%t=tp (inset of Figure 2A). We determined the persistence time of directed migration, tp, by

fitting the mean squared displacement with a persistent random walk model. In addition, we also

measured cell speed, v, and cell aspect ratio, lþ=l%, to further characterize cell motility and shape.
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Figure 2. Cell shape and persistence of migration as a function of cell polarizability. (A) Mean-squared

displacement (MSD) for single-cell movements at different maximum cell polarity D! (stiffness parameters

kP ¼ 0:060, kA ¼ 0:18; average polarization field !0 ¼ 225; signaling radius R¼ 5; cell-substrate dissipation D¼ 0; cell-

substrate adhesion penalty ’¼ 0; cytoskeletal update rate " ¼ 0:1; 100 independent simulations for each set of

parameters). Single cells perform a persistent random walk, i.e. they move ballistically (MSD/ t2) for t( tp, and

diffusively (MSD/ t) for t+ tp. Inset: Normalized velocity auto-correlation function for the same parameters as in

the main figure. (B) Persistence time of directed cell migration plotted as a function of maximum cell polarity D!,

and perimeter stiffness kP (area stiffness kA ¼ 0:18; average polarization field !0 ¼ 225; signaling radius R ¼ 5; cell-

substrate dissipation D¼ 0; cell-substrate adhesion penalty ’¼ 0; cytoskeletal update rate " ¼ 0:1; 100

independent simulations for each set of parameters). The persistence time of the random walk increases with

increasing cytoskeletal polarity and decreasing perimeter elasticity. (C) Cytoskeletal polarity also controls cell

shapes, with crescent cell shapes (long persistence times) being observed at large cytoskeletal polartities, and

round cell shapes (short persistence times) at small cytoskeletal polarities. Color code: cell polarization; cf. color

bar in Figure 1C. (D) Single cell speed plotted as a function of maximum cell polarity D!, and perimeter stiffness

kP. (E) Single cell aspect ratio plotted as a function of maximum cell polarity D!, and perimeter stiffness kP. (F)
Speed and persistence time of single cells are correlated with the cell aspect ratio.

The online version of this article includes the following video and figure supplement(s) for figure 2:

Figure supplement 1. Role of substrate dissipation for cell shape and motility.

Figure 2—video 1. Single cell motility and shape for different maximum cell polarities (kP ¼ 0:060, R ¼ 5).

https://elifesciences.org/articles/46842#fig2video1
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Surprisingly, for each of these variables we found a master curve that only depends on the ratio

between cell polarizability and cell contractility, D!=kP (Figure 2B,D,E). This data collapse suggests

D!=kP as a relevant parameter (while cell polarizability and contractility are degenerate parameters),

which we will henceforth refer to as specific polarizability.
The cells’ persistence times of directed migration, speeds and aspect ratios all show a characteris-

tic dependence on the specific cell polarizability. There is a threshold value for the specific polariz-

ability, D!=kP » 500, below which cells remain immobile (Figure 2B,D,E; grey regions). Above this

threshold, the persistence time of directed migration, speed and aspect ratio increase markedly with

the specific polarizability (Figure 2B,D,E). In our model, the area and perimeter stiffnesses refer to

global and homogeneous cell contractility, while the cell polarization field drives cell migration. As

discussed in ‘Gripping the surface through the cell cytoskeleton’, the cell polarization field does not

explicitly distinguish between a local extensibility (e.g. due to actin polymerization), a local contrac-

tility (due to myosin-induced contraction) of the cytoskeleton or spatially regulated cell-substrate

adhesions. For example, if cell migration is driven by actin polymerization, then blebbistatin treat-

ment will decrease the global cell contractility, which we predict to lead to more elongated cells that

move faster and exhibit extended episodes of ballistic motion. Indeed, an increase of cell migration

speed after blebbistatin treatment was observed for mouse hepatic stellate cells (Liu et al., 2010).

Alternatively, cell migration could also be driven by myosin contractility, for example by pulling the

cell forward or by locally detaching adhesions. Then, polarizability and contractility concomitantly

depend on the ability of the cell to exert forces, which can be inhibited by blebbistatin treatment. If

polarizability, D!, and contractility, kP, are equally reduced by a blebbistatin-dependent prefactor,

then the specific polarizability, D!=kP, and the resulting cell phenomenology should remain

unchanged. Indeed, blebbistatin treatment of keratocytes and keratocyte fragments was reported

not to affect cell shape and speed to any significant degree (Wilson et al., 2010; Ofer et al., 2011).

Therefore, blebbistatin treatment can either increase or decrease cell motility, depending on the cell

type and possibly on the specific mechanism that drives cell migration.
Interestingly, because of this universal dependence of all the mentioned quantities on the specific

polarizability, our simulations also show that there is a strong correlation between cell shape (aspect

ratio) and cell motility (speed and persistence time of directed migration); see Figure 2F. While

highly persistent trajectories are observed for cells with ‘crescent’ shapes, more erratic cell motion is

typically found for cells with more rounded outlines (Figure 2C). In other words, our computational

model predicts that cells which are able to polarize their cytoskeletal structures more strongly will

adopt crescent shapes and show a higher degree of persistent cell motion. It would be interesting

to further test these predictions by using phenotypic variations in cell shapes like those reported in

experiments with keratocytes (Keren et al., 2008); there, the authors also found a correlation

between cell shape and speed.

Feedback range determines whether individual cells move persistently or
rotate
Moreover, we investigated the influence of different signaling radii R (typical range in which signal-

ling molecules diffuse and mediate feedback mechanisms during a single Monte-Carlo step) on the

persistence of single-cell trajectories. Since R is the relevant parameter that controls the spatial orga-

nization of lamellipodium formation, its value should strongly affect the statistics of a cell’s trajectory

(Figure 3A). Indeed, at small values of R, we observe that the spatial coherence of cytoskeletal rear-

rangements is low, which frequently results in the disruption of ballistic motion due to the formation

of independent lamellipodia in spatially separate sectors of the cell boundary (Figure 3C, lower

snapshot). In contrast, at larger values of R, we find that spatial coherence is restored, and the for-

mation of one extended lamellipodium across the cell’s leading edge maintains a distinct front-rear

axis of cell polarity (Figure 3C, upper snapshot). However, when the signaling radius is too large

compared to the cell size, we find an inhibition of ballistic motion and rounding of the cells as signals

originating from one cell edge begin to reach the opposing edge. This effect may also occur when

cells in tissue become smaller due to an increase of cell density through proliferation or

compression; in other words, this means that the cells become smaller than the typical length scale

of the chemical patterns that control cell migration. Then, one would not expect these chemical pat-

terns to form (Hubatsch et al., 2019). Therefore, depending on the cell polarizability (D!), there is an
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optimal signaling radius that shows both maximal cell elongation and maximal cell persistence

(Figure 3A,B).
Cells with low polarizability need a large signaling radius to feed the positive feedback mecha-

nism and to form a single large cell front. In contrast, highly polarizable cells can already sustain the

positive feedback mechanism with a short signaling radius and easily form at least one (or even mul-

tiple competing) short cell front(s). With increasing signaling radius, these cell fronts become increas-

ingly correlated and finally merge. Surprisingly, at small signaling radii, we observed that highly

polarizable cells slow down with increasing signaling radius (Figure 3D; yellow squares and black

circles), in contrast to the behavior of cells with low polarizability. Furthermore, at large signaling

radii, highly polarizable cells speed up, although their persistence time of directed migration has

dropped to small values (cf. Figure 3A,D; blue diamonds, green pentagons, yellow squares and
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Figure 3. Migratory behavior of single cells as a function of the cell’s signaling radius R at different values for the

maximal cytoskeletal polarity D!. (Stiffness parameters kP ¼ 0:060, kA ¼ 0:18; average polarization

field !0 ¼ 225; cell-substrate dissipation D ¼ 0; cell-substrate adhesion penalty ’ ¼ 0; cytoskeletal update

rate " ¼ 0:1; 100 independent simulations for each set of parameters). (A) The persistence times of directed

migration of single cells exhibit a pronounced maximum at an optimal signaling radius, which depends on cell

polarizability. (B) The shapes of single cells exhibit a pronounced maximal elongation at an optimal signaling

radius, which depends on cell polarizability. (C) The signaling radius critically determines the synchronicity of

internal cytoskeletal remodeling processes. Small signaling radii frequently lead to transient formation of mutually

independent lamellipodia at different positions around the cell perimeter, thereby interrupting persistent motion

(reducing persistence times of directed migration). Large signaling radii lead to structurally stable front-rear

polarization profiles across the entire cell body (long persistence times of directed migration). Color code: cell

polarization; cf. color bar in Figure 1C. (D) The speed of single cells does not drop to zero even when their

persistence time of directed migration vanishes. This indicates single cell rotations. (E) The inverse curvature of the

cell trajectories as a function of the signaling radius. (F) Depending on whether a cell migrates along its long axis

(top) or short axis (bottom), it has to move a different projected contour length. If each protrusion takes roughly

the same amount of time, then migration along the long axis (top; cell has to move a smaller projected contour

length) allows for greater cell speeds than migration along the short axis (bottom; cell has to move a larger

projected contour length).

The online version of this article includes the following video for figure 3:

Figure 3—video 1. Single cell motility and shape for different signaling radii (D! ¼ 60, kP ¼ 0:060).

https://elifesciences.org/articles/46842#fig3video1
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black circles). To find an intuitive explanation for these observations, we inspected time-lapse videos
of a cell at high polarizability (D!=kP ¼ 1000; cf. Figure 3—video 1, top row), which show a qualita-
tive shift in cell behavior:

. For small signaling radii, R ¼ 2, short polarization fronts ‘pull’ the cell behind them, allowing
for transient polarization and quick but erratic movement along the long axis of the cell.

. For intermediate signaling radii, R ¼ 6, broad and correlated polarization fronts emerge, and
both the cell polarization and movement always orient themselves along the short axis of the
cell.

. For large signaling radii R ¼ 15, we observed circular motion of the cell; because of the large
signaling radius, signals originating from the trailing edge affect the leading edge of the cell
and vice versa. Due to this circular motion, the cell exhibits a non-zero speed and a vanishing
persistence time of directed migration.

Therefore, we find that the cell can transiently polarize and migrate along its long axis for small
signaling radii and for high polarizability. Furthermore, in a broad parameter regime, we find kerato-

cyte-like motion and polarization along the short axis of the cell. Note that we do not consider the

formation of stress fibers, which could lead to cell migration along the long axis in a broad parame-

ter regime (Kassianidou et al., 2019). Such stress fibers could be modeled via a nematic field that

represents the anisotropic part of the intracellular stress. Our counter-intuitive observation that cell

migration along the long axis is faster than cell migration along the short axis can be explained as

follows: If the cell migrates along its short axis, then it has to move a greater projected contour

length than if it migrates along its long axis (Figure 3F). Considering that each protrusion takes

roughly the same amount of time, migration along the long axis allows for greater cell speeds than

migration along the short axis, because the cell has to spend less time to move a smaller projected

contour length (Figure 3F).
To further characterize the single cell rotations that occur at large signaling radii, we determined

the average curvature of the trajectories hci ¼ hkqsv̂ðsÞ * v̂ðsÞki, where s is the contour length along
the corresponding trajectory. Here, we averaged the tangent vector v̂ðsÞ over 10 Monte-Carlo steps
to integrate out fluctuations that occur on short timescales (the internal dynamics of the cell has an
intrinsic time scale of 10 Monte-Carlo steps due to our choice of the cytoskeletal update rate,
" ¼ 0:1). We find that the curvature of the trajectories has a pronounced minimum at large signaling
radii (where the persistence time of directed migration vanishes), which indicates a transition from
straight to circular trajectories (Figure 3E). Such a transition from persistent migration to single cell
rotations was previously observed in experiments (Lou et al., 2015; Raynaud et al., 2016) and in
theory (Reeves et al., 2018; Allen et al., 2018).

Cell clusters on circular micropatterns
To assess the transition to collective cell motion, we next studied the dynamics of small cell groups
confined to circular micropatterns (Huang et al., 2005; Doxzen et al., 2013; Deforet et al., 2014;
Segerer et al., 2015). We implemented these structures in silico by setting ’ðxÞ ¼ 0 inside a radius
r0 and ’ðxÞ ! %¥ outside. During each simulation run, the number of cells was also kept constant
by deactivating cell division. We previously employed this setup to compare our numerical results
with actual experimental measurements, and found very good agreement (Segerer et al., 2015).
Here, we generalize these studies and present a detailed analysis of the statistical properties of the
collective dynamics of cell groups in terms of the key parameters of the computational model.

When adhesive groups of two or more motile cells are confined on a circular island, they arrange
themselves in a state of spontaneous collective migration, which manifests itself in the form of coor-
dinated and highly persistent cell rotations about the island’s midpoint x0 (Huang et al., 2005;
Doxzen et al., 2013; Deforet et al., 2014; Segerer et al., 2015). The statistics of these states of
rotational motion provide insight into the influence of cellular properties on the group’s ability to
coordinate cell movements. To quantify collective rotations, we recorded the average signed angular

velocity of the cell cluster !ðtÞ ¼ êz * h~vðtÞ , ~RðtÞ=k~RðtÞk2iC. Here, êz is the out-of-plane unit vector,

. . .h iC denotes an average with respect to the cell population, and ~vðtÞ ¼ vðtÞ % hvðtÞiC as well as
~R ¼ RðtÞ % hRðtÞiC measure the velocity and position of each cell relative to the cell cluster (we have

omitted the indices that identify individual cells for the sake of convenience and clarity). The result-
ing random variables for the magnitude of the angular velocity of the cell assembly, j!ðtÞj, and the
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average cell perimeter PðtÞ ) hPaðtÞiC were then used to characterize the statistics of collective cell

rotation. For each specific choice of simulation parameters, we monitored j!ðtÞj and PðtÞ for a set of

100 statistically independent systems, each of which was observed over Tsim ¼ 104 MCS. From these

data, we then computed the mean overall rotation speed hj!ji, its standard deviation s!, and the

standard deviation of the cell perimeter, sP.
Figure 4 illustrates the characteristic properties of collective cell rotations in systems containing

jCj ¼ 4 cells endowed with varying maximum cell polarity D! and varying cell contractility kP. Analo-

gously to our observations for single cells, the statistical measures shown in Figure 4A do not sepa-

rately depend on cell contractility and maximum cell polarity, but depend only on the specific

polarizability D!=kP. Overall, we find that upon increasing the specific polarizability there is a marked

transition from a quiescent state to a state where the cells are collectively moving. Below a threshold

value for the specific polarizability (D!=kP » 450 in Figure 4A), the rotation speed hj!ji (purple curves

in Figure 4A) vanishes and the cells are immobile. In this regime, which we term the stagnation

phase, or S-phase, cytoskeletal forces are too weak to initiate coherent cell rotation, and the sys-

tem’s dynamics is dominated by relatively strong contractile forces, which tend to arrest the system

in a ‘low energy’ configuration. Beyond this threshold, we identify three distinct phases of collective

cell rotation. In the R1-phase, we find a steep increase in the average rotation speed and a local

maximum in the fluctuations of both cell shape and rotation speed; cf. green (sP) and blue (s!)

curves in Figure 4A. Now, cytoskeletal forces are sufficiently large to establish actual membrane
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Figure 4. Phases of collective motion. (4-cell systems; confinement radius r0 ¼ 30:6; area stiffness kA ¼ 0:18;

average polarization field !0 ¼ 225; signaling radius R ¼ 5; cytoskeletal update rate " ¼ 0:1; cell-cell adhesion

B ¼ 0; cell-cell dissipation DB ¼ 12; cell-substrate dissipation D ¼ 0; cell-substrate adhesion penalty ’ ¼ 0 (r<r0),

’ ! %¥ (r>r0); 100 independent simulations for each set of parameters). (A) Characteristic observables of

collective cell rotation at different values of the cell perimeter stiffness parameter kP: mean (hj!ji) and standard

deviation (s!) of the magnitude of the cell cluster’s angular velocity, and the standard deviation of the cell

perimeter (sP). The statistics of collective cell motion depends only on the ratio of maximum cell polarity, D!, to

cell contractility, kP (specific polarizability). (B) Representative angular trajectories and (C) cell shapes (color code
represents cell polarization; cf. Figure 1C) for the different parameter regimes as described in the main text. The

cellular dynamics in the different parameter regimes are shown in Figure 4—video 1, Figure 4—video 2

and Figure 4—video 3.

The online version of this article includes the following video and figure supplement(s) for figure 4:

Figure supplement 1. Collective motion for varying number of cells at low polarizability.

Figure supplement 2. Collective motion for varying number of cells at intermediate polarizability.

Figure supplement 3. Collective motion for varying number of cells at high polarizability.

Figure 4—video 1. Collective rotations of 4 cells in the R1-phase (D! ¼ 28; D!=kP ¼ 467).

https://elifesciences.org/articles/46842#fig4video1

Figure 4—video 2. Collective rotations of 4 cells in the R2-phase (D! ¼ 50; D!=kP ¼ 833).

https://elifesciences.org/articles/46842#fig4video2

Figure 4—video 3. Collective rotations of 4 cells in the R3-phase (D! ¼ 70; D!=kP ¼ 1167).

https://elifesciences.org/articles/46842#fig4video3
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protrusions against the contractile forces, and cells begin to rotate (Figure 4B,C). However, the con-

tractile forces still dominate, such that cellular interfaces tend to straighten out and lamellipodium

formation is sustained only over finite lifetimes. Thus, due to the dominance of contractile forces, the

systems frequently experience transient episodes of stagnation and repeatedly change their direc-

tion of rotation (cf. blue trajectory in Figure 4B).
At intermediate values of specific polarizability (R2-phase), the cellular systems reach a regime of

enduring rotational motion, where hj!ji varies linearly with the local specific polarizability, and where

sP and s! exhibit a rather broad minimum (Figure 4A). In this regime, a range of ‘optimal ratios’ of

cytoskeletal to contractile forces sustains stable cell shapes, and sets the stage for the formation of

extended lamellipodia and the establishment of permanent front-rear polarizations of cells. As a

result, the cells’ persistence times of directed migration become very large, rendering cellular rota-

tions strictly unidirectional within the observed time window (Figure 4B). Finally, at large values of

the specific polarizability (R3-phase), the system’s dynamics is dominated by cytoskeletal forces and

the rotational speed hj!ji saturates at some maximal value. Due to the relatively small contractile

forces, cell shapes tend to become unstable, as reflected in the growing variance of the cell perime-

ter sP (green curve in Figure 4A). These instabilities in cell shape frequently lead to a loss of persis-

tence in the rotational motion of the cells (growing s!; blue curve in Figure 4A).

Tissue-level dynamics
As an application of our computational model at the tissue level, we considered a setup in which an

epithelial cell sheet expands into free space. As in recent experimental studies (Serra-Picamal et al.,

2012; Sepúlveda et al., 2013; Trepat et al., 2009; Poujade et al., 2007), we confined cells laterally

between two fixed boundaries, within which they proliferated until they reached confluence; in the y-

direction we imposed periodic boundary conditions. Then we removed the boundaries and studied

how the cell sheet expands. In order to quantify tissue expansion, we monitored cell density and

velocity, as well as the mechanical stresses driving the expansion process. Figure 5 shows our results

for two representative parameter regimes that highlight the difference between a dynamics domi-

nated by cell motility in the absence of cell proliferation, and a contrasting regime where cells with

low motility grow and divide depending on the local cell density. To simulate large numbers of cells,

we decreased the amount of hexagons that are typically occupied by each cell (the simulation cost

scales linearly with the summed area of all cells) by setting the average polarization field to !0 ¼ 35.

For each set of parameters, we performed and averaged 100 independent simulations.
We first investigated how a densely packed pre-grown tissue of mitostatic cells with high polariz-

ability (large D!) expands into cell-free space upon removal of the confining boundaries at the tis-

sue’s lateral edges (Figure 5A). As the cells migrate into the cell-free space, we observe a strongly

(spatially) heterogeneous decrease in the initially high and uniform cell density and mechanical pres-

sure in the expanding monolayer (Figure 5B,C). This is quite distinct from the behavior of a homoge-

neous and ideally elastic thin sheet, which would simply show a homogeneous relaxation in density

as it relaxes towards its rest state. Moreover, cell polarization and the ensuing active cell migration

lead to inhomogeneously distributed traction stresses in the monolayer. After initial expansion of the

monolayer, facilitated by high mechanical pressure, the cells at the monolayer edge begin to polar-

ize outwards, which enhances outward front migration. These actively propagating cells exert trac-

tion on the trailing cells, and thereby yield a trailing region with negative stress (Figure 5C). Taken

together, this gives rise to a characteristic X-shaped pattern in the kymograph of the total mechani-

cal stresses hsxxiy (Figure 5C). This profile closely resembles the first period of mechanical waves

observed experimentally (Serra-Picamal et al., 2012). It illustrates how stress is transferred towards

the center of the monolayer when cells are highly motile and collectively contribute to tissue expan-

sion. At the end of the simulated time window, the cell density exhibited a minimum in the center of

the sheet (Figure 5B). This is due to stretching of the central group of cells caused by the equally

strong traction forces exerted by their migrating neighbors on both sides. Finally, the simulations

also show that outward cell velocities increase approximately linearly with the distance from the cen-

ter, confirming that in this configuration the entire cell sheet contributes to the monolayer expansion

(Figure 5D).
To explore the possible range of tissue dynamics and expansion, we also investigated a qualita-

tively different parameter regime where cells are less densely packed and can also polarize less due
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to a narrower range of polarizability (Figure 5E). Here, the expansion of the monolayer is mainly

driven by cell division, and cells keep dividing until they reach a homeostatic cell density (Figure 5F).

Even though cells should typically exceed the threshold size and hence enter the growth phase at

different times, we observe that the cell sheet exhibits periodic ‘bursts’ of growth (Figure 5F) coin-

ciding with the total duration of a complete cell cycle (200 MCS) and alternating with cell migration

(Figure 5H). These periodic ‘bursts’ can be explained as follows. Initially, the slightly compressed

monolayer expands to relieve mechanical pressure. Due to this initial motion, the cells at the mono-

layer edge begin to polarize outwards. As in the previous case, where cell proliferation is absent

(Figure 5A–D), the polarized cells enhance outward front migration and stretch the cells in the bulk

of the cell sheet. For the same reasons as before, we observe a typical X-shaped stress pattern in

the kymograph (Figure 5G), albeit less pronounced due to the lower polarizability of the cells (cf.

Figure 5C). Because a broad region in the monolayer bulk is stretched by the actively migrating cell
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Figure 5. Expansion of a confluent epithelial cell sheet after removal of boundaries positioned at x ¼ -175 for two

different parameter settings. (Stiffness parameters kP ¼ 0:12, kA ¼ 0:18; average polarization

field !0 ¼ 35; signaling radius R ¼ 2; cytoskeletal update rate " ¼ 0:1; cell-cell adhesion B ¼ 12; cell-cell

dissipation DB ¼ 0; cell-substrate dissipation D ¼ 0; cell-substrate adhesion penalty ’ ¼ 0; 100 independent

simulations for each set of parameters). (A–D) Tissue expansion for a migration-dominated setup without explicit

cell growth and mitosis. (3300-cell system; maximum cell polarity D! ¼ 30). (E–H) Tissue expansion at low density

and cell polarizability for a cell sheet comprised of dividing cells. (Initially a 2500-cell system; maximum cell polarity

D! ¼ 10; growth time Tg ¼ 180; division time Td ¼ 20; size threshold for cell growth AT ¼ 1Aref , where Aref is the

size of a solitary cell in equilibrium). (A, E) Snapshots of the polarization field !; cf. Figure 5—video 1 and

Figure 5—video 2. (B, F) Kymographs showing the cell density averaged over the y-direction and (top) final

snapshots of the cell density profiles. (C, G) Kymographs showing the component sxx of the stress tensor

averaged over the y-direction and (top) final snapshots of the stress profiles. (D, H) Kymographs showing the

component vx of the cell velocities averaged over the y-direction and (top) final snapshot of the velocity profiles.

The online version of this article includes the following video and figure supplement(s) for figure 5:

Figure supplement 1. Monolayer expansion depends on dissipation and cell polarizability.

Figure 5—video 1. Motility-dominated tissue dynamics.

https://elifesciences.org/articles/46842#fig5video1

Figure 5—video 2. Proliferation-dominated tissue dynamics.

https://elifesciences.org/articles/46842#fig5video2
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fronts, these cells exceed the threshold size and begin growing approximately in phase. Once the

mechanical pressure of the cell sheet is relieved, it will stop expanding (Figure 5H). However, cell

growth and division once more lead to an increase in mechanical pressure (and cell density) in the

monolayer (Figure 5F,G). This cycle of migration-dominated monolayer expansion and cell-density-

dependent cell growth and division results in a periodic recurrence of the X-shaped stress pattern

(Figure 5G), closely resembling the pattern observed in experiments (Serra-Picamal et al.,

2012). On a sidenote, the synchronization of the cell division and cell migration phases by the deter-

ministic portion of the cell cycle can be counteracted by introducing additional stochastic terms in

the transition between the different phases of the cell cycle (cf. ’Cell proliferation and mitosis’ in

Appendix 1).
Note that the inhomogeneously distributed traction stresses in the monolayer, and its wave-like

behavior, ultimately emerge from cell polarization and the ensuing active cell migration. Therefore,
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Figure 6. Expansion of a confluent epithelial cell sheet after removal of boundaries positioned at x ¼ -175 for two

different parameter settings that produce rough tissue fronts. (Initially a 2500-cell system; stiffness parameters

kP ¼ 0:10, kA ¼ 0:18; average polarization field !0 ¼ 35; maximum cell polarity D! ¼ 20; signaling radius R ¼ 5;

cytoskeletal update rate " ¼ 0:1; cell-cell adhesion B ¼ 5; cell-cell dissipation DB ¼ 10; cell-substrate dissipation

D ¼ 0; cell-substrate adhesion penalty ’ ¼ 0; growth time Tg ¼ 180; division time Td ¼ 20; 100 independent

simulations for each set of parameters). (A–D) Tissue expansion at low density and cell polarizability for a cell sheet

comprised of quickly dividing cells. (Size threshold for cell growth AT ¼ 1:05Aref , where Aref is the size of a solitary

cell in equilibrium). (E–H) Tissue expansion at low density and cell polarizability for a cell sheet comprised of slowly

dividing cells. (Size threshold for cell growth AT ¼ 1:10Aref , where Aref is the size of a solitary cell in equilibrium).

(A, E) Snapshots of the polarization field !; cf. Figure 6—video 1 and Figure 6—video 2. (B, F) Kymographs

showing the cell density averaged over the y-direction and (top) final snapshots of the cell density profiles. (C, G)

Kymographs showing the component sxx of the stress tensor averaged over the y-direction and (top) final

snapshots of the stress profiles. (D, H) Kymographs showing the component vx of the cell velocities averaged over

the y-direction and (top) final snapshot of the velocity profiles.

The online version of this article includes the following video(s) for figure 6:

Figure 6—video 1. Weak monolayer roughening (fingering) in motility-dominated tissue with quick proliferation.

https://elifesciences.org/articles/46842#fig6video1

Figure 6—video 2. Strong monolayer roughening in motility-dominated tissue with slow proliferation.

https://elifesciences.org/articles/46842#fig6video2
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these traction patterns would look much less prominent if one were to inhibit cell motility (compare
Figure 5C with Figure 5G).

Finally, we investigated which parameters control the roughness of the tissue fronts. We found
that increasing cell motility, or increasing cell-cell dissipation leads to rougher front morphologies
(Figure 5—figure supplement 1 and ‘Velocity and roughness of spreading tissue’ in Appendix 2).
Therefore, we hypothesized that one could observe fingering of cell monolayers by adjusting the
parameters accordingly:

. Increase of cell motility by decreasing the membrane stiffness and at the same time increasing
polarizability and signaling radius of the cells.

. Increase of cell-cell dissipation and slight decrease of cell-cell adhesion.

. Slower and less homogeneously distributed cell division by increasing the cell threshold size.

Indeed, we then observe a drastic roughening of the cell fronts and small cohorts of cells that
coherently move into cell-free space (Figure 6). This roughening is more pronounced if we further

increase the threshold size that a cell has to exceed to initiate growth (cf. Figure 6A,E). Analogously

to our previous discussion, we observe that an increasing mechanical pressure in the monolayer due

to the division of cells initiates outward cell migration (Figure 6B,F). Then, cells in the tissue begin

to polarize outwards and coordinate their motion with their neighboring cells, leading to small coor-

dinated cell cohorts. As before, we also find distinct traction force patterns, as recurring waves of

high stress travel backwards relative to the leading edges (Figure 6C,G), and distinct recurring

velocity patterns (Figure 6D,H).

Discussion
In this work, we have proposed a generalization of the cellular Potts model (Graner and Glazier,
1992). The model implements a coarse-grained routine that captures the salient features of cytoskel-
etal remodeling processes on subcellular scales, while being computationally tractable enough to

allow for the simulation of entire tissues containing up to Oð104Þ cells. We have used the model to
study the transition from single-cell to cohort cell migration in terms of the interplay between the
pertinent cellular functions. Specifically, we have demonstrated that our model consistently reprodu-
ces the dynamics and morphology of motile cells down to the level of solitary cells. Our studies also

Table 1. Source and parameter files used for each figure.
All source and parameter files are found in Source data 1.

Figure Simulation code Processing code Parameters

Figure 2 CPM_NoDivision TrajectoryAnalysisSingle single_Q

Figure 2—figure supplement 1 (A-D) CPM_NoDivision TrajectoryAnalysisSingle single_DQ

Figure 2—figure supplement 1 (E-H) CPM_NoDivision TrajectoryAnalysisSingle single_DM

Figure 3 CPM_NoDivision TrajectoryAnalysisSingle single_R

Figure 4 CPM_NoDivision TrajectoryAnalysisCircularPattern rotation_Q

Figure 4—figure supplement 1 CPM_NoDivision TrajectoryAnalysisCircularPattern rotation_N_R1

Figure 4—figure supplement 2 CPM_NoDivision TrajectoryAnalysisCircularPattern rotation_N_R2

Figure 4—figure supplement 3 CPM_NoDivision TrajectoryAnalysisCircularPattern rotation_N_R3

Figure 5 (A-D) CPM_Division wound_nodiv

Figure 5 (E-H) CPM_Division wound_div

Figure 5—figure supplement 1 (A-B) CPM_Division_Supplement FrontAnalysis wound_div_A

Figure 5—figure supplement 1 (C-D) CPM_Division_Supplement FrontAnalysis wound_div_D

Figure 5—figure supplement 1 (E, F) CPM_Division_Supplement FrontAnalysis wound_div_Q

Figure 6 (A-D) CPM_Division wound_div_fing_1.0

Figure 6 (E-H) CPM_Division wound_div_fing_1.1

Appendix 2—figure 1 CPM_NoDivision TrajectoryAnalysisSingle single_A
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reveal that cytoskeletal forces (relative to cell contractility), as well as the spatial organization of the
cells’ lamellipodia, significantly affect the statistics of cellular trajectories, both in the context of sin-
gle-cell motion and in cohesive cell groups restricted to circular micropatterns. On larger scales, our
simulation results suggest that the dynamics of expanding tissues strongly depends on the specific
properties of the constituent cells. If monolayer expansion is driven by active cell migration through-
out the tissue, then the cell sheet exhibits typical traction-force patterns and an X-shape in the corre-
sponding kymograph. Additionally, a cell-density-dependent cell growth leads to a periodic
recurrence of these traction-force patterns in a cycle of migration-dominated expansion and ’burst’-
like cell proliferation.

Taken together, our results further highlight the intricacies of collective cell migration, which
involves a multitude of intra- and inter-cellular signaling mechanisms operating at different scales in
length and time. Establishing a comprehensive picture that incorporates and elucidates the mecha-
nistic basis of these phenomena remains a pressing and challenging task. The multiscale modeling
approach proposed here provides a direct link between subcellular processes and macroscopic
dynamic observables, and might thus offer a viable route towards this goal.

Materials and methods
The computational model is described in section ‘Computational model’. The numerical implementa-
tion of the model is discussed in detail in Appendix 1. The parameter files and source files associated
with the figures are given in Table 1.
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Thüroff et al. eLife 2019;8:e46842. DOI: https://doi.org/10.7554/eLife.46842 19 of 40

Research article Cell Biology Physics of Living Systems

Reprintofpublished
m
anuscript

III.1 Collective Cell Dynamics in Rigid Environments

227
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Appendix 1

Computational model
In this section, we describe in detail the implementation of our computational model, which
has been outlined briefly in the main text. While the biological rationale behind our modeling
approach has been discussed in the main text, our focus here is on the technical aspects and
the details of the numerical implementation. To facilitate subsequent discussions on
implementation details, we start by introducing some model-specific terminology which will be
used throughout this section to illustrate the mechanics of our model.

Computational grid
The basic data structure that underlies our computational model is referred to as the grid; see
Appendix 1—figure 1. The grid itself is implemented as a regular, space-filling lattice with
lattice vectors xif gi¼1;...;N . Each lattice vector xi is understood to represent its associated

Voronoi cell which will be referred to as grid site. To be specific, we consider triangular tilings
xif gi¼1;...;N , such that each grid site is a hexagon, which is surrounded by 6 nearest-neighbor

sites that define the neighborhood N k of xk:

N k ¼
n
xj

!! xj is nearest neighbor of xk
o

(S1)

Overall, the grid represents our general notion of (discretized) space, and each grid site
holds information specific to cells as well as to environmental factors. In what follows,
distances on this spatial grid will be measured in units of the distance between the midpoints
of neighboring lattice sites, i.e.

kxk " xjk¼ 1 , j 2N k: (S2)

This then implies for the side length ‘ and the two-dimensional volume (area) a of each

hexagonal grid site: ‘ ¼ 1=
ffiffiffi
3

p
and a ¼ 3

ffiffiffi
3

p
‘2=2.

N (α)

D(α)

B(α)

Nk

xk

cell α

Appendix 1—figure 1. Illustration of the various sets defining a cell and its environment. Grid

sites occupied by cell a, i.e. its domain DðaÞ, are indicated in red colors. The cell’s membrane

sites, BðaÞ, are indicated by the lighter red color, the cell’s immediate neighborhood, N ðaÞ, is

indicated in gray. Elementary events involving cell a always involve one grid site in BðaÞ and

one grid site in N ðaÞ. For the hexagonal lattices used in this work, each grid site xk is

surrounded by 6 nearest neighbors which we collectively denote by N k.
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Representation of biological cells
In the spirit of the cellular Potts model (Graner and Glazier, 1992; Glazier and Graner,
1993), each cell is represented by a simply connected set of lattice sites

DðaÞ ¼
n
xk

!! cðxkÞ ¼ a
o
; (S3)

where the indicator function cðxkÞ gives the index of the cell occupying xk. Here and in the
following, we use latin indices to reference lattice sites, and greek indices to reference cells.

The set DðaÞ used to represent the spatial extension of cell a, will be referred to as the domain
of cell a. In our model, each grid site xk can be occupied by at most one cell (i.e. we do not
allow for overlapping cell domains). The absence of cells at xk is numerically implemented by
negative values of the indicator function, cðxkÞ<0. Following this terminology, the area and the
perimeter of cell a are given by:

Aa ¼ a
XN

k¼1

da;cðxkÞ ¼
3

ffiffiffi
3

p

2
‘2

XN

k¼1

da;cðxkÞ; (S4a)

Pa ¼ ‘
XN

k¼1

X

xl2N k

da;cðxkÞð1" da;cðxlÞÞ: (S4b)

Model dynamics

Protrusion and retraction of cells
Biological cells are highly dynamic entities which constantly change shape and move around in

space. To reflect this dynamic behavior computationally, the domain DðaÞ of cell a changes

over time. The evolution of cell shape and position, as represented by DðaÞ, proceeds via a
succession of elementary events. In our numerical model, elementary events come in one of
two basic flavors: protrusion events and retraction events. During a protrusion event, cell a
(referred to as source cell) incorporates one grid site xt (referred to as target grid site) from its

neighborhood N ðaÞ,

DðaÞ
old !DðaÞ

new ¼DðaÞ
old [fxtg; xt 2N ðaÞ; (S5)

thereby increasing its cellular domain by one grid site. Here, the neighborhood of cell a, N ðaÞ,
is defined as

N ðaÞ ¼
n
xl

!! min
xk2DðaÞ

kxl " xkk¼ 1

o
: (S6)

During a retraction event, source cell a expels one of its membrane grid sites xs 2 BðaÞ,

DðaÞ
old !DðaÞ

new ¼DðaÞ
old n fxsg; xs 2 BðaÞ

old ; (S7)

where the set of membrane grid sites BðaÞ is defined as

BðaÞ ¼
n
xk 2DðaÞ !! min

xl2N ðaÞ
kxk " xlk¼ 1

o
: (S8)

Protrusion and retraction events are the numerical analogs of cell protrusions and cell
retractions.

In implementing the reassignment rules, Equation S5 and Equation S7, we have to take
into account that cellular domains must not overlap. For solitary cells moving in free space this
does not imply any restrictions, and Equation S5 and Equation S7 apply directly. In the bulk
of a confluent monolayer of adhesive cells, however, any protrusion of source cell a into the
domain of cell b (referred to as target cell) must be accompanied by a corresponding
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retraction event DðbÞ
old ! DðbÞ

new ¼DðbÞ
old n fxtg, where xt denotes the target grid site annexed by

cell a. We emphasize, however, that the reverse is not generally true. If source cell a retracts,

i.e. loses one of its boundary grid sites xs 2 BðaÞ, the lost grid site xs faces either one of two
conceivable fates: If, on the one hand, cohesion among cells is sufficiently strong (cf. section
‘Rupture of cell contacts’ for a definition of the notion ‘sufficiently strong’), then the retraction
of cell a exerts a pulling force on one of its neighboring cells b (the target cell) and forces the

target cell to fill the emerging void at xs, i.e. DðbÞ
old ! DðbÞ

new ¼DðbÞ
old [ fxsg, where xs denotes the

grid site lost by cell a. On the other hand, if adhesion between cells is weak, then retraction of
the source cell a can lead to a rupture of pre-existing cell contacts between a and other cells
at xs, such that the lost grid site xs becomes free space [cðxsÞ ¼ a % 0 ! cðxsÞ<0]. Details on
the actual implementation of cell rupture are discussed in section ‘Rupture of cell contacts’.

Monte-Carlo scheme
In the spirit of a standard Monte-Carlo scheme, the actual simulation proceeds via a
succession of Monte-Carlo steps, where each Monte-Carlo step (MCS) propagates the state of
the simulated cell population from time t to time t þ Dt, where we set the time step to Dt ' 1.
One MCS consists in a series of attempts to perform elementary events, originating from
randomly chosen membrane grid sites of randomly chosen cells. The duration of one MCS, i.e.
the actual number of attempted elementary events, is chosen such that each of the cells’
membrane segments is given the opportunity to attempt, on average, one elementary event

per MCS. During each MCS, cell domains DðaÞ as well as the numerical values of cell areas Aa

and perimeters Pa are updated ‘on the fly’, while the cells’ polarization fields are updated only
once at the end of each MCS; cf. section ‘Cytoskeletal structures and focal adhesion’ for the
details of this update rule. The simulation then proceeds along the following Monte-Carlo
scheme:

1. Initialize the cell population and define the duration of the simulation, i.e. the number of
MCS, Tsim, to be performed.

2. Set the simulation time t ¼ 0.
3. Perform the next MCS; this step is further detailed below.
4. Update polarization fields (cf. section ‘Cytoskeletal structures and focal adhesion’).
5. Set t ¼ t þ Dt, where Dt ' 1.
6. Repeat steps 3–5 while t<Tsim.

The implementation of a MCS, i.e. the sequence of elementary events, is based on the
following general considerations:

i. Choice of source and target grid sites. Each elementary event T originates from a mem-

brane grid site xs 2 BðaÞ of some cell a, referred to as source cell. This membrane grid site
will be referred to as source grid site. In addition, each elementary event involves a second
grid site which lies in the neighborhood of the source grid site xs and which is not currently

occupied by cell a: xt 2 N s n DðaÞ. In what follows, this additional grid site xt will be referred
to as target grid site. This grid site may either be an empty substrate site or a membrane
site of another cell b, in which case the respective cell will be referred to as target cell.
While the source grid site determines the location of the attempted elementary event, the
target grid site determines the direction along which the elementary event is bound to
proceed.

ii. Monte-Carlo method to generate the system’s dynamics. As mentioned above, the actual
dynamics of cells in our computational model is driven by a succession of elementary
events, whose cumulative effects over time allow cells to change shapes and to move rela-
tive to the substrate as well as relative to each other. Following a standard Monte-Carlo
procedure, the probability of occurrence of elementary events T is determined by a goal
function pðT Þ [cf. point (iii) below]. However, since elementary events come in two basic fla-
vors, protrusions T pro and retractions T ret, their actual occurrence is controlled by a two-
step process, once source and target grid sites have been determined: In a first step, two
alternative scenarios are proposed where either the source cell protrudes toward xt, or
retracts from xs. Then, a decision is made with equal probabilities as to whether one
attempts T pro or T ret. In a second step, the goal function p is used to compute the
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occurrence probability of the attempted event T . Finally, this elementary event T is being
accepted with probability pðT Þ.

iii. Choice of the goal function pðT Þ. As has been detailed above, we use a goal function pðT Þ
to control the occurrence and acceptance of elementary events T . Following the standard
cellular Potts model (Graner and Glazier, 1992; Glazier and Graner, 1993), this goal func-
tion takes into account the effects of cell contractility and cell-cell adhesion, using, however,
a slightly different implementation; cf. sections ‘Cell contractility’ and ‘Cell adhesion’. In
addition, we generalized the definition of the goal function pðT Þ to explicitly take into
account a simplified model of cytoskeletal structures and the ensuing polarization of cells.
The actual definition of the goal function will be developed in section ‘Implementation of
cellular traits’, where, moreover, details concerning the implementation of the cell polariza-
tion model will be discussed.

The implementation of a single MCS loop is then given by the following simulation scheme:

1. Determine the current number of trials per Monte-Carlo step (MCS), K¼
P

a Pa=‘, and set
the trial counter n ¼ 0.

2. With equal probability, choose a cell membrane segment (cf. solid black line in Appendix 1—
figure 1) from a random cell a of the cell population. Because the cell membrane represents
the border between lattice sites occupied by cell a and unoccupied by cell a, the chosen

membrane segment automatically defines the source grid site xs 2 BðaÞ and the correspond-

ing target grid site xt 2 N ðaÞ \ N s.
3. With equal probability, choose whether to attempt a protrusion event (T pro) or a retraction

event (T ret).
4. Compute the prospective acceptance probability pðT pro=retÞ corresponding to the attempted

event, and decide whether to accept the attempted event on the basis of this probability.
5. If the attempted elementary event has been accepted, then update the cellular domains of

source cell a and opponent cell b; for details see section ‘Cell domain update routine’.
6. If n<K, set n ! nþ 1 and then repeat steps 2 through 5.

Implementation of cellular traits
In this section, we discuss the various contributions of cellular traits to the overall acceptance
probability pðT Þ of an elementary event T . Specifically, our model takes into account cell
contractility, the assembly and disassembly of cytoskeletal structures, cell-cell adhesion, and
focal adhesions. We will assume that each of these cellular properties contributes
independently to the acceptance probability p, such that

p¼min
#
1; pcont ( pcyto ( padh

$
: (S9)

Anticipating our discussions in section ‘Cytoskeletal structures and focal adhesion’, the
effects due to focal adhesions have been combined with the effects due to assembly and
disassembly of cytoskeletal structures in pcytoðT Þ. In the following sections, we give detailed

discussions for each of these contributions, separately.

Cell contractility
In biological cells, membrane fluctuations are constrained by elastic forces and contractile
cytoskeletal structures, which play a vital role in cell migration (Alberts et al., 2015;
Raucher and Sheetz, 2000; Friedl, 2004). In our computational approach, we take cell
contractility into account by assigning a contractile ‘energy’

Hcont ¼
X

a

%
k
ðaÞ
P P2

a þk
ðaÞ
A A2

a

&
; (S10)

with positive coupling constants kðaÞP and k
ðaÞ
A characterizing the contractility of cell a; for

empty substrate sites (a<0) we set kðaÞP ¼k
ðaÞ
A ¼ 0. According to Equation S10, the cell’s

‘contractile energy’ increases with increasing cell perimeter and increasing cell area. The
model Hamiltonian Hcont can then be used to specify the contractile contribution to the goal
function pðT Þ. To this end, let DHcontðT Þ denote the contractile contribution to the energy
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difference entailed by accepting an elementary event T . Following a standard Metropolis
algorithm, we then define

pcontðT Þ :¼ exp½"DHcontðT Þ=kBT *; (S11)

where we set the effective thermal energy to kBT ' 1. The contractile ‘energy’, Equation S10,
is similar to the corresponding energy model commonly used in cellular Potts models
(Ouchi et al., 2003). Unlike the standard cellular Potts model, however, where a target area
and target perimeter are used to keep the simulated cells from collapsing, the energetic
contribution in Equation S10 strictly contracts the cell’s body. As will be detailed in the next
section, to counteract these contractile forces, we explicitly model cytoskeletal structures
within each cell, which provide outward pushing forces to balance cell contraction.

Cytoskeletal structures and focal adhesion
The cytoskeleton plays key roles both in maintaining the mechanical integrity of the cell and in
the process of active cell migration (Alberts et al., 2015; Friedl, 2004; Mogilner, 2009). Our
model design aims at achieving high computational efficiency to allow for the simulation of

very large cell numbers (currently, cell numbers up to Oð104Þ can be achieved at acceptable
computation times) and, at the same time, to capture the essential effects of cytoskeletal
dynamics to attain meaningful results down to the level of single cells. Thus, instead of
accounting for a detailed biochemical description by means of reaction-diffusion networks
(Marée et al., 2006; Marée et al., 2012), we resort to a simplified implementation of the
most pertinent features of cytoskeletal dynamics. Specifically, we propose a rule-based
algorithm to model cytoskeletal structures and to assess the integrated effects of cell polarity,
cell contractility and adhesion on the collective dynamics of cells as parts of larger groups.

To this end, we define a scalar field !ðxnÞ, xn 2 DðaÞ, on the domain of each cell a. The local
quantity !ðxnÞ will be referred to as polarization field and is taken to be a measure for the
density of cytoskeletal structures at position xn within the cell’s body. The field variable !ðxnÞ is
dynamically updated as the simulation progresses, reflecting cytoskeletal remodeling. To set
up a system of rules underlying the actual implementation of these cytoskeletal remodeling
processes, we resort to the following biologically motivated premises:

1. The scalar polarization field ! is bounded: The dynamics of cytoskeletal remodeling not only
depends on the local number (density) of actin monomers and polymers, but also on a multi-
tude of accessory proteins controlling cytoskeleton assembly and disassembly. Several bio-
logical factors—including the action of sequestering proteins like thymosin-b4, which act to
suppress actin polymerization, limited amounts of nucleating proteins like the activated
Arp2/3 complex, and the action of capping proteins—keep the local density of actin fila-
ments bounded. We, therefore, introduce bounds for the polarization field:
!ðxn; tÞ 2 ½!0 " D!=2; !0 þ D!=2*. These bounds are cell-type specific. While the upper bound
!0 þ D!=2 mainly reflects the limited availability of protein resources, the lower bound !0 "
D!=2 serves to prevent cells from collapsing.

2. Regulatory proteins affect assembly and disassembly of cytoskeletal structures: The assembly
and disassembly of cytoskeletal structures, numerically encoded by !ðxnÞ, is regulated by a
myriad of accessory proteins. In our computational model we simplify these complex pro-
cesses by resorting to a single ‘bookkeeping variable’ which we will refer to as ‘regulatory

factors’. Its local level is stored as an integer variable FðxnÞ for each grid site xn 2 DðaÞ. We
use FðxnÞ to implement the overall action of regulatory cytoskeletal proteins in an effective
and collective manner. Specifically, since the formation of lamellipodial structures depends
on active nucleation promoting factors (Pollard and Borisy, 2003), we assume that positive
levels, FðxnÞ>0, reflect local conditions in support of network-assembly, whereas negative lev-
els, FðxnÞ<0, represent predominantly degrading (or disassembly) conditions. For neutral lev-
els, FðxnÞ ¼ 0, the network gradually restores its rest state.

3. Feedback between cytoskeletal structures and regulatory factors: The activities of accessory
cytoskeletal proteins which regulate the local levels of cytoskeletal structures are themselves
controlled by a number of mechanical and chemical signals received by the cell. Here and in
the following, our focus will be on mechanical signals. For example, important regulatory pro-
teins like the Arp2/3 complex are activated locally at the cell membrane, from where they
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diffuse into the bulk of the cell until they are bound by actin (Kovacs et al., 2002;
Pollard and Borisy, 2003; Leckband et al., 2011). Adopting a coarse level of description,
this diffusion-degradation dynamics entails a finite range of regulatory proteins, which are
activated at the cell’s membrane. In our model, we use the integer variable FðxnÞ to imple-

ment this propagation of mechanical information, perceived by cell a at its periphery BðaÞ,
across a certain spatial distance R. The local levels of FðxnÞ are continuously updated as the
MCS loop progresses. The actual update procedure is given by the following set of rules;
cf. Appendix 1—figure 2:

. if a protrusion event has been accepted at the source site xs 2 BðaÞ (source cell: a; target cell:
b), then for all sites xn within a range R (i.e. kxn " xsk<R) the integer variable signifying regula-
tory factors is incremented up and down for the protruding and the retracting cell,
respectively:

FðxnÞ!
FðxnÞþ 1; xn 2DðaÞ;

FðxnÞ" 1; xn 2DðbÞ:

(

(S12a)

. Similarly, if a retraction event has been accepted at the source site xs 2 BðaÞ , and the (local)
cell contact between source cell a and target cell b has remained intact, then within a range
R one applies the inverse update rule:

FðxnÞ!
FðxnÞ" 1; xn 2DðaÞ;

FðxnÞþ 1; xn 2DðbÞ:

(

(S12b)

. If a retraction event has been accepted at the source site xs 2 BðaÞ , and in addition the (local)
cell contact between source cell a and target cell b has ruptured, then the regulatory factors
are reduced only within a range R in the retracting cell:

FðxnÞ!
FðxnÞ" 1; xn 2DðaÞ;

no update; else:

(

(S12c)

Finally, if the target grid site xt is not occupied by any cell (substrate is indicated by b<0)
prior to the elementary event, then only the first two lines in the above update scheme apply.

By virtue of the above update scheme, Equation S12, ‘regulatory factors’ are continuously

distributed across each cell’s domain DðaÞ as the current MCS progresses. At the end of each
MCS, the accumulated (local) values of FðxnÞ are used to update the local values of the

polarization field !ðxnÞ inside each cell a % 0 (xn 2 DðaÞ): We assume that for positive values,
FðxnÞ>0, there is assembly of cytoskeletal structures and ! is increased by an amount
proportional to the distance of ! from its upper bound !0 þ D!=2:

!ðxn; tþDtÞ ¼ !ðxn; tÞþDt" ½!0 þD!=2" !ðxn; tÞ*; (S13a)

where the time step is defined as Dt' 1. Thereby !0 þD!=2 is a fixed point of this map and
limits the build-up of cytoskeletal structures. In contrast, for negative values, FðxnÞ<0,
disassembly prevails, and we assume that ! then tends towards its lower bound !0 "D!=2:

!ðxn; tþDtÞ ¼ !ðxn; tÞþDt" ½!0 "D!=2" !ðxn; tÞ*; (S13b)

where the time step is defined as Dt' 1. Neutral values, Fðxn; tÞ ¼ 0, lead to relaxation of !
towards a resting state

!ðxn; tþDtÞ ¼ !ðxn; tÞþDt" ½!0 " !ðxn; tÞ* ; (S13c)

where the time step is defined as Dt' 1. The parameter " signifies the rate at which
cytoskeletal structures respond to the regulatory factors F. For the parameters and cell sizes
used in this work (!0 ¼Oð100Þ and D!¼Oð10Þ, and each cell occupying approximately 1000 grid
sites) we set "¼ 0:1.
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Appendix 1—figure 2. Distribution of regulatory factors on the basis of accepted elementary
events. For ease of reference, grid rows have been numbered from 1 to 10. Left (A): Solid black
lines indicate cells’ membrane positions after acceptance of the respective elementary event;
colors indicate cellular domains before the respective elementary event has been accepted
(gray: substrate; shades of yellow: cells). Blue and red circular arcs (of radius R) delineate areas
of local increase or decrease in the level of regulatory factors, respectively. The following
elementary events are depicted: (i) lower cell retracts (two grid sites in row 2); (ii) lower cell
protrudes (row 5); (iii) upper cell protrudes (row 10). In addition, the following elementary
events occur across the cell-cell boundary: (iv) retraction of upper cell leads to rupture of cell-
cell contacts (row 6, right event); (v) either the lower cell protrudes and pushes the upper cell
or the upper cell retracts and pulls on the lower cell (row 6, left event). Specifically, event
(v) entails mechanical signaling between the upper and lower cell and, therefore, affects the
distribution of regulatory factors in both cells. Right (B): Identical copy of the left image (A).
Colors indicate local levels of regulatory factors F (blue: F is positive; white: F is zero;
red: F is negative; gray: substrate site). Note, in particular, that a substrate grid site has been
inserted where cell rupture occurred (row 6, right grid site). The following cases can be
distinguished: (i) Grid site xk lies in the zone of influence of only positive (blue circles) or
negative (red circles) chemical feedback, in which case the level of regulatory factors
is positive or negative, respectively (e.g. red grid sites in row 2, or blue grid sites in row 5). (ii)
Grid site xk lies outside of any zone of influence, in which case the level regulatory factors is
zero (e.g. white grid sites in row 2). (iii) Grid site xk lies in the zone of influence of equally many
positive and negative feedbacks, in which case the level of regulatory factors remains zero
(e.g. fourth grid site in row 4). (iv) Grid site xk lies in a zone of predominantly positive or
negative feedback, in which case the level of regulatory factors is positive or negative,
respectively (e.g. third grid site in row 4). Recall that only the sign of F is of significance to
update the cells’ polarization field; cf. Equation S13.

After this update procedure for !ðxn; tÞ is completed, all regulatory factors are reset,
FðxnÞ ! 0; 8 n. This prevents ‘spurious memory effects’ which may arise once the cell’s rear
reaches its initial leading edge position as time goes on. In essence, resetting regulatory
factors upon completion of one MCS implies that the diffusion-degradation dynamics,
underlying the distribution of regulatory factors, is fast on the scale of one MCS.

We emphasize that the polarization field !ðxnÞ is defined only for grid sites xn 2 DðaÞ

occupied by an actual cell (a % 0). To allow for spatial variations of substrate properties, we
therefore introduce a second scalar field variable ’ðxnÞ, which is defined on the entire
computational grid. The scalar field ’ðxnÞ is taken to measure the local density of anchoring
points that a cell might use to form focal adhesions. Although one might consider to treat ’ as
a time-dependent field variable, in this work ’ is used to implement static substrate patterns,
only. The field ’ðxnÞ is thus initialized once at the beginning of the simulation and kept fixed
throughout the entire simulation.

