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Abstract

Abstract

Proteins perform the vast majority of molecular functions in biological life and the
guantitative investigation of the proteome, the sum of all proteins in a system, has been
an interest in the life sciences for the last decades. Technological developments that
have shaped the field are advancing unabated, playing a crucial role in state-of-the-art
proteomics research. With mass spectrometry (MS)-based methods and ultra-high-
performance liquid chromatography (UHPLC), thousands of proteins can be
guantitatively measured in a cell culture digest, in patient tissue or most other biological
specimens in under an hour of analysis time. Liquid chromatography techniques play an
especially important role because they distribute the overwhelming bulk of analytes into

a time-ordered landscape of eluting peaks.

One focus of this PhD thesis was the development and application of advanced
chromatographic methods for MS-based proteomics. This encompasses the
foundational publication of the Evosep One system, which has become a valuable
instrument for reproducible high throughput proteomics studies as well as a high-profile
application of the novel uPAC column, a chip based nano-flow separation device which
| used for the proteomics measurements of 100 taxonomically diverse organisms.
Furthermore, to enhance throughput and quality, | designed a high-pressure packing
station for the production of capillary columns, which are still the mainstay in the
proteomics field, making their production more than hundred times more time efficient.

The main project of my PhD is the ‘proteome landscape of the kingdoms of life’, an
unprecedented investigation of 100 organisms’ proteomes from across all of known
biological life. For the first time, this makes it possible to compare proteomes from
organisms of all domains. We hope to have showcased the universal application of
proteomics to facilitate model organism independent and unbiased research in the

future.

Finally, 1 also addressed the use of proteomics techniques for clinical studies. The
investigation of contamination markers in common blood-based searches lays a
foundation for biomarker studies, which can be extended to other matrices like urine or
cerebrospinal fluid (CSF). In the latter we uncover potential new biomarkers for

Alzheimer’s Disease in a multicentric study.

In summary, this thesis is a cross-section of state-of the art MS-based proteomics from
technological developments through deep organism proteomes across the tree of life to

clinical applications.
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1. Introduction

1. Introduction

The central dogma of cell biology defines proteins, the products of gene expression via
the transcriptional and translational cellular machinery, as the main effector molecules
of biological life. While the one-dimensionality of the central dogma has long been
revised, the fact that proteins carry out the vast majority of functions in living cells
remains. Long before this had been widely acknowledged, protein analysis was
recognized as a major field of medical, biological, chemical and biochemical research.
Already in the 18th century proteins were isolated and described qualitatively for
scientific reasons (J. B. Beccari, 1731). The name ‘Protein’ originated in 1839, when
Gerrit J. Mulder, who employed element analyses to describe the molecular composition
of various ‘albuminous materials’ found that the majority of the compounds he analyzed
had the same molecular formula (Mulder, 1839). For these compounds he borrowed the
Greek word proteios, and coined the presently still used denomination.

The following century in protein research was mainly spent in exploration of the primary
structure of proteins. This was only achieved in 1902 by Franz Hofmeister who
postulated that proteins are a condensate from amino acids (Hofmeister, 1889) and later
confirmed by Emil Fischer, who found that dipeptides are the smallest macromolecular
form of proteins which can be gained by hydrolysis of proteins. He introduced the term
peptides and founded the field of peptide synthesis (Fischer, 1906).

Protein analysis in the following century focused on describing their context in biological
systems (central dogma of cell biology) or the overall structure (starting with crystal
structures) but most analyses relied on size, chemical properties and affinity-based
methods to identify proteins. The first step towards sequence-based identification of
proteins was done by Paul Schlack and W. Kumpf in 1926 by developing a process to
sequentially cleave peptides from a protein’s C-terminus (Schlack & Kumpf, 1926). The
nowadays better-known Edman degradation was invented by Pehr Edman in 1949 and
can be used to sequentially analyze peptides up to 50 residues from the N-terminus
(Edman, 1949).

While these methods seem anachronistic compared to modern protein analysis tools,
they established the fact that peptides of proteins can further be sequentially cleaved
between their amino acids to identify the primary structure of the peptide and
subsequently the protein. This still forms the basis for modern mass spectrometric (MS)

methods for proteomics analyses.
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The special case of proteomics

Proteomics mainly differs from the biologically upstream omics techniques genomics
and transcriptomics for a single reason: Genomics and transcriptomics rely on sequence
amplification which is biotechnologically enabled by enzymes ‘high-jacked’ from natural
DNA replication, transcription and reverse-transcription machineries found in various
organisms (Saiki et al., 1988; Weis et al., 1992). There is no known biological function
or process engineered which can do the same for proteins. In contrast to biologically
downstream omics techniques like metabolomics or lipidomics, proteomics shares the
sequence type analysis with the biologically upstream technigues. DNA, RNA and
proteins consist of a number of fixed building blocks (generally) in linear combination
and characterization simply means to sequence the building blocks and assemble them
in the right order. The same is not true for small molecules or the broad variety of lipid
structures, where bulk must be done with a fingerprint type of information because
structures do not give rise to a systematic sequential approach as for proteins (Peake,
2018; Wishart, 2011; Yang & Han, 2016).

Proteins are diverse molecules and very variable in size and chemical properties. This
is another difference from the upstream omics techniques, where the restriction to four
initial bases as building blocks for DNA and RNA limits their variability. For instance,
MRNA for transcriptomics analysis can always be accessed via its polyA tail. Proteins
in general do not share such patterns and whole proteome analysis is difficult because
few techniques enable access to all chemically diverse proteins. The method to make
proteins accessible for molecular omics techniques is to break them down into peptides
of a length of manageable size, whose properties are much more similar to each other
than the properties of different proteins. This approach is called bottom-up proteomics
and the method of choice to break the proteins down in peptides is enzymatic digestion.
The most common enzyme employed is trypsin, with a cleavage specificity at the C-
terminal side of lysine and arginine residues. This is beneficial for the downstream MS
analysis because both amino acids carry a positive C-terminal charge at acidic pH, but
other peptidases like GIuC or AspN are also used e.g. to increase the sequence

coverage of proteins (Figure 1).

Most workflows for bottom-up proteomics share the extraction, homogenization and
chemical modification steps. Samples are commonly boiled for a short time in a lysis
buffer containing SDS, SDC or other detergents or denatured and unfolded in urea. After
reduction with reagents like TCEP, DTT or 3-mercaptoethanol, the reduced disulfide
bonds are quenched by acetylation or carbamidomethylation e.g. with chloro- or

iodoacetamide. In the case of samples with cellular content, this is followed by a DNA
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shearing step by sonication with ultrasound. For fibrous material this technique can also
be applied before or between the previous steps, to disrupt the material and extract
proteins. Recently, these procedures have been combined in a single pot reaction by
making the reagents cross-compatible (Kulak et al., 2014). This decreases hands on
time and makes the process more reproducible. Additionally, by avoiding the previously
popular precipitation step (Jiang et al., 2004), or filter steps, this process can be readily

automated on liquid handling robotic platforms (Geyer, Kulak, et al., 2016).

Following digestion, the peptides must be isolated from cellular debris, chemicals and
buffer salts which can be done by desalting. Reversed phase material like C-18 or weak
cation exchange functionalized surfaces can be applied. Other strategies are the filter
aided sample preparation (FASP) technique in which all molecules smaller than a cutoff
below the protein level are washed away before digestion, and the clean peptides are
eluted from the filter afterwards (Wisniewski, 2017). A recent development is the
precipitation of proteins on magnetic particles and peptide elution by digestion from the
beads after several washing steps (Batth et al., 2019; Hughes et al., 2019). All protocols
yield sufficiently clean peptides and may somewhat prefer certain peptide species, as
studies show that the resulting peptides detectable by LCMS only partly overlap (Sielaff
et al., 2017). Additionally, the particle-based methods can be engineered to enrich for
certain protein subsets (Blume et al.,, 2020). The arguments for a specific sample
preparation procedure are often justified by up- and downstream compatibility to sample
type and LC instrumentation and preference of the user.

While sample preparation for whole proteome analysis is comparably straightforward,
strategies to enrich for certain protein or peptide classes add a new layer of complexity.
The most commonly employed techniques are pulldown analyses for the study of protein
interactions and phospho-peptide enrichment to study cellular signaling, but other
enrichment processes, like acetylation- or glycosylation enrichment are possible as well.
Phosphopeptide enrichment is done by positively charged metal ion raisins like Fe(lll)-
NTA (Andersson & Porath, 1986) or TiO2 (Pinkse et al., 2004). Being employed after
protein digestion, the peptides with the negatively charged phosphorylations on serine,
threonine or tyrosine residues bind to the raisin while other peptides are washed off.
State of the art protocols for highest yields employ this technique instead of desalting
and directly injecting the eluted peptides into the LCMS (Humphrey et al., 2018).
Automated high throughput procedures e.g. on the Agilent Assaymap platform require
relatively large amounts of purified peptides, but enable 96 well processing for the
enrichment step with high yield (Russell & Murphy, 2016). Protein interaction studies

like pulldown analyses are done with an enrichment step before the start of the sample
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preparation. This can involve immunoprecipitation and genetically encoded tags like
GFP linked to the protein of interest (POI). Interacting proteins bind to the POI which is
‘pulled down’ and other proteins are washed away under specific buffer conditions.
Sample preparation as described above is applied and binders to the POI can be
identified by comparison to control experiments with unspecific binders (Keilhauer et al.,
2015; Wierer & Mann, 2016).

To illustrate how peptides are identified in the mass spectrometer the Edman
degradation mentioned earlier can be used as a contrast. Peptides of interest in a bottom
up proteomics experiment are commonly between 7 and 30 amino acids (AA) long and
can be visualized as pearls on a string. The Edman degradation identifies the sequence
by freeing and identifying one amino acid after another, beginning from the N-terminus.
A mass spectrometer enables a similar procedure, by breaking multiple copies of a
peptide ion semi-randomly between AAs. When lining up all fragments by size from both
peptide ends in an ms/ms spectrum, the mass differences between fragments yield part
of the peptide sequence (Ruedi Aebersold & Mann, 2003; Sinha & Mann, 2020). This
clarifies why mass spectrometers are used for proteomics analysis: Unlike genomics
and transcriptomics, where light emission readout methods can be used coupled to
signal amplification with polymerase chain reaction (PCR) (Bustin et al., 2005), in
proteomics the mass and fragment mass differences of a peptide are the primary
readout (R. Aebersold & Goodlett, 2001). In theory, this enables de novo sequencing of
peptides but in practice with possibly missing fragments in the spectrum and thousands
of peptide sequences from a whole organism proteome to compare for a match, the
need for automated statistically solid peptide spectrum match algorithms becomes
apparent (Cox & Mann, 2008; Johnson & Biemann, 1989; Mann & Wilm, 1994). This is
nowadays implemented in ready to use software packages whose input are MS raw
files, sequence files for comparison and some parameter settings to yield peptide and

protein identifications and quantifications with statistical significance.

To unfold its true power, the MS must be coupled to a continuous separation system.
Most state-of-the-art systems employ liquid chromatography and in particular reversed
phase liquid chromatography (Horvath et al.,, 1976), making use of the differential
hydrophobic specificity of peptides assembled from different amino acids. In this
manner, the tens of thousands of peptides from e.g. a cell culture tryptic digest are
separated in two dimensions, a retention time domain, which follows peptide length and
hydrophobicity and a m/z domain of the eluting molecules ionized as they elute from the
end of the chromatographic column. For peptide identification the mass spectrometer

switches between precursor scans (MS1) and fragmentation scans of selected ions
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(DDA) or ion mass ranges (DIA) (MS2) for subsequent sequence-based identification of
peptides from a database. With this method, proteomes of biological systems can be
guantitatively measured with increasing depth in single shots. Despite the differing scan
modes described below, the MS1 and MS2 scans are a shared feature of all MS-based

proteomics experiments.

Improvements in instrumentation, scanning methods and analysis programs have
pushed the limits of MS-based proteomics in the last decades (Hebert et al., 2018;
Kelstrup et al., 2018; Makarov, 2000; Meier, Brunner, et al., 2018; Meier, Geyer, et al.,
2018). Only in 2008, the first quasi complete proteome map of a complex organism,
budding yeast, was achieved by extensive fractionation and instrument time effort (De
Godoy et al., 2008), a task, which only six years later could be completed in an hour and
by now within minutes with comparable completeness (Hebert et al., 2014; Nagaraj et
al., 2012). In 2014, the first draft maps of the human proteome were presented —
essentially compendia of protein identifications covering more than 70% of known
human protein coding genes (M. S. Kim et al., 2014; Wilhelm et al., 2014). Nowadays,
proteomes of mammals are routinely measured to a depth of 10,000 proteins. While
whole proteome measurement is still one of its main applications and obtaining deep
proteomes on a routine basis is still a challenging task, MS-based proteomics has
become established in combination with several other experimental upfront methods.
For example, proteomics can be used to build interaction networks with genetic tagged
libraries in combination with pulldown screens (Hein et al., 2015). Proximity labeling
analyses combined with pulldown of modified protein residues has the same aim (Roux
et al.,, 2012). Enrichment strategies for post-translational modifications (PTMs) give
insights into cell signaling, trafficking and protein turnover (Bard & Chia, 2016; Hansen
et al., 2020; Robles et al., 2017; Tanzer et al., 2020). With spatial proteomics methods
involving gradient centrifugation, the localization of proteins within the cellular organelles
can be mapped on a global scale (Andersen et al., 2005; Itzhak et al., 2016; Krahmer et
al., 2018). Proteomics can also be used for drug target identifications with tools such as
limited proteolysis or drug affinity responsive target stability (DARTS) (Pai et al., 2015;
Pepelnjak et al., 2020).

This brief summary represents just the tip of the iceberg of MS-based proteomics
methods and applications. The following chapters will give a detailed introduction and
focused view on the parts of the proteomics workflow that are of special importance in
my PhD thesis.
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Figure 1: Shotgun proteomics workflow. a) In sample preparation for bottom-up proteomics, proteins are extracted
from biological material and digested into peptides by enzymatic cleavage. b) The purified peptides are separated
via HPLC in a time domain and brought into the mass spectrometer by ES ionization. The mass to charge ratio of the
entering ions are detected by the MS and dependent on the scan mode of the MS, single or multiple ions are
subjected to fragmentation and detection of the fragment ions. The figure exemplifies the scan mode cycle of a data
dependent acquisition scheme, where N single MS?! precursors are isolated and subjected to fragmentation and
detection of MS? ions. ¢) The scanned spectra information is saved to a raw file and interpretation is done by
specialized software which assembles or recognizes peptides from the MS! precursor mass and fragment ion
information. Proteins information is assembled from the LCMS peptide information by software. Adapted from (Hein
etal., 2013).
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1.1. Liquid chromatographic techniques in mass spectrometry-based proteomics

Separation techniques like liquid chromatography upfront to the MS are not a
precondition for MS-based proteomics. Bottom up proteomics matrix-assisted laser
desorption/ionization (MALDI)-imaging has been around since 2001 (Stoeckli et al.,
2001) and a recent publication shows that directly injecting ions into the MS via ES and
simple gas-phase separation can analyze complex peptide mixtures (Meyer et al.,
2020). These approaches, however, are attractive mainly for high throughput but
shallow screening efforts because they lack the analysis depth as they give up the
retention time dimension. The mass spectrometer is simply not sensitive or fast enough
to deal with all incoming ions of a complex biological system, which results in an overall
reduced dynamic range and only the most abundant peptides being sequenced and
identified. By ‘stretching out’ the peptide mixtures in an additional domain orthogonal to
the m/z domain — while concentrating them into narrow elution peaks, the ion mixtures
entering the MS are reduced in complexity so that the MS has more time to sequence
specific precursors selectively. Furthermore, the complexity of co-fragmented
precursors is low enough to statistically assign them to a peptide of the proteome that is
analyzed.

The time dimension of the chromatographic separation has changed over the last
decade hand-in-hand with the increase in scanning speed of the MS-instrumentation.
While four hour runs for single shots where standard not long ago (Kulak et al., 2014;
Nagaraj et al., 2012), Geyer et al. showed that especially for samples in which only low
complexity can be resolved by LCMS (e.g. blood plasma) 20-minute gradients can
achieve similar proteome depth at increased throughput. Partly as a result, the
community is shifting to shorter gradients and higher throughput (Geyer, Kulak, et al.,
2016; Riley et al., 2016). This change in paradigm was adopted for several
developments, e.g. the Evosep One HPLC or the idea to employ peptide prefractionation

with short LCMS gradients for deep proteomes (Bekker-Jensen et al., 2017).

It has recently been demonstrated that very short LC-gradients also work for complex
proteomes (Messner et al., 2019), but for deep proteome profiling the gradient is still
commonly stretched up to several hours (Wang et al., 2019). LC-systems coupled to MS
can vary in flow rates and therefore chromatographic column shape from milliliter (ml)
to the nanoliter (nl) range, which is reflected in the naming of the corresponding
technique — high-flow, microflow or nano-flow. Between them, the linear velocity of the
mobile phase over the stationary phase is roughly the same, as the column diameter is
adapted to the flow conditions to reach reasonable pressure conditions to run the

chromatography.




1. Introduction

a 2.1 mm b
Ralser Kister nanoflow
d [mm] 2.1 1 0.075
1 mm | area [mm?] 3.463606 0.785398 0.004418
\ ‘ length [mm)] 50 150 500
bed volumne [mm?] 173.1803 117.8097 2.208932
flow [mm3/min] 800 50 0.3

linear velocity [mm/min] 230.9732 63.66198 67.90611

Figure 2: Column diameters for micro and nanoflow proteomics applications. a) Column diameters used in
published MS-based proteomics setups compared in the scale of 20:1. b) Technical parameters for the columns
exemplified in (A). The 2.1 mm diameter columns are used for 30 seconds gradients whereas the 1 mm columns are
applied in 30-minute gradients. The column length is scaled down to enable a higher flowrate resulting in a somewhat
higher linear velocity for the 2.1 mm column. The nanoflow column condition is simply a down scale of the 1 mm
microflow conditions with nearly the same linear velocity of mobile phase over stationary phase. Adapted from
(Messner et al., 2019) and (Bian et al., 2020).

Most cutting-edge systems for LCMS based proteomics employ nano-flow from 100 to
1000 nl/min and capillaries with 50 to 150 um ID as columns, whereas ‘industrial scale’
and high throughput systems try to make use of microflow with mm sized columns for
increased robustness and higher throughput. Column length in both cases is scaled to
fit the pressure conditions of the system, with the maximum length as possible to achieve

maximum performance (Figure 2).

1.1.1. Particle packed columns

As described above, apart from specialized developments (Bian et al., 2020; Messner
et al., 2019), nanoflow conditions and pm sized capillaries are primarily employed for
cutting-edge LCMS-based proteomics. Like columns for higher flow applications they
can be purchased as particle packed tubes ready for use for similar prices, but in the
case of ultra-high-pressure applications the lifetime of capillary columns tends to be only
in the range of weeks. This is one of the reasons why laboratories with high throughput
needs tend to prepare their own columns to save costs. Descriptions on how to prepare
columns are publicly available
(https://proteomicsresource.washington.edu/docs/protocols05/Packing_Capillary _Colu

mns.pdf) and equipment to do so can be purchased from several vendors.

Packed capillary columns come in two different types, either as packed emitters, which
directly function as ES-emitter or, more similar to regular commercial HPLC columns,
as particle packed tubes with a porous frit and HPLC-ready connection at the end. Both
systems have their drawbacks and benefits. While fritted columns usually have lower
backpressures and therefore increased lifetimes, the porous frit and post-column dead
volume of a downstream connected emitter typically lead to peak broadening compared

to the chromatography to spray design in packed emitters (Gritti & Gilar, 2019), where
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the bead bed ends with the opening of the electrospray (ES) tip (Emmett & Caprioli,
1994, Ishihama et al., 2002; Kennedy & Jorgenson, 1989).

With the aim of highest chromatographic performance, the columns in our laboratory in
the past years were of the packed emitter type, which would be expensive to buy but
which we manufacture with reasonable effort at low costs. While traditional approaches
for the packing of capillary columns are time consuming and have low overall yield
especially for columns with a bead bed of more than 30 cm in 75 um ID capillaries, the
procedure has been overhauled in the last years (Kovalchuk et al., 2019; Shishkova et
al., 2018). | combined these published principles of high pressure packing and high-
density slurry packing into a conceptionally novel approach for multiplexed packing and
increased column production efficiency many-fold compared to previous standards, at
undiminished chromatographic performance. With the new approach a single 50 cm with
75 um ID column can be packed with sub 2 pm particles in under 2 minutes.
Furthermore, with the construction of a packing station this process can be multiplexed

to pack 10 columns in under 2 minutes.

1.1.2. Chip-based stationary phases

An alternative to packed capillaries for reversed phase nano-flow LCMS-systems, the
MPAC column, was recently developed and commercialized by the company
Pharmafluidics from Gent (De Beeck et al., 2018). They completely avoid the
reproducibility issues between capillary columns with spherical particles by performing
the chromatographic separation in a flow path etched into silica. This results in a
micrometer-sized pillar structure, which is made porous and coated with C-18 molecules
for reversed phase conditions (Figure 3).

Packed bed column technology  LC-MS/MS Pillar array column technology

Figure 3: Spherical particles vs. etched pillar structure as stationary phase for HPLC. Electron microscopy pictures
of packed spherical beads and the uniformly etched pillar array structure of the uPAC column are depicted. The peak
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broadening from un-uniform flow paths in the packed bead bed vs. the regularly spaced pillar array is visualized.
From (De Beeck et al., 2018).

Drawbacks of these columns are their higher costs and their reduced flexibility compared
to in-house packed capillaries, which can be manufactured in all sizes and shapes.
Furthermore, the first generation of commercially available columns has a relatively
large dead-volume and a low pressure resistance (350 bar max), making it unsuitable
for short LC gradients and fragile when not used with care. The chromatographic
performance did not match the cutting-edge capillary columns with respect to effective
use of LCMS acquisition time, ionization efficiency and peak capacity, but is appropriate
for standard LCMS-based proteomics. However, the uPAC-column has a large benefit,
which is the reproducibility of retention times of each peptide between runs and columns
and laboratories. The chip structure is identical by virtue of the production process and
therefore less variable as a packed bead bed. Additionally, the pillar structure is less
affected by pressure changes as they occur between LCMS runs and therefore they

have a longer life-time and less variability between runs (Figure 4).

I successfully employed the pPAC column in a large MS-based proteomics study and
optimized a gradient for maximum sampling time and best ionization efficiency. This was
done with a flow rate gradient together with a mobile phase gradient. With this
combination, peptides are brought to an early elution from the column despite the high
column volume while maintaining a high ionization efficiency due to a low flow rate (300
nl/min) during the peptide elution from the column. We demonstrate the superior
performance compared to particle packed columns in terms of cross-run reproducibility
and also the cross-laboratory reproducibility by comparison of peptide retention times

from measurements in our laboratories in Munich and Copenhagen (Figure 5a).

10
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Figure 4: Peptide retention time reproducibility of capillary and pPAC column. The coefficient of variation (CV) of
peptide retention times is showed as a histogram for eight measurements of Hela peptides with a capillary column
packed with 1.9 um particles (Reprosil-Pur AQ, Dr. Maisch) and a 200 cm PPAC column. CVs are several-fold better
for the uPAC column.

Furthermore, we demonstrated the highly accurate chromatography performance by
application of machine learning to predict the peptide retention times of previously not
analyzed peptides and successfully retrieving those in a global targeting experiment
(Figure 5b).
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Figure 5: Peptide retention time reproducibility and prediction of peptide retention times from their amino acid
sequences. a) Hela peptides from different digests were measured on a uPAC column in our laboratories in Munich
and Copenhagen. The retention times of the overlapping identified peptides have a high similarity score with a
Pearson correlation of 0.995. b) Peptides from a holdout set not employed for training of a bidirectional LSTM model
(see below) for peptide retention time prediction from peptide sequence, are displayed with their predicted
retention time from the trained model and the experimentally determined retention time. The Pearson correlation
is 0.990.
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1.1.3. Benefits and drawbacks of nano- and microflow liquid chromatography

Nano- and microflow chromatography both have their benefits and drawbacks for the
use with ES-MS. Microflow is robust due to lower pressure requirements and this is also
reflected in longer lifetimes of columns. On the downside, it is less sensitive because of
larger column diameters, which results in higher material loading requirements. The
higher flow also implies a larger dilution factor and subsequently lower concentration of
the sample at the point of ES, which also lowers the sensitivity. When comparing
different flow and column conditions this must be adjusted for by correcting the flow rate

and loading amount for linear velocity (meaning the column ID).

Nano-flow LCMS has its drawbacks on the robustness and throughput side: Higher flow
rates require high pressures (up to >1000 bar) under which a solvent gradient must be
formed, resulting in material problems like leaks and fast column decay (Richards et al.,
2015; Shishkova et al., 2016). When running on the lower end of nano-flow range (e.g.
sub 100 nl/min), gradients tend to become unstable and suffer in reproducibility between
runs. With the low flow rates allowed by capillary columns, overhead times for LCMS
analyses, namely column equilibration and sample loading onto the column, tend to be
long and therefore short gradient times quickly result in idle times of the MS up to 50%.
Solutions to this problem like the use of two columns with a single chromatographic
system are technically challenging and have rarely been employed routinely (Hosp et
al., 2015). However, the great advantage of nano-flow is increased sensitivity allowing
low sample input amounts which are especially important for PTM enriched samples,
resulting from a high analyte to solvent molecule ratio at the ES and the smaller column
IDs.

As a result of the previous considerations and requirements for chromatography for
LCMS setups, employing the preferred nano-flow setup for higher throughput analyses
is challenging. The ideal system would combine the throughput and reproducibility of a

micro-flow system with the sensitivity of a nano-flow system.

In cooperation with the company Evosep from Odense (Denmark), we established a
new chromatographic system for LCMS application, the Evosep One. This LC is
especially suited to high throughput analyses because it reduces overhead time to a
minimum (several minutes) and therefore enables schedules of up to 300 samples per
day without sacrificing much MS time to overhead. This is done by several innovations:
A disposable precolumn system is employed, where peptides are supplied, pre-loaded
on C-18 material and eluted into a sample loop by a low-pressure system consisting of

four pumps. To avoid forming a gradient under pressure, this is done by the low-pressure
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system when eluting the sample from the C-18 and diluting it with aqueous buffer before
storing the peptides lined up in the sample loop in a preformed gradient. The agqueous
dilution is necessary to ensure that the peptide peaks are stopped and re-sharpened at
the begin of the analytical column. After gradient formation is completed, the sample-
loop is switched in-line with the high-pressure pump where the preformed gradient is
release to the analytical column and the proper LCMS analysis starts (Figure 6).

EvoTip

A/B/C/D mixing cross Y

valve

High-pressure Pump A Pump B Pump C Pump D
pump

Figure 6: Flow-chart of the Evosep One HPLC from the paper ‘A novel LC system embeds analytes in pre-formed
gradients for rapid, ultra-robust proteomics’.

1.2. Mass spectrometry-based proteomics

Mass spectrometers were invented in 1918 and have since been employed in various
scientific and industrial use cases (Dempster, 1918). In general, mass spectrometers
are devices for the detection of ion mass to charge ratios. Their broad application for
biological sciences was initiated by the invention of the soft ionization techniques MALDI
and ES (Fenn et al., 1989; Karas & Hillenkamp, 1988). Especially ES, whose inventor
John Fenn was awarded the Nobel Prize in chemistry in 2002, is of interest for
proteomics analysis because of its effective coupling to liquid flow techniques
(Whitehouse et al., 1985).

To enter the electrodynamic flow path of the MS instrument, molecules must be ionized
and introduced into the instrument’s vacuum system. In ES, liquid eluting from a etched
or pulled capillary or needle forms a Taylor cone that breaks up into charged droplets at
the end of the ES emitter (Taylor, 1964; Zeleny, 1914). This is accomplished by an
electric field in the kV range between the emitter and the MS entrance. By the use of

electrostatic force and electric fields, ions can be focused or stored in near vacuum
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conditions. This is the fundamental physical basis for ion guides, ion traps and mass
analyzers which are combined within modern hybrid mass spectrometers to enable state

of the art proteome measurements.

In simple terms, a hybrid mass spectrometer for proteomics needs a number of coupled
devices typically operated in the following order: A mass filter (normally a quadrupole)
to filter ions for precursor selection, a collision cell for optional fragmentation of
precursors, and a mass analyzer for the detection of the analyte’s mass to charge ratio
(Figure 7a) (e.g. a quadrupole, a time-of-flight detector or an Orbitrap analyzer)(Ruedi
Aebersold & Mann, 2003). All additional parts are implemented for further
improvements, to enhance the number of ions that reach the analyzer (higher
sensitivity), increase the resolution of mass spectra, the accuracy and speed of the

analysis, expand the dynamic range of the MS and find more efficient ways to make use

of the existing ions via new scan modes.
a
lon source | .
—_— I Mass filter l —I-—l Colission cell | — | Mass analyzer
b . .
timsTOF instruments
lon source |
—_— | lon trap I —I-—I Mass filter | — | Colission cell | — | Mass analyzer
c . .
Orbitrap instruments
lon source |
—...l | Mass filter I—-—I lon trap I—l-l Colission cell I—I-I Mass analyzer

Figure 7: Basic components of modern mass spectrometers for proteomics analyses. a) To be used in bottom up
proteomics experiments, instruments must have a mass filter, a collision cell or other ion fragmentation device and
a mass analyzer. By the introduction of ion traps, high performance MS-based proteomics is facilitated because lower
abundant ion species can be accumulated to increase sensitivity and signal to noise ratio. This is the case e.g. in
timsTOF instruments, where the ion trap is located in front of the mass filter and is also used as a device for ion
mobility separation (b) or in Orbitrap instruments, where the ion trap is located downstream of the mass filter, so
that specific ion species can be accumulated (c).

The quadrupole is a device used in virtually all hybrid mass spectrometers. It consists
of four metal rods arranged in parallel with the opposite rods being connected electrically
(Figure 8a). The optimal quadrupole shape would be hyperbolical towards the center, but
most devices have circular rods, which is a well working approximation. When operated
in radio frequency (RF) only mode, the quadrupole functions as an ion transmitter with
a low m/z cutoff by employing a radio frequency between the rod pairs. This can also be

used for ion trapping, by adding electric field lenses at both ends, which creates a
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potential well along the quadrupole rods. When applying a direct current (DC) field
additionally to the RF on the opposing rods, the quadrupole functions as a mass filter,
because only specific m/z ranges have a stable oscillating path through the device
whereas the other ions collide with the rods. The mass filter can be scanned across the
whole m/z range and narrowed to windows below 1 Thompson (Th), at the cost of low
transmission efficiency at narrow isolation windows. Together with an ion detector, the
guadrupole can be used as a mass analyzer by going through the m/z range with a
narrow isolation window while detecting the transmitted ions. These features make the
guadrupole one of the most flexible and widely applicable devices in mass spectrometry
(Dawson, 1986; Douglas, 2009; W. Paul & Raether, 1955; Wolfgang Paul & Steinwedel,
1953). This is exemplified by triple quadrupole devices, where three quadrupoles are
used in a linear arrangements as mass filter, collision cell and mass analyzer (Yost &
Enke, 1978).

In line with the quadrupole, hexa- and octopoles are commonly used in hybrid mass
spectrometers. While lacking the excellent mass filter properties of the quadrupole, the
pseudopotential well formed by the RF field in the devices offers advantages. While the
guadrupolar device forms a narrow potential well, this is broader for the hexa- and
octopolar device. This favors use for ion trapping and transmission, with the hexa- and
octopoles having more volume for ions to fill and the quadrupole being better suited to
focus ion beams (Dawson, 1986; Douglas, 2009).

The ion funnel is another device that is commonly used in hybrid MS instruments for ion
beam focusing. The ion funnel operates at higher pressures (mbar range) and is a
special case of the stacked ring ion guide, which consists of stacked conductor ring
plates with an RF-potential applied to every second of the plates (Guan & Marshall,
1996a). By narrowing down the diameter of the rings towards an end plate and applying
a DC gradient over the plates, ions are focused into an ion beam and accelerated
towards the end plate (Figure 8b). These devices are often placed at instrument
entrances and after ion trapping regions. In those regions, ion beam focusing is needed
for downstream parts of an instrument such as a quadrupole mass filter, where ions not
focused to the center of the quadrupole would be instantly lost (T. Kim et al., 2000;
Shaffer et al., 1998).
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Figure 8: Schematic view of functional mass spectrometer parts. a) A quadrupole consists of four parallel rods,
where the opposing rods are connected to the same RF and DC. By altering their parameters, ions can be transmitted
or specific ions can be isolated. b) lon funnels are mainly used for ion focusing, e.g. after transfer tubes, and consist
of stacked ring plates with a RF frequency and DC gradient over the field applied. The RF facilitates a pseudopotential
well, which pushes the ions to the funnel center and the DC gradient accelerates the ions towards a narrow exit
electrode lens. c) The orbitrap revolutionized the MS-based proteomics field in the early 2000s because of its high
mass resolution. It consists of a center and ring electrodes where the entering ions are stabilized on an oscillating
orbit around the center electrode and the oscillation frequency can be measured and transformed to m/z
information. The transient time in the analyzer defines the mass resolution. d) The tims device is capable of trapping
ions and separating them by their mobility at the same time. This happens by a gas flow through the tims tunnel and
a DC gradient decreasing (for positive ions) in the opposite direction. lons with large collisional cross-section at similar
charge compared to smaller ions are more affected by the gas flow and find an equilibrium at a position further in
the tunnel. By raising the lower end of the tims ramp the ions can be released in their mobility order. e) The TOF
detector consists of two important parts: The accelerator pushes the analyte ions towards detector plate, commonly
an MCP plate. The reflector enhances the resolution and at the same time decreases the instrument dimensions.
Adapted from Gross, 2017.

Like quadrupoles, stacked ring ion guides can be used for ion trapping. The dipolar RF
device creates a pseudopotential well towards the center of the ring channel in which
ions can be held. By adding lenses with higher DC potential than the static potential of
the ring plates at the entrance and exit, a potential well is formed in which ions can be
accumulated. This setup can be used to separate ions by mobility which measures the
ratio of ion charge to collisional cross section of the ion. By employing a steady gas flow
through the stacked ring ion guide and adding a DC gradient over the plates, ions are
lined up by mobility in the device (Figure 8d). This basic principle was discovered by Mel
Park and is used to introduce the ion mobility dimension in trapped ion mobility
spectrometry time of flight (timsTOF) instruments by Bruker (Meier et al., 2015; Silveira
et al., 2014).

Other concepts of ion mobility separation are also used in commercial instruments.

These encompass drift tubes (Tyndall et al., 1926), traveling wave separation (Giles et
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al.,, 2004) or high field asymmetric waveform ion mobility spectrometry (FAIMS)
(Kolakowski & Mester, 2007; Swearingen & Moritz, 2012).

lon fragmentation at specific chemical bonds is a prerequisite for hybrid mass
spectrometers and is typically done in a collision cell by imparting energy in different
ways. The most popular are collision induced fragmentation (CID) (Levsen & Schwarz,
1976; McLafferty et al., 1973) and higher-energy C-trap collisional dissociation (HCD)
(Olsen et al., 2007). These methods primarily yield b and y ion series by breaking
peptide bonds. Other fragmentation methods are especially helpful for the fragmentation
of certain PTM by dissociation of specific chemical bonds or for yielding different ion
series from peptides. Examples are electron transfer dissociation (ETD) (Syka et al.,
2004) and ultra-violet photodissociation (UVPD) (Zubarev et al., 1998).

Common mass analyzers in hybrid instruments for MS-based proteomics are the
Orbitrap (Figure 8c) (Hu et al., 2005) and TOF instruments (Figure 8¢) (Wolff & Stephens,
1953).

With proteomics applications being adopted in areas from biological to clinical research,
a common gquestion is which developments will shape the future of this technology. One
aim is to minimize input material to enable detection of proteomes from low amounts of
biological material like single cells. This is generally done by scaling down sample
preparation workflows and developing LC and MS instrumentation for maximum
sensitivity. This topic towards single cell proteomics has got much attention in the last
years (Ctortecka & Mechtler, 2021; Marx, 2019).

Another possibility to increase the performance of MS-based proteomics is the
expansion of the detectable dynamic range. This is for example done manually and off-
line by prefractionation approaches to specifically cut out certain high abundant species
like K48-peptides in diGly enriched samples (Hansen et al., 2020) or in a hon-specific
way, in a LC step orthogonal to the low pH reversed phase chromatography online with
the MS instrument (Bekker-Jensen et al., 2017; Kulak et al., 2017). The latter approach
results in several fractions which have to be measured separately by LCMS. It obtains
its power by giving the MS more time for peptide sequencing at a certain retention time,
enabling the loading of more input material and simplifying the interpretation of MS2
fragment spectra for data independent identification approaches from co-fragmentation

spectra.

The above fractionation approaches expand the dynamic range of the proteomic
experiment by enabling detection of low abundant peptide species otherwise covered

up by higher abundant, coeluting peptides in a single shot experiment. Untargeted MS-
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based proteomics - unlike affinity-based approaches - is a technique which identifies
proteins in the dynamic range roughly in order of abundance, with a statistically higher
chance of detection and identification for higher abundant species. Therefore, improving
the dynamic range directly enhances the proteomic depth in experiments. The endless
race for the deepest proteomes (e.g. in a simple cell culture digest) is currently
dominated by new software approaches coupled to intelligent scan modes of the MS. In
the end however, the physical limits of MS-based proteomics can only be overcome by

new developments in instrumentation.

A shared principle of different high-end mass spectrometers is the use of a collection
device for ions to enhance the signals that reach the analyzer. The dynamic range of an
MS is mainly determined by the capacity of this ion trap, like the tims device for timsTOF
instruments (Figure 7b) or the C-trap for Orbitrap instruments (Figure 7c). When filled with
ions of different abundances at the same time, there is a ratio threshold of total ions to
an individual ion species at which it cannot be separated from noise, which specifies the
lower detection threshold. By enhancing the total amount of ions in the trap this ratio

threshold is shifted and the detection limit is lowered, resulting in higher dynamic range.

In cooperation with Bruker Daltonics, | worked on prototype parts for the storage of large
ion populations. Devices for ion storage are usually multipolar systems. Examples are
qguadrupolar traps like the C-trap in Thermo Fisher instruments or the formerly used PC-
board cartridges for ion trapping and simultaneous ion mobility separation in the tims
device in Bruker instruments, which consisted of a quadrupolar and an octopolar region.
By generating an oscillating field between the rods of the device in RF-only mode, a
pseudopotential well is created in the center between the rods which can hold ions
(Miller’ & Denton, n.d.; Wolfgang Paul, 1990). Stacked ring ion guide dipolar devices are
a relatively new development that matches the capacity of quadrupolar ion traps (Guan
& Marshall, 1996b). Briefly, these are built quite similar to ion funnels, which are stacked
conductor ring plates with a dynamic electric potential to focus and accelerate ion beams
(Kelly et al., 2010). To be able to trap ions, a frequency is applied between every second
of the stacked electrode plates without having a DC gradient over the rings, which again

creates a pseudopotential well in the middle of the rings.

| compared a traditional quadrupole and different forms of stacked ring ion guide type
multipolar devices to characterize physical parameters of these different parts. Of
interest were the charge capacity, the ion decay times, the exit times under isobaric
conditions and the behavior of those parameters under different pressure conditions,
meaning the gas flow through the system when ions were accumulated. My experiments

show that a novel device has the ability to store more than 100 million ions, can hold
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these ions almost without decay and is able to eject the ions within milliseconds of time
by applying an axial DC field. With this development, it would be possible to rethink the
current construction of timsTOF devices with their parallel accumulation serial
fragmentation (PASEF) scan mode in a single tims device (Meier, Brunner, et al., 2018).
By changing the localization of ion accumulation to a place prior to the current tims
device, and therefore enabling the use of the full length tims for mobility separation, the
capacity of the entire system can be scaled up. This approach is under development
and currently called orthogonal PASEF due to the orthogonal placement of the ion

accumulation region to the tims device in current constructions.

These developments will most likely impact all kinds of proteomics experiments with the
timsTOF instrument in the future. It may become possible to acquire deep proteomes in
short measurement times and without prior fractionation. The impact on body fluid
proteomics might even be higher: For the last decade, only small improvements have
been achieved on the way to deeper proteomes for plasma and therefore efforts have
been concentrated on throughput and reproducibility. With the dynamic range of these
sample types being the main cause for this issue, MS instrumentation specifically
tailored to approach this problem might yield not only a small increase, but rather an
order of magnitude improvement, something which is unprecedented in the field of

plasma proteomics.

1.3. Scan modes for MS-based proteomics

New scan modes for MS-based proteomics have been developed hand-in-hand with the
hardware instrumentation within the last decade. The possibility to do certain modes of
MS1 and MS2 or even MS3 detection for advanced precursor identification arises from
the architecture of instruments and is therefore mostly specific for each one of those.
Two principles form the basis for recent developments: Data dependent acquisition
(DDA) scan modes (Link et al., 1999; Venable et al., 2004) and targeted scan modes
such as selected ion monitoring, multiple ion monitoring or parallel reaction monitoring
(SIM, SRM, PRM) (Price, 1991; Yost & Enke, 1978). DDA starts with MS1 scans, which
are scans of all ions at a timepoint in the chromatographic gradient in an m/z range.
These scans detect intact peptides which are called precursors. Two strategies can be
applied to fragment precursors for detection of b and y ion series (the main backbone
fragments from the N- and C-terminus, respectively) and subsequent peptide
identification: In DDA, after each MS1 scan, the top N most abundant peptides are
chosen for isolation and fragmentation in a serial manner. Exclusion lists or dynamic

exclusions prevent picking a precursor again before a specified number of seconds.
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Typically, only precursors with a charge of at least two are considered for fragmentation,
because they have a higher likelihood of being peptides and of yielding high quality
fragment spectra. In SIM, m/z windows are chosen for isolation and fragmentation of a
chosen precursor with known retention time and fragmentation behavior. Gradients are
normally short, given that only a few peptides are monitored. Specificity and
guantification can suffer as SIM is usually performed on low resolution instruments like
triple quadrupoles. By design targeted proteomics misses out on the discovery
properties of the DDA mode. The SIM concept can be extended to multiple reaction
monitoring (Kondrat et al., 1978) or parallel reaction monitoring (PRM) (Rauniyar, 2015),
where multiple ions are selected for isolation but still fragmented sequentially over the
whole elution time as in SIM. These methods are frequently applied to detect low
abundant small molecules but are also for specific peptide identification. Where the
targeted methods suffer in unbiased detection for discovery of unknown features, the
DDA mode has its drawbacks in data completeness. The top N sampling method is
semi-stochastic and in repeated runs different precursors get selected for fragmentation
and identification, resulting in data with a larger proportion of missing data.

There are multiple approaches to combine these techniques and therefore generate
complete data which also allows the discovery of peptides in an unbiased way. The data
independent acquisition (DIA) strategy (Doerr, 2014), is most common, where MS2
scans are done with broad isolation windows, stepping through the whole range of
precursor m/z. When scanning in this fashion, no precursor stays unfragmented but the
MS2 spectra consist of the ion series from multiple peptides which makes it more
challenging to identify peptides with statistical significance. Only recently has the
community set guidelines for the stringent and confident identification of peptides from
DIA experiments (Chalkley et al., 2019) and software solutions are beginning to enable
the universal application of DIA scan modes (Bernhardt et al., 2014; Demichev et al.,
2020). Recent developments have shown that this scan mode can be applied to many
different types of experiments and also additional dimensions, like ion mobility coupled
to TOF scans for eluting ions to make the identifications more specific (Meier et al.,
2020).

Another approach to overcome the above-mentioned limitations of targeted MS is a
‘global targeting’ strategy which takes the PRM concept to the next level. By measuring
peptide libraries of a sample or generating those with deep learning for retention time
and fragment ion parameters, a multi-dimensional scan map of peptides in the RT, m/z
and MS2 directions can be generated. By targeting a large number of those precursors

in narrow RT and m/z windows, the data completeness of whole proteome
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measurements can be kept high. Discovery experiments are also possible by focusing,
for instance, on thousands of peptides that changed between experimental conditions
(Wichmann et al., 2019).

In sample types with large dynamic range e.g. blood-plasma, a key limitation for DDA
methods is the dynamic range of MS1 scans. When a single ion type fills the ion trap in
a short time, lower abundant peptides cannot be separated from the noise and are not
picked for MS2 identification. DIA scan modes partially address this by collecting ions
from those low abundant regions for fragmentation in an unbiased manner. Alternatively,
this can also be addressed by additional MS1 scans, avoiding the high abundant
precursors. This has been implemented in the BoxCar scan mode, where whole MS1
scans are complemented with MS1 scans that only collect ions from boxed windows
over the m/z range. In this way, the MSL1 filling time can be allocated to highlight

precursors from formerly underrepresented areas (Meier, Geyer, et al., 2018).

An alternative way to solve the missing value problem from semi-stochastic sampling in
DDA is speed. Arguably, if the instrument is fast enough to sequence all or nearly all
multiple charged MS1 features in every run, the data should be complete in this regard,
at least for all precursors that are still detectable in MS1 scans. This principle can be
implemented on instruments with certain hardware, that features rapid detection of ion
m/z like TOF analyzers. The orbitrap mass analyzer which revolutionized MS-based
proteomics with its high-resolution mass spectra in the early 2000s has a speed
drawback, because high resolution can only be obtained from ion transient times in the
tens of milliseconds range. The TOF analyzer scans the entire mass range in every
single pulse, which only lasts about 100 ps, and is therefore suited extremely well for
rapid detection. This is made used of in the PASEF scan mode, where precursors are
eluted from a mobility device, further isolated in a narrow m/z window and fragmented.
Because of the high TOF scanning speed, the limiting factor is the quadrupole switching
time and the timed release of ions from the mobility device (Meier et al., 2015; Meier,
Brunner, et al., 2018).

In summary, the scan mode to choose for an experiment depends on several factors,
the aim of the study, the sample type and the MS instrumentation at hand. One might
argue that DIA is now the most powerful scan mode, delivering proteome coverage as
well as depth. Still, for a long time and even now, the community was suspicious of the
guality of peptide spectrum matches from multiplexed fragmentation which is always the
case in DIA. By now, this is demonstrated to work in well-defined search spaces like

common model organisms and especially human samples. This is one of the reasons
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we still used DDA scan modes for the multi organism study described just below, which

brought proteomics to previously never investigated organisms.

1.4. MS-based proteomics as a tool for multi-organism studies

The analysis of biological samples from different organisms is a topic of interest not only
for evolutionary biologists but also for newer scientific disciplines like evolutionary
medicine or life science in general. Traditionally, organisms’ taxonomic relations have
been determined by phylogenic features and only the revolutionary technique of genome
sequencing has brought comparisons and classification to a molecular level. On the
protein level, human proteins have been the scientific focus, mainly because of their
medical relevance. Apart from this, proteins have often been selected for study because
of their accessibility and in certain areas for their unique functions. The first crystals of
proteins for example have been described for various organisms’ hemoglobin (Giegé,
2013). Comparing different evolutionary solutions to a process performed by proteins
can greatly contribute to the understanding of proteins as molecular machineries
(Sikosek & Chan, 2014).

However, studies comparing the proteome of organisms rather than the genome or
transcriptome had rarely been done. This may be because high performance MS-based
proteomics, the only technique capable of this task, is still young and investigations of
model organisms have been the main focus of the field. If cross organism studies are
done, comparisons are mainly between a limited number of model organisms which can
be cultured and genetically modified in scientific investigations. This is because most
traditional biochemical analyses rely on affinity-based methods like antibodies for
protein identification and interaction studies and these antibodies are predominantly
available for a few model organisms. An alternative to affinity-based methods is genetic
tagging to selectively trace or purify a certain protein in a single organism. Traditionally
this was limited only to organisms easily accessible for genetic engineering, but the
discovery of the CRISPR/Cas gene editing makes this possible for a wider spectrum of
organisms (Jinek et al., 2012). Still, these methods are time consuming and expensive,
especially if a large number of proteins are the aim. MS-based proteomics does not
suffer from those drawbacks. Due to its purely sequence based identification of proteins,
it can be directly applied to any organism for de novo protein analyses. However, de
novo sequencing is challenging and to give statistically solid evidence of proteins, a draft

proteome from genome analyses is needed for reliable bioinformatic identification of
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proteins. With these precondition, MS-based proteomics can be applied to any biological

sample, wherefrom proteins can be extracted.

