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I INTRODUCTION 

 

Peste des petits ruminants (PPR) is a disease of small ruminants causing enormous economic 

losses in the affected regions (Kumar et al., 2014). During the past few decades, the disease has 

spread rapidly to previously PPR-free countries in North and East Africa, East Asia as well as to 

European countries (De Nardi et al., 2012; Donduashvili et al., 2018; Kamel and El-Sayed, 2019; 

Muniraju et al., 2013; OIE, 2019b; Shatar et al., 2017; Spiegel and Havas, 2019). In 2015, the 

Office International des Epizooties (OIE) and the Food and Agriculture Organization of the 

United Nations (FAO) launched an ambitious multilevel program for the global elimination of 

PPR virus (PPRV) until 2030 (Cameron, 2019). In this context, several efforts were made to 

improve control and diagnostic measures (Jones et al., 2016). Various authors suspect that the 

disease is underdiagnosed in several regions due to the eligible differential diagnoses 

(Balamurugan et al., 2014; Luka et al., 2012; Torsson et al., 2017). Thus, regarding the 

optimization of diagnostic tools, it seems to be desirable to develop diagnostic methods, which 

are ready-to-use in the field as point-of-care (POC) tests with a good sensitivity and specificity 

as well as to involve the detection of further pathogens clinically similar to the signs of PPRV. 

Relevant pathogens that should be included in the diagnostic clarification are foot-and-mouth 

disease virus (FMDV), goatpox virus (GTPV) and parapoxvirus ovis as well as Mycoplasma 

capricolum subsp. capripneumoniae (Mccp), Pasteurella species or bluetongue virus (Adedeji 

et al., 2019; Kumar et al., 2016; Saravanan et al., 2007; Torsson et al., 2017).  

The aim of the present study was first to analyse differences concerning virulence, clinical 

manifestation and pathogenesis of two different peste des petits ruminants virus (PPRV) 

isolates in goats of German breed. One isolate caused severe clinical signs in mountain gazelles 

near Dubai (SMRV/UAE/2018/V135/Dubai), United Arab Emirates (UAE), while the other isolate 

(SMRV/IND/2013/V242.5/Shahjadpur) was obtained from clinically diseased goats in 

Shahjadpur, India. A second focus was the validation of commercially available rapid tests for 

the detection of PPRV. Two antigen lateral flow devices (LFDs) as well as one antigen ELISA were 

investigated. 
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II LITERATURE REVIEW 

 

1 The genus Morbillivirus 

1.1 Representative morbilliviruses 

Peste des petits ruminants virus (PPRV) is one out of seven morbilliviruses listed by the 

International Committee on Taxonomy of Viruses (ICTV; see Table 1) (ICTV, 2020c). A closely 

related representative of PPRV was the rinderpest virus (RPV) which showed a fatal disease in 

cattle and was eradicated globally in 2011 (Moutou, 2014).  

Table 1 Representatives of the genus of Morbilliviruses according to the ICTV. 

Virus name 
First 

description 
Main hosts References 

peste des petits ruminants 
virus 

1942 goats and sheep (Mornet et al., 1956) 

rinderpest virus 
more than 
10,000 

years ago 

ungulates 
(eradicated in 

2011) 

(Moutou, 2014; Tounkara 
and Nwankpa, 2017) 

feline morbillivirus 2012 cats 
(Sutummaporn et al., 2019; 

Woo et al., 2012) 

canine distemper virus 1746 carnivores 

(Martinez-Gutierrez and 

Ruiz-Saenz, 2016; Quintero-
Gil et al., 2019) 

phocine distemper virus 1988 seals 
(N.N., 1988; Osterhaus and 
Vedder, 1988) 

porpoise morbillivirus 1988 porpoises 

(Domingo et al., 1990; 

Duignan et al., 1995; Groch 
et al., 2014; Jacob et al., 
2016; Kennedy et al., 1988; 

Sierra et al., 2016; West et 
al., 2013) 

dolphin morbillivirus 1990 dolphins 

pilot whale morbillivirus 1995 pilot whales 

beaked whale morbillivirus 2013 beaked whales 

guiana dolphin morbillivirus 2014 guiana dolphin 

measles virus 
around 
900 AD 

human 
(Andres, 2006; Volkmer, 
2015) 
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Besides the morbilliviruses of livestock (PPRV and RPV), there are also other important viral 

diseases concerning the domestic small animal population (cats, dogs) and carnivores, 

respectively (Table 1). A recently discovered morbillivirus infecting cats was first described in 

2012 and named “feline morbillivirus” (Sutummaporn et al., 2019; Woo et al., 2012). The canine 

distemper virus (CDV) affects a broad-range of hosts including domestic dogs as well as foxes, 

raccoons, martens, raccoon dogs, badgers, wolves and many other wildlife species (Martinez-

Gutierrez and Ruiz-Saenz, 2016). In the case of marine mammal morbilliviruses, the phocine 

distemper virus (PDV), which was responsible for recurring, massive outbreaks in seals in 1988 

and 2002 (Duignan et al., 2014; Muller et al., 2008; N.N., 1988), is distinguished from the 

cetacean morbilliviruses consisting of five strains (Jo et al., 2018; Sierra et al., 2016). The 

cetacean morbilliviruses affect mainly marine mammals as porpoises and several species of 

dolphins and whales (Table 1). According to the latest data, there are first indications that new 

representatives of the genus Morbillivirus have been found in bats and rodents (Drexler et al., 

2012). Phylogenetic relationships between members of the genus Morbillivirus are shown in 

Figure 1. 

 

Figure 1 Phylogenetic relationships between members of the genus Morbillivirus (Parida et 

al., 2016). [For permission rights see chapter Supplement, page 63]. 

 



Literature review 
 

7 

 

1.2 Taxonomy and classification of peste des petits ruminants virus (PPRV) 

According to the most current taxonomy of the ICTV (ICTV, 2020c), PPRV is categorized into the 

order Mononegavirales, of the family Paramyxoviridae and the genus Morbillivirus. In 2017, the 

virus species PPRV was renamed to the current taxonomic name Small ruminant morbillivirus 

(Amarasinghe et al., 2017). Worldwide, one serotype is known for PPRV, which is divided into 

four genetic lineages (I, II, III, IV). Phylogenetic analyzes and epidemiological data show that 

lineage IV is at the moment of great impact (Figure 2). Differentiation of the lineages is 

characterized by partial genome sequence analysis of the nucleocapsid (N) and the fusion (F) 

gene, respectively (Parida et al., 2016). 

 

 

Figure 2 Phylogenetic tree of PPRV isolates based on full-genome sequences showing the 

relationship of PPRV isolates selected and the relationship of the four lineages among each 

other (Parida et al., 2016). [For permission rights see chapter Supplement, page 63]. 
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1.3 Virion structure and genome organisation of PPRV 

Virion particles of PPRV are enveloped with a pleomorphic shape and a size of 150 to 700 nm 

(Bourdin and Laurent-Vautier, 1967; Gibbs et al., 1979). The linear single-stranded, negative-

sense RNA genome of PPRV consists of 15,948 nucleotides (Bailey et al., 2005). Six genes 

encode for eight proteins (Figure 3) driven by RNA editing and an alternative open reading 

frame. In detail, six structural (nucleocapsid (N), phosphoprotein (P), matrix (M), fusion (F), 

hemagglutinin-neuraminidase (HN), large (L)) and two non-structural proteins (C and V) are 

distinguished (Kumar et al., 2014; Libeau, Diallo, and Parida, 2014). 

The genomic RNA of PPRV is encapsulated by the N protein which is the most abundant viral 

protein transcribed among all genes of PPRV (Bailey et al., 2007; Kumar et al., 2014; Yunus and 

Shaila, 2012). The interaction of N, P and L proteins leads to the formation of the 

ribonucleoprotein complex spanning the entire genome of PPRV and protecting it from 

endonuclease digestion (Parida et al., 2015; Sourimant and Plemper, 2016). Besides, P and 

L proteins are main components of the RNA-dependent RNA polymerase, thus responsible for 

viral replication and transcription (Bailey et al., 2007; Kumar et al., 2014). The P protein has a 

high variability in its nucleotide sequence compared to the other proteins (Sourimant and 

Plemper, 2016). According to the mRNA gradient, the amount of L protein is the lowest for all 

proteins (Yunus and Shaila, 2012). The M protein is located under the virus envelope and 

attaches the two surface glycoproteins F and H proteins in place. Furthermore, the M protein 

interacts also with the ribonucleoprotein complex and facilitates a connection between all 

these proteins enabling the formation and budding of new virus particles (Haffar et al., 1999). 

F and H proteins are embedded in the viral envelope and are responsible for the viral uptake 

into the host cells via adhesion and fusion processes (Rahaman et al., 2003). C and V proteins 

have regulatory functions with regard to the modulation of the RNA polymerase and RNA 

synthesis, virus replication and virulence factors. The sequences of both proteins are located 

on the P protein (Kumar et al., 2014). 
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Figure 3 Schematic organisation of the PPRV genome containing six genes (Libeau et al., 

2014). [For permission rights see chapter Supplement, page 63]. 

 

The efficient replication of the viral genome follows the “rule of six”, which means that the 

RNA-dependent RNA polymerase only works correctly if the total number of nucleotides 

represents a multiple of six nucleotides (6 n + 0) (Bailey et al., 2005; Sourimant and Plemper, 

2016; Vulliemoz and Roux, 2001). Thus, genome variations are limited to insertion or deletion 

of hexamers (Kolakofsky et al., 2005; Rima, Collin, and Earle, 2005).  
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2 Impact of PPRV on livestock production and wildlife 

2.1 Global distribution 

PPRV was first identified in 1942 at the Ivory Coast. Since then, it has spread widely across 

Africa, the Middle East and Asia (Figure 4) (Banyard et al., 2010). Currently, PPRV occurs in over 

70 countries affecting 80 % of the sheep and goat population in the world (Baron et al., 2017). 

Figure 4 Global distribution of PPRV as of April 2019 (Cameron, 2019). [For permission rights 

see chapter Supplement, page 63]. 

 

From a global perspective, PPRV has expanded considerably in recent decades. Various new 

PPRV outbreaks in previously PPRV-free countries occurred in Kenya in 2006, in Uganda in 2007 

and in Tanzania in 2008 (Dundon et al., 2017; Luka et al., 2012; Spiegel and Havas, 2019; Torsson 

et al., 2016). Nearly at the same time, in 2008, the first outbreak of PPRV in Morocco affecting 

mainly alpine goats was recognized (Hammouchi et al., 2012; Muniraju et al., 2013). Seven 

years later, the goat and sheep population in Morocco was overrun by another wave of PPRV 

infections with an isolate that differs significantly from that of 2008 (Fakri et al., 2016). In 2010, 

the disease was notified for the first time in the neighbouring country Algeria caused by an 

isolate closely related to the Moroccan isolate from 2008 (De Nardi et al., 2012). Several years 
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later, PPR-cases occurred in the naïve sheep and goat population of Georgia and Mongolia, 

respectively (Donduashvili et al., 2018; OIE, 2019c; Rajko-Nenow et al., 2017; Shatar et al., 

2017). In summer 2018, PPRV infections in small ruminants were detected for the first time in 

the European Union in Bulgaria (Kamel and El-Sayed, 2019; OIE, 2019b). 

 

2.2 Host species and epidemiology 

The main hosts suffering from PPR are domestic small ruminants. Originally, the disease was 

assumed to be triggered by RPV that also could affect goats and sheep (Parida et al., 2015). 

Remarkably, PPRV infections in sheep have been less severe than in goats (EFSA, 2015; Wernike 

et al., 2014). The latest findings show that the sole consideration of the main hosts regarding 

the spread of PPRV is not sufficient (Aziz Ul et al., 2018; Munir, 2014; Rahman et al., 2020). 

Large ruminants including cattle and water buffalos have been discussed as potential hosts for 

PPRV (Abubakar et al., 2017). Reports about natural infections and clinical disease in cattle and 

buffalos are rare, while multiple evidence of seroconversion in cattle exist (Rahman et al., 

2020). Experimentally infected cattle showed no or only less clinical signs, no shedding of 

infectious PPRV and no transmission to contact animals (Couacy-Hymann et al., 2019; Schulz et 

al., 2019). Thus, cattle have been considered as dead-end hosts for PPRV because they are 

susceptible to PPRV without transmitting the virus to further animals (Rahman et al., 2020). 

The reports concerning the clinical manifestation and epidemiological impact of camelids are 

contrary. Clinical diseases occurring in camelids were described to be different in their severity 

ranging from subclinical, acute to peracute forms of infection (Khalafalla et al., 2010; Zakian et 

al., 2016). However, a variety of seroprevalence studies indicated a low serological prevalence 

in camelids (Fakri et al., 2019), even in close proximity to small ruminants (Hemida and Al-

Ghadeer, 2019). In contrast, experimentally inoculated camelids showed no clinical signs and 

no virus shedding in excretions and secretions (Fakri et al., 2019; Schulz et al., 2019). There was 

also no transmission to contact animals. The latter findings indicate a strong evidence that 

camelids are also dead-end hosts (Schulz et al., 2019). A potential role in transmission and 

maintenance of PPRV have been discussed for suids. Animal experiments showed that domestic 

pigs and wild boars could be infected with PPRV, became mild to moderately ill and were able 

to transmit the virus to contact pigs and goats (Schulz et al., 2018). 



Literature review 
 

12 

 

Besides, a wide range of wild ungulates such as gazelles, wild goats and sheep, bharals, ibex, 

antelopes and deer have been described to be susceptible for PPRV (Bao et al., 2011; Hamdy 

and Dardiri, 1976; Hoffmann et al., 2012; Kinne et al., 2010; Marashi et al., 2017). The 

epidemiological impact of wildlife species is not clearly understood (Fernandez Aguilar et al., 

2020; Fine et al., 2020; Munir, 2014). However, several reports indicate that PPRV outbreaks in 

wildlife populations were driven by domestic animals (Abubakar et al., 2011b; Bao et al., 2011; 

Mahapatra et al., 2015). Up to now, there is little evidence of transmission in the opposite 

direction (“spillback”), although theses epidemiological scenarios are also discussed (Aziz Ul et 

al., 2018; Fenton and Pedersen, 2005; Kinimi et al., 2020; Munir, 2014; Nugent, 2011). Overall, 

PPRV has to be considered as a serious threat to endangered wildlife species (Abubakar et al., 

2011b; Marashi et al., 2017; Pruvot et al., 2020). 

For the African conditions, various political, social and natural events are held responsible for 

the spread of PPRV, since they led to animal movements and trade. In detail, cattle trade, 

cultural events, animal husbandry, nomadism, feuds between pastoralist groups, dowry for the 

wedding, civil wars and dubious elections as well as droughts leading to refugee movements 

are pointed out as major factors that benefit the spread of PPRV (Spiegel 2018). 

 

2.3 The idea of global PPRV eradication and control measures 

Due to the socioeconomic impact of PPRV infection in the affected countries as well as the 

successful global eradication of rinderpest (RP) in 2011, efforts are also being made to eradicate 

PPRV (Diallo, 2006; Kumar et al., 2014). For this purpose, OIE and FAO passed an extensive 

program to achieve this goal by 2030 (Cameron, 2019; Jones et al., 2016). At an early stage of 

eradication, monitoring the current health situation of the animal population and targeted 

control measures such as vaccination should be used to curb the spread of PPRV and to achieve 

PPRV-free populations (Jones et al., 2016). In endemic areas, vaccination of the animals is 

sought (Banyard et al., 2010; Liu et al., 2014). For this purpose, homologous vaccines are 

currently available such as “Nigeria 75/1”, which is the most used vaccine strain in Africa. 

