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Summary

This thesis traces the investigation of representations of whole field mo-
tion, a behaviorally highly relevant stimulus across species and contexts,
in the brain of the larval zebrafish. The studies both cover the whole
brain, as well as focus on specific brain structures (the cerebellum and the
interpeduncular nucleus) and investigate processing of whole field motion
in different contexts, in particular evidence accumulation and decision
making.

In the first manuscript, we performed a comprehensive characterisa-
tion of sensory and motor responses in the whole granule cell population
of the larval zebrafish cerebellum. We found responses to both neutral
and behavior-eliciting stimuli (such as whole field motion), multimodality
and dense, temporally-correlated activation of the population. The lack of
sparseness and temporally-uniform activity were surprising in the context
of prevailing theories of cerebellar function, however, the activity patterns
we describe cover a rich range of sensorimotor signals that can support
cerebellar learning.

The second manuscript presents an adaptation of the classical random-
dot kinematogram stimulation paradigm to zebrafish, by using the stim-
ulus to elicit an optomotor response. We have found that the optomotor
behavior in this condition exhibits characteristic properties of evidence
accumulation-based decision making: uncertainty-dependent latencies
and error rates, as well as history dependence. By having this paradigm
in larval zebrafish, we could examine neural correlates of perceptual
decision making and evidence accumulation in the whole brain. We ana-
lyzed whole-brain recordings, finding signatures of different parts of the
evidence-accumulation process distributed thought the brain. Responses
with properties indicative of final stages of evidence accumulation - bidi-
rectional modulation and long time constants - were localized in several
midbrain structures, most prominently in nuclei raphe and the interpe-
duncular nucleus (IPN).

In the third manuscript we investigated the motion-response properties
of the IPN, identified in the previous study as a possible nexus of motion
information. We characterized its anatomy with confocal imaging, and
using functional imaging in different transgenic lines discovered precise
geometric patterning of the responses to different motion directions
thought the structure. Complementing this data with a traced electron
microscopy dataset we found structural correspondences that partly
explain the spatial distribution of the responses, in particular potential
axo-axonal inhibition.
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Finally, we present Stytra, the software system for stimulation and
behavioral tracking built to perform most of the studies included in the
thesis, as well as many other studies in the lab. In addition to Stytra, I
describe the associated open-source ecosystem we built alongside in the
lab to acquire and analyse behavioral and imaging data.



Introduction

Processing and acting on motion information is a major task for ner-
vous systems. The purpose of the brain is to produce behavior, and many
behaviors are caused or influenced by environmental motion. These be-
haviors can range from the involuntary reflexes of the opotokinetic nys-
tagmus to complex decision-making processes when estimating velocities
of oneself and other participants in street traffic. Currently, it is not possi-
ble to study the full range of such behaviors in humans or other mammals
at the level of the whole brain with cellular resolution. This has limited in-
vestigation to mostly small collections of cells in several predefined brain
regions, therefore potentially missing large parts of the circuits. However,
many aspects of these behaviors are also present in larval zebrafish, a
vertebrate whose whole brain can be imaged at the cellular resolution and
with genetic access to specific cell types. In this thesis, I will present sev-
eral studies where we investigated motion processing in different circuits
and contexts, and how they bring us closer to building a fuller picture of
brain function through this lens.

The thesis is comprised of two sections: three studies on where and
how the information about environmental motion is integrated in the
fish brain and used to produce behavior, and the software infrastructure
built along the way, to answer these and many more questions in systems
neuroscience.

Systems neuroscience in larval zebrafish

The zebrafish, Daniio Rerio, is an organism with a long history of biologi-
cal research. The transparency of the larval stage was an attractive feature
for embryologists, as all the developmental stages can be continuously
monitored under a microscope. This in turn has spurred the development
of genetic tools, which in the last decade of the 20th century enabled neu-
roscientific studies in the organism. In particular, development of the
Gal4-UAS system1 has enabled targeted expression of proteins in different 1 Scott et al., “Targeting Neural Circuitry

in Zebrafish Using GAL4 Enhancer
Trapping”.

cell types and brain region defined genetically.

Figure 1: An epiflourescence image of a
larval zebrafish expressing a green calcium
indicator (GCaMP5G) pan-neuronally.

The development of functional calcium indicators - proteins which
change their fluorescence when binding calcium2 - have enabled large-

2 Rose et al., “Putting a Finishing Touch on
GECIs”.

scale optical approaches to physiological measurements. The potential
changes across the membrane that accompany generation of action po-
tentials open voltage-gated calcium channels and therefore increase local
calcium concentration, making more of it available to bind to the indi-
cators. Therefore, the fluorescence has a direct, although nonlinear, link
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to spiking activity3. These optical signals can be measured in the larval 3 Greenberg et al., “Accurate Action
Potential Inference from a Calcium Sensor
Protein through Biophysical Modeling”.

zebrafish brain with several kinds of microscopes, described in the next
section.

The larval zebrafish exhibits a wide range of innate, but flexible and
adaptable behaviors, ranging from the optomotor response4, postural 4 Orger, Smear, et al., “Perception of

Fourier and Non-Fourier Motion by Larval
Zebrafish”.

control5, prey capture6, escaping looming stimuli 7, rheo-8, photo-9,
5 Ehrlich and Schoppik, “Control of Move-
ment Initiation Underlies the Development
of Balance”.
6 Bianco, Kampff, and Engert, “Prey
Capture Behavior Evoked by Simple
Visual Stimuli in Larval Zebrafish”.
7 Temizer et al., “A Visual Pathway
for Looming-Evoked Escape in Larval
Zebrafish”.
8 Oteiza et al., “A Novel Mechanism for
Mechanosensory-Based Rheotaxis in
Larval Zebrafish”.
9 Burgess, Schoch, and Granato, “Distinct
Retinal Pathways Drive Spatial Orienta-
tion Behaviors in Zebrafish Navigation”.

thigmo-10, chemo-11 and thermotaxis12. While performing each of these

10 Schnörr et al., “Measuring Thigmotaxis
in Larval Zebrafish”.
11 Herrera et al., “Larval Zebrafish Use
Olfactory Detection of Sodium and
Chloride to Avoid Salt-Water”.
12 Haesemeyer et al., “The Structure and
Timescales of Heat Perception in Larval
Zebrafish”.

behaviors, the fish swim in discrete bouts, which makes the motor activ-
ity easy to segment and quantify. The bouts can be further classified in
several types, and different stimulus situations engage different subsets
of bout types13. While the work in this thesis relies mainly on the opto-

13 Marques et al., “Structure of the Ze-
brafish Locomotor Repertoire Revealed
with Unsupervised Behavioral Clustering”.

motor responses, the neural representations investigated are likely to be
employed by the fish for other behaviors as well.

Functional brain imaging

The previously described developments in optical indicators progressed
together with microscopy technologies, two of which we are employing
for in-vivo brain imaging in larval zebrafish: two-photon and lightsheet
microscopy. These two methods present different approaches of optically
sectioning the sample perpendicular to the imaging plane.

In case of two-photon imaging14, a pulsed infrared laser is focused on a

14 Denk, Strickler, and Webb, “Two-Photon
Laser Scanning Fluorescence Microscopy”.

point inside the sample, where the co-occurrence of two lower-energy
photons within a very confined temporal period and spatial volume
causes excitation equivalent to one photon of approximately twice higher
energy. As this effect is proportional to the square of the light intensity, it
is restricted to a very small region around the focal point. Therefore there
is no illumination or scattering from the tissue below or above the focal
plane. The focal point is scanned very rapidly by galvanometric mirrors
while simultaneously collecting the photons emitted by the fluorescence
with a photomultiplier tube (see Figure 2). The scanning and data acqui-
sition are synchronized by using high sample-rate acquisition boards,
so that every sample of the measured current from the photomultiplier
tube is assigned a location known from the controlled position of the
beam. With dedicated signal processing hardware (field-programmable
gate arrays - FPGAs), it is possible to count individual photon events,
resulting in some cases in higher signal-to-noise ratios, however in the
experiments described here we used the photoelectric current integrated
over the time bin assigned to one pixel. With current technology, it is not
possible to scan the whole zebrafish brain at a high enough rate for volu-
metric imaging with cellular resolution. Two-photon whole-brain imaging
studies therefore have to rely on protocols repeated across many imaging
planes, and the data analyzed in a plane-wise fashion and combined to
yield whole-brain characterizations15. This however limits the analysis 15 Portugues, Feierstein, et al., “Whole-

Brain Activity Maps Reveal Stereotyped,
Distributed Networks for Visuomotor
Behavior”.

of population activity to entities present in a single plane, and the experi-
mental protocols to those that are short and elicit reliable responses when
repeated tens to hundreds of times.

In contrast, lightsheet microscopy relies on illuminating the sample
from the side by a focused laser beam, which is scanned at a high fre-
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Figure 2: Schemata of the two micro-
scopes, lightsheet and two-photon. The
software packages for hardware control
(described in the final section of the intro-
duction) are italic gray and connected by
gray lines to the components they control.

quency to produce a sheet of light16. The sheet of light can be in turn

16 Keller et al., “Reconstruction of Ze-
brafish Early Embryonic Development by
Scanned Light Sheet Microscopy”.

translated with an additional galvanometric mirror, at a slower rate, usu-
ally 1-10Hz. This illuminated plane is imaged by a high-sensitivity camera
at a high framerate, synchronized with the translation of the illuminated
plane and the camera objective, moved by a piezoelectric actuator (see
Figure 2). Other lightsheet configurations, e.g. where the sheet is pro-
duced by a cylindrical lens17, or where the sample is moved instead of 17 Engelbrecht and Stelzer, “Resolution

Enhancement in a Light-Sheet-Based
Microscope (SPIM)”.

the sheet of light, are common but less suitable for functional imaging.
Lightsheet experiments result in a volumetric stack where the whole sam-
ple is recorded almost simultaneously. This opens up opportunities for
whole-population activity analysis, such as looking at the dimensional-
ity of the population response, what the dimensions of stimulus-related
and unrelated activity are, whether the activity of the brain lies on a low-
dimensional manifold spanning behavior-relevant variables18, as well as 18 Gallego, Perich, Naufel, et al., “Cortical

Population Activity within a Preserved
Neural Manifold Underlies Multiple Motor
Behaviors”.

dynamical systems-19 and topology-based data analyses approaches20.

19 Bruno, Frost, and Humphries, “A Spiral
Attractor Network Drives Rhythmic
Locomotion”.
20 Giusti et al., “Clique Topology Reveals
Intrinsic Geometric Structure in Neural
Correlations”.

In addition to two-photon and lightsheet imaging, volumetric whole
brain imaging has also been achieved with lightfield imaging21 (recon-

21 Prevedel et al., “Simultaneous Whole-
Animal 3D Imaging of Neuronal Activity
Using Light-Field Microscopy”.

structing the sources of light using a microlens array in front of the
sensor and computational techniques) and HiLo microscopy 22 (using

22 Kim et al., “Pan-Neuronal Calcium
Imaging with Cellular Resolution in Freely
Swimming Zebrafish”.

structured illumination to extract only the signal coming from the plane
which is in focus). While these approaches can yield higher framerates,
they are severely limited in the z-resolution and in the case of lightfield
images, very computationally intensive to process.

The cerebellum in larval zebrafish

The cerebellum is a major brain region involved most prominently in
motor control. In mammals it consists of a cerebellar cortex and deep
cerebellar nuclei, whereas in zebrafish the role of the nuclei is taken by
eurydendroid cells interspersed throughout the structure. Its regular and



10 vilim štih

intricate anatomy has drawn the attention of neuroscientists for over half
a century, spurring the development of one of the first theories linking
a neuroanatomical structure to a learning algorithm: the Marr-Albus-Ito
family of models23,24,25. In these models, the cerebellum receives inputs 23 Marr and Thach, “A Theory of Cerebellar

Cortex”.
24 Albus, “A Theory of Cerebellar Func-
tion”.
25 Ito, “Cerebellar Circuitry as a Neuronal
Machine”.

Parrallel �ibers

Granule cells

Climbing �ibers

from inferior olive

Purkinje cells

to deep cerebellar nuclei /
eurydendroid cells

Mossy �ibers

Golgi cells

Figure 3: Schema of the cerebellar cir-
cuitry

through two channels: granule cells which provide a rich and sparse rep-
resentation of the current state of the sensory world, and the climbing
fibers of the inferior olive which deliver signals about motor or prediction
errors. These signals converge onto Purkinje cells, large, almost-planar
neurons which synapse with the parallel fibres of the granule cells and
whose bodies are enveloped by climbing fibers (see Figure 3). A learning
rule - long-term-depression - enables association between these two sig-
nal streams. Due to the very large number of granule cells (in mammals
almost 50% of all the neurons in the brain), cerebellar theories posited
that they transform the input signals into high-dimensional, sparse and
decorrelated representations so that different contexts and conditions
can be easily separated by the adjusting synaptic weights on the parallel
fibers. While there are many variations of cerebellar learning theories,
they tend to examine variations of one feature (connectivity, or plastic-
ity rules26), while retaining the rest of the assumptions. However, the 26 Bouvier et al., “Cerebellar Learning

Using Perturbations”.non-anatomical evidence for the different assumptions was sparse and
incomplete, relying on single-cell recordings in few cell types for activ-
ity, and in-slice experiments for plasticity. Our studies of the zebrafish
cerebellum, the first of which is presented in this thesis as Manuscript 1,
attempt to fill some of these gaps, as in the zebrafish we have complete
optical access to record the activity of the major cell types: granule, Purk-
inje and eurydendroid cells. The larval zebrafish display several adaptable
motor behaviors 27, and the cerebellum is natural brain area to look for 27 Portugues and Engert, “Adaptive

Locomotor Behavior in Larval Zebrafish”.
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signatures of control of these behaviors. In order to examine if the activity
of cerebellar neurons contains information relevant for these behav-
iors, we started by examining the properties of granule cells. Until now,
granule cells responses remain poorly studied, given the challenges of
electrophysiology in such small cells. We investigated the presence of the
theoretically-assumed granule-cell representation properties by using a
rich, multimodal repertoire of stimuli: the optomotor-response evoking
gratings, mild shocks, and whole-field flashes which usually do not cause
behavior. We found several types of responses to this protocol, and most
cells within each type were active together, showing no sparseness. Cells
responding to a group of stimuli were confined to different parts of the
cerebellum, with motion-excited groups mainly in the caudo-lateral part
of the structure. Also, the luminance responses exhibited a degree of to-
pographic organization. Additionally to the purely-sensory responses, we
found motor and multimodally-responding granule cells. To investigate
whether the granule cell representation has any effect on the behavior,
we performed local bicuculine injections, disabling the inhibition within
the cerebellum, which caused the fish to respond to all stimuli (including
the flashes), and also caused similarly patterned activity in cells which
previous to the injection did not show stimuli-related responses. Finally,
using electrophysiological recordings, we have found that there is no
temporal patterning in the probed granule cells while displaying whole-
field flashes: all cells that had an excitatory response showed the same
temporal profile after the flash onset, and similarly for the cells inhibited
by luminance stimuli on flash offset (however on a limited number of
recordings).

The optomotor response

Starting from the observation of the tendency of the zebrafish to align
itself to the perceived direction of motion and swim along it28 - the op- 28 Orger, Smear, et al., “Perception of

Fourier and Non-Fourier Motion by Larval
Zebrafish”.

tomotor response (OMR) - a great variety of studies has been designed to
exploit this behavior. Though simple in principle, the stimulus space and
spectrum of behavioral outputs enables a investigating a diverse set of
phenomena ranging from motion perception29 to motor adaptation30,31. 29 Yildizoglu et al., “A Neural Represen-

tation of Naturalistic Motion-Guided
Behavior in the Zebrafish Brain”.
30 Portugues and Engert, “Adaptive
Locomotor Behavior in Larval Zebrafish”.
31 Markov et al., “A Cerebellar Internal
Model Calibrates a Feedback Controller
Involved in Sensorimotor Control”.

The optomotor response depends on whole-field stimuli in the red and
green part of the visual spectrum and it is modulate by the spatial and
temporal frequency of the stimulus32. For a wide range of speeds, the lar-

32 Orger and Baier, “Channeling of Red
and Green Cone Inputs to the Zebrafish
Optomotor Response”.

vae match their swimming speed to the speed of the background motion,
which they accomplish by modulating different (although co-varying)
aspects of the behavior: employing different bout types, decreasing the
inter-bout interval and changing the tail beat frequency33. In the case

33 Severi et al., “Neural Control and
Modulation of Swimming Speed in the
Larval Zebrafish”.

of forward motion with grating stimuli, the OMR can be modelled with
an inhomogeneous Poisson process, where the rate is dependent on the
velocity of the gratings, and there is no need for sensory integration
to explain the behavior34. The aligning (turning) part of the optomotor 34 Portugues, Haesemeyer, et al., “Whole-

Field Visual Motion Drives Swimming in
Larval Zebrafish via a Stochastic Process”.

response has been studied in detail in the study by Orger et al.35, who
35 Orger, Kampff, et al., “Control of Vi-
sually Guided Behavior by Distinct
Populations of Spinal Projection Neurons”.

quantified the dependence of the behavior on stimulus orientation in a
freely-swimming assay. They found a very strong modulation of bout
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types (determined by the direction and distance of the bout) on stimulus
direction, and identified spinal projection neurons that mediate turning.
A more recent study36 detailed the neural responses to both forward 36 Naumann et al., “From Whole-Brain

Data to Functional Circuit Models”.and side-wise motion, with a focus on binocular integration. Through
an almost-whole-brain screen, they identified three areas of focus: the
arborization field 6, the pretectum and the hindbrain. AF6 was analyzed
as an area representative of those directly receiving optic flow, the pretec-
tum one where binocular representations are present, and the hindbrain
where the responses match closely the behavioral output. Using mod-
eling, behaviorally-relevant modes of functional connectivity between
different response types in these regions where found.

Regarding the properties of the visual stimuli causing the optomotor
response, two recent publications from our group37 38 focused on forward 37 Andreas M. Kist and Portugues, “Op-

tomotor Swimming in Larval Zebrafish
Is Driven by Global Whole-Field Visual
Motion and Local Light-Dark Transitions”.
38 Yildizoglu et al., “A Neural Represen-
tation of Naturalistic Motion-Guided
Behavior in the Zebrafish Brain”.

swimming and turning respectively. In the first study, the swims were
found to be triggered by a combination of whole-brain motion and a
local light-to-dark transition, and the behavior was strongly modulated
by the steepness of the transition. The signals corresponding to the two
elements of the behavioral trigger (the light-to-dark transition and whole-
field motion) were found to be widely distributed throughout the brain
and often co-located. In the second study, glider stimuli were used to
explore the turning response with different spatio-temporal correlation
combinations occurring in natural environments, finding that the ratios
of responses in pretectum are closely related to the behavioral response
ratios.

Evidence accumulation

Most motor decisions need to be made in conditions of partial uncertainty
about the world in which the animal acts. A classic model to study this
aspect of decision making is the random-dot kinematogram task, where
an animal is trained to indicate the direction of perceived motion. The
coherence of this motion can be manipulated by the experimenter, which
causes increases in latency and error rates. These behavioral outcomes are
well predicted by evidence integration models, where the accumulation
of evidence is modelled as integrating a biased, noisy process, and when
the variable representing the integrated evidence reaches a threshold, a
behavior is triggered39. 39 Gold and Shadlen, “The Neural Basis of

Decision Making”.In Manuscript 2, we present an adaptation of this paradigm to larval
zebrafish. To successfully perform the optomotor response, zebrafish have
to estimate the direction of the flow. This task can be made more difficult
by manipulating the degree of uncertainty in the stimulus. When in-
creasing this uncertainty we observe that the fish both make more errors,
and take longer to initiate the behavior. The behavior displays additional
properties indicating long-term influences of the stimulus and motor his-
tory: tuning in one direction is less likely if the previous stimulus or turn
were in the opposite direction. All of these these properties are indica-
tive of time-dependent decision making processes, which we proceed to
investigate with whole-brain imaging. From the imaging data, regression-
based analysis revealed widely-distributed correlates of main parts of



signatures of motion processing and decisions in the larval zebrafish brain 13

the decision making process: motion-dependent, long-term integrating,
bidirectionally modulated and motor event-correlated units. To further
characterize these responses, we fitted a flexible parameterized model that
can describe most sensory-related units within its parameter space. We
reduced the parameters of the model to two main dimensions: whether
the units are excited or inhibited by left or right motion, and a weighted
time constant. Finally, informed by these investigations, we constructed
a simple model from the same family as the one parametrizing the imag-
ing to describe the behavior on a timescale of bout rates. Using these
predicted rates as regressors, we looked for locations in the brain where
the correlations would appear in prominent patterns. A particularly in-
teresting area, with a windmill-like arrangement of the correlated and
anti-correlated patches was the interpeduncular nucleus (IPN), a region in
the ventral midbrain.

The interpeduncular nucleus exhibits structured optic flow-dependent
activity

The properties of the IPN responses found in the previous study - a strik-
ing stimulus-direction-dependent geometric patterning, as well as bidirec-
tionality of responses (a patch of tissue excited by motion in one direction
and inhibited by motion in the opposite direction) - indicated a poten-
tially important role of this structure in the spatial optomotor behavior.
While the previously mentioned studies mainly deal with either turning
or forward swimming in the context of the optomotor response, investi-
gations combining the two and therefore covering the behavior for both
turning and forward swimming have been more limited 40. To tackle this 40 Naumann et al., “From Whole-Brain

Data to Functional Circuit Models”.question, we used a simple but well-controllable stimulus of motion in 8
cardinal directions, to probe where correlations to all displayed directions
can be found and decoded. In addition to the previously well-described
tectal and pre-tectal areas, parts of the forebrain, the nuclei raphe and
the IPN showed responses tuned to all directions around the circle. Us-
ing different transgenic lines, we localised tuned responses in all parts of
the structure, from different neuropil areas to the (mostly inhibitory) cell
bodies. We combined this functional imaging data with detailed anatomy
obtained through electron microscopy, which showed striking structural
correspondences to the functionally-defined areas. Patches of similar tun-
ing were consistent with the spanning trees of cells of the IPN, suggesting
that the responses are shaped by axo-axonal inhibition.

Open source software in systems neuroscience

A systems neuroscience lab needs to acquire multiple kinds of high-
dimensional data - behavior and physiology, while presenting animals
with closed-loop stimulation paradigms. Both the behavioral and the
imaging data needs to be processed and interpreted: the behavior seg-
mented into units and quantified, the raw data from the imaging aligned,
filtered and segmented into sources of activity (cells or processes), and
both data sources need to be combined along with information about the
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stimulus paradigm to provide insights into neural processing. A signif-
icant amount of time in labs is spent developing systems enabling these
processes. However, many of the requirements are shared between labs,
resulting in a large duplication of efforts. The model of open-source soft-
ware provides extensive tools and methodologies for both sharing and
collaboration, showing a clear way forward. The first open-source pack-
age from the lab, Stytra, deals with behavioral acquisition and stimulation.
In the meantime we have developed subsequent packages covering the
remaining needs of the lab: Sashimi41 and Brunoise42 for imaging acquisi- 41 Asua, Štih, and Petrucco, Portugues-

lab/Sashimi.
42 Štih, Paoli, and Asua, Portugues-
lab/Brunoise.

tion, and Bouter43 Fimpy and Calcium for data analysis.

43 Štih, Prat, et al., Portugueslab/Bouter.Stytra

One of the core components of systems neuroscience is the study of
behavior. Most behavioral paradigms for larval zebrafish contain a com-
bination of common components: tracking of fish position, tail and eyes,
displaying a family of stimuli in various sensory modalities, linking the
stimuli to behavior in a closed loop and synchronizing with imaging se-
tups. At the point of writing Stytra, there was no comprehensive solution
providing all of the required features, and custom programs were written
per each experiment, in either the data-flow visual programming lan-
guage LabView or as monolithic MATLAB or Python scripts. This made
reproducing experiments on different setups and at other labs difficult,
and caused significant duplication of efforts. We developed Stytra in a
modular fashion, so that each of the common components can be used
independently and combined in various ways, considering all the existing
use cases: freely swimming experiments where stimuli are displayed in
relation to the fish position, head-restrained experiments where there
is a need for fast and precise tail tracking, imaging experiments where
the start of the stimulation protocol has to be as close as possible in time
to the acquisition of the first imaging frame. Also, automated data and
metadata management has been built in the core of the framework, so
all experiment-relevant parameters are stored in structured, common
formats. Stytra uses several parallel processes: a main process that dis-
plays the user interface and coordinates the data transfer through other
processes, camera and tracking processes and a microscope synchroniza-
tion process. We have demonstrated how Stytra can be used to replicate
behavioral experiments from literature. We also showed an example
imaging experiment synchronized with Stytra showing how the recorded
data enables easy analysis of behavioral, stimulation and imaging data
together using a common zebrafish stimulation paradigm, delineating
acute motor and sensory responses. Finally, we argue that compared to
other open-source packages for behavioral tracking and stimulation Stytra
covers a unique and comprehensive set of features.

Microscopy

Functional two-photon and lightsheet microscopy are comparatively re-
cent neurophisiology paradigms with very limited ready-made hardware
and software solutions. For the studies described in this thesis, as well as
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sashimi brunoise

stytra

Figure 4: Screenshots of the data acquisi-
tion programs developed in the lab: Stytra,
the behavior and stimulation program on
top, and Sashimi (lightsheet) and Brunoise
(two-photon) imaging acquisition pro-
grams below.

others from the group, custom setups were built. To control all parts of
the instruments, acquire data and synchronize it with behavior and stim-
ulus acquisition usually requires separate software tools, where separate
programs are provided by the component manufacturers. To overcome
this situation, we developed our own packages: Sashimi44 (for the light- 44 Asua, Štih, and Petrucco, Portugues-

lab/Sashimi.sheet microscope) and Brunoise45 (for the two-photon microscope) handle
45 Štih, Paoli, and Asua, Portugues-
lab/Brunoise.all use cases in the lab and are easily extensible due to their modular na-

ture (see Figure 2). Like Stryra, they are built out of multiple components
running in different processes which communicate via message passing
and shared memory (for bigger data arrays). The common architecture
consists of processes for

• managing shared state and displays the user interface

• hardware control (input-output boards, camera)

• data preprocessing (reshaping, denoising)

• saving to disk

• coordinating the microscope acquisition with the stimulus presentation
and tracking in Stytra

Additionally, there are parts that manage settings and dynamic imaging
visualization. The common modules are implemented in the Scopecuisine
package, which Sashimi and Brunoise depend on. Sashimi manages the
synchronization of different hardware components: the scanning mirrors,
the piezoelectric objective motor and the camera triggering, and provides
a user friendly method of calibrating the system, which is necessary to
adjust for each experiment. Additionally, it enables noise subtraction
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and a rich set of visualization options by embedding the open-source
Napari viewer. Brunoise, the two-photon acquisition program, handles
computation of optimal scanning parameters and patterns with user-
specified image quality and framerate settings, and can be extended to
provide additional features such as drift correction and laser ablation.

Data analysis

After acquisition, both behavioral and imaging data require preprocess-
ing pipelines, to bring the high-volume input data to manageable size
from which inferences about behavior and brain function can be made.
For the behavioral data acquired through Stytra, we developed Bouter,
a package that extracts summaries of tracked behavior. Bouter handles
both common types of larval zebrafish experiments: head-restrained and
freely-swimming, and extracts periods of swimming (bouts), computes
different properties of the bouts and facilitates combining behavioral in-
formation with information about stimuli presented into structured tables.
For some classes of stimuli, it provides a reconstruction of the displayed
stimulus in fish-centered coordinates (for both freely-swimming and
head-restrained experiments). With this package many common analyses
(e.g. number and directionality of turns elicited by a particular stimulus)
can be executed with only a few lines of code. For imaging data, to extract
activity of single cells and contiguous parts of neuropil, several processing
stages are necessary. First, a motion-correction step is needed to elim-
inate two kinds of motion artifacts: due to slow drift of the embedded
samples and tail motion-introduced deformations. Several approaches
to this problem are combined in the VolumeRegistration46 package that 46 Štih, Portugueslab/VolumeRegistration.Jl.

handles both lightsheet and two-photon imaging scenarios. The package
is an efficient reimplementation of the algorithms from the Suite2p cal-
cium imaging analysis package47 in the Julia programming language. In 47 Pachitariu et al., “Suite2p”.

VolumeRegistration, the approach of Suite2p is extended to be agnostic to
the data formats presented and the algorithms are generalized to work on
volumetric data, for lightsheet imaging. The subsequent region-of-interest
(ROI) extraction, based on local time-series correlations is implemented in
packages Fimpy and Calcium. Calcium additionally supports local non-
negative matrix factorization-based region extraction. Factorization is
necessary to demix overlapping signals in neuropil or in lightsheet data,
where there is significant light contamination from neighbouring regions.
In Calcium, the parameters of the non-negative matrix factorization algo-
rithms are additionally cross validated in different parts of the dataset, so
that the data is described with the optimal number of sources and spatial
sparsity.
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SUMMARY

A fundamental question in neurobiology is how ani-
mals integrate external sensory information from
their environment with self-generated motor and
sensory signals in order to guide motor behavior
and adaptation. The cerebellum is a vertebrate hind-
brain region where all of these signals converge and
that has been implicated in the acquisition, coordina-
tion, and calibration of motor activity. Theories of
cerebellar function postulate that granule cells
encode a variety of sensorimotor signals in the cere-
bellar input layer. These models suggest that repre-
sentations should be high-dimensional, sparse, and
temporally patterned. However, in vivo physiological
recordings addressing these points have been
limited and in particular have been unable tomeasure
the spatiotemporal dynamics of population-wide ac-
tivity. In this study, we use both calcium imaging and
electrophysiology in the awake larval zebrafish to
investigate howcerebellar granule cells encode three
types of sensory stimuli as well as stimulus-evoked
motor behaviors. We find that a large fraction of all
granule cells are active in response to these stimuli,
such that representations are not sparse at the pop-
ulation level. We find instead that most responses
belong to only one of a small number of distinct activ-
ity profiles, which are temporally homogeneous and
anatomically clustered. We furthermore identify
granule cells that are active during swimming behav-
iors and others that are multimodal for sensory and
motor variables. Whenwe pharmacologically change
the threshold of a stimulus-evoked behavior, we
observe correlated changes in these representa-
tions. Finally, electrophysiological data show no evi-
dence for temporal patterning in the coding of
different stimulus durations.