Having introduced the fields !ðxnÞ and ’ðxnÞ, we now discuss their impact on the system’s
dynamics by giving their contribution to the goal function pðT Þ. Suppose that the elementary

event T is attempted by a source cell a at source grid site xs 2 BðaÞ. Further, let xt denote the
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target grid site and b denote the index of the target cell (where as ususal b % 0 indicates that
xt is occupied by an actual cell, b<0 means that xt exposes substrate). We then define the
‘polarization energy’ DHcytoðT Þ as follows:

DHcytoðT Þ '

!ðxtÞ" !ðxsÞ; T b¼T pro ^ b% 0;

!ðxsÞ" !ðxtÞ; T b¼T ret ^ b% 0;

"½!ðxsÞþ’ðxtÞ*; T b¼T pro ^ b<0;

!ðxsÞþ’ðxtÞ; T b¼T ret ^ b<0;

8
>>><

>>>:
(S14a)

Here, the definition of DHcyto is such that the likelihood of cell protrusions is enhanced if the

concentration of cytoskeletal structures at the source grid site, !ðxsÞ, is larger than the
concentration at the target grid site, !ðxtÞ (first row of Equation S14a), and vice versa for cell
retractions (second row of Equation S14a). The strength of focal adhesions is taken to be
measured by the sum !þ’. Their associated ‘anchoring effects’ (which increase with growing
strength of focal adhesions) promote the formation of cell protrusions against unoccupied
substrate sites (third row of Equation S14a), and, correspondingly, impede cell retractions
(fourth row of Equation S14a). Note, in particular, that the first two rows of Equation S14a
can be obtained from a combined evaluation of the lower two rows. For example, if source
cell a annexes xt starting from xs, two things need to happen: First, focal adhesions formed by
the target cell b must be broken, implying a contribution DHcyto ¼ !ðxtÞþ’ðxtÞ (fourth row of

Equation S14a). Secondly, new focal adhesions are formed by the source cell a, implying a
contribution DHcyto ¼" !ðxsÞþ’ðxtÞ½ * (third row of Equation S14a). Taking the sum of both

contributions gives the expression in the first row of Equation S14a. An analogous line of
arguments leads to the expression in the second row of Equation S14a.

The contribution to the goal function pðT Þ due to the polarization energy DHcytoðT Þ is then
defined by

pcytoðT Þ :¼ exp½"DHcytoðT Þ=kBT*; (S14b)

where we set the effective thermal energy to kBT ' 1. The characteristic ‘energy scale’ for
DHcyto is set by the polarization bounds !0 "D!=2 and !0 þD!=2, which turns out to have

important implications for collective cell dynamics, as discussed in the main text.

Cell adhesion
To implement the ability of cells to establish cell adhesions across cell-cell interfaces, we
use a special form for the respective contribution to the goal function p, which is
designed to distinguish between the formation of new and the breakage of existing cell-
cell adhesion sites.

To this end, we define adhesion matrices Ba;b and B0
a;b quantifying the system’s change in

‘energy’ upon forming a new contact between cells a and b [Ba;b] and upon breaking a pre-

existing contact between those cells by an ‘intruder cell’ g 6¼ a;b [B0
a;b]. In our computational

model, we assume that formation of new cell-cell contacts is energetically favored, and that
breaking of pre-existing contacts by intruder cells is energetically penalized. The matrix entries
of Ba;b and B0

a;b, therefore, have a definite sign, which we take to be positive. The ordering of

the cell index pair of Ba;b and B0
a;b is of no physical significance, i.e. the adhesion matrices are

symmetric. We also assume that a given cell a does not interact with itself, such that the
diagonal elements of the adhesion matrices vanish. Finally, there is no adhesion between cells
and empty substrate sites, such that all matrix elements containing a negative cell index
vanish. In summary, the adhesion matrices Ba;b and B0

a;b exhibit the following properties:

Ba;b ¼ Bb;a % 0; (S15a)

B0
a;b ¼ B0

b;a % 0; (S15b)
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Ba;a ¼ B0
a;a ¼ 0; (S15c)

Ba;b ¼ B0
a;b ¼ 0; if a<0 _ b<0: (S15d)

In addition, we assume that the energy cost associated with the breakage of a given cell-
cell contact exceeds the energetic benefit of its initial formation, i.e.

B0
a;b % Ba;b; (S15e)

where equality of both quantities would reproduce the assumption underlying the standard
cellular Potts model (Graner and Glazier, 1992; Glazier and Graner, 1993). We shall refer to
this property as the ‘dissipative nature of cell-cell adhesion’.

To implement the effects of cell-cell adhesion, we compute the ‘energy difference’
DHadhðT Þ for any given elementary event T according to the scheme illustrated in
Appendix 1—figure 3. One has to distinguish between protrusion and retraction events. First,

say that a cell a attempts a protrusion event T pro, involving the source grid site xs 2 BðaÞ and

the target grid site xt 2 BðbÞ, as illustrated in Appendix 1—figure 3A. In this case, cell a acts
as intruder cell, since the depicted protrusion event affects three pre-existing contacts
between the target cells b and a ‘third party’ cell g. Acceptance of the depicted protrusion
event would have the following energetically relevant effects: (i) All pre-existing contacts
between the target cell b and third party cell g 6¼ a;b at the target grid site xt are torn apart.
(ii) New contacts between the source cell a and third party cell g 6¼ a;b are established. (iii)
The length of the cell contact line between source cell a and target cell b is changed.
Altogether, these three effects lead to the following cell adhesion energy difference,

DHadhðT proÞ ' "‘
X

xj2N t

%
Ba;cðxjÞ " da;cðxjÞBb;cðxjÞ

&

þ‘
X

xj2N t

B0
b;cðxjÞð1" da;cðxjÞÞ;

(S16a)

where ‘ is the length of a hexagon edge. The first term in this expression accounts for the
(energetically favored) formation of new cellular contacts, as well as for the remodeling of the
interface between source cell a and target cell b [points (ii) and (iii)]. The second term
measures the (energetically penalized) breaking of pre-existing cell contacts [point (i)] and,
therefore, impedes cell a’s ability to intrude. Conversely, if source cell a attempts a retraction
event T ret, then the same reasoning as the one leading to Equation S16a applies, only this
time the elementary event proceeds in reverse, i.e. from the target site xt to the source site xs;
cf. Appendix 1—figure 3A:

DHadhðT retÞ ' "‘
X

xj2N s

%
Bb;cðxjÞ " db;cðxjÞBa;cðxjÞ

&

þ‘
X

xj2N s

B0
a;cðxjÞð1" db;cðxjÞÞ;

(S16b)

where ‘ is the length of a hexagon edge.
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Appendix 1—figure 3. Cell-cell adhesion. (A) Adhesive energy contribution in a cyclic process,
where a protrusion of source cell a against target cell b is followed by the inverse retraction
event. Both events involve a third party cell g, leading to net energy dissipation after the cyclic
process has been completed. Protrusion: (i) Three pre-existing cell-cell contacts between b

and g are torn apart (red dashed contacts); (ii) three new contacts between a and g are
formed; (iii) the contact length between source cell a and target cell b increases by one unit of
length. This implies DHadhðT proÞ ¼ ‘ ð3B0

b;g " 3Ba;g " Ba;bÞ. Retraction: (i) Three pre-existing cell-

cell contacts between a and g are torn apart (red dashed contacts); (ii) three new contacts
between b and g are formed; (iii) the contact length between source cell a and target cell b
decreases by one unit of length. This implies DHadhðT retÞ ¼ ‘ ð3B0

a;g " 3Bb;g þ Ba;bÞ. Altogether,

this leads to DHðcyclÞ
adh ¼ DHadhðT proÞ þ DHadhðT retÞ ¼ ‘ ð3ðDBÞa;g þ 3ðDBÞb;gÞ % 0, i.e. a (non-

negative) dissipative contribution, whose magnitude depends on the dissipation matrix
ðDBÞa;b ¼ B0

a;b " Ba;b % 0. (B) Shear viscosity due to cell-cell adhesion. Consider two rows of

adhesive cells sliding past each other as indicated in the figure (left row of cells moves up by
one grid site; colors indicate different cells). The associated adhesion energy change (per cell)
reads DHadh=nc ¼ 2 ðB0 " BÞ % 0, where nc denotes the number of cells sliding past each other,
and where we assumed cells of like type, i.e. Ba;b ' B and B0

a;b ' B0 (a 6¼ b). The condition

B0>B, Equation S15e, thus implies positive friction associated with cellular shear flows, whose
magnitude is proportional to the number of cells sliding past each other. Note that this shear
viscosity vanishes for B0 ¼ B, i.e. for zero dissipation matrix.

We may now use Equation S16a and Equation S16b to illustrate the ‘dissipative nature’ of
adhesive interactions by means of two archetypical examples. First, consider the adhesive
energy contribution to any cyclic process. By a cyclic process we mean a sequence of two
mutually inverse elementary events, e.g. a protrusion event T pro, which is immediately

followed by its inverse retraction event T ret, such that the system’s final configuration is
identical to its initial configuration. Using Equation S16 we find for the total adhesive energy
contribution to a cyclic process:

DHðcyclÞ
adh ¼ ‘

X

xj2N tnðDðaÞ[DðbÞÞ

%
ðDBÞa;cðxjÞ þ ðDBÞb;cðxjÞ

&
; (S17)

ðDBÞa;b :¼ B0
a;b"Ba;b % 0; (S18)

and can therefore conclude that

DHðcyclÞ
adh % 0;

where N t denotes the neighborhood of the grid site which temporarily changes its cell
index, and where a and b are the indices of the source and target cells involved in the cyclic
process; cf. Appendix 1—figure 3A. Since ðDBÞa;b % 0, the above adhesive energy

contribution is non-negative, thus leading to an amount of energy equal to DHðcyclÞ
adh being

dissipated as the cyclic process completes. This leads us to refer to the parameter matrix
ðDBÞa;b as dissipation matrix. Second, consider two (infinitely extended) columns of cells in
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adhesive contact, sliding past each other. This situation is depicted in Appendix 1—figure 3B,
where the left column of cells moves (as a whole) upwards by one grid site, while the right
column of cells remains stationary. To assess the adhesive energy contribution along the
contact line connecting both cell columns, note that the depicted transformation can be
implemented by letting each cell in the left column protrude its leading (i.e. upper) edge by
one grid site. For each protruding (source) cell a, this transformation entails to the following
energetic effects (cf. discussion above): (i) Two of the pre-existing cell-cell contacts between
the source cell’s upper neighbor in the left column (target cell b) and the corresponding cell in
the right column (third party cell g) get torn apart, leading to an energetic contribution 2B0

b;g.

(ii) In return, two new contacts between the protruding (source) cell a and cell g are being
established, leading to a contribution "2Ba;g . (iii) Since the length of the contact line between

cells in the left column (i.e. between protruding source cell a and retracting target cell b)
remains unchanged, there’s no further energetic contribution due to adhesive contacts
between cells in the left column. Assuming that all cells in the system are of equal types, we
write Ba;b ' B and B0

a;b ' B0 (a 6¼ b), and therefore, find

DHðviscÞ
adh ¼ 2‘ðB0"BÞ ' 2‘DB% 0; (S19)

i.e. a non-negative dissipative contribution per cell. The size of the dissipation parameter DB
thus introduces a natural means to tune the system’s shear viscosity.

With the above definitions of the adhesive energy changes, Equation S16, we define
the contribution of cell adhesion to the goal function pðT Þ as follows:

padhðT Þ :¼ exp
%
"DHadhðT Þ=kBT

&
; (S20)

where we set the effective thermal energy to kBT ' 1.

Rupture of cell contacts
By now, we have introduced all components making up the total acceptance probability pðT Þ,
Equation S9. To conclude our discussions concerning the implementation of cellular traits, we
highlight one additional aspect of elementary events. So far, the notion of an elementary
event can be summarized as follows: Once source and target grid sites, xs and xt, have been
selected, acceptance of a protrusion [retraction] event causes (among other things like the
distribution of regulatory factors) the cell index to be copied from xs to xt [from xt to xs]. In

other words, the domain DðaÞ of source cell a annexes xt [loses xs], while the domain DðbÞ of
target cell b is forced to let go xt [accommodate xs]. However, if both source and target cells
are actual cells, i.e. a;b % 0, and if the source cell attempts a retraction event, there is one
additional possible outcome: If cell cohesion is weak, then the pulling force exerted by the
retracting source cell a on its neighboring cells might also result in rupture of all pre-existing
contacts between the retracting source cell and its neighboring cells at xs, rather than forcing
one of its neighboring cells (the target cell) to fill the void created at xs once a retracts; cf.
rupture event depicted in Appendix 1—figure 2. To test for the occurrence of cell rupture,
the total energetic cost of each attempted retraction event between two actual cells is
evaluated under two different assumptions: First, we assume that the pulling force exerted by
the retracting source cell a on target cell b is strong enough to force b to fill the void created
at xs (i.e. to accommodate xs), and call this a regular retraction event T ret. Secondly, we
assume that the retraction of source cell a causes all pre-existing cell-cell contacts of cell a at
xs to rupture, leaving a free substrate site at xs after the retraction event has been accepted.
This latter event will be referred to as rupture event T rup. We then compute the total energy

differences

DHðT retÞ ¼ DHcontðT retÞþDHcytoðT retÞþDHadhðT retÞ

and
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DHðT rupÞ ¼ DHcontðT rupÞþDHcytoðT rupÞþDHadhðT rupÞ

under both assumptions (the energy difference associated with accepting T rup can be

computed with Equation S16b by using the substrate b¼"1 as new target cell) and compare
the respective outcomes. If the rupture event is energetically favored over the regular
retraction event, i.e. DHðT rupÞ<DHðT retÞ, then cohesion between cells is weak. In this case, the

rupture event T rup, rather than the regular retraction event T ret will be attempted. Otherwise,

cohesion is strong and a regular retraction event T ret will be attempted.

Rupture of substrate contacts
In our discussion so far, a cyclic process that follows up a protrusion event T pro with its inverse

retraction event T ret, involving a cell a and no third party cells (in other words: no cell-cell
contacts are made or broken), will not yield a net energy cost or gain; cf. Equation S14a.
To account for the dissipative nature of cell-substrate contacts, we proceed similarly as when
we have considered the disspative nature of cell-cell contacts. We introduce dissipation in
substrate adhesion by leaving the Hamiltonian unaltered for protrusion events but adding a
penalty for retraction events:

DHðT retÞ! DHðT retÞþD: (S21)

Therefore, a cell that adheres to the substrate at some grid point has to pay a cost D to
retract from it. In other words, we assume that a fixed amount of energy D is dissipated once
the adhesive bonds between a cell and the substrate break.

To keep its overall size across translations, the cell has to gain and lose equal amounts of
hexagons, with D! as the maximal energy gained by a single gain-and-loss in the absence of
dissipation. In the presence of dissipation however, the cell has to pay at least a cost of ð!0 "
D!=2Þ þ D to detach at an arbitrary location, resulting in D!" D as the maximal energy gained
by a single gain-and-loss in the presence of dissipation. Thus, while for D ¼ 0 there is no
impact of substrate dissipation on cell motility, it will at the latest for D ¼ D! completely inhibit
(directed) cell migration. Therefore, we study substrate dissipation in the range D 2 ½0;D!*.

Cell domain update routine
Having discussed the implementation concerning the two basic types of elementary events,
namely protrusion events T pro and retraction events T ret, as well as the two subtypes of

regular retraction events and rupture events T rup, we can now summarize the cell domain

update routine, point 3.5 in section ‘Monte-Carlo scheme’. To this end, and in accordance
with our previous notation, we use the cell indices a and b to denote source and target cell,
and xs and xt to denote source and target grid site. Moreover, equal signs "¼" in the
following listing are to be interpreted as assignment operators, where the value of the variable
on the right hand side of the operator is assigned to the variable on the left hand side. With
these preliminary remarks in mind, the cell update routine can be summarized as follows:
. If the accepted elementary event is a protrusion event:

1. Set !ðxtÞ ¼ !ðxsÞ and FðxtÞ ¼ FðxsÞ.
2. DðaÞ ! DðaÞ [ fxtg.
3. DðbÞ ! DðbÞ n fxtg.
4. Distribute regulatory factors according to Equation S12a.

. If the accepted elementary event is a regular retraction event:
1. Set !ðxsÞ ¼ !ðxtÞ and FðxsÞ ¼ FðxtÞ.
2. Set DðaÞ ! DðaÞ n fxsg
3. Set DðbÞ ! DðbÞ [ fxsg
4. Distribute regulatory factors according to Equation S12b.

. If the accepted elementary event is a rupture event:
1. Set !ðxsÞ ¼ 0 and FðxsÞ ¼ 0.

2. Set DðaÞ ! DðaÞ n fxsg
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3. Distribute regulatory factors according to Equation S12c.

Cell proliferation and mitosis
While cell proliferation and mitosis play no role in the experimental setup of rotating cell
clusters, cell growth and division are observed experimentally in a setup where a sheet of cells
expands into free space after removal of a stencil. Therefore, it is essential to include
proliferation of cells in the numerical model. How this is done is described in this section.

We distinguish between two phases in the cell cycle, an interphase during which cells
roughly double in volume and mitosis, the process of cell division. Even though a further
partitioning of the interphase was considered in previous work (Li and Lowengrub, 2014), we
do not expect that such a distinction is relevant for our results. In our computational
framework cell growth may be implemented by progressively changing any cellular parameter
that affects the cell’s equilibrium size. The two possible, largely equivalent choices are a

successive reduction of the area coupling constant kðaÞA or an increase of the average cell

polarization !ðaÞ
0

. We here employ the first method. We assume that individual cells grow

exponentially (Barber et al., 2017) over a well-defined period Tg. Additional variability in cell

cycle length can be achieved by introducing an additional refractory phase with exponentially
distributed waiting times and the average waiting time Tr, which we set to Tr ¼ 0 in this work.
Moreover, we assume that the migratory behavior of a cell should not change significantly as it
grows. However, as the cell grows in size by a factor of 2, it also increases its perimeter and

the corresponding energy cost for adding new membrane segments roughly by a factor of
ffiffiffi
2

p
.

Therefore, as we do not scale the polarization field ! and the resulting energy gains for
protrusions during cell growth, we mitigate the increased cost for ruffling the membrane by

reducing the perimeter stiffness by a factor of
ffiffiffi
2

p
. The quantitative viability of this approach is

further discussed in section ‘Single cell size’.
To prevent tissue overgrowth, cell proliferation is generally contact inhibited in healthy

cells: When the tissue approaches a state where each cell has formed adhesive contacts with
the substrate and is completely surrounded by neighbours, cells stop proliferating. In addition,
it has been proposed that the pressure or local density in the tissue has a negative impact on
the local growth rate (Shraiman, 2005; Ranft et al., 2010). To account for these phenomena
in the model, we complement the two cell cycle periods interphase and mitosis by a quiescent
cell state during which cell growth is halted. The parameters kA and kP are, therefore, kept
constant for a quiescent cell; we denote the corresponding values as kA=0 and kP=0. There are

many possible ways to implement contact inhibition in our computational model. For example,
it could be implemented by allowing a quiescent cell to enter the cell cycle triggered by low
local cell density, or when a sufficiently large fraction of its membrane length is not in contact
with neighbour cells but exposed to free space. In our model it proves numerically
advantageous to make a quiescent cell enter the interphase when its area succeeds a certain
reference area. We choose this area threshold as AT ¼ r Aref , where the factor r ¼ Oð1Þ relates
the threshold size to the equilibrium cell size Aref reached by a free, solitary cell with constant
polarization field ! ¼ !0. Cells living in a densely packed environment will not exceed the area
threshold due to the pressure exerted on them by neighboring cells and can, therefore, not
grow. Conversely, cells exposed to free space are more likely to reach this threshold and
proliferate. Finally, a growing cell in interphase becomes mitotic after the growth time Tg has

passed, at which point cell size has roughly doubled with respect to the size in the quiescent
period. We assume that cell migration and mitosis are processes that exclude each other.
Hence, the positive feedback leading to persistent cell migration is switched off for mitotic
cells and the polarization field relaxes to the neutral state !0 according to Equation S13c.

There appears to be no universal set of rules which determine the orientation of the
cleavage plane along which cells divide (Minc and Piel, 2012). Rather, for epithelial tissues
there are a variety of factors which include local cell geometry and the direction of stress in
the tissue (Gibson and Gibson, 2009). Though it is in principle possible to implement any
given rule in our computational model, in its present version the axis along which a cell divides
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is chosen as a random direction through the geometric center of the cell. In case of irregular
cell shapes, a separation of the cellular domain into more than two connected components
can occur. To prevent violation of topological constraints, in this case the two largest
components are considered as descendant cells and the residual grid sites are filled by
substrate.

We explicitly account for the finite duration of the mitotic phase Td by keeping the cells in a
mitotic state for the aforementioned time period, until the final instantaneous splitting of the
cellular domains. After cell division, persistent cell migration of the daughter cells is enabled
again. The descendent cells will subsequently re-enter the growing phase if their area exceeds
the defined threshold, as mentioned above.

The following list summarizes the steps motivated and explained in the previous
paragraphs. These additional steps are performed in a simulation that includes cell
proliferation:

1. Assign a state variable sðaÞ to each cell which encodes the current phase in the cell cycle:

sðaÞ ¼

0; quiescent phase

1; refractory phase

2; interphase

3; mitotic phase

8
>>><

>>>:
(S22)

2. Compute the equilibrium size Aref ¼ ð!0 " 2p
ffiffiffi
3

p
kPÞ=ð

ffiffiffi
3

p
kAÞ of a free, solitary cell with fixed

polarization field ! ¼ !0, which spreads on the substrate used in the simulation.

3. At the beginning of the simulation, t ¼ 0, all cells are in the quiescent state, sðaÞð0Þ ¼ 0, and

have the following area and perimeter coupling constants, respectively: kðaÞA ð0Þ ¼ kA=0 and

k
ðaÞ
P ð0Þ ¼ kP=0.

4. After the completion of each Monte Carlo time step t, perform one of the following changes
for each cell:

. Switch from quiescent to refractory state:

sðaÞðtÞ ¼ 0 ^ AðaÞðtÞ>AT

) sðaÞðtþ 1Þ ¼ 1: (S23)

. Switch from refractory state to growing state with probability p ¼ 1" expð"1=TrÞ:

sðaÞðtÞ ¼ 1

) sðaÞðtþ 1Þ ¼
2; (p),

1; (1-p),

'
(S24)

where the terms in the brackets denote the respective probability.
. Exponential growth in interphase over a period of Tg:

sðaÞðtÞ ¼ 2

) k
ðaÞ
A ðtþ 1Þ ¼ k

ðaÞ
A ðtÞ ( ð1=2Þ1=Tg

) k
ðaÞ
P ðtþ 1Þ ¼ k

ðaÞ
P ðtÞ ( ð1=2Þ1=ð2TgÞ: (S25)

. Switch from interphase to mitosis:

sðaÞðtÞ ¼ 2 for all t2 ½t"Tg; t*
) sðaÞðtþ 1Þ ¼ 3: (S26)
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. During cell division, cell motility is switched off and the polarization field relaxes to the neu-
tral state according to Equation S13c.

. Perform cell division, reset area and perimeter stiffness and exit mitotic phase:

sðaÞðtÞ ¼ 3 for all t2 ½t"Td; t*
) divide cell a into cells ða;bÞ

) k
ða;bÞ
A ðtþ 1Þ ¼ kA=0

) k
ða;bÞ
P ðtþ 1Þ ¼ kP=0

) sða;bÞðtþ 1Þ ¼ 0: (S27)

. Cell motility is restored after cell division.

. If none of the above rules apply, then do not perform any changes.

Numerical computation of stress in a tissue
In the section describing the numerical results on tissue expansion, the stress distribution in
the tissue is shown in the kymographs Figure 5(C,G) and Figure 6(C,G). Hereafter we explain
how the stress tensor for each cell in the tissue can be computed from the forces acting on the
cell’s membrane segments in the Monte Carlo simulation. The mean value of the stress tensor
in a deformed body can be calculated numerically from the formula

!s
ðaÞ
ij ¼ ‘

2AðaÞ

X

xk2BðaÞ

(
f ik ~x

j
k þ f

j
k ~x

i
k

)
; (S28)

which is a discretized version of the surface integral in Landau et al. (1986). Here, fk is the

force acting on the membrane element xk of cell a, ~xk ¼ xk " x
ðaÞ
com is the position of the element

with respect to the center of mass xðaÞcom of the cell, and the superscripts i and j are Cartesian
indices. The forces fk can be computed from the energy differences of all possible protrusion
and retraction events originating from xk,

fk ¼ "
X

xl2N k

DHðT proÞ
kxl " xkk

xl " xk

kxl " xkk

"
X

xl2N k

# DHðT retÞ
kxk " xlk

xk " xl

kxk " xlk
;

(S29)

where the number sign indicates a sum over substrate grid sites only, i.e. grid sites with
cðxlÞ<0, and where DH'HcontþHadhþHcyto.

Numerical computation of the cell shape
We use two complementary measures for the cell shape. The first is a simple measure for the
deviation of an object from a circle (we refer to this as cell extension):

K ¼ 1" 4pA

P2
: (S30)

It becomes zero if the object is a circle and becomes 1 if the object is a line. The second
measure for the cell shape is obtained from a principle components analysis of the cell shape.
Specifically, we compute the covariance matrix of the point cloud representing the cell domain

DðaÞ:

(
CovðDðaÞÞ

)
ij
¼
P

xk2DðaÞ ~xik ~x
j
kP

xk2DðaÞ 1
; (S31)

where ~xk ¼ xk " x
ðaÞ
com denotes the coordinates of element xk of cell a, relative to the cell’s
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center of mass xðaÞcom; the superscipts i and j are Cartesian indices. Then, we compute the two

eigenvalues l2þ (larger eigenvalue) and l2" (smaller eigenvalue) of the covariance matrix, which

determine the variance of the point distributions along the two principal axes of the cell.
Finally, the aspect ratio of the cell is given by lþ=l".
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Appendix 2

Parameter screening in silico
In this section we provide additional analysis of the model parameters beyond what is already
shown in the main text.

We explore all three rotational phases R1, R2 and R3 within confinements of varying size
and constant cell density. In the R1-phase, the cell clusters rotate slowly and
frequently reorient their direction of rotation. With increasing cell count, the cell clusters cease
to rotate. In the highly coordinated R2 and R3-phases, we find scale-free behavior such that
there is always a macroscopic rotation of the whole cell population regardless of the cell count
and corresponding confinement size.

We also explore the parameter space of the tissue simulations. There, we find that an
increased cell-cell dissipation DB impairs monolayer growth, while at the same time increasing
front roughness. Similarly, an increased cell-substrate dissipation D also impairs monolayer
growth. In contrast, increasing the maximum cell polarity D! improves monolayer growth and
also increases front roughness. We thus find that the speed of monolayer expansion depends
on whether it is dominated by cell migration or cell proliferation, with the former improving
monolayer growth through a better exploration of the cell-free area.

Single cell size
To rationalize our choice of the cell growth algorithm (see section ‘Cell proliferation and
mitosis’), we have explored the shape and motility of differently sized solitary cells. To this
end, we have varied the area stiffness parameter kA for different values of perimeter stiffness
kP, while keeping all other parameters constant. We find that the area occupied by the motile
cell increases linearly with 1=kA (Appendix 2—figure 1A). In particular, the cell area can be
approximated quite well by the area of an immotile and equilibrated cell with uniform ! ¼ !0
(fit not shown):

A ¼ !0 " 2p
ffiffiffi
3

p
kPffiffiffi

3
p

kA
/ 1=kA : (S32)
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Appendix 2—figure 1. Role of area stiffness kA for cell size and motility. (A) The cell area
increases linearly with 1=kA. The aspect ratio (B), speed (C) and persistence (D) of the cell
decrease with increasing cell size. In the simulations, the area elasticity was varied in the
interval kA 2 ½0:09; 0:18*, and the membrane elasticity was chosen from
kP 2 f0:054;0:057;0:060;0:063;0:066g. Fixed parameters: average cell polarization field !0 ¼ 225;
maximum cell polarity D!¼ 50; signaling radius R¼ 5; cytoskeletal update rate "¼ 0:1; cell-
substrate dissipation D¼ 0; cell-substrate adhesion penalty ’¼ 0.

Furthermore, we find that with increasing size, and all other parameters constant, cells
become rounder, slower, and less persistent (Appendix 2—figure 1B-D). To intuitively explain
this phenomenology, let us compare a cell of size Aref with a cell of size r Aref , where r 2 ½1; 2*,
with the respective area stiffnesses kA and kA=r. While the smaller cell has a perimeter Pref ,

neglecting geometric effects the larger cell has a larger perimeter of approximately
ffiffi
r

p
Pref .

Hence, the larger cell has to pay a larger energy cost (roughly by a factor
ffiffi
r

p
) to ruffle its
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membrane by adding segments and therefore increasing its perimeter. Meanwhile, both the
energy gain from the polarization field ! and the energy cost for increasing the cell area (as
A kA ¼ cst:) are the same for both cells. Due to the increased energy cost for adding
membrane segments, larger cells finds find it more difficult to polarize, and are therefore
rounder, slower and less persistent.

To offset this increased energy cost for adding membrane segments to the cell, one can

scale the perimeter stiffness of the larger cell to kP=
ffiffi
r

p
, such that P kP » cst. We would then

predict that the ratio k2P=kA is constant for differently sized cells of similar shape, speed and

persistence time. The same relation can also be obtained by realizing that different amounts of
grid sites occupied by two otherwise identical cells (in terms of their corresponding
Hamiltonian) simply stem from a different discretization of said cells, which is controlled by the
parameter kA. Interestingly, we observe such a data collapse for the aspect ratio lþ=l" and the

velocity v of the cells onto two respective master curves depending on the ratio k2P=kA
(Appendix 2—figure 1B,C). While the proposed data collapse for the persistence time of
directed migration of a cell (Appendix 2—figure 1D) is somewhat unsatisfactory, this may be
owed to the following effect: by keeping R constant we have actually varied the ratio between
the area that the signaling molecules typically explore due to diffusion and the area of the cell,

R2=A. Finally, we speculate that all observed quantities collapse unto respective master curves
f ðD! ffiffiffiffiffi

kA
p

=kPÞ ( gðR
ffiffiffiffiffi
kA

p Þ.

Single cell shape and dynamics depend on substrate
dissipation
We have also studied the effect of cell-substrate dissipation (see section ’Rupture of
substrate contacts’) on cell morphology and motility. We have varied the substrate
dissipation D for different values of maximum cell polarity D! and cell perimeter stiffness
kP; however, we were not able to achieve a data collapse in D (Figure 2—figure
supplement 1). We observe that with increasing cell-substrate dissipation, cells become
round and cease migrating. This can be illustrated as follows: Consider a situation where
the cell conquers a new hexagon at its prospective leading edge. Because the cell on
average tends to constrain its area and perimeter while migrating, it consequently needs
to lose a different hexagon at its prospective trailing edge. However, this retraction at the
trailing edge is energetically penalized and thus cell displacement from its initial position
and the positive feedback leading to cell polarization are effectively inhibited. With
increasing cell-substrate dissipation, retraction events are further penalized and the cell
’sticks’ to the substrate at its trailing edge, preventing persistent motion of the cell.
Additionally, to further illustrate the correlation between cell shape and cell migration, we
have replotted the values of Figure 2—figure supplement 1A-C and E-G (Figure 2—
figure supplement 1D and H, respectively). Here and in the main text, we find that only
cells with an aspect ratio larger than 2 are motile (Figure 2F, Figure 2—figure
supplement 1D, H; white regions).

Cells in circular confinement
In this section we report on additional parameter studies of the dynamics of cells enclosed in a
circular confinement (Figure 4—figure supplement 1, Figure 4—figure supplement 2 and
Figure 4—figure supplement 3). Specifically, we investigate how the radius of circular
confinement affects the synchronized rotation of the cell population. We performed
simulations with a densely populated circular confinement and varied the confinement radius,
while keeping the cell density constant. The parameters are chosen such that a population
consisting of 4 cells (cf. main text, Figure 4) would rotate in the R1, R2 or R3-phase,
respectively. We studied the mean angular velocity

!ðtÞ ¼ êz (
v̂aðtÞ+ ~RaðtÞ
k~RaðtÞk2

* +

C

; (S33)
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averaged over the set C¼ fa j is not substrateg of all cells in confinement, where

~vaðtÞ ¼ vaðtÞ" hvaðtÞiC and ~RaðtÞ ¼RaðtÞ" hRaðtÞiC are the velocity and position of cell

a relative to the cell cluster, respectively.
In the lowly polarizable R1-phase, small cell populations rotate in a highly synchronized

way, and rotation is maximized for populations of 7 cells per confinement (Figure 4—figure
supplement 1A). As can be inferred from the time traces and snapshots (Figure 4—figure
supplement 1B, C), cells in small populations all synchronously move in the same direction at
a given time and randomly switch between clockwise and counter-clockwise rotation; the
switching rate decreases with increasing size of the cell population. Upon increasing the cell
count and concomitantly the confinement size, global rotation of the cell population gradually
vanishes (Figure 4—figure supplement 1A).

Unlike in the R1-phase, we observe that in the highly polarizable R2 and R3-phases
populations of all sizes rotate in a highly synchronized way (Figure 4—figure supplement 2A
and Figure 4—figure supplement 3A). There, the dependence of !j jh i on the population size

N can be fitted by a power law of the form !j jh i / N"1=2 / r"1
0
. This inverse proportionality

between the average angular velocity and the confinement size r0 implies total rotational

order, with every cell moving at a constant velocity vrotj j » 0:008 (vrot ? ~R). Furthermore, in
the R2, and R3-phases we have only scarcely observed switching of the rotational direction of
cell clusters; e.g. for 4-cell clusters in the R3-phase.

Interestingly, fluctuations in the angular velocity (s!) change in a highly non-monotonic
fashion with the cell count and concomitantly the confinement size. Certain cell counts exhibit
especially high fluctuations of the mean angular velocity (e.g. 5 cells in the R1-phase, see
Figure 4—figure supplement 1A; 3 or 10 cells in the R2-phase, see Figure 4—figure
supplement 2A; 3 cells in the R3-phase, see Figure 4—figure supplement 3A). This can likely
be attributed to frustration of the cells in the population center (Segerer et al., 2015); cf.
10 cells in Figure 4—figure supplement 2C.

Velocity and roughness of spreading tissue
We have studied the velocity and roughness of spreading tissue, while varying cell-cell
dissipation DB, cell-substrate dissipation D and maximum cell polarity D!.

First, let us introduce the observables that we are interested in. Let X>=< be the sets of x-

coordinates of the left and right outermost edges of the cell sheet. Our in silico setup is axially
symmetric with respect to the y-axis. This initial symmetry persists, as the cell fronts advance
towards the cell-free area with the same average speed. Hence, it is not needed to consider
the two cell fronts separately, and we can instead consider the set of unsigned front
positions X :¼ absðX>=<Þ. Then, we define the average front position as xF :¼ EðXÞ and the

front roughness as s2
F :¼ VarðXÞ. In particular, we study the total growth of the tissue over the

course of 500 MCS, which is captured by the maximal position of the front, maxðxFÞ, as well as
the maximal roughness of the front maxðsFÞ. We have chosen our parameters such that a cell
takes a total amount of 200 MCS to divide, provided that it exceeds the threshold size of a
solitary reference cell Aref . Because the first daughter cells may only appear after 200 MCS
have passed, we exclude this initial period from the measurements of the maximal front
position and roughness, respectively. Additionally, we provide some exemplary time traces of
the front evolution (Figure 5-figure supplement B,D,F).

First, we investigated how the monolayer expansion and front roughness depend on cell-
substrate dissipation, DB (Figure 5—figure supplement 1A, B). Our simulations show that the
cell sheet expands slower with increasing cell-cell dissipation DB (Figure 5—figure
supplement 1A, B), because the dissipation penalizes cells sliding past each other. At the
same time, the cell sheet also becomes slightly rougher with increasing cell-cell dissipation
DB (inset of Figure 5—figure supplement 1A).

We also investigated how the monolayer expansion and front roughness depend on cell-
substrate dissipation, D (Figure 5—figure supplement 1C, D). Before we turn to the
monolayer, let us recall the observed single-cell behavior in the previous section (see section
’Single cell shape and dynamics depend on substrate dissipation’): for high enough cell-
substrate dissipation D (typically of the same order of magnitude as the maximum cell polarity
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D!) cell migration is switched off (Figure 2—figure supplement 1). Extrapolating the single-
cell results, we expect that the same holds also for collectives of cells and that cell migration
does not play a role for high cell-substrate dissipation. Indeed, with increasing cell-substrate
dissipation, the monolayer expands slower, until this effect appears to saturate at a threshold
value D$ » 5 (Figure 5—figure supplement 1C, D). Following this line of argument, monolayer
growth is slowed down if we suppress cell migration and thus move the cell monolayer
towards a proliferation-dominated mode of expansion.

What about the inverse? Is the monolayer growth increased if we enhance cell migration
and thus move the cell monolayer towards a migration-dominated mode of expansion? To test
this hypothesis, we have analyzed how the monolayer growth and front roughness depend on
the maximum cell polarity D!. As predicted, monolayer growth increases with the maximum
cell polarity D! (Figure 5—figure supplement 1E, F), because an increased amount of cells
exceed the threshold size to switch to mitosis (cf. the stretching of bulk cells in the monolayer
in Figure 5B). Additionally, we also find that the front roughness increases with increasing
maximum cell polarity D!.
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Figures and figure supplements

Bridging the gap between single-cell migration and collective dynamics
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Figure 1. Illustration of the computational model with the pertinent simulation steps. (A) Illustration of a small cell cohort that adheres to a surface

(ðx; yÞ-plane). The polarization field, �, is defined on the contact surface with the adhesion plane. The magnitude of the polarization field, which is

indicated by the colorbar in Figure (C), encodes the local strength of cell-substrate adhesions and emulates the local mass of force-generating

(pushing) cytoskeletal structures. Cell-cell adhesions are indicated in red. (B) Cytoskeletal structures respond to external mechanical stimuli through

reaction networks involving different feedback loops. We greatly simplify these complex processes into two prototypic feedback loops, which break

detailed balance and drive cell migration, as follows. The polarization field induces membrane protrusions and inhibits retractions. In turn, protrusions

increase the polarization field (positive feedback) and therefore the likelihood of further protrusive activity, while retractions decrease the polarization

field (negative feedback). In the absence of mechanochemical signals, the polarization field approaches its rest state. (C) Zoom-in to a common

boundary shared between the substrate contact areas of three cells (bounded by the red lines), each represented by a contiguous set of occupied grid

sites (hexagons). Top left: The upper right corner of the lower left cell (source cell) initiates a protrusion event against a neighboring element in the cell

to its right (target cell), as indicated by the arrow, in an attempt to displace it. The success of each such attempted elementary event depends on the

balance between contractile forces, cytoskeletal forces, and cell adhesion. Top right: If the protrusion event is successful, then the levels of regulatory

factors are increased (decreased) in integer steps, at all lattice sites inside the source (target) cell that lie within a radius R of the accepted protrusion

event (as indicated by the plus and minus signs). Bottom right: During the course of one MCS, different levels of regulatory factors accumulate locally

within each cell, with positive levels of regulatory factors (green plus signs) promoting a build-up of cytoskeletal structures, negative levels of regulatory

factors (red minus signs) causing degradation of cytoskeletal structures, and neutral levels of regulatory factors (white zero signs) causing relaxation

towards a resting state, as indicated in the lower left image. The color code indicates local levels of cytoskeletal structures, �.
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Figure 2. Cell shape and persistence of migration as a function of cell polarizability. (A) Mean-squared displacement (MSD) for single-cell movements

at different maximum cell polarity D� (stiffness parameters kP ¼ 0:060, kA ¼ 0:18; average polarization field �0 ¼ 225; signaling radius R¼ 5; cell-substrate

dissipation D¼ 0; cell-substrate adhesion penalty ’¼ 0; cytoskeletal update rate � ¼ 0:1; 100 independent simulations for each set of parameters).

Single cells perform a persistent random walk, i.e. they move ballistically (MSD/ t

2) for t� tp, and diffusively (MSD/ t) for t� tp. Inset: Normalized

velocity auto-correlation function for the same parameters as in the main figure. (B) Persistence time of directed cell migration plotted as a function of

maximum cell polarity D�, and perimeter stiffness kP (area stiffness kA ¼ 0:18; average polarization field �0 ¼ 225; signaling radius R ¼ 5; cell-substrate

dissipation D¼ 0; cell-substrate adhesion penalty ’¼ 0; cytoskeletal update rate � ¼ 0:1; 100 independent simulations for each set of parameters). The

persistence time of the random walk increases with increasing cytoskeletal polarity and decreasing perimeter elasticity. (C) Cytoskeletal polarity also

controls cell shapes, with crescent cell shapes (long persistence times) being observed at large cytoskeletal polartities, and round cell shapes (short

persistence times) at small cytoskeletal polarities. Color code: cell polarization; cf. color bar in Figure 1C. (D) Single cell speed plotted as a function of

maximum cell polarity D�, and perimeter stiffness kP. (E) Single cell aspect ratio plotted as a function of maximum cell polarity D�, and perimeter

stiffness kP. (F) Speed and persistence time of single cells are correlated with the cell aspect ratio.
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Figure 2—figure supplement 1. Role of substrate dissipation for cell shape and motility. (A–D) Role of substrate dissipation for cells of varying

maximum cell polarity D�. The aspect ratio lþ=l� (A), the speed v (B), and the persistence time tp (C) as a function of substrate dissipation D for a series

of values for D�=kP indicated in the graphs. (D) Cell persistence and cell speed are correlated with the aspect ratio of the cell. Only cells with an aspect

ratio larger than 2 are motile. In the simulations, the substrate dissipation was varied in the interval D 2 ½0; 50�, and the maximum cell polarity

D� 2 f20; 30; 40; 50; 60g. Fixed parameters: average polarization field �0 ¼ 225; area elasticity kA ¼ 0:18; membrane elasticity kP ¼ 0:060; cytoskeletal

update rate � ¼ 0:1; cell-substrate adhesion penalty ’ ¼ 0; 100 independent simulations for each set of parameters. (E–F) Role of substrate dissipation

for cells of varying membrane stiffness kP. The aspect ratio lþ=l� (E), the speed v (F), and the persistence time tp (G) as a function of substrate

dissipation D for a series of values for D�=kP indicated in the graphs. (H) Cell persistence and cell speed are correlated with the aspect ratio of the cell.

Only cells with an aspect ratio larger than 2 are motile. In the simulations, the substrate dissipation was varied in the interval D 2 ½0; 50�, and the

membrane elasticity kP 2 f0:054; 0:057; 0:060; 0:063; 0:066g. Fixed parameters: average polarization field �0 ¼ 225; area elasticity kA ¼ 0:18; maximum cell

polarity D� ¼ 50; cytoskeletal update rate � ¼ 0:1; cell-substrate adhesion penalty ’ ¼ 0; 100 independent simulations for each set of parameters.
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Figure 3. Migratory behavior of single cells as a function of the cell’s signaling radius R at different values for the

maximal cytoskeletal polarity D�. (Stiffness parameters kP ¼ 0:060, kA ¼ 0:18; average polarization

field �0 ¼ 225; cell-substrate dissipation D ¼ 0; cell-substrate adhesion penalty ’ ¼ 0; cytoskeletal update

rate � ¼ 0:1; 100 independent simulations for each set of parameters). (A) The persistence times of directed

migration of single cells exhibit a pronounced maximum at an optimal signaling radius, which depends on cell

polarizability. (B) The shapes of single cells exhibit a pronounced maximal elongation at an optimal signaling

radius, which depends on cell polarizability. (C) The signaling radius critically determines the synchronicity of

internal cytoskeletal remodeling processes. Small signaling radii frequently lead to transient formation of mutually

independent lamellipodia at different positions around the cell perimeter, thereby interrupting persistent motion

(reducing persistence times of directed migration). Large signaling radii lead to structurally stable front-rear

polarization profiles across the entire cell body (long persistence times of directed migration). Color code: cell

polarization; cf. color bar in Figure 1C. (D) The speed of single cells does not drop to zero even when their

persistence time of directed migration vanishes. This indicates single cell rotations. (E) The inverse curvature of the

cell trajectories as a function of the signaling radius. (F) Depending on whether a cell migrates along its long axis

(top) or short axis (bottom), it has to move a different projected contour length. If each protrusion takes roughly

the same amount of time, then migration along the long axis (top; cell has to move a smaller projected contour

length) allows for greater cell speeds than migration along the short axis (bottom; cell has to move a larger

projected contour length).
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Figure 4. Phases of collective motion. (4-cell systems; confinement radius r0 ¼ 30:6; area stiffness kA ¼ 0:18; average polarization field �0 ¼ 225;

signaling radius R ¼ 5; cytoskeletal update rate � ¼ 0:1; cell-cell adhesion B ¼ 0; cell-cell dissipation DB ¼ 12; cell-substrate dissipation D ¼ 0; cell-

substrate adhesion penalty ’ ¼ 0 (r<r0), ’ ! �¥ (r>r0); 100 independent simulations for each set of parameters). (A) Characteristic observables of

collective cell rotation at different values of the cell perimeter stiffness parameter kP: mean (hj!ji) and standard deviation (s!) of the magnitude of the

cell cluster’s angular velocity, and the standard deviation of the cell perimeter (sP). The statistics of collective cell motion depends only on the ratio of

maximum cell polarity, D�, to cell contractility, kP (specific polarizability). (B) Representative angular trajectories and (C) cell shapes (color code

represents cell polarization; cf. Figure 1C) for the different parameter regimes as described in the main text. The cellular dynamics in the different

parameter regimes are shown in Figure 4—video 1, Figure 4—video 2 and Figure 4—video 3.
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Figure 4—figure supplement 1. Collective motion for varying number of cells at low polarizability. (N-cell systems; confinement radius r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

234N
p

;

stiffness parameters kP ¼ 0:060, kA ¼ 0:18; average polarization field �0 ¼ 225; maximum cell polarity D� ¼ 28; signaling radius R ¼ 5; cytoskeletal

update rate � ¼ 0:1; cell-cell adhesion B ¼ 0; cell-cell dissipation DB ¼ 12; cell-substrate dissipation D ¼ 0; cell-substrate adhesion penalty ’ ¼ 0 (r<r0),

’ ! �¥ (r>r0); 100 independent simulations for each set of parameters). For this choice of parameters 4-cell populations rotate in the R1-phase. We

observe a similar behavior here: the cell clusters rotate slowly and reorient frequently. (A) Characteristic observables of collective cell rotation at

different values of the cell perimeter stiffness parameter kP: mean (hj!ji) and standard deviation (s!) of the angular velocity magnitude of cell motion,

and the standard deviation of the cell perimeter (sP). The black line corresponds to a power-law fit of the form j!jh i / N�k=2 / r�k
0

with the fitted

exponent k » 8=3. (B) Representative angular trajectories and (C) cell shapes (color code represents cell polarization; cf. Figure 1) for the different

parameter regimes as described in the main text. .
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Figure 4—figure supplement 2. Collective motion for varying number of cells at intermediate polarizability. (N-cell systems; confinement radius

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

234N
p

; stiffness parameters kP ¼ 0:060, kA ¼ 0:18; average polarization field �0 ¼ 225; maximum cell polarity D� ¼ 50; signaling radius R ¼ 5;

cytoskeletal update rate � ¼ 0:1; cell-cell adhesion B ¼ 0; cell-cell dissipation DB ¼ 12; cell-substrate dissipation D ¼ 0; cell-substrate adhesion penalty

’ ¼ 0 (r<r0), ’ ! �¥ (r>r0); 100 independent simulations for each set of parameters). For this choice of parameters 4-cell populations rotate in the R2-

phase. We observe a similar behavior here: highly correlated rotations with no changes in rotational direction. (A) Characteristic observables of

collective cell rotation at different values of the cell perimeter stiffness parameter kP: mean (hj!ji) and standard deviation (s!) of the angular velocity

magnitude of cell motion, and the standard deviation of the cell perimeter (sP). The black line corresponds to a power-law fit of the form

j!jh i / N�1=2 / r�1

0
. (B) Representative angular trajectories and (C) cell shapes (color code represents cell polarization; cf. Figure 1) for the different

parameter regimes as described in the main text. .
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Figure 4—figure supplement 3. Collective motion for varying number of cells at high polarizability. (N-cell systems; confinement radius r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

234N
p

;

stiffness parameters kP ¼ 0:060, kA ¼ 0:18; average polarization field �0 ¼ 225; maximum cell polarity D� ¼ 70; signaling radius R ¼ 5; cytoskeletal

update rate � ¼ 0:1; cell-cell adhesion B ¼ 0; cell-cell dissipation DB ¼ 12; cell-substrate dissipation D ¼ 0; cell-substrate adhesion penalty ’ ¼ 0 (r<r0),

’ ! �¥ (r>r0); 100 independent simulations for each set of parameters). For this choice of parameters 4-cell populations rotate in the R3-phase. We

observe a similar behavior here: highly correlated rotations. (A) Characteristic observables of collective cell rotation at different values of the cell

perimeter stiffness parameter kP: mean (hj!ji) and standard deviation (s!) of the angular velocity magnitude of cell motion, and the standard deviation

of the cell perimeter (sP). The black line corresponds to a power-law fit of the form j!jh i / N�1=2 / r�1

0
. (B) Representative angular trajectories and (C)

cell shapes (color code represents cell polarization; cf. Figure 1) for the different parameter regimes as described in the main text.
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Figure 5. Expansion of a confluent epithelial cell sheet after removal of boundaries positioned at x ¼ �175 for two different parameter settings.

(Stiffness parameters kP ¼ 0:12, kA ¼ 0:18; average polarization field �0 ¼ 35; signaling radius R ¼ 2; cytoskeletal update rate � ¼ 0:1; cell-cell

adhesion B ¼ 12; cell-cell dissipation DB ¼ 0; cell-substrate dissipation D ¼ 0; cell-substrate adhesion penalty ’ ¼ 0; 100 independent simulations for

each set of parameters). (A–D) Tissue expansion for a migration-dominated setup without explicit cell growth and mitosis. (3300-cell system; maximum

cell polarity D� ¼ 30). (E–H) Tissue expansion at low density and cell polarizability for a cell sheet comprised of dividing cells. (Initially a 2500-cell system;

maximum cell polarity D� ¼ 10; growth time Tg ¼ 180; division time Td ¼ 20; size threshold for cell growth AT ¼ 1Aref , where Aref is the size of a solitary

cell in equilibrium). (A, E) Snapshots of the polarization field �; cf. Figure 5—video 1 and Figure 5—video 2. (B, F) Kymographs showing the cell

density averaged over the y-direction and (top) final snapshots of the cell density profiles. (C, G) Kymographs showing the component sxx of the stress

tensor averaged over the y-direction and (top) final snapshots of the stress profiles. (D, H) Kymographs showing the component vx of the cell velocities

averaged over the y-direction and (top) final snapshot of the velocity profiles.
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Figure 5—figure supplement 1. Monolayer expansion depends on dissipation and cell polarizability. Cell

monolayer expansion depends on the cell-cell dissipation, cell-substrate dissipation, and maximum cell polarity.

(Initially a 2500-cell system; stiffness parameters kP ¼ 0:12, kA ¼ 0:18; average polarization field �0 ¼ 35; maximum

cell polarity D� ¼ 10; signalling radius R ¼ 2; cytoskeletal update rate � ¼ 0:1; cell-cell adhesion B ¼ 12; cell-

substrate adhesion penalty ’ ¼ 0; growth time Tg ¼ 180; division time Td ¼ 20; size threshold for cell growth

AT ¼ 1Aref , where Aref is the size of a solitary cell in equilibrium; 100 independent simulations for each set of

parameters). (A,B) Cell monolayer expansion depends on the cell-cell dissipation DB (maximum cell polarity

D� ¼ 10; cell-substrate dissipation D ¼ 0). (A) Maximal monolayer extension and roughness (we exclude an initial

time interval of 200 MCS because it takes at least that long for first daughter cells to appear). Inset: Relative

roughness of the spreading monolayer relative to its size. (B) Time traces for selected values of DB. (C,D) Cell

monolayer expansion depends on the cell-substrate dissipation D (maximum cell polarity D� ¼ 10; cell-cell

dissipation DB ¼ 0). (C) Maximal monolayer extension and roughness (we exclude an initial time interval of 200

MCS because it takes at least that long for first daughter cells to appear). (D) Time traces for selected values of D.

(E,F) Cell monolayer expansion depends on the maximum cell polarity D� (cell-cell dissipation DB ¼ 0; cell-

substrate dissipation D ¼ 0). (E) Maximal monolayer extension and roughness (we exclude an initial time interval of

200 MCS because it takes at least that long for first daughter cells to appear). (F) Time traces for selected values of

D�=kP. .
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Figure 6. Expansion of a confluent epithelial cell sheet after removal of boundaries positioned at x ¼ �175 for two

different parameter settings that produce rough tissue fronts. (Initially a 2500-cell system; stiffness parameters

kP ¼ 0:10, kA ¼ 0:18; average polarization field �0 ¼ 35; maximum cell polarity D� ¼ 20; signaling radius R ¼ 5;

cytoskeletal update rate � ¼ 0:1; cell-cell adhesion B ¼ 5; cell-cell dissipation DB ¼ 10; cell-substrate dissipation

D ¼ 0; cell-substrate adhesion penalty ’ ¼ 0; growth time Tg ¼ 180; division time Td ¼ 20; 100 independent

simulations for each set of parameters). (A–D) Tissue expansion at low density and cell polarizability for a cell sheet

comprised of quickly dividing cells. (Size threshold for cell growth AT ¼ 1:05Aref , where Aref is the size of a solitary

cell in equilibrium). (E–H) Tissue expansion at low density and cell polarizability for a cell sheet comprised of slowly

dividing cells. (Size threshold for cell growth AT ¼ 1:10Aref , where Aref is the size of a solitary cell in equilibrium).

(A, E) Snapshots of the polarization field �; cf. Figure 6—video 1 and Figure 6—video 2. (B, F) Kymographs

showing the cell density averaged over the y-direction and (top) final snapshots of the cell density profiles. (C, G)

Kymographs showing the component sxx of the stress tensor averaged over the y-direction and (top) final

snapshots of the stress profiles. (D, H) Kymographs showing the component vx of the cell velocities averaged over

the y-direction and (top) final snapshot of the velocity profiles.
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Appendix 1—figure 1. Illustration of the various sets defining a cell and its environment. Grid sites occupied by

cell a, i.e. its domain DðaÞ, are indicated in red colors. The cell’s membrane sites, BðaÞ, are indicated by the lighter

red color, the cell’s immediate neighborhood, N ðaÞ
, is indicated in gray. Elementary events involving cell a always

involve one grid site in BðaÞ and one grid site in N ðaÞ. For the hexagonal lattices used in this work, each grid site xk

is surrounded by 6 nearest neighbors which we collectively denote by N k .
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Appendix 1—figure 2. Distribution of regulatory factors on the basis of accepted elementary events. For ease of

reference, grid rows have been numbered from 1 to 10. Left (A): Solid black lines indicate cells’ membrane

positions after acceptance of the respective elementary event; colors indicate cellular domains before the

respective elementary event has been accepted (gray: substrate; shades of yellow: cells). Blue and red circular arcs

(of radius R) delineate areas of local increase or decrease in the level of regulatory factors, respectively. The

following elementary events are depicted: (i) lower cell retracts (two grid sites in row 2); (ii) lower cell protrudes

(row 5); (iii) upper cell protrudes (row 10). In addition, the following elementary events occur across the cell-cell

boundary: (iv) retraction of upper cell leads to rupture of cell-cell contacts (row 6, right event); (v) either the lower

cell protrudes and pushes the upper cell or the upper cell retracts and pulls on the lower cell (row 6, left event).

