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Zusammenfassung

Die moderne theoretische Hochenergiephysik basiert im Wesentlichen auf einer Beschrei-
bung der Natur mittels Quantenfeldtheorie. Nach ungefähr einhundert Jahren Forschung
mit und an Quantenfeldtheorien bleibt eine mathematisch präzise und rigorose Beschrei-
bung solcher Theorien jedoch ein ungelöstes Rätsel. Ein mathematisches Fundament für
Quantenfeldtheorien erscheint vor dem Hintergrund moderner Ansätze in der Hochen-
ergiephysik wie beispielsweise der Stringtheorie mit ihrer reichen mathematischen Struktur
umso erstrebenswerter.

Zu den am besten verstandenen Quantenfeldtheorien gehören zweidimensionale, ra-
tionale konforme Quantenfeldtheorien. In dieser Dissertation wird eine mathematische
Beschreibung solcher Theorien mittels sogenannter string-net Modelle erbracht. Heuris-
tisch gesprochen ermöglichen string-net Modelle eine Herangehensweise mittels Feynman-
diagramen auf Flächen allen Geschlechts. Es wird ein Eindeutigkeits- und Existenzresultat
für offen-geschlossene rationale konforme Feldtheorien mit fixierter Randbedingung mittels
kategorientherotischen Methoden der string-net Modelle gegeben. Zudem werden mit Hilfe
der string-net Modelle konsistente Korrelatoren für rationale konforme Feldtheorien mit
beliebigen topologischen Defekten sowie beliebigen symmetrieerhaltenden Randbedingun-
gen konstruiert. Mittels dieser Konstruktion können Torus- und Kreisringzustandssumme
berechnet werden, wobei bekannte Resultate reproduziert werden und die Theorie an
frühere Beschreibungen angeknüpft wird. Im Vergleich zu anderen kategorientheoretischen
Ansätzen benötigen string-net Modelle fast keine dreidimensionalen Objekte. Dadurch
wird der Nutzen von kategorientheoretischen Prinzipien transparent und intuitiv.

Im zweiten Teil der Arbeit werden Homotopiealgebren und ihr Bezug zu Quanten-
feldtheorien behandelt. Jede konsistente klassiche Feldtheorie mit einer gewissen Eich-
freiheit produziert eine strong homotopy Lie algebra oder L∞ Algebra über den Batalin
Vilkovisky Formalismus. Somit können über das Studium von L∞ Algebren Rückschlüsse
auf Feldtheorien gezogen werden. Das erste Resultat in diese Richtung ist eine Erweiterung
einer schiefsymmetrischen bilinearen Klammer auf einem Vektorraum zu einer endlichen
L∞ Algebra. Dies verallgemeinert die L∞ Struktur des Courant Algebroiden. Als zweites
Ergebnis wird ein Satz über den Bezug von L∞ Algebra Quasiisomorphismen zu Seiberg
Witten Abbildungen bewiesen, was zu einem besseren Verständins der Relation von math-
ematischen Begriffen der Homotopiealgebren und bekannten Begrifflichkeiten in der Physik
beiträgt.
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Abstract

Quantum field theory is the main technical tool in understanding modern theoretical high
energy physics. After nearly a century of quantum field theory its mathematics remains
mysterious, though. A firm grip on the mathematics of quantum field theory seems ever
more desirable since the upcoming of string theory with its rich and challenging mathe-
matical structure.

Among the best understood quantum field theories are two dimensional rational quan-
tum field theories. In this work we contribute to a better mathematical understanding of
such theories by providing a mathematically rigorous but intuitive description in terms of
string-net models. Heuristically string-net models give a Feynman diagram framework for
rational conformal field theories on all genus g surfaces. We prove a uniqueness and exis-
tence result for open-closed rational conformal field theories with fixed boundary condition
making extensive use of the category theory underlying string-nets. Secondly, we give a
construction of consistent correlators in rational conformal field theories with arbitrary
topological defects and symmetry preserving boundary conditions using string-nets. As
a proof of principle we compute torus and annulus partition functions in the string-net
framework, thereby reproducing established results. Compared to earlier categorical ap-
proaches the use of string-nets almost completely avoids three dimensional considerations,
rendering the use of categorical tools very intuitive.

The second part of the thesis deals with homotopy algebras and their appearance in
quantum field theories. Roughly speaking every consistent classical field theory having
some gauge freedom produces a strong homotopy Lie algebra through the Batalin Vilko-
visky formalism. Hence by studying strong homotopy Lie algebras (or L∞ algebras) one
can learn something about field theories. The first result presented in that direction is a
theorem closing every skewsymmetric bilinear bracket on a vector space into a finite term
L∞ algebra. This is a generalization of the L∞ structure of the Courant algebroid. The
second result is a theorem relating quasi-isomorphisms of L∞ algebras to Seiberg-Witten
maps, linking the mathematics of homotopy algebras closer to physical notions.
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Chapter 1

Introduction

In the course of the twentieth century theoretical high energy physics and mathematical
physics have undergone an ever accelerating change. From the beginning of quantum theory
dating back to Max Planck and Werner Heisenberg in the first half of the century to the
groundbreaking development of quantum field theory in the second half, the description of
nature at higher and higher energies has experienced fundamental changes. New models
for phenomena at higher energies required new interesting mathematical tools. Without
question, one of the greatest achievements was the invention of the standard model of
particle physics giving a unified treatment of three of nature’s four fundamental forces as a
quantum field theory. Since then the question on how to include the fourth force, gravity,
remains. Among others, the probably most developed theory in that direction is string
theory dating back to the beginning of the 1980s. String theory shifts one crucial paradigm
of fundamental descriptions of nature: The idea of particles as points. In string theory,
fundamental particles are one dimensional objects, strings, giving the theory its name. To
date most string theory constructions are rooted in a world volume formalism. As a string
evolves in time it swipes out a two dimensional world volume W and string theory can
be seen as quantum field theory for embeddings X : W → M of the world volume into
a spacetime M . Such a theory is usually called a (non-linear) sigma model. Since the
literature is vast and a historically accurate chronology of developments for string theory
is way out of reach for this introduction we refer to the introduction of [25] or the review
[40] where the reader can learn more about the development of string theory through the
years. Maybe the most important point about sigma models for this thesis is the fact that
the two dimensional sigma model describing a string in a flat space time is a conformal
field theory.

After this historic account leading to string theory and before going into more details
on two dimensional conformal field theories we pause a moment and discuss the essential
question underlying all results presented in this thesis. This is the question of classification
of quantum field theories. Of course this task is too broad to be treated in a closed or
even precise manner. Nevertheless it can yield interesting results when narrowed to more
specific situations. An example for such a classification is the recent swampland program
in string phenomenology. Usually in string theory a top-down approach to phenomeno-
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logical results is taken. One tries to derive the standard model in four dimensions from
a higher dimensional string theory serving as its consistent quantum gravity extension.
The swampland program maybe seen as bottom-up approach. Starting from a space of
consistent quantum field theories in four dimensions at certain energy scales, what are
general criteria for these theories to have a consistent ultra violet completion? Theories
not meeting those criteria lie in the "swampland", whereas consistent theories are part of
the so called "landscape". Thus this is nothing else than a very general attempt on clas-
sifying four dimensional quantum field theories wrt. to possible ultra violet completions.
For further information and a historical account of the swampland program the reader can
consolidate [124][19][29].

Besides phenomenological considerations as in the swampland program one can try to
classify quantum field theories mathematically and this thesis is a very modest contribution
to this subject. For a mathematically precise treatment one needs to start with a definition
of quantum field theory (QFT). There are many attempts for a rigorous definition of QFTs.
Based on the Haag Kastler axioms [70] there is a theory of algebraic quantum field theory
(AQFT) giving a description of QFTs in terms of local algebras of observables (see e.g.
[69] for a textbook account, [149] for a more modern approach and [12] for its relation to
two dimensional conformal field theory). Another route is via the Wightman axioms [145],
for which the reader can find an exhaustive discussion in [139]. Based on Atiyah’s paper
on topological quantum field theory (tft) [4] the field of functorial quantum field theory
(FQFT) emerged. It aims at a formalization of the path integral. There are many references
for the subject, all of which seem to be written for a mathematics rather than a physics
audience, though. For a gentle introduction we refer to [32] and references therein. Lastly
we list a rigorous approach which evolved out of the Batalin-Vilkovisky (BV) formalism
[15][16][17][71], which is a description in terms of homotopy algebras [34]. In this thesis we
mainly deal with QFTs in the form of the last two approaches.