Besides, further live-attenuated PPRV-vaccines such as Sungri 96, Arasur 87, Coimbatore 97 or 

Egypt/87 are available (Bora et al., 2018b; Liu et al., 2014).  
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The above mentioned live-attenuated vaccines have the problem to be less thermostable and 

are degraded when transported without cold chain (Bora et al., 2018b). Therefore, several 

attempts were made to develop thermostable vaccines for their use under tropical and 

subtropical climate conditions. Thus, chemical stabilizers (lactalbumin hydrolysate-sucrose, 

Weybridge medium, lactalbumin hydrolysate-manitol, buffered gelatin-sorbitol, trehalose 

dehydrate, stabilizer E) were e.g. used to prepare lyophilized vaccines. Another approach is to 

passage virus isolates at relatively high temperatures in order to reduce their temperature 

sensitivity. The vaccine “Jhansi 2003” was developed following this approach and proved to be 

safe, immunogenic, efficacious and more thermostable (Liu et al., 2014).  

The new generation of PPRV vaccines also included the strategy of differentiation of infected 

from vaccinated animals (DIVA). DIVA vaccines can be developed as positive (contain an 

additional heterologous epitope or domain) and negative markers (absence of a homogenous 

epitope or domain). Several PPRV DIVA vaccines were developed based on viral vector vaccines, 

chimeric virus vaccines, vaccines using reverse genetics, subunit vaccines and nucleic acid 

vaccines, but they have not been commercialized up to now (Liu et al., 2014). Besides, 

combined vaccines containing both PPRV and sheeppox virus was developed enabling the 

control of two infectious diseases simultaneously (Berhe et al., 2003; Chaudhary et al., 2009).  

At a later stage of eradication, when the further spread of the disease and the circulating of the 

virus is stopped, effective surveillance programs are needed to proof the absence of the disease 

or virus in all susceptible animals for reaching the OIE official status “free from infection” 

(Couacy-Hymann et al., 2005). 
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3 Clinical significance of PPRV infection 

3.1 Clinical manifestation and pathogenesis 

PPRV is a disease that must be notified to the OIE (OIE, 2020). Morbidity and mortality rates 

are high ranging from 90-100 % in naïve populations of small ruminants, decreasing to 20 % in 

endemic regions (Abubakar et al., 2017). First clinical signs appear normally 4 to 6 days after an 

infection with PPRV, but the incubation period is variable and can last 3 to 14 days (Parida et 

al., 2015). Characteristic clinical signs shown in infected goats and sheep are manifested in the 

respiratory and the gastrointestinal tract and, in the case of pregnant animals also in the 

reproductive tract. Erosive lesions of the ocular, nasal and mouth mucous membranes as well 

as oculo-nasal discharges combined with labored breathing are described. The disease is 

associated with high fever up to 41 °C, loss of appetite and weight loss of the animals due to 

watery diarrhea (Parida et al., 2015). Due to its lymphotropic character, PPRV causes a severe 

immunosuppression in infected animals leading to a decrease in the antibody response and 

facilitating secondary infections (Rajak et al., 2005). 

 

3.2 Relevant pathogens in differential diagnostics 

FMDV, GTPV, parapoxvirus ovis, Mccp, Pasteurella species and bluetongue virus have to be 

considered as differential diagnosis to PPR due to the very similar clinical signs in small 

ruminants (Santhamani, Singh, and Njeumi, 2016). 

Foot-and-mouth disease is a highly contagious disease of cattle, pigs, sheep, goats, buffaloes 

and numerous wildlife species (Brito et al., 2017; Jamal and Belsham, 2013). The first 

description dates back to 1514 (Jamal and Belsham, 2013). FMDV belongs to the family 

Picornaviridae and the genus Aphthovirus (ICTV, 2020a). Serologically, a distinction between 

seven serotypes (Asia-1, A, O, C, SAT 1, 2, 3) is made. Clinically, affected animals show pyrexia, 

anorexia, salivation, vesicles around nose and mouth as well as in the interdigital spaces (Jamal 

and Belsham, 2013). Due to the pain induced by the lesions, many infected animals show 

lameness. The severity of the clinical signs can vary widely depending, among other things, on 

the animal species and especially small ruminants like sheep often show very mild clinical signs  

(Alexandersen et al., 2003).  
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Parapoxvirus ovis infection, also known as Orf or contagious ecthyma, is a zoonotic and self-

limiting disease of the skin and mucous membrane which occurs mainly around the areas of 

nose, lips and mouth (Hosamani et al., 2009). It is a benign disease that spontaneously 

disappears in humans and animals within 6-8 weeks (Bergqvist, Kurban, and Abbas, 2017). The 

lesions occur initially as erythema developing vesicles covered with scab. Nevertheless, it is a 

painful disease that affects especially lambs and kids while suckling and grazing (Spyrou and 

Valiakos, 2015). The causative agent belongs to the family Poxviridae and to the genus 

Parapoxviruses (ICTV, 2020d). 

GTPV is one out of the three virus species categorized in the genus Capripoxvirus within the 

family Poxviridae (ICTV, 2020b). The disease shows characteristic pox lesions in the skin on the 

entire body surface associated with fever, fatigue, reduced feed intake and often lesions of the 

lung (Bora et al., 2018a; Ramakrishnan, Santhamani, and Pandey, 2017; Tulman et al., 2002). 

Decreased productivity as a reduced milk yield, weight losses, abortion and impairments to 

wool and hides are associated with that disease (Babiuk et al., 2008). In naïve populations, 

morbidity and mortality rates vary from 75-100 % and 10-58 %, respectively (Rao and 

Bandyopadhyay, 2000). 

Contagious caprine pleuropneumonia (CCPP) is listed by the OIE and caused by the gram-

negative bacterium Mccp which belongs to the class Mollicutes. The disease is spread mainly in 

African and Asian countries (Nicholas and Churchward, 2012). The main hosts are goats but 

sheep, ibexes, mouflons, gazelles, antelopes, gerenuks and further deer species can also be 

infected. Morbidity and mortality rates can be very high of up to 100 % (Iqbal Yatoo et al., 2019; 

Nicholas and Churchward, 2012). Clinical signs of affected animals are pyrexia, nasal discharge, 

cough, and dyspnea. The infected animals are often lethargic and refuse to eat (Arif et al., 

2007). 
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4 Diagnostic methods for the detection of PPRV 

The diagnosis of PPR-suspected animals has to be confirmed by laboratory diagnostics due to 

the similarity of the clinical signs with other relevant diseases (as described in chapter 3.2), the 

overlapping of clinical signs in mixed infections and various clinical manifestations in PPRV-

infected animals (Santhamani et al., 2016). For laboratory confirmation of clinical cases, a broad 

range of diagnostic tools is available (Kinimi et al., 2020; OIE, 2019a). Figure 5 summarizes 

several commonly used diagnostic methods for the detection and characterization of PPRV 

infections. 

 

Figure 5 Classification of diagnostic methods for PPRV. The here presented methods were 

also used in the thesis. ELISA = enzyme-linked immunosorbent assay, RT-PCR = reverse 

transcription polymerase chain reaction, RT-qPCR = real-time quantitative PCR, VNT= virus 

neutralization test. 

 

4.1 Direct methods of PPRV detection 

Cell Culture 

Virus isolation of PPRV is the gold standard test for confirmatory diagnostics (Balamurugan et 

al., 2014; Santhamani et al., 2016). Therefore, established cell lines as the African green monkey 

kidney cells (Vero) and also Vero cells expressing the canine receptor signaling lymphocyte 

activation molecule (SLAM), so called Vero dog-SLAM (VDS) cell line, are commonly used 
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(Lefèvre and Diallo, 1990; von Messling et al., 2003). Characteristic cytopathic effects (CPEs) as 

indicator for a successful infection of the cells are rounding of the cells, berry-shaped clustering 

followed by fusion of the cells and formation of syncytia (Figure 6). Gradually, the cell layer 

becomes detached (Lefèvre and Diallo, 1990; Santhamani et al., 2016). When using Vero cells, 

several blind passages might be necessary until a CPE can be observed (OIE, 2019a). In order to 

increase the success rate of virus isolation, cell lines expressing the morbillivirus receptor SLAM 

(CD150) were established (von Messling et al., 2003). Regarding virus-host interactions, the 

SLAM receptor plays a crucial role for the uptake of PPRV to immune cells like lymphocytes, 

macrophages and dendritic cells that express the SLAM receptor (Kumar et al., 2014). Besides, 

the application of cell culture needs time, appropriate laboratory equipment and laboratory 

space in a high containment facility, and is elaborate for routine diagnostics (Balamurugan et 

al., 2014; Santhamani et al., 2016). Therefore, other techniques were established for routine 

diagnostics (Saliki et al., 1994; Santhamani et al., 2016). 

 

Figure 6 Appearance of native VDS cells (A) and VDS cells showing PPRV-induced CPE two 

days after an inoculation (B). 

 

Antigen enzyme-linked immunosorbent assay (ELISA) 

Enzyme-linked immunosorbent assays (ELISAs) are tests based on antigen-antibody reactions 

(Aydin, 2015). These tests are user-friendly, can have a high throughput of samples, and are 

suitable for automation (O'Kennedy et al., 1990; Santhamani et al., 2016). ELISAs can be used 

for both antigen and antibody detection (see also chapter 4.2) (Aydin, 2015). The specificity of 

antigen ELISAs is often high, while the sensitivity could be reduced, depending on the amount 
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of antigen in a sample (Diop, Sarr, and Libeau, 2005; Singh et al., 2004a; Zhang et al., 2019). For 

antigen detection of PPRV several ELISA test formats are available (Santhamani et al., 2016). 

One commonly used ELISA format for the detection of viral antigens is the so-called sandwich 

ELISA (S-ELISA). The underlying principle of an S-ELISA is rested on capturing the antigen to be 

determined between two layers of antibodies (Aydin, 2015). Therefore, one layer of PPR-

specific antibodies (capture antibody) is coated on a solid phase to which the clinical sample 

containing the target antigen is added (Libeau et al., 1994). Afterwards, detection antibodies 

bind to the free antigen binding sites varying from that of the capture antibody (Aydin, 2015; 

O'Kennedy et al., 1990). A colour signal is elicited by the interaction of a chromogenic substrate 

that is added to the assay and an enzyme attached to the detection antibody (Crowther, 2009). 

Enzymes that are used for labelling antibodies are alkaline phosphatase, horseradish 

peroxidase, acetylcholinesterase, ß-galactosidase, glucose oxidase or urease (Aydin, 2015; 

O'Kennedy et al., 1990). Various variations of these S-ELISAs are known (Santhamani et al., 

2016). A brief overview of several antigen ELISAs for the detection of PPRV is given below. 

An immunocapture ELISA (IC-ELISA) developed by Libeau et al, 1994, is based on the use of 

monoclonal antibodies (mAbs) directed against the N protein of PPRV. This commercially 

available assay is designed as direct sandwich ELISA (S-ELISA) with a diagnostic sensitivity of 

around 101.9 TCID50/ml (Crowther, 2009; ID.Vet, 2019b; Libeau et al., 1994). The IC-ELISA is a 

more sensitive detection method compared to the agar gel immunodiffusion (AGID) test or the 

haemagglutination (HA) test (Abraham and Berhan, 2001; Abubakar et al., 2011a). The 

diagnostic sensitivity and specificity for the IC-ELISA is specified as 84.6 % and 96.7 %, 

respectively (Diop et al., 2005).  

Another ELISA for the detection of PPRV antigen and commonly used in India for screening and 

diagnosis of PPR (Balamurugan et al., 2012a; Santhamani et al., 2016) is the indirect sandwich 

ELISA (Crowther, 2009) by Singh and co-workers (Singh et al., 2004a). As capture antibodies, 

polyclonal rinderpest hyperimmune sera are used to coat the ELISA plates. For the detection of 

the antigen, a primary monoclonal antibody specific for PPRV and raised against the N protein 

(Singh et al., 2004a) as well as a secondary antibody (rabbit anti-mouse antibody) conjugated 

with peroxidase are added to the assay. Compared to the ELISA designed by Libeau et al., 1994, 

the diagnostic sensitivity is 88.9 % and the diagnostic specificity is 92.8 % (Singh et al., 2004a).  
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Antigen lateral flow devices (LFDs) 

Lateral flow devices (LFDs) are rapid diagnostic devices which are variable in their size, shape 

and configuration (Yetisen, Akram, and Lowe, 2013). The LFD-based assays used in our studies 

rely on antigen-antibody reactions. One of these assays is available as cassette format 

containing the paper strip inside, and another one is designed as dipstick (Baron et al., 2014; 

ID.Vet, 2019a). These immune-chromatographic test systems are suited for a quick and simple 

use in the field obtaining results within 20 minutes and with a minimum of equipment 

necessary for their application (OIE, 2019a; Posthuma-Trumpie, Korf, and van Amerongen, 

2009; Rozand, 2014). In fact, the interpretation of these test systems can be done by eye 

without any further instruments (Rozand, 2014). A high throughput of varying sample types is 

feasible using those LFDs (Posthuma-Trumpie et al., 2009; Rozand, 2014). Nevertheless, the 

LFDs exhibit a relative low diagnostic sensitivity while the diagnostic specificity is high (Zhang 

et al., 2019). Immuno-chromatographic LFDs are divided into sandwich and competitive 

formats (Ferris et al., 2009; Laitinen and Vuento, 1996). LFDs normally use stripes out of 

nitrocellulose membranes as solid phase that consists of a sample pad, a conjugate pad, a 

detection zone containing a test line and a control line, and an absorbent pad at the end of the 

stripe (Figure 7). The sample prepared with buffer solution is applied on the sample pad and is 

then carried by capillary flow to the conjugated pad (Yetisen et al., 2013). On the conjugated 

pad, recognition elements are dried on the paper labeled mostly with colloidal gold or latex 

(Posthuma-Trumpie et al., 2009). When a sample with the target antigen reaches this pad, the 

target antigens build a complex with the labeled antibodies and the coloured recognition 

elements are released in a controlled manner. The liquid migrates further to the test line where 

the immune complexes irreversibly interact with the immobilised antibodies and present a 

chromatographic signal (positive result) (Zhang et al., 2019). On the control line, the unbound 

conjugated particles are also bound to immobilised mAbs resulting in a coloured line which 

indicates a valid test (Figure 7) (Ferris et al., 2009). When using an LFD based on a sandwich 

format (direct assay), a coloured line is visible on both the test and the control line in the case 

of a positive result. In the case of a negative result, the test will provide no coloured test line, 

but a coloured line appears on the control field (Yetisen et al., 2013).  
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Figure 7 Operating principle of a lateral flow device (LFD) with colloidal gold as label in a 

sandwich LFD-format. A: Application of a clinical sample on the sample pad and flow of the 

sample by capillary force to the conjugated pad. B: Target antigens captured by the labelled 

antibodies and released to the detection zone. C: For a positive result, a coloured line is visible 

on both test and control line (Lee et al., 2013). [The original figure was transformed by using 

capital letters for the individual figures. For permission rights see chapter Supplement, page 

63]. 

 

Polymerase chain reaction (PCR) 

Several molecular techniques (e.g. RT-PCR, RT-qPCR, RT-PCR-ELISA, cDNA probes, reverse 

transcription loop-mediated isothermal amplification (RT-LAMP), reverse transcription 

recombinase polymerase amplification (RT-RPA), sequencing, microarrays) are available for the 

detection of PPRV-specific nucleic acids (Rajko-Nenow et al., 2017; Santhamani et al., 2016). In 

addition to the gel-based reverse transcription polymerase chain reaction (RT-PCR) which 

provides qualitative assertion regarding the genomic loads in a sample (Mackay, Arden, and 

Nitsche, 2002; Rodriguez-Sanchez et al., 2008), the real-time quantitative RT-PCR (RT-qPCR) has 

been implemented in diagnostics (Bustin, 2002). The latter method is able to make a 

quantitative statement and thus differentiate between samples with a low or a high genome 

load, respectively (Balamurugan et al., 2014; Wall and Edwards, 2002). For the detection of 
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PPRV genomes, numerous assays are established for molecular diagnostics (Balamurugan et 

al., 2014; Bao et al., 2008; Batten et al., 2011; Kwiatek et al., 2010; Polci et al., 2015). 