Specifically, event (v) entails mechanical signaling between the upper and lower cell and, therefore, affects the

distribution of regulatory factors in both cells. Right (B): Identical copy of the left image (A). Colors indicate local

levels of regulatory factors F (blue: F is positive; white: F is zero; red: F is negative; gray: substrate site). Note,

in particular, that a substrate grid site has been inserted where cell rupture occurred (row 6, right grid site). The

following cases can be distinguished: (i) Grid site xk lies in the zone of influence of only positive (blue circles) or

negative (red circles) chemical feedback, in which case the level of regulatory factors is positive or negative,

respectively (e.g. red grid sites in row 2, or blue grid sites in row 5). (ii) Grid site xk lies outside of any zone of

influence, in which case the level regulatory factors is zero (e.g. white grid sites in row 2). (iii) Grid site xk lies in the

zone of influence of equally many positive and negative feedbacks, in which case the level of regulatory factors

remains zero (e.g. fourth grid site in row 4). (iv) Grid site xk lies in a zone of predominantly positive or negative

feedback, in which case the level of regulatory factors is positive or negative, respectively (e.g. third grid site in

row 4). Recall that only the sign of F is of significance to update the cells’ polarization field; cf. Equation S13.
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Appendix 1—figure 3. Cell-cell adhesion. (A) Adhesive energy contribution in a cyclic process, where a

protrusion of source cell a against target cell b is followed by the inverse retraction event. Both events involve a

third party cell g, leading to net energy dissipation after the cyclic process has been completed. Protrusion: (i)

Three pre-existing cell-cell contacts between b and g are torn apart (red dashed contacts); (ii) three new contacts

between a and g are formed; (iii) the contact length between source cell a and target cell b increases by one unit

of length. This implies DHadhðT proÞ ¼ ‘ ð3B0
b;g � 3Ba;g � Ba;bÞ. Retraction: (i) Three pre-existing cell-cell contacts

between a and g are torn apart (red dashed contacts); (ii) three new contacts between b and g are formed; (iii) the

contact length between source cell a and target cell b decreases by one unit of length. This implies

DHadhðT retÞ ¼ ‘ ð3B0
a;g � 3Bb;g þ Ba;bÞ. Altogether, this leads to

DHðcyclÞ
adh ¼ DHadhðT proÞ þ DHadhðT retÞ ¼ ‘ ð3ðDBÞa;g þ 3ðDBÞb;gÞ � 0, i.e. a (non-negative) dissipative contribution,

whose magnitude depends on the dissipation matrix ðDBÞa;b ¼ B0
a;b � Ba;b � 0. (B) Shear viscosity due to cell-cell

adhesion. Consider two rows of adhesive cells sliding past each other as indicated in the figure (left row of cells

moves up by one grid site; colors indicate different cells). The associated adhesion energy change (per cell) reads

DHadh=nc ¼ 2 ðB0 � BÞ � 0, where nc denotes the number of cells sliding past each other, and where we assumed

cells of like type, i.e. Ba;b � B and B0
a;b � B0 (a 6¼ b). The condition B0>B, Equation S15e, thus implies positive

friction associated with cellular shear flows, whose magnitude is proportional to the number of cells sliding past

each other. Note that this shear viscosity vanishes for B0 ¼ B, i.e. for zero dissipation matrix.
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Appendix 2—figure 1. Role of area stiffness kA for cell size and motility. (A) The cell area increases linearly with

1=kA. The aspect ratio (B), speed (C) and persistence (D) of the cell decrease with increasing cell size. In the

simulations, the area elasticity was varied in the interval kA 2 ½0:09; 0:18�, and the membrane elasticity was chosen

from kP 2 f0:054; 0:057; 0:060; 0:063; 0:066g. Fixed parameters: average cell polarization field �0 ¼ 225; maximum

cell polarity D� ¼ 50; signaling radius R ¼ 5; cytoskeletal update rate � ¼ 0:1; cell-substrate dissipation D ¼ 0; cell-

substrate adhesion penalty ’ ¼ 0.
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III.2 Cell Migration and Shape in Soft
Environments

In Section III.1 “Collective Cell Dynamics in Rigid Environments”, we have de-
veloped a Cellular Potts model that describes the migration of cells. So far, we
have assumed that the substrate on which the cells migrate is rigid (that is, not
deformable). Now, we relax this assumption, while building on the discussion in
Section III.1 “Collective Cell Dynamics in Rigid Environments”. To that end, we
further generalize the discrete Cellular Potts model (Graner and Glazier, 1992;
Segerer et al., 2015; F. Thüroff et al., 2019), now aimed at describing the migra-
tion of polar cells in soft environments. We refer to pages 273–285 for a preprint
of the main text and to pages 287–324 for the Supplementary Material. The fol-
lowing serves as an introduction into the project and a summary of its main
results, for the convenience of the reader.

Anote about the notation. To be consistent with the rest of the thesis, we de-
note themechanical rigidity coefficients with 𝑘 instead of 𝜅, because the latter is
reserved for curvatures in this thesis. We use𝐺 for the shear modulus instead of
𝜇, because the latter is reserved for chemical potentials in this thesis. We denote
the cytoskeletal update rate with 𝑟𝜖 instead of 𝜇, because the latter is reserved for
chemical potentials in this thesis. To be consistent with the rest of the thesis, we
denote the traction forces with 𝒇tr instead of 𝑻. Finally, as in Section III.1 “Col-
lective Cell Dynamics in Rigid Environments”, we discuss our model in terms
of the Helmholtz free energy of a spatially extended cell.

III.2.1 Starting Point of the Project
General Scope and Relevance. As we have discussed in Section III.1 “Collec-
tive Cell Dynamics in Rigid Environments”, cell migration plays a crucial role
formany processes that occur in development, homeostasis and disease. To pro-
pel themselves, cells make use of their cytoskeleton, a complex machinery that
converts biochemical fuel into mechanical work. This mechanical work shows
itself not only in the form of visible propulsion, but also via measurable trac-
tion forces (Schwarz and Soiné, 2015) that indicate how cells actively pull on
their surroundings (Schwarz and S. A. Safran, 2013). In turn, cells also detect
mechanical signals from their environment, by making use of mechanochem-
ical connectors such as integrins (Charras and Sahai, 2014; De Pascalis and
Etienne-Manneville, 2017; VanHelvert et al., 2018), linked to different biochem-
ical regulatory networks (Lauffenburger and Horwitz, 1996; Schwartz and Shat-
til, 2000; Parsons et al., 2010; Ridley, 2001; Ridley et al., 2003; Ridley, 2015;
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Hodge and Ridley, 2016; Lawson and Ridley, 2018). Examples of mechanical
signals that cells respond to include not only external stresses applied via the
environment (Bischofs and Schwarz, 2003; Rens and R. M. H. Merks, 2017), but
also cellular sensing of the environment’s mechanical properties (Lo et al., 2000;
Isenberg et al., 2009; Zemel et al., 2010a; Zemel et al., 2010b; Vincent et al., 2013;
Sunyer et al., 2016; Hadden et al., 2017; Lachowski et al., 2017; Hakim and Sil-
berzan, 2017). This directly brings us to our research question.

Research Question and Hypothesis. How do the mechanical properties of a
soft deformable substrate alter cell behavior? One possibility for cells to sense
their environment is on the microscopic level of focal adhesions, through load-
dependent binding and unbinding of integrins, and molecular clutch mecha-
nisms (Mitchison and Kirschner, 1988; Chan and Odde, 2008; Elosegui-Artola,
Bazellières, et al., 2014; Elosegui-Artola, Oria, et al., 2016; Sunyer et al., 2016;
Bennett et al., 2018; Sens, 2020), and also reinforcement of adhesions in re-
sponse to stress (Bershadsky et al., 2006). Here, however, we focus on purely
mesoscopic and evenmore generic effects, without a need to go intomicroscopic
details. In particular, we invoke purely geometric effects, as described in Sec-
tion I.3 “A Foundation for Patterns in Adapting Organisms”, which are themost
basic and inescapable type of interaction. Cells pull on the substrate that they
adhere to, and thereby induce strains. To do so, the cell cytoskeleton must also
be coupled to the substrate through adhesions. The resulting strains imply a
change of integrin density on the cell side and a change of fibronectin density
on the substrate side. We hypothesize that these basic effects are sufficient for a
rudimentary form of cellular substrate sensing.

III.2.2 Technical Summary
Traction force generation. In our model, the cellular dynamics are driven by
(i) two competing contributions that we encapsulate into an effective free en-
ergy functional, and (ii) one out-of-equilibrium reaction. The first contribution
to the free energy functional, 𝐹el, see Equation (III.1), favors the rounding up
of a cell into a spherical shape due to homogeneous actomyosin contractility,
thereby detaching the cell from the substrate. This is counteracted by the sec-
ond contribution to the free energy functional, 𝐹ad, see Equation (III.6), which
represents (i) an effective adhesion energy between the cell and the substrate,
as well as (ii) the ability of the cell to generate active stresses. We have to distin-
guish between these two contributions when we determine substrate deforma-
tions, lest a cell will exert no traction after reaching stationary state (mechanical
equilibrium) as in (Rens and Edelstein-Keshet, 2019).
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no traction

𝛿𝐹𝑒𝑙
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Figure III.1: Contributions of different intracellular processes to traction force
generation. a) Detachment of cells from the substrate, in the absence of adhe-
sions or friction, does not lead to traction forces. b) Actin polymerization in-
duces pushing forces on the membrane, while actomyosin contractility pulls
the actin filaments into the cell body (retrograde flow). Both processes induce
traction forces, transmitted to the substrate via integrin molecules. c) Loco-
motion due to gradients in adhesion strength alone also leads to effective trac-
tion forces. By virtue of Onsager’s theory (Balian, 2007), cellular adhesions
pull the substrate towards the cell.

Now, suppose that the cell makes an attempt to extend a protrusion from po-
sition 𝒙 to a new position 𝒙 + 𝛿𝒙, or to do the opposite process of a retraction
from 𝒙 + 𝛿𝒙 to 𝒙. While doing so, the cell will perform a total work of

𝛿𝑊 = −𝛿𝐹 = −𝛿𝐹el − 𝛿𝐹ad . (III.11)

We now discuss how the two contributions to the total work enter the traction
forces that the cell exerts on the substrate. The first term, −𝛿𝐹el, corresponds to
the work performed by cell elasticity and homogeneous cell contractility, ulti-
mately driving cell detachment from the substrate. These processes occur even
in total absence of a coupling to the substrate, when there is neither friction
nor adhesion. Therefore, the term −𝛿𝐹el does not contribute to the traction that
the cell exerts on the substrate (Fig. III.1a). The situation is completely differ-
ent for the second term, −𝛿𝐹ad, which models the presence of adhesions. Then,
as the cytoskeleton exerts pushing forces on the membrane due to actin poly-
merization and is pulled back by actomyosin contractility (Pollard and Borisy,
2003; Mogilner, 2009; Mogilner and Keren, 2009; Murrell et al., 2015), adhe-
sions transmit these forces to the substrate as traction (Fig. III.1b). An anal-
ogous situation occurs if we leave aside all of these cytoskeletal processes and
only consider an effective substrate adhesion, such as in our model. Then, the
cell is effectively pulled outwards by the gradient in adhesiveness (which is a
chemical potential), and conversely the substrate is pulled inwards (Fig. III.1c).
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Taking all of these arguments together, the traction forces that our in silico cell
exerts during a single protrusion or retraction are given by

𝒇tr = − |𝛿𝐹ad|‖𝛿𝒙‖2 𝛿𝒙 . (III.12)

Next, we describe how the traction forces that arise from many protrusions and
retractions induce deformations of the substrate.

Substrate deformation. Wemodel the deformable substrate as a bead-spring
network, where the beads represent the locations 𝒙𝑖 where a cell can adhere.
We denote the deflection of each bead from its initial position with 𝒖𝑖. Each
bead is connected to its neighbors, 𝒙𝑗 ∈ 𝒩𝑖, via springs with stiffness 𝑘. Fur-
thermore, each bead experiences a viscous friction 𝜁 when it is dragged through
the embedding fluid. We consider two model networks, an “overstretched” net-
work with a Poisson ratio of 𝜈2𝐷 = −1 and an “understretched” network with a
Poisson ratio of 𝜈2𝐷 = 1/3. In our “overstretched” network, the dynamics of the
beads are determined by the following force-balance equation:

𝜁 𝜕𝑡𝒙𝑖 = 𝒇tr + 𝑘 ∑
𝒙𝑗∈𝒩𝑖

[𝒙𝑗 − 𝒙𝑖] , (III.13a)

which corresponds to a network of loaded springs. In this “overstretched” case,
our bead-spring network approximates a homogeneous two-dimensional elastic
medium with elastic shear modulus 𝐺 = √3𝑘. In our “understretched” net-
work, the dynamics of the beads are determined by the following force-balance
equation:

𝜁 𝜕𝑡𝒙𝑖 = 𝒇tr + 𝑘 ∑
𝒙𝑗∈𝒩𝑖

[ ̂𝒆𝑖𝑗 ⋅ (𝒖𝑗 − 𝒖𝑖)] ̂𝒆𝑖𝑗 , (III.13b)

which corresponds to a network of linearized springs with small deflec-
tions (Yucht et al., 2013). Here, ̂𝒆𝑖𝑗 is the unit vector that points from the bead
at position 𝒙𝑖 to the bead at position 𝒙𝑗 . In this “understretched” case, our
bead-spring network approximates a homogeneous two-dimensional elastic
medium with elastic shear modulus 𝐺 = (√3/4) 𝑘. For both substrate models,
we observe almost identical cell behavior, which underlines the robustness of
the geometric effects that we study.
Finally, note that our model is agnostic as to whether we describe a migrating

cell or the motion of an active droplet on an elastic surface. Within our frame-
work, both descriptions are fully analogous (Fig. III.1b,c).

Cellular sensing of substrate deformations. In ourmodel, a cell can directly
sense substrate deformations via changes in the effective surface density of sub-
strate adhesions, 𝜌(𝒙), by virtue of Eq. (III.6).
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𝑘=125 𝑘=150 𝑘=200 𝑘=300

Figure III.2: Cells form networks when placed on a compliant substrate. Model
parameters: 1000 cells; average cell polarization field 𝜖0 = 75; cell polariz-
ability Δ𝜖 = 25, signaling radius 𝑅 = 5; cytoskeletal update rate 𝑟𝜖 = 0.1; cell
stiffness parameters 𝑘𝐴 = 0.2 and 𝑘𝑃 = 0.15; effective temperature 𝑘B𝑇 = 10;
substrate viscous friction 𝜁 = 500; substrate stiffness as indicated above the
snapshots. Substrate modeled as “understretched” network.

III.2.3 Summary of theMain Results
From migrating force monopoles to isotropic force dipoles to anisotropic
force dipoles. Depending on the mechanical properties of the substrate, we
find that a cell behaves more like a persistently migrating force monopole, a
self-trapping isotropic force dipole, or an elongating anisotropic force dipole.
In particular, a cell behaves like a migrating force monopole on very stiff or
very viscous substrates. In contrast, on soft substrates that deform quickly com-
pared to the cell dynamics, we find that the cell traps itself by creating an island
of high substrate density and, therefore, high adhesiveness. In that case, the
cell rounds up and behaves like an isotropic force dipole. When we further re-
duce substrate stiffness, the cell elongates drastically and therefore resembles an
anisotropic force dipole. These qualitative differences in phenomenology arise
purely as a consequence of mechanical interactions and geometric effects, and
do not rely on a control of gene expression or metabolism through extracellular
matrix rigidity (Bissell and Barcellos-Hoff, 1987; C. M. Nelson and Bissell, 2006;
Ge et al., 2021; Pandamooz et al., 2020; Jang et al., 2021).

Addendum: Formation of cellular networks. In our model, cells induce
substrate deformations and at the same time also detect these substrate defor-
mations. This suggests that cells can engage in long-ranged mechanical com-
munication through the elastic substrate (Reinhart-King et al., 2008; Winer et
al., 2009; Sopher et al., 2018; van Oers et al., 2014). Therefore, we test if and how
cells will self-organize through such long-ranged communication. We find that
cells form networks when placed on soft substrates, where each cell behaves
like an anisotropic force dipole (Fig. III.2). These networks resemble the for-
mation of vasculature in vitro during angiogenesis, in so-called tube-formation
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assays (Vailhé et al., 2001). Interestingly, tube formation was shown to strongly
depend on the mechanical properties of the substrate (Saunders and Hammer,
2010; Rüdiger et al., 2020), which is consistentwith substrate-mediatedmechan-
ical interactions.
Our in silico results can be explained as follows. Because the cells behave

like anisotropic force dipoles, they will align with external tensile stress fields,
which includes the stress generated by other cells (Bischofs and Schwarz, 2003;
Bischofs, S. A. Safran, et al., 2004). Therefore, many such anisotropic force
dipoles will typically align into stringlike structures (Bischofs and Schwarz,
2003; Bischofs, S. A. Safran, et al., 2004), and can also form ringlike struc-
tures (Bischofs and Schwarz, 2006). In our two-dimensional geometry, we
hypothesize that this effect, together with cell elongation, leads to cell networks.

Model limitations. The same limitations as in Section III.1 “Collective Cell
Dynamics in Rigid Environments” apply. In addition, one should be wary of
mesh deterioration as a consequence of very low substrate stiffness or very large
traction stresses, which can show itself via inverted mesh tiles.
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Recent experiments suggest that the interplay between cells and the mechanics of their environ-
ment gives rise to a diversity of morphological and migrational phenotypes. Here, we develop a
cellular Potts model of polarizing cells that migrate on a two-dimensional viscoelastic substrate. To
constrain the model parameters and test our predictions, we compare our model with experiments on
endothelial cells plated on polyacrylamide hydrogels. Our analysis reveals that the morphology and
motility of cells may be determined by an intricate interplay between asymmetric cellular traction
forces (polarization) and the resulting substrate deformation gradients. Specifically, as the surface
density field of adhesive ligands transforms in an affine manner with the substrate, we predict that
cells perform self-haptotaxis by following ligand density gradients.

Cells possess an intricate mechanochemical machin-
ery that allows them to survey their surroundings. Spe-
cific biomolecules, so-called integrins, form adhesion com-
plexes that serve as an interface between the intracellular
actomyosin cytoskeleton and the extracellular matrix [1–
3]. These adhesion complexes act as multipurpose tools
by transmitting cytoskeletal forces to the extracellular
matrix in the form of traction. Furthermore, adhesion
complexes enable the cell to detect and react to extra-
cellular stimuli [4, 5], triggering intracellular signaling
cascades that coordinate the organization of the acto-
myosin cytoskeleton [6–8]. By using these mechanisms
in concert, cells can sense and migrate in response to
the mechanical properties of the substrate to which they
adhere [9–16]. Interestingly, the response of a cell to me-
chanical signals depends on the composition of the adhe-
sion complexes and the substrate [17, 18]. Furthermore,
when varying the mechanical properties of the substrate
like its rigidity, different cell types show qualitatively dis-
tinct morphological and motile responses, as summarized
in Table I. Most cells increase their persistence time of
directed migration on stiffer substrates [19–22]. How-
ever, it seems that no such universal relationship exists
for the cell speed. While some cells move faster on stiffer
substrates [14, 19, 22–25], other cells show the opposing
behavior and move slower [9, 20, 22, 26–28]. Even for a
single cell type, the qualitative trend of the cell speed as
a function of substrate stiffness may depend on the coat-
ing of the substrate [22]. Thus, it seems that the concept
of a universal coupling between cell speed and persis-
tence [29], successful in many different settings, ceases to
hold in the context of varying substrate rigidity. What
then are the common physical principles that lead to such
diverse cell behaviors?

There is a broad range of different theoretical models
that have led to important advances in understanding cell
migration and traction force generation [16]. Particle-

based approaches [30–38] are often successfully applied
to single and collective cell motion, but are incapable of
describing cell shape. To then model the spatiotempo-
ral dynamics of both cell shape and migration, there are
two different approaches. Phase-field models [39–44], for
one, consider each cell as a smooth field with a diffuse
interface, whose deterministic behavior is determined by
a set of partial differential equations. In contrast, cellu-
lar Potts models (CPMs) treat each cell as a discrete set
of points [45–56], where the stochastic cell dynamics are
determined by a Monte Carlo scheme. On a conceptual
level, both approaches can be understood as a description
of the active wetting dynamics of droplets that move on
a flat surface. We exploit this analogy between cells and
liquid droplets to formulate a theoretical model [Fig. 2A].
Of note, a recent phase-field model has explicitly studied
the wetting dynamics of a vertical cell cross-section [57].
In contrast, we focus on the horizontal contact area be-
tween a cell and the substrate that it adheres to.

Here, we study the spatiotemporal dynamics of ac-
tively polarizing cells, which adhere to flat viscoelastic
substrates of varying mechanical properties [Fig. 2A].
To that end, we build on a recent generalization of the
CPM that permits computationally efficient simulations
of both single cells and large cell collectives [51, 54]. We
complete the CPM [51, 54] by also accounting for the
dynamics of the viscoelastic substrate to which the cells
adhere. To constrain the model parameters, we use ex-
perimental measurements on human umbilical vein en-
dothelial cells (HUVECs) plated on polyacrylamide gels.
Our combined experimental and theoretical investiga-
tions suggest a minimal description of the cellular re-
sponse to the physical properties of the substrate. Specif-
ically, our model builds on a simple premise: (i) cellular
traction forces induce strains, and (ii) strains are equiva-
lent to changing the distance between material points. If
a cell then migrates on the surface of an elastic medium,
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TABLE I. An increase of substrate stiffness is accompanied by the following qualitative trends in cell migratory response (speed,
persistence time of directed migration) and shape (aspect ratio).

Cell type Cell line Substrate, coating Speed Persistence Aspect ratio Source

Time Length

glioma U373-MG, U87-MG, U251-MG,
SNB19, C6

PA, fibronectin ↗ — — ↗ [23]

glioblastoma JK2, WK1, RN1, PR1 PA, matrigel/laminin ↗ — — ↗ [24]
SJH1 PA, matrigel/laminin → — — → [24]

hASCs — PA, fibronectin ↗ — — ↗ [14]
fish keratocytes — PA & PDMS, fibronectin ↗ → ↗ ↗ [25]
BALB/c fibroblasts — PA, n.a. ↗ ↗ — — [19]
MSCs — PA, collagen → ↗ — — [21]
VSMCs — PA, fibronectin ↗ ↗ — — [22]

neutrophils — PA, fibronectin ↘ ↗ — — [20]
AHD fibroblasts — PEG-based, fibronectin ↘ — — — [27]
3T3 fibroblasts — PA, collagen ↘ — — — [9]
3T3 fibroblasts — PA, collagen ↘ — — ↘ [26]
rat fibroblasts REF52 WT PEG-based,

fibronectin/vitronectin
↘ — ↗ → [28]

VSMCs — PA, collagen ↘ ↗ — — [22]

Glossary. hASCs: human adipose derived stem cells. MSCs: mesenchymal stem cells. VSMCs: vascular smooth muscle
cells. AHD fibroblasts: adult human dermal fibroblasts. PA: polyacrylamide. PEG: polyethylene glycol. PDMS:

polydimethylsiloxane

or in a dilute compressible matrix, then cellular traction
forces will locally change the density of the substrate that
the cell can adhere to. Therefore, cells generate sub-
strate density gradients, which guide shape changes and
cell migration (self-haptotaxis). This interaction with the
substrate can in turn interfere with, and even override,
internal feedback mechanisms that would under normal
circumstances lead to cell polarization. These are generic
geometric effects, and therefore do not depend on specific
micromechanical mechanisms, such as a force-dependent
(un)binding of adhesions or adhesion maturation.

RESULTS

Experimental observations

We started our investigation with several sets of exper-
iments on human umbilical vein endothelial cells (HU-
VECs) and human foreskin fibroblasts (HFFs). All cells
were plated on collagen-coated polyacrylamide gels, and
analyzed as described in the Methods. Depending on the
substrate stiffness, we observed distinct spatiotemporal
cell dynamics. The behavior of HUVECs can be roughly
grouped into three qualitative phenotypes [Fig. 1E, Sup-
plemental Video 1]. At very low values of substrate stiff-
ness, HUVECs elongate (that is, have a large aspect ra-
tio) and do not form lamellipodia. In that case, HUVECs
locally move at some slow speed in random directions but
typically remain localized within a certain substrate area,
without showing persistent motion. We refer to this phe-
notype as elongation. As one increases substrate stiffness,
HUVECs first round up and increase their local speed,

but still remain localized, which we refer to as rounding.
Only when further increasing substrate stiffness, do HU-
VECs begin to show persistent cell migration with forma-
tion of lamellipodia, which we refer to as running. Such
migratory behavior can be described as a persistent ran-
dom walk with ballistic motion on short timescales and
diffusive motion on long timescales. In our experiments,
we determined the persistence time of directed migra-
tion through an exponential fit of the normalized veloc-
ity autocorrelation function. Since the normalized veloc-
ity autocorrelation function decayed quickly, the persis-
tence time of directed migration was mostly determined
by the first 1–2 video frames. In line with our quali-
tative observations, we typically measured a larger per-
sistence time of directed migration and also a larger cell
speed on stiffer substrates [Fig. 1B,C]. Furthermore, HU-
VECs were typically elongated for small substrate stiff-
ness, E < 1 kPa, were typically round for E ∼ 2 kPa,
and then elongated with increasing substrate stiffness for
E > 2 kPa [Fig. 1A].

The behavior of HFFs is quite different. HFFs have
trouble spreading on our softest substrates, leading to a
small aspect ratio [Fig. 1A] and low motility [Fig. 1B,C].
Therefore, unlike HUVECs, HFFs do not elongate on
very soft substrates, likely because they cannot adhere
there. Above a substrate stiffness of E > 0.5 kPa, we
find that with increasing substrate stiffness HFFs become
more elongated [Fig. 1A] and also exhibit a higher per-
sistence time of directed migration [Fig. 1C]. However,
in contrast to HUVECs, HFFs also become slower with
increasing substrate stiffness [Fig. 1B]. These differences
between HUVECs and HFFs are in good agreement with
previous literature, as summarized in Table I and dis-
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FIG. 1. Cell dynamics in our experiments. Depending on substrate stiffness, HUVECs show distinct behaviors, as shown
in E : elongation, rounding, and running. (A) Wild-type HUVECs show the highest aspect ratio at very small substrate rigidity,
indicating strong cell elongation. On substrates with intermediate rigidity, the wild-type HUVECs first round up, as shown by
the minimum in aspect ratio. Then, as one further increases substrate stiffness, the wild-type HUVECs elongate again. For the
HUVECs with labeled cell cores, this behavior is less clear. In contrast, HFFs elongate on the stiffest substrates, but remain
round on soft substrates, likely because they cannot adhere there. Plot points correspond to mean values, with the error bars
showing the respective error of the mean. Dashed lines are a guide to the eye. (B) Both wild-type and labeled HUVECs move
faster on stiffer substrates than on soft substrates. Interestingly, labeled HUVECs are much slower than wild-type HUVECs,
indicating some level of phototoxicity; we excluded a dataset with shorter measurement intervals because the cells did not spread
at all. In contrast, HFFs exhibit their highest motility at intermediate values of substrate stiffness. Plot points correspond to
mean values, with the error bars showing the respective error of the mean. Dashed lines are a guide to the eye. (C) All cell types
(wild-type HUVECs, stained HUVECs and stained HFFs) show a higher persistence time of directed migration when plated
on stiffer substrates. Plot points correspond to mean values, with the error bars showing the respective error of the mean.
Dashed lines are a guide to the eye. (D) Because we perform averages over a very heterogeneous cell population, the standard
deviation of the measurements is large. For both cell aspect ratio and cell speed, the standard deviation of the measurements
correlates with the mean values and has similar magnitude. (E) Snapshots of wild-type HUVECs on a very soft substrate with
E = 0.2 kPa, an intermediate substrate with E = 2 kPa and a stiff substrate with E = 34 kPa. On the left side, we show an
example of our manual tracking procedure. On the right side, we show the same cells but this time outlined with our automatic
tracking procedure.

cussed in the introduction. Then, what could be the
physical basis of these different observations?

In principle, because HUVECs and HFFs are different
cell types, their disparate behavior could have its root
in the intrinsic organization and regulation of their cy-
toskeleton. Here, however, our goal is not to describe
the cell cytoskeleton and its regulation in full detail, in-
cluding anisotropy on the microscopic level such as stress
fibers. Instead, we map the process of cell migration to
a surrogate problem: the wetting of elastic surfaces by
active droplets. In doing so, we hope to uncover generic
physical concepts that apply to vastly different model
systems.

THEORETICAL MODEL

Generalized CPM

In the following, we take a reductionist theoretical ap-
proach to rationalize the diverse cell behaviors as a func-
tion of substrate stiffness. We only invoke basic phys-

ical concepts that should remain valid when increasing
model complexity. To that end, we build on and extend
a recently introduced generalization of the CPM [51, 54].
In this section, we first discuss the generic physical con-
cepts that underlie the generalized CPM and allow it
to successfully reproduce cellular behavior on rigid sur-
faces [51, 54, 56]. For a more detailed description, we
refer to Ref. [54] and to Appendix A of the Supplemen-
tary Material. Then, in the next section, we complete
the description by adding as a new feature the viscoelas-
tic coupling between the cellular dynamics and substrate
deformations. As we will discuss, the central point of our
approach relies only on affine deformations of the geom-
etry due to cellular traction forces.

From a geometrical perspective, we are interested in
the spatiotemporal evolution of the contact area between
a three-dimensional cell and a two-dimensional substrate
[Fig. 2A]. We describe the spreading area (domain) of a
cell as a simply connected set D of substrate adhesions
sites, which the cell can form at discrete positions xi(t).
Each adhesion site is associated with a hexagonal tile
of area a(xi, t) whose reference configuration is defined
by a honeycomb tessellation of the substrate [Fig. 2B].
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Through affine deformations of the viscoelastic substrate,
the individual positions of adhesion sites as well as the
size and shape of the corresponding hexagonal tiles can
change over time t. In analogy to the wetting behavior of
active droplets, we interpret the locomotion and morpho-
logical dynamics of a cell as a competition between the
formation of new adhesion sites (cell protrusion, droplet
wetting) and the loss of adhesion (cell retraction, droplet
dewetting). The morphology of a cell is then character-
ized by its spreading area A(t), perimeter P (t) and by
the second moment of the spatial distribution of its ad-
hesion sites (i.e., its aspect ratio). Similar to the original
CPM [45], we assume that the shape of a cell is con-
strained by the elastic energy

Hcont = κAA
2(t) + κPP

2(t) , (1)

with two stiffness parameters κA and κP . The elastic
energy, Hcont, models cell membrane and cortex contrac-
tility, which in the absence of adhesion sites leads to cell
rounding and detachment from the substrate (analogous
to the dewetting behavior of a droplet). These tensile
forces are counteracted by focal adhesion sites, where in-
tegrins link the cell cytoskeleton with the substrate, and
by the outwardly directed forces that polymerizing cy-
toskeletal structures generate [58, 59]. In our model, we
collect these contributions into a single spatially resolved
polarization field, ε(xi, t)∈ [ε0 − ∆ε/2, ε0 + ∆ε/2]. Note
that by choosing a scalar field, we assume that the cy-
toskeleton of the cell is locally isotropic. In analogy to
the wetting behavior of active droplets, one can then in-
terpret the polarization field as an effective local adhesion
energy, with a total energetic contribution of [51, 54]:

Hcyto = −
∑
xi

ε(xi, t) . (2)

The total energy that is associated with the configuration
of the cell, H=Hcont+Hcyto, is gradually minimized by
a Monte Carlo update scheme as a proxy for the cellular
dynamics.

The cell is then driven out of equilibrium by locally up-
or down-regulating the polarization field [51, 54]. The dy-
namics of the polarization field emulate the (dis)assembly
of cytoskeletal structures via intracellular signaling cas-
cades [6–8]. These signaling cascades involve regulatory
cytoskeletal proteins that confer to the cell an ability
to respond to extracellular stimuli [60, 61]. In the gen-
eralized CPM, these complex biochemical processes are
accounted for in a simplified way via a nonlinear update
rule with rate constant µ [51, 54]:

∂tε(xi, t) = µ

[(
ε0 +

∆ε

2
sgnm(xi)

)
− ε(xi, t)

]
, (3)

where m(xi) is a bookkeeping field that tracks whether a
given adhesion site received more stimuli from retraction
or from protrusion events within a signaling radius R.
Thus, the generalized CPM contains two prototypic feed-
back loops, where high (low) values of the polarization
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FIG. 2. Sketch of the computational model. The sub-
strate is represented by beads at node positions xi, each con-
nected to six nearest neighbors xj ∈Ni via springs. A cell,
with domain D, is comprised of a set of hexagons with respec-
tive areas a(xi, t) and local polarization field ε(xi, t)∈ [ε0 −
∆ε/2, ε0+∆ε/2] (color scale). As the cell exerts traction forces
T on the beads, it compresses the substrate beneath, while
stretching the surrounding substrate. The cell protrudes or
retracts over an effective distance ‖∆x‖ along the distance
vector ±∆x, where ∆x = xj−xi.

field favor protrusions (retractions), which in turn lead
to a further increase (decrease) of the polarization field
in the vicinity [51, 54]. Returning to our active droplet
analogy, Eq. (3) represents a conversion between molec-
ular species that have different affinity for the surface,
thereby providing the “fuel” necessary for active motion.

Cell-substrate coupling

Having discussed how the extended CPM emulates per-
tinent features of cellular dynamics [51, 54] and active
droplets alike, we next turn towards the link between cell
activity and substrate deformations. On the level of fo-
cal adhesions, cells can sense their environment via load-
dependent binding and unbinding of integrins, which
has led to a number of models based on the molecular
clutch mechanism [13, 17, 62, 63]. In the present study,
however, we do not explicitly invoke the load-dependent
(un)binding of integrins. Instead, we investigate the im-
plications of purely geometric effects, which occur due to
deformations on the cell scale, for the cellular dynamics.
To that end, we exploit the analogy between the gener-
alized CPM [51, 54] and the wetting dynamics of active
droplets, by interpreting the polarization field ε(xi, t) as
an effective adhesion energy at discrete adhesion sites.
We assume that the time-dependent position of each ad-
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hesion site, xi(t), is intrinsically coupled to the displace-
ment of the substrate. Therefore, the hexagonal tile that
corresponds to an adhesion site deforms in an affine way
with the substrate [Fig. 2B]. Meanwhile, the effective ad-
hesion energy in the co-moving frame of the adhesion site
is only regulated by the nonlinear feedback loop, Eq. (3).
In the continuum limit, the total effective adhesion en-
ergy can then be rewritten as a surface integral over the
domain D of the cell:

Hcyto = −
∫
D
d2x ε(x, t) ρ(x, t) , (4)

where ρ(x, t) = 1/a(x, t) represents the local surface den-
sity of the substrate. In the context of the general-
ized CPM, one can understand Eq. (4) as the ability
of a cell to exert isotropic stresses per set amount of
integrin times the local integrin density. Specifically,
ρ(x, t)/ρ0 = a0/a(x, t) measures the compression or di-
latation of a hexagonal tile with respect to its reference
configuration a0, and thus the relative change of inte-
grin density. Thus, in our model the cell follows gradi-
ents of an effective chemical potential, which results in
an effective motile force density ∇[ε(x, t) ρ(x, t)]. This
mechanism is conceptually similar to haptotaxis, where
a cell is expected to follow externally imposed gradients
of adhesiveness [64].

Traction force generation

In our model, we consider purely contractile contribu-
tions that homogeneously favor cell detachment from the
substrate, Eq. (1), and the counteracting heterogeneously
distributed effective adhesion energy, Eq. (2). These two
contributions have to be treated separately when deter-
mining the corresponding traction forces that the cell ex-
erts on the substrate. An attempt of the cell to protrude
along the distance vector +∆x [Fig. 2B], or to retract
along the distance vector −∆x, corresponds to the vir-
tual work −∆H= −∆Hcont−∆Hcyto that is required to
change the cell configuration. From the individual contri-
butions to this virtual work, we determine the effective
forces that act on the cell boundary, and then connect
them to the traction forces that the cell exerts on the
substrate.

The virtual work that is associated with contractility of
the cell, −∆Hcont, is performed by the cytoskeleton even
in the absence of adhesions, when there is pure slip be-
tween cell and substrate. Assuming frictionless slip, the
corresponding traction forces should, on average, vanish.
In our model, we implement this by balancing the effec-
tive contractile force that acts on a membrane segment,
Fcont, with traction forces that are homogeneously dis-
tributed across the whole cell spreading area. In other
words, we assume that the cytoskeleton facilitates con-
tractility by transmitting forces instantaneously through-
out the cell [65]. Since there is no spatial heterogeneity

of cell contractility in our model, Eq. (1), the total con-
tractile force integrated over the cell boundary is zero.
Therefore, the traction forces that are associated with
cell detachment vanish on average,

〈Tcont〉t = 0 , (5)

while traction force fluctuations remain due to the
stochastic nature of our model, see Appendix A of the
Supplementary Material. Note that the model dynamics
are the same even when explicitly setting the traction
forces that are associated with cell detachment, Tcont,
to zero. Again making an analogy, this corresponds to a
droplet that does not interact with the substrate at all,
and therefore does not show wetting.

The situation is markedly different in the presence of
engaged adhesions, i.e. when the cell “sticks” to the sub-
strate. Then, the virtual work that is associated with
spreading of the cell, −∆Hcyto, is performed by the actin
cytoskeleton, which locally exerts a force Fcyto on a mem-
brane segment. Since the actin cytoskeleton is anchored
to the substrate via focal adhesions [58, 59], the force that
the cytoskeleton exerts on a membrane segment must be
balanced by an equal and opposite traction force on the
substrate, Tcyto =−Fcyto. Therefore, the traction forces
that are associated with cell adhesion are non-zero:

Tcyto = −|∆Hcyto|
‖∆x‖2

∆x . (6)

Making the analogy to an active droplet, traction forces
can then be interpreted in terms of Onsager’s theory [66].
While “adhesion” favors substrate wetting, the corre-
sponding chemical potential gradients at the same time
also induce substrate fluxes towards the contact area be-
tween the droplet and the substrate, until these fluxes
are stopped by elastic stresses.

Note that in equilibrium (i.e., when there are no feed-
back loops) the work that is associated with cell spread-
ing exactly balances the work that is associated with
cell contractility, ∆Hcyto = −∆Hcont. Similar ideas
were recently pursued [67], but did not distinguish be-
tween the work that is associated with forming new cell-
substrate contacts (cell-substrate coupling is required)
and the work that is performed by cell rounding due
to contractility (no cell-substrate coupling is required).
Therefore, in contrast to our approach, the method pre-
sented by [67] would predict vanishing traction forces in
equilibrium, which is in contradiction to the balance of
tensions that must hold at the cell-substrate interface.

Substrate deformation

In the course of spreading and migra-
tion, the cell exerts the total traction forces
T(xi, t) =Tcont(xi, t) +Tcyto(xi, t) on the substrate.
To close our description, we now discuss how one can
determine the deformations of the substrate from the
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FIG. 3. Characterization of cell migration and morphology, both for low cell polarizability (A–D) and for high cell
polarizability (E–H). (A, E) For all model parameters, the persistence time of directed migration increases with the substrate
stiffness. This is consistent with all experiments that we have carried out, and with previous literature [Table I]. (B, F) The
trend for the aspect ratio can depend on the model parameters. In most cases, the cells drastically elongate when placed on very
soft substrates. This elongation is consistent with the shape of HUVECs on very soft substrates, and with the shape of HFFs
on all substrates that they can adhere to. This trend is confirmed by simulations with a modified substrate model, see Fig. S3 in
the Supplementary Material. In our modified model, further reducing substrate stiffness again leads to rounder cell shapes, see
Fig. S3 in the Supplementary Material. (C, G) The cell speed shows a bi-phasic behavior. It typically increases as a function of
the substrate stiffness for spring coefficients of k > 1 nN µm−1. Below this value, cells typically exhibit a larger instantaneous
speed on the softer substrates, although they do not move persistently there, see A and E. (G) A special situation occurs
for cells with a large polarizability that move on very viscous substrates with slow relaxation dynamics (green plot). Then,
the cells can outrun the deformation field that they themselves induce. For higher substrate stiffness, the substrate relaxes
more quickly, with a typical timescale of ζ/k. In that case the substrate begins to “keep up” with the cell, and the overall
cell speed decreases. (D, H) Snapshots of typical cell shapes in our simulations. On very soft substrates (k = 0.5 nN µm−1),
the cell spontaneously breaks rotational symmetry and becomes an anisotropic force dipole. On substrates of intermediate
stiffness (k = 1.25 nN µm−1), the cell remains round and trapped, and thus an isotropic force dipole. On very stiff substrates
(k = 8.75 nN µm−1), the cell spontaneously breaks symmetry and behaves like a persistently migrating force monopole.

distribution of traction forces. We model the substrate
as a discrete network of beads at positions xi, where
a cell can form adhesions [Fig. 2B]. In addition to the
traction forces, each bead is subject to viscous damping
with viscous friction coefficient ζ, and is connected to
nearby beads Ni via springs with stiffness k. Then, bal-
ance between all these forces determines the overdamped
dynamics of each bead. In the main text, we focus on
an overstretched network of beads that are connected by
loaded springs:

ζ ∂txi(t) = T(xi, t) + k
∑

xj∈Ni

[
xj(t)− xi(t)

]
, (7a)

which approximates a homogeneous two-dimensional
elastic medium with elastic modulus µel =

√
3k and two-

dimensional Poisson ratio ν2D = −1 [cf. section A 4 d of
the Supplementary Material]. In addition, in section A
4 c of the Supplementary Material, we also consider an
understretched network of beads that are connected by
linearized springs with small deflections u [68]:

ζ ∂txi(t) = T(xi, t) + k
∑

xj∈Ni

[
êij · uij(t)

]
êij . (7b)

Here, uij = uj−ui is the relative deflection of two beads,
and êij is the unit vector which connects two neighbor-
ing beads in the undeformed reference configuration. As
we show in section A 4 d of the Supplementary Material,
this model approximates a homogeneous two-dimensional
elastic medium with elastic modulus µel = (

√
3/4)k and

two-dimensional Poisson ratio ν2D = 1/3. Interestingly,
both substrate models show almost identical behavior de-
spite their drastically different Poisson ratio [cf. Fig. S3
in the Supplementary Material], which shows the robust-
ness of the theoretical concepts that we present here.
Furthermore, because the substrate is softer in the “un-
derstretched” model, we observe that after elongating at
very small substrate stiffness, cells round up again when
further decreasing substrate rigidity [cf. Fig. S3 in the
Supplementary Material]. We find that the cell speed
shows a biphasic behavior, having a minimum at some
intermediate value of substrate stiffness [cf. Fig. S3 in
the Supplementary Material].

Instead of a discrete bead-spring network, one could
also model the substrate as a continuum. However,
even when considering the substrate as an incompressible
three-dimensional medium, the surface of the substrate
would remain compressible; see section A 4 e of the Sup-
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plementary Material and [69]. Thus, we do not expect
significant deviations from the present framework if one
were to consider a continuum theory. Furthermore, mod-
eling the substrate as a discrete bead-spring network has
also the distinct advantage that one could directly con-
nect our algorithm to nonlinear fiber networks [70] in
later work.

Parameter estimation

Substrates like polyacrylamide and polyethylene gly-
col based hydrogels are widely regarded as almost ide-
ally elastic materials [71, 72]. In addition to substrate
stiffness, however, substrate viscosity may also affect cell
migration. For example, correlations in the movement of
epithelial sheets have been shown to increase with sub-
strate viscosity [73], and a recent computational study
has demonstrated the relevance of viscous substrate re-
modeling for cell spreading [74]. These studies suggest
an intricate interplay between cell migration and both
the elastic and viscous properties of the environment. It
remains to be resolved, however, whether and how these
cell-substrate interactions can reconcile the apparently
contradictory migratory responses of various cell types
on different substrates.

To compare the experimental results with our compu-
tational model, we chose the model parameters to en-
sure physiological values for the cell speed v, spreading
area A and traction forces on the substrate, as we dis-
cuss in detail in section A 5 of the Supplementary Ma-
terial. We determined the range of studied spring coeffi-
cients k to match the elastic properties of the substrate.
Specifically, a spring coefficient of k= 0.5 nN/µm corre-
sponds to a substrate modulus of E≈ 0.6 kPa for an over-
stretched bead-spring network or E≈ 0.15 kPa for an un-
derstretched bead-spring network. For the choice of the
friction coefficient ζ, we distinguish between two repre-
sentative cases, depending on the relative timescales for
relaxation of the viscoelastic network (τR = ζ/k) and cell
migration (τC). Since a lower bound for τC is given by the
inverse update rate of internal cell polarization, τC ≥ 1/µ,
we expect viscous friction effects to become significant at
ζ?≈ 100 s nN/µm. This motivates our choice of the repre-
sentative values ζ = 350 s nN/µm and ζ = 50 s nN/µm for
what we henceforth call high and low substrate viscosity,
respectively. While this estimate, of course, entirely ne-
glects the persistence time of directed cell migration and
the cell velocity, it suffices for setting a first qualitative
threshold. A table of the parameter values of the CPM
is given in section A 5 of the Supplementary Material.

Substrates with low viscous friction (quick
relaxation dynamics)

Polyacrylamide gels are dominated by their elastic and
not by their viscous properties [71]. Therefore, we first

analyze the model dynamics for a situation where the
viscous friction of the substrate is low, ζ = 50 s nN/µm,
and thus smaller than the threshold value ζ?. Under
these conditions, we find the same phenomenology as in
our experiments on HUVECs. In particular, as we dis-
cuss next, our model captures the distinct shapes and
dynamics of cells across a broad range of substrate stiff-
ness [Fig. 3D,H and Fig. S3D,H in the Supplementary
Material].

Turning a cell from a force monopole. . . For
small values of viscous friction, the relaxation of the sub-
strate and its response to the traction forces of the cell
occur on short timescales, τR = ζ/k, compared to the
typical timescale of the cell dynamics, τC . This means
that substrate deformations keep up with the motion of
the cell, and that these deformations, depending on the
substrate stiffness k, can become large enough to im-
pair cell motion. When the substrate stiffness is high,
substrate deformations remain small due to high elastic
restoring forces [Fig. 4C, lower panel]. Therefore, the
influence of the substrate on the cell behavior becomes
negligible on very stiff substrates. Analogous to our pre-
vious study [54], where we have discussed cell migration
on a completely rigid surface (k→∞), the cell polar-
izes strongly and has a long persistence time of directed
migration. Furthermore, the cell’s persistence time of
directed migration increases with cell polarizability [54],
and the cell has a typical keratocyte-like shape [Fig. 4C].
Conceptually, this means that the cell behaves like a mi-
grating force monopole, which we refer to as the “run-
ning” state.

. . . to an isotropic force dipole. . . If one lowers
substrate stiffness, k, then the substrate shows an in-
creased compression at the position of the cell [Fig. 4B,
lower panel], because the cell exerts traction against
lower elastic restoring forces. Then, the cell can create
an “island of adhesiveness”, as indicated by a drastic in-
crease in the surface density of the substrate [Fig. 4B,
lower panel]. This effect will influence the cell dynam-
ics as follows. We remind that the cell gradually max-
imizes its effective adhesion energy, cf. Eq. (4), and
thus follows gradients in an effective chemical potential,
∇[ε(x, t) ρ(x, t)]. Therefore, the cell will respond to the
compression or dilatation of the substrate, by migrat-
ing towards regions that have increased substrate density
ρ(x, t). In the case of a small substrate rigidity, the cell
creates an island of increased adhesiveness [Fig. 4B, lower
panel], which penalizes all retractions that could move
the cell away from this island. Even in the event that a
cell should manage to move, it would be energetically ad-
vantageous to simply return to its previous position due
to the local substrate density gradient; we refer to this
effect as self-haptotaxis. Thus, the cell effectively sticks
to the substrate at its trailing edge, which also inhibits
protrusions due to a penalty incurred by the contractile
terms, Eq. (1). Inhibiting both retractions and protru-
sions ultimately deprives the cell polarization mechanism
of both positive and negative feedback signals, so that
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FIG. 4. Cell polarization and substrate deformation. Mirrored halves of a cell. The local polarization field, i.e. the
effective adhesion energy per substrate tile, ε(x, y) [102 pN nm], is shown in the top half of each panel. The substrate density
(number of substrate tiles per unit area), ρ(x,−y), is shown in the bottom half of each panel. We obtain these quantities by
transforming into the co-moving frame of each cell, orienting along the direction of the gradient of effective adhesion energy
density, g ∝ ∇[ε(x, t) ρ(x, t)], and then binning the respective data over all simulation times and for many cells. Note the
differences in the scales of the substrate density ρ. Motile cells typically migrate along the gradient of effective adhesion energy.
(A) An elongating cell, where the polarization field ε is homogeneous throughout the cell. At the cell tips, the value for the
substrate density is elevated, thus increasing the effective adhesion energy density, ε ρ. This effect balances the increased Laplace
pressure at the cell tips, which originates from the large local curvature. The cell behaves like an effective anisotropic force
dipole. (B) A self-trapping cell, which stays on an “adhesive island” that it generates itself by exerting traction forces on the
substrate. The cell is round and approximately isotropic, thus behaving like an effective isotropic force dipole. (C) A polarized
cell, which has a keratocyte-like shape and which migrates persistently. The cell behaves like a motile force monopole. (D-F)
Strongly polarizable cells remain motile even on the softest substrates, because they can outrun the substrate deformations.
On very soft substrates, see panel D, there is a lensing effect: because substrate density is lowest at the sides of the cell, the
cell is quenched into a round shape but also remains on a straight path. This leads to a high cell velocity.

cell polarization is hampered and the cell stops perform-
ing a persistent random walk. Therefore, a cell effectively
traps itself when placed on a soft substrate, which shows
itself in the form of an oscillating velocity autocorrela-
tion function [Fig. S7A in the Supplementary Material],
and thus a vanishing persistence time of directed cell mi-
gration [Fig. 3A,E and Fig. S3A,E in the Supplementary
Material]. When the cell traps itself, it turns into a round
shape, and becomes approximately isotropic. Therefore,
conceptually, a cell behaves like an isotropic force dipole
when placed on a soft substrate, which we refer to as the
“rounding” state. Interestingly, previous experiments on
fish keratocytes [25] also showed a monotonic decrease
in cell elongation when lowering substrate rigidity (they
considered values >1.5 kPa), a behavior that is shared
by other cell types [Table I]. We observe the same mono-
tonic trend in experiments on HUVECs, which are plated
on polyacrylamide gels of comparable rigidity (>1 kPa).
Furthermore, in agreement with our simulations, we mea-
sure a decrease in both cell speed and persistence time
of directed migration for HUVECs, when they are plated
on substrates with a lower stiffness [Fig. 1B,C]. These
results agree with a broad set of experiments [Table I].

. . . to an anisotropic force dipole. When fur-
ther decreasing substrate stiffness, k, there is a dramatic
change in cell shape. In particular, we observe that cells
drastically elongate on very soft substrates [Fig. 4A]. This
phenomenon is robust against changing parameters or
the substrate model itself [Fig. 3B,F and Fig. S3B,F in
the Supplementary Material]. Furthermore, we note that
this breaking of rotational symmetry is mediated by the
substrate alone, as the adhesion energy per substrate tile
is homogeneous throughout the cell [Fig. 4A, top panel].
In particular, we find that the substrate density is in-
creased at the tips of the elongated cell [Fig. 4A, bottom
panel]. This observation indicates an increase in adhe-
sion energy density, which balances an increased Laplace
pressure at the cell tips (the tension is homogeneous along
the cell boundary, but the cell tips have an increased cur-
vature). Therefore, we conclude that in this case the cell
effectively becomes an anisotropic force dipole. Interest-
ingly, in our experiments, we also observe pronounced
cell elongation on very soft substrates (rigidity less than
1 kPa), as indicated by Fig. 1A.
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Substrates with high viscous friction (slow
relaxation dynamics)

Next, we look at the effects of substrate viscosity on
the migratory behavior of cells. If cells have a low po-
larizability (∆ε = 250 pN µm) and therefore move slowly,
then the qualitative behavior remains as before; the cells
are not persistent enough to outrun the deformations of
the substrate. However, for cells with a high polarizabil-
ity (∆ε = 500 pN µm), the situation is different. Then,
upon raising the viscous friction coefficient ζ above the
threshold value ζ?, we find a considerable change in phe-
nomenology [Fig. 3E–G]. Cells now only exhibit running
states, with cell speed decreasing, and both persistence
time of directed cell migration and cell elongation mono-
tonically increasing with substrate stiffness. In particu-
lar, we note that the general trend for the cell speed as a
function of substrate stiffness is opposed to that of cells
that are placed on substrates with low viscous friction.

Furthermore, the persistence time of directed cell mi-
gration, τp, remains finite even for very soft substrates
[Fig. 3E], which can be explained as follows. Because the
response of the substrate is slow compared to the intra-
cellular dynamics and to the cell motion, to a first ap-
proximation the cell behaves as if it were migrating on a
completely rigid surface. Therefore, the cell can polarize
even for low substrate stiffness [Fig. 4D]. Furthermore,
the slow response of the substrate to cellular traction
forces leads to a trail of increased substrate density be-
hind the cell, and to a decrease in substrate density at
the sides of the cell. This leads to a lensing effect, which
decreases the probability that the cell will deviate from
a straight path, and also explains why cell speed is en-
hanced at low substrate stiffness [Fig. 4D,E]. Because of
this effect, the cell is also quenched from the sides into
a round shape, thus making a reorientation of the cell
less costly by reducing cell polarization. With increas-
ing substrate stiffness, all of these effects are attenuated
as substrate deformations become smaller. As a conse-
quence, cell speed decreases and persistence time of di-
rected migration increases, asymptotically approaching
the corresponding values for low viscous friction of the
substrate.