INTRODUCTION

The brain encodes the external world via sensory representa-

tions. It does so in a way that these activity patterns convey as

much relevant information as possible for the actions that the

organism must perform to maximize its chances of survival.

The vertebrate cerebellum is believed to be a key player in these

sensorimotor transformations and has been shown to be

involved in multiple aspects of motor coordination, the calibra-

tion of reflexes, the acquisition of fine motor skills, and classical

conditioning [1]. The input layer of the cerebellum consists of the

cerebellar granule cells, the most numerous neurons in the brain

of many vertebrates (including humans). Influential work [2, 3]

motivated by anatomical [4], physiological [5], and theoretical

arguments [6] has had a strong impact on models of cerebellar

function.

These models postulate that granule cells provide an expan-

sive recoding of their mossy fiber inputs into a sparse and

high-dimensional representation that is recognized and learned

by downstream Purkinje cells. These representations must

be sparse not only in the space of possible stimuli but also

in the temporal dimension, thus allowing a straightforward

decoding of time since stimulus onset from their activity. This

temporal patterning is believed to underlie the acquisition

of appropriately timed cerebellar-dependent conditioned re-

sponses [7] (but see [8]).

Monitoring the physiology of granule cells via electrophysio-

logical recordings is difficult and has most often been carried

out in anesthetized rodents [9–11]. Together with anatomical

studies mapping mossy fiber inputs to the granule cell layer

[12, 13], there is growing evidence to show that multimodal in-

puts are integrated in single granule cells such that they can

function as a coincidence detector to recognize complex stimuli

(but see [14, 15]). In addition, recent work has also reported

motor signals in granule cells of behaving mice [16, 17], thus

opening the door to addressing issues involving efference

copy signals and internal models that have been intensely stud-

ied in theoretical work during the last decades [18].

The larval zebrafish cerebellum, like that of all teleosts, shares

the basic structure of its mammalian counterpart yet contains

fewer cells by many orders of magnitude. Nonetheless, by just

5 days post-fertilization (dpf), anatomical studies show that the

majority of Purkinje cells and granule cells are present in a ratio

of approximately 1:20 and have formed the classic three-layered

configuration [19–21]. Purkinje cells are active from 4 dpf [22, 23],

a developmental time point that coincides with the onset of the

ability of the zebrafish larva to maintain its balance in the water

and perform maneuvers to hunt food and escape predation

[24]. This mirrors the timeline seen in the developing rat where
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the appearance of postural and motor behaviors coincides with

the rapid growth of Purkinje cell dendrites from postnatal days 9

to 18 [25]. Purkinje cells show visually evoked responses by 6 or

7 dpf from mossy fibers inputs via the parallel fibers of granule

cells, and by this stage, multiple climbing fiber inputs have

already been eliminated [22, 26]. Imaging, optogenetic, and

lesion experiments in the larval zebrafish reveal that cerebellar

neurons are active and indeed necessary during swimming

[27], oculomotor tracking [27, 28], motor adaptation [29], and

associative learning [30]. The anatomical and functional maturity

of cerebellar circuits in the 6–8 dpf zebrafish therefore

appear roughly equivalent to the 2- to 3-week-old rodent cere-

bellum [25, 31].

The compact size of the zebrafish cerebellum, optical trans-

parency of the tissue, and availability of genetic driver lines to

target cerebellar neuron subpopulations provides a unique op-

portunity to investigate how granule cells encode sensorimotor

information. In this study, we harness these possibilities to opti-

cally monitor activity in genetically identified granule cells in

awake, sensing animals as they are presented with sensory

stimuli while simultaneously recording their behavior. Our exper-

iments allow us to study the response properties of the popula-

tion as a whole and address issues, such as the dimensionality

and the sparseness of sensorimotor representations in these

neurons. We uncover the anatomical mapping of functional re-

sponses across and within sensory modalities. We complement

our calcium-imaging experiments with high-temporal-resolution

electrophysiological recordings that allow us to investigate

whether timing is explicitly encoded in single-cell granule cell

activity.

RESULTS

Anatomical Organization of the Zebrafish Cerebellum
The cell types and anatomical organization of the larval zebrafish

cerebellum are homologous to the mammalian cerebellum yet

offer a more tractable circuit due to the lower number of cells

[20]. In larval zebrafish, the cerebellum is located in the dorsal

�200 mm of the brain just caudal to the optic tectum (Figure 1A)

and is therefore accessible for imaging and electrophysiology.

We took advantage of several transgenic gal4 driver lines

generated by Takeuchi et al. [32], whose pattern of expression

within the zebrafish cerebellum is limited exclusively to granule

cells and their parallel fibers (Figure S1), as shown by previous

immunohistochemical and anatomical characterization [32].

The zebrafish cerebellum consists of three lobes: the valvula

cerebelli (Va; anterior lobe), the corpus cerebelli (CCe), and

the caudolateral lobe, which is further subdivided into the emi-

nentia granularis (EG) and the lobus caudalis cerebelli (LCa) (Fig-

ure 1B) [20].

Figure 1. Characterization of the Larval Zebrafish Cerebellum and Its Granule Cell Population

(A) Composite confocal stack showing the head of a 7-dpf transgenic larval zebrafish in bright-field expressing GCaMP6f pan-neuronally (in red) andmCherry in a

large population of granule cells (in green). The scale bar represents 100 mm.

(B) Schematic showing the anatomical lobes of the zebrafish cerebellum. CC, crista cerebellaris; CCe, corpus cerebella; EG, eminentia granularis; LCa, lobus

caudalis cerebelli; Va, valvula cerebelli. The scale bar represents 100 mm.

(C) Quantification of the number of granule cells labeled in each of the four transgenic zebrafish lines used in this study (n = 3, 6, 5, and 2 fish, respectively). Data

are represented as mean ± SEM.

(D) Example labeled granule cells from different regions of the cerebellum with zero, one, two, three, or four dendritic claws. Open arrowheads indicate dendritic

claws, black arrowheads indicate dendritic branches without claws, pound indicates putative growth cone, and the truncated parallel fiber axons for all cells are

marked with asterisks. The scale bar represents 10 mm. See Figure S1 for additional morphology of granule cells.

(E) Histogram showing the distribution of dendritic claw number in granule cells at 6 or 7 dpf (range = 0–4 claws; n = 107 granule cells from 86 fish).

See also Figure S1.
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These different transgenic lines have overlapping but non-

identical expression patterns that differed in the density of label-

ing as well as the lobe specificity [32], allowing us to obtain

maximal coverage for population imaging and also target individ-

ual granule cells for electrophysiology (Figures S1D and S1E).

We performed automated segmentation to identify and quantify

granule cell somata across the four transgenic lines used in this

study to label granule cells (Figure 1C; n = 16 fish). These

methods suggest that there are at least 6,000 granule cells in

the larval zebrafish cerebellum, a population approximately 20

times larger than the number of Purkinje cells [21]. This system

therefore provides a large yet tractable population with which

to investigate sparseness and dimensionality.

Zebrafish Granule Cells Have Stereotypical Dendritic
Claws and Parallel Fiber Projections
Granule cells across species typically have only three to seven

dendrites that each receives excitatory input from a singlemossy

fiber bouton [4, 33]. The dendrites of granule cells are highly

elaborated and appear as claws, each of which makes many

thousands of synaptic contacts with a single incoming mossy fi-

ber bouton within a structure known as the glomerulus. This

limited number of dendritic claws, and thus synaptic connectiv-

ity, has been highlighted by modeling studies as the best config-

uration for a feedforward network modeled on the granule cell

layer given the trade-off between sparseness and information

transmission [34]. Studies examining the early developmental

stages of the zebrafish cerebellum have shown that granule

cell differentiation and migration occur rapidly in the early larva

cerebellar during 2–4 dpf [19, 20]. From these studies, we

know that a large population of granule cells are established in

the three-layered structure of the zebrafish cerebellum by

6 dpf and have fully extended their axons, although the detailed

anatomy of these cells, in particular their dendritic morphology

and whether or not claws are present, is unknown.

We obtained mosaic expression of a fluorescent reporter

construct to visualize the morphology of single granule cells in

different regions of the cerebellum (see Supplemental Experi-

mental Procedures). This allowed us to examine how parallel

fiber projections and dendritic morphologies varied across

granule cells located in different areas of the granule cell layer.

High-resolution imaging of single granule cells showed that

those present in the CCe, Va, and EG consistently had between

one and four distinct claws (Figures 1D and 1E; mean ± SD =

2.3 ± 1; n = 107 cells from 86 fish; Figure S1A). The number and

morphology of dendritic claws was stable from 6 or 7 dpf to 11

or 12 dpf (no change in claw number in 15/16 cells from 14 fish;

paired sign test p = 0.32) and persisted to 20–22 dpf (Figure S1C;

n = 2). Labeled granule cells from the LCa had very few claws in 6

or 7 dpf larvae (4/5 with zero claws) but did show protrusions

resembling axonal growth cones, which could be related to their

relative immaturity compared to granule cells in other regions

(Figure S1A) [19]. Nonetheless, the majority of granule cells

possess the hallmark dendritic claws ofmammalian granule cells

and, as such, could be capable of receiving and integrating mul-

tiple mossy fiber inputs in the input layer of the cerebellar circuit.

As in mammalian cerebella, the parallel fibers extend longitu-

dinally across the mediolateral axis of the cerebellum and are

organized in a sheet (Figure S1A). Our results reveal five distinct

parallel fiber projection types (Figure S1A) that correspond to

somata location, thus refining our knowledge of the axonal pro-

jectionmap from previous studies [19, 20]. All parallel fibers span

the cerebellum in a longitudinal (mediolateral) orientation with the

distance covered dependent to a large extent on the width of the

cerebellum as it increases along the rostral to caudal axis.

Notably, only a subpopulation of labeled granule cells had paral-

lel fibers that project to the crista cerebellaris (CC) of the dorsal

hindbrain (Figure S1A; n = 9/26 cells), which corresponds to the

vestibulocerebellum in zebrafish [19]. This suggests that granule

cells with projections to the CCmight be enriched for carrying in-

formation crucial for vestibulomotor integration, such as motor

efference copies. The different dendritic morphologies and par-

allel fiber projections therefore suggest regional specializations

that may link with the functional role of these cells in different

sensorimotor processes.

Granule Cell Representations Are Dense across the
Population
Granule cells are believed to re-encode mossy fiber signals

arriving in the cerebellum in a sparse, higher dimensional repre-

sentation. However, it has never before been possible tomeasure

sparseness experimentally across the entire granule cell popula-

tiondue to the large sizeof themammaliancerebellum.Functional

imagingof localpopulationsofputativegranulecells fromaknown

motor region of the cerebellum in the awake, behaving mouse re-

vealedmotor-correlated activity in the majority of these cells [16],

providing evidence for dense granule cell representations in this

cerebellar subregion. We therefore took advantage of the

compact and optically accessible larval zebrafish cerebellum in

order to test the hypothesis that granule cell representations are

sparse at the population level, across the entire cerebellum.

We presented three types of sensory stimuli to awake larval

zebrafishwith genetically encoded calcium indicators expressed

in cerebellar granule cells and used a two-photon microscope to

image the responses (Figures 2A and 2B; Movie S1). We imaged

every fish throughout the entire volume of the cerebellum. The

sensory stimuli consisted of the following: (1) a whole-field red

flash of six different durations, (2) a black and red grating that

moved forward at one of three speeds (3, 10, and 30 mm/s) or

in reverse at 10 mm/s, and (3) a mild electric stimulus delivered

to the bath (Figure 2A). Experiments on transgenic lines express-

ing calcium indicators pan-neuronally revealed that these stimuli

activated visual processing regions and the cerebellum quite

specifically (Movie S2). In a subset of these experiments, tail

movements were recorded simultaneously with neuronal activity

in order tomeasure behavioral responsiveness to stimuli. Neither

the whole-field flashes nor the reverse motion gratings elicited

any behavioral response (Figure 4A). It is known, however, that

larval zebrafish show light-mediated turning [35] and startle re-

sponses [36], which indicates that small changes in luminance

are an ethologically relevant stimulus for the animal. The forward

gratings elicited forward swimming, a behavior known as the

optomotor response, whereas the electric shock was titrated

to elicit a short motor response in approximately half of trials.

These imaging experiments in the awake zebrafish revealed

dense (non-sparse) activation of the entire granule cell layer in

response to the simple stimuli we presented (Figure 2B). In a

given imaging plane, anatomical segmentation revealed several
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Figure 2. Representations in Granule Cells Are Non-sparse

(A) Stimulus paradigm presented to the larvae. Whole-field flashes were of 50, 100, 200, 500, 1,000, and 3,000 ms durations. Moving gratings were presented for

5 s at three caudo-rostral speeds (3, 10, and 30mm/s) and one rostro-caudal speed (�10mm/s). Average luminance acrosswhole-field gratingswas half as bright

as the red flashes but brighter than the background luminance (shown here as dark gray). A mild (2 mA) electric shock lasting 10–25 ms was also delivered. These

stimuli were presented in a randomized order in the experiments but are reshuffled to this order in later panels.

(B) Top: anatomical image of one imaging plane through the granule cell layer (scale bar, 50 mm). Bottom: heatmap of themaximumdf/f signal (as a percent) for all

anatomically segmented neurons in this plane shows dense activation of these neurons. See Figure S2 for anatomical segmentation.

(C) All of the granule cells extracted from two subsequent imaging planes (1 mm apart). In most cases, the same granule cell could be imaged in multiple planes.

(D) Upper trace: example average granule cell response to the stimuli presentedwith SD (shaded region). Lower traces: z scored activity traces from this same cell

collected across multiple planes.

(E) All 252 granule cell responses appearing in plane n+1 from (C) were clustered using kmeans into seven response types, and the reorganized correlation matrix

is shown. Most granule cells exhibit some stimulus-locked response as evidenced by the high degree of structure in the correlation matrix.

(F) Histogram showing the mean (across 16 fish) cumulative distribution of maximum df/f for all (not just active) granule cells. The shaded region denotes the SE.

On average, over 50% of granule cells had a maximum df/f above 150%.

(G) Left: pseudocolored image of a single plane of parallel fibers from the right cerebellar hemisphere showing the difference between fluorescence during a

particular stimulus frame and the average fluorescence. Blue, forward moving fast gratings; red, 3 s flash stimulus; yellow, shock stimulus. The scale bar rep-

resents 25 mm. Insets show higher magnification of regions of interest (ROIs) containing putative presynaptic puncta from parallel fibers (position indicated by the

boxes at left) responsive to different stimuli. The scale bar represents 5 mm. Right: the activity traces from these circled ROIs at left show responses that match

with the activity seen in granule cell somata (e.g., compare lower blue trace to trace in D).

See also Figure S2 and Movies S1, S2, and S3.
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different response profiles across cells (Figures 2C and S2).

Granule cells spanned several imaging planes, and their activity

could thus be tracked across multiple trials (Figures 2C and 2D).

As a first step toward investigating significant stimulus-locked

activity, all simultaneously recorded signals from a plane were

cross-correlated and clustered, revealingwell-defined functional

groups (Figure 2E). The correlation matrix shows that activity

was highly correlated within a group and that most granule cells

were active during our experimental paradigm.

Quantifying the activity across all anatomically segmented

granule cells from many experiments revealed that over 50%

of all granule cells had a maximum change in fluorescence

over baseline above 150% (Figure 2F; n = 16 fish). This repre-

sents a quantification of all granule cells, irrespective of their

activity during the protocol, and suggests that the majority of

granule cells present in the cerebellum were active in response

to at least one of the 11 stimuli presented. Dense activation of

granule cells was also observed in response to amovie of natural

underwater scenes that had the same average luminance as

whole-field flashes (data not shown).

Granule cells express NMDA receptors whose activation by

synaptic inputs could also contribute to calcium signals [37]. In

order to identify whether we were actually monitoring granule

cell spiking, we imaged the parallel fibers in every experiment

(Figure 2G; Movie S3). Parallel fiber activity showed the same

response dynamics and profiles as the somatic signals (Fig-

ure 2G). Additionally, 26/26 electrophysiological recordings

from granule cells showed reliable responses to at least one of

the stimuli presented, with spiking patterns that precisely repro-

duce the responses obtained from functional imaging when

convolved with the GCaMP kernel (Figures S3A and S3B). These

data give us confidence that the activity reported by the calcium

indicator indeed reports granule cells firing.

The Granule Cell Layer Is Organized Anatomically
by Functional Response Type and Displays a
Visuotopic Map
Our population imaging results suggested that granule cells had

highly stereotyped responses to certain stimuli and pointed

toward an enrichment of these response profiles in different

areas of the cerebellum. Although it is known that granule cell

populations in the different lobes of the zebrafish cerebellum

have different developmental pathways, genetic profiles, and

parallel fiber projections [19, 20], it is unknown whether func-

tional specializations are also organized topographically.

In order to look at the anatomical mapping of functional re-

sponses, we registered the results of our experiments across

all 16 fish in three dimensions to a reference brain [28]. A mask

was created from the reference anatomy to encompass the vol-

ume in which granule cell soma could reliably be found. We used

an unbiased functional segmentation algorithm [28] with a high

threshold to identify nearly 13,000 significantly active granule

cells. The activity from all of these granule cells was used to

estimate the intrinsic dimensionality of the representation, which

resulted in a value around seven (see Supplemental Experi-

mental Procedures).

We then performed k-means clustering on the average activity

profiles of all neurons to identify seven main clusters from

these responses (Figures 3A, S4A, and S4B; see Supplemental

Experimental Procedures). These clusters corresponded to the

following response types: luminance excited (this group included

two clusters; see Figure S4), luminance inhibited, forwardmotion

excited, reverse motion excited, shock excited, and non-spe-

cific. We also found several of these same response profiles by

performing cell-attached electrophysiological recordings of

granule cells with this stimulus set (Figures S3 and S5). Approx-

imately half of all granule cells from our imaging experiments re-

sponded to luminance (30% and 23% of all cells were luminance

excited and inhibited, respectively). All motion-excited cells were

direction selective, with 17% of granule cells being excited by

forward motion and half as many responding to reverse motion.

No cells were found that showed inhibition in response to

motion. Another 9% of cells were shock excited, and the remain-

ing 12% of cells showed no stimulus-locked responses.

In order to look at the distribution of these functional groups

across the cerebellum, we used our registration maps for all

experiments to color code every voxel in the reference brain

based on the most frequent response type of all cells spanning

Figure 3. Granule Cells across the Cerebellum Are Organized Topographically with Respect to Stimulus Response Profile and Visual

Receptive Field

(A) Left: heatmap of z scored activity of all 12,283 granule cells (n = 16 fish) sorted into seven clusters by k means clustering. Despite GCaMP6S and GCaMP6F

signals having different kinetics, granule cells with similar response profiles nonetheless cluster together. Right: the average activity trace from each cluster is

shown at the right and labeled according to stimulus response type and what percentage of granule cells belong to that cluster. Note that two clusters appear to

be ‘‘luminance-excited’’: these are grouped together in subsequent panels. See Figure S3 for example activity traces from individual cells (calcium imaging and

electrophysiology) and anatomical organization of luminance-excited subclusters.

(B) Single planes at different depths from the surface of the brain showing the most likely response profile to be found in the granule cell soma layer when fish

across all experiments (n = 24) are combined, together with pan-neuronal expression for anatomical reference. Colors are coded for response profile as in (A). The

gray outline shows the approximate boundaries of the cerebellum for reference. The scale bar represents 100 mm.

(C) Same as for (B), showing example planes from individual fish from different transgenic lines.

(D) To investigate retinotopy, the visual field was divided into 15 horizontal and vertical bars that were flashed for 1 s (red shading). For every neuron (average for

one sample neuron across planes shown in black), this allowed us to estimate the receptive field (color coded on the top right for the same neuron). The location of

the sample neuron is shown on the bottom right. The histograms showing the probability distribution of the location of the centroid of all receptive fields are shown

(left-right location in magenta-purple and rostro-caudal location in orange to cyan) (average across six fish with a total of 2,603 granule cells; the shaded region

indicates the SE). The scale is the same as for (B).

(E) Granule cells have been color coded according to the centroid of their visual receptive field using the same color code as in (D). Top: lateralization of receptive

fields. The outlined cerebellum is shown for reference over the bird’s eye view. Additional sagittal and coronal views are indicated by the axes (C, caudal;

D, dorsal; L, lateral; M, medial; Ro, rostral; V, ventral). Bottom: the same views as in the top panel, but showing rostro-caudal receptive fields. The scale is the

same as for (D).

See also Figures S3 and S4.
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Figure 4. Granule Cells Can Encode Purely Sensory or Motor Information as well as Multimodal Sensorimotor Combinations

(A) Typical behavior evoked by our stimuli in head-embedded imaging experiments with the tail freed from the agarose. Only forward-moving gratings and the

mild electric shock elicit behavior. n = 5.

(B) Green trace is the convolved regressor of motor activity, black traces are the simultaneously acquired z scored fluorescence traces for the two granule cells

shown in (A), and blue trace is the convolved regressor for forward-moving stimuli. Correlation coefficients between the activity of each cell and its best regressor

are shown.

(C) Two example activity profiles of simultaneously recorded granule cells from behaving fish excited by moving forward gratings that were distinguished as

having motor-related (upper trace) or sensory-related (lower trace) activity.

(legend continued on next page)
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that voxel. Ourmap reveals a clear link between anatomical loca-

tion and response profiles of granule cells in support of a

modular, lobe-specific specialization of the cerebellum (Fig-

ure 3B). Luminance-excited cells occupy a dense, bilateral

area in the most dorsal and medial region of the CCe that is

neighbored rostrally and laterally by similarly dense regions of

luminance-inhibited cells. The vast majority of granule cells re-

sponding to directional motion or to electric shock in the dorsal

cerebellum were located in the caudal-most band of cells that

compose the LCa. Moving ventrally and laterally, the granule

cell response profiles shift to become a mixture of mostly for-

ward and reverse motion-excited responses (Figure 3B). The

EG, located at the most lateral edges of the cerebellum, is en-

riched for motion- and shock-excited responses, as is the rostral

Va region at this same depth (Figure 3B). The location of these

anatomical clusters was reproducible in an individual cerebellum

and highly conserved across fish, regardless of the transgenic

driver line (Figures 3B and 3C).

Given that many granule cells were identified as luminance

excited, we wondered whether this group could be further sub-

divided with respect to visual receptive field location. There is

evidence for fractured somatotopy in themammalian cerebellum

[38], but due to the difficulty of probing visuotopic maps in an

awake, non-decerebrate preparation, a comprehensive map-

ping of visual responses within the granule cell layer in an awake

animal has not been performed until now. In order to determine

whether visual responses were organized within a retinotopic

map, we divided the visual field into 15 equal vertical (rostro-

caudal) and horizontal (left-right) bars that were flashed for 1 s

before returning to darkness (Figure 3D; see Supplemental

Experimental Procedures). This allowed us to estimate the

spatial receptive fields of active cells assuming a simple direct

product structure.

We found that the majority of luminance-excited granule cells

had receptive fields that covered between 5% and 25% of the

visual field (data not shown). Receptive fields were equally

distributed between the left and right of the visual field, but

most of them corresponded to the rostral half (Figure 3E). To

visualize whether any topographic map existed, we color coded

each granule cell based on the position of center of mass of its

receptive field (left to right colored in magenta to green and

rostral to caudal in orange to cyan). The results show that a sym-

metrical topographic map indeed exists (Figure 3E). Whereas a

fine-scale retinotopic map was not observed, we found that

most granule cells in the left cerebellum have their receptive

fields on the right-hand side of the visual field and vice versa.

In addition, most granule cells in the rostro-ventral cerebellum

(the Va) had their receptive fields in the caudal half of the visual

field. This result shows that, in addition to sensory modality,

granule cells in the cerebellum of larval zebrafish convey infor-

mation about the spatial location of the sensory stimulus. These

experiments reveal for the first time a visuotopic map in the

granule cell layer of an awake, behaving animal.

Granule Cells Can Encode Purely Sensory or Motor
Information as well as Multimodal Sensorimotor
Combinations
In addition to processing information about sensory context,

such as luminance, the cerebellum plays an important role in

coordinating movement and motor learning [39]. We therefore

expect to find granule cells that encode information about visual

motion as well as the motion of the animal itself. In order to

disambiguate sensory and motor-related responses (such as

efference copies of signals to spinal locomotor networks) to

stimuli that evoke behavior, we performed calcium imaging

from granule cells in awake, head-embedded zebrafish (n = 5)

while monitoring the movement of the tail, which was freed

from the agarose.

Forward-moving gratings elicited periods of swimming known

as bouts, whose latency, duration, and frequency can vary

considerably from trial to trial as does the behavioral response

to shock. The variable, non-saturating behavioral responses to

the moving forward gratings and shock stimulus allow us to

disambiguate sensory and motor representations across the

granule cell population (Figure 4A). The motor output signal

from the fish for each trial was convolved with the kinetics of

the calcium indicator to produce a motor regressor that we

used to identify motor-related granule cells (Figure 4B; see Sup-

plemental Experimental Procedures). A regressor for other

stimuli, such as forward visual motion, was created to identify

sensory responses that would be consistent across trials.

Very high correlations could be found between the calcium

signals of individual granule cells and themotor regressor across

trials to the extent that all activity peaks in the calcium signal

align with an episode of swimming (Figures 4B and 4C). A single

granule cell can therefore encode themotor activity of the animal

irrespective of the sensory stimulus that produces the behavioral

response (moving gratings or shock). We hypothesize that these

granule cells are receiving motor efference copies and thus cod-

ing for the motor activity of the animal, although these responses

could also be mediated by reafferent sensory input, such as pro-

prioception or lateral line signals. In contrast, other granule cells

were identified whose activity correlated best with forward-mov-

ing gratings, regardless of the behavioral response of the fish to

the gratings, suggesting that their responses were purely sen-

sory (Figures 4B and 4C). Using this regression-based approach

(D) (i) Maximum projection of 212 granule cells that could be classified as sensory (forward motion or shock) or motor from behaving fish (n = 5). Pan-neuronal

reference anatomy and an outline of the approximate boundary of the cerebellum are shown in gray. (ii) Single planes at different depths from the stack showing

the dorsal-ventral distribution of response types. The scale bars represent 100 mm.

(E) Three example cells showing multimodal responses to (i) sensory shock and motor activity, (ii) sensory forward motion and motor activity, and (iii) sensory

reverse motion and motor activity.

(F) (i) Activity from individual planes of the granule cells in (E) are concatenated and correlated with regressors for the most relevant sensory stimulus and the

convolved simultaneous motor activity of the fish. Yellow trace is the convolved regressor for shock stimuli, black trace is the z scored fluorescence for the cell in

(Ei) across seven planes, and gray trace is the convolved vigor regressor of behavior from these planes. The sensory regressor also appears in themiddle trace as

a shaded area that highlights the correlation of the granule cell activity with sensory stimuli. Open arrowheads highlight peaks that correlate with motor activity,

but not sensory stimuli. Corresponding correlation coefficients of granule cell activity with the regressors are indicated. (ii and iii) The same as for (i) is shown,

instead showing the activity of cells from (Eii) and (Eiii).
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and a threshold for correlation coefficients to motor and sensory

variables (see Supplemental Experimental Procedures), we iden-

tified granule cells from these behaving experiments whose re-

sponses to behaviorally relevant stimuli (forward gratings and

shock) could be categorized either as sensory or motor related.

Mapping the locations of granule cells onto the reference anat-

omy revealed distinct areas occupied by these three groups (Fig-

ure 4D). Granule cells that had a sensory response to forward

motion were located more dorsally than the other groups, in

the LCa and medial CCe, whereas granule cells with sensory re-

sponses to shock or with motor responses were spread out in

more ventral areas of the CCe as well as the EG and Va (Fig-

ure 4D). These results suggest that some of the ventrally located

areas with forward-motion- or shock-excited responses map-

ped in Figure 3B may in fact correspond to motor responses.

Having identified several clear examples of granule cells that

responded to just one of the sensory or motor variables in this

experimental paradigm, we also wanted to investigate whether

information from multiple sensory and/or motor streams could

be encoded in individual granule cells. Although most granule

cells appeared to respond to just one sensory or motor variable,

our analyses revealed the presence of a small number of granule

cells responding to both a sensory and motor-related stimulus

(Figures 4C and 4D; see Supplemental Experimental Proced-

ures). We hypothesized that these might be multimodal granule

cells, capable of encoding (and integrating) multiple streams of

sensorimotor information. We again used a regressor-based

approach to determine what kinds of information putative multi-

modal granule cells could be encoding.

Correlations of granule cell activity signals across planes with

regressors for sensory stimuli andmotor activity revealed granule

cells that coded for a single sensory stimulus (motion or shock) in

addition tomotor activity (Figures 4E and 4F). These granule cells

could be identified by our methods because they appeared to

combine information from these different streams in a relatively

linear manner, resulting in high-correlation coefficients for both

a sensory and motor regressor (Figure 4F). Furthermore, the

contribution of different regressors to the overall signal could

be attributed to individual peaks in the granule cell activity trace

(Figure 4F). Across all behaving experiments (for which we could

unambiguously identify motor-related signals), only three combi-

nations ofmultimodal responseswere seen in the populations, all

for motor activity and an additional single sensory stimulus:

shock; forward motion; or reverse motion (Figures 4E and 4F).

Even in these multimodal granule cells, it appears that the pre-

sentation of a simple stimulus is sufficient to drive spiking (Fig-

ure 4F). Coincident stimuli from different modalities are therefore

not necessary for these cells to reach threshold, as has also been

demonstrated for sensory responses in granule cells in mice [40].

Surprisingly, no granule cells were found that coded for both

luminance andmotor activity despite the respectively large num-

ber of luminance-responsive granule cells that were identified

(Figure 3A). Furthermore, across all behaving (n = 5 fish) and

paralyzed population imaging experiments (n = 21 fish), we failed

to find any granule cells that appeared to encode more than one

type of sensory stimulus. Instead, all multimodal cells we identi-

fied encoded one sensory and one motor-related variable.