In our publication, ‘The proteome landscape of the kingdoms of life’ we quantitatively
measure the proteomes of 100 organisms across the tree of life. We apply a
standardized workflow to 19 archaea, 49 bacteria and 32 eukaryote species and achieve
good sequence coverage for the archaea and bacteria in single shot measurements as
well as excellent coverage for the eukaryotes after high-pH prefractionation into 8
samples each. Using publicly available sequence databases (UniProt) (“UniProt: A
Worldwide Hub of Protein Knowledge,” 2019) we identify and quantify thousands of
proteins which were predicted from genetic material but for which there had never been
any experimental proof of existence. We identified more than 340,000 protein groups
from more than 2 million unique peptide sequences, from 1.1 million protein entries in
the UniProt database. From the ~560,000 entries with verified existence in the SwissProt
part of Uniprot, we identified close to 80,000 and additionally give experimental evidence
to more than 1 million entries of the TrEMBL part of the database which mainly consists
of predicted protein sequences from genome sequencing. After subtracting sequences
which were found in previous studies in a literature research from the PRIDE database,
we more than double the number of proteins with experimental evidence with the
identification of more than 800,000 entries.

Proteome comparison is normally done on the protein and peptide level, but this is not
directly possible in the case of cross organism comparisons. In single organism
experiments, like cell culture treatments or clinical cohorts, every protein quantified in
different conditions or cohort arms and split by a categorical parameter can be compared
statistically. As there are no overlapping proteins between organisms this is not

applicable here.

Looking at the proteomes as a whole it is remarkable to note that all proteomes follow a
power law distribution in abundance (after examining this in more detail in our data, it
turns out to be closer to a beta distribution, which is among the family of exponential
distributions). This implies that the biology of all species in this cross section is similar
in terms of proteome organization. Without exception, a hand full of extremely abundant
proteins dominate the total protein mass. The dynamic range of our measurements is
somewhat limited in the single-run experiments, whereas the pre-fractionation used on

eukaryotic samples resulted in deeper proteomes and better isoform coverage.

To comprehensively compare the proteomes of different organisms, one must make use

of links between the proteomes’ proteins to group them into comparable parameters at
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a cross organism level. This is possible on an evolutionary basis by homology
information available from databases like EggNOG (evolutionary genealogy
of genes: Non-supervised Orthologous Groups) (Huerta-Cepas et al.,, 2019). This
information links proteins as gene products by their biological evolutionary ancestry on
different taxonomical levels. For example, proteins from different ophistokonts (including
animal and fungi kingdom) can be defined as a homology cluster specific to the
taxonomical level for a common ancestry. This can reveal structure or functionality and
therefore is a good way to see which specific proteins have importance in which
organisms of taxonomical sub clusters. However, there are also clusters including the
taxonomical root level, which tie together the entire known biological life. One of the
most abundant homological clustered proteins turned out to be the chaperon
GroEL/HSPD1/Hsp60 which seems to have a fundamental role from distant bacteria
species to higher eukaryotes. Our data makes the expression levels of such cross
species related and relevant proteins directly comparable and enables screening for
proteins with important evolutionary conserved functions across different taxonomic

levels.

More database resources are required to make the cross-species data interpretable
beyond the pure protein amino acid sequence information. Sequence predicted
structural features (secondary and domain structures) from the PFAM database are
bridging this gap (El-Gebali et al., 2019). Specific protein subdomains tie together
distinct proteins which are evolutionary conserved for important functional reasons. The
most abundant of those domains captured in our dataset are multiple Elongation factor
Tu domains, but also the Hsp70 as a whole protein and GAPDH C-terminal domain are
amongst the universally expressed and catalogued protein substructures. A common
paradigm in structural biology is that ‘structure defines function’. Therefore, for a large
number of proteins that only have predictive sequence information from genome
sequencing there can still be a suggestion for molecular functions if they are involved in
biological processes annotated in the Gene Ontology Resource (“The Gene Ontology
Resource: 20 Years and Still GOing Strong,” 2019). We focused on the biological
processes and report the organism that do not have extensive information here. This
correlates well with the organisms which have the worst proteome coverage in our
experiments, a fact that we trace back to poor genome annotation. The overall most
abundant biological processes across the tree of life are oxidation-reduction-processes,
translation and protein folding. From more than 13,500 biological process annotations
in the dataset, only a minority has proteins with a function in all organisms measured

here (Figure 9). Some functions are expectedly exclusive to certain taxonomic organism
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subsets, like histone related processes to eukaryotes or photo complex reactions to
photosynthesis employing species. With translation, protein folding and proteolysis
being among the most abundant biological processes executed across the tree of life,
our data supports the maintenance of the proteome itself as one of the most important
features of biological life as we know it. Especially the high abundance and therefore

importance of proteins that help and keep other proteins folded correctly is noteworthy.
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Figure 9: Data completeness of the biological process information for proteins from our 100-organism dataset. The
number of organisms for which a specific biological process is annotated for at least one quantified protein (y-axis)
is sorted by the rank (x-axis)

With the proteomes of 100 organisms and the added layers of annotation data, we have
provided a complex and unprecedented dataset that we hope to be useful for years to
come. Simple take home messages include the large number of highly abundant
proteins with little to no database information pointing to any known function, which
should be of interest to biologists and biotechnologists. These proteins clearly play
important roles within the specific organisms because of the high expression levels we
report, but have mainly only been described as potential proteins from genome
sequence with no expression information at all. With a virtually endless number of those
proteins being present in the known living organisms, our methodology clearly points

out a manageable number of candidates that may be worth looking at in detail.

More generally, we deliver qualitative and quantitative information for many proteins
which have previously only been predicted by sequencing data. Such information might
be valuable for proteins with homologs in different organisms. Researchers working on
uncommon proteins can look up those or the respective homologs in our dataset and
find organisms where closely related proteins are expressed in higher levels, suggesting
important biological functions, or find organisms which are evolutionary close but lack
the specific protein or protein class in our dataset, to study how these get along without

the protein.
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These are just examples for the applicability of our dataset as a unique resource for
future research. To have all information readily pooled and available we decided to store
all organism, protein, peptide and annotation information in a graph database. The
different layers of information are established as nodes with every organism, protein,
peptide or GO annotation term being a single node of the super class. These nodes are
then connected by relationships e.g. proteins found in an organism, peptides identified
of a protein or GO terms annotated to a protein. This builds up an immense data
structure with all the information and analysis illustrated above in a single database with

8 million datapoints and 53 million relationships between them, all ready to be queried.

The network graph database is publicly available in our program, which uses the neo4j
graph platform that enables the extraction of information with the industry standard
programming language Cypher. For easy exploration of the dataset we exemplified
some functional analyses in interactive applications on our webpage

proteomesoflife.com.

1.5. Organism case study - bear proteomics

The above-described advantages of MS-based proteomics for the analysis of various
organisms are still very rarely made use of. During the time of my PhD | worked with
several organisms for standalone studies of which two should be mentioned here.

In an approach to analyze the functions of a ribosomal associated protein | measured
the total proteome of Arabidopsis wild-type and POI depleted samples. Arabidopsis is a
widely used model organism which we had included in our multiorganism study as well
and the proteome has previously been studied extensively (Mergner et al., 2020). Our
data helped to identify a new regulator of protein turnover which acts co-translationally

by detection of N-degrons and enhancing protein lifetime by N-terminal acetylation.

On a broader scope, a scientific field that could directly benefit from the universal
applicability of MS-based proteomics is evolutionary medicine. Among others, this
scientific approach tries to gain biological understanding through the observation of
evolutionary processes. In more detail, if an organism has adapted to a specific niche
and therefore solved a biological problem on a molecular level, it might be possible to
first understand the underlying biological principles on a molecular mechanistical level
and second make use of this biological knowledge to target the same mechanisms for

medical treatments.

This is exemplified by our so far unpublished study of active and hibernating brown

bears. Unlike other animals such as rodents, hibernating brown bears have a relatively
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high body temperature (~30°C) and properly hibernate — without frequent active phases
(Hellgren, 1998). There is medical interest in their unique body conditions for multiple
reasons, one being the absence of venous thrombosis and their subsequent effects.
This suggests that coagulation is blocked or coagulation stimuli decreased in hibernating
bears and these changes and the reasons for them should be detectable on a functional
protein level (Welinder et al., 2016). With venous thrombosis being a frequent medical
condition, this would be valuable information for identification of new medical targets

and understanding of the disease.

Affinity based methods are not available for bear samples because there are no
commercial antibodies against bear proteins specifically, and production of a range of
antibodies from immunization techniques e.g. in rabbits would exceed the resources of
most single scientific studies. This makes MS-based proteomics the only method for the
comparative investigation of these samples and it also holds the promise of new

discoveries because of its untargeted way of detecting proteins.

In our comparative analyses of plasma and thrombocytes from active and hibernating
brown bears we find several metabolic marker proteins and suggest a range of
described and previously undescribed proteins to play a role in suppression of venous
thrombosis. Overall, we observe drastic changes in both examined specimen.

1.6. Clinical proteomics

The case of proteomics in evolutionary medical studies in hibernating brown bears
described above already indicates the enormous potential of MS-based proteomics for
medical research. The bear example deals with extreme body conditions (month long
fasting and rest time) which results in the drastic changes manifested in plasma and
thrombocyte proteins. When conducting studies with human individuals, effect sizes
tend to be lower. Compared to cell culture experiments with gene knock out conditions
or strong perturbations and even model organisms with genetically homogeneous
individuals, studies with patients prove to be more challenging. Nearly any patient cohort
comes with a high ‘genetic noise’, resulting in much higher naturally occurring variation
in protein levels compared to the above described ‘laboratory conditions’. Additionally,
recruiting patients for studies is always difficult and often happens over longer time
periods, which can entail changes in sample taking and processing. This increases the
variation on samples especially compared to a single researcher handling organisms or

samples in a controlled environment and short timeframe.
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This may seem like a disadvantage for discovery-based proteomics studies, but | argue
that one can look at it another way. In fact, any routine clinical laboratory faces the same
difficulties but is not able to adjust for it. By genetic and biological variation, parameters
used as biomarkers can and do vary between patients. Today those parameters are
normally measured in single readout technique assays like ELISA, or enzymatic activity,
which are commonly automated in current commercial laboratories. When a
measurement at a single time point is taken from a patient, the assessment of the
measured value relative to the population-based reference can be misleading and atime
course of measurements to find the individual specific thresholds would be more
appropriate. This would come with regular invasive blood taking procedure which is
elaborate and uncomfortable for most patients, and is therefore rarely done. Proteomics
offers a far more universal readout than a single parameter and the proteomic signature
can be used to tailor the reference values to the individual patient. Additionally,
proteomics only requires a minimal amount of sample (1ul of plasma is sufficient for
state-of-the-art techniques) and the sample taking can therefore be done by minimal
invasive procedures like finger pricks.

In general, clinical decision making is often based on laboratory testing, and quantitative
analyses of molecules in body fluids constitute the large majority. In current industrial
practice these tests are mainly enzymatic or affinity based and performed as single
analyses on automatic test handling platforms (Roche COBAS etc.). MS-based methods
are currently mainly employed for the quantification of small molecules in the clinical
laboratory or in discovery phase projects to find new biomarkers. Proteomics techniques
can be useful here for multiple reasons. One of the main ones is that MS-based
proteomics experiments are designed to detect proteins in an untargeted manner and

are therefore suited to be employed in discovery phase experiments.

This has been done especially for plasma in various studies of our laboratory in the last
years (Geyer, Wewer Albrechtsen, et al., 2016; Niu et al., 2019; Wewer Albrechtsen et
al., 2018), but can also be applied to other body fluids like urine (Virreira Winter et al.,
2020), saliva (Grassl et al., 2016), stool (Zhang et al., 2018) or tears (Nattinen et al.,
2019). Tissue proteomics is also widely used in model organisms (Geiger et al., 2013),
patient samples for tissue atlases (Aizarani et al., 2019; Angelidis et al., 2019; Doll et
al., 2017; Dyring-Andersen et al., 2020) or characterization of tumor expression patterns
(Doll et al., 2018). In the case of tissues, the tissue slides commonly used in pathological
applications like staining and immunohistological chemistry are especially interesting.
These tissue slides can be assessed by pathology experts under the microscope and

specific areas cut out macro- or microscopically at the cellular level for downstream

28



1. Introduction

proteomics analysis. This field is still young and new revolutionary developments in
specific automated analysis in a cell type resolved manner are to be expected in the

future.

Proteomics offers multiple advantages compared to other, targeted approaches of
guantitative protein detection methods. Quality control of study parameters can be done
simultaneously because of the untargeted nature of many MS-based proteomics
workflows from intrinsic readouts. We exemplified the use of quality markers in plasma
in our publication ‘Plasma Proteome Profiling to detect and avoid sample-related biases
in biomarker studies’. The implications from this study lead in two directions: When used
as a fast and high throughput tool, proteomics can be applied in addition to the other
measurements to complete the dataset in an unbiased manner while also uncovering
any quality issues within the cohort. This helps to better understand the problems and
results of newly developed analytic tools and to evaluate if study results from a single
readout technique can be trusted. Additionally, proteomics is a valuable tool in the
classification of patients into expression-based population clusters and therefore can be
employed as a tool for stratifying cohorts for outcome prediction from single readout
biomarker tests. These use cases also apply intrinsically to proteomics studies in
general.

In a cooperative effort with a research group aiming to use Fourier-transform infrared
spectroscopy of liquid biopsies for diagnostic purposes, we exemplify the use of MS-
based proteomics for quantitative sample assessment in the manuscript ‘Molecular
origin of blood-based infrared fingerprints’. The aim of our collaborators was to detect
disease related changes or patterns within the infrared molecular fingerprints of serum
samples and a cohort of lung cancer patients and controls were recruited. For this
groups, specific signatures could be detected employing their method and with the aim
to identify the cause for the changes in the fingerprints we set out to do MS-based
proteomics analysis of the samples. Serum contains diverse molecular groups, but the
most likely ones effecting the infrared spectra were the serum proteins. However, the
actual cause for changes in the fingerprint spectra detained with infrared laser was not
clear at all, and multiple theories from concentration changes, small molecules
interacting with parts of the proteins or changes in secondary structure of proteins were
discussed. With the MS-based proteomics information about high and similar sample
guality, biases from study arm differences could be excluded and the quantitative
information from our measurements helped to reassemble fingerprint spectra from
molecular origin. Additionally, we found the acute phase proteins (SAAl, SAA2 and

CRP) to be changed between cases and controls which in combination with the changed
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albumin concentrations in the lung cancer part of the cohort explain the changes in

fingerprint spectra.

Looking toward future personalized precision medicine, the progress of MS-based
proteomics will not be in clinical studies alone. Population wide studies are necessary
to build the foundations for a future application of proteomics as a routine medical
analysis tool. For instance, we envision frequent Plasma Proteome Profiling (PPP) of
patients (Geyer, Kulak, et al., 2016). With a knowledge base from millions of patients
and samples as a background, this could revolutionize personalized medicine by the
application of untargeted, non-invasive tests for the improvement of public health and

helping to change lifestyle choices.

1.7. Clinical study design for proteomics

Clinical studies have to be designed carefully for MS-based proteomics biomarker
discovery. A range of parameters has to be considered before any sample is collected.
Cohorts must be well defined and one must ensure that no bias is introduced at the
cohort level. This includes case and control collection at different sites or locations, by
different personnel, with alternating material or on different times of the day, which all
can introduce statistical noise if variation it is not evenly distributed across cases and
control cohorts. Effect sizes must be considered when planning a cohort. The basic
underlying principle is that the cohort size must be adapted to detect a statistically
significant difference in the measured parameters at a certain technical and biological
variance. This requires preliminary data collection before a study can be planned. The
technical variance of the whole workflow from sample collection to data acquisition
should be known for the desired sample type and it can be determined by technical
workflow replicates quite easily. The accuracy of protein quantification by MS-based
proteomics is protein dependent, and — for a given work-flow — can entail coefficients of
variation of more than 100% for some. The second step is to determine the biological
variance in an example population cohort. With this information and an estimate of the
effect size, meaning the average expected change of a certain protein between cohort

and control group, it is possible to tailor a study to the biological and technical needs.

Most other considerations are based on infrastructure at the study site. Proteomics
analyses greatly benefit from additional information like anthropometric data, clinical
laboratory results or patient questionnaires. To collect such information in a systematic
way is not necessarily part of the daily schedule of a clinician, so new workflows,

infrastructure and often personnel must be involved.
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These challenges are not unique to proteomics studies, but certain features have more
impact on proteomics than on ELISA based studies. In proteomics, quality issues
derived from sample collection bias are detectable based on the proteomics
background. Cohort differences can be discovered by metadata correlation to known
markers in the analyzed sample type, which helps to prevent misinterpretation of the

outcomes.

In our manuscript ‘Cohort Profile:MUNICH-PretCI study Preterm and Term Clinical
Study (MUNICH-PreTCIl), we describe a cohort of term and preterm born infants, from
which dried-blood-spot (DBS) and plasma samples have been collected for a proteomic
study. The cohort was collected in the Frauenklinik of the Ludwig Maximilian University
Munich (LMU) over multiple phases including the report of clinical metadata and
guestionnaires. This information is laid out in the manuscript and builds a basis for the
interpretation of the subsequent proteomics study. With correlation analyses between
the meta- and the proteomic data, additional insights can be gained and

overinterpretation avoided.

The importance of clinical metadata and study design is also worth noting for our
publication ‘Proteome profiling in cerebrospinal fluid reveals novel biomarkers of
Alzheimer’s disease’. Here, we employ our previously proposed ‘rectangular study’
principle for biomarker discovery (Geyer et al., 2017) (Figure 10: The triangular and
rectangular study approach for biomarker discovery. (A) In the triangular study approach, a
small subset of patients is screened in depth for potential biomarkers. In follow-up studies the
number of participants is enlarged whereas the number of screened parameters decreased. (B)
The rectangular study approach is characterized by two (or more) large study cohorts. The
overlapping candidates from both study arms are high confidence potential biomarkers,
whereas the study specific hits can be ignored. From (Geyer et al., 2017). In the ‘triangular
study design’, that had been the standard before, a small number of samples is analyzed
in depth for biomarkers and only a few candidates are validated in follow up studies with
larger cohorts. This yielded few or no new biomarkers because promising targets from
the discovery phase first stage of the study nearly always turned out to be cohort
specific. Furthermore, protein patterns are more predictive than a few individual
proteins. With the rectangular approach this is less likely to happen, as two or more
large cohorts are screened in a discovery phase and the overlapping significant hits are

subjected to follow up work.

Our three different cohorts of Alzheimer’s disease patients and corresponding control

samples separate to different degrees between cases and controls on the basis of the
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CSF proteome. By making use of the clinical data we are able to show that despite the
reduced power in separation of case and control samples in one of the cohorts
(presumably due to less stringent classification), the biological context and resulting
stratification of CSF proteins is identical to the two additional cohorts.

Rectangular strategy
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Phases Numbers of Numbers of Phases Numbers of Numbers of
samples proteins. samples proteins
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Figure 10: The triangular and rectangular study approach for biomarker discovery. (A) In the triangular study
approach, a small subset of patients is screened in depth for potential biomarkers. In follow-up studies the number
of participants is enlarged whereas the number of screened parameters decreased. (B) The rectangular study
approach is characterized by two (or more) large study cohorts. The overlapping candidates from both study arms
are high confidence potential biomarkers, whereas the study specific hits can be ignored. From (Geyer et al., 2017).
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2. Aims of the thesis

In my PhD thesis | had two main goals: The development of tools for use in MS-based
proteomics and the general application of the method to biological and clinical studies.
These two aims were combined in some projects, as can be seen in the publication “The
proteome landscape of the kingdoms of life’, where the investigation of a new, highly
reproducible column technology led to the measurement of a peptide library for the
prediction of physical peptide probabilities. This rather technical project was transformed
entirely, when it became clear that the underlying dataset proved to be highly valuable
in itself when extended to a wide range of species. It contributes to the scientific
community by giving proof of existence for thousands of previously merely predicted
proteins and enabling quantitative comparisons between organisms on a functional
level. Along the same lines, my aim to reproduce published technical data and increase
chromatographic performance by the introduction of high-pressure packing of capillary
columns resulted in the development of a new concept for multiplexed column
production. This will save hours of hands-on time during the preparation of in-house
packed capillary columns for use with state of the art HPLC-MS applications. These
cutting edge HPLC methods might be supplemented in the future by streamlined
systems like the Evosep One described in the publication ‘A novel LC system embeds

analytes in pre-formed gradients for rapid, ultra-robust proteomics’.

The advantages of higher throughput and reproducibility will be important especially for
clinical applications where hundreds and even thousands of samples have to be
measured with constant quality. | worked on two examples for such studies during my
PhD: The publication ‘Proteome profiling in cerebrospinal fluid reveals novel biomarkers
of Alzheimer’s disease’ is a paradigm of body fluid proteomics for the discovery of new
biomarkers and the ‘Cohort Profile: MUNICH Preterm and Term Clinical Study
(MUNICH-PreTCIl) illustrates the planning needed to recruit a cohort for a successful
study. During my PhD | learned that successful clinical proteomics studies mainly
depend on accurate planning of the cohort and problems on the cohort side are more
serious than problems on the MS-based proteomics side. This is made clear in the
publication ‘Plasma Proteome Profiling to detect and avoid sample-related biases in
biomarker studies’. Here possible sample related biases in plasma proteomics studies
are dissected and their origins investigated, especially with regards to sample taking

and processing.
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3.1. Article 1: The proteome landscape of the kingdoms of life

Authors: Johannes B. Miiller'?, Philipp E. Geyer®27, Ana R. Colago?, Peter V. Treit!, Maximilian
T. Strauss'?, Mario Oroshi', Sophia Doll'?, Sebastian Virreira Winter'2, Jakob M. Bader?, Niklas

Kohler4, Fabian Theis*®, Alberto Santos3¢ & Matthias Mann?3

!Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.
20OmicEra Diagnostics GmbH, Planegg, Germany. 3NNF Center for Protein Research, Faculty of Health Sciences,
University of Copenhagen, Copenhagen, Denmark. *Helmholtz Zentrum Minchen—-German Research Center for
Environmental Health, Institute of Computational Biology, Neuherberg, Munich, Germany. STechnical University of
Munich, Department of Mathematics, Garching, Germany. 6Li-Ka Shing Big Data Institute, University of Oxford, Oxford,
UK. "These authors contributed equally: Johannes B. Miiller, Philipp E. Geyer.

In our paper ‘The proteome landscape of the kingdoms of life’, we apply MS-based
proteomics as a tool for cross organism studies. By quantitatively measuring the
proteomes of 100 organisms (29 archaea, 49 bacteria and 32 eukaryotes) across the
tree of life, we present an unprecedented dataset which enables the study of differences

between organisms’ functional machineries.

The set of organisms was chosen with three criteria in mind: The genome of all
organisms had to be sequenced and, ideally, protein sequences for predicted genes
should be available in online databases. Organisms had to be available from a collection
or similar source and the price per organism had to be sufficiently low. We employed a
universally applicable proteomics workflow from sample preparation to data analysis for

all 100 organisms.

We made use of a chip-based column for HPLC separation of peptides prior to MS and
demonstrated their very high reproducibility. With high-quality data for a set of more than
two million unique peptides in hand, we employed machine learning to predict the
retention time of peptides. The bidirectional Long Short Term Memory (LSTM) neural
network model that our cooperation partners developed is able to predict peptide
retention times from peptide sequence alone in a highly accurate manner. We devised
an experiment to test the accuracy of the predictions as follows. By programming the
MS instrument to only sequence peptides if they elute in a narrow window at the
predicted retention times of peptides in previously unexamined organisms, we show that
the predicted RTs are accurate enough to identify almost the same number of proteins

as in an untargeted experiment.
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Comparing the organisms’ proteomes is only possible after linking proteins between
organisms from annotation databases. We make use of biological resources such as
GO, PFAM and EggNOG annotations for protein functions, protein domains and protein
homologies predicted from sequence to enable the comparison of organisms based on
our proteomics data. On a functional level we demonstrate that the most common
biological processes are equally important in all organisms and that the most abundant

protein domains and homology clusters are distributed similarly.

This study is only a beginning of the topic of cross-organism proteomics studies. With
100 organisms widely spread across the tree of life we provide a deep but sparse view.
In the future, tissue or cell type resolved studies of multicellular organisms and
perturbations for single cellular organisms would provide a more detailed view. We hope
that our publication encourages more laboratories to explore this field. Such initiatives
will make use of the potential of MS-based proteomics to overcome the limitation of

studying only model organisms.
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Proteins carry out the vast majority of functions in all biological domains, but for
technological reasons their large-scale investigation haslagged behind the study of
genomes. Since the first essentially complete eukaryotic proteome was reported’,
advances in mass-spectrometry-based proteomics? have enabled increasingly
comprehensive identification and quantification of the human proteome®, However,
there have been few comparisons across species™, in stark contrast with genomics
initiatives’. Here we use an advanced proteomics workflow—inwhich the peptide
separation step is performed by a microstructured and extremely reproducible
chromatographic system—for the in-depth study of 100 taxonomically diverse
organisms. With two million peptide and 340,000 stringent protein identifications
obtained in astandardized manner, we double the number of proteins with solid
experimental evidence known to the scientificcommunity. The dataalso provide a
large-scale case study for sequence-based machine learning, as we demonstrate by
experimentally confirming the predicted properties of peptidesfrom Bacteroides
uniformis. Our results offer acomparative view of the functional organization of
organisms across the entire evolutionaryrange. A remarkably high fraction of the
total proteome mass in all kingdoms is dedicated to protein homeostasis and folding,
highlighting the biological challenge of maintaining proteinstructurein allbranches
oflife. Likewise, a universally high fractionisinvolved insupplying energyresources,
although these pathways range from photosynthesis throughiron sulfur metabolism

to carbohydrate metabolism. Generally, however, proteins and proteomes are
remarkably diverse between organisms, and they canreadily be explored and
functionally compared at www.proteomesoflife.org.

Tocollecta diverse set of representative organisms across the tree of
life, we considered the availability of assembled genome sequences
andthe accessibility of cultured or tissue material, and included com-
monmodel organisms for comparison. Thisresultedin19archaea, 49
bacteriaand 32 eukaryotes—atotal of 100 differentspecies (Fig.1a,b).
Wealso added 14 viruses (Supplementary Table1).

To obtain the proteomesof theseextremely different biomaterials, we
tested anumber of extraction protocolsand foundthatthein-StageTip
(iST) protocolwas most universally applicable and allowed automated
andhighlyreproducible sample preparation. We incorporatedthelatest
advancesinto our workflow for high-resolution bottom-up proteomics,
andimplemented arecently developed chip-based method" (Fig.1c-e).
Cs-covered beads are replaced by a uniformly ordered and statically
fixed micrometre-sized pillar structure® (Fig. 1d), leading to 2.5-fold
improvements in coefficients of variation for peptide retentiontimes
and high interlaboratory reproducibility (Extended Data Figs. 1, 2a).
Forall prokaryotes we performed single-runmass spectrometry (MS)

analyses, whereas we used a loss-less prefractionator® for the more
complex eukaryotic samples.

We reasoned that our chip-based chromatographic method, com-
bined with the very large data set of more than two million unique
peptides, should bewell suited to deep learning algorithms, which
haverecentlybeen showntobeapplicable to MS-based proteomics™™
(Extended Data Fig. 3). We developeda long short-term memory (LSTM)
deeplearningmodel with aninterpretable attentionlayer to precisely
predict chromatographic retention times, achieving a Pearson cor-
relation of 0.990 (Extended Data Figs. 2b, 4). To test the model on a
completely unknown proteome, we instructed the mass spectrom-
eter to sequence peptides from B. uniformis, Bacillus megaterium or
Enterobacter aerogenes only if they eluted in a narrow band around
the retention times predicted by deep learning. This resulted in only
slightly diminished proteome depths (atleast 88% on the protein level),
showing that these peptide properties were successfullymodelledin
silico (Fig.2).

Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany. 20 micEra Diagnostics GmbH, Planegg, Germany. *NNF Center for Protein
Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark. *Helmholtz Zentrum Miinchen-German Research Center for Environmental Health, Institute of
Cormputational Biology, Neuherberg, Munich, Germany. *Technical University of Munich, Department of Mathermatics, Garching, Germany. Li-Ka Shing Big Data Institute, University of Oxford,
Oxford, UK. "These authors contributed equally: Johannes B. Miiller, Philipp E. Geyer. Be-mail: mmann@biochem.mpg.de
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Fig.1|Collection of organism samples across the tree of life, and
integration of the proteomic workflow. a, All organisms used herein were
ordered and ranked on the basis of National Center for Biotechnology
Information (NCBI; https://www.ncbi.nlm.nih.gov) taxonomy. Pie chartsrefer
to the numbers of protein groups (proteins distinguishable by their identified
peptides) and to database proteinentries found here. b, ¢, The acquired
samples were subjected to protein extractionand digestioninto peptides for
sample preparation. d, Peptides were separated using asilica-chip-based

Across the 100 organisms, we identified 349,164 proteins that were
distinguishable by their identified peptides (Supplementary Table 2).
These protein groups covered 1,136,558 entries, 93% of which were
from TrEMBL—the section of the UniProt database (https://www.
uniprot.org) that contains protein sequences predicted from
genomes' (Fig. 1and Extended Data Fig. 5). Because we have sta-
tistically significant evidence for the existence and correctness of
our MS-derived peptide sequences, our data greatly increase the
number of experimentally verified proteins, especially in bacteria
and archaea. Contrary to our expectations, even well-studied model
organismsstill contributed many previously unknown proteins. The
current Swiss-Prot database (version 2019_03, reviewed section of
UniProt; see Methods) encompasses 559,634 experimentally verified
proteins fromall species. After taking into account proteins that have
been described previously in the PRIDE/ProteomeXchange reposi-
tory (https://www.ebi.ac.uk/pride/archive/), our additional 803,686
proteins more than double the number of proteins with experimental
evidence.
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micropillar array column (UPAC) withetched pillar structures thatare coated
with C,s. UHPLC, ultra-high performance liquid chromatography. The
magnificationshows ascanningelectron microscopy image of the pillar
structures (adapted with permission from PharmaFluidics). e, Peptides were
ionized by electrospray (ES) and analysed in a high-resolution mass
spectrometer. f, Numbers ofidentified proteinsacross the three
superkingdoms.

To check the depth of proteome coverage, we inspected identifica-
tions for model organisms. With more than 5,000 identified protein
groups in the yeast Saccharomyces cerevisiae, 9,000 in the zebrafish
Danio rerio and 11,000 in the cotton plant Gossypium hirsutum, we
obtained an even higher depth in comparison to previous large-scale
efforts that focused onindividual organisms. In prokaryotes we identi-
fied about half of all predicted genes at the protein level, representing
alarge fraction of the total proteome expressed in asingle condition.
However, this is less than the coverage obtained in several dedicated
studies that used fractionation in these organisms and investigated
different conditions. Eukaryotes generally have larger genomes and
we identified correspondingly higher numbers of proteins (Fig. 1a). For
instance, inasingle humancell line, we identified 9,500 protein groups
in our standardized workflow—a large proportion of the expressed
proteome®—whereas 14 cell lines yielded 12,005 protein groups (Sup-
plementary Table 4). Several species had very low proteome coverages.
As the MS data were of similar quality in most of these cases (Supple-
mentary Table 5), but the identification rates were low, we attribute
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Fig.2|Applicationofadeeplearning model to predict peptideretention
times for liquid chromatography with tandem massspectrometry
(LC-MS/MS) measurements. a, The data used asinputs for retention time
predictions are:left, our experimentaldata (fromFig.1a), yielding retention
time informationon 2millionsequence-unique peptidesfrom 100 organisms;
andright, alistof query peptides with unknown retention times derived
froma proteindatabase.b, Bidirectional LSTM model with attention layer:

(i), amino-acidsequence input(x,); (ii), vectorization of amino-acid information
for processing(yielding e,); (iii), generation of bidirectional LSTM layers (h,);

the low proteome coverage to poor genome annotation or proteome
prediction, which our data could help to improve through proteo-
genomics approaches.

Incontrasttogenomicsand transcriptomics, proteomics dataallow
thedirect estimation of the end product of gene expression’®. We used
label-free quantification in MaxQuant to estimate fractional protein
intensities across multiple species”. Next, we asked how the proteins
aredistributed across theabundance range of the different organisms,
and calculated the number of proteins that contribute to 90% of the
total protein amount. The average was 1,54 6 proteins in eukar yotes,
306 inbacteriaand 262 inarchaea (Fig. 3aand Extended DataFigs. 6,7).
We used protein homology to enable the quantitative comparison
of protein levels between the different organisms. Homology infer-
ence is a challenging bioinformatics problem, especially in poorly
annotated organisms?°. To perform the comparisonacross the stud-
ied species, we used high-quality homology prediction from Evolu-
tionary Genealogy of Genes: Non-Supervised Orthologous Groups
(EggNOG 5.0)*—a database of orthologous groups and functional
annotations. We connected our quantitatively determined proteins
and corresponding peptides withannotation and structural informa-
tiondata from various sources”* 2 ina graph database® yielding an
explorable network structure with more than 8 million nodes (from
proteins, peptides, gene ontology terms,and soon) andmorethan 53.8
million relationships betweenthem (from homologies, associations,
andsoon) (Fig.3b). Thegraph can beeasily queried for anyrelationship
betweenallofthesenodes,asvisualized for MS-identified homologues
oftwo species (Fig.3b).Here an abundantbutuncharacterized protein
from soybean (Glycine max) is linked to its counterpartin wine (Vitis
vinifera), allowing directcomparisonof MSidentification, quantifica-
tionand functionalannotations.Similar queries can be performed for
entire MS-characterized pathways, organelles or cell compartments.
Co-varying pathways or gene ontology terms can also be explored,
as well as their relationships to uncharacterized proteins (see www.
proteomesoflife.org).

For instance, in soybean, the 11,208 quantified proteins covered
more than five orders of magnitude (Fig. 3c)and had 1,763 annotated

Selection for
identification by MSMMS

Validation on DDA versus global targeting

Bacteroides uniformis

Bacilius megaterium

Enterobacter aerogenes

Peptides identified

(iv),attention-based reduction to fixed-length peptide-feature vector (h,);
(v), prediction of retention time (y). ¢, Principle of the global targeting
approach displayed for a single peptide: the instrumentis set toselect the
peptide m/2peakfor MS/MSidentificationifitis observed inanarrow
retention time window predicted by deeplearning.d, Application of the ‘blind
global targeting procedure’toall peptidesof three previously unanalysed
organismsresulted in the successful detection of predicted peptidesin the
organismsamples. DDA, data-dependentacquisition.

geneontology terms.Applying a one-dimensional enrichment analysis
to the annotated proteins® resulted in 734 statistically significantly
enriched terms (P < 0.05) (Fig. 3d). Proteins linked to oxidation and
reduction processes were the most abundant, reflecting the dominant
roles of redox chemistry as afoundation for biochemical reactions
such as glycolytic and carbohydrate metabolic processes (among the
nextmost abundant categories). Apart from ‘translation process’, the
most abundantgene ontologyterm ofabiological process was ‘protein
folding’, with an entire 3% of the protein mass. Altogether, functions
dedicated to the life cycle of the proteome (translation, elongation,
folding and proteolysis)made up aremarkable 10% of proteome mass
inliving organisms.

Conversely, certain classes of proteins were predominant only
in specific branches of life (Extended Data Fig. 8). As expected,
photosynthesis-related proteins were presentonlyin photoautotrophic
organisms suchas plants, algae, protozoa or cyanobacteria (13 out of
the100 organisms) (Fig. 4 and Extended DataFig.9). Likewise, numer-
ous functional associations can only be found within Bilateria or even
Amniota. These mainly concern proteins associated with differen-
tiationand tissue formation, higher intracellular spatial organization
and well-described butsubtaxonomy-specific signalling cascades. As
expected, protein phosphorylation is predominantly but not exclu-
sively present in eukaryotes. The bacteriaand archaeaboth encompass
organisms using this process (for instance in phosphorelay signalling),
yet the proportion of the proteome mass involved in it is an order of
magnitude lower in these organisms thanin eukaryotes.

Muchof proteomeregulationisaccomplished by post-translational
modifications, whichare typically investigated using specific enrich-
ment protocols followed by MS analysis. However, even our nonen-
riched workflow in combination with the pFind tool” yielded a very
large number of peptides with post-translational modifications for
which the numbers of modified peptides were proportional to the
size of the identified proteome (Extended Data Fig. 10). For instance,
we found 29,426 serine phosphorylation sites, almost exclusively in
eukaryotes, and 2,862 phosphotyrosine sites were largely restricted
to ophistokonts (Supplementary Table 3).
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Fig.3 | Organism-resolved integration of proteome datainto aglobal
analysis. a, Cumulative protein intensities (ranked by abundance; x axis) and
their contribution to total protein mass (y axis) across all organisms (n =100
organisms). b, Exemplified structure from the data model of the graph
database, illustrating the connection between two homologous proteins of
G. max and V. vinifera, and related annotations. ¢, All quantified proteins
from G. max are displayed, plotting their intensities against their rank in the
dynamic range. All proteins for which the functions are associated with

Overall, 38.4% of the identified proteins did not have any functional
annotation for the biological processes, and interestingly this was
true even for22.9% of the 100 most highly abundant proteins of each
species at the biological-process level, and for 10% when considering
protein functional domains (Extended Data Fig. 7 and Supplemen-
tary Table 6). Thus, our data point to a very large number of highly

4 | Nature | www.nature.com

‘protein quality control for misfolded or incomplete synthesized proteins’
are highlighted. d, Significantly enriched functions (grey circles, P< 0.05;
red circles, P<0.01) within the proteome of G. max (with seven specific
examples) and their distribution across the dynamic range (sample sizes in
parentheses; one-sided Mann-Whitney U-test to the mean functional
expression level). Error bars represent minimum to maximum values, and
boxes show 10-90% percentiles.

expressed proteins without any functional annotation or sequence
homology to proteins with known gene ontology terms. Exploration
ofthis part of the ‘dark proteome’would be attractive: these proteins
may indicate essential but unique featuresin the evolutionary develop-
mentof these organisms that may be of biological or biotechnological
interest.

40



3. Publications

g e

W rsdation-redustion process § 2
— Trarchtion 5 3
mmm Proen ol g 5
— Gheolyts process B I
horybtion @
Trarshtional elngation E ﬁ
Carbohydrate metabolic process kK B3
— Poeolsis 2 7
— o trarsport B
W Potosyrthesis ) €
=la

Gim

R, ponvegious
M misaius C.

Fig.4|Global view of the expressionlevels of functional groupsacrossthe
100 organisms. The main diagramshows summed intensities for functional
terms (grey lines), with the ten most abundant termsinall organisms
colour-codedaccordingto the key inthe top left. Theinsetinthe top right
shows the most abundant gene ontology (GO) terms for the archaea
Methanosarcinabarkeri (blue lines), together with the medianabundance
ofall10 0organismsfor thedisplayed terms (greenlines).

Advancesin sequencing technologyare now delivering the genome
sequencesof anexponentially increasingnumber of organisms, andwe
here made a first step towards a parallel scale-up of the characteriza-
tion of proteomes. Sampling across the taxonom yof life, we created a
large set of proteomes withhigh coverage oftheirexpressed proteins.
Label-free quantification values allow us toinfer common and special-
ized biological functions and to compare themto close and distant
relatives from all taxonomic levels. The data can be interactively
explored at www.proteomesoflife.org.

Limitations of this study include the fact that we measured only
selected cell types, tissues and biological states, and that the depth of
proteome coverageisnotyet comprehensive. Likewise, we have hardly
toucheduponthe post-translationalmodification of proteinsandtheir
evolutionary diversity . Ongoingimprovementsin MS-based proteom-
ics—including more-refined abundance estimates?’, as well as entire
streamlined workflows as described here—will substantially increase
throughput inthe future’. Given the cost effectiveness of proteomic
measurements (marginal costs of less than $1,000 per species ifits
genome is available) and considering the wealth ofnovel data gener-
ated, wepropose acommunity efforttoexplore many more organisms
indifferent functional states. Integration with genomic, metabolomic
and other data, together withincorporation of machine learningmeth-
ads for species-specificlibraries, would expand the systems-biological
perspective beyond model organisms to the entire tree oflife.
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Methods

No statistical methods were used to predetermine samplesize. The
experiments were not randomized and the investigators were not
blinded toallocation during experiments and outcome assessment.

Sample preparation

Organisms were obtained as stated in Supplementary Table 1. Cell lines
were implicitly authenticated by MS and tested for mycoplasma con-
tamination. The LLC-PK1 cell line was contaminated and mycoplasma
contamination was harvested for analysis.

We carriedoutsample preparation accordingto thein-StageTip pro-
tocol® withan automated set-up onan Agilent Bravo liquid-handling
platformas described". Inbrief, samples wereincubated in PreOmics
lysis buffer (catalogue number P.O. 00001, PreOmics)for reduction of
disulfide bridges, cysteine alkylation and protein denaturationat95°C
for 10min.Rootand sprout parts of Arabidopsis thaliana, whole Dros-
ophila melanogaster and leaves of Porphyra umbilicalis were ground
inliquid nitrogen with amortarand pestle beforehand. Samples were
sonicated using a Bioruptor Plus from Diagenode (15 cycles, each of
305s),andthe protein concentration was measured usingatryptophan
assay. In total, 200 pg of protein from each organism were further
processed on the Agilent Bravo liquid-handling system by adding
trypsin and LysC (at a 1:100 ratio of enzyme to sample protein, both
inmicrograms), mixing and incubatingat 37 °Cfor 4 h.

We purified the peptides in consecutive steps according to the
PreOmicsiST protocol (www.preomics.com). After elution from the
solid-phase extraction material, the peptides were completely dried
usingaSpeedVaccentrifugeat 60 °C (Eppendorf, Concentrator Plus).
Peptides were suspended in buffer A* (2% acetonitrile (v/v), 0.1% trif-
luoroacetic acid (v/v))and sonicated (Branson Ultrasonics, Ultrasonic
Cleaner Model 2510). Eukaryotes generally have larger numbers of
genes than bacteria and archaea, resulting in a larger number of pro-
teins and consequently of peptides. To reduce the complexityin the
MS measurements, we separated eukaryotic peptide mixtures into
eightfractions using the high-pH reversed-phase ‘spider fractionator’
as described®.

UHPLC and mass spectrometry

We analysed the samples by applying LC-MS instrumentation, com-
prisingan EASY-nLC 1200 ultrahigh-pressure system (Thermo Fisher
Scientific) coupledtoa QExactive HFX Orbitrap instrument®™ (Thermo
Fisher Scientific) withanano-electrosprayionsource (ThermoFisher
Scientific).

For each analysis, S00 ng of purified peptides were separated on
2200 cm PPAC C,; microchip nano-LC column (PharmaFluidics).
Peptides were loaded in buffer A* To overcome the void volume of
10 pl, we applied a concentration gradient from 5% buffer B (0.1%
formicacid (v/v),80%acetonitrile (v/v))to 10%buffer B coupled with
a flow gradient from 750 nl min™ to 300 nl min™ for the first 15 min.
Subsequently peptides were eluted with a linear gradient from 10%
to30%bufferBin125minataconstant flowrate of 300nimin™. This
was followed by a stepwise increase of buffer B to 60% in S min and
10 95% buffer Bin5min. Afterwards weapplieda$ min wash with 95%
buffer B, followed by aSmindecreaseto 1%buffer Banda20 min wash.
We keptthe column temperature constant at 50 °C by usinganoven
from Phoenix S&T (catalogue number PST-BPH-15). To avoid interfer-
ence between the electrospray voltage and the pPAC chip column,
we grounded the post-column connection, which was connected
bya20cmlong,20pm inner diameter fused silica post-column line
to aNew Objective Pico-Tip Emitter. This setup is further detailed
in Extended Data Fig. 1b. The electrospray voltage was applied by
connecting the mass spectrometer source output to the metal con-
nection between the post-column sample linewithan in-house-made
clamp connection.

HPLC parameters were monitored inreal time using SprayQC soft-
ware®. MS data were acquired with a Topl5 data-dependent MS/MS
method. Target values for the full-scan MS spectra were 3 x10° charges
in the m/zrange 300-1,650, witha maximum injection time of 20 ms
and a resolution of 60,000 at m/z200. Fragmentation of precursor
ions was performed by higher-energy C-trap dissociation (HCD) with
anormalized collision energy of 27 eV. MS/MS scans were performed
ataresolutionof'15,000 at m/z 200 with atarget value of 1x10°and a
maximum injection time of 28 ms. Dynamic exclusion wassetto30s
to avoid repeated sequencing of identical peptides.

Data analysis

MS raw files were analysed using MaxQuant software, version 1.6.1.13
(ref. 32), and peptide lists were searched against their species-level
UniProt FASTA databases. A contaminant database generated by the
Andromeda search engine™ was configured with cysteine carbami-
domethylation as a fixed modification and amino-terminal acetyla-
tion and methionine oxidation as variable modifications. We set the
falsediscoveryrate (FDR)to 0.01for protein and peptide levels, witha
minimum length of seven amino acids for peptides. The FDR was deter -
mined by searching areverse database. Enzyme specificity was setas
carboxy-terminal to arginineand lysine as expected, using trypsinand
LysC as proteases. A maximum of two missed cleavages was allowed.
Peptide identification was performed in Andromeda with an initial
precursor mass deviation of upto 7 ppmand a fragment mass deviation
of 20 ppm. All proteins and peptides matchingthereversed database
werefiltered out. All bioinformatics analyses were performed using
Perseus® as well as standard analysis in Python version 3.6.4.

Machinelearning modelto predictretention times

Topredictthe retentiontimes of peptides by machinelearning, weiso-
lated all detected peptide sequences, including modified peptides. For
solvent-induced microshifts betweenruns, we corrected the detected
retention times per peptide by the median shift of all peptides from
onerunto the median peptide retention time. This resulted in a total
0f 5,168,800 peptide sequences corresponding to 2,196,869 unique
peptide sequences with a median retention time value for retention
time prediction.

Our neural network architecture model takes araw peptide sequence
asinput.Each amino acid was encoded into a 26-dimensional vector
representation for processing using aone-hot encodingscheme, result-
inginan Lx26featurevector fora peptide withlength L. This vector was
connected to a two-layer bidirectional recurrent network with LSTM
unitswith 500 hidden nodeseach, which extract context-based features
foreachindividual amino acid. Thisamino-acid-based feature embed-
ding was reduced to aglobal 128-dimensional peptide-feature vector by
anattention layer, which predicts the contribution of each individual
amino-acid feature vector to the regressiontask. This peptide-feature
vector was the inputtoalogistic regression layer, which regresses the
expected retention time for the peptide sequence. The combination
of recurrent layers with the attention layer allowed the model archi-
tectureto process peptide sequences witharbitrary lengths, butatthe
same time allow interpretability. The model was end-to-end trained
on 2,125,113 peptides and validated on 54,490 holdout peptides. To
validatethe retention time prediction in vitro, we used the trained
model to predict the peptide retention timesofall tryptic peptides from
B. uniformis, which were not included in the training set. We set the
mass spectrometer to sequence onlyifthe peptide eluted ina window
of 1.4 saroundthe predicted retention time. This ‘global targeting’ was
done using MaxQuant.life software (version 0.15)%.