Coming back to the question of classification, as said before FQFT has its roots in
topological quantum field theory. A tft with fields {Φi} on a spacetimeM , roughly speaking
is a field theory s.th. correlation functions

〈Φi1(xi1) · · ·ΦiN (xiN )〉 (1.1)

only dependent on the topology ofM [147]. This is a very strong requirement. In particular
there cannot be any local degrees of freedom in a tft since spacetime can be arbitrarily
deformed as long as one doesn’t rip holes into it without changing the content of the field
theory. Its strong requirements make a mathematical treatment possible. A tft can be
defined abstractly as a symmetric monoidal functor

F : Bordsfd → Vect (1.2)

from a category of d-bordisms to the category of vector spaces. In two dimensions this
gives an assignment
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−→ F ( ) = state space of the theory

−→ µ : F ( )⊗ F ( )→ F ( )

where the multiplication defined by the pair of pants only depends on the topology of three
punctured sphere. The consistency requirements for a symmetric monoidal functor yield
that any two dimensional tft is completely determined by a Frobenius algebra [101][112].
However, two dimensional topological field theories are far too restrictive to be really
interesting.

This brings us back to two dimensional conformal field theories. The relaxation from
topological to conformal field theory can be seen as a field theory analog of the step
from merely constant functions to analytic functions. It is general enough to capture
interesting cases but still restrictive enough to remain treatable. Interestingly enough the
most accessible way for a topological field theory like treatment of CFTs is by relaxing
the target Vect to more general categories rather than taking conformal structures on
the source into account. So, what is conformal field theory? Assume we are given an
oriented spacetime X and some open subset U ↪→ X. A field theory can be conveniently
built from representations of its preserved symmetries. In case of the standard model on
Minkowski space (M, η) the basic symmetry is Poincaré invariance. This is invariance
under all transformations preserving the Minkowski metric η. If the spacetime (X, g) is a
smooth spacetime with Lorentzian metric g and U is small enough s.th. there exist local
coordinates xi : U → R1,d−1 and g = η is in Minkowski form in these coordinates, one
may easily enhance this to conformal invariance. Conformal invariance is invariance under
transformations ξj(xi) s.th.

d∑
i,j=1

gij;p(ξj)
∂ξi

∂x`
∂ξj

∂xk
= eλ(p)η`k (1.3)

where p ∈ U is a point and λ : U → R is some smooth function. The case λ = 1 corresponds
to local Poincaré invariance. Mathematically, we are allowing for all local diffeomorphisms
U → U preserving the conformal equivalence class of the metric. We will be concerned
with two dimensional field theories living on spacetimes with Riemannian metrics instead
of Lorentzian ones. Analyzing the transformation rule (1.3) in this case yields, that there
is an infinite set of local conformal transformations f : U → U given by all biholomorphic
maps1. If we further assume that U is a punctured disk such a map has a Laurent extension

f(z) =
∑
n∈Z

fn(−zn+1) (1.4)

1Equation (1.3) reduces to the Cauchy Riemann equations for a differentiable map f : U → U .
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where z is a local coordinate on U . Local conformal transformations are then generated
by the Witt algebra

`n = −zn+1∂z (1.5)
for which one easily computes

[`n, `m] = (n−m)`n+m . (1.6)

In order to do quantum field theory the Witt algebra has to be centrally extended to the
Virasoro algebra with generators {Ln}n∈Z and commutator

[Ln, Lm] = (n−m)Ln+m + c

12(n3 − n)δm,−n (1.7)

with c ∈ C the central charge. The Virasoro algebra is at the heart of two dimensional
conformal field theory. Fields transform in representations of it. The starting point for
a discussion of conformal field theory is probably the groundbreaking paper [20]. For
textbook accounts see e.g. [126][26]. Conformal invariance has far reaching consequences
one of which is the existence of an operator product expansion of fields. Let {φi} be quasi
primary fields transforming in representations of the Virasoro algebra of conformal weights
{hi} and z, w ∈ C be points on the complex plane with |w| > |z|. Then the singular part
of the operator product expansion is given by

φi(w)φj(z) ∼
∑
k,n≥0

Ck
ij(w − z)−hi−hj+h`+n∂nφ`(z) . (1.8)

Another point one has to take into considerations are extended symmetries for conformal
field theories. A string moving trough a target spacetime which is a Lie group G leads to
a conformal field theory whose symmetry algebra contains the Kac Moody algebra ĝk at a
certain level k. This is the famous Wess Zumino Witten model [144][146]. Further examples
of enhanced symmetry are models with so called W-algebra symmetry. W-algebras are
extensions of the Virasoro algebra with higher spin currents. They were discovered in [150]
an excellent review of the topic is [28]. So as a wish list for describing a conformal theory,
at least on the sphere, one might come up with the following ingredients [140]:

I) Chiral and antichiral symmetry algebras VL, VR both containing the Virasoro algebra.

II) A state space H = ⊕
n,mHn,mU

L
n ⊗ UR

m splitting into representations of VL ⊗ VR .

III) For |z1| > · · · > |zn| and |ξ1| > · · · > |ξn| points in the complex plane C there should
exist correlation function mappings

µn(•; z1, ξ1 · · · , zn, ξn) : H⊗n −→ H

v1 ⊗ · · · ⊗ vn 7−→ µn(v1, · · · , vn; z1, ξ1 · · · , zn, ξn)
(1.9)

s.th. for all ω ∈ H
〈ω, µn(v1, · · · , vn; z1, ξ1 · · · , zn, ξn)〉 (1.10)

converges absolutely as a function on {|z1| > · · · > |zn| ∩ |ξ1| > · · · > |ξn|}. In ad-
dition we demand the correlation function mappings to satisfy the following list of
axioms:



5

III.1) For all v1, · · · , vn, ω ∈ H the map 〈ω, µn(v1, · · · , vn; •)〉 has a multivalued ana-
lytic continuation to

Conf2n(C) =
{

(z1, ξ1 · · · , zn, ξn) ∈ C2n|zi 6= zj, ξi 6= ξj ∀i 6= j

zi 6= ξj, ∀i, j}
(1.11)

which restricts to a single valued function on ξi = zi.
III.2) Assume we have chiral and antichiral configurations on the punctured complex

plane of the following type

.
Figure 1.1

Then the map

〈ω, µ6(v1, v2, µ5(v3, · · · , v7;w1, τ1, · · · , w5, τ5), v8, v9, v10; z1, ξ1, · · · , z5, ξ5)〉
(1.12)

absolutely converges to

〈ω, µ10(v1, · · · , v10; z1, ξ1, · · · , z3 + w1, ξ3 + τ1, · · · , z3 + w5, ξ3 + τ5, · · · , z6, ξ6)〉
(1.13)

for all ω, v1, · · · , v10. Of course this should hold for all n-airy inputs. The
specific case of n = 10 is chosen to exhibit the property at a concrete example.

Points I),II) of the wish list are clear, they tell that our theory is based on some sym-
metry containing local conformal invariance and fields in the theory transform in some
representation of the symmetry. The symmetry algebras should be general enough to con-
tain examples like the Kac-Moody symmetry or W-algebras. The rest of the requirements
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are natural assumptions on correlation functions. The first of these corresponds to the re-
quirement that on radially ordered (which in suitable coordinates on the punctured plane
is time ordering) inputs of fields, correlation functions can be computed by subsequently
taking operator product expansions (OPEs) between the fields. Then III.2) and III.3) tell
that in fact the correlation function extends to all configurations and it doesn’t matter in
which order OPEs between fields are taken 2. So how to realize the wish list mathemati-
cally? One possible route is via a Segal type definition as representations of the PROP of
Riemann surfaces into topological vector spaces [134]. This is the conformal equivalent to
the discussion of topological field theories, where two dimensional bordisms have a confor-
mal structure and the symmetric monoidal functor has to respect the conformal structure
in a suitable sense. Although formulated already in the 1980s this approach to CFTs is
not very developed. A related program for genus zero was started by Huang in 1990 [77].
The central result of [77] is a formulation of vertex operator algebras in terms of represen-
tations of a partial operad of spheres with punctures and local holomorphic coordinates
around these punctures. We arrived at the first point of our wish list: symmetry algebras.
These can be given in the form of vertex operator algebras (VOAs). Vertex algebras were
introduced by Borcherds [27] in order to prove the monstrous moonshine conjecture [33].
A vertex algebra is in some sense a holomorphic enhancement of an associative algebra. If
one requires that a vertex algebra V has an embedded Virasoro algebra one speaks of a
vertex operator algebra. They have a well-behaved representation theory (see e.g. [54]) and
points I),II) can be settled by defining left and right moving symmetry algebras VL, VR to
be VOAs and the state space to be a module of VL⊗VR. For properly-behaved correlation
functions one can introduce chiral conformal blocks. A configuration of field insertions in
genus zero can be thought of as punctured sphere (S, (p1, z1, H1), · · · , (pn, zn, Hn)) where
punctures are labeled with representations Hi of the underlying symmetry VOA V . Using
the local coordinates one can define an action of V on such a labeled configuration. A
conformal block on the sphere is defined as a map