 

4.2 Indirect methods of PPRV detection 

Indirect diagnostic tools are based on the detection of specific antibodies. An advantage of this 

diagnostic principle is that antibodies can still be detected years after an infection or 

vaccination. Thus, these methods are suitable means e.g. to monitor vaccination campaigns or 

to carry out sero-surveillance (Santhamani et al., 2016). But there are restrictions when it 

comes to differentiating the origin of the antibodies, mainly if the antibodies are infection-

induced or vaccine-driven (Mariner et al., 2016; OIE, 2019a). 

However, in the case of a PPRV infection, H and F proteins are the major components for a 

protective immune response, with most of the neutralizing antibodies directed against the 

H protein (Diallo et al., 2007; Yan et al., 2019). Even though the N protein is produced in large 

amounts accompanying an infection with PPRV, the immune response against this protein does 

not offer sufficient protection for the animals (Diallo et al., 2007; Mitra-Kaushik, Nayak, and 

Shaila, 2001). Because of this facts, both N and H proteins are supposed to be the most valuable 

target proteins for the development of indirect diagnostic tools (Munir et al., 2012). 

 

Antibody enzyme-linked immunosorbent assays (ELISA) 

ELIASs are the most suitable assays for antibody detection, especially for larger sample 

numbers (Santhamani et al., 2016).  

For the detection of PPRV-specific antibodies the so-called competitive ELISAs (C-ELISA) is most 

often applied, occasionally also designated as blocking ELISA (B-ELSA) (Alber et al., 2015). Some 

authors differentiate strictly between C- and B-ELISA according to their application protocols 

as two separate ELISA formats (Saliki et al., 1993). However, the synonymous use of both terms 

is usual, and therefore this nomenclature is also used in this thesis. 

For the C-ELISA, PPRV-specific antigens are immobilized to a solid phase to determine the 

analyte (serum antibody of the sample) (Aydin, 2015). Serum sample and detection antibodies 
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are added to the assay; thus the antibodies can dock to the antigen binding sites (Aydin, 2015; 

Singh et al., 2004b). The C-ELISA is based on the principle of competition between analyte and 

detection antibodies for free antigen binding sites (O'Kennedy et al., 1990). In the case that the 

sample contains a high amount of pathogen-specific antibodies, the detection antibody is 

displaced from the epitope sites of the antigen. Because the ELISA is based on a chromogenic 

substrate which interacts only with the detection antibody, a high amount of serum antibodies 

is determined by a reduced colour signal (inversely proportional) (Aydin, 2015; O'Kennedy et 

al., 1990). Table 2 gives an overview of several antibody ELISAs designed for the detection of 

PPRV-specific antibodies. 

 

Table 2 Overview of selected ELISAs for the detection of PPRV-specific antibodies (the 

indicated sensitivities and specificities are the result of a comparison with the gold-standard 

assay, the virus neutralization test). 

Name of the ELISA 

(designed by) 

designated by 

authors as 
Target protein 

Sensitivity (Se) 

Specificity (Sp) 

(Saliki et al., 1993) B-ELISA H protein 
Se = 90.4 % 

Sp = 98.9 % 

(Anderson, McKay, and 

Butcher, 1990) 
C-ELISA H protein not specified 

(Libeau et al., 1995) C-ELISA N protein 
Se = 94.5 % 
Sp = 99.4 % 

(Singh et al., 2004b) C-ELISA H protein 
Se = 92.4 % 

Sp = 98.4 % 

(Balamurugan et al., 2007) Indirect ELISA not specified 
Se = 80.0 % 

Sp = 100.0 % 
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Virus neutralization test (VNT) 

The virus neutralization test (VNT) is described as the gold-standard for the detection of 

neutralizing antibodies (Couacy-Hymann et al., 2009; Santhamani et al., 2016) because it is both 

a highly sensitive and specific test system (Gauger and Vincent, 2014; OIE, 2019a). However, it 

is time-consuming and requires high demands on laboratory equipment within a high-

containment facility. In brief, a twofold dilution series of the serum is incubated with precisely 

defined virus dilutions before it is inoculated with the cell suspension (Santhamani et al., 2016). 

Antibody titer determination is normally based on 50 % absence of CPE (neutralization titre 

ND50) in the highest dilution (Alber et al., 2015). 

 

In summary, direct methods are focusing on the detection of the pathogen itself, comprising 

the isolation of virus particles or the detection of viral antigens or viral nucleic acids. Besides, 

the indirect methods are used for the detection of virus specific antibodies in response to a 

PPRV infection. The methods described here are varying in their time exposure, detection 

window, requirements concerning the laboratory facilities as well as to the user abilities and 

training. Differences according to diagnostic sensitivities and specificities were also described. 

Some of the detection methods are applicable in various formats or are sometimes also 

combined. However, numerous detection methods of PPRV are well established, some are 

more suitable for the use under laboratory conditions and some are also applicable for the POC 

use. Regarding the wide range of diagnostic methods available for the detection of PPRV 

infections, our studies focused on POC methods. Therefore, animal inoculations were 

performed with two different PPRV isolates aiming to examine the pathogenesis in goats and 

to collect various sample materials (EDTA blood, serum, ocular, nasal, mouth and fecal swabs, 

fecal samples). 
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III OBJECTIVES 

 

In order to enable the surveillance of clinically diseased animals at the point of care, available 

diagnostic tools should provide fast results with high reliability, and should concurrently be fit-

for-purpose for the use in the field. In this context, the current thesis is embedded with 

emphasis on in vivo studies with two PPRV isolates for in vivo characterization, for the collection 

of reference samples, and for the comparative evaluation of several PPRV rapid detection 

methods for. 

 

Objective 1: In vivo studies with two newly emerged PPRV strains from Shahjadpur, India and 

from Dubai, United Arab Emirates (UAE) for characterization and sample collection 

Goats of German breeds were intranasally infected with two various PPRV isolates originating 

from different outbreaks, locations and hosts. We aimed to do an in vivo characterization of 

the viral isolates and to investigate influences of strain virulence, host species, and virus 

processing in vitro on clinical manifestations. In addition, several sample materials (EDTA blood, 

serum, ocular, nasal, mouth and fecal swabs) were taken to allow comparative validations and 

with respect to virus shedding in different excretions. 

 

Objective 2: Validation of several direct detection methods for PPRV concerning a rapid 

diagnosis and a high throughput of a large amount of samples 

Many efforts have been made to develop simple, quick and reliable POC diagnostics for the 

detection of PPRV. In this context, we strived to compare different antigen detection methods 

with regard to their diagnostic sensitivities and specificities as well as concerning their 

suitability for field use. For this, we compared a commercially available ELISA test kit 

(ID Screen® PPR Antigen Capture) and two LFDs (ID Rapid® PPR Antigen and PESTE-Test) using 

ocular and nasal swabs as well as fecal samples. As reference method, a PPRV-specific RT-qPCR 

(Polci et al., 2015) was used.  
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Abstract 

Peste des petits ruminants (PPR) is a fatal disease of small ruminants which has spread rapidly 

to previously PPR-free countries in recent decades, causing enormous economic losses in the 

affected regions. Here, two newly emerged PPR virus (PPRV) isolates from India and from the 

Middle East were tested in an animal trial to analyze their pathogenesis, and to evaluate 

serological and molecular detection methods. Animals infected with the two different PPRV 

isolates showed marked differences in clinical manifestation and scoring. The PPRV isolate from 

India was less virulent than the virus from the Middle East. Commercially available rapid 

detection methods for PPRV antigen (two Lateral Flow Devices (LFD) and one antigen ELISA) 

were evaluated in comparison with a nucleic acid detection method. For this purpose, ocular 

and nasal swabs were used. Due to the easy non-invasive sampling, fecal samples were also 

analyzed. For all rapid antigen detection methods a high specificity of 100% was observed 

independent of the sample matrix and dilution buffers used. Both, antigen ELISA and LFD tests 

showed highest sensitivities for nasal swabs. Here, the detection rate of the antigen ELISA, the 

LFD-PESTETEST and the LFD-ID Rapid-Test was 78%, 75% and 78%, respectively. Ocular swabs 

were less suitable for antigen detection of PPRV. These results reflect the increased viral load 

in nasal swabs of PPRV infected goats compared to ocular swabs. The fecal samples were the 

least suitable for antigen detection. In conclusion, nasal swab samples are the first choice for 

the antigen and genome detection of PPRV. Nevertheless, based on the excellent diagnostic 

specificity of the rapid tests, positive results generated with other sample matrices are solid. In 

contrast, negative test results can be caused on the reduced analytical sensitivity of the rapid 

antigen tests and must be treated with caution. 

 

Keywords: diagnostic; goats; pathogenesis; virus; peste des petits ruminants (PPR); rapid 

detection methods; Small ruminant morbillivirus 
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Introduction 

Peste des petits ruminants (PPR) is a highly contagious disease, especially in goats and sheep 

(Balamurugan, Hemadri, Gajendragad, Singh, & Rahman, 2014). The causative peste des petits 

ruminants virus (PPRV; taxonomic name: Small ruminant morbillivirus) is classified into the 

genus Morbillivirus in the family Paramyxoviridae (Amarasinghe et al., 2017). Only one serotype 

is known with four genetic lineages (LI-IV) (M. D. Baron, Diallo, Lancelot, & Libeau, 2016; Libeau, 

Diallo, & Parida, 2014). The viral genome is a linear, single-stranded, negative sense RNA of 

15,948 nucleotides containing six genes. Due to different open reading frames and RNA editing 

eight proteins can be translated. There are six structural proteins, the nucleocapsid protein (N), 

the phosphoprotein (P), the fusion protein (F), the matrix protein (M), the 

hemagglutininneuraminidase protein (HN), the large protein (L) as well as two non-structural 

proteins, C and V (Kumar et al., 2014). 

In naïve populations the disease induces a morbidity of up to 100 % (M. D. Baron, Diop, Njeumi, 

Willett, & Bailey, 2017) and a mortality of up to 80-100 %. Lower mortality rates of 20 % can be 

observed in endemically infected areas (Banyard et al., 2010; Pope et al., 2013). The incubation 

period lasts for four to six days. Infected animals show a loss of appetite associated with high 

fever and oculo-nasal discharge, oral lesions, bronchopneumonia, cough, dyspnea, 

gastroenteritis, diarrhea. In pregnant animals, the infection can also lead to abortions (Parida 

et al., 2015). The clinical manifestations may vary greatly depending on breed, age, immune 

status and virulence of the respective virus isolate (M. D. Baron et al., 2016; M. D. Baron, Parida, 

& Oura, 2011; Couacy-Hymann et al., 2007). Here, we explored further this variability by 

comparing the pathogenesis in goats of German breed of two PPRV isolates from India and the 

Middle East. One isolate was obtained from mountain gazelles that were affected by a PPR 

outbreak in the United Arab Emirates. Several thousands of mountain gazelles died while the 

neighboring sheep and goat population showed only few clinical signs. The other PPRV isolate 

originated from a mixed infection of goats in India by PPRV and FMDV. The infection was 

characterized by a mortality of 52 % and clinical signs characteristic for PPR and FMD infection. 

Due to the drastic socio-economic impact caused by PPR in developing countries, OIE and FAO 

launched a program to eliminate PPR globally by 2030. Effective vaccines and reliable diagnostic 

methods are required to achieve this goal (Albina et al., 2013; M. D. Baron et al., 2017; Jones 

et al., 2016; Santhamani, Singh, & Njeumi, 2016). There are numerous attempts to develop 

rapid and reliable tests for PPR diagnosis under field conditions (Ashraf et al., 2017; J. Baron et 

al., 2014; Li et al., 2018; Mahapatra et al., 2019). The objective is a simple test with little 
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additional laboratory equipment, which enables rapid results with adequate sensitivity and 

specificity (M. D. Baron et al., 2016; Howson et al., 2017). Therefore, we compared several 

commercially available rapid detection tests for PPRV. The LFD (Lateral Flow Device) developed 

at The Pirbright Institute (PESTE-Test) detects the PPRV H-protein with a published sensitivity 

of 84 % and specificity of 95 % for ocular and nasal swabs (J. Baron et al., 2014). The LFD from 

IDvet is based on N protein detection (ID Rapid® PPR Antigen, hereinafter referred to as ID 

Rapid) claiming a specificity of more than 99 % and a sensitivity of 100 % for eye swabs (ID.Vet, 

2019a). As third antigen detection method for PPRV, the ELISA from IDvet (ID Screen® PPR 

Antigen Capture), which is a robust and well-established test in PPR diagnosis (Abraham & 

Berhan, 2001; Abubakar et al., 2011; Couacy-Hymann, Bodjo, Koffi, Kouakou, & Danho, 2009; 

Diop, Sarr, & Libeau, 2005; OIE, 2019), was also included in our study. This sandwich ELISA 

recognizes the PPRV nucleoprotein and is applicable to a range of samples such as ocular, nasal, 

mouth or fecal swabs, as well as tissue samples (Bataille et al., 2019; ID.Vet, 2019b). For 

validation as well as for calculation of sensitivities and specificities, we decided to use a PPRV-

specific RT-qPCR assay because RT-qPCR is described to be more sensitive than virus titration 

(Couacy-Hymann et al., 2002; OIE, 2019). Furthermore, genome detection by PCR is the gold 

standard for confirmatory diagnosis of PPRV (Couacy-Hymann et al., 2009; Santhamani et al., 

2016) and exhibits higher sensitivity than antigen ELISAs (Balamurugan et al., 2006; Couacy-

Hymann et al., 2009). Here, we used the Polci-RT-qPCR assay targeting the nucleoprotein gene 

(Polci et al., 2015). 

The aim of our study was to investigate the pathogenesis in goats of German breed of two PPRV 

isolates that showed different pathogenicity in the regional breed and use the samples 

obtained after experimental infection to compare distinct matrices including EDTA blood, 

ocular, nasal, mouth and fecal swabs for their suitability for rapid testing. 

 

Materials and Methods 

Ethics Statement 

The animal trial was carried out in accordance with German legislation and approved by the 

competent authority State Office for Agriculture, Food Safety and Fisheries of Mecklenburg-

Vorpommern (LALLF, Project license number: 7221.3-2-010/18). The animal trial was 
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performed in the biosafety level 4 experimental animal facilities at Friedrich-Loeffler-Institut 

(FLI), Insel Riems. 

 

PPRV isolates 

The PPRV isolates for the animal trialT were obtained from a PPR outbreak in Dubai, United 

Arab Emirates (UAE isolate), and from Shahjadpur, India (India isolate), respectively. The first 

isolate (SMRV/UAE/2018/V135/Dubai) was isolated from mountain gazelles (Gazella gazella) 

in August 2018 in which more than 5000 gazelles died near Dubai. Interestingly, domestic goats 

and sheep in the region of the outbreak showed only few clinical signs. A sheep and goat farm 

assumed to be the origin of the disease were tested and all goats proved to be seropositive for 

PPRV. More detailed information about the epidemiological situation in small ruminants at the 

time of the outbreak is not available. Thus, the virulence of this UAE isolate for native European 

goats was unclear. The second PPRV isolate (SMRV/IND/2013/V242.5/Shahjadpur) was 

obtained from a mixed infection of PPRV and FMDV in goats at Shahjadpur in India. Goats 

showed typical clinical signs such as high fever, mild lesions on gums and tongue, salivation and 

mucopurulent nasal discharge, dyspnea, diarrhea and swelling of the interdigital region. The 

mortality during this outbreak in February 2013 was 52 %. The animals of the affected farms 

were neither vaccinated against PPR nor against FMD (Kumar et al., 2016). 