Graph database and cloud data-analysis notebook

To allow exploration of the MS experimental results, we developed a
graph database (Neo4j: http://neo4j.com/, version 3.5.8, community
edition) thatcollects all of the experimental dataas wellashomology and

42



3. Publications

functionalannotationsfromdifferent publicly available resources™” 2,
Theimplemented data model contains 11 different types of node and 14
types of link amongthe nodes; the dataamount to 7,410,594 nodes and
35,517979 relationships (5.02 GB). To populate the graph, flat files from
sourcedatabaseswere downloaded and parsedto generatetab-delimited
files comprising nodesandrelationships,and standardized using selected
terminologiesand ontologies. Therelationships collected inthe database
describeontology structures (Directed Acyclic Graphrelationships)and
homology (orthology or paralogy)or functional associations (biological
processes, functional regions, and so on). A version of the database is
accessible athttp://www.proteomesoflife.org.

The website gives access to interactive analyses implemented in
Python (version 3.6), and uses Cypher as the querylanguage (https://
neo4j.com/developer/cypher-query-language/) (see alsoref. ).

Dataintegration and comparison

We compared datain online proteomics repositories (PRIDE (https://
www.ebi.ac.uk/pride/)and ProteomeXchange (httpy/www.proteomex-
change.org)) withour datafrom 100 organisms,and downloaded either
the provided proteintablesor the rawfiles (SupplementaryTable 6). We
analysedtheraw files with the same MaxQuantversion and sequencefiles
as usedinour study.Ifidentifiersother than UniProtidentifierswere used,
we applied the UniProt databaseto find the corresponding entries and
todeterminethose proteins for which there was previous MS evidence.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

The MS-based proteomics data have been deposited in the ProteomeX-
change Consortium viathe PRIDE partner repository and areavailable
viaProteomeXchange with identifier PXD014877 and PXD019483.

Code availability

Custom computer codeisavailable athttps://github.com/MannLabs/
proteomesoflife.
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By bringing different principles for column packing together, | developed the new
packing station for capillary columns presented in the manuscript ‘A new high-pressure
packing system enables rapid multiplexed packing of capillary columns’. Previous
publications reported that columns can be packed with pressures up to 2000 bar and
that this increases the performance of the chromatography. Packing with dense bead
slurries has also been linked to increased chromatographic performance and to rapid
column packing. By combining both principles, | speeded up the packing process of

capillary columns many-fold.

Despite alternative systems like commercial columns combined with high flow LC or
chip-based columns, the vast majority of LCMS-based proteomics applications is
performed with capillary columns. Those can be purchased in different forms, as packed
emitters, ready to be used for ES (lon opticks) or fritted columns for use with different
types of ES emitters (PepSep). These options are relatively expensive and therefore
laboratories with high throughput traditionally pack their own capillaries. Empty pulled
emitters can be purchased or produced from fused silica with a laser puller to form an
ES emitter tip ready to be packed with particles all the way into the end of a column. To
pack sub 5 pum particles into the capillaries from 50 to 150 um ID, gas pressure bombs
are most commonly used, but this process is slow and limited to pressures in the range

of 100 bar or 300 bar for most systems.

Our new packing station overcomes these limitations by enabling packing of high-
density bead slurry into the capillaries under pressures up to 3000 bar. With this system
a large number of beads can enter the column at the same time and the flow rate during
packing is kept high. By the introduction of multiplexed packing of up to ten columns at

the same time we increase productivity even more.
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We find similar performance metrics for columns produced increasing packing pressure,
so that the new packing station is now in routine use in the column production process

of our group.
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Abstract

Reversed-phase high performance liquid
chromatography (HPLC) is the most commonly applied
peptide separation technique in mass spectrometry
(MS)-based proteomics. Particle-packed capillary
columns are predominantly used in nano-flow HPLC
systems. Despite being the broadly applied standard
for many years capillary columns are still expensive
and suffer from short lifetimes, particularly in
combination with ultra-high-pressure chromatography
systems. For this reason, and to achieve maximum
performance, many laboratories produce their own in-
house packed columns. This typically requires a
considerable amount of time and trained personnel.
Here, we present a new packing system for capillary
columns enabling rapid, multiplexed column
production with pressures reaching up to 3000 bar.
Requiring only a conventional gas pressure supply and
methanol as driving fluid, our system replaces the
traditional setup of helium pressured packing bombs.
By using 10x multiplexing, we have reduced the
production time to just under 2 minutes for several 50
cm columns with 1.9 pm particle size, speeding up the
process of column production 40 to 800 times. We
compare capillary columns with various inner
diameters (ID) and length packed under different
pressure conditions with our newly designed, broadly

accessible high-pressure packing station.

One sentence summary: A newly constructed parallel

high-pressure  packing system enables the rapid

multiplexed production of capillary columns.
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Introduction

State-of-the-art mass spectrometry (MS)-based proteomic
pipelines typically consist of a sample preparation workflow
to digest proteins and harvest pure peptides, a liquid
chromatography (LC) system for peptide separation, a
mass spectrometer and a sophisticated bioinformatics
pipeline for raw data interpretation and subsequent
statistical analysis (1,2). The LC system plays a central role
by separating the complex mixture of tens of thousands of
peptides in a time-resolved manner according to their
biochemical properties, making them ultimately
manageable for the MS system over the course of a
gradient (3,4). The most widely applied technique for high-
performance applications is reversed-phase separation,
originally introduced in the 1970s (5). In essence,
chromatographic systems are made of programmable
pumps with the ability to form a gradient of a mixture of
different agents. In the case of reversed-phase LC, the
stationary phase is nonpolar, separating analytes by
hydrophobicity over the course of a gradient of increasing
nonpolar mobile phase. The LC system is coupled to the
mass spectrometer by electrospray (ES) ionization via an
emitter (6). Glass or steel needles are commonly connected
to the column. Particle packed capillaries for
chromatography can also be used for ES without being
coupled to an additional emitter (7-9). These basic
attributes are shared by most LC-MS systems and
differences are mainly defined by operational flow. Nano-
flow LC operates at flow rates of several hundred nano-
liters per minute and is the standard in proteomics due to

the high sensitivity obtainable.

High flow rates in the pl to ml range, applied to columns with
large inner diameters, are typically used in high-throughput
or industrial-scale analysis as well as analytical MS
application areas. Although these micro-flow systems limit

sensitivity, recent work has demonstrated robust and
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reproducible performance (10,11). Reproducibility and
stability of those systems are high, but drawbacks are
lowered sensitivity and a need for high sample amounts.
Compared to developments in sample preparation, MS
instrumentation, scan modes and software, the LC
apparatus has been largely unchanged in cutting edge MS-
based proteomics. While identifications in proteomics
experiments have doubled in single-shot experiments this
can mainly be traced to improvement on the MS
instrumentation and software (12—17). Current trends in LC
developments aim rather towards systems for higher
throughput and increasing robustness required for clinical
applications (18), whereas the race for better separation in
single-shot high performance runs with increasingly higher
pump pressures has been comparatively abandoned.
Consequently, a typically used setup for maximum
sensitivity and performance for most experiments still
consists of columns around 75 pm ID with a length of 20 to
50 cm, packed with sub 2 um particles. Although, better
performance could be reached by longer columns or
smaller particles, both conditions would result in higher
operational pressures which tend to make the LC systems
unstable (4,19). For example, very high pressures can lead
to leaks in the LC flow paths, resulting in poor
reproducibility and subsequently a loss of measurement

time.

Commercially available capillary columns in the
aforementioned dimensions are expensive, especially
considering how frequently they must be replaced.
Therefore, many high-throughput laboratories produce
packed capillaries in-house. Empty glass capillaries, ready
to be packed and used, can either be purchased or
produced from cheap polyimide coated capillaries using a
laser puller. Typically, a gas pressure system is deployed
to pack such columns with particles in the low um range
and instructions on the manufacturing process can be
found

online with open access
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(https://proteomicsresource.washington.edu/docs/protocol

s05/Packing Capillary Columns. pdf). However, this

process is inherently slow and interesting methods have
recently been established with the aim of speeding up the
packing process with high-pressure (20) or dense bead-

slurry, as in the FlashPack method (21).

Combining these principles, we here present a high-
pressure packing system for capillary columns using a high-
concentration bead slurry that has previously been
described as beneficial for column performance (22). These
high slurry concentrations and packing pressures of 1000 -
3000 bar allow us to achieve packing times for 50 cm
columns in the minute range with our system, compared to
hours for traditional procedures. Deploying a manifold
system and a pump capable of high flow rates further
multiplexes packing to up to 10 columns, making column
production 40 to 800 times more time efficient compared to
previous systems. We observe consistently good column
performance for packing pressures at over 1000 bar with
no adverse effects on the column backpressure and
lifetime, while packing times continued to decrease at
higher pressures. We provide a detailed blueprint of the
system so it can readily be set up in interested laboratories
(Suppl. Table 1).

Experimental Procedures

Preparation of fused silica

Fused silica from Polymicro® (TSP075365 for 75 um ID,
TSP100365 for 100 um ID or TSP150365 for 150 um D)
was cut to 140 cm. Polyimide coating was removed by a
Bunsen burner and polishing with an ethanol-soaked tissue
in the middle of the cut capillary at a width of 2 cm. An
electro spray emitter tip was pulled with a laser puller
(Sutter P2000) at the polished part of the capillary resulting
in two empty capillary columns ready to be packed.
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Sample preparation: Protein digestion and in-StageTip

purification

HeLa cells were cultured in high glucose DMEM with 10%
fetal bovine serum and 1% penicillin/streptomycin (all from
Life Technologies, Inc.). Cells were counted using a
countess cell counter (Invitrogen), and aliquots of 1x10¢
cells were washed twice with PBS (Life Technologies, Inc.),
snhap-frozen and stored at -80°C. Sample preparation was
carried out with the PreOmics iST kit (www.preomics.de).
We used one Hela pellet with 1 million cells per cartridge,
determinate the peptide concentration after peptide
cleanup via NanoDrop and adjusted the peptide

concentration to 0.2 mg/ml.

Ultra-high-pressure liquid chromatography and mass

spectrometry

Samples were measured using LC-MS instrumentation
consisting of an EASY-nLC 1200 ultra-high-pressure
system (Thermo Fisher Scientific), coupled to an Orbitrap
Exploris 480 instrument (Thermo Fisher Scientific) using a
nano-electrospray ion source (Thermo Fisher Scientific).
Purified peptides were separated on high-pressure packed
columns as described in the results section. For each LC-
MS/MS analysis with 75 um ID columns, 500 ng peptides
were used. For 100 um ID columns, 888 ng peptides were
used and for 150 um ID columns 2000 ng peptides were

used to adjust for the higher column volume.

Peptides were loaded in buffer A* (2% acetonitrile (viv),
0.1% trifluoroacetic acid (v/v)) and eluted with a linear 105
min gradient of 5-30% of buffer B (0.1% formic acid, 80%
(viv) acetonitrile), followed by a 10 min increase to 95% of
buffer B, followed by a 5 min wash of 95% buffer B. For the
75 um ID columns flow rate was 300 nl/min, 535 nl/min for
100 um ID columns and 1200 nl/min for 150 um 1D columns
to adjust for the linear flow velocity. Column temperature

was kept at 60°C by an in-house-developed oven
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containing a Peltier element, and parameters were
monitored in real time by the SprayQC software. MS data
was acquired with a Top15 data-dependent MS/MS scan
method. MS1 AGC Target was set to 300% in the 300-1650
m/z range with a maximum injection time of 25 ms and a
resolution of 60,000 at m/z 200. Fragmentation of precursor
ions was performed by higher-energy C-trap dissociation
(HCD) with a normalized collision energy of 30 eV. MS/MS
scans were performed at a resolution of 15,000 at m/z 200
with an AGC Target of 100% and a maximum injection time
of 28 ms. Dynamic exclusion was set to 30 s to avoid
repeated sequencing of identical peptides. Each column
was equilibrated with two 120 min HelLa runs before the

representative run for column cross-comparison.

Data analysis

MS raw files were analyzed by MaxQuant software, version
1.6.11.0, and peptide lists were searched against the
human Uniprot FASTA database. A contaminant database
generated by the Andromeda search engine was
configured with cysteine carbamidomethylation as a fixed
modification and N-terminal acetylation and methionine
oxidation as variable modifications. We set the false
discovery rate (FDR) to 0.01 for protein and peptide levels
with a minimum length of 7 amino acids for peptides and
the FDR was determined by searching a reverse database.
Enzyme specificity was set as C-terminal to arginine and
lysine as expected using trypsin and LysC as proteases. A
maximum of two missed cleavages were allowed. Peptide
identification was performed with an initial precursor mass
deviation up to 7 ppm and a fragment mass deviation of 20
ppm. All proteins and peptides matching to the reversed

database were filtered out.

49



3. Publications

Bioinformatics analysis

Bioinformatics analyses were performed in Python (version
3.6.4.) using Numpy (1.19.2), Pandas (1.1.4), Matplotlib
(3.3.2), Seaborn (0.11.0) and Scipy (1.5.2) packages.

Experimental design and statistical rationale

The overall experimental design was focused on making
different capillary columns for proteomics experiments as
comparable as possible. To achieve this, statistical analysis
was done from triplicate experiments for the packing time
and pressure performance experiments. Experimental
conditions for column cross-comparisons were chosen to
eliminate outer influences, including measurements on the

similar LC and MS system and equilibration procedures.

Results and discussion

A high-pressure packing chamber for high density

bead-slurries

A central challenge of nano-flow chromatography in
proteomics laboratories is the constant demand for new
capillary columns. Due to their costs, commercial columns
cannot be treated as a disposable item. However, in our
hands, we frequently observe highest performance only for
a short lifespan for ultra-high-performance applications.
Therefore, to reach the needed quantity and cost
requirements, we and many other laboratories produce
their own capillary columns. However, the throughput of
production is limited, especially for columns with small inner
diameter and extended length such as the 50 cm 75 um
inner diameter columns used in most applications in our
laboratories. We produce pulled or fritted capillaries and
pack them with solid phase material, typically sub2 pm C18
beads. A skilled person can pull hundreds of empty

columns within a day and fritted columns are also easy to
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produce. However, the packing process is an inherently
low-throughput and error-prone process, which makes
high-performance columns prized items in mass
spectrometry laboratories. Particularly achieving longer
columns length is — in our experience — a precondition for

ultra-high-performance.

We hypothesized that high-throughput packing of capillary
columns could be achieved by highly concentrated bead-
slurries (21) in combination with very high-pressure packing
(>1000 bar) (20). However, increased packing pressure
and bead-slurry concentration can lead to column blocking,
slowing down and eventually halting the packing
procedure. Chloroform as a bead-solvent was reported as
an approach to avoid this issue, because it can solvate
higher bead concentrations. However, in combination with
our bead-particles, we observed poor chromatographic
performance during proteomic experiments. Instead, we
combined elevated packing pressure with the FlashPack
system (21), which prohibited bead aggregation at the

column entrance via stirring.

To test our concept, we constructed a custom—made
chamber for high-pressure packing, where the pressure
derives from a conventional HPLC system (EASY-LC 1000
in our case). The device consists of a central chamber,
containing the bead slurry and magnetic stirring bar, and
has three openings. A large-bore access allows filling the
chamber with the bead-slurry, a micro-bore fitting holds the
capillary entrance into the chamber and a nano-viper
connection is used as an inlet for the pressure from the
HPLC system (Suppl. Fig. 1). The prototype packing
chamber enabled us to fill single capillaries within minutes
using the HPLC high-pressure pumps (950 bar). However,
this system was not suited for high-throughput column
production and the low pump volume of the HPLC system
resulted in a non-continuous packing as the pump had to
be refilled several times until a column was filled with

beads.
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Packing chamber

PEEK screw cap
74

Chamber filled with
bead slurry

PEEK ferrule

HP tight driving

fluid inlet Packing medium

Methanol

e

HP tight chamber access
for cleaning

Driving gas inlet
up to 6 bar air pressure
the inlet pressure regulates the pump driving force

Pressure release
valve

Manometer

\ Pump

pressure ratio: 1:660
flow capacity 140 ml/min
max pressure 4000 bar/ 58000 psi

High pressure connections
commercial available and certificated up to 4000 bar

Stirring system
Magnets mounted on electric motors
in parallel connection

Power supply

Fig. 1: High-pressure packing station. Scheme of the high-pressure packing station with detailed description of the crucial parts. The high-pressure
pump is powered by a driving gas inlet and increases the pressure of a packing medium thatis provided in alarge volume flask by 660-fold. The compressed
packing medium is channeled to ten packing chambers, placed on top of a magnetic stirring rack. A manometer is installed to monitor the system pressure
as well as a pressure release valve to facilitate time efficient system depressurization. The inset depicts a packing chamber in detail, including high-
pressure fittings, stiring bar and capillary column.
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Encouraged by aspects of our newly devised packing
system, we set out to further streamline column production.
We replaced the small volume HPLC pump with a
Maximator HD-pump (Experimental Methods). This high-
flow continuous system converts driving gas from a
standard laboratory gas supply line at a pressure ratio of
1:660 to a fluid outlet with a maximal pressure rating of
4000 bar and maximal flow capacity of 140 ml/min (Fig 1).
To use the FlashPack principle we used methanol as the
packing medium, which settles C18 beads at the chamber
bottom. The high flow capacity allowed us to implement
multiple pump outlets for multiplex packing of up to ten
columns with our station. We redesigned the original
packing chamber to fit high-pressure connections (Suppl.
Fig. 2). For optimal stirring, we further created a rack
system with magnets mounted on electric motors via 3D
printed components to fit directly underneath the packing
stations (Detailed in Experimental Methods and Suppl. Fig.
3). Moreover, we connected a high-pressure range
manometer to monitor packing pressure and added a
pressure relief valve for efficient and controlled
depressurization of the system, a notoriously time-
consuming process. Even though the system is typically
running at 1500 bar in our laboratory, the relief of pressure
takes only 60 seconds, without flow-back from the running
beads from the capillary. Additionally, the system is
secured from capacity exceeding driving gas pressure by a
control valve, which prevents the pump to be exposed to
higher input than 6 bar. As with conventional packing
systems, the weakest connection is the sealing of the
capillary to the high-pressure chamber. We used a
standard polyether-ether-ketone (PEEK) ferrule employed
in HPLC applications in combination with a newly designed,
reinforced PEEK screw cap (Suppl. Fig. 2D) to pin the
column under very high pressure. Nevertheless, if the
system pressure exceeds the durability of the material, the
column is ejected. Due to the low compression capabilities

of methanol, this is dangerous if one has body parts directly

Page | 7

Multiplexed high-pressure column packing

above the fitting when a rupture occurs and this must be
prevented. Compared to gas, which can compress much
more than liquid, no explosion risk should arise from our
new packing station. Nevertheless, our recommendation is

to use this device only within a secured area.

Ultra-fast column packing

The time required to fill a capillary column with beads
depends on two variables, the bead concentration of the
packing slurry and the flow rate through the capillary. Empty
capillaries with pulled electrospray emitter have high flow
rates in the yl/min range even for conventional gas-based
packing bombs with lower pressure (<100 bar). However,
as the bead bed grows, the flow rate through the column
decreases drastically. Hence, the high-density bead slurry
of FlashPack enables short packing times especially for
shorter columns (21). We anticipated that combining this
principle with the potentially high flow rates of our extremely
high-pressure system would significantly reduce packing

times.

To quantify the production throughput of our system, we
consecutively packed 50 cm capillaries with 75 um ID at
different pressures (1000-2500 bar) and measured the time
required. With a freshly filled bead reservoir, packing at the
lowest tested pressure took on average 4.7 min. Increasing
pressure to 2000 bar results in packing times just over a
minute. Even higher pressure did not result in faster
packing. Overall our system decreased the time for making
a single column 10- to 100-fold compared to previous
packing procedures (20,21) (Fig. 2A-B). Of note, the total
production throughput is even higher due to multiplex-
packing and the option to quickly exchange capillaries and
bead slurries. This results in a 40-800 times faster column
production (Fig. 2C). Once filled with bead-slurry and
mounted on the high-pressure system, the packing
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Fig. 2: Comparison of packing times. A Packing times of single columns as described in previous efforts and for different packing pressures (data
collected in triplicates, displayed with standard deviation) with a detailed view of the tested pressure conditions (B). C Production time for 10 columns
considering multiplexing (2x multiplexing for Kovalchuk ef a/. and 10x for the system presented here) (20,21). D Times of a packing cycle of 10x 5
columns, taking a total of 100 minutes with filling of the reservoir and changing of capillaries between the actual packing steps.

chambers can be used to pack several columns
consecutively. This merely requires depressurizing the
system via the pressure relief valve and exchange the filled
columns with empty capillaries. Consecutive packing of
several columns from the same reservoir will decrease the
packing speed due to the removal of beads from the
reservoir. To fully restore packing speed, the bead chamber
has to be opened and refilled, which takes about 10 min for
all ten chambers together. Typically, we refilled the
reservoir after five capillary exchanges. The average turn-
around cycle for producing ten columns is thus 20 minutes,
allowing the production of hundreds of columns in a working
day (Fig. 2D). An additional advantage of the high-
throughput system is that it allows us to discard non-
properly packed columns, which occur in approximately
10% of cases.

The high-pressure system faces the same two main
challenges as other packing stations, which are particle
clogging within the capillary and bead aggregation at the
column entrance. Particle clogging can only be avoided by
clean working conditions. This means dust free storage and
clean cutting of fused silica and the use of filtered fluids and

dust free particles for bead slurry preparation. Bead
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aggregation from dense slurry can be circumvented by
optimized stirring conditions according to the FlashPack

principle (21).

Influence of packing pressure on column performance

To evaluate the effect of packing pressure on column
performance on realistic samples, we analyzed three of our
laboratory standard HelLa digests on each column. Across
all packing conditions, we observed no significant variation
in the number of identified peptides and protein groups (Fig.
3A/B). Moreover, the median peak widths of identified
peptides were comparable for all conditions (Fig. 3C).
Correlation between the non-corrected retention times of
peptides analyzed using columns produced at varying
pressures was remarkably high (Pearson correlation
coefficients > 0.996) and not significantly altered from

replicates packed with similar pressure conditions (Fig. 3D).
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Fig. 3: Comparison of capillary columns packed at different pressures. A, Numbers of identified peptides of triplicate measurements of 500 ng HelLa
digests on columns filled at the indicated packing pressures. Peptides were separated on 50 cm, 75 ym ID columns packed with 1.9 ym Reprosil AQ
Beads (Dr. Maisch) with a 2-hour gradient. B, Numbers of identified protein groups of the same conditions as in (A). Error bars indicate the standard
deviation from triplicate measurements. C, Median peak widths of identified peptides. D, Distribution of Pearson correlation coefficients calculated on
peptide retention times between columns packed at the same pressure and columns packed at different pressures (p-value of unpaired t-test for
difference: 0.6). E, Visualization of the tailing factor calculation. F, Tailing factors for all identified peptides from runs with 75 um |D columns and different
packing pressures. G, Correlation of peptide retention times across packing conditions. The density of peptides is color-coded. The histograms show the
peak width distribution of four representative runs.

Another factor often used to characterize column analysis run of few analytes, but the median typically

performance is the tailing factor which can be calculated as
depicted in figure 3E (23). Usually, the peak width at 5%

centered around the optimum of 1. The median of the tailing

factor was below 1.0 for the lower and shifts above 1.0 for

peak height is used for peak width calculation but in
proteomics experiments where tens of thousands of peaks
are investigated, the base-to-base peak width is typically
calculated, although full width at half maximum (FWHM) is
also often reported. In general, the distribution of peak

shapes was wider than what would be expected from an

Column legth comparison

higher packing pressures up to a median of 1.2 (Fig 3F). In
the literature tailing factors in the range between 1 — 1.2 are
often described (24). The shift towards this range with the
higher packing pressures could result from denser
compressed bead bed. As described above the general

performance was not altered for the proteomics metrics,
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Fig. 4: Length and inner diameter comparison. All columns were packed with 1000 bar packing pressure. A, Peak width distribution from HelLa runs
with different column length with the respective number of peptide and protein identifications (B), peptide intensity distribution (log10) (C) and tailing factor
distribution (D). E, Peak width distribution from HeLa runs with different column IDs with the respective number of peptide and protein identifications (F),
peptide intensity distribution (log10) (G) and tailing factor distribution (H).
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which leads us to the conclusion that the minor change in
tailing factors with higher packing pressures is not changing
the LC-MS performance. This manifests in an only slightly
altered distribution of peak widths between representative
experiments of columns packed at different pressures (Fig.
3G). From the correlation of peptide retention times, it is
visible that for all representative comparisons, the peptides
elute in a narrow and reproducible time window that is not
influenced by the applied packing pressure. This retention
time stability is accompanied by similar separation
properties of the different columns, which can be visualized
directly by the retention length of analyzed molecules.
Figure 3G shows bulk analysis of all identified peptides with
nearly overlapping retention length distributions whereas
the minor differences do not constitute a significant trend
towards a better performance for lower or higher packing
pressures of capillary columns. Based on these results it
seems that the packing pressure has no or only minimal
effect on the column performance.

LC-MS performance of columns with different length

and inner diameter

Length and inner diameter of capillary columns allow their
adaptation to a plethora of sample materials and LC
systems, specifically regarding separation power and
backpressure. In MS-based proteomics, 75 um ID columns
in combination with flow rates in the range of 200-400
nanoliter per minute are typical. Hence, we packed such
capillary columns with different lengths (20, 30, 50 cm) with
our high-pressure system and compared their
performance. Packing time for the shorter columns was
even faster and in the range of 30 sec. The longest columns
produced the smallest peak widths and subsequently
resulted in the highest numbers of identified peptides and
proteins (Fig. 4A-B). Interestingly, the distribution of peptide

intensities did not change significantly, and the tailing factor
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also remained unaffected (Fig 4C-D). Over the last years
the demand for high-throughput analysis has become
apparent for the analysis of clinical samples, especially
blood plasma as we have described before (25). This has
been addressed by a novel HPLC principle with pre-formed
gradients and slightly higher flow rates (18) and by higher-
flow systems operating in the upper microliter per minute
range (10,26). As these strategies require columns with
higher inner diameter to maintain acceptable pressure
during analysis, we produced columns with 75 um, 100 um

and 150 um ID and tested their performance.

When comparing column inner diameters, the experimental
setup has to be adapted to the conditions. To enable direct
comparison of capillaries with different ID, we scaled the
flow rates to reach the same linear velocities and the
amount of input material to the column volume
(Experimental Procedures). For the 100 um ID columns this
results in a flow rate of 535 nl/min and 888 ng of peptides
for loading, whereas for the 150 um ID column 1200 nl/min
and 2 pg of peptide material was loaded to be comparable
to the 300 nl/min and 500 ng employed for the 75 um 1D
columns. This requirement of higher sample amount
already limits the applicability of larger column diameters
for samples with limited accessibility. The 1400 pl pump
volume of the Easy-LC 1200 used for the experiment were
sufficient to run a 2-hour gradient with the 150 um ID
column, but longer gradients or higher flow rates would
exceed the capabilities of the LC-system and require higher
flow rates. The larger column IDs led to slightly broader
peak widths, but peptide and protein identifications were
not affected. Due to the correction of the sample input
amount, we have not seen a difference in peptide intensity
distributions, and the peak tailing has not been affected by

the column ID (Fig 4E-H).
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Conclusion

Here, we aimed to increase the throughput and to
streamline the production of capillary columns for MS-
based proteomics. We provide a detailed list for commercial
parts and blueprints describing the construction of our high-
pressure packing station. The setup can be built at
relatively low costs (<$10,000), compared to the cumulative
expenses for high performing commercial columns. We
designed this new station to fill multiple columns
simultaneously within a few minutes, which accelerates the
packing process of capillary columns more than 100-fold
compared to traditional gas pressure driven stations. In this
way, we hope our system helps researchers streamlining
the often work-intensive and fragile column production
process. In addition, the extreme high pressures enable the
packing of long, high-performing columns (> 50 cm). The
ability to produce high-performing columns at high-
throughput opens up the possibility of using capillary
columns always at the peak of their performance, replacing
them as soon as peak-broadening or decreased ionization
is observed. Reassuring in terms of the robustness of the
packing process itself and the stability achieved at
exceedingly high pressures, we have not observed
variation in the performance characteristics over a wide
range of packing pressure from 1000 to 3000 bar. We hope
the technology described here will enable laboratories of
any scale to mass-produce high performance long capillary

columns.
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This publication marks the dawn of a new era of reproducibility and throughput at the
intersection of low micro to nano-flow LCMS. With the Evosep One, we present a
chromatography apparatus which combines the benefits of low flow rates for high
ionization efficiency and sensitivity of capillary column dimensions with the throughput
and robustness of high-flow systems. This is achieved by decoupling the gradient
formation from the actual analysis. The former happens in a low-pressure region and
results in a preformed gradient in a sample loop before it is pushed over the analytical
column under high pressure. This avoids the challenges of gradient formation under
high pressure with two pumps as in previous systems and puts less stress on switching
valves. Additionally, there is a special sample loading system in the form of a StageTip-
like C-18 material on which peptides (or other analytes) are concentrated prior to
injection to the LC. This acts like a precolumn or trapping column and reduces the

amount of contamination injected into the MS.

These developments make higher throughput analyses possible because overhead
times between runs are cut down to a minimum. A throughput of 300 samples a day is
possible with a gradient to overhead ratio of less than 2:1. In our hands the most
common gradients are the 30 and 60 samples per day methods with gradient to

overhead ratios of 11:1 and 7:1.

We demonstrate that the principle of gradient preformation is practically useful and only
leads to minimal if any mixing of different phases like water and acetonitrile in the sample
loop. The elution of the peptides from the disposable pre-column requires another
precaution because the gradient with which the peptides are eluted from the precolumn
must be diluted with the aqueous phase before forming the final gradient for the
analytical column. In this way peptides are retained at the head of the analytical column

and peptide peaks are re-sharpened when entering the analytical column because the
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surrounding gradient ratio of aqueous to hydrophobic mobile phase is lower than the
ratio required for peptide elution. We exemplified the cause and fixes for these issues in
the testing phase of several thousand HelLa runs and demonstrate high retention time
stability and low technical variability on 96 plasma proteomic experiments.

In summary, the Evosep One HPLC has its ideal use case in proteomic experiments
that need short gradient times and higher reproducibility such as clinical studies with

body fluids or measurement of fractionated samples for deep proteome profiling.
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In Brief

Because of low throughput and
limited robustness, nano-scale
liquid chromatography has been
a bottleneck for advancing pro-
teomics in biomedical research.
Here, we developed and evalu-
ated two new LC concepts—
“pre-formed gradients” and
“offset gradients for peptide re-
focusing”—that are both imple-
mented in the Evosep One in-
strument. We evaluated
robustness with more than 2000
Hela runs, demonstrated ab-
sence of cross-contamination
with crude plasma samples, high
proteome coverage by fraction-
ated Hela and routinely meas-
uring more than 5000 proteins/
sample in just 21 minutes.

Highlights

Graphical Abstract

¢ Pre-formed and offset gradients for high throughput, robustness and peptide re-focusing.

e Minimal cross-contamination by disposable trap columns and partial elution.

¢ Single shot DIA measurements achieve >5000 proteins in 21 min.
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A Novel LC System Embeds Analytes in
Pre-formed Gradients for Rapid,
Ultra-robust Proteomics*s

Nicolai Bachet|,

Philipp E. Geyer§T]|, Dorte B. Bekker-Jensen], Ole Hoerningt,

Lasse Falkenbyf, Peter V. Treit§, Sophia Doll§, Igor Paron§, Johannes B. Miiller§,

Florian Meier§,

To further integrate mass spectrometry (MS)-based pro-
teomics into biomedical research and especially into clin-
ical settings, high throughput and robustness are essen-
tial requirements. They are largely met in high-flow rate
chromatographic systems for small molecules but these
are not sufficiently sensitive for proteomics applications.
Here we describe a new concept that delivers on these
requirements while maintaining the sensitivity of current
nano-flow LC systems. Low-pressure pumps elute the
sample from a disposable trap column, simultaneously
forming a chromatographic gradient that is stored in a
long storage loop. An auxiliary gradient creates an offset,
ensuring the re-focusing of the peptides before the sep-
aration on the analytical column by a single high-pressure
pump. This simplified design enables robust operation
over thousands of sample injections. Furthermore, the
steps between injections are performed in parallel, reduc-
ing overhead time to a few minutes and allowing analysis
of more than 200 samples per day. From fractionated
HelLa cell lysates, deep proteomes covering more than
130,000 sequence unique peptides and close to 10,000
proteins were rapidly acquired. Using this data as a li-
brary, we demonstrate quantitation of 5200 proteins in
only 21 min. Thus, the new system - termed Evosep One -
analyzes samples in an extremely robust and high
throughput manner, without sacrificing in depth proteom-
ics coverage. Molecular & Cellular Proteomics 17:
10.1074/mcp.TIR118.000853, 2284-2296, 2018.

Bottom-up proteomics is a highly successful and generic
technology, which now allows the analysis of complex sam-
ples ranging from bacteria through cell line systems and even
human tissue samples (1). State-of-the-art workflows begin
with a robust sample preparation to digest proteins and har-
vest purified peptides (2), which are separated by a liquid

Jesper V. Olsenq], Ole Vormit, and © Matthias Mann§1**

chromatography (LC)' system before they are analyzed by a
mass spectrometer (MS). Established software solutions au-
tomatically interpret the acquired spectra, generating lists of
thousands of quantified proteins (3-8).

The current performance level is a result of improvements
not only in the mass spectrometric components but also the
chromatographic part of the LC-MS workflow. In the quest for
ever increasing chromatographic separation power, columns
have become longer and particle sizes smaller - now reaching
the sub 2 ;m range. This may require pump pressures more
than 1000 bar, presenting great engineering challenges for
both the pumps and the entire LC system, often limiting
robustness in routine operation. Thus, chromatography re-
mains a weak link in MS-based proteomics workflows, lead-
ing to calls for new approaches (9). Furthermore, irreproduc-
ibility of retention times within and between laboratories
severely limits strategies that rely on the transfer of accurate
retention times, especially targeted proteomics (10), data in-
dependent acquisition (11) and “match between runs” at the
MS level (12, 13).

There is great interest in applying the increasing power of
MS-based proteomics to diagnostic and clinical questions
(14). “Clinical proteomics”, however, requires far more stabil-
ity and reproducibility than that available even in the most
advanced MS-based proteomics laboratories. Note that irre-
producibility and robustness issues are not features of LC-MS
per se, as the measurement of small molecules is firmly es-
tablished in clinical laboratories around the world, which rou-
tinely measure hundreds of samples per day. The two key
differences of these LC systems to the one applied in pro-
teomics are their much larger column diameters (20-fold) and
flow rates (1000-fold), making them much easier to control
and less error-prone. Increasing the flow rates to achieve
greater robustness has already been advocated in the context
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of cancer proteomics (15). However, the signal intensity in
electrospray ionization is concentration dependent and re-
ducing sensitivity at higher flow rates, which limits these
approaches to a few pl/min. Apart from high robustness,
throughput is the other central requirement for MS-based
proteomics, if it is to enter routine clinical use. Instead, current
proteomics workflows generally employ fractionation—multi-
plying measurement time—or use relatively long gradient
times.

In a recent large-scale plasma proteomics study measured
in our laboratory, involving more than a thousand samples,
80% of the overall down time was attributable to the HPLC
system rather than the MS. At the same time, column equili-
bration, loading and washing steps between runs limited the
attractiveness of very short gradients (16, 17).

Several years ago, some of the current authors devised a
very different sample loading and injection approach. Termed
spelLC, for solid-phase-extraction (nano) liquid chromatogra-
phy, it was intended for very high sample throughput needed
for clinical application (18). The speLC made use of the same
StageTips that are commonly employed in proteomics for
micro-scale purification of peptides and crude manual frac-
tionation (19-21). Instead of eluting into the autosampler vial
of the HPLC system, a low-pressure pump passed a 5-10 min
gradient through the StageTip itself and directly toward the
MS. The spelLC system can analyze 192 E. coli samples in
only 30 h, as well as identifying more than 500 proteins from
aHela cell lysate in less than 10 min (18). In subsequent work,
speLC was combined with pre-fractionation such as 1D gel
electrophoresis or strong cation exchange (SCX), capitalizing
on its ability to analyze each of the fractions in 10 min or less
(22). Although useful for simple protein mixtures, the low-
pressure elution from StageTips and use of only very short
analytical columns inherently limited chromatographic sepa-
ration power of this system.

In the work reported here, we aimed to preserve the ben-
efits of the original spelLC device while also achieving the
desirable features of modern HPLC instruments. We realized
this goal by coupling elution through the StageTips to a novel
downstream workflow. In the Evosep One design, peptides
are eluted at low pressure and flow rates of tens of ul/min
from a special StageTip - termed Evotip™. Notably, the gra-
dient along with the eluted analytes are captured in a long
capillary loop. A single high-pressure pump then applies the
stored gradient to an analytical nano-scale column. This re-
sults in undiminished chromatographic separation perform-
ance while eliminating the need to form a gradient at high
pressure. Thus, this layout marries the convenience and ro-
bustness of large columns, high-flow systems with the sensi-
tivity of narrow column diameters and low-flow rates of
nano-LC systems. We further detail the principle of operation
and development of the Evosep instrument in detail and inves-

" The abbreviation used is: LC, liquid chromatography.

tigate its robustness, throughput, and reproducibility in typical
applications encountered in MS-based proteomics.

EXPERIMENTAL PROCEDURES

Description of the Liquid Chromatography System—The Evosep
One incorporates four low-pressure single stroke piston pumps (A, B,
C, and D) and one high-pressure single stroke piston pump (HP) (Fig.
14; supplemental Fig. S1A, S1B). Together they create a separate
low- and high-pressure sub-system. Each pump is equipped with a
pressure and flow sensor to monitor and precisely control the flow of
the individual solvent. A custom 12-port valve (operating at low-
pressure) diverts the flow of the low-pressure pumps either toward
the solvent bottles (sol A, sol B) for refilling or toward the system for
analysis. The high-pressure pump has a separate 6-port valve (oper-
ating at high-pressure) for refilling.

The only common flow path is a storage loop, which is either
connected to the low- or high-pressure sub-system and is controlled
by a 6-port rotary valve (Fig. 1A). In this way, the high-pressure
sub-system is always connected to the analytical or separation col-
umn but is either in-line or bypasses the storage loop. In contrast, the
low-pressure sub-system is always connected to waste but either
in-line or bypassing the storage loop. Thus, the storage loop becomes
the bridge between the low- and high-pressure sub-systems.

The separate steps are illustrated in the timetable and in the flow
path diagrams, highlighting the individual stages of an LC-MS run
{Fig. 1B, supplemental Fig. $52-89). At the beginning of a new LC-MS
run, the XYZ-axis manipulator of the Evosep One picks up an indi-
vidual disposable trap column (Evotip) with its ceramic needle and
positions it in-line with the solvent flow path at the A/B/C/D mixing
cross (Fig. 1A, supplemental Fig. 1A, 81B).

In the second step, pumps A and B then form a primary gradient at
the A/B mixing tee that flows through the disposable trap column,
eluting the analytes of interest (Fig. 1B, supplemental Fig. 82). The
organic content of this initial gradient is limited to less than 35% to
ensure that only peptides of interest are eluted off the tips while
unwanted compounds such as polymers, lipids, and other highly
hydrophobic compounds remain bound to the single-use, disposable
tips along with any particulate matter from the loaded samples. Fur-
thermore, the final elution volume of this initial gradient is limited to
few ul to ensure very precise elution and minimize bleeding of the
more hydrophobic molecules. This “partial elution” concept will be
further described in RESULTS AND DISCUSSION.

The two additional low-pressure pumps, C and D then modify the
eluent at the mixing cross A/B/C/D to create an “offset” to the initial
gradient (supplemental Fig. 82). This has the purpose of lowering the
organic contents, such that the analytes are initially retained on the
analytical column. The offset gradient with the embedded analytes is
moved into the storage loop before being switched in-line with the
high-pressure pump. In parallel to the first two steps, the high-
pressure pump is filled (supplemental Fig. 83) and the analytical
column is equilibrated (supplemental Fig. $4). Subsequently, the
Evosep One switches the storage loop in-line with the high-pressure
pump and the preformed gradient with the embedded analytes is
pushed toward the analytical column for high performance separation
(supplemental Fig. 85). In parallel to the LC-MS run, the Evosep One
is prepared for the next sample by ejecting the disposable trap
column, washing the mixing cross A/B/C/D and the ceramic needle,
refilling the low-pressure pumps and aligning the solvents of the
low-pressure pumps (Fig. 1B, supplemental Fig. S6-59).

The instrument contains procedures to monitor its state during an
LC run and can detect high pressure in different parts of the system,
warns of potential leaks or the lack of an Evotips in the designated
autosampler position. It also has built in trouble shooting procedures
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through the Chronos software user interface. Moreover, the Evosep
One carries out preparatory actions before a sample run.

Cell Culture—Hel a cells were cultured in high glucose DMEM with
10% fetal bovine serum and 1% penicillin-streptomycin (Life Tech-
nologies, Inc.). Cells were counted using an Invitrogen countess cell
counter and stored after snap freezing at —80 °C.

Tryptophan Fluorescence Emission Assay for Protein Quantifica-
tion—Protein concentrations were determined in 8 m urea by trypto-
phan fluorescence emission at 350 nm, using an excitation wave-
length of 295 nm. Tryptophan at a concentration of 0.1 pg/ul in 8 m
urea was used to establish a standard calibration curve (0-4 pl). We
estimated that 0.1 ng/pl tryptophan are equivalent to the emission of
7 119/l of human protein extract, if tryptophan on average accounts
for 1.3% of human protein amino acid composition.

Protein Digestion—For sample preparation we used the iST kit for
proteomic samples (2), starting with 10° HeLa cells according to the
manufacturer’s instructions (P.O. 00001, PreOmics GmbH).

Robustness Optimization—To test and optimize robustness, we
injected and analyzed over 2000 times tryptic peptides of Hela cells,
initially in exploratory batches. For this experiment, we used the
breadboard model of the Evosep One coupled to a LTQ Orbitrap
instrument. All issues were protocolled, and the system was opti-
mized during the test and in the exploratory phase, the instrument
was only stopped for the optimization of hardware and software
components. The last 1500 HelLa samples were analyzed on a
single column to analyze variation in the system and the wear of the
column.

Plasma Proteomics—Blood was taken by venipuncture using a
commercially available winged infusion set and collection tubes con-
taining EDTA and centrifuged for 15 min at 2000 X g to harvest
plasma. Blood was sampled from a healthy donor, who provided
written informed consent, with prior approval of the ethics committee
of the Max Planck Society. The plasma was distributed into a
96-well plate and subsequently processed with an automated sam-
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ple preparation for Plasma Proteome Profiling as described previ-
ously (16).

High Throughput of Low Complexity Samples—the “UPS1 Pro-
teomic Standard” (Sigma-Aldrich) was digested as indicated above
using the PreOmics iST kit and the peptides were analyzed with the
200 samples/day method (5.6 min gradient) with a 2 pl/min flow on a
5 cm C18 column (3 um particle size).

Prefractionation — Peptides for deep proteome analysis were frac-
tionated using a reversed-phase Acquity CSH C18 1.7 um 1 X 150
mm column (Waters, Milford, MA) on an Ultimate 3000 high-pressure
liquid chromatography (HPLC) system (Dionex, Sunnyvale, CA) oper-
ating at 30 wl/min. Buffer A (6 mm ammonium bicarbonate) and buffer
B (100% ACN) were used. Peptides were separated by a linear
gradient from 5% B to 35% B in 55 min, followed by a linear increase
to 70% B in 8 min. In total, 46 fractions were collected without
concatenation. For nano-flow LC-MS/MS, the loading amount was
kept constant at 500 ng per injection for the Easy-nLC 1200, while
500 ng from each fraction was loaded on an Evotip.

UV Gradient Storage Experiment—To assess the effect of diffusion
as a function of storage time in a storage loop, we built a test rig to
mimic Evosep One operation as illustrated in figure 2. A set of Zirco-
nium nano pumps (Prolab Instruments, GmbH, Switzerland, pump A:
0.1% formic acid (FA) in H.O, Pump B: 0.1% FA, 1% acetone in
acetonitrile) were programed to create the following composition
profile: 0-5 min 5% B, 5-10 min 5-95% B, 10-13 min 95% B, 13-15
min 95-5%, 15-18 min 5%, 18-23 min 5-95% B, 23-25 min 95% B,
25-27 min 95-5% B, 27-30 min 5% B. This was delivered into a
coiled (diameter 10 cm) fused silica storage loop {ength 7 m, i.d. 100
um, OD375, Polymicro Technologies). After a specified storage time
had passed, a third Zirconium pump pushed the content out of the
loop at a flow rate of 2 ul/min toward a UV detector (SpectraFlow 501,
SunChrom) equipped with a nano-flow cell (5 nl) set to record the
absorption at 265 nm. The storage loop and the three pumps were all
connected to a standard 6-port Vici valve (Valco Instruments Co. Inc.)
to control the flow path using a script.

Evaluation of Chromatographic Performance—We loaded 250 ng
of a commercial HeLa digest (Pierce, no. 1862824) spiked in with 100
fmol of PicoSure Test Standard (eight synthetic peptide mix, New
Objective PS-STDN) and loaded the mix on Evotips. For each of the
five gradient methods, four replicates were analyzed using a Thermo
Q Exactive set to acquire full scans (resolution 35k) and targeted MS2
(resolution 17.5k) of the eight synthetic peptides in a scheduled table
(Fig. 6B). Skyline was used to extract between 4 and 6 MS2 ions
(parallel reaction monitoring) for each of the 8 peptides (23). Chro-
matographic profiles were exported from Skyline and peak charac-
teristics for each peak was extracted using a script.

Loading of Evotips—Tips were activated with consecutive 100 ul
wash steps of 100% ACN, 50% ACN in 0.5% formic acid in H,O
followed by two times 0.5% formic acid in H,O. BSA or HeLa peptides
were loaded in 0.5% formic acid in H,O. The tip activation protocol
was later optimized to use 1-propanol for wetting the C18 material
prior to equilibration.

High-pressure Liquid Chromatography and Mass Spectrometry—
LC-MS instrumentation consisted of a breadboard Evosep One cou-
pled to an LTQ Orbitrap for the more than 2000 Hela injection
experiment, and the Evosep One production version coupled to an Q
Exactive HF-X Orbitrap (Thermo Fisher Scientific) for all other exper-
iments. Purified peptides were separated on the HPLC columns with
3 pum Reprosil-Pur C18 beads (Dr. Maisch, Ammerbuch, Germany)
and dimensions indicated below in Fig. 68. On the LTQ Orbitrap MS,
data were acquired with a Top6 data dependent shotgun method and
with a Top12 method for the Q Exactive HF-X instrument. On the Q
Exactive HF-X Orbitrap, the target value for the full scan MS spectra
was 3 X 10° charges in the 300-1650 m/z range with a maximum

injection time of 50 ms and a resolution of 60,000 at m/z 200. Frag-
mentation of precursor ions was performed by higher-energy C-trap
dissociation (HCD) with a normalized collision energy of 27 eV (24).
MS/MS scans were performed at a resolution of 15,000 at m/z 200
with an ion target value of 5 X 10* and a maximum injection time of
25 ms. Dynamic exclusion was set to 15 s to avoid repeated sequenc-
ing of identical peptides.

