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Abstract

Timing in the range of milliseconds to seconds is fundamental to our everyday behavior and

survival, not to mention its vital role to certain expertise such as music and dance. Timing

research in this particular time range has been considerably fruitful in both theoretical and

methodological developments. Although we doubtless have a time sense, we have no specific

sensory organ for the passage of time. Time information has to be processed by other sensory

organs (e.g., our eyes and ears). This exhibits an intriguing situation: on the one hand, the

process for temporal information is susceptible to various contextual modulation, given that

the sense of time is highly dependent on sensory modality and non-temporal intensity of the

sensory signal; on the other hand, we are surprisingly good at timing, suggesting a

well-functioning integration process to combine various temporal information from different

sources together. This thesis is rooted in this situation.

While classic interval timing models, such as the scalar timing theory, or alternative intrinsic

models focus on how individual interval is encoded and processed, having hot controversial

debates on whether our timing system is embedded with a dedicated or intrinsic mechanism,

it is much under debate how temporal contexts (e.g., multiple intervals) and non-temporal

contexts (such as stimulus intensity) could influence internal estimations. Without fully

examining the role of those context factors, it remains challenging to reconcile or distinguish

between different timing models. Thus, this thesis focuses on various contextual effects in

milliseconds to seconds interval timing.
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Overview

The thesis is structured in five main chapters including three independent studies. The

introduction covers the basic concepts of psychophysics and their applications in the time

domain. In particular, several important ‘temporal distortions’ that are caused by various

Context factors are reviewed.

The first study (Chapter 2) focuses on one basic property of interval timing - the (relative)

precision of interval estimation: whether the precision of interval timing follows Weber’s law.

According to classical Gibbon’s Scalar Expectancy Theory (SET), the interval timing error

should conform to Weber’s law (known as scalar property in time literature), that is, the

standard error increases as the time interval increases. However, violation of the scalar

property, often using the observed variation of the coefficient of variation (CV), has been

found in multiple studies, posing a challenge to this fundamental law. By manipulating

temporal contexts (probing intervals in blocked or randomly interleaved manner), we found

both conformity and violation of the observed CV. Using a Bayesian model, however, we

suggest that the variation of the CV can be explained by the temporal contextual modulation,

without resorting to the violation of the fundamental Weber’s law.

The second study (Chapter 3) focuses on another basic issue in interval timing- how is

interval encoded internally? Classical interval models (e.g., SET) assume the interval is

encoded linearly. However, this poses a serious issue of efficient encoding - an extremely

long time interval requires a huge resource to store it. Would it be encoded logarithmically? It

is not so easy to disentangle different encoding strategies, given that the observed behavioral

responses often include an implicit decoding process. Here we adopt an intuitive process -

ensemble coding - low-level fast processing to bypass potential temporal decoding and to

probe the internal primitive encoding of time intervals. The results are in line with the

logarithmic scaling of time (in the range of sub-seconds to second), indicating a compressed

subjective timeline in humans.

The third study (Chapter 4) investigates influences of non-temporal factors (object size of

visual stimuli and signal-noise-ratio of auditory stimuli) in interval discriminations,
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specifically in the experimental context where visual and auditory stimuli were interleaved

probed. Our results show that both the interval estimations and temporal discriminations are

highly dependent on non-temporal characteristics and an asymmetric role of non-temporal

characteristics between visual and auditory modality in time estimation.

The final chapter discusses the findings of interval timing from these three studies with

respect to three types of contexts. And I summarize how the findings could reconcile with

dominant timing models, such as scalar timing theory, and the implications of potential

theoretical developments in human timing.
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Chapter I. General Introduction

Waiting for the sunset at the peak of the Olympia hill, I can see this moment when the whole

city gradually immersed into the golden afterglow, I can hear this moment when the church

bell strikes the most times of the day, but how can I know this moment, how can I know what

this moment represents -- time?

Time is a mystery, or as Professor Callender opened about his book: ‘time is a big invisible

thing that will kill you’ (Callender, 2019). Because time is intangible, temporal information

heavily relies on concrete existence or external reference to express (Fraisse, 1984). For

example, we can use the location of the sun to inform the time of the day, and we use a

stopwatch to time the duration of a certain event. Forming the time sense, however, faces

even more challenges, as no apparent organ or neural underpinnings could account for how

and where time is processed in the human body (Gibson, 1975; Vroomen & Keetels, 2010).

Thus, to obtain a proper timing sense and to make accurate time judgments, we highly

depend on alternative intermediates carried through variant sensory channels (Simon

Grondin, 2010; Matthews & Meck, 2014; Mauk & Buonomano, 2004; van Rijn, 2016). Here,

all those dependent factors were included within the general concept of Context, of how

temporal information is expressed and how the time sense is formed, which is the main object

of investigation in this thesis.

To study the time sense, one has to consider how temporal information is mapped to our

senses and how the resulting sensation (the subjective sensation) leads to perception and

timed behaviors. The subject of psychophysics, which measures sensory magnitudes ‘resting

upon evidence and mathematical relations of empirical facts (Fechner, 1860)1’, provides an

ideal tool to bridge the process of temporal information and the timing responses. In the past

decades, abundant timing theories have been developed within the scope of psychophysics,

yet the role of the 'Context' factors has not been fully addressed. In this thesis, I report three

studies (Chapters 2 to 4) that focus on three aspects of context factors which can potentially

1 Translation by Dr. F.H. Petzschner in her doctoral thesis ‘Magnitue estimation in Humans - a Bayesian
apporach to characteristic behavior in path integration (Frederike Hermi Petzschner, 2012)’, original
quote ‘...auf Erfahrung und mathematischer Verknüpfung erfahrungsmäßiger Tatsachen [...] zu fußen’
(Fechner, 1860).
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affect the observed timing responses and discuss their implications on the existing timing

models.

In the following of the Introduction, I will first introduce the fundamental mathematical

relationship between absolute (external) magnitudes and our perceived (interval)

measurements, which formed the core idea of the psychophysical laws. Second, I will focus

on the major statistical properties, such as accuracy and precision, in evaluating timing

performances in repetitive examination and experimental environment and their application

in subsecond to seconds human timing. Third, I will focus on several classic findings of the

temporal distortions in past research, such as the central tendency. Finally, I will introduce the

idea of Bayesian inference theory in modeling sensory magnitudes and how the Bayesian

model can function as a perfect tool to incorporate information from temporal context into

our internal representation of magnitudes.
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1.1 Approaches to the sensory world of Time

1.1.1 Weber’s law and scalar timing

In psychophysics, the original approach to the sensory world was to construct a quantitative

relation between the physical stimuli and perceived measurements via experimental facts, and

to reveal this relation to an observable level (Fechner, 1860). Ideally, physical magnitudes

(such as weight, distance, luminance, etc) can be mapped onto internal psychological scales

with elegant mathematical formulations, which were later known as the main psychophysical

laws (Baird & Noma, 1978; Luce & Edwards, 1958). To access to our perceived magnitudes

in a quantitative fashion, the earliest method was through discrimination of magnitude

estimations. For example, by asking participants to discriminate between stimulus

magnitudes with a small increment, the discrimination threshold (or known as the just

noticeable difference, JND) could thus be determined. It has been shown that the JND is

approximately proportional to the absolute magnitude, which is later known as Weber's law2

, that is,

= k, (1)∆𝑇
𝑇

where is a constant known as Weber's fraction. Weber's fraction can be easily applied to𝑘

intuitive perceptions in a wide range of daily situations. For example, when a crowd consists

of 5 persons, it is easy for one to detect one more person joining; However, when a crowd of

a hundred people, one person leaves or one more person appears does not seem to be

noticeable (assuming no additional salient motion or color introduced). In the repetitive

measurements, Weber's fraction can be calculated as the ratio between the standard deviation

and the mean of magnitude estimations. Dubbed in the time domain, this relation is defined

as the Coefficient of Variance (CV).

= = k, (2)∆𝑇
𝑇

𝑠.𝑑. (𝑇)
𝑚𝑒𝑎𝑛 (𝑇)

Until today, the constancy of the Weber’s fraction (in time literature it is known as the Scalar

property) still serves as the hallmark of one of the most influential timing theories —

Gibbon's Scalar Expectancy Theory (SET) . Gibbon's early description of SET was to test a

2 Weber's law was first constructed by Fechner, based on Weber’s experimental data. Fechner dedicated
this formula after his mentor’s name.
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'Weber-like assumption' based on meta dataset and secondary data analyses of timing

behavior in animal timing (John Gibbon, 1971, 1972; John Gibbon & Church, 1981). The

later mature theory has been developed with expansion to both animal timing and human

timing on wider applications such as a fixed-interval schedule of reinforcement and

discrimination between stimulus duration (Lorraine G. Allan & Gibbon, 1991; John Gibbon

et al., 1984). Secondary data analysis had come to the following consequences of scalar

timing: 1) Proportional timing. The mean of an interval estimation increased linearly with the

duration to be timed; 2) The scalar variance along with the mean, which indicates a constancy

of CV irrespective of the duration to be timed. 3) 'Superimposition' where psychometric

functions fall on top of each other when plotted on a relative timescale. The third is another

type of validation of the scalar property.

1.1.2 Scalar Timing and Internal-Clock Mechanism

The scalar timing theory (or SET) is integrated with the 'internal clock' model that was

established by Treisman in the 60s (M. Treisman et al., 1990; Michel Treisman, 1963) and

has been expanded by Gibbon, Church, and Warren in the 70s (R. Church, 2003; R. M.

Church et al., 1994; Warren H. Meck et al., 1984; W. H. Meck & Church, 1983). The

manifest of SET, also known as the Information Process (IP) model, introduces a three-stage

model: clock, memory, and decision (See Figure 1, left panel). The clock functions with three

parts: a pacemaker, a switch, and an accumulator. The pacemaker generates continuous pulses

to the accumulator at a mean rate that is highly related to the timing values, while the switch

decides the onset and offset of such a process. When a temporal stimulus occurs (event ), it𝑡

permits a certain amount of pulses to pass on to the accumulator ( , where is the pace𝑎 = λ𝑡 λ

of pulses being numbered) in the working memory; thus, the perceived time could be

recorded and restored as a form of the number of pulses.

Gibbon and colleagues (John Gibbon et al., 1984) introduced a memory transfer variable,

which transferred accumulated ticks to the reference memory ( , where is a𝑚 = 𝑘 * 𝑎 𝑘 *

random variable along with the occurrence of memory transformation) for later comparison,

which conforms to scalar properties (i.e., Weber's law). For the decision process, a

comparator judges information from two sources: the time value recorded in working

memory and the stored value of pulses in the accumulator. When these two values are 'close

enough' (a threshold ), a response occurs. To be more specific, the decision of whether or𝑏

not to make a response is made by calculating the relative discrepancy between the
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above-mentioned two sources ( ) with the threshold. Thus, if ,|𝑚 − 𝑎|/𝑚 |𝑚 − 𝑎|/ < 𝑏

response; otherwise, continuing the process of updating temporal memory.

It is worth noting that there are several sources of variances that could potentially affect both

the accuracy (measured by mean estimation) and the sensitivity (measured by variance) of

temporal performances. The internal clock is a model of time perception stating that time

across all modalities is measured against a centralized clock that uses a pacemaker with a

variable tick rate changing on a trial-to-trial basis (R. M. Church et al., 1994; John Gibbon,

1971). There are three perspectives of variances that should be considered as the sources of

variance, which can arise from either stage of the model (clock, memory or decision). The

clock stage is a Poisson process whose pulses are accumulated in the working memory until

the occurrence of an important event, such as reinforcement or update, in which the number

of clock pulses accumulated is transferred from the working (short-term) memory and stored

in a reference (or long-term) memory. According to the SET, a response is produced by

computing the ratio between the value stored in the reference memory and the current

accumulator total. To account for the scalar property of interval timing, i.e., the variability of

responses is roughly proportional to the peak time, Gibbon showed that a Poisson distribution

for the accumulator requires a time-dependent variance in the decision and memory factors as

well as in the internal clock. These additional sources will be seen to dominate overall

variance in performances, emphasizing the important role of cognitive systems in time

judgments. For such reasons, SET was considered a more general theory of cognitive process

rather than merely a behavioral description of time (Gallistel, 1990; Oprisan & Buhusi,

2014).

1.1.3 (Non) Scalar Timing

As previously mentioned, psychophysical laws use continuous functions to describe the inner

manifest of time (but not just retrained to the time domain), implying a unified view of

perception along with the magnitude range. However, there has been empirical evidence

reporting 'breaks' in these functions. For instance, maximum sensitivity, practice, and

counting. Accordingly, it is reasonable to assume the existence of distinctive timing

mechanisms according to the different time ranges. By reviewing estiamted CVs from a wide

variety of studies and paradigms, Gibbon also pointed out the potential violations of the

scalar timing with possible 'jumps' of CVs between 1s to 1.5s (John Gibbon et al., 1997),

implying a multi-timing mechanism in both animal and human timing. In spite of the great
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success the scalar timing has enjoyed in both animal timing and human timing (Lorraine G.

Allan, 1998; Lejeune & Wearden, 2006; J. Wearden, 2016), there had been an increasing

amount of studies that report the violation of scalar timing.

The violations of scalar timing were reported more frequently in sub-second timing since

sub-second intervals are mainly processed by automatic timing, which requires less

attentional modulation, whereas supra-second durations are under the control of higher

cognitive functions such as attention and working memory (Lewis & Miall, 2003). For

instance, a sharp jump of CV was found around 50ms (equal to 20Hz of repetition rates) for

the perception of inter-click interval (ICI) of click trains (Ungan & Yagcioglu, 2014). The

inconstancy of CVs was also found between 1s to 2s by adopting multiple paradigms such as

discrimination, production and, categorization. When intervals exceed 1.2s, performances are

improved by explicit counting (Allman et al., 2016; Warren H. Meck & Benson, 2002). Other

distinctive findings on the violations of the scalar timing included the increase of CVs across

time (Poirier et al., 1969) in the millisecond and seconds ranges.

1.1.4 Linear versus Logarithmic scale of timeline

It was assumed by Weber that the inner perception linearly increases with the absolute

magnitude, which resulted in the assumption of the linear internal coding. Alternatively, some

other models, particularly according to Fecher's claim3, proposed that the internal

representation should be logarithmically progressed to the external stimulus intensity.

Concerning the coding efficiency, it is reasonable to accept the logarithmic encoding (thus

compressed internal scale of the perceived items), which enables the minimum representation

to encode a wider range of absolute magnitude (S. Dehaene et al., 2008; Sun et al., 2012;

Varshney & Sun, 2013). Evidence that supports the logarithmic encoding has been shown, for

example, in numerosity research, several recent studies have shown that the number sense is

along the logarithmic scale (e.g., put 10 into the middle of 1 to 100), for the preschool kids

and Amazoniann indigene (S. Dehaene et al., 2008).

Attempts to directly reveal the subjective timeline had been made using a variety of

psychophysical approaches, but distinguishing between the linear and logarithmic timing is

largely constrained by the adopted experimental paradigms (J. Gibbon, 1999; Johnson et al.,

2002; Matthews & Meck, 2014; Staddon & Higa, 1999). For example, in temporal bisection,

3 By regulating a constant inner sensitivity, Fechner regarded the constant k as an internal unit of sensory
representation. Through basic mathematical integration (see full derivation in Baird, 1978), he obtained
Fechner's law, in which a logarithmic transformation of stimulus magnitude was indicated.
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the bisection point was often observed at the geometric mean (Russell M. Church & Deluty,

1977; Stubbs, 1976), which led to the earliest speculation that subjective timeline might be

logarithmic: if time were linearly coded, the search for the midpoint on the subjective scale

would be equally distant to both duration references (‘Short’ and ‘Long’), which would lead

to their arithmetic mean. However, Gibbon and colleagues provided an alternative

explanation that the midpoint was calculated by taking the ratio of two durations, which also

results in the geometric mean (L. G. Allan, 1998; L. G. Allan & Gibbon, 1991). Facing this

situation, Gibbon and Church developed a ‘time-left’ procedure (J. Gibbon & Church, 1981),

where subjects were given a choice for rewards between a short fixed interval and a long

fixed interval with different levels of elapsed time (time left). The argument was: if time were

linearly perceived, no preference would be shown between the elapsed time and the

remaining time, and the obtained data confirmed this assumption. However, this paradigm

was contested by several subsequent studies concerning alternative interpretations. For

example, Dehaene (2001) argued that responses collected in the time-left procedure might be

guided by the fastest rewards learned in the training phase, where the internal coding strategy

showed little influence on the required choice. Moreover, when reducing the bias within the

procedure, results tended to show more support of linear timing than logarithmic timing

(Trujano & Orduña, 2015). To avoid the potential flaws in the time-left procedure, Yi (2009)

adopted an indirect approach to examine the subjective timeline within the framework of

signal detection theory (SDT) and found that logarithmic timing with fixed variability could

fit the animal timing data better. However, when applying the SDT to humans, the

non-linearity of temporal representation became less observable due to individual differences

(Jozefowiez et al., 2018).

1.2 Context Effect in Interval Timing

Through psychophysical approaches, most of the human timing data acquired in the

experimental environment highly retrained to the adopted experimental settings and

paradigms (Simon Grondin, 2008, 2010; see Mioni et al., 2014). Additionally, non-temporal

factors that define a presented interval can be surprisingly influential in collecting results. To

name a few, whether an interval was 'filled' or 'empty', sensory modality, size, pitch, speed,

emotionality, and so forth have been gained increasing attention, and the range of those

factors are expanding (Brown, 1995; Gil & Droit-Volet, 2012; Matthews & Meck, 2014 for
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more illustrations). Further, even with careful control for the aforementioned factors, the

overall temporal context forming testing session (e.g., sample durations within or between

blocks) and the most recent presented interval can both affect interval timing considerably. In

the following section, I will introduce some of the 'classic' temporal distortions that highly

depend on 'Context' factors.

1.2.1 Temporal context: 'Central Tendency' Effect

'Central tendency' effect, also referred to as Regression Effect or Vierordt's law (Gu & Meck,

2011; Lejeune & Wearden, 2009) states that a variety of subjective judgments, such as time,

weight, brightness, area, size of angles, all show the same tendency to gravitate toward a

mean magnitude (Hollingworth, 1910). It describes a systematic bias where, within a single

test range, small tested magnitudes tend to be overestimated, whereas large tested magnitudes

tend to be underestimated. This tendency in the temporal domain was first observed by

Vierordt over 150 years ago (Vierordt, 1868), who conducted a duration reproduction task

with intervals ranging from 0.5s to 6.5s. The data exhibited a classical regression effect with

an 'indifferent point' - where response equal to the actual duration- somewhere within the

range. The occurrence of the regression effect has been found in various procedures, such as

order comparison and production(Bausenhart et al., 2014; Gu & Meck, 2011; Karaminis et

al., 2016; Lejeune & Wearden, 2009). However, the strength of the effect is dependent on

context factors, such as modality, ranges of intervals. For example, studies by Woodrow (H.

Woodrow, 1930; Herbert Woodrow, 1933) used the production of individual intervals each

day (0.2 to 30 s) showing the central tendency effect reduced and disappeared as the days of

testing accumulated. In groups of people with special long-term training, musicians for

instance, as the years of musical training increase, expert musicians showed overall smaller

'central tendency' than normal group in temporal reproductions (Aagten-Murphy et al., 2014);

Also by adopting reproduction task, Cicchini and colleagues revealed that percussionists

could perform veridically in both visual and auditory modality, while string musicians and

non-musicians showed typical regression effect with different degree of tendencies in visual

modality (Guido Marco Cicchini et al., 2012).

Context Factor 1 The first context factor investigated in this thesis is the temporal context

comprising sample durations adopted in the testing environment. In Chapter 2 of the thesis, I

hypothesized that temporal context plays a vital role in affecting different aspects of timing

performances, such as accuracy and precision. As noted, the coefficient of variation (CV),
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can be used as a metric to evaluate the goodness (the precision) of timing performance, a type

of Weber’s fraction in time perception. It has long been debated if the duration judgment

follows the scalar property or not by using the observed CV. However, it has been largely

neglected in the literature that the observed CV could also be modulated by the temporal

context and decision uncertainty. In Chapter 2 I used the temporal reproduction paradigm to

examine the variation of the CVs with two types of temporal contexts: a full-range mixed vs.

a blocked context, separated in visual and auditory modalities.