Qualitatively, the trend of a smaller cell velocity on
stiffer substrates appears similar to measurements of fi-
broblast motility on polyethylene glycol-based hydro-
gels [28] and on polyacrylamide gels [26], as well as a
number of other cell types [Table I], and our experiments
on HFFs. However, we note that fibroblasts have typi-
cally a much more elongated shape [Fig. 1A] than HU-
VECs, which is different than the typically round cell
shapes that our simulated cells exhibit on substrates with
a high viscous friction. Instead, the elongated shape of
fibroblasts rather resembles the situation where our sim-
ulated cells break rotational symmetry and drastically
elongate on very soft substrates with low viscous friction
[Fig. 4A]. Interestingly, one also observes that the in-
stantaneous velocity of the simulated cells increases when

further decreasing substrate stiffness [cf. Fig. 3C,G and
Fig. S3C,G in the Supplementary Material]. But from
these qualitative comparisons, it is difficult to make a
conclusive statement which of these effects is most rele-
vant for fibroblasts.

Cell persistence and polarizability

Finally, we aim to rationalize the qualitative behavior
of the persistence time of directed cell migration and of
the instantaneous cell speed. In [54], it was shown that
the persistence time of directed cell migration increases if
one considers cells that are more polarizable, as indicated
by a larger value of the polarizability ∆ε. Here, however,
deformations of the substrate can interfere with cell po-
larization, and therefore reduce cell persistence even if
the polarizability is high. To account for these effects,
we define the relative polarization as follows:

Z(ε ρ) =

√
〈(ερ)2〉 − 〈ερ〉2
〈ερ〉

, (8)

where 〈. . . 〉 indicates an average along the boundary of
the cell. The relative polarization, Z(ε ρ), is largest if the
cell exhibits a strong polarization profile, while vanish-
ing for small polarizations. We find that, for a cell with
a given polarizability ∆ε, the relative polarization de-
termines the persistence time of directed cell migration,
regardless of the substrate properties [Fig. 5A].

Next, we turn to the cell speed. We have argued that
in Fig. 4D and E, the substrate density having a mini-
mum at the sides of the cell will lead to a lensing effect,
thereby increasing cell speed by reducing the probability
that the cell deviates from a straight path. By inversion
of argument, this means that a cell should move slower if
it makes more steps that do not align with its gradient of
effective adhesion energy density, g ∝ ∇[ε(x, t) ρ(x, t)].
To quantify this effect, we measure the width of the an-
gular distribution of cell velocities, 〈acos(v̂ · ĝ)〉. We find
that, the narrower the angular distribution of cell veloci-
ties, the higher the average cell speed [Fig. 5B]. This can
be explained by the simulated cell having a fixed “bud-
get” for making protrusions or retractions, as the num-
ber of individual events per simulation step is conserved.
Therefore, cell velocities are typically higher if there is a
synergy between different events, for example if the cell
protrudes at one point and then retracts at the opposite
end.

DISCUSSION

We have seen that generic geometric effects, in the
form of substrate compression and dilatation in response
to traction stresses, can lead to a rich set of cell phe-
nomenology. Though we cannot exclude gene regula-
tion as a possible cause for distinct cellular responses
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FIG. 5. Rationalization of cell motility. (A) The larger
the relative polarization of the cell, the greater its persistence
time of directed migration. This is a generalization of the
results in [54], where it was shown that the persistence time of
directed migration increases with cell polarizability. We need
the additional measure of the relative polarization, because
substrate deformations can interfere with cell polarization.
(B) The narrower the angular distribution of cell velocities in
a given time step, the greater the average cell speed. This is
consistent with the cell having a fixed “budget” for making
protrusions and retractions.

to substrate stiffness and viscosity, our study shows that
variability in cell behaviors can also be explained sim-
ply in terms of the physical properties of the substrate
and its interplay with cell polarization. This has po-
tentially far-reaching consequences, as the mechanics of
the physiological environment of cells varies depending
on the tissue they are embedded in—and this not only
determines cell migration [3] but also stem cell differ-
entiation and fate [75, 76]. Based on our results, one
may speculate that the typical shape of cells (e.g., elon-
gated “neurons” at low stiffness, round “adipocytes” at
intermediate stiffness, “keratocytes” at high stiffness) is
not only predetermined by gene regulation, but strongly
affected by mechanical crosstalk with the extracellular
matrix.

Finally, we observe that the elastic properties of the
substrate can determine whether a cell behaves like a
migrating force monopole, an immobile isotropic force
dipole, or an anisotropic force dipole. Interestingly,
analytic work suggests that anisotropic force dipoles
in elastic media can interact and align, mediated by
deformations of the medium [77]. This raises the ques-
tion whether cells that are not intrinsically anisotropic
could potentially break rotational symmetry and align
to external strains, or relative to other cells, if one
explicitly accounts for the cell shape.
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EXPERIMENTAL METHODS

Cell culture

Human umbilical vein endothelial cells (HUVECs)
were cultured in ready-to-use Endothelial Cell Growth
Media (PromoCell) with 100 units/mL penicillin and
100 µg/mL streptomycin (Gibco). For live cell imag-
ing, cells were plated at a density of approximately
2500 cells/cm

2
, or 10 000 cells/well.

Preparation of polyacrylamide substrate

For wild-type HUVECs, acrylamide solutions corre-
sponding to 0.2 kPa, 1 kPa, 2 kPa, 3 kPa, 7 kPa, 15 kPa,
34 kPa and 100 kPa polyacrylamide hydrogels were pre-
pared according to previous publications [78]. For stained
HUVECs and HFFs, acrylamide solutions correspond-
ing to 0.2 kPa, 0.48 kPa, 0.71 kPa, 1.10 kPa, 2.01 kPa,
4.47 kPa, 8.44 kPa, 16.70 kPa and 34.88 kPa polyacry-
lamide hydrogels were prepared according to previous
publications [78]. Briefly, an acrylamide/bis-acrylamide
solution (Bio-Rad) was degassed and mixed with 1/100
volume 10% ammonium persulfate and 1/1000 volume
tetramethylethylenediamine (Sigma Aldrich). 20 µL of
solution was pipetted into a single well of an un-
treated 12 well glass bottom plate (In Vitro Scien-
tific). A 12 mm glass coverslip chlorosilanized with
dichlorodimethylsilane (Sigma Aldrich) was placed above
the acrylamide solution. Upon polymerization, hydro-
gels were rinsed and functionalized with photoactivatable
Sulfo-SANPAH (Thermo Fisher) before overnight conju-
gation with 100 µg/mL Collagen type I (Gibco). Prior to
cell culture all hydrogels were UV sterilized.
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Microscopy

Cells on hydrogels were maintained in a microscope-
mounted incubator at 37 °C and 5% CO2. An Ax-
ioVert 200M with Axiovision software (Zeiss) and a
PerkinElmer UltraVIEW ERS with Volocity software
(PerkinElmer) were used to capture phase contrast im-
ages every ten minutes for a period of 48 h (wild-type
HUVECs). Stained HUVECs were imaged once every
ten minutes for a period of 24 h. Stained HFFs were im-
aged once every five minutes for a period of 24 h.

Cell shape and velocity analysis

Two different approaches were used to analyze the ex-
perimental data: (a) For unlabeled wild-type HUVECs,
solitary cells were manually tracked and outlined in the
bright-field images, using the software Fiji [79]. Cells
were selected and measured at various times to mitigate
fluctuations in cell shape. Each selected cell should sat-
isfy four conditions: (i) no alignment with the cracks on
the substrate, as this is a strong measurement bias to find
elongated cells, (ii) no divisions at the time of measure-
ment, as this is a strong measurement bias to find round
cells, (iii) must be distinguishable from the background
and neighboring cells. (iv) should not be in contact with

neighboring cells. Analogously, the cell positions were
also extracted manually from the phase contrast images,
using the software Fiji [79] and the Plug-In MTrackJ [80].
(b) For labeled HUVECs and HFFs (SiR-DNA staining
of cell cores), a neuronal network based on the U-Net ar-
chitecture [81, 82] was used to automatically detect cell
outlines in the bright-field images. At the same time, the
cell cores were tracked based on the fluorescence images.
Then, both sets of data were matched, so that each cell
core was associated with exactly one cell outline. This
procedure ensured that only solitary cells were analyzed.
Manual cell segmentation and automatic cell segmenta-
tion yielded very similar cell outlines, as illustrated side-
by-side in Fig. 1D where both procedures were performed
for exemplary unlabeled wild-type HUVECs. However,
there appears to be some phototoxicity associated with
SiR-DNA staining of cell cores. We observe that stained
HUVECs that were imaged once every 10 min move much
slower than their wild-type counterparts [Fig. 1B], are at
the same time more persistent [Fig. 1C] and show less
variation in shape as a function of substrate stiffness
[Fig. 1A]. We excluded data on stained HUVECs that
were imaged once every 5 min, because a significant por-
tion of these cells was immobile and rounded up after a
few snapshots, indicating either cell death or an impeded
ability to form focal adhesions.
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wald, A. Dovzhenko, O. Tietz, C. Dal Bosco, S. Walsh,
D. Saltukoglu, T. L. Tay, M. Prinz, K. Palme, M. Si-
mons, I. Diester, T. Brox, and O. Ronneberger, U-Net:
deep learning for cell counting, detection, and morphom-
etry, Nat. Methods 16, 67 (2019).

Preprintofsubm
itted

m
anuscript

III.2 Cell Migration and Shape in Soft Environments

285



❦❦

III From Cellular Dynamics to Self-Organization

286



Morphology and Motility of Endothelial Cells on Soft Substrates

— Supplementary Material —

Andriy Goychuk,1 David B. Brückner,1 Andrew W. Holle,2, 3

Joachim P. Spatz,4, 5 Chase P. Broedersz,1, 6 and Erwin Frey1

1Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience,

Department of Physics, Ludwig-Maximilian-University Munich,

Theresienstr. 37, D-80333 Munich, Germany

2Mechanobiology Institute, National University of Singapore, Singapore, Republic of Singapore

3Department of Biomedical Engineering,

National University of Singapore, Singapore, Republic of Singapore

4Department of Cellular Biophysics, Max-Planck-Institute

for Medical Research, D-69120 Heidelberg, Germany

5Department of Biophysical Chemistry,

University of Heidelberg, D-69120 Heidelberg, Germany

6Department of Physics and Astronomy,

Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

Preprintofsubm
itted

m
anuscript

III.2 Cell Migration and Shape in Soft Environments

287



2

CONTENTS

A. Computational Model 3

1. Mathematical Representation of the Substrate 3

2. Mathematical Representation of a Cell 5

3. Dynamics of the cell 8

4. Dynamics of the deformable substrate 14

5. Simulation parameters 20

6. Measurement of observables 22

B. Supplemental discussion 26

1. Persistence time of directed migration 26

2. Cell Trapping 34

3. Cell Elongation on Soft Substrates Does Not Depend on Cell Polarizability 34

References 36

Pr
ep
rin

to
fs
ub
m
itt
ed

m
an
us
cr
ip
t

III From Cellular Dynamics to Self-Organization

288



3

Appendix A: Computational Model

In the following sections, we complement the model description in the main text, by

discussing the detailed numerical implementation and the technical aspects of our model.

We start by introducing the necessary mathematical definitions for the substrate and the

adhering cell. Then, we recapitulate the Cellular Potts model [1, 2], and extend this model by

taking substrate deformations into account. As we proceed, we also discuss the limitations

of our model assumptions and how these limitations could be addressed in future work.

1. Mathematical Representation of the Substrate

a. Spatial discretization of the substrate. In our model, we simulate the spatiotem-

poral dynamics of the contact area between a cell and an underlying flat surface, which

we also refer to as substrate. For this purpose, we tessellate the surface into N hexagonal

tiles (or grid sites). To each of these hexagonal tiles, we assign a position vector xi. The

hexagonal tiles form a space-filling triangular lattice S, which we also refer to as grid :

S =
{

xi(t)
}
i=1,...,N

. (A1)

The substrate is an elastic deformable body. Therefore, the positions of the lattice vectors

xi (or nodes) are time-dependent. We model deformations of the substrate by deflections of

the lattice nodes xi(t) from their zero-strain reference configuration.

b. Topological neighborhood of each node. Each lattice node xi is surrounded by

six nearest neighbors, thus defining its neighborhood Ni by the following sequence:

Ni =
(
xj(t)

∣∣∣ node xj(t) is nearest neighbor of node xi(t)
)
. (A2)

This sequence has a (clockwise) cyclic order relative to the central node xi:

xi

(Ni)1

(Ni)2

(Ni)3(Ni)4

(Ni)5

(Ni)6
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In the zero-strain reference configuration (i.e., at the beginning of our simulations, t = 0, or

for an undeformable substrate), the distance between nearest neighbors is given by:

‖xj(0)− xi(0)‖= d0 ⇐⇒ xj ∈ Ni . (A3)

Thus, d0 sets the spatial discretization in our simulations. When the substrate is deformed,

the distance between neighboring lattice nodes must change accordingly.

In our simulations, we assume that the neighborhood of each lattice node remains (topo-

logically) immutable, i.e., any two nearest neighbors remain nearest neighbors irrespective of

the applied deformation. This limitation can only be lifted by frequently performing a (com-

putationally expensive) Delaunay triangulation to re-mesh the whole simulation grid, and

then computing the corresponding Voronoi tiles. As a side effect, re-meshing can typically

introduce (topological) changes of neighborhood as well as change the number of vertices on

each tile. These effects would require further generalization of our model implementation1.

c. Hexagonal tessellation of the substrate. Each lattice node xi corresponds to a

hexagonal tile [Fig. S1], whose six vertices form the following sequence:

Vi =
(
vj

∣∣∣vj is a vertex of the hexagonal tile at the node xi

)
. (A4)

Since the positions of all lattice nodes are time-dependent and move affinely with the de-

formations of the substrate, we also need to keep track of the shape of each hexagonal tile.

To do so, we compute the positions of the vertices of each hexagonal tile, based on the

time-dependent positions of the nodes. In particular, each vertex has three adjacent tiles

that correspond to nodes xi. Therefore, we define the position of the vertex as the geometric

center of these three adjacent nodes:

(Vi)k =
1

3

[
xi + (Ni)k + (Ni)k−1

]
, (A5)

where (Ni)0 ≡ (Ni)6. This definition ensures a (clockwise) cyclic order in the sequence of

the vertices of a hexagon and can be graphically represented as follows:

1 For example, the current implementation assumes that the contact area between a cell and the substrate

is a simply connected set of grid sites.
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xi

(Ni)1

(Ni)2

(Ni)3(Ni)4

(Ni)5

(Ni)6

(Vi)2

(Vi)3

(Vi)4

(Vi)5

(Vi)6

(Vi)1

Similarly, we also define a sequence of edge vectors for each hexagonal tile,

Ei =
(
ej

∣∣∣ edge vector ej borders the hexagonal tile at node xi

)
. (A6)

Each edge vector (Ei)k corresponds to the interface between the lattice node xi and the

lattice node (Ni)k, and can thus be defined via the vertex positions:

(Ei)k = (Vi)k+1 − (Vi)k , (A7)

where (Vi)6 ≡ (Vi)0. The corresponding edge lengths are given by ‖(Ei)k‖.
We assume that the hexagons are at all times, which includes deformed configurations of

the substrate, simple polygons. Then, the area a(xi, t) of a hexagon spanned by the vertices

(Vi)k is given by Gauss’s area formula:

a(xi, t) =
1

2

∣∣∣ 6∑
k=1

(Vi)xk
[
(Vi)yk+1 − (Vi)yk−1

]∣∣∣ , (A8)

where (Vi)xk and (Vi)yk refer to the x-coordinate and the y-coordinate of the vertex (Vi)k,
respectively.

2. Mathematical Representation of a Cell

a. Domain and area of the cell. We represent the contact area between a cell and the

underlying substrate (referred to as the domain of the cell) as a set D of simply connected

hexagons [Fig. S1]:

D=
{

xi

∣∣∣xi is occupied by cell
}
. (A9)

Thus, the area A of a cell is given by the sum of the individual areas of all hexagons in the

cell domain (i.e., substrate tiles occupied by the cell):

A=
∑
xi∈D

a(xi, t) . (A10)
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a

node xinode (Ni)5

vertex (Vi)1

membrane M
edge (Ei)1

cell domain D

FIG. S1. Description of a cell and the substrate. The substrate is tessellated into hexagons,

which lie at node positions xi. Each vertex (Vi)k of a hexagon is defined by the geometric center of

the three adjacent nodes. The area a(xi, t) of a hexagon is defined via Gauss’s area formula. The

cell domain is given by a morphologically connected set of hexagons xi ∈ D. The cell membrane

M is the set of membrane segments (Ei)k that line the border of the cell domain.

b. Membrane and perimeter of the cell. We represent the cell membrane as the set

of hexagon edges (Ei)k that line the border of the cell domain D [Fig. S1]:

M =

(Ei)k

∣∣∣∣∣∣ xi ∈ D ,

(Ni)k /∈ D

 . (A11)

Thus, the perimeter P of the cell is given by the sum of the individual lengths of all line

segments in the cell membrane:

P =
∑

(Ei)k∈M
‖(Ei)k‖ . (A12)

As we have mentioned above, the edge (Ei)k defines the boundary between a hexagon

xi and its nearest neighbor (Ni)k. Thus, to close this section and to relate our present

terminology to our previous work [1, 2], we also introduce the set of hexagons that line the

inner side of the membrane (i.e., the ”membrane grid sites”):

B=
{

xi

∣∣∣ (Ei)k ∈M} . (A13)
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FIG. S2. Overview of a single Monte Carlo Step. When a cell attempts a protrusion

or a retraction event, it makes a virtual (i.e., not yet realized) change in polarization energy

Hcyto and shape energy Hcont. These energy changes are related to effective protrusive Fcyto and

contractile Fcont forces (illustrated in red for several simultaneously attempted events), acting on

the boundary of the cell. An attempted event becomes accepted (i.e., the virtual change in cell

state is actually realized) with a probability that we determine from the total energy difference

∆H = ∆Hcyto + ∆Hcont [cf. Eq. (A21)]. Successful protrusions are then followed up by a secretion

of internal signals within a radius R. Similarly, retractions lead to depletion of the mentioned

internal signals. Over the course of a Monte Carlo Step, many such signals accumulate. Then,

positive signaling increases the local cell polarization field ε, while negative signaling decreases

the polarization field. Assuming force balance, the protrusive forces, Fcyto, and the contractile

forces, Fcont, are related to effective traction forces T on the substrate, thus leading to substrate

deformations.

Furthermore, we introduce the set of hexagons that line the outer side of the membrane

(i.e., the ”neighborhood of the cell”):

N =
{

(Ni)k
∣∣∣ (Ei)k ∈M} . (A14)
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3. Dynamics of the cell

For the reader’s convenience, we briefly recapitulate the cell model that we use and

generalize in the present study. The foundation of our model was previously laid by Refs. [1,

2]. Therefore, we refer to Refs. [1, 2] for a detailed discussion and a biological motivation of

the core model for cell polarity and migration. We further extend this model, by explicitly

accounting for the deformations of the substrate that the cell adheres to.

a. Metropolis algorithm. We carry out stochastic simulations with a discrete time

stepping (Monte Carlo Steps). For a schematic overview over a single Monte Carlo Step,

we refer to Fig. S2 and to the following discussion. During each Monte Carlo Step, the cell

makes K = |M| individual protrusion or retraction attempts (events). Thus, on average,

each membrane segment (Ei)k ∈ M has a chance to either protrude or retract in response

to contractile and protrusive forces, respectively [cf. sections A 3 b “Contractility of the

cellular membrane and cortex” and A 3 c “Actin network of the cell”]. In particular, we first

select a random membrane segment (Ei)k ∈M with a probability proportional to its length:

p
[
(Ei)k

]
=
‖(Ei)k‖
P

. (A15)

Then, we choose with equal probability whether the cell attempts to protrude or to retract

along the direction perpendicular to the chosen membrane segment (Ei)k. Specifically, the

membrane segment (Ei)k lies at the interface between the tile (Ni)k ∈ N outside the cell

boundary (target tile), and the tile xi ∈ B inside the cell boundary (source tile). If a

protrusion event is accepted, Tpro, then the cell incorporates the target tile (Ni)k into its

domain:

Tpro

[
(Ei)k

]
: Dold → Dnew =Dold ∪ {(Ni)k} , (A16)

and we update the set of its membrane segments M accordingly. In that case, the edge

motion proceeds in the direction:

∆xpro

[
(Ei)k

]
= (Ni)k − xi . (A17)

Similarly, if a retraction event is accepted , Tret, then the cell detaches from the source tile

xi:

Tret

[
(Ei)k

]
: Dold → Dnew =Dold\{xi} , (A18)

Pr
ep
rin

to
fs
ub
m
itt
ed

m
an
us
cr
ip
t

III From Cellular Dynamics to Self-Organization

294



9

and we update the set of its membrane segments M accordingly. Then, the edge motion

proceeds in the direction:

∆xret

[
(Ei)k

]
= xi − (Ni)k = −∆xpro

[
(Ei)k

]
. (A19)

We associate each cell configuration D with an energy, which we describe by a Hamil-

tonian H[D]. If a protrusion or a retraction attempt is successful, then, as a consequence,

the cell configuration D and the corresponding energy H[D] will change. This change in

energy can be either favorable (i.e., energy is released), or unfavorable (i.e., energy has to

be expended). By inversion of argument, the motion of the cell will typically follow gradi-

ents in the chemical potential landscape, thus gradually minimizing its total energy. Here,

our distinction between attempted and accepted events, either protrusions or retractions,

becomes relevant. Specifically, we define an attempted event as a virtual change of the cell

configuration, associated with the following virtual work

∆H
[
Tpro/ret[(Ei)k]

]
=H

[
Dnew

]
−H

[
Dold

]
. (A20)

Such an attempted event becomes accepted (i.e., the virtual change of the cell configuration

and the virtual work are actually realized) with a probability

p
[
Tpro/ret[(Ei)k]

]
= min

[
exp(−∆H/kBT ), 1

]
. (A21)

Thus, events that are energetically favorable are likely to succeed, while events that are

energetically costly are likely to be rejected. The effective temperature T is a measure

for the fluctuations and activity of the cytoskeletal dynamics on a cellular scale. Thus,

in Cellular Potts models, the effective temperature T does not correspond to the room

temperature.

The Hamiltonian H consists of two competing contributions:

H
[
D
]

=Hcont

[
D
]

+Hcyto

[
D
]
. (A22)

Here, the first term comes from cell contractility and the second, protrusive, term comes

from the activity of the actin cytoskeleton network as well as substrate adhesions. In the

following sections, we focus on these two contributions.
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b. Contractility of the cellular membrane and cortex. The geometry of the cell is

constrained by its elastic membrane and its contractile cytoskeleton [3–6]. Thus, as a first

approximation, we assume that deformations of a cell’s membrane and cortex are constrained

by the following elastic energy [1, 2]:

Hcont

[
D
]

=κAA(t)2+κPP (t)2 , (A23)

similar as in the original Cellular Potts model [7]. Here, κA and κP denote the respective

elastic coupling parameters corresponding to the area, A(t), and perimeter, P (t), of the cell.

Analogous to our previous discussion, a change in cell morphology, represented by the cell

configuration D, due to a successful protrusion or retraction event Tpro/ret is accompanied

by a change of shape energy:

∆Hcont

[
Tpro/ret[(Ei)k]

]
=Hcont

[
Dnew

]
−Hcont

[
Dold

]
. (A24)

In the case of a retraction, the contractile cell membrane and cortex will perform the

work −∆Hcont

[
Tret[(Ei)k]

]
. In the case of a protrusion, the work −∆Hcont

[
Tpro[(Ei)k]

]
≈

∆Hcont

[
Tret[(Ei)k]

]
has to be exercised to push against the contractile membrane and the

cortex. Both cases are related to an effective contractile force on the membrane segment

(Ei)k, which always points towards the inside of the cell [cf. Eq. (A19)]:

Fcont

[
(Ei)k

]
=

∣∣∆Hcont

[
Tpro/ret[(Ei)k]

]∣∣∥∥∆xpro/ret

[
(Ei)k

]∥∥ ∆xret

[
(Ei)k

]∥∥∆xret

[
(Ei)k

]∥∥ . (A25)

Here, the first term corresponds to the virtual work −∆Hcont that is performed over a virtual

displacement ∆x, and the second term corresponds to the unit normal vector pointing to-

wards the inside of the cell. Note that, unless the cellular contractile forces are counteracted

by the pushing forces described in the following, the cell would detach from the underlying

substrate, i.e., the contact area between the cell and the substrate would vanish.

c. Actin network of the cell. In addition to contractile forces due to myosin activ-

ity, the cellular actomyosin cytoskeleton also generates inhomogeneous pushing forces due

to actin polymerization [8, 9]. These pushing cytoskeletal structures are locally anchored

to the underlying substrate at focal adhesion sites [8, 9]. Since the actomyosin cytoskele-

ton is coupled to the underlying substrate via adhesions, any local substrate displacement

corresponds to an identical displacement of the actomyosin cytoskeleton. In addition, each
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hexagonal tile deforms affinely with the substrate, as described in section A 1 “Mathemati-

cal Representation of the Substrate”. Thus, we expect that the local amount of actomyosin

cytoskeleton per substrate tile will remain unaffected by a deformation of the underlying

substrate.

Together, the pushing forces generated by cytoskeletal structures and the corresponding

cell-substrate adhesions counteract the homogeneous contractile forces that are facilitated

by cell cytoskeleton contractility. We encapsulate these physical interactions in a scalar

polarization field, ε(xi, t)∈ [ε0−∆ε/2, ε0 + ∆ε/2], which is akin to a spatially heterogeneous

effective cell-substrate adhesion energy per substrate tile [1, 2]:

Hcyto =−
∑
xi∈D

ε(xi, t) . (A26)

The lower bound of the polarization field, ε0 − ∆ε/2, corresponds to a minimal adhesion

energy so that cells do not detach from the substrate. In addition, the upper bound of

the polarization field, ε0 + ∆ε/2, reflects a limited local availability of biomolecules such as

integrins, myosin motors and actin filaments [2].

Analogous to our previous discussion, a change in cell morphology, represented by the cell

configuration D, due to a successful protrusion or retraction event Tpro/ret is accompanied

by a change of the effective cell-substrate adhesion energy:

∆Hcyto

[
Tpro/ret[(Ei)k]

]
=Hcyto

[
Dnew

]
−Hcyto

[
Dold

]
. (A27)

In particular, when retracting along the direction perpendicular to its membrane edge (Ei)k,
a cell has to exercise work to detach from the substrate at node xi:

∆Hcyto

[
Tret[(Ei)k]

]
= + ε(xi, t) . (A28)

Analogously, when protruding along the direction perpendicular to its membrane edge (Ei)k,
the actomyosin cytoskeleton of the cell will perform work by creating a new adhesion to the

substrate at the node (Ni)k:

∆Hcyto

[
Tpro[(Ei)k]

]
= − ε(xi, t) . (A29)

Here, we have assumed that a newly formed substrate contact at the target node (Ni)k has

the same effective adhesion energy as the pre-existing substrate contact at the source node
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xi. Both retraction and protrusion attempts are related to an effective pushing force on the

membrane segment (Ei)k, which always points towards the outside of the cell [cf. Eq. (A17)]:

Fcyto

[
(Ei)k

]
=

∣∣∆Hcyto

[
Tpro/ret[(Ei)k]

]∣∣∥∥∆xpro/ret

[
(Ei)k

]∥∥ ∆xpro

[
(Ei)k

]∥∥∆xpro

[
(Ei)k

]∥∥ . (A30)

The polarization field is dynamic and thus reflects the assembly and disassembly of cy-

toskeletal structures, which is mediated by intracellular signaling cascades [10–12]. These

signaling cascades involve regulatory cytoskeletal proteins that enable the cell to respond to

extracellular stimuli [13, 14].

d. Mechanochemical signaling. The actomyosin cytoskeleton of the cell, which drives

cell migration, responds to mechanical stimuli via several signaling cascades and feedback

loops that involve regulatory cytoskeletal proteins [10–12]. Here, we do not formulate a

reaction-diffusion model that involves these different microscopic dynamics [13, 14]. Instead,

as in our previous work [1, 2], we take a coarse-grained approach. Specifically, we assume

that intracellular signaling cascades will typically up- or down-regulate the activity of the

cellular actomyosin cytoskeleton within some finite radius R of a mechanical stimulus, i.e.,

near a protrusion or a retraction. Instead of accounting for the different signaling molecules

individually, we introduce an integer bookkeeping field m(xi) that has the role of propagating

information from mechanical stimuli at the cell boundary across a distance R. This integer

bookkeeping field m(xi) can also take negative values, and resets after each Monte Carlo

Step, thus reflecting quick degradation dynamics. We update the local integer bookkeeping

field m(xi) continuously over the course of each Monte Carlo Step, as follows. Specifically,

we follow two distinct update rules for our two basic types of cellular activity, protrusion

and retraction events [2].

In the case of a successful protrusion event Tpro[(Ei)k], which originates at the membrane

segment (Ei)k and incorporates the tile at node (Ni)k into the cell, cf. Eq. (A16), we perform

two operations. First, we copy the value of the bookkeeping field from the source tile to the

target tile: m((Ni)k) → m(xi). Then, we increment the integer bookkeeping field for all

tiles within a radius R of the target tile:

m(xj)→

m(xj) + 1, ‖xj − (Ni)k‖ < R ∨ xj ∈ D

m(xj), else.
(A31)
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In the case of a successful retraction event Tret[(Ei)k], which originates at the membrane

segment (Ei)k and removes the tile xi from the cell, cf. Eq. (A18), we also perform two

operations. First, we erase the value of the bookkeeping field from the target tile: m(xi)→ 0.

Then, we decrement the integer bookkeeping field for all tiles within a radius R of the target

tile:

m(xj)→

m(xj)− 1, ‖xj − xi‖ < R ∨ xj ∈ D

m(xj), else.
(A32)

e. Mechanochemical feedback. As we have discussed in section A 3 c “Actin network

of the cell”, cellular protrusions are driven by pushing forces that the actomyosin cytoskele-

ton generates. We model these effects with the scalar polarization field ε. This scalar

polarization field acts like an effective adhesion energy, thus conferring pushing forces that

counteract the contractile forces exerted by the cell cortex. In the absence of this effective

adhesion energy, cell contractility would lead to cell retractions and ultimately to a detach-

ment from the surface, as discussed in section A 3 b “Contractility of the cellular membrane

and cortex”. Thus, protrusion events are more likely to occur in regions with a high value of

the polarization field ε, while retractions are more numerous in regions with a low value of the

polarization field ε. These two elementary events, protrusions and retractions, correspond to

mechanical stimuli at the cell boundary, initiating signaling cascades that propagate across

a distance R into the cell. Throughout a single Monte Carlo Step, many protrusion and

retraction events occur, and the corresponding signaling cascades overlap in space. As dis-

cussed in section A 3 d “Mechanochemical signaling”, we represent these signaling cascades

by an integer bookkeeping field m(xj). The integer bookkeeping field m(xj) thus informs us

whether a tile xj received more stimuli originating from protrusion events, or more stimuli

from retraction events, within the signaling radius R. We assume that, at the end of a

Monte Carlo Step with duration ∆t, the actomyosin cytoskeleton is reinforced in regions of

high protrusive activity, and disassembled in regions of low protrusive activity [2]:

∂tε(xi, t) =
ε(xi, t+ ∆t)− ε(xi, t)

∆t
= µ

[(
ε0 +

∆ε

2
sgnm(xi)

)
− ε(xi, t)

]
, (A33)
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where µ is the cytoskeletal update rate and sgn corresponds to the sign function:

sgnx =


1, x > 0,

0, x = 0,

−1, x < 0.

(A34)

The temporal evolution of the polarization field, given by Eq. (A33), ensures that the po-

larization field is bounded from below and from above: ε(xi, t)∈ [ε0 −∆ε/2, ε0 + ∆ε/2].

Finally, we would like to summarize that the Cellular Potts model in the present imple-

mentation contains two prototypical feedback loops [2]:

• High values of the polarization field favor protrusive activity, leading to an increase of

the polarization field in the vicinity of protrusions.

• Low values of the polarization field favor retractive activity, leading to a decrease of

the polarization field in the vicinity of retractions.

These two prototypic feedback loops break detailed balance and maintain macroscopic cell

polarization throughout our simulations.

4. Dynamics of the deformable substrate

So far, we have focused on the spatiotemporal dynamics of a migrating cell alone. In

this section, we discuss how the cell induces substrate deformations by generating traction

forces.

a. Cell traction forces. The cell generates both contractile forces and protrusive forces,

as discussed in sections A 3 b “Contractility of the cellular membrane and cortex” and A 3 c

“Actin network of the cell”. In the following, we first focus on contractile forces, and then

proceed to discuss how protrusive forces transmit to the substrate via focal adhesions. In

particular, contractile forces Fcont(xi, t) are independent of the cell’s ability to adhere to

the substrate via focal adhesions. Even if the cell cannot form adhesions at all, it will still

generate contractile forces via its actomyosin cortex (in the form of cortical tension). These

contractile forces will ultimately lead to a rounding up of the three-dimensional cell body,

and to a disappearance of the two-dimensional cell-substrate contact area. In our model, the
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contraction is homogeneous throughout the cell and, as a result, the integral of all contractile

forces along the cell membrane M, averaged over the time t, must vanish:∑
(Ei)k∈M

p[(Ei)k] Fcont(xi, t) = 0 . (A35)

This can also be interpreted as a consequence of global force balance, in the absence of

traction. If there is a finite random force due to cellular contractility2,∑
attempted
Tpro/ret[(Ei)k]

Fcont(xi, t) 6= 0 , (A36)

then this random force must be balanced by equal and opposite traction forces on the

substrate. We assume that the cytoskeleton facilitating this contractility transmits forces

instantaneously throughout the cell. Then, the random net force is distributed homoge-

neously over all substrate tiles xj ∈ D that are occupied by the cell, and is balanced by the

following equal and opposite homogeneous traction forces on the substrate:

xj ∈ D : Tcont(xj, t) = − 1

|D|
∑

attempted
Tpro/ret[(Ei)k]

Fcont(xi, t) . (A37)

By taking the time average of Eq. (A37) and using Eq. (A35), we note that the contribution

of contractile forces to the traction forces vanishes on average:〈
Tcont(xj, t)

〉
t

= 0 . (A38)

The situation is markedly different for the antagonist of cellular contractility, namely the

spatially heterogeneous protrusive forces, Fcyto(xi, t), that the actomyosin cytoskeleton of

the cell generates. This cell cytoskeleton is locally anchored to the underlying substrate at

focal adhesion sites [8, 9]. Thus, in contrast to cellular contractile forces, cellular protrusive

forces rely on the ability of the cell to make focal adhesions, and the spatially heterogeneous

protrusive forces must be locally balanced by equal and opposite traction forces

Tcyto(xi, t) = −
∑

attempted
Tpro/ret[(Ei)k]

Fcyto(xi, t) . (A39)

2 In the specific case of our Cellular Potts model, this corresponds to a situation where some membrane

segments (Ei)k ∈ M are selected more often than other membrane segments, to perform a protrusion or

retraction attempt during a Monte Carlo step.
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If the cell cannot form adhesions to the underlying substrate at all, then it is not able to

counteract the contractile forces originating from its actomyosin cortex. Then, as discussed

in the previous paragraph, the cell would detach from the underlying substrate and round

up its three-dimensional cell body. By taking the time average of Eq. (A39), we find

〈
Tcyto(xi, t)

〉
t
= − Fcyto(xi, t) . (A40)

Thus, the contribution of protrusive forces to the traction force is finite on average.

The total traction forces, which stem from contractile and protrusive cellular forces, are

then given by:

T(xi, t) = Tcont(xi, t) + Tcyto(xi, t) . (A41)

As discussed in section A 1 “Mathematical Representation of the Substrate”, the substrate

is defined by a triangular lattice with time-dependent nodes {xi(t)}i=1,...,N . To describe the

substrate deformations that arise as a consequence of cellular traction forces, we consider

two different substrate models, as discussed in the following.

b. Overstretched substrate model. In our first approach, we model substrate elastic-

ity by coupling any two neighboring nodes xi and xj ∈ Ni via loaded (i.e., “overstretched”)

springs of zero rest length:

ζ ∂txi(t) = T(xi, t) + k
∑
xj∈Ni

[
xj(t)− xi(t)

]
, (A42)

where each node is subject to a viscous damping with friction ζ and a traction force T.

By assuming the rest length of the springs to be zero, we enforce a strictly linear response

of the substrate to traction forces. In the absence of traction forces T, periodic boundary

conditions ensure that the lattice returns to its “rest state”, i.e., its undeformed reference

configuration. In this “rest state”, any two neighboring nodes xi and xj ∈ Ni are separated

by their initial distance d0, cf. Eq. (A3).

c. Understretched substrate model. For our second approach, we start with the

force-deflection relationship (Hooke’s law) of a spring that has a finite rest length l0. This

spring connects two neighboring nodes xi and xj ∈ Ni:

Fij = k
[
‖xj − xi‖ − l0

] xj − xi
‖xj − xi‖

. (A43)
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By setting the rest length to zero, l0 → 0, one would recover Eq. (A42). In the following,

however, we assume that the spring rest length is given by the initial distance between any

two neighboring nodes, l0 = d0, cf. Eq. (A3). To proceed, we express the time-dependent

position of each node, relative to its initial position, via the displacement ui(t):

xi(t) = xi(0) + ui(t) . (A44)

Furthermore, we also introduce the relative displacement of two neighboring nodes,

uij(t) = uj(t)− ui(t) , (A45)

and the unit vector which connects two neighboring nodes in the undeformed reference

configuration,

êij =
xj(0)− xi(0)

d0

. (A46)

For sufficiently small deformation gradients, i.e., an “understretched” spring lattice, we can

then use

‖xj − xi‖2≈ d2
0

[
1 + 2

êij · uij(t)
d0

]
, (A47)

to linearize the force-deflection relationship in terms of the relative node displacements.

Then, we finally obtain the following constitutive relation for the spatio-temporal evolution

of each lattice node [15]:

ζ ∂txi(t) = T(xi, t) + k
∑
xj∈Ni

[
êij · uij(t)

]
êij , (A48)

where each node is subject to a viscous damping with friction ζ and a traction force T.

d. Comparison to continuum linear theory of elasticity. Now, we discuss how our

two lattice spring models of the substrate relate to a description within the continuum linear

theory of elasticity. To that end, we apply a smooth deformation field u(x, t) to an elastic

body, whose infinitesimal strain tensor is given by [16]:

ε =
1

2

[
(∇⊗ u) + (∇⊗ u)T

]
, (A49)

where ⊗ refers to an outer product. The corresponding elastic stress tensor is then given

by [16]:

σel = 2µel ε+ I λel tr ε , (A50)
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where µel refers to the shear modulus (first Lamé parameter), λ is the second Lamé parameter

and I is the identity tensor. Assuming that the elastic body intersperses with a fluid that

is stationary in the laboratory frame, the equation of motion for a parcel of the elastic body

is then given by

ζfl ∂tu(x, t) = f(x, t) + fel(x, t) . (A51)

Here, ζfl is the coefficient of friction between the elastic body and the fluid, f(x, t) is a driving

force density, and fel(x, t) = ∇ · σel is the elastic body force:

fel(x, t) = µel

[
∆u(x, t)

]
+ (λel + µel)∇

[
∇ · u(x, t)

]
. (A52)

The first term and the second term of Eq. (A51) are analogous to their counterparts in

Eqs. (A42) and (A48), save for a difference in units between the variables. This difference

arises from comparing a continuum theory to discrete theories (i.e., force density per surface

area versus node force at a discrete point). What remains is to compare the terms repre-

senting an elastic coupling between different regions of the deforming body. To that end, we

expand the relative node displacements uij = uj − ui between any two neighboring nodes

xi and xj ∈ Ni in terms of the smooth deformation field:

uij =
∑

n∈{x,y}
∂nu d0 ê

n
ij +

1

2

∑
n,m∈{x,y}

∂n∂mu d2
0 ê

n
ij ê

m
ij . (A53)

Here, n and m represent Cartesian indices, and d0 corresponds to the distance between two

neighboring nodes in the undeformed reference configuration. Furthermore, êij ≡ (êxij, ê
y
ij)

refers to the unit vector that connects two neighboring nodes in the undeformed reference

configuration, cf. Eq. (A46). To transform node forces into an effective surface force density,

we use the typical size of a hexagonal tile, a0 = d2
0

√
3/2. In the continuum limit, d0 → 0,

we find that the elastic coupling in Eq. (A42) corresponds to a vector Laplacian of the

deformation field,
1

a0

∑
xi∈Ni

[
xj − xi

]
=

1

a0

∑
xi∈Ni

uij ≈
√

3 ∆u . (A54)

Thus, the “overstretched” model represents an elastic sheet with shear modulus µel =
√

3 k

and λel = −µel, corresponding to a Poisson ration of ν2D = −1. In contrast, the elastic

coupling in Eq. (A48) gives a more complicated expression in the continuum limit,

1

a0

∑
xi∈Ni

[
êij · uij(t)

]
êij ≈

√
3

4

[
∆u + ∇(∇ · u)

]
. (A55)
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Thus, the “understretched” model represents an elastic sheet with shear modulus µel =

(
√

3/4) k and λel = µel, corresponding to a Poisson ratio of ν2D = 1/3. This simple analysis

suggests that one can tune both the effective Poisson ratio and the effective shear modulus of

a spring network, via a homogeneous stretching (increase d0 relative to the spring rest length

l0) or compression (decrease d0 relative to the spring rest length l0) of the mesh. Then, the

resulting effective model would become a linear superposition of Eqs. (A42) and (A48). In

particular, we expect that under homogeneous stretch, the network stiffens and that, at the

same time, the effective Poisson ratio can become negative, indicating an auxetic material.

In contrast, we expect that under homogeneous compression, the network softens and that

it, at the same, gradually becomes incompressible.

e. The substrate does not need to be a compressible material. Surprisingly, both

the “overstretched” and the “understretched” model yield very similar cell phenomenology in

our simulations, see Fig. S3. Both of these models consider a compressible two-dimensional

substrate, i.e., a material with Poisson’s ratio ν < 1/2. Furthermore, as discussed in the

main text, we find that the dynamics of the cell is significantly coupled to compression and

dilatation of the substrate. Thus, one may wonder whether our results are also valid if one

considers cell migration on an incompressible three-dimensional material, i.e. on a material

with Poisson ratio ν = 1/2. In the following, we show that two-dimensional compression or

dilatation of the surface takes place even if the bulk of the material is incompressible. To

that end, we consider a linearly elastic half space that is bounded at one side by a plane.

This plane acts as the elastic substrate for cell migration. In Ref. [16], a solution for the

surface deformation field of such a body, in response to a point force F δ(x), was derived. For

an incompressible substrate, ν = 1/2, and zero normal force, Fz = 0, the solution reads [16]:

ux(x, y, 0) =
1

µel

1

4πr

[
Fx +

x

r2
(xFx + yFy)

]
(A56a)

uy(x, y, 0) =
1

µel

1

4πr

[
Fy +

y

r2
(xFx + yFy)

]
(A56b)

uz(x, y, 0) = 0 . (A56c)

Thus, a linearly elastic incompressible half space admits surface compression and dilatation:

∇ · u = − 1

µel

xFx + yFy
4πr3

6= 0 . (A57)

Preprintofsubm
itted

m
anuscript

III.2 Cell Migration and Shape in Soft Environments

305



20

low polarizability ∆ε = 250 pN nm

1 10

0
0
.5

1

stiffness k [nN/µm]

p
er

si
st

.
τ p

[h
]

1 10

1
2

4
8

stiffness k [nN/µm]

a
sp

ec
t

ra
ti

o

1 10

1
0

1
5

2
0

stiffness k [nN/µm]

sp
ee

d
v

[n
m
/
s]

0.5 1.25 8.75
stiffness k [nN/µm]

friction ζ [s nN/µm]

50 350

A B

C D

high polarizability ∆ε = 500 pN nm

1 10

0
2

4
6

stiffness k [nN/µm]

p
er

si
st

.
τ p

[h
]

1 10

1
2

4
8

stiffness k [nN/µm]

a
sp

ec
t

ra
ti

o

1 10
1
0

2
0

3
0

stiffness k [nN/µm]

sp
ee

d
v

[n
m
/
s]

0.5 1.25 8.75
stiffness k [nN/µm]

friction ζ [s nN/µm]

50 350

E F

G H

FIG. S3. Model dynamics on an “understretched” substrate. There is almost no differ-

ence to the dynamics of cells on an “overstretched” substrate, which we show in Fig. 3 of the

main text. For very small substrate stiffness, the cells that are placed on the less viscous sub-

strate (ζ = 50 s nN µm−1) become rounder again, while the cells on the more viscous substrate

(ζ = 350 s nN µm−1) elongate (leftmost arrows in panels B and F ). This difference to the “over-

stretched” substrate likely has its origin in the different elastic properties of our substrate models.

An “understretched” substrate corresponds to a homogeneous elastic medium with four-fold smaller

shear modulus than an “overstretched” substrate with the same spring coefficient.

We conclude that even an incompressible body can undergo changes in surface area.

5. Simulation parameters

In this section, we briefly discuss our choice of parameters. During the initialization

of our simulations, we “pre-equilibrated” the cell by letting it grow on a non-deformable

substrate for 1000 MCS. This “pre-equilibration” consists of seeding the cell at a single

substrate tile and letting the cell grow until it reaches its final size. To that end, we switched

off cell motility by deactivating the feedback mechanism [section A 3 e “Mechanochemical

feedback”] and setting the polarization field to a fixed value ε= ε0. Finally, we simulated

single cells over the course of 104 Monte Carlo Steps, each divided into an adaptive amount

of substrate update steps. To achieve a cell speed of approximately 20 nm/s, we set the

duration of a single Monte Carlo Step to ∆t= 20 s. As initial distance between adjacent

hexagons, we chose a lattice constant of d0 = 1.41 µm. Hence, a cell that spreads over an
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TABLE S.I. Simulation parameters

Parameter Description Value(s)

General

kBT effective temperature 100 pN µm

∆t temporal discretization 20 s

d0 spatial discretization 1.41 µm

Cell

ε0 average polarization 750 pN µm

∆ε polarization range 500 pN µm

κA area stiffness 0.5 pN/µm3

κP perimeter stiffness 0.75 pN/µm

R intracellular signalling radius 7.07 µm

µ cytoskeletal update rate 18/h

Substrate

k stiffness 0.5 to 10.4 nN/µm

ζ viscous friction 5 to 350 s nN/µm

area of 400 µm2 will consist of roughly 2.3× 102 hexagons. The substrate in our simulations

is 283 µm long and 245 µm wide, with periodic boundary conditions.

The lower bound on the polarization field, ε0 − ∆ε/2, and the upper bound on the

polarization field, ε0 + ∆ε/2, represent the ability of the cell to adhere to the substrate

and to exert protrusive forces on the cell membrane. Thus, the cell polarization field also

models the ability of the cell to generate traction on the substrate, cf. Eq. (A30). Human

umbilical vein endothelial cells were measured to exert physiological traction stresses up to

600 Pa [17]. Furthermore, on average, similar traction stresses were measured in Ref. [18] for

NIH 3T3 fibroblasts on a two-dimensional substrate (reaching up to several kPa), and for

MDA-MB-231 cells in a three-dimensional environment [19]. To obtain sensible values for the

traction forces, we set the average polarization field to ε= 750 pN µm and the polarizability to

∆ε= 500 pN µm. Specifically, given that the typical size of a substrate tile is a0 = d2
0

√
3/2 =

1.73 µm2, cf. Table S.I, the typical traction stresses in our simulation, (ε/d0)/a0, range from
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200 Pa to 400 Pa. To obtain a cell size of approximately 400 µm2 [20], for the area stiffness we

chose a value of κA = 0.5 pN/µm3. To allow for significant fluctuations of the cell membrane

and for a polarization of the cell, we chose a perimeter stiffness of κP = 0.75 pN/µm. For

the same reason, we also chose an effective temperature that is much larger than room

temperature: kBT = 100 pN µm. For the remaining parameters, we set the signalling radius

to R = 7.07 µm and the polarization update rate to µ= 18/h.

We studied the substrate stiffness in the range of 0.5 nN/µm to 10.4 nN/µm. For an

“understretched” substrate with a thickness of 1.41 µm, this range of spring stiffnesses can be

related to an effective elastic modulus ranging from 0.15 kPa to 3.18 kPa. Finally, we studied

the influence of the viscous friction of the substrate on the cell behavior within a range of

5 s nN/µm to 350 s nN/µm. For each set of parameters, we performed 100 independent

simulations.

6. Measurement of observables

a. Cell coordinates. The geometric center of the cell body is given by

xc(t) =

∑
xi∈D a(xi, t) xi(t)∑

xi∈D a(xi, t)
. (A58)

Analogously, we determine the “center of adhesion” by weighting each tile xi with the value

of its polarization field ε(xi):

xp(t) =

∑
xi∈D ε(xi, t) xi(t)∑

xi∈D ε(xi, t)
. (A59)

b. Cell velocity. The cell velocity is given by the displacement vector of the geometric

center of the cell over the course of one Monte Carlo step, ∆t= 20 s:

v(t) = ∂txc(t) =
xc(t+ ∆t)− xc(t)

∆t
. (A60)

c. Cell polarization vector. We define “cell polarization” as the ability of the cell to

choose a leading edge and a trailing edge, and thus its subsequent direction of migration.

Furthermore, the cell will always migrate towards regions where the polarization field has a

high value, i.e. where the cell adheres more strongly to the substrate and generates higher

protrusive forces. Thus, “cell polarization” is concomitant with a shift of the “center of
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adhesion”, xp(t), relative to the geometric center of the cell, xc(t), towards the leading edge

of the cell:

p(t) = xp − xc . (A61)

In the following, we refer to this quantity as the “cell polarization vector”.

d. Cell adhesion gradient. We expect that the stochastic motion of the cell will grad-

ually minimize the total energy Hcont +Hcyto, cf. Eqs. (A23) and (A26). On average, the

energy associated with the shape of the cell, Hcont, is invariant since area and perimeter

of the cell are constant over time. The corresponding contractile forces are distributed ho-

mogeneously throughout the cell, as discussed in section A 3 b “Contractility of the cellular

membrane and cortex”. In contrast, the energy associated with the polarization field, Hcyto,

is highly dynamic and subject to feedback loops that break detailed balance, as discussed

in section A 3 e “Mechanochemical feedback”. Thus, cell motion is ultimately driven by the

energy associated with the polarization field, cf. Eq. (A26), which we can reformulate as a

surface integral over the domain D of the cell

Hcyto = −
∫
D
d2x ε(x, t) ρ(x, t) . (A62)

Here, ρ(x, t) = 1/a(x, t) measures the local surface density of the substrate, i.e. nodes

that the cell can adhere to. Furthermore, ε(x, t) refers to the local polarization field, i.e.

a local effective adhesion energy per substrate tile. Thus, we conclude that the cell follows

gradients of an effective chemical potential, which results in an effective motile force density

∇[ε(x, t) ρ(x, t)]. Intuitively, one may liken this motile force density to an “adhesion gradi-

ent”. Consequently, we use Gauss’ theorem to define the observable “adhesion gradient”:

g =
1

A

∮
ds n̂ ε(x, t) ρ(x, t) , (A63)

where A refers to the area of the cell, ds is a line element along the boundary of the cell,

and n̂ is the unit normal vector perpendicular to the cell boundary. Within our discretized

description of the cell, the “adhesion gradient” is thus given by a sum over all elements

(Ei)k ∈M that line the cell boundary:

g =

∑
(Ei)k∈M ‖(Ei)k‖n[(Ei)k] ε(xi, t) ρ(xi, t)∑

xi∈D a(xi, t)
. (A64)

where n[(Ei)k] = ∆xpro[(Ei)k]/‖∆xpro[(Ei)k]‖ refers to the unit normal vector of the cell

boundary, cf. Eq. (A17).
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e. Cell shape. To determine the aspect ratio of the cell, we perform a principal com-

ponents analysis of the cell-substrate contact area. Specifically, we consider the covariance

matrix of the point cloud that represents the domain of the cell:

Cov(D) =

∑
xi∈D a(xi) (xi − xc)⊗ (xi − xc)∑

xi∈D a(xi)
, (A65)

where ⊗ refers to an outer product and xc is the geometric center of the cell. Then, the

short and long axis of the cell are given by the two eigenvectors n± of the covariance matrix

Cov(D), which correspond to a smaller and a larger eigenvalue λ2
±, respectively:

Cov(D) n± = λ2
± n± . (A66)

The two eigenvalues of the covariance matrix, λ2
±, measure the variance of the point distri-

butions along the two principal axes of the cell. Thus, the aspect ratio of the cell is given

by λ+/λ−.

f. Measuring two-dimensional spatial profiles in the co-moving frame. We de-

fine the co-moving frame of the cell as follows: its origin lies at the geometric center of the

cell, and we parameterize it in polar coordinates relative to the direction of the effective

“adhesion gradient” of the cell, g. In the co-moving frame of the cell, the coordinates of

some position on the substrate are then defined by (r̃, θ̃)≡ x̃ = x−xc. To obtain the spatial

profile of the typical substrate density field around the cell, we perform a radial and angular

binning:

ρ(r, θ) =

〈
a0

a(xi)

〉
x̃i≈(r,±θ)

. (A67)

Analogously, we also perform a radial and angular binning to find the probability of encoun-

tering an occupied substrate tile at a given position,

Prob(r, θ) =

∑
x̃i≈(r,±θ) Θ(ε(xi)− q)∑

x̃i≈(r,±θ) 1
, (A68)

where Θ is the Heaviside step function. Finally, the spatial profile of the typical polarization

field around the cell center is also obtained by radial and angular binning:

ε̃(r, θ) =
〈
ε(xi)

〉
x̃i≈(r,±θ) . (A69)

Here, however, we must be aware that we have averaged over both occupied and free sub-

strate tiles, although the polarization field is only defined on occupied tiles. Therefore, we
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correct the spatial profile of the polarization field, by accounting for the probability of a

substrate tile being occupied:

ε(r, θ) =
ε̃(r, θ)

Prob(r, θ)
. (A70)
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Appendix B: Supplemental discussion

In our model, the cell can exhibit different migratory states, depending on the mechan-

ical properties of the substrate: running, rounding and elongation. Complementary to the

discussion in the main text, in the sections below we provide a more extensive explanation

of the phenomenology.

1. Persistence time of directed migration

The persistence time of directed migration, τp, represents the typical time over which the

cell decorrelates (in other words reorients) the direction in which it migrates. In Ref. [2], it

was shown that the migration of a polarized cell in the Cellular Potts model [1, 2] can be

described with a persistent random walk model. Specifically, the mean squared displacement

of the cell, 〈
R(τ)2

〉
=
〈
‖xc(t+ τ)− xc(t)‖2

〉
, (B1)

shows that the cell moves ballistically on short timescales and diffusively on long timescales.