Deep Proteome and DIA Experiments— Hela cells were harvested
at ~80% confluence by washing twice with PBS and subsequently
adding boiling lysis buffer (6 m guanidinium hydrochloride (GndCl), 5
mw tris(2-carboxyethyl)phosphine, 10 mm chloroacetamide, 100 mm
Tris pH 8.5) directly to the plate. The cell lysate was collected by
scraping the plate and boiled for an additional 10 min, followed by
micro tip probe sonication (Vibra-Cell VCX130, Sonics, Newton, CT)
for 2 min with pulses of 1 s on and 1 s off at 80% amplitude. Protein
concentration was estimated by Bradford assay, and the lysate was
digested with LysC (Wako) in an enzyme/protein ratio of 1:100 {(w/w)
for 1 h, followed by dilution with 25 mwm Tris, pH 8.5, to 2 m GndCl and
further digested overnight with trypsin (1:100 w/w). Protease activity
was quenched by acidification with triflucroacetic acid (TFA) to a final
concentration of ~1%, and the resulting peptide mixture was con-
centrated on Sep-Pak (C18 Classic Cartridge, Waters, Milford, MA).
Elution was done with 2 ml of 40% acetonitrile (ACN), followed by 2
ml of 60% ACN. The eluates were combined and volume reduced by
SpeedVac (Eppendorf, Germany), and the final peptide concentration
was estimated by measuring absorbance at 280 nm on a NanoDrop
spectrophotometer (NanoDrop 2000C, Thermo Fisher Scientific, Ger-
many). For DIA samples, iRT peptides (Biognosys AB, Schlieren,
Switzerland) were added prior to MS analysis according to the man-
ufacturer’s protocol. For samples analyzed on the Evosep One, an
in-house packed 12 ¢cm, 150 um i.d. capillary column with 1.9 um
Reprosil-Pur C18 beads (Dr. Maisch, Ammerbuch, Germany) was
used, while samples analyzed on the Easy-nLC 1200 were separated
in an in-house packed 15 cm, 75 um i.d. capillary column with the
specifications as described above. The column temperature was
maintained at 40 °C using an integrated column oven (PRSO-V1,
Sonation, Biberach, Germany) and interfaced online with the mass
spectrometer.

Data Analysis—MS raw files were analyzed by the MaxQuant soft-
ware (version 1.5.6.8) (3) and fragments lists were searched against
the human Uniprot Reference Proteome without isoforms {(April 2017
release with 21,042 protein sequences) by the Andromeda search
engine (25) with cysteine carbamidomethylation as a fixed modifica-
tion and N-terminal acetylation and methionine oxidations as variable
modifications. The experiment for the 200 samples/day method was
analyzed with the UPS1 FASTA file, downloaded from the homepage
of Sigma-Aldrich (April 2018). We set the false discovery rate (FDR) to
0.01 at the peptide and protein levels and specified @ minimum length
of 7 amino acids for peptides. Enzyme specificity was set as C-ter-
minal to arginine and lysine as expected using trypsin and LysC as
proteases, and a maximum of two missed cleavages. An initial pre-
cursor mass deviation up to 7 ppm and a fragment mass deviation of
20 ppm were specified.

Data independent analysis (DIA) results were processed with Spec-
tronaut version 11.0.15038.19.19667, using default settings (Biogno-
sys, Zurich, Switzerland). A project specific spectral library was
imported from the separate MaxQuant analysis of the combined
analysis of the 46 pre-fractionated Hela fractions, and DIA files were
analyzed using default settings. Information about precursors, pep-
tides and proteins identified by the Spectronaut software are available
in Supplemental Table S1 and S2.

All bicinformatics analyses were done with the Perseus software
(26) of the MaxQuant computational platform.
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Fic. 2. UV set up to test gradient storage. A, Flow diagram for testing potential gradient mixing during storage in the capillary loop. B,
Profiles of the acetonitrile and water plugs that were recorded by the UV detector for different storage times. Profiles were almost completely
superimposed, consistent with minimal mixing of the two phases during storage.

RESULTS AND DISCUSSION

Principle of Analyte Embedding in Pre-formed Gradients—
Qur key idea in making nano-LC as robust as high-flow LC
was to decouple gradient formation from the high resolution,
high-pressure separation on an analytical column. As in es-
tablished peptide purification strategies, the peptides are first
loaded on Evotips (a form of solid phase extraction tips like
StageTips (20)). However, instead of eluting the peptides from
the tips, drying them to remove the organic content and
re-suspending them in injection buffer, we directly elute from
the Evotip into the capillary loop. This is accomplished at
pressures of only a few bar by two syringe pumps A and B at
flow rates of 10 to 20 ul/min (Fig. 1). Note that an entire
gradient can be stored in a several meters long fused silica
capillary - already containing the individual peptides at the
organic content where they elute from the C18 material. For
instance, a 4 m long capillary of 100 um inner diameter (i.d.)
has a volume of 31.5 pul, enough for a subsequent analytical
column separation of 31.5 min at 1 pl/min or 90 min at 350
nl/min.

We first asked if the gradient would be affected over time in
the storage loop due to diffusion (27). Considering the very
high aspect ratio of column length compared with i.d. (40,000
in the example above), this appears to be unlikely. Further, in
a similar capillary storage scheme in the RePlay system we
did not observe such mixing (28). To experimentally investi-
gate this question, we placed defined plugs of ACN/1%
acetone and water in the capillary loop, stored them for O
or 60 min and monitored them with a UV detector (Fig. 2A,
EXPERIMENTAL PROCEDURES). This did not lead to detect-
able mixing (Fig. 2B), confirming that storage of pre-formed
gradients in a capillary loop is suitable for our purposes.

Having established that an analyte-containing gradient can
be formed easily and stored in a loop, the next challenge was
to obtain high chromatographic resolution with the help of an
analytical column. A common issue in pre-column setups is
peak broadening because peptides eluting from the pre-col-
umn are not sufficiently retained on the analytical column. To
solve this issue, and to take account of the relatively large

elution volume from the Evotip, we designed a gradient offset
strategy. Once the Evotip is sealed in-line with the solvent
system, a gradient from pumps A and B subsequently elutes
the peptides from the tip. Directly after the Evotip, a second-
ary gradient from pumps C and D modifies the composition of
the initial gradient and thus, reduces the effective organic
content (Fig. 3A, 3B). With the offset gradient, peptides eluting
from the loop are shortly retained at the head of the column
and thereby focused (Fig. 3C). After separating on the analyt-
ical column, this results in the highest possible peak capacity.
Note that due to the pre-formed and offset gradient the ana-
lytes are effectively loaded on the column in a sequential
manner. Consequently, only a few percent of total peptide
load is on the column at any given time (for instance, with a
loop of 30 ul, a maximum of 3% for a 12 cm, 75 pm i.d.
column which has a bed volume of less than one 1 pnl).

After generation of the gradient, the loop-valve switches the
storage loop in-line with the high-pressure pump and the
analytical column (Fig. 3A). The high-pressure pump then
pushes the pre-formed and offset gradient with embedded,
pre-separated peptides over the analytical column. The fact
that almost all the system’s functionality is contained in the
low-pressure sub-system (Fig. 1), should ensure long life-
time of the mechanical components, and opens for ultra-
precise flow manipulation, at a low risk of critical leaks and
malfunction.

To test the Evosep One separation scheme, we loaded a
BSA digest on an Evotip and eluted it in a 21 min gradient
from an 8 cm analytical column (100 pm id., 3 um C18
beads). This resulted in low peak widths (4.8 s median FWHM)
and corresponding column capacities. Multiple injections il-
lustrate that the chromatograms are virtually superimposable
(Fig. 3D). An interesting consequence of our design is that it
almost eliminates the loading and washing steps that are
otherwise necessary between injections. Instead, the washing
step is also encoded in the loop composition, and all remain-
ing procedures take less than 3 min. This brings the total
analysis time (injection to injection) very close to actual gra-
dient time (21 min + 3 min). (Note that the instrument further-
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Fic. 3. Pre-formed gradient. A, Peptides are eluted from the C18 containing Evotip by pumps A and B. Low pressure pumps C and D form
the final gradient, which is stored in the capillary loop together with the analytes. Subsequently, the valve switches and the high-pressure pump
(H) simply pushes the gradient with its peptides over the analytical column. B, Composition of the gradient resulting from the confluence of the
flows from pumps A, B and pumps C, D (x axis designates the volume entering the storage loop). The proportion of acetonitrile is indicated
on the y axis. C, Analytes embedded in the storage loop are represented in red and as peak intensities. Because of the offset provided by
pumps C and D, peptides are shortly retained at the head of the analytical column and elute with narrow peak widths. D, Comparison of three
base peak chromatograms from a Hela digest, demonstrating the reproducibility.

more allows a higher flowrate at the beginning of the gradient,
which would further compress the time to appearance of the
first peptides in the gradient.) Compared with conventional
designs, this dramatically increases throughput, especially for
short gradients, while avoiding the complexity and reproduc-
ibility issues of double column designs (29).

Robustness Development and Stress Test—Having estab-
lished the basic principles of operation, we constructed a
breadboard model that incorporates all functional compo-
nents. As far as possible, we chose industry leading standard
components, such as the CTC Analytics auto sampler and Vici
rotary valves, whereas other components were custom de-
signed for our throughput and robustness requirements
(EXPERIMENTAL PROCEDURES). Pump firmware develop-
ment was done in house but for other software development,
we used the Chronos environment, an industry standard and
widely used platform, with a view to integrate our instrument
with the different MS manufacturers.

To fine-tune operation and optimize robustness, we in-
jected 1 pg of a tryptic HelLa cell digest over 2000 times in a

consecutive manner. We logged all issues over time and
stopped the test only to optimize hardware or software com-
ponents. In total, 35% of the measurements within the first
250 samples suffered from sample loss due to an imperfect
seal of the autosampler needle and the tip. In a first step, we
optimized the needle, which resulted in an immediate reduc-
tion of errors. After changing the seal between the tip and the
entrance of the flow path as well, these issues were eliminated
(Figs. 3A, 4A). From injection 513 on, all instrument related
issues appeared to be resolved. We then mounted a new
column to test the “partial elution” concept (as described in
EXPERIMENTAL PROCEDURES) in subsequent injections.
Over these 1500 samples the total ion current remained un-
changed until the end of the experiment (Fig. 4B). A few
LC-MS runs were blank, but this turned out to be due to
incorrect manual loading of the corresponding Evotips.

We also recorded the pressure profiles for all runs. Validat-
ing the partial elution concept, there was only a very slight
increase in backpressure, indicating that the column had re-
mained free of deposits and as further evidence of the effect,

2290

Molecular & Cellular Proteomics 17.11

68



3. Publications

Pre-formed Gradient Liquid Chromatography

A Optimized Optimized
Needle Seal Sample loading errors,
* * not instrument failure
1
1 1
Error s —=woa P P .
1 1
Good run : :
1 1
0 1 500 1000 1500 2000 2500
1 1 Number of Hela runs
I |
Errorrate: ~ 35% ' 7% ! 0.7% (1500 runs)
B NL: 4.27E8 c o
100~ 250 = Run 1498-1500
90+ = Run 1
80 — Run 1500 200 -
8 704 -
© ©
2 60 £,150
3 o
2 s0- 5
o 17
2 404 3 100
s &
& 304
20| | 50 |
104 ﬂ
0 T T T T T T T T T T 1 0 T T T T T 1
0 2 4 6 8 10 12 14 16 18 20 22 0 5 15 10 20 25 30

Gradient time [min]

Gradient time [min]
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the TICs of runs 1 and 1500 were indeed highly similar and
showing no decay in separation performance of the column.
Pressure profiles of adjacent runs were virtually indistinguish-
able (Fig. 4C).

The Evosep One was intended and constructed for high
throughput applications, with a focus on clinical analysis.
Blood plasma is the most widely analyzed clinical matrix, with
millions of samples drawn daily. Yet it is difficult to analyze
plasma robustly by nano-LC/MS, mainly because of the large
number of non-protein blood components. To demonstrate
clinical applicability of the system, we employed our auto-
mated sample preparation pipeline - termed Plasma Pro-
teome Profiling (Geyer et al. 2016a). Plasma samples were
prepared and loaded on the Evotips in a 96 well format, using
a robotic platform. The total measurement time for the 96
samples on the Evosep One was less than 2 days, corre-
sponding to a throughput of 60 samples per day. Reproduc-
ibility over all 96 independent, parallel sample preparations
and injections of the same original plasma was excellent
(median Pearson correlation coefficient of 0.98) over all runs
(Fig. 5B). For clinical decision making based on the concen-
tration of biomarkers, it is crucial to ensure low carry-over
from one analysis to the next. Therefore, we performed a
cross contamination experiment with six alternating injections
of plasma and blanks (Fig. 5B). The average carry-over was as

low as 0.07% and 80% of this can be traced back to just 20
peptides (Fig. 5C).

Design of Methods for Desired Throughput and Depth—
Based on the principles explained above and the experiences
from the robustness testing on the breadboard model, we
then constructed the production unit. We devised a number of
standard gradients and column combinations tailored to dif-
ferent applications, ranging from high throughput quality con-
trol of low complexity samples, through comprehensive
proteomics using fractionation, to the in depth single run
characterization of complex proteomes. The short gradients
made possible by the Evosep system can be used for low
complex samples and the somewhat longer ones for more
complex samples.

Note that the design choices embodied in the Evosep One
also imply certain limitations, at least in the current version. In
common with previous efforts in “industrialized proteomics”,
we chose to prioritize reliability, robustness and throughput
over certain other parameters. The choice of relatively short
and somewhat larger i.d. columns together with a flowrate of
1 wpl/min, does not maximize sensitivity (however, this can
easily be adjusted by the user). Likewise, sample introduction
through the Evotip currently results in an elution volume op-
timized for gradients up to 44 min, whereas longer gradients
would lead to broader peaks.
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We characterized the chromatographic performance of
each method using a synthetic peptide mix, spiked into the
complex background of a Hela digest. Parallel reaction mon-
itoring targeting only the synthetic peptides extracted a de-
tailed elution profile representative of typical proteomic meas-
urements. From this data we calculated peak and retention
time properties for the eluting peptides (Fig. 6A; supplemental
Fig. S10-S14). Fig. 6B shows these data in tabular form for
the optimized gradients and column dimensions for the stand-
ard use cases and sample types.

We first wished to demonstrate the possible throughput on
low complexity samples. We digested the “UPS1 Proteomic
Standard” (EXPERIMENTAL PROCEDURES) and used the 5.6
min gradient with the 2 pl/min flow on the 5 cm column (200
samples/day method). In a single day, this resulted in 200
data sets with very consistent protein coverage (Fig. 6C). The
UPS1 should contain 48 different proteins but curiously four
of them were never identified. As this standard is equimolar
this is not an issue of dynamic range. Furthermore, the re-
maining 44 proteins were quantified essentially completely in
all runs (average of 43.5 = 1) (Fig. 6C). We conclude that the
remaining proteins were likely missing from the kit. The high
throughput for low complexity samples would be very inter-
esting for single protein identification experiments in gel
bands, for instance, or for contaminant analysis in recombi-
nant protein expression in biotechnology. In many cases, it
could also be enough for somewhat more complex mixtures
such as those resulting from pull-down experiments.

Rapid Generation of In-depth Mammalian Cell Line Pro-
teomes—Having shown the applicability of the system for low
complexity samples in high throughput, we next investigated
the rapid characterization of fractionated, high complexity
proteomics samples. A fractionation step is very common in
the analysis of cell line or tissue proteomes, but usually comes
with the caveat of a drastic increase in measuring time as the
number of factions increases.

We built on a recently described strategy that combined
extensive high pH reversed-phase peptide pre-separation in a
first HPLC dimension without “concatenation” of the resulting
fractions and relatively short gradients (4). Up to 70 such
fractions were analyzed in gradients of 30 min, allowing for
overall high peptide loading and high combined peak capacity
and making optimal use of the high acquisition speed of
state-of-the-art mass spectrometers (30). This resulted in a
very deep coverage of cell line and tissue proteomes, on par
with RNA-seq results (4). A bottleneck of the workflow was the
low utilization of the mass spectrometer, due to the washing,
equilibration and loading times of the HPLC, which are mini-
mized with the Evosep system.

To characterize the efficiency for fractionated proteomes
and to compare this to the Easy-nLC 1200 used as a standard
in our laboratories as well as in the study described above, we
performed an analysis of 46 Hela fractions on both systems.
Each of the fractions was divided and separately measured
on the Easy-nLC and the Evosep One on the same MS
instrument, recording total instrument time, the time utilized
for gradients and the numbers of peptides and proteins
identified. The Easy-nLC 1200 was run with our previously
optimized 15 min gradients, whereas we used the 21 min
gradient of the 60 proteomes/day method for the Evosep
One.

As expected because of the short overhead time between
runs, the Evosep One was significantly more efficient in terms
of utilization of the mass spectrometer. A full 88% of the total
analysis time of 18.4 h was spent on data acquisition (Fig. 7A).
In contrast, the Easy-nLC 1200 occupied the mass spectrom-
eter for 28.3 h, but only 14.6 h (52%) were productively used.
This difference did not come at the expense of the numbers of
identified peptides and proteins, which was very comparable
with 132,850 peptides (9918 proteins) and 130,450 peptides
(9603 proteins) for the Evosep One and the Easy-nLC 1200,
respectively. A detailed view of peptides identified in each
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For ease of use, five optimized methods have been pre-set to provide

the best performance to time compromise. They are defined by the total number of samples that can be run per day rather than referring to
the length of the gradient. The peak width and peak capacity values are averages on a HelLa digest with spiked in synthetic peptides (for details
see supplemental Fig. S10-S14). C, Technical replicates of a digest of the UPS1 Proteomic Standard were injected 200 times with the 200
samples/day method. The number of identified proteins for each sample is shown as a bar graph in chronological order.

fraction separately or cumulatively, showed that they are very
similar (Fig. 7B, 7C). This confirms our conclusion that the
design principle of the Evosep One resulted in saving sub-
stantial measurement time (35% in this case), at undiminished
performance. For longer gradients, the proportional time sav-
ings would be lower, however, given the high price of modern
mass spectrometers, they would still be economically attrac-
tive. The above experiments show that the Evosep is well
suited for the in-depth characterization of proteomes via the
rapid analysis of the high pH or other fractions that are com-

monly used in proteomics. While we employed label-free
quantitation here, the results should equally apply to isobaric
labeling strategies. We also note that an average of 2700
proteins were identified in these fractions. There are several
proteomics strategies that produce many fractions, such as
thermal shift assays (31) or organellar proteomics (32), and
our approach opens up for strategies to rapidly and robustly
measure these.

Single Shot, High Throughput HelLa Proteomes Using DIA—
The experiments described so far used data dependent ac-
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A
LC system Total time Gradient time Peptides Proteins
Evosep One 184 h 16.1 h 132,850 9918
Easy-nLC 1200 283 h 146 h 130,450 9603
B 8k
§
5 6k
8
8 4k
[}
Q
=]
g»'_' 2k == Evosep One
== Easy-nLC 1200
0+
1 10 20 30 40 46
HpH fraction number
C 140k
120k
£ § 100k
>
2 sok
20
53 60k
ES
Es 40k
5] == Evosep One
20k == Easy-nLC 1200
0
1 10 20 30 40 46
HpH fraction number

Fic. 7. Rapid generation of mammalian cell line proteomes. A,
Table for the comparison of the Evosep One with the Easy-nLC 1200,
including total measurement time, gradient time and the numbers for
identified proteins and peptides. B, Numbers of identified peptides
per fraction over the 46 high pH reversed-phase fractions for both LC
systems. C, Cumulative numbers of unique peptides across the
fractions.

quisition (DDA). However, data independent acquisition
(DIA) is becoming increasingly popular and competitive (7). In
our hands, we have found DIA to perform particularly well with
relatively short gradients on fast and high resolution Orbitrap
analyzers (5). The Evosep One with its fast turn-around be-
tween runs appeared to be a good addition to this strategy
and we were curious to see how deep the proteome could be
covered with such a combination. For this purpose, we made
use of the very extensive peptide library generated in our
previous experiments of the 46 fractions of HelLa digests
using the Spectronaut software with one percent FDR at both
precursor and protein levels.

Especially in short gradients, there is a trade-off between
the number of peptide identifications and the quantification
accuracy because of the finite time for a DIA cycle. To inves-
tigate this, we designed a faster (2 s cycle time, 15k MS/MS
resolution) and a slower scanning method (4 s cycle time, 30k
MS/MS resolution) as visualized in Fig. 8A. Given the short 21
min gradients (60 samples per day) the proteome coverage
was very high for both methods with more than 5000 quanti-
fied proteins from more than 40,000 matched peptides. This

A Fast method
2 s cycle time

Slow method
4 s cycle time

MS1
120,000 res.

MS1
120,000 res.

MS2
48 windows
1 Da overlap
15,000 res., 22 ms IT

MS2
56 windows
1 Da overlap
30,000 res., 54 ms IT

B
100,000

88,133

75,000 A

50,000 A

Counts

25,000 A

0-
Proteins

Precursors

Peptides

C 6000

5000

4000 4

3000

Proteins

2000 A

1000 4

0-

All CV<20%

CV<10%

Fia. 8. Rapid generation of mammalian cell line proteomes. A,
Two scan modes for the acquisition of DIA data were devised and
tested. B, Average number of precursors, identified peptides and
protein groups for five HeLa measurements with 21 min gradients on
the Evosep One. C, Number of proteins quantified with a coefficient of
variation (CV) below 20 and 10%.

equates to 250 unique proteins per gradient minute through-
out the gradient. As expected, the slower method was some-
what superior in terms of identifications with a higher number
of precursors (88,133 versus 81,007), peptide identifications
(46,570 versus 40,642) and protein groups (5446 versus 5055)
(Fig. 8B). For the fast and the slow method, the overlap of
proteins between replicates was 81% and 85% with 4491 and
4904 proteins found in all five measurements, respectively
(supplemental Fig. S15A). The faster method performed better
with regard to protein quantification with 3286 proteins with a
CV less than 20% in the slower versus 2724 in the faster
method, respectively (Fig. 8C, supplemental Fig. S15B).
For the top 70% of the proteome by abundance, data com-
pleteness was close to 100% (supplemental Fig. S15C).
These results indicate that the short gradients enabled by
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the Evosep One can very efficiently be combined with DIA
for high-throughput and in-depth acquisition of proteomic
data.

CONCLUSION

Despite the great technological advances in high sensiti-
vity nano-flow MS-based proteomics, the robustness and
throughput have been weak links even in state of the art
MS-based proteomic workflows. This has led to a move to-
ward microflow systems—especially with a view toward clin-
ical applications—however, at the cost of sensitivity (33).
Here, we have introduced an entirely novel concept based on
the pre-formation of gradients at relatively high-flow and low-
pressure. This pre-stored gradient already has the analytes
embedded and is moved across a high-resolution column by
a single, high-pressure pump. Based on these principles, we
first designed a breadboard system that was progressively
developed into a commercial HPLC system - the Evosep One.
We established that pre-storing of the gradient, followed by
“re-focusing” of the peaks at the head of the analytical col-
umn, assures full chromatographic peak capacity of the over-
all system. Together with the Evotip as a disposable sample
clean up cartridge, the system is designed for sensitivity,
throughput, and robustness - tailor made for large clinical
studies. To test this, we performed thousands of runs with cell
lysates as well as complex clinical samples such as blood
plasma. We found that the decoupling of gradient formation
with a low-pressure system and the high-pressure peptide
separation ensured stable and uninterrupted operation with-
out instrument related issues or deterioration in chromato-
graphic performance. As expected from its design, the
Evosep One proved to have minimal or absent cross contam-
ination and very high consistency of label-free quantitation
results across injections.

The time required for the formation of the pre-stored gra-
dient, including the washing step, happens within 2-3 min,
reducing the idle time of the mass spectrometer between
injections. This opens up for the rapid analysis of samples of
medium complexity, as we demonstrated with the measure-
ment of 200 standard mixtures (UPS1) in a single day. The
short gradients on the Evosep One are especially attractive in
combination with time-of-flight (TOF) instruments because of
their very high scanning speed. This was recently demon-
strated by the identification of more than 1000 HelLa proteins
in only 5.6 min (200 samples/day method) (34). Deep pro-
teomes are typically achieved after extensive fractionation. In
this context, the fast turn-around of the Evosep One ensures
very high utilization of the MS instrumentation as we show by
the analysis of 46 Hela fractions in 18 h. Finally, we used a
state-of-the-art data independent workflow that enabled a
remarkable proteome depth of 5200 proteins in only 21 min
(60 samples/day method). With ongoing developments on the
mass spectrometric side, the proteome coverage is likely to
improve further.

The minimal run-to-run times make even very short gradi-
ents efficient and attractive, opening up for high-throughput
proteomics in areas like screening of host-cell proteins in
pharma research, protein interaction studies and in particular
clinical proteomics. We further imagine applications in top-
down proteomics and in small molecule analysis, in particular
metabolomes.
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in biomarker studies’ is directed towards the resurgent trend of plasma proteomics for
biomarker screening. As the literature reveals, a large proportion of studies tend to report
proteins as biomarkers which our publication terms ‘quality markers’ but really indicating
either erythrocyte, thrombocyte or coagulation contamination. To pinpoint the specific
proteins that must be treated with caution, we acquire deep proteomes of erythrocytes,
thrombocytes and pure plasma and compare the proteomes of plasma and serum to
identify markers for coagulation in plasma samples.

These proteomes for the first time yield a list of bias specific proteins that can be applied
for convolution analysis. For all samples of a plasma proteome study, a quality
assessment can now be done to flag the samples which have problems in the sample
taking process and potentially should be excluded. Additionally, when performing
correlation analysis of the quantified proteins within a study, proteins can be tested for
‘origin bias’. For instance, if a protein of interest clusters together with known quality
marker for thrombocytes this is a sign that this candidate should be treated with caution
as it is most likely a thrombocyte derived protein and only appears to be regulated in the

disease process.

We supply these analyses to the community in an online tool to check uploaded datasets
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Abstract

Plasma and serum are rich sources of information regarding an
individual’s health state, and protein tests inform medical decision
making. Despite major investments, few new biomarkers have
reached the clinic. Mass spectrometry (MS)-based proteomics now
allows highly specific and quantitative readout of the plasma
proteome. Here, we employ Plasma Proteome Profiling to define
quality marker panels to assess plasma samples and the likelihood
that suggested biomarkers are instead artifacts related to sample
handling and processing. We acquire deep reference proteomes of
erythrocytes, platelets, plasma, and whole blood of 20 individuals
(> 6,000 proteins), and compare serum and plasma proteomes.
Based on spike-in experiments, we determine sample quality-asso-
ciated proteins, many of which have been reported as biomarker
candidates as revealed by a comprehensive literature survey. We
provide sample preparation guidelines and an online resource
(www.plasmaproteomeprofiling.org) to assess overall sample-
related bias in clinical studies and to prevent costly miss-assign-
ment of biomarker candidates.
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Introduction

Protein levels determined in blood-based laboratory tests can be
useful proxies of diseases. These biomarkers assess normal physio-
logical status, pathogenic processes, or a response to an exposure or
intervention (FDA-NIH:Biomarker-Working-Group, 2016). Proteins
and enzymes constitute the largest proportion of laboratory tests,
reflecting the importance of the plasma proteome in clinical diag-
nostics (Geyer et al, 2017). Typical protein biomarkers such as the

enzymes aspartate aminotransferase (ASAT) and alanine amino-
transferase (ALAT) for the diagnosis of liver diseases or cardiac
troponins indicating myocardial necrosis are used routinely in clini-
cal decision making. Enzymatic activity or antibody-based labora-
tory tests are performed in high-throughput and at relatively low
costs, as the standard of health care. However, specific biomarkers
are only available for a very limited number of conditions and most
have been introduced decades ago (Anderson et al, 2013). There is
thus a critical need to make the biomarker discovery process more
efficient.

Protein-binder assays quantifying many plasma proteins in paral-
lel have become available (Gold et al, 2010; Assarsson et al, 2014),
resulting in large-scale biomarker mining efforts (Ganz et alf, 2016;
Herder et al, 2018; Sun et al, 2018). Orthogonal to those technolo-
gies, mass spectrometry (MS)-based proteomics has become increas-
ingly powerful in all domains of protein research (Aebersold &
Mann, 2003, 2016; Munoz & Heck, 2014). MS measures the mass
and fragmentation spectra of tryptic peptides derived from the
sample with very high accuracy. Because these peptide and fragment
masses are unique, MS-based proteomics is inherently specific, which
can be an advantage over enzyme tests and immunoassays (Wild,
2013). Within its limit of detection, MS-based proteomics can analyze
all proteins in a system and is unbiased and hypothesis-free in this
sense.

The proteomic community has developed guidelines for the
development, specificity, and potential clinical application of
biomarkers. These discuss quality standards and emphasize the
importance of selecting cohorts that are appropriate in size, thus
ensuring the statistical significance of potential findings (Mischak
et al, 2010; Surinova et al, 2011; Skates et al, 2013; Hoofnagle et al,
2016; Geyer et al, 2017). That being said, there are no systematic
procedures in place to assess the proteome-wide effects of pre-analy-
tical handling of blood-based samples. Considering that plasma
samples are often collected during daily clinical routine and variably
processed, sample collection and processing clearly have the poten-
tial to negatively influence clinical studies, making it difficult to
uncover true biomarkers, while potentially contributing incorrect
ones. Especially in case—control studies, any difference in the
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collection and processing of samples may result in systematic bias.
So far, relatively little attention has been paid to this crucial aspect
on a proteome-wide scale and these studies mainly investigate pre-
analytical effects (Rai et al, 2005; Timms et al, 2007; Schrohl et al,
2008; Qundos et al, 2013; Hassis et al, 2015).

Recently, we developed “Plasma Proteome Profiling”, an auto-
mated MS-based pipeline for high-throughput screening of plasma
samples (Geyer et al, 2016a). In this article, we apply this technol-
ogy to systematically assess the quality of individual samples and
clinical studies with the aim to identify generally applicable qual-
ity marker panels. Blood collection and subsequent errors in
preparation are likely sources of plasma contamination. To
address this issue, we construct proteomic catalogs of contaminat-
ing cell types as well as proteomic changes that may be induced
during processing. This results in three panels of contaminating
proteins, recommendations for assessing the quality of plasma
samples and for consistent sample processing. We develop an
online tool for biomarker studies and test the applicability of the
panels on a recent investigation on the effects of weight loss on
the plasma proteome {Geyer et al, 2016b). A comprehensive litera-
ture review of plasma proteome studies highlights that about half
of them potentially suffer from limitations related to sample
processing.

Results
Erythrocyte and platelet proteins in the plasma proteome

During the development of our Plasma Proteome Profiling pipeline
and its optimization for high-throughput screening of human
cohorts (Geyer et al, 2016a), we repeatedly observed proteins that
tended to emerge as groups of statistically significant outliers but
appeared to be independent of the particular study. We hypothe-
sized that they reflected sample quality issues. Manual and bioinfor-
matic inspection revealed three classes of origin: erythrocytes,
platelets, and the blood coagulation system. Consequently, we
designed experiments to systematically characterize these main
quality issues of the plasma proteome.

First, we acquired reference proteomes of erythrocytes and plate-
lets, which are by far the most abundant cellular components
(5% 10° and 3 x 10° cells per pl). We harvested these cellular
components from 10 healthy females and 10 males to obtain repre-
sentative erythrocytes, platelets, and pure (platelet-free) plasma and
further collected platelet-rich plasma and whole blood (Fig 1A; see
Materials and Methods). Cell counting confirmed the purity of the
samples (Table EV1). All five blood fractions were separately
prepared for each individual by our automated proteomic sample
preparation pipeline, followed by liquid chromatography coupled to
high-resolution mass spectrometry (LC-MS/MS). To create reference
proteomes, we generated a very deep library from pooled samples
by analyzing extensively pre-fractionated peptides (Kulak et al,
2017; see Materials and Methods). A total of 6,130 different proteins
were identified from 61,654 sequence-unique peptides (Fig 1B and
C). The platelet proteome was the most extensive {5,793 proteins),
whereas we detected 2,069 proteins in erythrocytes, 1,682 in
platelet-rich plasma, and 912 in platelet-free plasma. The compar-
ison of platelet-rich plasma to platelet-free plasma (84% additional
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proteins) demonstrates the extent of proteins that can be introduced
by platelets.

Next, we investigated purified samples for all 20 study partici-
pants individually. The average numbers of identified proteins and
peptides were very consistent in all individuals (Appendix Fig S1).
To construct panels of easily detectable and robust quality mark-
ers, we calculated the average protein intensities and the coeffi-
cient of variation (CV) across the study participants. As a
prerequisite, we required that the proteins should be substantially
more abundant in erythrocytes as well as platelets rather than in
plasma. According to these criteria, we selected the 30 most abun-
dant proteins with CVs below 30% and at least a 10-fold higher
expression level in the contaminating cell type than in plasma
{Fig 1D and E). NIF3-like protein 1 (NIF3L1), a low-abundance
erythrocyte-specific protein, was excluded, because it was incon-
sistently identified as was the platelet-bound coagulation factor
F13Al, whose function makes it an unsuitable platelet marker.
The remaining proteins represent our cellular quality marker
panels (Table EV2). They overlap by just two proteins {actin/ACTB
and glyceraldehyde-3-phosphate dehydrogenase/GAPDH), and
their quantities were not correlated with each other (Appendix Fig
$2). Thus, they are specific and independent indicators for the
origin of plasma quality.

Comparing median expression values of proteins shared between
the blood components revealed that plasma proteins do correlate
with whole blood {Pearson’s correlation coefficient R = 0.43), as
expected. In contrast, there was no correlation between the platelet,
erythrocyte, and plasma proteomes (Appendix Fig S2). This indi-
cates that the levels of cellular proteins in plasma are not a constant
fraction of those in the cellular proteomes. The platelet panel was
enriched in platelet-rich plasma compared to normal {platelet-free)
plasma. Both panels are de-enriched in pure plasma compared to
whole blood, however, this effected the erythrocyte panel even
more strongly, because centrifugation removes erythrocytes more
efficiently than platelets. A histogram of both panels over the abun-
dance range visualizes their distribution in the different blood
compartments {Appendix Fig $2). Erythrocytes are 10-fold more
abundant and fourfold larger than platelets, and indeed, the corre-
sponding panel proteins have a 42-fold difference in whole blood.
In plasma, however, their ratio was nearly one to one, again
pinpointing a more efficient removal of erythrocytes than of plate-
lets in standard sample preparation. The fact that several proteins
of both panels were still detectable in pure plasma indicates a base-
line level of contaminants due to imperfect de-enrichment or the life
cycle of these cells. The four most abundant erythrocyte proteins,
HBA1, HBB, CAl, and HBD, were present in pure plasma of almost
all individuals, whereas lower abundant proteins were only sporadi-
cally identified. In contrast, platelet proteins were quantified over a
larger abundance range and some of them were found in every indi-
vidual.

In addition to the sum of panel protein abundances, we calcu-
lated their correlation to the standard reference panel defined by the
20 participants to several hundred plasma samples of a previous
study (Geyer et al, 2016b). A distinct contamination of erythrocyte
proteins seems to be a part of the plasma proteome as the erythro-
cyte panel has in general a relatively high correlation between the
reference cohort erythrocyte levels and the plasma samples in the
above-mentioned study. In contrast, in many plasma samples there
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Figure 1. Identification of blood cell markers.

A Study outline and proteomic workflow. Erythrocytes, thrombocytes, platelet-rich, and platelet-free plasma were generated from 10 healthy female and male
individuals by differential centrifugation and successive purification steps. To generate reference proteomes for each of the blood compartments, the respective

protein samples of the 20 study participates were digested to peptides.

B, € Proteins (B) and peptides (C) identified for platelets, erythrocytes, platelet-rich, and platelet-free plasma.
D, E Selection of the most suitable quality marker proteins for (D) platelet contamination (blue dots) and (E) erythrocyte contamination (red dots) based on their
abundance, the platelet/erythrocyte-to-plasma ratio, and the coefficient of variation. Proteins that were only detected in platelets or erythrocytes, but not in

plasma are aligned on the right side of the graph.

was no correlation detectable between the reference cohort platelet
levels and the plasma samples in the study. In practice, a correla-
tion > 0.5 indicated that the proteins are present as a result of
contamination (Appendix Fig S3A-C). Note that an apparent
contaminant protein could still be applied as a biomarker—
however, in this case its abundance value should be different from
the pattern in the reference quality panel.

Serial dilution experiments validate the erythrocyte and platelet
quality marker panels

To determine whether the two protein panels correctly quantify
contamination in plasma, we generated four pools of erythrocytes
and platelets from five study participants at a time. These pools were
diluted in nine steps into platelet-free plasma for a total range of 107,
followed by cell counting and proteomic analysis (Fig 2A). This
resulted in an expected decrease in the cellular proteome ratio to
plasma (Fig 2B and C). All but two of the panel proteins were consis-
tently quantified over the dilution range. As the protein within each
panel has the same origin, we defined a single variable for each cell
type by summing their intensities and dividing by the summed inten-
sities of all quantified plasma proteins. This yielded two remarkably
robust “contamination indices” that turned out to be linear with
respect to the cell numbers determined by cell cytometry
(Table EV3; R=098 and 0.99, Fig2D and E). Spiked-in

© 2019 The Authors

contaminations of 1:100 could readily be detected, which corre-
sponds to a concentration of 70,000 erythrocytes or 30,000 platelets
per pl plasma.

Quality marker panel for blood coagulation

In addition to contamination due to cellular constituents, partial and
variable coagulation could contribute to systematic bias in
biomarker studies. Indeed, we had found coagulation-related
proteins to be connected to sample handling from finger pricks
while developing our plasma proteomics pipeline (Geyer et al,
2016a). In clinical practice, an anticoagulant is pre-added to
commercially available containers so that it is combined with blood
upon withdrawal. Prompt inversion mixes the anticoagulant with
the blood, yielding pure plasma after centrifugation (Fig 3A). Any
delay in adding or mixing could cause partial coagulation—in the
extreme case of missing anticoagulant and waiting for 30 min, one
would obtain serum instead of plasma.

To generate a panel for assessing blood coagulation, we systemati-
cally compared 72 plasma vs. 72 serum samples (four individuals, 18
aliquots). From a total of 2,099 quantified proteins, 299 were signifi-
cantly altered (Fig 3B). The most significantly de-enriched proteins
after clotting were typical constituents of the coagulation cascade
such as fibrinogen chains alpha (FGA), beta (FGB), and gamma
(FGG) (P <10 '°, > 40-fold), whereas the platelet-associated
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Figure 2. Spike-in of erythrocyte and platelet fractions into pure plasma.

A Dilution and analysis scheme.

B, C Protein intensities were Z-scored across the dilution series (B} for the 29
quality markers of the erythrocyte panel and (C) for the 29 markers of
the platelet panel as a function of their spike-in proportion to plasma.
Whiskers indicate 10-90 percentiles, and horizontal lines denote the
mean.

D  Correlation of erythrocyte count to the “contamination index” for the
erythrocyte marker panel.

E Correlation of platelet count to contamination index for the platelet
marker panel.

coagulation factor F13A1 and antithrombin-11I {SERPINC1) decreased
by more than half. Interestingly, the strongest elevated proteins in
serum were highly abundant platelet proteins: platelet basic protein
(PPBP), platelet glycoprotein Ib alpha chain (GP1BA), throm-
bospondin 1 {THB$1), and platelet glycoprotein V (GPS) (P < 10 %
twofold to fivefold increase). In total, 208 proteins increased and 91
decreased due to coagulation. The former set of proteins, which have
higher levels in serum than in plasma, were also quantitatively
enriched with high-abundant platelet proteins (P <10 °; median
rank 699 of 3,150 proteins), indicating coagulation-induced activa-
tion of platelets.

To define a robust panel of quality markers for the extent of
coagulation, we first selected the 30 most significantly altered
proteins between serum and plasma. Although not among the top
30, we added the platelet factor 4 variant 1 (PFAv1; P < 10 L 2
fold up in serum), because it was an excellent indicator of
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coagulation in our studies and has already been reported in the
context of pre-analytical variation (Timms et al, 2007).

In contrast to the erythrocyte and platelet panels, proteins of the
coagulation panel increase or decrease due to blood clotting and the
fold changes vary strongly between them. Because fold changes are
greatest for the decreasing proteins, we calculated the coagulation
marker ratio only from them {sum of all plasma proteins divided by
sum of plasma-elevated coagulation proteins). This ratio was very
robust when comparing serum and plasma, clearly separating them
with median ratios of 9 and 120 for these distinct sample types
{Fig 3C). Of the coagulation marker panel, only F13A1, PPBP, and
THBS1 were in common with the platelet panel and none with the
erythrocyte panels (Fig 3D). The low overlap observed for the three
quality marker panels should make them highly specific tools to
elucidate the presence and origin of sample-related bias.

Application of the quality marker panels to a biomarker study

The above-defined marker panels can assess sample-related issues
at three levels: the quality of each sample in a clinical cohort, poten-
tial systematic bias in the entire study, and the likelihood that indi-
vidual biomarker candidates belong to the contaminant proteomes.

We recently investigated changes in the plasma proteome upon
weight loss {Geyer et al, 2016a,b). Briefly, caloric restriction in 52
individuals for 2 months was followed by weight maintenance for
1 year. Plasma Proteome Profiling of seven longitudinal samples
revealed significant changes in the profile of apolipoproteins, a
decrease in inflammatory proteins and markers correlating with
insulin sensitivity. Given that protein abundance changes of < 20%
were often highly significant, we expected that overall sample qual-
ity was high, making this study suitable for testing the practical
applicability of the quality marker panels.

First, we assessed the quality of each sample separately by calcu-
lating the three contamination indices and plotting their distribution
in the total of 318 measurements. For each index, we initially
defined potentially contaminated samples as those with a value
more than two standard deviations above the mean (red lines in
Fig 4A). This flagged 12 samples, six with platelet contamination,
one with increased erythrocyte levels, and five with signs of partial
coagulation. Resolving the three quality marker panels to the levels
of individual proteins resulted in almost perfectly parallel trajecto-
ries (Appendix Fig S4A-C). Accordingly, the correlations to the
reference quality marker panels were substantial (R > 0.77). Over-
all, the variation of the contamination indices was highest for the
platelets also visible by a contamination index difference {max/min
ratio) of a factor 182 between the least and the most contaminated
sample, followed by erythrocytes (max/min 23), and lowest for
coagulation (max/min 5). The platelet proteins talin-1 {TLN1),
myosin-9 {(MYH9), and alpha-actinin-1 (ACTN1) had the largest
variations, all with maximal changes > 5,000-fold. Catalase (CAT),
carbonic anhydrase 1 and 2 (CAl, CA2) from the erythrocyte index
varied maximally by more than 500-fold. The three fibrinogens in
the coagulation panel changed by up to 20-fold, indicating that only
partial coagulation events took place (Fig 4A).

Note that evaluating individual sample quality based on the stan-
dard deviation of all samples, as done here, has the benefit of being
independent of the specific proteomic method used to measure
protein amounts. However, this requires that most samples have
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low levels of contamination, so that outliers of the statistical distri-
bution are clearly apparent. If this is not the case, we propose using
general, study-independent cutoff values to differentiate between
samples of high and poor quality in such studies.

To assess potential systematic bias for groups of samples such as
cases and controls or different time points, we applied a t-test based
volcano plot. Most of the significantly upregulated proteins at time
point 4 were members of the platelet panel (Fig 4B). With this infor-
mation in hand, we contacted our collaboration partners, who
tracked down the platelet contamination to a switch of the blood-
taking equipment due to low supplies.

In practice, such sample issues will occasionally happen in a clinical
study, and our quality marker panels would allow elimination of the
affected samples. However, if contaminating proteins can reliably be
distinguished from relevant biomarker candidates, the data could still
be used. In our example, six of the eight significant outliers were from
the platelet panel, and the other two proteins—GP1BA and NRP1—
could still be of interest. To investigate this further, we inspected the
global correlation map of all proteins, time points, and participants
{Albrechtsen et al, 2018). In this hierarchical clustering analysis,
proteins that are co-regulated have a high correlation to each other and
appear in groups, visualized as red patches (Fig 4C). Here, the platelet
cluster was the second largest one with 38 proteins (R = 0.69). All
quantified platelet panel proteins were in this cluster, as was GP1BA,
flagging them as likely contaminants (Fig 4C and inset). Interestingly,
NRP1, a receptor involved in angiogenesis, did not group with the
platelet proteins, suggesting a potential biological role. This is
supported by the fact that NRP1 was significantly regulated over all
time points compared to the baseline, in contrast to the platelet cluster
proteins.

The other two quality marker panels are also readily apparent in
the global correlation map. Ten members of the erythrocyte panel
cluster tightly as do the three fibrinogen chains (Appendix Fig S5).
However, in this study the fibrinogens group with proteins involved
in low-grade inflammation, reduction of which was one of the main
findings of our study {Appendix Fig S5). In contrast, the coagulation
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Figure 3. Quality marker panel for blood coagulation.
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marker PF4v1, which is also a highly abundant protein in platelets,
clustered in the platelet group in this analysis, indicating that it
varied as a result of sample preparation.

To make the above-described analysis readily available, we
created an online platform at www.plasmaproteomeprofiling.org. It
provides a toolbox for the interactive assessment of the quality of
plasma proteomic data. Lists of protein abundances from MaxQuant
search result tables or the template (Table EV4) can be uploaded by
a simple drag and drop system. The system automatically generates
the three contamination index values as shown in Fig 4A. If the user
indicates cases and controls, the data set will be analyzed for
systematic bias as visualized in a volcano plot (Fig 4B). The global
correlation map is also displayed with the clusters of the quality
marker panels (Fig 4C). The website is designed in the Dash data
visualization framework, which allows further interactive analysis
of the data (see Materials and Methods). Potential biomarker candi-
dates in the volcano plot can be selected and displayed in the global
correlation map to check whether the protein falls into or near one
of the quality marker clusters.

Revisiting results of published biomarker studies

Having examined one study in detail, we set out to survey the
extent to which quality marker proteins are reported as biomarker
candidates in the literature. To this end, we performed a compre-
hensive PubMed search requiring the terms ‘proteomics‘, ‘pro-
teome’, ‘plasma OR serum’, ‘biomarker‘ and ‘mass spectrometry"
spanning the time frame from 2002 to April 2018. We excluded
review papers, purely technological publications without
biomarker candidates, animal studies, and publications without
proteins as qualitative or quantitative variables. From the resulting
210 publications, we manually extracted the lists of the biomarker
candidates that were reported as “significantly altered proteins” by
the authors. Gene and protein names were mapped to the corre-
sponding protein identifiers in our reference panels and analyzed
for their frequencies.
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A Preparation of plasma and serum samples. EDTA was used as anticoagulation agent, and incubation and centrifugation values are indicated.

B Volcano plot comparing 72 plasma vs. 72 serum proteomes. Proteins highlighted in yellow were chosen according to their P-value as markers for coagulation. Only
the plasma-enriched proteins (compared to serum) were used in the calculation of the coagulation contamination index.

C Ratio of the summed intensities of all plasma or serum proteins to the sum of the plasma-enriched panel proteins is plotted for all samples. Whiskers indicate the

10-90 percentile, and horizontal lines denote the mean.
D Overlap of the three quality marker panels.
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Remarkably, 113 studies (54 %) reported at least one potential qual-
ity marker as a biomarker candidate or as a statistically significant
association (Fig 4D). As the total quality marker panel consists of 84
proteins and the median number of candidates per clinical study was
seven, a certain overlap is not entirely unexpected. However, the
candidates in question almost always were near the top of most abun-
dant proteins of the quality marker panels, making it highly likely that
they are indeed contaminants. Furthermore, while an individual
protein could still be a genuine biomarker candidate, the fact that 22
studies (11%) reported two of them, and a further 23 studies (11%)
three or more, again makes quality issues the likely explanation.

The majority of these studies reported proteins as potential
biomarkers or as significant outliers of the coagulation panel, followed
by the erythrocyte and platelet panels (Fig 4E). The most frequent one
was clusterin {CLU; 27 times), followed by the fibrinogens (alpha, beta,
and gamma; 22, 10, and 15 times), prothrombin (F2; 17 times), kinino-
gen (KNGI; 15 times), antithrombin-IIl (SERPINC1; 13 times), and
platelet basic protein (PPBP; 10 times). It is worth noting that proteins
related to erythrocyte leakage may falsely be taken to indicate activa-
tion of oxidative pathways. For example, the hemoglobin subunits
{e.g. HBAL, HBB, and HBD, listed 1, 6, and 1 time), carbonic anhy-
drases (CAl and CA2, 6 and 6 times), fructose-bisphosphate aldolase
{ALDOA, 5 times), peroxiredoxin 2 {PRDX2, 3 times), and superoxide
dismutase {SOD1; 2 times) are annotated with keywords linked to
oxidation. To illustrate this, a recent publication connected plasma
proteome alterations in type 1 diabetes to oxidative stress. This may be
a spurious link because the reported proteins were mostly members of
the erythrocyte quality marker panel (Liu et af, 2018). Although
platelet panel proteins are not prominent in the biomarker literature
yet, we expect that they—along with lower abundant erythrocyte-
specific proteins—will play an increasing role as technological progress
enables higher plasma proteome coverage. We caution that platelet
proteins already found in the biomarker literature such as PPBP,
THBS1, and PF4 are often linked to coagulation events.