Although for practical reasons only two sensory modalities and

a limited parameter space was explored in these experiments,

these results suggest that multimodality in larval zebrafish

granule cells may be specialized for sensorimotor integration

rather than the integration of multimodal sensory signals.

Changes in Granule Cell Sensory and Motor
Representations Correlate with a Pharmacologically
Induced Change in Behavioral Sensitivity
In order to investigate the behavioral relevance of the granule cell

representations we observed, we developed a pharmacological

protocol that elicited swimming responses to previously neutral

changes in luminance. Both local unilateral (n = 8) and bilateral

(n = 7) injections of 10 mM bicuculline, a GABAA receptor antag-

onist, led to an immediate increase in luminance-evoked swim-

ming behavior (Figure 5A). This robust behavioral phenotype

emerged rapidly following injection and then behavior returned

to baseline following washout of the drug (Figure 5A). The

same behavioral phenotype was observed and maintained in

the continuing presence (20–30 mM bath application) of bicucul-

line (n = 29; data not shown).

Having established a paradigm to acutely change sensori-

motor behavior, we next performed two-photon functional imag-

ing of a single cerebellar plane in order to monitor the activity of

granule cells over this time course. We observed the widespread

activation of granule cells following bicuculline treatment that

correlated highly with the increased behavioral responsiveness

of fish to visual stimuli (Figure 5B). Many granule cells acquired

responses that correlated with motor activity whereas others

showed newly acquired responses to luminance (Figures 5B–

5D). Electrophysiological recordings also revealed that single

granule cells that were previously unresponsive to whole-field

flashes started to fire strongly in response to these stimuli

following bicuculline treatment (n = 3; data not shown). Although

these data are only correlational in nature, they suggest that

changes in behavior, here mediated by the acute pharmacolog-

ical blockade of GABAergic signaling in the cerebellum, are

accompanied by alteration changes in granule cell representa-

tions at both the single-cell and population level.

Cerebellar Granule Cells Show No Evidence for
Temporal Patterning in the Coding of Different Stimulus
Durations
Classical theories of cerebellar function predict that representa-

tions of a sensory stimulus should be both sparse across the

population as well as in time. In this context, granule cells effec-

tively act as leaky integrators whose time constants contribute to

temporal patterned output of mossy fiber input [18]. We hypoth-

esized that, by presenting simple visual stimuli (flashes) of

different durations, wewould elicit visual responses from granule

cells with a distribution of temporal patterns. Our calcium-imag-

ing experiments showed that responses were not sparse across

the population but could not resolve to what extent an individual

granule cell responds to a stimulus with a sparse, temporally

patterned spiking output. We performed cell-attached and

whole-cell recordings from granule cells in awake, paralyzed

larvae to examine visually evoked spiking and synaptic inputs

at high temporal resolution.

Contrary to the expectation that we would find diverse tempo-

ral patterning across both stimulus durations and different

granule cells, we instead found that granule cells responded to
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changes in luminance in a highly stereotyped manner with no

evidence of temporal patterning. This was true for both lumi-

nance-excited (Figures 6A and 6B) and luminance-inhibited cells

(Figures 6C and 6D). Both types of luminance-responsive

granule cells also produced bursts of spikes during moving grat-

ings that were fixed to the frequency of luminance transitions in

either a forward or backward direction (Figures S5A–S5C),

showing that their stereotyped responses to luminance were

not altered by motion.

Looking across all recordings from luminance-excited cells,

we see an average temporal profile of increased firing activity

that begins following a short latency delay (<100 ms) and peaks

several hundredmilliseconds after stimulus onset (Figure 6B, left

panel; n = 9). Firing rates remain elevated relative to baseline until

stimulus offset, at which point they return to pre-stimulus levels

within several hundred milliseconds (Figure 6B, right panel).

Luminance-inhibited granule cells, in contrast, showed a

reduction in firing rate during flash stimuli from already low base-

line rates to almost zero (Figures 6C and 6D, left panel; n = 6);

however, this population may in fact be underestimated due

to a floor effect: the difficulty in resolving small changes in

firing rate from cells with an already low baseline activity. Our

Figure 5. Changes in Granule Cell Representations Correlate with a Behavioral Change in Sensitivity to Sensory Stimuli

(A) Upper-left trace: probability of a behavioral response to visual stimuli in the ten trials immediately following injection of 10 mM bicuculline, a GABAA receptor

antagonist, into the cerebellum (n = 11). The average behavior is shown with shaded SE. Note that no electrical stimulus was presented in this subset of

experiments. Lower-left trace: behavioral responses in these same animals recover as bicuculline washes out. Lower-right trace: sham injections into the

cerebellum failed to elicit any increase in luminance-evoked behavior. Upper right: example epifluorescence micrographs showing the extent of the bicuculline

(with rhodamine) injections. The scale bar represents 100 mm. The shaded region in behavioral traces indicates the SE.

(B) Heatmaps from the same imaging plane through the granule cell layer in a 7-dpf GR152:gal4; UAS:GCaMP6s fish showing the change in pixelwise correlations

to luminance (upper) and motor (lower) regressors following the addition of bicuculline. The scale bar represents 50 mm. Colored circles indicate example granule

cells analyzed in subsequent panels.

(C) Heatmaps of activity from (i) two example granule cells that change their responses following the addition of bicuculline. The upper cell, gc 1, becomes less

responsive to luminance and more responsive to motor activity, whereas the bottom cell, gc 2, becomes newly responsive to luminance and motor activity.

Location of granule cells is shown in (B). (ii) Heatmap showing the behavioral responses over the experiment.

(D) The plotted change in regressor over trials for the two example granule cells, color coded for the two example cells as in (Ci). The gray bar indicates the

presence of 30 mm bicuculline.
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electrophysiological recordings revealed an interesting addi-

tional feature of luminance-inhibited granule cells, the presence

of a post-stimulus rebound increase in firing (Figures 6C and 6D).

The firing rate rebounded strongly in a period several hundred

milliseconds following stimulus offset, to a maximum firing rate

that scaled with longer periods of inhibition as determined by

stimulus duration (Figure 6D).

Whereas the firing rates of luminance-excited and inhibited

cells did not further increase or decrease, respectively, beyond

500 ms, rebound spiking in the latter group reached firing rates

that increased linearly with stimulus duration (Figure S4D).

Further whole-cell electrophysiological analyses of these cells

is needed to determine whether the post-inhibitory rebound is

due to intrinsic or synaptic properties, but this may be one way

in which either the representation of a stimulus can be expanded

in time following stimulus offset or the duration of the preceding

flash may be decoded by measuring the magnitude of the

rebound.

Additional cell-attached recordings were obtained from

granule cells with other response profiles, including forward-

motion-excited (n = 5) and shock-excited (n = 6) cells (Figure S5).

The spiking of cells to their preferred stimulus within a response

type was highly stereotyped with respect to temporal patterning,

tuning preference, latency to the first spike, and change in gain of

firing during their preferred stimulus (Figure S5). The temporal

profile of these responses were furthermore consistent across

repeated trials for a given granule cell (Figure S6).

In order to examine the temporal patterning of inputs to

granule cells in more detail, we obtained a whole-cell recording

from a luminance-excited granule cell while presenting whole-

field flashes of ten different durations, ranging from 50 ms to

5 s (Figure 6E). The frequency of excitatory synaptic input to

Figure 6. Granule Cells Do Not Exhibit Temporal Patterning

(A) Top: cell-attached electrophysiological recordings from a luminance-excited granule cell showing its response to whole-field flashes over five repeated trials.

Bottom: average firing rate across all trials (n = 12 trials).

(B) Averaged population firing rate for the six durations of red flash stimuli from cell-attached recordings of luminance-excited granule cells (n = 9 cells) aligned to

stimulus onset (left) and stimulus offset (right).

(C) Same as for (A) but showing responses from an example luminance-inhibited cell (n = 21 trials).

(D) Same as for (B) for the luminance-inhibited granule cells (n = 6 cells). See Figure S4 for additional electrophysiological recordings and analyses from lumi-

nance-, motion-, and shock-responsive cells.

(E) Whole-cell patch-clamp recording from a luminance-excited granule cell held at �65 mV. The upper trace shows an overview of responses to red flashes of

varying durations. (i) Expanded view from the upper trace shows baseline activity. (ii) Expanded view from the upper trace shows the sustained increase in

synaptic currents during a 1-s red flash.

See also Figures S5 and S6.
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this cell is low at baseline but increases strongly in response to

whole-field flashes. The temporal patterning of the synaptic input

during stimulus presentation closely matches the firing patterns

seen in the cell-attached recordings as well as recordings from

other granule cells [10, 17]. These data support previous obser-

vations that the relationship between granule cells depolarization

and spiking output is fairly linear during low-intensity sensory

activation [14, 15]. In summary, our electrophysiological data

show that luminance-responsive granule cells can encode the

presence of a visual stimulus, such as a whole-field flash, by

increasing or decreasing their firing rate over this same duration

but do not produce further temporal patterning.

DISCUSSION

Granule Cell Population Recordings in the Behaving
Animal
Decades of cerebellar research led to an intricate understanding

of cerebellar anatomy and considerable knowledge about the

physiological properties, including synaptic plasticity, of the

principal cell types. In parallel with these studies, elegant the-

ories of how cerebellar circuits carry out motor control and

learning have been proposed [1–3]. In particular, a central tenet

of cerebellar theory proposes that the role of the granule cell

layer is to produce a sparse, high-dimensional, temporally

patterned recoding of incoming mossy fiber signals. Our large-

scale functional imaging of the cerebellar granule cell population

in the awake, behaving zebrafish instead reveals a dense, low-

dimensional representation of sensory and motor information

that together with electrophysiological data shows no evidence

of temporal patterning. Instead, many granule cells are strongly

driven to fire in a stereotyped manner by a preferred sensory

or motor stimulus.

Granule Cell Representations Are Sparse and Low
Dimensional
The notion that granule cell representations should be sparse

has pervaded theories of cerebellar function. At a population

level, a sparse-dispersed code is one in which many neurons

are available yet only a small subset is active in response to a

given stimulus and different stimuli activate different subsets

[41]. However, establishing population sparseness requires the

monitoring of activity throughout the whole population of neu-

rons. Our experimental stimuli explored a limited parameter

space within only two sensory modalities in addition to motor-

related inputs, yet our imaging results show that a large percent-

age of the overall population of granule cells responds to a given

stimulus. However, in agreement with the idea that representa-

tions are dispersed across the population, we do find that the

overwhelming majority of granule cells respond to a single stim-

ulus in our experiments and thus belong clearly to one functional

‘‘subset’’ of the population.

The large number of luminance-responsive granule cells is un-

expected given the expectation of sparse coding in the cere-

bellar input layer (but see [42]) and the lack of a behavioral

response in larval zebrafish to our presentation of whole-field

flashes. Nonetheless, from larval stages, zebrafish do show a

robust preference for light areas over dark and produce a startle

response following large, abrupt changes in light intensity [36].

This suggests that relatively simple visual information, such as

luminance levels, have a high ethological relevance for the larval

zebrafish. In accordance with this, a red flash has been success-

fully used as a conditioned stimulus to drive behavior in associa-

tive learning in zebrafish larvae [30]. Although the sparseness of

representations in the zebrafish cerebellum may change during

further development, our findings provide evidence for dense

representations of sensory and motor information at a stage in

which the zebrafish cerebellum is needed for sensorimotor

adaptation and associative learning.

A different notion of sparseness applies to an individual neu-

ron’s activity, that of lifetime sparseness [41]. For a neuron to

be sparse in this sense, it should be strongly activated in the

presence of its preferred stimulus but otherwise fire only rarely.

It has been shown that granule cells have a very low basal firing

rate but can fire readily with single presynaptic mossy fiber acti-

vation, allowing granule cells to relay incoming sensory or motor

information to downstream Purkinje cells with high fidelity [40].

Our experiments reveal granule cells with a range of low to mod-

erate baseline firing rates that switched to firing at relatively high

frequencies in response to their preferred stimulus, suggesting

that these response profiles indeed showed lifetime sparseness.

Granule Cells Do Not Exhibit Temporal Patterning
The extremely high stereotypy of responses across granule cells

as measured by both electrophysiology and calcium imaging

suggests that these cells may not exhibit diverse temporal

patterning in response to simple stimuli, in contrast to observa-

tions in some other systems [43]. Instead, granule cell spiking un-

der the conditions of low to moderate sensory stimulation in our

study may faithfully follow the timing of mossy fiber excitation as

has been shown in the responses of mammalian granule cells to

somatosensory stimulation [14, 15]. More work is needed to

characterize the physiology of mossy fiber inputs to granule cells

in order to understand how incoming information is transformed

by or represented in granule cells.

Certainly, if all luminance-responsive granule cells encode

luminance parameters in the same stereotyped way, it is not

clear how sensorimotor calibration/adaptation would proceed.

Nonetheless, because larval zebrafish are capable of visually

guided motor adaptation [29, 44] and cerebellar-dependent

associative learning of a visual stimulus [30], this suggests that

motor learning can nonetheless occur within this framework.

Granule cells in the zebrafish cerebellum may produce tempo-

rally patterned responses in other experimental paradigms, at

later developmental stages or after a given stimulus acquires

behavioral relevance. Having characterized the responses of

granule cells in the naive animal to relatively simple, low-dimen-

sional stimuli, we now have a basis from which to explore

possible higher-dimensional representations that could be

engaged in motor adaptation and learning in the awake,

behaving zebrafish.

A Small Number of Granule Cells Show Multimodal
Responses that May Preferentially Integrate Sensory
and Motor Information
In our study, most granule cells have activity across trials that

correlates very well with a single sensory or motor variable in

our experimental paradigm but rarely multiple modalities of

Current Biology 27, 1288–1302, May 8, 2017 1299



those tested. Indeed, the anatomy of these granule cells, which

have on average of just two or three claws (rather than the typical

four found acrossmammalian species), suggests that the oppor-

tunities for multimodality in these cells’ inputs is more limited.

Although our electrophysiological recordings could not exten-

sively sample across the entire cerebellum, our population imag-

ing experiments found only a small number of multimodal

granule cells despite the wide coverage. We could not probe

all sensory modalities in this study; however, it is revealing

that, of the large number of granule cells that we observed that

responded to changes in luminance, not a single one of these

cells also had responses to shock or to motor activity, despite

these responses also being present in large numbers of granule

cells. It has been previously shown that multiple inputs to granule

cells can carry information from the same sensory modality,

thereby increasing the signal to noise ratio for a particular stim-

ulus [14, 15]. This apparent trade-off between coincidence

detection and robust signal processing may explain why func-

tional studies have found the percentage of multimodal granule

cells to vary greatly depending on the specific cerebellar region

and modalities being tested [11, 15, 45].

We found no granule cells that were responsive to more than

one type of sensory stimulus presented, yet we nonetheless

identified some granule cells that encode information about

both sensory and motor information by using sensory stimuli

that were carefully titrated to make it possible to disambiguate

these variables in the responses. We believe that the motor-

related activity observed here resembles a motor efference

copy that is sent to the granule cell layer [46], althoughwe cannot

rule out a contribution of lateral line or mechanosensory inputs.

We are only just starting to understand which aspects of motor

output are encoded in the activity of cerebellar neurons,

including granule cells [17]; however, our findings raise inter-

esting considerations about how granule cells may carry out

sensorimotor coordinate transformations by simultaneously

coding for sensory and motor variables [47]. Our pharmacolog-

ical experiments furthermore revealed large changes in

sensorimotor representations in granule cells during a pharma-

cologically induced behavioral sensitization, representing the

first step toward characterizing how sensorimotor variables

specific for both innate and newly acquired behaviors are en-

coded in the cerebellum. These findings provide evidence for

sensory and motor integration in single granule cells but in gen-

eral suggest that the zebrafish cerebellum may be better suited

in this context to reliably transmit sensory or motor-related sig-

nals than perform coincidence detection. Future work exploring

responses to a broader set of sensory stimuli in the larvae or us-

ing anatomical methods to mapmossy fiber inputs to single cells

will allow us to better characterize the degree to which multimo-

dality is a common property of granule cells in the zebrafish

cerebellum.

Maps and Topography
The mapping of granule cell proprioceptive and tactile receptive

fields using classical electrophysiology suggested the presence

of a ‘‘fractured’’ somatotopic map present in the cerebellar input

layer [48], although it is unclear whether these maps are actually

present under physiological conditions [49]. Due to the difficulty

of recording sensory responses from the cerebellum in the

awake animal, there is little knowledge of the fine-scale mapping

of other sensory modalities, such as vision or audition across the

granule cell layer. Here, we reveal a map of activation in the

granule cell layer, where responses to different modalities are

clustered within subregions of the input layer. Matsui et al. [27]

have previouslymapped Purkinje cell activity during the optomo-

tor (OMR) and optokinetic responses (OKR) in the larval zebrafish

cerebellum, revealing loci of activity in distinctive rostromedial

and caudal areas of the cerebellum, respectively. In keeping

with these findings, our results show that the parallel fibers of

granule cells responding to forward-moving stimuli (that evoke

OMR) pass through the medial cerebellum. Furthermore, our

functional imaging revealed many active putative presynaptic

parallel fiber terminals in this area that could contact Purkinje

cell dendrites. These converging results support amodular orga-

nization of the larval zebrafish cerebellum where distinct regions

may be involved in controlling different sensorimotor behaviors.

We also show that a clear lateralization of information is pre-

sent within the visually responsive subregion, suggesting that

incoming mossy fiber afferents are ordered with respect to the

visual world. Nevertheless, as all retinal ganglion cell axons in ze-

brafish cross the midline and the granule cell visual receptive

fields are not purely contralateral, this indicates that the cere-

bellum receives visual information that has already undergone

a certain level of spatial processing. This work provides a func-

tional map of visual-, shock-, and motor-related input to the

granule cell layer and underscores a need to understand the

mapping of diverse presynaptic inputs onto individual and

potentially multimodal granule cells.

Outlook
In summary, by leveraging the possibilities offered by larval ze-

brafish as a vertebrate model organism, in this study, we were

able to monitor the activity of most cerebellar granule cells in

an animal while it performed a sensorimotor behavior. By char-

acterizing the responses at a population level, we were able to

observe that these neurons are highly organized according to

sensory stimulus, visual receptive field, and behavioral relevance

of the stimulus. Our results reveal representations that are dense

at the population level and at the individual level show little to no

temporal patterning at a stage when the larval zebrafish is

capable of performing cerebellar-dependent sensorimotor

adaptation and learning. As the zebrafish cerebellum matures,

we may expect structural and functional changes in these cir-

cuits with concomitant changes in sparseness, multimodality,

and temporal patterning [50]. In particular, the characteristics

of granule cell codingmay change to support the growing behav-

ioral complexity of the animal. Although the study raises many

questions, we believe that it provides valuable insights that will

help us understand the sensorimotor transformations that occur

at the granule cell layer and in the vertebrate cerebellum as a

whole.

EXPERIMENTAL PROCEDURES

Amix of Tuepfel long-fin (TL) wild-type strain aswell as the following transgenic

lines were used for experiments: Tg(gSA2AzGFF152B), Tg(gSAIzGFFM765B),

Tg(gSAG6A), Tg(gSAIGFF23C), Tg(SAGFF(LF)128A), Tg(hspGFF57A),

Tg(SAGFF(LF)157B), and Tg(hspGFFDMC90A), acquired from M. Hibi and K.

Kawakami [32]. All experiments were performed using larvae at 6 and 7 dpf
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in accordance with approved protocols set by the Max Planck Society and the

Regierung von Oberbayern. Anatomical labeling, behavior, functional imaging,

electrophysiology, and data analysis are described in Supplemental Experi-

mental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

six figures, and three movies and can be found with this article online at

http://dx.doi.org/10.1016/j.cub.2017.03.029.
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Figure S1. Detailed morphology of individual granule cells and transgenic populations. Related to 
Figure 1. 
Ai-v) Example additional dendritic morphologies of twenty granule cells are grouped by somata location 
and axonal projection (refer to Figure 1 for information on abbreviated anatomical regions). Truncated 
parallel fibers in the detailed morphology are indicated by asterisks. Scale bar = 10 microns. The traced 
parallel fiber projections (shown in black) for these cells and others with somata in the same region are 
morphed to a common reference anatomy (shown in grey). Scale bar = 100 microns for the parallel fiber 
overviews. B) Z-projections of confocal stacks from transgenic lines labeling the granule cells used in our 
experiments. Morphologies were obtained from (clockwise, starting at upper left) N= 6, 5, 3, and 2 fish. 
Scale bar = 100 microns. C) Dendritic morphology of two granule cells in the CCe at three developmental 
time points showing the stability of dendritic claw number and overall morphology. Scale bar = 10 
microns. D) Tilted view showing pan-neuronal GCaMP6f in the zebrafish brain in grey (the moon-shaped 
optic tecta are very salient). The cerebellum has a stereotypical tri-layered configuration where the 
granule cell layer (green) sends parallel fibers to the molecular layer, where they contact the dendrites of 



the Purkinje cells (magenta). Inferior olivary neurons (red) also provide inputs to the Purkinje cells. Scale 
bar = 100 microns. E) Composite whole-field image from a cell-attached electrophysiological recording of 
a granule cell. A large granule cell population is labelled by GR90:gal4;UAS:GFP (in green), the pipette 
(with intracellular solution containing sulforhodamine dye) is labelled in magenta, and the bright-field 
anatomy is shown in grey. Scale bar = 20 microns. F) Whole-brain imaging of fish expressing GCaMP6s 
in granule cells provided datasets such as the one shown here that can be easily segmented functionally 
by using local fluorescence correlations. All the significantly active voxels for one experiment are shown 
here at three different roll angles: 0 degrees (from above) showing parallel fibers, 30 degrees and 180 
degrees (from below) showing granule cell somata (see also Movie S1). Scale same as for (B). 
  



 

 
 
Figure S2. Automated segmentation of granule cell somata from whole-brain imaging data. 
Related to Figure 2. 
A)  Anatomical image of one imaging plane through the granule cell layer. B) Same plane with automated 
anatomical segmentation of granule cell somata indicated by red circles. In this plane, 252 cells were 
segmented. Scale bar = 50 microns. 
 
  



 
 
Figure S3. Electrophysiological recordings of spiking in granule cells show activity patterns 
corresponding to those obtained in functional imaging. Related to Figures 2 and 3. 
A) Average granule cell firing rates in response to the stimuli presented (see Figure 2A) from four cell-
attached electrophysiological recordings. These plots are color-coded to reflect activity that corresponds 
to different response types. B) Left, the recordings in (A) convolved with a kernel that mimics the 
GCaMP6s kinetics. Right, example granule cell activity traces from functional imaging show very similar 
responses as convolved granule cell spiking.  
 
  



 
 
Figure S4. Detailed examination of response profiles within a cluster. Related to Figure 3. 
A) The average response profile is shown for the seven granule cell clusters labelled as for Figure 3A. B) 
Each column shows the z-scored activity traces from one hundred randomly selected cells belonging to 
the cluster shown in (A). C) Left, based on their shared functional increase in activity when luminance 
increases, we group the two clusters of luminance-excited cells together in this study. Right, anatomical 
clustering of these two profiles separately (equivalent to the combined red cluster in Figure 3B) shows 
differences in location, with the smaller, magenta cluster more medially-located.  
 



 
 
Figure S5. Granule cells show stereotyped temporal responses within a stimulus modality. 
Related to Figure 3 and Figure 6. 
A) Upper panel, cell-attached electrophysiological recordings from a luminance-excited granule cell 
showing its response to stimuli over five repeated trials. A 500 ms period following the shock stimulus is 
blanked to remove the stimulus artifact. Lower panel, average firing rate of this granule cell across all 
trials. B) Same as for (A), instead showing an example luminance-inhibited cell. C) The relationship 
between burst frequency and grating speed in all luminance-responsive cells shows that these bursts 
depend on the frequency of the moving bars and not their direction of motion (n=9 luminance-excited; n=6 
luminance-inhibited). D) Left, cells with luminance-excited responses saturate both their average and 
maximum firing rate with increasing stimulus duration beyond 200-500 ms. Right, cells with luminance-
inhibited responses show a saturating decrease in average firing rate with increasing stimulus duration 
beyond 200ms however rebound excitation following inhibition increases linearly with longer durations. 
Data are represented as mean ± SEM and are fit with least-squares nonlinear curves or a straight line as 



appropriate. E) granule cell locations from all electrophysiological recordings mapped onto the reference 
anatomy and color-coded according to response profile (see Figure 3 for details). Scale bar is 100 
microns. F) Same as for (A), instead showing an example forward motion-excited cell. G) Averaged 
population firing rate and H) Speed tuning curves for all electrophysiological recordings from motion-
selective cells (n=5). Mean ± SEM across all fish is displayed in color. i)  Same as for (A), instead 
showing an example shock-excited cell. J) Average firing rate in response to the shock stimulus from all 
cell-attached recordings of shock-excited granule cells (n=6). The population average is shown in black 
and appears to have multiple peaks due to the variability in the timing of an individual cell's response, 
which may reflect experimental variability in the placement of the electrodes relative to the cell being 
recorded. K) The first spike following preferred stimulus onset occurs with an average latency of several 
hundred milliseconds for luminance- and shock-responses, but with a much longer latency for cells that 
respond to forward motion. Grey center lines show the means; box limits indicate the 25th and 75th 
percentiles; whiskers extend 1.5 times the interquartile range from the 25th and 75th percentiles; data 
points are plotted as open circles. n = 9, 6, 5, 6 sample points. L) The mean baseline firing rate and firing 
rate of each cell within its category of preferred stimulus is plotted from cell-attached electrophysiological 
recordings (preferred stimulus indicated in each subplot). Mean ± SEM across groups are plotted in the 
panel at the right. 
 
 
  



 
 
Figure S6. Granule cell responses generally show low variability across trials.  Related to Figure 6.  
Ai) Heatmap of normalized activity for an example granule cell of the indicated response profile imaged 
over several planes. The number of planes (equivalent to the number of trials) is indicated. Aii) Spike 
raster plot for an example granule cell with a similar response profile recorded from for several trials 
(indicated). B-E) Same as for (A), with the exception that two recordings are shown for D (shock-excited 
cells) and none for E (no electrophysiological recordings from reverse motion-excited cells were 
obtained). F) The number of spikes evoked by the preferred stimulus is plotted for the four 
electrophysiological recordings in A-D (open circles). The linear fits for the trend in spike number across 
trials for all cells are plotted as a solid line. Data is color-coded according to the preferred stimulus for 
each cell.   



Supplemental Experimental Procedures 
 

Zebrafish maintenance 
Zebrafish (Danio rerio) were maintained at 28˚C on a 14hr light/10hr dark cycle using standard protocols. 
All animal procedures were performed in accordance with approved protocols. A mix of Tuepfel long-fin 
(TL) wild type strain as well as the following transgenic lines were used: Tg(gSA2AzGFF152B), 
Tg(gSAIzGFFM765B), Tg(gSAG6A), Tg(gSAIGFF23C), Tg(SAGFF(LF)128A), Tg(hspGFF57A), 
Tg(SAGFF(LF)157B), and Tg(hspGFFDMC90A), acquired from M. Hibi and K. Kawakami [S1]. All 
experiments (with the exception of those for single-cell labelling, see below) were performed using larvae 
at 6 and 7 dpf. 

 
Single-cell labeling 
Labeling of individual granule cells was achieved by using either DNA microinjection, single-cell 
electroporation, or by crossing a gal4 driver with a sparse UAS reporter line. For DNA microinjection a 
plasmid containing 14 repeats of upstream activating sequence driving membrane-tagged tagRFP (a.k.a. 
Fyn-tagRFP) at a concentration of 40 ng/µl and  35 ng/µl tol2 mRNA was injected into transgenic 
Tg(gSAIGFF23C); UAS:GFP zebrafish [S1] at the one-cell stage with a fine glass electrode and a 
picospritzer (Parker Hannifin, Fairfield, NJ). For single-cell electroporation, 5-6 dpf Tg(gSA2AzGFF152B); 
UAS:mCherry larvae were embedded in 1.5% low melting point agarose, anesthetized with tricaine, and 
granule were electroporated using a confocal microscope (LSM 780, Carl Zeiss, Germany) as described 
previously [S2]. Briefly, a fine borosilicate glass electrode with filament (final tip diameter ~ 1 µm) was 
filled with plasmid DNA pCS2-GAP43-GFP construct (provided by Isaac Bianco) at concentration of ~1 
µg/µl in distilled water and manipulated through the tissue to a target fluorescent granule cells with a 
micromanipulator (Sutter Instruments, Novato, CA). 1 - 3 square trains of electric pulses with frequency of 
200 Hz, duration of 1s and magnitude of 20-30 V were applied to inject DNA constructs into a single cell 

using an Axoporator 800A (Molecular Devices, Silicon Valley, CA). Finally, single-cell labelling was also 
achieved by crossing fish from a Tg(gSA2AzGFF152B); UAS:GFP line with a sparsely-expressing 
UAS:ChR2-mCherry line. 
Results of single cell labeling were imaged in anaesthetized larvae at 6-7 dpf and 11-12 dpf with a 
confocal microscope (LSM 700 or LSM 780, Carl Zeiss, Germany). Additional imaging of dendritic 
morphology from 20-22 dpf fish was also carried out in fixed tissue as previously described [S3]. Briefly, 
80 μm vibratome sections were cut from fixed 20-22 dpf fish embedded in blocks of gelatin/albumin and 
stained with a chick anti-GFP primary antibody (GTX13970 GeneTex) followed by Alexa Fluor-488 
secondary antibodies (Invitrogen). Low-magnification stacks were acquired to visualize the span of 
parallel fibers, and higher magnification was used to visualize dendritic morphology of labeled granule 
cells. Single granule cells were traced and skeletonized, and the background noise was removed with 
Simple Neurite Tracer plugin for FIJI [S4]. Tracings from different larvae were morphed to each other 
using Computational Morphometry Toolkit (see “Anatomical registration” section in Online Methods). 
Dendritic claws were manually quantified by three independent counters. See  

 
Stimuli 
For the main experiments in the paper, three types of stimuli were presented. The first type consisted of a 
whole-field flash of red light (luminance, in lux: flashes, 15; dark background, 2; whole-field gratings, 7). 
Six different durations were presented (in ms: 50, 100, 200, 500, 1000, 3000). The second type of 
stimulus consisted of square wave gratings of period 1 cm. Three speeds were presented drifting in the 
caudal to rostral direction (3, 10 and 30 mm/s) and one speed in the rostral to caudal direction (-10 
mm/s). The third stimulus type consisted of a 25 ms, 2 mA electric shock that was delivered from an AM 
Systems via two platinum coated wires immersed in the bath on either side of the fish. The three different 
stimulus blocks (flashes, gratings, shock) were presented in a randomized order in each plane, and the 
order of different durations and speeds within a block was also randomized. Stimuli in all programs were 
controlled by Labview (National Instruments). 
For additional experiments investigating visuotopy (Figure 3D,E), we divided the visual field into fifteen 
equal vertical (rostro-caudal) and horizontal (left-right) red bars which were flashed on, one at a time, for 
one second before returning to darkness. The contribution to the receptive field from pixel (i,j) in the visual 
scene, where i denotes the row and j the column was then estimated to be R(i,:)R(:,j), where R(i,:) 



denotes the normalized fluorescence response when flashing the i-th horizontal bar and R(:,j) denotes the 
response measured when flashing the j-th vertical bar.  The centroid of the receptive field was then 
calculated as the center of mass (the average of position weighted by the response magnitude across 
pixels).  To estimate the size of the receptive field, pixels were considered as active if their contribution to 
the receptive field was above 50% of the maximum contribution. 