〈 • 〉 : (S, (p1, z1, H1), · · · , (pn, zn, Hn))→ C (1.14)

which is invariant under the action of V (see [52, section 9,10]). Therefore these are func-
tionals satisfying the Ward identities for the symmetry algebra V . Conformal blocks on the
sphere are equivalent to intertwining operators between representations of V [151]. Thus
the theory is completely treatable with tools from VOA theory. Physically, intertwining
operators correspond to all possible couplings between conformal families of fields in a
given chiral CFT. A general correlation function is now a linear combination of products
of chiral and antichiral conformal blocks. However, not all possible linear combinations are
allowed. There are two further requirements on correlation functions which can be thought
of as global symmetry statements 3. Anticipating the extension of the genus zero theory
to higher genus we give the requirements in general form. Assume the CFT at hand has

2Sometimes we will speak about field insertions on a sphere rather than on the plane. There is no
essential difference since in the above the state ω is inserted at {∞} on the sphere.

3Local symmetries are already dealt with by conformal blocks.
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an extension to all genus g surfaces. The first requirement is that a correlation function on
a surface Σg is invariant under global orientation preserving diffeomorphisms of Σg. The
second requirement is equivariance under sewings

corr
  ◦ corr

 = corr
 

corr
◦

= corr
 

.

Both together go under the name of sewing constraints. Sticking to genus zero the gluing
part of the sewing constraints relates different ways of taking OPEs when computing cor-
relation functions. Further analytic properties for correlation functions are taken care of
by general VOA theory. We therefore might satisfy the wish list by

I) Left and right moving symmetry algebras are VOAs VL ⊗ VR.

II) The state space is a module H over VL ⊗ VR.

III) Correlation functions are linear combinations of conformal blocks satisfying the sewing
constraints.

So the question is, can we classify all CFTs which are mathematically formulated as
above? The answer is no. The basic obstacle is that things are too infinite dimensional. In
particular, the space of intertwining operators between representations is infinite dimen-
sional in general. Put differently, the space of conformal blocks is infinite dimensional.
Therefore we make the simplifying assumption that the space of conformal blocks on ev-
ery surface is finite dimensional and call a theory meeting this assumption rational. This
implies that a conformal family present in the theory only couples to finitely many other
conformal families. A classification of full rational CFTs in genus zero has appeared in
[86] and it turns out that these are equivalent to Frobenius algebras in the representa-
tion category RVL⊗VR of VL ⊗ VR. The discussion can be extended to include boundaries
and full conformal field theories where possible boundaries have a fixed common boundary
condition. Such open-closed ´RCFTs are classified by (RV |Z(RV ))-Cardy algebras [104].
The remaining question is, can this classification be extended to higher genus surfaces?
The answer this time is an indefinite almost. The problem is an extension of conformal
blocks to higher genus Riemann surfaces. For a fixed Riemann surface of genus g they
can be defined similar as in the genus zero case. However, we should be able to compute
their behavior as we move in the moduli space of Riemann surfaces of genus g. For a true
theory of conformal blocks this is suspected to yield a flat vector bundle over moduli spaces
of Riemann surfaces whose sections in addition satisfy factorization properties under the
conformal sewing of Riemann surface. Let’s call this a complex analytic modular functor.
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Although there has been some recent progress in that direction [68] no such construction
is available to date. But this is not the end of things we can do. Flat vector bundles
over moduli space are equivalent to representations of the mapping class group and there
is a construction of a categorical modular functor using this fact. Both types of modu-
lar functors are expected to give the same information [5] in the sense that there is an
isomorphism between the two. Such an isomorphism would give an isomorphism between
the actual complex analytic conformal blocks and their categorical counterparts. Modular
functors in general describe the Moore-Seiberg monodromy data for a RCFT [121][120].
Given a rational VOA V , its representation category RV is a modular tensor category and
a categorical modular functor can be constructed from RV . Spaces of conformal blocks
are then given by morphism spaces in RV (this almost equivalent to the Moore Seiberg
data, see [5, section 5]). So we can switch to the categorical side and compute structure
constants in an expansion of correlators in terms of categorical conformal blocks. Once an
isomorphism between the categorical and complex analytic side is found these are exactly
expansion coefficients of correlation functions, determining the latter completely. A treat-
ment of RCFTs in this categorical setting has its roots probably in the seminal work of
Witten [148].

The first result presented in this thesis deals with the question if a full RCFT with fixed
boundary condition in genus zero and one, which is given in the form of a Cardy algebra
actually determines the RCFT to all genera uniquely. The answer is yes. Such statements
have been derived with the help of the Reshetikhin Turaev three dimensional topological
field theory in the past [106]. We give a simplified treatment in terms of string-nets. In
addition we give a construction of consistent correlators for RCFTs with arbitrary different
boundary conditions and even topological defects in terms of string-nets.

The second part of this thesis deals with field theories in the form of homotopy algebras.
One starts with a perturbative classical field theory with action S and field content Ψ. The
fields are allowed to have a gauge freedom. By adjoining (anti-)ghost fields and antifields
to the theory one can built up a classical master action Ŝ living in the space of functionals
on the ghost extended field content Ψ̂. The space of functionals is graded by ghost number
and has a Poisson bracket { • , • }. The classical master action is an element of degree −1
satisfying {

Ŝ, Ŝ
}

= 0 . (1.15)

For a thorough discussion of all of these terms and implications we refer to [71]. Let O(Ψ̂)
be the space of observables for the theory. The space is again graded by ghost number and
the classical master action induces a differential on it via

d(O) =
{
O, Ŝ

}
. (1.16)

It turns out that the homology in ghost number zero is actually the space of all gauge
invariant observables for the original theory given in terms of S, i.e.

H0(O(Ψ̂), d) ' {gauge invariant observables} . (1.17)
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The purpose of introducing all the ghosts and antifields is to make gauge invariance of quan-
tities manifest. It turns out that information {classical master action}+ {Poisson bracket}
is equivalent to a L∞ algebra defined on Ψ̂. L∞ algebras, or strong homotopy Lie algebras,
are generalizations of Lie algebras allowing for higher airy brackets instead of only a two-
bracket. The relation between master action and homotopy algebras was first discovered
by Zwiebach in his construction of closed bosonic string field theory [152]. On the other
hand homotopy algebras themselves have a long history in mathematics dating back to
Stasheff [137][138].

The upshot is that a classification of field theories with a classical master action can
be turned into a question of classifications of L∞ algebras. We employ the field theory ↔
homotopy algebra relation by relating Seiberg-Witten maps between certain gauge theories
to quasi-isomorphisms between L∞ algebras. Secondly we show how to uniquely close a
vector space X with antisymmetric bracket into a finite term L∞ algebras. A field theory
corollary of this theorem is the known L∞ algebra structure on the Courant algebroid.