1.2.2 The case of Ensemble Perception - incorporating knowledge about the overall

temporal context

Encounter ensemble or even redundant information is inevitable in everyday perception.

Walking on the street, we see lines of houses, bunches of trees, barely a single one. Our

sensory system must have equipped an efficient mechanism in coping with such situations. In

a seminal work of Ariel's, when asked participants to identify whether a probe object belongs

to the previously represented group of objects, the response surprisingly and consistently lied

at the mean object of the group (Ariely, 2001). Since then, research has shown that statistical

properties of many features (mainly in the visual domain) can be automatically extracted,

from basic features such as sizes and color (Chong & Treisman, 2005; Webster et al., 2014),

to high cognitive levels processing from facial expressions, such as emotions, person

identities and lifelikeness (de Fockert & Wolfenstein, 2009; Haberman & Whitney, 2007,

2012; Leib et al., 2016). Furthermore, perceptual averaging is not limited to a simultaneously

presented group (or set) of items. Several studies have shown that perceptual averaging also

takes place for sequentially presented stimuli, such as object weights and auditory

frequencies (Curtis & Mullin, 1975; Piazza et al., 2013). Considering that the calculation

capacity of such an averaging process is limited, it would be more effective to represent the

main statistical information, such as mean and variance, of group items, instead of the full

information of individual items. However, ensemble perception in the temporal domain is

little investigated.

Context Factor 2 The second context factor investigated in this thesis focused on the

general or 'ensemble' temporal environment in interval timing. In Chapter 3 of this thesis, I

intend to apply this intuitive process - ensemble perception- to the time domain through

extracting statistical properties, such as the mean in interval timing and intend to reveal the

subjective timeline based on the collected statistical properties. As noted, one of the problems

15

https://paperpile.com/c/YrU37o/ypukd
https://paperpile.com/c/YrU37o/1SZev+Bgmu3
https://paperpile.com/c/YrU37o/TMvK0+vrcpO+xTveK+25F4B
https://paperpile.com/c/YrU37o/TMvK0+vrcpO+xTveK+25F4B
https://paperpile.com/c/YrU37o/MhHko+aWLQA


of psychophysical approaches is that the inner perception is not always manifested by

measured magnitudes (Eisler, 1976; Krueger, 1989), which inspired the idea to seek for

indirect approach or intuitive process to reaching for the internal representation of sensory

magnitudes. In Chapter 3, I will introduce one study that focuses on the question: 'whether

the subjective timeline is linear or logarithmic?'.

1.2.3 Modality Difference and Intensity effect

Auditory/Visual Differences in Interval Timing Temporal distortions can also occur when

the stimulus of durations comprises different modalities, such as vision and audition (Lustig

& Meck, 2011; T. Penney, 2003). In particular, when auditory and visual signals are

intermixed within one session, participants tend to overestimate auditory signals and

underestimate visual signals of equivalent duration. According to the 'Memory Mixing'

account proposed by Penney et al (T. B. Penney et al., 2000), the auditory/visual difference of

interval timing can seek for explanations within the framework of internal-clock model, in

which an integrated memory (addressed as audio-vision memory) from both visual and

auditory modality was formed due to the exposure of stimuli from both modalities. Thus, in

the decision making (e.g., to classify a give duration in to 'short' or 'long' category), the

memory distribution from each modality resulted in different groups of distribution due to

different speed of the pacemaker, after the comparison to the audio-vision memory (Lorraine

G. Allan, 1998; Taatgen & van Rijn, 2011). In some cases, however, the auditory/visual

difference could be diminished. For example, participants can be 'released' from the

interference effects of 'memory mixing' by providing appropriate feedback and/or by

blocking trials in such a way as to discourage the formation of such distortions in temporal

memory (Klapproth, 2009; Vatakis & Spence, 2006a, 2006b).

Intensity Effect The non-temporal characteristics from stimulus played a vital in influencing

the duration perception, such as visual stimuli with larger magnitude such as size and

luminance were judged longer, and auditory stimuli with larger intensity were tended to be

judged longer (Proulx, 2010; Rammsayer & Verner, 2015; Xuan et al., 2007). In an early

attempt, Goldstone and colleagues manipulated the intensity levels from visual and auditory

stimuli in a duration comparison task and showed that differences between audition and

vision in duration judgments were attenuated but not eliminated (Goldstone et al., 1978).

Later, Matthews and colleagues have demonstrated that it was the stimulus contrast, rather

than the absolute intensities, which affected the duration judgments (Matthews et al., 2011a).
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In their work, they used different levels of intensities from both auditory and visual stimuli as

well as the background intensity and found that the stimulus magnitude highly depended on

the contrast between the stimulus intensity and background intensity (e.g., weak stimuli were

judged to last (Matthews et al., 2011b)longer against a high-intensity background).

Context Factor 3 The third context factor investigated in this thesis is the intensity of

non-temporal magnitudes in auditory and visual modalities. The auditory/visual differences

in interval timing have been heavily investigated, yet the role of non-temporal magnitudes,

such as the use of different visual sizes or the different levels of intensities in auditory

stimuli, have been neglected in previous studies. Here, I hypothesized that non-temporal

magnitudes from the stimulus features would affect the auditory/visual difference of duration

judgments, particularly in the context where auditory and visual stimuli were intermixed in

the same testing environment (e.g., same block). Specifically, through altering the relative

relation between the intensity of stimuli and their background (high or low signal-noise-ratio

of auditory stimuli with background noise), we should be able to manipulate the difference

from modalities in duration judgments.

1.3 Perception as Bayesian Inference

Bayesian approaches have enjoyed a great deal of recent success in the application to model

perceptual problems, mainly in the visual domain (Maloney & Mamassian, 2009; Rhodes,

n.d.; Yanagisawa, 2015). The idea behind the Bayesian inference is to characterize general

information as a probability distribution and to include knowledge about experienced events.

In the temporal domain, as reviewed above, various types of time distortions have been found

in the literature, which can be traced back 150 years to Vierordt's law (Lejeune & Wearden,

2009; Vierordt, 1868). However, quantitative predictions and mathematical formulation about

time distortions have only been developed in the past decades, when Bayesian Inference was

introduced for the explanation of contextual factors (Jazayeri & Shadlen, 2010; Frederike H.

Petzschner & Glasauer, 2011; Frederike H. Petzschner et al., 2015; Shi & Burr, 2016; Shi et

al., 2013). In this section, I will introduce the computational analysis of Bayesian inference

and how the effect of temporal context can be captured based on Bayes' rule in interval

timing.
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1.3.1 Bayesian Formulation

The Bayesian inference optimizes the perceptual magnitude by taking advantage of two

sources of information: a 'likelihood' function - the likelihood of an observed𝑃(𝑆|𝐷)

measurement given a particular stimulus , and a prior probability - the knowledge𝑀 𝐷 𝑃(𝐷)

about the stimulus distribution before the observation. According to the Bayes' rule, the

posterior distribution can be derived:𝑃(𝐷|𝑆)

P(D|S) ~ P(S|D) P(D) (3)

In the temporal domain, the Bayesian approach thus provided explanations by using a

quantitative prediction of the contribution of temporal context and the mechanisms that

involve the subjective representation of duration. Because temporal measurements are static

and noisy, integrating the prior knowledge of the statistical distribution of a series of stimulus

durations can be beneficial for increasing the precision of duration estimates, although

incorporating the prior may lead to sacrificing the accuracy. In this sense, contextual effects

are statistically optimal and serve to minimize errors.

The case of Duration Reproduction In a seminal work in 2010, Jazayeri and Shadlen

demonstrated a three-stage model using the Bayesian inference that takes into account the

underlying distribution of samples to predict subjects’ temporal reproductions(Jazayeri &

Shadlen, 2010). In the first stage, the relationship between the sample interval and the

measurement interval was characterized by measuring the noise, which was modeled as a

Gaussian function centered at the mean of sample interval with standard deviation grows

linearly along the mean (that is, the scalar timing); The second stage was the observing

estimator where the measurement intervals were mapped to the estimation intervals, which

would be the inputs for the 'deterministic mapping' model from the third stage for final

production. The deterministic mapping functions are associated best with the Bayes

least-squares (BLS). Explaining why behavior often conforms to Vierordt's Law is a major

theoretical problem for contemporary models of time perception. An interesting fact was

revealed from Jazayeri's model where the characteristics in temporal reproductions could be

the result of an incorporation of prior experience, which might be correlated to contextual

factors such as modality and temporal range, however, how prior knowledge could differ

from such contextual factors and whether this model could be generalized to such factors

remain unresolved. Additionally, a complete model of interval reproduction should measure

motor noise directly. Instead, the proposed model made the simplifying assumption that it
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was constant for all participants. Another improvement may be to model the data with

likelihood functions and priors that are Gaussian with log-time, thereby more closely

reflecting scalar timing. In chapter 2 of this thesis, I focus on investigations into two major

factors: modality, and temporal range, of whether contextual effects could alter both the

precision and accuracy of temporal reproductions.

1.3.2 Bayesian Integration and SET

Recently, the IP model has been further developed by Shi, Church and Meck (2013) by

integrating the Bayesian inference. As has been illustrated in Figure 1 (right panel), the three

stages in the IP model could be well-matched with the Bayesian inference process. The

sensory likelihood is derived from the clock stage. The prior represents the durations stored

in the reference memory, which is updated by current estimates (dashed black arrow). The

posterior reflects the probability distribution of the current estimate, combining the clock

reading and the influence of the reference memory (indicated by the dashed red arrow). In the

decision stage, responses are made based on specific comparison rules. The goal of Bayesian

interference is to minimize the loss function, whereas the comparator of the IP model uses a

relative discrimination threshold.

Figure 1. Information process model of interval timing and Bayesian inference of interval timing. Left

panel: The three rows are in accordance with the three stages of the model: Clock, Memory and

Decision. With the onset and offset of a switch, an accumulator receives and restores a certain number

of pulses from a pacemaker(clock process). After reinforcement, the contents in the working memory
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are transferred to the reference memory (memory process) for later comparison. A response occurs

when a comparator yields a judgement that the discrepancy from two sources of temporal memory is

smaller than the threshold. The right panel illustrates that three key components of Bayesian inference

could be matched to the three stages of the IP model. The sensory likelihood is derived from the clock

stage. The prior represents the durations stored in the reference memory, which is updated by current

estimates (dashed black arrow). The posterior reflects the probability distribution of the current

estimate, combining the clock reading and the influence of the reference memory (indicated by the

dashed red arrow). In the decision stage, responses are made based on specific comparison rules. The

optimization from a Bayesian inference is to minimize the loss function, whereas the comparator of

the IP model uses a relative discrepancy in the memory load. (figure adapted from (Shi et al., 2013) )

1.3.3 Bayesian Inference and Modality difference

As has been introduced in previous sections, the auditory/visual differences of interval timing

can occur typically when participants experience both auditory and visual stimuli in the same

testing session (T. B. Penney et al., 2000). Although the Information Process (IP) model of

scalar timing provided a fairly good explanation to the modality effect, what factors

quantitatively determine the level of contextual calibration still remain elusive. In line with

the IP theory, the Bayesian inference could account of the ‘memory-mixing’ effect with

assuming the 'interval clock' are integrated at a faster rate for auditory stimuli than for visual

stimuli due to differential rates of opening and closing of the switch that allows pulses to flow

from the pacemaker to the accumulator. As a consequence, the internal reference of the mean

duration between the ‘short’ (S) and ‘long’ (L) anchor durations is larger for auditory stimuli

than for visual stimuli. When the auditory and visual durations are mixed within the same

memory distribution, assuming that auditory distributions and visual distributions are

independent Gaussians, the internal reference of the mixed durations is a linear-weighted

average of audition and Vision. Based on this mixed reference, the auditory and visual points

of subjective equality (PSE) are shifted in opposite directions — as indicated by the filled

squares and circles, respectively Moreover, the trade-off between precision and bias will

depend on the magnitude of uncertainty and the selected cost function.

20

https://paperpile.com/c/YrU37o/TqYIU
https://paperpile.com/c/YrU37o/fnjVW


1.4 Open Issues and Research Questions

In line with traditional psychophysical methods, most of the approaches in modern timing

research still follow a similar investigating process, that is, to investigate subjective

perception through the relation between bias and precision of interval time. Temporal

perception is highly susceptible to changes in experimental context and task and modern

theoretical developments are providing increasingly sufficient pieces of evidence in cracking

up the timing system. On these grounds, I intended to investigate three concrete factors that

may affect interval timing and their potential indications on existing timing models.

The first study focused on one basic property in evaluating time performance — the precision

of temporal estimation. According to the scalar timing, another form of Weber's law, the

relative precision (measured by the Coefficient of Variance, CV) of temporal estimation

should remain constant irrespective of the time duration. However, quite a few recent studies

have reported the inconsistencies of this property, thus contesting the ubiquitous law.

Although the validity of scalar property raised many debates during the past two decades,

investigation concerning the role of temporal context in scalar property has not been carefully

examined (Bizo et al., 2006; Simon Grondin, 2014). Here I proposed the violation of scalar

property observed in experimental studies could be a side effect of random changes of tested

durations, and further quantified such effect with the Bayesian inference model.

The second study focused on one basic question in psychophysics — the subjective timeline

of human perception. I adopted summary statistics (also known as ensemble coding or

ensemble perception) to investigate whether human participants can incorporate the temporal

context and accurately extract the mean duration from a succession of temporal intervals. The

results are in line with logarithmic scaling of time (in the range of sub-seconds to second),

thus indicating a compressed subjective timeline in humans; little is known of ensemble

perception in the temporal domain. Though investigating perception for ensemble intervals,

the scale of the inner representation of timing was also expected to be revealed.

The third study was set to investigate two types of memory mixing effect - the modality

mixing and non-temporal magnitude mixing. The modality mixing effect has been related to

the auditory/visual difference - 'sounds are judged longer than lights’ (Goldstone & Lhamon,

1974). Although the auditory/visual difference of interval timing can seek explanations

within the framework of scalar timing theory (Goldstone & Lhamon, 1974; Lhamon &
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Goldstone, 1974). Mixing effects of magnitudes from vision and audition, such as visual size,

signal-noise-ratio, are still less understood. In the final study I will show that both types of

mixing effects contribute to the estimation bias, and the magnitude mixing depends on the

modality temporal precision.
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Chapter II. The role of Temporal Context in Duration

Reproductions: a Bayesian Explanation

23



24



2.1  Summary

A classic temporal effect was known as the Vierordt’s Law (or the ‘Central-Tendency Effect’),

where estimated magnitudes tend to gravitate towards their mean. In a seminal work, Jazajeri

and colleagues (2010) proposed a Bayesian estimator model that perfectly explained this

effect in duration reproductions. However, whether the precision of our duration estimations -

another important aspect of evaluting the goodness of our duration judgments, could also be

influenced by the temporal context has not been discussed in previous studies. In this

presented article, we tested the influence of the temporal context on duration reproductions in

the range of milliseconds to seconds. For the same tested durations, we conducted two

sessions with repect to the temporal contexts: the ‘Mix’ session - all sample intervals were

presented in the same test block, and the ‘Block (ed)’ session - sample intervals were divided

into three conditions (‘short’, ‘intermediate’, ‘long’) and tested separately in different blocks.

We found that the relative precision - meausred using the Coefficient of Variance (CV)

showed different tendencies along the tested durations between the ‘Mix’ and ‘Block (ed)’

session, demonstrating the influences from the temporal context. Morever, we proposed a

two-stage Bayesian estimator model to incorporate such contextual effects. Our restuls

showed that our timing behavior is highly dependent on the temporal context composed from

the testing environments, as well as the sitmulus modality (visual versus auditory). And the

model simulations also provided explanations as to how the contextual factors and modality

influences could draw influences to our internal estimations in different stages.
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Variation in the “coefficient of variation”: Rethinking the violation of the 
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A B S T R A C T   

The coefficient of variation (CV), also known as relative standard deviation, has been used to measure the 
constancy of the Weber fraction, a key signature of efficient neural coding in time perception. It has long been 
debated whether or not duration judgments follow Weber’s law, with arguments based on examinations of the 
CV. However, what has been largely ignored in this debate is that the observed CVs may be modulated by 
temporal context and decision uncertainty, thus questioning conclusions based on this measure. Here, we used a 
temporal reproduction paradigm to examine the variation of the CV with two types of temporal context: full- 
range mixed vs. sub-range blocked intervals, separately for intervals presented in the visual and auditory mo-
dalities. We found a strong contextual modulation of both interval-duration reproductions and the observed CVs. 
We then applied a two-stage Bayesian model to predict those variations. Without assuming a violation of the 
constancy of the Weber fraction, our model successfully predicted the central-tendency effect and the variation in 
the CV. Our findings and modeling results indicate that both the accuracy and precision of our timing behavior 
are highly dependent on the temporal context and decision uncertainty. And, critically, they advise caution with 
using variations of the CV to reject the constancy of the Weber fraction of duration estimation.   

1. Introduction 

Maintaining both high accuracy and precision of timing perfor-
mance, particularly in the range of milliseconds to seconds, is funda-
mental to our basic functioning and survival (Buhusi & Meck, 2005; 
Meck, 1983). Most timing theories explicitly incorporate Weber scaling 
in their models (Church et al., 1994): the standard deviation of interval 
estimation is proportional to the absolute time interval – a characteristic 
also referred to as the scalar property. For example, the information- 
processing model of “scalar timing theory” (STT) (Gibbon et al., 1984; 
Gibbon & Church, 1990) adopts the framework of the classical internal- 
clock model (Treisman, 1963), which assumes a pacemaker- 
accumulator that linearly records timed durations. In the STT, the sca-
lar property arises mainly from the variability in the memory trans-
formation of the accumulated ticks (Gibbon, 1991). The scalar property 
has been confirmed in many animal studies (Gibbon et al., 1997) and in 
human time perception (Wearden & Lejeune, 2008), and recently has 
been shown to be an emergent property in artificial perceptron neurons 
(Buhusi & Oprisan, 2013). 

One way of testing the scalar property is to use the estimated 

standard deviation (SD) and mean (M) from each duration timed to 
construct a coefficient of variance (CV=SD/M). The scalar property re-
quires the CV to be constant across the tested range of time samples. 
Reviewing studies of human timing, Wearden and Lejeune (2008) found 
that many studies, varying from time reproduction to verbal estimation, 
confirmed the scalar property. However, violations of the scalar prop-
erty have been observed when the durations timed were ultrashort or 
with tasks varying in difficulty or with extensive training (Bizo et al., 
2006; Grondin & Killeen, 2009; Matthews & Grondin, 2012). For 
example, when the range of to-be-estimated durations was rather broad 
(from 68 ms to 16 min), the observed CVs decreased as duration 
increased (Lewis & Miall, 2009). Also, it is known that the variability is 
higher for very short durations (<100 ms) relative to long durations, due 
to the sensory limits and temporal summation (Scharnowski et al., 
2007). Violations of the scalar property manifest mainly in a change of 
the CV across different time ranges, where the CV is determined by two 
parameters, SD and M. Since both parameters are susceptible to bias in 
certain contexts, errors may creep in the estimation of the CV. For 
example, the range of to-be-tested durations can heavily influence 
duration estimation, which is known as the central-tendency effect 
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(Bausenhart et al., 2014; Gu et al., 2016; Gu & Meck, 2011; Jazayeri & 
Shadlen, 2010; Lejeune & Wearden, 2009; Shi, Church, & Meck, 2013): 
short durations are often overestimated and long durations under-
estimated. Thus, the mean estimate for the short/long durations would 
be larger/smaller than expected, resulting in the variation of the CV 
across different durations. Similarly, sensory limits in the short-range 
and decision noise, in general, could affect the observed SDs. As a 
consequence, the variation of the CVs may well be attributable to 
context modulation and/or noise perturbation, rather than reflect true 
violations of the scalar property. 