Here, the angular brackets 〈. . . 〉 denote an average over the simulation time t and over 100

independent simulations. To obtain a numerical value for the persistence time of directed

migration, τp, which measures the typical time of crossover from ballistic to diffusive motion,

we fit the mean squared displacement with a persistent random walk model [21, 22]:〈
R(τ)2

〉
= 2v2τ 2

p

[
τ/τp + e−τ/τp − 1

]
. (B2)

For this fitting procedure, we use the Nelder-Mead method with two fit parameters, v

and τp, as implemented in the python package “lmfit” [23]. As another hallmark of a

persistent random walk, the velocity autocorrelation function of the cell decays exponentially

on sufficiently long timescales. This exponential decay also captures the persistence time of

directed migration of the cell. In addition, as we discuss below, there are several measures

that can be used to describe the behavior of the cell in our simulations.

a. Velocity autocorrelation function. First, we further investigate the normalized

velocity autocorrelation function (VACF), which is defined by

Cv(τ) =

〈
v(t+ τ)

‖v(t+ τ)‖ ·
v(t)

‖v(t)‖

〉
. (B3)
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FIG. S4. Correlation functions and measurement of persistence time of directed mi-

gration. (A) Exemplary correlation functions of a cell that migrates on a stiff substrate,

k= 5 nN/µm, with low viscous friction ζ = 50 s nN/µm. The normalized velocity autocorrelation

function (VACF), Cv, exhibits a sharp drop at t= 0, followed by a bi-exponential decay with a

short and a long timescale. The sharp drop at t= 0 can be attributed to the “randomness” in the

protrusion and retraction process (noise). In the normalized polarization vector autocorrelation

function (PACF), Cp, noise is integrated out, and only the bi-exponential decay remains. The nor-

malized gradient autocorrelation function (GACF), Cg, which measures the actual reorientation

of the gradient of the polarization field, shows a mono-exponential decay (all shorter timescales

are integrated out). (B-D) For all measured parameter sets, the timescales obtained by fitting the

mean-squared displacement (MSD) to a persistent random walk model coincide with the (long)

timescales of the VACF (panel B), the PACF (panel C ) and the GACF (panel D). Thus, these are

all equivalent measures for the persistence time of directed migration of the cell.

Here, the angular brackets 〈. . . 〉 denote an average over the simulation time t and over 100

independent simulations. Empirically, we find that the normalized velocity autocorrelation

function is well described by a bi-exponentional decay [Fig. S4A]:

Cv(τ) = a e−τ/τ
v−
p + b e−τ/τ

v+
p + (1− a− b) δt,0 , (B4)

which we fit to our simulated data using the Nelder-Mead method and four fit parameters,

τ v+
p >τ v−p and b> a. The spike at t = 0 captures the rapid drop of the velocity autocorrela-

tion function, Cv, from its initial value of 1 to a significantly smaller value of a + b, in the
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very first time step. This initial drop comes from the stochasticity of our simulations, where

protrusions and retractions are random events that are biased by the local polarization field,

ε. In the following, we extract the information that the magnitude of this drop, which we

refer to as “noise strength”, contains about the cell dynamics in our simulations.

b. Cell speed and the stochasticity of events. Before we proceed, we remind that

the cell is more likely to protrude in regions that have a high value of the polarization field, ε,

and is more likely to retract in regions with a low value of the polarization field. Therefore,

we interpret the polarization field as an effective “adhesion energy” per individual substrate

tile. We then measure the “adhesion gradient” of a cell, g = 〈∇(ρ ε)〉, as discussed in

detail in sections A 6 c “Cell polarization vector” and B 1 d “Orientation autocorrelation

function”. This “adhesion gradient” indicates the direction in which more protrusion events

occur than retraction events.

On sufficiently long timescales (i.e., when many protrusion and retraction events occur),

this bias becomes visible in a net translocation of the cell. Then, the cell shows a persistent

random walk and a (bi-)exponentially decaying velocity autocorrelation function [Fig. S4A].

Therefore, we observe a long (dominant) timescale τ v+
p that coincides with the persistence

time of directed migration τp [Fig. S4B], and determines the long-term cell behavior. How-

ever, on short timescales, it becomes difficult to discern whether individual events are truly

biased or, instead, actually random. Thus, we identify the initial drop in the velocity au-

tocorrelation function, 1 − a − b, as an effective “noise strength”. This “noise strength”

can be increased by either (a) decreasing the bias conferred by the polarization field, ε, or

(b) increasing the effective temperature kBT in our simulations, see Eq. (A21). A stronger

random contribution to the processes of protrusion and retraction then directly leads to a

broader cell velocity distribution around the effective adhesion gradient and thus to a lower

cell speed.

One can illustrate these effects as follows: Consider a cell that has a pronounced profile

in the polarization field, which acts as an effective adhesion energy per substrate tile. Then,

in the low temperature limit (β→∞), the cell will always protrude at the location of the

highest effective adhesion energy density and always retract at the location of the lowest

effective adhesion energy density, thus leading to a narrow cell velocity distribution. In this

case, because each individual protrusion and retraction event displaces the cell in the same
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FIG. S5. Stochasticity of the protrusion and retraction processes in our simulations.

(A) The cell speed decreases with increasing “noise strength”, which encodes the stochasticity of

the protrusion and retraction processes. We determine this “noise strength” from Eq. (B4). (B)

A smaller “noise strength” corresponds to a narrower distribution of the cell velocities around

the effective adhesion gradient of the cell. Filled symbols correspond to a low polarizability of

the cell, ∆ε = 250 pN µm, while empty symbols correspond to a high polarizability of the cell,

∆ε = 500 pN µm. We find that all measurement points lie on the same curve.

direction and the total number of such events per Monte Carlo Step is limited, one observes

a high cell translocation speed. Conversely, in the high temperature limit (β→ 0), cell

protrusions and retractions are completely unaffected by the spatial profile of the polarization

field, leading to a uniform cell velocity distribution. In this case, because all individual

protrusion and retraction events displace the cell in different directions and the total number

of such events per Monte Carlo Step is limited, one observes a negligible cell translocation

speed.

We conclude that the cell will migrate faster if one increases the bias for individual

protrusion and retraction events to align with the effective adhesion gradient of the cell.

One can measure this alignment via the width of the (symmetric) velocity distribution,

around the direction of the effective adhesion gradient of the cell. Alternatively, one can

also determine the overall randomness of the protrusion and retraction processes (“noise

strength”), from Eq. (B4). For both measurements, we consistently find that the cell speed

increases for narrower cell velocity distributions and for smaller “noise strength” [Fig. S5].

Thus, we find that the VACF contains valuable information about the dynamics of the cell.

In general, however, a robust measurement of the current orientation of the cell requires

an observable that is less sensitive to noise. Thus, we next set out to measure the current

polarization of the cell.

Preprintofsubm
itted

m
anuscript

III.2 Cell Migration and Shape in Soft Environments

315



30

c. Polarization autocorrelation function. So far, we have discussed the mean-

squared displacement and the normalized velocity autocorrelation function of the cell. We

have found that the normalized velocity autocorrelation function is very sensitive to noise,

because it is tightly connected to the stochastic protrusion and retraction dynamics of the

cell. To gain further insights into the process of cell repolarization, we now turn towards the

dynamics of the polarization field. As discussed in section A 6 c “Cell polarization vector”,

we define a vector quantity that always points from the geometric center of the cell towards

its “center of adhesion”,

p(t) = xp − xc , (B5)

which we refer to as “cell polarization vector”. The cell polarization vector is always oriented

towards that side of the cell which has larger values of the polarization field ε. Furthermore,

we remind that regions of the cell that have high values of the polarization field ε favor

protrusive activity, while retractions occur most frequently in regions with low values of the

polarization field. Thus, the “cell polarization vector” determines the cell’s future direction

of motion and its leading (protruding) edge. We measure the gradual reorientation of the

cell polarization vector by computing the normalized polarization vector autocorrelation

function (PACF):

Cp(τ) =

〈
p(t+ τ)

‖p(t+ τ)‖ ·
p(t)

‖p(t)‖

〉
. (B6)

Here, the angular brackets 〈. . . 〉 denote an average over the simulation time t and over 100

independent simulations. In contrast to the normalized velocity autocorrelation function,

Cv, we do not observe a sharp drop at t = 0 in the normalized polarization vector autocorre-

lation function [Fig. S4A]. In addition, similarly to the normalized velocity autocorrelation

function, we observe that the normalized polarization vector autocorrelation function, Cp,

also exhibits a bi-exponential decay [Fig. S4A]:

Cp(τ) = a e−τ/τ
p−
p + (1− a) e−τ/τ

p+
p , (B7)

which we fit to our simulated data using the Nelder-Mead method and three fit parameters,

τ p+p >τ p−p and a. We now further illustrate the twofold relationship between the polarization

vector p and the velocity vector v, and their respective normalized autocorrelation functions

Cp and Cv. On the one hand, the polarization vector p determines the future direction in

which the cell will migrate. In particular, as discussed above, the cell will typically move its
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FIG. S6. Polarization vector autocorrelation function and its short timescale dynamics.

(A) Semi-logarithmic plot of several exemplary polarization vector autocorrelation functions for

different substrate stiffness (as indicated by the legend). At short timescales, τ < 0.1 h, all correla-

tion functions decay identically. (B) The short timescale of the polarization vector autocorrelation

function (PACF), τp−p , corresponds to the typical timescale of cytoskeletal reorganization (dashed

line). Consequently, the short timescale τp−p is independent of the persistence time of directed

migration, τp, for different values of substrate stiffness and viscous friction (as indicated by the

legend).

geometric center towards its “center of adhesion”. In addition to this bias due to the spatial

distribution of the polarization field ε, each individual protrusion and retraction event is a

stochastic process. These stochastic events serve as a source of noise for the instantaneous

velocity vector v, cf. section B 1 a “Velocity autocorrelation function” and Eq. (A21). On

the other hand, the instantaneous velocity of the cell affects the polarization field ε and

the corresponding polarization vector p via a dynamic feedback. Specifically, individual

protrusion and retraction events induce signaling cascades that lead to a reorganization of the

cell cytoskeleton (i.e., the landscape of the polarization field) on a typical timescale of 1/µ ∼
0.06 h, cf. section A 3 e “Mechanochemical feedback”. We summarize these interactions

graphically as follows:

p v noise

bias

feedback

This allows us to rationalize the origin of the two different timescales, τ p−p and τ p+p , as

follows. First, suppose that we decouple the instantaneous cell velocity v from the cell po-
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larization vector p by removing the “bias” for migration, while keeping the “noise” and the

“feedback” mechanisms intact. Then, the polarization vector p will follow the instantaneous

cell velocity v with a typical timescale (i.e., memory) of 1/µ ∼ 0.06 h. In particular, the

timescale 1/µ represents a lower bound for the time that is required to reorganize the cell

cytoskeleton, cf. section A 3 e “Mechanochemical feedback”. In good agreement with this

reasoning, we find that the short timescale corresponds to the timescale of cytoskeletal re-

organization, τ p−p ≈ 1/µ, for all persistently migrating cells [Fig. S6]. Finally, (re)activating

the “bias” for migration will couple the instantaneous cell velocity v to the cell polarization

vector p by introducing a memory. Then, the interplay between the strength of the “bias”,

the strength of the “noise”, and the memory will lead to the emergence of a second timescale

that reflects the persistence time of directed migration of the cell τ p+p = τp [Fig. S4C]. If

one gradually increases the “bias” or decreases the “noise”, then the trajectory of the cell

will gradually approach a straight line and the persistence time of directed migration will

grow. In contrast, by decreasing the “bias” or increasing the “noise”, one can reduce the

persistence time of directed migration until it becomes indistinguishable from the (short)

timescale of cytoskeletal reorganization, τ p−p ≈ 1/µ. Thus, the timescale separation in the

bi-exponential fit fails for very small persistence times, resulting in a large spread of the

fitted values for the short timescale [Fig. S6B].

d. Orientation autocorrelation function. So far, we have investigated the dynamics

of the polarization field via the cell polarization vector p, which corresponds to the dis-

tance vector between the geometric center of the cell and the cell’s “center of adhesion”, cf.

sections A 6 c “Cell polarization vector” and B 1 c “Polarization autocorrelation function”.

Thus, the cell polarization vector p is affected both by changes in the geometric center

of the cell and by changes in the “center of adhesion” of the cell. Furthermore, we have

seen that the polarization vector p, which determines the future direction of migration of

the cell, exhibits two characteristic timescales τ p−p and τ p+p , cf. section B 1 c “Polariza-

tion autocorrelation function”. The short timescale, τ p−p , corresponds to the timescale of

cytoskeletal reorganization. The long timescale, τ p+p , faithfully captures the macroscopic

migratory behavior of the cell, i.e., its persistence time of directed migration [Fig. S4C]. In

the following, we discuss how one can robustly determine the instantaneous geometric orien-

tation of the cell, which requires a measure that only exhibits the long timescale τ p+p while
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integrating out the short timescale τ p−p . To do so, we can choose between several different

procedures: (a) perform a sliding window average of the cell polarization vector p, (b) track

both principal axes of the cell via a principal components analysis [cf. section A 6 e “Cell

shape”], or, as we see below, (c) determine the average gradient of the polarization field

as a proxy for cell orientation. Our basic idea is that the average (macroscopic) gradient

of the polarization field is tightly coupled to the cell orientation, and should move affinely

with the cell geometry. In contrast, the microscopic intracellular dynamics are much faster

than the macroscopic motion of the cell. We expect that the microscopic “noise” in the

form of stochastic protrusions and retractions, which induces a short-timescale decay in the

polarization vector autocorrelation function [cf. section B 1 c “Polarization autocorrelation

function”], does not significantly affect the average gradient of the polarization field.

Thus, to measure the instantaneous orientation of the cell, we compute the average

“adhesion gradient”, 〈∇(ρ ε)〉, by making use of Gauss’ theorem [section A 6 d “Cell adhesion

gradient”]:

g =
1

A

∮
ds n̂ [ε(x, t) ρ(x, t)] . (B8)

Here, ε(x, t) refers to the local polarization field, i.e., a local effective adhesion energy per

substrate tile, and ρ(x, t) refers to the local substrate density. To verify whether the “adhe-

sion gradient” exhibits only one timescale corresponding to the persistence time of directed

migration, we compute the normalized gradient autocorrelation function (GACF) as follows:

Cg(τ) =

〈
g(t+ τ)

‖g(t+ τ)‖ ·
g(t)

‖g(t)‖

〉
. (B9)

Here, the angular brackets 〈. . . 〉 denote an average over the simulation time t and over 100

independent simulations. Empirically, we find that the normalized gradient autocorrelation

function is well described by an exponentional decay [Fig. S4A]:

Cg(τ) = e−τ/τ
g
p , (B10)

which we fit to our simulated data using the Nelder-Mead method and one fit parameter,

τ gp . As expected, we find that the typical time that is required for a reorientation of the

“adhesion gradient” corresponds to the timescale of persistent cell migration [Fig. S4D]. Note

that this approach for measuring cell orientation is limited to polarized cells. To measure

the orientation of unpolarized cells, one must rely on a principal components analysis [cf.

section A 6 e “Cell shape”], which, however, requires elongated cells.
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To summarize, we have shown that the long-term behavior of the cell (i.e., its persistence

time of directed migration) can be determined from the mean-squared displacement of the

cell, the velocity autocorrelation function, polarization autocorrelation function, or the gra-

dient autocorrelation function alike. Each approach gives quantitatively identical results in

a consistent way [Fig. S4B-D]. Cell orientation can be robustly measured via the “adhesion

gradient” [section A 6 d “Cell adhesion gradient”] or via a principal components analysis of

the cell shape [section A 6 e “Cell shape”].

2. Cell Trapping

In this section, we briefly discuss which conditions the mechanical properties of the sub-

strate have to meet, so that the cell stops performing a persistent random walk and becomes

self-trapped. For quickly responding substrates, e.g., low substrate viscous friction, the nor-

malized velocity autocorrelation function (VACF) oscillates if the substrate stiffness falls

below a threshold value of k? = 1.58 nN/µm [Fig. S7A]. Then, the mean-squared displace-

ment of the cell also deviates from that of a persistent random walk model [Fig. S7B], and

a typical persistence time of directed cell migration cannot be determined anymore. We

identify this behavior, which leads to a decrease in overall cell motility, as cell trapping, or

as cell rounding because of the corresponding cell shape.

To test our computational results, we measured the cell trajectories of wild-type HUVECs

plated on polyacrylamide gels, as described in the Methods section of the main text. We

have already seen in the main text that HUVECs move faster if their substrate is stiffer, in

qualitative agreement with our model. We complement this by plotting the cell trajectories

in Fig. S7E, which also show that cells are more motile on stiffer substrates. Furthermore, as

Fig. S7C shows, there are anti-correlations in the VACF for E <E?≈ 7 kPa, which indicates

cell trapping.

3. Cell Elongation on Soft Substrates Does Not Depend on Cell Polarizability

We have seen that cells can elongate drastically on very soft substrates that have a small

value of viscous friction [cf. Fig. 3B,F in the main text and Fig. S3B,F]. This observation can

be explained in the following way: Due to the inhibition of the positive feedback mechanism,
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model: high polarizability ∆ε = 500 pN µm
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FIG. S7. Persistent cell motion and self-trapping. (A) Velocity autocorrelation func-

tion (VACF) of simulated cells, for different substrate stiffness (indicated by the legend). For

k <k? = 1.58 nN/µm, we observe oscillations in the VACF. The frequency of these oscillations in-

creases with substrate stiffness, k. (B) Mean-squared displacement, corresponding to the VACF

shown in panel A. For k <k? = 1.58 nN/µm we observe a saturation of the mean-squared displace-

ment. Panels A and B strongly indicate cell trapping, where cells switch from the running to the

rounding state. (C) Velocity autocorrelation function (VACF) of wild-type HUVECs plated on

polyacrylamide gels of different stiffness (indicated by the legend). For E<E?≈ 7 kPa, we observe

anti-correlations in the VACF (Cv < 0). Note: We excluded the data point at 0.2 kPa, because

the cells dramatically changed their mode of migration and ceased to form lamellipodia. Specif-

ically, we observed that cells now migrated preferably along their long axis. (D) Mean-squared

displacement of wild-type HUVECs plated on polyacrylamide gels, corresponding to the VACF

shown in C. (E) Cell trajectories in the experiments. Substrate stiffness is indicated at the bottom

of the panels. Number of measured trajectories NT and measured data points NP are indicated by

(NT |NP ) at the top of the panels. Color code corresponds to the elapsed time in the respective

trajectory (colorbar).

the cell is unpolarized. Hence, its behavior is dominated by the substrate density profile

alone, and is indeed the same for cells of a wide range of different polarizabilities ∆ε [Fig. S8],
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intermediate friction ζ = 50 s pN µm−1
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FIG. S8. Cell extension. The elongation state, which is characterized by (A) low cell speed and

(B) strong cell elongation, is independent of the cell polarizability ∆ε. The color code represents

the current elapsed time of a given cell trajectory in the simulation (color bar).

but identical average traction force. This particular substrate density profile is characterized

by an increased substrate density at the short sides of the cell compared to the long sides

of the cell. Hence, the cell has an increased protrusion activity at its short sides and

subsequently stretches, as it tries to occupy areas of high substrate density. These effects

do not depend on the polarizability of the cell, as the cell remains unpolarized.
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IV Cell Organization and
Morphogenesis

IV.1 Collective Cell Migration Affects
Morphogenesis

In Chapter II “Between Protein Patterns and Mechanics”, we have first focused
on processes related to intracellular organization and pattern formation.
Then, in Chapter III “From Cellular Dynamics to Self-Organization”, we have
switched gears a first time to focus on cell migration and the organization of
cells. Now, we switch gears a second time and put the spotlight on a conse-
quence of cellular organization: the morphogenesis of mammary glands. We
refer to pages 341–362 for a reprint of the main text and to pages 363–394 for
the Supplementary Material. The following serves as an introduction into the
project and a summary of its main results, for the convenience of the reader.

Research Contribution. For this project, I developed the theory. In partic-
ular, I explained why the trace of the tension tensor is constant in the experi-
ments of our collaborators, and then performed the linear stability analysis for
the tube shape. Furthermore, I identified new and related research questions, as
discussed in Section IV.2 “Between Morphogenesis and Hydrodynamic Flows”.

Anote about the notation. Weuse 𝑌s for the Young’smodulus of the collagen
cage instead of 𝐸cage, because 𝑬 is reserved for the nonlinear strain tensor in this
thesis.

IV.1.1 Starting Point of the Project
General Scope and Relevance. Cellular tissues undergo complex shape
transformations during morphogenesis (Reece et al., 2014). These shape
transformations are driven by the non-equilibrium activity of cells, which
shape the growing tissue through collective motion (Lecaudey and Gilmour,
2006) and the generation of active mechanical stresses (Wozniak and Chen,
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2009; Gross et al., 2017; Crest et al., 2017; Karzbrun et al., 2018; Petridou,
Grigolon, et al., 2019; Münster et al., 2019). In that context, the embryogenesis
of the fruit fly Drosophila melanogaster is a particularly well-studied example,
showing dramatic shape changes during gastrulation (Streichan et al., 2018;
Martin, 2020; Gheisari et al., 2020). Another prime example of morphogenesis
relates to the formation of branched tubular structures in many organs such
as blood vessels (Reece et al., 2014; Carlson, 2019). Some of these tubular
organs form a closed network composed of tubular ducts, such as the blood
circulatory system (Reece et al., 2014; Carlson, 2019; Wang et al., 2017), while
other organs such as the mammary gland have a branched tubular structure
that ends with spherical alveoli (Wang et al., 2017). This structure enables
the mammary gland, for example, to store milk in the spherical alveoli during
lactation (Reece et al., 2014; Carlson, 2019; Inman et al., 2015; Wang et al.,
2017), which the mammal offspring then extracts during feeding. In the case
of mammary glands, the shape transformation from a tubular geometry to
alveoli (alveologenesis), occurs only during the lactation of an adult female
mammal (Inman et al., 2015; Wang et al., 2017). This controlled shape transfor-
mation makes mammary glands an ideal system for studying epithelial gland
morphogenesis (Linnemann et al., 2015; Rios et al., 2019).

Research Question and Hypothesis. To study the dynamics of mammary
gland morphogenesis, we employ a miniaturized and simplified version of the
full organ, grown in a collagen gel inside a Petri dish (Linnemann et al., 2015).
These organoids undergo a shape change from a tubular geometry to spherical
alveoli, analogously to the full organ (Linnemann et al., 2015). Here, we ask:
What is the physical basis of this shape transformation?

IV.1.2 Summary of theMain Results
Many tissues can be described as fluid-like active materials (Petridou, Grigolon,
et al., 2019; Pérez-González et al., 2019; Tetley et al., 2019; He et al., 2014; Maître
et al., 2012). The dynamics of such fluid-like tissues are determined by cortical
cell tension, such as in the development of ducts (Chatterjee et al., 2019; Neu-
mann et al., 2018) or gastrulation (Streichan et al., 2018). The data of our collab-
orators suggest this to also be the case for mammary gland organoids, because
all tubular structures (organoid branches) quickly vanish by retracting towards
the organoid body after enzymatic degradation of the extracellular collagenma-
trix. Therefore, we describe the cellular epithelium, which forms an interface
between a passive fluid in the lumen and a passive elastic solid in the surround-
ings, as an active fluid-like material (Fig. IV.1a). The entire dynamics of the
organoid are then driven by the (contractile) activity of cells.
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The shape transformation from a tubular geometry to a spherical geometry
in a tension-driven fluid reminds of the classical Rayleigh-Plateau instability,
first described for passive isotropic fluids (Lord Rayleigh, 1878). The underlying
mechanism of this shape instability is that surface tension “penalizes” surface
area. Therefore, sufficiently long columns of fluid break up into droplets with
a smaller surface-to-volume ratio. In a cell biological context such as ours, the
column of fluid is typically surrounded by an elastic medium instead of air. In
the experimental setup of our collaborators, the collagen gel is such an elastic
medium. This elastic medium stabilizes the tubular shape as the reference con-
figuration, leading to a competition between surface tension and elastic stresses.
A shape transformation can then only happen if the surface tension overcomes
the elastic stresses. In this context, one typically observes the formation of a
necklace of pearls, hence coining the name of “pearling” instability (Bar-Ziv
and Moses, 1994; Bar-Ziv, Tlusty, et al., 1999; Pullarkat et al., 2006). In the
case of a negative tension, for example due to cell divisions, one can also ob-
serve buckling modes (Hannezo, Prost, et al., 2012; Dong et al., 2014). Because
the organoid branch is under tension, as our collaborators demonstrated with
matrix degradation and laser ablation experiments, we should rather observe a
pearling instability.

But all instabilities that we described so far occur on a global scale: pearling
as a long-wavelength instability and buckling as an instability with a defined
wavelength. In contrast, experiments done by our collaborators demonstrate a
well-defined spatial localization, where only the tips of the organoid branches
transform into alveoli. The key to reconcile theory and experiment lies in the fol-
lowing observation: the shape transformation of tubular ducts to spherical alve-
oli is preceded by an onset of collective cell rotations, around the circumference
of the tubular organoid branch. The existence of these collective rotations indi-
cates that cells show characteristics of polar particles that self-propel through a
motile force, analogous to our Cellular Pottsmodel in Chapter III “From Cellu-
lar Dynamics to Self-Organization”. As a consequence of this polar cell motility,
the epithelium switches from collective oscillatory motion along the organoid
branch axis to collective rotations along the organoid branch circumference, be-
cause the latter is the “least frustrated state”. In this “least frustrated state”, the
cells minimize viscous shear and, at the same time, maintain constant polariza-
tion while migrating on a periodic path around the tube circumference. Such
collective rotations typically also arise when polar matter is confined to circu-
lar geometries in two dimensions (Doxzen et al., 2013; Segerer et al., 2015; F.
Thüroff et al., 2019), as described in Section III.1 “Collective Cell Dynamics in
Rigid Environments”. Then, howdoes collectivemotion of cells affect tissue shape?
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Figure IV.1: Schematic representation of the organoid branch geometry. a) The
cell population forms a thin tubular shell (gray), whose lumen is filled by
an aqueous solution under hydrostatic pressure 𝑝0. The cellular tube is sur-
rounded by a dense and rigid elastic shell (magenta): a collagen cage that
the cells form via plastic remodeling of the extracellular matrix (Buchmann
et al., 2021). Further away, the cellular tube is surrounded by a soft elastic
medium (blue): the extracellular collagenmatrix. b) Enlarged view of the cell
population at the surface of the organoid branch. We consider each cell as a
contractile force dipole with normalized orientation vector ̂𝒆𝜃. The cell cy-
toskeleton exerts contractile forces on the cell boundary. We decompose the
corresponding cell tension tensor into two contributions: (i) isotropic con-
tractile tension 𝜏0 (black arrows), and (ii) increased contractility (Δ𝜏 > 0) or
decreased contractility (Δ𝜏 < 0) along the axis ̂𝒆𝜃. This figure is adapted from
the reprint (Fernández et al., 2021) on pages 341–394.

Cell reorientation changes the tension field. In addition to being motile,
cells typically show characteristics of anisotropic force dipoles, thus having a
well-defined orientation alongwhich they exert stronger tensile forces (Schwarz
and S. A. Safran, 2002; Bischofs and Schwarz, 2003; Bischofs, S. A. Safran, et al.,
2004; Schwarz and S. A. Safran, 2013). When switching from collective oscil-
latory motion along the organoid branch axis to collective rotations around the
organoid branch circumference, cells must reorient. Through these reorienta-
tions, aswe show in Section IV.1.3 “Technical Summary”, the cells can locally in-
crease circumferential tension at the expense of axial tension, while keeping the
total tension constant. This effect then leads to a localized “budding” instability,
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where spherical alveoli form at the tips of the organoid branches as an indirect
consequence of cell motility. These generic effects, ultimately arising only from
cell anisotropy and cell reorganization, could also play a role for the embryogen-
esis of the fruit flyDrosophilamelanogaster (Streichan et al., 2018; Martin, 2020;
Gheisari et al., 2020) or other organisms (Wozniak and Chen, 2009; Münster et
al., 2019).

IV.1.3 Technical Summary
Cell orientation and contractility lead to anisotropic tension. Now, we ex-
plain in detail how cell orientation affects the tension tensor in a confluent tis-
sue, such as on the surface of an organoid branch (Fig. IV.1b). To that end,
we consider cells as anisotropic force dipoles (Schwarz and S. A. Safran, 2002;
Bischofs and Schwarz, 2003; Bischofs, S. A. Safran, et al., 2004; Schwarz and
S. A. Safran, 2013), where the anisotropy stems from the local orientation of the
cells and their cytoskeleton1. For now, we choose the most general description
of a confluent tissue that lies on an arbitrary two-dimensional surface in a three-
dimensional Cartesian embedding. We use a curvilinear coordinate system, and
the concepts of differential geometry that we have recapitulated in Section I.3
“A Foundation for Patterns in Adapting Organisms”.
We place ourselves into the co-moving reference frame of some small parcel

(infinitesimal surface element) of the confluent tissue, which is spanned by a
local basis𝑻 with the two tangent vectors 𝒕1 ∈ 𝑻 and 𝒕2 ∈ 𝑻. These two tangent
vectors are, in the most general case, not orthonormal; in the special case of a
cylindrical geometry, the tangent vectors are orthogonal but not normalized. We
define the orientation of each cell as a normalized vector that lies parallel to the
surface:

̂𝒆𝜃 ≔∑
𝑖

̂𝑒𝑖𝜃 𝒕𝑖 , with ̂𝒆𝜃 ⋅ ̂𝒆𝜃 = ∑
𝑖,𝑘

̂𝑒𝑖𝜃 ̂𝑒𝑘𝜃 𝑔𝑖𝑘 = 1 , (IV.1)

where we have used the definition of the metric tensor, Eq. (I.18). Due to ori-
entational order in its cytoskeleton, a cell can exhibit increased or decreased
contractility along its axis ̂𝒆𝜃. Therefore, we split the tension tensor of each cell
into two contributions: (i) an isotropic base tension 𝜏0 that preserves rotational
symmetry in our local reference frame, and (ii) an additional anisotropic tension
Δ𝜏 along the direction specified by the vector ̂𝒆𝜃 that breaks rotational symme-
try in our local reference frame. Taken together, wemodel cell contractility with

1 In Eq. (III.4) of Section III.1 “Collective Cell Dynamics in Rigid Environments”, we have con-
structed the tension tensor of a cellular cytoskeleton, with a given angular distribution of
contractile (or extensile) fibers. The tension of the cell will be anisotropic if there is any ori-
entational order in the cytoskeletal fibers.
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the following cellular tension tensor:

𝝉 = 𝜏0 𝑰 + Δ𝜏 ̂𝒆𝜃 ⊗ ̂𝒆𝜃 = 𝜏0 𝑰 + Δ𝜏 ∑
𝑖,𝑘

̂𝑒𝑖𝜃 ̂𝑒𝑘𝜃 𝒕𝑖 ⊗ 𝒕𝑘 . (IV.2)

The cell is an isotropic force dipole if Δ𝜏 = 0, and is an anisotropic force dipole
for any Δ𝜏 ≠ 0.
Before we go on to study the average tension tensor of a population of cells

that have different orientations, we first ask: Does the tension tensor of each in-
dividual cell have any special properties? In fact, as we will see shortly, the trace
of the tension tensor is a constant. To show this, we make use of orthonormal-
ization, as introduced in Paragraph “Basis orthonormalization” (Section I.3.2).
Specifically, we consider a transformation 𝑶 that maps our non-orthonormal
tangent basis 𝑻 to an orthonormal tangent basis, 𝑻⦹ = 𝑻 ⋅ 𝑶, with orthonormal
tangent vectors 𝒕⦹,𝑖 ∈ 𝑻⦹. Then, we express the identity mapping in terms of the
orthonormal tangent vectors, 𝑰 = ∑𝑙 𝒕⦹,𝑙 ⊗ 𝒕⦹,𝑙. Multiplying the tension tensor,
Eq. (IV.2), from left and right with the identity mapping, results in the following
expression:

𝝉 = 𝜏0 𝑰 + Δ𝜏 ∑
𝑖,𝑘,𝑙,𝑚

̂𝑒𝑖𝜃 ̂𝑒𝑘𝜃 (𝒕𝑖 ⋅ 𝒕⦹,𝑙) (𝒕𝑘 ⋅ 𝒕⦹,𝑚) 𝒕⦹,𝑙 ⊗ 𝒕⦹,𝑚

= 𝜏0 𝑰 + Δ𝜏 ∑
𝑖,𝑘,𝑙,𝑚,𝑛,𝑝

̂𝑒𝑖𝜃 ̂𝑒𝑘𝜃 (𝒕𝑖 ⋅ 𝒕𝑛) 𝑂𝑛𝑙 (𝒕𝑘 ⋅ 𝒕𝑝) 𝑂𝑝𝑚 𝒕⦹,𝑙 ⊗ 𝒕⦹,𝑚 . (IV.3)

After taking the trace of the tension tensor, we then find:

tr 𝝉 = 2𝜏0 + Δ𝜏 ∑
𝑖,𝑘,𝑙,𝑛,𝑝

̂𝑒𝑖𝜃 ̂𝑒𝑘𝜃 𝑔𝑖𝑛 𝑔𝑘𝑝𝑂𝑛𝑙 𝑂𝑝𝑙

= 2𝜏0 + Δ𝜏 ∑
𝑖,𝑘,𝑛,𝑝

̂𝑒𝑖𝜃 ̂𝑒𝑘𝜃 𝑔𝑖𝑛 𝑔𝑘𝑝 𝑔−1𝑛𝑝 = 2𝜏0 + Δ𝜏 ∑
𝑖,𝑘

̂𝑒𝑖𝜃 ̂𝑒𝑘𝜃 𝑔𝑖𝑘 , (IV.4)

where we have used the definition of the metric tensor, Eq. (I.18) and Eq. (I.26).
Finally, by comparing Eq. (IV.4) with Eq. (IV.1), we find that the trace of the
cellular tension tensor is constant:

tr 𝝉 = 2𝜏0 + Δ𝜏 , (IV.5)

as we have claimed earlier. Next, we discuss how this property of the cellular
tension tensor carries over to the tension tensor of a confluent tissue.
For this purpose, we now consider a population of cells in which the cells

differ in their orientations ̂𝒆𝜃, but not in their contractile properties 𝜏0 andΔ𝜏. As
an alternative way of representing cell orientation, we define a unique reference
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Example 10: Anisotropic Tension on a Cylindrical Surface

We construct a normalized orientation vector that lies on the surface of a
cylindrical surface as follows:

̂𝒆𝜃 = cos 𝜃
𝒕𝜙
‖𝒕𝜙‖

+ sin 𝜃 𝒕𝑧
‖𝒕𝑧‖

≡ [cos 𝜃sin 𝜃] ,

where 𝒕𝜙 is the circumferential tangent vector and 𝒕𝑧 is the axial tangent
vector. Then, the cellular tension tensor is given by:

𝝉(𝜃) = [𝜏0 + Δ𝜏 cos2 𝜃 Δ𝜏 cos 𝜃 sin 𝜃
Δ𝜏 cos 𝜃 sin 𝜃 𝜏0 + Δ𝜏 sin2 𝜃] ≡ [𝜏𝑧 ⋱

⋱ 𝜏𝜙
] .

angle between the orientation vector and one of the two tangent vectors in our
co-moving reference frame:

𝜃 ≔ cos−1 ( ̂𝒆𝜃 ⋅ 𝒕1
‖𝒕1‖

) × {+1 , for ̂𝒆𝜃 ⋅ 𝒕2 ≥ 0
−1 , for ̂𝒆𝜃 ⋅ 𝒕2 < 0} . (IV.6)

Here, it is the conditional expression in the curly brackets that makes the angle
unique. Then, each cell exerts an anisotropic tension 𝝉(𝜃), which only depends
on the cell orientation angle 𝜃. We statistically represent the occurrence of dif-
ferent cell orientations 𝜃 by the probability density function 𝑃(𝜃), whichwe refer
to as angular distribution of cell orientation. The average tension tensor in the
confluent tissue is then given by the following weighted average:

̄𝝉 = ∫
𝜋

−𝜋
𝑑𝜃 𝑃(𝜃) 𝝉(𝜃) , (IV.7)

in analogy to the cortical tension of a single cell, Eq. (III.4). If there is order in the
cell orientation, for example if all cells are oriented along one of the two tangent
vectors, 𝑃(𝜃) = 𝛿(𝜃), then the average tension in the tissue will be anisotropic.
In contrast, if the cells are oriented randomly, 𝑃(𝜃) = 1/(2𝜋), then the average
tension in the tissue will be isotropic. However, one property of the tension
tensor at the tissue level is independent of the specific angular distribution of
cell orientation, and that is the trace:

tr ̄𝝉 = 2𝜏0 + Δ𝜏 . (IV.8)

Here, we have first inserted the trace of the cellular tension tensor, Eq. (IV.5),
into Eq. (IV.7) and then used that the angular distribution of cell orientation is
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a normalized probability density function. Thus, the total tension in the conflu-
ent tissue, tr ̄𝝉, is independent of the angular distribution of cell orientation. Our
collaborators confirmed this property in experiments, where the sumof the axial
and the circumferential tension remained constant, as discussed in the preprint
on pages 341–394. Therefore, the predominant process underlying the changes
in the tension field is a reorientation of cells and not a change in their tensile
properties 𝜏0 and Δ𝜏. To summarize, we have found that the tissue can make
trade-offs between, for example, axial and circumferential tension through a re-
orientation of cells.
From here on, we do not study the precise distribution of cell orientation. To

simplify our notation, we omit the overline indicating the population average,
𝝉 ≡ ̅𝝉.

Cells perform work when deforming a surface. After seeing how cell ori-
entation can induce and control anisotropic tension at the tissue level, we next
discuss possible consequences for tissue shape. We begin by deriving a general-
ization of the Laplace pressure, and then discuss conceptual differences between
isotropic and anisotropic surface tension. As before, we choose the most gen-
eral description of a confluent tissue that lies on an arbitrary two-dimensional
surface in a three-dimensional Cartesian embedding.
We consider cells as active agents that perform work when they deform the

surface. In the following, we explain in detail how the cells will then induce
stresses on the surface. For this, suppose that the cells have introduced a slight
deformation of the tissue, which we represent via a variation of the (nonlinear)
strain tensor, 𝛿𝑬. As discussed in Paragraph “The strain as a variation of the
metric” (Section I.3.5), introducing strain changes the distances between nearby
material points (in other words, cells). For the tissue to then remain confluent
and not rupture, the strain of individual cellsmustmatch the strain of the tissue.
In turn, individual tensile cells perform work when they deform. Therefore, it
follows that a tissue under tension 𝝉 will also perform work when it deforms:

𝛿𝑊 = −∮𝑑𝑆 𝝉 ∶ 𝛿𝑬 = −∮𝑑𝑆 (∑
𝑖,𝑘
𝜏𝑖𝑘 𝒕𝑖 ⊗ 𝒕𝑘) ∶ (∑

𝑙,𝑚
𝛿𝐸𝑙𝑚 𝒕𝑙 ⊗ 𝒕𝑚)

≔ −∮𝑑𝑆 ∑
𝑖,𝑘,𝑙,𝑚

𝜏𝑖𝑘 𝛿𝐸𝑙𝑚 (𝒕𝑖 ⋅ 𝒕𝑙) (𝒕𝑘 ⋅ 𝒕𝑚) = −∮𝑑𝑆 ∑
𝑖,𝑘,𝑙,𝑚

𝜏𝑖𝑘 𝛿𝐸𝑙𝑚 𝑔𝑖𝑙 𝑔𝑘𝑚 . (IV.9)

Here, we have first defined the double dot product, “∶”, and then used the def-
inition of the metric tensor, Eq. (I.18). Note that, after transforming to a local
orthonormal coordinate system where 𝑔𝑖𝑘 = 𝛿𝑖𝑘, Eq. (IV.9) becomes identical to
an expression given by Landau, Pitaevskii, et al. (1986).
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As an additional a posteriori motivation of Eq. (IV.9), one can also consider
the following thought experiment. First, we “turn off” the cell activity, so that
the cells reach a reference configuration that is in mechanical equilibrium. In
this case, we can use elasticity theory to model the linear response of the cells to
external stresses. Afterwards, we again “turn on” the cell activity. We represent
the out-of-equilibrium characteristics of the cell via a new imaginary reference
configuration, which is slightly distinct from the previous reference configura-
tion. Then, each cell will behave like an (effectively) strained elastic body, and
perform work while approaching this new imaginary reference configuration.
Taking a closer look at the components of the tension tensor, one then finds:

− 𝛿𝑊
𝛿𝐸𝑙𝑚 = ∑

𝑖,𝑘
𝜏𝑖𝑘 𝑔𝑖𝑙 𝑔𝑘𝑚 , and 𝜏𝑖𝑘 = −∑

𝑙,𝑚

𝛿𝑊
𝛿𝐸𝑙𝑚 𝑔−1𝑙𝑖 𝑔−1𝑚𝑘 . (IV.10)

As before, after transforming to a local orthonormal coordinate system where
𝑔𝑖𝑘 = 𝛿𝑖𝑘, one finds that Eq. (IV.10) becomes identical to an expression given
by Landau, Pitaevskii, et al. (1986).

A generalization of Laplace pressure for anisotropic tension. Now, sup-
pose that the surface moves by a small displacement 𝛿𝑢 along its unit normal
vector, due to the contractility of cells. From our discussion in Paragraph “Vari-
ation of the boundary metric” (Section I.3.5), we know that such a normal vari-
ation will introduce a change in the surface strain, see Eq. (I.71):

𝛿𝑬 = −𝑻−𝑇 ⋅ 𝒉 ⋅ 𝒈−1 ⋅ 𝑻𝑇 𝛿𝑢 = −𝑻−𝑇 ⋅ 𝒉 ⋅ 𝑻−1 𝛿𝑢 , (IV.11)

where 𝒉 is the shape tensor of the surface. To proceed, we need to account for
the dual basis𝑻−1. Therefore, we remind on the following representation for the
basis 𝑻 and choose an analogous representation for the dual basis 𝑻−1:

𝑻 = [𝒕1, 𝒕2] , 𝑻𝑇 = [𝒕
𝑇
1
𝒕𝑇2
] , 𝑻−1 = [𝒕

−𝑇
1
𝒕−𝑇2
] , and 𝑻−𝑇 = [𝒕−11 , 𝒕−12 ] . (IV.12)

Analogous to the discussion in Paragraph “Variation of the boundary shape”
(Section I.3.5), we express the scalar product (inner product) through a formal
matrixmultiplication between a rowvector 𝒔𝑇 (1×𝑁matrix) and a columnvector
𝒓 (𝑁×1matrix), 𝒔 ⋅𝒓 ≡ 𝒔𝑇 ⋅ 𝒓. Furthermore, we also represent the tensor product
(outer product) as the formal matrix multiplication between a column vector 𝒔
(𝑁×1matrix) and a row vector 𝒓𝑇 (1×𝑁matrix), 𝒔⊗𝒓 ≡ 𝒔⋅𝒓𝑇 . Whenwe express
vectors via matrices, the symbol “⋅” identifies a matrix multiplication. Because
this trick can cause a clash with the notation of an inner vector product, we
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only use it in two places of the present thesis, and explicitly state where we do
so. With these considerations, we can rewrite Eq. (IV.11) as follows:

𝛿𝑬 = −𝛿𝑢 ∑
𝑖,𝑘
ℎ𝑖𝑘 𝒕−1𝑖 ⊗ 𝒕−1𝑘 . (IV.13)

Thus, inserting Eq. (IV.13) into Eq. (IV.9), we find that the cellular tissue per-
forms the following work when moving the surface by a small displacement 𝛿𝑢
along its unit normal vector:

𝛿𝑊 = ∮𝑑𝑆 ∑
𝑖,𝑘
𝜏𝑖𝑘 ℎ𝑖𝑘 𝛿𝑢 . (IV.14)

Here, we have used 𝒕𝑇𝑖 ⋅ 𝒕−1𝑘 = 𝛿𝑖𝑘, which follows from 𝑻𝑇 ⋅ 𝑻−𝑇 = 𝑰.
Finally, we have found a general expression for the Laplace pressure in the

presence of an anisotropic surface tension:

Δ𝑝𝜏 =
𝛿𝑊
𝛿𝑢 = ∑

𝑖,𝑘
𝜏𝑖𝑘 ℎ𝑖𝑘 . (IV.15)

With this, we conclude: Ananisotropic contractility of cells gives the cellular tissue
additional control over the Laplace pressure, by reorienting cells without changing
their contractile properties. In contrast, in the special case of an isotropic sur-
face tension, 𝝉 = 𝜏0 𝑰, the cellular tissue can only control the Laplace pressure
via the contractile properties of the cells, as we discuss next. We can specialize
Eq. (IV.15) to the case of an isotropic surface tension, but to do so we need to
first determine the corresponding components of the isotropic tension tensor,
𝜏𝑖𝑘. To that end, we express the identity mapping in terms of the orthogonal
tangent vectors,

𝑰 = ∑
𝑖
𝒕⦹,𝑖 ⊗ 𝒕⦹,𝑖 = ∑

𝑖,𝑘
𝑔−1𝑖𝑘 𝒕𝑖 ⊗ 𝒕𝑘 . (IV.16)

Then, we find that the components of the tension tensor are given by 𝜏𝑖𝑘 = 𝜏0 𝑔−1𝑖𝑘
in the case of isotropic surface tension. Only in this special case does the Laplace
pressure take the following well-known form (S. Safran, 2003; D. Nelson et al.,
2004):

Δ𝑝𝜏 = 𝜏0∑
𝑖,𝑘
𝑔−1𝑖𝑘 ℎ𝑖𝑘 = 𝜏0 tr(𝒉 ⋅ 𝒈−1) = 𝜏0𝐻 . (IV.17)

Thus, if there is no anisotropy on a cellular level, then the Laplace pressure can
only be regulated by cell contractility.
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Example 11: Laplace Pressure on a Cylindrical Surface

We consider a rotationally symmetric cylindrical surface with radius 𝑅 ≡
𝑅(𝑧). If the cylindrical surface has an axial tension 𝜏𝑧 and a (possibly dif-
ferent) circumferential tension 𝜏𝜙, then the generalized Laplace pressure
is given by:

Δ𝑝𝜏 = 𝜏𝑧
𝜕2𝑧𝑅

√1 + (𝜕𝑧𝑅)2
3 −

𝜏𝜙
𝑅

1
√1 + (𝜕𝑧𝑅)2

= 𝜏𝑧 𝜅𝑧 + 𝜏𝜙 𝜅𝜙 ,

where 𝜅𝑧 is the axial curvature and 𝜅𝜙 is the circumferential curvature of
the surface. See also Example 10 for the definition of the tension tensor,
and Example 5 on page 32 for a definition of the principal curvatures. One
can envision the (anisotropic) surface tension as a meshwork of ropes.
Each rope is either aligned along the axis or along the circumference of
the cylinder. Axial tension is related to the mechanical work that is re-
quired to increase the (relative) length of the cylinder. Analogously, cir-
cumferential tension is related to the mechanical work that is required to
increase the (relative) circumference of the cylinder.

Linear stability analysis for an organoid branch. Having learned that an
anisotropic cellular tissue can control the Laplace pressure by reorienting cells,
we next investigate how this will affect tissue shape. To that end, we now spe-
cialize our general description to the rotationally symmetric cylindrical geome-
try of an organoid branch, whose surface is located at a distance 𝑅 ≡ 𝑅(𝑧) from
the centerline of the geometry (Fig. IV.1a). We consider rotationally symmetric
deformations of the organoid branch surface, 𝑅 = 𝑅0 + 𝑢, where the deflection
𝑢 ≡ 𝑢(𝑧) is much smaller than the initial radius of the surface, 𝑢 ≪ 𝑅0.
The tubular organoid branch is filled by a passive viscous fluid in the lumen

and enveloped by two passive elastic materials: a thin elastic shell (collagen
cage) and an elasticmedium (extracellular collagenmatrix). At the interface be-
tween these passive materials, cells form an active confluent tissue (Fig. IV.1a).
The anisotropic contractility of cells then confers a generalized Laplace pres-
sure, Eq. (IV.15) and Example 11. This active stress is balanced by dynamic
fluid stress and hydrostatic pressure in the lumen, as well as the elastic stresses
of the thin elastic shell and the elastic medium. In Section IV.2.3 “Nonlinear
Elasticity of the Collagen Cage”, we determine the (nonlinear) elastic stresses
that the elastic shell generates in response to deformations. In comparison, the
elastic stresses that the elastic medium generates in response to deformations
are negligible, because the elastic medium is much softer than the thin elastic
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Figure IV.2: Stress dispersion relation as a function of the mode 𝑞. An onset of
collective rotations (rightwards arrow) leads to cell reorientation and an in-
crease of the circumferential surface tension at the expense of the axial surface
tension. As a result, the stress dispersion relation shifts upwards (upwards ar-
row), leading to a band of unstable modes. The reverse process, a transition
from collective rotations to axial motion (leftwards arrow), can in principle
happen. Then, the tubular shell can stabilize again due to cellular realign-
ment and a reduction of circumferential tension at the benefit of axial tension
(downwards arrow). However, this reverse process is disfavored because col-
lective rotations are the “least frustrated state”. This figure is adapted from
the reprint (Fernández et al., 2021) on pages 341–394.

shell, as discussed in the preprint on pages 341–394. Taking into account these
contributions, the (linearized) balance equation of radial stresses at the surface
of the organoid branch is then given by:

𝜎𝑟𝑟fl = 𝑝0 −
𝜏𝜙

𝑅0 + 𝑢 + 𝜏𝑧 𝜕2𝑧𝑢 − 𝑌s ℎ
𝑢
𝑅20

− 𝑘b [
𝑢
𝑅40

+ 𝜕4𝑧𝑢]

≈ 𝑝0 −
𝜏𝜙
𝑅0

+ [
𝜏𝜙
𝑅20

− 𝑌s ℎ
𝑅20

− 𝑘b
𝑅40

+ 𝜏𝑧 𝜕2𝑧 − 𝑘b 𝜕4𝑧] 𝑢 .
(IV.18)

Here, 𝑌s is the elastic modulus of the shell, which has thickness ℎ, and 𝑘b
is the corresponding bending modulus. The radial stress balance equation,
Eq. (IV.18), accounts for all stresses that act perpendicularly on our cylindrical
surface. Therefore, there must also be an axial stress balance equation, ac-
counting for all stresses that act parallel on our cylindrical surface. However,
for now we content ourselves with studying only Eq. (IV.18), which, as we
show in Section IV.2.5 “Cell Activity Drives Hydrodynamic Flows”, contains all
information that is necessary to determine whether the initial cylindrical shape
of the organoid branch remains stable or not.
On the right-hand side of the radial stress-balance equation, Eq. (IV.18),

we have collected the hydrostatic pressure, the generalized Laplace pressure,
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and elastic stresses. The left-hand side of the radial stress-balance equation,
Eq. (IV.18), corresponds to dynamic fluid stresses 𝜎𝑟𝑟fl . We defer the explicit
discussion of these dynamic viscous stresses to Section IV.2.5 “Cell Activity
Drives Hydrodynamic Flows”. However, even without doing so, we can already
gain some insights. First, in the absence of a surface deflection, that is for 𝑢 = 0,
the dynamic fluid stresses must also vanish lest the reference configuration
itself is ill-defined by being unstable. Therefore, the hydrostatic pressure is
given by 𝑝0 = 𝜏𝜙/𝑅0. To proceed, we now express both the viscous stresses and
the deflection in terms of Fourier components2:

𝜎𝑟𝑟fl = ∑
𝑞
Δ𝑝𝑞 cos(𝑞 𝑧) , and 𝑢 = ∑

𝑞
𝑢𝑞 cos(𝑞 𝑧) . (IV.19)

Thus, we obtain the following dynamic stress dispersion relation near mechan-
ical equilibrium (Fig. IV.2):

Δ𝑝𝑞 = [
𝜏𝜙
𝑅20

− 𝑌s ℎ
𝑅20

− 𝑘b
𝑅40

− 𝜏𝑧 𝑞2 − 𝑘b 𝑞4] 𝑢𝑞 . (IV.20)

If the term in the square brackets of Eq. (IV.20) is positive, then deformations
of the organoid branch will grow. This growth is ultimately driven by the hy-
drostatic pressure, although it does not appear in the stress dispersion relation,
Eq. (IV.20), because the counteracting Laplace pressure shrinks for increasing
organoid branch radius (Example 11). This effect also occurs for the 𝑞 = 0mode,
thus indicating a long-wavelength instability according to the Cross-Hohenberg
classification scheme (Cross and Hohenberg, 1993). In contrast, a positive axial
tension 𝜏𝑧 stabilizes only short-wavelength modes by penalizing axial undula-
tions of the cylindrical surface. Then, only the elastic shell can prevent the shape
instability by penalizing stretching and bending3. Taken together, we find that a
band of unstable modes will emerge if the circumferential tension is sufficiently
high:

𝜏𝜙 > 𝜏c = 𝑌s ℎ +
𝑘b
𝑅20

. (IV.21)

Thus, we conclude: The cellular tissue can control a shape transformation by re-
orienting cells, and thereforemaking trade-offs between the circumferential tension
and the axial tension.
We note that the mechanical driving stress on the right-hand side of

Eq. (IV.20) is largest for the 𝑞 = 0 mode, consistent with a long-wavelength
2We choose a cosine waveform, because, in principle, it permits a constant deflection 𝑢 for the
homogeneous 𝑞 = 0mode, without adding an additional constant offset.