 
Pharmacology 
Zebrafish larvae were embedded in agarose in a 35mm petri dish containing extracellular (Evans) 
solution. The skin overlying the cerebellum was carefully removed with a glass electrode. Bicuculline 
(Sigma) diluted in E3 solution was either bath applied (20-30 µM) or injected at a higher concentration (10 
mM) directly into one or both halves of the cerebellum using a glass electrode and low pressure. Low 
molecular weight rhodamine dye was included in the electrode to visualize the extent of the injection. 
Sham injections (E3 solution only) were performed in the same way. 

 
Electrophysiology 
Standard cell-attached and whole-cell recordings [S5] were performed in 6-7 dpf larvae. Briefly, 
pigmented wild-type or transgenic zebrafish larvae with GFP-positive granule cells were paralyzed in 
bath-applied buffered 1 mg/ml alpha-bungarotoxin (Cayman Scientific, Concord, CA) and embedded in 
1.5% low melting point agarose in a 35mm petri dish. External solution was composed of Evans solution 
(134 mM NaCl, 2.9 mM KCl, 2.1 mM CaCl2, 1.2 mM MgCl2, 10 mM glucose, 10 mM HEPES, pH 7.8 with 
NaOH). Patch-clamp electrodes for neuron recordings (6-18 MΩ for whole-cell recordings, 10-25 MΩ for 
cell-attached recordings) were pulled from thick-walled borosilicate glass with filament and were filled with 
the following intracellular solution (in mM): 105 D-gluconic acid, 16 KCl, 2 MgCl2, 10 HEPES, and 10 
EGTA, adjusted to pH 7.2, 290 mOsm [S5]. Sulforhodamine B (0.1%) was also included in the 
intracellular solution to visualize the electrode and to label cells during whole-cell recordings. The skin 
overlying the cerebellum was carefully removed with a glass electrode prior to recording. 
Standard cell-attached and whole-cell recordings were obtained using an Axopatch Multiclamp 700B 
amplifier, a Digidata series 1550 Digitizer, and pClamp 9 software (Axon Instruments, Molecular Devices). 
Data were acquired at 8-20 kHz and low-pass filtered at 2-10 kHz using Clampex 10.2. Cells in cell-
attached configuration were recorded in current clamp mode. Cells in patch-clamp configuration were 
held in voltage clamp near their resting potential at -65 mV. Visual stimuli (see above) were projected at 
60 frames per second across the bottom of the petri dish containing the zebrafish larva using an Asus 
P2E microprojector and a red long-pass filter (Kodak Wratten No.25). Blank traces were also interspersed 
with stimuli to obtain baseline responses. 
Electrophysiological analyses were performed offline with Clampfit 10.2 software (Molecular Devices) and 
Matlab (Mathworks, Natick MA). Cell-attached traces were high-pass filtered at 10 Hz and reshuffled into 
time blocks preceding and following each stimulus within a trial. Spikes were counted by setting a 
threshold for the trace for each cell. For shock-excited cells, semi-automated template matching of spike 
waveforms was used to pick out spikes from the shock artifact. For other cells, a 200-300 ms period 
following the shock was blanked where the artifact would have crossed the spike threshold but no spikes 
were present. Spike times were convolved into average firing rates using a moving 10 ms bin. The 
windows over which to measure stimulus-evoked changes in firing rate differed between response 
profiles. For luminance- and motion-excited cells we took a window from stimulus onset to 200 ms 
following stimulus onset, so that we caught the peak in firing for both short- and long-latency flash 
durations. For luminance-inhibited cells, we used a window only during the stimulus itself, and a separate 
window from stimulus offset to 200 ms following offset to calculate firing rates for the rebound excitation. 
Shock-excited cells had a window of stimulus onset to four seconds following offset. Baseline firing rate 
was calculated using a window from two to four seconds following flash offset and corresponded to 
periods where no visual stimuli were present (black background). The latency to the first spike following 
stimulus onset was calculated up to a maximum latency of one second for luminance-responsive cells to 
whole-field flashes and up to five seconds for moving gratings. 

 
Functional imaging 
6-7 dpf nacre (mitfa-/-) transgenic zebrafish larvae with GCaMP6s or 6f expressed in granule cells were 
embedded in 1.5-2% agarose prior to imaging. In some experiments, fish were paralyzed with alpha-



bungarotoxin. For experiments in which behavior was tracked, fish were not paralyzed and the agarose 
around the tail, caudal to the pectoral fins was cut away with a fine scalpel to allow for movement. The 
dish was placed onto a light-diffusing screen and imaged on a custom-built two-photon microscope. A Ti-
Sapphire laser (Spectra Physics Mai Tai) tuned to 900 nm (920 nm in behaving experiments) was used 
for excitation. Larval brains were systematically imaged while presenting visual and mild shock stimuli. 
Visual stimuli (see above) were projected at 60 frames per second using an Asus P2E microprojector and 
a red long-pass filter (Kodak Wratten No.25) to allow for simultaneous imaging and visual stimulation. 
Full frames were acquired every 368.44 ms in four, 0.83-µm-spaced interlaced scans, which results in x 
and y pixel dimensions of 0.83 µm. Imaging stacks were acquired in the dorsal to ventral direction. After 
all stimuli were shown in one plane, the focal plane was shifted ventrally by 1 µm and the process was 
repeated. Exceptionally, stimuli were presented in a non-randomized order to one fish in order to make 
Movies S2 and S3. Non-paralyzed fish were illuminated from above using infrared light-emitting diodes 
(850 nm wavelength) and the fish was imaged from below at up to 200 frames per second using an 
infrared-sensitive charge-coupled device camera (Pike F032B, Allied Vision Technologies). Tail image 
data were streamed to hard disk using software written using National Instruments LabView. 
 
Image analysis 
Image analysis was performed with MATLAB (MathWorks). Any experiments during which the fish drifted 
significantly in z were stopped and the data discarded. To correct for drift or small movements of the fish, 
each image frame was aligned, using translation only, to the average image of that z-plane, and 
consecutive z-planes were aligned to each other with subpixel precision. Occasionally, vigorous 
swimming movements caused a large motion in a single frame. Such isolated frames that could not be 
aligned with a correction of less than two pixels were removed from analysis. ROI segmentation for 
functional analyses was performed using automated algorithms, based on local correlations between 
pixels (see [S6] for details). Tail image data giving positive and negative displacements of the tail from 
baseline were processed to yield a vigor measurement that is greater than zero when the fish is moving 
[S7]. When stimuli were presented in a randomized order, the stimulus sequence was saved and image 
frames (both calcium imaging and tail tracking) were reshuffled following alignment. In order to quantify 
the number of total granule cells, we performed image segmentation on the summed GCaMP6 
fluorescence across the place following the approach followed in analyzing tectal responses in Akerboom 
et al. [S8] and discussed in Rose et al. [S9] but extended to three dimensions. 
 
Anatomical registration 
Image registration for two-photon imaging and anatomical tracings was performed using the free 
Computational Morphometry Toolkit (CMTK; http://www.nitrc.org/projects/cmtk/) [S10]. For each fish, an 
anatomical stack was computed by summing the GCaMP6 (two-photon imaging) or GFP (anatomical 
tracing) fluorescence. One of the these stacks was chosen as the reference brain, and nonaffine volume 
transformations were computed to align each fish’s anatomical stack to this reference stack using the 
affine and warp functions. These transformations were then used to transform individual ROIs from each 
fish into the frame of reference of the reference brain, allowing us to compare the anatomical location of 
ROIs from different fish. The precision of this registration is less than 5 microns from the transformed 
brains to the reference brain [S6]. 

 
Data analysis 
Cluster analysis of the traces was performed both for individual fish and across all granule cell profiles for 
a given brain region using the k-means method. The optimal number of clusters was selected by 
inspection of silhouette plots for different numbers of clusters. Different numbers of clusters were tested, 
and the number of 7 clusters was selected manually because it gave the clearest separation of functional 
classes. Clustering with larger numbers produced inconsistent fracturing of anatomical structures or 
segregation of clusters across fish (e.g. GCaMP6f versus 6s signals), suggesting that true functional 
classes were being artificially divided. Electrophysiological recordings were manually assigned to these 
same clusters based on their average firing rate across stimuli. To make color-coded images from 
functional imaging data (Figure 3B,C, Figure S3D, Figure 4D), each pixel was assigned a hue based on 
the cluster assignment of the most prevalent granule cell profile located at that pixel. In the event of a tie 
(<0.05% of cases), the winner was chosen randomly. Different anatomical regions were defined manually 



in the reference brain. Three-dimensional renderings (Figure 1C and Figure S1) were performed using 
the ImageJ 3D Viewer plugin. 

 
Regressors and correlation analysis 
Regressors for correlation analysis as described in Miri et al. [S11] were constructed from a set of 11 
sensory stimulus-related variables and one behavioral variable (tail motion). These were convolved with a 
kernel with an exponential decay based on the measured half-decay time for GCaMP6s (0.1796 s) [S12] 
to produce a set of predicted fluorescence traces and were compared with the measured fluorescence 
traces by correlation. Correlation analysis was performed for automatically segmented granule cells to 
identify the variable that best described the signal of individual granule cells. To assign voxels to a 
particular functional group, we required a threshold of at least 0.3 for the best absolute correlation 
coefficient. Based on comparisons with shuffled sets of regressors, this level of correlation rarely arises 
by chance and is therefore a conservative choice for detecting voxels with behavioral correlation. Granule 
cells that had high regressor correlation coefficients across different sensory and/or motor variables were 
selected as putative multimodal cells for further investigation. The activity of these cells was assessed 
manually to look for calcium signals that were consistently correlated with all occurrences of that 
particular sensory and/or motor variable. 
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In contrast to reflexive behaviors, in which motor responses are 
immediately elicited after sensory stimuli, the process of making 
a decision takes a course over time scales that are orders of mag-

nitude longer than action potentials. Because momentary sensory 
cues are often noisy and uncertain, to properly infer the state of the 
world, animals need to integrate sensory evidence over time. Once 
this accumulated evidence reaches a threshold, animals use this 
valuation to decide on the appropriate behavioral response. This 
‘evidence accumulation’ model1,2 accurately describes decision para-
digms involving multiple sensory modalities across various organ-
isms, including non-human primates3–6, rodents7–9, humans10–12 and 
fruit flies13. Many neurophysiological experiments have revealed 
activity related to this process in several brain regions3–9,14–17. 
However, the flow of information throughout these regions and 
their explicit involvement in the various steps of the decision-mak-
ing process are controversial and not fully understood18–21.

Here we present a new assay in larval zebrafish adapted from the 
well-established random dot motion (RDM) paradigm first used in 
primates14. In our case, the behavior was not trained; we relied on 
the innate optomotor response, which induces fish to align them-
selves and swim in the direction of perceived visual motion22,23. 
Because our assay did not involve operant conditioning, we were 
able to use it to isolate the neuronal correlates of untrained decision-
making, in which zebrafish larvae use noisy sensory cues to estimate 
the state of their visual environment and update this estimate with 
the continuous inflow of sensory evidence.

We found that turn latency, turn rate and accuracy were mod-
ulated as the stimulus strength was varied, and that both sensory 
and motor history affected the selection of the current behavioral 
choice. We performed whole-brain functional imaging experiments 
and used the framework of integration of sensory evidence to iden-
tify all neural activity relevant to the different stages of the decision-
making process that results in the binary choice of either left or right 
turning. These neural correlates were localized in several anatomi-
cal clusters distributed across the brain and were lateralized on the 
basis of stimulus direction. Neurons encoding momentary sensory 
evidence were concentrated in the midbrain region, adjacent to and 

including the pretectum, and medial parts of the reticular forma-
tion in the anterior hindbrain, whereas neurons that integrated sen-
sory evidence included lateral parts of the reticular formation, the 
dorsal raphe nucleus (DRN) and the IPN in the ventral hindbrain, 
the dorsal part of the pretectum, the dorsal thalamus and the torus 
longitudinalis in the midbrain and the habenula in the forebrain. 
The neural responses representing accumulated sensory evidence 
exhibited a continuous distribution of time constants, with differ-
ent units integrating evidence over varying time windows, which 
encompassed up to tens of seconds, reminiscent of units represent-
ing sensory history found in other decision-making studies7,8.

On the basis of the behavior and the results from the imaging 
analysis, we propose a model in which the sensory evidence vari-
able, which results from bidirectional integration, sets the behav-
ioral turning rate of the fish. This enables us to link the observed 
neuronal activity with the resulting behavior. An unbiased whole-
brain analysis revealed that most units that encode this behavioral 
turning rate are located in the IPN, which is a circular structure 
in the ventral midbrain–hindbrain boundary. This structure is an 
important integrative center of the limbic system24 and has been 
previously shown to correlate with locomotor- and navigation-
related variables in rodents25,26. We showed that activity in the IPN 
is lateralized and tracks the left and right turning rates reliably, and 
we discuss the possibility that evidence may be accumulated not in 
terms of sensory evidence but in terms of likely behavioral output.

Results
Larvae modulate their turning with increasing visual motion 
strength. To investigate whether larval zebrafish modulate their 
behavior when exposed to visual motion of varying strength, we 
presented freely swimming larval zebrafish with a coherent dot 
motion stimulus projected from below. Briefly, the coherence of the 
stimulus was controlled so that a fraction of dots, ranging from 0 to 
1, moved to either the left or the right of the fish, with the remain-
ing fraction moving randomly (Fig. 1a and Methods). The fish were 
tracked in real time, and a closed-loop assay27 was implemented such 
that the direction of the stimulus relative to the fish’s orientation  

Evidence accumulation during a sensorimotor 
decision task revealed by whole-brain imaging
Elena I. Dragomir   1,2, Vilim Štih1,2 and Ruben Portugues   1*

Although animals can accumulate sensory evidence over considerable time scales to appropriately select behavior, little is 
known about how the vertebrate brain as a whole accomplishes this. In this study, we developed a new sensorimotor deci-
sion-making assay in larval zebrafish based on whole-field visual motion. Fish responded by swimming in the direction of per-
ceived motion, such that the latency to initiate swimming and the fraction of correct turns were modulated by motion strength. 
Using whole-brain functional imaging, we identified neural activity relevant to different stages of the decision-making process, 
including the momentary evaluation and accumulation of sensory evidence. This activity is distributed in functional clusters 
across different brain regions and is characterized by a wide range of time constants. In addition, we found that the caudal 
interpeduncular nucleus (IPN), a circular structure located ventrally on the midline of the brain, reliably encodes the left and 
right turning rates.
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remained constant in time throughout a 12-s trial despite the fish 
turning (Fig. 1b and Supplementary Video 1).

Larval zebrafish swim in discrete motor events called bouts, 
which typically last several hundred milliseconds and are elicited at 
an average rate of 1 Hz. Over a 12-s trial, the total angle turned by 
larvae depended on the stimulus coherence and was larger in magni-
tude with increasing coherence (Fig. 1c, top). We divided all swim-
ming bouts into left turns, right turns and forward swims (Extended 
Data Fig. 1). Defining a correct turn to be one in the direction of the 
effective stimulus direction, the fraction of correct turns increased 
from 0.5 for no coherence to 0.8 for a fully coherent stimulus  
(Fig. 1c, middle). In addition, the latency to the first correct turn 
from stimulus onset became shorter as the coherency increased, 
from over 4 s at low coherences to just over 3 s for high coherences 
(Fig. 1c, bottom). These psychometric curves are reminiscent of 
those obtained in primate experiments where animals were pre-
sented with a similar stimulus in either forced-choice or response-
time tasks28, and they indicate that larval zebrafish react to RDM 
stimuli of increasing coherence as motion percepts of increasing 
strength. Improved turning accuracy was also apparent as the time 
and bout number progressed within the trial (Fig. 1d), and these 
results were corroborated in a set of experiments where we provided 
pulses of coherent motion for 7 durations ranging from 1 to 10 s 
(Extended Data Fig. 2). These results indicate that the turning rate 
depends on the time that the coherence-based stimulus has been 
shown. This behavior is consistent with a temporal accumulation of 
evidence but not with a fixed time delay between sensory stimulus 
and motor output. Even if the stimulus set a stochastic mechanism 
to generate bouts, one would observe a discrete jump in the behav-
ioral turning rate occurring when the rate parameter change was 

implemented and not a gradual change in turning rates. Second, the 
results show that the evidence accumulated was not reset when per-
forming a bout and lead us to examine the dependence on sensory 
and motor history more closely.

Behavior depends on both sensory and motor history. Having 
observed that larval zebrafish turn more when presented with 
RDM of increasing coherence, we investigated whether this turn-
ing behavior depended only on the current stimulus or whether it 
displayed any dependence on either the previous stimulus shown 
or the previous motor output produced. We therefore repeated the 
experiment with a reduced set of coherences (0.3, 0.6 and 1), with 
trials such that every coherence transition was probed an equal 
number of times. Dividing all trials for a given coherence accord-
ing to the previous coherence showed that the turning behavior 
depended not only on the current coherence but also on the direc-
tion (and not the magnitude) of the previous coherence (Fig. 2a,b 
and Extended Data Fig. 3a,b). This effect is particularly noticeable 
after trial transitions of opposite direction coherences, where fish 
exhibit an inertia-like behavior and only start turning in the cor-
rect direction after about 2 s. To investigate whether this history 
dependence comprised both a sensory and a motor effect, we fur-
ther divided trials in which the current coherence was the same 
into four categories, depending on whether the coherence and the 
last bout in the previous trial was in the same or opposite direc-
tion. Trajectories elicited by the same stimulus transition differed 
significantly from each other during the current trial, depending 
on whether the previous motor output had been in one direction 
or the other. The same inertia-like behavior was also present if 
only the turn preceding the stimulus transition was in the opposite  
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Fig. 1 | turning behavior of larval zebrafish is dependent on motion stimulus coherence and displays accumulation of evidence. a, Schematic of visual 
motion stimulus, displaying three different examples of motion strengths: 0, 0.5 and 1 coherence. b, Top: schematic of the behavioral closed-loop setup 
used for freely swimming experiments. Bottom: example traces (in gray) of cumulative angle turned in a 12-s trial for an individual fish during trials with 
coherence of 0.6 to the left. The average is shown in black. c, Top: the total angle turned as a function of coherence averaged across fish. Middle: fraction 
of correct turns (in the direction of presented coherence). Bottom: latency (time from stimulus onset) to first correct turn as a fraction of stimulus 
coherence. d, Fraction of correct turns as a function of time (top) and trial bout number (bottom), for different coherence categories, averaged across all 
fish (n = 55 fish; 11,733 trials and 95,981 bouts). all error bars and shaded intervals denote s.e.m.
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direction, even if the stimulus direction remained the same (see, 
for example, the red solid and dotted lines in Fig. 2c and Extended 
Data Fig. 3c). In addition, the fraction of correct first turns showed 
a similar dependency on previous motor output (Fig. 2d and 
Extended Data Fig. 3d). To describe and quantify the sensory and 
motor influences, we constructed a multivariate logistic regression 
model that defines the likelihood of observing a left turn versus 
a right turn based on both the coherence shown during previ-
ous bouts and the direction turned (see Methods for details). The 
significant sensory coefficients extended from the current to the 
previous three bouts, whereas the significant motor coefficients 
included the previous four bouts (Fig. 2e). Overall, our analysis 
showed that both sensory and motor history influence the current 
behavioral choice, corroborating results found in other decision-
making studies, where it was specifically shown that such biases 

can both improve and worsen the behavior, depending on whether 
the stimuli are in agreement or conflicting8,29,30.

Whole-brain imaging uncovers neuronal correlates. After quan-
tifying this behavior, we postulated that there should be neurons in 
the brain capable of integrating evidence for time scales on the order 
of seconds that would underlie the long latencies observed in Figs. 
1d and 2a,b. To locate the neural correlates related to this decision-
making process, we adapted our assay to a preparation in which 
the larval zebrafish had its head restrained yet was able to move its 
tail31 while it was being shown a reduced set of coherence stimuli 
(Methods). This allowed us to monitor both neuronal activity and 
behavioral output on a trial-by-trial basis. Although the behavior 
observed was not as reliable as in the assay with freely swimming 
fish, it still showed a clear lateralization dependent on the stimulus 
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shown (Extended Data Fig. 4), and the psychometric curves for both 
the fraction of correct turns and the latency to the first correct turn 
(Extended Data Fig. 4e) mimicked the ones observed in the setup 
with freely swimming fish (Fig. 1d). The brains of 22 animals were 
imaged comprehensively under a scanning two-photon microscope 
(Extended Data Fig. 5). The raw data were processed to remove 
motion artifacts and identify and segment active neurons on the 
basis of local correlations in an unbiased way (Methods). All units 
were registered to a reference brain, and their regions of interest 
(ROIs) were included in all further analysis (for a total of 2,170,552 
ROIs in 22 fish). Regressors were built to identify whether any of 
the neurons had signals that could be associated with the decision-
making process, which is usually regarded as a three-step process 
consisting of (i) the transformation of the sensory stimulus into a 
momentary sensory drive; (ii) the integration of this sensory drive 
in time as accumulation of evidence; and (iii) a threshold-crossing 
stage resulting in the behavioral choice (Fig. 3a and Extended Data 
Fig. 6a). In particular, we looked for signals that correlated with the 
presence of visual motion, the coherence (motion strength) of the 
stimulus and the integration of this sensory evidence in time, either 
unilaterally or bilaterally.

Neural activity representing the presence of visual motion (irre-
spective of direction or stimulus magnitude) was found in the optic 
tectum, whereas signals that were graded according to the coherence 
magnitude were found in multiple areas, including the dorsal left 
habenula, pretectum, reticular formation (in the anterior hindbrain), 
DRN and IPN (Fig. 3b-d, Extended Data Fig. 6b and Supplementary 
Video 2). Except for the habenula and optic tectum, leftward and 
rightward visual motion was lateralized and located on the left and 
right side of the brain, respectively. In the pretectum, for example, 
we observed directional visual motion signals modulated by coher-
ence magnitude, in agreement with previous studies that showed 
similar activation in response to whole-field visual motion31–33. 
Motor-related ROIs corresponding to acute directional turns 
were also lateralized and found in the reticular formation (Fig. 3c,  
image vii), the lateral parts of the DRN, the tegmentum and the 
caudal part of the hindbrain (Fig. 3d and Supplementary Video 2).  
In the medial anterior region of the hindbrain, we also found graded 
sensory responses in regions previously identified with turning 
motor activity34–36. In addition to typically fast-rising responses that 
were graded by coherence, present mostly in the pretectum and 
reticular formation, some ROIs showed integrating-like activity pat-
terns, with slower rises, that were also dependent on the coherence 
magnitude. These tended to be clustered more medially and dorsal 
in the pretectum, dorsal thalamus and torus longitudinalis in the 
midbrain and the habenula in the forebrain and more laterally in 
the reticular formation, DRN and IPN in the hindbrain (Fig. 3c,d 
and Supplementary Video 2). Interestingly, the habenula, DRN and 
IPN, which are anatomically connected (see ref. 37 for a review), 
also showed a different category of stimulus-related responses, inte-
grating activity in a bidirectional manner: excitation for the pre-
ferred direction and inhibition for the opposite direction (Fig. 3c, 
images iv–vi). As shown explicitly in Fig. 3c, the integrating signals 
described did not arise from averaging step responses across mul-
tiple trials but were already present at the level of individual trials.

Mapping a decision-making model to the neuronal data. 
Theoretical frameworks proposed to understand this decision-
making process involved two integrators, one for each of the pos-
sible behavioral choices, which accumulate corresponding evidence 
in support of that particular choice38. These integrators may solely 
accumulate ipsilateral momentary sensory evidence or, in addi-
tion, may be inhibited by either contralateral momentary sensory 
evidence (the feed-forward inhibition model39) or the opposing 
integrator (leaky competing accumulator model40) (reviewed in  
(refs. 41,42)). A reliable distinction between these two architectures 

is not possible within the experimental paradigm we used (see 
attached notebook in the code repository), so we defined a general 
model architecture based on feed-forward inhibition to describe 
individual ROI responses. The model describes the activity of an 
ROI as the sum of leftward and rightward sensory streams. In each 
stream, the visual processing that leads from partially coherently 
moving dots to momentary sensory evidence is modeled as a power 
nonlinearity. This is subsequently integrated by units with time 
constants that are independent for the left and right streams and 
summed with weights that can be either positive or negative (Fig. 4a 
and Methods). This model can describe units that respond equally 
to all motion directions, units that respond to uni-directional 
motion in either a graded or an ungraded way and units that inte-
grate either uni-directional or bi-directional motion positively and/
or negatively (Fig. 4b). We fitted this model to the activity of every 
individual ROI and used the goodness-of-fit test to identify all brain 
regions that were involved in the decision-making process (Fig. 4c). 
Notably, this analysis was able to pinpoint relevant neuronal activity 
to a few anatomic locations, which we describe below.

From the five parameters (the power of the nonlinearity, as well 
as the weight and time constant for each side), we examine two 
derived parameters, namely the relationship between response to 
the two motion directions, expressed as an angle in the weight plane 
(Fig. 4d) and the dominant time constant (defined as the sum of 
the two integrator time constants weighted by the input weights). 
We observed a continuum of time constants that extended all the 
way into the tens of seconds. Interestingly, the widest range of time 
constants, including the longest ones, belonged to ROIs that were 
strongly excited by motion in one direction and slightly inhibited 
by motion in the opposite direction (Fig. 4d; between π/2 and 3π/4).

Because each ROI was fitted independently, we were able to 
investigate the anatomical distribution of the fitting parameters 
throughout the brain of the larval zebrafish. As shown in Fig. 4c,e, 
most units of relevance were found in the pretectum, thalamus, the 
hindbrain region around the reticular formation and the ventral 
hindbrain corresponding to the DRN and the IPN, in agreement 
with the regression-based analysis shown in Fig. 3. Responses dom-
inated by contralateral inhibition were located almost exclusively in 
the DRN, IPN and habenula (pink ROIs in Fig. 4d–f,h). As shown 
in Fig. 4f (rostral), responses in the pretectal region exhibited a con-
tinuous gradation from lateral/ventral responses corresponding to 
some bi-directional but mostly uni-directional excitation, to medial 
and dorsal responses that included modest contralateral inhibition. 
In agreement with Fig. 3, units that were more excited by rightward 
or leftward motion were almost uniquely found on the right and left 
side of the brain, respectively (Fig. 4g). ROIs with long time con-
stants (>5 s) were located in several brain regions (Fig. 4h), includ-
ing the dorsal and lateral hindbrain around the reticular formation 
and more ventrally in the DRN and IPN (Fig. 4h, caudal), the dor-
sal pretectum (corresponding to those units that included slight 
contralateral inhibition) (Fig. 4h, rostral), torus longitudinalis and 
habenula. We note that this is a comprehensive map: no other units 
throughout the brain exhibited activity related to visual motion in 
this experimental paradigm. These ROIs must therefore underlie 
the coherence-dependent behavior we observed and described in 
Figs. 1 and 2.

Generation of motor output. The ROIs we have described so far 
relate to sensory evidence and its integration. As shown in Fig. 1c  
and expanded on in Fig. 2, the evidence integrator is not reset upon 
performing a turn. The question still remains as to how the inte-
grated evidence actually influences turning. It has been shown 
before43 that the initiation of forward swims when presented with 
optomotor stimuli of varying speeds can be to a certain extent mod-
eled as a Poisson process, whose rate is a function of the stimulus 
speed. We tested whether a similar mechanism could underlie the 
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generation of behavior in the present behavioral paradigm: the left 
and right turns were modeled as two independent Poisson processes 
whose rates are linearly modulated by the left and right integrator 
values, respectively. As shown in Fig. 5a, we combined two inte-
grator units already described in Fig. 4a (but now setting τL and τR 
to be equal) to encode the left and right turning rates, respectively 
(λL and λR), superimposed on a tonic baseline turning rate λB. The 
model was fit to reproduce the behavior observed during one of the 
two behavioral paradigms tested, and the synthetic trajectories gen-
erated show both qualitative and quantitative similarities to those 
found experimentally (Methods and Extended Data Fig. 7b). This 
same model was then applied to predict the turning rate expected 
during the stimulus sequence (Fig. 5b, first panel) presented in 
the imaging setup, during which the larvae were head restrained  
(Fig. 5b, second panel, and Methods). The freely swimming behavior 
expected when this stimulus is presented showed a very close agree-
ment with the model (compare the second and third panels in Fig. 5b)  
with very similar deviations from baseline occurring as a function of 
the coherence presented. For the head-restrained behavior (Fig. 5b, 
fourth panel), salient behavioral features were also similar, such as 
the predominant turning direction during each stimulus and relative 

turning frequencies. Nevertheless, the swimming in head-restrained 
zebrafish larvae is known to occur at a much decreased rate, which 
in our model could correspond to a decrease in λB and/or a reduced 
input to the turning integrators. This would result in an overall 
homogeneous decrease of turning rates (see gray line in Fig. 5b,  
second panel). Note that, in addition, the proposed mechanism can 
also explain why, even for very high coherences, fish will sometimes 
perform an incorrect turn. This is due to the stochasticity of the 
model and the fact that the baseline turning rate, determined by λB, 
is non-zero for both freely swimming and head-restrained behavior.