Accordingly, the present study aimed to investigate whether the 
variation of the CV could be explained solely by contextual modulation 
and sensory and decision noise, without resorting to “violations” of the 
scalar property. We adopted the duration-reproduction paradigm, which 
has been used in previous studies for demonstrating violations of the 
scalar property (e.g., Lewis & Miall, 2009). We hypothesized that a large 
range of test durations would impact the variation of the CV more than a 
small range, given that the central-tendency effect would be stronger for 
extreme durations. As the central-tendency effect can be predicted 
quantitatively by the Bayesian inference framework (Jazayeri & Shad-
len, 2010; Petzschner et al., 2015; Shi & Burr, 2016; Shi, Church, & 
Meck, 2013), we also modeled the reproduced duration using Bayesian 
models. Importantly, we incorporated the scalar property in the model, 
that is: we assume there is no violation of the scalar property. If the 
model with the scalar property can predict the variation of the CV, 
relying on the variation of the CV alone would be insufficient to falsify 
the scalar property. 

In more detail, we asked participants to reproduce the same physical 
intervals presented under two different conditions. In the whole-range 
(“mixed”) condition, intervals from 300 ms to 16 s were randomly 
intermixed, while in the other, sub-range (“blocked”) conditions, in-
tervals were separately tested within sub-second, second, and supra- 
second (sub-)ranges. In addition, we tested reproduction in both the 
auditory and visual modalities, given that subjective durations are 
known to differ between visual and auditory signals (Ganzenmüller 
et al., 2012; Matthews & Meck, 2014; Shi, Ganzenmüller, & Müller, 
2013; Wearden, 2006; Wearden et al., 1998): temporal precision is 
higher for the auditory system. Finding essentially similar result patterns 
would strengthen the generalizability of any conclusions. We hypothe-
sized that the CV would show greater variation in the “mixed”, whole- 
range versus the “blocked”, sub-range conditions, and in vision as 
compared to audition. And we expected the Bayesian model with the 
scalar property would predict those variations in CVs. 

2. Method 

2.1. Participants 

A total of 52 volunteers (13 participants for each experimental ses-
sion), aged 21–33 years (27 females), were recruited from the subject 
pool of LMU Munich Psychology Department. This number was based on 
the sample sizes in previous duration-reproduction studies (Cicchini 
et al., 2012; Jazayeri & Shadlen, 2010; Lewis & Miall, 2009), which 
ranged from 5 to 14 participants. Our participants had all normal or 
corrected-to-normal vision, normal hearing, and no somatosensory dis-
orders. Participants provided written informed consent in accordance 
with the Declaration of Helsinki prior to the experiment and received 9 
Euro/h for their participation. 

2.2. Apparatus and stimuli 

The study was conducted in a dimly lit, sound-attenuated laboratory 
cabin. Visual stimuli were displayed on a 21-inch CRT monitor with a 
refresh rate of 100 Hz and a resolution of 800 × 600 pixels. In visual 
sessions, targets were grey squares (8◦ × 8◦ of visual angle), with two 
levels of luminance: grey (17.5 cd/m2) and white (42.7 cd/m2), 

presented on a black screen background (1.60 cd/m2). In Experiments 3 
and 4 (auditory sessions), a natural water-flow sound (60 dB, measured 
at the sound source) was chosen for auditory presentation. Compared to 
simple sine waves, the water-flow sound potentially reduces fatigue and 
discomfort during longer stimulus presentations (e.g., 16 s). Auditory 
stimuli were delivered via two loudspeakers placed on both sides of the 
computer screen (with a separation of 40 cm). The experimental pre-
sentations were generated in Matlab (version 2015a) and with the 
Psychtoolbox-3 toolbox. 

2.3. Experimental procedure 

We adopted a between-subject design considering two experimental 
factors: Temporal Context (“Mix” versus “Block(ed)”) and Modality 
(“Vision” vs. “Audition”). Accordingly, four separate sessions were 
conducted with separate groups of participants, hereafter referred to as: 
“Vis/Mix”, “Vis/Block(ed)”, “Aud/Mix”, “Aud/Block(ed)”. We 
employed a temporal reproduction task (Lewis & Miall, 2009), in which 
participants first received a stimulus (a white square or a sound) for a 
given duration, and then were asked to reproduce that duration by 
pressing a response key for as long as they had perceived the duration. 

2.3.1. The visual sessions (“Vis./Mix” and “Vis./Block(ed)”) 
Each trial started with the word prompt “Presentation” shown for 

300 ms, indicating the initial presentation of the experiment. This cue 
was followed by a grey square presented at the center of the display, to 
which participants were instructed to press the left arrow key with the 
left index finger when they were ready to start the presentation. Pressing 
of the key triggered a color change of the square from grey to white. 
Participants had been told that the duration of the white square was the 
“target duration” that they had to remember and to reproduce. The 
duration of the white square was selected from nine intervals (separated 
equally on the logarithmic scale): 0.30, 0.49, 0.81, 1.33, 2.19, 3.60, 
5.92, 9.73, and 16.00 s. At the end of the interval, the color of the square 
changed (automatically) back to the initial grey, upon which partici-
pants had to release the left arrow key. That is, participants were 
required to hold the key throughout the presentation of the white square 
and only release it at the end of its duration, signaled by its reversion to a 
grey square. We kept this production procedure the same as the previous 
study (Lewis & Miall, 2009) for the purpose of cross-study comparison. 
The reproduction phase was separated from the target presentation by a 
250-ms blank screen, upon which the word “Reproduction” appeared at 
the screen center for 300 ms. Immediately after this verbal signal, a grey 
square appeared, prompting participants to start reproducing the given 
target duration by pressing the right arrow key with their right index 
finger; participants proceeded to the reproduction at their own pace. 
Their keypress, again, triggered the change of the square’s color from 
grey to white. Participants were instructed to keep pressing the key for 
as long as they had perceived the target duration. The key release trig-
gered a color change back to grey. The next trial started following a 
random blank interval varying from 500 to 1000 ms. 

The same procedure was applied to both visual sessions, the only 
difference being the exposure to different temporal contexts. In the 
“Vis./Mix” condition, nine intervals were randomly mixed within each 
block, whereas in the “Vis./Block(ed)” condition, they were divided into 
three sub-groups according to their temporal range: the “Short” (0.30, 
0.49, 0.81 s), “Intermediate” (1.33, 2.19, 3.60 s), and “Long” groups 
(5.92, 9.73, 16.00 s). Each experimental session consisted of 15 blocks of 
18 trials each. 

2.3.2. The auditory sessions (“Aud./Mix” and “Aud./Block(ed)”) 
The same paradigm was adopted for auditory sessions, in which 

auditory excerpts of a natural water-flow sound were used for duration 
presentation. On each trial, after the visual cues “Presentation” and, 
respectively, “Reproduction” (indicating the initiation of the respective 
trial phase) for 300 ms, a fixation cross was presented in the center of the 
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display until the end of the phase. In the presentation phase, participants 
were asked to press the left arrow key with the left index finger when 
they were ready to start the trial. Pressing of the key triggered the water- 
flow sound for a given duration. Again, participants were required to 
hold down the key throughout the presentation of the water-flow sound 
and only release it once the sound stopped. In the reproduction phase, 
participants were instructed to self-initiate reproduction by pressing the 
right arrow key with the right index finger, which triggered the water- 
flow sound. Participants were instructed to keep pressing the key for 
as long as they had perceived the target duration. 

Participants underwent three blocks of training (9 trials per block) 
prior to performing the experiment proper, which took some 10–15 min 
to complete. During training, participants’ reproduction errors that 
exceeded 50% of the sample duration were followed by a “warning” 
message, “Too Short” or “Too Long”, respectively. Participants were told 
to perform the task avoiding any form of counting. No feedback was 
given during the formal experiment. To avoid contamination of different 
temporal contexts, each participant took part in only one experiment in 
this study, which lasted about 1.5 h. Participants were free to take a 
break between blocks when needed to prevent loss of concentration and 
alertness. 

2.4. Bayesian modeling 

Here, we propose a two-stage Bayesian Estimator to model perfor-
mance in the temporal reproduction task. Fig. 1 illustrates the compu-
tation processes of the model; the computational steps are as follows. 

2.4.1. Stage I: duration coding 
Following classical psychophysics (Fechner, 1860), we assume the 

internal duration coding inherits the scalar property from Weber’s law: 
the just noticeable difference is proportional to the absolute magnitude. 
Accordingly, we introduced a logarithmic transformation of a given 
sample interval D to the internally measured time: 

S= log(D)+ ϵ, (1)  

where D is the sample duration on the linear scale and S the internal 
representation of measured duration on the logarithmic scale. The 

random variable ϵ represents normally distributed internal- 
measurement noise. 

Because sensory input is noisy, duration estimates can be improved 
by taking into account the prior probability of encountering a particular 
duration. In general, when an ideal observer follows Bayesian integra-
tion for the perceived duration, where both the prior and the likelihood 
are independent Gaussians, the optimal internal estimate μXi for a given 
interval is essentially a weighted sum of the interval measure Si and the 
mean of the (biased) prior (Cicchini et al., 2012; Jazayeri & Shadlen, 
2010; Petzschner et al., 2015; Shi, Church, & Meck, 2013): 

μXi
=

(
1−ωp

)
Si +ωp

(
μp +Δ1

)
, (2)  

and its variance is 

σ2
Xi
=

σ2
s σ2

p

σ2
p + σ2

s
, (3)  

where the weight ωp = 1/σ2
p

1/σ2
p+1/σ2

s 
is proportional to the inverse of the sum 

of the variances; σs
2 is the variance of the sensory measurement, which is 

constant in log-scale representation for a given modality for each 
participant (i.e., the scalar property on the linear scale); and σp

2 is the 
variance of the prior. Additionally, we consider a shift term (Δ1) to 
incorporate a general bias on the mean of the prior distribution. 

2.4.2. Stage II: duration reproduction 
Duration estimates are transformed back to a linear scale; accord-

ingly, the variance σXi
2 is transformed into the variance of a log-normal 

distribution: 

σ2
X̂ i

=
⃒⃒
⃒eσ2

Xi − 1
⃒⃒
⃒e2μXi +σ2

Xi . (4) 

In modeling this phase, we also take into account an additional 
source of variability resulting from the response uncertainty, which has 
been considered in previous studies (Bizo et al., 2006; Getty, 1975). We 
assume this duration-independent variability σr remains the same across 
all tested durations for a given participant, which forms the variance: 

σi =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2

X̂ i
+ σ2

r

√
. (5) 

Fig. 1. Two-stage Bayesian-Estimator model for temporal duration reproduction. In the first, “presentation” phase, physical time is encoded through a logarithmic 
transformation, according to Weber-Fechner’s law. The sensory input is then integrated with the prior, which is developed based on the past sample durations 
encountered. Both the prior and sensory likelihood are assumed to be independent Gaussians. A normally distributed decision noise, which is independent of the 
sensory magnitudes, contributes to the “reproduction” in the second stage. 
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We also assume that an additional bias may be introduced at the 
reproduction stage. Thus, the reproduced duration is: 

Ri = e
μXi +Δ2+σ2

Xi

/
2

(6)  

where Δ2 is the reproduction stage bias. And the observed CVi of each 
interval can be calculated as: 

CVi =
σi

Ri
. (7) 

In total this model has five parameters: the standard deviations of the 
sensory noise and the prior (σs and σp), the two shift terms (Δ1 and Δ2) 
and the stimulus-independent response uncertainty (σr). For fitting the 
data from the mixed conditions the model had only these five parame-
ters. However, for the blocked conditions, we expected there to be 
contextual influences based on the range of durations within a block 
(Teghtsoonian & Teghtsoonian, 1978). In order to explore which pa-
rameters would be influenced the most by this context, we compared 
models with each parameter fixed to the same value in each block to 
models where the parameters could differ between the “short”, “me-
dium” and “long” duration blocks (see Appendix A for details). Thus, in 
total 32 models were compared. The model fitting was performed in two 
steps: first, the model predictions for the logarithmic scale mean μXi as a 
function of the log-transformed sample intervals (log(D)) was fitted, 
assuming a normally distributed likelihood with a constant mean (this 
was effectively fitting a straight line, in the mixed condition, or three 
line segments, in the blocked condition). This provided the starting 
values of the σs and σp parameters for the full model fit, which was a 
maximum likelihood fit to the distribution of reproduced durations, 
assuming that these were normally distributed with the mean given by 
Eq. (6) and the standard deviation given by Eq. (5) (assuming a normal 
distribution was an approximation, used in order to simplify the calcu-
lations, since the model actually predicted that the distribution should 
be the convolution of a normal and a log-normal distribution). The op-
timizations for the maximum likelihood fitting were performed using 
the “optim” function in R with the “L-BFGS_B” algorithm. If an optimi-
zation failed to converge it was attempted again after adding small 
random numbers to the starting values, and this was repeated until it 
converged. 

3. Results 

To exclude duration reproductions likely reflecting lapses of atten-
tion or accidental responses, we adopted an outlier criterion based on 
the interquartile range (IQR): for each participant, at each given 

duration, reproduced durations exceeding three times the IQR were 
omitted from further analysis. In addition, one participant from the 
“Vis/Block” condition and two from the “Aud/Mix” condition were 
excluded, due to their outliers exceeding 20% of the total trials. 

3.1. Mean reproduction errors and CV 

We measured the Relative Reproduction Error (RRE) by calculating the 
difference between the actual response (Ri) and the sample duration (Di), 
normalized by the sample duration (RRE = Ri−Di

Di
). This metric provides a 

measure of the degree of the estimation bias, which is comparable across 
different durations. Fig. 2 shows both the mean RRE (colored dots) and 
the model fitting (colored lines) for Experiments 1 to 4, separately for 
the auditory and visual reproductions. By visual inspection, the RREs 
exhibit different patterns with respect to the modality of interval pre-
sentation. The mean reproductions show larger biases for the visual 
presentation as compared to the auditory presentation. In addition, the 
mean RREs show overestimations for both the “short” and “intermedi-
ate” blocks (the first six durations ranging from 300 to 811 ms) but 
underestimation for the “long” blocks, evidencing a clear central- 
tendency effect. Moreover, the central-tendency effects likely occurred 
within the test range - a grand central-tendency effect for the “Mixed” 
conditions, and three separate effects for the “Blocked” conditions. To 
confirm the differences in RREs among conditions, we further run 
ANOVAs on the mean absolute RREs, which only revealed a main effect 
of Modality, F(1,45) = 9.10, p < .01, ηp

2 = 0.17, BFincl = 13.01. The main 
effect of Condition (“Blocked” vs. “Mixed”), F(1,45) = 1.67, p = .20, ηp

2 

= 0.04, BFincl = 1.01, and the interaction between Modality and Con-
dition, F(1,45) = 1.40, p = .24, ηp

2 = 0.03, BFincl = 0.33, were non- 
significant, indicative of the main difference in RREs being that be-
tween audition and vision. 

The mean CVs are plotted in Fig. 3A as a function of the sample in-
terval, separately for experimental conditions. Similar to mean re-
productions, the CVs, too, were influenced by Temporal Context and 
Modality. Under the “Vis/Mix” condition, the CVs appeared to largely 
decrease as the sample duration increased, which is consistent with 
previous reports (Lewis & Miall, 2009). In addition, higher precision of 
temporal estimation in the auditory modality was evidenced by smaller 
CV values under both (“Mix(ed)” and “Block(ed)”) Context conditions. 
To quantify the variations of CVs across time, for each participant, we 
fitted the decreasing trend (hereafter referred to as “CV slopes”) using 
simple linear regression: CV = a + b ⋅ log(Duration). The reason for 
using the linear regression instead of more complex forms of curve 
fitting was two-fold: (i) we aimed to test whether the CV remained 
constant across the four experimental conditions; (ii) and the results 
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would be comparable to previous reports (e.g., Lewis & Miall, 2009). 
Note, though, this analysis does not include the possible “jumps” that the 
Blocked conditions introduced (see Fig. 3, abrupt changes of the CV 
across the blocked ranges). We will return to this issue in the next 
subsection “Model predictions”, which provides more specific psycho-
logical grounded model predictions and explanations. The mean CV 
slopes for four experimental conditions are depicted in Fig. 3B. 

The estimated slopes were then submitted to an ANOVA with the 
(between-subject) factors of Modality (Vision vs. Audition) and Tem-
poral context (“Mixed” vs. “Blocked”), which revealed both main effects 
to be significant: Modality, F(1,45) = 6.84, p = .01, ηp

2 = 0.13, BFincl =
3.72; Context, F(1,45) = 7.36, p < .01, ηp

2 = 0.14, BFincl = 5.26; the 
interaction was non-significant: F(1,45) = 2.74, p = .11, ηp

2 = 0.06, BFincl 
= 0.96. Thus, the variation in the CVs is mainly influenced by the two 
factors: the decrease was larger with visual than with auditory intervals 
and larger for whole-range mixed versus sub-range blocked interval 
durations. Notably, however, the CV slope was largest in the “Vis/Mix” 
condition. Testing the CV slopes against the null-hypothesis of constant 
CVs across the range of sample durations (i.e., CV slope = 0) for each 
experiment revealed there to be a significant (decreasing) trend only in 
the “Vis/Mix” condition, with a slope of −0.03 from the simple linear 
regression with logarithmically scaled durations, t(12) = 4.50, p < .001. 
For the other three conditions, by contrast, the (numerically decreasing) 
slopes did not differ reliably from 0. In the next subsection, we look into 
these modulations of the modality and temporal context from the 
perspective of cognitive and computational models. 

3.2. Model predictions 

The proposed Bayesian-Estimator model for predicting reproduction 
durations and the CVs has five free parameters: the variance of the prior 
(σp2), the deviation of the mean of the prior from the physical mean (Δ1), 
the variance of the likelihood (σs2), the reproduction stage bias (Δ2), and 
the variance of the decision noise (σr2). The Bayesian observer model 
described above yields a prediction that minimizes the expected loss 
associated with the coefficient of variation and erroneous estimates in 
duration reproduction. The model comparison revealed that the best 
model (in terms of the Bayesian Information Criterion, BIC) allowed the 
reproduction bias (shift term) Δ2 and the standard deviation of the prior 
σp, but not any of the other three parameters, to differ among blocks in 
the “Blocked” conditions. That is, these parameters differ from the 
“Mixed” conditions in that separate σp and Δ2 parameters were used for 
“short”, “medium” and “long” duration blocks, resulting in nine pa-
rameters in total. The predicted reproduction errors of the best model 
are shown as lines (dashed lines for Mix(ed) and solid lines for “Block 
(ed)” conditions) in Fig. 2, and the model-predicted CVs as curves in 

Fig. 3A. And the estimates of the model parameters for the four exper-
imental conditions are summarized in Table 1. 

In our model framework, we first adopted two parameters (σp and Δ1) 
to account for the variability and shift in the prior distribution. The best 
model showed that the shifts of the prior Δ1 did not differ significantly 
from 0 in any of the four conditions (one-sample t-test compared to 0: p 
= .71, BF10 = 0.29 in the “Vis/Mix” condition; p = .84, BF10 = 0.33 in the 
“Aud/Mix” condition; p = .92, BF10 = 0.29 in the “Aud/Mix” condition; 
p = .10, BF10 = 0.84 in the “Aud/Block” condition). Moreover, the 
variability parameter σp was not significantly different between the vi-
sual and auditory modalities in the “Mixed” condition (two-sample t- 
test: p = .81, BF10 = 0.38). A further 2 × 3 mixed ANOVA with the 
between-subject factor (“Modality”) and the within-subject factor (i.e., 
the Temporal Range) for the “Blocked” conditions also failed to reveal 
any significant difference in σp between vision and audition, F(1,23) =
0.04, p = .85, ηp

2 = 0.002, BFincl = 0.36, or Modality × Temporal Range 
interaction F(1.53,35.26) = 0.64, p = .49, ηp

2 = 0.03, BFincl = 0.28. Only 
the main effect of the Temporal Range turned out significant, F 
(1.53,35.26) = 4.09, p = .04, ηp

2 = 0.15, BFincl = 2.80 (degree of freedoms 
adjusted by Greenhouse-Geisser sphericity correction, same for the other 
tests): the variability σp decreased as the duration range of the “Blocked” 
condition increased. The Bayes factors associated with the modality 
differences can be interpreted in terms of strong evidence of “no dif-
ference” in Δ1 and σp between the auditory and visual modalities, 
arguing in favor of an amodal/supramodal representation of the prior. 
Interestingly, in the “Mixed” conditions, the weight ωp was higher with 
visual than with auditory interval presentation (Welch Two Sample t- 
test: p = .01, BF10 = 4.28), which is consistent with literature that 
audition has general higher temporal resolution than vision. However, 
the weights were not different in the “Blocked” conditions (all ps ≥ .1, 
BFincl < 0.74), in part likely due to the block-wise variation of the 
temporal ranges. 