The PPRV UAE isolate was initially isolated at the Central Veterinary Research Laboratory in 

Dubai, including nine passages on Vero-Dog-SLAM (VDS) cells and subsequently passaged twice 

on VDS cells at the FLI. The PPRV-India isolate was passaged 15 times in co-cultured 

BHK21/Vero cells and three times in Vero cells (Kumar et al., 2016). For the animal trial, the 

isolate was further passaged six times on VDS cells at FLI. 

 

Sequencing of PPRV isolates 

RNA of cell-culture propagated PPRV was extracted with TRIzol™ LS (ThermoFisher Scientific, 

UK) and used in the cDNA synthesis system (Roche, Germany) for the generation of double 

stranded cDNA. The cDNA was submitted to Eurofins (Germany) for library preparation and 

highthroughput sequencing on an Illumina platform. Raw data were analysed with the Genious 

software package v11.1.5 (Biomatters, Ltd., New Zealand). 

Animal trial and sample collection 
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The animal infection study was performed with two groups of animals, each with four male 

goats of German breed ‘Deutsche Edelziege’, aged 4 to 6 months. Animals were infected with 

the UAE isolate (104.38 TCID50/ml) or the India isolate (105.75 TCID50/ml). 2 ml of the inoculum 

was administered intra-nasally with a LMA™ MAD Nasal™ Intranasal Mucosal Atomization 

Device (Teleflex Medical, USA). Samples (EDTA blood, serum, ocular, nasal, mouth and fecal 

swabs) were collected at days -1, 3, 5, 7, 10, 12, 14, 17, 21, 28 post infection (dpi). In addition, 

fecal samples picked up from the stable floor for the individual animals were collected at 

irregular intervals. On -1 dpi pooled fecal samples were taken. Four days prior to infection, daily 

health checks of the animals including routine visual monitoring and measuring of the rectal 

temperature combined with clinical scoring (modified according to Pope et al. (2013), see Table 

S1 in supplementary materials) started. The experiment was terminated based on ethical end 

points for each individual animal, if the criteria according to Pope et al. (2013) were fulfilled. At 

the day of termination or at the final necropsy of the surviving animals (33 dpi), samples from 

lung, liver, spleen, mesenteric lymph node and mediastinal lymph node were collected and 

stored at -80 °C until further processing. 

 

Processing of the organ samples 

A panel of five tissue samples (lung, liver, spleen, mesenteric and mediastinal lymph nodes) 

was taken from all animals at the end of the study. All organs were homogenized in 800 μl cell 

culture medium without fetal calf serum using a 5 mm steel bead in the TissueLyser (Qiagen, 

Germany) and 100 μl homogenate were extracted with the NucleoMag® VET kit (Macherey-

Nagel, Germany) on the KingFisher Flex automated extraction platform (ThermoFisher 

Scientific, UK). Extracted RNA was investigated according to a modified RT-qPCR assay of Polci 

et al. (2015). This assay was adapted to a reduced amount of master mix (10.0 μl) containing 

the reagents of the AgPath-ID™ One-Step RT-PCR kit (Thermo FisherScientific Inc., Waltham, 

USA) and 2.5 μl RNA template was added. PPRV-specific primers (PPR_Np-F298; PPR_Np-R366) 

and TaqManprobe (PPR_probe) were used as stated by (Polci et al., 2015) except that the probe 

used a FAM-Dye. The PCR reactions were run on a CFX96™ Real-Time PCR Detection System 

(BioRad Laboratories Inc., Hercules, USA) with the following temperature-time profile: 45°C for 

10 min, 95°C for 10 min and 45 cycles at 95°C for 15 s, 56°C for 20 s and 72°C for 30 s. 

Serological and molecular biological investigation of EDTA blood, serum, ocular, nasal, mouth 

and fecal swabs 
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For serological examinations the ID Screen® PPR Competition assay (IDvet, France) which 

contains recombinant PPRV nucleoprotein as antigen was used. Results were interpreted 

according to the manual: at S/N < 50 % samples were rated positive, at 50 % < S/N ≤ 60 % 

doubtful and at S/N > 60 % negative. The RNA extraction of EDTA blood and all swab samples 

was performed on the KingFisher Flex automated extraction platform (ThermoFisher Scientific, 

UK) using NucleoMag® VET kit (Macherey-Nagel, Germany). 100 μl of the homogenized sample 

were processed following the extraction manual and eluted in 100 μl of elution buffer. 

Subsequently, a PPRV-specific RT-qPCR targeted to the N gene of PPRV was performed for all 

samples (Polci et al., 2015) as described above. 

 

Comparative validation of various rapid detection methods for PPRV 

Three commercial antigen tests were compared: one antigen ELISA (ID Screen® PPR Antigen 

Capture) and two LFDs (PESTE-Test and ID Rapid). In our study, we evaluated the impact of the 

use of a common buffer (i.e. PBS) on the performance of IDvet test systems. Thus, three buffer 

systems for the sample collection were taken into account. For this purpose, each group of 

animals was divided into two subgroups of two animals each: the swabs of one subgroup were 

collected in a phosphate-buffered saline (PBS) standard buffer system (subgroup “standard”) 

and from the other subgroup with manufacturer-specific buffers (subgroup “IDvet/ Lillidale”). 

Mouth and fecal swabs of all animals and ocular and nasal swabs from the goats of subgroup 

“standard” (goat number G17, G20, G23 and G24) were processed in 2 ml of PBS. The ocular 

and nasal swabs from the goats of subgroup “IDvet/ Lillidale” (goat number G18, G19, G21, 

G22) were collected in manufacturer-specific buffers. For this purpose, two ocular and two 

nasal swabs were taken from each animal: The right eye swab was collected in 500 μl of ID 

Rapid - Elution Buffer (IDvet) and the left eye swab in 500 μl of buffer solution of the PESTE-

Test (Lillidale Diagnostics). 

A 5 % suspension of fecal samples was prepared according to the instructions of the 

manufacturer IDvet, France. For this, 5 g of feces were weighed into 1 ml of ID Rapid – Elution 

Buffer, vortexed and incubated for 5 minutes for the sedimentation of the homogenate. The 

supernatant was investigated by ID Rapid® PPR Antigen (IDvet, France), ID Screen® PPR Antigen 

Capture (IDvet, France) and the PPRV-specific RT-qPCR assay of Polci et al. (2015). 

All LFDs were run according to the manufacturer´s protocols and assessed semi-quantitatively 

(- = negative; +/- = doubtful; + = weak positive; ++ = moderate positive; +++ = strong positive). 
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The ID Screen® PPR Antigen Capture ELISA was performed and evaluated according to the 

manufacturer´s instructions. 

Sensitivities and specificities for the individual tests were calculated in comparison to the 

results of the reference method as described by (Parikh, Mathai, Parikh, Chandra Sekhar, & 

Thomas, 2008). Only samples with unambiguous results were used for the final calculation and 

samples which obtained the result “doubtful” were excluded. For the validation of the antigen 

detection methods we concentrated on samples derived from infected animals with limitations 

in sample number and volume. The extent of all positive samples used is limited to n = 82, 

whereof n = 67 were available for the validation of the ID Rapid and n = 15 for the PESTE-Test. 

Considering the negative samples, a panel of n = 29 was available, whereof n = 24 were used 

for the validation of the ID Rapid and n = 5 were used for the PESTE-Test (see results below). 

 

Results 

PPRV isolates used for the animal trial 

Two PPRV isolates from an outbreak in goats in India and from diseased mountain gazelles in 

UAE were studied. The corresponding genomic sequences generated during this study are 

available under GenBank accession numbers MN369542 (UAE isolate) and MN369543 (India 

isolate). The raw sequencing data of both sequencing projects were submitted to the 

sequencing read archive (SRA) with reference PRJNA632993 (UAE strain) and PRJNA633015 

(India strain). For the PPRV-India strain the nearly complete genome (coverage of 99.9%) could 

be generated with an average sequencing depth of 235. A substantial reduction (sequencing 

depth <30) of the sequencing depth must be ascertained for the last 20 nucleotide of the leader 

and trailer sequence of both termini. For the PPRV UAE strain the complete genome (100%) 

was sequenced with an average sequencing depth of 1324. Both isolates belonged to PPRV-

lineage IV. Sequence analysis showed 98.8 % identity between the two isolates with overall 

differences in 190 nucleotides. Based on a BLAST analysis, both virus sequences have the 

highest homologies to several Indian PPRV isolates with an identity of more than 98 %. 

Clinical manifestation and clinical score 

The goats of both groups differed in the level of clinical manifestation. In the “India group”, 

infected animals displayed low clinical scores. Only one goat developed elevated temperature 
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40.6 °C to 41.6 °C) on 3 to 5 dpi. In two other goats, mild nasal discharges were noted. Indeed, 

neither mucosal erosions nor any other severe clinical manifestations were observed (Fig.1). In 

contrast, the “UAE isolate” caused significantly more severe clinical signs, reaching peak scores 

on 10 dpi. All animals developed high fever (ranging from more than 40.0 °C to a maximum of 

41.3 °C) beginning on 2 to 4 dpi and lasting for 6 to 8 days. The clinical signs after infection with 

the “UAE isolate” were mainly dominated by pyrexia for several days, accompanied by a 

deterioration of the general condition 3 to 7 days after the onset of fever characterized by 

inactivity, depression and loss of appetite. During the infection study all animals showed watery 

to mucosal-purulent nasal discharge, while facial mucosal lesions were not observed. During 

the clinical phase, all animals showed severe watery diarrhea. Two goats had to be removed on 

10 dpi due to the severe clinical signs and the bad health condition. The two other animals had 

recovered completely by 18 dpi and 21 dpi, respectively (Fig.1). 
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Figure 1 Clinical parameters of goats G17 to G24 during animal infection trial (−4 to 21 dpi): 

rectal body temperature for goat group ‘India’ (a) and goat group ‘UAE’ (b); average daily 

clinical score for goat group ‘India’ (c) and goat group ‘UAE’ (d) 

 

RNA loads in EDTA blood and swabs 

Fig. 2 shows the PPRV genome loads in EDTA blood and various secretions and excretions from 

animals of the two groups reflecting the different clinical manifestations. The “India group” 

reached maximal virus excretions on 7 dpi, except for nasal swabs where the maximum was 

secreted on 3 to 7 dpi. However, generally viral genome loads were limited with lowest Cq 

values of 25 to 26. Regarding continuity and maximal viral genome loads viral shedding was 

reflected best in nasal swabs, with nasal virus secretion lasting from 3 to 12 dpi. Ocular swabs 

were also suitable, but the detection rate was slightly decreased. Viral shedding via ocular fluid 

was detected from 3 to 12 dpi, with maximal Cq values of 30 to 31 on 7 dpi. EDTA blood and 

mouth swabs were inadequate exhibiting the lowest viral load similar to fecal swabs, with an 

intermittent shedding. In contrast, the viral genome load in EDTA blood and swabs from 

animals of the “UAE group” was substantially higher. Virus excretion started on 3 dpi 
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concomitant with the onset of clinical signs. At this time, nasal swabs yielded positive results 

for all animals, whereas the EDTA blood, ocular, mouth and fecal swabs of two out of four 

animals tested positive on 3 dpi. By 5 dpi all animals were positive in all sample matrices, except 

in EDTA blood, where three out of four animals were positive. Maximal virus shedding occurred 

on 7 to 10 dpi along with a subsequent elimination of two animals from the experiment. The 

highest viral loads were detected in ocular and nasal swabs with Cq values of 15 to 17 on 7 and 

10 dpi. The highest viral loads in fecal swabs were detected on 7 dpi with Cq values of 22 to 26. 

Interestingly, in the fecal swabs a relatively constant viral genome load was detected after the 

viremia peak over the time. In contrast, a continuous decrease of the virus level was observed 

in blood, nasal and mouth swabs (Fig. 2). 

 

RNA loads in organ samples 

Five organ samples (lung, liver, spleen, mesenteric and mediastinal lymph nodes) taken on the 

day of necropsy were examined for viral RNA (Table 1). In the “India group” the mesenteric 

lymph nodes of all goats were weakly positive with Cq-values higher than 30. In addition, the 

spleen of one goat tested positive (G17). All animals were clinically inconspicuous at the time 

of necropsy, and showed no obvious pathological lesions. In contrast, the organ samples from 

group “UAE” showed higher RNA loads and the organs of animals removed prematurely from 

the experiment were all highly positive. The highest RNA loads were found in the mesenteric 

lymph nodes with maximum Cq-values of less than 20 in one goat (G21). In both convalescent 

animals, only the lymphatic organs were positive at the end of the trial (Table 1). Thus, 

lymphatic organs and in particular the mesenteric lymph nodes are recommended for a post 

mortem investigation of PPR suspicious cases. 
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Figure 2 Loads of PPRV RNA in various sample matrices detected by RT-qPCR: left side (a, c, e, 

g, i) = ‘India’ group and right side (b, d, f, h, j) = ‘UAE’ group; EDTA blood = a + b; eye swabs = c 

+ d; nasal swabs = e + f; mouth swabs = g + h; faecal swabs = i + j 
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Table 1 RNA loads (Cq values) from five organs examined with the RT-qPCR assay of Polci et al. 

(2015); G21 and G23 had to drop out of the animal trial on 10 dpi resulting in sampling of organ 

samples on the same day. 

Group “India” G17 G18 G19 G20 

Lung No Cq No Cq No Cq No Cq 

Liver No Cq No Cq No Cq No Cq 

Spleen 36.90 No Cq No Cq No Cq 

Lnn. Mesenteriales 35.69 36.86 36.89 33.30 

Lnn. Mediastinales No Cq No Cq No Cq No Cq 

     

Group “UAE” G21 G22 G23 G24 

Lung 27.32 No Cq 27.34 No Cq 

Liver 27.88 No Cq 29.68 No Cq 

Spleen 25.15 34.49 27.67 35.91 

Lnn. Mesenteriales 19.96 28.35 26.47 33.10 

Lnn. Mediastinales 24.50 32.10 29.14 34.11 

 

 

Serological response to PPRV-infection 

All eight infected goats seroconverted. An increase of anti-PPRV nucleoprotein antibodies was 

detected on 7 dpi for all animals. From 10 dpi all goats were seropositive until the end of the 

experiment on 33 dpi. Thus, the PPR-infection in both goat groups was confirmed (Fig. 3). 
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Figure 3 Serological results for goat group ‘India’ (a) and goat group ‘UAE’ (b) obtained with ID 

Screen® PPR Competition (IDvet, France) 

 

Sensitivity and specificity of various antigen detection methods for PPRV 

For comparative validation of PPRV detection methods, samples of goats from the group “UAE” 

were selected due to the greater range of viral secretion. RT-qPCR confirmed to be the most 

sensitive detection method and was used as reference for the evaluation of the antigen test 

systems (Table S2 to S5 in supplemental material). Both LFDs and the antigen ELISA achieved 

100 % diagnostic specificity in all tested matrices and sample collection buffers. Using the ID-

Rapid®-buffer, the detection rate of the antigen ELISA was 75 % for ocular and nasal swabs. The 

ID Rapid achieved similar data for both ocular and nasal swabs (71 % and 78 %, respectively). 

For the PESTE-Test nasal swabs proved to be the superior substrate with a sensitivity of 75 % 

compared to only 29 % for ocular swabs. For eye swabs, the ELISA (43 %) is better suited than 

the PESTE-Test (29 %). 