Recommendations for future proteomic studies

Based on our experience with the above-defined three quality
marker panels (Table EV2) and analysis of thousands of plasma
proteomes, we devised a general guideline for minimizing and
detecting biases related to sample taking and processing (Table 1).

To further document the influence of common variables in the
blood-taking process, we invited 10 healthy individuals and
collected blood in 10 different blood sampling tubes. In this experi-
ment, we systematically varied the type of plasma/serum, the blood
specimen tubes (with or without gel}, and the deposition of blood
into the sampling tube {vacuum vs. pull system).

The most prominent differences were again between serum and
plasma (Fig 3B; Appendix Fig S6). Apart from this, we found that
contaminations with high-abundant erythrocyte-specific proteins
appeared in several comparisons. Serum and EDTA plasma both had
significantly higher levels than lithium heparin and citrate plasma
{Appendix Fig S6A-F). Moreover, vacuum sampling can have an
influence on erythrocyte-specific protein levels for some tubes. For
instance, we found significantly increased levels of HBA1 and HBB
in lithium heparin plasma tubes after vacuum sampling compared to
a pull system, but not in the same comparison when using serum
tubes (Appendix Fig S7A-D). Furthermore, erythrocyte-specific
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proteins were significantly increased in lithium heparin pull tubes
{more than twofold), which contain a gel plug compared to pull
tubes without a gel plug {Appendix Fig S8A-D). In contrast, there
were no differences between serum tubes with and without gel.
These findings illustrate how even seemingly minor changes in
blood-taking equipment can result in statistically significant dif-
ferences of protein levels, which could confound biomarker studies.
They also highlight the value of unbiased, system-wide investigation
of the blood proteome and our quality marker panels.

We also found that the procedure of sampling the plasma from the
tubes has a prominent effect on platelet contamination {Appendix Figs
$9 and $10). Thus, we recommend not to collect the lowest layer of
the plasma above the platelet bed after centrifugation. Furthermore,
any delay from centrifugation to plasma harvest has the potential to
induce platelet protein contamination. These factors mainly influence
the platelet rather than the erythrocyte contamination index, indicating
that proteins from the platelet proteome are the most likely cause of
erroneous assignment of biomarker candidates.

Discussion

Blood plasma remains the predominant biological matrix to assess
health and disease in clinical settings. Around the world, every day
hundreds of thousands of samples are analyzed to determine the
levels of individual proteins. Likewise, blood plasma is directly or
indirectly assessed in most clinical trials. Protein levels in plasma
can readily be affected by cellular contamination or handling-related
issues, and in clinical practice, this is partially addressed by simple
tests such as those for hemoglobin contamination. However, these
tests are not systematic or quantitative and they can only be used to
exclude clearly contaminated samples.

Because of its high specificity and unbiased nature, MS-based
proteomics is ideally suited to characterize the quality of blood
plasma and it requires < 1 ul of material. So far, research on sample
quality involving MS has mainly been restricted to the stability of
internal standards in targeted assays and has rarely addressed over-
all sample quality (Schrohl et al, 2008; Hassis et al, 2015; Hoofnagle
et al, 2016). Employing our Plasma Proteome Profiling pipeline to
various clinical studies suggested that platelets, erythrocytes, and
coagulation are by far the most important causes of plasma quality
issues. We acquired very deep reference proteomes for these cell
types and blood compartments, which we provide to the community
to evaluate the possible origin of proteins emerging from biomarker
studies. We defined three panels of about 30 proteins each that can
serve as contamination indices {Table EV2). Using the example of a
longitudinal Plasma Proteome Profiling study of weight loss and our
online resource, we illustrated how the contamination indices can
flag individual suspect samples and systematic biases. Furthermore,
correlation analysis reveals whether potential biomarkers emerging
from a given study are likely to be associated with quality-related
proteome changes instead. Conversely, this procedure can “rescue”
genuine biomarker candidates that are part of the quality marker
proteomes. As an example, fibrinogens, a member of the coagula-
tion quality marker panel, can also change during an inflammatory
condition and might be correlated with classical inflammation mark-
ers such as CRP. In certain diseases, the entire set of proteins of a
quality marker panel can be altered. For example, increased platelet
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Figure 4. Quality marker panels in a weight loss study and literature study.

Philipp E Geyer et al

A Assessment of individual sample quality with respect to the three contamination indices using the online tool at www.plasmaproteomeprofiling.org. Samples with
indices that are more than two standard deviations from the mean (horizontal red lines) are flagged as potentially contaminated (red bars and sample numbers).
B Volcano plot of the proteome comparison of time point 1 vs. 4. Proteins of the platelet panel are highlighted in blue and two additional significantly regulated

proteins in red.

C Global correlation map on the left with an inset of the platelet cluster on the right. The two significant outliers of the volcano plot in (B) are marked in red. Platelet
panel proteins are highlighted in blue in the inset. Red patches in the global correlation map indicate positive and blue patches negative correlations.
D Literature analysis of 210 publications using MS-based plasma proteomics to identify new biomarkers. The number of quality markers reported as biomarker

candidates in these studies is indicated.

E Distribution of the reported quality markers according to the three types of likely contaminations. The distribution is shown across studies that report one, two, or

three proteins of the same quality marker panel.

levels—thrombocythemia—can have a variety of causes ranging
from chronic inflammation to myeloproliferative diseases. Likewise,
increased concentration of erythrocyte-specific proteins can be
caused by hemolytic diseases such as in autoimmunity. While these
cases are not the usual reasons why a quality marker panel is
altered, they need to be considered when judging the analytical
validity of a plasma measurement.

The clinical potential of the plasma proteome has long been
realized and is also emphasized by the fact that more than 50

Table 1. Practical considerations to minimize systematic bias.
General instructions

Avoid pooling of samples

Use plasma or serum exclusively, not a combination

Sample collection

Standardize blood collection and pre-analytical procedures (preferably
same person collecting blood, centrifuge, sampling container, storage
temperature, and time)

Centrifuge blood to generate plasma immediately

Centrifuge according to manufacturer’s instruction

Harvest plasma immediately after centrifugation

Harvest the plasma starting from the top of the container and pool it
before aliquotting

Discard the last 500 pl of plasma to aveid contamination with platelets or
use a second centrifugation step to generate platelet-poor plasma

Freeze samples immediately after harvesting

Principal assessment of study sample quality

When working with a new batch of samples fram collaborators: run at
least 10 test samples of each study group by mass spectrometry

Use quality marker panels to check for any indication of contamination

Main study

Continuously assess quality during the project to detect and avoid
systematic bias (pre-analytics, mass spectrometric analyses)

Overall quality: report the number of contaminated samples

Systematic bias: report potential systematic bias

Check whether biomarker candidates are contained in the quality marker
panels

Identification of several quality markers as biomarker candidates may be
indicative of a study vector

If a quality marker is among the biomarker candidates, thorough validation
is required
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FDA-approved biomarkers can be quantified even in relatively
shallow proteomic measurements of plasma (Geyer et al, 2016a).
If there are as many new biomarkers among the less abundant
proteins, there should be a diagnostic treasure trove still to be
discovered {Geyer et al, 2017). Millions of plasma samples are
stored in biobanks worldwide, representing an immense untapped
resource that could be analyzed by MS-based proteomics or large-
scale affinity-based methods. Despite initial enthusiasm and
community efforts such as the Human Proteome Organization’s
plasma proteomic initiative (Omenn et al, 2005; Schwenk et al,
2017), few if any new protein biomarkers have entered the clinic
in recent decades. This is probably at least partially due to techno-
logical limitations to characterize the vast dynamic range of the
plasma proteome, which in turn has led to underpowered study
designs (Geyer et al, 2017). While many of these challenges are
already being addressed, we suspect that problems with sample qual-
ity represent another important reason for the paucity of new
biomarkers and, even more seriously, for incorrect biomarkers being
used. Examining our own data as well as the scientific literature, we
here show that sample quality issues indeed have an impact on
reported results. Nearly half of the reviewed studies reported at least
one potential biomarker that is in our quality marker panels, and
many had two or more, making sample contamination very likely.
While coagulation-related issues are currently most prominent,
increasing depth of plasma proteome coverage may replace platelet
contamination as the most important source of error in the future. A
corollary of the very large abundance variation of proteins introduced
by quality issues is that it should further discourage pooling of
samples. While this increases throughput, even a single contaminated
sample can readily skew an entire batch.

Systematic bias introduced by imperfect sample handling or
processing may lead to reporting incorrect biomarkers. Conversely,
randomly distributed samples with poor quality will diminish over-
all statistical quality and may obscure true biomarker candidates.

The sources of quality issues are different kinds of variations in
the pre-analytical processes, and we found platelet contamination
during plasma harvesting to be one of the main culprits. Among the
few previous studies, Hassis et al (2015) investigated different
sample handling errors and concluded that only extreme conditions,
such as delay in sample storage for 4 days, substantially changed
the plasma proteome. However, proceeding with such extreme cases
is rare, and quality issues are much more likely to originate from
recontamination with whole blood after centrifugation during the
plasma harvest or post-centrifugation times and resuspension of
platelets, for instance. The comparison of 10 different blood
sampling tubes showed that even seemingly minor differences in
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the sample handling devices like a pull vs. a vacuum deposition
system can have a statistically significant effect on the measured
proteome. Therefore, we want to stress the importance of strictly
following standard operating procedures. We here provide general
considerations for minimizing sample-related issues, ranging from
immediate harvest of the plasma after centrifugation to discarding
the lowest layer of plasma to avoid recontamination with platelets
(Table 1). These recommendations update and extend general
good laboratory practices as well as HUPO guidelines (Omenn
et al, 2005; Rai et al, 2005). We also advocate that plasma
samples are quality-checked by MS-based proteomics, at least for
a representative subset. This is especially important for clinical
studies but also for targeted single-analyte measurements, which
by their nature are blind to the overall composition of the sample.
Although it would be possible to determine contamination indices
by multiplexed affinity-based methods, we recommend MS for
this purpose because of its very high specificity and its unbiased
nature. Furthermore, the proteomic depth needed to assess the
quality is easily achievable even in rapid and economical
measurements.

The concepts and methods put forward in this study could read-
ily be adapted to other body fluids such as urine, saliva, or cere-
brospinal fluid. This would require developing the appropriate
contamination indices. Furthermore, the three quality marker cate-
gories are the largest but not the only ones. For instance, we imag-
ine that similar experiments can be performed to gauge the effect of
storage duration and temperature on the plasma proteome as it
influences MS-based proteomics.

In conclusion, sample-related quality issues are clearly a concern
for biomarker studies. However, we show here that they can be
addressed rigorously and comprehensively by MS-based proteomics.
As this technology continues to improve in throughput, depth, and
robustness, we envision that it will be employed in routine clinical
practice. Biomarker panels instead of single markers will be
measured by MS-based proteomics as this takes advantage of its
inherently multiplexed nature and allows the characterization of
clinical conditions more comprehensively. These biomarker panels
could routinely be extended with quality marker panels as intro-
duced here, helping to establish biomarker-guided decisions in a
wide variety of clinically important areas.

Materials and Methods
Samples for defining the three quality marker panels

All participants gave written informed consent for their participation
in the Munich Study on Biomarker Reference Values (MyRef), which
is registered under the local ethic number 11-16. All experiments
conformed to the principles set out in the WMA Declaration of
Helsinki and the Department of Health and Human Services
Belmont Report.

To establish the quality marker panels, whole blood was
harvested by venipuncture of 10 females and 10 males into commer-
cial EDTA-containing sampling containers. The blood was centri-
fuged at 200 g for 10 min, and both the pellet and the supernatant
were kept for further processing steps. The bottom layer of 500 pl
plasma was discarded to avoid contamination of the platelet-rich
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plasma fraction with erythrocytes. The pellet was centrifuged at
2,000 g for 15 min, and the top layer containing plasma, the
buffy coat, and 1 ml of erythrocytes were discarded. After adding
4 ml PBS containing 1.6 mg/ml EDTA, the suspension was
centrifuged at 2,000 g for 15 min and the supernatant was
discarded together with 500 pl of the top layer of the erythro-
cytes. This step was repeated, and the pure erythrocyte fraction
was harvested. We centrifuged the supernatant from the first
centrifugation step containing plasma and platelets a second time
at 200 g for 10 min and harvested the supernatant, which consti-
tutes the platelet-rich plasma. This step was repeated, and we
collected the supernatant and the platelet after centrifugation at
2,000 g for 15 min. The supernatant was centrifuged a second
time at 2,000 g for 15 min to harvest platelet-free plasma by
sampling only top layer of the supernatant, but discarding the
bottom layer of 500 pl. The platelets were washed twice by
adding 4 ml PBS containing 1.6 mg/ml EDTA and centrifugation
at 2,000 g for 15 min. The supernatant was discarded, and the
pure platelet fraction was harvested.

For the serum and plasma comparison, blood samples from two
females and two males were split into 18 samples each and serum
and plasma were harvested after centrifugation at 2,000 g for
15 min.

To investigate the effects of different blood sampling devices on
the blood plasma proteome, we invited 10 healthy individuals (five
female and five males) and collected blood in the 10 different blood
sampling devices (Table EVS). After collecting whole blood, it was
incubated at room temperature for 30 min to allow coagulation in
the serum tubes. The plasma tubes were also stored at room temper-
ature for the same time, and the different tubes were centrifuged
together. Afterward, 0.5 ml of plasma or serum was sampled from
the top of the tubes.

To evaluate the platelet contamination in different layers of
plasma after centrifugation, blood was collected in two different 9-
ml S-Monovette EDTA-containing sampling containers (Sarstedt).
The blood of one container was transferred to a 15-ml centrifugation
tube without separation gel. Both containers were centrifuged at
2,000 g for 15 min. Plasma was harvested in nine volume fractions
starting from the top layer in 500 pl steps to the top of the buffy
coat. The buffy coat itself was not touched, and a small amount of
plasma (~200 pl) remained on top.

High-abundant protein depletion for building a matching library

We created a matching library and applied a consecutive deple-
tion strategy, in which the top 6 and top 14 most abundant
plasma proteins were depleted by using a combination of two
immunodepletion Kkits, as described in ref. Geyer et al (2016a).
Briefly, the Agilent Multiple Affinity Removal Spin Cartridge was
used for the depletion of the top six highest abundant proteins
{albumin, IgG, IgA, antitrypsin, transferrin, and haptoglobin),
followed by Seppro Human 14 Sigma immunodepletion for the
14 highest abundant proteins (albumin, 1gG, IgA, IgM, IgD, trans-
ferrin, fibrinogen, o2-macroglobulin, «l-antitrypsin, haptoglobin,
ol-acid glycoprotein, ceruloplasmin, apolipoprotein  A-],
apolipoprotein A-ll, apolipoprotein B, complement Clq, comple-
ment C3, complement C4, plasminogen, and prealbumin). Follow-
ing depletion, we fractionated our samples using the high pH
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Problem

New biomarkers are urgently needed in many health and disease
contexts and mass spectrometry-based proteomics is a potentially
powerful and promising technology for their discovery, as it can
analyze the plasma proteome in a quantitative and specific manner.
However, a systematic analysis of pre-analytical variations might
obscure the discovery of novel biomarkers and has not been
performed so far.

Results

We employ Plasma Proteome Profiling to discover three quality
marker panels that report on the status of plasma samples with
regards to erythrocyte lysis, platelet contamination, and partial coagu-
lation. These panels can identify individual samples of poor quality
and correct for systematic bias in biomarker studies. Moreover, they
can be applied to evaluate whether a novel biomarker candidate is
linked to one of the sources of contamination. We further provide
sample preparation guidelines and an online resource to assess the
overall sample-related bias in individual samples in clinical studies.

Impact

Quality issues due to erythrocyte lysis, platelet contamination, and
partial coagulation might affect up to 50% of all biomarker studies as
we showed by a literature survey of more than 200 published manu-
scripts. Qur quality marker panels will prevent costly miss-assignment
of potential biomarker candidates and support the discovery of
promising biomarkers.

reversed-phase “Spider fractionator” into 24 fractions as described
previously (Kulak et al, 2017).

Sample preparation: protein digestion and
in-StageTip purification

Sample preparation was carried out according to our Plasma
Proteome Profiling pipeline as described in Geyer et al (2016a,b) with
an automated setup on an Agilent Bravo Liquid Handling Platform. In
brief, plasma samples were diluted 1:10 with 33H,O and 10 pl of the
sample was mixed with 10 pl PreOmics lysis buffer (P.O. 00001,
PreOmics GmbH) for reduction of disulfide bridges, cysteine alkyla-
tion, and protein denaturation at 95°C for 10 min (Kulak et ai, 2014).
Trypsin and LysC were added to the mixture after a 5-min cooling
step at room temperature, at a ratio of 1:100 micrograms of enzyme
to micrograms of protein. Digestion was performed at 37°C for 1 h.
An amount of 20 pg of peptides was loaded on two 14-gauge
StageTip plugs, followed by consecutive purification steps according
to the PreOmics iST protocol (www.preomics.com). The StageTips
were centrifuged using an in-house 3D-printed StageTip centrifugal
device at 1,500 g. The collected material was completely dried using
a SpeedVac centrifuge at 60°C (Eppendorf, Concentrator plus).
Peptides were suspended in buffer A* [2% acetonitrile {(v/v), 0.1%
formic acid (v/v)] and sonicated {Branson Ultrasonics, Ultrasonic
Cleaner Model 2510}. Pools for each of the five sample types (whole
blood, erythrocytes, platelets, plasma, and platelet-free plasma) were
generated from the 20 individuals and prepared according to the
procedure above. The peptides were fractionated using the high pH
reversed-phase “Spider fractionator” into 24 fractions as described
previously to generate deep proteomes (Kulak et af, 2017).
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Ultra-high-pressure liquid chromatography and
mass spectrometry

Samples were measured using LC-MS instrumentation consisting of
an EASY-nLC 1000 or 1200 ultra-high-pressure system (Thermo
Fisher Scientific), which was coupled to a Q Exactive HF Orbitrap
{Thermo Fisher Scientific) using a nano-electrospray ion source
{Thermo Fisher Scientific). Purified peptides were separated on 40-
cm HPLC columns [ID: 75 pm; in-house packed into the tip with
ReproSil-Pur C18-AQ 1.9 pm resin {Dr. Maisch GmbH)]. For each
LC-MS/MS analysis, about 0.5 pug peptides were used for 45-min
runs and for each fraction of the deep plasma data set.

Peptides were loaded in buffer A [0.1% formic acid and 5% DMSO
{v/v)] and eluted with a linear 35-min gradient of 3-30% of buffer B
[0.1% formic acid, 5% DMSO, and 80% (v/v) acetonitrile], followed
stepwise by a 7-min increase to 75% of buffer B and a 1-min increase
to 98% of buffer B, followed by a 2-min wash of 98% buffer B at a
flow rate of 450 nl/min. Column temperature was kept at 60°C by an
in-house-developed oven containing a Peltier element, and parame-
ters were monitored in real time by the SprayQC software (Scheltema
& Mann, 2012). MS data were acquired with a Topl5 data-dependent
MS/MS scan method for the construction of the library and BoxCar
scans (Meier et al, 2018) for the study samples. Target values for the
full-scan MS spectra were 3 x 10° charges in the 300-1,650 m/z
range with a maximum injection time of 55 ms and a resolution of
60,000 at m/z 200. Fragmentation of precursor ions was performed
by higher-energy C-trap dissociation (HCD) with a normalized colli-
sion energy of 27 eV. MS/MS scans were performed at a resolution of
30,000 at m/z 200 with an ion target value of 1 x 10° and a maxi-
mum injection time of 120 ms. Dynamic exclusion was set to 30 s to
avoid repeated sequencing of identical peptides.

Data analysis

MS raw files were analyzed by MaxQuant software, version 1.5.6.8,
{Cox & Mann, 2008), and peptide lists were searched against the
human UniProt FASTA database. A contaminant database generated
by the Andromeda search engine {Cox et al, 2011) was configured
with cysteine carbamidomethylation as a fixed modification and N-
terminal acetylation and methionine oxidation as variable modifi-
cations. We set the false discovery rate {(FDR) to 0.01 for protein and
peptide levels with a minimum length of 7 amino acids for peptides,
and the FDR was determined by searching a reverse database. Enzyme
specificity was set as C-terminal to arginine and lysine as expected
using trypsin and LysC as proteases. A maximum of two missed cleav-
ages were allowed. Peptide identification was performed with an initial
precursor mass deviation up to 7 ppm and a fragment mass deviation
of 20 ppm. The “match between run algorithm” in the MaxQuant
quantification (Nagaraj et al, 2012) was enabled after constructing a
matching library consistent of depleted and all the undepleted plasma
samples. All proteins and peptides matching to the reversed database
were filtered out. Label-free protein quantitation (LFQ) was performed
with a minimum ratio count of 2 (Cox et ai, 2014).

Bioinformatic analysis

All bioinformatic analyses were performed with the Perseus soft-
ware of the MaxQuant computational platform {Cox & Mann, 2008;
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Tyanova et al, 2016). For the global correlation analysis, proteins
were filtered for at least 50% valid values in the weight loss study
and the hierarchical clustering was performed using Euclidean
distance. The weight loss study contained in total 28 proteins of the
platelet panel, but after sorting for 50% valid values only 24 were
left and all of them clustered in the platelet panel.

Online platform for automated analysis of clinical studies

Our online portal is equipped with a user-friendly graphical inter-
face that supports the most common web browsers, such as Google
Chrome, Firefox, and Internet Explorer. For the front-end develop-
ment, a Dash framework was used (version 0.27.0), which consists
of a Flask server (1.0.2) that communicates with front-end React.js
components using JSON, or JavaScript Object Notation, packets (a
minimal, readable format for structuring data) over HTTP, or Hyper-
text Transfer Protocol, requests that work as request-response
protocols between a client and server. Taking advantage of the full
power of Cascading Style Sheets (CSS), every graphical element was
customized: the sizing, the positioning, the colors, and the fonts.

The platform takes the results of the MS data processed by the
MaxQuant software (Cox & Mann, 2008) from the proteinGroups
table (to be extended to other formats). During the data uploading,
the input file is verified through a combination of preliminary tests.
We built a complex data structure using general Python libraries,
such as NumPy, Pandas, and SciPy. Using three panels of markers for
platelet contamination, erythrocyte contamination, and coagulation
events in plasma samples, respectively, we identify samples affected
by quality issues. Samples having at least 50% “valid values” (i.e.
those with quantification results) are preprocessed by cleaning the
data and prepare them for the subsequent visualization step.

Data availability

The MS-based proteomic data have been deposited to the Proteo-
meXchange Consortium via the PRIDE partner repository and are
available via ProteomeXchange with identifier PXD011749 (https://
www.ebi.ac.uk/pride/archive/projects/PXD011749).

Expanded View for this article is available online.
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The publication ‘Proteome profiling in cerebrospinal fluid reveals novel biomarkers of
Alzheimer’s disease’ applies MS-based proteomics to the characterization of CSF from
Alzheimer’s Disease and control patients. Our general aim was the discovery of new
biomarkers or more general disease associated signatures. This was done with the
‘rectangular approach’ (Geyer et al., 2017), with three cohorts from different clinical sites
and overall about 200 individuals. We supply CSF proteomes with an average depth of
1000 protein groups and are able to specify functional subclusters in the proteome like

metabolic factors and neuronal tissue leakage proteins. Despite the fact that one of the
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three cohorts shows less separation between cases and controls, we are able to identify
a 40-protein signature, 35 with elevated abundance and 5 with decrease abundance in
Alzheimer’s disease. The majority of those proteins highly correlate with parameters for
clinical identification of Alzheimer’s disease like t-tau and are enriched for glycolysis

associated functions.

By comparison of our results to a study with similar aims published as a preprint in
parallel, we reduce the set of 40 proteins to 26, to which we apply machine learning. We
find that a set of 14 proteins can correctly classify Alzheimer’s disease status with a
decision tree. After tuning the model, we demonstrate that the signature of the six most
important parameters for classification can split between Alzheimer’s disease patients

and control with a sensitivity of 82% and a specificity of 87%.
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Abstract

Neurodegenerative diseases are a growing burden, and there is an
urgent need for better biomarkers for diagnosis, prognosis, and treat-
ment efficacy. Structural and functional brain alterations are reflected
in the protein composition of cerebrospinal fluid (CSF). Alzheimer's
disease (AD) patients have higher CSF levels of tau, but we lack knowl-
edge of systems-wide changes of CSF protein levels that accompany
AD. Here, we present a highly reproducible mass spectrometry (MS)-
based proteomics workflow for the in-depth analysis of CSF from mini-
mal sample amounts. From three independent studies (197 individu-
als), we characterize differences in proteins by AD status (> 1,000
proteins, CV < 20%). Proteins with previous links to neurodegenera-
tion such as tau, SOD1, and PARK7 differed most strongly by AD status,
providing strong positive controls for our approach. CSF proteome
changes in Alzheimer's disease prove to be widespread and often
correlated with tau concentrations. Our unbiased screen also reveals a
consistent glycolytic signature across our cohorts and a recent study.
Machine learning suggests clinical utility of this proteomic signature.
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Introduction

Alzheimer’s disease (AD) is the most common type of dementia,
and its prevalence is growing rapidly in aging societies (GBD 2016
Neurology Collaborators, 2019). In 2015, almost 47 million people
worldwide were estimated to be affected by dementia, and the
numbers are expected to reach 75 million by 2030, and 131 million
by 2050, with the greatest increase expected in low-income and
middle-income countries (Winblad et al, 2016). Patients with AD
typically present with memory impairment and difficulty performing
activities of daily living (Scheltens et af, 2016). However, symptoms
may manifest decades after the underlying pathology has initiated,
including the deposition of amyloid plaques and development of
neurofibrillary tangles (Jack et af, 2010).

Biomarkers have become important diagnostic tools to define the
presence and absence of dementia before onset of memory loss.
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While a research framework for defining AD based on beta amyloid
{ApB) deposition, pathologic tau, and neurodegeneration (ATN) has
been proposed (Jack et al, 2018), clinical criteria for AD are not
universally standardized and range from clinical presentation to
brain imaging by MRI and PET to clinical chemistry analysis of
AB1-42/AB140, total-tau (t-tau), and phosphorylated-tau {p-tau;s;) in
cerebrospinal fluid (CSF; Frisoni et al, 2010; McKhann et al, 2011;
Ferreira et al, 2014; Rice & Bisdas, 2017). Most research currently
focuses on AP and tau, because they are the main components of
amyloid plaques and neurofibrillary tangles {Serrano-Pozo et al,
2011). However, the search for a disease-modifying therapy has yet
to show clinically relevant results and it is becoming increasingly
clear that many additional pathological changes in multiple path-
ways occur in dementia.

Thus, we propose an unbiased analysis of CSF proteins in partici-
pants with and without AD for a comprehensive search for novel
diagnostic biomarkers. A set of reliable protein biomarkers rather
than a single marker could also enable the development of highly
specific tests for early disease detection in at-risk segments of the
population. Ideally, such markers should identify unexpected
biological pathways and new potential therapeutic targets for future
development.

Mass spectrometry {MS)-based proteomics has become a very
powerful technology for the analysis of protein abundance levels,
modifications, and interactions, with important discoveries in
biological and biochemical research, including neuroscience (Aeber-
sold & Mann, 2016; Hosp & Mann, 2017). MS-based proteomics is
unbiased in the sense that it identifies and quantifies proteins in an
untargeted manner. Additionally, the identification is extremely
specific through the amino acid sequence information at the peptide
level. These inherent features differentiate MS-based from affinity-
based methods and should make MS an ideal tool for biomarker
discovery; however, in body fluids this long-standing goal has not
generally been realized so far. This has been due to a variety of
technological and conceptual limitations, compromising repro-
ducibility, the number of consistently quantified proteins and
throughput (Geyer et al, 2017). For instance, a general issue in body
fluid proteomics is the presence of highly abundant proteins such as
albumin that hamper efficient identification of less abundant
proteins. Previous workflows were laborious, typically quantified a
few hundred proteins at most per sample and required hundreds of
microliters of precious CSF, thereby limiting the availability of suit-
able samples (Dayon et al, 2018). Reproducibility was low with only
a minority of proteins having clinically accepted coefficients of vari-
ation (CV) of < 20%. Furthermore, many proteins were not quan-
tifiable in all study participants and validation in well-characterized
study populations was lacking. Therefore, entire databases have
been curated to navigate reported CSF proteome alterations across
studies in the field of neurodegeneration including AD (Guldbrand-
sen et al, 2017).

Recent technological advances enable substantially higher
proteome coverage and better and more comprehensive protein
quantitation. These developments include automated sample prepa-
ration, technological improvements in mass spectrometers, MS data
acquisition, and processing software that synergize to enhance the
overall analytical performance (Bruderer et al, 2017; Kelstrup et a!,
2018). Based on these advances, we here developed a streamlined
and highly reproducible workflow from sample preparation to data-

2 of 17 Molecular Systems Biology 16: €9356 | 2020

Jakob M Bader et al

independent MS acquisition (Ludwig et af, 2018) and an integrated
analysis of the results for CSF. This workflow enabled us to clearly
identify the established markers as well as a large number of consis-
tent and biologically meaningful proteome changes across several
independent cohorts.

Results
Overview of study populations

We recently proposed a shift in the study design of clinical discov-
ery proteomics termed “rectangular strategy” {Geyer et al, 2017).
In the previous “triangular strategy” study design, selected samples
were characterized with extensive workflows and a small number
of candidates were then assessed in a larger number of individuals
using targeted methods. However, these candidates often turned
out to be specific to the discovery population and could not be
validated in independent study populations. In contrast, in the
“rectangular strategy”, multiple studies are subjected to the same
high proteome depth workflow, moving the discovery to the popu-
lation-wide setting in order to discern pathological from study-
specific effects.

To implement the rectangular strategy, we analyzed three sepa-
rate study populations of about 30 AD patients and about 30 or 50
controls, amounting to 197 individuals in total (Fig 1A). We refer to
the study populations as cohorts throughout the manuscript,
because each cross-sectional study was slightly different, conducted
in distinct settings and geographical regions. One cohort originated
from western Sweden, another from the German cities Magdeburg
and Kiel (obtained through Harvard T. H. Chan School of Public
Health), and the third from Berlin. The overall median age was
70.0 + 12.1 years (4 SD) (Fig EV1A). However, the 16 non-AD
control patients of the Kiel sub-cohort were younger (median
32.0 £ 17.1 years). In each of our cohorts, patients were classified
as AD if the t-tau concentration was above 400 ng/l, and the AR, 4,
concentration below 550 ng/l or the Ap; 4,/AB,4o ratio below
0.065 as determined by ELISA measurement at the clinical collection
site (Materials and Methods).

The degree of separation of AD cases and controls by clinical AD
CSF biomarker concentrations differed across cohorts. AD and non-
AD were best separated in the Sweden cohort but the Magdeburg
cohort also exhibited a good overall separation (Fig EV1B-K, Mate-
rials and Methods). In the Berlin cohort, however, AD and control
groups overlapped to some degree regarding CSF AB;_4, and slightly
regarding t-tau.

Characterization of the CSF proteomics workflow

Previously, we developed a streamlined Plasma Proteome Profiling
pipeline, in which the proteins in one microliter of plasma are
digested to peptides and purified for MS analysis in an automated
system (Geyer et al, 2016). CSF contains much less protein than
plasma, with about 0.17-0.70 g/l and 60-80 g/l total protein
content, respectively (Seyfert et al, 2002; Laub et al, 2010). Never-
theless, we achieved a very robust workflow with high proteome
depth from only a few microliter of sample that was not depleted of
highly abundant proteins (Fig 1A and C). We adopted a data-

© 2020 The Authors
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A Overview of the study populations (cohorts) and schematic proteomic workflow. The CSF of three cohorts comprising AD and control subjects was analyzed. The total
number of subjects per cohort group is depicted. Light and dark shades represent female and male subjects, respectively. “Ctrl” refers to non-AD control subjects.

B Number of proteins identified and quantified passing the 1% FDR cutoffs in each sample. Horizontal lines show the mean and the error bars & SD. The dashed line
indicates the level of the meta-median (1,233 proteins) of the group medians of quantified proteins. Number of samples per group as shown in A).

C Data completeness curve. The number of proteins in the dataset (Y axis) depending on the minimum number of samples in which the proteins have each been
quantified (X axis) is plotted. The arrows indicate 50%, 75%, and 100% data completeness.

D Median CSF protein abundance distribution as calculated from MS intensities of quantified peptides of each protein. The top ten most abundant proteins and

hemoglobins are highlighted.

E Global correlation map of proteins generated by clustering the Pearson correlation coefficients of all possible protein combinations. The abundance of proteins with
common regulation correlates across samples, and they therefore form a cluster. Prominent clusters are annotated with functional terms obtained from
bicinformatics enrichment analysis. The position of tau (gene name MAPT) is labeled on the Y axis. The inset shows the color code for Pearson correlation coefficients.

independent acquisition strategy (DIA), both because it can achieve
high data completeness (Gillet et ai, 2012) and because it has been
shown to perform excellently on the linear quadrupole-Orbitrap
instruments employed here (Kelstrup et af, 2018). A DIA library of
about 2,700 proteins was computationally merged from pooled AD
and non-AD samples after separation into 24 fractions each and a
direct-DIA search for all single-run samples {(Materials and Meth-
ods). CSF proteomes were acquired by measuring single 100-min
gradient runs for each patient.

On average, we quantified 1,233 proteins per CSF sample (Fig 1B,
Datasets EV1-EV3). The data acquired with DIA had 100% complete-
ness for 385 proteins {26%}, 75 % for 1,050 proteins (71%}), and 50%
for 1,288 proteins (87%) (Fig 1C). The quantified protein intensities
spanned over six orders of magnitude, in which the top ten most
abundant proteins contributed 65% of total protein intensity of the

@© 2020 The Authors

entire 1,484 proteins in our dataset (Fig 1D). To achieve such CSF
proteome depth, extensive fractionation and depletion of abundant
proteins often combined with isobaric labeling were previously
required, with its associated disadvantages (preprint: Higginbotham
et al, 2019; Sathe et al, 2019). For a single-shot CSF proteomics work-
flow that is amenable to high-throughput and large cohorts, this
presents an unprecedented depth at high data completeness.

We investigated intra- and inter-assay variability of our auto-
mated CSF pipeline by repeated sample preparation {Materials and
Methods), which revealed high reproducibility with over 1,000
proteins having inter-assay CVs below 20% (Fig EV2A and B, Data-
sets EV4 and EVS). This level of variability is much smaller than the
proteome differences between subjects, as assessed by calculating
the inter-individual variability within the cohorts. Here, only 225
proteins had a CV below 20% (Fig EV2C).
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The availability of a large set of 197 CSF samples prompted us to
investigate the relationship between different proteins in order to
functionally interpret co-regulation of proteins that cluster with each
other or with clinical parameters. The global protein correlation
map (Wewer Albrechtsen et al, 2018) resulting from more than a
million protein—protein comparisons highlighted eight main clusters
of proteins which follow common functions or themes (Dataset
EV6). For instance, neuronal annotation terms such as the gene
ontology cellular compartments (GOCC) terms neuron projection,
axon, and synapse were selectively enriched in the second largest
cluster (Figs 1E and EV2D). ldentification of neuronal proteins in
the CSF highlights that proteins originating in the central nervous
system accumulate in the CSF, thus making the CSF reflective of
physiological or pathological proteome alteration in this organ.

Another cluster was enriched in blood plasma proteins relating
to humoral immunity, the complement system or coagulation.
Vascular proteins have been reported to be increased in AD brains
while decreased in AD CSF (preprint: Higginbotham et al, 2019).
However, apart from disease-associated effects such as a modula-
tion of the blood-brain barrier, apparent alterations of blood protein
abundances in CSF may be caused by blood contamination during
CSF sampling which is hard to avoid entirely. Proteins are likely
blood contaminants in CSF if they exhibit the same abundance pro-
file across samples as known blood proteins and occur in the same
abundance ratio to these blood proteins in CSF as in blood. Conver-
sely, if a protein also found in blood does not correlate with the
blood proteins, it may still be a genuine biomarker for AD. The
global correlation map presents an efficient approach to distinguish
biomarkers from contaminants {Geyer et al, 2019). Here, CSF signa-
tures of proteins biologically relevant to AD clearly separated from
protein clusters that are at higher risk to be contamination-asso-
ciated (Fig 1E).

Proteomics detects differences in CSF t-tau in individuals with
or without AD and neuronal and widespread novel
proteome alterations

In the Sweden and the Magdeburg/Kiel cohorts, AD was associated
with drastic CSF proteome alterations, with 540 and 453 proteins
significantly (P < 0.05) differing by AD status, respectively. These
changes encompassed up- and down-regulated proteins, and signifi-
cant proteins had a median absolute fold change of about 1.3-fold in
both studies. The extensive brain atrophy apparent upon autopsy
and the widespread brain proteome alterations harmonize well with
the observed substantial alterations in the CSF proteome in AD and
other neurodegenerative diseases {Hosp et al, 2017; preprint:
Higginbotham et af, 2019). In all three cohorts, tau {(gene name
MAPT) was the most significantly or among the most significantly
altered proteins between individuals with or without AD, with
higher levels in AD (Fig 2A-C, Appendix Fig S1A-E). The fact that
tau levels are elevated in AD CSF has been known for more than
two decades but this important protein is not easily quantified in
large proteomics discovery cohorts. Typically, tau quantitation by
mass spectrometry has required extensive fractionation and deple-
tion of abundant proteins, limiting throughput (preprint: Higgin-
botham et al, 2019; Sathe et al, 2019). Alternatively, targeting
instead of discovery strategies can in principle quantify proteins
such as tau in larger sample numbers {Barthélemy et al, 2016).
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Cerebrospinal fluid is expected to reflect pathological alterations
in functional classes of proteins. AD is characterized by synaptic
dysfunction and neuronal cell death. Proteins associated with the
gene ontology (GO) term “neuron projection” were indeed enriched
in AD CSF compared with non-AD CSF (P < 0.01 in the all three
cohorts; Fig 2A-C, Appendix Fig S1F). Likewise, proteins of the GO
term “synapse part” were significantly enriched in AD CSF in the
Sweden and Berlin cohorts (P < 0.01).

In the Berlin cohort, proteome alterations between AD and non-
AD CSF were smaller with only 168 proteins exhibiting significantly
{P < 0.05) different abundances (Figs 2C and 3A, Appendix Fig S1D
and E). This finding concurs with the reduced biochemical separa-
tion of the AD and non-AD groups in the Berlin cohort based on
clinical AD CSF biomarkers (Fig EV1B-K).

Despite fewer significantly different proteins, the Berlin cohort
exhibited the same key features of the two other cohorts such as tau
being a top outlier and the enrichment of neuronal and synaptic
proteins. The second dominant outlier 14-3-3y {gene name YWHAG)
in the Berlin cohort was likewise enriched in AD CSF in the other
cohorts. The family of 14-3-3 proteins is very abundant in the brain
and has been implicated in neurodegenerative diseases, and
increased levels of 14-3-3y have been reported in AD brain tissue
and CSF (Fountoulakis et al, 1999; Foote & Zhou, 2012; Sathe et al,
2019). Together, this shows a reduced but equivalent AD-associated
effect on the CSF proteome in the Berlin cohort.

Replication of AD-associated proteins across cohorts

As it had previously been challenging to establish biomarker panels
that could be replicated across cohorts, we next assessed the consis-
tency of AD-associated protein changes in this multi-cohort study.
Of the significantly changed proteins described above, large propor-
tions were consistent in their AD/non-AD association (Fig 3A and
B, Dataset EV4). Comparing the Sweden and Magdeburg/Kiel
cohorts, 89% (172/194 proteins) and 95% (102/107) were consis-
tent at significance levels of P < 0.05 and g < 0.05, respectively.
Likewise, comparing the Sweden and Berlin cohorts 95% (70/74)
and 100% (16/16) were consistent applying the same criteria,
respectively, equivalent to 93% (64/69) and 100% (14/14) compar-
ing the Magdeburg/Kiel and Berlin cohort.

Furthermore, quantitative alterations of protein levels between
AD and non-AD CSF were very consistent across the cohorts. AD/
non-AD fold changes of proteins were highly correlated with Pear-
son’s correlation coefficients at r = 0.91, r = 0.80, and r = 0.90 for
the comparisons of Sweden and Magdeburg/Kiel, Sweden and
Berlin, and Magdeburg/Kiel and Berlin, respectively (Fig 3C-E).

We assessed whether AD and non-AD samples clustered
together independent of the cohort, based on either the global
unfiltered CSF proteome profile, the less stringent (P < 0.05) inter-
section, or the more stringent {g < 0.05) intersection set of
proteins significant in all three cohorts. After Z-scoring protein
intensities within cohorts, unsupervised clustering clearly sepa-
rated AD from non-AD groups in all three cases {global proteome,
both intersection sets; Fig 3F and G, Appendix Fig S2A and B). In
the P < 0.05 intersection set, 40 out of 43 proteins (93%) differed
consistently in abundance by AD status, 35 of which had an
elevated abundance in AD CSF and five an elevated abundance in
non-AD CSF (Fig 3F, Appendix Fig S3A and B). We discuss these
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Figure 2. Differences in AD vs. non-AD CSF proteome in the three cohorts.
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Berlin cohort

A-C Protein AD/non-AD fold changes plotted vs. statistical significance for Sweden (&), Magdeburg/Kiel (B), and Berlin (C) cohorts. Proteins associated with the GO
annotation neuron projection labeled in orange. Proteins above the dashed green line are statistically significant (P < 0.05), and those above the black curves have

a g-value below 0.05 (see Materials and Methods).

proteins as “the 40-protein signature” of AD in the remainder of
this paper.

Next, we investigated if our results depended on the control
groups in the Magdeburg/Kiel cohort and the Berlin cohort. The
former controls were collected in Magdeburg or in Kiel, and in
Berlin, the controls comprised subjective cognitive impairment
patients and depression patients. Furthermore, the Kiel controls
were younger than other cases or controls, and accordingly, their
proteomes separated from the other non-AD controls {Fig EV1A,
Appendix Fig S2A and B). Despite these differences, AD vs. non-AD
fold changes of our 40-protein signature were independent of the
specific non-AD control group subtype in these cohorts (Fig EV3A
and B). To specifically investigate the effect of age and sex on the
AD regulation of the 40-protein signature, we employed a linear
regression model. After correction for age and sex in this way, the
CSF abundance of all 40 proteins still significantly depends on AD
status (Fig EV3C, Dataset EV7). Interestingly, CSF proteome alter-
ations were of smaller magnitude in males compared to females in
this study population.

Taken together, the “rectangular strategy” was able to discern
AD-related alterations that reflect a small subset of the CSF
proteome {< 50 proteins) from other cohort-specific effects compris-
ing larger parts of the quantified CSF proteome (> 1,000 proteins)
even in cohorts partially constrained by other biases such as age dif-
ferences.

AD-associated proteins in CSF are linked to neurodegeneration

Many proteins among our 40-protein signature have known or
suspected links to AD or other neurodegenerative diseases (Fig 3F).
For instance, PARK? (protein/nucleic acid deglycase DJ-1) and
SOD1 (superoxide dismutase 1) are risk genes for Parkinson’s
disease and amyotrophic lateral sclerosis, respectively (Bonifati
et al, 2003; Renton et al, 2014). Notably, the two cellular superox-
ide dismutases SOD1 and SOD2 were more abundant in AD CSF

@© 2020 The Authors

than in non-AD CSF, whereas the extracellular SOD3 was more
abundant in non-AD CSF. Moreover, a genetic interaction of
YWHAZ (14-3-3 protein {/8) and BChE {buturyl cholinesterase)
modulates the risk for AD (Mateo et af, 2008). CHI3L1 (protein
YKL-40/chitinase-3-like protein 1), an astrocyte-derived protein, is
elevated in AD CSF and discussed as a marker for progression from
mild cognitive impairment to AD (Olsson et al, 2016; Baldacci et al,
2017). Similarly, fatty acid-binding protein 3 (FABP3) is elevated in
AD CSF in our data and has been discussed as an AD CSF biomarker
before (Sepe et al, 2018). CRYM (Ketimine-reductase mu-crystallin)
has been reported as a modulator of huntingtin toxicity to striatal
neurons in Huntington's disease (Francelle et al, 2015).

Proteins differing by AD status correlate with CSF t-tau
abundance and MMSE score

As CSF composition reflects brain health, proteins in CSF may differ
between AD and control subjects and additionally correlate with
severity of AD pathology as reflected by classical clinical parameters
such as t-tau abundance in CSF. Indeed, in the total dataset of 1,484
proteins, 124 proteins correlated significantly (P < 0.05) with t-tau
concentration, 19 of which had a correlation g-value below 0.05
{(Fig 4A-D, Appendix Fig S4A, Dataset EV4). All 124 proteins
showed a consistent directionality of positive or negative correlation
across the three cohorts. The abundance of tau as measured by MS
correlated well with the ELISA measurements {Pearson r = 0.82 for
Sweden, r = 0.66 for Magdeburg, r = 0.68 for Berlin).

We next asked how our 40-protein signature correlated with
clinical t-tau measurements. Indeed, a large fraction—29 of 40
proteins—significantly correlated with t-tau in each of the three
cohorts, and the directionality of change was also as expected for
the non-significant proteins (Fig 4A-E, Appendix Fig S4A). This is a
substantial enrichment over the numbers expected by chance in this
dataset (P < 0.0001, odds ratios 37). Upon adjustment for age, sex,
and cohort in a linear regression model comprising all three cohorts,
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Figure 3. CSF proteome alterations across the three cohorts.

A B On the left, number of proteins that differ significantly (P-value < 0.05 in A; g-value < 0.05 in B) in abundance by AD status within each cohort. On the right,
number of proteins thereof that have a consistent directionality of either elevated or reduced abundance in AD CSF in pairwise comparisons of cohorts.

C-E Correlation of protein AD/non-AD fold changes in pairwise combinations of two cohorts each. Combinations are Sweden vs. Magdeburg/Kiel (C), Sweden vs. Berlin
(D), and Magdeburg/Kiel vs. Berlin (E). Proteins included differ significantly (P < 0.05) and consistently in abundance by AD status in both cohorts each.

F, G Proteins that differ significantly (P < 0.05 in E; g < 0.05 in F) in abundance by AD status across all three cohorts. Z-scored abundances of proteins in the AD and
non-AD groups of all cohorts shown by the heat map (see Materials and Methods). Hierarchical clustering separates AD from non-AD groups. Pyruvate kinase PKM
(PKM) was quantified in two isoforms, and UniProt |Ds are given in parentheses. Black frames highlight proteins with consistent AD/non-AD fold changes across
cohorts.
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all 40 proteins were significantly associated with t-tau (Materials
and Methods; Appendix Fig $4B, Dataset EV7).

Some of these proteins, including fructose-bisphosphate aldolase
A {ALDOA), superoxide dismutase 1 (SOD1}, and YKL-40/chitinase-

Molecular Systems Biology

3-like protein 1 {CHI3L1), have previously been reported to correlate
positively with CSF t-tau levels (Dayon et al, 2018).

In the clinic, AD is routinely diagnosed by biochemical parame-
ters or by cognitive tests. We therefore investigated the relation
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Figure 4. Protein correlation with t-tau measurements and analysis of annotation term enrichment.

A-C Correlation of proteins with ELISA-measured t-tau concentration across samples within the Sweden (&), Magdeburg (B), and Berlin (C) cohorts. Proteins with a
g-value below 0.05 are labeled in yellow. Proteins of the 40-protein signature are colored in red for those with higher abundance in AD CSF and in blue for those

with higher abundance in non-AD CSF.

D Three-cohort summary of proteins significantly correlating with ELISA-measured t-tau. Protein names given for the 29 proteins out of the 40-protein signature
with significant (P < 0.05) correlation in each of the three cohorts. Pyruvate kinase PKM (PKM) was quantified in two isoforms, and UniProt IDs are given in

parentheses.