Second, we assumed no violation of the scalar property (i.e., Weber’s 
law) during the sensory measurement. In line with this, a 2 × 2 mixed 
ANOVA on σs with the factors Modality (Vision, Auditory) and Condition 
(“Mixed”, “Block”) revealed no significant effects (Modality: F(1,45) =
0.10, p = .76, ηp

2 = 0.002, BFincl = 0.29; Condition: F(1,45) = 0.94, p =
.04, ηp

2 = 0.02, BFincl = 0.42; interaction, F(1,45) = 0.28, p = .60, ηp
2 =

0.01, BFincl = 0.40). One key ingredient for capturing the variation of the 
CV is the noise parameter σr, which plays a bigger role with the short as 
compared to the long durations (see Eq. (5) in the Bayesian Modeling 
section). As shown in Table 1, the mean σr is larger for the visual mo-
dality relative to the auditory modality, and it is the largest in the “Vis/ 
Mix” condition. A further 2 × 2 ANOVA with Modality (Vision, Audi-
tory) and Condition (“Mixed”, “Block”) as between-subject factors 
revealed the main effect of Modality to be significant, F(1,45) = 11.39, 
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function of the sample duration, separately 
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panel) sessions. The black dots represent re-
productions from “Mixed” conditions and 
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dashed lines represent the model predictions 
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in four experimental conditions. Error bars 
indicate one standard error. The slope was 
obtained by estimating parameter b of the 
linear function CV = a + blog(Duration).   
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p < .01, ηp
2 = 0.20, BFincl = 16.04, while there was no overall difference 

between the “Mixed” and “Blocked” conditions, F(1,45) = 1.72, p = .20, 
ηp

2 = 0.04, BFincl = 0.58. The Modality × Condition interaction was 
significant, F(1,45) = 5.20, p = .03, ηp

2 = 0.10, BFincl = 1.43. The 
interaction was attributable mainly to the “Mix(ed)” conditions, with σr 
being significantly larger for the visual (“Vis/Mix”) than for the auditory 
modality (“Aud/Mix”), t(22) = 3, p < .01. This pattern suggests that a 
relatively high uncertainty (i.e., lager σr) is associated with the visual 
modality in general, independently of the presented durations: high 
uncertainty (e.g., in the “Vis/Mix” condition) introduces a large 
duration-independent noise term in the reproduction. 

More interestingly, in the “Blocked” conditions, the shift in the 
reproduction Δ2 (i.e., reproduction bias) appears to decrease as the 
range of durations increases. A 3 × 2 mixed ANOVA on Δ2 with the 
factors Modality (Vision, Auditory) and Temporal Range (“Small”, “In-
termediate”, “Large”) revealed a main effect on the within-subject factor 
Temporal Range, F(1.07,24.57) = 6.98, p = .01, ηp

2 = 0.23, BFincl =
19.53, but no interaction, F(1.07,24.57) = 0.43, p = .53, ηp

2 = 0.02, BFincl 
= 0.24, or main effect of Modality, F(1,23) = 1.32, p = .26, ηp

2 = 0.05, 

BFincl = 0.72. This captures the “jumps” in the reproduction errors and 
the CVs in the “Blocked” conditions. The jumps of the CVs, captured by 
Δ2, is likely attributable to the sequential (Cicchini et al., 2018; Fischer 
& Whitney, 2014), block-by-block variation of the range of durations. A 
short-range block was most likely preceded by the long- and 
intermediate-range block, and vice versa. Thus, the tendency of the 
reproduction was partially carried over across blocks. Interestingly, the 
best model suggests that the across-block carry-over effect arises in the 
second stage of the reproduction, rather than the first stage of the 
duration encoding. 

To visualize the goodness of the fit of the best model for individual 
data, we plotted the predicted RREs versus the observed RREs in Fig. 4. 
As can be seen, the predicted individual RREs lie mostly on the diagonal 
line. A correlation analysis revealed high correlations across all four 
experimental conditions (r2 ≥ .77). This was also true for the repro-
duction variability, measured by the standard deviation of the repro-
duction (r2 ≥ .88, see Appendix B for the plot). In summary, the 
prediction of the best model is in good agreement with the empirical 
data we observed. 

Table 1 
Model parameters of the Bayesian predictions.  

Parameters Vision Audition 

Mix(ed) Block(ed) Mix(ed) Block(ed) 

Short Intermediate Long Short Intermediate Long 

ωp 0.26 ± 0.17 0.22 ± 0.18 0.24 ± 0.15 0.35 ± 0.14 0.12 ± 0.07 0.19 ± 0.23 0.20 ± 0.13 0.21 ± 0.16 
σp 0.73 ± 0.70 1.42 ± 1.27 0.95 ± 0.98 0.58 ± 0.70 0.68 ± 0.23 1.38 ± 1.19 0.80 ± 0.80 0.94 ± 0.97 
Δ1 0.01 ± 0.15 0.18 ± 3.58 −0.02 ± 0.15 −2.20 ± 4.76 
σs 0.34 ± 0.14 0.39 ± 0.41 0.24 ± 0.09 0.41 ± 0.67 
σr 0.28 ± 0.23 0.13 ± 0.11 0.05 ± 0.06 0.09 ± 0.09 
Δ2 0.04 ± 0.16 0.32 ± 0.71 −0.06 ± 0.83 −0.17 ± 0.77 0.00 ± 0.15 0.98 ± 2.27 0.49 ± 0.97 0.17 ± 1.00  
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Fig. 4. Predicted Relative Reproduction Errors (RREs) vs. the observed RREs for each observer in all conditions (grey dots), with the mean (±SE) model prediction 
for each combination of the test durations and the experimental conditions against the corresponding, observed mean (±SE) RREs. The diagonal line shows the ideal 
model fit (where the predicted RREs match the observed RREs). 
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4. Discussion 

It has been long debated in the literature whether or not the scalar 
property is violated in duration perception. The “golden” method for 
testing for violations of the scalar property has been to use the coeffi-
cient of variation (CV), which is defined by the observed standard de-
viation over the observed mean. Yet, little consideration has been given 
to the fact that the two parameters may be influenced by the experi-
mental context. The present study was designed to examine for such 
influences by using a duration-reproduction task, asking participants to 
reproduce a duration selected from a wide range of intervals (from 300 
ms to 16 s) in two types of temporal context: a full-range mixed and sub- 
range blocked condition, and from both the visual and auditory mo-
dalities. We observed the classical central-tendency effect in all four 
conditions, as well as the variation of the CVs. Importantly, without 
assuming violation of the scalar property, our two-stage Bayesian model 
successfully predicted the central-tendency effect and the decrease of 
the CVs along the timeline. Thus, our findings suggest that the observed 
CV is not strictly tied to the internal scalar property; and using the CV 
alone to reject the scalar property is not warranted by the behavioral 
findings, given that both contextual modulation and decision uncer-
tainty play critical roles in time estimation. 

4.1. Variation of CVs in behavioral studies 

To fully evaluate the goodness of human timing performance, one 
has to consider both aspects of temporal judgments: the mean estimate 
and its precision. While the relation between these two should exhibit 
the scalar property characteristic, there are findings at variance with this 
(Meck et al., 1984; Wearden, 1992; Wearden et al., 1997). Some of the 
reported violations – such as a larger estimation bias with ultrashort 
intervals or lower precision with more difficult tasks (Lejeune & Wear-
den, 2006; Wearden & Lejeune, 2008) – can be easily accommodated by 
adding additional constraints (e.g., sensory limits). However, when it 
comes to systematic violations of scalar timing, such as the continuous 
decrease of the CVs across a very wide duration range from 68 ms to 16 
min (Lewis & Miall, 2009), the roles played by context factors (in 
particular, temporal context and presentation modality) must be taken 
into consideration. Unfortunately, though, context modulation has been 
largely neglected in the debate of the variation of CVs; and instead, re-
searchers attempted to tweak parameters of their respective timing 
models. For instance, Gibbon (1991) argued that the variation of the CV 
arises when the Poisson variance of the pacemaker and the ratio com-
parison between the current and remembered durations are allowed to 
change across durations. Memory-trace models, such as the “multiple 
time scales” (MTS) model (Staddon & Higa, 1999), argue that the scalar 
property is closely related to Jost’s logarithmic law of memory forget-
ting (Ebbinghaus, 1885; Jost, 1897; White, 2001). Slightly tweaking the 
forgetting slope would predict the observed decreasing CV (Staddon & 
Higa, 1999). However, even with the adjusted parameters, these models 
cannot explain why different CVs may be observed for the same physical 
duration depending on different contexts (in the present study: e.g., for 
the same visual duration in the full-range vs. the short sub-range con-
dition). In the current study, we first replicated previous findings (Lewis 
& Miall, 2009), demonstrating a similar decreasing trend of the CVs as 
duration increased in the visual full-range condition; we then expanded 
the investigation to two different types of temporal context and two 
modalities. We observed a reduction of the systematic violation when 
the sample durations were presented in blocked sub-ranges and when 
the temporal intervals were delivered via the (higher-precision) audi-
tory modality. These results confirm that both the accuracy and preci-
sion of timing performance are dependent on the context factors. 

4.2. Bayesian integration with contexts 

According to Bayesian theory, perception emerges from the 

probabilistic inference. The fundamental problem encountered by the 
brain is to cope with uncertainty from the environment. To minimize 
uncertainty, the brain needs to make maximal use of the available in-
formation, such as knowledge about previously experienced events and 
the present sensory inputs. The uncertainty can be optimally reduced (to 
a minimum) when this information is integrated according to its reli-
ability (Ernst & Di Luca, 2011; Taubert et al., 2016). The Bayesian- 
Estimator model proposed in the current study makes two adjustments 
in evaluating the sources of uncertainty arising from both stages of the 
task (duration production and reproduction), according to different 
temporal contexts: First, based on the fact that subjective duration can 
differ between different modalities (e.g., Wearden et al., 1998) and 
temporal context, we assume that the prior itself can be biased. Thus, we 
implemented a parameter, Δ1, to capture this feature. Second, we 
consider additional biases (Δ2) that might occur during the reproduction 
in Stage II, in particular, carry-over of the response tendency from 
previous into the current trial blocks. Third, we assume time repro-
duction is corrupted by some duration-independence uncertainty factor, 
which is captured by the parameter σr. This uncertainty is relatively 
small and can be neglected when durations are at the super-second level. 
However, with durations in the sub-second range, this factor has to be 
taken into account in the model. 

Among 32 models we compared, the best model assumes the vari-
ability of the prior (σp) and the reproduction bias (Δ2) is influenced by 
the temporal context (i.e., three separate, narrow sub-ranges in the 
blocked conditions, as compared to one broader range in the full-range 
mixed condition). Varying the σp allows the model to capture the un-
certainty of the “Blocked” temporal context, while the reproduction bias 
(Δ2) captures the jumps between blocks. For example, the mean repro-
duction from both the “Short” and “Intermediate” duration blocks 
exhibited overall overestimations under “Block(ed)” conditions (see 
Fig. 2). It is possible that these overall overestimations were introduced 
by the preceding blocks, most likely the “longer” block. This kind of 
carry-over effect has been found in perceptual judgments, such as serial 
dependence (Fischer & Whitney, 2014; S. Glasauer & Shi, 2018; Stefan 
Glasauer, 2019), as well as in temporal reproduction (Wiener et al., 
2014). For example, examining the influence of observers’ previous 
“long” responses on current bisection performance (regardless of later 
duration presented), Wiener et al. (2014) found a strong tendency for 
observers to carry over responding “long”, thus dissociating response 
carry-over from perceptual bias in the bisection task. Also, this response 
carry-over was more marked for the visual as compared to the auditory 
modality. In our “Blocked” conditions, we found a similar reproduction 
carry-over effect captured by the reproduction bias (Δ2), which was 
largest for the “short” range, and smallest for the “long” range. Inter-
estingly, the estimated values of the Δ1 parameter in the “Mixed” con-
ditions (“Vix/Mix” and “Aud/Mix”) were close to unbiased (i.e., 0), with 
little variability across participants, whereas the estimates varied greatly 
across individuals in the “Blocked” conditions (the standard error was 
almost tenfold for the “Blocked” as compared to the “Mixed” condi-
tions). This suggests that participants could establish a relatively unbi-
ased prior given a stable temporal context (the durations were randomly 
sampled from one distribution), while the priors may change dramati-
cally when the environment changes (witness the large variation with 
the blockwise presentation). Our model thus incorporates this volatility 
change in determining the perceptual bias and the response carry-over 
effect in temporal reproduction. 

The duration-independent variability that we introduced in the 
model – parameter σr – was assumed to be independent of duration 
magnitude. Without assuming any violation of the scalar property, this 
key parameter captures the variation of the CV, which is consistent with 
the variation of CVs reported in the literature (Lewis & Miall, 2009). In 
our model, we considered two sources of variability: the scalar property 
(the square root of which should linearly increase with the mean) and σr. 
The estimates of σr from our model agree with the behavioral observa-
tions of the CVs: across the four conditions, the estimated value of σr was 
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largest in the “Vis/Mix” condition (see Table 1), indicative of the largest 
contribution of decision uncertainty to the variance of reproductions in 
this condition. Importantly, while we have referred to σr as decision 
uncertainty, our key prediction of larger CVs for the shortest duration is 
not dependent on whether σr solely reflects the variance introduced 
during the decision of when to stop the reproduction or whether there 
are also contributions from earlier processes, such as “sensory-onset” 
variance. Rather, our key prediction only requires that σr is independent 
of duration magnitude. 

4.3. Modality difference and the central tendency 

Cicchini et al. (2012) demonstrated a robust audiovisual difference 
in duration reproduction: participants’ responses to visual stimuli ten-
ded to gravitate toward the mean of the sample durations (the central- 
tendency effect) but remained veridical with auditory stimuli (the 
latter was the case even though participants differed widely in the level 
of musical expertise). In the current study, we showed that a central- 
tendency effect in duration reproduction exists in both presentation 
modalities, though it is more pronounced in vision than in audition, 
indicated by the relative RREs - thus confirming the audition-vision 
difference in time judgments (Cicchini et al., 2012). 

Interestingly, though, according to our best model, the prior repre-
sentation of the range of the test durations does not differ much between 
the audition and vision: there was no significant difference in the two 
parameters representing the prior knowledge – that is, σp (variance of 
the prior distribution) and Δ1 (the shift term of the prior) – between the 
visual and auditory modalities. This suggests that the internal presen-
tation of the temporal context is amodal, consistent with previous 
findings (Zhang & Zhou, 2017). Our Bayesian model provides a frame-
work of where the modality difference may arise in each phase of the 
production-reproduction task. In the production phase, when the dura-
tion is transferred to short-term memory, the representation of the 
temporal context (prior knowledge) appears to be little influenced by 
the presentation modality. Accordingly, the prior knowledge represen-
tation appears largely modality-independent. At the same time, the 
reproduction carry-over bias Δ2 did show a decreasing trend across the 
range of the “Blocked” conditions, reflecting block-wise bias. 

4.4. Variation of the CV and sub-second timing 

In a meta-analysis of animal studies Gibbon et al. (1997) discerned 
two “jumps” in the CVs at approximately 0.1 and 1.5 s, which they took 
to suggest that there might be different timing mechanisms for different 
time ranges. Moreover, the CV has been reported to be particularly large 
for durations below 100 ms (see a review, Wearden & Lejeune, 2008), 
for which duration judgments also exhibit a large overestimation (Chen 
et al., 2016). The large CV for ultrashort visual durations has been 
argued to be influenced by temporal summation (Gorea, 2015; Schar-
nowski et al., 2007), that is: below 100 ms, perceived duration depends 
heavily on light intensity. This would be associated with rather high 
uncertainty in the estimation of short visual time intervals. In our study, 
the overall reproduction error for the 300-ms interval reached 102%. 
However, the “jumps” in our study were observed only in the “Blocked” 
(and not the “Mixed”) conditions, reflecting a carry-over effect induced 
by the block-wise variation of the duration ranges. 

Of note, we replicated the previous report of the CV changing 
continuously along the timeline, rather than exhibiting abrupt jumps 
(Lewis & Miall, 2009). The continuous change of the CV is likely driven 
by a “hidden” (not directly observable) factor that had not been revealed 
in early studies. According to our model, which does capture the 
continuous decrease of the CV, this pattern arises because, while the 
sensory uncertainty scales with sample duration according to the scalar 

property, the decision uncertainty itself is independent of the length of 
the to-be-judged duration. As a result, the contribution of the decision 
uncertainty to the total uncertainty increases the CV more for short 
durations compared to longer durations. 

It should be noted that the variation of CV does not solely depend on 
the temporal context and non-decision noise. It has been reported that 
extensive learning can enhance temporal discrimination, indicated by a 
decrease of the Weber fraction (i.e., CV) over the course of the training 
(Karmarkar & Buonomano, 2003; Matthews & Grondin, 2012). In fact, 
perceptual learning can boost perceptual discrimination, generally, and 
not just in the time domain (e.g., Schwartz et al., 2002; Shams & Seitz, 
2008). There is evidence indicating that perceptual learning involves a 
re-tuning of decision templates over the course of training (Li et al., 
2004). Interestingly, though, there have been several reports that the 
enhanced discrimination brought about by learning is rather target- 
specific. For instance, Karmarkar and Buonomano (2003) showed that 
training on a 100- or 200-ms interval did enhance the temporal 
discrimination of the respective (target) interval, without generalizing 
to untrained intervals. Similarly, in animal temporal-reproduction 
study, Bizo et al. (2006) found a U-shaped Weber fraction which they 
attributed to different rates of reinforcement training: a high rate of 
reinforcement for intermediate durations, relative to extremely short or 
long durations, led to enhance temporal discrimination (evidenced by a 
reduced Weber fraction) for the intermediate range of durations. From 
the perspective of the optimal model framework, perceptual or rein-
forcement learning of particular durations would reduce the variability 
of sensory measure σs for the learned durations, which may lead to 
unequal measurement uncertainty σs in the logarithmic timeline. This 
kind of ‘real’ violation in the scalar property can also be reflected in 
other models we compared (see Appendix A: Model comparison) 
without assuming the constancy of σs. However, in the present study, the 
best model doesn’t need this additional variation assumption. 

In summary, the subjective time is susceptible to various contextual 
modulations, as is the coefficient of variation (CV). In light of the present 
results, the “golden” method to test for violation of the scalar property 
has to be reconsidered: we successfully modeled the observed variation 
of the CV without assuming any violations of the scalar property. Both 
the temporal context and decision uncertainty are contributing to the 
variation of the CV, with the latter (decision uncertainty) playing a 
critical role in accounting for the large CV for sub-second durations. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.actpsy.2021.103263. 
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Appendix A. Model comparison 

In the blocked conditions, we expected that there might be some influence of the different temporal contexts in the “short”, “medium”, and “long” 
duration blocks. In order to investigate what form of influence temporal context would take, we performed a model comparison in which, for each of 
the five model parameters, we used either a single value of the parameter for all blocks or different values for the “short”, “medium”, and “long” 
blocks. The five parameters we compared in this way were: the standard deviation of the sensory measurement σs, the standard deviation of the prior 
σp, the two shift parameters Δ1 and Δ2, as well as the standard deviation related to response uncertainty. Combinatorially, these five factors yielded in a 
total of 25 = 32 different possible models. We fitted each of these models to the data of individual participants and evaluated them in terms of the 
average Bayesian Information Criterion (BIC) across participants. Table A1 lists the parameters that took on different values for the “short”, “medium”, 
and “long” duration blocks for the five models with the lowest BIC values (averaged across participants). The best model allowed the reproduction bias 
Δ2 and the standard deviation of the prior σp, but not the other three parameters, to differ among blocks.  

Table A1 
The five models with the lowest BIC.  

Separate σs Separate σp Separate Δ1 Separate σr Separate Δ2 BIC 

No Yes No No Yes 490 
Yes No No No Yes 492 
No Yes No No No 494 
Yes Yes No No No 495 
Yes No Yes No No 497  

In addition to finding the best model (with the lowest BIC), we further evaluated for each parameter whether the model performed better with or 
without the property of allowing that parameter to vary among blocks, by comparing the BIC of the best models with that property to the BIC of the 
best model without it (ΔBICmin in Table A2) as well as the difference in average BIC across all models with the property and those without it (ΔBICmean 
in Table A2).  