The manufacturers of the antigen ELISA strongly recommend to use only the kit specific buffer 

systems as we performed it in our animal trial. Since animal trials require a relatively large 

volume of buffer for sample preparation and analysis, the use of commonly available buffers 

would facilitate the comparison between the test systems. The realization of equivalent test 

series with the PESTE-Test would have been desirable for the comprehensive presentation of 

the facts, but was not pursued by the study. To test the performance of common buffer systems 

like PBS as alternatives, ocular and nasal swabs taken in PBS were tested in parallel with the ID 

Rapid and ELISA (Table 2). The data show a drastic loss in sensitivity compared to the use of the 

manufacturer recommended buffers. Besides, we tested also the suitability of 5 % fecal  
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suspensions. Compared with the results of the RT-qPCR, the ELISA achieved a sensitivity of 59 

% and the ID Rapid of 33 % (Table 2). 

 

Table 2 Comparative validation of different rapid detection methods for SRMV compared to 

RT-qPCR (= No. tested); the data for the LFD and ELISA are given as “Number of samples tested 

positive (sensitivity in %)” 

†swabs collected with the elution buffer of the IDvet kit or PBS were examined; ‡swabs collected 

with the buffer solution of the Lillidale kit were examined; §buffer solution used is specific 

according to the manufacturer´s instructions of the LFD´s; ¶considers only those samples that 

  ID Rapid®-buffer or PBS† Buffer of the PESTE-Test‡ 

 
Buffer 

Solution 

No. 

tested 
LFD ELISA 

No. 

tested 
LFD ELISA 

Positive samples 

  Ocular 

swabs 

specific§ 7 5 

(71.4 %) 

5 

(71.4 %) 

7 2 

(28.6 %) 

3 

(42.9 %) 

 
PBS 12 3 

(25.0 %) 

3 

(25.0 %) 

– – – 

  Nasal 

swabs 

specific§ 9 7 

(77.8 %) 

7 

(77.8 %) 

8 6 

(75.0 %) 

6 

(75.0 %) 

 
PBS 12 3 

(25.0 %) 

3 

(25.0 %) 

– – – 

  Fecal 

samples 

ID Rapid 27 9 

(33.3 %) 

16 

(59.2 %) 

– – – 

  Total All 67 27 

(40.3 %) 

34 

(50.7 %) 

15 8 

(53.3 %) 

9 

(60.0 %) 

 
corrected¶ 16 12 

(75.0 %) 

12 

(75.0 %) 

15 8 

(53.3 %) 

 

     
   

Negative samples 

  Ocular 

swabs 

specific§ 4 0 

(100 %) 

0 

(100 %) 

3 0 

(100 %) 

0 

(100 %) 

 PBS 3 0 

(100 %) 

0 

(100 %) 

– – – 

  Nasal 

swabs 

specific§ 2 0 

(100 %) 

0 

(100 %) 

2 0 

(100 %) 

0 

(100 %) 

 PBS 2 0 

(100 %) 

0 

(100 %) 

– – – 

  Fecal 

samples 

ID Rapid 13 0 

(100 %) 

0 

(100 %) 

– – – 

  Total  24 0 

(100 %) 

0 

(100 %) 

5 0 

(100 %) 

0 

(100 %) 
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have been taken in manufacturer-specific buffers and without fecal swabs to ensure 

comparability of the tests with each other. 

 

Discussion 

In this study, goats were infected with two PPRV isolates of different origin for pathogenesis 

studies. Samples of this animal trial were then used for the evaluation of various antigen 

detection methods (two LFDs and one antigen ELISA) in comparison to a PPRV specific RT-qPCR 

assay (Polci et al., 2015). Based on the available information about clinical signs and affected 

animal species from the outbreaks, we expected severe clinical symptoms of PPR in goats 

infected with the “India isolate” and only a mild form of the disease in goats inoculated with 

the “UAE isolate”. The unexpected clinical course in the infection trials compared to the 

outbreak situations is most likely due to the different laboratory history of both virus isolates. 

Since the “India isolate” was passaged more frequently (especially on Vero cells), this may have 

led to attenuation (Balamurugan, Sen, Venkatesan, Bhanuprakash, & Singh, 2014; Eloiflin et al., 

2019). On the other hand, the “UAE isolate” induced severe clinical signs in our naïve goats. No 

detailed information is available about the epidemiological situation of the domestic small 

ruminants in the region at the time of the massive PPR outbreak in wildlife, except for the farm 

assumed to be the origin of this outbreak where all goats were seropositive for PPRV. Goat and 

sheep farms in the vicinity of the semi-free ranging gazelles were in a distance of around 500 

m. Subclinical infections or vaccination with attenuated PPRV could be relevant for the 

protection of the domestic goats and sheep (Balamurugan, Sen, et al., 2014). In addition, also 

the lack of direct contact between gazelles and domestic animals could be a reason for the 

clinically less-affected domestic herd of small ruminants (Anderson, 1995). Besides, the 

virulence of various PPRV isolates can vary depending on the goat breed and regional breeds 

may be less susceptible to PPRV isolates than naïve European goats which have never been in 

contact with PPRV. 

For the “UAE isolate” the peak of viremia at 7-10 dpi was associated with massive clinical signs 

and very high RNA loads. Similar results have already been described for other PPRV isolates 

such as Côte d’Ivoire ’89 (L I), Ghana/78 (L II), Kurdistan/2011 (L IV) and Morocco/2008 (L IV) 

(Parida et al., 2019; Pope et al., 2013; Wernike et al., 2014). Our findings confirm other studies 

because the highest RNA loads were also detected between 4 and 10 dpi (Parida et al., 2019; 
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Pope et al., 2013; Wernike et al., 2014). Here animals infected with the highly virulent “UAE 

isolate” seroconverted 4 to 7 days after the onset of the first clinical signs. Similar observations 

were published by Pope et al. (2013) and Wernike et al. (2014). In contrast, the “India isolate” 

only induced subclinical infection which paralleled the Cq values with a maximum of 25-26 in 

nasal swabs on 3 to 7 dpi. Our study aimed to identify differences regarding optimal sampling 

between sub-clinically and acutely infected animals. For both groups, PPRV-RNA was 

continuously detected only in nasal or ocular swabs. EDTA blood, mouth and fecal swabs 

proved to be less suitable for the detection of RNA in samples with a low viral load as observed 

in the subclinically infected animals because of the intermittent excretion. Regarding the 

comparison of sample materials in the “UAE” group, the RNA loads in EDTA blood, mouth and 

fecal swabs were higher than in the subclinically infected animals. Overall, our data 

demonstrate the preference for ocular and nasal swabs for genome as well as antigen detection 

of PPRV. 

All antigen detection methods exhibited a specificity of 100 % in all tested biological matrices 

while the antigen ELISA provided superior or identical diagnostic sensitivity compared to the 

two LFDs. Based on the nasal and ocular swab samples the ID Rapid showed a slightly higher 

sensitivity compared with the PESTE-Test. In our tests, nasal swabs are the most suitable 

sample material for the three antigen detection methods tested in this study. The use of PBS 

for sample collection and dilution instead of the kit specific dilution buffer is not recommended 

because of the loss of sensitivity in the analyses. 

Fecal samples are often discussed as suitable sample matrices due to non-invasive sampling for 

diagnosis of flocks as well as in screening programs for wild animal populations (Bataille et al., 

2019). As part of our study, fecal samples were also tested in the LFD and in the antigen ELISA 

from IDvet. Similar to the analysis of ocular and nasal swabs test specificity is high also for fecal 

samples and the sensitivity seems to be sufficient for the testing of severely diseased animals. 

Therefore, further studies with a higher number of samples are necessary in the future, 

especially to provide more information about the diagnostic specificity of the different assays. 

Based on previously published data (Wernike et al., 2014), we also examined several organs 

(lung, liver, spleen, mesenteric and mediastinal lymph node) for viral genome loads. The 

severely sick animals were positive in all five organs tested while those with subclinical disease 

were positive mainly in the mesenteric lymph nodes. The convalescent goats from the group 

“UAE” were clinically inconspicuous at the end of the experiment, but positive in the lymphatic 

organs examined. 
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For control and eventual global eradication of PPRV, rapid detection methods for use in field 

locations are crucial (M. D. Baron et al., 2017; Santhamani et al., 2016). They include a recently 

developed reverse transcription loop-mediated isothermal amplification assay (RT-LAMP) and 

a real-time reverse transcription recombinase polymerase amplification (RPA) (Ashraf et al., 

2017; Li et al., 2018; Mahapatra et al., 2019). We evaluated and validated three different 

antigen detection methods, ID Rapid® PPR Antigen (ID Rapid, IDvet, France), Rapid Field Test 

for PPRV Infection (PESTE-Test, Lillidale Diagnostics, UK) and ID Screen® PPR Antigen Capture 

ELISA (IDvet, France) in comparison with a RT-qPCR (Polci et al., 2015). The antigen ELISA and 

the ID Rapid-showed 75 % sensitivity for ocular and nasal swabs while the sensitivity of the 

PESTE-Test was 53 %. Samples taken in PBS showed a significant reduction in sensitivity (Table 

2 and S4). As shown previously during the development of a LFD for the detection of foot-and-

mouth disease virus, the buffer system for the stability of the target viruses may have a decisive 

influence on the performance of the test (Ferris et al., 2009). Buffers not recommended by the 

manufacturer must therefore be tested in advance for their suitability. 

According to Jones and co-workers, the PESTE-Test was used in a Tanzanian study investigating 

PPR-suspected outbreaks of small ruminants. A total of 15 samples were tested and revealed a 

specificity of 100 % and a sensitivity of 54.5 % for ocular swabs (Jones et al., 2020). Thus, the 

PESTE-Test was more sensitive in the Tanzanian study than in our test series (28.6 %) 

concerning ocular swabs. In contrast, the PESTE-Test seems to be more suitable when using 

nasal swabs (75.0 %) The different results may be explained by different sampling strategies 

because in the Tanzanian study, clinically ill animals were sampled for the confirmation of PPRV 

antigen. In contrast, in our infection study, low-loaded and high-loaded samples were collected 

in the course of an infection to validate the diagnostic performance of the LFDs. LFDs are 

wellsuited for acutely diseased animals, but show weaknesses in low-loaded animals 

(subclinically diseased goats or samples from a later stage of infection). According results from 

the Tanzanian study confirm our findings. 

To analyze suitability of the antigen detection systems as pen-side test, they were evaluated 

using relevant criteria as shown in Table 3. The ID Rapid performed well in this regard because 

of its simple handling, feasible sensitivities and the ability to store the kit at room temperature 

without special reagent preparations. Results are available within 30 minutes which is a strong 

advantage for diagnostics in the field. For individual samples results were weakly positive 

(doubtful) and such result can be questionable especially under field conditions. This was seen 

in both LFDs, although it was more common in the PESTE-Test (Table S1 to S4). The advantages 
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of PESTE-Test are its simple handling, results are also available within 30 minutes and no 

additional laboratory equipment is needed. The supplied swabs in the PESTE-Test proved to be 

unsuitable as ocular swabs for goats. The test is unfavorable as pen-side test because the kit 

has to be stored at refrigerator temperature. The antigen ELISA takes about two hours for 

skilled users but it provides best results in terms of sensitivity and produces unambiguous 

results. The need for additional laboratory equipment such as small ELISA reader, pipettes and 

plastic material, its relative long runtime and its storage requirements makes this test not very 

suitable for the field. In our study design, the ELISA provided valuable comparative data for the 

evaluation of the LFD tests because it is also based on antigen detection. Antigen detection 

systems show advantages and disadvantages as for their suitability as a pen-side test (Table 3). 

The method of choice has to be determined individually according to the application 

requirements, the objective and the time required. The data presented here should support 

the necessary decisions. Nevertheless, based on the excellent diagnostic specificity of the rapid 

tests, positive results can be evaluated as “true”. In contrast, negative test results can be 

justified on the reduced analytical sensitivity of the rapid antigen tests and must be treated 

with caution, especially in subclinical infections. 
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Table 3 Comparative evaluation of various rapid detection methods for SRMV with regard to 

the suitability as a pen-side test 

 Lateral Flow Devices Antigen ELISA 

 
ID Rapid® 

PPR Antigen 
PESTE-Test 

ID Screen® 

PPR Antigen Capture 

  Simplicity ++ +++ +a 

  Good runnability of the test strips +++ + n.a. 

  Duration (without preparation time) 30 min 30 min 2 hours 

  Simple instructions for use ++ +++ +a 

  Suitability of the swabs +++ + n.a. 

  Additional equipment necessary No No Yes 

Preparation of reagents required    

  Reagents/ device should be brought to 

  ambient temperature 

No 

 

Yes 

 

Yes 

 

  Reagents have to be mixed in advance No No Yes 

  Room temperature (18°C to 30°C) +++ – – 

  Refrigerator temperature (2°C to 8°C) + +++ +++ 

  Sensitivity 75.0 % 53.3 % 75.0 % 

  No doubtful results ++ + +++ 

  Cut-off (in Cq-values) 25 - 26 24 – 26 24 – 26 

Test system applicable for differential diagnosis No No No 

+++ = completely agree; ++ = rather agree; + = is insufficient; – = strongly disagree; n.a. = not 

applicable; afor experienced users only 

 

Acknowledgements 

We thank the animal care takers Steffen Brenz and Matthias Jahn without whose commitment 

and support the animal experiment which was required for the present work would not have 

been possible. The authors wish to thank Christian Korthase and Kim Lea Molle for their 

excellent technical assistance in the lab. We are also grateful for the support concerning the 

sequencing of the Indian virus isolate by Dirk Höper and Claudia Schulz. 



Results 
 

47 

 

 

Conflict of Interest 

The authors declare that they have no conflict of interest. 

 

Data Availability Statement 

The data that support the findings of this study are available from the corresponding author 

upon reasonable request. 

 

References 

Abraham, G., & Berhan, A. (2001). The use of antigen-capture enzyme-linked immunosorbent 

assay (ELISA) for the diagnosis of rinderpest and peste des petits ruminants in 
ethiopia. Trop Anim Health Prod, 33(5), 423-430. doi:10.1023/a:1010547907730 

Abubakar, M., Ashiq, S., Hussain, Z., Hussain, M., Saleha, S., Arshed, M. J., & Zahoor, A. B. 

(2011). Comparison of antigen detection methods of peste des petits ruminants 
virus in clinical samples of small ruminants. Bulg. J. Vet. Med., 14(2), 103-108.  

Albina, E., Kwiatek, O., Minet, C., Lancelot, R., Servan de Almeida, R., & Libeau, G. (2013). 
Peste des Petits Ruminants, the next eradicated animal disease? Vet Microbiol, 

165(1-2), 38-44. doi:10.1016/j.vetmic.2012.12.013 

Amarasinghe, G. K., Bao, Y., Basler, C. F., Bavari, S., Beer, M., Bejerman, N., . . . Kuhn, J. H. 
(2017). Taxonomy of the order Mononegavirales: update 2017. Arch Virol, 162(8), 

2493-2504. doi:10.1007/s00705-017-3311-7 

Anderson, E. C. (1995). Morbillivirus infections in wildlife (in relation to their population 
biology and disease control in domestic animals). Vet Microbiol, 44(2-4), 319-332. 
doi:10.1016/0378-1135(95)00026-7 

Ashraf, W., Unger, H., Haris, S., Mobeen, A., Farooq, M., Asif, M., & Khan, Q. M. (2017). 