E Overlap of proteins significantly differing by AD status with proteins significantly correlating to ELISA-measured t-tau.
F Annotation enrichment in the AD versus non-AD fold change dimension. Terms with positive enrichment means are enriched in AD CSF over non-AD CSF.
Conversely, terms with enrichment means below zero are enriched in non-AD compared with AD CSF. Annotations filtered for significance of enrichment (P < 0.05)

and term size (10-100 proteins per term) in all three cohorts.

G, H Protein abundance distribution of CSF (G) and brain (H) showing the abundances of AD-modulated CSF proteins. Proteins of our 40-protein signature are
highlighted in red (elevated abundance in AD) and blue (elevated abundance in non-AD). Proteins linked to glucose metabolism are highlighted in purple and

labeled.

between our proteomics results and the mini-mental state examina-
tion {(MMSE) scores as a measure of cognitive performance, which
were assessed in the Berlin cohort (Fig EVIL). In the literature,
reference population means of MMSE scores were 29, 27, and 20 for
cognitively normal, mild cognitive impairment (MCI), and AD
participants, respectively {Chapman et al, 2016), while the MMSE
scores in the Berlin cohort were 27.7 + 1.9 {mean 4 SD) for non-
AD and 22.7 4+ 4.5 for AD. Tau (MAPT), osteopontin (SPP1), and
14-3-3y (YWHAG) were the top three proteins inversely correlating
with the MMSE score (Fig EVAA). Osteopontin has already been
reported to inversely correlate with the MMSE score in AD {(Comi
et al, 2010). Moreover, in our 40-protein signature proteins with
higher abundance in AD CSF correlated negatively with the MMSE
score and vice versa.

When stratifying the Berlin cohort into “high MMSE score” and
“low MMSE score” groups over a cutoff range from 29 to 21, we
obtained the greatest separation at a cutoff of 25. Reassuringly,
MAPT and YWHAG were the top outliers and our 40-protein signa-
ture showed the expected association with the MMSE groups at all
cutoff values in spite of the limited diagnostic performance of the
MMSE evaluation (Fig EVAB-F) (Perneczky et al, 2006; Mitchell,
2009; Arevalo-Rodriguez et al, 2015). Thus, CSF protein signatures
linked to biochemically defined AD also associate with cognitive
performance.

Neuronal and glycolytic signature in AD CSF

To identify biological signatures in the AD-associated proteome alter-
ations, we performed an annotation enrichment analysis of func-
tional terms (GO biological process, GO cellular compartment,
UniProt Keywords) in the global proteome AD/non-AD fold changes.
We obtained 21 annotation terms below a P-value of 0.05, all of
which showed consistency across the three cohorts {Materials and
Methods, Fig 4F). Terms including “neuron projection” and “regula-
tion of neuron differentiation” underline the neuronal signature in
the AD CSF proteome. Interestingly, glycolysis and gluconeogenesis
presented as top terms with enrichment in AD CSF in this unbiased
analysis. This concurs with the presence of glycolytic proteins in our
40-protein signature. These include fructose-bisphosphate aldolase A
{ALDOA) and C (ALDOC), pyruvate kinase PKM {PKM), y-enolase
(ENO2), aspartate aminotransferase, mitochondrial (GOT2), phos-
phoglycerate kinase 1 {PGK1), L-lactate dehydrogenase A chain
(LDHA), and B chain {(LDHB) (Fig 3F). Moreover, other glycolytic
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proteins in the dataset not passing the significance cutoffs neverthe-
less uniformly followed the same trend of elevated abundances in
AD CSF {Appendix Fig S5). Glycolytic proteins may originate from
astrocytes as glycolysis in the brain is mainly performed by these
cells to provide lactate for oxidative phosphorylation in neurons
{(Bélanger et af, 2011; preprint: Higginbotham et al, 2019). Further-
more, the GO cellular compartment annotation term “mitochon-
drion” was also enriched in AD CSF, and mitochondrial dysfunction
is a known hallmark of AD (Querfurth & LaFerla, 2010). When we
mapped the up-regulated proteins of our 40-protein signature onto a
deep human brain proteome (Carlyle et al, 2017), their correspond-
ing abundance in brain was generally in the more abundant range
{Fig 4G and H). This observation is consistent with mechanisms in
which cellular proteins are released into the CSF by tissue damage-
associated loss of membrane integrity, exosome release, or others.

Further confirmation of AD-associated proteome alterations in
an independent cohort

After completion of our study, a related preprint appeared (preprint:
Higginbotham et al, 2019). Similarly to our study, the authors inves-
tigated proteomic profiles in a study of 20 AD cases and 20 controls,
although they used a different experimental workflow. CSF samples
were depleted, digested, chemically labeled for multiplexing by an
isobaric tag, fractionated, and analyzed by mass spectrometry,
achieving a remarkable depth of quantitation. A second cohort,
consisting of 33 AD and 32 controls and 30 asymptomatic cases,
was also measured, although with a somewhat different method
and a reduced proteome depth. Many AD-associated CSF signatures
observed in our study including the glycolytic signature, the
neuronal signature, and the 14-3-3 protein signature are also
reported in the manuscript. This provides additional evidence for
these signatures to be AD-associated from independent cohorts iden-
tified by a different experimental approach.

To determine a panel of consistently AD-regulated proteins and
to assess inter-study consistency in more detail, we downloaded the
available data and compared them to our data. As tau was not
contained in the second cohort dataset and only 31 proteins signifi-
cantly differed by AD status in both cohorts of that independent
study, we limited our comparison to the 20 AD cases versus 20
controls cohort by Higginbotham et al. This dataset contained 2,875
proteins quantified in at least half of the samples and 528 proteins
thereof differed significantly (P < 0.05) by AD status. Notably,
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despite the different proteome depth the number of proteins that dif-
fered by AD status is similar to the proteins that differed signifi-
cantly by AD status in the Sweden (540) and Magdeburg/Kiel (453)
cohorts. These similar numbers in three out of four cohorts suggest
that both proteomic approaches cover a substantial part of the CSF
proteome signature related to AD.

Out of our 40-protein signature, 38 proteins were contained in
the dataset of this independent study and 26 of 38 {68%) thereof
were also significant (Fig EVSA, Dataset EV4). This is a highly
significant enrichment among all significant proteins in the dataset
of that independent study {odds ratio 10, P < 0.0001, Fig EVSB).
The directionality of abundance elevation in either AD or non-AD
CSF was consistent across studies for these 26 core proteins
(Fig EV5C). Moreover, quantitative fold change agreement was high
{Pearson r = 0.76; Fig EVSD). Among these 26 proteins, only one
protein, fetuin-B {FETUB), had an elevated abundance in non-AD
CSF, while 25 proteins were elevated in AD CSF including tau,
glycolysis-related proteins, 14-3-3 proteins, protein/nucleic acid
deglycase DJ-1 (PARK7), superoxide dismutase 1 {(SOD1), fatty acid-
binding protein 3 (FABP3) and hypoxanthine-guanine phosphoribo-
syltransferase (HPRT1). Taken together, AD-associated protein
signatures identified in our work are validated in a completely sepa-
rate study using an independent cohort and different experimental
strategy.

AD classification by machine learning on the CSF signature

Next, we next assessed if the MS intensities of the set of 26 core
proteins which overlap between our and the Higginbotham studies
could be applied to classify participants by AD status using
machine learning and we explored a variety of machine learning
models. First, to determine feature importance, we employed a
decision tree and found that a model with a maximum depth of
six levels, using the intensities of 14 proteins could correctly clas-
sify the participants in the three studies by AD status. A visualiza-
tion of the decision tree revealed that levels of tau itself were at
the root, followed by the glycolytic enzyme pyruvate kinase PKM
(PKM]}, and macrophage migration inhibitory factor (MIF) at the
next level (Fig SA). As protein intensities are correlated, a deci-
sion tree could potentially rank proteins differently depending on
its initial state. However, when repeatedly training the decision
tree (rn = 10,000} with random initial states and also shuffling the
dataset, the root of the tree remained similar (MAPT at rank 1 in
all cases, PKM at rank 2 or 3 in 82.8%, and MIF at rank 2 or 3
in 84.3% of all cases, respectively). This underlines the impor-
tance of these three proteins among the CSF proteome as indica-
tors of AD.

To test models for generalizability, we considered several tree-
based ensemble methods. We trained six commonly used methods
{AdaBoost, Bagging, ExtraTrees, GradientBoosting, RandomForest,
and XGBoost) on the intensities of the 14 proteins selected by the
decision tree above such that the tree needed to completely classify
the participants. The protein intensities were randomly shuffled and
split using a k-folds cross-validator (k = 6) into six training/test
splits. Accordingly, shuffling entailed mixing of patients from dif-
ferent cohorts but each sample was in the testing dataset exactly
once. For each method, we performed cross-validation and deter-
mined a receiver operating characteristic (ROC) curve.

© 2020 The Authors
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All classifiers reached an area under the ROC curve (AUC) of at
least 0.84. XGBoost had the best performance with a mean AUC of
0.91 and was selected for further analysis. To determine the optimal
number of features, we iteratively added them in them in their order
of importance in the decision tree. The overall model performance
increased with the number of proteins and reached a plateau at six
proteins (MAPT, PKM [P14618-2 isoform], MIF, IMPA1, YWHAZ,
and ALDOC), which we selected for the final model.

To assess the performance of our final model as a predictive test
we again used k-fold cross-validation in six different training/test
splits. The different splits exhibited good agreement with each other
at AUC’s ranging from 0.87 to 0.98, indicating robustness of classifi-
cation (Fig 5B). We then determined the overall confusion matrix
combining the six splits (“net reclassification”, the number of
correctly and incorrectly classified participants) {Fig 5C). In total,
72 out of 88 AD patients and 95 out of 109 non-AD patients were
correctly identified, corresponding to a sensitivity of 82% and a
specificity of 87 %.

Discussion

We have combined advanced sample preparation, cutting-edge mass
spectrometry hardware, acquisition schemes, MS data processing
and bioinformatic analysis and optimized it for CSF to build a high-
performance CSF proteomics workflow amenable to high-
throughput and large cohorts. About 1,500 proteins can be quanti-
fied and over 1,000 with intra- and inter-assay coefficients of varia-
tion (CVs) below 20%. Using this technology, we identified known
biomarkers such as tau as top candidates as well as a range of novel
potential biomarkers. Harnessing this pipeline, we compared AD
and non-AD CSF in three independent cohorts. This led to a 40-
protein signature whose members are consistently up- or down-
regulated in AD CSF vs. non-AD CSF across the three cohorts.

Cases and controls in two of our cohorts separated better on
the basis of clinical AD CSF biomarker concentrations (t-tau,
ptauyg;, ABj_sz, ABi_yo) than in the third one. Likewise, AD-asso-
ciated differences in the CSF proteome were smaller and fewer
protein alterations were statistically significant in that third cohort.
The attenuated separation according to clinical CSF values suggests
that this third cohort comprised milder AD cases and early-stage
AD patients in the non-AD group just below the cutoff values. This
would lead to the attenuated overall differences in the CSF
proteome profile between the AD and the non-AD groups that we
observe.

There is no universally accepted AD classification system;
however, various different integration schemes of clinical AD CSF
biomarkers have been explored (Bloudek et al, 2011; Ferreira et al,
2014; Ritchie et al, 2017). Using the Hulstaert index, a variation of
the ABi_4,/t-tau ratio, for AD classification of the three cohorts we
obtained largely the same, but fewer statistically significant poten-
tial marker proteins compared to our uniform AD classification
(Appendix Fig S6A-D, Materials and Methods) {Hulstaert et al,
1999; Molinuevo et al, 2013; Vos et al, 2013). Furthermore, the
mini-mental state examination (MMSE) cognitive test was
performed in one of our cohorts. It was encouraging to find the
proteomic outliers identified by analysis of biochemically defined
AD CSF to be associated with the MMSE score performance.
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Figure 5. Machine learning separates AD from non-AD CSF at high performance.
A Decision tree to classify AD vs. non-AD participants based on the protein levels of a core 26 protein set. Splits are indicated by black triangles. A tree with a minimum

depth of six can correctly classify the participants by AD status.

B Receiver operating characteristic (ROC) curve for the model based on XGBoost. The diagonal line indicates random performance. Blue line represents the mean
performance of the model when trained on six stratified train—test splits {(k-fold). The gray areas represent the standard deviation of ROC values.
C Confusion matrix indicating model performance when predicted on the test split of the cross-validation. Overall accuracy is 0.85.

Another general challenge in biomarker discovery studies are
cohort-specific effects. This relates particularly to multi-centric stud-
ies with distinct inclusion criteria for cases and controls. Despite
cohort-specific effects and attenuated AD/non-AD differences in the
third cohort of our study, proteins that statistically significantly
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differed by AD status in multiple cohorts exhibited very good quali-
tative and quantitative cross-cohort agreement in their AD modula-
tion. A signature of 40 CSF proteins was consistently associated
with AD status and showed high correlation values of protein fold
changes across cohorts. When further combined with a recent,
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independent effort on bioRxiv (preprint: Higginbotham et al, 2019;
Johnson et al, 2020), which used different MS technology, this
resulted in a set of 26 core proteins consistent across four indepen-
dent cohorts. This highlights the power of the “rectangular strategy”
study design in discerning cohort-specific from pathological effects
for biomarker discovery.

Our relatively large dataset with nearly 200 participants
prompted us to explore machine learning for the purpose of assess-
ing AD status on the basis of the levels of the 26 core proteins. We
found that an ensemble method-based classifier reached high speci-
ficity (87 %) and sensitivity (82%), while showing promising gener-
alizability. Intriguingly, tau itself, one of the glycolysis-related
proteins, and an immunological factor were selected by the machine
learning algorithm as the most important features for classification,
proving further validation of our biomarker panel and biomarker
identification pipeline. The modeling also indicated that additional
and more uniform training data could further improve diagnostic
performance. Furthermore, additional clinical data, such as cogni-
tive assessments, can naturally be incorporated in this framework.

In the list of the 26 core proteins, several have known links to
neurodegeneration such as protein/nucleic acid deglycase DJ-1
{PARK?) and superoxide dismutase 1 {SOD1) or genetic interaction
links to AD like 14-3-3 protein (/8 (YWHAZ) (Bonifati et al, 2003;
Mateo et al, 2008; Renton et al, 2014). Likewise, the set also
contains the tentative AD biomarker CHI3L1 {protein YKL-40) likely
reflecting astrocytic activation (Olsson et al, 2016; Baldacci et d!,
2017). Moreover, we identify a number of glucose metabolism-asso-
ciated proteins elevated in AD CSF in line with other reports {Dayon
et al, 2018; preprint: Higginbotham et al, 2019; Sathe et al, 2019).
These glycolytic proteins and other AD-associated proteins in CSF
are highly abundant in brain and could be released into CSF from
brain tissue. Regardless of the mechanism of accumulation in the
CSF, the utility of abundant cellular proteins as markers is generally
accepted in clinical practice. In the plasma proteome, this is demon-
strated by troponin levels indicative of acute myocardial infarction
{Keshishian et al, 2015) and liver proteins indicative of fatty liver
disease (Niu et al, 2019).

The fact that CSF proteomics is now able to detect brain-derived
proteins and determine protein signatures consistent across multiple
independent multi-centric cohorts sets the stage for future
biomarker discovery studies in neurodegenerative diseases. Next
steps should include investigating the added diagnostic value of the
AD CSF protein signature when combined with established diagnos-
tic criteria in the clinic, preferably in a machine learning framework.
Further, we speculate that the workflow presented here would be
highly suited for the discovery of additional clinically and etiologi-
cally relevant biomarkers. There is a great need for early diagnosis,
prognosis, and treatment efficacy biomarkers (Winblad et al, 2016).
Further studies are warranted assessing the relevance of these
proteins in prospective studies of dementia-free individuals in
midlife with repeated brain imaging, cognitive testing, and long-
term follow-up for dementia incidence. Recent developments in MS-
based proteomics now enable fast and efficient quantitative readout
of relatively large panels of proteins in a targeted or “globally
targeted” manner {Abbatiello et af, 2013; Wichmann et a, 2019).
This may enable the use of MS-based proteomics not only for the
discovery of disease-associated protein patterns but also for routine
clinical tests {Geyer et al, 2017).

© 2020 The Authors
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Materials and Methods
Study populations

Three cohorts of AD and non-AD control CSF samples were
obtained, one from Sweden, one originating from the German cities
of Magdeburg and Kiel (through the Harvard T. H. Chan School of
Public Health), and one from Berlin. The CSF concentration values
of the clinical AD biomarkers t-tau, p-tau;s;, ABy_4,, and A4
were available as follows: t-tau, p-tauis, APi_4, for the Sweden
cohort; t-tau, p-tau,g;, AP_s2, and AB,_ye for the Magdeburg cohort;
and t-tau, AB;_4, and AB;_4 for the Berlin cohort.

Sweden CSF samples were obtained from patients with cognitive
impairment at several memory clinics in western Sweden. De-identi-
fied diagnostic remnant CSF material was used in this study, which
was approved by the Gothenburg ethics committee. The AD and
non-AD groups as classified by the primary AD criteria of this study
were well separated biochemically based on the clinical AD CSF
biomarkers. CSF biomarker levels were measured using the
INNOTEST assays (Fujirebio, Ghent, Belgium) in the Clinical Neuro-
chemistry Laboratory, Sahlgrenska University Hospital, Mdlndal,
Sweden, by board-certified laboratory technicians who were blinded
to clinical data. The laboratory procedures were accredited by the
Swedish Board for Accreditation and Conformity Assessment
(SWEDAC).

Magdeburg CSF samples originated from patients at the outpa-
tient memory clinic at the Otto-von-Guericke University Magdeburg.
CSF biomarker levels were measured at the site of collection using
commercially available INNOTEST ELISA kits (Fujirebio, Ghent,
Belgium). The AD and non-AD groups as defined by our primary
AD classification criteria were well separated biochemically based
on the clinical AD CSF biomarkers. The local ethics committee
approved the use of the CSF samples. Additional control samples
from Kiel were acquired from patients treated at the emergency
department at the University Hospital Schleswig-Holstein. Informed
consent for scientific analysis of diagnostic remnant samples
collected for clinical care and ethics committee approval for use of
the samples were obtained.

Berlin CSF samples were obtained from patients at the Memory
Clinic of Charité Universititsmedizin Berlin. The clinical AD
biomarkers t-tau, AB;_4,, and AP,y were measured at the site of
collection. The V-PLEX AR Peptide Panel 1 (6E10) Kit (Meso Scale
Diagnostics, Rockville, MD, USA) was used for AP peptide quantita-
tion and the INNOTEST hTAU Ag (Fujirebio Germany GmbH, Hann-
over, Germany) for tau. The AD and non-AD groups as defined by
our primary AD classification criteria were moderately separated
biochemically based on the clinical AD CSF biomarkers. CSF collec-
tion was standardized as described elsewhere (Schipke et al, 2011).
The local ethics committee approved the use of the CSF samples. All
participants provided written informed consent.

Primary AD classification

To enable uniform analysis, we standardized classification of AD
and non-AD for the different cohorts uniformly based on the CSF
concentrations of t-tau, ABy_4,, and AP, 4, for the Sweden, Magde-
burg, and Berlin cohorts. Patients were classified as AD if the t-tau
concentration was above 400 ng/l and the AB;, concentration
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below 550 ng/l or the AB;_4>/AB; 4o ratio was below 0.065. The
t-tau criterion and at least one of the two Ap criteria had to be met
for a patient to be classified as having AD and patients were classi-
fied as not having AD otherwise. The classification here is derived
from a classification according to the cutoffs of t-tau being higher
than 400 ng/l, p-tau;s; higher than 60 ng/l, and AB;_4, lower than
550 ng/l (Sjogren et al, 2001; Hansson et al, 2006). We additionally
included the CSF AB;_4,/AB; 40 ratio as it has a superior diagnostic
performance than the AB;_4, concentration alone (Spies et af, 2010;
Dubois et al, 2014; Niemantsverdriet et af, 2017). Participants with
missing information on the CSF t-tau or AB;_4, concentration in the
Sweden, Magdeburg, or Berlin cohort were excluded. Kiel CSF
samples originated from young patients (32.0 £ 17.1 years,
median + SD) treated at an emergency department with no indica-
tions of AD or other neurodegenerative diseases. Thus, we included
these samples as non-AD controls despite the missing clinical
biomarker CSF concentrations.

Hulstaert index

The Hulstaert index for AD classification is a variant of the AB; 4,/
t-tau ratio with improved diagnostic performance (Molinuevo et al,
2013). It is calculated as AP, 4,/(240 + (1.18*t-tau)) using ng/l
concentrations, and samples below a cutoff value of one are classi-
fied as AD (Hulstaert et al, 1999). We performed an independent
analysis using the Hulstaert index instead of our uniform classifi-
cation. As shown in Appendix Fig S6, the results overlap almost
completely; however, the Hulstaert index, although less stringent in
AD inclusion, leads to a smaller number of significantly different
proteins.

Clinical AD diagnosis

Information about clinical AD status, i.e. the diagnosis of symp-
tomatic AD according to site-specific criteria, was available for the
Magdeburg, Kiel, and Berlin cohorts. At these sites, clinical AD diag-
noses had been reached by assessing the clinical presentation of
patients according to distinct guidelines.

In Magdeburg, the clinical AD diagnosis was based on the
patient’s clinical presentation using the National Institute of Neuro-
logical and Communicative Disorders and Stroke—Alzheimer's
Disease and Related Disorders Association (NINCDS-ADRDA) crite-
ria (McKhann et al, 2011). The clinical evaluation included the
CERAD (Consortium to Establish a Registry for Alzheimer’s Disease)
neuropsychological test battery and magnetic resonance imaging
{Morris et al, 1989). AD and control subjects had no clinical signs of
stroke, epilepsy, or other neurodegenerative diseases. For the clini-
cal diagnosis of AD, local concentration cutoffs for core AD
biomarkers were used; however, fulfillment of the cutoff criteria
was considered indicative but not sufficient for an AD diagnosis
which also depended on the patient’s clinical presentation. AD was
considered likely if the criteria p-taujg; > 80 ng/l and t-
tau > 450 ng/l were simultaneously met. Likewise, AD was consid-
ered likely if the criteria AR, 4, < 485 ng/l and the amyloid ratio
AB1_42/AB1_40 < 0.06. Non-AD control patients underwent CSF with-
drawal to exclude neuroinflammation and dementia. Control
subjects showed no signs of neurodegeneration and had normal CSF
parameters regarding cell count, protein content, and lactate
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concentration. All but one of 26 biochemically defined AD cases
according to our primary AD classification study also had a clinical
AD diagnosis, while none of the non-AD controls had a clinical AD
diagnosis.

Kiel CSF samples originated from patients presenting with acute
headache. No patient had an AD diagnosis or showed clinical indi-
cations of neurodegenerative diseases. CSF sampling was performed
to exclude meningitis which is not present in any subject in this
study. Subjects with a history of dementia, systemic or CSF
inflammatory signs, and blood-brain barrier dysfunction {CSF-to-
serum albumin ratios > 9 x 10%) were excluded, and clinical diag-
noses were diverse and predominantly migraine, headache,
common cold or sinusitis or skin sensation disturbance {Koch et al,
2017).

In Berlin, patients were diagnosed as having AD based on the
clinical presentation according to the American Psychiatric Associa-
tion guidelines, the Diagnostic and Statistical Manual of Mental
Disorders (DSM), version DSM-5. Diagnoses were reached at a
consensus panel composed of psychiatrists, neurobiologists, and
neuropsychologists according to the DSM-5. Specifically, patients’
relevant medical history, standard cognitive and functional
measurements (e.g., MMSE), CSF biomarker values for t-tau and
amyloid peptides, and cMRI findings were examined in parallel. For
the clinical diagnosis of AD, site-specific CSF concentration cutoffs
for core AD biomarkers were used. Under these conditions, the
following CSF biomarker values were rated as indicative of AD:
APy, <600 ng/l or ARy 4/ABi4e ratio <0.060 (in 2014 and
before) or AB;_42/AB_40 ratio < 0.065 (from 2015 on), in addition
to t-tau > 350 ng/l. Again, however, fulfillment of these cutoff crite-
ria was considered indicative but not sufficient for an AD diagnosis
which also depended on the patient’s clinical presentation. Out of
33 biochemically defined AD cases according to of our primary AD
classification, 24 also had a clinical AD diagnosis at the time of CSF
withdrawal, while none of the non-AD controls had a clinical AD
diagnosis. For three of the nine biochemically defined AD cases
without a clinical AD diagnosis, the medical records included addi-
tional clinical information or information collected months to years
after the CSF withdrawal as the patient returned to the clinic again.
These three patients either developed clinical AD within 2 years,
presented with mild cognitive deficiencies of the AD type or a “not
yet specified neurodegenerative disease”.

Sample preparation

The sample preparation was optimized for CSF on the basis of our
Plasma Proteome Profiling workflow (Geyer et al, 2016). CSF was
aliquoted in 96-well plates and processed with an automated set-up
on an Agilent Bravo liquid handling platform. In total, 40 pl of CSF
was mixed with 40 ul PreOmics lysis buffer (PreOmics GmbH) for
reduction of disulfide bridges, cysteine alkylation, and protein
denaturation at 95°C for 10 min. After a 10-min cooling step, 0.2 pg
trypsin and 0.2 pg LysC were added to each sample and digestion
was performed at 37°C for 4 h. Peptides were purified on two 14-
gauge StageTip plugs according to the PreOmics iST protocol
{https://preomics.com/products). The StageTips were centrifuged
using an in-house 3D-printed StageTip tray at 1,500 g for washing
and elution. The eluate was completely dried using a SpeedVac
centrifuge at 45°C (Eppendorf, Concentrator plus), resuspended in
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10 pl buffer A* (2% v/v acetonitrile, 0.1% v/v trifluoroacetic acid,
and stored at —20°C. Upon thawing, samples were shaken for 1 min
at 2,000 rpm {thermomixer C, Eppendorf). Peptides were then
subjected to LC-MS/MS analysis.

Additionally, for library generation for the DIA measurements,
peptides of the Sweden cohort were pooled into one AD sample
pool and one non-AD sample pool of 75 pug each. Peptide concen-
tration was measured spectroscopically by absorbance at 280 nm
{Nanodrop 2000, Thermo Scientific). The AD sample pool and the
non-AD sample pool were fractionated into 24 fractions each by
high-pH reversed-phase chromatography on the “spider fractiona-
tor” (Kulak et @i, 2017). Fractions were completely dried and
resuspended in 10 pl buffer A*. To determine coefficients of varia-
tion, five aliquots of a CSF pool on one plate were subjected to
sample preparation (intra-plate) and this was repeated on three dif-
ferent days (inter-plate).

Mass spectrometry analysis

Samples were measured using an EASY-nLC 1200 (Thermo Fisher
Scientific) coupled to a Q Exactive HF-X Orbitrap mass spectrome-
ter (Thermo Fisher Scientific) via a nano-electrospray ion source
(Thermo Fisher Scientific). Purified peptides were separated on
50 cm UHPLC columns with an inner diameter of 75 pm packed
in-house with ReproSil-Pur C18-AQ 1.9 pm resin {Dr. Maisch
GmbH). In total, 500 ng of purified peptide in buffer A* was
loaded onto the column in buffer A {0.1% v/v formic acid) and
eluted at a flow rate of 300 nl/min and a temperature of 60°C by a
linear 80-min gradient from 5% to 30% buffer B (0.1% v/v formic
acid, 80% v/v acetonitrile), followed by a 4-min increase to 60%
B, a further 4-min increase to 95% B, a 4-min plateau phase at
95% B, a 4-min decrease to 5% B, and a 4-min wash phase of 5%
B. To acquire MS data, the data-independent acquisition (DIA)
scan mode was used for single-shot patient samples, whereas the
fractionated samples of the AD pool and non-AD pool were
acquired with a topl2 data-dependent acquisition (DDA} scan
mode. Both acquisition schemes were combined with the same
liquid chromatography gradient. The mass spectrometer was oper-
ated by the Xcalibur software {Thermo Fisher). DDA scan settings
on full MS level included an ion target value of 3 x 10° charges in
the 300-1,650 m/z range with a maximum injection time of 20 ms
and a resolution of 60,000 at m/z 200. At the MS/MS level, the
target value was 10° charges with a maximum injection time of
60 ms and a resolution of 15,000 at m/z 200. For MS/MS events
only, precursor ions with 2-5 charges that were not on the 20 s
dynamic exclusion list were isolated in a 1.4 m/z window. Frag-
mentation was performed by higher-energy C-trap dissociation
(HCD) with a normalized collision energy of 27 eV. DIA was
performed with one full MS event followed by 33 MS/MS windows
in one cycle resulting in a cycle time of 2.7 s. The full MS settings
included an ion target value of 3 x 10° charges in the 300
1,650 m/z range with a maximum injection time of 60 ms and a
resolution of 120,000 at m/z 200. DIA precursor windows ranged
from 300.5 m/z {lower boundary of the first window) to
1649.5 m/z (upper boundary of the 33" window). MS/MS$ settings
included an ion target value of 3 x 10° charges for the precursor
window with an Xcalibur-automated maximum injection time and
a resolution of 30,000 at m/z 200.
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Mass spectrometry data processing

The MS data of the fractionated pools (DDA MS data, 24 AD frac-
tions, 24 non-AD fractions) and the single-shot subject samples
(DIA MS data, all samples from all three cohorts) were used to
generate a DDA-library and direct-DIA-library, respectively, which
were computationally merged into a hybrid library in the Spec-
troMine software, version 1.0.21621.8.15296 (Biognosys AG,
Schlieren, Switzerland). The hybrid library contained 33,392 precur-
sors linked to 23,855 unique peptides considering peptide modifi-
cations or 17,301 unique peptides based on the amino acid
sequence corresponding to 2,733 protein groups. The hybrid spec-
tral library was used to search the MS data of the single-shot patient
samples in the Spectronaut software, version 12.0.20491.9.26669
{Biognosys AG), for final protein identification and quantitation. All
searches were performed against the human UniProt reference
proteome of canonical and isoform sequences with 93,786 entries
downloaded in March 2018. Searches used carbamidomethylation
as fixed modification and acetylation of the protein N-terminus,
oxidation of methionines and deamidation of asparagine or gluta-
mine as variable modifications. Default settings were used for other
parameters. In brief, a trypsin/P proteolytic cleavage rule was used,
permitting a maximum of two miscleavages and a peptide length of
7-52 amino acids. Protein intensities were normalized using the
“Local Normalization” algorithm in Spectronaut based on a local
regression model (Callister et al, 2006). Spectral library generation
stipulated a minimum of three fragments per peptide, and maxi-
mally, the six best fragments were included. A protein and precursor
FDR of 1% were used and protein quantities were reported in
samples only if the protein passed the filter {“Q-value sparse” mode
data filtering).

Bioinformatics data analysis

Data analysis was mainly performed in the Perseus environment
version 1.6.1.3 but also in version 1.6.0.9 for correlation analysis
and version 1.5.2.11 for Venn diagram analysis (Tyanova et al,
2016). Proteins with < 20 observations across the entire dataset were
excluded, reducing the dataset from 1,542 to 1,484 proteins. Protein
intensities were logio-transformed for further analysis, apart from
correlation and coefficient of variation analysis. All t-tests performed
were two-sided and unpaired. False discovery rate (FDR) control to
account for multiple hypothesis testing in statistical tests was
performed by a permutation-based model in conjunction with a
SAM-statistic with an sO-parameter of 0.001 (Tusher et al, 2002).
Annotation term enrichment was performed with the 1D enrichment
tool in Perseus separately for each cohort (Cox & Mann, 2012).
Annotation terms were filtered for terms with a P-value cutoff of
0.5% in each cohort. Moreover, terms comprising less than 10 or
more than 100 proteins in our dataset of 1,484 proteins were
excluded because we found that annotation enrichment analysis is
often dominated by very small or large but not meaningful terms.
Hierarchical clusters were generated using the built-in tool in
Perseus. When protein abundances were reported on the group level
{e.g. Sweden AD), Z-scoring across samples either within the cohort
or across cohorts {for all 197 samples) was performed as stated in
the figure legends and the median Z-score was taken as group abun-
dance. Sample groups (e.g. Sweden AD) were clustered based on
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Pearson’s correlation coefficient, while proteins were clustered based
on Euclidian distance unless ranked by the three-cohort mean.

A deep human brain proteome was used for comparison to the
CSF proteome, and 753 proteins were matched based on ensemble
identifiers {Carlyle et ai, 2017, supplementary table 5). For genera-
tion of the abundance distribution curves, median protein abun-
dances across all samples within a proteome were used. For the
comparison of AD CSF proteomes with the independent report
{preprint: Higginbotham et af, 2019), data for the CSF1 dataset were
downloaded from bioRxiv.org. Proteins were matched to our data
based on UniProt protein identifiers, apart from of MAPT, ALDOA,
and SOD2 which were matched based on gene names. Fisher's exact
test in combination with the Baptista—Pike method was used in
GraphPad Prism version 7.03 to assess the significance of enrich-
ment and odds ratios in contingency table settings. This included
the analysis of association of t-tau concentration-correlated proteins
with proteins differing by AD status and the analysis of enrichment
of AD-regulated proteins identified in this study among the proteins
differing significantly (P < 0.05) by AD status in the Higginbotham
CSF1 dataset.

We used linear regression analysis computed in RStudio version
1.2.5033 using R version 3.6.3 and assessed the association of log -
transformed protein intensities first with AD status (Fig EV3C) and
second with the logo-transformed ELISA-measured CSF t-tau
concentration {Appendix Fig $4B), adjusting for age, sex, and cohort
{Sweden, Magdeburg/Kiel, or Berlin) in both models. To compare
estimators of binary {AD status, sex) to those of continuous vari-
ables (age, t-tau concentration [log),]), the estimators for continu-
ous variables (i.e. per 1 year [age] and per 1 unit in log,, space of t-
tau concentration/[ng/l]) were multiplied with the interquartile
range (IQR) of the variable for plotting. IQRs for age were eleven
years for the complete dataset (Fig EV3C) and 9 years for the
reduced dataset excluding the Kiel samples due to missing t-tau
concentration values {Appendix Fig S4B). The t-tau concentration
75% and 25% quantiles were 802 ng/l and 275 ng/l, respectively,
corresponding to an interquartile range of 527 and 0.4648 in linear
and log), space, respectively (Appendix Fig S4B). Regression coeffi-
cients for age and sex were displayed in the heat map if the P-value
for these estimators was below 0.05. All proteins were associated
with AD status or t-tau concentration at a significance below of 0.05
in each plot.

Coefficients of variation {CVs) were calculated in RStudio for all
inter-plate and intra-plate combinations of three samples, the
median thereof was reported as overall coefficient of variation.
Combinations with only one observation in three samples of a given
protein were excluded. The protein CVs of the main study were
calculated likewise within cohorts individually. The median CVs
were calculated within the three cohorts, and the median thereof
reported as final CV.

Machine learning for participant classification

All data processing was done in Python (3.7.3). Protein intensity data
were Z-scored within cohorts, saved in Excel, and imported via the
pandas package (0.25.3). Except for the XGBoost classifier, missing
intensities were replaced with 0. Machine learning classifiers were
employed using the scikit-learn package (0.21.3) and the XGBoost
package package (0.90) {Fabian et al, 2011). Results were plotted via
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matplotlib (3.1.2). Visualization of the decision tree was performed
with the dtreeviz package (https://github.com/parrt/dtreeviz).

In order to estimate features important for AD prediction, we
employed a decision tree {Freund & Schapire, 1997). The minimum
depth of the tree was increased until a training accuracy of 1.0 was
achieved. At a tree depth of 2, using the protein intensities of MAPT,
PKM (protein group P14618-2), and MIF, the training accuracy had
reached 0.86, highlighting the importance of these proteins for the
classifier. For a tree depth of six, intensities of a total of 14 proteins
were used by the algorithm.

For estimating how well our tree-based approach would general-
ize to new data, we tested several ensemble methods (AdaBoost,
Bagging, ExtraTrees, GradientBoosting, RandomForests, XGBoost).
The subset of 14 protein intensities selected by the decision tree
above were randomly shuffled and split using a k-Folds cross-vali-
dator (k = 6). Each model was used with its default parameters.
XGBoost had the best performance and was selected for further anal-
ysis. To determine the optimum set of features, we added proteins to
the model iteratively according to their feature importance within the
tree (Fig 5A) and compared the AUC as a measure of model perfor-
mance. To control for overfitting, we employed early stopping with
10 rounds and logloss as evaluation metric for best generalizability.
No further tuning of hyperparameters was performed at this stage.

To assess the sensitivity and specificity of the final method, we
combined each train and test set of the cross-validation and calcu-
lated the confusion matrix. Here, a test accuracy of 0.85 was
achieved (training accuracy 0.94; sensitivity 82%, specificity 87%
on our AD data).

Data availability

The datasets produced in this study are available in the following
databases:

® Proteomic datasets: PRIDE archive PXD016278 ({Perez-Riverol
et al, 2019; https://www.ebi.ac.uk/pride/archive/)

Expanded View for this article is available online.
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Body fluids as specimens for clinical test development are of interest for molecular
identifying methods like proteomics or metabolomics, but also for more complex
approaches. In our manuscript ‘Molecular origin of blood-based infrared fingerprints’, we
teamed up with the Department of Physics from the LMU and the MPI of quantum optics
to use proteomics for the interpretation of infrared molecular fingerprints (IMF) of human
serum samples. A cohort of 148 lung cancer, benign condition and non-symptomatic
patients was probed and investigated with MS-based proteomics and Fourier transform
infrared (FTIR) spectroscopy. It has been shown previously that FTIR spectroscopy can
distinguish lung cancer patients form controls, but the understanding of the underlying
molecular changes has not been addressed so far. With the information of the
proteomics measurements, the molecular fingerprints were reconstructed from the high
abundant proteins of serum and the underlying changes could be traced to
concentration changes of the high abundant proteins and adding the metabolite fraction
of serum yielded in an accurate model of the original serum spectra. Proteomics and
IMF both allowed binary classification of lung cancer versus reference individuals at >
80%.

This study is a perfect showcase how proteomics can contribute not only to biomarker
identification in unbiased study designs but also to establish novel screening techniques

for medical conditions in liquid biopsies. The FTIR spectroscopy method to investigate
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serum samples is quick, easy applicable and affordable, compared to more specific,
comprehensive but also time-consuming techniques like proteomic profiling. It is
reasonable to establish such methods for preselection of patients for deeper screening
as a first stage of diagnosis. MS-based proteomics helps to investigate the molecular
origins of changes in such fingerprint methods and ensures that findings are not only on
the result of quality bias from sample taking and processing. This described in the
publication ‘Plasma Proteome Profiling to detect and avoid sample-related biases in

biomarker studies’, which is now accepted for publication in Angewandte Chemie,
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Abstract

Infrared spectroscopy of liquid biopsies is a time- and cost-effective approach that
may advance biomedical diagnostics. However, molecular nature of disease-related
changes of infrared molecular fingerprints (IMFs) remains poorly understood, impeding
the method’s applicability. Here we probe 148 human blood sera and reveal the origin
of the variations in their IMFs. To that end, we supplemented infrared spectroscopy with
biochemical fractionation and proteomic profiling, providing molecular information about
serum composition. Using lung cancer as an example for a medical condition, we
demonstrate that the disease-related differences in IMFs are dominated by contributions
from twelve highly abundant proteins - that, if used as a pattern, may be instrumental for
detecting malignancy. Tying proteomic to spectral information and machine learning
advances our understanding of infrared spectra of liquid biopsies, a framework that

could be applied to probing of any disease.
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Introduction

Infrared spectroscopy is a well-established method of studying chemical substances
via analyzing the vibrational transitions that are characteristic of their molecular structure.
U1 In particular, infrared molecular fingerprinting of human biofluids has the potential to
provide information about the health state of individuals when combined with appropriate
machine learning algorithms.>-'¥ The idea behind is to record an infrared absorption
spectrum of the whole molecular ensemble composing blood serum using Fourier-
transform infrared (FTIR) spectroscopy and pinpoint the deviations, associated with a
given pathophysiological condition. However, the molecular origin of such changes in
infrared molecular fingerprints (IMFs) is poorly understood.['516] The interpretation of the
infrared absorption spectra is currently largely restricted to the characteristic spectral
signatures of various functional groups.l'”-'°1 However, these are contained in many
different types of biomolecules, their spectral features in aqueous environment are broad
and strongly overlapping, and the molecular complexity of biofluids is extremely high.
Therefore, the understanding of the underlying molecular changes of the IMFs has so far
been limited.[20.21]

Thorough exploration of the molecular origin of IMFs would be instrumental for
successful application and verification of molecular fingerprinting in clinical settings.! It
would allow for improved sample preparation, ensure that the spectral features used for
building the computational models are indeed caused by a medical condition and not by
confounding factors and help define the possible limitations of blood-based IMFs’
applicability.[??! To that end, several studies measured the concentrations of a range of
analytes in human blood serum using conventional biochemical methods and
demonstrated that IMFs can be used to retrieve these concentrations using multivariate
regression or consecutive spectral subtraction approaches.l'423-281 However, they come
up short in determining how exhaustive the list of molecular constituents is and
connecting disease-related changes in the molecular composition of biofluids to the
changes in the corresponding IMFs.[?6]

It had been suggested that large variations in blood-based IR spectra may be caused
by a varying albumin-to-globulin ratio.l?®! Indeed, the spectroscopic signature of human

blood serum is vastly dominated by a few highly abundant molecular components, such

3
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as human serum albumin (HSA) and immunoglobulins.*% To overcome the challenge of
strong molecular signals that overshadow the signals from less abundant molecules,
splitting complex biological samples into several fractions of different chemical nature is
beneficial 2831321 Previously, ultrafiltration has been used to fractionate human blood
serum based on molecular weight of the components.[1524283334 However, these
methods introduce unwanted chemicals in non-reproducible fashion.i®*3! In this study, we
chose to adapt a combination of solvent-extraction sample preparation protocols, which
are typically used in metabolomics*¢! and proteomics,*"! because of their robustness and
speed.[*8]

In order to explore the dependence of the IMFs of human blood serum on its
molecular composition, spectroscopic molecular fingerprinting should be ultimately
combined with a technique that is able to provide molecular-specific information over a
high dynamic range.®®! Recently, a high-throughput mass spectrometry (MS)-based
proteomic workflow has been established for the analysis of human blood plasma profiles.
(401 \We adapted this technology for human blood serum and applied it to our sample set
in order to model the IMFs of hydrated biofluids as a linear combination of molecular
components. Such a parallelized FTIR-MS approach for molecular annotation of disease-
relevant vibrational fingerprints of human blood derivatives has been lacking this far.

With the gained understanding of the molecular composition underlying the IMFs of
human blood serum, we compare the samples of lung cancer patients (TNM clinical
stages Il and lll) with reference individuals matched in age, gender and smoking status.
We focused on lung cancer as a prototypical disease for which non-invasive early
detection from blood profiling would be highly beneficial.*42 The ability of FTIR
spectroscopy of blood serum to discriminate lung cancer cases from controls has been
previously shown in several studies.[*344 Pattern recognition algorithms were used to
identify non-small cell lung carcinoma and subtype the disease conditions.[*3]
Independently, the ratio between intensities at 1080 and 1170 cm-! was put forward as
the most informative for disease detection, and it was suggested that changes in the
protein secondary structure might be correlated with lung cancer.[*4 Other types of cancer
have also been detected with various efficiencies using blood-based IMFs, with little

insight into molecular changes for the reasons stated above.[10.45-49]
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In this study, we obtain reproducible, cost- and time-efficient IMFs of human sera and
use proteomic measurements to facilitate their understanding at a molecular-level. In
particular, we reveal a pattern of changes of human blood serum composition, which
correlates with the presence of lung cancer and results in an observable difference
between IMFs of blood sera of lung cancer patients compared to the reference group.
Both spectral and molecular information was used to build explainable classification
models for lung cancer detection.[%! This paradigm can be applied to possibly any other

health phenotypes in order to develop efficient and explainable diagnostic tools.

Results

1. Decomposing complexity of human blood sera using biochemical fractionation

We recorded infrared absorption spectra of liquid human blood sera in the range from
1000 to 3000 cm-'. The spectra are dominated by amide bands that are attributed to the
vibrations of protein backbone.[®'l In particular, the most prominent feature between 1600
and 1700 cm™ (Amide | band) is characteristic of the secondary structure of the
proteins.5"l The region on the red side of the spectrum (1000-1200 cm") is often referred
to as “carbohydrate region”, because of the typical absorption patterns that glycans
exhibit here ['® Finally, lipids produce several absorption bands around 1735 cm-, 2852
cm™ and 2926 cm™.[52]

Attributing the distinct features of the mid-infrared absorption spectrum of human
blood serum to a specific molecular class is somewhat oversimplified, since absorption
spectra of various biological molecules often overlap. In order to gain deeper insight into
the origins of different spectral features, we built a comprehensive model of the human
blood serum absorption. To this end, we used a set of 148 prospectively collected blood
serum samples (Figure 1A).

As a first step, we recorded the IMFs of each full intact, fluid, serum sample using
high-throughput automated FTIR spectrometer in transmission mode (black line in Figure
1B).I'"I Next, we biochemically fractionated each sample into three fractions and recorded
their IMFs (colored lines in Figure 1B) in order to assess the relative contributions of

roughly defined molecular classes, i.e. proteins and metabolites. In parallel, we used
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proteomic analysis of the crude sera and human serum albumin (HSA)-depleted fractions

to characterize the efficiency of HSA depletion and the molecular composition of each
protein fraction.
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Figure 1. Decomposing complexity of human blood sera using chemical fractionation. (A) Overview
of the workflow of the study. (B) Average infrared molecular fingerprint (IMF) of human blood serum of 93
reference individuals and the corresponding IMFs of 3 fractions. The dashed vertical line shows the position
of the Amide | band in the HSA-enriched fraction. The two lower inserts highlight the regions with the largest
relative differences between the fractions. (C) Reproducibility of the fractionation protocol assessed with
proteomic and FTIR measurements. Left axis: coefficients of variation for the levels of 12 proteins
considered in this study for the same 8 serum samples with and without fractionation as well as their
between-person variability in 93 control individuals. Right axis: the corresponding variations in the IMFs,
averaged across wavenumbers.

Human serum albumin is the most abundant serum protein and constitutes about a
half of total protein mass.’% It is helpful to separate HSA away from other proteins,
because its intense absorption potentially obscures the signals from other molecules.?l
For this purpose, we first precipitated most of the proteins using cold ethanol.*”l The

supernatant was enriched in HSA, which we precipitated in the next step to separate it
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from metabolites.[®¥] All three fractions (HSA-depleted proteins, HSA-enriched proteins
and metabolites) were dried in vacuum and re-dissolved in water prior to the
spectroscopic measurements.

We assessed the reproducibility of our fractionation protocol both with FTIR
spectroscopy and proteomic analyses (Figure 1C). First, we estimated the measurement
uncertainty of the proteomic workflow as the coefficient of variation (CV) in repeated
measurements of the same single human blood plasma sample. The average CV for the
12 proteins considered in this study (see below) in the crude plasma samples is 9 %, and
it rises to 10% in the HSA-depleted fraction of the same sample, suggesting that the
process of fractionation adds only minor error compared to the instrumental one. The CV
measured for 93 reference individuals provides a rough estimate for the between-person
variability, which is higher than the instrumental error for all considered proteins (33 % on
average). The analysis based on IMFs leads to similar conclusions (Figure 1C, right axis).

We further compared the spectral intensities of each of the fractions (Figure 1B). This
procedure facilitates several unexpected conclusions about the nature of the IMFs of
crude blood sera: Firstly, the signals between 1000 and 1200 cm are typically attributed
to carbohydrates.'! Indeed, we detected the metabolite fraction containing free
carbohydrates, exhibiting characteristic pattern in this region of the spectra. However, the
intensity of the signals from both two protein fractions combined is an order of magnitude
higher than that of metabolite fraction in this spectral region. We attribute this effect to
glycosylation of proteins and further demonstrate it below. Additionally, we show that
around 10% of the intensity of the Amide | band (1654 cm™ in crude serum), which is
typically attributed to proteins,['l is actually contributed by metabolites.