3We assume that the elastic shell exhibits no bending stress in its cylindrical reference config-
uration. Therefore, the elastic shell has a spontaneous curvature of 𝑐𝜙 = −1/𝑅0.
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instability. However, as we show in Section IV.2.5 “Cell Activity Drives
Hydrodynamic Flows”, the homogeneous 𝑞 = 0mode is not the fastest-growing
mode because it is actually prohibited by the incompressibility of the fluid in
the lumen of the organoid branch. Finally, there is one open question that we
will also address in Section IV.2.5 “Cell Activity Drives Hydrodynamic Flows”:
How does the organoid branch, at the onset of its shape transformation, decide on
the direction in which the instability occurs?
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Surface tension induced budding drives alveologenesis in human1

mammary gland organoids.2
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Organ development involves complex shape transformations driven by12

active mechanical stresses that sculpt the growing tissue [1, 2]. Epithelial13

gland morphogenesis is a prominent example where cylindrical branches14

transform into spherical alveoli during growth [3–5]. Here, we show that15

this shape transformation is induced by a local change from anisotropic16

to isotropic tension within the epithelial cell layer of developing human17

mammary gland organoids. By combining laser ablation with optical18

force inference and theoretical analysis, we demonstrate that the cir-19

cumferential tension increases at the expense of axial tension, through a20

reorientation of cells that correlates with the onset of persistent collective21

rotation around the branch axis. This enables the tissue to locally control22

the onset of a generalized Rayleigh-Plateau instability leading to spher-23

ical tissue buds [6]. The interplay between cell motion, cell orientation,24

and tissue tension is a generic principle that may turn out to drive shape25

transformations in other cell tissues.26
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2

The transformation from tubular ducts into terminal spherical alveoli is ubiquitous in27

organ development of higher organisms [3]. The mammary gland is a unique example that28

relies on this shape change to undergo repeated postnatal cycles of expansion, alveologenesis29

and involution [7]. This self-organization of spherical structures is reminiscent of hydrody-30

namic instabilities driven by surface tension, first described by Lord Rayleigh and Joseph31

Plateau in passive isotropic fluids [6]. Specifically, a column of fluid always breaks up into32

droplets that have smaller surface-to-volume ratio. When the fluid column is not surrounded33

by air but by an elastic medium, then the shape instability only occurs if the surface tension34

can overcome the ensuing elastic stresses, resulting in pearling [8–10]. This is a compelling35

picture considering the fluid-like behaviour of tissues [1, 11–14] and the key role of cortical36

tension in duct development [15]. But classical pearling of isotropic fluids occurs on a global37

scale, as a long-wavelength instability without any defined spatial localization. In contrast,38

controlled development of the tissue requires spatially localized shape transformations that39

are regulated by cell activity. Since cells are able to move, orientate and generate forces,40

a plausible hypothesis is that these properties enable local changes in the tension field and41

that this is the mechanism to locally control fluid shape instabilities.42

To understand the nature of such shape transformations, we exploit an organoid assay43

from primary cells which recapitulates the architecture of the human mammary gland, with44

its characteristic arrays of spherical alveoli [4, 16, 17]. In this assay, single primary human45

mammary epithelial cells are seeded into collagen I matrices and develop into highly branched46

organoids over a time period of two weeks (Fig. 1a). The resulting organoid morphology47

depends crucially on the adhesion of the elastic collagen matrix to the enclosing culture48

vessel [4]. In attached gels, branches stay cylindrical and their length continuously increases49

(Fig. 1a, lower row), while in floating gels, about 50% of the branches develop round alveoli50

at their ends (Fig. 1a, upper row, Supplementary Table 1). Starting around day 10, the51

average alveolus becomes spherical within 3-4 days (Fig. 1a).52

To understand this shape transformation, we asked whether organoids behave like solids53

or fluids in the absence of the extracellular matrix (ECM). We found that enzymatic diges-54

tion of the collagen matrix leads to a dramatic loss of organoid structure: within minutes,55

cylindrical branches flow towards the organoid body (Fig. 1b, Supplementary Movie 1).56

Thus, organoids behave like fluids and crucially depend on the elasticity of the ECM for57

the stability of the branches. Observation of alveoli grown in fluorescent collagen revealed58
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that they are enveloped by a compacted collagen cage similar to the one around cylindrical59

branches (Fig. 1c, Supplementary Fig. 1) [17]. This suggests that the organoid deforms60

and compacts the surrounding collagen by exerting mechanical stresses above the plastic61

yield threshold, rather than by proteolysis and degradation [18–20]. To corroborate this hy-62

pothesis, we investigated the effect of inhibiting enzymatic ECM degradation by adding the63

metalloproteinase inhibitor Marimastat [17] right at the onset of alveologenesis. To quantify64

the degree of sphericity at the branch end we defined a “shape index” α (Fig. 1d; see also65

Supplementary Material B1). We found that addition of Marimastat has no effect on the66

formation of spherical alveoli, which proceeds at the normal rate despite a drastic inhibition67

of tubular branch growth (Fig. 1e,f, top row). To investigate the role of mechanical stresses,68

we increased cell contractility by addition of calyculin A. As a result, this leads to a faster69

formation of alveoli (Fig. 1e,f, middle row). Next, we sought to diminish epithelial tension70

by addition of the antibody HECD1 against E-cadherin. As a result, branches fail to be-71

come round and instead develop long, thin extensions (Fig. 1e,f, lower row). We conclude72

that alveologenesis involves a plastic deformation of the encasing ECM driven by epithelial73

contractility.74

To determine the mechanical interaction between developing branches and the ECM,75

we performed UV laser ablation of the collagen network in close proximity to branch tips76

and alveoli (Fig. 1g). We found that straight, cylindrical branches react with a fast recoil77

towards the organoid body, indicating a catastrophic loss of the pulling tension generated78

by cell contractility [17]. In contrast, spherical alveoli exhibited a slight expansion towards79

the cut, revealing a compressive (negative) stress in the ECM.80

Next, we applied laser ablation to the cells themselves. While the majority of cylindrical81

branches in floating gels is not stable but actually undergoing alveologenesis(Fig. 1a,f),82

branches in attached gels remain cylindrical. Therefore, we used branches in attached gels83

as a stable control. Immediately after ablation, the cell boundaries surrounding the cut84

move away with a fast recoil (see Supplementary Movie 2). We characterized the recoil85

response by an axial εz and circumferential strain εφ (Fig. 2b, Methods). The overall response86

(εz + εφ)/2 is the same for all shapes and gel boundary conditions – indicating that spherical87

alveoli, branches undergoing alveologenesis, and stable cylindrical branches all maintain a88

similar contractile tonus (Fig. 2c). Next, we turned to the recoil strain difference εz −89

εφ to assess tension anisotropy. We found that branches in attached gels react with a90
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considerable axial bias (Fig. 2d, red squares). In floating gels, the response is less biased91

and decreases with increasing shape index, eventually becoming isotropic for spherical alveoli92

(Fig. 2d, blue circles). To confirm that the stresses leading to these responses originate from93

actomyosin activity, we ablated organoids after disruption of the actin network by addition94

of Cytochalasin D. The recoil response after laser ablation was significantly lower and no95

longer axially biased (Supplementary Fig. 2, Supplementary Movie 3).96

Since cortical tension is mainly determined by the actin cortex located along cell bound-97

aries [21, 22], we turned to confocal microscopy of the actin cytoskeleton and the cell bound-98

aries. In straight cylindrical branches, we found that cells are highly elongated and aligned99

parallel to the branch axis; in contrast, in mature alveoli, cells are less elongated (Fig. 2e and100

f). We found that the distribution of boundary angles is strongly anisotropic in attached101

gels and becomes increasingly isotropic as the organoids develop into spheres in floating gels102

(Supplementary Fig. 3). To compute relative cortical tension from these images, we used103

the curvilinear boundaries force inference method (Fig. 2g) [23, 24]. We found that tension104

is axially biased in attached gels. This bias decreases in floating gels as the branches become105

rounder (Fig. 2h). These results quantitatively agree with our laser ablation experiments106

(Fig. 2d; see also Supplementary Fig. 5), indicating that the spatial arrangement of cell107

boundaries is linked to the anisotropy of cortical tension in mammary gland organoids.108

Can we explain the observed constant mean recoil ε̄ from the arrangment of cell bound-109

aries (Fig. 2c)? Considering each cell as force dipoles [25] oriented at an angle θ, relative110

to the branch axis, we decompose the cellular tension into an isotropic part τ0 and an111

anisotropic part ∆τ (see also Supplementary Material B2). For a distribution P (θ) of dif-112

ferent cell orientation angles, the population-averaged tension tensor is then given by113

τ̄ ≡

 τ̄z . . .

. . . τ̄φ

 =

∫ π

−π
dθP (θ)

τ0 + ∆τ cos2(θ) ∆τ cos(θ) sin(θ)

∆τ cos(θ) sin(θ) τ0 + ∆τ sin2(θ)

 . (1)

The trace of this surface tension tensor is constant, τ̄z + τ̄φ = 2τ0 + ∆τ , and independent114

of the distribution of cell orientation, in agreement with our experiments. The tissue can115

therefore make trade-offs between axial and circumferential tension by reorienting the cells.116

To directly observe the reorientations of the cells, we followed the time course of cell117

movements by staining cell nuclei. In cylindrical branches, cells collectively move parallel118
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to the branch axis in a back-and-forth manner (Fig. 3a). In contrast, we observed that119

mature spherical alveoli perform a persistent collective rotation around the branch axis120

lasting for at least 20 hours without direction reversal and no preferred chirality (Fig. 3b,121

see Supplementary Movie 4, Supplementary Fig. 6 and 7). Observation of branches at122

early stages of alveologenesis (α ' 0.3) revealed that the rotational motion did not arise in123

a single step, but through transient bouts of localized rotation interspersed with phases of124

longitudinal translation (Fig. 3c, d). Whereas rotation broadly correlated with increasing125

sphericity of the branch end, longitudinal motion coincided with a partial recovery of the126

cylindrical shape; alveologenesis thus proceeded with superimposed oscillations (Fig. 3d,127

right and Supplementary Movie 5). Reasoning that strong cell-cell adhesion would explain128

the high spatial coherence of the motion, we live-imaged organoids treated with HECD1.129

We found that translation and rotation stop within 15-24 hours after antibody addition130

in 73% of the observed branches (n=15; see Supplementary Movie 6). Thus, longitudinal131

translation, rotation, and alveologenesis are all collective phenomena that require long-range132

force transmission via E-cadherin junctions, as previously described for a small number of133

human mammary epithelial cells spontaneously forming spherical aggregates [26] and other134

epithelial cell types in circular confinement [27].135

To clarify the causal role of branch rotation in alveologenesis, we undertook a full charac-136

terization of the time course of branch shape, cell migration, and cortical tension. We used137

cell nuclei shapes as a proxy for cell tension and found a linear relation between the tension138

anisotropy inferred from cell boundaries and the anisotropy parameter χ characterizing the139

elongation and orientation of the nuclei (Fig. 3e). As a control measurement, we observed140

stable branches that remained cylindrical for at least 8 h with an average constant tension141

anisotropy χ ' 0.65 and a predominantly axial motion (Fig. 3f, left). As we turned to142

the onset of the shape transformation, we defined an alveologenic event as an increase in143

shape index by at least 0.1 within 2 h, starting at onset time tAO from a low value α < 0.1144

(see Supplementary Fig. 4). We found that already within the 2 hours before alveologen-145

esis, these branches displayed a lower anisotropy parameter (χ ' 0.45) and an increased146

rotational activity |vφ| compared to the control (Fig. 3f). At the onset time tAO, a robust147

decrease in nuclear anisotropy precedes the increase in shape index α by about 1 h (Fig. 3f,148

right, red traces; see also Supplementary Movies 7 and 8).This dynamic data quantitatively149

agrees with the laser ablation and force inference experiments, supporting our hypothesis of150
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a tension-driven shape transformation (Supplementary Fig. 5).151

In general, polar matter such as motile cells aligns and forms collectively migrating groups152

to minimize shear [28]. In a constrained cylindrical geometry like organoid branches, cells153

can enter an axial translational motion that requires periodic cell repolarization (Fig. 4a).154

To maintain this motion, cells have to remain axially aligned in the elastic ECM, which155

could occur due to cellular sensing of fixed boundaries [25]. The longitudinal back-and-forth156

movement of elongating branches (Fig. 3b, Supplementary Movie 4) can then be understood157

from the generic tendency of planar epithelia to move along the principal stress direction [28].158

In floating gels, the ECM cannot support high stresses and thus cells reorient freely (Fig. 4b).159

Then, the state that minimizes shear corresponds to collective rotation, which runs without160

cell repolarizations and also arises spontaneously in constrained planar epithelia [29, 30].161

When the cells reorient, there is an increase of circumferential tension at the expense of162

axial tension, cf. Eq. 1, which finally drives the formation of a stable spherical alveolus.163

How can a shift from axially biased surface tension, τz− τφ > 0, towards isotropic surface164

tension, τz − τφ ≈ 0, induce a shape transformation as observed in our experiments? Con-165

sider a cylindrical branch as a long, rotationally symmetric, fluid cylinder with radius R,166

surrounded by an elastic shell with modulus E and thickness h that idealizes the collagen167

cage. Since the cell layer of the organoid branch forms an interface between a fluid and the168

ECM, there must be a stress balance between the viscous normal stresses due to fluid flow169

(σrrvisc), the hydrostatic pressure p0, the generalized Laplace pressure due to the circumfer-170

ential tension τφ and the axial tension τz, as well as elastic stresses ∆pel due to the collagen171

cage:172

σrrvisc = p0 −
τφ
R

+ τz ∂
2
zR + ∆pel (2)

Thus, fluid flows and the corresponding viscous stresses arise whenever the right hand side173

of Eq. 2 is unbalanced. Analysing the linear stability of the tubular branch with respect174

to small deviations from its cylindrical shape, we find that a shape transformation appears175

above a critical circumferential tension of τφ > τc = Eh (Fig. 4c, Supplementary Material176

B4). In terms of the tension anisotropy, this criterion is equivalent to χ < χc = 2−2 τc/τ̄ ; the177

critical anisotropy parameter corresponding to the alveologenesis onset can be read off from178

Fig. 3f to be χc ' 0.35. Estimating that τc is of the order of 4–7 mN m−1 (Supplementary179

Material B4), we finally obtain τ̄ ' 5–8 mN m−1, which is of the same order as the typi-180
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cal cortical tension of contractile cells, 0.3–4 mN m−1 [31], and organoids, 10 mN m−1 [32].181

Thus, a redistribution of tension from the axial to the circumferential direction, resulting182

from a simple reorientation of cells, cf. Eq. 1, is sufficient to trigger the shape transfor-183

mation. Note that this remains a dynamic process with extensive cell motility: in early184

phases of alveologenesis, the tension isotropification at the branch tip can be perturbed and185

transiently reversed by the back-and-forth migration of the stalk cells, which actively drags186

the branch towards the organoid centre and restores axial cell reorientation again (Supple-187

mentary Movies 5 and 8, Supplementary Fig. 4b). Thus, the organoid shape change is not188

monotonic. On long timescales, however, the spherical geometry is stabilized by collective189

cell rotations and the plastic deformation of the surrounding ECM. Finally, once the alve-190

olus is approximately spherical, the Laplace pressure (τφ + τz)/R decreases with increasing191

radius; as a consequence, under a constant, osmotically balanced hydrostatic pressure differ-192

ence p0 and a plastic ECM response, isotropic alveoli keep growing. The presented results193

show that the shape transformation underlying alveologenesis in human mammary gland194

organoids can be understood as a budding instability triggered by a decrease in tension195

anisotropy. This mechanism amounts to a global feedback loop: tissue shape and ECM196

forces determine epithelial motion, which in turn influences the symmetry of the tension197

tensor, which at the end feedbacks to the tissue shape via hydrodynamics (Fig. 4). The198

mechanism presented here may turn out to be of general importance for complex shape199

tranformations in organogenesis.200
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Fig. 1. Morphology of human mammary gland organoids depends on the mechani-

cal interaction with the ECM. a, Primary cells from reduction mammoplasty are seeded in

Collagen I gels and allowed to grow for up to 20 days. As a function of the attachment of the

matrix, different morphologies are obtained. Scale bars: 100 µm. b, Organoids behave like liq-

uids. After collagen hydrolysis by collagenase treatment, branches flow into the organoid body

within a few minutes. Scale bar: 50 µm. c, Organoids grown in fluorescent collagen are com-

pletely surrounded by a layer of compacted collagen. Scale bar: 50 µm. d, To characterize branch

shape we introduce the shape index α defined in terms of the axial and circumferential curvatures,

κz = ∂2zR/
[
1 + (∂zR)2

] 3
2 and κφ = −R−1/

[
1 + (∂zR)2

] 1
2 (see also Supplementary Material B1).

To avoid the irregular shapes of the branch tip, the integration region was taken at a distance

a =30 µm from the tip. The upper bound b =100 µm corresponds to the typical size of alveoli

at days 12-14. e, Effect of several biochemical perturbations on the development of organoids

grown in floating gels. Calyculin A increases contractility, Marimastat inhibits matrix metallo-

proteinases, and HECD1 antibody blocks cell–cell adhesion. f, Time evolution of average branch

shape index α and overall organoid size (respectively for control, Marimastat, Calyculin A and

HECD1: nbranches = 215, 95, 211, 119; norganoids = 33, 23, 28, 24). The shaded regions correspond

to ± S.E.. g, To determine the mechanical interaction between branch tip and ECM, we ablate a

30 µm high, 100 µm wide, 1 µm thick ECM region near the branch tip. Cylindrical branches recoil

within 1 s away from the cut, revealing pulling tension (top); in contrast, round alveoli expand

towards the cut, showing compressive ECM forces (bottom). The pink bar represents the ablated

region (100 µm wide). Arrows: optical flow. Scale bar: 50 µm. Far right, recoil speed of the branch

tip as a function of shape index.
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Fig. 2. Alveoli are under isotropic tension, cylindrical branches under axially biased

tension. a, We ablate a cylindrical region with a diameter of 10 µm and height of 30 µm, cutting

through the ECM and the outer cell layer. From the recoil we estimate axial and circumferential

elastic strains. Scale bar: 50 µm. b, Displacement field induced by the cut. We integrate the optical

flow over an annular region to obtain recoil strains. c, Mean recoil (εz+εφ)/2 as a function of shape

index α, both in attached (n=16) and in floating gels (n=73). d, Recoil anisotropy (εz − εφ) as a

function of shape index α for the same experiments as in c (p-Value: 8× 10−4 ). To compare with

the force inference data (Fig. 2h) we scaled by the mean recoil averaged over the whole dataset,

ε̄ = 0.017. e, Confocal microscopy of actin and nuclei in a cylindrical branch and a spherical

alveolus. Top: slice through the middle plane. Bottom: slice through the outer cell layer. f, Cell

membrane stains. Scale bars: 50 µm. g, From the membrane segmentations we computed tensions

using the curvilinear boundary force inference method. h, Inferred tension anisotropy τz − τφ as a

function of shape index α, both in attached (n=10) as in floating gels (n=32) (p-Value: 2× 10−7 ).

Note that we assume τ̄ = 1.
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Fig. 3. Alveoli undergo collective rotation. a, Characteristic back-and-forth movement

parallel to the axis in a cylindrical branch. Arrows show optical flow for a 20 min time step. Scale

bar: 100 µm. Arrow: 30 µm h−1. b, Spherical alveoli rotate for at least 20 h. Scale bar: 100 µm.

c, Observation of cell dynamics during alveologenesis shows that rotation is spatially limited to

the distal end, correlating with the location of the nascent alveolus. Notice the coexisting opposite

rotation senses at time t = 33 h. Scale bar: 100 µm. Arrow: 30 µm h−1 d, Mean circumferential

velocity vφ(z, t), mean axial velocity vz(z, t) and local radius R(z, t) along the branch for the

experiment shown in c. e, Nuclei elongation can be used to infer tension anisotropy. We defined

a nuclear anisotropy parameter χ by averaging a function of the elongation bi/ai and angle θi
over several nuclei located at the lower z-slices. This parameter may be positive, corresponding

to elongated nuclei aligned parallel to the branch axis; zero, for isotropic distributions or round

nuclei; and negative, for circumferential alignment. Comparing this parameter with the tensions

obtained from force inference in double-stained branches, we found that χ is approximately equal

to the anisotropy (τz − τφ)/τ̄ . f Sample-average shape index α, nuclear bias χ and absolute

circumferential velocity |vφ| as a function of time for two different scenarios: stable cylindrical

branches where α < 0.1 throughout (left, n=11), and alveologenic events aligned relative to the

onset time tAO (n = 24).
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Fig. 4. A hydrodynamic model with anisotropic tension and ECM elasticity can

explain the shape transition. a, In attached gels, high ECM forces are balanced by anisotropic

tension and cells move parallel to the branch axis. b, In floating gels, the onset of collective rotation

is most likely a consequence of the decreased tension anisotropy, which is in agreement with flat

epithelial dynamics [28]. The resulting surface shear aligns cells in the circumferential direction,

increasing τφ at the expense of τz. c, Stability analysis for a fluid cylinder surrounded by an elastic

shell. The cylindrical shape becomes unstable for τφ > τc ' Eh, where E and h correspond to

the elastic modulus and thickness of the collagen cage. Through cell reorientations, the tissue can

increase circumferential tension at the expense of axial tension, thus taking the initially stable

cylindrical organoid (red dot) into the unstable regime (black arrow).
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METHODS284

285

Cell culture. Organoids were prepared as described previously in Ref. [4]. Briefly, mam-286

mary gland tissue was obtained from healthy women undergoing reduction mammoplasty287

at the Nymphenburg Clinic for Plastic and Aesthetic Surgery, in accordance with the reg-288

ulations of the ethics committee of the Ludwig-Maximilians-Universität München, Munich,289

Germany (proposal 397-12). The ductal tree was minced, enzymatically digested and cry-290

opreserved. Prior to each experiment, cells were unfrozen and seeded in collagen gels. Cells291

were initially cultured in mammary epithelial cell growth medium (MECGM, PromoCell)292

supplemented with 1% pen/strep (Invitrogen), 0.5% FCS (Pan Biotech), 3 µM Y-27632293

(Biomol) and 10 µM forskolin (Biomol). After 5 days, medium was changed to MECGM294

supplemented with 1% pen/strep and 10 µM forskolin. Organoids were prepared from 4295

different donors (Supplementary Table 1).296

297

3D collagen I gels. Organoids were grown in collagen I gels from rat tail (Corning).298

Freshly unfrozen single cell suspensions were mixed with MECGM medium, 11x Hepes, col-299

lagen solution and taken to pH 7.5 by addition of 1 M NaOH. Final collagen concentration300

was 1.3 mg ml−1. The mixture was gently but thoroughly mixed before deposition in slides301

(ibidi). After polymerization for 1 h in the incubator at 37 °C, an equal volume of medium302

was added to the gel. Organoids were grown in a 3% oxygen atmosphere. For enzymatic303

digestion of the collagen matrix (Fig. 1c) we added to the gel an equal volume of medium304

containing 0.01 U/ml collagenase (Sigma). Within ∼ 20 minutes the collagen fibers were no305

longer visible in the Hoffman contrast images and debris diffused freely, indicating complete306

hydrolysis of the matrix.307

308

Biochemical perturbation. Organoids were grown under normal conditions for 9 days;309

at culture day 10, medium containing either 0.5 nM calyculin A (Gibco), 10 µM Marimastat310

(Santa Cruz Biotechnology) or HECD-1 at a ratio of 1:50 (abcam) was added. Fresh drug311

was replenished in a second medium change at day 12. Organoids were imaged by bright312

field Hoffman contrast microscopy. To determine organoid size, we manually drew ellipses313

tightly enclosing the structures and defined size as the mean of the elliptic axes.314

315
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Laser ablation. Laser ablation of collagen and organoids was performed with a custom316

setup based on the one described in Ref. [33]. Briefly, a pulsed 355 nm laser with 400 ps pulse317

duration and 25 mW average power (teem Photonics) was shone on the sample through a318

PL APO 40x 1.1 NA water immersion objective (Leica). Two galvanometric mirrors were319

used to tilt the beam and control the spot position in the focal plane. To cut along the Z320

direction, we simultaneously acquired three-dimensional stacks, displacing the sample with a321

piezo stage (ASI). Stack height along Z was 30 µm and the number of slices per stack was 10.322

To maximize acquisition rate, we used Micro-Manager’s fast sequence mode [34], controlling323

the stage with the camera FIRE signal. Image exposure time was 50 ms, corresponding to324

a stack acquisition time of 0.5 s.325

For organoid ablation experiments, the laser spot was displaced in a circular fashion, cutting326

a circle with a diameter of 10 µm and a height of 30 µm. We performed these experiments327

at culture days 14-15, both in floating as well as in attached gels. The cuts induced a328

fast recoil of the surrounding tissue. We determined the displacement field of the recoil by329

comparing slices at a given Z position in the initial, unperturbed configuration and 3 s after330

the cut. Specifically, we calculated the corresponding optical flow using the openCV imple-331

mentation of the Farnebäck algorithm [35]. The axial and circumferential components of the332

displacement field were integrated over an annular region surrounding the cut to obtain the333

total displacement. The inner radius of the annular region was 15 µm, so chosen in order to334

avoid artifacts stemming from ablation bubbles. The outer radius of the annular region was335

determined by the branch width and was typically 30 µm. The data showed considerable336

scatter that seemed to be intrinsic variability in the rearrangement of cell boundaries after337

the cut, rather than noise in the image processing algorithm.338

339

Confocal microscopy. The laser ablation setup was equipped with a spinning disc unit340

(Yokogawa), an sCMOS camera (Andor) and 488 nm, 561 nm and 638 nm lasers (Cobolt)341

for fluorescence confocal imaging, as well as an XYZ translation stage (ASI), a temperature342

control device and a gas incubation system to maintain 5% CO2 and 3% O2 (ibidi). Prior to343

the laser ablation experiments, organoid membranes were stained with 1X CellMask Deep344

Red (Invitrogen). For time-lapsed microscopy, cell nuclei were stained with 10 µM SiR-DNA345

(Spirochrome).346

347
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Nuclear anisotropy parameter. Organoids were stained with 10 µM SiR-DNA and im-348

aged by confocal microscopy using a HC FLUOTAR L 25X/0.95 W VISIR water immersion349

objective (Leica). Since alveologenic events are rare, we devised a procedure that allowed350

for several days of continuous, simultaneous imaging of many structures (10–13) without351

evaporation of the water layer between slide and objective. Basically, we enclosed objective352

and sample slide with a party balloon filled with 25 mL of water. In this way we acquired353

the images shown in Supplementary Movies 6–8. To calculate the anisotropy parameter354

from the branch images, we manually drew ellipses around 5-15 nuclei located at low Z355

slices using ImageJ. Ellipse parameters were exported and further processed using python356

scripts. Rotation velocities were calculated by optical flow [35].357

358

Statistical analysis. Data are presented as mean ± S.E.. To compare tension estimations359

from branches with different shapes, data were pooled according to the shape index and360

compared with Student’s t-test (two-tailed, unpaired). P < 0.05 was considered significant:361

*P < 0.05, **P < 0.01, ***P < 0.001.362
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Appendix A: Supplementary Experimental Results1

1. Movies2

Supp. Movie 1 Cylindrical branches flow into the organoid body after hydrolysis of the3

collagen matrix.4

Supp. Movie 2 Laser ablation of organoids for branches grown in the attached (left) and5

floating configuration (right).6

Supp. Movie 3 Laser ablation in presence of Cytochalasin D.7

Supp. Movie 4 Representative examples of cell dynamics over one day. All organoids8

stem from the same donor (M25) and were grown in floating gels. Notice that branch9

shape correlates strongly with the type of motion: axial translation in cylindrical branches,10

rotation in nascent and mature alveoli.11

Supp. Movie 5 Long time observation of cell dynamics shows that alveologenesis and12

collective cell rotation are correlated (donor: M28).13

Supp. Movie 6 Addition of HECD1 antibody against E–cadherin abolishes alveolar ro-14

tation within 15–25 hours (donor: M25).15

Supp. Movie 7 Cell dynamics at 25X magnification. This experiment corresponds to16

Supplementary Fig. 4a (donor: M25).17

Supp. Movie 8 Cell dynamics at 25X magnification. This experiment corresponds to18

Supplementary Fig. 4b (donor: M25).19

2. Donors20

Donor Age (years) Parity Alveoli (%) n

M20 67 2 30 80
M25 22 0 69 133
M26 34 2 60 78
M28 38 1 57 106

Table I. Age, parity, and frequency of alveoli occurrence at days 11-13 and number of branches

analysed.
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3. Collagen “cage”21

Confocal microscopy of organoids grown in fluorescent collagen shows that organoid22

branches are surrounded by a thin, dense shell of collagen, which results from an irreversible23

compaction of the bulk collagen matrix due to active cell contractility. This “collagen cage”24

is thinner at the organoid branch tips and approaches a thickness of up to h = 10 µm towards25

the organoid body [1].26

To determine whether the cage is also present around spherical alveoli, organoids were27

cultivated for two weeks in floating gels of collagen I conjugated with Atto 488. Confocal28

imaging of both cylindrical branches and spherical alveoli was done using a Leica SP8 con-29

focal microscope and a 40X/1.1 water immersion objective. Subsequently, we measured the30

fluorescence intensity of the collagen network close to the tip of the branches and normal-31

ized on the maximum background. We found indeed a layer of strong fluorescence around32

spherical alveoli [Supplementary Fig. 1]. This suggests that the formation of the alveolus33

displaces the preexisting collagen cage, inducing a plastic strain of the surrounding ECM as34

the organoid surface pushes against it. As a corollary, a proteolytic mechanism for alveolo-35

genesis - one that would require the dissolution of the fluorescent collagen - seems unlikely.36
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Supplementary Fig. 1. Intensity of the fluorescent collagen cage surrounding spherical alveoli

(n = 15) and elongating cylindrical branches (n = 12)
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4. Organoid ablation in the presence of Cytochalasin D37

Laser ablation of organoid branches induces a fast recoil of the organoid tissue surrounding38

the cut. To confirm that this response is due to forces generated by the actomyosin system,39

we performed experiments in presence of Cytochalasin D (CD), which is known to disrupt40

actin organization [2]. We incubated organoids with CD at a concentration of 4 µM for41

30 min, stained membranes with CellMask for 10 min, and replenished medium containing42

CD to perform ablation experiments. We found that the recoil response was no longer axially43

biased and the average strain was significantly lower in the presence of CD (Supplementary44

Fig. 2). This corroborates that the laser ablation experiments probe cortical tension and45

that the anisotropy of the response requires an intact actin cytoskeleton.46

Supplementary Fig. 2. Recoil anisotropy εz− εφ and mean recoil (εz + εφ)/2 as a function of index

shape α in presence of Cytochalasin D (red squares). All organoids were grown in floating gels;

control points are a replotting of the data shown in Fig. 2c,d (blue circles).
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5. Cell boundary segmentation47

Stained cell membranes were analysed with the Multicut segmentation tool included in48

the Ilastik software [3], which decomposes the image into closed regions without dangling49

edges. The respective boundaries of the cells were traced with a custom Python script. To50

characterize whether there is an orientational order in the cell population (i.e. a nematic51

order), we discretized the (smooth) cell boundaries into straight subsegments and computed52

the histogram of subsegment angles relative to the branch axis angle θ0. We found that53

cell boundaries in attached gels are highly biased towards the branch axis, and become54

increasingly isotropic as the shape index increases (Supplementary Fig. 3). Branches with55

α = 0.3 are already very close to an isotropic distribution of cell boundaries.56

Supplementary Fig. 3. Distribution of cell boundary angles θ relative to the branch axis θ0 (n=42

organoids) as a function of shape index α for attached (red) and floating gels (blue).

6. Force inference57

From the segmented images we sought to estimate the surface tension tensor τ . To that58

end, we first computed the line tensions acting along individual cell boundaries using the59

method of force inference developed by Wayne Brodland et al. [4]. This elegant approach60

assumes a 2D vectorial force balance at every junction of boundaries, providing two scalar61

equations per junction for a number of unknown line tensions equal to that of boundaries.62

Arrangements of cells with high connectivity then give an overdetermined homogeneous63

system of equations. To avoid the trivial zero solution, the equation system is made hetero-64
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geneuos by adding an equation that imposes a mean line tension equal to 1. The full system65

is solved by linear least squares. In this way, we obtained (relative) line tensions γi for each66

cell boundary.67

68

To obtain the surface tension tensor, we must integrate the contributions from each bound-69

ary. Specifically, the mean stress tensor in a body can be obtained from the forces acting70

along its boundary as follows [5]:71

τ̄ =
1

2A

∮
dl
[
f ⊗ x +

(
f ⊗ x

)T]
, (A1)

where x refers to the position vectors of each boundary point that is subject a force f dl,72

and A refers to the area of the body. Here, we used a computational scheme that, in73

the end, reproduced an expression that is analogous to Eq. (A1). First, we divided each74

boundary into subsegments of constant length l = 1 µm, where segment j of boundary i is75

oriented in the direction θij relative to the tube axis θ0. Then, we summed the line tensions76

of all subsegments that point along a given angle θ to obtain the total force distribution77

F (θ) =
∑

θij=θ
γi. The corresponding force vector is given by F (θ) êθ, where êθ = (cos(θ −78

θ0), sin(θ−θ0)) refers to the unit vector corresponding to the angle relative to the tube axis,79

θ − θ0. Then, the average tension tensor is proportional to80

τ ∝
∮
dθ F (θ) êθ ⊗ êθ . (A2)

Since the line tension is assumed to be constant along each boundary, the total force distri-81

bution is symmetric with respect to θ → θ+ π/2. Thus, we calculated the normalized axial82

stress component as follows:83

τz =

∫ θ0+π/2

θ0−π/2
dθ F (θ) cos2(θ − θ0)

/ ∫ θ0+π/2

θ0−π/2
dθ F (θ)/2 , (A3)

where the normalization factor ensures that the stress is adimensional and equal to 1 for84

a uniform stress distribution. Our choice of normalization is justified by the observation85

that the mean recoil (εz + εφ)/2 in our laser ablation experiments remained approximately86

constant for all organoid shapes, cf. Supplementary Fig. 2. A similar equation holds for the87
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circumferential tension:88

τφ =

∫ θ0+π/2

θ0−π/2
dθ F (θ) sin2(θ − θ0)

/ ∫ θ0+π/2

θ0−π/2
dθ F (θ)/2 . (A4)

7. Nuclear anisotropy parameter: an alternative measurement of cellular tension89

The shapes of nuclei closely follow the surrounding cell boundaries. We found that90

nuclei shape could be used to obtain an approximate estimate of the tension anisotropy91

τz− τφ determined by force inference, while offering the advantages of less phototoxicity and92

allowing for precise observation of cell movement. A similar approach was recently discussed93

and validated by Kong et al [6]. Following branch dynamics over 10–20 hours, we found94

that the nuclear anisotropy parameter χ is large and constant in stable cylindrical branches95

[Supplementary Fig. 4a]. It robustly decreases shortly before an alveologenic increase in96

shape index (main text, Fig. 3f), but it can also be seen to increase prior to a reversal97

of alveologenesis, as the branch resumes longitudinal motion towards the organoid body98

(Fig. 4b, t =10 h).99

Supplementary Fig. 4. Shape index α, rotation velocity vφ and nuclear anisotropy parameter χ as

a function of time for two different experiments. a, Data corresponding to Supplementary Movie

7. b, Data corresponding to Supplementary Movie 8.

Plotting the replica-averaged nuclear anisotropy parameter as a function of the shape100

index, we could compare dynamic data with the results of (static) laser ablation and force101
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inference experiments [Supplementary Fig. 5]. We found a good agreement between all102

datasets, suggesting that the contrasting morphologies of organoids grown in attached and103

floating gels can be understood in terms of the same underlying physics.104

Supplementary Fig. 5. Comparison between laser ablation, force inference and nuclear anisotropy

(dynamic) data. Laser ablation and force inference data are replotted from Figs. 2d,h; Nuclear

anisotropy data from Fig. 3f.

8. Rotation of alveoli for several donors105

The rotational motion of mammary gland organoid branches is largely determined by the106

branch shape, and the shape index α suffices to characterize this dependency. Branches un-107

dergoing translational motion have indexes below 0.3, whereas branches displaying persistent108

rotation for at least 5 hours have indexes above 0.2 [Supplementary Fig. 6].109

To determine the generality of alveolar rotation, we counted the number of branches that110

showed a sustained rotation around their axis for at least 5 h. For the 4 donors under study,111

we found that 70%-80% of branches with α > 0.3 rotated, whereas most cylindrical branches112

moved longitudinally (Supplementary Fig. 7).113
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Supplementary Fig. 6. Histogram of shape index α for branches classified as either translating or

rotating according to the dominant cell movement mode for 5 hours. Donor: M26.

Supplementary Fig. 7. Frequency of rotation in cylindrical branches (α ≤ 0.3, red) and alveoli

(α ≥ 0.3, blue) for all donors studied (see Supplementary Table 1 for branch sample size).
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Appendix B: Supplementary Theoretical Discussion114

In the following, we present and discuss in detail our mechanical model of organoid115

branches. We consider an organoid branch as a shell-like cylindrical tissue, where cell con-116

tractility confers an anisotropic surface tension. The lumen of the organoid branch is filled117

by a viscous fluid, while on the outside it is enveloped by an elastic collagen cage as well118

as an elastic extracellular matrix. Our theoretical analysis shows that the initial cylindrical119

shape of an organoid branch becomes unstable against long-wavelength perturbation modes120

when the circumferential component of the anisotropic surface tension exceeds a critical121

value. This critical circumferential tension is determined by the elastic properties of the122

collagen cage and the extracellular matrix. In contrast to the circumferential tension, the123

axial tension penalizes short-wavelength modes and thus only affects the wavelength of the124

fastest-growing mode, but not the onset of the shape instability itself.125

After choosing a suitable (i.e. cylindrical) coordinate system, we discuss the mechanical126

stresses that act on organoid branches: active cell contractility, passive bending of the colla-127

gen cage and deformations of the extracellular matrix. Since viscous stresses asymptotically128

vanish if the dynamics of the organoid branch is sufficiently slow, the applied mechanical129

stresses determine whether a tubular shape is stable or not. To then find conditions un-130

der which a tubular conformation becomes mechanically unstable, we consider linear shape131

perturbations of a tubular shell that has a homogeneous initial radius and vanishing me-132

chanical stress (mechanical steady state). Then, by expanding our theory beyond this linear133

regime and considering nonlinear contributions to the mechanical stress, we investigate how134

an organoid branch responds to an increase in surface tension.135

1. Choice of coordinate system136

We describe an organoid branch as a thin tubular shell that consist of contractile cells, and137

use a cylindrical coordinate system (r, z, φ), where the z-axis is aligned with the centerline138

of the tube, r measures the radial distance from the centerline, and φ is the azimuthal angle139

[Supplementary Fig. 8]. For the sake of simplicity, we restrict ourselves to a rotationally140

symmetric geometry, so that ∂φQ(z, φ) ≡ ∂φQ(z) = 0 for any (scalar, vectorial or tensorial)141

quantity Q(z, φ).142
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Supplementary Fig. 8. Schematic representation of the organoid branch geometry. a) The cell

population forms a thin tubular shell (gray), whose lumen is filled by an aqueous solution under

hydrostatic pressure p0. On the outside, the cellular tube is surrounded by a dense and rigid collagen

cage (magenta). Further away, the cellular tube is surrounded by a soft extracellular matrix (blue).

b) Enlarged view of the cell population that forms the surface of the organoid branch. Each cell

(within the local tangent plane) is oriented at an angle θ relative to the local axial tangent vector

tz, with corresponding orientation vector êθ. We consider each cell as a contractile force dipole.

To conceptually illustrate how such a contractile force dipole acts, one can envision an idealized

cell with diameter d0 and area A0 (black circle). The cell cytoskeleton exerts contractile forces on

the cell boundary, which we decompose into two contributions: (i) Isotropic contractile forces f0
correspond to an isotropic tension τ0 ≡ f0d0/A0 (black arrows). (ii) In addition, the contractile cell

breaks rotational symmetry in this local frame of reference by increasing contractility (∆f > 0) or

decreasing contractility (∆f < 0) along its axis êθ. Therefore, in addition to the isotropic part of

cell tension, there is also an anisotropic contribution ∆τ ≡ ∆f d0/A0.

The tubular shell is located at a distance r = R(z) from the centerline, where it forms an143

interface between the viscous fluid in the lumen of the organoid branch and the extracellular144

matrix outside of the organoid. We parameterize this interface by the two coordinates (z, φ)145

and the corresponding position vector field146

R(z, φ) =


R(z) cosφ

R(z) sinφ

z

 . (B1)

The two (orthogonal but non-normalized) tangent vectors that span the surface of the tubu-147
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lar shell are given by148

tz =


∂zR(z) cosφ

∂zR(z) sinφ

1

 , and tφ =


−R(z) sinφ

R(z) cosφ

0

 . (B2)

In the following, we usually omit the argument of the tube radius, R(z) ≡ R, to keep the149

expressions concise. To measure arc distances on the surface of the tubular shell in terms of150

the coordinates (z, φ), we use the metric tensor gij = ti · tj [7]:151

g ≡

gφφ gφz

gφz gzz

 =

R2 0

0 1 + (∂zR)2

 . (B3)

We complete the local coordinate system that spans the surface of the tubular shell by152

introducing the (outward pointing) unit normal vector, n̂ = (tφ × tz)/
√

det g, which lies153

perpendicular to the surface:154

n̂ =
1

[1 + (∂zR)2]
1
2


cosφ

sinφ

−∂zR

 . (B4)

Thus, to summarize, we have defined a local coordinate system on the surface of the tubular155

shell, which is parameterized by the coordinates (z, φ) and spanned by the two tangent156

vectors (tz, tφ) as well as the normal vector n̂.157

Next, we determine the shape tensor, hij = n̂ ·∂itj, which describes the geometrical shape158

of the tubular shell [7]. Specifically, one can directly read off the two principal curvatures of159

the tubular shell from the following expression:160

h · g−1 =

− R−1

[1+(∂zR)2]
1
2

0

0 ∂2zR

[1+(∂zR)2]
3
2

 ≡
κφ 0

0 κz

 . (B5)

As explained above, we view the organoid branch as a rotationally symmetric cylinder that161

is parameterized by the distance R(z) of its surface from the centerline. In the present work,162

we always assume that deformation gradients are small, so that ∂zR � 1. Then, the two163
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principal curvatures are simply given by164

κφ ≈ −
1

R
, and κz ≈ ∂2zR , (B6)

which are used in the remainder of the Supplementary Material. In the upcoming sections,165

we will discuss the physical processes that can dynamically modify these local geometric166

properties of the organoid branch.167

2. Active cell contractility induces anisotropic tension and Laplace pressure168

As discussed in section B 1 “Choice of coordinate system”, we describe the organoid169

branch as a thin tubular shell. At the surface of the organoid branch, contractile cells form170

a thin confluent tissue. Furthermore, this surface defines an interface between the fluid171

in the lumen of the organoid branch and the extracellular matrix outside of the organoid172

branch [Supplementary Fig. 8]. Since the cells are the only active component of our system,173

their activity determines the dynamics of the organoid branch. Specifically, nonequilibrium174

cell contractility at the surface of the organoid branch confers an active interfacial stress in175

the form of anisotropic surface tension, as we explain in the following.176

Link between cell orientation and tension anisotropy. We consider cells as177

anisotropic force dipoles [8, 9], where the anisotropy stems from the local orientation of178

the cells and their cytoskeleton1. Before we characterize a population of many cells, we179

first focus on describing a single cell. To that end, we consider the local reference frame180

(tangent plane) that is spanned by the two (orthogonal but non-normalized) surface tangent181

vectors (tz, tφ) and whose origin coincides with the position of the cell [Fig. 8b]. The cell is182

oriented at an angle θ relative to the axial surface tangent vector tz, so that we represent183

its orientation with the vector184

êθ = cos(θ)
tφ
‖tφ‖

+ sin(θ)
tz
‖tz‖

≡

cos(θ)

sin(θ)

 . (B7)

Due to orientational order in its cytoskeleton, the cell can exert stronger (or weaker) tensile185

1 In section A 6 “Force inference”, we have represented the average tension tensor of a cell as a boundary

integral of the forces that act on the cell boundary. Here, we consider the body forces that act as a result

of intracellular actomyosin contractility. In the co-moving reference frame of a non-deforming cell, both

descriptions are equivalent because internal stresses must exactly balance externally applied stresses.
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forces along its axis êθ than along the perpendicular axis. Therefore, we split the tension186

of a cell into two contributions: (i) an isotropic base tension τ0 that preserves rotational187

symmetry in our local reference frame and (ii) an additional anisotropic tension ∆τ along188

the direction specified by the vector êθ that breaks rotational symmetry in our local reference189

frame. Taken together, we model cell contractility with the following cell tension tensor2:190

τ (θ) = τ0 I2 + ∆τ êθ ⊗ êθ . (B8)

The diagonal elements of the cell tension tensor then correspond to the axial τz and the191

circumferential tension τφ, respectively:192

τ (θ) =

τ0 + ∆τ cos2(θ) ∆τ cos(θ) sin(θ)

∆τ cos(θ) sin(θ) τ0 + ∆τ sin2(θ)

 ≡
 τz . . .

. . . τφ

 . (B9)

Now consider a population of cells in which the cells differ in their orientations êθ and193

exert an anisotropic tension τ (θ). We statistically represent the occurrence of different194

cell orientations θ by the probability density function P (θ), which we refer to as angular195

distribution of cell orientations. The average tension tensor in the confluent tissue is then196

given by the weighted average τ̄ =
∫ π
−πdθ P (θ) τ (θ). Thus, the off-diagonal terms of the197

average tension tensor in the confluent tissue vanish for a symmetric angular distribution198

of cell orientations, P (θ) = P (−θ). Furthermore, we note that the trace of the cell tension199

tensor for each cell is independent of the cell’s orientation, tr(τ ) = τz + τφ = 2τ0 + ∆τ .200

Therefore, since the angular distribution of cell orientation is normalized,
∫ π
−πdθ P (θ) = 1,201

the trace of the average tension tensor in the confluent tissue is constant,202

tr τ̄ = τ̄z + τ̄φ = 2τ0 + ∆τ . (B10)

In other words, the total tension in the confluent tissue, τ̄z+ τ̄φ, is independent of the angular203

distribution of cell orientations. This explains our experimental finding that the sum of the204

axial and the circumferential tension remains constant for all experiments.205

If all cells are oriented in the same direction, e.g. along the centerline of the organoid206

branch so that P (θ) = δ(θ), then the difference between the axial and the circumferential207

2 One can also rationalize this form by performing a boundary integral of the forces that act on the cell

boundary, analogous to section A 6 “Force inference”.
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tension is simply given by τ̄z − τ̄φ = ∆τ . In contrast, if all cells are oriented randomly,208

P (θ) = 1/(2π), then axial and circumferential tension are equal τ̄z = τ̄φ. Thus, if the cells are209

initially aligned with the axial surface tangent vector tz (i.e. aligned with the centerline of the210

tube) and subsequently randomize their orientation, then the circumferential tension in the211

tissue will effectively increase at the expense of a decreasing axial tension. These theoretical212

considerations imply that in our experiments the predominant process underlying tension213

anisotropy is due to the reorientation of cells and not a change in their tensile properties τ0214

and ∆τ .215

In the present section, we have investigated how the orientation of cells, treated as216

anisotropic force dipoles, affects the average tension in a confluent tissue. From here on,217

we will not describe the precise distribution of cell orientation. Instead, we simplify our de-218

scription by considering only an axial tension τz and an independent circumferential tension219

τφ on the surface of the tubular shell (i.e. the organoid branch); we also simplify notation220

by omitting the overline indicating the population average.221

Tension anisotropy leads to generalized Laplace pressure. Next, we discuss how222

anisotropic surface tension couples to the organoid shape and how it is different from an223

isotropic surface tension. We consider cells as active agents that perform work as they deform224

the organoid branch (i.e. tubular shell). Instead of formally carrying out variational calculus225

of surfaces, in this section we omit the corresponding surface integrals by considering the226

dynamics of an (approximately homogeneous) infinitesimal surface patch with area A. In the227

case of isotropic surface tension τiso, the cells perform the work δW = −τiso δA [10] as they228

change the area of the surface patch on the tubular shell by δA. For a curved surface such as229

the organoid branch, one can relate a change in surface area to a displacement of the surface230

patch by a distance δu along its normal vector3,4, δA = −(κφ + κz) δuA [7]. Thus, any231

3 This relation can be easily checked for spherical geometries (with radius R, azimuthal angle φ and polar

angle ϑ), where a surface patch has area A ≡ R2 dϑ dcosφ. Then, radial movement of the surface patch by

a distance δu changes its area by δA = ∂RAδu = 2Rdϑdcosφ δu. Identifying the curvature of the sphere

with κφ = κϑ = −1/R, one then finds δA = −(κφ + κϑ) δuA. One can perform an analogous calculation

for straight tubular geometries.
4 For general (i.e. undulating) tubular geometries, one has to determine how the surface area changes upon

a deformation δu(z) via variational calculus. The surface area of the cylinder is given by the functional

A[u] = 2π
∫
dz
√

1 + (∂zu)2 (R0 + u). The variation of the surface area of the cylinder is then also a

functional: δA[u] = −2π
∫
dz (R0 + u) (κφ + κz) δu(z), where the curvatures are given by Eq. (B5). For

sufficiently thin patches, one can then approximate their surface area as 2π
∫
dz (R0+u) ≈ 2πdz (R0+u) ≡

A, to arrive at the expression in the main text.
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𝛿𝑢
𝜏

Supplementary Fig. 9. Illustration of a surface that moves by a distance δu, thereby decreasing

its surface area from A (initial configuration, sketch) to A+ δA (dashed line), where δA < 0. The

surface consists of contractile cells, which exert a tension τ that drives the dynamics.

surface patch that is curved towards its direction of motion, (κφ+κz) δu > 0, will effectively232

contract [Fig. 9]. This results in a cell-induced Laplace pressure ∆piso = δW
Aδu

= (κφ+κz) τiso.233

Note that this is a generalization of the expression for the Laplace pressure in a sphere,234

∆piso ∼ 2τiso/R, to generic surfaces.235236

Unlike isotropic tension, anisotropic tension breaks rotational symmetry, so that one237

must individually consider the (relative) length changes that occur in different directions as238

the cells deform the organoid branch. Here, it helps to envision (anisotropic) surface tension239

as a meshwork of ropes, which are aligned along the axis and along the circumference of240

the tubular shell, respectively. Then, one may associate axial tension with the work that is241

required for increasing the (relative) length of the tubular shell, and circumferential tension242

with the work that is required for increasing the (relative) circumference of the tubular shell.243

In summary, one then has:244

δW = −
(
τz
δ`z
`z

+ τφ
δ`φ
`φ

)
A , (B11)

where `z and `φ refer to the arc lengths on the surface and A = `z `φ is the area of the245

corresponding surface patch. Upon a displacement of the organoid surface by a distance δu246

along its normal vector, the circumferential arc length `φ and the axial arc length `z change247

Reprintofaccepted
m
anuscript

IV.1 Collective Cell Migration Affects Morphogenesis

377



16

as follows5,6:248

δ`φ = −κφ δu `φ
δ`z = −κz δu `z .

(B12)

With these considerations, the (generalized) Laplace pressure on the tubular shell, δW
Aδu

, is249

given by:250

∆pτ = τφκφ + τzκz . (B13)

By explicitly inserting the expressions for the axial and the circumferential curvatures,251

Eq. (B6), we obtain:252

∆pτ = −τφ
R

+ τz ∂
2
zR . (B14)

The generalized Laplace pressure, Eq. (B14), must be balanced by stresses in the fluid253

(specifically, viscous stresses and hydrostatic pressure) as well as by elastic stresses in the254

extracellular matrix [discussed in sections A 3 “Collagen “cage”” and B 4 “Bulk extracellular255

matrix elasticity does not significantly affect tube stability”].256

3. Collagen cage envelops organoids and confers mechanical stability257

In this section, we discuss the elastic properties of the extracellular matrix, which puts258

constraints on the deformations of the thin tubular shell (i.e. the organoid branch). We base259

our model on the experimental determination of the density and thickness of the collagen260

cage that surrounds branches and alveoli, as discussed above (section A 3 “Collagen “cage””).261

This is built by the contractile activity of the cells in the organoid branches, which gives rise262

to complex mechanical properties. Furthermore, its mechanical properties currently cannot263

be separated from the mechanical properties of the surrounding collagen matrix and the264

mechanical properties of the cells. As a consequence, its elastic modulus is unknown and265

not readily accessible to experiments. In this section, we estimate the elastic modulus of the266

collagen cage.267

Estimate for the rigidity of the collagen cage. From fluorescence intensity mea-268

5 This relation can be illustrated as follows. Any curved line segment can be understood as a circle segment

with angle dφ and radius R. The arc length of this line segment is then given by `φ = Rdφ. Upon

radial displacement by a distance δu, the arc length changes by δ`φ = ∂R`φ δu = dφ δu. Identifying the

curvature as κφ ≡ −1/R, one then finds δ`φ = −κφ δu `φ.
6 Note that from these relations one also finds δA = `zδ`φ + `φδ`z = −(κφ + κz) δuA, where A ≡ `φ`z.
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surements, we know that the collagen cage has a roughly 5-fold higher density than the269

bulk collagen [1]. We now assume that the cage is structurally similar to bulk collagen, but270

concentrated by a factor of 5. In general, the elastic modulus of collagen increases with271

the concentration roughly in a power-law manner with an exponent in the range of 2.2–272

2.6 [11, 12]. At our standard concentration of ρbulk = 1.3 mg ml−1, we measured the shear273

modulus to be µ ' 7 Pa (data not shown; see [12]). The corresponding elastic modulus274

can be calculated from the shear modulus by using [5] E = 2 (1 + ν)µ, where the Poisson275

ratio can be approximated as ν = 0.5 [13]. Taking a concentration-dependence exponent276

of 2.2, we thus obtain a lower estimate of Ecage = 0.72 kPa for the elastic modulus of the277

collagen cage. Instead taking a concentration-dependence exponent of 2.6, we obtain an278

upper estimate of Ecage = 1.38 kPa for the elastic modulus of the collagen cage.279

Passive stretching of the collagen cage induces elastic stresses. As discussed280

in the previous paragraphs, organoid branches and alveoli are surrounded by a thin, dense281

“collagen cage”, which we model as a thin elastic shell. In the following, we first discuss how282

much energy is stored in elastic deformations of the collagen cage, which includes bending283

and stretching [14]. Then, we determine the corresponding elastic boundary stresses that act284

on the surface of a deformed tubular shell. Since we account for the mechanical properties285

of cells by treating them as contractile force dipoles, cf. section B 2 “Active cell contractility286

induces anisotropic tension and Laplace pressure”, we assume in the following that the elastic287

response of the tubular shell is dominated by the elastic properties of the collagen cage and288

not the cell sheet7.289

We begin by considering stretching (or compression) of the collagen cage. To parameterize290

the corresponding deformation field u(z), we use a cylindrical coordinate system that is291

spanned by the normalized basis vectors [cf. section B 4 “Bulk extracellular matrix elasticity292

does not significantly affect tube stability”]:293

b̂r =


cosφ

sinφ

0

 , b̂z =


0

0

1

 , and b̂φ =


sinφ

cosφ

0

 . (B15)

As we assume that the deformation gradients of the surface are small, ∂zR � 1, the radial294

7 A more detailed approach would have to differentiate between the mechanical in-plane deformation of the

collagen cage and the mechanical in-plane deformation of the cell sheet, because motile cells can move

relative to the substrate that they adhere to.
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Supplementary Fig. 10. Illustration of radial deformations (left) and axial deformations (right).