Table A2 
For each factor, this table presents the difference in average BIC 
across all models with each property and those without it 
(ΔBICmean), as well as the difference in BIC of the best model (with 
the lowest BIC) with a property and the best model without it 
(ΔBICmin). Negative values support models with the property over 
models without it.   

ΔBICmean ΔBICmin 

Separate σs  −4.8  2.0 
Separate σp  −6.2  −2.0 
Separate Δ1  −2.8  6.3 
Separate σr  5.5  6.4 
Separate Δ2  −5.4  −3.7  

This analysis supported models with a different reproduction bias parameter in different blocks and a separate σp parameter in each block. For the 
σr parameter, the analysis supported models with a single parameter across blocks. For σs and Δ1, the results were ambiguous: models with a single σs 
parameter and a single Δ1 parameter were supported in terms of ΔBICmin (since these were properties of the best model); in terms of ΔBICmean, by 
contrast, models in which these parameters could differ between blocks performed better. 

Appendix B 

To identify how well the model predicts the variability of the duration reproduction at the individual-participant level, we plotted the predicted 
standard deviations (SDs) of the duration reproduction from the best model vs. the observed reproduction variability (SDs) in Fig. S1, separately for 
the four experimental conditions. A correlation analysis revealed the predicted and observed SDs to be highly correlated (r2 = .924, .879, .956, .95 for 
the “Vis/Mix”, “Aud/Mix”, “Vis/Block”, “Aud/Block” conditions respectively), indicating that the model prediction is in good agreement with the 
observed data. 
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3.1 Summary

It has long been proposed that we may adopt a more efficient encoding strategy in our perceptual

system in coping with the large range of objects’ magnitude. Numbers, for instance, have been

demonstrated to be logarithmically perceived by humans. In this presented work, we discussed

the question of whether our subjective (or interval) timeline is linear or logarithmic. In contrast

to most of the previous studies, which mainly operated within the classical psychophysical tasks,

we adopted an intuitive approach - ensemble perception to investigate the potential timeline in

millisecond-range timing. Ensemble percpeiton, or statistical property, refers to the idea that

humans could accurately and rapidly extract the mean from a group of similar items, such as size

and numbers in the visual domain. We asked participants to estimate the mean (or average) from

a train of consecutively presented duration composed from either visual or auditory stimuli,

respectively in two sessions. We found that not only participants could accurately measure the

mean of a train of durations, the mean was also consistently lied around the geometric average of

the sample values. Hence, we provided behavioral evidence that the interval timeline might be

logarithmic, not linear in the timerange of millioseconds.
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Logarithmic encoding of ensemble 
time intervals
Yue Ren, Fredrik Allenmark, Hermann J. Müller & Zhuanghua Shi*

Although time perception is based on the internal representation of time, whether the subjective 
timeline is scaled linearly or logarithmically remains an open issue. Evidence from previous research 
is mixed: while the classical internal-clock model assumes a linear scale with scalar variability, there 
is evidence that logarithmic timing provides a better fit to behavioral data. A major challenge for 
investigating the nature of the internal scale is that the retrieval process required for time judgments 
may involve a remapping of the subjective time back to the objective scale, complicating any direct 
interpretation of behavioral findings. Here, we used a novel approach, requiring rapid intuitive 
‘ensemble’ averaging of a whole set of time intervals, to probe the subjective timeline. Specifically, 
observers’ task was to average a series of successively presented, auditory or visual, intervals in the 
time range 300–1300 ms. Importantly, the intervals were taken from three sets of durations, which 
were distributed such that the arithmetic mean (from the linear scale) and the geometric mean (from 
the logarithmic scale) were clearly distinguishable. Consistently across the three sets and the two 
presentation modalities, our results revealed subjective averaging to be close to the geometric mean, 
indicative of a logarithmic timeline underlying time perception.

What is the mental scale of time? Although this is one of the most fundamental issues in timing research that 
has long been posed, it remains only poorly understood. The classical internal-clock model implicitly assumes 
linear coding of time: a central pacemaker generates ticks and an accumulator collects the ticks in a process of 
linear  summation1,2. However, the neuronal plausibility of such a coding scheme has been called into doubt: large 
time intervals would require an accumulator with (near-)unlimited  capacity3, making it very costly to implement 
such a mechanism  neuronally4,5. Given this, alternative timing models have been proposed that use oscillatory 
patterns or neuronal trajectories to encode temporal  information6–9. For example, the striatal beat-frequency 
 model6,9,10 assumes that time intervals are encoded in the oscillatory firing patterns of cortical neurons, with the 
length of an interval being discernible, for time judgments, by the similarity of an oscillatory pattern with patterns 
stored in memory. Neuronal trajectory models, on the other hand, use intrinsic neuronal patterns as markers for 
timing. However, owing to the ‘arbitrary’ nature of neuronal patterns, encoded intervals cannot easily be used 
for simple arithmetic computations, such as the summation or subtraction of two intervals. Accordingly, these 
models have been criticized for lacking computational  accessibility11. Recently, a neural integration  model12–14 
adopted stochastic drift diffusion as the temporal integrator which, similar to the classic internal-clock model, 
starts the accumulation at the onset of an interval and increases until the integrator reaches a decision thresh-
old. To avoid the ‘unlimited-capacity’ problem encountered by the internal-clock model, the neural integration 
model assumes that the ramping activities reach a fixed decision barrier, though with different drift rates—in 
particular, a lower rate for longer intervals. However, this proposal encounters a conceptual problem: the length 
of the interval would need to be known at the start of the accumulation. Thus, while a variety of timing models 
have been proposed, there is no agreement on how time intervals are actually encoded.

There have been many attempts, using a variety of psychophysical approaches, to directly uncover the sub-
jective timeline that underlies time judgments. However, distinguishing between linear and logarithmic tim-
ing turned out to be constrained by the experimental paradigms  adopted15–21. In temporal bisection tasks, for 
instance, a given probe interval is compared to two, short and long, standard intervals, and observers have to 
judge whether the probe interval is closer to one or the other. The bisection point—that is, the point that is 
subjectively equally distant to the short and long time references—was often found to be close to the geometric 
 mean22,23. Such observations led to the earliest speculation that the subjective timeline might be logarithmic in 
nature: if time were coded linearly, the midpoint on the subjective scale should be equidistant from both (the 
short and long) references, yielding their arithmetic mean. By contrast, with logarithmic coding of time, the 
midpoint between both references (on the logarithmic scale) would be their geometric mean, as is frequently 
observed. However, Gibbon and colleagues offered an alternative explanation for why the bisection point may 
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turn out close to the geometric mean, namely: rather than being diagnostic of the internal coding of time, the 
midpoint relates to the comparison between the ratios of the elapsed time T with respect to the Short and Long 
reference durations, respectively; accordingly, the subjective midpoint is the time T for which the ratios Short/T 
and T/Long are equal, which also yields the geometric  mean24,25. Based on a meta-analysis of 148 experiments 
using the temporal bisection task across 18 independent studies, Kopec and Brody concluded that the bisection 
point is influenced by a number of factors, including the short-long spread (i.e., the Long/Short ratio), probe 
context, and even observers’ age. For instance, for short-long spreads less than 2, the bisection points were close 
to the geometric mean of the short and long standards, but they shifted toward the arithmetic mean when the 
spread increased. In addition, the bisection points can be biased by the probe context, such as the spacing of the 
probe durations  presented15,17,26. Thus, approaches relying on simple duration comparison have limited utility 
to uncover the internal timeline.

The timeline issue became more complicated when it was discovered that time judgments are greatly impacted 
by temporal context. One prime example is the central-tendency  effect27,28: instead of being veridical, observed 
time judgments are often assimilated towards the center of the sampled durations (i.e., short durations are 
over- and long durations under-estimated). This makes a direct interpretation of the timeline difficult, if not 
impossible. On a Bayesian interpretation of the central-tendency effect, the perceived duration is a weighted 
average of the sensory measure and prior knowledge of the sampled durations, where their respective weights 
are commensurate to their  reliability29,30. There is one point within the range of time estimation where time 
judgments are accurate: the point close to the mean of the sampled durations (i.e., prior), which is referred to 
as ‘indifference point’27. Varying the ranges of the sampled durations, Jones and  McAuley31 examined whether 
the indifference point would be closer to the geometric or the arithmetic mean of the test intervals. The results 
turned out rather mixed. It should be noted, though, that the mean of the prior is dynamically updated across 
trials by integrating previous sampled intervals into the prior—which is why it may not provide the best anchor 
for probing the internal timeline.

Probing the internal timeline becomes even more challenging if we consider that the observer’s response to 
a time interval may not directly reflect the internal representation, but rather a decoded outcome. For example, 
an external interval might be encoded and stored (in memory) in a compressed, logarithmic format internally. 
When that interval is retrieved, it may first have to be decoded (i.e., transformed from logarithmic to linear 
space) in working memory before any further comparison can be made. The involvement of decoding processes 
would complicate drawing direct inferences from empirical data. However, it may be possible to escape such 
complications by examining basic ‘intuitions’ of interval timing, which may bypass complex decoding processes. 
One fundamental perceptual intuition we use all the time is ‘ensemble perception’. Ensemble perception refers 
to the notion that our sensory systems can rapidly extract statistical (summary) properties from a set of similar 
items, such as their sum or mean magnitude. For example, Dehaene et al.32 used an individual number-space 
mapping task to compare Mundurucu, an Amazonian indigenous culture with a reduced number lexicon, to US 
American educated participants. They found that the Mundurucu group, across all ages, mapped symbolic and 
nonsymbolic numbers onto a logarithmic scale, whereas educated western adults used linear mapping of numbers 
onto space—favoring the idea that the initial intuition of number is  logarithmic32. Moreover, kindergarten and 
pre-school children also exhibit a non-linear representation of numbers close to logarithmic compression (e.g., 
they place the number 10 near the midpoint of the 1–100 scale)33. This nonlinearity then becomes less prominent 
as the years of schooling  increase34–36. That is, the sophisticated mapping knowledge associated with the develop-
ment of ‘mathematical competency’ comes to supersede the basic intuitive logarithmic mapping, bringing about 
a transition from logarithmic to linear numerical  estimation37. However, rather than being unlearnt, the innate, 
logarithmic scaling of number may in fact remain available (which can be shown under certain experimental 
conditions) and compete with the semantic knowledge of numeric value acquired during school education.

Our perceptual intuition works very fast. For example, we quickly form an idea about the average size of apples 
from just taking a glimpse at the apple tree. In a seminal study by  Ariel38, participants, when asked to identify 
whether a presented object belonged to a group of similar items, tended to automatically respond with the mean 
size. Intuitive averaging has been demonstrated for various features in the visual  domain39, from primary ensem-
bles such as object  size40,41 and  color42, to high-level ensembles such as facial expression and  lifelikeness43–46. 
Rather than being confined to the (inherently ‘parallel’) visual domain, ensemble perception has also been 
demonstrated for sequentially presented items, such as auditory frequency, tone loudness, and  weight47–50. In 
a cross-modal temporal integration study, Chen et al.51 showed that the average interval of a train of auditory 
intervals can quickly capture a subsequently presented visual interval, influencing visual motion perception.

In brief, our perceptual systems can automatically extract overall statistical properties using very basic intui-
tions to cope with sensory information overload and the limited capacity of working memory. Thus, given that 
ensemble perception operates at a fast and low-level stage of processing (possibly bypassing many high-level 
cognitive decoding processes), using ensemble perception as a tool to test time perception may provide us with 
new insights into the internal representation of time intervals.

On this background, we designed an interval duration-averaging task in which observers were asked to 
compare the average duration of a set of intervals to a standard interval. We hypothesized that if the underlying 
interval representation is linear, the intuitive average should reflect the arithmetic mean (AM) of the sample 
intervals. Conversely, if intervals are logarithmically encoded internally and intuitive averaging operates on that 
level (i.e., without remapping individual intervals from logarithmic to linear scale), we would expect the readout 
of the intuitive average at the intervals’ geometric mean (GM). This is based on the fact that the exponential 
transform of the average of the log-encoded intervals is the geometric mean. Note, though, that the subjective 
averaged duration may be subject to general bias and sequence (e.g., time-order  error52,53) effects, as has often 
been observed in studies of time  estimation54. For this reason, we considered it wiser to compare response pat-
terns across multiple sets of intervals to the patterns predicted, respectively, from the AM and the GM, rather than 
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comparing the subjective averaged duration directly to either the AM or the GM of the intervals. Accordingly, we 
carefully chose three sets of intervals, for which one set would yield a different average to the other sets according 
to each individual account (see Fig. 1). Each set contained five intervals—Set 1: 300, 550, 800, 1050, 1300 ms; 
Set 2: 600, 700, 800, 900, 1000 ms; and Set 3: 500, 610, 730, 840, 950 ms. Accordingly, Sets 1 and 2 have the same 
arithmetic mean (800 ms), which is larger than the arithmetic mean of Set 3 (727 ms). And Sets 1 and 3 have the 
same geometric mean (710 ms), which is shorter than the geometric mean of Set 2 (787 ms). The rationale was 
that, given the assumptions of linear and logarithmic representations make distinct predictions for the three sets, 
we may be able to infer the internal representation by observing the behavioral outcome based on the predictions.

Subjective durations are known to differ between visual and auditory  signals5,55,56, as our auditory system has 
higher temporal precision than the visual system. Often, sounds are judged longer than  lights55,57, where the dif-
ference is particularly marked when visual and auditory durations are presented intermixed in the same testing 
 session58. It has been suggested that time processing may be distributed in different  modalities59, and the internal 
pacemaker ‘ticks’ faster for the auditory than the visual  modality55. Accordingly, the processing strategies may 
potentially differ between the two modalities. Thus, in order to establish whether the internal representation of 
time is modality-independent, we tested both modalities using the same set of intervals in separate experiments.

Methods
Ethics statement. The methods and experimental protocols were approved by the Ethics Board of the 
Faculty of Pedagogics and Psychology at LMU Munich, Germany, and are in accordance with the Declaration 
of Helsinki 2008.

Participants. A total of 32 participants from the LMU Psychology community took part in the study, 1 of 
whom were excluded from further analyses due to lower-than-chance-level performance (i.e., temporal esti-
mates exceeded 150% of the given duration). 16 participants were included in Experiment 1 (8 females, mean 
age of 22.2), and 15 participants were included in Experiment 2 (8 females, mean age of 26.4). Prior to the experi-
ment, participants gave written informed consent and were paid for their participation of 8 Euros per hour. All 
reported a normal (or corrected-to-normal) vision, normal hearing, and no somatosensory disorders.

Stimuli. The experiments were conducted in a sound-isolated cabin, with dim incandescent background 
lighting. Participants sat approximately 60  cm from a display screen, a 21-inch CRT monitor (refresh rate 
100 Hz; screen resolution 800 × 600 pixels). In Experiment 1, auditory stimuli (i.e., intervals) were delivered 
via two loudspeakers positioned just below the monitor, with a left-to-right separation of 40 cm. Brief auditory 
beeps (10 ms, 60 dB; frequency of 2500 or 3000 Hz, respectively) were presented to mark the beginning and end 
of the auditory intervals. In Experiment 2, the intervals were demarcated visually, namely, by presenting brief 
(10-ms) flashes of a gray disk (5° of visual angle in diameter, 21.4 cd/m2 ) in center of the display monitor against 
black screen background (1.6 cd/m2).

As for the length of the (five) successively presented intervals on a given trial, there were three sets: Set 1: 
300, 550, 800, 1050, 1300 ms; Set 2: 600, 700, 800, 900, 1000 ms; and Set 3: 500, 610, 730, 840, 950 ms. These 
sets were constructed such that Sets 1 and 2 had the same arithmetic mean (800 ms), which is larger than the 
arithmetic mean of Set 3 (727 ms). And Sets 1 and 3 have the same geometric mean (710 ms), which is shorter 
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Figure 1.  Illustration of three sets of intervals used in the study. (a) Three sets of intervals each of five intervals 
(Set 1: 300, 550, 800, 1050, 1300 ms; Set 2: 600, 700, 800, 900, 1000 ms; Set 3: 500, 610, 730, 840, 950 ms). The 
presentation order of the five intervals was randomized within each trial. (b) Predictions of ensemble averaging 
based on two hypothesized coding schemes: Linear Coding and, respectively, Logarithmic Coding. Sets 1 and 2 
have the same arithmetic mean of 800 ms, which is larger than the arithmetic mean of the group 3 (727 ms). Sets 
1 and 3 have the same geometric mean of 710 ms, which is smaller than the geometric mean of set 1 (787 ms).
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than the geometric mean of Set 2 (787 ms). Of note, the order of the five intervals (of the presented set) was 
randomized on each trial.

Procedure. Two separate experiments were conducted, testing auditory (Experiment 1) and visual stimuli 
(Experiment 2), respectively. Each trial consisted of two presentation phases: successive presentation of five 
intervals, followed by the presentation of a single comparison interval. Participants’ task was to indicate, via a 
keypress response, whether the comparison interval was shorter or longer than the average of the five successive 
intervals. The response could be given without stress on speed.

In Experiment 1 (auditory intervals), trials started with a fixation cross presented for 500 ms, followed by a 
succession of five intervals demarcated by six 10-ms auditory beeps. Along with the onset of the auditory stimuli, 
a ‘1’ was presented on display monitor, telling participants that this was the first phase of the comparison task. 
The series of intervals was followed by a blank gap (randomly ranging between 800 and 1200 ms), with a fixation 
sign ‘+’ on the screen (indicating the transition to the comparison phase 2). After the gap, a single comparison 
duration demarcated by two brief beeps (10 ms) was presented, together with a ‘2’, indicating phase two of the 
comparison. Following another random blank gap (of 800–1200 ms), a question mark (‘?’) appeared in the center 
of the screen, prompting participants to report whether the average interval of the first five (successive) intervals 
was longer or shorter than the second, comparison interval (Fig. 2a). Participants issued their response via the 
left or right arrow keys (on the keyboard in front of them) using their two index fingers, corresponding to either 
‘shorter’ or ‘longer’ judgments. To make the two parts 1 and 2 of the interval presentation clearly distinguishable, 
two different frequencies (2500 and 3000 Hz) were randomly assigned to the first and, respectively, the second 
set of auditory interval markers.

Experiment 2 (visual intervals) was essentially the same as Experiment 1, except that the intervals were 
delivered via the visual modality and were demarcated by brief (10-ms) flashes of gray disks in the screen center 
(see Fig. 2b). Also, the visual cue signals used to indicate the two interval presentation phases (‘1’, ‘2’) in the ‘audi-
tory’ Experiment 1 were omitted, to ensure participants’ undivided attention to the judgment-relevant intervals.

In order to obtain, in an efficient manner, reliable estimates of both the point of subjective equality (PSE) 
and the just noticeable difference (JND) of the psychometric function of the interval comparison, we employed 
the updated maximum-likelihood (UML) adaptive procedure from the UML toolbox for  Matlab60. This toolbox 
permits multiple parameters of the psychometric function, including the threshold, slope, and lapse rate (i.e., 
the probability of an incorrect response, which is independent of stimulus interval) to be estimated simultane-
ously. We chose the logistic function as the basic psychometric function and set the initial comparison interval 
to 500 ms. The UML adaptive procedure then used the method of maximum-likelihood estimation to deter-
mine the next comparison interval based on the participant’s responses to minimize the expected variance (i.e., 
uncertainty) in the parameter space of the psychometric function. In addition, after each response, the UML 
updated the posterior distributions of the psychometric parameters (see Fig. 3b for an example), from which 
the PSE and JND can be estimated (for the detailed procedure, see Shen et al.60). To mitigate habituation and 
expectation effects, we presented the sequences of comparison intervals for the three different sets randomly 
intermixed across trials, concurrently tracking the three separate adaptive procedures.