This thesis is structured as follows. In chapter 2 we recall how the representation cate-
gory of a rational VOA attains the structure of a modular tensor category. This is the first
instance where analytic properties of correlation functions get translated into categorical
algebra. In chapter 3 a precise definition for the wish list of CFTs is given. This comes
in the form of field algebras. We outline how the analytically defined field algebras are
actually equivalent to purely categorical notions. No claim of originality is made on these
chapters. They mostly settle the stage for the following chapter. Sometimes we give short
proofs of the results, mostly in cases where proofs are somewhat hidden in the literature
or the proofs themselves illustrate important properties of the theory. The first part of
chapter 4 is based on the paper [141]. Its second part is an extension of the construction to
include topological defects and arbitrary symmetry preserving boundary conditions. Fur-
thermore we compute torus and annulus partition functions using string-nets relating the
construction to known quantities in CFT and giving an a posteriori justification of some
of its ingredients. The final chapter 5 deals with the results of the papers [74][21] starting
with the construction of a L∞ algebra from antisymmetric brackets. Its second half gives
the relation between Seiberg-Witten maps and quasi-isomorphisms. Finally we included
four appendices to make this thesis as self contained as possible and accessible to a broader
audience. Appendix A is a lightning review of VOA theory. In appendix B we recall no-
tions from category theory relevant for this thesis. Next, in appendix C string-net models
are reviewed. In particular we included an outline of the three dimensional string-net tft.
Finally in appendix D we simply list all fundamental open-closed world sheets and the 32
basic sewing relations relevant for the results in chapter 4.
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Chapter 2

From VOAs to Modular Tensor
Categories

In this chapter we recall the definition of the modular tensor category structure on the
category of representations of a rational VOA. We start by reviewing the construction
of the braided structure. This is originally due to [76][89][90][78] based on the notion of
a vertex tensor category developed by the same authors in [88] 1. Only the necessary
existence and structure theorems will be shown and partially proven here. In particular
the explicit construction of the monoidal product in terms of submodules is left out.

In appendix A.2 intertwining operators are discussed and we freely use the notation
introduced there. For a tensor product intertwining maps are needed. The notions have
a lot in common, the major difference being that the former takes values in some formal
power series space with coefficients in the algebraic extension of a VOA module, whereas
the later maps directly to the algebraic extension of a VOA module. In the following the
algebraic tensor product of C-vector spaces is denoted by ⊗.
Definition 2.0.1. Let V be a VOA, (M1, Y1), (M2, Y2), (M3, Y3) be V -modules and z ∈ C×.
An P (z)-intertwining map of type

(
M3

M1 M2

)
is a C-linear map I : M1 ⊗M2 → M3 s.th. for

formal variables x1, x0 and u ∈ V as well as mi ∈Mi the Jacobi identity

x−1
0 δ

(
x1 − z
x0

)
Y3(u, x1)I (m1 ⊗m2) =z−1δ

(
x1 − x0

z

)
I (Y1(u, x0)m1 ⊗m2)

+ x−1
1 δ

(
z − x1

−x0

)
I (m1 ⊗ Y2(u, x1)m2)

(2.1)

holds. The vector space of P (z)-intertwining maps of type
(

M3
M1 M2

)
is denoted by I [P (z)]M3

M1M2
.

Definition 2.0.2. A P (z)-product of V -modules M1, M2 is a V -module M3 together with
an intertwining map I of type

(
M3

M1 M2

)
.

1In fancy mathematics terms this is a holomorphic analogue of the fact that an E2-algebra in Cat is a
braided monoidal category. A vertex tensor category is an algebra over the partial operad of spheres with
tubes in Cat. Since the E2-operad is a suboperad of this partial operad, the braided monoidal structure is
exactly the one induced by restriction.
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As usual, the tensor product is characterized by a universal property.

Definition 2.0.3. The P (z)-tensor product of V -modules M1, M2 is a P (z)-product
(M3, I) s.th. if (M4, Ĩ) is any other P (z)-product of M1, M2 there exists a unique up
to isomorphism V -module map ρ : M3 →M4 with Ĩ = ρ ◦ I.

The overline denotes the linear extension of ρ to a V -module mapM3 →M4. If a P (z)-
tensor product exists it is obviously unique and it will be denoted by

(
M1 �P (z) M2, YP (z)

)
.

Intertwining maps have some technical advantages when introducing a tensor product
on RV . However, the following two lemmas show, that intertwining maps are completely
determined by intertwining operators. Let p ∈ Z and `p be a branch of the complex
logarithm, i.e. `p(z) = log(|z|) + 2πi p arg(z), where 0 ≤ arg(z) < 2π.

Lemma 2.0.4. Let Y∈ VM3
M1M2, then for any p ∈ Z and z ∈ C×

IY,p : M1 ⊗M2 →M3

m1 ⊗m2 7→ Y
(
m1, e

`p(z)
)
m2

(2.2)

is in I [P (z)]M3
M1M2

.

Proof. As M3 is C-vector space the map is well defined. It suffices to check the Jacobi
identity. Since Y is intertwining operator it satisfies the Jacobi identity

x−1
0 δ

(
x1 − z
x0

)
Y3(u, x1)Y

(
m1, e

`p(z)
)
m2

− x−1
0 δ

(
z − x1

−x0

)
Y
(
m1, e

`p(z)
)
Y2(u, x1)m2

=z−1δ
(
x1 − x0

z

)
Y
(
Y1(u, x0)m1, e

`p(z)
)
m2

(2.3)

which by definition of IY,p is equivalent to

x−1
0 δ

(
x1 − z
x0

)
Y3(u, x1)IY,p(m1 ⊗m2)

− x−1
0 δ

(
z − x1

−x0

)
IY,p (m1 ⊗ Y2(u, x1)m2)

=z−1δ
(
x1 − x0

z

)
IY,p (Y1(u, x0)m1 ⊗m2) .

(2.4)

In the other direction we have.

Lemma 2.0.5. Given I ∈ I [P (z)]M3
M1M2

and m1, m2 homogeneous elements in M1 and M2,
define

m1,(n)m2 ≡ e(n+1)`p(z)π|m1|+|m2|−n−1 (I(m1 ⊗m2)) . (2.5)



13

Linearly extending the map given on homogeneous by

YI(m1, x)m2 ≡
∑
n∈C

m1,(n)m2x
−n−1

(2.6)

to M1 ⊗M2 gives an intertwining operator of type
(

M3
M1M2

)
.

Proof. Since M3,n = 0 for Re(n) >> 0, it holds m1,(n)m2 = 0 for Re(n) << 0. Thus the
truncation property holds. Next we show the Jacobi identity. Note that we could have
equally defined the intertwining operator by

YI(m1, x)m2 = e−`p(z)L0xL0I
(
e`p(z)L0x−L0m1 ⊗ e`p(z)L0x−L0m2

)
(2.7)

as
I (m1 ⊗m2) =

∑
n∈C

π|m1|+|m2|−n−1 (I(m1 ⊗m2)) . (2.8)

In the Jacobi identity for I

x−1
0 δ

(
x1 − z
x0

)
Y3(u, x1)I (m1 ⊗m2) =z−1δ

(
x1 − x0

z

)
I (Y1(u, x0)m1 ⊗m2)

+ x−1
1 δ

(
z − x1

−x0

)
I (m1 ⊗ Y2(u, x1)m2)

(2.9)

we re-scale x0 → zx−1
2 x0 and x1 → zx−1

2 x1. This gives, using the explicit expansion of the
delta functions

x−1
0 δ

(
x1 − x2

x0

)
Y3(u, zx−1

2 x1)I (m1 ⊗m2)

= x−1
2 δ

(
x1 − x0

x2

)
I
(
Y1(u, zx−1

2 x0)m1 ⊗m2
)

+ x−1
1 δ

(
x2 − x1

−x0

)
I
(
m1 ⊗ Y2(u, zx−1

2 x1)m2
)

.

(2.10)

Recall the adjoint action of the Virasoro algebra on module vertex operators. Since vertex
operators take place in actual powers series of formal variables it holds

Yi(u, zx−1
2 xi) = e`p(z)L0x−L0

2 Yi
(
e−`p(z)L0xL0

2 u, xi
)
e−`p(z)L0xL0

2 . (2.11)

This yields

x−1
0 δ

(
x1 − x2

x0

)
e`p(z)L0x−L0

2 Y3(e−`p(z)L0xL0
2 u, x1)e−`p(z)L0xL0

2 I (m1 ⊗m2)

= x−1
2 δ

(
x1 − x0

x2

)
I
(
e`p(z)L0x−L0

2 Y1(e−`p(z)L0xL0
2 u, x0)e−`p(z)L0xL0

2 m1 ⊗m2
)

+ x−1
1 δ

(
x2 − x1

−x0

)
I
(
m1 ⊗ e`p(z)L0x−L0

2 Y2(e−`p(z)L0xL0
2 u, x1)e−`p(z)L0xL0

2 m2
)

.