As shown in Fig. 5b (second panel), these units representing the 
turning rate display positive and negative deviations from a baseline 
activity depending on whether the sensory evidence coincides or not 
with the turning behavior they encode. In the parametrization from 
Fig. 4d, they must therefore lie around the value 3π/4 and should 
appear pink in Fig. 4d–g, such as ROIs 3 and 4 from Fig. 4b, which are 
reproduced at the bottom of Fig. 5b. Most of these ROIs are found in 
the hindbrain (Fig. 4f, caudal section). In addition, as already shown in 
Fig. 4g, all ROIs that are predominantly excited by leftward coherence 
are almost uniquely located on the left side of the brain and similarly 
for the rightward coherence. This allows us to establish a functional 
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circuit model (Fig. 5c) where rate-encoding units in the anterior hind-
brain receive ipsilateral excitatory and contralateral inhibitory inputs 
that must originate in the pretectum, the only visual sensory region 
that is active in a coherence-graded fashion. We note that the circuit 
model in Fig. 5c is not an anatomical model but a functional one, and 
that inhibitory inputs to the turning-rate–encoding neurons could 
anatomically arise from neurons in the contralateral hindbrain.

Using our whole-brain imaging dataset as a functional screen, we 
revisited the regions in the medial ventral anterior hindbrain, which, 
as pointed out above, were colored pink in Fig. 4 and could correspond 
to turning-rate–encoding units. We found that the IPN, a structure 
located on the midline of the larval zebrafish brain, contained most of 
these units. We correlated the activity in this region with the left-turn 
rate and found that activity in the caudal IPN was markedly lateral-
ized, with activity on each side being highly correlated for ipsiversive 
turns and anticorrelated for contraversive ones, whereas this pattern 
was switched in the more rostral IPN (Fig. 5d). This is confirmed by 
partitioning this region into six segments: deviations from baseline in 
the activity in the pink segment closely tracked the deviations from 
baseline in the left-turning rate (cf with Fig. 5b) and similarly for the 
green segment and right turns (see also Supplementary Video 3).

It is unclear how these turning rates are transformed into motor 
output. To start addressing this question, we computed the motor-
triggered neuronal activity (MTNA) averages for all the ROIs iden-
tified in our behavioral analysis from the imaging experiments, 
for the three behaviors we observed, namely left and right turns 
and forward swims (for simplicity, only left turns were considered 
in Extended Data Fig. 8, except in e). We defined a set of activ-
ity profiles of interest, which we referred to as motor triggers. For 
example, the triggers in Extended Data Fig. 8a corresponded to neu-
ronal activity that increased or decreased in a step-up fashion upon 
motor output; the trigger in Extended Data Fig. 8d corresponded 
to neuronal activity that started ramping down several tens of sec-
onds before a motor event, after which it was instantaneously reset; 
and the trigger in Extended Data Fig. 8e corresponded to neuronal 
activity concurrent with a motor event such as would be expected 
from a motor neuron. We correlated the activity of each individual 
MTNA with these motor triggers and kept ROIs that had a high 
correlation coefficient (>0.7). Note that we did not find a significant 
number of ROIs with MTNAs that were highly anticorrelated with 
the trigger in Extended Data Fig. 8d—that is, integrated activity 
that was reset upon motor output. Analyzing ROIs with prominent 
leftward-turning MTNAs (Extended Data Fig. 8a–d) revealed func-
tional classes corresponding to different activity patterns, which 
were anatomically lateralized: for each pair, the ROIs with the green 
trigger were mainly located on the right side of the brain, whereas 
those with the magenta trigger, which perfectly anticorrelated with 
the green trigger, were located on the left side of the brain. Note that 
the motor triggers we displayed corresponded to leftward turns, 
and a mirror symmetric configuration was observed for rightward 
turns (data not shown). The pronounced lateralization of functional 
types suggests that an intricate interplay of cross-midline excitation 
and inhibition is behind the translation of the behavioral turning 
rates observed in the IPN into locomotor output. Interestingly, ROIs 
with significant MTNAs were enriched in the telencephalon, which 
contains, among other structures, the homologs of the basal gan-
glia. In addition, most of these ROIs were located in the regions 
already identified as being of interest in Fig. 4, namely the reticular 
formation and the DRN, suggesting that these regions are involved 
not only in the integration of sensory evidence but also in the gen-
eration of motor output. Further research is needed to uncover the 
exact circuit mechanism that underlies this generation of behavior.

Discussion
In this study, we showed that visual motion of varying strength 
modulates turning behavior in larval zebrafish, with improved 

accuracy and decreased latency corresponding to higher coherences 
of the stimulus presented.

We also showed that larval zebrafish perceive RDM stimuli as 
visual motion of varying strength and that they react to them by 
turning in such a way that, when the coherence is higher, they per-
form more correct turns and take a shorter time to perform a correct 
turn. The time scales involved in this behavior ranged from several 
seconds in the freely swimming case to ~ 10 s when head restrained. 
When performing a whole-brain imaging screen for neuronal activ-
ity that could underlie the behavior observed, we found neurons 
with these time constants in the pretectum and anterior hindbrain 
and further identified the IPN as the only region in the brain to 
encode the left and right behavioral turning rates.

Although this assay bears some similarities to those performed 
in primates, some important differences need to be highlighted. In 
most perceptual decision-making assays in primates and rodents, 
the accumulation of evidence is automatically reset upon perform-
ing a behavioral choice, yet this is not what we observed here. We 
think that this can be understood by considering that, in those tasks, 
the behavior arises from training aimed at obtaining a reward. After 
obtaining this reward, the accumulated evidence has no subsequent 
importance. In our assay, on the basis of the reflexive optomotor 
response, fish swam in the direction of perceived motion and were 
able to align with this motion despite swimming in discrete bouts44. 
In our assay, larvae were trying to continuously estimate the state of 
their visual surroundings to behave accordingly, and evidence accu-
mulated before a bout will still be relevant in estimating the state 
after the bout. In essence, the external state or evidence variable 
was encoded in the behavioral space as the most appropriate turn-
ing rate that should result given current evidence and beliefs. The 
time constants of the integrators involved in the behavior therefore 
reflect the temporal statistics of behaviorally relevant visual stimuli 
that larvae are exposed to. Our analysis shows that time constants 
much longer than those required to describe the behavior are also 
present in the zebrafish brain. We think that these may be involved 
in circuits required to modulate behavior in time scales ranging into 
the tens of seconds and may be called into play when considering 
reward, conditioning and other circumstances in which behavioral 
choice needs to be biased, such as the posterior–parietal cortex neu-
rons recently identified in rats7,8.

A second possibility is that these longer time constants are part of a 
continuum within a network, which has an effective time constant that 
matches that of the behavior. This, together with the various ranges of 
excitation and inhibition observed, is reminiscent of what has been 
previously described in the oculomotor network in the prepositus–
vestibular complex neurons (reviewed in (ref. 45)), which can encode 
a variety of velocity and position combinations with heterogeneous 
individual time constants. Although these oculomotor integrators 
of neuronal activity have been well studied in fish46–49, the neuronal 
activity we observed here reflects the temporal integration of external 
sensory evidence that directly drives behavior and may precede it by 
many seconds, as opposed to an internally generated efferent signal. 
We hope that future work will be able to reveal whether individual 
cell biophysical properties or emergent network features underlie the 
ability of these neurons to integrate in time. It is worth noting, though, 
that fish perform the optokinetic reflex to minimize retinal slip, and 
it is likely that the RDM stimuli we showed may also elicit some eye 
movements in addition to the locomotor activity we quantified.

In our study, we observed two main regions where sustained and 
integrated activity was present: the pretectal–thalamic region and the 
rostral hindbrain region. The pretectum, the analog of the mammalian 
nucleus of the optic tract, is likely to be involved in the visual aspect 
of this task32,33, whereas the hindbrain is likely to be directly respon-
sible for turning and swim generation35,36. Interestingly, our study 
showed that neurons in the dorsal region of the pretectum were able 
to integrate visual sensory drive in time, a feature that has not been 
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previously described. This modular architecture, schematized in our 
circuit model in Fig. 5c (see also (ref. 33)), could easily accommodate 
the addition of more turn-inducing stimuli from multiple modalities, 
and we hypothesize that the sensory drive, from regions analogous to 
the pretectum, will converge onto the same hindbrain turn generator.

Finally, our whole-brain functional screen, together with our 
modeling approach, uncovered the IPN as a site whose activity 
strongly correlated with the turning rate of the fish. This nucleus is 
interconnected with the left dorsal habenula and the DRN, struc-
tures that also contained units with long time constants and are 
known to be involved in reward-based modulation of behavior37. 
Notably, the IPN has also been implicated in a variety of deficits 
observed in navigation-based assays in rodents25,26. It is reassuring 
that this area, among others, is also acutely related to motor output, 
as shown by our motor–trigger analysis. We hope that this study 
will help inspire future research able to further unravel the integra-
tion between sensory stimuli and internal states and how they come 
together to form behavioral representations and actions.
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Methods
For information relating to how sample sizes were determined and replication, 
randomization and blinding of experiments, please refer to the Life Sciences 
Reporting Summary that accompanies this article.

Zebrafish lines. All experiments were performed with 6–7 days post-fertilization 
(dpf) zebrafish larvae (Danio rerio) of yet undetermined sex. The Tuepfel long-
fin (TL) wild-type strain was used for freely swimming behavioral experiments. 
The nacre (mitfa−/−) transgenic zebrafish lines Tg(elavl3:GCaMP6s+/+)50 and 
Tg(elavl3:GCaMP6f+/+)36 were used for functional imaging experiments. All 
animal experimental procedures were approved by the Max Planck Society and the 
local government (Regierung von Oberbayern).

Freely swimming behavioral experiments. Fish were placed in an 8.8-cm 
Petri dish, on top of a diffusive screen mounted on a clear acrylic support, and 
illuminated from below using an array of IR LEDs. Freely swimming larvae were 
monitored using a high-speed camera (Mikrotron) running at 200 fps, equipped 
with a lens (Edmund Optics) and an IR band pass filter. The visual stimuli were 
displayed from below using an Asus P2E microprojector and a cold mirror 
(Edmund Optics). Custom-written software in LabView was used for tracking 
of the fish swim dynamics and for generating the closed-loop RDM stimulus. 
The stimulus consisted of randomly moving dots, a fraction of which moved 
coherently to the left or to the right of the fish. The stimulus was constructed such 
that dots could not move in the same direction after three consecutive frames, 
thus avoiding that fish would follow individual dots. Specifically, every dot was 
assigned a random lifetime shorter than 250 ms. At every frame, dots whose 
lifetime had expired were removed, and new ones with random lifetimes were 
generated. Several dots were randomly selected to move in a common direction, 
determined by the coherence. These dots were shifted by the time difference 
multiplied by the velocity in the true direction of the stimulus, whereas the others 
were shifted with the same velocity in a random direction. Dots that exited the 
field of view were redrawn on the opposite end with toroidal boundary conditions. 
For details, see https://github.com/portugueslab/stytra/blob/master/stytra/
stimulation/stimuli/kinematograms.py class RandomDotKinematogram. Fish 
orientation was constantly monitored, and, after each turn, the direction of the 
coherent dot motion was immediately updated, such that its direction remained 
to the left or right of the fish. The coherence, which ranged from +1 (left) to −1 
(right), in increments of 0.1, was maintained constant for a 12-s trial before being 
immediately changed to a new value in a next trial. A set of stimuli consisted of 22 
trials, containing coherences of all magnitudes in both directions, and presented 
in a randomized order. Fish that did not complete at least five sets of stimuli were 
excluded from the analysis. In the fixed–transition experiments, trials contained 
only coherences of magnitude 0, 0.3 and 0.6, immediately following one another. A 
set of stimuli contained all possible combinations of transition involving coherence 
magnitude and coherence direction. Here, too, fish that did not complete at least 
five sets of stimuli were excluded from the analysis. Fish swim dynamics and 
behavioral analysis was performed with custom-written software in MATLAB.

Whole-brain imaging experiments. Larvae were placed in 3.5-cm Petri dishes 
and embedded in 1.5–2% agarose before imaging. The agarose around the tail, 
caudal to the pectoral fins, was cut away with a fine scalpel to allow for tail 
movement. The dish was placed onto an acrylic support with a light-diffusing 
screen and imaged on a custom-built two-photon microscope. A TiSapphire laser 
(Spectra Physics Mai Tai) tuned to 905 nm was used for excitation. Larval brains 
were systematically imaged while being presented the RDM visual stimuli. Visual 
stimuli (see above) were generated using a custom-written Python script and were 
projected at 60 frames per second using an Asus P2E microprojector and a red 
long-pass filter (Kodak Wratten No. 25) to allow for simultaneous imaging and 
visual stimulation. Full frames were acquired every 334.51 ms in four 0.83-µm-
spaced interlaced scans, which resulted in x- and y-pixel dimension between 0.51 
and 1 µm (varying resolutions here depended on field of view covered). Imaging 
stacks were mostly acquired in the dorsal-to-ventral direction and, for some 
fish (covering deep hindbrain areas), in the ventral-to-dorsal direction. Two 
types of experimental paradigms were used: one in which the stimulus sequence 
was randomized and coherences were separated by pauses of no motion, and 
another in which coherences directly followed one another, with no pauses, in a 
nonrandomized fashion. In the randomized paradigm, the set of stimuli used in 
imaging experiments consisted of coherences 0, 0.3, 0.6 and 1, in both directions, 
with a duration of 30 s, and separated by 10 s of pause (dots remained on the screen 
but were static). In the direct transition paradigm, coherences 0.8, 0.3 and 0 were 
probed, with no break in between, and sampling every possible transition between 
direction and coherence magnitude. After all stimuli were shown in one plane, the 
focal plane was shifted ventrally or dorsally by 2 µm (for some fish, 1 µm), and the 
process was repeated, with either the randomized sequence or direct transition of 
stimuli in each plane. Fish were illuminated from above using IR light-emitting 
diodes (850 nm wavelength), and the fish were imaged from below at up to 200 
frames per second using an IR-sensitive charge-coupled device camera (Pike 
F032B, Allied Vision Technologies). Tail movement was monitored using custom-

written software in Python. Fish that did not behave at least three times per plane 
were excluded from the analysis.

Head-restrained behavioral analysis. For the behavioral analysis presented in 
Extended Data Fig. 4, larvae were embedded in agarose, and the stimuli were 
presented while the behavior was tracked using Stytra51. For each bout, a laterality 
index was computed by adding the cumulative tail angle recorded for the first 
60 ms of the bout, as this was the time frame over which forward swims and turns 
differed most prominently34. For every fish, the histogram of laterality indices 
across all bouts in all conditions was plotted and fit with the sum of three Gaussian 
distributions, as shown in Extended Data Fig. 4c. This ensured that differences 
in the embedding and preparation were accounted for in a fish-by-fish basis. The 
two minima between the three peaks were chosen as the thresholds to distinguish 
between the three types of swim bout: forward and left and right turns. No fish 
were excluded from the analysis.

Image analysis. Image analysis was performed as previously described30.

Anatomical registration. Image registration for two-photon imaging was 
performed using the free Computational Morphometry Toolkit52(http://www.nitrc.
org/projects/cmtk/), as previously described31.

Regressors and correlation analysis. Regressors for correlation analysis31 were 
constructed from a set of sensory stimulus and motor-related variables. These 
were convolved with a kernel with an exponential decay based on the measured 
half-decay time for GCaMP6s (1.796 s) and GCaMP6f (0.4 s)53 to produce a set of 
predicted fluorescence traces and were compared with the measured fluorescence 
traces by correlation. Correlation analysis was performed for automatically 
segmented ROIs to identify the variable that best described the signal of individual 
neurons. To assign voxels to a particular functional group, we required a threshold 
of at least 0.5 for the best absolute correlation coefficient.

Computation of motor triggers. In Extended Data Fig. 7, we present the 
fluorescence of ROIs triggered on motor events (the motor-triggered fluorescence 
average), which we refer to as motor triggers. This can be computed because 
behavior was monitored during imaging. We defined a set of interesting features of 
neuronal activity that could be associated with motor activity. This set comprised 
the triggers shown in Extended Data Fig. 7, including the additive inverse of the 
trigger in 7d. The motor event can be a leftward turn, a rightward turn or a forward 
swim. All ROIs with a correlation value with the motor trigger greater than  
0.7 were included.

Model fitting. To explain the stimulus-related responses, we constructed a model 
based on the feed-forward inhibition integrator28. Since we frequently observed 
responses with different time constants for ipsi and contralateral excitation, we 
allowed independent integration of motion to both sides and took a weighted sum. 
The model is depicted in Fig. 4a and is described by the following equations:

τL
dIL
dt

¼ LsPL � IL

τR
dIR
dt

¼ RsPR � IR

a ¼ IL þ IR

where IL and IR are the levels of integrators, tL and tR are their respective time 
constants, L and R are the input stimulus weights, sL and sR are the current 
coherences to the left and right side, P is the power of the nonlinearity and a is the 
level of activity of the modeled unit.

Within the parameter space of this model are responses that are driven 
purely by momentary evidence, and no integration takes place (both τL and τR 
are around 0), responses which can be explained as a single integrator (τL and τR 
are equal) and responses to a single motion direction (either R or L weights are 
0). The model allows for a nonlinear response to motion coherence; however, 
by regularized fitting, we found almost no units where this nonlinearity was 
present. We fitted this model to all ROIs spanning more than one plane and 
retained those whose unexplained variance was smaller than 0.4 of the variance 
of the trace. The model was implemented as a function in the Julia language, 
with exact integration (as the system is linear after the input nonlinearity) and 
application of an exponential kernel with the GCaMP6s time constant. The model 
fit was optimized using the gradient-based BFGS method, as implemented in 
the Optim.jl Julia package54. Three-fold cross validation was used to determine 
the regularization parameter λ, which weighted a sum of the absolute values of 
the model features (weights, time constants, difference of time constants and the 
logarithm of the power of the nonlinearity). The code implementing the model 
and the fitting is in the supplied repository: https://github.com/portugueslab/
Dragomir-et-al-2019-modelfit.
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Poisson model for generation of turns. We can extend the proposed architecture 
to explain the turning behavior: the output of two symmetrically build modules 
(as in Fig. 4a) modulated linearly the deviation from the baseline rate of a Poisson 
process that initiates turns. We can determine all the parameters for this model 
from behavioral experiments. First, we used the data of turn rates for each 
coherence (Fig. 1d) to determine the steady-state parameters and the baseline rate 
of turns. This fixed the nonlinearity power P and the relative weights of inputs to 
the integrators in the contralateral or ipsilateral side. Then, from the transition 
experiments in Fig. 2a, we determined the three remaining free parameters: the 
angle of a turn and the time constants τI and τC. Equally good fits can be obtained 
for different choices of τI and τC, so we opted for the point in parameter space 
where the time constants are equal. This resulted in an even simpler model of 
turn generation, where instead of two Fig. 4 a modules, there was only one, with 
additional inhibitory connection to the contralateral integrator, where both of 
the integrators had the same time constant and directly modified the Poisson rate 
for the respective side. The values obtained for the model were a time constant, 
τ = 0.96 s, and a turning angle per bout of 58.27 degrees (although this value was 
relatively large compared to an usual turning angle; in this way, forward turns 
that were slightly biased to one direction or another were also accounted for, 
while keeping the behavioral rate consistent with other experiments). For details, 
see the notebook in the repository attached to this article: https://github.com/
portugueslab/Dragomir-et-al-2019-modelfit.

Generation of synthetic freely swimming behavior. In the experiments for freely 
swimming fish, all stimulus coherences from −1 to +1 in 0.1 steps were tested 
with random transitions. To generate the traces shown in Fig. 5b, we identified the 
transitions that appeared in the stimulus sequence shown in Fig. 5b and selected 
10 s of the pretransition behavior and 10 s of the post-transition behavior. This 
allowed us to construct an estimate of the expected behavior to this stimulus 
sequence for every fish tested.

Logistic multivariate regression model. To identify the dependence of the turning 
behavior on the current stimulus, the stimuli being presented during previous 
bouts and the motor output of the previous bouts, we set up a logistic multivariate 
regression model. This expressed the likelihood odds ratio as a sum:

log
PL
PR

 
¼ K þ

Xk

i¼0

αiCi þ
Xk

i¼1

βiBi

where Ci labels the stimulus being presented, Bi is the motor output of the previous 
i-th bout, K represents the bias and up to the k-th previous bout is considered. 
Rightward bouts were set to belong to category 2, leftward bouts were set to belong 
to category 1, rightward coherences were set as negative and leftward coherences 
were set as positive. We collected and used a dataset comprising 126,754 total 
bouts across 5,688 trials (lasting 30 s each) across 37 fish and fitted the model 
using the mrnfit routine in MATLAB for each fish and then averaged across fish. 
The results are shown in Fig. 2e. The only significant values found were K = 2.76, 
α0 = 1.96, α–1 = 0.36, α–2 = −0.22, α–3 = −0.17, β–1 = −0.97, β–2 = −0.34, β–3 = −0.20 
and β–4 = −0.09 (these are medians; means are: 2.66, 2.01, 0.40, −0.22, −0.18, −0.97, 
−0.42, −0.22 and −0.10).

To understand this equation, consider the following example. Keeping all 
other variables constant, what happens when we increase the coherence of the 
stimulus being currently presented from 0 (uncorrelated) to 1 (full motion to the 
left)? What changes is the value C0, from 0 to 1, so the ratio of the probabilities 
of having a leftward bout to a rightward bout—that is, the likelihood—changes 
by exp(1.96) = 7.1. Similarly, if the previous bout was rightward, ignoring 
everything else, the probability that this bout will be leftward will be exp(−1.94)/
exp(−0.97) = 0.38 times the probability that it will be to the right. In Fig. 2e, the 
motor coefficients were multiplied by −1 to coincide with the direction of the 
sensory coefficients.

Statistics. A two-tailed Wilcoxon signed-rank test was performed in Fig. 2e. 
Stimuli were randomized throughout except in the experiments shown in  
Figs. 4 and 5. Because different experimental groups did not exist, data collection 

and analysis were not performed with blinding to the conditions of the 
experiments. Data were not assumed to be normally distributed.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Processed imaging data are available on Zenodo (https://doi.org/10.5281/
zenodo.3453488). Original imaging data and behavioral data are available upon 
reasonable request from the corresponding author.

code availability
Code for Figs. 4 and 5 is available on GitHub (https://github.com/portugueslab/
Dragomir-et-al-2019-modelfit). Parts of the analysis can be explored online via 
Binder. Stimulus code is available as part of Stytra v0.8.22 (http://portugueslab.
com/stytra and https://doi.org/10.5281/zenodo.3451302), and explicit 
experimental protocols are available on GitHub (https://github.com/portugueslab/
Dragomir-et-al-2019-protocols). MATLAB code is available upon reasonable 
request from the corresponding author.
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Extended Data Fig. 1 | categorization of a turn. a, Two-dimensional contour plot showing the distance moved and angle turned averaged across all 51 fish 
when presented with coherence >0.5. Most swim bout events are clustered around 0 degrees, and represent forward swims, while lateralized turns begin 
around after 15 degrees. b, Number of left, right and forward swims as a function of stimulus coherence.
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Extended Data Fig. 2 | turning response to stimulus pulses. a, Schematic of experimental paradigm involving stimulus pulses. 6 seconds of coherence 0 
were followed by a pulse coherence 0.3, 0.6 or 1. The stimulus pulse lasted 1, 2, 3, 4, 6, 8 or 10 seconds. after the pulse is over 6 seconds of coherence 0 
were presented again. b, Forward swimming and turning rates for the three different coherences and the seven different pulse durations presented. The 
vertical grey lines denote pulse start and end. Instantaneous rates were computed by averaging over a 200 ms window. c, average behavioral rates for 
forward swimming (black), turning in the direction of the stimulus (red), and against the stimulus (blue) averaged over the whole pulse as a function of the 
total pulse duration. In dotted lines the average baseline rates are shown computed over the 5 second window from second 1 to second 6 right before pulse 
onset (see panel a).
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Extended Data Fig. 3 | see figure caption on next page.

NatuRE NEuRoscIENcE | www.nature.com/natureneuroscience



ArticlesNATUrE NEUroscIENcE

Extended Data Fig. 3 | sensory and motor history for coherences 0.3 and 1. a, Turning behavior during trials of coherence 0.3 (top) and 1 (bottom) as a 
function of the coherence presented during the preceding trial. Trajectories are split by both magnitude and direction of the preceding trial. b, Latency to 
first correct turn in trials of coherence 0.3 (top) and 1 (bottom) as a function of the coherence of the preceding trial. c, Turning behavior during trials of 
coherence 0.3 (top) and 1 (bottom) as a function of both the direction of the coherence presented during the preceding trial and the direction of the last 
turn in the preceding trial. Only preceding trials with coherence of magnitude 0.6 were included. d, Fraction of correct first turns during trials of coherence 
0.3 (top) and 1 (bottom) as a function of both the direction of the coherence of the preceding trial and the direction of the last turn in the preceding trial. 
Only preceding trials with coherence of magnitude 0.3 (top) and 1 (bottom) were included.
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Extended Data Fig. 4 | see figure caption on next page.
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Extended Data Fig. 4 | turning behavior of head restrained larvae. a, Example tail trace during a full head restrained experiment with the coherence 
stimuli sequence (positive and negative numbers represent coherences to the left and right direction, respectively). b, average tail traces of all bouts 
elicited during presentation of stimuli with coherence +1 (red), 0 (black) and −1 (green) for the fish shown in a above. Leftward turns, forward swims 
and rightward turns, which are the predominant behaviors during these stimuli presentations, can be clearly distinguished by computing the sum of 
the cumulative tail angle during the first 60 ms of the bout, which we refer to as the laterality index. c, Histogram of all laterality indices for the fish in a, 
showing a distribution with three peaks corresponding to left- and right-ward turns and forward swims. Thresholds can be imposed to distinguish between 
these behaviors, in this case −7.34 separates rightward and forward swims and 2.61 separates forward swims and left-ward turns. d, Individual histograms 
for all bouts elicited during stimulus presentations of the different coherences for the sample fish in a. e, Left: average fraction of correct turns (in the 
direction of presented coherence). Right: average latency (time from stimulus onset) to first correct turn as a fraction of stimulus coherence. averages 
over N = 18 fish; error bars denote SEM.
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Extended Data Fig. 5 | Brain regions sampled during imaging experiments. Sum of projection footprints along the three axes for all brains that were 
imaged and could be registered to the reference brain.
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Extended Data Fig. 6 | see figure caption on next page.
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Extended Data Fig. 6 | Full list of regressors used in imaging experiments. a, The regressors are constructed from the stimulus coherence shown and the 
tail movement recorded (both underlined) b, ROI maps color coded according to individual sensory and motor related regressors displayed in Fig. 3 (each 
regressor and corresponding thresholds for ROI shown here are displayed at the bottom). Each map has views from lateral left (left), dorsoventral (top 
central), lateral right (right) and rostro-caudal (bottom) ROI projections.
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Extended Data Fig. 7 | additional model fitting of neuronal data and behavioral prediction. a, Variance of ROIs explained by the model. The orange line 
is the cut of threshold for ROIs displayed in Fig. 4, chosen empirically to discard spurious fits due to artifacts. b, Simulated behavioral response of the 
integrator model (dashed line) to transitions in coherence and direction superimposed on data shown in Fig. 2a. The relative weights of excitation and 
inhibition and the nonlinearity P where extracted from data presented in Fig. 1c, whereas the time constant was extracted from behavioral data  
presented in Fig. 2a.
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Extended Data Fig. 8 | Motor-triggered neuronal activity. a, Left: motor triggers corresponding to stepwise increases (green) and decreases (magenta) 
concurrent with leftward turns. The average activity of all ROIs with correlation >0.7 with the corresponding motor trigger is superimposed in black. Right: 
anatomical location of the motor triggers throughout the brain. Ro – rostral, c – caudal, l – left, r – right and scale bar = 300 microns. b, c, Similar to a but 
for neuronal activity which ramps up or down after a left turn (b) or neuronal activity which has a maximum or minimum coincident with the left turn (c). 
d, Motor trigger corresponding to neuronal activity that decreases steadily and is reset upon a left turn. The number of ROIs with activity that increased 
steadily and was reset upon a left turn was negligible. e, all ROIs with activity coincident with a forward swim.
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Optic flow is one of the most salient visual stimuli for animals and in
particular the larval zebrafish. To perform the optomotor response, which
counteracts visual displacement, they have to estimate the direction in
which the world is moving. With whole-brain imaging, we examine the
locations where the directional optomotor signals are well represented. In
addition to the sensory areas, a midbrain structure - the interpeduncular
nucleus (IPN) contains parts tuned to all directions of motion, arranged
in a striking anatomical pattern. To find the sources of this patterning,
we performed imaging in several transgenic lines expressing a calcium
sensor in different anatomical lines that highlight the input axons from
the habenulae, the GABAergic neurons from inside the structure, and most
cell bodies. We found that the pattern of tuning cannot be explained by
the structure of the incoming axons, rather the activity is shaped by the
cells belonging to the nucleus. Using electron microscopy (EM), we found
cells of the IPN display a variety of branching patterns, consistent with
the tuning regions. Prominently, a group of cells in the ventral part form
4 columns with axonal (lateral) and dendritic (medial) arborizations with
tuned responses, where the dendritic tree shares the tuning direction of
the input axons while the axonal part is tuned to the opposite direction,
suggesting a role for axo-axonic inhibition. The presence of such synapses
has been determined also in the EM data. By monitoring behavior during
the imaging experiments, we confirm that this stimulus evokes biased tail
motion consistent with previous freely-swimming studies, however the
causal role of the structure remains to be determined.