Prior to the testing session, participants were given verbal instructions and then familiarized with the task 
in a practice block of 30 trials (10 comparison trials for each set). Of note, upon receiving the instruction, most 

Figure 2.  Schematic illustration of a trial in Experiments 1 and 2. (a) In Experiment 1, an auditory sequence of 
five intervals demarcated by six short (10-ms) auditory beeps of a particular frequency (either 2500 or 3000 Hz) 
was first presented together with a visual cue ‘1’. After a short gap with visual cue ‘+’, the second, comparison 
interval was demarcated by two beeps of a different frequency (either 3000 or 2500 Hz). A question mark 
prompts participants to respond if the mean interval of the first was longer or shorter than the second. (b) The 
temporal structure was essentially the same in Experiment 2 as in Experiment 1, except that the intervals were 
marked by a brief flash of a grey disk in the monitor center. Given that the task required a visual comparison, the 
two interval presentation phases were separated by a fixation cross.
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participants spontaneously voiced concern about the difficulty of the judgment they were asked to make. How-
ever, after performing just a few trials of the training block, they all expressed confidence that the task was easily 
doable after all, and they all went on to complete the experiment successfully. In the formal testing session, each 
of the three sets was tested 80 times, yielding a total of 240 trials per experiment. The whole experiment took 
some 60 min to complete.

Statistical analysis. All statistical tests were conducted using repeated-measures ANOVAs—with addi-
tional Bayes-Factor analyses (using using JASP software) to comply with the more stringent criteria required for 
acceptance of the null  hypothesis61,62. All Bayes factors reported for ANOVA main effects are “inclusion” Bayes 
factors calculated across matched models. Inclusion Bayes factors compare models with a particular predictor 
to models that exclude that predictor, providing a measure of the extent to which the data support inclusion of a 
factor in the model. The Holm–Bonferroni method and Bayes factor have been applied for the post-hoc analysis.

Results
Figure 3 depicts the UML estimation for one typical participant: the threshold ( α ) and the slope ( β ) parameters 
of the logistic function p = 1/

(

1+ e−(x−α)·β
)

 . By visual inspection, the thresholds reached stable levels within 
80 trials of dynamic updating (Fig. 3a), and the posterior distributions (Fig. 3b) indicate the two parameters 
were converged in all three sets.

Figure 4 depicts the mean thresholds (PSEs), averaged across participants, for the three sets of intervals, sepa-
rately for the auditory Experiment 1 and the visual Experiment 2. In both experiments, the estimated averages 
from the three sets showed a similar pattern, with the mean of Set 2 being larger than the means of both Set 1 and 
Set 3. Repeated-measures ANOVAs, conducted separately for both experiments, revealed the Set (main) effect to 
be significant both for Experiment 1, F(2, 30) = 10.1, p < 0.001, η2g = 0.064,BFincl= 58.64 , and for Experiment 
2, F(2, 28) = 8.97 , p < 0.001, η2g = 0.013  , BFincl= 30.34 . Post-hoc Bonferroni-corrected comparisons confirmed 

Figure 3.  (a) Trial-wise update of the threshold estimate ( α ) for the three different interval sets in Experiment 
1, for one typical participant. (b) The posterior parameter distributions of the threshold ( α ) and slope ( β ) based 
on the logistic function p = 1/

(

1+ e−(x−α)·β
)

 , separately for the three sets (240 trials in total) for the same 
participant.
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Figure 4.  Violin plot of the distribution of individual subjective mean intervals (gray dots) of three tested 
sets, with the grand mean PSE (and associated standard error) overlaid on the respective set, separately for 
Experiment 1 (a) and Experiment 2 (b). *denotes p < 0.05, **p < 0.01, and ***p < 0.001.
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the Set effect to be mainly due to the mean being highest with Set 2. In more detail, for the auditory experiment 
(Fig. 4a), the mean of Set 2 was larger than the means of Set 1 [ t(15 ) = 3.14, p = 0.013,BF10 = 7.63 ] and Set 3 
[ t(15) = 5.12, p < 0.001, BF10 = 234 ], with no significant difference between the latter ( t(15) = 1.26 , p = 0.23, 
BF10 = 0.5 ). The result pattern was similar for the visual experiment (Fig. 4b), with Set 2 generating a larger 
mean than both Set 1 ( t(14 ) = 3.13, p = 0.015,BF10 = 7.1 ) and Set 3 ( t(14) = 4.04 , p < 0.01, BF10 = 32.49 ), with 
no difference between the latter ( t(14 ) = 1.15, p = 0.80, BF10 = 0.46 ). This pattern of PSEs (Set 2 > Set 1 = Set 
3) is consistent with one of our predictions, namely, that the main averaging process for rendering perceptual 
summary statistics is based on the geometric mean, in both the visual and the auditory modality.

To obtain a better picture of individual response patterns and assess whether they are more in line with one 
or the other predicted pattern illustrated in Fig. 1b, we calculated the PSE differences between Sets 1 and 2 and 
between Sets 1 and 3 as two indicators. Figure 5 depicts the difference between Sets 1 and 2 over the difference 
between Sets 1 and 3, for each participant. The ideal differences between the respective arithmetic means and the 
respective geometric means are located on the orthogonal axes (triangle points). By visual inspection, individuals 
(gray dots) differ considerably: while many are closer to the geometric than to the arithmetic mean, some show 
the opposite pattern. We used the line of reflection between the ‘arithmetic’ and ‘geometric’ points to separate 
participants into two groups: geometric- and arithmetic-oriented groups. Eleven (out of 16) participants exhibited 
a pattern oriented towards the geometric mean in Experiment 1, and nine (out of 15) in Experiment 2. Thus, 
geometric-oriented individuals outnumbered arithmetic-oriented individuals (7:3 ratio). Consistent with the 
above PSE analysis, the grand mean differences (dark dots in Fig. 5) and their associated standards errors are 
located within the geometric-oriented region.

Of note, however, while the mean patterns across three sets are in line with the prediction of geometric inter-
val averaging (see the pattern illustrated in Fig. 1b) for both experiments, the absolute PSEs were shorter in the 
visual than in the auditory conditions. Further tests confirmed that, in the ‘auditory’ Experiment 1, the mean 
PSEs did not differ significantly from their correspondent physical geometric means (one-sample Bayesian t-test 
pooled across the three sets), t(47) = 1.70, p = 0.097,BF10 = 0.587 , but they were significant smaller than the 
physical arithmetic means, t(47) = 3.87, p < 0.001,BF10 = 76.5  . In the ‘visual’ Experiment 2, the mean PSEs for 
all three interval sets were significantly smaller than both the physical geometric mean [ t(44) = 4.74, p < 0.001  , 
BF10 = 924.1 ] and the arithmetic mean [ t(44) = 6.23, p < 0.001  , BF10 > 1000 ]. Additionally, the estimated 
mean durations were overall shorter for the visual (Experiment 2) versus the auditory intervals (Experiment 
1), t(91) = 2.97, p < 0.01,BF10 = 9.64  . This modality effect is consistent with previous reports that auditory 
intervals are often perceived as longer than physically equivalent visual  intervals55,63.

Another key parameter providing an indicator of an observer’s temporal sensitivity (resolution) is given by 
the just noticeable difference (JND), defined as the interval difference between the 50%- and 75%-thresholds 
estimated from the psychometric function. Figure 6 depicts the JNDs obtained in Experiments 1 and 2, separately 
for the three sets of intervals. Repeated-measures ANOVAs, with Set as the main factor, failed to reveal any dif-
ferences among the three sets, for either experiment [Experiment 1: F(2, 30) = 1.05, p = 0.36,BFincl= 0.325 ; 
Experiment 2:F(2, 28) = 0.166, p = 0.85,BFincl= 0.156 ]. Comparison across Experiments 1 and 2, 
however, revealed the JNDs to be significantly smaller for auditory than for visual interval averaging, 
t(91) = 2.95, p < 0.01,BF10 = 9.08  . That is, temporal resolution was higher for the auditory than for the visual 
modality, consistent with the  literature64.

Figure 5.  Difference in PSEs between Sets 1 and 2 plotted against the difference between Sets 1 and 3 for 
all individuals (gray dots) in Experiments 1 (a) and 2 (b). The dark triangles represent the ideal locations of 
arithmetic averaging (Arith.M) and geometric averaging (Geo.M). The black dots, with the standard-error bars, 
depict the mean differences across all participants. The dashed lines represent the line of reflection between the 
‘geometric’ and ‘arithmetic’ ideal locations.
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Thus, taken together, evaluation of both the mean and sensitivity of the participants’ interval estimates dem-
onstrated not only that ensemble coding in the temporal domain is accurate and consistent, but also that the 
geometric mean is used as the predominant averaging scheme for performing the task.

Model simulations. Although our results favor the geometric averaging scheme, one might argue that par-
ticipants adopt alternative schemes to simple, equally weighted, arithmetic or geometric averaging. For instance, 
the weight of an interval in the averaging process might be influenced by the length or/and the position of that 
interval in the sequence. For example, a long interval might engage more attention than a short interval, and 
weights are assigned to intervals according to their lengths. Alternatively, short intervals might be assigned 
higher weights. This would be in line with an animal  study65, in which pigeons received reinforcement after 
varying delay intervals. The pigeons assigned greater weight to short delays, as reflected by an inverse relation-
ship between delay and efficacy of reinforcement. In case each interval is weighted precisely relative to its inverse 
(reciprocal), the result would be harmonic averaging, that is: the reciprocal of the arithmetic mean of the recip-
rocals of the presented ensemble intervals (i.e., Mh =

(

∑n
i=1

1
xi

)−1

 ). A daily example of the harmonic mean is 
that when one drives from A to B at a speed of 90 km/h and returns with 45 km/h, the average speed is the har-
monic mean of 60 km/h, not the arithmetic or the geometric mean.

To further examine how closely the perceived ensemble means, reflected by the PSEs, match what would be 
expected if participants had been performing different types of averaging (arithmetic, geometric, weighted, and 
harmonic), as well as to explore the effect of an underestimation bias that we observed for the visual modality, 
we compared and contrasted four model simulations. All four models assume that each interval was corrupted 
by noise, where the noise scales with interval length according to the scalar  property1.

In more detail, the arithmetic-, weighted-, and harmonic-mean models all assume that each perceived interval 
is corrupted by normally distributed noise which follows the scalar property:

where Ti is the perceived duration of interval i, µi is its physical duration, and wf  is the Weber scaling. In contrast, 
the geometric-averaging model assumes that the internal representation of each interval is encoded on a logarith-
mic timeline, and all intervals are equally affected by the noise, which implicitly incorporates the scalar property:

where σt is the standard deviation of the noise.
Given that the perceived duration is subject to various types of contextual modulation (such as the central-

tendency  bias28–30) and modality  differences55, individual perceived intervals might be biased. To simplify the 
simulation, we assume a general bias in ensemble averaging, which follows the normal distribution:

Accordingly, the arithmetic ( MA ) and harmonic ( MH ) average of the five intervals in our experiments are 
given by:

Ti ∼ N
(

µi ,µiwf
)

,

log(Ti) ∼ N
(

log(µi), σt
)

,

B ∼ N(µb, σ ).
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Figure 6.  Violin plot of the distribution of individual JNDs (gray dots) of three tested sets, with the mean JND 
(and associated standard error) overlaid on the respective set, separately for Experiment 1 (a) and Experiment 2 
(b).
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In the weighted-mean model, the intervals are weighted by their relative duration within the set, and the 
weighted intervals are subject to normally distributed noise and averaged, with a general bias added to the 
average:

where the weight wi = µi/
∑5

1 µi.
The geometric-mean model assumes that the presented intervals are first averaged on a logarithmic scale, and 

corrupted independently by noise and the general bias, while the ensemble average is then back-transformed 
into the linear scale for ‘responding’:

It should be noted that the comparison intervals could also be corrupted by noise. In addition, trial-to-trial 
variation of the comparison intervals may introduce the central-tendency  bias28–30. However, the central-tendency 
bias does not shift the mean PSE, which is the measure we focused on here. Thus, for the sake of simplicity, we 
omit the variation of the comparison intervals in the simulation. Evaluation of each of the above models was 
based on 100,000 rounds of simulation for each interval set (per model). For the arithmetic, geometric, and 
weighted means, the noise parameters ( wf  and σ ) make no difference to the average prediction, given that, over 
a large number of simulations, the influence of noise on the linear interval averaging would be zero (i.e., the 
mean of the noise distribution). Therefore, the predictions for these models are based on a noise-free model 
version (i.e., the noise parameters were set to zero), with the bias parameter ( µb ) chosen to minimize the sum of 
square distances between the model predictions and the average PSE’s from each experiment. For the harmonic 
mean, owing to the non-linear transformation, the noise does make a difference to the average prediction and 
the best parameters, which minimize the sum of squared errors (i.e. the sum of squared differences between the 
model predictions and the observed PSE’s), was determined by grid search, i.e. by evaluating the model for all 
combinations of parameters on a grid covering the range of the most plausible values for each parameter and 
finding the combination that minimized the error on that grid.

Among the four models, the model using the geometric mean provides the closest fit to the (pattern of the) 
average PSEs observed in both experiments (see Fig. 7). By visual inspection, across the three interval sets, the 
pattern of the average PSEs is the closest to that predicted by the geometric mean, which makes the same predic-
tions for Sets 1 and 3. Note, though, that the PSE observed for Set 1 slightly differs from that for Set 3, by being 
shifted somewhat in the direction of the prediction based on the arithmetic mean (i.e., shifted towards the PSE 
for Set 2). The harmonic-mean model predicts that the PSE to be smaller for Set 1 as compared to Set 3, which 
was, however, not the case in either experiment. On the weighted-mean model, the PSE was expected to be the 
largest for Set 1, which differs even more from the observed PSE.

Furthermore, as is also clear by visual inspection, there was a greater bias in the direction of shorter dura-
tions in the visual compared to the auditory experiment (witness the lower PSEs in Fig. 7b compared to Fig. 7a), 
which was reflected in a difference in the bias parameter ( µb ). The value of the bias parameter associated with 
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Figure 7.  Predicted and observed PSE’s for Experiment 1 (a) and Experiment 2 (b). The filled circles show 
the observed PSE’s (i.e. the grand mean PSE’s, which are also shown in Fig. 4, and the error bars represent the 
associated standard errors); the lines represent the predictions of the four models described in the text.
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the best fit of the geometric mean model was − 0.04 for Experiment 1 (auditory) and − 0.20 for Experiment 2 
(visual), which correspond to a shortening by 4% in the auditory and by 18% in the visual experiment. For the 
arithmetic and weighted-mean models, both bias parameters reflect a larger degree of shortening compared to 
the geometric-mean model, while the bias parameters of the harmonic-mean model were somewhat smaller 
compared to the bias parameters of the geometric mean model.

Discussion
The aim of the present study was to reveal the internal encoding of subjective time by examining intuitive ensem-
ble averaging in the time domain. The underlying idea was that ensemble summary statistics are computed at a 
low level of temporal processing, bypassing high-level cognitive decoding strategies. Accordingly, ensemble aver-
aging of time intervals may directly reflect the fundamental internal representation of time. Thus, if the internal 
representation of the timeline is logarithmic, basic averaging should be close to the geometric mean (see Footnote 
1); alternatively, if time intervals are encoded linearly, ensemble averaging should be close to the arithmetic mean. 
We tested these predictions by comparing and contrasting ensemble averaging for three sets of time intervals 
characterized by differential patterns of the geometric and arithmetic means (see Fig. 1b). Critically, the pattern 
of ensemble averages we observed most closely matched that of the geometric mean (rather than those of the 
arithmetic, weighted, or, respectively, harmonic means), and this was the case with both auditory (Experiment 
1) and visual intervals (Experiment 2) (see results of modeling simulation in Fig. 7). Although some 30% of the 
participants appeared to prefer arithmetic averaging, the majority showed a pattern consistent with geometric 
averaging. These findings thus lend support to our central hypothesis: regardless of the sensory modality, intuitive 
ensemble averaging of time intervals (at least in the 300- to 1300-ms range) is based on logarithmically coded 
time, that is: the subjective timeline is logarithmically scaled.

Unlike ensemble averaging of visual properties (such as telling the mean size or mean facial expression of 
simultaneously presented objects), there is a pragmatic issue of how we can average (across time) in the tempo-
ral domain—in Wearden and Jones’s16 words: ‘can people do this at all?’ (p. 1295). Wearden and  Jones16 asked 
participants to average three consecutively presented durations and compare their mean to that of the subse-
quently comparison duration. They found that participants were indeed able to extract the (arithmetic) mean; 
moreover, the estimated means remained indifferent to variations in the spacing of the sample durations. In 
the current study, by adopting the averaging task for multiple temporal intervals (> 3), we resolved the problem 
encountered by the temporal bisection task, namely: it cannot be ruled out that finding of the bisection point 
to be nearest the geometric mean is the outcome of a ratio  comparison24,25, rather than reflecting the internal 
timeline (see “Introduction”).

Specifically, we hypothesized that temporal ensemble perception may be indicative of a fast and intuitive 
process likely involving two stages: transformation, either linearly or nonlinearly, of the sample durations onto a 
subjective  scale66–68 and storage in short-term (or working) memory (STM); followed by estimation of the average 
of the multiple intervals on the subjective scale and then remapping from the subjective to the objective scale. 
One might assume that the most efficient form of encoding would be linear, avoiding the need for nonlinear 
transformation. But this is at variance with our finding that, across the three sets of intervals, the averaging judg-
ments followed the pattern predicted by logarithmic encoding (for both visual and auditory intervals). The use of 
logarithmic encoding may be owing to the limited capacity of STM: uncompressed intervals require more space 
(‘bits’) to store, as compared to logarithmically compressed intervals. The brain appears to have chosen the latter 
for efficient STM storage in the first stage. However, nonlinear, logarithmic encoding in stage 1 could give rise 
to a computational cost for the averaging process in stage 2: averaging intervals on the objective, external scale 
would require the individual encoded intervals to be first transformed back from the subjective to the objective 
scale, which, due to being computationally expensive, would reduce processing speed. By contrast, arithmetic 
averaging on the subjective scale would be computationally efficient, as it requires only one step of remapping—of 
the subjective averaged interval onto the objective scale. Intuitive ensemble processing of time appears to have 
opted for the latter, ensuring computational efficiency. Thus, given the subjective scale is logarithmic, intuitive 
averaging would yield the geometric mean.

It could, of course, be argued that participants may adopt alternative weighting schemes to simple (equally 
weighted) arithmetic or geometric averaging. For example, the weight of an interval in the averaging process 
might be influenced by the length of that interval or/and the position of that interval within the sequence. Thus, 
for example, a long interval might engage more attention than a short interval, and weights are assigned to the 
intervals according to their lengths. Alternatively, greater weight might be assigned to shorter intervals, consistent 
with animal studies. For instance,  Killen65, in a study with pigeons, found that trials with short-delay reinforce-
ment (with food tokens) had higher impact than trials with long-delay reinforcement, biasing the animals to 
respond earlier than the arithmetic and geometric mean interval, but close to the harmonic mean. We simulated 
such alternative averaging strategies—finding that the prediction of geometric averaging was still superior to 
those of arithmetic, weighted, and, respectively, harmonic averaging: none of the three alternative averaging 
schemes could explain the patterns we observed in Experiments 1 and 2 better than the geometric averaging. 
Thus, we are confident that intuitive ensemble averaging is best predicted by the geometric mean. Of course, it 
would be possible to think of various other, complex weighting schemes that we did not explore in our modeling. 
However, based on Occam’s razor, our observed data patterns favor the simple geometric averaging account.

Logarithmic representation of stimulus intensity, such as of loudness or weight, has been proposed by Fechner 
over one and a half centuries  ago69, based on the fact that the JND is proportionate to stimulus intensity (Weber’s 
law). It has been shown that, for the same amount of information (quantized levels), the logarithmic scale pro-
vides the minimal expected relative error that optimizes communication efficiency, given that neural storage of 
sensory or magnitude information is capacity-limited70. Accordingly, logarithmic timing would provide a good 
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solution for coping with limited STM capacity to represent longer intervals. However, as argued by  Gallistel71, 
logarithmic encoding makes valid computations problematic: “Unless recourse is had to look-up tables, there is 
no way to implement addition and subtraction, because the addition and subtraction of logarithmic magnitudes 
corresponds to the multiplication and division of the quantities they refer to” (p. 8). We propose that the ensuing 
computational complexity pushed intuitive ensemble averaging onto the internal, subjective scale—rather than 
the external, objective scale, which would have required multiple nonlinear transformations. Thus, our results 
join the increasing body of studies suggesting that, like other  magnitudes72,73, time is represented internally on 
a logarithmic scale and intuitive averaging processes are likely bypassing higher-level cognitive computations. 
Higher-level computations based on the external, objective scale can be acquired through educational train-
ing, and this is linked to mathematical  competency37,72,74. Such high-level computations are likely to become 
involved (at least to some extent) in magnitude estimation, which would explain why investigations of interval 
averaging have produced rather mixed  results15,16,31. Even in the present study, the patterns exhibited by some 
of the participants could not be explained by purely geometric encoding, which may well be attributable to the 
involvement of such higher processes. Interestingly, a recent study reported that, under dual-task conditions 
with an attention-demanding secondary task taxing visual working memory, the mapping of number onto space 
changed from linear to  logarithmic75. This provides convergent support for our proposal of an intuitive averaging 
process that operates with a minimum of cognitive resources.