(2.12)
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Next, set m1 → e−`p(z)L0xL0
2 m1, m2 → e−`p(z)L0xL0

2 m2 and u→ e−`p(z)L0xL0
2 u to get

x−1
0 δ

(
x1 − x2

x0

)
e`p(z)L0x−L0

2 Y3(u, x1)e−`p(z)L0xL0
2 I

(
e`p(z)L0x−L0

2 m1 ⊗ e`p(z)L0x−L0
2 m2

)
= x−1

2 δ
(
x1 − x0

x2

)
I
(
e`p(z)L0x−L0

2 Y1(u, x0)m1 ⊗ e`p(z)L0x−L0
2 m2

)
+ x−1

1 δ
(
x2 − x1

−x0

)
I
(
e`p(z)L0x−L0

2 m1 ⊗ e`p(z)L0x−L0
2 Y2(u, x1)m2

)
.

(2.13)
Applying e−`p(z)L0xL0

2 yields

x−1
0 δ

(
x1 − x2

x0

)
Y3(u, x1)YI(m1, x1)m2

= x−1
2 δ

(
x1 − x0

x2

)
YI (Y1(u, x0)m1, x1)m2

+ x−1
1 δ

(
x2 − x1

−x0

)
YI(m1, x1)Y2(u, x1)m2 .

(2.14)

The Virasoro translation property can be proven along similar steps. A detailed derivation
is left to the interested reader.

Lemma 2.0.6. The maps VM3
M1M2 → I [P (z)]M3

M1M2
and I [P (z)]M3

M1M2
→ VM3

M1M2 from the
above lemmas are inverse to each other.

Proof. We compute

YIY,p(m1, x)m2 = e−`p(z)L0xL0IY,p
(
e`p(z)L0x−L0m1 ⊗ e`p(z)L0x−L0m2

)
= e−`p(z)L0xL0 Y

(
e`p(z)L0x−L0m1, e

`p(z)
)
e`p(z)L0x−L0m2

= Y(m1, x)m2

(2.15)

and

IYI ,p(m1 ⊗m2) = YI
(
m1, e

`p(z)
)
m2

= e−`p(z)L0e`pL0IY,p
(
e`p(z)L0e−`pL0m1 ⊗ e`p(z)L0e−`pL0m2

)
= I(m1 ⊗m2) .

(2.16)

We summarize the above results in the following proposition.

Proposition 2.0.7. For V a VOA, M1, M2 and M3 V -modules and any p ∈ Z there is an
isomorphism of vector spaces

VM3
M1M2 ←→ I [P (z)]M3

M1M2
(2.17)
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An immediate corollary of the proposition and the universal property of P (z)-tensor
products is that morphism spaces including P (z)-tensor products are isomorphic to spaces
of intertwining operators.

Corollary 2.0.8. Assume M1 �P (z) M2 exists, then it holds

Hom(M1 �P (z) M2,M3) '−→ I [P (z)]M3
M1M2

'−→ VM3
M1M2

f 7→ If ≡ f ◦�P (z) 7→ YIf ,0

The existence of P (z)-tensor product can be readily established in case V is rational.
In particular for any triple of V -modules, VM3

M1M2 and therefore I [P (z)]M3
M1M2

is finite di-
mensional. One can easily check that for any vector space H, H ⊗ V is still a VOA with
YH⊗V = idH ⊗ Y . Let {Ii}i=1,...,N be a basis for I [P (z)]M3

M1M2
and {I i} its canonical dual

basis.

Lemma 2.0.9. Implicitly summing over double indices we define a map

FM3
M1M2 : M1 ⊗M2 →

(
I [P (z)]M3

M1M2

)∗
⊗M3

m1 ⊗m2 7→ I i ⊗ Ii(m1 ⊗m2)
(2.18)

FM3
M1M2 is P (z)-intertwining map and independent of the chosen basis.

Proof. Independence and truncation property are clear. The Jacobi identity readily follows
from triviality of the module vertex operator on

(
I [P (z)]M3

M1M2

)∗
⊗M3 in the first slot.

This leads to the first major result in the construction of a modular structure, namely
the existence of a monoidal product.

Proposition 2.0.10. Let V be a rational VOA, M1, M2 V -modules and {Ui}i∈I be the
simple modules of V . Then (M1 �P (z) M2, YP (z)) exists and is canonically given by

M1 �P (z) M2 =
∐
i∈I

(
I [P (z)]UiM1M2

)∗
⊗ Ui . (2.19)

Proof. The P (z)-intertwining map is given by ∐
i∈I F

Ui
M1M2 and we are left to check the

universal property. For this, let (M4, I) be any other P (z)-product ofM1 andM2. Since V
is rational M4 decomposes as a direct sum of simples. Let {biα} be a basis of Hom(Ui,M4)
and

{
bβi
}
its dual basis in Hom(M4, Ui). Denote π` = ∑

α b
α
` : M4 → U`, then I` = π` ◦ I

is P (z)-intertwining map of type
(

U`
M1M2

)
and therefore has an expansion I` = ∑

j I
j
`Fj,`,

where {Fj,`} is a basis for I [P (z)]U`M1M2
. To construct the universal map we set

ηj` : F j
` ⊗ U` →M4

F j
` ⊗ u 7→

∑
α

b`α(u)Ij` .
(2.20)
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Then η ≡ ∐i∈I
∑
j η

j
` is V -module map:

ηj`
(
π` ◦ YM1�P (z)M2(v, x)

(
F j
` ⊗ u

))
= ηj`

(
F j
` ⊗ YU`(v, x)u

)
=
∑
α

b`α (YU`(v, x)u) Ij`

= YM4(v, x)
∑
α

b`α(u)Ij`

= YM4(v, x)ηj`
(
F j
` ⊗ u

)
(2.21)

Finally we check that η intertwines the P (z)-intertwining maps

η` ◦ F
U`
M1M2(m1 ⊗m2)

=η`
(
F j
` ⊗ Fj,`(m1 ⊗m2)

)
=
∑
α

b
`

α (Fj,`(m1 ⊗m2)) Ij`

=I`(m1 ⊗m2) .

(2.22)

We are almost ready to define a monoidal product on RV . We only need to get rid
of the z ∈ C× ∪ {∞} dependence. In order to do so we need to be able to transport
the monoidal product along any curve in C× ∪ {∞}. This should give isomorphisms of
P (z)-tensor products for different z’s possibly depending on the curve. To ease our lives
we first recall the following lemma.

Lemma 2.0.11. [78, Lemma 14.9] As a V -module,M1�P (z)M2 is spanned by homogeneous
components of

{
m1 �P (z) m2

}
∈M1 �P (z) M2 for all m1 ∈M1 and m2 ∈M2.

Proof. Let M0 ⊂ M1 � M2 be the submodule spanned by homogeneous components{
m1 �P (z) m2

}
and

M = M1 �P (z) M2 /M0 (2.23)

the quotient with projection map P . Then P ◦ �P (z) is P (z)-intertwining map of type(
M

M1M2

)
. But the image of �P (z) is in M0, hence P ◦ �P (z) is the zero map, which implies

that P is the zero map.

Let γ ⊂ C× be a curve from z1 to zz. One can analytically continue the logarithm
starting from z2 along γ and we denote the value of the analytic extension at z1 by `γ(z1).
By the previous lemma we only need to define V -module maps from M1 �P (z) M2 on
elements

{
m1 �P (z) m2

}
. Hence the following lemma makes sense.

Lemma 2.0.12. Let
Tγ : M1 �P (z1) M2 →M1 �P (z2) M2 (2.24)
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be defined by
Tγ(m1 �P (z1) m2) = Y2

(
m1, e

`γ(z1)
)
m2 (2.25)

where Y2 = Y�P (z2),0 is the intertwining operator corresponding to �P (z2). Then TY is an
isomorphism of V -modules.

Proof. First we check that it defines a map of V -modules. Let e`γ(z1) = e`0(z1)cγ and
m′1 = c−L0

γ m1, m′2 = c−L0
γ m2, then

Y2
(
m1, e

`γ(z1)
)
m2 = Y2

(
(cL0
γ m

′
1, e

`0(z1)cγ
)
m2

= cL0
γ Y2

(
m′1, e

`0(z1)
)
m′2

= cL0
γ m

′
1 �P (z2) m

′
2.

(2.26)

This shows that Tγ is well defined and furthermore by the spanning property of
{
m1 �P (z1) m2

}
a V -module map 2. Let `γ(z2) be the value of the logarithm determined by analytic con-
tinuation along γ starting at z1. Then

T
′
γ(m1 �P (z2) m2) = cL0

γ Y1
(
(m′1, e`γ(z2)

)
m′2 (2.27)

obviously defines an inverse map.