Any elastic body that is stretched or compressed exhibits elastic stresses that counteract these

deformations.

basis vector coincides with the unit surface normal, b̂r ≈ n̂ , and the axial basis vector295

coincides with the (in that case normalized) surface tangent vector, b̂z ≈ t̂z, cf. section B 1296

“Choice of coordinate system”. We consider u ≡ u(z) as the radial (or normal) component297

of the surface deformation field, which accounts for radial displacements of the surface. Such298

radial deformations change the radius of the tubular shell from R0 in its cylindrical reference299

configuration to R = R0 +u in its deformed configuration. In addition, we also consider the300

axial (or tangential) component of the surface deformation field, u‖ ≡ u‖(z), which however301

has no effect on the shape of the tubular shell. To summarize, in our cylindrical geometry302

the surface deformation field is given by u = u b̂r + u‖ b̂z303

In the present work, we analyze the linear stability of the tubular shell and therefore304

consider only infinitesimal deformations of the collagen cage from its cylindrical reference305

configuration8. The corresponding linearized surface strain tensor is given by [5]:306

εlin =
1

2

[
∇⊗ u + (∇⊗ u)T

]
=

∑
i,j∈{φ,z}

εij b̂i ⊗ b̂j , (B16)

where the circumferential component εφφ and the axial component εzz of the surface strain307308

tensor are given by [Fig. 10]:309

εφφ ≈
u

R0

, and εzz ≈ ∂zu‖ . (B17)

Circumferential strain εφφ corresponds to a change of the circumferential arc length `φ due310

8 For a nonlinear analysis, one would have to calculate the nonlinear (Green) strain tensor, εg = εlin +
1
2 (∇⊗u)T · (∇⊗u), where εlin refers to the linear part of the strain tensor (B16). Such an analysis was

carried out by Hannezo et al. [15].
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to an out-of-plane displacement u, cf. Eq. (B12) and Fig. 9. Axial strain corresponds to311

a compression or dilatation due to in-plane deformations. Neglecting in-plane shear strain312

εzφ, stretching of the tubular shell is associated with the following free energy density per313

surface area [14]:314

fs =
Ecage h

2 (1− ν2)
[
ε2φφ + ε2zz + 2νεφφεzz

]
, (B18)

where ν ≈ 0.5 refers to the Poisson ratio of the collagen cage. The total energy that is stored315

in stretching of the collagen cage is given by Fs[u, u‖] =
∫
dS0 fs, and is thus a functional316

of the surface deformation field (u, u‖). Here,
∫
dS0 refers to a surface integral over the317

reference configuration of the collagen cage. In the cylindrical reference configuration, the318

(positive definite) stretching energy Fs vanishes and is therefore minimal. Consequently, any319

deformation of the collagen cage is accompanied by a finite energy cost so that a further320

deflection (u, u‖)→ (u+ δu, u‖+ δu‖) costs an energy δFs = Fs[u+ δu, u‖+ δu‖]−Fs[u, u‖].321

When external stresses are relieved, the collagen cage will gradually move back from the322

deformed configuration to its reference configuration by releasing the stored elastic stretching323

energy in the form of work. Thus, stretching of the collagen cage induces elastic stresses that324

drive movement towards the mechanical reference configuration. We distinguish between two325

possible (and independent) directions of movement, axial/tangential and radial/normal,326

which couple to the respective stress fields. Tangential movement by some infinitesimal327

distance δu‖ is driven by a shear stress along the interface:328

σrzcage = −δFs

δu‖
= − Ecage h

2 (1− ν2)
δ

δu‖

∫
dS0

[( u
R0

)2
+
(
∂zu‖

)2
+ 2ν

( u
R0

)(
∂zu‖

)]
= ∂z

[
Ecage h

1− ν2
(
εzz + νεφφ

)]
.

(B19)

Here, the term in square brackets corresponds to the axial component of the elastic sur-329

face tension in response to deformations of the thin shell. Specifically, by identifying the330

axial tension with τel,zz := ∂fs/∂εzz, cf. Eq. (B18), one finds that σrzcage = ∂zτel,zz. Thus,331

Eq. (B19) illustrates that tangential shear stresses correspond to surface tension gradients,332

where regions with larger tension effectively pull on regions with lower tension.333

These elastic shear stresses in the organoid branch are balanced by viscous stresses of the334

fluid that fills the organoid branch and by elastic stresses of the extracellular matrix. Since335

the cells are motile, they can move relative to the collagen cage. By extension of argument,336
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the collagen cage can slip against the cell sheet and the fluid in the lumen of the organoid337

branch, so that the tangential shear stresses induced by the collagen cage relax quickly338

compared to the normal stresses. Assuming such a timescale separation, the tangential339

shear stresses in the collagen cage will vanish on the timescales relevant for perpendicular340

motion of the interface9. Then, one finds from Eq. (B19) that εzz = C − νεφφ, where C341

is some constant. With this adiabatic approximation, the free energy density (per surface342

area) that is stored in stretching deformations of the tubular shell simplifies to:343

f ?s =
Ecage h

2

[
ε2φφ +

C2

(1− ν2)

]
. (B20)

Since, by definition, both the free energy that is stored in deformations and the corresponding344

tensions vanish in the reference configuration, the constant C = 0 must also vanish. Just as345

tangential movement is driven by a shear stress along the interface, perpendicular motion346

of the surface by some infinitesimal distance δu is driven by a normal stress that acts on347

the surface:348

∆ps = −δFs

δu
≈ ∂uf

?
s = − 1

R0

[
Ecage h

u

R0

]
. (B21)

The deformed radius of the tubular shell is given by R = R0 + u and the reference radius349

is given by R0. The term in square brackets corresponds to the circumferential component350

of the elastic surface tension in response to deformations of the thin shell. Thus, Eq. (B21)351

can be understood as a Laplace pressure that is associated with tension due to elastic352

deformations.353

Passive bending of the collagen cage is counteracted by elastic stresses. Next,354

we discuss the Helfrich free energy density per surface area that is stored in bending defor-355

mations of the collagen cage [16]:356

fb =
1

2
kb

[
(κφ − cφ)2 + (κz − cz)2

]
, (B22)

where cφ is the circumferential spontaneous curvature and cz is the axial spontaneous cur-357

vature of the tubular shell. In the following, we assume that the tubular shape corresponds358

9 For a more general treatment, we would have to explicitly model the relaxation dynamics of the tangential

shear stresses by considering the viscous properties of the collagen cage and/or the surrounding elastic

medium.
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to the mechanical reference configuration of the organoid branch, which therefore minimizes359

the bending energy. Thus, we set the axial spontaneous curvature to cz = 0 and the cir-360

cumferential spontaneous curvature to cφ = −1/R0. This is a plausible ansatz since the361

collagen cage grows due to the contractility of the pre-existing organoid branch and persists362

even after washing out the epithelial cells [1]. Nevertheless, one would have to modify this363

assumption if the initial tubular shape corresponds to a pre-strained configuration, or if364

the shell-like organoid branch itself also significantly contributes to the bending energy10.365

For small deformations u, the two principal curvatures of the tubular shell are in good ap-366

proximation given by κz = ∂2zu and κφ = −1/R, along the axis z and the circumference367

φ respectively, cf. Eq. (B6). The free energy density (per surface area) that is stored in368

deformations of the collagen cage is then given by:369

fb =
1

2
kb

[(
1

R
− 1

R0

)2

+ (∂2zu)2

]
≈ 1

2
kb

[
u2

R4
0

+ (∂2zu)2
]
, (B23)

for sufficiently small deformations of the tubular shell, u � R0. The total bending energy370

of the collagen cage is given by Fb[u] =
∫
dS0 fb, and is a functional of the radial component371

of the surface deformation field, u. Here, as above,
∫
dS0 refers to a surface integral over the372

reference configuration of the collagen cage. In the cylindrical reference configuration, the373

(positive definite) bending energy Fb vanishes and is therefore minimal. Consequently, any374

deformation of the collagen cage is accompanied by a finite energy cost so that a further375

deflection u → u + δu costs an energy δFb = Fb[u + δu] − Fb[u]. When external stresses376

are relieved, the collagen cage will gradually move back from the deformed configuration377

to its reference configuration by releasing the stored elastic bending energy in the form of378

work. Thus, bending deformations of the collagen cage induce elastic stresses that drive379

movement towards the mechanical reference configuration. In principle, as above, we distin-380

guish between two possible (and independent) directions of movement, axial/tangential and381

radial/normal, which couple to the respective stress fields. However, since the free energy382

that is stored in bending deformations does not depend on the axial component of the defor-383

mation field, δFb/δu‖ = 0, the tangential shear stresses vanish. Note that there is a deeper384

reason as to why there are no tangential shear stresses in response to bending. For tangen-385

10 Cell contractility can effectively lead to a spontaneous curvature of thin cell sheets due to an asymmetric

positioning of the cells’ actomyosin cytoskeleton relative to the middle surface of the cell sheet [17]. If

the spontaneous curvature is induced by cell contractility, then it can also be influenced by the local

orientation of cells.
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tial deformations, the material points of the thin shell only move along the surface, thus386

leaving its shape unchanged. Since the bending energy (B23) only depends on the shape of387

the thin shell, it follows that tangential deformations cannot induce bending stresses. This388

only leaves perpendicular motion of the surface by some infinitesimal distance δu, which is389

driven by a normal stress that acts on the surface:390

∆pb = −δFb

δu
= −kb

[
u

R4
0

+ ∂4zu

]
, (B24)

where the deformed radius of the tubular shell is given by R = R0 + u and the reference391

radius is given by R0. Summing up the stresses that arise in response to stretching and392

bending of the collagen cage, Eq. (B21) and Eq. (B24),393

∆pcage = −Ecage h
u

R2
0

− kb
[
u

R4
0

+ ∂4zu

]
, (B25)

yields the normal component of the total boundary stress due to elastic deformations. As394

our notation suggests, one can interpret the normal component of the boundary stresses as395

a pressure jump between the lumen of the organoid branch and the surrounding medium.396

This corresponds to an effective pushing stress (if positive) or pulling stress (if negative) on397

the interface from outside of the organoid branch.398

Linear stability analysis. A cylindrical configuration of the thin tubular shell (i.e.399

the organoid branch) is stable whenever the combined effect of all elastic stresses and the400

active cellular tension counteracts any small shape perturbation. In this section, we use401

this argument to find conditions for which a cylindrical shape becomes linearly unstable.402

To that end, as we have done in the previous sections, we consider rotationally symmetric403

deformations of the tubular shell, R = R0 + u, that are small compared to the equilibrium404

radius of the tube, u � R0. At the organoid branch interface, there is a local balance405

between fluid stress, generalized Laplace pressure [Eq. (B14)] and the elastic stress induced406

by deformations of the collagen cage [Eq. (B25)]:407

σrrvisc = p0 −
τφ
R

+ τz∂
2
zu− Ecage h

u

R2
0

− kb
[
u

R4
0

+ ∂4zu

]
≈ p0 −

τφ
R0

+

[
τφ
R2

0

− Ecage h

R2
0

− kb
R4

0

+ τz∂
2
z − kb∂4z

]
u .

(B26)
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Supplementary Fig. 11. Stress dispersion relation as a function of the mode q. A reorientation of

cells can increase the circumferential tension at the expense of the axial tension, thus shifting the

stress dispersion relation upwards (blue arrow) and inducing a band of unstable modes.

The left-hand side of the stress-balance equation, Eq. (B26), corresponds to dynamic viscous408

stresses σrrvisc that vanish in steady state. Hence, only the right-hand side of the stress-balance409

equation (B26), where we have collected the hydrostatic pressure, the generalized Laplace410

pressure, and elastic stresses, determines the stability of the tubular shell. The stress-411

balance equation, Eq. (B26), must hold for any deformation of the tubular shell, including412

the reference configuration itself (u = 0). Therefore, the hydrostatic pressure is given by413

p0 = τφ/R0. Finally, we express the small deformations u in terms of Fourier components,414

u =
∑

q uq cos(qz), and thus obtain the following stress dispersion relation near mechanical415

equilibrium [Fig. 11]:416

∆pq =

[
τφ
R2

0

− Ecage h

R2
0

− kb
R4

0

− τzq2 − kbq4
]
uq . (B27)

Since the last two terms of equation (B27) are stabilizing (positive axial tension τz and417

positive bending rigidity kb), a band of unstable modes can only emerge if11:418

τφ > τc = Ecage h+
kb
R2

0

. (B28)

These results indicate a long-wavelength instability according to the Cross/Hohenberg clas-419420

sification scheme [19]; specifically, the mechanical driving stress is largest for the q = 0421

mode. However, note that here this will not be the fastest-growing mode, as homogeneous422

modes q = 0 are prohibited by the incompressibility of the fluid in the lumen of the organoid423

branch.424

11 The classical result for the pearling instability has an additional factor of 2/3 in the second term, because

it considers a material with zero spontaneous curvature along both principal directions [18]. Then, the

bending energy acts as an additional destabilizing term.
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In general, increasing the circumferential tension will increase the mechanical driving425

stress [cf. right-hand side of the stress-balance equation (B26)], and will therefore speed426

up the pearling instability. Furthermore, we note that the pearling instability occurs when427

the circumferential tension and the corresponding Laplace pressure are sufficiently strong428

to overcome the stabilizing effects conferred by the elastic properties of the collagen cage429

[Eq. (B27)]. As the alveolus grows, the Laplace pressure will then decrease, while the430

hydrostatic pressure will remain approximately constant (if the alveolus is still connected431

to an organoid branch). Furthermore, the stress due to elastic bending of the collagen cage432

is much smaller than the stress due to elastic stretching, given that the former scales with433

the thickness of the collagen cage h and the latter scales with h3. Therefore, for a spherical434

alveolus whose radius grows from R0 to R at the tip of an organoid branch, we can make435

the following approximation:436

σrrvisc = ∆p =
τφ
R0

− τφ
R
− Ecage h

R−R0

R2
0

. (B29)

The final equilibrium radius of the alveolus is then determined by the steady-state condition437

σrrvisc = 0 and is therefore given by438

R

R0

=
τφ

Ecage h
. (B30)

We conclude that the above theory predicts that an increase in surface tension will lead to439

larger alveoli that also form faster. These results hold on sufficiently short timescales, where440

the deformation of the extracellular matrix is elastic and fully reversible. On long timescales,441

if the stresses in the extracellular matrix are above the plastic yield threshold, then the442

reference radius R0 will effectively increase due to plastic deformation of the extracellular443

matrix thus leading to a robust and continued growth of spherical alveoli as we have discussed444

in the main text.445

Estimating the critical circumferential tension. We next estimate the magnitude446

of the critical tension. For a homogeneously elastic sheet with elastic modulus Ecage, Poisson447

ratio ν and thickness h, the bending modulus is given by [5] kb = Ecage h
3/[12(1 − ν2)]. In448

section A 3 “Collagen “cage””, confocal microscopy data showed that the collagen cage has449

a typical thickness of h ' 5 µm. Furthermore, we have estimated in section A 3 “Collagen450
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“cage”” that the elastic modulus of the collagen cage should lie in the range between Ecage =451

0.72 kPa and Ecage = 1.38 kPa. Furthermore, analogously to section A 3 “Collagen “cage””,452

we assume that the collagen cage (which has a collagen concentration of roughly 6.5 mg ml−1)453

is incompressible, such that ν = 1/2 [20]. For a branch radius of R0 = 30 µm, we find that454

the critical circumferential tension τc of the organoid branch [Eq. (B28)] lies in the range455

between τc = 3.6 mN m−1 and τc = 6.9 mN m−1. Values for the cortical tension of single456

contractile cells have been measured via micropipette aspiration to be about 0.4 mN m−1
457

for L929 fibroblasts [21] and have similar values for chick fibroblasts [22], 4.1 mN m−1 for458

Dictyostelium discoideum [23], and via traction force microscopy to reach up to 5 mN m−1 for459

human microvascular endothelial cells [24] (HMEC-1). Furthermore, micropipette aspiration460

of spheroids consisting of MCF-10A (human mammary epithelial) cells has yielded a value461

of 10 mN m−1 [25] for the corresponding surface tension.462

We conclude that the active tension induced by cellular contractility is strong enough463

to trigger a pearling instability against the mechanical resistance of the collagen cage. In464

addition, the active tension induced by cellular contractility is sufficiently small so that465

an axial alignment of cells [cf. section B 2 “Active cell contractility induces anisotropic466

tension and Laplace pressure”] could keep the circumferential component of the tension467

tensor below the critical value, Eq. (B28). Finally, our cell tracking data show that collective468

rotations of cells around the circumference of the organoid branch typically begin at the tips469

of the organoid branches [cf. Fig. 3 in the main text]. This observation is rooted in the470

fact that at the tips of the organoid branches, cells have to repolarize and either migrate471

back or begin collectively migrating around the circumference (i.e. rotations); the latter472

corresponds to the least frustrated state where cells can keep migrating with the least number473

of changes in direction. Therefore, cell reorientation and an increase in circumferential474

tension at the expense of axial tension also typically begin at the tips of the organoid475

branches. Furthermore, note that Buchmann and Meixner et al. [1] have shown that the476

collagen cage is thinner at the organoid branch tips and approaches a thickness of up to477

h = 10 µm towards the organoid body. In that case, the critical tension would increase478

by a factor of at least 2 (relative to our estimated value, assuming that the collagen cage479

has the same elastic modulus near the organoid body) towards the organoid body. These480

two observations (preferred cell reorientation and thinner collagen cage) rationalize why the481

pearling instability preferably occurs at the organoid branch tips.482
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4. Bulk extracellular matrix elasticity does not significantly affect tube stability483

So far, we have assumed that a tubular configuration of the shell-like organoid branch is484

stabilized by a rigid collagen cage. In addition, the organoid branch is also surrounded by an485

elastic extracellular matrix. Thus, one may wonder whether a collagen cage is required, or486

if a homogeneous extracellular matrix itself would be sufficient to stabilize tubular shapes.487

In the following, we argue that a homogeneously elastic extracellular matrix is too soft to488

stabilize the cylindrical organoid branch against its own contractility.489

To that end, we use linear elasticity theory. The extracellular collagen matrix is a three-490

dimensional body and thus requires a treatment in terms of three-dimensional bulk coordi-491

nates492

r(r, z, φ) =


r cosφ

r sinφ

z

 , (B31)

which match the surface coordinates at the interface of our tubular geometry [cf. section B 1493

“Choice of coordinate system”]. The three (orthogonal but non-normalized) basis vectors494

that span the three-dimensional of our tubular geometry are then given by495

br =


cosφ

sinφ

0

 , bz =


0

0

1

 , and bφ =


−r sinφ

r cosφ

0

 . (B32)

In the present section, we use contravariant notation to express vectors, v = vi bi, and496

tensors, σ = σij bi ⊗ bj. Contravariant notation indicates that the components of any497

vector field, vi, transform inversely in response to any basis transformation, so that the498

vector field v itself remains invariant. As before, we assume a rotational symmetry around499

the z-axis.500

We associate the mechanical reference configuration of the organoid branch and of the ex-501

tracellular matrix with the initial shape of the tubular shell. Then, we consider infinitesimal502

deviations from this reference configuration, which are parameterized by the deformation503
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field u. The corresponding linearized strain tensor is given by [5]:504

εlin =
1

2

[
∇⊗ u + (∇⊗ u)T

]
=

∑
i,j∈{r,φ,z}

εij bi ⊗ bj . (B33)

In contrast to section A 3 “Collagen “cage””, as discussed above, we have here expressed the505

linearized strain tensor in contravariant notation. In our rotationally symmetric cylindrical506

coordinate system, the strain tensor is given by:507

εlin ≡


εrr εrz εrφ

εzr εzz εzφ

εφr εφz εφφ

 =


∂ru

r (∂zu
r + ∂ru

z)/2 ∂ru
φ/2

(∂zu
r + ∂ru

z)/2 ∂zu
z ∂zu

φ/2

∂ru
φ/2 ∂zu

φ/2 ur/r3

 . (B34)

The trace of the strain tensor in our cylindrical coordinate system,508

trg(εlin) =
∑

i∈{r,φ,z}

b̂i · εlin · b̂i = εrr + εzz + r2εφφ

= ∂zu
z +

1

r
∂r(r u

r) = ∇ · u ,
(B35)

indicates volumetric changes (i.e. isotropic compression and dilatation) due to the deforma-509

tion field u. Splitting the strain tensor into a pure shear component and a pure volumetric510

part, the linear elastic stress tensor is given by [5]:511

σel = 2µ

[
εlin −

1

3
trg(εlin)I3

]
+

2µ

3

1 + ν

1− 2ν
trg(εlin)I3

= 2µ

[
εlin +

ν

1− 2ν
trg(εlin)I3

]
,

(B36)

where I3 refers to the identity matrix. A mechanical force balance in the bulk of the ex-512

tracellular matrix implies that the body force that acts on an infinitesimal volume element513

vanishes [26]:514

f = ∇ · σlin =


1
r
∂r(rσ

rr
el ) + ∂zσ

rz
el − rσφφel

1
r
∂r(rσ

rz
el ) + ∂zσ

zz
el

1
r
∂r(rσ

rφ
el ) + 2

r
σrφel + ∂zσ

zφ
el

 = 0 . (B37)

The circumferential component of the body force vanishes in the absence of torques. Then,

the remaining mechanical force balance equations in the bulk of the extracellular matrix are
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given by:

∂z

[
1

1− 2ν

1

r
∂r(r u

r) + 2
1− ν
1− 2ν

∂zu
z

]
+

1

r
∂r(r ∂ru

z) = 0, (B38a)

∂r

[
2

1− ν
1− 2ν

1

r
∂r(r u

r) +
1

1− 2ν
∂zu

z

]
+ ∂2zu

r = 0, (B38b)

where ur and uz refer to the radial and axial deformation field, in contravariant notation,515

respectively. To solve these equations, we introduce the stress function Φ via an implicit516

definition:517

ur = −∂r∂zΦ , uz = 2(1− ν)∆Φ− ∂2zΦ . (B39)

By inserting Eq. (B39) into Eqs. (B38a) and (B38b), one finds that the stress function Φ518

must satisfy the biharmonic equation in cylindrical coordinates [26]:519

∆2Φ = 0 . (B40)

We are interested in undulations of the tubular organoid branch, and therefore decompose520

the deformation field of the extracellular matrix into Fourier modes: ur =
∑

q u
r
q(r) cos(qz)521

and uz =
∑

q u
z
q(r) sin(qz). Thus, we may also express the stress function in terms of522

Fourier modes: Φ =
∑

q Φq(r) sin(qz). The general real-valued solution to the biharmonic523

equation (B40) is then given by:524

Φq(r) = a1

[
Y0(−iqr) + iI0(qr)

]
+ a2I0(qr) + ia3r

[
I1(qr) + Y1(−iqr)

]
+ a4rI1(qr) , (B41)

where Ik(x) refers to the modified Bessel function of the first kind and Yk(x) refers to the525

Bessel function of the second kind, respectively. As we consider the extracellular matrix as526

an elastic medium in the half-space r ≥ R, we are only interested in real-valued solutions527

(ur, uz) that decay in the far field and approach zero as r → ∞. This constraint fixes two528

of the four coefficients in Eq. (B41), a2 = 0 and a4 = 0, which correspond to solutions that529

would vanish at r → 0 and diverge in the far field r →∞. The remaining two coefficients a1530

and a3 can be determined by imposing boundary conditions on the deformation field. Here,531

we choose a general radial deformation, urq(R), and impose no-slip conditions on the axial532
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Supplementary Fig. 12. a) Exemplary deformation field around a tubular branch, for an incom-

pressible extracellular matrix ν = 1/2 and a Fourier mode q = 2π/R. The gray region indicates

the wall of the organoid branch. b) Illustration of the function Λ(x), which saturates (dashed line)

for large arguments and grows (approximately) linearly for small arguments. Thus, the normal

component of the elastic stress grows quadratically for small arguments qR and linearly for large

arguments qR. For simplicity, we have assumed an incompressible material, ν = 1/2.

deformation, uzq(R) = 0. Then, the stress function is given by the following expression:533

Φq(r) =
urq(R)

q2
K0(qr)

K1(qR)

[
1 + qΘ(qR)

(
RB(qR)− r

B(qr)

)]
, (B42)

where we have defined534

Θ(x) :=
B(x)

x−B(x)
[
4(1− ν) + xB(x)

] , and B(x) :=
K0(x)

K1(x)
, (B43)

and where Kk(x) refers to the modified Bessel function of the second kind. Using Eq. (B39),

we readily obtain the full (rotationally symmetric) deformation field of the extracellular

matrix. Then, we calculate the radial component of the elastic stress tensor, σrrel , where µ

refers to the shear modulus of the extracellular matrix [cf. Eq. (B36)]:

σrrel (R) = −2µ

R

∑
q

(
1 + qRΛ(qR)

)
urq(R) cos(qz) , (B44a)

Λ(x) := −2(1− ν)B(x)Θ(x) . (B44b)

The above function Λ(x) and the deformation field are depicted in Supplementary Fig. 12.535

For the no-slip boundary conditions that we have chosen here, the normal stress grows536

quadratically for small arguments qR� 1 and linearly for large arguments qR� 1.537

Reprintofaccepted
m
anuscript

IV.1 Collective Cell Migration Affects Morphogenesis

391



30

Replacing the thin bendable collagen cage with an extended homogeneous extracellu-538

lar matrix, the mechanical driving stress [cf. right-hand side of the stress-balance equa-539

tion (B26)] on the shell-like organoid branch is given by540

∆pq =

[
τφ
R2

0

− τzq2 −
2µ

R0

(
1 + qR0 Λ(qR0)

)]
uq . (B45)

The first term (Laplace pressure due to circumferential tension) in the square brackets is541

destabilizing and does not depend on the wavelength. The second term (Laplace pressure542

due to axial tension) in the square brackets stabilizes short wavelengths. The third term in543

the square brackets (elastic stress) has a contribution that stabilizes long wavelengths (q = 0)544

and a contribution that stabilizes short wavelengths (q > 0). In particular, for the no-slip545

boundary conditions that we have chosen here, the function Λ(x) grows monotonically as546

its argument x increases, cf. Supplementary Fig. 12b, with xΛ(x) ∝ x2 for small arguments.547

We conclude that a pearling-like instability at low wavelengths (i.e. for q → 0) will only548

occur if the Laplace pressure due to circumferential tension can overcome the stabilizing549

effects conferred by the extracellular matrix:550

τφ > 2µR0 (B46)

For a shear modulus of µ ≈ 7 Pa this yields a critical surface tension of 0.4 mN m−1, which is551

far below the reference tension of 10 mN m−1 for the surface tension of spheroids consisting of552

MCF-10A (human mammary epithelial) cells [25]. Thus, we conclude that the homogeneous553

extracellular matrix alone is unlikely to stabilize a tubular geometry in our experiments,554

which further emphasizes the mechanical role of the collagen cage.555
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IV.2 Between Morphogenesis and Hydrodynamic Flows

IV.2 BetweenMorphogenesis and
Hydrodynamic Flows

IV.2.1 Starting Point of the Project
Here, we discuss a very technical project, which aims at deepening our under-
standing of the tissue dynamics during alveologenesis, see Section IV.1 “Collec-
tive Cell Migration Affects Morphogenesis”. To that end, we first investigate in
Section IV.2.2 “Collective Cell Oscillations” the origin of oscillatory back-and-
forth motion in tubular geometries, by introducing a greatly simplified model
of polar motion in an elastic environment. Then, we go on to take a closer
look at the different aspects of Section IV.1 “Collective Cell Migration Affects
Morphogenesis”:

(i) In Section IV.2.3 “Nonlinear Elasticity of the Collagen Cage”, we gener-
alize the description of the collagen cage by considering it as a nonlinear
elastic material that can exhibit large strains. We apply these results in
Section IV.2.6 “Tubular Shells as Pumps and Rectifiers”, and have already
taken them for granted in Section IV.1.3 “Technical Summary”.

(ii) In Section IV.2.4 “Deformations of the Extracellular Matrix” we general-
ize the description of the extracellular matrix by allowing slip boundary
conditions at the cellular surface of the organoid branch. We do not im-
mediately apply these results, but they can prove useful in future work.

(iii) In Section IV.2.5 “Cell Activity Drives Hydrodynamic Flows”, we derive
the hydrodynamic flows in the lumen of an organoid branch. To that end,
we solve the Stokes equations analytically, with stress boundary condi-
tions at the cellular surface of the organoid branch. We find that cell in-
flux into the tip of the organoid branch leads to an increase of hydraulic
pressure, and thus expansion of the surface before the onset of the shape
transformation. This effect biases the shape transformation, which oc-
curs at the tip of the organoid branch, towards growth. The linear stability
analysis in Section IV.1.3 “Technical Summary” alone does not give us this
insight. Furthermore, we find that tubular shells can hydraulically bulge
out due to cellular contractility alone. This could provide aminimalmodel
for exocytosis via actin cortex contractility.

(iv) Finally, in Section IV.2.6 “Tubular Shells as Pumps and Rectifiers”, we
give an outlook to the nonlinear dynamics of fluid-filled tubular shells.
Here, we find a hysteresis loop where, as a function of the hydrodynamic
pressure, the tube switches between two stable branches of tube radii. This
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hysteresis loop signifies a violation of time-reversal symmetry. Therefore,
we hypothesize that tubular shells can act as mechanical rectifiers if one
applies a temporally oscillating gradient of hydrodynamic pressure.

IV.2.2 Collective Cell Oscillations
In this section, we propose and discuss a genericmodel that illustrates how peri-
odic cell motion can naturally emerge from cell polarity. Conceptually, we build
on Section IV.1 “Collective Cell Migration Affects Morphogenesis”, where we
have described each cell as an anisotropic force dipole whose local orientation
is given by the unit vector ̂𝒆𝜃. The average surface tension tensor at the cellular
surface of the organoid branch is then controlled by the distribution of cell orien-
tation angles: aligned cells induce anisotropic tension at the tissue scale, while
randomly oriented cells imply isotropic tension. If cells in one region, on aver-
age, pull harder than cells in a nearby region, then these tension gradients will
drive cellular motion and fluid flows, as we will study in Section IV.2.5 “Cell Ac-
tivity Drives Hydrodynamic Flows”. Such tension gradients can be realized ei-
ther by regulating the angular distribution of cell orientation or the tensile prop-
erties of the cells. As an example of the latter, mechanochemical signaling and
tension regulation can lead to oscillatory motion in cell monolayers (Boocock et
al., 2021). These tension-driven flows are a collective phenomenon, where cells
communicate mechanochemically to act in concert, thus requiring a descrip-
tion of the cell population as a spatially extended confluent tissue. But single
cells can also exhibit properties of active polar particles and migrate in the di-
rection of their orientation vector ̂𝒆𝜃, see Section III.1 “Collective Cell Dynamics
in Rigid Environments”. Then, the cells effectively exhibit a motile net force by
exerting traction on the substrate that theymigrate on (Fig. IV.3). Therefore, the
tension field in the cellular monolayer, which models the force-dipole nature of
cells, is in general supplemented by an active (motile) force density field, which
models the force-monopole nature of cells.
Analogous to how axial alignment of cells can lead to a tension anisotropy

with increased axial tension, there is also an inverse effect where externally ap-
plied tension leads to cellular alignment (Bischofs and Schwarz, 2003; Bischofs,
S. A. Safran, et al., 2004). This alignment is mediated by the extracellular ma-
trix: cells have to perform less work (deforming the elastic extracellular matrix)
to build up a force dipole that is aligned in parallel to an applied strain than to
build up a force dipole with a perpendicular alignment (Bischofs and Schwarz,
2003; Bischofs, S. A. Safran, et al., 2004). Since parallel alignment of anisotropic
force dipoles (like cells) with an external strain is energetically preferred over
perpendicular alignment, the resulting torque will change the orientation of
each cell. Similar effects follow if the cells are near a fixed boundary, which

396



IV.2 Between Morphogenesis and Hydrodynamic Flows

𝑓0
Δ𝑓 𝑓m

𝒕𝜙

𝒕𝑧

̂𝒆𝜃

Figure IV.3: Idealized description of a cell with diameter 𝑑0 and area𝐴0, whose
orientation ̂𝒆𝜃 aligns with the organoid branch axis 𝑧. The cell exhibits
isotropic contractile forces 𝑓0 that correspond to an isotropic tension 𝜏0 ≃
𝑓0 𝑑0/𝐴0. Along one axis, the cell exhibits larger contractile forces (Δ𝑓 > 0) or
smaller contractile forces (Δ𝑓 < 0) than along the perpendicular axis, leading
to an anisotropic tension contribution of Δ𝜏 ≃ Δ𝑓 𝑑0/𝐴0. Finally, one side of
the cell exhibits a larger traction on the substrate, 𝑓m, compared to the oppos-
ing side (defined via the orientation vector ̂𝒆𝜃). The motile force 𝑓m does not
contribute to the symmetric tension tensor, but rather acts as a body force of
magnitude 2𝑓m. Here, we assume that Δ𝑓 > 0, so that the cell typically moves
parallel to the axis along which it exhibits the largest tension.

(mathematically) acts like a mirror, thus coercing a cell to align with its own
mirror image (Bischofs and Schwarz, 2003; Bischofs, S. A. Safran, et al., 2004).
In the following, we consider two prototypical situations: (i) axial alignment
of cells, and (ii) circumferential alignment of cells with respect to the organoid
branch axis. We propose a conceptual model of self-polarizing motile cells, and
discuss the implications of this model for cell migration in our two prototypical
settings.

A minimal model of one-dimensional polar motion. Cells typically move
by applying a motile force parallel to their orientation vector ̂𝒆𝜃. The cells can
regulate this motile force by (de)polarizing, and it can reach a value of up to 2𝑓m
(Fig. IV.3). Then, the motile force vector that propels each cell is given by

𝒇m = 2𝑓m 𝜌 ̂𝒆𝜃 , (IV.22)

where 𝜌 refers to the cell polarization. The cell self-polarizes with a rate 𝑘𝜌 to-
wards a “forward gear” saturation value of 𝜌 → 1, or towards a “reverse gear”
saturation value of 𝜌 → −1. In addition, cell polarization is also affected by a
positive feedback, with rate 𝑘v, from the motion of the cell. This positive feed-
back allows the cell to integrate external mechanical signals. Consequently, the
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cell polarization responds to externally applied forces that affect cell migration,
and “remembers” their history—in other words, the cell polarization 𝜌 acts as
a memory kernel. Then, the temporal dynamics of the cell polarization is (to
lowest order) governed by the following differential equation:

𝜕𝑡𝜌 = 𝑘𝜌[1 − 𝜌2] 𝜌 + 𝑘v [𝒗 ⋅ ̂𝒆𝜃] , (IV.23)
where 𝒗 refers to the velocity of the cell. The external forces that affect cell
migration depend on the cell orientation ̂𝒆𝜃. If the cells align along the circum-
ference of the organoid branch, then one can assume that cell motion is mostly
dominated by the motile force and a friction 𝜉 with the collagen cage:

𝑣𝜙 =
1
𝜉 [2𝑓m 𝜌] . (IV.24a)

Then, cells will preferably move along the circumference of the organoid
branch, corresponding to organoid branch rotations. These collective rotations
are a “least frustrated state”, because there is no deterministic stimulus that
could cause cells to change their direction of motion. Instead, as we observe in
Section IV.1 “Collective Cell Migration Affects Morphogenesis”, cell migration
around the circumference of the organoid branch typically persists.
In contrast, if the cells align along the axis of the organoid branch, then any

back-or-forthmotionwill lead to elastic deformations of the extracellularmatrix
(and the organoid branch), thereby inducing restoring forces. For now, we ide-
alize these deformations with a single deflection 𝑢𝑧; in Paragraph “Addendum:
Deformation gradients instead of a single deflection”, we consider deformation
gradients. Cell motion is then not only determined by the motile force 𝒇m, but
is also affected by the elastic restoring forces in response to the deflection 𝑢𝑧.
This results in the following equation for the axial velocity of a cell:

𝑣𝑧 =
1
𝜉 [2𝑓m 𝜌 − 𝑌 𝑢𝑧] , (IV.24b)

where 𝑌 is a spring coefficient that models the elastic properties of the extracel-
lular matrix. In summary, the motion of cells that are aligned with the organoid
branch axis is typically governed by the following set of differential equations:

𝜕𝑡𝑢𝑧 =
1
𝜉 [2𝑓m 𝜌 − 𝑌 𝑢𝑧] , (IV.25a)

𝜕𝑡𝜌 = 𝑘𝜌[1 − 𝜌2] 𝜌 + 𝑘v [𝜕𝑡𝑢𝑧] . (IV.25b)
To nondimensionalize these equations, we define ̃𝑡 ≔ 𝑘𝜌 𝑡, �̃�𝑧 ≔ 𝑘v 𝑢𝑧, ̃𝑓m ≔
(2𝑓m 𝑘v)/(𝜉 𝑘𝜌) and ̃𝑌 ≔ 𝑌/(𝜉 𝑘𝜌). Then, we arrive at the following set of nondi-
mensionalized differential equations:

𝜕 ̃𝑡 ̃𝑢𝑧 = ̃𝑓m 𝜌 − ̃𝑌 �̃�𝑧 , (IV.26a)
𝜕 ̃𝑡 𝜌 = [1 − 𝜌2] 𝜌 + ̃𝑓m 𝜌 − ̃𝑌 �̃�𝑧 . (IV.26b)
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Figure IV.4: Cell migration dynamics along the organoid branch axis for differ-
ent values of cell motility ( ̃𝑓𝑚) and constant spring coefficient ̃𝑌 = 1. We
realize different perturbations via the initial conditions. Filled circles indi-
cate stable fixed points, empty circles indicate unstable fixed points, half-filled
circles indicate saddle points. The gray arrows indicate the local phase space
flow. Thin solid lines indicate nullclines. a) Large cell motility leads to a limit
cycle in (�̃�𝑧, 𝜌) phase space, which indicates oscillatory cell motion. This os-
cillatory motion is driven by two unstable fixed points (empty blue circles).
b) Small cell motility typically leads to relaxation towards one of the stable
fixed points (filled blue circles). c) For sufficiently large perturbations (which
we idealize by choosing specific initial conditions), one may excite limit cycle
oscillations of cells even when cell motility is smaller than the critical value
of ̃𝑓c = ̃𝑌 + 2. These limit cycle oscillations lie on a periodic orbit around two
stable fixed points indicated by filled circles and a saddle point indicated by a
half-filled circle.

In this model, axial cell motion is determined by the motile force ̃𝑓𝑚 scaled with
the polarization 𝜌 as well as an elastic restoring force with spring coefficient ̃𝑌
and axial deflection ̃𝑢𝑧. In turn, the polarization 𝜌 has nonlinear self-reinforcing
dynamics and acts as a memory kernel for cell motion.

Linear stability analysis of our model. Our model has three fixed points. At
the “unpolar” fixed point, the cell shows no polar motion, (�̃�𝑧,0, 𝜌0) = (0, 0).
At the two “polar” fixed points, the cell moves in a polar fashion and due to
substrate slippage stays at a constant deflection, (�̃�𝑧,±, 𝜌±) = (± ̃𝑓𝑚/ ̃𝑌 , ±1). To
further analyze the dynamics of our model, we consider small perturbations
around these fixed points, ̃𝑢𝑧 = �̃�𝑧,𝑖 + 𝛿�̃�𝑧 and 𝜌 = 𝜌𝑖 + 𝛿𝜌, which yields the
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following linear equation:

𝜕 ̃𝑡 [
𝛿�̃�𝑧
𝛿𝜌 ] = [−

̃𝑌 ̃𝑓𝑚
− ̃𝑌 ̃𝑓𝑚 + 1 − 3𝜌2𝑖

] ⋅ [𝛿�̃�𝑧𝛿𝜌 ] = 𝑱𝑖 ⋅ [
𝛿�̃�𝑧
𝛿𝜌 ] , (IV.27)

where the index 𝑖 ∈ {0, ±} refers to the three fixed points.
At the “unpolar” fixed point, the determinant of the Jacobian is always nega-

tive, det 𝑱0 = − ̃𝑌 . Therefore, the “unpolar” fixed point is a saddle point with one
stable and one unstable direction in phase space (Strogatz, 2018). The dynamics
in two-dimensional phase space typically evolve away from this saddle point,
along the unstable direction in phase space. If the two “polar” fixed points are
stable, then our system will approach one of these two states. However, if the
two “polar” fixed points are unstable, then our system will orbit all three fixed
points on a limit cycle (Strogatz, 2018).
To find a criterion for these limit cycle oscillations, wemust take a closer look

at the “polar” fixed points. The determinant of the Jacobian is always positive
at the two “polar” fixed points, det 𝑱± = 2 ̃𝑌 , so they must be either stable or
unstable. Then, the stability of these “polar” fixed points is determined by the
trace of the Jacobian (Strogatz, 2018), tr 𝑱± = ̃𝑓𝑚 − 2 − ̃𝑌 . We find that the two
“polar” fixed points are unstable for sufficiently large motility of cells,

̃𝑓m > ̃𝑓c = 2 + ̃𝑌 , (IV.28)

because the self-polarization and themotile force of the cells then overpower the
elastic restoring force of the extracellular matrix. In thismotile regime, we find
a limit cycle, where the motility and self-polarization of cells lead to oscillatory
motion (Fig. IV.4a). To observe such limit cycle oscillations, one requires only a
small initial perturbation of the cell starting from the “unpolar” fixed point.
In contrast, if cell motility is small, ̃𝑓m < ̃𝑓c, then the two “polar” fixed points

are stable. In that case, the cell can stay polarized at a constant deflection
(Fig. IV.4b). However, even in this regime where cell motility is small, one can
still excite oscillatory motion on a periodic orbit under certain conditions. First,
cell motility must be sufficiently close to its critical value, ̃𝑓m ≲ ̃𝑓c. In particular,
the two “polar” fixed points have imaginary eigenvalues and thus correspond
to spirals if:

2 + ̃𝑌 − √8 ̃𝑌 < ̃𝑓𝑚 < 2 + ̃𝑌 + √8 ̃𝑌 . (IV.29)
Then, we observe that the cell relaxes to one of the two “polar” fixed points
via dampened oscillations, thus permitting overshooting. If, in addition, the
initial perturbation is sufficiently large, then we observe limit cycle oscillations
(Fig. IV.4c).
Finally, since the stability of the “polar” fixed points is determined by ̃𝑓𝑚− ̃𝑌 ,

we can extrapolate these results to a change in (normalized) spring coefficient

400



IV.2 Between Morphogenesis and Hydrodynamic Flows

̃𝑌 of the extracellular matrix. Then, we would expect that an increased stiffness
of the extracellular matrix inhibits oscillatory motion of cells.

Addendum: Deformation gradients instead of a single deflection. So far,
we have treated the elastic deformations of the extracellular matrix and the cel-
lular tissue as a spring with stiffness ̃𝑌 and deflection ̃𝑢𝑧. Next, we generalize
this picture by accounting for the strains in the extracellular matrix and the cel-
lular tissue. These strains correspond to the gradient of the deflection field, 𝜕𝑧 ̃𝑢𝑧.
To keep things simple, we stick to our nondimensionalized notation. Strains
in our one-dimensional material lead to elastic stresses given by ̃𝜏 = ̃𝐾 𝜕𝑧 ̃𝑢𝑧,
where ̃𝐾 is the elastic modulus of the material (Landau, Pitaevskii, et al., 1986).
The elastic body force that acts on each volume element of our one-dimensional
material is then given by the gradient of the stresses, 𝜕𝑧 ̃𝜏. Taken together, our
nondimensionalized differential equations take the following modified form:

𝜕 ̃𝑡 �̃�𝑧 = ̃𝑓m 𝜌 − ̃𝑌 �̃�𝑧 + ̃𝐾 𝜕2𝑧 ̃𝑢𝑧 , (IV.30a)
𝜕 ̃𝑡 𝜌 = [1 − 𝜌2] 𝜌 + ̃𝑓m 𝜌 − ̃𝑌 �̃�𝑧 + ̃𝐾 𝜕2𝑧 ̃𝑢𝑧 . (IV.30b)

We can analyze the dynamics of these equations by expanding the deflection
field and the polarization field into Fourier series,

̃𝑢𝑧 = �̃�hm +∑
𝑞
�̃�𝑞 cos(𝑞 𝑧) , and 𝜌 = 𝜌hm +∑

𝑞
𝜌𝑞 cos(𝑞 𝑧) , (IV.31)

respectively. If we need to account for a tissue in spatial confinement, and thus
for longitudinal boundary conditions, then we would also need sine waveforms
in the Fourier expansion. Here, however, we content ourselves with analyzing
an infinitely long tissue, so that the cosine waveforms suffice. The springs with
coefficients ̃𝑌 localize the tissue and therefore play the role of an effective con-
finement.
Again, we perform a linear stability analysis around the homogeneous fixed

points, (�̃�hm, 𝜌hm) ≡ (�̃�𝑧,𝑖, 𝜌𝑖), see Paragraph “Linear stability analysis of our
model”. We find that the Jacobian of our extended model has the same form
as Eq. (IV.27). The only difference is that the spring coefficient now explicitly
depends on the mode, ̃𝑌 → ̃𝑌 + 𝑞2 ̃𝐾:

𝜕 ̃𝑡 [
̃𝑢𝑞
𝜌𝑞
] = [−

̃𝑌 − 𝑞2 ̃𝐾 ̃𝑓𝑚
− ̃𝑌 − 𝑞2 ̃𝐾 ̃𝑓𝑚 + 1 − 3𝜌2𝑖

] ⋅ [�̃�𝑞𝜌𝑞
] . (IV.32)

Then, one will observe oscillations if the cell motility exceeds the (modified)
critical value of ̃𝑓c = ̃𝑌 + 𝑞2 ̃𝐾 + 2. Therefore, for sufficiently large cell motility
̃𝑓𝑚 there will be a band of unstable modes around the “polar” fixed points:

𝑞 < 𝑞c =√
̃𝑓m − ̃𝑌 − 2

̃𝐾 , (IV.33)
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which indicates an onset of density oscillations in the tissue.

Summary of the main results. To summarize, in this section we have dis-
cussed a conceptual model of polar cell motion under elastic constraints. We
have found that polar cell motility can lead to oscillatory motion of cells along
the axis of the organoid branch. We have first applied this model to a single
cell that experiences an elastic restoring force towards its initial resting posi-
tion. Then, we have generalized this model to a spatially extended population
of cells that move in concert, and have found large-scale density oscillations if
cell motility is large enough. Indeed, cell polarity was shown to lead to collective
oscillatory motion of cells in confinement, in experiments as well as with vertex
and phase field models (Petrolli et al., 2019; Peyret et al., 2019).

IV.2.3 Nonlinear Elasticity of the Collagen Cage
As we have discussed in Section IV.1 “Collective Cell Migration Affects
Morphogenesis”, organoid branches and alveoli are enveloped by a thin elastic
shell: a collagen cage that the cells form via plastic remodeling of the extracel-
lular matrix (Buchmann et al., 2021). This collagen cage puts constraints on
the deformations of an organoid branch, by providing mechanical rigidity. In
the following, we derive the (nonlinear) elastic stresses that arise in response
to deformations of this collagen cage. We have already used our results (in
linearized form) in Section IV.1.3 “Technical Summary”, and will, furthermore,
apply them in Section IV.2.6 “Tubular Shells as Pumps and Rectifiers”.
We split our discussion into two paragraphs, where we derive the elastic

stresses due to (i) stretching, and (ii) bending of the cylindrical elastic shell. In
both paragraphs, we proceed roughly as follows. First, we discuss how much
free energy is stored in the respective type of elastic deformation (Timoshenko
and Gere, 1961). Then, assuming that no work is dissipated into heat so that
all elastic deformations are thermodynamically reversible processes, we derive
how much work is required for increasing the strain of the elastic shell, and
consequently how much work is released upon relaxing strain. From this
mechanical work, we derive the corresponding surface tension on the tubular
shell by using Eq. (IV.10). Finally, we connect the surface tension to the
interfacial stresses that act on the organoid branch surface.

Elastic stresses in response to stretching. In the following, we consider a
rotationally symmetric shell that consists of a material with Young’s modulus 𝑌s
and Poisson’s ratio 𝜈, with a total shell thickness of ℎ. We express the free energy
that is stored in elastic stretching of the shell in terms of the nonlinear Green-
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Lagrange strain tensor, 𝑬, as was also done by Hannezo, Prost, et al. (2012). An
isotropic elastic shell with negligible surface shear strain, 𝐸𝑧𝜙 ≈ 0, then stores
the following free energy in stretching deformations4 (Timoshenko and Gere,
1961):

𝐹s =
𝑌s ℎ

2 (1 − 𝜈2) ∮𝑑𝑆⋆ [(𝐸𝑧𝑧𝑔𝑧𝑧)
2 + (𝐸𝜙𝜙𝑔𝜙𝜙)

2 + 2𝜈𝐸𝑧𝑧𝑔𝑧𝑧 𝐸𝜙𝜙𝑔𝜙𝜙] , (IV.34)

where “𝑑𝑆⋆” indicates integration over a fixed surface area. When introducing
additional strain to the elastic shell, one must then pay the price of increasing
the free energy, 𝐹s, by performing work. Consequently, when the elastic shell
relieves strain, it will release stored free energy in the form of work:

− 𝛿𝑊 = 𝛿𝐹s = 𝐹s [𝐸𝑧𝑧 + 𝛿𝐸𝑧𝑧, 𝐸𝜙𝜙 + 𝛿𝐸𝜙𝜙] − 𝐹s [𝐸𝑧𝑧, 𝐸𝜙𝜙] . (IV.35)

This leads to the following axial and circumferential tensions, see Eq. (IV.10):

𝜏𝑧𝑧 = 𝛿𝐹s
𝛿𝐸𝑧𝑧 (𝑔

−1
𝑧𝑧)

2 = 𝑌s ℎ
1 − 𝜈2 [𝐸

𝑧𝑧 + 𝜈𝐸𝜙𝜙 𝑔𝜙𝜙 𝑔−1𝑧𝑧] , (IV.36)

𝜏𝜙𝜙 = 𝛿𝐹s
𝛿𝐸𝜙𝜙 (𝑔

−1
𝜙𝜙)

2 = 𝑌s ℎ
1 − 𝜈2 [𝐸

𝜙𝜙 + 𝜈𝐸𝑧𝑧 𝑔𝑧𝑧 𝑔−1𝜙𝜙] , (IV.37)

given that the basis in our cylindrical coordinate system is orthogonal.
The surface divergence of the tension tensor yields a body force per area (Lan-

dau, Pitaevskii, et al., 1986), which acts parallel on the interface (surface) that
the cells form in our cylindrical geometry. This means that the body force per
area can be represented by a linear combination of the surface tangent vectors,
and that it has to be balanced by tangential shear stresses at the interface. Be-
cause the cellsmigrate on the surface of the organoid branch, theywill in general
also move relative to the elastic shell (collagen cage). By extension of argument,
the elastic shell can slip against the cell sheet and the fluid in the lumen of the
organoid branch, so that the tangential shear stresses induced by the elastic shell
relax quickly compared to the normal stresses. In the case of such a timescale
separation, the tangential shear stresses in the elastic shell will vanish on the
timescales relevant for perpendicular motion of the interface5. Then, the sur-
face divergence of the tension tensor, see Eq. (I.53), must vanish:

𝛁 ⋅ 𝝉 = 𝑌s ℎ
1 − 𝜈2

1
√𝑔𝑧𝑧𝑔𝜙𝜙

𝜕𝑧 [√𝑔𝑧𝑧𝑔𝜙𝜙 𝐸𝑧𝑧 + 𝜈𝐸𝜙𝜙 𝑔3/2𝜙𝜙 𝑔−1/2𝑧𝑧 ] 𝒕𝑧 = 0 , (IV.38)

4 In (Timoshenko and Gere, 1961), a normalized cylindrical basis was used. Here, we trans-
formed into our non-normalized cylindrical basis, hence the occurrence of the metric.

5 For a more general treatment, one would have to explicitly model the relaxation dynamics of
the tangential shear stresses by considering the viscous properties of the elastic shell and the
surrounding elastic medium.
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where we have used 𝜕𝑧𝒕𝑧 = 0 and the rotational symmetry of our coordinate
system. For Eq. (IV.38) to hold, the term in the square bracketsmust be identical
to some constant 𝐶. With this adiabatic approximation, the free energy density
that is stored in stretching deformations of the tubular shell simplifies to:

𝐹⋆
s = 𝑌s ℎ

2 (1 − 𝜈2) ∮𝑑𝑆⋆ [(1 − 𝜈2) (𝐸𝜙𝜙𝑔𝜙𝜙)
2 + 𝐶2 𝑔𝑧𝑧

𝑔𝜙𝜙
] . (IV.39)

Since, by definition, both the free energy that is stored in deformations and the
corresponding tensions vanish in the reference configuration, the constantmust
also vanish, 𝐶 = 0. This results in the relation 𝐸𝑧𝑧 = −𝜈𝐸𝜙𝜙 𝑔𝜙𝜙 𝑔−1𝑧𝑧, which we
insert into Eq. (IV.37) to find the following simplified expression for the circum-
ferential tension:

𝜏𝜙𝜙 = 𝑌s ℎ𝐸𝜙𝜙 . (IV.40)

Now, all that is left is to determine the nonlinear circumferential strain, 𝐸𝜙𝜙.
To that end, we proceed analogously as we have done in Paragraph “The strain
as a variation of the metric” (Section I.3.5), and consider the squared Euclidean
distance between two points on the surface, at coordinates 𝜙 and 𝜙+𝑑𝜙, which
is given by:

‖𝑑𝒙‖2 = 𝑑𝜙𝑅2 𝑑𝜙 = 𝑑𝜙 𝒕𝜙 ⋅ (
𝑅2
𝑅20
) ⋅ 𝒕𝜙 𝑑𝜙 . (IV.41)

This results in the following expression for the nonlinear circumferential
strain (Hannezo, Prost, et al., 2012):

𝐸𝜙𝜙 = 1
2
𝑅2 − 𝑅20
𝑅40

, (IV.42)

where the additional powers in the denominator come from the contravariant
notation. Taken together, stretching of the elastic shell induces the following
Laplace pressure, see Eq. (IV.15):

Δ𝑝s = −𝑌s ℎ
𝑅2 − 𝑅20
2𝑅20

𝑅
𝑅20√1 + (𝜕𝑧𝑅)2

. (IV.43)

In Section IV.1.3 “Technical Summary”, we have used a linearized version of
Eq. (IV.43), by considering small deflections, 𝑅 = 𝑅0 + 𝑢, with 𝑢 ≪ 𝑅0. Note
that in the present chapter we typically assume that radial undulations of the
tubular organoid branch are small, 𝜕𝑧𝑅 ≪ 1, which allows us to leave out the
squared root in Eq. (IV.43).
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Elastic stresses in response to bending. Next, we discuss the Helfrich free
energy that is stored in bending deformations of the elastic shell (Helfrich, 1973):

𝐹b =
1
2𝑘b ∮𝑑𝑆⋆ [(𝜅𝜙 − 𝑐𝜙)2 + (𝜅𝑧 − 𝑐𝑧)2] , (IV.44)

with bending rigidity 𝑘𝑏. Here, 𝑐𝜙 is the circumferential spontaneous curvature
and 𝑐𝑧 is the axial spontaneous curvature of the elastic shell. In the following,
we assume that a tubular shape with constant radius 𝑅 = 𝑅0 corresponds to
the mechanical reference configuration of the elastic shell. For the mechanical
reference configuration to minimize the bending energy6, we set the axial spon-
taneous curvature to 𝑐𝑧 = 0 and the circumferential spontaneous curvature to
𝑐𝜙 = −1/𝑅0. In general, determining the variations of the two curvatures of the
elastic shell requires a lengthy calculation. However, as mentioned before, in
the present chapter we typically assume that radial undulations of the tubular
organoid branch are small, 𝜕𝑧𝑅 ≪ 1. This allows us to approximate the two
curvatures of the elastic shell as follows:

𝜅𝑧 = 𝜕2𝑧𝑅 , and 𝜅𝜙 = −1𝑅 . (IV.45)

The free energy that is stored in bending deformations of the elastic shell is then
given by:

𝐹b =
1
2𝑘b ∮𝑑𝑆⋆ [( 1𝑅 − 1

𝑅0
)
2
+ (𝜕2𝑧𝑅)

2] , (IV.46)

a functional of only the elastic shell radius 𝑅. When bending the elastic shell,
one must then pay the price of increasing the free energy, 𝐹b, by performing
work. Consequently, when the elastic shell relieves its bent state, it will release
stored free energy in the form of work:

− 𝛿𝑊 = 𝛿𝐹b = 𝐹b [𝑅 + 𝛿𝑅] − 𝐹b [𝑅] . (IV.47)
This leads to the following interfacial stress due to bending:

Δ𝑝b = −𝛿𝐹b𝛿𝑅 = −𝜅b [
𝑅 − 𝑅0
𝑅0 𝑅3

+ 𝜕4𝑧𝑅] . (IV.48)

Note that there is no tangential shear stress in response to bending, because
tangential deformations only move the material points along the surface of the
elastic shell, thus leaving its shape unchanged. In Section IV.1.3 “Technical
Summary”, we have used a linearized version of Eq. (IV.48), by considering
small deflections, 𝑅 = 𝑅0 + 𝑢, with 𝑢 ≪ 𝑅0.
6 This condition has to be modified if cellular activity alters the spontaneous curvature, for
example due to an asymmetric positioning of the cells’ actomyosin cytoskeleton relative to the
middle surface of the cell sheet (Hannezo, Prost, et al., 2014). Note that if the spontaneous
curvature is induced by cell contractility, then it can also be influenced by the local orientation
of cells, thus adding an additional anisotropic contribution.
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IV.2.4 Deformations of the ExtracellularMatrix
So far, we have discussed the nonlinear elastic properties of a thin elastic shell
(collagen cage) that surrounds the organoid branch. Next, as we have done
in the Supplementary Material of our preprint, on pages 363–394, we also
consider the elastic stresses that arise from deformations of an elastic medium
(extracellular collagen matrix), which surrounds the cylindrical collagen cage.
In our preprint, we have assumed no-slip boundary conditions for the elastic
medium at the surface of the organoid branch. We have then found that the
elastic medium plays no significant stabilizing role for the shape of the organoid
branch, because it is much softer than the elastic shell. Here, we generalize
the description of the elastic medium by allowing slip boundary conditions at
the cellular surface of the organoid branch, which forms an interface in our
cylindrical geometry. Then, we show that the conclusions of our preprint are
robust against such a change in boundary conditions. Along the way, we derive
a relation between the boundary velocity and the boundary stresses, for the case
where the elastic medium surrounds the tubular organoid branch, and also for
the case where the elastic medium fills the tubular organoid branch. While we
do not immediately apply these results, they can prove useful in future work.
The elastic medium requires a treatment in terms of three-dimensional bulk

coordinates: the radial position 𝑟, the axial position 𝑧, and the azimuthal angle
𝜙. These bulk coordinates match the surface coordinates at the interface of our
tubular geometry, for 𝑟 ≡ 𝑅(𝑧), see Example 2 on page 21. For the corresponding
basis vectors that span the bulk volume of our geometry, 𝒃𝑖, which are orthogo-
nal but not normalized, we refer to Example 3 on page 24. As before, we assume
a rotational symmetry around the centerline of our geometry, the 𝑧-axis.