Genetic detection of peste des petits ruminants virus under field conditions: a step 
forward towards disease eradication. BMC Vet Res, 13(1), 34. doi:10.1186/s12917-

016-0940-0 

Balamurugan, V., Hemadri, D., Gajendragad, M. R., Singh, R. K., & Rahman, H. (2014). 
Diagnosis and control of peste des petits ruminants: a comprehensive review. 
Virusdisease, 25(1), 39-56. doi:10.1007/s13337-013-0188-2 

 

Balamurugan, V., Sen, A., Saravanan, P., Singh, R. P., Singh, R. K., Rasool, T. J., & 

Bandyopadhyay, S. K. (2006). One-step multiplex RT-PCR assay for the detection of 
peste des petits ruminants virus in clinical samples. Vet Res Commun, 30(6), 655-

666. doi:10.1007/s11259-006-3331-3 



Results 
 

48 

 

Balamurugan, V., Sen, A., Venkatesan, G., Bhanuprakash, V., & Singh, R. K. (2014). Protective 

immune response of live attenuated thermo-adapted peste des petits ruminants 
vaccine in goats. Virusdisease, 25(3), 350-357. doi:10.1007/s13337-014-0208-x 

Banyard, A. C., Parida, S., Batten, C., Oura, C., Kwiatek, O., & Libeau, G. (2010). Global 

distribution of peste des petits ruminants virus and prospects for improved 
diagnosis and control. J Gen Virol, 91(Pt 12), 2885-2897. doi:10.1099/vir.0.025841-
0 

Baron, J., Fishbourne, E., Couacy-Hyman, E., Abubakar, M., Jones, B. A., Frost, L., . . . Baron, M. 

D. (2014). Development and testing of a field diagnostic assay for peste des petits 
ruminants virus. Transbound Emerg Dis, 61(5), 390-396. doi:10.1111/tbed.12266 

Baron, M. D., Diallo, A., Lancelot, R., & Libeau, G. (2016). Peste des Petits Ruminants Virus. 

Adv Virus Res, 95, 1-42. doi:10.1016/bs.aivir.2016.02.001 

Baron, M. D., Diop, B., Njeumi, F., Willett, B. J., & Bailey, D. (2017). Future research to 
underpin successful peste des petits ruminants virus (PPRV) eradication. J Gen 

Virol, 98(11), 2635-2644. doi:10.1099/jgv.0.000944 

Baron, M. D., Parida, S., & Oura, C. A. (2011). Peste des petits ruminants: a suitable candidate 
for eradication? Vet Rec, 169(1), 16-21. doi:10.1136/vr.d3947 

Bataille, A., Kwiatek, O., Belfkhi, S., Mounier, L., Parida, S., Mahapatra, M., . . . Libeau, G. 
(2019). Optimization and evaluation of a non-invasive tool for peste des petits 

ruminants surveillance and control. Sci Rep, 9(1), 4742. doi:10.1038/s41598-019-
41232-y 

Couacy-Hymann, E., Bodjo, S. C., Danho, T., Koffi, M. Y., Libeau, G., & Diallo, A. (2007). Early 

detection of viral excretion from experimentally infected goats with peste-des-
petits ruminants virus. Prev Vet Med, 78(1), 85-88. 
doi:10.1016/j.prevetmed.2006.09.003 

Couacy-Hymann, E., Bodjo, S. C., Koffi, M. Y., Kouakou, C., & Danho, T. (2009). The early 

detection of peste-des-petits-ruminants (PPR) virus antigens and nucleic acid from 
experimentally infected goats using RT-PCR and immunocapture ELISA techniques. 
Res Vet Sci, 87(2), 332-335. doi:10.1016/j.rvsc.2009.03.002 

Couacy-Hymann, E., Roger, F., Hurard, C., Guillou, J. P., Libeau, G., & Diallo, A. (2002). Rapid 
and sensitive detection of peste des petits ruminants virus by a polymerase chain 
reaction assay. J Virol Methods, 100(1-2), 17-25. doi:10.1016/s0166-

0934(01)00386-x 

Diop, M., Sarr, J., & Libeau, G. (2005). Evaluation of novel diagnostic tools for peste des petits 
ruminants virus in naturally infected goat herds. Epidemiol Infect, 133(4), 711-717. 
doi:10.1017/s0950268805003729 

Eloiflin, R. J., Boyer, M., Kwiatek, O., Guendouz, S., Loire, E., Servan de Almeida, R., . . . 
Bataille, A. (2019). Evolution of Attenuation and Risk of Reversal in Peste des Petits 
Ruminants Vaccine Strain Nigeria 75/1. Viruses, 11(8). doi:10.3390/v11080724 



Results 
 

49 

 

  

Ferris, N. P., Nordengrahn, A., Hutchings, G. H., Reid, S. M., King, D. P., Ebert, K., . . . Merza, M. 
(2009). Development and laboratory validation of a lateral flow device for the 

detection of foot-and-mouth disease virus in clinical samples. J Virol Methods, 

155(1), 10-17. doi:10.1016/j.jviromet.2008.09.009 

Howson, E. L. A., Soldan, A., Webster, K., Beer, M., Zientara, S., Belak, S., . . . Fowler, V. L. 
(2017). Technological advances in veterinary diagnostics: opportunities to deploy 

rapid decentralised tests to detect pathogens affecting livestock. Rev Sci Tech, 

36(2), 479-498. doi:10.20506/rst.36.2.2668 

ID.Vet. (2019a). ID Rapid® PPR Antigen. Retrieved from https://www.id-vet.com/produit/id-

rapid-ppr-antigen/ 

ID.Vet. (2019b). ID Screen® PPR Antigen Capture. Retrieved from https://www.id-
vet.com/produit/id-screen-ppr-antigen-capture/ 

Jones, B. A., Mahapatra, M., Chubwa, C., Clarke, B., Batten, C., Hicks, H., . . . Parida, S. (2020). 
Characterisation of Peste Des Petits Ruminants Disease in Pastoralist Flocks in 

Ngorongoro District of Northern Tanzania and Bluetongue Virus Co-Infection. 
Viruses, 12(4). doi:10.3390/v12040389 

Jones, B. A., Rich, K. M., Mariner, J. C., Anderson, J., Jeggo, M., Thevasagayam, S., . . . Roeder, 

P. (2016). The Economic Impact of Eradicating Peste des Petits Ruminants: A 
Benefit-Cost Analysis. PLoS One, 11(2), e0149982. 
doi:10.1371/journal.pone.0149982 

Kumar, N., Barua, S., Riyesh, T., Chaubey, K. K., Rawat, K. D., Khandelwal, N., . . . Tripathi, B. N. 

(2016). Complexities in Isolation and Purification of Multiple Viruses from Mixed 
Viral Infections: Viral Interference, Persistence and Exclusion. PLoS One, 11(5), 

e0156110. doi:10.1371/journal.pone.0156110 

Kumar, N., Maherchandani, S., Kashyap, S. K., Singh, S. V., Sharma, S., Chaubey, K. K., & Ly, H. 
(2014). Peste des petits ruminants virus infection of small ruminants: a 
comprehensive review. Viruses, 6(6), 2287-2327. doi:10.3390/v6062287 

Li, Y., Li, L., Fan, X., Zou, Y., Zhang, Y., Wang, Q., . . . Wang, Z. (2018). Development of real-time 

reverse transcription recombinase polymerase amplification (RPA) for rapid 
detection of peste des petits ruminants virus in clinical samples and its comparison 

with real-time PCR test. Sci Rep, 8(1), 17760. doi:10.1038/s41598-018-35636-5 

Libeau, G., Diallo, A., & Parida, S. (2014). Evolutionary genetics underlying the spread of peste 
des petits ruminants virus. Animal Frontiers, 4(1), 14-20.  

Mahapatra, M., Howson, E., Fowler, V., Batten, C., Flannery, J., Selvaraj, M., & Parida, S. 
(2019). Rapid Detection of Peste des Petits Ruminants Virus (PPRV) Nucleic Acid 

Using a Novel Low-Cost Reverse Transcription Loop-Mediated Isothermal 
Amplification (RT-LAMP) Assay for Future Use in Nascent PPR Eradication 

Programme. Viruses, 11(8). doi:10.3390/v11080699 



Results 
 

50 

 

OIE. (2019). Chapter 3.7.9. Peste des petits ruminants (infection with peste des petits 

ruminants virus). In OIE (Ed.), OIE Terrestrial Manual 2019 (pp. 1-16): Paris: OIE. 

Parida, S., Muniraju, M., Mahapatra, M., Muthuchelvan, D., Buczkowski, H., & Banyard, A. C. 
(2015). Peste des petits ruminants. Vet Microbiol, 181(1-2), 90-106. 

doi:10.1016/j.vetmic.2015.08.009 

Parida, S., Selvaraj, M., Gubbins, S., Pope, R., Banyard, A., & Mahapatra, M. (2019). 
Quantifying Levels of Peste Des Petits Ruminants (PPR) Virus in Excretions from 
Experimentally Infected Goats and Its Importance for Nascent PPR Eradication 

Programme. Viruses, 11(3). doi:10.3390/v11030249 

Parikh, R., Mathai, A., Parikh, S., Chandra Sekhar, G., & Thomas, R. (2008). Understanding and 
using sensitivity, specificity and predictive values. Indian J Ophthalmol, 56(1), 45-

50. doi:10.4103/0301-4738.37595 

Polci, A., Cosseddu, G. M., Ancora, M., Pinoni, C., El Harrak, M., Sebhatu, T. T., . . . Monaco, F. 
(2015). Development and Preliminary Evaluation of a New Real-Time RT-PCR Assay 
For Detection of Peste des petits Ruminants Virus Genome. Transbound Emerg Dis, 

62(3), 332-338. doi:10.1111/tbed.12117 

Pope, R. A., Parida, S., Bailey, D., Brownlie, J., Barrett, T., & Banyard, A. C. (2013). Early events 
following experimental infection with Peste-Des-Petits ruminants virus suggest 

immune cell targeting. PLoS One, 8(2), e55830. doi:10.1371/journal.pone.0055830 

Santhamani, R., Singh, R. P., & Njeumi, F. (2016). Peste des petits ruminants diagnosis and 
diagnostic tools at a glance: perspectives on global control and eradication. Arch 

Virol, 161(11), 2953-2967. doi:10.1007/s00705-016-3009-2 

Wernike, K., Eschbaumer, M., Breithaupt, A., Maltzan, J., Wiesner, H., Beer, M., & Hoffmann, 
B. (2014). Experimental infection of sheep and goats with a recent isolate of peste 
des petits ruminants virus from Kurdistan. Vet Microbiol, 172(1-2), 140-145. 

doi:10.1016/j.vetmic.2014.05.010 

 

 

 

 

 

 

 



Discussion 
 

51 

 

V DISCUSSION 

 

Various degrees in the clinical manifestation of different PPRV isolates 

Only one serotype is known for each representative of the genus morbillivirus, however, PPRV 

is further classified into four distinct genetic lineages. Phylogenetic data revealed that 

lineage IV is currently the most abundant cluster of PPRV (Parida et al., 2016), containing also 

the two isolates we examined here in our studies.  

The clinical signs we observed in goats of German breed were contrary to the ones described 

in the associated outbreaks, and between the two isolates available for our studies. Originally, 

the India isolate (strain: SMRV/IND/2013/V242.5/Shahjadpur; accession number in GenBank: 

MN369543) was involved in mixed infections of FMDV and PPRV in goats in the Indian region 

Shahjadpur with clinical signs such as high fever, lesions in the oral cavity, nasal and oral 

discharge, dyspnoea, diarrhoea and a mortality rate of 52 % (Kumar et al., 2016). Contrary, the 

UAE isolate (strain: SMRV/UAE/2018/V135/Dubai; accession number in GenBank: MN369542) 

originally affected mountain gazelles (Gazella gazella). In August 2018, more than 5000 gazelles 

died while the small ruminants of the vicinity showed less indication concerning a PPRV 

infection.  

In our pathogenesis studies, four goats per group were infected intranasally with these two 

PPRV isolates. The goats of the India group showed only slight clinical signs including high 

temperature for three days in one goat and mild nasal discharges in two other goats. In the 

UAE group, all animals developed pyrexia for 4 to 6 days accompanied by inactivity, depression 

and loss of appetite. All goats showed watery to mucosal-purulent nasal discharges and severe 

watery diarrhoea. According to the severe clinical signs, two goats were removed from the UAE 

group. The goats of both groups were seropositive from 10 dpi on up to the end of the 

experiment (33 dpi). In conclusion, the goats of the India group underwent a subclinical 

infection while the goats infected with the UAE isolate showed an acute PPRV infection. In 

addition, a defined panel of organ samples (lung, liver, spleen, mesenteric and mediastinal 

lymph nodes) was examined with respect to the RNA loads. As expected, the mesenteric lymph 

nodes of all eight goats were enlarged and positive for PPRV-RNA. Besides, positive results were 

also obtained in the spleen and the mediastinal lymph nodes for both goats of the UAE group 
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that completely recovered from infection. Furthermore, both goats of the UAE group that had 

to be removed were RNA-positive in all organ samples taken. 

Up to now, several animal trials were carried out studying the pathogenesis of different PPRV 

isolates (Côte d’Ivoire ´89 (LI); Bissau Guinea (LI); Guinea Conakry (LI); Ghana/78 (LII); Nigeria 

75/1 (LII); Sudan Senner (LIII); India Calcutta (LIV); Kurdistan/2011 (LIV); Morocco/2008 (LIV) 

for instance). All studies aimed to investigate several aspects such as the degree in clinical 

manifestation, incubation periods, mean survival times, date of death, mortality rates, virus 

shedding in various sample materials, viral RNA loads in different tissues and virulence factors, 

respectively (Couacy-Hymann et al., 2007a; Enchery et al., 2019; Parida et al., 2019; Pope et al., 

2013; Wernike et al., 2014). The spectrum of clinical signs that was stated in our goats of 

German breed coincide with those signs described for PPR disease in outbreaks as well as in 

animal infection studies (Diop et al., 2005; Enchery et al., 2019; Hammouchi et al., 2012; Pope 

et al., 2013; Wasee Ullah et al., 2016; Wernike et al., 2014). 

The first clinical sign observed in our goats was an increase in body temperature and appeared 

2 to 4 dpi. Nasal discharges started on 7 to 10 dpi and the alteration of fecal consistency on 5 

to 9 dpi. Couacy-Hymann and co-authors approved our findings when investigating six different 

PPRV isolates (Côte d’Ivoire/89; Guinea Conakry; Bissau Guinea; Nigeria 75/1; Sudan Sennar; 

India Calcutta) in goats. Initially, their goats developed also pyrexia on 2 to 5 dpi. As in our 

studies, further clinical signs appeared after the increase of body temperature, namely nasal 

discharges on 4 to 7 dpi and diarrhoea on 4 to 9 dpi (Couacy-Hymann et al., 2007a). 

In our India group, all animals survived until the end of the study while in the UAE group two 

goats had to be removed on 10 dpi and the other two recovered from an acute PPRV infection 

until the end of the pathogenesis study. Considering the results from Couacy-Hymann and co-

authors, the date of death varies from 7 to 12 dpi and the mean survival time is indicated with 

9 to 10.2 days (Couacy-Hymann et al., 2007a) while seven out of 30 goats (23.3 %) recovered 

from the infection. Comparing these data with the results of Wernike and co-authors examining 

the PPRV isolate Kurdistan/2011 (LIV), the day of removal for all three inoculated goats were 

between 7 to 12 dpi confirming the afore mentioned analyses (Wernike et al., 2014). Besides, 

Couacy-Hymann and co-authors reported mortality rates ranging from 0 % (Nigeria 75/1) to 

100 % depending on the lineage of the PPRV isolate used.  
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The results obtained from our pathogenesis studies with two different PPRV isolates showed a 

varying degree in the clinical manifestation in goats of German breed while all animals became 

seropositive. Thus, the results indicate an influence of breed (e.g. regional versus German 

breeds) and host species (e.g. gazelles versus goats) on the virulence of PPRV isolates. 

Furthermore, the immune status of regional breeds e.g. due to vaccination or the endemic 

situation has to be taken in consideration. 