Lastly we need an associativity morphism for rebracketing modules and left, respec-
tively right, unit morphisms. Since the existence and well definedness of the associativity
morphism very much depends on the partial-operad algebra structure we only state it, with-
out giving any proofs. A heuristic characterization goes as follows. The tensor product of
three modules corresponds to a map M1 ⊗M2 ⊗M3 → M4. In the operadic formulation
of [79] such maps are determined by four punctured spheres. The associativity morphism
then relates two different ways of gluing a four punctured sphere from two pair of pants.
It is shown in [78, Proposition 14.10] that under the natural convergence properties for
IOAs, the operadic representations of these different gluings and their isomorphism are
equivalent to the statement3 that for |z1| > |z2| > 0, mi ∈Mi,

〈m′4,YI1,0(m1, z1)YI2,0(m2, z2)m3〉 (2.28)

absolutely converges for all P (z1)-intertwining maps I1 and P (z2)-intertwining maps I2.
This in turn is equivalent to an iterate of intertwining operators, which gives an associa-
tivity isomorphism. We summarize the result of [78] in the following proposition.

Proposition 2.0.13. For V rational, there exists an isomorphism

Az1−z2,z2
z1,z2 :

(
M1 �P (z1)

(
M2 �P (z2) M3

))
→
(
M1 �P (z1−z2) M2

)
�P (z2) M3 (2.29)

2This is analogous to defining a linear map on a basis and extending linearly to the whole vector space
3Plus some technical grading restriction property.
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which on homogeneous components is given by

A
z1−z2,z2
z1,z2 (m1 �P (z1) (m2 �P (z2) m3)) = (m1 �P (z1−z2) m2) �P (z2) m3 . (2.30)

In addition there are left and right unit isomorphisms λz, ρz defined by

λz : V �P (z) M →M

v �P (z) m 7→ YM(v, z)m
(2.31)

and
ρz : M �P (z) V →M

m�P (z) v 7→ ezL−1YM(v,−z)m
(2.32)

The first major outcome of [76, 89, 90, 78] is the following theorem, whose proof is
sketched in [83].

Theorem 2.0.14. Let V be a rational VOA and � = �P (1). Given V -modules M1, M2,
M3, and real numbers z1 > z2 > z1 − z2 > 0 let γ1 : [0, 1] → R+ be s.th. γ1(0) = 1 and
γ1(1) = z1. Similarly let 1 γ2→ z2, z2

γ3→ 1 and z1 − z2
γ12→ 1. Then

A : M1 � (M2 �M3)→ (M1 �M2) �M3 (2.33)

defined by

M1 � (M2 �M3) (M1 �M2) �M3

M1 �P (z1)
(
M2 �P (z2) M3

) (
M1 �P (z1−z2) M2

)
�P (z2) M3

(idM1�P (z1)Tγ2) ◦Tγ1

A

A
z1−z2,z2
z1,z2

Tγ3 ◦ (Tγ12�idM3)

is independent of z1, z2. Let λ = λ1 and ρ = ρ1, then the category (RV ,�,A, λ, ρ) is a
monoidal category.

The proof is in fact very easy but quite lengthy to write down. One first shows pentagon
and triangle diagrams on homogeneous elements and appropriate real numbers zi. Using
lemma 2.0.11 this gives pentagon and triangle diagrams for P (zi)-products, which are
transported to �-diagrams using paths γi as in the example of the associativity morphism
above. Note that naturality of all the isomorphisms directly follows from the universal
property of P (z)-tensor products. Next we want to add a braiding onto (RV ,A, λ, ρ). This
is done similar to associativity and unit morphisms by going through P (z)-tensor products.
Let z ∈ C× and γ+

z be the path
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This gives a map β+
z : M1 �P (z) M2 →M2 �P (z) M1 defined by

β+
z(m1 �P (z) m2) ≡ ezL−1Tγ+

z
(m2 �P (−z) m1) . (2.34)

Choosing the path γ−z

one gets a map β−z(m1 �P (z) m2) ≡ ezL−1Tγ−z
.

Lemma 2.0.15. The maps β−z and β+
z are inverse to each other.

Proof. We just compute β−z ◦ β+
z as the other direction is the same. First note that

xL0L−1x
−L0 = xL−1 (2.35)

as [L0, L−1] = L−1. Hence it holds.

xL0ezL−1x−L0 =
∑
k≥0

zk

k!
(
xL0L−1x

−L0
)k

= exzL−1 (2.36)

Using this we compute

β−z ◦ β+
z(m1 �P (z) m2)

=ezL−1β−z(Yz
(
m2, e

iπelog(z)
)
m1)

=ezL−1β−z
(
eiπL0

(
e−iπL0m2 �P (z) e

−iπL0m1
))

=ezL−1eiπL0ezL−1 Yz
(
e−iπL0m1, e

−iπelog(z)
)
e−iπL0m2

=ezL−1eiπL0ezL−1e−iπL0 Yz(m1, e
log(z))m2

=ezL−1e−zL−1(m1 �P (z) m2)
=(m1 �P (z) m2)

(2.37)
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Similar to theorem 2.0.14 one shows that β+
1 = β gives RV the structure of a braided

tensor category. The results so far are summarized in the following theorem.

Theorem 2.0.16. Assuming the same conditions as in theorem 2.0.14, the natural iso-
morphism

β : M1 �M2 →M2 �M1 (2.38)

gives (RV ,A, λ, ρ, β) the structure of a braided monoidal category.

The next layer of structure to be added is a notion of duality in RV . Unsurprisingly
the contragradient module will be the dual object. A construction of a rigid structure on
RV first appeared in [83]. By construction for any three modules M1, M2 and M3, a map
m : M1 �M2 → M3 is completely characterized by an intertwining operator Ym ∈ VM3

M1M2

via
m(m1,m2) = Ym(m1, 1)m2 . (2.39)

Let {Ui}i∈I be the finite list of simple V -modules. Recall that V
j

0j ' C and an isomorphism
is given by the module vertex operator Y

j
0j = YUj . This induces a basis Y

j
j0 ≡ B−1

(
V
j

0j

)
of Vj

j0. Next we fix a basis for V0
ii′ by Y0

ii′ = eπihjA0 ◦B0 (Yi
0i). Recall from appendix A.6.1

that 1
dj
≡ F (jj′j)j

[
1 0 1
1 0 1

]
6= 0.

Theorem 2.0.17. [83, Theorem 3.8]

1) Let
evi :Ui � U ′i → V ui � w′i 7→ mYe

ii′
(ui, v′i)

c̃oevi :V → Ui � U ′i , s.th. evi ◦ c̃oevi = diidV
(2.40)

where c̃oevi exists due to Ui � U ′i = ∐
j N

j
ii′ Uj = V t∐j 6=0N

j
ii′ Uj.

2) Let
ẽvi :U ′i � Ui → V u′i � wi 7→ mYe

i′i
(u′i, vi)

coevi :V → U ′i � Ui, s.th. ẽvi ◦ coevi = diidV .
(2.41)

Then (U ′i , evi, coevi) defines a right dual for Ui and (U ′i , ẽvi, c̃oevi) is a left dual for Ui.
Hence RV is a rigid braided monoidal category.

Theorem 2.0.18. RV is pivotal.

Proof. This is essentially [54, Proposition 5.3.1]. As vector spaces (M ′)′ = M and its
module structure is given by

〈YM ′′(u, x)m′′1,m′2〉 =
〈
YM

(
e

1
x
L1(−x2)L0exL1

(
− 1
x2

)L0

u, x

)
m1,m

′
2

〉
= 〈YM(u, x)m1,m

′
2〉

(2.42)
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using the definition of the contragradient vertex operator twice in the first equality. In the
second equality we used that

cL0eaL1c−L0 =
∑
k≥0

ak

k!
(
cL0L1c

−L0
)k

=
∑
k≥0

ak

k!

(1
c
L1

)k
= e

a
c
L1

(2.43)

which follows from cL0L1c
−L0 = elog(c)adL0L1 = e− log(c)L1.

Thus the natural isomorphism M
'→ (M ′)′ is just the identity map. This is obviously

a monoidal natural isomorphism.

The ribbon structure is in fact easy to prove.

Theorem 2.0.19. [83, Theorem 4.1] The map ΘM = e2πiL0 defines a twist in RV .

Proof. It suffices to show the balancing isomorphism for simple objects.