Another interesting finding of the present study concerns the overall underestimation of the (objective) 
mean interval duration, which was evident for all three sets of intervals and for both modalities (though it was 
more marked with visual intervals). This general underestimation is consistent with the subjective ‘shortening 
effect’: a source of bias reducing individual durations in  memory76,77. The underestimation was less pronounced 
in the auditory (than the visual) modality, consistent with the classic ‘modality effect’ of auditory events being 
judged as longer than visual events. The dominant account of this is that temporal information is processed 
with higher resolution in the auditory than in the visual  domain30,55,58,78. Given the underestimation bias, our 
analysis approach was to focus on the global pattern of observed ensemble averages across multiple interval sets, 
rather than examining whether the estimated average for each individual set was closer to the arithmetic or the 
geometric mean. We did obtain a consistent pattern across all three sets and for both modalities, underpinned 
by strong statistical power. We therefore take participants’ performance to genuinely reflect an intuitive process 
of temporal ensemble averaging, where the average lies close to the geometric mean.

Another noteworthy finding was that the JNDs were larger in the visual than in the auditory modality (Fig. 6), 
indicative of higher uncertainty, or more random guessing, in ensemble averaging in the visual domain. As 
random guessing would corrupt the effect we aimed to  observe79–81, this factor would have obscured the under-
lying pattern more in the visual than in the auditory modality. To check for such a potential impact of random 
responses on temporal averaging, we fitted additional psychometric functions to the original response data 
from our visual experiment. These fits used the logistic psychometric function with and without a lapse-rate 
parameter, as well as a mixed model—of both temporal responses, modeled by a gamma distribution, and non-
temporal responses, modelled by an exponential distribution—proposed by Laude et al.81, and finally a model 
with the non-temporal component from the model of Laude et al. combined with the logistic psychometric 
function. We found that the model of Laude et al. did not improve the quality of the fit sufficiently to justify the 
extra parameters, as evaluated using the Akaike Information Criterion (AIC), and adding a lapse rate improved 
the AIC only slightly (average AIC: logistic with no lapse rate: 99.1, gamma with non-temporal responses: 102, 
logistic with non-temporal responses: 99.3, and logistic with lapse rate: 97.9). Importantly, the overall pattern 
of the PSEs remained the same when the PSEs were estimated from a psychometric function with a lapse rate 
parameter (set 1: 591 ms; set 2: 629 ms; set 3: 578 ms): the PSE remained significantly larger for Set 2 compared 
to Set 1 (t(14) = 2.56, p = 0.02) and for Set 2 compared to Set 3 (t(14) = 2.84, p = 0.01), without a significant dif-
ference between Sets 1 and 3 (t(14) = 0.76, p = 0.46). Thus, the pattern we observed is rather robust (it does not 
appear to have been affected substantially by random guessing), favoring geometric averaging not only in the 
auditory but also in the visual modality.

In summary, the present study provides behavioral evidence supporting a logarithmic representation of 
subjective time, and that intuitive ensemble averaging is based on the geometric mean. Even though the valid-
ity of behavioral studies is being increasingly acknowledged, achieving a full understanding of human timing 
requires a concerted research effort from both the psychophysical and neural perspectives. Accordingly, future 
investigations (perhaps informed by our work) would be required to reveal the—likely logarithmic—neural 
representation of the inner timeline.

Data availability
The data and codes for all experiments are available at: https ://githu b.com/msens elab/Ensem ble.OpenC odes.
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Chapter IV. Influences of stimulus modality and

non-temporal magnitudes in duration judgment
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Abstract

When auditory and visual signals were presented in the same experimental sessions, auditory

signals were often judged to last longer than visual signals for the physically equivalent duration.

Previous research has suggested that such auditory-visual difference can be incorporated within

the scope of Scalar Timing Theory (STT), in which the speed of pacemaker differs between

visual and auditory modalities. Thus when compared to a ‘mixture’ of standard representations

from vision and audition, each duration judgment differs according to the stimulus modality.

However, very few studies have addressed the role of non-temporal characteristics, such as the

size of visual signals, which may affect the modality difference between vision and audition.

Here we investigated the effects of stimulus modality and stimulus magnitude in duration

judgment, specifically when auditory and visual signals were mixed within the same session.

Our results showed the classic visual-auditory effect, when the auditory and visual durations

were tested within the same session, but not in separate sessions. More interestingly, we found a

second type of the memory mixing in duration judgment. That is, non-temporal magnitudes (e.g.,

visual size) influence both the tested duration, but also the estimation of the other durations from

the other modality within the same session. We also showed the second type of the memory

mixing depends on the modality precision. Our findings suggest that the memory mixing is not

limited to modality, but also for the non-temporal magnitudes, which should be considered in the

duration estimation.
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Introduction

In daily life, we encounter abundant continuous temporal cues from surroundings that help us

locate ourselves in time, and in most cases, such cues are not only from a single modality but

multiple sensory domains, either simultaneously or sequentially. For example, to achieve perfect

timing with a dance partner, one has to coordinate his/her movement with the rhythm of the

music and his/her partner’s movement. We rely on multiple sources of temporal information for

reliable time judgments, but multiple sources of temporal information often do not agree with

each other. One such interesting phenomenon in time judgment has been observed repeatedly

since the 1960s is the audio-visual difference where "sounds are judged longer than lights"

(Goldstone et al., 1978; Goldstone & Lhamon, 1974). When presented to auditory stimuli or

vidual stimuli with the physically equivalent duration, participants tended to judge the visual

stimilu to last longer. This modality difference in duration judgment is particularly strong when

visual and auditory durations are intermixed in the same testing sessions (T. B. Penney et al.,

2000a; Wearden et al., 1998).

To date, the mechanism underlying the auditory/visual difference is still under debate. Many

previous attempts on this issue have sought explanations within the framework of Gibbon's

Scalar Expectancy Theory (SET) (Gibbon, 1977; Gibbon et al., 1984). The SET proposes a

central internal-clock mechanism in which temporal information about each timed event is

abstracted, encoded, and acted upon (Gibbon et al., 1984; Treisman, 1963). The central

internal-clock consists of three components: a switch that controls the onset and offset of timing

events, a pacemaker that emits pulses at a certain pace, and a counter that accumulates those

pulses, which further would be stored in the memory as temporal units. One common

explanation that accounts for the modality difference is that the internal pacemaker ticks faster

for the auditory than the visual modality (Droit-Volet & Wearden, 2002; Penton-Voak et al.,

1996; Wearden et al., 1999), which yields more pulses from auditory than visual durations in the

accumulator, thus longer duration in the auditory than in the visual modality. An alternative

explanation focused on attentional allocation, in which processing temporal information from the

auditory modality is more efficient than in the visual modality (Lejeune, 1998; T. Penney, 2003).
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Specifically, the attention-controlled switch in the auditory modality is less easily influenced by

other attentional tasks, compared to the visual modality that hard to remain closed for the

accumulation of pacemaker pulses (in other words, less ‘loss’ of the ticks for auditory duration),

which results in more counts of pulses thus longer duration in the auditory than the visual

modality.

While the majority of previous studies focus on modality differences within the theoretical

developments of timing mechanisms, the interaction between the modality and non-temporal

stimulus features (e.g., stimulus intensity) have been largely neglected. The non-temporal

properties from stimulus characteristics played a vital role in influencing the duration perception.

For example, visual duration with larger magnitude, such as size and luminance, as compared to

the same duration with smaller magnitude, are likely to be judged longer. Similarly, auditory

duration with high intensity, compared to the same duration with low intensity, tends to be

judged longer (Proulx, 2010; T. H. Rammsayer & Verner, 2015; Xuan et al., 2007). In an early

attempt, Goldstone and colleagues manipulated the intensity levels from visual and auditory

signals in a duration comparison task and showed that the audio-visual modality difference in

duration judgments can be attenuated, but not eliminated using stronger intensity of visual

stimuli (Goldstone et al., 1978). Recently, Matthew and colleagues have demonstrated that it is

the stimulus contrast, rather than the absolute intensities, that affects the duration judgments

(Matthews et al., 2011). In their work, they used different levels of intensities from both auditory

and visual stimuli as well as the background intensity and found that the stimulus magnitude

highly depended on the contrast between the stimulus intensity and background intensity (e.g.,

weak stimuli were judged to last longer against a high-intensity background).

Given that both the non-temporal intensity and the modality have great impacts on duration

judgments, it is unclear how these two factors interact with each other in a mixing context on

perceived time. In this background, we aimed to investigate this by randomly mixing auditory

and visual durations in the same session, and manipulated non-temporal magnitudes within each

modality. We aimed to test two alternative hypotheses: The manipulation of the non-temporal

magnitude only influences duration judgment in the same modality. Alternatively, the

57

https://paperpile.com/c/Ol10LE/EM2vs+kAiZV+SwHo6
https://paperpile.com/c/Ol10LE/aNYE5
https://paperpile.com/c/Ol10LE/QwD9B


manipulation of the non-temporal magnitude alters the general temporal context, subsequently

influencing the time percept in the other modality. In addition, the temporal precision of duration

estimations may vary from different modalities, the influence from one modality to the other

might be different from the other way around. Specifically, we designed three experiments. In

Experiment 1, we focused on the mixing effect between the auditory and visual durations with

manipulation of the non-temporal intensity in the auditory modality. That is, two levels of

auditory signal-to-noise (SNR) were selected for auditory presentations in two sessions. In

Experiment 2, we further test the mixing effect of the auditory and visual duration judgments by

manipulating the visual sizes. In Experiment 3, we conducted the same experiment as in

Experiment 2, but tested the auditory and visual durations in separate sessions. Experiment 3

served as a baseline for Experiment 2. In addition, to test the generalizability of the mixing

effect, we applied two different duration paradigms in the study - the duration estimation in

Experiments 1 and 3, and the duration bisection task in Experiment 3.

Experiment 1.

Methods

Participants

11 participants were recruited from the subject pool of Ludwig-Maximilians University in

Experiment 1. All 11 participants (8 females, mean age of 26.9 years) had normal hearing and

normal or corrected-to-normal vision and gave written informed consent, which was conducted

in accordance with the declaration of Helsinki 2008 and received 9 Euro/hour for their

participation. The study was approved by the Ethics Board of the LMU Faculty of Pedagogics

and Psychology.

Apparatus and stimuli

The experiments were performed in a sound-attenuated, dimly lit (0.76 cd/ ) laboratory cabin.𝑚2

Auditory stimulus was a sinusoidal 500 Hz tone (60 dBA), which was embedded in a continuous
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pink noise background (60 dB). Visual stimulus was a gray square patch (75 cd/ ) on a black𝑚2

background (17.5 cd/m2). The audio stimuli were pure 500 Hz tone, with two levels of

presentations: 0 dB SNR (hereafter session ‘High’) and -10 dB SNR (hereafter session ‘Low’),

with the background white noise of 60 dB. Five durations within millisecond range (200, 283,

400, 566, and 800 ms) were selected as target durations.

Design and procedure

We adopted the classic bisection paradigm in this experiment. At the beginning of each session,

participants were presented with the short (S) - 100 ms and long (L) - 900 ms anchors for three

times from each modality in order (visual stimuli first). Each trial commenced with a fixation

cross presented on the center of the screen. After a random pause between 300 ms to 600 ms,

either an auditory or a visual signal was presented and lasted for a target duration, which was

randomly selected from the five sample durations. After the signal was off for a random interval

between 200 ms to 500 ms, a question mark was presented in the middle of the monitor

requesting a response from participants. Participants were instructed to categorize the perceived

duration into either ‘short’ or ‘long’, according to the anchors presented at the beginning of each

session. Responses were required using both of their index fingers. If ‘short’ was the answer,

participants were asked to press the left arrow key using their left index finger, and vice versa.

Once the response was given, the screen was refreshed. After a 1-second pause, the next trial

began.

Each participant took part in two sessions with a 10-minute break in between. The experiment

was either started with the ‘High’ or ‘Low’ session, and the order was counterbalanced among

participants. Each session consisted of 7 blocks with 20 trials of each. The experiment took

approximately 60 minutes to complete.

Results and discussion

In Experiment 1, auditory signals were modulated by two levels of signal-noise ratios (SNRs) of

auditory signals: 0 dB and -10 dB. Accordingly, four psychometric curves (see left panel of
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Figure 4) were acquired with respect to two levels of modalities (‘Auditory’ and ‘Visual’) and

SNRs (‘High’ and ‘Low’). Within each session, the psychometric curves from the auditory

modality lie on the left side of the ones from the visual modality, indicating longer judgments of

auditory than visual signals. Interestingly, when comparing data in session ‘SNR Low’ (dashed

lines) to ‘SNR High’ (solid lines), the psychometric curves from both modalities showed a

leftwards shift (i.e., PSEs become smaller), implying increasing of perceived ‘Long’ judgments.

Figure 1. left penal: psychometric functions (mean proportion of ‘long’ responses plotted against

sample duration) from four conditions in Experiment 3. Blue and red lines represent data from

auditory and visual modality, respectively. Solid and dashed lines represented data from session

‘High’ and session ‘Low’, respectively; right panels: mean PSEs (upper panel) and mean JNDs

(lower penal) from the psychometric functions, in four conditions.

We then extracted the point of subjective equality (PSE), an index indicates the mean judgment

threshold and the just noticeable difference (JND), an index that indicates that sensitivity of

performance (smaller value indicate high sensitivity) from the psychometric functions and
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submitted both PSEs and JNDs to the ANOVAs for further analyses. First, a two-way repeated

ANOVA on PSEs confirmed the modality effect, . Again,𝐹(1, 10) = 9. 41, 𝑝 =. 01, η
𝑔
2 = 0. 07

here we replicated the classical memory mixing effect (Gu & Meck, 2011; T. B. Penney et al.,

2000a), and corroborated the findings in Experiment 1. However, there was neither significant

difference of session, , nor significant interaction,𝐹(1, 10) = 0. 76, 𝑝 =. 40, η
𝑔
2 = 0. 05

. To achieve a better index of whether this null result𝐹(1, 10) = 0. 01, 𝑝 =. 91, η
𝑔
2 = 0. 0005

between sessions reflects robust evidence or just a lack of sensitivity (i.e., too few participants),

we conducted Bayesian repeated-measures ANOVA based on five different models according to

the condition factors, resulting in a Bayes factor equal to 0.364, while data were grouped

according to the high and low levels of SNR. Such a low Bayes factor provides some evidence to

support that the results obtained in this condition reflect a genuine lack of influence of the two

levels of SNR in the temporal bisection tasks. This result was different from what we found in

Experiment 1. In Experiment 1, when the size of the visual stimulus was changed in different

sessions, we found a general bias in the whole session. Here, however, we showed the SNR

manipulation had little influence on the whole session. One possible account is that the auditory

modality has a relatively high temporal resolution, which is less perturbed by the non-temporal

features, such as the SNRs. In other words, the SNR manipulation here had little influence on the

auditory durations, as such the high and low sessions have similar priors (given that the visual

intensity did not change).

Further analysis of the temporal precision JND confirms this temporal precision account. A

two-way repeated ANOVAs on JNDs showed significantly larger values in the visual modality,

, yet no significant effect of session,𝐹(1, 10) = 14. 17, 𝑝 =. 004, η
𝑔
2 = 0. 03 𝐹(1, 10) = 0. 78,

, nor of Modality x Session interaction,𝑝 =. 40, η
𝑔
2 = 0. 04

. The auditory modality has better temporal precision,𝐹(1, 10) = 0. 014, 𝑝 =. 91, η
𝑔
2 < 0. 001

and the SNR manipulation did not change the temporal precision.
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In summary, Experiment 1 focused on the role of two levels of SNRs of auditory signals in a

temporal bisection task, particularly in the testing context where both auditory and visual stimuli

were experienced by participants in the same test session. The change of SNRs between sessions

does not show much difference, although within each session auditory duration was perceived

longer than the visual duration with the same physical length. Given that the overall loudness of

auditory stimuli from both sessions remained at the same level (60 dB), different SNRs would

result in the difference of absolute intensities of the target signal that ‘buried’ in the background

noise (‘High’ SNR resulted in ‘louder’ target signals), which would presumably lead to different

duration estimations between sessions. Yet, the finding suggests that the high temporal precision

of the auditory modality is relatively robust and resistant to the perturbation of the background

noise in duration estimation.

Experiment 2

Methods

Participants

14 participants (7 females, mean age of 24.9 years), were recruited from the subject pool of

Ludwig-Maximilians University. All participants had normal hearing and normal or

corrected-to-normal vision. Participants provided written informed consent in accordance with

the Declaration of Helsinki prior to the experiment and received 9 Euro/hour for their

participation. The study was approved by the Ethics Board of the LMU Faculty of Pedagogics

and Psychology.

Apparatus and stimuli

The experiment was conducted in the same sound-isolated and dimly lit (0.76 cd/ )𝑚2

experimental cabin as in Experiment 1. The same equipment was used for generating auditory

and visual signals. The visual stimulus was presented on a 21’ CRT monitor with a screen
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resolution of 800 × 600 pixels and a refresh rate of 90 Hz. Two sizes of visual patches were used:

a small patch (subtended 3° × 3°) and a big visual patch (subtended 10° × 10°) at a viewing

distance of 60 cm.

Design and Procedure

Experiment 2 aimed to investigate whether duration estimation can be influenced by the size of

visual stimuli. Participants received visual and auditory durations (both ranging from 200 ms to

800 ms, but randomly interleaved across trials) in one test session and were asked to estimate the

duration and marked the perceived duration onto a line-scale (see Figure 2). There were two

sessions in Experiment 2: one session with the large visual patch, and one session with the small

visual patch to deliver the visual duration. The loudness of the auditory stimuli remained the

same for both sessions. The test durations were selected from the following five durations: 200,

283, 400, 566 and 800 ms, which were randomly mixed across trials.

At the beginning of each block, one short (100 ms) and one long (900 ms) intervals from both

modalities, were presented twice to remind participants the short and long anchoring durations.

They were told that the short was 100 ms and the long was 900 ms. The formal testing trial

started with a fixation cross presented on the center of the screen. After a random interval of

300-600 ms, the fixation disappeared and either an auditory or a visual stimulus was presented

for a given duration. After the offset of the target duration for a random 200-500 ms, a ruler with

marks of 0, 500 ms, 1000 ms, and 1500 ms was shown on the lower half of the screen, on which

a cursor can be moved by the use of the mouse (see Figure 2). The initial position of the cursor

was randomly located between 0 and 1500 ms. Participants were asked to move the cursor to a

location that represented the perceived duration and to click to confirm their response. No

feedback was given after each response. After the response the display was cleared for one

second, and the next trial began.

The order of two sessions were counterbalanced among participants. Each session consisted of 9

blocks with each of 40 trials of each. The experiment lasted approximately 90 minutes to

complete and participants were asked to take a 15-minute break between sessions.
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Figure 2. Schematic illustration of the experimental paradigm of duration estimation in

Experiment 1. A given duration (ranging between 200 to 800 ms) was delivered via auditory or

visual stimulus . Participants were asked to judge the perceived duration and to map the

duration to a line-scale using the movable cursor. The initial cursor was located at a random

position between 0 ms to 1500 ms.

Results and discussion
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Figure 3. Mean estimations (left panel) and relative estimation errors (right penal) as a function

of the test duration, separated for auditory and visual modality and two sessions in Experiment

1. Blue and red lines represent data from auditory and visual modality, respectively. Solid and

dotted lines are data from session 1 (session ‘Small’) and session 2 (session ‘Large’),

respectively. The error bar represents one standard error.