Altogether, our fractionation workflow enabled us to disentangle the quantitative
contributions of metabolites and proteins to the IMF of crude blood sera. Since the
absorption of proteins fractions is, as expected, significantly higher than that of
metabolites, in the next step we focused on understanding and modeling the contribution

of protein absorption to the overall fingerprints.
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2. Towards molecular understanding of infrared fingerprints using proteomics

We demonstrated that the IR spectrum of blood serum mostly exhibits signals
originating from the protein absorption. It is therefore important to understand how various
proteins of blood sera contribute to the overall IR absorption spectra of this biofluid. To
that end, we performed bottom-up proteomic analysis of the same samples. They were
subjected to an established mass-spectrometry based proteomics pipeline.[*°! In brief,
proteins in the sample are denatured and disulfide bonds reduced and quenched.
Proteins are then digested into tryptic peptides and desalted. The peptides are separated
by reversed phase chromatography coupled online to the mass spectrometer to detect
the mass to charge ratios of peptides and their fragments in a quantitative manner. This
enables software-dependent peptide identification and subsequently quantitative protein
assembly from detected peptides.[54.5°

The first ten proteins listed in Figure 1C are the ten most abundant proteins in human
blood serum (Table S1). The quantitative values for each protein (so called ‘label-free
quantification’” or LFQ values) provided by proteomic measurements are suited to
characterize the differences between subjects in a study, but not directly proportional to
the absolute concentrations of proteins, ¢! as revealed by Table S1. To obtain the actual
protein concentrations, we re-scaled the LFQ values using the average reference
concentrations of these proteins in healthy subjects.

To be able to link the actual individual protein levels directly to the IMFs of blood
sera, we measured IR absorption spectra of each of the 10 most abundant proteins
separately, dissolved in phosphate-buffered saline (PBS). Figure 2A demonstrates the
IR spectra of 5 highly abundant proteins (Figure S2 for all proteins). The position and
shape of the Amide | band is characteristic for their secondary structure and qualitatively
corresponds to the known B-sheet and a-helix content of proteins.5'l As expected, alpha-
1-acid glycoprotein (ORM1 in Figure 2A) shows particularly high absorption in the region

of 1000-1200 cm-", because about 45 % of its dry mass is comprised of carbohydrates.*’]
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Figure 2. Molecular modeling of infrared fingerprints based on serum proteomic profiling. (A)
Examples of infrared absorption spectra of human serum proteins at the same concentration, 5 mg/mL. (B)
Average IMF of 148 human blood sera, each modelled as a sum of contributions of 10 proteins compared
to the average experimentally measured IMF. (C) Average vector distance between the model and
experimental spectra for all 148 samples depending on the number of proteins introduced into the model.

In order to estimate the contribution of each protein to the IMF of blood serum, we
modeled the absorption spectra of every individual's serum as a sum of IR absorption
spectra of proteins multiplied by their respective concentrations, measured by proteomics:

IMF(¥) = X; C; = S; (),
where ¥ represents wavenumber, C; — concentration of the protein / in mg/mL, S;(¥)
— absorption spectrum of the protein i for 1 mg/mL.

We started by taking into account the spectral contribution of HSA only (i=1) and
building complexity by adding proteins one by one, in the order as listed in Table S1.
Figure 2C shows how the model becomes closer to the experimentally measured IMFs
with every additional protein. Adding further lower abundant proteins to the model is
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expected to yield only small improvements, since the total concentration of remaining
proteins that are beyond the ten molecules considered here is about the same order of
magnitude as the level of complement component C3.

In Figure 2B we compare the average modeled and experimental absorption spectra
of human blood serum. Given the linear character of the model and the limited number of
considered components, the matching is remarkably high. The only prominent peaks
missing from the modeled spectra are the C=0 (at 1735 cm™') and C-H stretches (at 2852
cm™ and 2926 cm™") known to be unique for lipids.l5?! Indeed, the average concentration
of cholesterol in human blood serum is of the same order of magnitude as the last proteins
we considered.[*® The model can, therefore, be further refined by including cholesterol
and other metabolites, such as ATP, melanin, glucose and urea. In fact, adding the entire
metabolite fraction to the model further reduces the RSS between the model and the
experiment by 50 % (Figure S3).

3. Combining MS-based proteomics and IR fingerprinting reveals lung cancer-
related molecular changes in blood serum

Having obtained a simple model of the IR absorption of human blood serum, we can
address the question how this absorption changes as a consequence of a disease. In this
study we focused on lung cancer, as the most common cause of cancer-related deaths
worldwide .[*'1 We compare the IMFs of prospectively collected sera between two cohorts:
55 lung cancer patients (therapy naive, prior to any cancer-related therapy, at TNM
clinical stages 2 and 3) with 93 reference individuals. In the latter cohort we gathered non-
symptomatic individuals (“healthy”), patients with chronic pulmonary obstructive disease
(COPD) and individuals with lung hamartoma, to challenge our detection regime by non-
cancerous lung diseases. Importantly, to avoid possible confounding bias the cohorts are
gender, age and smoking-status matched (Table S2).

We find that infrared molecular fingerprints of lung cancer patients clearly differ from
that of reference individuals. The black line in Figure 3A shows the difference between
the average IMF of lung cancer patients and those of references as a function of
wavenumber, which we specify as “differential fingerprint’. The p-values of the most

prominent spectral peaks are below 10 (Table S3), strongly suggesting that the

10
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differences between the IMFs of two cohorts are statistically significant. To further
quantify these differences, we applied support vector machine (SVM) algorithm to classify
the samples into two classes — cancer cases and reference individuals. To that end, the
data were split into train and test sets, employing 10-times repeated 10-fold cross-
validation. The area under the curve (AUC) of the receiver operating characteristics
(ROC) curve was used as a measure of classification efficiency. For the classification of
lung cancer patients versus references, the model reveals an AUC of 0.85+0.1, implying
that the SVM model can, in principle, be trained to distinguish between the two cohorts.
We find that the differential fingerprint of lung cancer has a specific shape, with
prominent features around 1000-1200 cm™, as well as in the Amide | and Amide I
regions. Such shape could result from alternations in the proteins secondary structure, as
previously suggested!*l or, alternatively, from the changes in their concentration.[??l The
distinction between the two possibilities can only be obtained by comparison of two
sample sets with a technique that provides information about molecular concentrations.
The HSA-enriched and HSA-depleted fractions reflect the largest differences
between lung cancer and reference samples with p-values below 10 (Table S3), while
the metabolite fraction is not significantly different in the samples from reference
individuals versus these of the lung cancer patients. This finding is confirmed by the AUC
values: for the metabolite fraction the AUC is 0.62+0.2, while for the HSA-enriched
fraction it is 0.82+0.1, and for the HSA-depleted fraction - 0.75+0.1. Thus, we turned to
the proteomic measurements of the same sample set - aiming for the identification of
individual proteins responsible for the observed changes in the IMFs.
In line with previous research,!4259-6% we find a number of proteins that demonstrate
p-values below 0.0005 (Table S4). However, the purpose of this study is not the search
for specific biomarking candidates; instead, we wish to evaluate whether lung cancer

results in a pattern of changes in protein concentrations responsible for its IR signature.
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Figure 3. Lung cancer-related molecular changes in blood serum, based on comparison between 55
lung cancer patients and 93 reference individuals. (A) Differential fingerprints of lung cancer in full sera:
experimentally measured and modeled based on the levels of 12 proteins. The shaded area shows the
standard deviation of the IMFs of the reference group. (B) Change in the concentrations of proteins in blood
serum caused by lung cancer, measured by proteomics. The proteins are ordered according the absolute
difference in the concentrations in lung cancer and control individuals. *- p-value below 0.05, ** - p-value
below 0.0005, ***- p-value below 10 no star — p-value above 0.05. (C) ROC curves based on the
experimental measurement of IMF of full serum and the set of 12 proteins measured by proteomics. The
STDs are 0.1 for AUC in panels (C) and (F). (D) Differential fingerprints of lung cancer in HSA-enriched
fraction: experimentally measured and modeled based on the levels of 3 proteins. (E) Change in the
concentrations of proteins in HSA-enriched fraction caused by lung cancer, measured by proteomics. (F)
Comparison between the ROC curves based on the experimental measurement of IMF of HSA-enriched
fraction and the corresponding set of 3 proteins.

The first question we have addressed is: which proteins do we have to consider in
order to model the differences in the IMFs between the lung cancer patients and reference
individuals. The differential fingerprint is affected by the disease-related absolute change
in the protein concentration due to the linear character of the absorption measurement.
Therefore, we ranked all detected proteins according to the absolute difference in average
concentration between lung cancer and reference samples, as measured by MS (Table
S5).

Out of ten proteins that are most extensively changing, eight are also among the ten
most abundant proteins in the blood sera. We further identify other proteins reflecting the
differences between the two sample sets, such as alpha-1-acid glycoprotein-1 and alpha-
1-antichymotrypsin: although their concentrations in non-symptomatic subjects are below
the ten most abundant proteins, they are changing significantly in lung cancer patients
and thus have to be taken into account to accurately model the disease differential
fingerprint. In total, we considered twelve proteins for the model of lung cancer differential
fingerprint, as shown in Figure 3B: ten most abundant ones and two additional ones that
are changing most significantly.

After we have modelled the IMF of every individual as described above, the
differential fingerprint of lung cancer was calculated as the difference between the
average fingerprint of lung cancer patients and reference individuals. The resulting curve
of this twelve-protein model very closely resembles the measured differential fingerprint,
reflecting all the important features (pink line in Figure 3A). Moreover, the binary
classification of lung cancer cases versus reference individuals based on the

concentrations of the twelve identified proteins produces an AUC of 0.82+0.1, which is
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close to the value for experimentally measured serum spectra (0.85+0.1). These findings
suggest that most of the information in IMFs regarding lung cancer status stems from the
molecular changes in these twelve proteins. Moreover, such kind of information can be
measured in time- and cost-efficient manner by applying FTIR, without the need to
measure the concentrations of each of the protein separately.

Interestingly, the three proteins that change the most between the lung cancer
patients and the reference group (namely, HSA, haptoglobin and alpha-1-acid
glycoprotein 1, Figure 3B and 3E) remain predominantly contained in the HSA-enriched
fraction during the fractionation procedure. This explains the high AUC obtained for this
protein fraction: 0.82+0.1, blue line in Figure 3F. It further suggests that most of the
molecular information about the presence of lung cancer is encoded in the concentrations
of the three proteins named above, out of all twelve proteins analyzed. Indeed, the SVM
binary classification based on the concentrations of these three proteins reveales the
AUC of 0.82+0.1, the same as based on all 12 proteins considered above.

We modeled the IMFs of the HSA-enriched fraction as detailed above, taking into
account the proportion of each protein in HSA-enriched fraction compared to full serum
(Table S1 and Figure S1). In line with only a minor contribution of low-abundant proteins
and metabolites to the IR spectra of HSA-enriched fraction, we find that the model very
well reproduces the experimental curve (Figure 3D).

In summary, we observe statistically significant differences between the IMFs of blood
serum of lung cancer pateints when compared to the IMFs of reference individuals.
Biochemical fractionation and proteomic profiling of the very same sample set facilitated
identification of the compounds responsible for these differences and revealed previously
unappreciated pattern of changes in the concentrations of well known proteins that we

find to be characteristic of lung cancer.

Discussion

Although FTIR has been used over decades and blood-based studies suggested the
applicability of this approach to disease diagnostics, the molecular nature of blood-based
infrared molecular fingerprints (IMFs) and changes therein has not been well understood.

Being cost- and time-efficient, suitable for high-throughput approaches, IMFs could
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greatly contribute to clinical diagnostics if their robust correlation with any given condition
is reproducibly demonstrated. Molecular understanding of the IMFs along with
computational models may open up a path towards informed choice of biofluid (e.g. serum
vs plasma), improved sample preparation and possibly even initial steps of the biomarker
identification. Here we took advantage of a prospective clinical study and examined the
samples with two independent techniques - IR spectroscopy and mass spectrometry
(MS)-based proteomics - with the goal to elucidate the molecular entities dominating
human blood-based IMFs.

As a first step to decompose chemical complexity of IMFs, we established a protocol
for highly-reproducible fractionation of crude human blood sera into three fractions:
human serum albumin (HSA)-enriched proteins, HSA-depleted proteins, and metabolites.
The strongest IR absorption signal in human blood serum arises from proteins. We
therefore measured their relative concentrations in the samples using MS-based
proteomic profiing and used the concentrations of ten most abundant proteins to
reconstruct individual spectra of the human blood serum. This concept is shown in the
bottom part of Figure 4 for the general case of any omic technology. Indeed, the model
built in this study can be further developed by adding highly abundant metabolites and
additional proteins until the model reproduces measured IMFs within their noise limit. In
particular, it has been shown previously that in addition to the proteins discussed here,
FTIR spectra of blood plasma provide information about the levels of lactate, urea,
apolipoproteins B and C, as well as immunoglobulin D.?1 However, the data presented
here suggest that our 10-protein-based approach leaves little room for improvement in
modelling IMFs measured by FTIR spectroscopy. The ultimate limitation of such modeling
lies in the linearity of the model, disregarding any interaction between different blood
components.

Infrared molecular fingerprints acquired by field-resolved spectroscopy!®®l may
drastically increase the precision of infrared molecular fingerprinting by reducing the noise
limit. This will render smaller molecular contributions significant, uncovering thereby more
molecular information just as the combination of further biochemical fractionation (e.g. by

liquid chromatography) with field-resolved spectroscopy will do. Both may allow more
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lower-abundance molecules to contribute to the identification of a pathophysiological

condition.

PROBING MOLECULAR CHANGES in DISEASE
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Figure 4. General workflow for probing molecular changes in disease. The infrared absorption spectra
of blood sera are reconstructed as a linear combination of the spectra from individual molecular
constituents, while the concentrations of the latter are measured using an omics technology. The resulting
model is compared to the measured IMFs of blood sera and used to explain disease-related features

therein. A similar workflow can potentially be applied to detection of any phenotype in human biofluids.

In this study we use lung cancer as a case scenario of a medical condition, the
outcome of which could significantly benefit from early detection. We find that IMFs of
sera samples of lung cancer patients differ significantly from that of reference individuals.
Using MS-based proteomics, we identify a pattern of known highly-abundant proteins that
determine the observed change in the IMFs of blood sera (Figure 4). Some of them have
been previously linked to cancer: unexplained hypoalbuminaenia has been assosiated
with increased cancer risk,[®”1 and low pre-treatment albumin level — with poor survival
rate. 81 Moreover, in line with our findings, the levels of haptoglobin, complement
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component C3, alpha-1 antytrypsin and alpha-1-acid glycoprotein were previously shown
to rise in blood of lung cancer patients.[60-6265]

Importantly, although these proteins are not specifically challenging to detect and
measure, they have previously not been used in a combined fashion to help detect or
diagnose lung cancer. It is meanwhile widely accepted that using multiple biomarking
molecules together, as a pattern, is more effective and robust for detecting a particular
health condition.[306489.701 |nfrared fingerprinting of human blood serum takes this
approach to a new level: here we effectively combine a wide range of molecules into a
single IR spectrum, that can be easily measured and interpreted. To illustrate that, we
considered the levels of all 114 proteins detected by proteomics in every sample.
Importantly, the binary classification efficiency based on all these proteins measured
separately is not higher than the efficiency based on a single IMF measurement (Table
S6).

Lung cancer induces a number of changes in the levels of blood serum proteins that
have been previously linked to acute-phase response, and it is well-known that cancer is
often associated with inflammatory states.[**7"l In line with the general discussion in the
field,?? our findings underscore the need for additional clinical studies that would look
into the specificity of IMFs. A well-designed reference cohort should include individuals
with potentially similar pattern of changes in the blood composition: for example, in the
case of lung cancer, with chronic or acute inflammation. Due to cost-efficiency and
rapidity of blood-based infrared molecular fingerprinting, it could still find a wide range of
applications, even if its specificity proves insufficient for screening applications. Thus,
general molecular-level understanding of the disease-related changes in IMFs will help
establish better clinical study design, and ultimately lead to improved approaches to

medical diagnostics.

Conclusion

As the focus of future healthcare is shifting from treatment to early detection and
prevention, such rapid, cost-effective and holistic approaches as infrared molecular
fingerprinting of body liquids will become ever more relevant. So far, infrared spectral

changes in complex bioliquids were linked to multiple diseases but have remained
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uninterpretable with regard to which specific molecule accounts for a spectral change.
In this study we looked systematically into the contributions of different constituents of
blood serum to the overall IMF. In particular, we showed that the IMFs of blood serum
can be to a high extent modelled using the concentrations of the ten most abundant
proteins. With non-metastatic lung cancer as an example of a medical condition, we
showed that a number of highly abundant acute-phase proteins are up- and down-
regulated in cancer patients compared to the reference group, leading to an observable
change in the IMFs of blood serum. Accompanied by a meaningful molecular annotation,
this change is more likely to find its use in everyday clinical practice.

The paradigm presented here could in principle be used for any pathophysiological
condition. After having recorded the IMFs of patients and compared them to matched
reference individuals, one could use biochemical fractionation to determine which
molecular class is responsible for the disease-related differences and perform in-depth
omics profiling of the identified fraction (Figure 4). This would provide insights into the
nature of information that infrared molecular fingerprinting is able to provide and into its
additional value compared to well-established clinical tests. Moreover, combining
biochemical fractionation with field-resolved spectroscopy-based infrared molecular
fingerprinting!®®! might yield deeper molecular insight along with higher specificity and
sensitivity for disease detection. Ultimately, the larger clinical studies with purposefully
chosen reference groups, stratified and controlled for comorbidities, may bring IMF — a

cheap and time-efficient method — closer to everyday clinical use.
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Neonatology of the LMU. The overall aim of the study was to collect a unique cohort of
term and preterm born dried blood spots and plasma for omics analyses and support
this with an extensive clinical and epidemiological record. To this end, surveys with the
participating parents were conducted and routine laboratory parameters recorded to
build up detailed meta data. The cohort profile is a description and examination of the
participating parents and newborn infants and holds all the epidemiological information
to make the follow up work more comprehensible. With our description of simple
correlations between parental age and body weight or infant gender with the gestational
age at birth we confirm and extend previous studies’ findings of risk factors for preterm
delivery. In the future, with the unbiased investigation of the cohort’s blood proteome,
we hope to uncover new biomarkers to stratify infant subgroups with long-term impact
from postnatal complications and generally understand the effect of pre- and postnatal

factors on long-term health.
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ASD: atrial septal defect, BMI: bodymass index, BPD: bronchopulmonary disease, GA: gestational
age, GDM: gestational diabetes mellitus, GHT: gestational hypertension, GWG; gestational weight
gain, LGA: large for GA, SGA: small for GA, ICH: intracerebral hemorrhage, IVH: intraventricular
hemorrhage, PDA: patent ductus arteriosus, PFO: patent foramen ovale, RDS: respiratory distress

syndrome, VVSD: ventricular septal defect
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ABSTRACT

Purpose: The MUNICH Preterm and Term Clinical (MUNICH-PreTCI) prospective birth cohort
was established to uncover pathological processes contributing to infant/childhood morbidity and
mortality. We collected comprehensive medical information of healthy and sick newborns and their
families, together with infant blood samples for proteomic analysis. MUNICH-PreTCI aims to
identify mechanism-based biomarkers in infant health and disease to deliver more precise
diagnostic and predictive information for disease prevention. We particularly focused on risk
factors for pregnancy complications, family history of genetically influenced health conditions such
as diabetes, and pediatric long-term health - all to be further monitored and correlated with
proteomics data in the future.

Participants: Newborns and their parents were recruited from the Perinatal Center at the LMU
University Hospital, Munich, between February 2017 and June 2019. Infants without congenital
anomalies, delivered at 23-41 weeks of gestation, were eligible.

Findings: Findings to date concern the clinical data and extensive personal patient information.
A total of 662 infants were recruited, 44% were female (36% in preterm, 46% in term). 90% of
approached families agreed to participate. Neonates were grouped according to gestational age:
extremely preterm (< 28 weeks, N=28), very preterm (28 to < 32 weeks, N=36), late preterm (32
to < 37 weeks, N=97) and term infants (> 37+0 weeks, N=501). We collected over 450 data points
per child-parent set, (family history, demographics, pregnancy, birth, and daily follow-ups
throughout hospitalization) and 841 blood samples longitudinally. The completion rates for medical
exams and blood samples were 100%, and 95% for the questionnaire.

Future Plans: The correlation of large clinical datasets with proteomic phenotypes, together with
the use of medical registries, will enable future investigations aiming to decipher mechanisms of

disorders in a systems biology perspective.

This observational cohort is registered with DRKS (00024189).
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STRENGTHS AND LIMITATIONS

The MUNICH-PreTCI study is a prospective birth cohort consisting of 662 infants (501
full term and 161 preterm) recruited from a single Perinatal Center in Germany.

We collected phenotypical information including clinical data from maternal and
neonatal medical records, family history and demographics survey and blood samples
at defined time points for proteomic screening.

Recruiting at the university hospital and restricting the survey to German and English-
speaking parents likely introduced some bias as mostly caucasian families from urban
living environment and with a higher educational level participated in the study.
Combining population-based cohort studies with proteomic screening provides an
opportunity to relate the functional protein network status to specific pre- and postnatal
factors as well as clinical outcomes recorded at time of birth and during follow-up.
This hypothesis-free approach may enable the identification of biomarkers for the
etiologic understanding of complex multi-factorial short and long-term diseases in

infants.
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INTRODUCTION

Early-life exposure to environmental impact factors (e.g., air pollution, noise, chemicals and
pesticides) and family medical history can alter ontogenic trajectories in fundamental and often
unforeseen ways. These often result in clinically important outcomes during pregnancy, at birth
and in the long-term. In particular, preterm birth is still associated with an increased incidence of
complications, despite advances in neonatal intensive care '. The pathogenesis is thought to be
of multifactorial origin, involving the exacerbating interaction of genetic components with a
multitude of environmental risk factors 2. Furthermore, it is conceivable, that poor outcomes among
preterm infants are not solely associated with being born too early, but that the underlying reasons
for prematurity itself could be of even greater importance 3.

This raises the question why some infants develop diseases, while others are resilient despite
potentially carrying a heightened risk for morbidity. Resilient individuals may provide important
clues for improved disease prevention but can only be identified when patients are compared
within a particular group sharing a defining characteristic or common event, such as birth. This
highlights the need for population-based-pregnancy groups and birth cohorts to investigate
environmental and genetic factors with the purpose of increasing our understanding of the origins
of health and disease - starting as early as in pre-preghancy. Previous neonatal cohort studies
have used maternal biomarkers to explore the influence of potentially disease-causing
environmental factors on long-term health outcomes of the child #®. Moreover, pre-preghancy
obesity and abnormal weight gain during early gestation have been associated with an adverse
cardio-metabolic profile in the offspring, including but not limited to higher childhood body mass
index (BMI), body fat and systolic blood pressure 8. In particular, the third trimester - a critical
period for brain and lung development as well as metabolic programming - is now understood to
be remarkably sensitive to disruptive factors like alcohol and drug abuse, stress, and malnutrition
7. The advantage of combining population-based cohort studies with collection of body fluids
during hospitalization, is that it provides an opportunity for an unbiased assessment of circulating
proteins in blood and plasma by highly informative OMICS technologies, such as plasma proteome
profiling, in effect phenotyping the individuals 8. The results of biospecimen measurements can
then be related to specified pre- and postnatal factors as well as clinical outcomes recorded at
time of birth and during follow-up. This hypothesis-free approach may enable the identification of
biomarkers and disease-modifying effects for the etiologic understanding of complex multi-

factorial short and long-term diseases in infants.
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COHORT DESCRIPTION

Study aims

MUNICH-PreTCI was designed as a comprehensive cohort study, enrolling both, preterm and
term infants. Our overall objectives were to firstly elucidate the role of gestational age, pre- and
postnatal environmental exposures, and family demographic and medical history in determining
the risk of neonatal morbidity among preterm and term infants. Secondly, we wanted to establish
a thorough baseline assessment for future follow-ups regarding disease occurrence. To this end,
we systematically collected comprehensive datasets on healthy infants with and without specific
susceptibilities to diseases, on sick infants and on critically ill infants. YWe monitored the medical
status of enrolled neonates, recorded their families* backgrounds and obtained blood samples for
proteomic analysis from each infant. With these data at hand, we can investigate the impact of
specific medical and environmental conditions on neonatal health outcomes in an attempt to

preventively improve the lives of preterm infants, critically ill patients, and their families.

Study design

The MUNICH-PreTCl study is a prospective cohort of 662 neonates. Between February 2017 and
June 2019, we included 501 full-term neonates recruited from our maternity ward and 161 preterm
infants upon admission to our neonatal intensive care unit at the Perinatal Center, Campus
Innenstadt, University Hospital, LMU, Munich, Germany. For preterm infants, we defined three
subgroups as follows: infants born at less than 28 completed weeks of gestation (extremely
preterm, N=28), infants born between 28+0 to 31+6 weeks (very preterm, N=36) and infants born
between 32+0 to 36+6 weeks (late preterm, N=97).

Data collection

Participant recruitment and informed consent

Mothers of eligible infants were approached for enrolment after giving birth at the Perinatal Center,

Campus Innenstadt, University Hospital, LMU, Munich, Germany. Full informed consent was given

by mothers for the formation of a comprehensive dataset derived from maternal and infant medical

records, a parental questionnaire, and for collecting blood samples from the infant during routine

blood sampling. MUNICH-PreTCl was approved by the ethics board of the Medical Faculty of the

Ludwig-Maximilians-University, Munich, Germany.

Our patient recruitment process consisted of three stages, with stage 1 and 3 being specifically

dedicated to preterm infants. During stage 1 (pilot phase), we enrolled neonates with a GA of 23

to 36 completed weeks, born between February 2017 and May 2018, aiming to establish a
6
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workflow for patient recruitment and sample collection for proteomic analyses. We collected data
throughout the hospitalization of mothers and infants including their medication and medical
procedures, but we did not record their detailed family history and demographics.

Stage 2 commenced in June 2018 and continued through December 2018. During this stage we
expanded the recruitment focus by enrolling preterm and term infants, as well as their parents,
who received a comprehensive health survey with detailed medical and family history to determine
the role of potentially modifiable factors contributing to long-term developmental outcome. Stage
3 was launched in January 2019 essentially constituting an extension of stage 2 but with the
objective of collecting a maximum number of extremely preterm and very preterm infants, as well
as augmenting specific groups of interest, such as neonates with neonatal infections, diabetic

mothers or being “small for gestational age” (< 10" age adjusted weight percentile) (Figure 7).

We identified two main reasons for failure to enroll eligible patients in MUNICH-PreTCI:

First, the language barrier - insufficient German or English language proficiency, and second,
organizational and logistical challenges due to parents’ absence. Notably, some parents enrolled
their newborn in our study, but declined to complete the questionnaire. This was rarely observed
for families of term infants (5%), but mainly for parents of extremely (45%) and very preterm infants
(23%), who appeared to be exhausted having to deal with longterm hospitalization and the iliness
of their premature child. During stage 1, 94 families out of 294 eligible infants were approached
by our study team, and 80 of these subsequently enrolled their child, while parents of 14 infants
declined recruitment (85% participation). For stage 2, we identified 1173 eligible patients of
preterm and term infants. Parents of 619 of these eligible patients were approached and 549
consented to study participation (89%). For 520 of them a completed survey could be secured
(95% participation). In Stage 3 we contacted the families of 38 of 265 eligible patients, of which
33 were enrolled and 5 declined consent (87% patrticipation).

Clinical data and questionnaire

Data were collected from enrolled infants throughout their hospital stay using medical records,
results from medical and laboratory examinations and parental questionnaires to characterize
current and previous preghancies and births, education, life-style patterns, as well as chronic
health outcomes of their families. Events before or during pregnancy were documented
retrospectively. GA was estimated by experienced obstetricians using the mother’s last menstrual
period, as well as the first trimester ultrasound. GA is expressed in completed weeks (or completed
days), such that events occurring 210 to 216 completed days after the onset of the last period

74
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were considered to be at 30 weeks of gestation. Data were then entered on-site into a secure and
pseudonymized database by trained doctoral students with password protection for confidentiality.
Table 1 provides an overview of domains and measurements collected in the course of MUNICH-
PreTCI.

Blood samples

Infant blood samples were taken at pre-defined time points: At first routine blood sampling after
birth, at newborn screening 36 - 48 hours after birth, pre- and post-antibiotic treatment, at adjusted
32 weeks of GA and at discharge from the clinic. Blood spots were collected on Whatman cards,

which were stored frozen at -80° for mass spectrometry-based proteomic analysis.

Domains Child Parents Siblings  Ext. Family Assessment
Infants: birth characteristics, measurements, medical X Med d
complications, treatments (Table 2) fesracares
Pregnancy: prenatal screenings, influences on .
pregnancy, substance abuse (Table 3) X X Med. records; self-report
Delivery : duration, anesthesia, previous deliveries

. ! X X Med. ds; self- rt
abortions (Table 4) e A
Anthropometric / Dem‘ographlc- Pah: physical X Med. records; self-report
measurements, education, ethnicity (Table 5)
Family Medical History: allergies, cardiovascular, X X X Med. records; self-report

endocrine, neurological disorders (Table 6)

Table 1: Overview of domains and measurements for MUNICH-PreTClI
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FINDINGS TO DATE
Study population

Over a period of 27 months, 662 infants (501 full term and 161 preterm) and their parents were
enrolled in MUNICH-PreTCI. The questionnaire was handed out to the parents of 582 infants and
completed by 550 (95% participation rate). Since the survey did not start until stage 2, a
subsequently smaller number of preterm infants” parents submitted the family questionnaire (78
out of 90 preterm infants and 472 out of 492 term infants). Furthermore, the survey participation
rate for families with extremely preterm infants was only 55% and thus much lower compared to

the other preterm age groups with 77% for very preterm and 94% for late preterm infants.

Baseline characteristics of neonatal study cohort

The baseline characteristics of all enrolled infants are presented in Table 2. Overall, a smaller
proportion of participants in this cohort is female (44%), in particular within the group of preterm
infants (36%) compared to the term group (46%). These numbers are in accordance with previous
studies that report preterm birth to be more common (55%) in male infants®. Not only the
gestational age, but also the birth weight is pivotal in the classification of an infant’s condition. In
our cohort, the mean birth weight was 3422 g for term infants, 725 g for extremely preterm, 1299
g for very preterm infants, and 2240 g for late preterm infants. As per the World Health
Organization (WHO), the term “low birth weight” (LBW) is defined as an absolute weight of < 2500
g, regardless of gestational age, and can be further categorized into very low birth weight (VLBW,
<1500 g) and extremely low birth weight (ELBW, <1000 g), which generally comprises the
youngest preterm infants with highest risk for complications. Among all preterm infants, 33 (21%)
can be categorized as ELBW and 62 (39%) as VLBW. Low birth weight can also be an indicator
for the infant being too “small for gestational age” (SGA), which refers to infants whose birth weight
is below the 10% percentile for GA, due to slow prenatal growth rates caused by maternal health
issues, placental complications, or genetics'®. Neonates born “large for gestational age” (LGA),
defined as weight above the 90" percentile, are also associated with significantly higher rates of
neonatal morbidity''. There was a higher proportion of SGA infants in the group of extremely
preterm infants (21%) compared to any other group (6-12%), while the distribution of LGA infants
was about equal for each GA (3-5%).
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Preterm Extreme Preterm Very Preterm Late Term Total
GA (completed weeks) < 28 weeks 28 to 31 weeks 32 to 36 weeks > 37 weeks 23 to 41 weeks
Infants N 28 36 97 501 662
Birth Assessment: Infant
GA (weeks) M (SD) 25 (1.3) 29.3(1.2) 34.2 (1.4) 39.4(12) 37.5(4)
GA (days) M (SD) 178 (9) 208 (9) 243 (10) 279 (9) 265 (28)
Sex, female N (%) 12 (43) 8(22) 42 (43) 232 (46) 294 (44)
Birth weight (g) M (SD) 725 (174) 1300 (315) 2241 (511) 3423 (474) 3020 (900)
BW < 1000 g (ELBW) N (%) 26(93) 6(17) 1(1) 0(0) 33(5)
BW <1500 g (VLBW) N (%) 28(100) 28(78) 6(6.2) 0(0) 62(9.4)
Pctl. BW (%) M (SD) 45 (31.5) 45(22) 43(25) 47 (27) 46 (26)
SGA (low BW for GA) N (%) 6(21) 2 (6) 12 (12) 50 (10) 70 (11)
LGA (high BW for GA) N (%) 1(4) 1(3) 4(4) 26 (5) 32(5)
Birth length (cm) M (SD) 32(3) 39 (3) 45(4) 52 (3) 49 (6)
Pctl. Birth length (%) M (SD) 53(33) 45 (28) 54 (30) 60 (28) 58 (29)
Head Circumf. (cm) M (SD) 23 (2) 28 (2) 32(2) 35 (1) 34(3)
Pctl. Head Circumf. (%) M (SD) 54 (27) 59 (28) 58(26) 53 (28) 54 (27)
APGAR Score 1, M (SD) 5.6(2.2) 6.7 (2.3) 8(1.6) ss (1.7) 8.4(1.9)
APGAR Score 5, M (SD) 7.6(1.9) 8.4(1.6) 9.1(1.1) ( 3) 9.4 (1.4)
APGAR Score 10, M (SD) 8.6 (1.6) 9.2(1) 9.6(0.7) 10 (1) 9.7 (1.1)
Multiple Births
Singles N (%) 20(71) 19 (53) 58 (60 485 (97) 582 (88)
Multiples N (%) 8(29) 17 (47) 39(40) 16 (3) 80 (12)
Birth Mode
Spontaneous vaginal N (%) 6 (21) 9 (25) 28(29) 238 (48) 281 (42)
Induced vaginal birth ¥ (%) 0(0) 0(0) 7(7) 63(13) 70 (11)
Vacuum extract., forceps N (%) 0(0) 0(0) 11(11) 77 (15) 88 (13)
C-Section N (%) 22(79) 27(75) 51(53) 123 (25) 223 (34)
Significant Diagnosis
Asphyxia ¥ (%) 1(4) 0(0) 1(1) 12 (2) 14 (2)
Cardiovascular N (%) 23(82) 13 (36) 9(9) 29 (6) 74 (11)
Hypo- /Hypertension N (%) 7 (25) 5(14) 4(4) 8(2) 24 (4)
ASD or PFO N (%) 9(32) 10(28) 4(4) 6(1) 29 (4)
VSD N (%) 0(0) 0(0) 0(0) 3(0.6) ( 5)
PDA N (%) 16 (57) 4(11) 0(0) 4(0.8) 24 (4)
Hematological N (%) 22(79) 10(28) 14 (14) 19 (4) ( 0)
Thrombocytopenia N (%) 11(39) 5(14) 8(8) 11 (2) 35(5)
Anemia N (%) 22(79) 6(17) 0(0) 3(0.6) 31 (5)
Polyglobulia N {%) 0(0) 1(3) 5(5) 5(1) 11(2)
Coagulation disorder N (%) 4 (14) 3(8) 1(1) 1(0.2) 9(1)
Infections N (%) 21(75) 5 (14) 7(7) 41 (8) 74 (11)
Suspect. Infections N (%) 7 (25) 29(81) 46 (47) 45 (9) 127( 9)
Neurological ¥ (%) 12 (43) 14 (39) 11(11) 15 (3) ( )
ICH or IVH, any grade N (%) 9 (32) 5(14) 2(2) 0(0) (2)
HIE N (%) 0(0) 0(0) 0(0) 10 (2) 10(2)
Abnormal ABR N (%) 2(7) 1(3) 2(2) 18 (4) 23(4)
Respiratory N (%) 28(100) 36 (100) 45 (46) 51(10) 160 (24)
RDS N (%) 27 (96) 32(89) 25(26) 11(2) 95 (14)
Resp. insufficiency N (%) 22(79) 17 (47) 16 (17) 18 (4) ( 1)
Apnea N (%) 18 (64) 21(58) 7(7) 1(0.2) 47(7)
BPD, any grade N (%) 13 (46) 3(8) 0(0) 0(0) 16 (2)
Pneumothorax N (%) 7 (25) 1(3) 1(1) 5(1) 14 (2)
ROP, any grade N (%) 15 (54) 3(8) 0(0) 0(0) 18(3)
Treatments
Antibiotics N (%) 28 (100) 34 (94) 53(55) 86 (17) 201 (30)
Antimycotic Prophylaxis N (%) 27(96) 34 (94) 51(53) 83(17) 195 (30)
Blood Transfusion N (%) 14 (50) 4 (11) 2(2) 2(04) 22(3)
Surfactant N (%) 27 (96) 22 (61) 3(3) 2(04) 54(8)
Ventilatory Supp. N (%) 28 (100) 35(97) 44 (45) 39 (8) 136 (21)

Table 2: Baseline characteristics of study participants
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Infants born at the earliest GA are at the highest risk for severe morbidities and adverse outcome.
As expected, postnatal complications were much more frequent in the preterm group and
decreased with each advancing week of gestation, which is reflected in the following data: The
incidence of cardiovascular conditions typically associated with prematurity, including arterial
hypo- and hypertension, atrial septal defects (ASD), patent foramen ovale (PFO), and patent
ductus arteriosus (PDA), was highest in the youngest preterm infants. The percentage of infants
with hematfological diagnoses (anemia of prematurity, polycythemia, thrombocytopenia,
coagulation disorders) was 79% for extremely preterm and 4% for term infants. Furthermore, as
expected, the prevalence of infections was much higher in the extremely preterm infant group
compared to the term infant group (75% for extremely preterm; 8% for term). For neurological
abnormalities, such as intraventricular and intracerebral hemorrhages (IVH and ICH), hypoxic-
ischemic encephalopathy (HIE) and increased latencies of auditory brainstem responses (ABR),
the highest percentage was 41% for extremely and very preterm infants, compared to 3% for term
infants. Respiratory complications, such as respiratory distress syndrome, respiratory
insufficiency, apnea, bronchopulmonary dysplasia (BPD) and pneumothorax were most prevalent
in patients <32 weeks of GA (89-100%) compared to term infants (3%). Due to our focus on
recruiting early preterm infants and infants with infections during stage 3 of our study, the high
percentage of neonates at less than 32 weeks” gestation who had received antibiotic treatment
(95%) was predictable. As could be expected, the majority of extremely and very preterm infants
required surfactant treatment (79%) in addition to ventilatory support (100% for extremely and

97% for very preterm), only 45% of late preterm infants and 8% of term infants needed ventilation.

Baseline characteristics of prenatal care and pregnhancy

Table 3 provides an overview of prenatal care and potential influences on pregnancy. The data
shown were obtained from clinical records and additional information was collected through the
questionnaire (marked with * in the table). Prenatal care in Germany starts at 10-12 weeks’
gestation and consists of 12 regular check-up appointments, one every four weeks until week 32,
and every two weeks thereafter. Among all mothers, more than 80% received their first check-up

within the initial 10 weeks of pregnancy.

11
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Preterm Extreme Preterm Very Preterm Late Term Total
GA (completed weeks) < 28 weeks 28 to 31 weeks 32 to 36 weeks > 37 weeks 23 to 41 weeks
Mothers N 24 27 77 493 621
* Survey data: Parents N 6 9 51 461 527
1st Prenatal Check-up
<10 weeks N (%) 18 (75) 20 (74) 63 (82) 407 (83) 508 (82)
11 - 20 weeks N (%) 4(17) 3(11) 5(7) 70 (14) 82 (13)
Unknown N (%) 2(8) 4(15) 9(12) 16 (3) 31(5)
Number of prenatal visits
0-5N(%) 6(25) 1(4) 0(0) 3(0.6) 10(2)
6-10 N (%) 11 (46) 14 (52) 25(33) 56 (11) 106 (17)
> 10 N (%) 3(13) 8 (30) 44 (57) 410(83) 465 (75)
Prenatal BMI M (SD) 24.7 (6) 23.6 (3.4) 23.0 (4.6) 22.8(3.6) 22.9(3.9)
Adipositas Score
normal N (%) 14 (58) 18 (67) 49 (64) 358 (73) 439(71)
pre-adipose N (%) 4(17) 5(19) 10 (13) 80 (16) 99 (16)
adipose N (%) 4(17) 2(7) 6(8) 18 (4) 30(5)
underweight N (%) 0(0) 1(4) 5(7) 20(4) 26 (4)
missing N (%) 2(8) 1(4) 7(9) 17(3) 27 (4)
GWG (Kg) M (SD) 6.3(3.4) 10.4 (3.4) 11.5 (4.9) 14 (5.1) 13.3 (5.3)
Prenatal Diabetes Screening
Negative N (%) 7(29) 15 (55) 60(78) 386 (78) 468 (75)
Positive N (%) 0(0) 1(4) 5 (6) 32(7) 38(6)
Unknown/not yet done N (%) 17 (71) 11 (41) 12 (16) 75 (15) 115(19)
Genetic Screening 1(4) 7 (26) 8(10) 68 (14) 84 (14)
Risk pregnancy N (%) 18 (75) 21 (78) 59(77) 331 (67) 429 (69)
No N (%) 3(13) 3(11) 14 (18) 142 (29) 162 (26)
Unknown N (%) 3(13) 3(11) 4(5) 20 (4) 30(5)
Assisted Reprod. Med. N (%) 5(21) 6(22) 12 (16) 40(8) 63(10)
Multiplicity N (%) 5(21) 8 (30) 20(26) 9(2) 42(7)
Multiplicity / Ass. Repr. Med. N (%) 2 (40) 3 (50) 8(67) 4(10) 17 (27)
Influences on pregnancy
Bleeding during pregnancy N (%) 3(13) 3(11) 4 (5) 10(2) 20(3)
Diabetes Mellitus {(incl. GDM) N (%) 0(0) 3(11) 7(9) 43(9) 53(9)
Hypertension N (%) 4(17) 8 (30) 12 (16) 14 (3) 38(6)
Infection during pregnancy N (%) 10 (42) 6 (22) 13 (17) 34(7) 63 (10)
Infection as cause for delivery N (%) 7 (30) 6(22) 6 (8) 5(1) 24 (4)
Isthmocervical Insuff. N (%) 5(21) 5(19) 3(4) 6(1) 19 (3)
Placenta dysfunction N (%) 3 (13) 2(7) 5(7) 16 (3) 26 (4)
Substance abuse during pregnancy
*Alcohol N (%) 1(17) 0(0) 1(2) 4(1) 6(1)
No N (%) 5 (83) 9 (100) 49 (98) 457 (99) 520(99)
*Drug abuse N (%) 0(0) 0(0) 0(0) 3(1) 3(1)
No N (%) 6 (100) 9 (100) 50 (100) 458 (99) 523 (99)
Smoking 0(0) 2(7) 2(3) 16 (3) 20(3)
No smoking 18 (75) 21 (78) 67 (87) 466 (95) 572(92)
Unknown 6(25) 4 (15) §(10) 11(2) 29 (5)
*Travel during pregnancy
Women who travelled N (%) 1(17) 3(33) 12 (24) 161 (34) 177 (33)
Women who didn 't travel N (%) 5(83) 6(67) 39(77) 310 (66) 360 (67)
*Trips during pregnancy N 1 3 12 188 204
Europe N (%) 0(0) 1(33) 10 (83) 107 (57) 118 (58)
Africa N (%) 1 (100) 1(33) 1(8) 15(8) 18(9)
Asia N (%) 0(0) 0(0) 0(0) 28 (15) 28(14)
North America N (%) 0(0) 0(0) 1(8) 22 (12) 23(11)
South America 0(0) 1(33) 0(0) 3(2) 4(2)
Other 0(0) 0(0) 0(0) 13 (6) 13 (6)

Table 3. Baseline characteristics of prenatal care and pregnancy
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During routine prenatal screenings, gestational diabetes mellitus was detected in 6%. As the test
for GDM is routinely performed between 24-28 weeks of gestation, the majority of mothers of
extremely preterm infants (71%) delivered their child before the test was performed. Only a small
percentage of mothers (14%) underwent testing for chromosomal abnormalities. Due to specific
risk factors, such as advanced maternal age (47% =2 35 years), nicotine abuse or individual
maternal health problems, nearly 70% of pregnancies were defined as “risk pregnancies”. Within
this group, 76% were mothers of preterm and 67% of term infants. The majority of mothers (>95%)
was tested for “TORCH"-infections (toxoplasmosis, others, rubella, cytomegalovirus, herpes), that
could be passed on to their fetuses during pregnancy (data not shown). Another risk factor for
preghancy complications is overweight. Obesity and excessive gestational weight gain (GWG) are
associated with increased risk for gestational diabetes (GDM) and hypertension (GHT),
preeclampsia, delivery of LGA infants and a higher incidence of congenital defects'2. Guidelines
for pregnant women are recommending a BMI of 18.5-24.9 and GWG of 11.5-16 kg'®. The
women'’s prenatal BMI shown in Table 2 was recorded during their first prenatal check-up (usually
between 10-12 weeks of the pregnancy). In comparison with the pre-pregnancy BMI (shown in
Table 5), there were only minor changes. The GWG calculated for the entire length of the
pregnancy was for the term group 14 kg, which is within the limits for women with a healthy BMI.
Multiplicity is another strong risk factor for preterm birth and postnatal complications'*. Among all
mothers of this study, there was a clear group difference for multiplicity: For term infants, 2% (9
out of 493) of mothers were pregnant with multiples, compared to 26% (33 out of 128) within the
preterm group, and 13 of these 33 mothers (40%) had conceived via assisted reproductive
technology. This is in particular interesting, as a growing body of evidence describes an increased
risk of cerebral palsy in children conceived by assisted reproduction which is strongly associated
with the high proportion of multiplicity and preterm delivery in these pregnancies ¢ 8. Furthermore,
we screened for well-researched associations of GA and determinants for preterm birth. While
infections play a key role in the pathogenesis of prematurity, it is necessary to distinguish between
intrauterine infections, such as the Amniotic infection syndrome (AIS), mostly resulting in preterm
delivery, and other types of maternal infections, including Influenza, Lyme disease or Herpes virus
infection. As expected, there was a higher prevalence for maternal infections in the preterm group,
where 21 out of 29 affected women (72%) had AIS (not shown). For 19 (65%) of these mothers,
this led to induced preterm delivery. For the term group, a total of 7% of pregnancies were either
affected by common infections (e.g., Influenza) or infections manifested as “fever sub partu” and
only rarely resulted in induction of delivery. Other factors that determined preterm birth were

isthmocervical insufficiency (20% of mothers of preterm infants < 32 weeks GA; 1% of mothers of
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term infants), GHT (21% of mothers of preterm infants; 3% of mothers of term infants) and

placental dysfunction (13% of mothers of extremely preterm infants; 3% of mothers of term

infants). There was no correlation between GA and self-reported drug or alcohol abuse.