Θij(ui � wj) = e2πiL0 Y1(ui, 1)wj
= Y1

(
e2πiL0ui, x

)
|xn=e−2πine2πiL0wj

= β2(Θiui � Θjwj)
(2.44)

where in the last steps we used that en`γ2 = e−2πin, where γ2 is the path for the double
braiding going once around zero clockwise. Next ΘV = idV because VOAs are integer
graded and finally ΘU ′i

= ΘUi since Ui and its contragradient module have the same con-
formal weight.

Finally one has to show that RV , i.e. that the S-matrix is non-degenerate. This is the
next theorem

Theorem 2.0.20. [83, Corollary 4.4] The categorical trace of β2 ∈ Hom(Ui�Uj, Ui�Uj)
is given by

tr
(
β2
)

= Sij
S00

(2.45)

As Sij is invertible this shows that RV is a modular tensor category.
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Chapter 3

Full Open-Closed RCFT

In chapter 2 we recalled how chiral data of a RCFT induces the structure of a modular
tensor category on the representation category of its symmetry algebra. Of course confor-
mal field theory is more than just chiral data and this chapter aims at describing a rigorous
construction of full RCFTs in genus zero and one based on the chiral data described before.
One starts by defining certain objects called field algebras, whose definitions are essentially
a list of ingredients and axioms one expects to hold for sensible full conformal field theories.
Such a wish list was already outlined in the introduction. There will be open, closed and
open-closed field algebras. Each of these comes with a state space, a vertex or field map
and suitable conditions on convergences and associativity of correlation functions.

This chapter is structured as follows. We start in section 3.1 by recalling the analytic
definitions of field algebras and their properties. This was developed by Huang and Kong in
a series of papers [85][103][87][105][104]. In section 3.1.1 a detailed discussion of open field
algebras is given. In particular we discuss how axioms on abstract correlation functions
and symmetry algebra actions for open field algebras naturally lead to representations of
a VOA and intertwining operators. The latter will give an algebra object in a suitable
representation category. In sections 3.1.2, 3.1.3 a similar treatment for closed and open-
closed field algebras is given. Since the theory is conceptually almost the same as in
the open case, its presentation is not as detailed. The focus is on various consistency
requirements. In section 3.2 the analytic results are reformulated in terms of categorical
algebra, which leads to Cardy algebras, the object of our interest.

3.1 Analytic Field Algebras

3.1.1 Open Field Algebras
We start with the definition of what we call an open field algebra 1.

Definition 3.1.1. [85] An open field algebra (OFA) (H,Y,1, D) is the data of:
1These are called open-string vertex algebras in [85]
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(1) An R-graded vector space H ≡ ∐
n∈RHn, with grading operator d(v) = nv for

v ∈ Hn, where Hn is said to be of weight n. The vector space is required to be
degree-wise finite dimensional dim (Hn) < ∞ and lower truncated: Hn = 0 for n
small enough.

(2) An open vertex operator

Y : (H ⊗H)× R+ → H

(v ⊗ w)× r 7→ Y(v, r)w .
(3.1)

which is bilinear in V . Here H ≡ ∏
n∈RHn is the algebraic completion of H. Com-

pared to H, H contains infinite sums over weight spaces.

(3) An element 1 ∈ H, called vacuum.

(4) A linear operator D : V → V of weight one, i.e. D : Vn → Vn−1.

These have to satisfy the following list of axioms.

(OFAI) Vertex weight property: For any s, t ∈ R, there exists an N(s, t) ⊂ R, s.th.

Im
Y

 ∐
n∈s+Z

Hn ⊗
∐

m∈t+Z
Hm, r

 ⊂ ∐
k∈N(s,t)+Z

Hk (3.2)

for any r ∈ R+.

(OFAII) Identity/ creation of vacuum:
Y(1, r) = idH (3.3)

for any r ∈ R+ and
lim
r→0

Y(v, r)1 = v (3.4)

for any v ∈ H.

(OFAIII) Lower truncation property: Let H ′ = ∐
n∈RH

′
n be the graded dual and D′ : H ′ → H ′

be the adjoint of D under the usual degree-wise evaluation pairing. For any v′ ∈ H ′
there exists a Nv′ ∈ N s.th.

(D′)N ′vv′ = 0 . (3.5)

(OFAIV) Absolute convergence of correlation functions: Let πn : H → Hn be the natural
projection operator of vector spaces. For any w, v1, . . . , vn ∈ H and v′ ∈ H ′ the
power series

〈v′,Y(vn, rn) · · ·Y(v1, r1)w〉
≡

∑
m1,...,mn−1∈R

〈
v′,Y(vn, rn)πmn−1Y(vn−1, rn−1) · · · πm1Y(v1, r1)w

〉 (3.6)
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converges absolutely for rn > rn−1 > · · · > r1 > 0. Similarly for any v1, v2, w ∈ H
and v′ ∈ H ′ the series

〈v′,Y (Y(v1, r1)v2, r2))w〉 ≡
∑
n∈R
〈v′,Y (πnY(v1, r1)v2, r2)w〉 (3.7)

converges absolutely for r1 > r2 > 0.

(OFAV) Associativity of correlation functions: For any v1, v2, w ∈ H and v′ ∈ H ′, there is an
equality of functions

〈v′,Y(v1, r1)Y(v2, r2)W 〉 = 〈v′,Y (Y(v1, r1 − r2)v2, r2)w〉 (3.8)

on the domain r1 > r2 > r1 − r2 > 0.

(OFAVI) d-derivative:

[d,Y(v, r)] = Y(dv, r) + r
d
drY(u, r) . (3.9)

(OFAVII) D-derivative: The map Y : R+ → Hom(H,H) is differentiable and the derivative is
given by

d
drY(u, r) = [D,Y(v, r)] = Y(Dv, r) . (3.10)

Definition 3.1.2. (1) A homomorphism of OFAs is a grading preserving linear map
f : H → H̃ s.th. f(D) = D̃, f(1) = 1 and its canonical extension f : H → H̃
satisfies

f (Y(v, r)w)) = Y((f(v), r) f(w) . (3.11)

It is an isomorphism if f is an isomorphism of vector spaces.

(2) A subalgebra of an open string vertex algebra is a sub-vector space U ⊂ H s.th.
1 ∈ U and (U,Y|U ,1, DU) is an OFA.

In contrast to the familiar definition of VOAs and their modules, in definition 3.1.1 it
is not required that Y has some kind of Laurent expansion. However such an expansion
will follow from (OFAVI) and (OFAI)2. The d-derivative property can be integrated to a
conjugation formula, showing the behavior of the vertex map under rescaling of r. Let
v, w ∈ H and v′ ∈ H ′ be homogeneous elements, then (3.9) gives

〈v′, [d,Y(v, r)]w〉 = 〈d′v′,Y(v, r)w〉 − |w| 〈v′,Y(v, r)w〉
= (|v′| − |w|) 〈v′,Y(v, r)w〉

=
(
|v|+ r

d
dr

)
〈v′,Y(v, r)w〉 .

(3.12)

2(OFAI) merely ensures that we can really sum over a countable subset of modes in the expansion.
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Thus 〈v′,Y(v, •)w〉 is a function on R+ satisfying the differential equation

(|v′| − |w| − |v|) 〈v′,Y(v, r)w〉 = r
d
dr 〈v

′,Y(v, r)w〉 (3.13)

which has universal solution 〈v′,Y(v, r)w〉 = c1r
(|v′|−|w|−|v|). This yields for x ∈ R+〈

v′, xdY(v, r)x−dw
〉

=
(
x|v
′|−|w|

) (
cr|v

′|−|w|−|v|
)

=
(
c(xr)|v′|−|w|−|v|

)
(xr)|v|

=
〈
v′,Y(xdv, xr)w

〉
.

(3.14)

The dilation formula for the open string vertex operator thus reads

xdY(v, r)x−dw = Y(xdv, xr)w . (3.15)

With the help of the dilation formula, a Laurent series expansion of Y can be derived. Let
v, w ∈ H be homogeneous elements, then define

v+
(n)w ≡ π|v|+|w|−n−1Y(v, 1)w . (3.16)

From this on derives

Y(v, r)w = r−|v|rdY(v, 1)wr−|w| = r−|v|
∑
n∈R

rnπn (Y(v, 1)w) r−|w|

= r−|v|
∑
n∈R

r|v|+|w|−n−1π|v|+|w|−n−1 (Y(v, 1)w) r−|w|

=
∑
n∈R

v+
(n)w r

−n−1 .