Figure 3 shows the results of Experiment 2. By visual inspection, the mean estimation follows

the test duration in linear fashion, with auditory duration being overestimated in general as

compared to the visual duration, which is consistent with previous findings on the auditory/visual

differences of duration judgments (T. B. Penney et al., 2000a; Wearden et al., 2006). Second, the

visual durations presented with small patches were perceived shorter than the same duration with

the large patch. To quantify the estimation errors, we calculated the Relative Estimation Error

(RRE), which was defined by the proportion of the estimation error (the estimated duration

subtracted the test duration) to the test duration. As shown in the right panel of Figure 3, this

metric provided a better illustration as to how response deviated from each sample point. A

three-way ANOVA with the factor of modality, session, and duration revealed a significant of the

main effect of the modality, F(1,13) = 4.77, p=.048, = .09, indicating the auditory durationsη
𝑔

were generally reproduced longer than the visual durations with the same physical length. There

was also a significant effect of session, F(1,13) = 5.33, p=.038, = .11, suggesting that theη
𝑔

mixing with the large visual stimuli shifts the reproduced durations higher than the session with

the small visual stimuli. But there was no significant difference among different durations,

F(1,13) = 1.74, p=.21, = .03, indicating that the estimation errors follow the scalar property.η
𝑔

Thus, in Experiment 2, we replicated the classical auditory-visual effect found in previous

studies: when the auditory and visual durations were presented in the same testing bloack,

auditory durations were perceived longer than the visual durations at the equivalent sample

duration. Interestingly, we also found that the non-temporal feature - size of the visual stimuli

also influenced the duration judgment, not only for the visual duration, but also for the auditory

duration. In the large visual stimulus session, the estimation of the auditory durations was also
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shifted upward. This suggests that the non-temporal feature influenced the general prior of the

perceived duration range (Shi et al., 2013), having an amodal effect on time judgment.

Experiment 3

In Experiment 3,  the non-temporal features, visual sizes, were systematically manipulated in two

separate sessions. Given that the auditory and visual modalities have different temporal

resolutions, here we further test the mixing effect with manipulation in the auditory

modality.Experiment 1 we found the classic modality mixing effect. In order to further examine

if the effect is truly due to the context mixing, we conducted Experiment 3, in which we tested

the visual and auditory duration judgments in separate sessions.

Methods

Participants

16 participants took part in Experiment ‘Separate’ (8 females, mean age of 22.1). All had normal

hearing and normal or corrected-to-normal vision and gave written informed consent, which was

conducted in accordance with the declaration of Helsinki 2008 and received 9 Euro/hour for their

participation. The study was approved by the Ethics Board of the LMU Faculty of Pedagogics

and Psychology.

Apparatus and stimuli

The experiment was conducted in the same sound-isolated and dimly lit (0.76 cd/ )𝑚2

experimental cabin as in Experiment 1. The same equipment was used for generating auditory

and visual signals. The size of visual stimuli was the same as in the ‘Small’ session of

Experiment 1 (subtended 3°x3°). Auditory stimulus was a sinusoidal 500 Hz tone (60 dBA),

which was embedded in a continuous pink noise background (60 dB).

Design and procedure

The identical paradigm and experimental task were adopted in Experiment ‘Separate’, except

that in each session participants only experienced stimuli from one modality, instead of both
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auditory and visual stimuli intermixed for presentations. There were two separate

modality-specific sessions: one session for vision and one session for audition. The order of two

sessions were counterbalanced among participants. Each session consisted of 5 blocks with each

of 30 trials of each. The experiment lasted approximately 45 minutes to complete and

participants were asked to take a 10-minute break between sessions.

Results and discussion

Figure 3 depicts the relative duration estimation errors in Experiment 2. By visual inspection,

there was a numerical trend that the estimation error decreased as the function of the duration,

and the errors were numerically larger in vision than in audition. However, a repeated-measures

ANOVA with the modality and the duration as two main factors revealed neither the main effects

(Duration: F(1,15)=1.96, p=.18, Modality: F(1,15)=1.89, p=.19), nor their interaction

(F(1,15)=1.72, p=.2) were significant. That is, the relative estimation errors were not

significantly different between auditory and visual modalities, and between the short and long

durations.

Figure 4. Mean relative estimation error as a function of the test duration in Experiment 3,

separated for the visual and auditory durations. The error bar represents one standard error.
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In Experiment 1, when the auditory and visual durations were randomly mixed within blocks, we

found the classical memory mixing effect (T. B. Penney et al., 2000a; Wearden et al., 2006).

However, in Experiment 3, when we separate two modalities in separate sessions, the mixing

effect diminished. Combining both experiments, we are relatively confident that the modality

mixing effect comes from the cross-modality context. That is, when both auditory and visual

durations are available for comparison, this modality context leads to the mixing effect.

General Discussion

The present study investigated the interaction between the modality mixing and non-temporal

intensities (such as size and SNR) in duration estimation. We mixed auditory and visual

durations within each session in Experiments 1 and 2, and compared to the baseline condition

where the auditory and visual durations were separated tested in different sessions. We replicated

the modality mixing effect both in Experiments 1 and 2, with auditory duration judged longer

than visual ones with the same physical length within the same test session. However, this

modality mixing effect was not observed when the test was separated in separate sessions

(Experiment 3). More interestingly, we found that the manipulation of the non-temporal feature,

such as visual size, not only influenced the visual duration judgments, but also the duration

estimation of the auditory modality in the same session. The large visual size shifted the overall

estimation bias upward, as compared to the small visual size session. By contrast, the

manipulation of the signal-noise ratio (SNR) in the auditory modality failed to change the overal

bias. These results demonstrated an asymmetric role of non-temporal characteristics between

visual and auditory modality.

Modality mixing effect

As outlined in the Introduction, the modality mixing effect has been observed when the auditory

and visual durations were randomly mixed together, and auditory duration is often perceived

longer than the visual duration (T. Penney, 2003; T. B. Penney et al., 2000a). Penney and

colleagues suggested that the occurrence of such modality difference occurred in the memory
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stage where the auditory and visual duration representations were stored in the same working

memory, which makes the comparison across modality possible. As it has been shown in the

literature that the auditory duration is often perceived longer than the visual duration (Wearden

et al., 1998, 2006), thus the memory contrast causes the whole auditory duration to be

overestimated while the visual durations are relatively underestimated. However, whether the

modality difference is required for memory mixing has been questioned by Werden and

colleagues (Wearden et al., 2006). Wearden and colleagues argued that the modality difference is

inherited from modality-specific ‘pacemaker speed’, ‘mixing’ auditory and visual stimuli for

duration presentation is not necessarily required. In the present study, we replicated the modality

mixing effect when the auditory and visual durations were randomly interleaved together within

one session. However, when the auditory and visual durations were tested separated (Experiment

2), the modality difference became insignificant. Thus, our findings favor the memory mixing

account (T. B. Penney et al., 2000b).

It should be noted, though, our findings do not reject the difference of the time processing in the

visual and auditory modalities. In fact, we found the temporal precision in duration judgments

were different for the auditory and visual modalities. The temporal precision of the auditory

modality was higher than the visual modality, which is consistent with previous findings stating

that duration judgment is more precise in the auditory domain (Thomas H. Rammsayer et al.,

2015a). This might be an indication of an inherent difference between auditory and (Thomas H.

Rammsayer et al., 2015b)visual in subsecond timing. For example, higher auditory temporal

sensitivity may be due to faster and more accurate processing of auditory information,

considering the pathway to process auditory information is shorter than in vision (Pinel et al.,

2004). Electrophysiological evidence also supported this idea with investigating the N1

component, an early negative component of the event-related potential (ERP), which reflects the

analysis of physical stimulus properties, identified differences in latencies of N1 components

elicited by visual and auditory stimuli (Allison et al., 1984). Thus, in spite of the adopted

experimental paradigm and selection of stimulus configuration, temporal judgments from

audition always exhibit higher precision.
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Influences of non-temporal magnitudes

Non-temporal magnitudes (such as intensities, contrast) have been shown to be influential factors

in duration judgments. It has been suggested that high intensity may be more aroused than the

low intensity stimuli, thus speeding up the internal pacemaker speed, according to the

information-processing pacemaker-accumulator models (Gibbon & Church, 1990; Penton-Voak

et al., 1996). This has been supported by studies that found the magnitude effect in sub-second

duration estimations (Busch et al., 2004; Casini & Macar, 1997). By adopting different levels of

nontemporal magnitudes in duration representations, such as the number of dots, size and

luminance of visual stimuli, Xuan and colleagues (Xuan et al., 2007) demonstrated that visual

items with larger magnitudes were judged to last longer. By using a size contrast illusion (the

Ebbinghaus illusion), Ona and Kawahara also showed that perceived duration also depended on

the subjective visual size (Ono & Kawahara, 2007).

However, it is important to mention the influence of non-temporal features/intensities is only

concerned with the duration of that related stimulus intensity, which is often assumed to be

independent of the other stimuli. That is, the theory does not consider the ‘magnitude’ context.

Here, we demonstrated that the intensity changes in visual duration (i.e., the size of the visual

stimulus) not only altered the visual duration judgment, but also the auditory duration that was

being tested in the same session. Our findings suggest that the influence of the magnitude in

duration judgment is not short-live for the test duration itself, it has a broader influence in terms

of the context. It is a second type of memory mixing. That is, the non-temporal magnitude

contributes to the bias of the current estimation, which the estimation is incorporated into the

modality non-specific amodal prior. As a result, the global general prior influences the duration

estimation in the other modality.

Interestingly, though, the manipulation of the intensity in auditory modality in terms of the SNR

(0 dB vs. -10 dB) did not cause a general shift between two high vs. low SNR sessions

(Experiment 3), which is in contrast to the visual size manipulation. From the temporal

estimation, however, we do find that the temporal precision in the auditory modality was higher

than that in the visual modality, and the temporal precision of the auditory modality in the high
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and low SNR sessions did not differ from each other. This suggests that the failure modulation of

the SNR may be owing to the fact that the temporal precision of the auditory modality is

relatively high, which is resistant to any different SNR manipulations. Alternatively, the SNR

manipulation here (the difference was only 10 dB) was not large enough to introduce a general

bias, given that the auditory has a high temporal precision.

Conclusion

In the current study, we found two types of memory mixing in duration judgment - modality

mixing and non-temporal magnitude mixing. We replicated the modality mixing effect when the

auditory and visual durations were tested in a randomly mixed session, while the modality effect

diminished when each modality was tested separately. In addition, we found the non-temporal

magnitude not only influenced the test duration itself, but could also introduce a general bias in

the test session. However, the influence of non-temporal magnitude depends on the modality.

The influence is more marked when the manipulated modality has less temporal precision.
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Chapter V. General Discussion

The main research objective of this accumulative work was to examine the roles of three

contextual factors in subjective interval timing in the range of sub-seconds to seconds. First,

we focused on the influence of temporal context (e.g., the range of sample durations) in

duration reproductions and examined whether the use of different temporal contexts could

affect general timing performance, such as the accuracy and (relative) precision of interval

reproductions. The second study addressed the question of whether internal subjective

intervals are logarithmic encoded. We used the rapid and intuitive ensemble perception in

extracting statistical information (such as the mean) from the ensemble temporal context as a

probing tool to investigate this. In a third study, we concentrated on the interplay of

non-temporal and temporal context in time judgments. Specifically, we manipulated the

‘mixed’ condition where both auditory and visual stimuli were presented in the same testing

sessions with different configurations of non-temporal contexts.

Summary of findings

The first two studies (Chapters 2 and 3) focused on two perspectives of the classic laws of

psychophysics in human interval timing: 1) the psychophysical law, which describes the

relationship between the magnitude of sample duration and perceived time, and 2) scalar

timing, which states a constant relationship between JND and mean estimations of time (S.

Grondin, 2003). We demonstrated that temporal context (e.g., sample distributions) played a

vital role in both aspects of the laws of psychophysics in interval timing. Through

manipulating the temporal context among testing sessions, we compared the duration

reproductions of the same target samples from different temporal contexts (see Chapter 2)

and observed both conformity and violation of scalar timing (see Figures 4 and 5 in Chapter 2

), as mean coefficient of variations (CVs) showed both constant and varied trends against

targets intervals according to the experimental contexts ( e.g., the temporal mixed vs. blocked

contexts, or visual vs. auditory contexts). We further explained how the variations of CVs

could happen on each stage of the reproduction-reproduction task using the Bayesian model.

Although it is still under debate whether human interval timing conforms to the scalar timing,

our findings suggested that the observed CV is not strictly tied to the internal scalar property
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and using the CV alone to reject the scalar property is not warranted by the behavioral

findings.

Focusing on the other fundamental law of psychophysics in time, the second study (Chapter

3) aimed to investigate the internal encoding of the subjective timeline by adopting an

intuitive process - ensemble perception - in the time domain. The idea was, since ensemble

perception in time work at a very fast, low level of coding and might possibly bypass many

high-level cognitive decoding strategies, the task of averaging of time intervals, which

requires rapid response to extract the mean from a train of consecutively presented durations,

may thus reflect an average of primitive encoded time. By manipulating the mean values of

three different sample distributions, those different averaging strategies could be

disassociated: while the arithmetic mean could reflect a linear encoding, the geometric mean

could reflect a logarithmic encoding. The results provided evidence to support that our

perceived (subjective) time, at least in the subsecond range, is likely to be logarithmically

encoded.

The third study (Chapter 4) investigated how non-temporal characteristics of stimuli could

affect sub-second timing when timing information was delivered by mixed auditory and

visual signals. We investigated the role of two non-temporal factors, one for vision and one

for audition, which could potentially influence the classic visual/auditory difference in

sub-second interval timing. We mixed auditory and visual durations within each session and

compared to the baseline condition where the auditory and visual durations were separatly

tested in different sessions. We replicated the modality mixing effect with auditory duration

judged longer than visual ones with the same physical length within the same test session.

However, this modality mixing effect was not observed when the test was separated into

separate sessions. More interestingly, we found that the manipulation of the non-temporal

features, such as visual size, not only influenced the visual duration judgments, but also the

duration estimation of the auditory modality in the same session. The large visual size shifted

the overall estimation bias upward, as compared to the small visual size session. By contrast,

the manipulation of the signal-noise ratio (SNR) in the auditory modality failed to change the

overall bias. These results demonstrated an asymmetric role of non-temporal characteristics

between visual and auditory modality.
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Temporal Context and Bayesian Inference Model

As outlined in the Introduction, up to date the constancy of CVs in time domain still widely

functions as the ‘golden’ standard of examining the scalar timing (Buhusi et al., 2018;

Wearden & Lejeune, 2008). While the constant CVs conforms to Weber's law, a ubiquitous

law for magnitude perception, reporting the inconstancy of the scalar property often led to the

conclusion of a systematic violation of such law (Simon Grondin, 2012, 2014). By observing

both constant and inconstant CVs on the same sample durations but from different

experimental contexts (e.g., different temporal ranges and modalities), we argued that the role

of context factors should be more granted. Additionally, the two-stage Bayesian estimator

model proposed in this thesis (see Chapter 2) successfully predicted both the mean and

sensitivities - two key parameters that evaluate the general goodness of timing performances -

in temporal reproductions.

Previous studies using the Bayesian inference estimator have enjoyed a great amount of

success in predicting interval timing. For example, Jazayeri and Shadlen’s BLS model

successfully predicted the central tendency effect of duration reproductions (Jazayeri &

Shadlen, 2010). Their model adopted a uniform distribution as the prior, which assumed that

each sample duration contributed equally to the prior knowledge, whereas Ciccihini’s model

(Cicchini et al., 2012) predicted a better fit on the central tendency by assuming a normal

distribution depends on both the mean and the standard deviation of sample distributions. In

our model, we considered a third parameter - a shift term ( ), which incorporates additional∆

information that cannot be directly reflected by simple statistical properties from sample

durations. Our results demonstrated that this mean shift of the prior proposed in our model

could capture the change in the center of the sample durations, in spite of the modality

difference between stimulus presentations (see Table 1 in Chapter 2). To assimilate the whole

process of the production-reproduction task, we introduced another additional parameter in

the ‘reproduction’ phase of the task. Compared to the classic bisection task of intervals, the

production-reproduction task may require high-level cognitive skills, as the reference

memory is updated in each trial for explicit time judgment (Block et al., 1999; S. Droit-Volet

et al., 2015). We considered a variance component of decision uncertainty ( ) using aσ
𝑟
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zero-mean Gaussian distribution and demonstrated this stimulus-independent variance had a

large impact on the variations of CVs (also see Table 1 in Chapter 2).

Modality difference between Vision and Audition

Interestingly, we observed a strong modality difference in interval timing between vision and

audition in all three studies of this thesis. In study one, duration reproductions from auditory

modality showed less estimation bias and less central tendency towards the sample mean (see

Figure 2 in Chapter 2). In addition, CV under auditory modality showed overall smaller

values indicating higher precision of reproductions (see Figure 5 in Chapter 2). In the second

study, estimations in the auditory modality showed both better estimations of PSE and JND

of the psychometric function in the mean discrimination task (see Figures 3 and 4 in Chapter

3). In the third study, when auditory and visual signals were mixed in the same testing

session, auditory stimuli were always judged longer than visual stimuli (see Figure 2 in

Chapter 4), which is consistent with the classic audio-visual differences where ‘sounds are

judged longer than lights (Goldstone & Lhamon, 1974; Goldstone et al., 1978)’. In a

bisection task, JNDs of the psychometric function were smaller in the auditory than visual

domain indicating a higher sensitivity of time judgments (see Figure 4 in Chapter 4).

These findings provide converging evidence for employment of modality-specific timing

mechanisms, in which the modality difference was mainly due to different pacemaker rate in

both ‘clock’ and ‘memory’ stage of the interval clock (Sylvie Droit-Volet et al., 2007; Ogden

et al., 2010), or achieved by climbing neural activation within modality-specific brain areas

(Wittmann, 2013). Also, our findings support the idea of an inherent difference where

temporal information tended to be processed faster and more efficiently in the auditory than

in the visual domain(Allman et al., 2014; Bueti et al., 2008; Zélanti & Droit-Volet, 2012).

Implications of logarithmic encoding of Time

It was suggested that space, time and number share similar 'nature' in the sense that providing

us ‘a priori intuitions' to experience our environment (Stanislas Dehaene & Brannon, 2010).

Studies from numerosity have demonstrated a logarithmic 'intuition' of perception, only that

culture-specific or attentional-related experiences 'linearized' the form of mapping to the
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observable level (Anobile et al., 2012; Stanislas Dehaene, 2003; Feigenson et al., 2004). For

example, when probed number-space mappings in the Mundurucu, an Amazonian indigene

group with a reduced numerical lexicon and little or no formal education, mapped symbolic

and non-symbolic numbers onto a logarithmic scale, whereas Western adults used linear

mapping with small or symbolic numbers and logarithmic mapping when numbers were

presented non-symbolically under conditions that discouraged counting (S. Dehaene et al.,

2008). When performing a dual-task, educated adults showed logarithmic scaling for

numbers, whereas a linear scaling was shown when performing a single-task (Anobile et al.,

2012). The discovery of number neurons from Nieder and Miller might be a 'game-changer'

in solving the psychophysical debate: the neural representation of number lines seems to

favor the logarithmic scale rather than linear (Nieder & Miller, 2003). Recently, Roberts and

colleagues have demonstrated that both subjective timeline and number line were logarithmic

in animal timing (e.g., in pigeons) (Roberts, 2005, 2006). Through using the ensemble coding

in the time domain (see Chapter III), we provided further evidence that the subjective

timeline in the sub-second range is also likely to be logarithmic and joined this line of

research demonstrating a potentially universal representation of perceptual magnitude in both

number and time (Varshney & Sun, 2014; Walsh, 2003).

Conclusions

The thesis aimed to uncover the role of three context factors in human intervals timing in the

range of sub-seconds to seconds. We argue for more careful examinations upon both temporal

and non-temporal factors that emerged from the experimental environment, which may

influence observed timing behaviors in psychophysical research. On the one hand, because

psychophysical studies of timing can provide a solid behavioral foundation in forming timing

models, variations of observed timing behaviors may result in different theoretical

developments, and furthermore, lead to potentially false investigations of the neurobiological

mechanisms. Thus, fully addressing the role of context factors could decrease the variations

of those interpretations of timing theories. On the other hand, although the validity of

behavioral studies has been increasingly acknowledged in recent years, lacking direct

information about the neural basis makes it difficult to substantiate the internal representation

of time. To achieve a full understanding of human timing requires further concerted research

effort from both the psychophysical and neural perspectives.
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