Preterm Extreme Preterm Very Preterm Late Term Total
GA (completed weeks) < 28 weeks 28 to 31 weeks 32 to 36 weeks > 37 weeks 23 to 41 weeks
Mothers N 24 27 77 493 621
Mode of delivery (see Table 2)
Spontaneous N (%) 5(21) 6(22) 26 (34) 240 (49) 277 (45)
C-Section (prim/sec/emgy) N (%) 19 (80) 21(78) 40 (52) 118 (24) 198 (32)
Induced vaginal birth N (%) 0(0) 0(0) 5(7) 60 (12) 65 (10)
Vacuum extraction, forceps N (%) 0(0) 0(0) 6 (8) 75 (15) 81(13)
Anesthesia during delivery
No anesthesia N (%) 4(17) 6(22) 22(29) 162 (33) 194 (31)
Epidural N (%) 0(0) 0(0) 18(23) 227 (46) 245 (40)
Spinal block ¥ (%) 8(33) 12 (44) 22 (29) 74 (15) 116 (19)
General anesthesia N (%) 4(17) 3(11) 3(4) 10(2) 20(3)
Missing N (%) 8(33) 6(22) 12 (16) 20(4) 46 (7)
Duration of delivery
<2 hN(%) 14 (58) 14 (52) 29 (38) 69 (14) 126 (20)
2-5hN(%) 4(17) 5(19) 23(30) 117 (24) 149 (24)
>5hN (%) 4(17) 3(11) 19(25) 282 (57) 308 (50)
Missing N (%) 2(8) 5(19) 6 (8) 25(5) 38 (6)
Pregnancies (prev. + current)
Primigravida N (%) 11 (46) 16 (59) 42 (55) 244 (50) 313 (50)
Multigravida (2-3) N (%) 9(38) 10 (37) 28(36) 210 (43) 257 (41)
Multigravida (4-8) N (%) 4(17) 1(4) 7(9) 39(8) 51(8)
Deliveries (prev. + current)
Primiparous N (%) 13 (54) 20 (74) 54 (70) 293 (60) 380 (61)
Multiparous (2-3) N (%) 10 (42) 7 (26) 21(27) 191 (39) 229(37)
Multiparous (4-7) N (%) 1(4) 0(0) 2 (3) 9(2) 12 (2)
Prev. Preterm Deliveries N (%) 5(21) 7 (26) 10 (13) 14 (3) 36 (6)
No N (%) 19 (79) 20 (74) 67 (87) 479 (97) 585 (94)
Prev. Term Deliveries N (%) 9(38) 5(19) 18 (23) 191 (39) 233 (38)
No N (%) 15 (62) 22 (81) 59 (77) 302 (61) 398 (64)
Prev. Miscarriages N (%) 5(21) 8 (30) 18(23) 95 (19) 126 (20)
No N (%) 19 (79) 19 (70) 59(77) 398 (81) 495 (80)
Prev. Stillborn Deliveries N (%) 0(0) 1(4) 2 (3) 7(1) 10(2)
No N (%) 24 (100) 26 (96) 75(98) 485 (98) 608 (98)
Prev. Abortions N (%) 1(4) 0(0) 5(6) 16 (3) 22 (4)
No N (%) 23 (96) 27 (100) 72 (94) 474 (96) 596 (96)

Table 4: Baseline characteristics of deliveries

Baseline characteristics of deliveries

An overview of delivery characteristics is provided in Table 4. In total, 70% of preterm infants

versus 24% of term infants were delivered via Cesarian (C-) section. The largest number of term

neonates was born spontaneously (49%) and only a small proportion was delivered by vacuum

extraction or forceps. For all infant groups (extremely preterm, very preterm, late preterm and

term), over 60% of mothers required some form of anesthesia, mainly delivered via epidural (40%)

or spinal (19%) administration.
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Preterm Extreme Preterm Very Preterm Late Term Total
GA (completed weeks) < 28 weeks 28 to 31 weeks 32 to 36 weeks > 37 weeks 23 to 41 weeks
Mothers N 24 27 77 493 621
* Survey data: Parents N 6 9 51 461 527
Age: Mother (years) M (SD) 35 (6.1) 34.9 (5.5) 34.4(53) 34.0 (4.6) 34.2(4.8)
<35 years N (%) 11 (46) 13 (48) 33 (43) 269 (55) 326(53)
>35years N (%) 13 (54) 14 (52) 44 (57) 224 (45) 295 (47)
*Father (years) M (SD) 43 (6.1) 37.3(4.8) 36.6 (5.8) 36(5.8) 36.2(5.9)
<35 years N (%) 1(17) 3(33) 18 (35) 187 (41) 209 (40)
> 35 years N (%) 5 (83) 6(67) 33(65) 274 (59) 318 (60)
*BMI: Mother (prior pregnancy) M (SD) 24.5(4.4) 24.2(4.2) 22.8(4.6) 22.4(3.3) 22.5(3.5)
*Father M (SD) 24.1(1.2) 25.7(2.8) 25.6(3.2) 25.1(3.2) 25.2 (3.1)
*Adipositas Score: Mother
Normal N (%) 2(33) 6(67) 32(63) 350 (76) 390 (74)
Pre-adipose N (%) 1(17) 1(11) 7(14) 68 (15) 77 (15)
Adipose N (%) 0(0) 1(11) 5(10) 14 (3) 20(4)
Underweight N (%) 0(0) 0(0) 3(6) 26 (6) 29(5)
Missing N (%) 3 (50) 1(11) 4(8) 3(1) 11(2)
*Father
Normal N (%) 5 (83) 5 (56) 25 (49) 246 (53) 281 (53)
Pre-adipose N (%) 1(17) 4 (44) 20(39) 171(37) 196 (37)
Adipose N (%) 0(0) 0(0) 5(10) 32(7) 37(7)
Underweight N (%) 0(0) 0(0) 0(0) 1(0.2) 1(0.2)
Missing N (%) 0(0) 0(0) 1(2) 10(3) 10 (3)
*Ethnic Background: Mother
Western N (%) 3 (50) 7(70) 45(92) 433 (94) 488 (93)
Asian N (%) 0(0) 1(10) 0(0) 7(2) §(1)
African and middle East N (%) 3 (50) 0(0) 2(4) 15(3) 20 (4)
Latin-American N (%) 0(0) 2 (20) 1(2) 2(04) 5{0.9)
Indian N (%) 0(0) 0(0) 1(2) 4(058) 5(0.9)
*Father
Western N (%) 3 (50) 8(89) 45 (88) 433 (94) 489 (93)
Asian N (%) 0(0) 0(0) 1(2) 2(04) 3(0.6)
African and middle East N (%) 3 (50) 0(0) 1(2) 15(3) 19 (4)
Latin-American N (%) 0(0) 1(11) 3(5) 6(1) 10(2)
Indian N (%) 0(0) 0(0) 1(2) 5(1) 6(1)
*Education: Mother
Cert. < 10 years school N (%) 0(0) 1(11) 1(2) 21(5) 23 (4)
Cert. 2 10 years school N (%) 2(33) 4 (44) 11(22) 73 (15) 90(17)
Univ. degree N (%) 3(50) 4 (44) 37(72) 357 (78) 401(76)
No / other certificate N (%) 1(17) 0(0) 2(4) 9(2) 12 (2)
*Father
Cert. < 10 years school N (%) 0(0) 1(11) 5(9) 20 (4) 26 (5)
Cert. 2 10 years school N (%) 0(0) 0(0) 10(19) 76 (16) 86 (16)
Univ. degree N (%) 4 (80) 8(89) 34 (64) 344 (75) 390 (74)
No / other certificate N (%) 1(20) 0(0) 2(4) 14 (3) 17 (3)
Missing N (%) 1(20) 0(0) 0(0) 7(2) 8(2)
*Living Environment
Urban N (%) 3(50) 7(78) 38 (74) 412 (89) 460 (86)
Rural N (%) 1(17) 2(22) 8(16) 30(7) 41(8)
Mixed N (%) 0(0) 0(0) 4(8) 14 (3) 18 (4)
Missing N (%) 2(33) 0(0) 1(2) 5(1) 8(2)
*Survey
distributed ¥ ki 13 66 492 582
completed N 6 10 62 472 550
response rate (%) 55 77 94 96 95

Table 5. Baseline characteristics of parental study participants

Previous pregnancies and deliveries

50% of women in the entire parental cohort were primigravida. Mothers of preterm infants had
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a higher percentage (13- 21%) of previous preterm deliveries compared to the term group (3%).
The percentage of women who had experienced a miscarriage, which refers to preghancy loss at
less than 20 weeks™ gestation, was only slightly higher for the preterm (25%) compared to the
term group (19%). The number of mothers who had lost more than one preghancy was twice as
high (13%) for the group of preterm infants < 32 weeks GA compared to term (6%, data not
shown). Only an exceedingly small percentage of all mothers had induced abortion (0 - 6%) or
stillbirth (0 - 4%).

Baseline characteristics of parental study participants

Anthropometric and demographic characteristics of participating parents are listed in Table 5. The
mean age of women from the entire cohort is 34.2 + 4.8 years. Among all mothers, the percentage
of women older than 35 years at delivery was higher in all three preterm groups

(54% for extremely preterm, 52% for very preterm, 57% for late preterm) compared to the term
group with 45%. Accordingly, the mean age of women who gave birth to extremely preterm infants
was higher (35 + 6.1 years) in comparison to those who delivered term infants (34.1 £ 4.5 years).
Due to language barriers, obtaining accurate and extensive self-reported data from non-German
and non-English speaking parents was difficult. Consequently, the MUNICH PreTCIl cohort
displays limited ethnic parental diversity, with over 90% of the participating parents reporting a
Western European ethnicity. Data on the entire parental cohort portrait a greater proportion of
participants that are higher educated than the general population (>75% with University degree)

living in urban environments (75-90%).

Overview of family medical data

The family medical history data on parents and their siblings, siblings of enrolled infants, and
grandparents are shown in Table 6 and include information on allergies, asthma, cardiovascular
conditions, coagulation disorders, diabetes mellitus, as well as neurological and thyroid disorders.
A correlation between neonatal or early life infections and allergy or increased risk for asthma has
not yet been established in the literature. Previous research suggested that an increased
infectious burden in the first 24 month is associated with a decreased prevalence of IgE-mediated

allergy during childhood'”.
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Preterm Extreme Preterm Very Preterm Late Term Total
GA (completed weeks) < 28 weeks 28 to 31 weeks 32 to 36 weeks > 37 weeks 23 to41 weeks
Mothers N 24 27 77 493 621

* Survey data: Parents N 6 9 51 461 527
Allergies

Mothers N (%) 4(17) 10(37) 29 (38) 222 (45) 265 (43)

No ALL N (%) 4(17) 1(4) 24 (31) 248 (50) 277 (45)

Unknown N (%) 16 (67) 16 (60) 24 (31) 22(5) 78 (13)

*Mat. families N (%) 0(0) 2(22) 13 (25) 145 (31) 160 (30)

*Fathers N (%) 2(33) 6(67) 19 (37) 176 (38) 203 (39)

*Pat. families N (%) 0(0) 1(11) 14 (27) 120(26) 135 (26)
*Asthma

*Mothers N (%) 0(0) 2(22) 2(4) 34(7) 39 (7)

*Mat. families N (%) 0(0) 2(22) 9(18) 53(11) 64 (12)

*Fathers N (%) 0(0) 0(0) 5(10) 32(7) 36 (7)

*Pat. families N (%) 0(0) 0(0) 4(8) 46 (10) 50(10)
*Cardiovascular diseases

*Mothers N (%) 1(17) 0(0) 3(6) 16 (4) 20 (4)

*Mat. families N (%) 1(17) 0(0) 12 (24) 85(18) 98 (19)

*Fathers N (%) 2(33) 1(11) 4(8) 12 (3) 19 (4)

*Pat. families N (%) 0(0) 1(11) 1(2) 18 (4) 20 (4)
*Coagulation disorders

*Mothers N (%) 0(0) 1(11) 5 (10) 28(6 34 (6)

*Fathers N (%) 0(0) 0(0) 0(0) a( 4(1)
Diabetes Mellitus (excl. GDM)

Mothers N (%) 0(0) 2(7) 2(3) 9(2) 13 (2)

*Mat. families N (%) 1(17) 2(22) 8 (16) 108 (43) 119 (23)

*Fathers N (%) 0(0) 0(0) 0(0) 4(1) 4(1)

*Pat. families N (%) 0(0) 1(11) 12 (24) 80(17) 93 (18)
*Neurological disorders

*Mothers N (%) 0(0) 0(0) 2(4) 12 (3) 14 (3)

*Mat, families N (%) 0(0) 0(0) 1(2) 19 (4) 20 (4)

*Fathers N (%) 0(0) 0(0) 0(0) 3(1) 3(1)

*Pat. families N (%) 0(0) 1(11) 1(2) 19 (4) 21(4)
Thyroid disorders

Mothers N (%) 4(17) 4(15) 18 (23) 128 (26) 154 (25)

Hypo / Hyper 3/1 4/0 15/0 113/6 135/7

Missing N 0(0) 0 (0) 3(3) 9(2) 12 (2)

*Fathers N (%) 1(17) 0 (0) 1(2) 16 (3) 18 (3)

Hypo / Hyper 1/0 0/0 0/1 3/13 4/14

Table 6: Family Medical History

In the MUNICH-PreTClI cohort, the percentage of mothers reporting allergies is 43% and for
fathers 39%. Only about half of these fathers” and mothers”™ parental generation experienced

allergic symptoms. The prevalence of asthma in parents and grandparents was low with 6-10%.

Additionally, only a small percentage of mothers and fathers reported cardiovascular diseases,

coagulation disorders, or neurological abnormalities. There was only a small difference in the

prevalence of DM (type 1 and type 2, but hot GDM) between women and men. The percentage of

thyroid disorders was significantly higher in women than in men (23% in women and 3% in men),
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with hypothyroidism affecting predominantly women (19% mothers, 0.6% fathers), probably also

due to thyroid screening in pregnancy.

Strength and Limitations of the Study

The MUNICH-PreTCl study is a prospective birth cohort including preterm and term neonates born
over a period of 27 months at the Perinatal Center Campus Innenstadt, University Hospital, LMU,
Munich. The study contains phenotypical information including clinical data from maternal and
neonatal medical records, demographics survey and large medical datasets for all families and
their neonates, as well as blood samples at defined time points for proteomic screening. The main
strength of this study is the combination of a population-based cohort with state-of-the-art
proteomic screening. This enables us to relate the status of the functional protein network to
certain pre- and postnatal factors as well as specific clinical outcomes which were recorded at
time of birth and during follow-up.

Our cohort has some limitations. Recruiting at the university hospital and restricting the survey to
German and English-speaking parents likely intfroduced some bias, as mostly caucasian families
from urban living environment and with a higher educational level participated in the study. It is
not possible to characterize the confounding effect of language barriers to study participation
and/or answer accuracy compared to a situation under which the questionnaire would have also
been distributed in additional languages, thus being more representative of the “typical’
community-based population.

The distribution of the questionnaire started with stage 2 of the recruitment process. Consequently,
families enrolled in stage 1 (data collection and proteomic analysis method establishment) did not
have the opportunity to participate in the survey. Confounding by indication provides another
challenge in data analysis. For stage 3, we enrolled infants with the objective of augmenting
specific groups of interest, such as extremely and very preterm infants, neonates with infections,
with diabetic mothers or being “small for gestational age”. Furthermore, in order to obtain as many
data points as possible, we did not exclude families who did not want to participate in the survey.
The interdisciplinary collaboration of experts from various disciplines, such as clinicians, proteomic
experts and epidemiologists will allow a systematic translational approach to find evidence for
novel targets that can be applied in clinical practice to improve identification of neonates at risk

and advance patient care for a better outcome of preterm infants.
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Conclusion

In conclusion, MUNICH-PreTClI offers a comprehensive assessment of a birth cohort combined
with a collection of reusable dried blood samples obtained at birth and at defined time-points
throughout hospitalization, providing the opportunity for further phenotyping by using OMICS
technologies. These technologies bear great promise to generate extensive and detailed datasets
even from very small blood samples and will be an excellent foundation for future systems
medicine approaches intended to advance the understanding of complex multi-factorial diseases

in neonatal and pediatric health.

Patient and public involvement

We regret, that we were not aware of patient involvement when we designed and conducted this
study. Primarily, our plans did include sharing the study’s results with the nurses of the NICU
and the newborn ward because they mentioned great interest in our findings. In addition, we will
now also contact participating families to disseminate our study results and provide an

opportunity to meet in-person to discuss specific questions.

For our future research, we will definitely implement active patient contribution.
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- Other
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Figure 1: Study flow chart
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3.8. Article 8: Cotranslational N-degron masking by acetylation

promotes proteome stability in plant

Authors: Eric Linstert, Francy L. Forero Ruiz!, Pavlina Miklankoval, Thomas Ruppert?,
Johannes Mueller3, Laura Armbruster!, Giovanna Serino4, Matthias Mann3, Ridiger Hell?,
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3Max-Planck-Institute for Biochemistry, Am Klopferspitz 18, Martinsried, 82152, Germany

“Department of Biology and Biotechnology, Sapienza Universita di Roma, Rome, 00185, Italy

In the previous mentioned studies, the focus of proteome analysis was on the presence
and abundance of proteins and the resulting consequences for the analyzed biological
system or specimen. Here, in contrast, we present a study of proteome turnover
changes and specifically the control of proteome turnover by N-degron masking in
cotranslational manner in the plant Arabidopsis. In brief, NatA, a ribosomal associated
protein complex recognizes a N-terminal amino acid encoded sequence and stabilizes
proteins by N-terminal acetylation. | performed whole proteome measurements of NatA
depleted and wilt-type Arabidopsis leaf to identify regulated proteins. The majority of
down regulated proteins upon NatA depletion were identified as targets of the NatA
complex which points towards the decreased stability of those proteins in the absence
of NatA. Together with methods for the identification of proteasome activity and
ubiquitination levels, this could be linked to a shift in steady state of NatA substrates,

with an increased degradation and translation rate.
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Abstract/Synopsis (200 words)
Abstract (200)

N-terminal protein acetylation (NTA) is a prevalent and highly abundant protein modification that is
widely conserved across eukaryotic kingdoms and essential for viability in animals and plants. The
principle executor of NTA is the N®acetyltransferase A (NatA) complex, which is tethered to the
ribosome and accounts for cotranslational acetylation of 40% of the proteome. Despite its prevalence,
the impact of NTA on protein fate is still enigmatic. Here, we found that depletion of NatA activity led
to a 4-fold increase in global protein turnover via the ubiquitin-proteasome system in
Arabidopsis. Surprisingly, a concomitant increase in translation, actioned via enhanced Target-of-
Rapamycin activity, was also observed, implying that defective NTA triggers feedback mechanisms to
maintain steady-state protein abundance. Quantitative analysis of the proteome, the translatome,
and the ubiquitome revealed that NatA substrates accounted for the bulk of this enhanced turnover.
A targeted analysis of NatA substrate stability revealed that the absence of NTA triggers protein
destabilization via a previously undescribed and widely conserved nonAc/N-degron. Hence, the
imprinting of the proteome with acetylation marks is essential for coordinating proteome
stability. Given the strong conservation of NTA machineries in eukaryotes, we propose that this may
represent an evolutionary conserved system for controlling cellular proteostasis.
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Introduction

As sessile organisms, plants have to fight environmental challenges on site. The proteome's dynamic
plasticity is one of the most critical mechanisms allowing plants to acclimate to changes in their
environment rapidly. This notion is supported by the substantially elaborated ubiquitin-proteasome
system (UPS) in plants compared to humans *. Despite the essential importance of protein
degradation, we are only now beginning to understand how plants control proteostasis upon stress
and under favorable growth conditions. Protein modifications have been identified as crucial
determinants of protein stability in eukaryotes and are highly regulated upon diverse plant stress
conditions. One of the most pervasive protein modifications is N-terminal protein acetylation (NTA).
NTA occurs on 80-90% of human and Arabidopsis soluble proteins and is executed by up to five
ribosome-associated N-terminal acetyltransferases (Nat) complexes, of which NatA, NatB and NatC are
conserved in all eukaryotes % Disturbance of NTA in humans causes fatal diseases like Ogden
syndrome, whilst enhanced NTA is associated with deregulated cell proliferation in specific cancer

types *°.

The NatA complex consists of the catalytically active subunit NAA1O and the ribosome-anchoring
subunit NAA15, and targets nascent chains of proteins after the initiator methionine (iMet) is cleaved
by methionine aminopeptidase (MetAP). In Arabidopsis and humans, 40 % of proteins are subjected
to this N-terminal protein trimming. In plants, Nat complexes are particularly important for the
resistance towards diverse abiotic and biotic environmental stresses > %7 % The dynamic regulation
of the NatA abundance by the phytohormone abscisic acid (ABA) is essential for drought stress
resilience. However, the NatA-dependent mechanism for the regulation of drought stress responses
remains to be determined. Only in a few cases has NTA has been reported to affect protein
functionality #'°. Thus, controlling the activity of individual proteins is unlikely to explain the pervasive

NTA of bulk proteins *.

In yeast and humans, NTA can create N-degrons recognized by the Ac/N-degron pathway and leading
to the destruction of proteins by the UPS. On the contrary, another set of proteins was stabilized by
NTA 2. Taken together a direct impact of NTA on protein stability has been documented for less than
30 proteins in all eukaryotic model species. Thus the impact of NTA on global proteome stability

remains unclear in eukaryotes 2% 141516 817,

Here we show that impairment of NTA by NatA results in a global destabilization of the proteome in
Arabidopsis and discover a novel degron that marks the majority of non-acetylated cytosolic proteins

for degradation via the ubiquitin system.
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Results

Since loss of NatA causes embryo-lethality in plants °, we independently down-regulated both subunits
of the NatA complex by an amiRNAi-approach and tested the global protein degradation rates in leaves
after feeding of isotope-labeled amino acids. The depletion of the NatA complex substantially
enhanced the protein degradation rate, causing up to 4-fold faster protein destruction (Fig. 1a), when
the NAA10O abundance was decreased to 25% or 20% of wild type level in amiNAA10 lines 18 or 24,
respectively °. The combined activity of metallo-, serine-, acid-, and sulfhydryl-type proteases was not
enhanced in any of the NatA-depleted plants (Extended Data Fig. 1). However, the NatA-depletion
triggered a specific increase of the proteasome activity (Fig. 1b), which negatively correlated with the
previously demonstrated decreased growth of the individual amiRNAi lines with depleted NatA levels
°. The finding of increased proteasome activity in NatA depleted plants was independently confirmed
by the immunological detection of the accumulation of the lid and the core subunit of the 26S
proteasome RPN10 and PBA1, respectively, in amiNAA10 (Extended Data Fig. 2a-d). The endogenous
ubiquitination rate also increased in NatA depleted plants and resulted in most significant
accumulation of poly-ubiquitinated proteins in the transgenic line with the most substantial depletion
of NatA activity. In line with these observations, all NatA depleted plants accumulated higher amounts
of ubiquitinated proteins than the wild type after pharmacological inhibition of the proteasome (Fig.
1c, Extended Data Fig. 2e). Furthermore, enhanced neddylation of Cullin 1 demonstrated that Cullin-
RING E3 ligases (CRLs, **) contributed to the enhanced in vivo ubiquitination activity in NatA depleted

plants (Fig. 1d).

Next, we aimed to identify the proteins that were destroyed by the UPS when NatA was depleted.
Affinity enrichment of ubiquitinated proteins with the UbiQapture-Q matrix resulted in 1.6-fold more
poly-ubiquitinated proteins captured in NatA depleted plants when compared to wild type as detected
with a ubiquitin-specific antiserum (Fig. 1e) and a comparable increase of total protein after Ubi-
Qapture enrichment from amiNAA10 plants (1.5-fold increase, p < 0.05, Fig. 1f). Out of the 232
identified proteins that were significantly enriched by the Ubi-Qapture matrix in NatA depleted plants
162 (70%) were canonical NatA substrates (Extended Data Table 1 and 2, Fig. 1g), implying a significant
enrichment of NatA substrates in the fraction of the poly-ubiquitinated proteins (Fisher’s exact test, p-
value <0.0001). A gene ontology enrichment analysis revealed that poly-ubiquitinated proteins in NatA
depleted plants were predominantly cytosolic proteins (141 of 232) and associated with the responses

to diverse stresses and protein-folding (Extended Data Table 3).

Despite the induction of the UPS for degradation of NatA substrates, the total protein content and the
protein profile of soluble proteins were almost not affected in leaves of NatA depleted plants (Fig 2a,

Extended Data Fig. 3a). A quantitative analysis of the steady-state protein levels by shotgun mass

4
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spectrometry uncovered that the abundance of only 92 out of the 1.238 detected proteins was
significantly affected in plants depleted for the catalytic subunit of NatA (Fig. 2b, Extended Data Table
4). However, 83 % of the proteins that displayed lowered steady-state levels in NatA depleted plants
were canonical NatA substrates (Extended Data Table 5, permutation-based FDR < 1%, Fisher’s exact
test, p-value < 0.0001 for the enrichment of NatA substrates in the fraction of low abundant proteins
in amiNAA10). We selected the decreased protein glutathione reductase 1 (termed **GR1 due to
excision of the iMet, AT3G24170, -2.8-fold, p < 0.05) and the not-significantly accumulated protein O-
acetylserine(thiol)lyase A (**OAS-TL A, AT4G14880, 1.2-fold) for time-resolved destabilization assays
since both cytosolic proteins are canonical NatA substrates. Prior to this analysis, the steady-state
protein levels of AROAS-TLA and AR“GR1 in NatA depleted plants were independently confirmed by
immunological detection with specific antisera (Extended Data Figure 3b, ). The cycloheximide chase
assays for AR“GR1 and *ROAS-TL A demonstrated significantly enhanced degradation of both NatA
substrates in NatA depleted plants (Fig. 2¢, Extended data Figure 3d). In contrast, cytosolic proteins
that are not recognized as substrates and thus not acetylated by NatA, like the OAS-TL A interacting
protein MPPSATS (Serine-Acetyl-Transferase 5, AT1G55920) and MPCOI1 (COronatine-Insensitive
protein 1, AT2G39940) were not destabilized in NatA depleted plants (Fig. 2d, Extended Data Fig. 3d).
Since the steady-state level of the destabilized **OAS-TL A was unaffected by NatA depletion, we
tested the accumulation of A*OAS-TL A after proteasome inhibition by MG132. Short-term inhibition
of the proteasome resulted in significantly faster accumulation of #*0AS-TL A in NatA depleted plants
when compared to wild type (Fig. 2e, Extended Data Fig. 4), suggesting that the unaffected steady-
state levels of the destabilized ~*OAS-TL A was a result of enhanced AROAS-TL A translation in NatA
depleted plants. Importantly, enhanced translation was not observed for #%*GR1, and proteins that are

not recognized by NatA (MPPSATS and MRETUBBA4, tubulin B4).

Since 40% of the proteome is acetylated by NatA, we hypothesized that translation must be
significantly upregulated in NatA depleted plants to maintain the steady-state proteome level. It
should be noted in this context that the costs for translation can reach up to 38% of total cellular ATP
consumption in wild type Arabidopsis leaves *°, and that protein turnover is known to negatively
correlate with the growth rate in the diverse Arabidopsis accessions °. Despite the substantial costs of
translation in wild type plants, incorporation of isotope-labeled **S-Met and *S-Cys into proteins
increased up to 4-fold in leaves of NatA depleted plants (Fig 3a). This higher global translation rate was
due to the selective enhancement of translation for diverse proteins (Fig 3b). In plants, the sensor
kinase Target of Rapamycin (TOR) is a critical regulator of the ribosome amount due to phosphorylation
of the kinase S6K {Small-ribosome subunit 6 Kinase)* and the translation efficiency of stress-related
genes due to phosphorylation of the translation initiation factor elF3h . NatA depletion triggered the

increase of TOR activity (Extended data Fig. 4), resulting in up to 4-fold higher phosphorylation of S6K
5
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at T* and, consequently, a significant accumulation of rRNA (Fig 3c-d). We applied time-resolved
biorthogonal non-canonical amino acid tagging (BONCAT) to identify the more efficiently translated
proteins in NatA depleted plants after selective enrichment of the translatome *. The incorporation
of the trackable Met-analogue azidohomoalanine was linear during the period of the analysis and
independently confirmed the higher translation rate in NatA depleted plants (Fig 3e, f). Quantitative
proteomics of the newly translated proteins (913 proteins detected, Extended Data Table 6) in the wild
type and NatA depleted plants uncovered that 45% of identified proteins were more translated upon
NatA depletion (Extended Data Table 7). The vast majority of these proteins were NatA substrates (72
%, Fisher’s exact test for enrichment of NatA Substrates, p-value < 0.0001, Fig 3g). Comparison of the
ubiquitome and the translatome of NatA depleted plants revealed that 65 proteins (30% of the NatA
depletion-induced ubiquitome alteration) were more ubiquitinated and more translated. 72% of the
proteins with enhanced turnover in NatA depleted plants were canonical NatA substrates (Extended
Data Table 8, Fisher’s exact test for enrichment of NatA Substrates, p-value < 0.0001), suggesting that
selective destabilization of NatA substrates due to impaired N-terminal acetylation was counteracted
by their enhanced translation to maintain their steady-state level in the mutant lines (Fig 2b). In
support of this hypothesis, we found the translation of the OAS-TL A protein to be significantly
enhanced (1.7-fold, p = 0.02), while GR1 translation was unaffected by NatA depletion (Extended Data
Table 6), explaining the difference in the steady-state levels of the two destabilized NatA substrates
(Fig. 2c). To provide direct evidence for the enhanced protein turnover by decreased NTA of NatA
substrates, we assessed OAS-TL A turnover using the tandem-Fluorescent timer system, which allows
for non-invasive quantification of protein half-life time in plants **. OAS-TL A's half-life time with native
N-terminus (**OAS-TL) was significantly lower in NatA depleted plants compared to wild type (Fig 4a).
In contrast, the half-life time of proteins that are not targeted by NatA (e.g., tubulin B4 (MRTUBB4) or
SAT5 (MPPSATS) was unaffected in NatA depleted plants (Fig 4b, c). A proline residue at position 3 is
known to inhibit substrate recognition by the NatA complex in diverse metazoa®® and plants®. To
ultimately prove that the absence of NTA of alanine in position 2 (Ala2) is causing the destabilization
of the NatA substrate “ROAS-TL A, we genetically engineered an OAS-TL A protein mutant with
impaired NTA by inserting a proline at position 3 (*SOASTL A). The *SOASTL was significantly
destabilized in the wild type and displayed a similar protein half-life time to that of the native #fOAS-
TLin NatA depleted plants. Remarkably, A*SOASTL was not further destabilized in NatA depleted plants,
providing ultimate evidence that the absent NTA of Ala2 is responsible for the destabilization of OAS-
TL Ain plants (Fig 4a). Based on these findings, we named this novel destabilizing signal nonAc-X?/N-
degron (X2 = Ala). To judge the generality of nonAc-X?/N-degron-induced destabilization, we randomly
selected ten cytosolic NatA substrate candidates and tested the impact of NTA on their stability by

applying the same strategy. The candidates' identity as proper NatA substrates and the inhibitory

6
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impact of proline at position 3 for recognition by the NatA in the three tested NatA substrate groups
was verified (X2 = Ala: group 1, Gly; group 2 or Ser: group 3, Extended Data Fig. 6). Eight out of the ten
NatA substrates were significantly destabilized by inhibiting NTA at position 2. This destabilization also
occurred when Ser or Gly occupied position 2 (Fig 4d). Seven of these NatA substrates were found to
be destabilized in NatA depleted plants, and one NatA substrate, NHO1, could not be detected in the
cytosol of NatA depleted plants. This demonstrated that the absence of NTA was the causal effect for
decreased half-life time of these proteins (Fig 4d, Extended Data Fig. 7). We could further show that
the destabilizing effect of NTA inhibition at position 2 was not restricted to highly stable NatA
substrates (Extended Data Fig. 8). In two cases, CYP19 and UGE1, NTA inhibition at position 2 had no
impact on protein stability in the wild-type Arabidopsis plants. In agreement, CYP19 and UGE1 were
also not destabilized in NatA depleted plants. These findings support the notion that nonAc-X?/N-
degron functionality requires additional parameters encoded in appropriately positioned domains
downstream of the N-terminus, e.g., surface-exposed Lys-residues for ubiquitination *° or accessibility

of the N-terminus for recognition *°.

Discussion

Since NatA imprints 40% of the proteome in plants, we suggest that absent masking of the nonAc-
X2/N-degron in many NatA substrates substantially contributes to the observed higher protein
turnover in NatA depleted plants. In agreement with this notion, the enhanced proteome turnover
was predominantly based on the degradation of NatA substrates, and N-terminally acetylated NatA
substrates were significantly overrepresented in the fraction of stable abundant proteins in plants *’.
Since the depletion of the ribosome-anchoring subunit NAA15 resulted in an increase of proteome
turnover comparable to that caused by depletion of the catalytically active subunit NAA1O, we
conclude that cotranslational NTA is required to chemically block the N-terminus to ensure
stabilization of the nascent polypeptide and prevent its unwanted turnover. A similar destabilizing
effect was previously shown in humans for the non-acetylated M@RGS2 protein that was degraded by
the Arg/N-degron pathway. Surprisingly, acetylated M2RGS2 was recognized by the Ac/N-degron
pathway, demonstrating that NTA of the iMet can redirect proteins between different branches of the
N-degron pathway system . In contrast to other protein modifications, e.g., ubiquitination or Lys-¢-
acetylation, NTA is irreversible *°, implying that the stability of many NatA substrates is intrinsically
determined at the moment when these proteins are synthesized. However, co-translationally
imprinted N-degrons can also contribute to conditional protein quality control when they are
unshielded upon stress-induced protein misfolding or exposed in subunits of multi-protein complexes
produced in non-stoichiometric amounts ** *°. As a result of its cotranslational mode and its

7
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irreversibility, NTA has been suggested as static in the past *°. This view on NTA is obsolete in plants
for two reasons: first, NTA is rapidly regulated upon environmental stimuli by the phytohormone-
system ° and second, a significant fraction of NatA substrates is only partially N-terminally acetylated
872 implying additional regulatory mechanisms controlling the activity of NatA on the nascent chains
extruding from the ribosome exit tunnel. Crystallization of the trimeric metazoan NatA-HYPK complex

3 In two

uncovered a structural basis for NatA regulation by its binding partner HYPK in vitro
companion studies, we identify the HYPK orthologue in the monocotyledonous plant Oryza sativa (rice)
and the dicotyledonous plant Arabidopsis. In both plant species, loss-of-HYPK decreases in vivo NatA
activity and enhances global protein turnover *> *°, demonstrating that global control of protein
turnover by NatA is evolutionary conserved in the plant lineage of eukaryotes for more than 150 Mya
. The recent identification of E3 ubiquitin ligases (N-recognins), specifically recognizing non-
acetylated NatA substrates, provides evidence for the existence of this novel N-degron pathway in
humans ** 3% |f the human nonAc-X?/N-degron pathway is as ubiquitous as in plants is unclear *.
However, the concept that the N-terminus and C-terminus of proteins are hotspots for determining
protein stability is currently emerging in eukaryotes *%. Our findings define the nonAc-X?/N-degron-
mediated degradation as a novel hormone-regulated branch of the N-degron pathways in plants
targeting a vast number of long-lived cytosolic proteins (Extended Data Fig. 8 and ?’). The previously
established Arg/N-degron pathway predominantly targets short-lived regulatory proteins, whose N-
degrons are conditionally generated by post-translational processing in plants (e.g., by Cys-oxidation
or internal cleavage) > *> “*. Thus, the nonAc-X?/N-degron pathway and the Arg/N-degron pathway
address different types of protein subsets, causing a potentially different impact on bulk protein
turnover. Unlike mutants affected in masking the nonAc-X?/N-degron pathways, loss-of-Arg/N-degron
pathway mutants grow like the wild type plants under non-stressed conditions ** *°. We conclude from
our results that proteostasis of a large number of cytosolic NatA substrates is substantially affected by
a tightly controlled ribosome-associated protein modifier that is essential in Arabidopsis and humans

and determines the half-life time of proteins when they are synthesized.

Online content
Any methods, additional references, source data, extended data (list see below), supplementary
information, acknowledgements, details of author contributions and competing interests; and

statements of data and code availability are also uploaded.
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Figure 1. Depletion of NatA activity causes enhanced degradation of proteins via the ubiquitin-
proteasome system. a, Time-resolved analysis of protein degradation rate in leaves of wild type {black}
and four individual lines depleted for the ribosome anchoring (NAA15, light green} or the catalytically
active subunit (NAA10, dark green) of the NatA complex {p < 0.05, n = X). b, Proteasome activity in wild
type and NatA activity depleted plants (p < 0.05, n = 4}. ¢, Relative level of poly-ubiquitinated proteins
as determined with the ubiquitin-specific antiserum {a-UBQ11; Agrisera) in leaves of wild type and
NatA depleted plants in the presence {red} or absence {black} of the proteasome inhibitor MG132. d,
Abundance and activation status of Cullin-RING E3 ligase (CRL) complexes as determined by
neddylation of Cullin isoform 1 in wild type and transgenic lines depleted of NAA15 {muse6) and NAA1O
{amiNAA10). e, Immunological detection of poly-ubiquitinated proteins using an ubiquitin-specific
antibody {a-UBQ11; Agrisera) in the wild type and amiNAA1Q line23 (amiNAA10} after selective
enrichment with the Ubi-Qapture Q™ matrix. f, Protein amount of affinity enriched poly-ubiquitinated
proteins. {(n = 3} g, Quantitative proteomics of poly-ubiquitinated proteins revealed that 24 % of
quantified proteins {232 proteins} were significantly {p < 0.05} more ubiquitinated in amiNAA10 (> 1.5-
fold more than wild type) or either only found in all aminNAA10 replicates {n = 3}. The pie chart depicts
the classification of Nat substrates in the fraction of significantly more ubiquitinated proteins in
amiNAA10 plants.
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Figure 2. Depletion of NatA activity does not affect total protein steady-state level but significantly
destabilize selected NatA substrates. a, Concentration of total proteins in leaves of wild type and NatA
depleted plants (muse6 and amiNAA10). b, Comparison of leaf proteins in wild type and amiNAA10 as
volcano plot to identify changes in the leaf-proteome due to depletion of the catalytic NatA subunit
{amiNAA10 versus wild type). Significantly altered proteins in amiNAA10 are labeled in color (red,
decreased, blue, accumulated, FDR < 0.01, n = 4). The pie diagram displays the classification of Nat
substrates in the fraction of significantly decreased proteins in amiNAA10. ¢, d Time-resolved
degradation analysis of selected NatA substrates (¢, GR1, OAS-TL A) and proteins that are not N-
terminally acetylated by NatA (d, COI1, SAT5) in the wild type (circle) and muse6 carrying a point
mutation causing lowered NatA activity %, box) in the presence (filled) or absence (control, empty) of
the translation inhibitor cycloheximide (CHX). e, Relative level of OAS-TL A, GR1, SAT5 and TUBB4
proteins as determined with the specific antisera in leaves of wild type and NatA depleted plants in
the presence (red) or absence (black) of the proteasome inhibitor MG132. Data represent mean *
standard deviation {(n = 3, p < 0.05).
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Figure 3. NatA depleted plants display higher translation rates of NatA substrates that are facilitated
by TOR-induced production of ribosomes. a, Time-resolved incorporation of isotope-labeled sulfur
amino acids into foliar proteins of the wild type and four NatA depleted lines (amiNAA10, amiNAA15).
b, Auto-radiogram of SDS-PAGE separated foliar proteins from wild type and amiNAA10 after
incorporation of isotope-labeled sulfur-amino acids for indicated time points. ¢, Phosphorylation of
T%2 of S6K by the sensor kinase Target of Rapamycin in leaves of the wild type and NatA depleted
plants as determined with a phospo-specific antiserum (p < 0.05, n = 3). d, Quantification of 185 and
25S ribosomal-RNAs in leaves of wild type and NatA depleted plants (p <0.0.5, n = 4). e, Verification of
linear azidohomoalanine incorporation into proteins derived from leaves of wild type for indicated
time points (n=2). f, Comparison of azidohomoalanine incorporation for three hours into foliar proteins
of wild type and NatA depleted plants after azidohomoalanine-mediated biotin labeling (n=3). g,
Proteomic analysis of newly translated proteins after selective enrichment in leaves of wild type and
amiNAA10 plants. The pie diagram depicts the classification of Nat substrates in the fraction of more
efficiently translated proteins in amiNAA10 plants.
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Figure 4. Non-invasive in vivo determination of protein half-life times in NatA depleted plants. a,
Quantification of protein half-life times with the tandem-Fluorescence Timer (tFT) is based on the
different maturation times of the fluorescent mCherry (al) and the super-folding green fluorescent
protein (sfGFP, a2) encoded on the same polypeptide chain in fusion with the protein of interest (wild
type OAS-TLA, SROAS-TL-tFT). The mCherry/sfGFP signal ratio (a3, black bar) is a direct readout for the
age of the polypeptide chain pool in the cytosol of transiently transformed epidermal leaf cells (cell 1)
and positively correlates with the stability of the POI-tFT. Expression of the NatA substrate A*OAS-TL-
tFT in transgenic plants depleted for the catalytic (amiNAA10, a4, dark green) or the ribosome
anchoring subunit of NatA {muse6, a5, light green) resulted in significant lower **OAS-TL-tFT protein
half-life time. Inhibition of NTA of OAS-TL by the introduction of a proline at position 3 (***"OAS-TL-tFT,
red shaded) decreased the half-life time in the wild type (a6) but did not further destabilize the protein
in the NatA mutant muse6 (a7). (p<0.05, n = 4 - 11). b-¢, The protein half-lifetime of the non-NatA
substrates MPPSAT5-tFT (b) and MRTUBB4-tFT (c) was not affected by NatA depletion (n = 4 - 5). Scale
bar, 15 pum d, Protein lifetime of ten cytosolic NatA substrates in wild type (black) and amiNAA10
(green). Definition as canonical nonAc-X?/N-degron containing protein is based on destabilization of
the protein by absent NTA due to protein engineering in the wild type (red shaded) or expression of
the native protein in NatA depleted plants (green, amiNAA10). The NHO1-tFT protein abundance was
below the detection limit in the cytosol of amiNAA10 and muse6 (Extended Data Fig. 7h).
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Extended Data files:
Extended Data Fig. 1. Protease activity in leaves of wild type and NatA depleted plants.

Extended Data Fig. 2. Immunological detection of proteasome subunits, poly-ubiquitinylated proteins
and Cullin 1 in leaves of wild type and NatA depleted plants.

Extended Data Fig. 3. Steady-state levels and stability of selected soluble proteins extracted from
leaves of wild type and NatA depleted plants.

Extended Data Fig. 4. Accumulation of selected proteins in leaves of wild type and NatA depleted plants
after inhibition of the proteasome.

Extended Data Fig. 5. Target of Rapamycin activity in leaves of wild type and NatA depleted plants.

Extended Data Fig. 6. Confirmation of candidate NatA substrates and proline-induced inhibition of N-
terminal acetylation of NatA substrate candidates by in vitro NatA activity tests

Extended Data Fig. 7. Quantification of protein half-life times of NatA substrates in leaves of wild type
and NatA depleted plants.

Extended Data Fig. 8. Protein half-life times of selected NatA substrates in the wild type.

Extended Data Table 1. Mass-spectrometry based identification of ubiquitinated proteins in leaves of
wild type and NatA depleted plants.

Extended Data Table 2. List of proteins that were more ubiquitinated in NatA depleted plants.

Extended Data Table 3. Gene ontology enrichment analysis of proteins displaying higher poly-
ubiquitination level in NatA depleted plants.

Extended Data Table 4. Protein steady-state levels in leaves of wild type and NatA depleted plants.

Extended Data Table 5. Classification of significantly decreased proteins in amiNAA10 plants with
respect to their recognition by the ribosome-associated N-terminal modification
machinery.

Extended Data Table 6. Mass-spectrometry based identification of actively translated proteins in leaves
of wild type and NatA depleted plants.
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4. Discussion

MS-based proteomics has become one of the most practical and universally applicable
tools in biological, medical and life sciences over the last decades (Ruedi Aebersold &
Mann, 2003, 2016). As with other omics technologies, this does not mean that new
developments are not necessary any more. Especially for omics methods in which
multiplexed data is acquired, they can always be faster, more sensitive, accurate or
cheaper. In the key publication of my thesis ‘The proteome landscape of the kingdoms
of life’ we demonstrate how ubiquitously applicable MS-based proteomics has in fact
become by now, by quantitatively measuring the proteomes of 100 organisms across
the entire tree of life. From a biological standpoint this means that every organism whose
genome is sequenced and from which proteins can be extracted, those proteins can be
guantified accurately and routinely. This may have a dramatic impact on the way
evolutionary science can be thought and done in the future. In contrast it is apparent
from the literature that most protein quantifications are still done by affinity-based
methods and even reviewers in prominent journals ask for those methods to validate
e.g. MS-based derived data (Figure 11).
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Figure 11: PubMed literature search of terms ‘Western blot’ respective ‘Proteomics’ and ‘Mass spectrometry’.

With the ability to quantify proteins from every sequenced organism, the advantages of
MS-based methods to affinity-based methods have become even clearer, as there rarely
are available antibodies for uncommon proteins and usually none in less studied
organisms. In the ‘Bear proteome’ publication that is in preparation, we also demonstrate
this with an example where exactly this challenge occurs. The organism Ursos arctos

commonly known as brown bear has no commercially available antibodies at all. We
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screened the plasma and thrombocytes of active and hibernating bears to find biological
explanations for the bear’s avoidance of venous thrombosis during hibernation. Even if
the needed antibodies were available, it would not be reasonable to set up a study,
looking at proteins of interest known from humans with e.g. ELISA techniques in the
bear samples. This is a good example why this evolutionary medicine approach to
explore biology and method to find potential new drug targets or biomarkers is rarely
pursued. | believe that it is of major interest to the scientific community to spread the
knowledge about the applicability and power of these methods. From the impact of our
publication ‘The proteome landscape of the kingdoms of life’ it is clear that the ideas we
promote here are still unfamiliar despite the fact that MS-based proteomics and genome
sequencing technique have been ready to enable such experiments since more than a

decade.

The impact of ‘The proteome landscape of the kingdoms of life’ of course also lies in the
insights which can be drawn from our dataset. Different proteomes can be compared in
abundance distribution and it has become clear in our cross section of the tree of life
that the exponential distribution of protein abundances (best described by a beta
distribution) within the proteome is universal. Of special interest are the number of poorly
characterized or undescribed proteins even among the high abundant ones for a great
number of organisms. These highlight proteins that are apparently important biologically
and might be worth studying for biotechnological applications and researchers
specializing in these organisms. On a functional level we describe the overall most
abundant biological processes and protein subdomains and abundances of related
proteins are comparable between organisms by homology information. Although these
outcomes are not necessarily new in themselves, it has never been possible to study
them in such a comprehensive way. Single organisms, proteins or functional activities
may have been compared, but our proteomics approach gives a more complete view by

subjecting all organisms to the same workflow and analysis method.

Additionally, we provide first solid evidence for the existence of thousands of proteins
which had only been predicted from genome sequencing but never actually been
observed. This also manifests in the interest of database providers like UniProt to

integrate our data into their knowledge pool, which is now planned.

The other major topics in my thesis are developments of LC tools for MS-based

proteomics and implementation of clinical proteomics studies.

The Evosep One LC which was developed in the beginning of my PhD time has since

been applied especially for every large-scale plasma proteomics project and new
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specific applications for longer gradients and high sensitivity workflows are on the way.
The reproducibility and throughput of the system represent a milestone in hardware
development for clinical proteomics and will provide a valuable tool in the future. The
packing station project for high throughput multiplexed capillary column production with
high pressure arose from the need to provide material for multiple groups with minimal
hands on time. Since the implementation of the new technique, it has proven valuable
in reducing the time in providing columns to a minimum. Where previously a single
person was literally employed full time with this task, by now this can be managed in a
few working days per month in our laboratory. The discussed advantages of commercial
packed columns or chip-columns like employed in ‘The proteome landscape of the
kingdoms of life’ may make packed capillary emitter production redundant in the future,
but the reasons they are employed at the moment - flexibility and affordability - will still

make them a good alternative in many cases.

The clinical projects in my PhD thesis, a biomarker study for Alzheimer’s disease in CSF,
guality markers in plasma samples by proteomics and the description of a cohort of term
and preterm born infants with clinical metadata for a follow up proteomics study of dried
blood spots (DBS) represent the wide range of MS-based proteomics. All three projects
provided valuable insights into clinical cohorts and we were able to propose a biomarker
panel for Alzheimer’s disease patients in CSF. The quality marker panel for plasma
proteomics will be a valuable dataset and tool for every future study. We found that those
proteins are often proposed as biomarkers and our data will prevent this
misinterpretation in the future. The newborn study is a long-term cooperation project
with a Munich Neonatology clinic and the data provided in the presented manuscript
gives insight to the unique cohort we collected for proteomics experiments. The first
results from proteomics measurements of dried blood spots already are striking and

show that we are able to describe preterm development by blood proteomics.
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