Besides those factors, both isolates were also processed differently. In fact, the Indian isolate 

was passaged 24 times in co-cultured BHK21/ Vero cells, Vero cells and VDS, respectively and 

the UAE isolate was passaged 11 times on VDS. These findings might also indicate an influence 

of in vitro virus processing (number of passages, types of cell lines used) which could result in 

attenuation of viral strains and hence leading to different clinical manifestations in the animals 

as it was already described by Enchery et al., 2019. 

The selection and also a more detailed description of the animals used for infection studies 

should receive more attention with regard to age, gender and breed of the animals, since the 

information related to this properties are not always available (Bataille et al., 2019; Couacy-

Hymann et al., 2007a; Wernike et al., 2014). Especially, the influencing factor of regional breeds 

is often described in the context of PPRV infections (Couacy-Hymann et al., 2007a; Diop et al., 

2005; Enchery et al., 2019) and is, as in our study, often a matter of discussion when clinical 

signs in experimentally infected goats differ from the signs observed in the originally affected 

animals during an outbreak. Thus, comparative pathogenesis studies of different breeds (e.g. 

German versus African breeds) can strengthen these hypotheses. In this context, also the 

immunological status of PPRV-infected goats is of great interest. 

As shown by Parida et al. 2019, goats that were infected with two different PPRV isolates of 

lineage II (Ghana/78) and IV (Morocco/2008), respectively, showed e.g. a depression in white 

blood cells during the course of an infection suggesting that the immunological status should 

be given more consideration for further studies with PPRV-infected animals. In addition, a case 

report provides first indications of a differing susceptibility of female in contrast to male 

animals and also a varying degree in clinical manifestation regarding the age of the goats 

affected (Soundararajan et al., 2006). 
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For an extended knowledge concerning the pathogenesis and epidemiological interaction of 

PPRV in wildlife (particularly suidae, bovinae, camelidae), future studies should target even a 

wider range of host species (Rahman et al., 2020). Profound epidemiological data are also 

necessary to assess the relevance of wildlife species. In particular, the transmission dynamics 

on the interface between wildlife and livestock, maintenance of PPRV in wildlife without 

domestic hosts, and retransfer to livestock is not clearly understood, but more detailed 

knowledge is necessary to control the disease effectively (Bataille et al., 2019; Fine et al., 2020). 

Concerning the global eradication campaign, launched by the OIE and the FAO, wildlife 

populations have to be included in the implementation of control and surveillance strategies 

(Couacy-Hymann et al., 2005). Moreover, a profound knowledge on all susceptible hosts 

(domestic and wild species) and the availability of reliable detection tools for both domestic 

and wildlife species that are suitable for control programmes and sero-surveillance should be 

strived (Fine et al., 2020). 

 

Evaluation of various sample materials with regard to the level of virus excretion in the course 

of an infection with PPRV 

In our in vivo studies, EDTA blood, ocular, nasal, mouth and faecal swabs were investigated 

according to their viral loads in terms of nucleic acid and antigen content in order to determine 

the most appropriate sample matrices for diagnostic purposes in the field. As shown in our 

studies, RNA loads vary depending on the sample material selected. According to the various 

degrees of clinical manifestations in both goat groups, our tests also stated a varying amount 

of viral shedding between subclinically and acutely infected goats. Hence, the samples of the 

UAE group contained high viral loads (high-loaded) and the samples of the India group in 

contrast low viral loads (low-loaded). This range of viral loads allowed the generation of very 

valuable reference material panels with different antigen, virus and genome loads. 

Assessing our results, the highest amounts of PPRV RNA loads were detected in ocular and nasal 

swabs compared to EDTA blood, oral and faecal swabs. Both, eye and nasal swabs were PCR-

positive for a long period in the course of the experimental infection. The RNA detection 

window for high-loaded nasal and ocular swabs is set between 3 to 28 dpi. In contrast, for low-
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loaded sample materials, the detection window is much narrower as it ranges between 3 to 12 

dpi for nasal and ocular swabs.  

Summarizing our diagnostic validation results, nasal swabs are the sampling material of choice 

for a reliable diagnosis of PPRV based on either antigen or molecular detection. It remains to 

be considered that a correct molecular diagnosis of acutely infected animals is feasible within 

the detection window, also when EDTA blood, ocular, mouth or faecal swabs are used. 

However, during the incubation period of acutely diseased animals, RNA detection is already 

feasible before the first clinical signs appear, thus being a “diagnostic time window” in naturally 

infected animals that can be overlooked (Couacy-Hymann et al., 2007b). In contrast, the RNA 

detection in the low-loaded samples is intermittent, especially from EDTA blood, oral and fecal 

swabs, and the detection window is much smaller complicating a correct and timely diagnosis. 

Overall, the reliable molecular detection of PPRV of subclinically infected animals remains 

challenging because these animals are not clinically diseased and diagnostic samples as well as 

the time point of sampling has to be chosen very carefully. Otherwise, reliable PPRV diagnosis 

of subclinically infected animals could also be expanded by the additional detection of 

antibodies. 

Parida and co-authors recommend the sampling of nasals swabs or paired sample analysis 

consisting of nasal samples and EDTA blood for the molecular diagnosis of PPRV (Parida et al., 

2019). The results that were obtained in my study confirmed also nasal swabs as the sample 

material of choice for the detection of PPRV genomes. Nevertheless, according to our results, 

there is no evidence that EDTA blood is the most appropriate sample material which is also 

consistent with the data published by Enchery and co-authors (Enchery et al., 2019). In the 

latter reference, PPRV RNA amounts were higher in ocular swabs than in EDTA blood inducing 

the authors to recommend also ocular swabs for the detection of PPRV RNA. In addition, 

Couacy-Hymann and co-authors stated that ocular swabs are slightly more sensitive than nasal 

swabs (Couacy-Hymann et al., 2009) which is in contrast to the results we obtained and should 

be therefore investigated in more detail in future studies. 

In comparison to the real-time RT-PCR-based RNA detection, the same panel of samples was 

also tested with a commercially available antigen ELISA (ID Screen® PPR Antigen Capture). The 

detection window for the antigen detection of high-loaded samples was stated between 3 to 

14 dpi for nasal swabs and between 5 to 10 dpi for ocular swabs. In comparison to the data 
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based on RT-qPCR, the detection window for antigen detection must be defined more narrowly, 

thus restricting the PPRV diagnosis based on the antigen ELISA. Notably, a direct correlation 

between RNA loads and the OD values of the antigen ELISA could not be observed. 

Nevertheless, antigen detection methods can be justified as POC testing, considering the use 

of LFDs on the pen-side for livestock or for testing wildlife animals directly in the field that 

enables an advanced diagnosis of strong positive samples (see below). 

The results of diagnostic test systems are influenced not only by the kind of sample material 

itself but also by the conditions of the sample materials used (freshness at the time of 

examination, storage conditions, transport under adequate conditions, decomposed material). 

For the detection of PPRV, fresh material is strictly recommended to ensure a good quality of 

viral RNA (Bataille et al., 2019; Borsanyiova et al., 2018; Howson et al., 2018), and because of 

the rapid inactivation of PPRV in the environment (Cameron, 2019; Kumar et al., 2014; 

Mahapatra et al., 2019) and in dead animals (Couacy-Hymann et al., 2007b). Besides, several 

attempts were made to ensure the quality of the sample materials even when handled under 

unfavourable transport and storage conditions such as to use alternative transport materials 

(filter paper cards so-called FTA® cards or LFDs), the usage of stabilizing buffer systems or viral 

recovery devices based on the drying of liquid sample materials under ambient temperatures 

(Barr et al., 2013; Fowler et al., 2014; Sakai et al., 2015). Otherwise, a cooling chain for the 

storage of fresh samples has to be guaranteed if the samples cannot be investigated 

immediately. But multiple freeze-thawing processes in the laboratory can also hamper the 

quality of samples and the yield of viral RNA (Couacy-Hymann et al., 2007a). 

Moreover, the results of the faecal swabs should be considered separately regarding their 

opportunity to adapt the sampling method to a non-invasive tool and thus, simplify the 

sampling of wildlife species or large flocks (Bataille et al., 2019; Wasee Ullah et al., 2016). For 

the collection of faecal samples neither capturing nor the handling of the target species is 

needed. However, faecal samples contain inhibitor substances that influence the results of PCR 

and ELISA assays negatively (Bataille et al., 2019; Wilde, Eiden, and Yolken, 1990). Indeed, in 

our studies faecal swabs showed lower PPRV genome loads compared to nasal and mouth 

swabs. For high-loaded samples, RNA detection was continuously feasible from 3 to 28 dpi 

while for low-loaded samples, the RNA in faecal swabs was detected intermittently between 5 

to 17 dpi. Compared to recent studies of Bataille and co-authors, the diagnostic window for the 

detection of PPRV genomes in faecal swabs was limited to 5 - 14 dpi (Bataille et al., 2019). Our 
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studies confirm those data and show that PPRV genomes can be detected up to 28 dpi in acutely 

diseased animals in these sample materials. Besides, Bataille and co-authors also examined 

faecal material with an antigen ELISA indicating a detection window lasting from 7 up to 14 dpi 

and an intermittent positive antigen detection in the later stages of an infection. 

Furthermore, efforts are also made to detect PPRV specific antibodies in faecal samples 

(Bataille et al., 2019), but additional studies are needed to optimize the protocols for antibody 

detection in faecal samples. In conclusion, the results indicate that faecal materials are a 

justifiable sampling material for genome detection in acutely diseased animals with sufficient 

virus replication and shedding. Moreover, in subclinically infected animals, the protocols 

focussing on testing faecal material (nucleic acids, antigen or antibodies) should be further 

adapted or results should be confirmed by additional diagnostic tools. 

Another possibility to bypass the handling of animals for diagnostic purposes and an 

opportunity to carry out herd-wise investigations are bulk milk samples. First evidence is 

provided that female goats excrete PPRV in milk (Clarke et al., 2018). Further reliable data are 

needed concerning the start point and duration of viral excretion in milk, amounts of virus 

shedding in the course of an infection, and suitable detection targets (virus, antigens, nucleic 

acids, antibodies). Besides, it has to be verified whether diagnostic detection methods can be 

adapted to the sample matrix milk in terms of diagnostic performance (Reid et al., 2006). Due 

to the non-invasive and simple sampling of milk, screening programmes using bulk milk samples 

have been implemented for further viruses (Drew, Yapp, and Paton, 1999; Reid et al., 2006). 

Bulk milk sampling should be considered for PPRV surveillance, thus the proof of its feasibility 

has to be done in future studies. In this context, milk as infection route for offspring and also 

between animals was discussed (Clarke et al., 2018), but the protection of offspring via 

colostrum uptake after the birth should also considered (Balamurugan et al., 2012b; Diallo, 

2006). 

Considering the outcome of our studies, the different diagnostic requirements for acute and 

subclinically diseased animals were precisely pointed out and thus, deliver valuable upgrades 

according to previously studies which are also focusing on optimal sampling strategies and 

sampling time points. For reliable PPRV diagnosis based on molecular detection, some well-

suited methods of sampling are available, such as the use of ocular and nasal swabs (Enchery 

et al., 2019; Parida et al., 2019). As confirmed in our studies, nasal swabs are the sample 



Discussion 
 

58 

 

material of choice in terms of RNA detection, providing reliable results in acutely diseased 

animals. However, in subclinically diseased animals, some diagnostic restrictions have to be 

accepted. Regarding the sampling, swabs are less invasive than the collection of blood or serum 

(Parida et al., 2019), but the animals must be caught and manipulated to get this sample 

material as well. Further options that overcome the drawbacks of manipulating animals for 

diagnostic procedures are the collection of faecal samples and the use of bulk milk samples. 

Both faecal and milk samples are more elaborate in sample preparing regarding the selection 

of extraction methods and the adaption of PCR and ELISA assays (Bataille et al., 2019; Reid et 

al., 2006). Thus, comparative studies should be conducted in the future that weigh up various 

forms of non-invasive sampling (e.g. faecal versus milk samples) in terms of their diagnostic 

performance (sensitivity, specificity, reliability, detection window) and their practical benefit 

(duration, financial effort, workload) for POC diagnosis or surveillance programmes. The type 

of detection bodies should also be considered when assessing diagnostic methods, because 

RNA loads in samples are assumed to be correlated with the shedding of virus (Couacy-Hymann 

et al., 2009). Indeed the positive proof of RNA is not necessarily accompanied with the excretion 

of infectious virus, especially in the later stages of an infection (Enchery et al., 2019). 

 

Development, optimization and validation of PPRV-rapid tests according to their diagnostic 

performance and their suitability for pen-side/point-of-care diagnostics 

Several antigen detection methods were comparatively evaluated according to their diagnostic 

performance as well as to their features for diagnostic testing in the field. For the antigen 

detection of PPRV, two LFD test kits (ID Rapid® PPR Antigen from IDvet, and the PESTE-Test 

from Lillydale) and one ELISA (ID Screen® PPR Antigen Capture) are commercially available. As 

ocular and nasal swabs are a less invasive sampling method, containing also the highest 

amounts of PPRV genomes, the three antigen detection methods were tested with a panel of 

ocular and nasal swabs collected from our pathogenesis studies. Faecal samples were tested 

with the ID Rapid only. 

Best results in terms of diagnostic sensitivity were demonstrated for both the antigen ELISA 

and the ID Rapid LFD. For both tests, the sensitivity determined with the ocular and nasal swabs 

was 75 %. In contrast, the PESTE-Test achieved a markedly lower sensitivity of 53.3 %. In 
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addition, the faecal samples (33.3 %) were less sensitive than the preferred ocular or nasal 

swabs (75 %) in their application for the ID Rapid. The specificity for all diagnostic tests and all 

sample materials was 100 %. Concerning their diagnostic reliability in general, LFDs exhibit a 

good specificity but are less sensitive (Mashayekhi et al., 2010; Tang et al., 2016; Zhang et al., 

2019) which was confirmed and specified by the results of my thesis. 

Previous references also indicate that the sensitivity of antigen LFDs for further human and 

animal viruses range from 64 % to 94.6 %, while the specificity of the same LFDs is in most cases 

more than 97 % (Ferris et al., 2012; Ferris et al., 2010a; Ferris et al., 2010b; Ferris et al., 2009; 

Jiang et al., 2011; Sambandam et al., 2017; Yang et al., 2019; Zhang et al., 2019). 

In agreement with previous references, LFDs perform in a reliable matter in terms of samples 

containing high amounts of the virus (Howson et al., 2017). These findings indicate that positive 

results delivered by those LFD-based antigen assays are reliable, but negative results have to 

be treated with caution and should be confirmed with more sensitive methods. However, our 

studies also demonstrated that antigen LFDs exhibit a comparable sensitivity compared to 

antigen ELISAs which is in line with findings of Howson et al., 2017b. Moreover, the LFDs 

delivered results within only 30 minutes while the antigen ELISA required a quadruple of time. 

LFDs are rapid, easy-to-use, small-sized and portable diagnostic tools and thus, being a relevant 

option for pen-side/POC diagnostics. An additional benefit to facilitate the application in the 

field is the storage possibility of several LFD kits at room temperature. Considering all strengths 

and weaknesses of LFDs, they are suitable as diagnostic pre-tests in acutely diseased animals 

delivering results in a short time and thus, providing first decision-making aids on the POC. In 

conclusion, a reasonable combination out of upstreamed, cost-extensive LFDs and 

downstreamed, rapid molecular diagnostic methods are a feasible diagnostic option for 

extensive investigations in the field. 