Introduction

Whole-field motion is a stimulus that is of almost universal relevance
among sighted animals. It plays a role in a whole spectrum of behaviors,
from stabilizing reflexes to navigation. In the larval zebrafish the most
prominent response to this stimulus is the optomotor response: the ani-
mal aligning itself with the direction of perceived motion and swimming
along it1. The local motion signals, computed in the retina, are spatially 1 Orger et al., “Control of Visually Guided

Behavior by Distinct Populations of Spinal
Projection Neurons”.

and binocularly integrated in different brain regions, such as the pretec-
tum2,3. However, most investigations of this pathway have dealt with the 2 Naumann et al., “From Whole-Brain Data

to Functional Circuit Models”.
3 Yildizoglu et al., “A Neural Represen-
tation of Naturalistic Motion-Guided
Behavior in the Zebrafish Brain”.

behavior on the acute time scale, while there is growing number of stud-
ies indicating that fish are influenced by stimuli over longer timescales4,5.

4 Wolf et al., “Sensorimotor Computation
Underlying Phototaxis in Zebrafish”.
5 Dunn et al., “Brain-Wide Mapping of
Neural Activity Controlling Zebrafish
Exploratory Locomotion”.

A whole-brain screen in a previous study6, with only left- and right-

6 Dragomir, Štih, and Portugues, “Evidence
Accumulation during a Sensorimotor
Decision Task Revealed by Whole-Brain
Imaging”.

ward stimuli, indicated a special property of responses in the interpe-
duncular nucleus: the functional regions of interest found there had
bidirectional modulation of activity, corresponding to the modulation of
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freely-swimming turn rates. In order to investigate which other regions
have a good representation of whole-field motion, but are also potentially
involved in modulating these longer-timescale states, we performed a
whole-brain screen with lightsheet imaging. We confirmed that the in-
terpeduncular nucleus (IPN), a midbrain structure, has areas with tuned
responses to all directions of motion. Such a complete set of motion direc-
tion correspondences is present in only few brain regions.

Other lines of evidence recently highlighted the importance of this
structure in spatial behavior7, demonstrating that severing the habenula- 7 Cherng et al., “The Dorsal Lateral

Habenula-Interpeduncular Nucleus
Pathway Is Essential for Left-Right-
Dependent Decision Making in Zebrafish”.

to-IPN pathway impairs directional rule learning. We decided to investi-
gate the response properties to directional motion in the IPN in greater
detail, to distinguish which parts are directionally tuned, how the tuning
is distributed through different parts of the structure, and how it comes
about given what is known about the nucleus structure and its inputs. To
achieve this, we imaged the IPN in different transgenic zebrafish larvae in
a comparative fashion, while presenting directional motion stimuli to the
animal. Different parts of the neuropil displayed a precise and consistent
patterning of tuned regions, organized in large patches throughout the
whole three-dimensional structure. To find out the possible source of this
patterning, we reconstructed the IPN cells from electron microscopy data
and discovered striking correspondences of the arborizations patterns of
cells inside the nucleus to the functionally-identified regions. The activity
in the somata also displayed the full range of tuning directions. This evi-
dence together demonstrates the intricate functional geometry of the IPN,
the purpose of which remains to be discovered.

Results

The IPN is the only midbrain region that contains a complete map of op-
tic flow directions

Whole-field motion causes the optomotor response: the fish tries to align
itself to and follow the direction of motion. To probe the responses of
different motion directions we used a seamlessly-tiling pink noise texture
moved in 8 directions (Figure 1) at 10mm/s.

Figure 1: The stimulus and the 8 directions
of movement superimposed showing the
color encoding used thought the paper
(the stimulus displayed to the fish is
always monochromatic, at maximum con-
trast). For reference, the color encoding is
displayed on the footer of every page

The behavior (summarized in Figure 2) shows clear stimulus-dependent
bias in tail deflection on bout start. The tail deflection in freely swimming
fish is highly correlated with turning angle, and the embedded behavior
closely follows the results of the first study on turning in larval zebrafish8.

8 Orger et al., “Control of Visually Guided
Behavior by Distinct Populations of Spinal
Projection Neurons”.

left

forward

right

1
2

3
4

5 x baseline rate

Figure 2: Rates of different types of swim
events (forward swims and left and right
turns) depending on the direction of
motion. n=24 fish, the width of the bar is
SEM, and the baseline rate refers to the
baseline rate of all swim events (turns and
forward swims).

To probe which areas of the brain contain signals related to whole-
field motion, we performed whole-brain imaging in a pan-neuronal line
(elavl3:GCaMP6s) while displaying the previously-described stimuli drift-
ing for 10 s in each of the 8 directions, in a randomly permuted sequence.
To quantify where in the brain the information about the stimulus direc-
tions is well represented, we performed a decoding analysis. Using the
calcium signals in local patches, we decoded the stimulus direction from
the activity during the last 7 seconds of each stimulus presentation (in
order to ignore transient responses and find where the stimulus-relevant
activity is persistent). The training of the decoders was done on a low-
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rank decomposition of activity in overlapping spherical patches of 40μm
radius using the LGBM algorithm9. The patch centers were sampled in a 9 Ke et al., “LightGBM”.

isotropic grid in the reference brain10 coordinates, mapped to individual 10 Kunst et al., “A Cellular-Resolution Atlas
of the Larval Zebrafish Brain”.imaging experiments.

0.32

Weighted avg. stimulus decoding acc.

0.40 0.48 0.56

Figure 3: Decoding the accuracy of
stimulus assignment by using activity in
patches centered at the colored dots. The
accuracy was averaged in all locations
across at least 2 (out of 4) imaged fish.
The patch radius is equal to the distance
between the dots (40μm).

On Figure 3 we can see that besides the regions directly downstream of
the eyes (the optic tectum and the arborization fields) and the cerebellar
parts, the only region with higher accuracy of decoding is around the IPN
(in the middle of the 4th panel) and the nuclei raphe.

The directionality of the tuning is distributed across the whole brain
in patterns consistent across animals, with several prominent regions.
The leftward and rightward motion is clearly separated across the hemi-
spheres, as reported in many previous studies11,12. 11 Dragomir, Štih, and Portugues, “Ev-

idence Accumulation during a Sen-
sorimotor Decision Task Revealed by
Whole-Brain Imaging”.
12 Naumann et al., “From Whole-Brain
Data to Functional Circuit Models”.

Beyond that, we see activity tuned to forward and backward motion in
multiple regions, including the tectum, the habenulae, and prominently, in
a pattern of small patches, in the IPN.

100μm

Figure 4: Directional tuning of voxel
activity in one whole-brain imaging
experiment, mapped to the reference
space. The fish is facing forward, and
the motion directions are shown in the
upper-left corner. The habenulae, tectum,
pretectum and IPN are outlined. Due to
lower signal quality in ventral planes
(right) the registration to reference is
imperfect, resulting in the IPN not being
perfectly aligned.

This pattern is consistent across fish, and forms a pinwheel-like struc-
ture with tuning in all directions (as see in Figure 5), which matches with
the enhanced decoding performance using activity of this region.

The whole-brain experiments however cannot reveal the exact struc-
ture of the tuning patterns in the IPN, because of the pan-neuronal ex-
pression and significant resolution constraints of the lightsheet imaging
paradigm. To investigate the tuning patterns in detail, we imaged activ-
ity in several different lines with the calcium indicators expressing in
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Figure 5: Directional tuning in a plane
containing the IPN across 4 imaged fish.
The right panel is an inset of the left panel

cell bodies and processes in this region, and used electron microscopy
to investigate the possible neuroanatomical structures mediating these
responses.

Structure of the interpeduncular nucleus

The interpeduncular nucleus is a midbrain structure, located close to the
ventral boundary of the brain and bordered on the dorsal side by the
reticular formation13. It consists of a region of dense neuropil enclosing a 13 Morley, “The Interpeduncular Nucleus”.

group of cell somas (Figure 7). The cells in the center of the nucleus divide
it in a ventral IPN (vIPN) and dorsal IPN (dIPN).

rostr.

right

rostr.

dors.

Figure 6: Location of the IPN within
the larval zebrafish brain. The IPN is
higlighted in blue, the habenulae in red. A
few traced neurons from the Kunst et al.
atlas that originate in the habenuale and
terminate in the IPN are highlighted in
black.

One of the main sources of inputs to the IPN are the habenulae. Habe-
nular axons are densely labelled in the entire IPN neuropil, as it can be
seen in Figure 8. They leave the habenulae rostro-ventrally and extend in
the fasciculus retroflexus bundles (FR). From the FR, they partially decus-
sate and wrap around the IPN in a lateralized, asymmetric, and layered
fashion: the right habenula innervates mostly the vIPN, the left habenula
mostly the dIPN and the intermediate IPN14. Habenular axons have been

14 Aizawa et al., “Laterotopic Represen-
tation of Left-Right Information onto
the Dorso-Ventral Axis of a Zebrafish
Midbrain Target Nucleus”.

reported to be glutamatergic and cholinergic in zebrafish larvae15.

15 Hong et al., “Cholinergic Left-
Right Asymmetry in the Habenulo-
Interpeduncular Pathway”.

The space not covered by habenular axons in the IPN is entirely taken
by the central somas (Figure 8, center). They form a large plane in the
middle of the structure at the dIPN-vIPN boundary, and they are concen-
trated in a central triangular region in the vIPN. A large fraction of the
IPN cells are inhibitory, as they are labelled in a gad1b:GFP line express-
ing GFP in GABAergic neurons (Figure 8, left and Supplementary Figure
S1). Interestingly, while gad1b seems to express strongly in neurons in
the central group of somas, most of the somas in the vIPN are not gad1b
positive.

The rostral side of the dIPN is also bordered by a wall of densely
packed somas that seems to be mostly GABAergic. A fraction of them
are likely to be a part of the IPN microcircuit (see the next section). The
gad1b:GFP line labelling is denser in 4 symmetrical patches that tile the
rostral part of the vIPN, which we call gad1b columns (as visible in the
bottom right panel of Figure 8).
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horizontal view

frontal viewside view

dIPN

vIPN

cell core
gad1b columns

cell core

gad1b columns

20 μm

dors.

right

rostr.

Figure 7: Anatomy of the interpeduncular
nucleus. A dense neuropil region (light
purple and light blue for the dorsal and
ventral part) surrounds a core of cell
somata (cell core, in gray) and is delimited
in its dorso-rostral part by another region
dense with cell somata. The ventral IPN is
tiled by four regions of neuropil that are
densely labelled in a gad1b:Gal4-UAS:GFP
line (gad1b columns, colored).

Electron microscopy reveals precise arborization patterning

The morphology of neurons inside the zebrafish IPN has not been exten-
sively characterized. A single work reported morphologies from single
IPN neurons labelled via single-cell electroporation of IPN neurons, de-
scribing a wide range of variations in their arborization, but it could not
really resolve the axonal or dendritic nature of the observed processes,
and obtained data only from a limited number of neurons16. To gain a 16 Bianco et al., “Brain Asymmetry Is

Encoded at the Level of Axon Terminal
Morphology”.

more complete understanding of the morphology and connectivity of the
IPN, we turned to electron microscopy (EM). We commissioned tracing of
neurons whose somata were located in the central part of the IPN, using a
serial block-face electron microscopy (SBEM) dataset.

In the stack, the IPN encloses about 170 neurons. We analyzed the
morphology of 74 neurons chosen to sample homogeneously all regions
of the IPN (see Methods). The first striking feature of the IPN cells pop-
ulation is that their dendritic arborization tiles the IPN neuropil almost
completely, especially the vIPN. Moreover, no dendrites extended outside
the boundaries of this region (which in our IPN reference are defined us-
ing the localization axonal projections from the habenulae). Almost all
(71/74) neurons had an axon extending dorsally. A significant fraction of
these axons (32/74) then loop ventro-laterally, turning back toward and
eventually crossing the midline.

To dissect more carefully the diversity of cell types in the IPN, we
cluster them based on a similarity score calculated with the NBLAST algo-
rithm17. With this approach, we identifies ten clusters. Cells belonging to 17 Costa et al., “NBLAST”.

different clusters tile with their dendritic tree different regions of the IPN
neuropil. In some cases, the dendritic arbour was very precisely confined
to a specific region of the IPN for all the cells of a cluster (e.g. clusters 1, 4,
9). Interestingly, these regions overlapped significantly with the columns
described above from the GABAergic cells imaging. As observed above,
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20 μm

habenular axons
(16715:Gal4;UAS:GCaMPT6s)

cell somas
(elavl3:H2B-GCaMP6s)

inhibitory neurons
(gad1b:GFP)

rostral wall

dIPN

somata
plane

gad1b columns

vIPN

Figure 8: Confocal images of different
transgenic lines showing the anatomical
organization of cell somas and neuropil in
the IPN.

only cells of cluster 7 seemed to extend dendrites in the dorsal IPN; 5/5
cells of this cluster were found on the left side of the IPN, suggesting
that there could be some lateralization in the structure of this part of the
habenulo-interpeduncular pathway. For some clusters, the axon remained
outside the IPN after looping, targeting dorsal regions (cluster 1, 2, 3, 7,
8) or rostral ones (cluster 6). Other clusters had an axon that clearly re-
enters in the IPN (cluster 4, 5, 9), suggesting the presence of recurrent
connections within the structure.

The IPN neuropil activity is segmented and tuned

We used 4 different transgenic lines to compare the activity of dif-
ferent structures and cell types: The pan-neuronal elavl3:GCaMP6f,
elavl3:GCaMP6s and nuclearly-localized elavl3:H2B-GCaMP6s lines,
the 16715 enhancer trap line that marks the habenulae and their axons, as
well as the GABAergic-selective gad1b:Gal4 line.

Two-photon imaging of the pan-neuronal line activity, we could con-
firm the presence of robust representations of visual field motion direc-
tion, as observed in the whole-brain screening. While in the dIPN we
observed a smooth transition from a leftward motion-selective part (left
dIPN) and a rightward motion-selective part (right dIPN), the responses
in the vIPN formed an interesting pattern of motion direction tuning,
with approximately 6-8 patches of different tuning (Figure 10). These
tuned patches were roughly consistent in location across fish, with a mild
variability in the exact direction (Supplementary Figure S2).
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dors.

right

All clusters - dendrites

rostr.

right

dors.

caud.

All clusters - axon

Cluster 10Cluster 9

Cluster 8Cluster 7

Cluster 6Cluster 5

Cluster 4Cluster 3

axon

dendrites

Cluster 2Cluster 1

Figure 9: Morphological clusters in EM-reconstructed neurons from the IPN. Top: dendrites (left) and axons (right) from all the neurons,
color-coded by cluster. The large circles mark the soma position for each cell. Below: cells from each individual clusters in black, and one
representative cell from each cluster is shown in blue (dendrite) and red (axon).



the interpeduncular nucleus exhibits structured optic flow-dependent activity 8

pan-neuronal habenular axons GABAergic IPN nuclei

Figure 10: Voxel-wise directional activity
tuning in each of the imaged lines, at
approximately the same locations as in
Figure 8, with the approximate outlines of
the structures to help with orientation (the
outlines are obtained after a manual affine
transform, which is inaccurate in the
ventral part due to a lack of landmarks).
For the very ventral planes, only the
2-photon pan-neuronal and habenular-
axon expressing lines are shown, as there
is no expression there of gad1b, and the
lightsheet signal quality is too low.

Left-right tuning within the dIPN was overall quite similar to tuning of
the surrounding neuropil region (Figure 10). In contrast to the surround-
ing region, however, the IPN shows clear modulation of activity both
above and below the baseline. Figure 11 shows an example plane. Regions
adjacent to, but outside of the IPN are also clearly directionally tuned,
however the activity is modulated only above baseline. Freely-swimming
turn rates also show both direction-dependent increase and suppression,
which is a possible indication that this activity might be related to behav-
ior18. 18 Dragomir, Štih, and Portugues, “Ev-

idence Accumulation during a Sen-
sorimotor Decision Task Revealed by
Whole-Brain Imaging”.

Next, we imaged the habenular axons that innervate the IPN, using
the 16715:Gal4;UAS:GCaMP6s line. Remarkably, we observed a patterning
that overlaps quite accurately the structure of the tuning maps observed
in the panneuronal imaging, with a smooth left-right transition in the
dIPN and alternating patches of different tuning in the vIPN (Figure 10).
The presence of direction-selective patterning in the habenular axons pro-
jections is surprising because the fibers come from an habenular cells that
are of various direction selectivity, and they intermingle together while
wrapping around the entire IPN. Nevertheless, their activity still seems
to be organized in specific direction-selective patches: the multitude of
intermingled fibers from heterogeneously tuned neurons in the habenula
display locally coherent directional tuning.

We then turned to imaging gad1b:Gal4;UAS:GCaMP6s larvae, where
GCaMP6s was expressed selectively in a sparse fraction of GABAergic
neurons. Because of the sparseness of the indicator expression, it was
harder to find consistent activity patterns in the dIPN. In the vIPN, how-
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Figure 11: Bidirectional modulation
inside the IPN. The voxel-wise tuning
is depicted as in previous figures, and
additionally computed separately for
regression coefficients with positive and
negative weights. The grayscale heatmap
depicts the alignment of positive and
negative contributions to the tuning: it
is the relative length of the projection of
the negative tuning vector on the positive
tuning one (in this plane maximally 0.2).
In the schematic diagram the signed in-
hibitory tuning actually points in a similar
direction to the positive tuning (bottom
right panel). Given a smooth tuning curve
and our multivariate regression analysis
this projection cannot be negative. The
bottom rows show per-stimulus responses
in a region highlighted by □ inside of the
IPN in top row of traces, and by ◇ out-
side of the IPN in the bottom row of the
traces. The colored areas are the weighted
regressors fitted to the trace.

ever, the four patches of dense neuropil we previously described (Figure 8)
displayed a consistent activation pattern: activity in each medial column
highly correlated with the activity in the controlateral lateral column (Fig-
ure 10). In particular, the left medial column and the right medial column
where tuned to backward-right motion, and the right medial column and
the left lateral column were tuned to backward-left motion. This pattern-
ing was consistent across fish (Figure 12).

To clarify the interesting activity pattern we observed in the GABAer-
gic line imaging, we turned back at the EM reconstruction of IPN neurons.
We noticed that cells in Cluster 9 (Figure 9) were remarkably consistent
with the observed functional correlations. Cells in cluster 9 featured a
dendritic tree in the medial patches, and an axon that extended in the
contralateral lateral patch. We therefore concluded that cells of Cluster 9
(two example cells are shown in Figure 12, top right) are putative gad1b
neurons, very likely to produce the activity observed, assuming that the
same calcium signal is visible and highly correlated throughout the cell’s
processes.

Finally, we inspected more closely the directional tuning in the habe-
nular axons and compared it to the tuning of the gad1b columns. Even
though around the midline the axons and the medial columns share
very similar backward-left and backward-right orientation, in the lateral
columns the habenular axons activity seems to be completely reversed.
This prompted us to hypothesize that the axons from the gad1b neurons
could sculpt the activity of the habenular axons by pre-synaptic inhibi-
tion.

To address this question, we sent to traces the two selected cells shown
in Figure 12, with instructions to annotate all the forward synapses that
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Figure 12: Top row: voxel-wise tuning in
an example fish expressing GCaMP6s in
GABAergic cells (left) and habenular ax-
ons (right). The color encoding is the same
as in Figure 4. The bottom panels show
average regressor weights for sensory
regressors in the 8 different direction per
each of the 4 columns. Each tuning curve
comes from different animals. The expres-
sion in the GABAergic neuron-expressing
fish was highly variable: some animals
had GCaMP expressed in no or just one
pair of columns (as for example in the one
flat tuning line in columns 1 and 3).

the gad1b cell axon was establishing (without on our side selecting on
the basis of distribution, nature and function of the cells). Black marks on
cells in Figure 12 highlight the position where all synapses were found.
Annotators reported that large fraction of the annotated synapses were
indeed axo-axonal contacts, substantiating more strongly the hypothe-
sis that gad1b neurons modulate activity of the habenular axons though
pre-synaptic inhibition (Figure fig:axoaxonal). Still, for this argument
to be complete, the nature of such axo-axonal contact would have to be
completely characterized and proven to be, at least in part, onto unam-
biguously identified habenular axons.

0.5 µm 

post-synaptic
axon

IPN neuron
axon

Figure 13: Example of a contact between
the blue neuron of Figure 12 and a post-
synaptic axon, as imaged in the EM stack.

Activity of cells within the IPN

The cell bodies inside of the IPN are mainly tuned to the forward half of
motion directions. Left and right tuning is most prominent, though there
are cell bodies with the activity tuned to forward and backward motion in
the ventral part of the IPN.

There are a few cells which show inhibition to the opposite of the
tuned direction, but they are predominantly only excited (although it is
possible that inhibitory responses are missed due to the responses of the
nuclear-localized calcium indicator). Also, a large part of the response
variance is not explained by the stimulus (as can be seen in the faint
traces at the bottom of Figure 14 on the facing page, which reflects the
possible multimodal role of these cells.

Finally, we have found no strong acute motor component in the activ-
ity inside the IPN: in all functional experiments the multivariate regres-
sion included putative regressors for the different swim directions, but
their weights were close to noise levels. For the longer lightsheet exper-
iment, a cross validated regression revealed only 5 cells where the motor
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Figure 14: Characterization of responses of
cells within the IPN. In top row, the cells
are colored according to their preferred
tuning direction, in the next row by the
projection of the inhibitory component
(as the 4th panel in Figure 14). In the
last row example traces are shown for
the highlighted cell (larger point in
the previous scatter plots), for 12 trials
individually (faint gray lines) and the
average (thick black line).

regressors consistently decreased the unexplained variance, in line with
the expected false positive rate of the procedure, and those cells also had
very small regressor weights assigned to the motor components. This
lack of acute motor responses is in line with the evidence discussed in the
introduction, suggesting that the IPN mediates longer-term state changes
and biases behavioral outcomes, rather than directly causing them.

Discussion

The striking pattering of motion-tuned parts of the interpeduncular nu-
cleus comes about from unusual and precise neuroanatomical arrange-
ments. We could explain, although not conclusively determine, the pos-
sible neural structures underlying these patterns: localized patches of
dendritic trees spanning exactly regions with similar tuning, axo-axonal
synapses likely modulating activity in different regions and symmetric
arrangements of the processes of GABAergic cells selectively inhibiting
responses to certain directions.

The space of optomotor stimuli is larger than explored in this study,
with other aspects: uncertainty, speed and texture being kept fixed. It
remains to be investigated whether the responses in the IPN are sensitive
to these dimensions, and if these differences corresponds to the modula-
tions in behavior that these changes in stimuli introduce, or allow for a
nuanced representation of displacement.

In this work we explored the representation of visual information in
the IPN that is conveyed to the IPN mostly by the left habenula. However,
the IPN, and the vIPN in particular, receive abundant innervation from
the right habenulae as well. The right habenula has been shown to be a
prominently olfactory structure, whose neurons exhibit robust responses
when odorants such as food-related amino acids are added in the fish
water. Therefore, the interesting axo-axonal modulation that we hypoth-
esize might also take place on fibers that carry olfactory information.
This raises the possibility that the IPN is the locus on multimodal inte-
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gration of directional information and goal-related evidence. Although
we could find no signatures of motor responses, we note that optic flow
alone, exp. backward motion (the most salient orientation for the gad1b
columns) might be used as a sensory proxy for motor activity. Moreover,
the responses are sustained for longer time frames, indicating that the
IPN could capture information about direction and location. Exploring the
recently published traced cell atlas19 we also found many neurons from 19 Kunst et al., “A Cellular-Resolution Atlas

of the Larval Zebrafish Brain”.the nuclei raphe that might arborize in the IPN area, which remains an
important source of inputs to explore.

Due to limitations of two-photon imaging we analyzed the responses
inside the IPN only as independent signals, however the information
from large parts of the structure are likely to be used together in guiding
behavior, and analyzing the population activity might uncover additional
properties of the representations.

Finally, it is completely unknown which regions are downstream of the
IPN in the larval zebrafish. None of the nuclei traced have projections that
extend far out of the structure, except the axon loops into the raphe. The
representations in the IPN could be relevant for other behaviors as well,
perhaps even more sophisticated ones present only in older fish. While
the larval zebrafish do not display any distant-goal related behavior, the
availability of tuned directional-motion signals, and potentially other
position-specific information, such as chemical gradients, would enable
more sophisticated navigational behaviors, as such inputs are a key com-
ponent of the enotrhinal-hippocampal navigation system of mammals.

Methods

Stimulus

To study the correlates of optic flow in the zebrafish, we developed a op-
tomotor stimulation paradigm which avoids multiple issues of grating
stimuli: vertical distance dependence and the abrupt transitions when
changing the direction of motion. The tiled pink-noise stimulus has been
generated to have structure on all scales up to the projector resolution, be
isotropic and tile the plane without discontinuities (Figure 15). Therefore,
the motion direction can change without any sharp transitions, and differ-
ences in height and resolution of the displayed stimulus do not impact the
image statistics. In all experiments except those with the nuclear-localised
sensor (elavl-H2B line) the stimulus and pause durations were 10s, for the
nuclear-localised sensor experiment the durations were 20s.

Figure 15: The seamlessly-tiling texture
stimulus used in all experiments (left) and
its 2D Fourier spectrum

Behavior

Behavior in embedded fish was tracked and stimuli were presented using
Stytra Štih, Petrucco, et al., “Stytra: An Open-Source, Integrated System
for Stimulation, Tracking and Closed-Loop Behavioral Experiments”, syn-
chronized to microscopes. All the behavioral data presented was acquired
during imaging experiments. Discrete swimming events (bouts) were ex-
tracted using the Bouter package, to obtain per-experiment summaries
(of when bouts occurred and their properties) for use in further analysis.
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Bouts were classified into left, right and forward turns by fitting a nor-
mal distribution to the turn biases and determining the optimal decision
boundary for each fish.

Confocal microscopy

To image GABAergic neurons in the IPN we obtained confocal stacks
from gad1b/GAD67-GFP × 16715:gal4; UAS:NTtr-mCherry zebrafish
larvae (6-7 dpf). In these fish all GABAergic neurons express GFP and
most habenular axons express mCherry. The mCherry signal is used to
detect the outline of the IPN. Larvae were embedded in 1.5% agarose and
anesthetized with Tricaine. Confocal stacks of the IPN were obtained with
a Zeiss LSM700 microscope (20× / 1.0 NA water immersion objective) with
a voxel resolution of 0.267 × 0.267 × 0.5µm.

Electron microscopy

Neuron morphologies were reconstructed from a SBEM dataset contain-
ing the full volume of a 5-dpf old larvae brain was imaged with a voxel
resolution of 14x14x25nm. The IPN was easily located in the stack thanks
to its characteristic distribution of somas surrounded by dense neuropil.
First, all somas enclosed within the IPN were manually annotated, for
a total count of 170 somas (the total number is between 120 and 170 in
the whole IPN, depending on the inclusion of somas at the edge of the
neuropil region). Then, 70 seeds were chosen for reconstruction from
all the regions of the IPN plus 15 additional seeds that were selected in
the medial-rostral part of the IPN, for a total of 85 neurons sent to pro-
fessional annotators (ariadne-service, http://www.ariadne-service.ch).
Skeletons were firstly reconstructed without redundancy by one anno-
tator, and then underwent multiple expert revision and proofreading
iterations. The skeletons were later browsed using the Knossos software
(https://knossostool.org), and the axon was annotated in cells where it
could be unambiguously identified. Axon was defined as the exit point
of the cell with small diameter (around 0.3 um); in all the cases where
such process could be identified, it showed a constantly small diameter
and very little branching in the proximity of the soma, confirming the
assumption that it corresponds the cell axon. For cells that were later
sent for synapse annotation the process identified by the annotators as
the axon always matched with our identification, confirming the relia-
bility of our criteria. For subsequent analyses, we included only neurons
for which we could reliably identify an axon (74/85). Forward synapse
annotation on a selected subset of neurons was outsourced to the same
tracing company. For the clustering analysis, we used a Julia imple-
mentation (https://github.com/seung-lab/RealNeuralNetworks.jl) of the
NBLAST algorithm Hong et al., “Cholinergic Left-Right Asymmetry in
the Habenulo-Interpeduncular Pathway”, using the table defined there
for zebrafish neuron morphologies to build the distance matrix. Then hi-
erarchical clustering with the Ward method was applied on the distance
matrix from NBLAST, and the tree was cut with a threshold chosen to
produce the minimum number of clusters that captured the variability
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observed by manual inspection.

Lightsheet microscopy

We used a custom-built two-beam digitally-scanned lightsheet microscope
with line diffusors, previously described in Markov et al., “A Cerebellar
Internal Model Calibrates a Feedback Controller Involved in Sensorimotor
Control”. The microscope was controlled and imaging data acquired
with the Sashimi programAC, Štih, and Petrucco, Portugueslab/Sashimi.
Whole-brain imaging data was acquired with both the frontal and lateral
beam at 2Hz with 30 planes spaced 7μm apart, while IPN imaging was
done only with the lateral beam. The acquired data was aligned with
the VolumeRegistration package, an extension of the Suite2p algorithm
Pachitariu et al., “Suite2p” for volumetric data.

Two-photon microscopy

The two-photon microscope was also custom-built and was run using
Brunoise Štih, EmanPaoli, and AC, Portugueslab/Brunoise, a 2-photon
acquisition program developed in the lab. Brunoise automatically de-
termines the resolution of the stack given the desired framerate and the
limitations of the microscope. The data was aligned using our standard
python tools from the scikit-image library as well as VolumeRegistration.

Imaging analysis

Local low-rank decomposition of calcium imaging signals for patches of
whole-brain data was performed with the partial SVD implemented in
the LowRankApprox Julia package Ho et al., JuliaMatrices/LowRankAp-
prox.Jl. The stimuli were decoding from these decompositions with the
LightGBM gradient boosting dectision tree classifier Ke et al., “LightGBM”
through the MLJ machine learning framework interface Blaom et al., MLJ.
Voxelwise multivariate regression (for both whole-brain and IPN only
datasets) was performed with the GLM.jl Bates et al., JuliaStats/GLM.Jl
Julia package.

Registration to references

For whole-brain registration we used the ANTS package through the
ANTSpy wrapper. To compare experiments, function imaging data was
warped into the reference coordinates. For all whole-brain and most IPN-
only experiments an initial manual estimation of the affine transform was
necessary. This was done by finding corresponding anatomical points in
the reference and the imaging stacks, and computing a least-squares fit of
the 12-parameter affine transform matrix.