The responsematrix of a cylindrical elastic medium. We describe the elas-
tic medium with linear elasticity theory. For the mechanical reference config-
uration of the elastic medium, we use a cylinder with homogeneous radius 𝑅0,
which agrees with the initial shape of the organoid branch. We parameterize
the deformed mechanical configuration of the elastic medium by an infinites-
imal deformation field 𝒖, which deflects the material points, as discussed in
Paragraph “Deformation field in the embedding” (Section I.3.5). Then, we de-
termine the contravariant components of the linearized strain tensor (Landau,
Pitaevskii, et al., 1986), as discussed in Paragraph “The strain as a variation of
the metric” (Section I.3.5) and Example 9 on page 42:

[
𝜀𝑟𝑟 𝜀𝑟𝑧 𝜀𝑟𝜙
𝜀𝑧𝑟 𝜀𝑧𝑧 𝜀𝑧𝜙
𝜀𝜙𝑟 𝜀𝜙𝑧 𝜀𝜙𝜙

] = [
𝜕𝑟𝑢𝑟 (𝜕𝑧𝑢𝑟 + 𝜕𝑟𝑢𝑧)/2 𝜕𝑟𝑢𝜙/2

(𝜕𝑧𝑢𝑟 + 𝜕𝑟𝑢𝑧)/2 𝜕𝑧𝑢𝑧 𝜕𝑧𝑢𝜙/2
𝜕𝑟𝑢𝜙/2 𝜕𝑧𝑢𝜙/2 𝑢𝑟/𝑟3

] , (IV.49)
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using the rotational symmetry of our coordinate system. The trace of the strain
tensor in our cylindrical coordinate system, see Example 7 on page 37, is given
by:

tr 𝜺 = ∑
𝑖𝑘
𝜀𝑖𝑘 𝑔−1𝑖𝑘 = 𝜖𝑟𝑟 + 𝜖𝑧𝑧 + 𝑟2𝜖𝜙𝜙 = 1

𝑟 𝜕𝑟(𝑟 𝑢
𝑟) + 𝜕𝑧𝑢𝑧 = 𝛁 ⋅ 𝒖 , (IV.50)

and measures volumetric changes (that is, isotropic compression and dilation)
of the elastic medium. After splitting the strain tensor into a pure shear part
and a pure volumetric part, the linear elastic stress tensor is given by (Landau,
Pitaevskii, et al., 1986):

𝝈el = 2𝐺 [𝜺 − 1
3 𝑰 tr 𝜺] +

2𝐺
3

1 + 𝜈
1 − 2𝜈 𝑰 tr 𝜺

= 2𝐺 [𝜺 + 𝜈
1 − 2𝜈 𝑰 tr 𝜺] ,

(IV.51)

where 𝑰 refers to the identity mapping. The elastic properties of the medium
are characterized by its shear modulus7, 𝐺, and its Poisson ratio, 𝜈. Note that
the strain tensor and consequently also the elastic stress tensor are symmet-
ric (Landau, Pitaevskii, et al., 1986), see Paragraph “The strain as a variation
of the metric” (Section I.3.5).
The elastic medium is a passive material and only experiences deformations

because the cellular tissue at the surface of the cylindrical organoid branch ex-
erts active stresses. Therefore, the divergence of the stress tensor, 𝛁 ⋅ 𝝈el, which
measures the force that each parcel (infinitesimal volume element) of material
experiences in the bulk volume, must vanish (Amenzade, 1979):

0 = 𝑓𝑟 = 1
𝑟 𝜕𝑟 (𝑟 𝜎

𝑟𝑟
el ) + 𝜕𝑧𝜎𝑟𝑧el − 𝑟𝜎𝜙𝜙el , (IV.52a)

0 = 𝑓𝑧 = 1
𝑟 𝜕𝑟 (𝑟 𝜎

𝑟𝑧
el ) + 𝜕𝑧𝜎𝑧𝑧el , (IV.52b)

0 = 𝑓𝜙 = 1
𝑟 𝜕𝑟 (𝑟 𝜎

𝑟𝜙
el ) + 𝜕𝑧𝜎𝑧𝜙el + 2

𝑟 𝜎
𝑟𝜙
el . (IV.52c)

Here, we have used that the elastic stress tensor is symmetric, see also Example 8
on page 39. The circumferential component of the bulk force density, 𝑓𝜙, decou-
ples from the axial and the radial deformations, and is therefore of no interest
when no torque is applied. Therefore, the mechanical force balance in the elas-
tic medium is described by the following two remaining equations (Amenzade,

7We use 𝐺 for the shear modulus instead of 𝜇, because the latter is reserved for chemical po-
tentials in this thesis.
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1979):

𝜕𝑟 [2
1 − 𝜈
1 − 2𝜈

1
𝑟 𝜕𝑟(𝑟 𝑢

𝑟) + 1
1 − 2𝜈 𝜕𝑧𝑢

𝑧] + 𝜕2𝑧𝑢𝑟 = 0 , (IV.53a)

𝜕𝑧 [
1

1 − 2𝜈
1
𝑟 𝜕𝑟(𝑟 𝑢

𝑟) + 2 1 − 𝜈
1 − 2𝜈 𝜕𝑧𝑢

𝑧] + 1
𝑟 𝜕𝑟(𝑟 𝜕𝑟𝑢

𝑧) = 0 . (IV.53b)

To solve these equations, we introduce the stress function, Φ, via an implicit
definition (Landau, Pitaevskii, et al., 1986):

𝑢𝑟 ≕ −𝜕𝑟𝜕𝑧Φ , and 𝑢𝑧 ≕ 2(1 − 𝜈)𝛁2Φ − 𝜕2𝑧Φ , (IV.54)

which can be interpreted as a pseudo-potential that represents the full defor-
mation field. After inserting Eq. (IV.54) into Eq. (IV.53a) and Eq. (IV.53b), one
finds that the stress function Φ must satisfy the biharmonic equation in cylin-
drical coordinates (Amenzade, 1979):

𝛁4Φ = 0 . (IV.55)

Next, we solve this biharmonic equation.
We are interested in undulations of the cellular surface of the organoid

branch, which forms an interface in our cylindrical geometry. Therefore, we
decompose the deformation field of the elastic medium, and thus also the stress
function, into Fourier modes8:

Φ = ∑
𝑞
Φ𝑞(𝑟) sin(𝑞 𝑧) , so that

𝑢𝑟 = ∑
𝑞
𝑢𝑟𝑞(𝑟) cos(𝑞 𝑧) and 𝑢𝑧 = ∑

𝑞
𝑢𝑧𝑞(𝑟) sin(𝑞 𝑧) . (IV.56)

With this definition, the homogeneous 𝑞 = 0 mode corresponds to a uniform
radial deflection of the interface, while 𝑞 ≠ 0 modes correspond to shear de-
formations of the elastic medium. Note that all Fourier modes decouple for the
equations of linear elasticity, and are thus independent of their phase. There-
fore, we would obtain identical solutions if we were to shift our Fourier modes
by some arbitrary phase.
The general real-valued solution to the biharmonic equation, Eq. (IV.55), is

then given by:

Φ𝑞(𝑟) = 𝑎1 [𝑌0(−𝑖 𝑞 𝑟) + 𝑖 𝐼0(𝑞 𝑟)] + 𝑖 𝑎2 𝑟 [𝑌1(−𝑖 𝑞 𝑟) + 𝐼1(𝑞 𝑟)]
+ 𝑎3 𝐼0(𝑞 𝑟) + 𝑎4 𝑟 𝐼1(𝑞 𝑟) , (IV.57)

8We consider an infinitely long cylinder. For our analysis it thus does not make a difference if
we choose cosine or sine waveforms in the Fourier expansion, as explained in the following.
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where 𝐼𝑘(𝑥) refers to the modified Bessel function of the first kind and 𝑌𝑘(𝑥)
refers to the Bessel function of the second kind. Note that the first two terms,
with coefficients 𝑎1 and 𝑎2, correspond to deformation fields that diverge at the
centerline (𝑟 → 0) and approach zero in the far field (𝑟 → ∞). In contrast,
the last two terms, with coefficients 𝑎3 and 𝑎4, correspond to deformation fields
that diverge in the far field (𝑟 → ∞) and remain finite at the centerline (𝑟 → 0).
Thus, there are two distinct solutions for the deformation field, one for an elastic
medium in the half space 𝑟 > 𝑅, and one for an elastic medium in the half space
𝑟 < 𝑅. To proceed, we now also decompose the stress field into Fourier modes:

𝜎𝑟𝑟el = ∑
𝑞
𝜎𝑟𝑟el,𝑞 cos(𝑞 𝑧) and 𝜎𝑟𝑧el = ∑

𝑞
𝜎𝑟𝑧el,𝑞 sin(𝑞 𝑧) . (IV.58)

Then, we find the following linear relationship between the deflection, 𝑢𝑟𝑞(𝑅)
and 𝑢𝑧𝑞(𝑅), and the stress at the position of the interface:

[𝜎
𝑟𝑟
el,𝑞(𝑅)
𝜎𝑟𝑧el,𝑞(𝑅)

] = −2𝐺𝑅 𝝌el(𝑞 𝑅) ⋅ [
𝑢𝑟𝑞(𝑅)
𝑢𝑧𝑞(𝑅)

] . (IV.59)

Here, we have defined the following symmetric response matrix:

𝝌el(𝑥) ≔ [
1 + 2𝐵2(𝑥) (1−𝜈)

𝐵2(𝑥)+4𝐵(𝑥) (1−𝜈)−𝑥2
𝑥 − 𝑥 2𝐵(𝑥) (1−𝜈)

𝐵2(𝑥)+4𝐵(𝑥) (1−𝜈)−𝑥2

𝑥 − 𝑥 2𝐵(𝑥) (1−𝜈)
𝐵2(𝑥)+4𝐵(𝑥) (1−𝜈)−𝑥2

2(1−𝜈)𝑥2

𝐵2(𝑥)+4𝐵(𝑥) (1−𝜈)−𝑥2

] , (IV.60)

with a placeholder function 𝐵(𝑥). Interestingly, the only difference between the
near-field solution and the far-field solution lies in the definition of this place-
holder function:

𝐵near(𝑥) ≔ −𝑥 𝐼0(𝑥)𝐼1(𝑥)
, and 𝐵far(𝑥) ≔ 𝑥 𝐾0(𝑥)𝐾1(𝑥)

, (IV.61)

where 𝐾𝑘(𝑥) is the modified Bessel function of the second kind.

A worked example for the response of the elastic medium. Using our re-
sponse matrix, Eq. (IV.60), we can now determine the elastic stresses that arise
in response to deflections of the organoid branch surface. In the Supplementary
Material of our preprint, on pages 341–394, we have assumed no-slip boundary
conditions at the interface, so that 𝑢𝑧𝑞(𝑅) = 0. Now, we instead consider an adi-
abatic relaxation of tangential shear stress in the extracellular collagen matrix
(elastic medium that fills the half space 𝑟 > 𝑅), as done for the collagen cage
(elastic shell) in Section IV.2.3 “Nonlinear Elasticity of the Collagen Cage”.
To proceed, we need to connect these interfacial stresses to the stresses in

the elastic medium, which requires physical projections of the stress tensor (see
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𝛁 ⋅ 𝝈 = 1
𝑉 ∮

𝜕𝑉
𝑑𝑺 ⋅ 𝝈

normal stress
�̂� ⋅ 𝝈 ⋅ �̂�

tangential stress
�̂� ⋅ 𝝈 ⋅ ̂𝒕𝑖

inter
face

bulk force ̂𝒕 𝑖 ⋅ 𝛁
⋅ 𝝉tens

ion v
ariat

ion

pressure

Figure IV.5: Sketch of a cuboid volume element. The average volume force that
acts on the cuboid is given by the divergence of the stress tensor. The force
that acts on one of the faces of the cuboid is given by a physical projection of
the stress tensor with the normal vector of the face, �̂� ⋅ 𝝈. Then, the volume
force can be understood as the integral of all surface forces (Gauss’s theorem).
Now, we connect one of the faces of the cuboid to an interface. From the other
side of the interface, a pressure acts on the face, thus determining the normal
component of the interfacial stress, �̂�⋅𝝈⋅�̂�. Finally, tensionmodulations at the
interface lead to an average area force 𝛁 ⋅ 𝝉, thus determining the tangential
components of the interfacial stress, �̂� ⋅ 𝝈 ⋅ ̂𝒕𝑖.

Fig. IV.5 for a geometric explanation). Here, we make these physical projec-
tions trivial by performing a linearization of our geometry. Specifically, as men-
tioned before, we consider a situation where the radial undulations of the tubu-
lar organoid branch are small, 𝜕𝑧𝑅 ≪ 1. In that case, the unit normal vector
of the interface points in the direction of the radial basis vector, �̂� ∝ 𝒃𝑟, and
the axial tangent vector of the interface points in the direction of the axial basis
vector, 𝒕𝑧 ∝ 𝒃𝑧. Therefore, 𝜎𝑟𝑟el is the normal stress at the interface, and 𝜎𝑟𝑧el is
the tangential shear stress at the interface. Using this simplification, we next
investigate how the mechanical properties of the elastic medium will affect the
organoid branch.
An adiabatic relaxation of the tangential shear stress implies 𝜎𝑟𝑧el = 0 as

boundary condition at the interface. Thus, after inverting Eq. (IV.59), we have:

[𝑢
𝑟
𝑞(𝑅)
𝑢𝑧𝑞(𝑅)

] = − 𝑅
2𝐺 𝝌−1

el (𝑞 𝑅) ⋅ [
𝜎𝑟𝑟el,𝑞(𝑅)

0 ] . (IV.62)

For these boundary conditions, a typical deformation field is shown in Fig. IV.6a.
We find that the restoring stress is minimal for the homogeneous 𝑞 = 0 mode,
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Figure IV.6: Response of an elastic medium, for slip boundary conditions at
the surface of the cylindrical organoid branch (gray). a) A typical deforma-
tion field for an incompressible extracellular collagen matrix, 𝜈 = 1/2, and a
Fourier mode 𝑞 = 2𝜋/𝑅. b) The restoring normal stress, 𝜎𝑟𝑟el,𝑞(𝑅) assuming an
adiabatic relaxation of tangential shear stresses, 𝜎𝑟𝑧el,𝑞(𝑅) = 0, typically grows
with the Fourier mode 𝑞. One can understand this as the elastic material pe-
nalizing shear.

see Fig. IV.6b, with

𝜎𝑟𝑟el,𝑞(𝑅) = −2𝐺𝑅
1

𝜒−1
el,𝑟𝑟(𝑞 𝑅)

𝑢𝑟𝑞(𝑅) ≤ −2𝐺𝑅 𝑢𝑟𝑞(𝑅) , (IV.63)

which is the same result as in our preprint. Because only the minimal restor-
ing stress (in other words, least stabilizing) plays a role for the onset of a long-
wavelength instability at 𝑞 = 0, the conclusions that we made in our preprint
are valid even for a change in boundary conditions. In particular, as we dis-
cuss in our preprint on pages 341–394, the extracellular collagen matrix (elastic
medium) is roughly two orders of magnitude softer than the collagen cage (elas-
tic shell). Therefore, we conclude that the elastic medium will not significantly
affect the stability of the organoid branch.

IV.2.5 Cell Activity Drives Hydrodynamic Flows
In this section, to describe the dynamics of organoid branch deformation, we
derive a hydrodynamic theory. Before we proceed, we remind on the architec-
ture of organoid branches, where cells form an active confluent tissue with a
tubular shape (Fig. IV.1a). This confluent tissue lies at the interface between
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different passive materials: a viscous fluid in the lumen, and two elastic solids
in the surroundings consisting of a thin elastic shell (collagen cage) and an elas-
ticmedium9 (extracellular collagenmatrix). Therefore, we describe an organoid
branch as a boundary-driven column of fluid, where cell activity induces hydro-
dynamic flows. This cell activity shows itself in the form of tension modula-
tions and tension anisotropy. Of note, recent work has also investigated how
anisotropic, but homogeneous, tension can affect the stability of columnar flu-
ids (Bächer et al., 2021; Gräßel et al., 2021). Our first goal is to derive a relation
between the boundary stresses and the boundary velocities, analogous to the
relation between boundary stresses and boundary deflections in Section IV.2.4
“Deformations of the Extracellular Matrix”. This will subsequently allow us to
determine the dynamics of the organoid branch.
As before in Section IV.2.4 “Deformations of the Extracellular Matrix”, the

fluid in the lumen of the organoid branch requires a treatment in terms of three-
dimensional bulk coordinates: the radial position 𝑟, the axial position 𝑧, and the
azimuthal angle 𝜙. These bulk coordinates match the surface coordinates at
the interface of our tubular geometry, for 𝑟 ≡ 𝑅(𝑧), see Example 2 on page 21.
For the corresponding basis vectors that span the bulk volume of our geometry,
𝒃𝑖, which are orthogonal but not normalized, we refer to Example 3 on page 24.
Again, we assume a rotational symmetry around the centerline of our geometry,
the 𝑧-axis.

The responsematrix of a cylindrical fluid. We describe the fluid flow in the
lumen of the organoid branch as follows. A velocity field, 𝒗, moves the mate-
rial points of the viscous fluid. The contravariant components of the linearized
strain rate tensor (Landau and Lifshitz, 1987), which we discussed in Paragraph
“The strain rate as gradual changes of the metric” (Section I.3.5), are then given
by:

[
̇𝜀𝑟𝑟 ̇𝜀𝑟𝑧 ̇𝜀𝑟𝜙
̇𝜀𝑧𝑟 ̇𝜀𝑧𝑧 ̇𝜀𝑧𝜙
̇𝜀𝜙𝑟 ̇𝜀𝜙𝑧 ̇𝜀𝜙𝜙

] = [
𝜕𝑟𝑣𝑟 (𝜕𝑧𝑣𝑟 + 𝜕𝑟𝑣𝑧)/2 𝜕𝑟𝑣𝜙/2

(𝜕𝑧𝑣𝑟 + 𝜕𝑟𝑣𝑧)/2 𝜕𝑧𝑣𝑧 𝜕𝑧𝑣𝜙/2
𝜕𝑟𝑣𝜙/2 𝜕𝑧𝑣𝜙/2 𝑣𝑟/𝑟3

] , (IV.64)

where we have used the rotational symmetry of our coordinate system; see also
Eq. (IV.49) and Example 9 on page 42. The total stress in the fluid, which has vis-
cosity 𝜂, consists of a viscous shear stress and a hydrodynamic pressure 𝑝 (Lan-
dau and Lifshitz, 1987):

𝝈fl = 𝜂 ̇𝜺 − 𝑝 , (IV.65)
One can understand the role of the hydrodynamic pressure by considering a hy-
pothetical compressible fluid with viscosity 𝜂, vanishing shear modulus 𝐺, and
9We neglect the stresses in the elastic medium, because it is much softer than the elastic shell.
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compression modulus 𝐾. Taking the limit of an infinitely large compression
modulus, 𝐾 → ∞, then introduces the hydrodynamic pressure 𝑝 as a Lagrange
multiplier that substitutes the compressive stress, and enforces the incompress-
ibility condition (Landau and Lifshitz, 1987):

𝛁 ⋅ 𝒗 = 1
𝑟 𝜕𝑟(𝑟 𝑣

𝑟) + 𝜕𝑧𝑣𝑧 = 0 . (IV.66)

For our hydrodynamic theory, we assume that the viscous fluid in the lumen of
the organoid branch exhibits a creeping flow at low Reynolds number, and thus
neglect the nonlinearity that would otherwise arise frommomentum advection.
Furthermore, we assume that the momentum relaxation dynamics are fast, so
that we deal with a steady fluid flow that responds instantaneously to any exter-
nal driving force. Because the fluid in the lumen of the organoid branch is only
driven by interfacial stresses that the cells generate, it must be force-free in the
bulk volume of the fluid. This leads us to the Stokes equation for the dynamics
of the fluid (Landau and Lifshitz, 1987):

𝛁 ⋅ 𝝈fl = 0 . (IV.67)

Together with the fluid incompressibility condition, Eq. (IV.66), we thus have
a system of 𝑑 + 1 equations and 𝑑 + 1 unknowns, where 𝑑 is the dimension
of our geometry. Since our geometry is rotationally symmetric, we have 𝑑 = 2
dimensions.
Explicitly calculating the divergence of the stress tensor, Eq. (IV.67), for our

rotationally symmetric cylindrical coordinate system, see also Eq. (IV.52) and
Example 8 on page 39, the mechanical force balance equations for the fluid in
the lumen of the organoid branch are then given by (Landau and Lifshitz, 1987):

𝜂 𝜕𝑧[𝜕𝑧𝑣𝑟 − 𝜕𝑟𝑣𝑧] − 𝜕𝑟𝑝 = 𝜂 [𝛁2 − 1
𝑟2 ] 𝑣

𝑟 − 𝜕𝑟𝑝 = 0 , (IV.68a)
𝜂
𝑟 𝜕𝑟[𝑟 (𝜕𝑟𝑣

𝑧 − 𝜕𝑧𝑣𝑟)] − 𝜕𝑧𝑝 = 𝜂𝛁2𝑣𝑧 − 𝜕𝑧𝑝 = 0 . (IV.68b)

In the above equations, 𝜕𝑟𝑣𝑧−𝜕𝑧𝑣𝑟 can be understood as the vorticity of the flow
field. As before in Section IV.2.4 “Deformations of the ExtracellularMatrix”, the
circumferential component of the fluid force density decouples from the axial
and the radial fluid flows. Therefore, it is of no interest when no torque is ap-
plied.
To now solve the Stokes equations in our cylindrical geometry, that is

Eq. (IV.68a), Eq. (IV.68b) and Eq. (IV.66), we use a classical textbook technique
by introducing the Stokes stream function (Landau and Lifshitz, 1987). The idea
that underlies this technique is that one can eliminate the incompressibility
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IV Cell Organization and Morphogenesis

condition, Eq. (IV.66), by expressing the velocity field via derivatives of an
implicitly defined scalar field Ψ, the so-called stream function (Landau and
Lifshitz, 1987):

𝑣𝑟 ≕ 1
𝑟 𝜕𝑧Ψ , and 𝑣𝑧 ≕ −1𝑟 𝜕𝑟Ψ . (IV.69)

With this definition, we ensure that the incompressibility condition, Eq. (IV.66),
is strictly fulfilled by all admissible solutions. After inserting Eq. (IV.69) into
Eq. (IV.68a) and Eq. (IV.68b), one finds that the stream functionmust satisfy the
following fourth order partial differential equation (Payne and Pell, 1960):

𝐿2−1Ψ = 0 , with differential operator 𝐿−1 = 𝛁2 − 2
𝑟𝜕𝑟 . (IV.70)

Using the Stokes stream function, we can also determine the pressure field.
Specifically, by inserting the expression for the velocity field defined via the
Stokes stream function, Eq. (IV.69), into the axial force balance equation,
Eq. (IV.68b), one finds the following relation between the Stokes stream
function and the pressure field:

𝜂
𝑟 𝜕𝑟[𝐿−1Ψ] + 𝜕𝑧𝑝 = 0 , (IV.71)

which defines the hydrodynamic pressure 𝑝 up to a constant hydrostatic pres-
sure 𝑝0. As is generally the case for all force-free (that is, boundary-driven)
Stokes flows, the hydrodynamic pressure satisfies the harmonic equation, here
in cylindrical coordinates:

𝛁2𝑝 = 0 . (IV.72)
Thus, we only need to determine the Stokes stream function to completely char-
acterize the fluid flow in the lumen of the organoid branch.
As before in Section IV.2.4 “Deformations of the ExtracellularMatrix”, we are

interested in undulations of the cellular surface of the organoid branch, which
forms an interface in our cylindrical geometry. Therefore, we decompose the
flow field of the viscous fluid, and thus also the Stokes stream function, into
Fourier modes:

Ψ = ∑
𝑞
Ψ𝑞(𝑟) sin(𝑞 𝑧) , so that

𝑣𝑟 = ∑
𝑞
𝑣𝑟𝑞(𝑟) cos(𝑞 𝑧) and 𝑣𝑧 = ∑

𝑞
𝑣𝑧𝑞(𝑟) sin(𝑞 𝑧) . (IV.73)

With this definition, the homogeneous 𝑞 = 0 mode corresponds to a uniform
radial flow of the interface, while 𝑞 ≠ 0 modes correspond to shear flows of
the fluid in the lumen of the organoid branch. Note that all Fourier modes de-
couple given that the Stokes equations are linear, and are thus independent of
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IV.2 Between Morphogenesis and Hydrodynamic Flows

their phase; therefore, we would obtain identical solutions if we were to shift
our Fourier modes by some arbitrary phase. The general real-valued solution to
Eq. (IV.70) is then given by:

Ψ𝑞(𝑟) = 𝑟2 [𝑎1 (𝑌0(−𝑖 𝑞 𝑟) + 𝑖 𝐼0(𝑞 𝑟)) + 𝑎2 (𝑌2(−𝑖 𝑞 𝑟) − 𝑖 𝐼2(𝑞 𝑟))

+ 𝑎3 𝐼0(𝑞 𝑟) + 𝑎4 𝐼2(𝑞 𝑟)] , (IV.74)

where 𝐼𝑘(𝑥) refers to the modified Bessel function of the first kind and 𝑌𝑘(𝑥)
refers to the Bessel function of the second kind. Note that the first two terms,
with coefficients 𝑎1 and 𝑎2, correspond to fluid flow fields that diverge at the
centerline (𝑟 → 0) and approach zero in the far field (𝑟 → ∞). In contrast,
the last two terms, with coefficients 𝑎3 and 𝑎4, correspond to fluid flow fields
that diverge in the far field (𝑟 → ∞) and remain finite at the centerline (𝑟 →
0). Therefore, there are two distinct solutions for the fluid flow field: one for a
viscous fluid in the half space 𝑟 > 𝑅, and one for a viscous fluid in the half space
𝑟 < 𝑅.
Analogous to Section IV.2.4 “Deformations of the Extracellular Matrix”, we

proceed by decomposing the stress field into Fourier modes:

𝜎𝑟𝑟fl = −𝑝0 +∑
𝑞
𝜎𝑟𝑟fl,𝑞 cos(𝑞 𝑧) , and 𝜎𝑟𝑧fl = ∑

𝑞
𝜎𝑟𝑧fl,𝑞 sin(𝑞 𝑧) . (IV.75)

Then, we find the following linear relationship between the fluid flow, 𝑣𝑟𝑞(𝑅) and
𝑣𝑧𝑞(𝑅), and the stress at the position of the interface:

[𝜎
𝑟𝑟
fl,𝑞(𝑅)
𝜎𝑟𝑧fl,𝑞(𝑅)

] = −2𝜂𝑅 𝝌fl(𝑞 𝑅) ⋅ [
𝑣𝑟𝑞(𝑅)
𝑣𝑧𝑞(𝑅)

] . (IV.76)

Here, we have defined the following symmetric response matrix:

𝝌fl(𝑥) ≔ [
1 + 𝐵2(𝑥)

𝐵2(𝑥)+2𝐵(𝑥)−𝑥2
𝑥 − 𝑥 𝐵(𝑥)

𝐵2(𝑥)+2𝐵(𝑥)−𝑥2

𝑥 − 𝑥 𝐵(𝑥)
𝐵2(𝑥)+2𝐵(𝑥)−𝑥2

𝑥2

𝐵2(𝑥)+2𝐵(𝑥)−𝑥2

] , (IV.77)

with a placeholder function 𝐵(𝑥). Interestingly, the only difference between the
near-field solution and the far-field solution lies in the definition of this place-
holder function:

𝐵near(𝑥) ≔ −𝑥 𝐼0(𝑥)𝐼1(𝑥)
, and 𝐵far(𝑥) ≔ 𝑥 𝐾0(𝑥)𝐾1(𝑥)

, (IV.78)

where 𝐼𝑘(𝑥) refers to the modified Bessel function of the first kind and 𝐾𝑘(𝑥)
refers to the modified Bessel function of the second kind. Finally, note that the
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IV Cell Organization and Morphogenesis

response matrix of the viscous fluid, Eq. (IV.77), is exactly the same as the re-
sponse matrix of an incompressible elastic material, see Eq. (IV.60). With this,
we have reached our first goal of deriving a relation between the viscous stresses
at the interface and the corresponding interface velocity. If we know all the
other stresses that act on the interface, then we can now determine its velocity
by simply inverting the response matrix 𝝌fl.

Tension-driven fluid flow: Stress boundary conditions. Now that we have
formulated a linear theory for the fluid response, we elucidate how active cell
contractility can dictate the dynamics of the organoid branch. Specifically, we
consider a baseline axial and an independent baseline circumferential tension,
𝜏𝑧,0 and 𝜏𝜙,0, which are superimposed by periodic modulations with amplitudes
𝜏𝑧 − 𝜏𝑧,0 and 𝛾 (𝜏𝜙 − 𝜏𝜙,0), respectively. In that way, we account for a possible
anisotropy of the tension modulations: 𝛾 = −1 keeps the trace of the tension
tensor constant thus indicating modulations in cell orientation, 𝛾 = 1 indicates
isotropic tension modulations, and 𝛾 > 1 indicates tension modulations mostly
along the organoid branch axis. In analogy to the Fourier decomposition of all
fluid flow descriptors in Paragraph “The response matrix of a cylindrical fluid”,
we treat the spatial heterogeneity of the active circumferential tension and the
active axial tension by expanding them into Fourier modes:

𝜏𝜙 = 𝜏𝜙,0 +∑
𝑞
(𝜕𝑞𝜏) 𝑞 cos(𝑞𝑧) , and 𝜏𝑧 = 𝜏𝑧,0 +∑

𝑞
𝛾 (𝜕𝑞𝜏) 𝑞 cos(𝑞𝑧) . (IV.79)

In addition, we have here also performed a Taylor expansion up to linear order
to ensure that both tensions match their baseline values for the homogeneous
𝑞 = 0mode. As will become clear a posteriori, the specific phase of this Fourier
expansion ensures matching Fourier modes between the viscous fluid stresses
and the active stresses on the surface.
To proceed, we need to connect the interfacial stresses, which arise due to cell

activity and elastic deformations of the thin shell, to the stresses in the viscous
fluid. In a general setting, this requires physical projections of the stress tensor
(see Fig. IV.5 for a geometric explanation). As before in Section IV.2.4 “Defor-
mations of the Extracellular Matrix”, we make these physical projections trivial
by performing a linearization of our geometry. Specifically, as mentioned before,
we consider a situation where the radial undulations of the tubular organoid
branch are small, 𝜕𝑧𝑅 ≪ 1. In that case, the unit normal vector of the in-
terface points in the direction of the radial basis vector, �̂� ∝ 𝒃𝑟, and the axial
tangent vector of the interface points in the direction of the axial basis vector,
𝒕𝑧 ∝ 𝒃𝑧. Therefore, 𝜎𝑟𝑟fl is the normal stress at the fluid interface, and 𝜎𝑟𝑧fl is
the tangential shear stress at the fluid interface. Note that the fluid only fills
the lumen of the organoid branch, thus specializing to our near-field solution
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IV.2 Between Morphogenesis and Hydrodynamic Flows

with 𝐵(𝑥) ≡ 𝐵near(𝑥), see Eq. (IV.78). All normal stresses that apply at the fluid
interface (that is, the fluid stress, the Laplace pressure due to active cell contrac-
tility, and all elastic stresses) must balance, leading to the following boundary
condition:

𝜎𝑟𝑟fl (𝑅) = −
𝜏𝜙
𝑅 + 𝜏𝑧 𝜕2𝑧𝑅 + Δ𝑝s + Δ𝑝b . (IV.80)

Here, Δ𝑝s is the elastic stress due to stretching of the thin shell, Eq. (IV.43), and
Δ𝑝b is the elastic stress due to bending of the thin shell, Eq. (IV.48). Analogously,
all tangential shear stresses that apply at the fluid interface must also balance.
These tangential shear stresses include: (i) the fluid stress, (ii) tension gradients
that lead to a Marangoni effect, (iii) the motile force 𝑓m that cells exert on the
substrate (that is, the elastic shell), and (iv) a slip friction 𝜉 because the cells
(and thus the fluid) can slip against the elastic shell. With these considerations,
the tangential shear stress boundary condition is given by:

𝜎𝑟𝑧fl (𝑅) = 𝜕𝑧𝜏𝑧 + 𝑓m − 𝜉 𝑣𝑧 , (IV.81)

TheMarangoni effect can be illustrated as follows: if in region “1” cells contract
more strongly than in an adjacent region “2”, then the cells from region “2” will
be pulled towards region “1”, thus leading to flows. Note that we can also rep-
resent the motile force 𝑓m as the gradient of a surface scalar field. Therefore, we
absorb it into the modulations of the axial tension. This means that the case of
𝛾 > 1, see Eq. (IV.79), actually corresponds to axial oscillatory motion of the
cells.
As we have done Section IV.1.3 “Technical Summary”, we linearize

Eq. (IV.80) by considering small radial deflections of the organoid branch
surface, 𝑅 = 𝑅0 + 𝑢, with 𝑢 ≪ 𝑅0. Furthermore, we insert all of our Fourier-
expanded quantities into the boundary conditions, Eq. (IV.80) and Eq. (IV.81),
and neglect mode coupling terms. By doing so, we arrive at the following
linearized equations:

−𝑝0 +∑
𝑞
𝜎𝑟𝑟fl,𝑞(𝑅) cos(𝑞 𝑧) = −

𝜏𝜙,0
𝑅0

+∑
𝑞
[Δ𝑝𝑞 −

(𝜕𝑞𝜏) 𝑞
𝑅0

] cos(𝑞𝑧) , (IV.82)

∑
𝑞
𝜎𝑟𝑧fl,𝑞(𝑅) sin(𝑞 𝑧) = −∑

𝑞
[𝛾 (𝜕𝑞𝜏) 𝑞2 + 𝜉 𝑣𝑧𝑞(𝑅)] sin(𝑞𝑧) . (IV.83)

Here, Δ𝑝𝑞 is the same stress dispersion relation as in Section IV.1.3 “Technical
Summary”, see Eq. (IV.20):

Δ𝑝𝑞 = [
𝜏𝜙,0
𝑅20

− 𝑌s ℎ
𝑅20

− 𝑘b
𝑅40

− 𝜏𝑧,0 𝑞2 − 𝑘b 𝑞4] 𝑢𝑞 . (IV.84)

Because the stress balance equations must hold for all Fourier modes and for all
deflections, there is a balance between the hydrostatic pressure and the baseline
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Figure IV.7: The viscous dispersion relation, together with the stress dispersion
relation, determines the growth rate of a cylindrical boundary-driven fluid.
The homogeneous 𝑞 = 0mode is hydrodynamically prohibited for any finite
slip friction ̃𝜉. Note that vanishing slip friction ̃𝜉 = 0 does not yield physical
solutions in the case of a shape transformation, because it would require di-
verging axial flows to keep the incompressibility condition intact. The limit
̃𝜉 → ∞ corresponds to no-slip boundary conditions.

Laplace pressure, 𝑝0 = 𝜏𝜙,0/𝑅0. Now, we can determine the interface velocity
by using its relation to the interfacial fluid stress, Eq. (IV.76), and solving the
resulting linear set of equations:

[𝑣
𝑟
𝑞(𝑅0)
𝑣𝑧𝑞(𝑅0)

] = −𝑅02𝜂 [𝜒fl,𝑟𝑟 𝜒fl,𝑟𝑧
𝜒fl,𝑧𝑟 𝜒fl,𝑧𝑧 − (𝜉 𝑅0)/(2𝜂)

]
−1

⋅ [Δ𝑝𝑞 − (𝜕𝑞𝜏 𝑞)/𝑅0
−𝛾 𝜕𝑞𝜏 𝑞2

] . (IV.85)

With this, we have derived the dynamics of the organoid branch up to linear
order. In the following, we study two limiting cases of these dynamics.

A first limiting case: Shape transformation due to cell reorientations. As
our first limiting case, we consider a situation where the dynamics are entirely
driven by the stress dispersion relation,Δ𝑝𝑞, neglecting any and all tensionmod-
ulations. In that case, the radial growth rate is given by:

𝑣𝑟𝑞(𝑅0) =
𝑅0
2𝜂

𝜒fl,𝑧𝑧 − ̃𝜉
𝜒2fl,𝑟𝑧 + ̃𝜉 𝜒fl,𝑟𝑟 − 𝜒fl,𝑟𝑟 𝜒fl,𝑧𝑧

Δ𝑝𝑞 , (IV.86)

where we have defined ̃𝜉 ≔ (𝜉 𝑅0)/(2𝜂), and exploited the symmetry of the re-
sponse matrix, Eq. (IV.77). Note that Eq. (IV.86) is solved by an exponential
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Figure IV.8: Response of the interface to tensionmodulations. a) Radial growth
rate, 2𝜂𝑅0 𝑣𝑟𝑞/(𝜕𝑞𝜏). When applying a spatially varying surface tension, a vis-
cous tubular fluid can actually grow in regions that have increased circumfer-
ential tension, and shrink in regions that have reduced circumferential sur-
face tension. This is indicated by the positive sign of the radial growth rate.
b) Axial flow rate, 2𝜂𝑅0 𝑣𝑧𝑞/(𝜕𝑞𝜏). We find that axial tension gradients induce
tangential fluid flows at the organoid branch interface. If there are no gradi-
ents of axial tension (𝛾 = 0), then the axial fluid flow is only determined by
the distribution of the Laplace pressure.

growth law, because 𝑣𝑟𝑞(𝑅0) = �̇�𝑞 and Δ𝑝𝑞 ∝ 𝑢𝑞. We refer to the fraction in
Eq. (IV.86) as “viscous dispersion relation”. The viscous dispersion relation is
strictly positive (Fig. IV.7), so that the stability of the tubular fluid is fully deter-
mined by the stress dispersion relation, Δ𝑝𝑞, in agreement with Section IV.1.3
“Technical Summary”. Thus, the cellular tissue can control a shape transforma-
tion by reorienting cells and thereby making trade-offs between axial and cir-
cumferential tension. In the general case of finite slip friction, we find that the
homogeneous 𝑞 = 0mode does not grow (Fig. IV.7), because homogeneous ex-
pansion is prohibited by fluid incompressibility. Therefore, the fastest-growing
mode is not the 𝑞 = 0mode, although it has the greatest driving stress.

A second limiting case: Tension modulations. As our second limiting case,
we consider a situation where the dynamics are entirely driven by the tension
modulations, because the deflection of the surface is still negligible 𝑢𝑞 ≈ 0. To
show the greatest effect, we consider a situation where the slip friction is also
negligible ̃𝜉 ≈ 0. Our general results remain the same as long as we choose any
finite slip friction ̃𝜉 < ∞. Then, the boundary velocity is given by the following
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Figure IV.9: Exemplary flow fields for tension modulations, shown for the
Fourier mode 𝑞 = 2𝜋/𝑅. Black line corresponds to the boundary of the
organoid branch. The hydrodynamic pressure is shown left of the black line
(a red color means high pressure, while a blue color means low pressure).
Modulations of the Laplace pressure, −𝜏𝜙/𝑅0, are shown right of the black
line. Black arrows indicate in which direction the interface will move. Gray
arrows indicate the fluid flow field. a) If the tension modulations conserve
the trace of the tension tensor, then this corresponds to fluctuations in cell
orientation. In this case, the interface is driven by the Laplace pressure. b)
If the axial tension modulations are much greater than the circumferential
tension modulations, then this indicates axial oscillatory motion of cells. In
this case, the interface is driven by hydraulic pressure.

linear equation, see Eq. (IV.85):

[𝑣
𝑟
𝑞(𝑅0)
𝑣𝑧𝑞(𝑅0)

] =
𝜕𝑞𝜏
2𝜂𝑅0

[𝜒fl,𝑟𝑟 𝜒fl,𝑟𝑧
𝜒fl,𝑧𝑟 𝜒fl,𝑧𝑧

]
−1

⋅ [ 𝑞 𝑅0
𝛾 (𝑞 𝑅0)2

] . (IV.87)

We find that a reorientation of cells without changes in cell contractility itself,
𝛾 = −1, leads to inwards motion of the interface in regions of high circum-
ferential tension, because of the corresponding Laplace pressure (Fig. IV.8a,
Fig. IV.9a). Interestingly, however, we also find that if the tension modula-
tions occur preferentially along the axis of the cylindrical organoid branches,
𝛾 > 1, then the interface will expand in regions of high circumferential tension,
and will contract in regions of low circumferential tension (Fig. IV.8a). The
reason for this observation, which one would not expect from the Laplace pres-
sure alone, is the Marangoni effect. Regions with high axial tension pull more
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Figure IV.10: The dilation rate of a conserved material on the surface of the
cylindrical organoid branch, for different anisotropic modulations of the sur-
face tension. For tension modulations that are either isotropic or axially bi-
ased, 𝛾𝜏 ≥ 1, we find that material is gradually accumulated in regions of
increased circumferential tension. For anisotropic tension modulations that
conserve the total tension, 𝛾𝜏 = −1, we find that material is gradually dilated
in regions of increased circumferential tension.

cells towards them (Fig. IV.8b), thereby increasing hydrodynamic pressure in
the fluid until it can overcome the Laplace pressure (Fig. IV.9b). Thus, the in-
terface expands in precisely the regions that attract cells, which provides a first
pointer, as to how organoid branches choose the direction in which the shape
transformation occurs. First, cells flow towards the tip of an organoid branch,
leading to a slight expansion because of the hydrodynamic pressure. Then, the
cells reorient, begin collectively rotating, and the instability takes off. We dis-
cuss a second, even stronger, reason for organoid branch expansion at the on-
set of the shape transformation in Section IV.2.6 “Tubular Shells as Pumps and
Rectifiers”, which has its origin in nonlinear effects.

What if the tension modulations change upon movement of the interface?
So far, we have assumed that the tension modulations are not affected by the
movement of the interface. However, it is easy to imagine a situation where this
is different: (i) tensionmight increase due to elastic stretching, or (ii) cells could
actively adapt their tensile properties, or (iii) one considers an entirely different
active material in the form of an actomyosin cortex, with isotropic tension that
is proportional to the density of myosin motors (Salbreux et al., 2012; Chugh
and Paluch, 2018). For that reason, it is interesting to study whether the inter-
face of a columnar fluid will be dilated or compressed in regions of increased
circumferential tension. To do so, we investigate the material derivative of an
advected material; this means that we follow a parcel of the surface in the co-
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moving frame. Now, we consider an arbitrary conserved density field, and study
how the local density will change due to the motion of the interface:

1
𝑐 [𝜕𝑡𝑐 + 𝒗 ⋅ 𝛁𝑐] = − [𝜕𝑧𝑣𝑧 +

𝑣𝑟
𝑅0
]

= − 1
𝑅0

∑
𝑞
[𝑣𝑧𝑞(𝑅0) 𝑞 𝑅0 + 𝑣𝑟𝑞(𝑅0)] cos(𝑞 𝑧) . (IV.88)

Here, 𝒗 corresponds to the advection velocity, see Paragraph “Advection in the
embedding” (Section I.3.5). We refer to the term in the square brackets, in the
second line of Eq. (IV.88), as “dilation rate”. If it is positive, then the material is
dilated, while a negative value signifies enrichment.
We find that if the tensionmodulations originate from a reorientation of cells,

𝛾 = −1, then the material is further dilated in regions of increased circumferen-
tial tension (Fig. IV.10). If the material is elastic and increases its tension upon
dilation, then this signifies a positive feedback loop that could play a role for
tension-induced shape transformations. The situation is different if we have an
isotropic material, with 𝛾 = 1, where the material is always further enriched in
regions of high tension (Fig. IV.10). For elastic materials, this would counter-
act tension-driven instabilities. However, if we are dealing with an actomyosin
cortex, where tension increases upon enrichment of myosin motors, then we
have again the signature of a positive feedback loop that could lead to an insta-
bility. Similar advective instabilities have been studied theoretically for a flat
actomyosin cortex (Bois et al., 2011).

IV.2.6 Tubular Shells as Pumps and Rectifiers
So far, we have studied a linear theory, which in Section IV.2.5 “Cell Activity
DrivesHydrodynamic Flows” allowedus to analytically determine the dynamics
of a tubular boundary-driven fluid that is enveloped by a thin elastic shell, such
as an organoid branch. In the following, we refer to this setup as “tube”. Now,
we aim to go beyond the restrictions of this linear theory, and give an outlook on
elastic nonlinear effects that arise for such tubular systems. We do not consider
geometric nonlinearity, and therefore still assume that radial undulations of the
tubular organoid branch are small, 𝜕𝑧𝑅 ≪ 1. Now, we revisit the normal stress
balance equation, Eq. (IV.80), but this time keep all nonlinear elastic terms:

𝜎𝑟𝑟fl = −[
𝜏𝜙
𝑅 + 𝑌s ℎ

𝑅2 − 𝑅20
2𝑅20

𝑅
𝑅20

+ 𝜅b
𝑅 − 𝑅0
𝑅0 𝑅3

] + 𝜏𝑧 𝜕2𝑧𝑅 − 𝜅b 𝜕4𝑧𝑅 . (IV.89)

Note that for a homogeneous elastic shell with elasticmodulus𝑌s, Poisson’s ratio
𝜈 and thickness ℎ, the bendingmodulus is given by 𝑘b = 𝑌s ℎ3/[12(1−𝜈2)] (Lan-
dau, Pitaevskii, et al., 1986). As our model parameters, we choose estimated
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values that proved sensible for organoid branches, as discussed in our preprint
on pages 341–394 . In particular, the elastic shell is characterized by the Poisson
ratio 𝜈 = 1/2, the elastic modulus 𝑌s = 0.72 kPa and a thickness ℎ = 5 µm. In
its reference configuration, the organoid branch has a radius of 𝑅0 = 30 µm. We
will come back to the surface tension, 𝜏𝜙 and 𝜏𝑧, shortly.
Next, we split the radial fluid stress into a pure viscous shear part, 𝜎𝑟𝑟⇋ =

2𝜂 𝜕𝑟𝑣𝑟, and the hydrodynamic pressure: 𝜎𝑟𝑟fl = 𝜎𝑟𝑟⇋ − 𝑝. Furthermore, the hy-
drodynamic pressure has a homogeneous reference contribution, determined
by the Laplace pressure of the undeformed tube, and an inhomogeneous con-
tribution: 𝑝 = 𝜏𝜙/𝑅0 + Δ𝑝ex. In the following, we refer to the inhomogeneous
pressure contributionΔ𝑝ex as “excess pressure”. Taken together, our radial stress
balance equation takes the following form:

𝜎𝑟𝑟⇋ = Δ𝑝ex − Δ𝑝tube + 𝜏𝑧 𝜕2𝑧𝑅 − 𝜅b 𝜕4𝑧𝑅 , where (IV.90a)

Δ𝑝tube = −𝜏𝜙
𝑅 − 𝑅0
𝑅0 𝑅

+ 𝑌s ℎ
𝑅2 − 𝑅20
2𝑅20

𝑅
𝑅20

+ 𝜅b
𝑅 − 𝑅0
𝑅0 𝑅3

. (IV.90b)

Now, we see that the viscous fluid in the lumen of the tube will respond with
viscous flows if the right-hand side of Eq. (IV.90a) is out of balance. The last two
terms on the right-hand side of Eq. (IV.90a) smooth out the tube shape, while
the first two terms on the right-hand side of Eq. (IV.90a) define local attractors
for the tube radius, 𝑅. In the following, we are interested in these local attractors
that drive the deformations of the tube.
To that end, we first revisit our criterion for the stability of the initial

cylindrical configuration of the tube. In particular, even for vanishing local
excess pressure Δ𝑝ex, the initial cylindrical shape of the tube becomes unstable
if 𝜕𝑅(Δ𝑝tube)|𝑅0 < 0. As discussed in Section IV.1.3 “Technical Summary”
and Section IV.2.5 “Cell Activity Drives Hydrodynamic Flows”, this leads to
a critical value for the circumferential tension, 𝜏𝜙 > 𝜏c, beyond which the
initial cylindrical configuration becomes unstable. To gain more insight into
the dynamics of this shape transformation, suppose that we start with a tube
in its cylindrical reference shape, 𝑅 ≈ 𝑅0, which in addition has a vanishing
circumferential tension 𝜏𝜙 ≈ 0. When we slowly increase the circumferential
tension, 𝜏𝜙, the tube remains cylindrical until a critical value, 𝜏𝜙 ≳ 𝜏c, beyond
which we observe a continuous shape transformation (Fig. IV.11a) with a
growing tube radius.

Stochastic pumping. In addition, we hypothesize that these dynamics could
be even richer if the tube shape is subject to random fluctuations. What we have
described just now is only the first of two distinct stable branches for the tube
radius, separated by an unstable branch (Fig. IV.11a). Right at the critical point
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Figure IV.11: Local attractors of the tube radius as a function of different con-
trol parameters. a) Increasing circumferential tension, starting from the ref-
erence configuration 𝑅 = 𝑅0 and vanishing circumferential tension, leads to
a continuous shape transformation at a critical value for the circumferential
tension. The corresponding critical point is indicated by a dashed circle. At
this critical point, shape fluctuations can lead to a discontinuous shape trans-
formation in the form of a tube collapse. Cyclic modulation of the circum-
ferential tension leads to a stochastic hysteresis loop. b) Cyclic modulation
of the excess pressure leads to a deterministic hysteresis loop, thus breaking
time-reversal symmetry.

for the onset of the continuous shape transformation, (𝑅0, 𝜏c), only the unsta-
ble branch touches the upper stable branch. Then, even infinitesimally small
shape fluctuations can lead to a discontinuous contraction of the tube towards
the lower stable branch. Now, suppose that the cells periodically modulate their
active tension, reducing their contractility after the shape transformation has
occurred. Then, we find that the lower stable branch vanishes after the circum-
ferential tension falls below a second critical value (Fig. IV.11). This constitutes
a hysteresis loop in the presence of shape fluctuations, which is driven by active
cell tension. Given that this hysteresis loop breaks time-reversal symmetry, we
hypothesize that it could lead to stochastic pumping of the fluid that fills the
lumen of the tube.

Deterministic rectification. Finally, we consider a situation where the cir-
cumferential tension stays at a constant value of 𝜏𝜙 ≈ 𝜏 = 10mNm−1, which
was measured for spherical mammary gland organoids via micropipette aspira-
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tion (Villeneuve et al., 2019). Now, we vary the excess pressure Δ𝑝ex instead of
the surface tension. Such a situation can be realized by applying ahydrodynamic
pressure gradient along the length of the tube, and then temporally modulating
the pressure at one of the two tube ends. From a pure Stokes fluid in a non-
deformable tube, we would expect that there is no net transport in response to a
pressure gradient that flips periodically, because the Stokes equations are time
reversible (Purcell, 1977). However, the situation is already different if the wall
of the tube is a thin deformable shell. In that case, we find a deterministic hys-
teresis loop of the tube radius, as a function of the excess pressure. For low pres-
sure, the tube shape is stabilized by elastic bending, while for high pressure it
is stabilized by elastic stretching (Fig. IV.11b). This hysteresis loop breaks time-
reversal symmetry and in this case turns the tube into a mechanical rectifier,
which can be illustrated as follows. Suppose that at one end of the tube, labeled
“−” and termed “outlet”, we keep the excess pressure constant, at a value where
the tube has ballooned up to the upper stable branch. At the other end of the
tube, labeled “+” and termed “inlet”, we vary the excess pressure. If the excess
pressure is much larger at the inlet than at the outlet, 𝑝+ ≫ 𝑝−, then both ends
of the tube lie on the same (upper) stable branch and forward flow is permit-
ted. However, if the excess pressure is much smaller than the fixed pressure
at the other side of the tube, 𝑝− ≪ 𝑝+, then the tube at the inlet collapses to
the lower stable branch and reverse flow is prohibited (Fig. IV.11b). To drop to
the lower branch, the (relative) inlet pressure must fall below a value of −24 Pa
(Fig. IV.11b). Increasing the pressure at the inlet again, forward flow will then
only be allowed if the (relative) inlet pressure exceeds a much larger value of
3.6 kPa (Fig. IV.11b). Thus, the thin shell acts like an elastic check valve, which
is the hydrodynamic equivalent of an electrical rectifier.
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