Considering the pros and cons of the commercially available POC diagnostic tools for PPRV 

described above, a further study (data are currently under submission) has focused on the 

development of a field-ready molecular diagnostic test for PPRV aiming to optimize the POC 

tests in resource-limited settings (sensitive, specific, user-friendly, time-saving, portable). The 

idea of the new RT-qPCR test system focuses on the simultaneous detection of PPRV and 

further pathogens of field samples in less than one hour including all work steps from the 

sample preparation to the result. The design of the fast molecular test is created as rapid 
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extraction plus a high-speed RT-qPCR approach detecting five pathogens (PPRV, FMDV, 

parapoxvirus ovis, GTPV, Mccp) in parallel. The high-speed RT-qPCR approach lasts only around 

35 minutes indicating a good turnaround time for a nucleic acid detection tool and the fast RNA 

nucleic extraction lasts approximately seven minutes. The design as modular test system 

simplifies the adaptation towards changing conditions in the field (anamnesis, suspected 

diagnosis, the endemic situation), client requests (diagnosis of a single herd, outbreak 

investigations, epidemiological purposes) or individual requirements (number of samples, 

differential diagnosis aimed, selection of internal controls) as well as easing the integration of 

internal controls. For simplifying the new test system as much as possible, mouth swabs are 

preferred and the test was implemented with a lyophilized PCR kit, thus being portable at 

ambient temperature. For the use at the POC, a “mobile laboratory” consisting of a robust 

extraction platform and a portable RT-qPCR cycler have to be implemented. As mentioned 

above, a combination of the simple and cheap LFDs and the new molecular POC test system 

seems feasible and will further optimize the possibilities for PPRV diagnostics. Finally, the 

reference sample panel described in my study will help to optimize and validate future test 

systems, such as these molecular POC test systems. 
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VI SUMMARY 

 

Peste des petits ruminants (PPR) is a highly contagious disease that is increasingly spreading 

across the African and Asian continent and has recently crossed the European borders. Main 

hosts are small ruminants but there is a plenty of references according to which the potentially 

susceptible host species have to be expanded. Concerning the elimination of this disease up to 

2030, strived by FAO and OIE, reliable diagnostic tools, improved vaccines and a better 

knowledge about the disease are necessary. In this context, the here reported study aimed to 

characterize various PPR virus (PPRV) isolates in vivo and to improve diagnostic tools detecting 

PPRV in a rapid and reliable way, ready-to-use in the field. Therefore, groups of four goats of 

German breed were intranasally infected with two distinct PPRV isolates. One PPRV strain was 

originally isolated from goats showing clinical signs of a mixed infection of PPRV and FMDV in 

the Indian region Shahjadpur (“India isolate”; strain: SMRV/IND/2013/V242.5/Shahjadpur; 

accession number in GenBank: MN369543). The other PPRV isolate was involved in a severe 

outbreak near Dubai, UAE, causing high mortalities in mountain gazelles (“UAE isolate”; strain: 

SMRV/UAE/2018/V135/Dubai; accession number in GenBank: MN369542). The so-called “India 

isolate” caused mild symptoms in our goats of German breed while the goats infected with the 

“UAE isolate” showed severe clinical signs of a PPRV infection (e.g. pyrexia, deterioration of the 

general condition, mucosal-purulent nasal discharge, watery diarrhea). All animals were tested 

positive for antibodies against PPRV. While the goats of the India group underwent a subclinical 

infection, the goats of the UAE group developed a severe acute disease. Thus, the collection of 

samples containing low and high viral loads depending on the course of an infection in the goats 

was possible, and the sample panel was used to select the most suitable sample matrices for 

PPRV detection. Several sample materials (EDTA blood, ocular, nasal, mouth and fecal swabs) 

were collected and tested for their amounts of viral RNA by a PPRV-specific RT-qPCR. The 

highest amounts of PPRV genomes were detected in nasal swabs followed by mouth swabs 

suggesting both matrices as suitable sample materials for diagnostic purposes. In addition, 

three antigen detection methods were evaluated regarding their diagnostic reliability and 

suitability for pen-side/point-of-care (POC) testing. For this purpose, we analysed one antigen 

ELISA (ID Screen® PPR Antigen Capture from IDvet) and two assays based on the lateral flow 

device (LFD) technology (ID Rapid® PPR Antigen from IDvet, and PESTE-Test from Lillydale). 
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Generally, nasal and mouth swabs showed better results in their diagnostic performance 

compared to fecal samples. The antigen ELISA and the LFD-ID Rapid performed best in our 

studies, each with a sensitivity of 75.0 %. In contrast, the PESTE-Test achieved a sensitivity of 

only 53.3 %. Concerning the practical point of view, the tested LFDs delivered results within 

30 minutes towards less than two hours for the antigen ELISA. The LFDs are also very simple in 

their handling and need no further laboratory equipment. Another strength of the ID Rapid is 

e.g. its storage capability at room temperature that considerably simplifies its diagnostic use in 

the field (especially in African or Asian countries). 

Depending on the individual requirements, either for routine diagnostics, comprehensive 

epidemiology studies or for POC diagnostics during an outbreak, different rapid test systems 

are available for the detection of PPRV, some of which have been tested comparatively in our 

studies. In terms of laboratory equipment, user skills, diagnostic performance requirements 

(sensitivities, specificities, time requirements), clinical course of infection in the animal 

(expected low-load versus high load samples), and individual objectives, the tests validated in 

our study have their value for the detection of PPRV. Nevertheless, the results presented here 

should be mainly understood as decision support for the end user in choosing the appropriate 

diagnostic test. And the reference sample panel described in my study will help to optimize and 

validate future test systems, such as molecular POC test systems. 
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VII ZUSAMMENFASSUNG 

 

Die Pest der kleinen Wiederkäuer (PPR) ist eine hochkontagiöse Erkrankung, die sich 

zunehmend über den afrikanischen und asiatischen Kontinent ausgebreitet und nun auch die 

europäischen Grenzen übersprungen hat. Die Hauptwirte sind kleine Wiederkäuer, jedoch gibt 

es eine Vielzahl von wissenschaftlichen Abhandlungen, nach denen die potentiell 

empfänglichen Wirtstiere erweitert werden sollten. In Bezug auf die Eradikation der 

Erkrankung im Jahr 2030, die seitens der FAO und OIE angestrebt wird, sind verlässliche 

diagnostische Methoden ebenso wie sichere Impfstoffe sowie ein besseres Verständnis zur 

Erkrankung erforderlich. Vor diesem Hintergrund war meine Arbeit darauf ausgerichtet, 

Pathogenesestudien mit verschiedenen PPR Virusisolaten durchzuführen und Diagnostiktools 

für eine schnelle sowie verlässliche Detektion von PPR-Viren (PPRV) im Feld zu testen und zu 

verbessern. Pro Gruppe wurden vier Ziegen deutscher Herkunft intranasal mit zwei 

verschiedenen PPRV-Isolaten infiziert. Einer dieser PPRV-Stämme (“India Isolat”; Stamm 

SMRV/IND/2013/V242.5/Shahjadpur) wurde ursprünglich aus Ziegen der indischen Region 

Shahjadpur isoliert, welche klinische Symptome zeigten, während das andere PPRV-Isolat 

(“UAE Isolat”; Stamm SMRV/UAE/2018/V135/Dubai) einen schweren Ausbruch mit hohen 

Mortalitäten in Echtgazellen (Gazelle gazella) nahe Dubai, UAE, verursachte. Das so gennannte 

„India Isolat“ verursachte in den Ziegen deutscher Herkunft milde Symptome, während die 

Ziegen, die mit dem „UAE Isolat“ infiziert wurden, schwere klinische Symptome einer PPRV-

Infektion (hohes Fieber, Verschlechterung des Allgemeinzustandes, muco-purulenter 

Nasenausfluss, wässriger Durchfall) zeigten. Alle Tiere wurden positiv auf Antikörper gegen 

PPRV getestet. Die Ziegen der Indien-Gruppe zeigten einen subklinischen Krankheitsverlauf, 

während die Ziegen der UAE Gruppe eine akute Infektion zeigten. Somit war die Probennahme 

von Materialien mit niedrigem und hohen Viruslasten in Abhängigkeit von den 

unterschiedlichen Infektionsverläufen in den Ziegen möglich, was für die Auswahl des am 

besten geeigneten Probenmaterials für die Detektion von PPRV genutzt wurde. Es wurden 

unterschiedliche Probenmaterialien (EDTA-Blut, Augen-, Nasen-, Maul- und Kottupfer) auf 

ihren Gehalt an PPRV-Genomen getestet, die mittels PPRV-spezifischer RT-qPCR detektiert 

wurden. Der höchste Gehalt an Nukleinsäure des PPRV wurde in Nasentupfern gefolgt von 

Maultupfern detektiert, sodass beide Matrizes als geeignete Probenmaterialien für die PPRV-
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Diagnostik anzusehen sind. Im Weiteren wurden drei Antigennachweismethoden hinsichtlich 

ihrer diagnostischen Verlässlichkeit und ihrer Eignung als Pen-Side Test evaluiert. Für diesen 

Zweck standen ein Antigen-ELISA (ID Screen® PPR Antigen Capture) und zwei Lateral Flow 

Device (LFD) Systeme (ID Rapid® PPR Antigen und PESTE-Test) zur Verfügung. 

Erwartungsgemäß zeigten die Nasen- und Maultupfer in den drei Antigen-Testsystemen 

bessere Ergebnisse als die im Vergleich analysierten Kottupfer. Die beiden IDvet-Testsysteme 

(Antigen-ELISA und LFD-ID Rapid) schnitten in unseren Studien mit einer Sensitivität von jeweils 

75,0 % für alle untersuchten Proben am besten ab. Der LFD von Lillydale (PESTE-Test) erreichte 

hingegen nur eine Sensitivität von 53,3 %. Aus praktischer Sicht, lieferten die LFDs Ergebnisse 

bereits in weniger als 30 Minuten gegenüber etwa 2 Stunden für den Antigen-ELISA. Die LFDs 

sind zudem sehr einfach in der Handhabung und benötigen keine weitere Laborausstattung. 

Eine weitere Stärke einiger LFDs ist ihre Lagerfähigkeit bei Raumtemperatur, die den 

diagnostischen Einsatz im Feld (besonders in afrikanischen oder asiatischen Ländern) erheblich 

erleichtert.  

In Abhängigkeit von den individuellen Anforderungen, entweder für die Routine-Diagnostik, 

umfangreiche Epidemiologiestudien oder für die POC-Diagnostik während eines 

Ausbruchgeschehens, stehen verschiedene Schnelltestsysteme für die Detektion von PPRV zur 

Verfügung, wovon einige in unseren Studien vergleichend getestet worden. In Bezug auf die 

Laborausstattung, Fähigkeiten der Anwender, Anforderungen an die diagnostische 

Leistungsfähigkeit (Sensitivitäten, Spezifitäten, Zeitansprüche), klinischer Verlauf der Infektion 

im Tier (zu erwartende geringlastige versus hochlastige Proben) und die individuellen 

Zielsetzungen haben die in unseren Studien validierten Tests ihren Nutzen für die Detektion 

von PPRV. Die hier dargelegten Ergebnisse sollen dabei als Entscheidungshilfe für den 

Endanwender bei der Auswahl des für ihn passenden diagnostischen Tests verstanden werden. 

Und das hier beschriebene Referenzproben-Panel wird dazu beitragen, zukünftige 

Testsysteme, wie z.B. molekulare POC-Testsysteme, zu optimieren und zu validieren. 
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SUPPLEMENT 

 

1 List of abbreviations 

AGID    Agar gel immunodiffusion 

B-ELISA    Blocking ELISA 

C-ELISA    Competitive ELISA 

CCPP    Contagious caprine pleuropneumonia 

CDV    Canine distemper virus 

CPE    Cytopathic effect 

DIVA    Differentiation of infected from vaccinated 

animals 

ELISA    Enzyme-linked immunosorbent assay 

FAO    Food and Agriculture Organization of the United 

Nations 

FMDV    Foot-and-mouth disease virus 

F gene    Fusion gene 

F protein    Fusion protein 

GTPV    Goatpox virus 

HA    Haemagglutination 

HN protein   Hemagglutinin-neuraminidase protein 

IC-ELISA    Immunocapture ELISA 
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ICTV    International Committee on Taxonomy of Viruses 

LFD    Lateral flow device 

L protein    Large protein 

mAb    Monoclonal antibody 

Mccp    Mycoplasma capricolum subsp. Capripneumoniae 

M protein    Matrix protein 

N gene    Nucleocapsid gene 

N protein    Nucleocapsid protein 

OIE    Office International des Epizooties 

PCR    Polymerase chain reaction 

PDV    Phocine distemper virus 

POC    Point-of-care 

PPR    Peste des petits ruminants 

P protein    Phosphoprotein 

PPRV    Peste des petits ruminants virus 

RP    Rinderpest 

RPV    Rinderpest virus 

RT-LAMP    Reverse transcription loop-mediated isothermal 

amplification 

RT-PCR    Reverse transcription PCR 

RT-qPCR    Real-time quantitative PCR 
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RT-RPA    Reverse transcription recombinase polymerase 

amplification 

S-ELISA    Sandwich ELISA 

SLAM    Signaling lymphocyte activation molecule 

UAE    United Arab Emirates 

VDS    Vero dog-SLAM 

VNT    Virus neutralization test 
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al., 2016). [For permission rights see chapter Supplement, page 63]. ....................................... 6 

Figure 2 Phylogenetic tree of PPRV isolates based on full-genome sequences showing the 
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neutralization test. ................................................................................................................... 16 
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4 Permissions for reproduction 

Figure 1 and Figure 2 – Both figures are published in an open access article according to the 

Creative Commons Attribution CC BY-NC-ND License 4.0 

(https://creativecommons.org/licenses/by-nc-nd/4.0/). Under this license, it is permitted to 

reproduce and distribute the material if the relevant copyright and legal information are given 

and the material is not used for commercial purposes. The original figure 1 is published under 

the title “Un-rooted neighbour-joining tree showing the relationships between different 

morbilliviruses.“ and figure 2 is published under the title „Phylogenetic analysis of circulating 

PPR viruses. Neighbour-joining tree was constructed using nucleotide sequences of the full 

genome of PPRV showing the relationships between the PPR viruses circulating in Asia, the 

Middle East and Africa. The percentage of replicate trees in which the associated taxa clustered 

together in the bootstrap test (10,000 replicates) is shown next to the branches. The GenBank 

accession number of each sequence is shown in the taxon name.“ 

 

Figure 3 – The figure is published in an open access article in accordance to the Creative 

Commons Attribution Non-Commercial License CC-BY-NC 4.0 

(https://creativecommons.org/licenses/by-nc/4.0/) which permits the sharing and adapting of 

the material in a non-commercial way. It is required to attribute relevant copyright information 

and a link to the licence. Adaptations of the material have to be indicated. The original figure is 

published under the title „Peste des petits ruminants virus genome organization. The PPRV 

genome is a single-strand negative-sense RNA of 15,948 nucleotides. The genes encoding the 

structural proteins are present in six transcription units separated by non-coding sequences 

(NCS). The gene order has been established as 3′-N-P/C/V-M-F-H-L-5′ flanked by 3′-Leader and 

5′-Trailer responsible of the synthesis of positive and negative sense RNA. P gene encodes for 

two non-structural proteins, C and V, via alternative open reading frames and RNA editing.” 
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Figure 4 – The illustration published in this thesis is subject to the agreements of the Creative 

Commons Attribution CC BY Licence 4.0 

(https://creativecommons.org/licenses/by/4.0/deed.de) which permits the duplication and 

further processing of the material in any medium, provided the original authors and copyright 

owners are named. The original figure is published under the title “Countries (green) reporting 

the presence of PPR to OIE as of April 2019”. 

 

Figure 7 – This figure is published in an open access article and is subjected to Creative 

Commons Attribution license CC BY 3.0 (https://creativecommons.org/licenses/by/3.0/). The 

material is permitted to be reproduced and distributed for any purpose if copyright and legal 

information is given. The licence permit also a remix or change of the figure. The original figure 

is published under the title “Schematic of a lateral flow assay with colloidal gold as label.“ 
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