Signal extraction

To extract and demix signals belonging to individual cells in the light-
sheet dataset, we used a variant of non-negative matrix factorization.
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The factorization was performed in patches to maintain spatial continu-
ity and make the processing computationally tractable. As clear ground
truth for regions of interest in this structure is difficult to establish manu-
ally, we used a cross-validation procedure to decide on initial parameters
for the factorization (number of components per patch and spatial spar-
sity). The cross-validation was done with an imputation procedure: a
randomly-selected amount of elements of the full spatiotemporal matrix
was imputed (computed from the low-rank components of the current
factorization step), and compared with the true values. This is repeated
several times, and the regularization - increasing spatial sparsity and
decreasing number of components - was adjusted until the validation
error started increasing. As the cross-validation is computationally ex-
pensive, and the optimal parameters changing slowly across space, it was
applied in a subsampled grid of the actual patches. In the final factoriza-
tion procedure the parameters were interpolated from those found via
cross-validation in the subsampled grid.
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Abstract

We present Stytra, a flexible, open-source software package, written in Python and

designed to cover all the general requirements involved in larval zebrafish behavioral experi-

ments. It provides timed stimulus presentation, interfacing with external devices and simul-

taneous real-time tracking of behavioral parameters such as position, orientation, tail and

eye motion in both freely-swimming and head-restrained preparations. Stytra logs all

recorded quantities, metadata, and code version in standardized formats to allow full prove-

nance tracking, from data acquisition through analysis to publication. The package is modu-

lar and expandable for different experimental protocols and setups. Current releases can be

found at https://github.com/portugueslab/stytra. We also provide complete documentation

with examples for extending the package to new stimuli and hardware, as well as a schema

and parts list for behavioral setups. We showcase Stytra by reproducing previously pub-

lished behavioral protocols in both head-restrained and freely-swimming larvae. We also

demonstrate the use of the software in the context of a calcium imaging experiment, where

it interfaces with other acquisition devices. Our aims are to enable more laboratories to eas-

ily implement behavioral experiments, as well as to provide a platform for sharing stimulus

protocols that permits easy reproduction of experiments and straightforward validation.

Finally, we demonstrate how Stytra can serve as a platform to design behavioral experi-

ments involving tracking or visual stimulation with other animals and provide an example

integration with the DeepLabCut neural network-based tracking method.

This is a PLOS Computational Biology Software paper.

Introduction

The central goal of systems neuroscience is to explain the neural underpinnings of behavior.

To investigate the link between sensory input, brain activity and animal behavior, relevant
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behavioral variables have to be recorded and quantified. Therefore, the same experimental par-

adigm has to be replicated in different experimental setups in order to combine it with differ-

ent recording or stimulation techniques, and it needs to be reproducible across different

laboratories. However, the setups generally rely on heterogeneous hardware and custom-made

software tailored to the specific requirements of one experimental apparatus. Often, the code

used is based on expensive software packages (such as LabView or Matlab), with open-source

options for hardware control generally limited to one particular type or brand of devices. As a

consequence, the same experimental protocol has to be implemented many times, thus wasting

time and increasing potential sources of error. This makes sharing the code for replicating a

scientific finding under the same experimental conditions very difficult.

To address these problems, we developed Stytra, a package that encompasses all the require-

ments of hardware control, stimulation and behavioral tracking that we encounter in our

everyday experimental work. Our system, completely written in Python, provides a framework

to assemble an experiment combining different input and output hardware and algorithms for

online behavioral tracking and closed-loop stimulation. It is highly modular and can be

extended to support new hardware devices or tracking algorithms. It facilitates reuse of differ-

ent components of the package, encourages building upon existing work and enforces consis-

tent data management. The definition of experimental protocols in high-level Python scripts

makes it very suitable for version control and code sharing across laboratories, facilitating

reproducibility and collaboration between scientists. Finally, it runs on all common desktop

operating systems (Windows, MacOS and Linux), therefore incurring no additional costs on

the software side. Similar approaches have already been made available for real-time tracking

of zebrafish larvae [1, 2]. Still, to our knowledge, none of these solutions implement tracking

functions for both head-restrained and freely-swimming larvae, they do not allow the use of

custom tracking algorithms, and they do not provide a generic framework to design open- and

closed-loop stimulation paradigms.

Stytra was developed primarily in the context of a laboratory working with larval zebrafish,

and it fulfills the common requirements of behavioral paradigms used with this animal [3]:

video tracking, visual stimulation and triggering of external devices. The tracking functions

(for freely swimming and head-restrained fish) include both efficient re-implementations of

published algorithms and newly-developed methods. Nevertheless, custom methods can easily

be added. Common visual stimuli and methods for combining them and presenting them in

different ways are provided. Our experimental setups are open-source as well [4]: hardware

designs provided along with the documentation describe the apparatus required for perform-

ing common behavioral experiments in zebrafish in detail. The library provides many ele-

ments useful for designing behavioral experiments in Python, potentially offering a unified

platform to build and share experiments in zebrafish neuroscience and behavioral research.

We welcome and will support community contributions to expand the capabilities of the pack-

age to other paradigms and animals, although our development efforts will remain focused on

zebrafish applications.

Design and implementation

Overview and library structure

We developed Stytra using the Python programming language. We endeavored to follow best

practices in software engineering: separation of user interface and data processing code, mod-

ularity and consistent programming interfaces. In Stytra, new experiments can be designed

using very simple Python syntax, allowing even beginners in programming to develop their

own stimulation paradigms. Once defined, the experiment is controlled through a graphical

Stytra: An open-source package for stimulation, tracking and behavioral experiments
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user interface which can be used with no knowledge of Python. At the core of the Stytra pack-

age lies the Experiment object, which links all components that may be used in an experi-

ment: stimulus presentation, camera, animal tracking, metadata and logging (S1 Fig).

This organization enables composing different experimental paradigms with full code

reuse. Improvement of different modules (e.g. the user interface, plotting or tracking) is there-

fore reflected in all experimental setups, and support for a new piece of hardware or tracking

function can be added with minimal effort and interference with other parts of the project.

Online image processing is organized along a sequence of steps: first, images are acquired

from the camera, then the image is filtered and tracked, and the tracking results are saved.

Acquisition, tracking and data saving occur in separate processes (depicted in blue, purple,

and green in Fig 1). This approach improves the reliability and the performance of online

behavioral tracking, and exploits the advantages of multi-core processors. After processing,

streaming numerical data (such as tracking results and dynamic parameters of stimuli) is

passed into data accumulators in the main thread, and a user-selected subset can be plotted in

real time and saved in one of the several supported formats. Moreover, for every experimental

session all changeable properties impacting the execution of the experiment are recorded and

saved. Finally, as the software package is version-controlled, the version (commit hash) of the

software in use is saved as well, ensuring the complete reproducibility of every experiment.

Building and running an experiment in Stytra

The Experiment object binds all the different components required to run an experiment.

The most basic Experiment object performs the presentation of a succession of stimuli, sav-

ing the experiment metadata and the stimulation log. For experiments including video

Fig 1. Data flow in Stytra. Communication between different parts of a Stytra experiment. Each color represents a

separate process in which the module(s) are running. Data flow between modules within one process is depicted by

arrows, and between processes as double arrows. The classes belonging to the data flow elements are displayed in

monospace. A more comprehensive diagram of the classes is provided in S1 Fig. The user interface, the stimulus

update and related functions such as the screen calibration and data saving are performed in the main process, colored

in green. The stimulation can be triggered by a triggering process (in orange) that listens for an external triggering

signal. Frames can be acquired from a camera process (in blue), analyzed by a tracking function (in purple), and the

result can be streamed to the main process for data saving and used in closed-loop experiments via the estimator.

https://doi.org/10.1371/journal.pcbi.1006699.g001

Stytra: An open-source package for stimulation, tracking and behavioral experiments
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tracking, the TrackingExperiment object augments the basic Experiment with fea-

tures such as camera frame acquisitions and online image analysis. The image analysis pipeline

can be one of the zebrafish specific pipelines supplied with Stytra, or a custom tracking pipe-

line. The Experiment is linked to the user interface for controlling the running of stimula-

tion protocols, inserting metadata, controlling parameters, and calibrating the stimulus display

(Fig 2). In general, the users do not need to define new types of Experiment objects for

every new experimental paradigm. Instead, paradigms are implemented by defining a

Protocol object which contains the stimulus sequence (as described below) and a configu-

ration dictionary with information about the camera, tracking pipeline, and triggering. The

appropriate Experiment object can be automatically instantiated from the configuration

dictionary using the Stytra constructor. Alternatively, an Experiment can be instantiated

and run from the experiment script, as described in the documentation examples. Ideally, the

provided Experiment objects should cover most of the requirements of zebrafish behavioral

experiments, and redefining the Experiment is required only if one needs to modify the

graphical user interface (GUI), add more nodes in the data pipeline (screens or cameras) or

implement more specific customizations. A more detailed depiction of the connections and

versions of different objects is depicted in S1 Fig. For examples of how to create a Protocol
and run experiments in Stytra, see the Usage examples box and the more detailed examples

gallery in the documentation.

Stimulus design

Experimental protocols in Stytra are defined as sequences of timed stimuli presented to the

animal through a projector or external actuators. A sequence of stimuli, defined as a Python

Fig 2. Screen capture of the software in use. The various behavioral paradigms supported by Stytra provide the user

with a consistent interface to control experiments. The toolbar on top controls aspects of running the experiment, a

camera panel shows the tracking results superimposed on the camera image, a calibration panel enables quick

positioning and calibration of the stimulus display and a monitoring panel plots a user-selected subset of experimental

variables.

https://doi.org/10.1371/journal.pcbi.1006699.g002

Stytra: An open-source package for stimulation, tracking and behavioral experiments
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list of Stimulus objects, is defined in a Protocol object (see Usage examples box). This

structure enables straightforward design of new experimental protocols, requiring very little

knowledge of the general structure of the library and only basic Python syntax. A dedicated

class coordinates the timed execution of the protocol relying on a QTimer from the PyQt5

library, ensuring a temporal resolution in the order of 15-20 ms (around the response time of a

normal monitor, see S2 Fig). Drawing very complex stimuli consisting of many polygons or

requiring online computation of large arrays can decrease the stimulus display performance.

The stimulus display framerate can be monitored online from the user interface when the

protocol is running (see the lower left corner of the window in Fig 2). Milli- or microsecond

precision, which might be required for optogenetic experiments, for example, is currently

not supported. Each Stimulus has methods which are called at starting time or at every

subsequent time step while it is set. In this way one can generate dynamically changing stimuli,

or trigger external devices. New Stimulus types can be easily added to the library just by

subclassing Stimulus and re-defining the Stimulus.start() and Stimulus.
update() methods.

A large number of stimuli is included in the package. In particular, a library of visual stimuli

has been implemented as VisualStimulus objects using the QPainter object, a part of

the Qt GUI library, enabling efficient drawing with OpenGL. Relying on a set of high-level

drawing primitives makes the code very readable and maintainable. Stytra already includes

common stimuli used in visual neuroscience, such as moving bars, dots, whole-field transla-

tion or rotations of patterns on a screen, and additional features such as movie playback and

the presentation of images from a file (which can be generated by packages such as Imagen

[5]). The classes describing visual stimuli can be combined, and new stimuli where these pat-

terns are moved or masked can be quickly defined by combining the appropriate Stimulus
types. Finally, new stimuli can be easily created by redefining the paint() method in a

new VisualStimulus object. Multiple stimuli can be presented simultaneously using

StimulusCombiner. Presenting different stimuli depending on animal behavior or exter-

nal signals can be achieved using the ConditionalStimulus container, or with similarly

designed custom objects. Visual stimuli are usually displayed on a secondary screen, therefore

Stytra provides a convenient interface for positioning and calibrating the stimulation window

(visible in Fig 2 on the right-hand side). Although in our experiments we are using a single

stimulation monitor, displaying stimuli on multiple screens can be achieved with virtual

desktop technology or screen-splitting hardware boards. Importantly, all stimulus parameters

are specified in physical units and are therefore independent of the display hardware. Finally,

the timed execution of code inside Stimulus objects can be used to control hardware

via I/O boards or serial communication with micro-controllers such as Arduino or MicroPy-

thon PyBoard. For example, in this way one may deliver odors or temperature stimuli or

optogenetic stimulation. Examples for all these kinds of stimuli are provided in the main

repository.

Usage examples

Here we present the main parts of simple scripts that can be used to run a Stytra experiment.

The complete scripts can be found in the Stytra repository under stytra/examples. Stytra

is run in most cases by defining a stimulus sequence in a Protocol object. This custom pro-

tocol is passed to the Stytra constructor, which creates an appropriate Experiment
object. The subclass of Experiment is selected depending on the configuration passed

through either the Stytra constructor or the stytra_config attribute of the Protocol.

The online documentation contains an example of how to use a custom Experiment class.
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Creating and running a protocol. To create an experiment, a Protocol class has to be

defined. The Protocol.get_stim_sequence() method returns the sequence of sti-

muli that will be presented in the experiment. A Protocol object is then passed as an argu-

ment to the instance of Stytra that will run it.

Example:

from stytra import Stytra, Protocol

from stytra.stimulation.stimuli import Pause, FullFieldVisualStimulus

class FlashProtocol(Protocol):

name = “flash protocol” # protocol name

def get_stim_sequence(self):

stimuli = [Pause(duration = 9), # black screen, 9 sec FullFieldVisualStimulus

(duration = 1, # flash, 1 sec color = (255, 255, 255))]

return stimuli

Stytra(protocol = FlashProtocol())

Creating a new stimulus. In an experiment it might be necessary to use a stimulus type

not available in the existing library. To design a new stimulus, a Stimulus subclass has to be

created and its Stimulus.start() and Stimulus.update() methods should be

overwritten. In the following piece of code, we create a closed-loop stimulus which turns the

screen red when the fish is swimming. To achieve this, we redefine the Stimulus.update
() to change the color attribute, and the Stimulus.paint() to paint the screen red. The

stytra_config attribute defines the video source (a Ximea camera), and the tracking

functions (tail tracking with vigor as a velocity estimator):

from stytra import Stytra, Protocol

from stytra.stimulation.stimuli import VisualStimulus

from PyQt5.QtCore import QRect

from PyQt5.QtGui import QBrush, QColor

class NewStimulus(VisualStimulus):

def _ _init_ _(self, �args, ��kwargs):

super()._ _init_ _(�args, ��kwargs)

self.color = (255, 255, 255)

def paint(self, painter, w, h):

# painter, w and h come from the Qt library drawing functions.

# painter: QPainter object;

# w, h: width and height of the window

painter.setBrush(QBrush(QColor(�self.color))) # Use chosen color

painter.drawRect(QRect(0, 0, w, h)) # draw full field rectangle

def update(self):

fish_vel = self._experiment.estimator.get_velocity()

# change color if speed of the fish is higher than threshold:

if fish_vel < -15:

self.color = (255, 0, 0)

else:

self.color = (255, 255, 255)

class CustomProtocol(Protocol):

name = “custom protocol” # protocol name

# Here we define tracking method, vigor estimator, and add a camera:

stytra_config = dict(tracking = dict(method = “tail”, estimator = “vigor”),

camera = “ximea”)
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def get_stim_sequence(self):

return [NewStimulus(duration = 10)]

Stytra(protocol = CustomProtocol())

Image acquisition and tracking

Image acquisition. A key feature of Stytra is the extraction of relevant behavioral features

in real time from video inputs. The Camera object provides an interface for grabbing frames

and setting parameters for a range of different camera types. Currently supported models

include those by XIMEA, AVT, PointGray/FLIR, and Mikrotron, as well as webcams sup-

ported by OpenCV [6]. Support for other cameras can be added as long as a Python or C API

exists. In addition, previously-recorded videos can also be processed, allowing for offline track-

ing. Frames are acquired from the original source in a process separated from the user inter-

face and stimulus display. This ensures that the acquisition and tracking frame rate are

independent of the stimulus display, which, depending on the complexity of the stimulus and

output resolution, can be between 30 and 60 Hz.

Tracking pipelines. The tracking process receives acquired frames and handles animal

tracking (represented in Fig 1). Image processing and tracking are defined in subclasses of

Pipeline objects and contain a tree of processing nodes, starting from input images and

ending with tracking nodes that take images as input and give tracking results as output. This

structure allows for multiple tracking functions to be applied on the same input image(s).

Currently implemented image processing nodes include image filtering (down-sampling,

inversion and low-pass filtering) and background subtraction. The outputs of the tracking

nodes are assembled together and streamed to the main process, where the data is saved and

visualized. The Pipeline object also allows specifying a custom camera overlay to display

the results of the tracking and an additional plotting widget for an alternative visualization of

data. This modular structure allows easy expansion of the library: new functions for pre-fil-

tering or tracking can be incorporated into the pipeline with minimal effort. Pipelines to

track tail and eye position in head-restrained fish, as well as fish position and orientation in

an open arena, are included in Stytra. Parts of the tracking functions use the OpenCV com-

puter vision library. Time-critical functions are compiled with the Numba library to increase

their performance.

Behavior tracking in head-restrained fish. Tail tracking. Zebrafish larvae swim in dis-

crete units called bouts, and different types of swim bouts, from startle responses to forward

swimming are caused by different tail motion patterns [7]. The tail of the larvae can be easily

skeletonized and described as a curve discretized into 7-10 segments [8] (Fig 3A). The tail

tracking functions work by finding the angle of a tail segment given the position and the orien-

tation of the previous one. The starting position of the tail, as well as a rough tail orientation

and length need to be specified beforehand using start and end points, movable over the cam-

era image displayed in the user interface (as can be seen in Fig 3A).

To find the tail segments, two different functions are implemented. The first one looks at

pixels along an arc to find their maximum (or minimum, if the image is inverted) where the

current segment would end (as already described in e.g. [8]). The second method, introduced

here, is based on centers of mass of sampling windows (Fig 3), and provides a more reliable

and smoother estimate over a wider range of resolutions and illumination methods. The image

contrast and tail segment numbers have to be adjusted for each setup, which can be easily

accomplished through the live view of the filtering and tracking results. In the documentation

we provide guidelines on choosing these parameters. To compare results across different

Stytra: An open-source package for stimulation, tracking and behavioral experiments

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006699 April 8, 2019 7 / 19



setups which might have different camera resolutions, the resulting tail shape can be interpo-

lated to a fixed number of segments regardless of the number of traced points.

Eye tracking. Zebrafish larvae move their eyes to stabilize their gaze in response to whole

field motion, perform re-positioning saccades, and converge their eyes to follow a potential

prey in hunting maneuvers [9]. Naso-temporal eye movements can be described by the eye ori-

entation with respect to the fish axis. Given the ellipsoidal shape of the eyes when seen from

above, to find their orientation it is sufficient to fit an ellipse to the eye pixels and determine

the angle of the major axis [9]. In Stytra, a movable and scalable rectangular region can be

used to select the area of the camera view containing the eyes. As eyes are usually much darker

than the background, with proper illumination conditions it is sufficient to binarize the image

with an adjustable threshold which selects the pixels belonging to the eyes. Then, functions

from the OpenCV library are used to find the two largest connected components of the binar-

ized region and fits an ellipse to them. The absolute angle of the major axis of the ellipse is

recorded as the eye angle (Fig 4). A live preview of the binarized image and the extracted ellip-

ses helps the user to adjust the parameters.

Freely-swimming fish tracking. To support different kinds of paradigms where fish are

not head-restrained, we provide functions for freely-swimming fish tracking. The range of

behavioral paradigms include investigating movement evoked by different kinds of stimuli,

characterizing motion kinematics and assessing consequences of pharmacological or genetic

interventions. To track the fish in an open arena, the first required step is background subtrac-

tion. The background is modelled with a mean image taken from multiple frames averaged in

time, and slowly updated with an adjustable time constant. The subsequently processed image

is the negative difference between the current frame and the threshold (pixels that are darker

than the background are active). This image is first thresholded and regions within the right

area range are found. Both eyes and the swim bladder are found as darker parts inside of these

regions, and the center of mass of the three objects (two eyes and swim bladder) is taken as the

center of the fish head. The direction of the tail is found by searching for the point with the

largest difference from the background on a circle of half-tail radius. This direction is

Fig 3. Head-restrained tail tracking in Stytra. A) The image is first pre-processed by inverting, down-scaling,

blurring and clipping, resulting in the image on the right, where the fish is the only object brighter than the

background. Then, tail tracing starts from a user-defined point, and in the direction determined by another user-

defined point at the end of the tail at rest. For each segment, a square (outlined in white) in the direction of the

previous segment (yellow) is sampled, and the direction for the next segment is chosen as the vector (red) connecting

the previous segment end and the center of mass of the sampled square (blue). B) A heatmap showing the angles of the

tail segments from the start to the end of the tail during a bout, and a trace representing the cumulative curvature sum

from a behaving animal. The total curvature is just the difference in angle between the first and last tail segment

(adding up angle differences between all segments, only these two terms remain).

https://doi.org/10.1371/journal.pcbi.1006699.g003
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subsequently refined in the course of tail tracking, as described in the tail tracking section. The

kinematic parameters are smoothed by Kalman filtering. An example resulting from tracking

multiple fish simultaneously is shown in Fig 5. Fish identities are maintained constant while

they are in the field of view and not overlapping, by keeping track of the previous positions

and orientations. The number of fish does not significantly impact performance, however the

resolution of the camera does, so we recommend a well-configured modern computer (7th

generation and above Intel Core i7 processors or AMD Ryzen) for tracking multiple fish in a 90

mm dish. In our experiments not more than 3 fish are usually present, and a tracking frame-

rate of 300 Hz can be reached reliably. We have also tracked individual fish in a 24-well plate,

which presented no performance issues at 100 Hz with a mid-range CPU. Simpler tracking sce-

narios for screening, where the exact position, orientation and tail curvature of individuals are

not of interest, can work with even higher numbers of animals.

For closed-loop experiments, the camera view and the projected area need to be aligned to

lock the stimulus to the fish position. To this end, a calibration module inside of Stytra finds

the mapping between the area covered by the camera and the area illuminated by the screen.

During calibration, three points are projected on the screen and detected as local maxima on

Fig 4. Eye tracking in Stytra. A) Eyes are detected by fitting an ellipse to the connected components of the image of

the fish head after thresholding. B) Example trace of eye motion in response to a full-field rotating background.

https://doi.org/10.1371/journal.pcbi.1006699.g004

Fig 5. Example bouts tracked from freely-swimming fish. From left to right: trajectories of bouts in different

directions, the velocity magnitude and the total angle change during the course of the bouts. In the left-most panel, all

trajectories were realigned such that the initial position and orientation of the fish were the same. The data was

sampled at 300 Hz.

https://doi.org/10.1371/journal.pcbi.1006699.g005
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the camera image. Then, a transformation matrix is computed to align the projected and

recorded points. If the setup elements are kept firmly in place, the calibration has to be done

only once, although regular checking of the calibration on a regular basis is encouraged.

Custom tracking functions. Stytra is designed in an extensible fashion and video tracking

algorithms for other animals can be easily added. To demonstrate this, we provide a small

example of DeepLabCut-based tracking, which can be integrated with very few lines of code

and immediately used with closed-loop stimuli. DeepLabCut is a convolutional neural net-

work-based pose estimation toolbox [10] built on top of the DeeperCut architecture [11]. We

incorporated an open-field recording example with the video and parameters provided in the

original repository (see Fig 6). The code for this example is in a separate GitHub repository,

listed at the end of the manuscript. The tracking performance of DeepLabCut mainly depends

on video resolution and CPU and GPU performance. We managed to obtain a tracking speed of

20 Hz (resulting in a tracking latency of 50 ms) for a 640x480 px video on a computer equipped

with a nVidia GeForce GTX Titan X GPU and Intel Xeon E5-2687W v3 CPU. For a detailed inves-

tigation of DeepLabCut performance see [12].

Closed-loop stimuli design

Stimuli whose state depends on the behavior of the fish (position and orientation for freely

swimming fish, and tail or eye motion for head-restrained fish) are controlled by linking

the behavioral state logs to the stimulus display via Estimator objects (see Fig 1). An

Estimator receives a data stream from a tracking function (such as tail angles), and uses it

together with calibration parameters to estimate some quantity online. For example, a good

proxy for fish velocity is the standard deviation of the tail curvature over a window of 50 ms

[13], which we refer to as vigor. Fig 7 shows an example of how vigor can be used in a closed-

loop optomotor assay. When presented with a global motion of the visual field in the caudal-

rostral direction, the fish tend to swim in the direction of perceived motion to minimize the

visual flow, a reflex known as the optomotor response [3, 14]. The visual feedback during the

Fig 6. Screenshot of DeepLabCut-based rat tracking in Stytra. On the left, the 4 detected keypoints (snout, two ears

and tail base) in red are superimposed on the video. On the right, traces tracking the coordinates of the animal are

displayed, along with a parameter of of a closed-loop stimulus (a circle that would be tracking a rat). The video

displayed was provided with the DeepLabCut repository [10].

https://doi.org/10.1371/journal.pcbi.1006699.g006
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swimming bout is a crucial cue that the larvae use to control their movements. In this closed-

loop experiment, we use the vigor-based estimation of fish forward velocity, together with a

gain factor, to dynamically adjust the velocity of the gratings to match the visual flow expected

by a forward swimming fish. The gain parameter can be changed to experimentally manipulate

the speed of the visual feedback received by the larvae [13] (see below).

Closed-loop stimuli may be important for freely swimming fish as well, for example to dis-

play patterns or motion which always maintain the same spatial relationship to the swimming

fish by matching the stimulus location and orientation to that of the fish.

Synchronization with external devices

Stytra is designed to support the presentation of stimuli that need to be synchronized with a

separate acquisition program, e.g. for calcium imaging or electrophysiology. To this end, the

Trigger object enables communication with external devices and different computers to

synchronize the beginning of the experiment. The Trigger object runs in a separate process,

ensuring that the interface is not blocked while waiting for trigger signals, and it can be used to

either trigger the beginning of the experiment, or to trigger arbitrary parts of the protocol

using the existing TriggerStimulus object or similar custom stimuli. Two ways of receiv-

ing the triggering signal are already supported in the library: TTL pulse triggering via a LabJack

board, and communication over a local network employing the ZeroMQ library. Messages

exchanged through ZeroMQ can also contain data, such as the microscope configuration, that

will be saved together with the rest of the experiment metadata. The triggering module is

designed to be easily expandable, and we provide instructions for writing custom trigger

objects. In our lab the two-photon microscope is controlled by custom LabView software,

which we extended to include ZeroMQ communication with Stytra. An example LabView pro-

gram that can be used to trigger Stytra is illustrated in the triggering section of the documenta-

tion. In Results, we describe an example experiment using this triggering configuration to link

Fig 7. Closed-loop optomotor assay. Dynamic update of the stimulus in a closed-loop assay for the optomotor

response. From top: open-loop velocity of the gratings moving caudo-rostrally below the fish; cumulative tail angle (see

the tail tracking section and Fig 3 for details); bout vigor, estimated by calculating the instantaneous standard deviation

of the angle sum in a 50 ms window; final closed-loop velocity of the gratings, with backward movements induced by

the fish swimming.

https://doi.org/10.1371/journal.pcbi.1006699.g007
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behavioral and stimulus quantities and the recorded calcium responses. Proprietary scanning

programs where this cannot be achieved can still trigger Stytra using TTL pulses.

Data collection

The design of Stytra encourages automatic data management. A dedicated DataCollector
object is used to log the metadata about the experiment. Parameters from the entire program

are appended to a single hierarchical parameter tree, which is saved at the end of the experi-

ment. Quantities in the tree can come from different sources. Firstly, parameters can be added

at any point in the code. For example, at every run the current version number of Stytra and

git commit are detected and saved, together with the versions of the dependencies. Secondly,

many of the key objects of Stytra (tracking nodes, display and camera controllers. . .) are

parametrized though a custom parameters package (lightparam). When constructing them,

one needs to pass the parameter tree that collects the data. This ensures that all quantities

needed to replicate the experiment are collected within the metadata file. Finally, dedicated

parametrized objects can be used to manually input metadata concerning the animal (age,

genotype, etc.) or the experiment (setup, session, etc.). These classes can be customized to

automatically include lab-specific metadata options, such as setup identifiers or animal lines

(examples for this customization are provided in the documentation). Various logs accompa-

nying the experiment run (state of the stimuli, the raw tracking variables and the estimated

state of the fish) are saved as tabular data. The supported data formats are CSV, HDF5 and

Feather, but others could be added as long as they provide an interface to the Pandas library.

To demonstrate the convenience of the data and metadata saving methods of Stytra, we made

example data available together with Jupyter notebooks for the analyses that can reproduce the

figures in this paper. Finally, a central experiment database can be connected to keep track of

all the experiments in a lab or institute. The documentation provides an example of a Mon-

goDB database connection.

Setup hardware

In our effort to make experiments as open and reproducible as possible, we documented exam-

ple setups that can be used together with the Stytra software for performing behavioral experi-

ments in head-restrained and freely swimming fish (Fig 8). In general, the minimal setup for

tracking the fish larvae requires a high-speed camera (a minimum of 100 Hz is required to cap-

ture the most common tail beats which have a frequency up to 50 Hz, but we recommend at

least 300 Hz to describe the details of the tail kinematics). The camera must be equipped with a

suitable objective: a macro lens for the head-restrained tail tracking or a normal lens for the

freely swimming recordings, where a smaller magnification and a larger field of view are

required. More detailed camera and lens guidelines can be found in the documentation. Infra-

red illumination is then used to provide contrast without interfering with the animal’s visual

perception. Since fish strongly rely on vision and many of their reflexes can be triggered by

visual stimulation, the setup is usually equipped with a projector or screen to present the visual

stimulus to the fish. Although in our setups stimuli are projected below the fish, a lateral pro-

jector would be fully compatible with Stytra. Most of our rig frames consist of optomechanical

parts commonly used for building microscopes. These parts are convenient but not strictly

necessary to build a well-functioning rig. Replacing them with simple hardware-store and

laser-cut components can significantly reduce the costs. Therefore, we also provide instruc-

tions for a head-restrained setup built inside a cardboard box, where the most expensive item

is the high-speed camera, bringing the price of the whole setup without the computer below
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700 euros. We built and documented such a setup, where we were able to elicit and record reli-

able optomotor responses in larval zebrafish (Fig 8).

A complete description of all the above-mentioned versions of the setup along with an item-

ized list of parts is included within the Stytra hardware documentation.

Comparison with existing software packages

Many general-purpose systems have been proposed over the years to present visual and other

kinds of stimuli and control behavioral experiments, each with its own strengths and limita-

tions. Below we sum up some of the systems which are currently maintained, and we present

how they compare to Stytra.

Bonsai. Bonsai [15] is a visual programming language built on top of the language C#

with a reactive, dataflow-based paradigm. In Bonsai, users with little experience in program-

ming can implement their own tracking pipelines and basic stimuli. By default Bonsai offers

visualization of any data processing node, and custom visualizers. In principle, due to the gen-

erality of Bonsai, all functions of Stytra could be implemented within it. Still, implementing

many features would require using a programming language uncommon in science (C#).

Also, the use of several Python libraries, such as DeepLabCut, is in many cases not possible, as

only a subset of Python is supported in C# through the IronPython interpreter.

Psychophysics toolbox. Psychophysics Toolbox [16] offers a large toolbox to build visual

stimuli and stimulation protocols. The toolbox has been developed with human psychophysics

in mind, in particular visual and auditory psychophysics. It provides large control over display

Fig 8. Hardware for zebrafish behavior experiments. A) Above: sample image of a behavioral setup that can be used

to track head-restrained zebrafish tail end eyes (the opaque enclosure has been removed for visualization purposes).

Below: sample traces for tail angle and grating velocity obtained from this setup with the closed-loop experiment

described in Fig 7. B) A low-cost version of the setup presented in A) that can be used to investigate behavior in the

head-restrained fish, and sample traces from this setup. A detailed description of the setup together with a complete list

of parts can be found at www.portugueslab.com/stytra/hardware_list.

https://doi.org/10.1371/journal.pcbi.1006699.g008
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and sound hardware, and many tools for acquiring responses from the subject through the

mouse and keyboard. Still, its application is restricted to the stimulus design, as it does not

offer any camera integration or animal tracking modules. This makes the toolbox ill-suited for

developing closed-loop stimuli where behavior and responses of the animal need to be fed

back to the stimulus control software. Moreover, it relies on the proprietary software package

Matlab.

Psychopy. Psychopy [17] is a library similar to the Psychophysics Toolbox, written in

Python. It provides precise control over displaying visual and auditory stimuli (not currently

implemented in Stytra), and a set of tools for recording responses through standard computer

inputs (mouse and keyboard). Due to its wide use in human psychophysics experiments, it has

a larger library of stimuli than Stytra. However, it is also purely a stimulation library without

video or other data acquisition support. Moreover, it does not provide a system for easy online

control of stimulus parameters, an essential feature for closed-loop experiments.

MWorks. MWorks is a C/C++ library to control neurophysiological experiments, devel-

oped mostly for (visual) neurophysiology in primates and rodents. It provides support for

building complex tasks involving trials with different possible outcomes, and contains a dedi-

cated library for handling visual stimuli. Due to being implemented in a compiled language,

higher and more consistent performance can be obtained than with our package, which is

Python based. However, it is not designed for online video analysis of behavior, which is essen-

tial for behaviorally-controlled closed-loop experiments. Furthermore, while scripting and

expanding Stytra requires pure Python syntax, experiments in MWorks are coded in custom

high-level scripting language based on C++. Most importantly, it runs only on MacOS, which

depends on Apple hardware, available only in a minority of laboratories.

ZebEyeTrack. The software solution described in [2] covers a small subset of Stytra func-

tionality—eye tracking and eye-motion related stimulus presentation. It is implemented in

LabView and Matlab, which adds two expensive proprietary software dependencies. Running

an experiment requires launching separate programs and many manual steps as described in

the publication. The tracking frame rate is limited to 30 Hz in real-time while Stytra can per-

form online eye tracking at 500 Hz, and Stytra’s performance is mainly limited by the camera

frame rate.

Results

Triggering Stytra from a scanning two-photon microscope

We demonstrate the communication with a custom-built two-photon microscope. We per-

formed two-photon calcium imaging in a seven days post fertilization (dpf), head-restrained

fish larva pan-neuronally expressing the calcium indicator GCaMP6f (Tg(elavl3:GCaMP6f),

[18]). For a complete description of the calcium imaging protocol see [19]. These and follow-

ing experiments were performed in accordance with approved protocols set by the Max Planck

Society and the Regierung von Oberbayern.

We designed a simple protocol in Stytra consisting of either open- or closed-loop forward-

moving gratings, similar to the optomotor assay described in the closed-loop section, with the

gain set to either 0 or 1. At the beginning of the experiment, the microscope sends a ZeroMQ

message to Stytra, as described in the previous section. This triggers the beginning of the visual

stimulation protocol, as well as the online tracking of the fish tail, with a 10-20 ms delay. To

match behavioral quantities and stimulus features with their evoked neuronal correlates, we

used the data saved by Stytra to build regressors for grating speed and tail motion (for a

description of regressor-based analysis of calcium signals, see [8]). Then, we computed pixel-

wise correlation coefficients of calcium activity and the two regressors. Fig 9 reports the results
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obtained by imaging a large area of the fish brain, covering all regions from the rhombenceph-

alon to the optic tectum. As expected, calcium signals in the region of the optic tectum are

highly correlated with motion in the visual field, while events in more caudal regions of the

reticular formation are highly correlated with swimming bouts. The Stytra script used for this

experiment is available at stytra/example/imaging_exp.py.

Experiment replication

One of the main strengths of Stytra is the possibility of sharing the experimental paradigms

described in a publication as scripts that can be run on different platforms and experimental

hardware. To prove the validity of this approach, we decided to showcase the software repro-

ducing the results from two publications that investigated different behaviors of the larval zeb-

rafish. This allowed us to verify the performance of our package in producing and monitoring

reliable behavioral responses, and showed how the Stytra platform can be used to share the

code underlying an experimental paradigm. The scripts used for designing these experiments

are available in our repository, together with a full list of parts and description of the hardware.

In this way, everyone can independently replicate the experiments simply by installing and

running Stytra on a suitable behavioral setup.

Closed-loop motor adaptation. To demonstrate the effectiveness of the closed-loop stim-

ulation software for head-restrained larvae, we re-implemented in Stytra one of the paradigms

described in [13]. This paper addresses the importance of instantaneous visual feedback in the

control of the optomotor response in seven dpf zebrafish larvae.

In [13], a closed-loop paradigm was used to have real-time control over the visual feedback

that the animal receives upon swimming. After triggering motor activity with forward-moving

black and white gratings (10 mm/s, 0.1 cycles/mm), online tail tracking was used to estimate

Fig 9. Closed-loop protocol and simultaneous whole-brain calcium imaging. A) A protocol consisting of either

open- or closed-loop forward-moving gratings was presented to a seven day old Tg(elavl3:GCaMP6f) zebrafish larvae

during two-photon imaging. The arrowhead points to the timepoint of receiving the trigger signal from the

microscope. Colored stripes indicate periods when the gratings were moving: dark gray represents open loop trials

(gain 0) and light gray represents closed-loop trials (gain 1). B) Left: Pixel-wise correlation coefficients with the grating

velocity regressor. The square on the regressor map reports the position of the area that was used to compute the

calcium trace displayed on the right. Right: z-scored fluorescence trace from the selected area, imposed over the

regressor trace. C) Same as B, for the vigor regressor.

https://doi.org/10.1371/journal.pcbi.1006699.g009
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the expected velocity of the fish based on freely-moving observations, and a backward velocity

proportional to the expected forward velocity was imposed over the forward grating speed. In

one crucial experiment (Fig 3 of [13]) the authors demonstrated that reducing or increasing

the magnitude of this velocity by a factor of 1.5 (high gain) or 0.5 (low gain) resulted in modifi-

cations of the bout parameters such as bout length and inter-bout interval (time between two

consecutive bouts). Fig 10A shows the inter-bout interval along the protocol, where the three

gain conditions were presented in a sequence that tested all possible gain transitions. When

the gain increased the fish was consistently swimming less (higher inter-bout interval), while

the opposite was observed when the gain decreased. Therefore, as expected, fish adapted the

swimming parameters to compensate for changes in visual feedback.

We reproduced exactly the same protocol within Stytra, and we used Stytra modules for

closed-loop control of a visual stimulus to compare whether it could replicate the findings

from [13]. The cumulative angle of the extracted tail segments was used with a gain factor to

estimate the fish velocity and the gain factor was changed in a sequence matching the protocol

in [13]. The replication with Stytra yielded the same result (Fig 10B), that inter-bout interval

decreased in low gain conditions and increased in high gain conditions.

Closed-loop phototaxis assay. To test the freely swimming closed-loop performance, we

replicated a protocol from [20]. The fish is induced to perform phototaxis by keeping half of its

visual field (the left or the right side) bright while the other is dark. The fish is more likely to

turn to the bright side. The stimulus is constantly updated so that the light-dark boundary is

always along the mid-line of the fish. We replicated the qualitative trends observed in [20],

however the ratios of forward swims to turns are notably different (Fig 11). The variability of

fish responses and differences in the stimulus presentation setup (e.g. projector brightness)

could account for these differences. Also, to reduce duration of the experiments, we included a

radially-inward moving stimulus that brings the fish back into the field of view.

Discussion

We have developed Stytra, a Python-based software package that can perform online behav-

ioral analysis and stimulation and can be interfaced with existing solutions to combine these

Fig 10. Visual feedback changes inter-bout interval in a head-restrained optomotor assay. Replication within Stytra

of results published in [13]. A) Changing the gain that is used to convert the fish’s swimming vigor to relative velocity

with respect to the grating affects the inter-bout interval. The line represents the average normalized inter-bout time,

and bars represent standard error of the mean from n = 28 larvae (adapted from [13]). B) Replication in Stytra of the

same experimental protocol (n = 24 larvae). Individual fish traces are shown in gray.

https://doi.org/10.1371/journal.pcbi.1006699.g010
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with physiological experiments. This demonstrates its suitability as a framework for coding

and running experiments in systems neuroscience. In addition to the open-source software,

we are contributing to the nascent open hardware movement [4] and are providing a complete

description of the hardware used for conducting behavioral experiments. Finally, we provide a

set of example analysis scripts for the experiments described in this manuscript, which can be

easily modified for other experimental questions. We believe that the simplicity of the imple-

mentation of an experiment within Stytra facilitates the collaboration between laboratories,

since complex experimental paradigms can be run and shared with Python scripts whose

reproducibility can be ensured using version control.

The current version of the software supports all experimental paradigms currently running

in our lab. Support for different hardware would require some extensions in the architecture.

Simultaneous use of multiple cameras is currently not supported either, but this requires a

minor rewriting of the frame dispatching module. We will both continue to extend Stytra’s

capabilities and support any contributions that expand the library to cover a wider range of

experimental conditions. Finally, it is important to note that the choice of Python as a language

would make it difficult to obtain millisecond-level or higher temporal precision (e.g. for

closed-loop electrophysiology). To this aim, existing solutions based on compiled languages

should be employed, such as [21] (a system for closed-loop electrophysiology in C++).

Another possibility would be to combine Open Ephys and Bonsai, as in [22].

The modular and open-source nature of the package (licensed under the GNU GPL v3.0

licence) facilitates contributions from the community to support an increasing number of

hardware devices and experimental conditions. Although the current implementation deals

with typical zebrafish experiments, the package contains many modules that can be used in

other contexts, for example: Qt-based design and timed execution of stimuli, support for dif-

ferent cameras models and accumulators to save data streamed from different processes that

can be used for closed-loop stimuli. Although the adaptation to very different experimental

conditions requires familiarity with Stytra internals, scientists interested in developing behav-

ioral paradigms using pure Python could use many modules of Stytra as a starting point. We

will make use of the community features of Github to provide assistance to any interested

developers, and to support adopting the package in other labs. In conclusion, we hope that Sty-

tra can be a resource for the neuroscience community, providing a common framework to cre-

ate shareable and reproducible behavioral experiments.

Fig 11. Comparison of turning angle distribution in a closed-loop freely-swimming phototaxis experiment. Left: a

histogram of the angle turned per bout, redrawn from [20]. Right: the equivalent panel, with n = 10 fish and the

protocol run with Stytra. The dark shading on the plot represents the dark side of the visual field.

https://doi.org/10.1371/journal.pcbi.1006699.g011
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Online resources

• Stytra repository: https://github.com/portugueslab/stytra DOI:10.5281/zenodo.2548534

• Stytra documentation: http://www.portugueslab.com/stytra/

• data analysis notebooks: https://github.com/portugueslab/example_stytra_analysis

• example data from Stytra: https://zenodo.org/record/1692080

• example extension of Stytra to rat experiments: https://github.com/portugueslab/Stytra-

with-DeepLabCut

Supporting information

S1 Fig. Software architecture of Stytra. A partial diagram of classes and the links between

them.

(TIF)

S2 Fig. Temporal jitter of a flickering stimulus. The distribution of time differences between

bright-dark transitions of a stimulus set to flip between full luminosity on the red channel and

darkness on every stimulus. Pure red was flashed in order to avoid artifacts of LED DLP projector

color multiplexing. The brightness of a small area of the display was recorded with a Ximea

camera with a OnSemi PYTHON 1300 sensor at 2000 Hz.

(TIF)
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Software: Vilim Štih, Luigi Petrucco, Andreas M. Kist.

Supervision: Ruben Portugues.
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Discussion

Larval zebrafish as a model for cerebellar research

In the same year as the publication of Manuscript 1, two studies in mice, imag-
ing larger populations of granule cells, have been published 48 ,49. In addition to 48 Giovannucci et al., “Cerebellar Granule

Cells Acquire a Widespread Predictive
Feedback Signal during Motor Learning”.
49 Wagner et al., “Cerebellar Granule Cells
Encode the Expectation of Reward”.

changes in the granule cell activity patterns during learning, the studies shared
similar observation in terms of the absence of sparsity. Even though a far smaller
proportion of granule cells have been imaged in lobule VI (around 50 - 100 were
sampled from tens of millions granule cells in ice), the majority showed task
dependent modulation. These studies prompted theoretical reevaluation of the rel-
evance of sparsity for cerebellar coding50 and pointed to how many assumptions 50 Gilmer and Person, “Theoretically

Sparse, Empirically Dense”.underlying dominant theories of cerebellar function still need to be tested.
A subsequent paper from our lab focused on analysing the responses of Purk-

inje cells51. Knogler et al. have found that the simple spikes, caused by signalling 51 Knogler, Andreas M Kist, and Portugues,
“Motor Context Dominates Output from
Purkinje Cell Functional Regions during
Reflexive Visuomotor Behaviours”.

from the granule cells, are driven majorly by motor-related activity. The Purkinje
cell activity has been found to be segmented in areas responding to different types
of visual stimuli and correlated with motor activity. Finally, in the most recent
publication from the lab52 Markov et al. show that without cerebellar Purkinje 52 Markov et al., “A Cerebellar Internal

Model Calibrates a Feedback Controller
Involved in Sensorimotor Control”.

cells, long term adaptation to a closed-loop feedback manipulation does not occur.
The major issue that remains with cerebellar studies in larval zebrafish is that

behavioral effect sizes after manipulations are very small, even with ablation
of large parts of the populations of specific cell types. Sill, a large part of the
larval zebrafish behavioral repertoire remains to be explored in the context of
the cerebellum, where it could play a more prominent role than in the optomotor
response.

A fuller picture of the optomotor response

The work presented in this thesis fills several gaps left by previous studies of
the optomotor response: first, focusing on cerebellar representations, secondly,
investigating long-term evidence integration as a trigger for behavior, and looking
in detail into the representation of motion in all cardinal directions, focusing
on an under-studied area, the IPN. A common property of most studies on the
optomotor response is that either they investigate only the forward swimming or
turning part of the behavior. Even in studies combining both, such as Naumann et
al.53 an incomplete subset of stimuli is used (of the space of 25 stimuli - 4 motion 53 Naumann et al., “From Whole-Brain

Data to Functional Circuit Models”.directions and no motion, per eye - only 9 were used, and no predictions were
made for the behavior of the remaining combinations, even though it would be
possible within the framework developed in the publication.

While the OMR is a versatile behavior to study in zebrafish, it has several
limitations compared to other adaptive motor control paradigms: it is highly
variable both across individuals and within individuals over longer time spans (see
Figure 5). In theory, this variation could be quantitatively described by inferring
per-fish and between-fish latent variables, however their dynamics would be
impossible to estimate with achievable durations of experiments. The OMR is also
rather inaccurate if the goal is considered to be to counteracting the relative visual
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Figure 5: The variability of the optomotor
response when presented with 8 different
directions, in embedded fish within an
animal and across animals. Each line
is a bout, and the color is the inferred
direction, with left, forward and right
bouts. The left panel is an example trial for
one fish, with the y axis splitting across
the stimuli, whereas the right panel shows
20 trials across 7 fish, each represented
analogously to the left panel.

motion by swimming, especially when moving in two dimensions (as opposed
to one). This effect is visible only in aggregate, over many bouts and for a part
of animals in specific time frames, while the fish remain far from the original
position. Other tasks common in behavioral experiments, such as eye reflexes,
reaching and various trained paradigms in rodents and primates, can be executed
with high reliability and precision54 ,55 ,56, and may be better suited for questions

54 Gallego, Perich, Chowdhury, et al.,
“Long-Term Stability of Cortical Popu-
lation Dynamics Underlying Consistent
Behavior”.
55 Roy et al., “Extracting the Dynamics
of Behavior in Decision-Making Experi-
ments”.
56 Laboratory et al., “Standardized and
Reproducible Measurement of Decision-
Making in Mice”.

on motor control circuits.

Limitations of embedded experiments

Embedded behavior is a poor proxy of freely-swimming behavior: both the
physics are different, as the head cannot swing, and both vestibular and lateral
line sensory feedback is absent. In the case of the OMR, the fish employ a different
behavioral strategy to deal with the variety of grating speeds57. We have at-

57 Severi et al., “Neural Control and
Modulation of Swimming Speed in the
Larval Zebrafish”.

tempted to improve the head-embedded virtual reality setup to support simulated
both forward swimming and turning. The approach was based on modeling the
effects of tail motion on fish velocities using recurrent neural networks trained on
freely-swimming data. Even though the models worked well on freely-swimming
cases, they did not generalize to head-embedded fish (see example in Figure 6).
The tail shape timeseries in the embedded case turned out to be out of the dis-
tribution of the freely-swimming ones, so the networks did not generalize well,
even for different parameterizations of the tail shape. These observations to-
gether show limitations of studying head-embedded larval zebrafish as a proxy for
freely-swimming behavior. However, the embedded behavior can be legitimately
studied in it’s own right, and recently there has been rapid progress in imaging
freely-swimming animals58 ,59.

58 Kim et al., “Pan-Neuronal Calcium
Imaging with Cellular Resolution in Freely
Swimming Zebrafish”.
59 Zhang et al., “Capturing Volumetric
Dynamics at High Speed in the Brain by
Confocal Light Field Microscopy”.Internal states as modulators of behavior

The interpeduncular nucleus and the above-lying nuclei raphe appear in studies
showing longer-term modulation of behavior 60 ,61 ,62 as long as they are imaged.

60 Yokogawa, Hannan, and Burgess, “The
Dorsal Raphe Modulates Sensory Respon-
siveness during Arousal in Zebrafish”.
61 Pantoja et al., “Rapid Effects of Selection
on Brain-Wide Activity and Behavior”.
62 Cherng et al., “The Dorsal Lateral
Habenula-Interpeduncular Nucleus
Pathway Is Essential for Left-Right-
Dependent Decision Making in Zebrafish”.

The IPN is frequently missed even in whole-brain studies due to it’s depth. In the
absence of a stimulus, the fish have a tendency to repeat previous movements 63,

63 Dunn et al., “Brain-Wide Mapping of
Neural Activity Controlling Zebrafish
Exploratory Locomotion”.

and in phototaxis, there is a clear bias coming from longer-period oscillations64.

64 Wolf et al., “Sensorimotor Computation
Underlying Phototaxis in Zebrafish”.

From our studies, presented in Manuscripts 2 and 3, we hypothesize that the
IPN is likely to be a part of these circuits acting on a 1-10s timescale in biasing
the behavior. As the representations investigated relate to the optic flow, the
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trajectory
Figure 6: Tail curvature and predicted
(for freely-swimming and embedded) and
measured (for freeely-swimming) velocity
and trajectory for two example bouts.

structure could support more sophisticated functions in adult animals where
motion estimation is needed. The IPN could also be a nexus of multisensory
spatial information, which will be investigated in further studies in the lab.

Opportunities and challenges with whole-brain imaging

Whole-brain imaging opens an unprecedented window into studying sensorimo-
tor control. All potentially involved areas can be imaged allowing us to overcome
preconceptions about what regions of the brain should be involved in which as-
pects of sensory processing, representing animal state and causing motor outputs.
In the context of evidence-accumulation, recent work in mammals also showed
that these signals are also widely distributed65 ,66, expanding on the traditional 65 Koay et al., “Amplitude Modulations of

Cortical Sensory Responses in Pulsatile
Evidence Accumulation”.
66 Jacobs et al., “Cortical State Fluctuations
during Sensory Decision Making”.

conceptions of area involvement in e.g. the primate random dot kinematogram
tasks (area MT, lateral interparietal cortex the frontal eye fields)67.

67 Gold and Shadlen, “The Neural Basis of
Decision Making”.

An important consideration when analyzing whole-brain pan-neuronal cal-
cium imaging data is that different cell types, and even cells of the same type,
can have very different links between action potentials and fluorescence changes.
These differences can arise, among others, from different baseline firing rates,
dynamics of calcium within the cell and the physical dimensions of the cells. The
question of timing, i.e. time constants of responses to stimuli, is therefore espe-
cially fraught. To make sure that the temporal dynamics of firing rates imputed
through calcium imaging e.g. ramping indeed truly behave this way, concurrent
electrophysiology is necessary68 ,69 ,70. 68 Theis et al., “Benchmarking Spike Rate

Inference in Population Calcium Imaging”.
69 Greenberg et al., “Accurate Action
Potential Inference from a Calcium Sensor
Protein through Biophysical Modeling”.
70 Wei et al., “A Comparison of Neuronal
Population Dynamics Measured with
Calcium Imaging and Electrophysiology”.

The lightsheet and two-photon imaging modalities present different trade-offs.
In two-photon experiments, the whole brain can be only imaged plane-by-plane,
so in order to cover the whole area the protocol has to be repeated many times,
and it is therefore limited in duration. In lightsheet imaging, the optical sectioning
from the sheet of light (in our setup at its the narrowest 6.5µm), is imperfect,
and there is significant scattering from the tissue above and below the plane
currently in focus. Even though this can be ameliorated by using non-negative
matrix factorization approaches, there are no guarantees the decomposed signals
are corresponding to the true sources. The strong blue lateral and frontal laser
illumination can also affects the behavior of the animal, even if the eyes are
shielded.

The most obvious application of whole-brain imaging (in zebrafish as in hu-
mans and other animals) is localization of function. While localization in itself
answers very few deeply interesting questions 71, it can be of great value to con- 71 Fodor, “Why the Brain?”
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strain models of separated subsystems. In the case of larval zebrafish, localization
of functions and response types can be of even greater value than in mammals,
as the anatomy is more differentiated (compared to the relative uniformity of
the mammalian cortex), and once a structure is found to be interesting, it can
be interrogated with the whole spectrum of systems neuroscience techniques
available, and the number of neurons remains manageable. This can range from
precise genetic targeting of structures and cell types within the structures for both
imaging and optogenetic activation, optical and chemical ablation combined with
behavioral studies, to tracing the synaptic-level volumes obtained by electron
microscopy.

One of the main limitations of the studies presented in this thesis is that we
have made correlative, as opposed to causal statements. Although we can pinpoint
signatures of various parts of motion processing through imaging, we cannot
tell what exact role they play in the control loop without interventions. The
available interventions: ablations and optogenetic activations and inactivations
suffer from uncertainties on both the behavioral readout side (since the optomotor
response is highly variable). On the interpretation side, disabling or activating
parts of the circuit, without mapping the whole activity dynamics, can only lead
to very coarse statements in the case the behavior is still performed as expected
or completely absent. In the best case, there is a specific impairment, and if there
is a model that predicts the nature of the impairment, this gives weak evidence
for the model describing the situation correctly. However if our model is not
precisely quantitatively formulated, which can be difficult when faced with high
variability of behavior, the space of possible outcomes is very large. Even with the
advances of all-optical recording and stimulation technologies72 ,73, the technical 72 Yang et al., “Simultaneous Two-Photon

Imaging and Two-Photon Optogenetics of
Cortical Circuits in Three Dimensions”.
73 Packer et al., “Simultaneous All-Optical
Manipulation and Recording of Neural
Circuit Activity with Cellular Resolution
in Vivo”.

advances do not automatically lead to better understanding. Given the wide range
of conceivable models, possible manipulations and the uncertainty of behavior
given a model, full stimulus-to-to-behavior neural circuit models appear to be a
distant goal.

Development and use of Stytra and other software within one lab
and beyond

After the manuscript on Stytra was published and promoted at the FENS 2018
conference and through social media, we started receiving feedback and support
requests from several different labs, within our institute and beyond, confirming
there was a need and use for such a software package. In addition to zebrafish,
Stytra has been used for studies with rats, fruit flies and monkeys (personal com-
munication). We were also happy to receive contributions fixing bugs and adding
hardware support, and the process is still continuing. A larger update, decou-
pling stimulus presentation from the user interface process, is in progress and
being worked on by new lab members. Other packages with partly overlapping
functionality, such as Bonsai, have been extended in the meantime to cover some
features of Stytra, such as support of closed-loop visual stimuli74, and the integra- 74 Lopes et al., “BonVision – an Open-

Source Software to Create and Control
Visual Environments”.

tion of deep learning-based markerless tracking 75. However Stytra still maintains

75 Kane et al., “Real-Time, Low-Latency
Closed-Loop Feedback Using Markerless
Posture Tracking”.

unique features including easy programmatic generation of protocols and data and
metadata management, as well as optimized tracking for zebrafish experiments,
meriting its continued relevance. It is currently used for all behavioral experi-
ments within our lab, so its continued support and development is secured for the
near future.

Due to their earlier stage of development, other packages have not yet been
used outside of the lab, however several are close to their release at the time of
writing (the behavioral analysis package for Stytra, Bouter and the lightsheet con-
trol software, Sashimi). The newest analysis packages (Calcium and VolumeReg-
istration) have been developed in Julia, a language designed from start to serve
the needs of computational sciences. It allows writing fast code (within the range
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of writing directly in C) while maintaining high-level constructs. This makes it
optimal for our uses, as we can improve performance, essential for algorithms
that operate on our large-scale imaging data, while maintaining readability and
maintainability. Its rich ecosystem for complex interactive visualizations76 was 76 Simon et al., JuliaPlots/Makie.Jl.
integral in the data analysis process for Manuscript 3, where all imaging analyses
have been done with Julia.

Open source software as a model for science

Since the work of scientists is mostly publicly funded, there is a responsibility
for sharing the tools built for the research, as public funding is meant to further
the common good77. Multiple labs building on a common set of tools has also 77 Gleeson et al., “A Commitment to Open

Source in Neuroscience”.many practical advantages, from saving development time, through fostering
collaborations to reducing the probability of errors, as there is a higher chance of
discovering bugs.

The increased sophistication of behavioral paradigms and data analysis
pipelines makes the final findings very dependent on the software stack 78. Many 78 Botvinik-Nezer et al., “Variability in the

Analysis of a Single Neuroimaging Dataset
by Many Teams”.

lessons from the fMRI community are applicable in calcium imaging studies, as
similar issues appear: high dimensionality of brain and behavioral data, a prac-
tically unlimited number of hypotheses to test and many steps from raw data
to signals being explained. Keeping details of the analysis behind (reasonable)
request clauses both discourages independent verification, and leads to lower
standards in code. Making code public incentivizes cleaner software engineering,
which also frequently leads to better quality of analyses. As code has become an
integral part of almost all systems neuroscience research, the need for increased
transparency becomes more pressing.

More generally, the utopian concept of free and open source software (FOSS)
overlaps to a large degree with the ideals of scientific conduct. The principles of
free software go further than just open source: not just providing the finished
software, but empowering the users to understand and build their own tools with-
out restrictions79. In science there is the nominal principle that experiments and 79 Stallman, “Why ”Open Source” Misses

the Point of Free Software”.analyses can be reproduced from the methods section, but open source usually
goes further: all tools to reproduce the same program, as far as it is possible, are
provided. Of course, in the physical world the analogy is not fully applicable, yet
the principles go beyond software, as repositories of hardware designs such as
OpenBehavior or plasmids such as Addgene demonstrate. Free-form collaboration
is explicitly encouraged in most open source projects: many projects have con-
tributing guidelines and collaboration depends only on shared interests, without
requiring previous acquaintances. In the future, hopefully more complete and
granular communication of scientific progress will allow for similar structures to
emerge for scientific data, hypotheses, analyses and evaluations.

The existence of software as living entities that need to be maintained and
supported in order to retain relevance results in a different set of incentives from
scientific publications. Publishing of early versions of software is encouraged with
the common understanding that there might be issues (analogously to preprints),
however the subsequent steps can also provide ideas for development of scientific
communications. For example, public tracking of user issues ensures the defi-
ciencies of the work are clear to all newcomers. Additionally, while the review
and acceptance of contributions to the project is usually in hands of maintainers,
in case of disagreements, anyone is free to take parts of the code (or in case of
science, it would be datasets, models or even lines of reasoning) and continue in
new directions. Modern version control, which is nearly ubiquitous in open source
software, highlights several additional properties in common with good scientific
practice: immutable records and distributed repositories. Immutable records of
the project progress can help guard against many pitfalls in complex data analy-
sis situations, such as evaluating statistical tests devised by observing subsets of
data after it has been acquired (p-hacking). Distributed repositories enable almost
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universal availability: the code is hosted on public servers and accessible with-
out restrictions, and institutions can host verifiably identical copies. Significant
archiving efforts, such as Zenodo, the Internet Archive and the GitHub Arctic
Vault, also ensure the continued availability of code artifacts even if the original
hosting entities disappear.

The advance of movements in open access publishing, as well as new publish-
ing outlets and organizations embracing digital technologies, give hope that many
of these ideas will be realized in mainstream scientific communication in the near
future.
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