(3.17)

Note that there are only finitely many terms in the series due to the vertex weight property.
Therefore open string vertex operators have a natural power series expansion

Y(v, r) =
∑
n∈R

v+
(n)r

−n−1
(3.18)

with v+
(n) ∈ Hom(H,H) of degree |v| − n − 1. The power series form of the open string

vertex operator can be used to define a formal vertex operator, by replacing r ∈ R in (3.18)
with any formal variable q.

Proposition 3.1.3. Let
Yf (v, q) ≡

∑
n∈R

v+
(n)q

−n−1
(3.19)

be the formal open string vertex operator. Let p be another formal variable. Then

(1)
pdYf (v, q)p−d = Yf (pdv, pq) (3.20)
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(2)

Yf (v, p+ q) = epDYf (v, q)e−pD = Yf

(
epDv, q

)
(3.21)

(3)
Yf (v, q)1 = eqDv (3.22)

Proof. Let w ∈ V be a homogeneous element. Then

(1)
pdYf (v, q)p−dw =

∑
n∈R

p|w|+|v|−n−1v+
(n)q

−n−1p−|w|w

=
∑
n∈R

(pdv)+
(n)(pq)−n−1w

= Yf (pdv, pq)w .

(3.23)

(2) First note that
[D,Yf (v, q)] =

∑
n∈R

[
D, v+

(n)

]
q−n−1

=
∑
n∈R

(Dv)+
(n)q

−n−1

= Yf (Dv, q)

(3.24)

where we can use (3.10) in the second equality. This gives

epDYf (v, q)e−pD =
∑
n∈R

epDv(n)e
−pDq−n−1

=
∑
n∈R

eadpDv(n)q
−n−1

=
∑
n∈R

(
epDv

)
(n)
q−n−1

= Yf (epDv, q)

(3.25)

One the other hand it holds

[D,Yf (v, q)] =
∑
n∈R

[
D, v+

(n)

]
q−n−1

=
∑
n∈R

v+
(n−1)(−n)q−n−1

(3.26)

which again follows from (3.10) after expanding Y(v, r). With the same calculation
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as before we derive

epDYf (v, q)e−pD =
∑
n∈R

epDv+
(n)e

−pDq−n−1

=
∑
n∈R

∑
m∈N

1
m!

[
pD

[
· · ·

[
pD, v+

(n)

]
· · ·

]]
q−n−1

=
∑
n∈R

∑
m∈N

(−1)mn · (n− 1) · · · (n−m+ 1)
m! v+

(n−m)p
mq−n−1

=
∑
n∈R

∑
m∈N

v+
(n)

(−1)m(n+m)(n+m− 1) · · ·n+ 1
m! pmq−n−m−1

=
∑
n∈R

v+
(n)(q + p)−n−1

= Yf (v, p+ q)
(3.27)

where the generalized binomial formula for real exponents is used.

(3) Lastly, from (3.4) we infer v+
(n)1 = 0 for n ≤ 0 and v+

(−1)1 = v. This gives

Yf (v, q)1 =
∑

n∈R<−1

v+
(n)q

−n−11

=
∑

n∈R>0

v+
(−n−1)1q

n

=
∑

n∈R>0

1
dne! (D

dnev)+
(−n+dne−1)1q

n

=
∑
n∈N

qn

n!D
nv

= eqDv

(3.28)

The formal vertex operator therefore satisfies all the properties expected for an inter-
twining operator. In addition it allows us to require an embedding of the Virasoro algebra
in an OFA.

Definition 3.1.4. [85, Definition 1.10] An OFA is conformal if there exists ω ∈ H s.th.
its open vertex operator is a power series expansion

Y(ω, r) =
∑
n∈Z

Lnr
−n−2

(3.29)

and its modes satisfy the Virasoro relations

[Ln, Lm] = (n−m)Ln+m + c

12(n3 − n)δn,m (3.30)
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for some central charge c ∈ C. In addition, ω acts on any v ∈ H in terms of an operator
product expansion

[Yf (ω, q1),Yf (v, q2)] = Resq0δ

(
q1 − q0

q2

)
Yf (Yf (ω, q0)v, q2) (3.31)

and H is conformally graded, i.e. d = L0 and D = L−1.

Note that the following proposition is immediate from analytic continuation A.4.1 to-
gether with absolute convergence and associativity of correlation functions.

Proposition 3.1.5. For v1, v2, w ∈ H, v′ ∈ H ′ and z1, z2 ∈ C the functions

〈v′,Yf (v1, z1)Yf (v2, z2)w〉
〈v′,Yf (Yf (v1, z1)v2, z2)w〉

(3.32)

are holomorphic functions in the regions |z1| > |z2| > 0 and |z2| > |z1−z2| > 0, respectively,
which agree in the domain |z1| > |z2| > |z1 − z2| > 0.

In order to describe a sensible physical theory correlation functions, however, should
have analytic continuations to

D =
{

(z1, z2) ∈ C2 | z1 6= 0 6= z2, z1 6= z2
}

. (3.33)

The idea to this result is showing that an OFA H has a certain VOA C0(H) with it, s.th.
the formal open vertex operator becomes an intertwining operator of type

(
H
HH

)
. Assuming

there exists an injective embedding V ↪→ C0(H) of a rational VOA V , the existence of the
analytic continuation follows from the general theory of intertwining operator algebras (see
appendix A.4). C0(H) is called meromorphic center and as a vector space it is defined as

C0(H) ≡
{
v ∈ H | ∀u ∈ H : Yf (v, x)u ∈ H[[x, x−1]], and

Yf (v, x)u = exL−1Yf (u,−x)v
} (3.34)

where x is some formal variable. Thus elements of C0(H) have formal operator valued
Laurent series. The key result is that four point functions involving at least one element
of the meromorphic center can be analytically continued.

Theorem 3.1.6. [85, Proposition 2.2] Let H be an OFA. For v ∈ C0(H), u,w1 ∈ H,
w′2 ∈ H ′ there exists an analytic function φ(v, u, w1, w

′
2; z1, z2) on Conf2(C×) s.th.

φ(v, u, w1, w
′
2; z1, z2)||z1|>|z2|>0 = 〈w′2,Yf (v, z1)Yf (u, z2)w1〉

φ(v, u, w1, w
′
2; z1, z2)||z2|>|z1|>0 = 〈w′2,Yf (u, z2)Yf (v, z1)w1〉

φ(v, u, w1, w
′
2; z1, z2)||z2|>|z1−z2|>0 = 〈w′2,Yf (Yf (v, z1 − z2)u, z2)w1〉

φ(v, u, w1, w
′
2; z1, z2)||z1|>|z1−z2|>0 = 〈w′2,Yf (Yf (u, z2 − z1)v, z1)w1〉 .

(3.35)

Moreover, φ(v, u, w1, w
′
2; z1, z2) is single valued as a function of z1 and has only poles at

z1, z2 = 0, z1 = z2.
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The proof is not that hard and mainly uses the skew-symmetry property for elements
in C0(H) to relate the first two cases of restrictions above.

The major result about conformal OFAs is the following theorem.

Theorem 3.1.7. [85, Theorem 2.3, Proposition 2.5] Let H be a conformal OFA. Then

1) C0(H) is a VOA.

2) H is a C0(H)-module.

3) Yf is a C0(H)-intertwining operator of type
(
H
HH

)
.

Proof. Point 1) is explicitly proven in [85]. Property 2) directly follows from theorem 3.1.6.
In order to show 3), one only needs to check the Jacobi-identity, all other properties of an
intertwining operator are automatically satisfied. The Jacobi-identity is a formal variable
analog of a contour integral argument. For the reader’s convenience we give a proof here.
Let gm,k,`(z1, z2) = zm1 z

k
2 (z1 − z2)` for m, k, ` ∈ Z. In addition, let R1, R2, r1 ∈ R+ be s.th.

R1 > R2 > r1 > 0 and R2 > R1 − r1 > 0. Then for any v ∈ C0(H), u,w1 ∈ H, w′2 ∈ H ′ it
holds ∫

|z2|=R2

∫
|z1|=R1

φ(v, u, w1, w
′
2; z1, z2)gm,k,`(z1, z2)dz1dz2

−
∫
|z2|=R2

∫
|z1|=r1

φ(v, u, w1, w
′
2; z1, z2)gm,k,`(z1, z2)dz1dz2

=
∫
|z2|=R2

∫
|z1−z2|=R12

φ(v, u, w1, w
′
2; z1, z2)gm,k,`(z1, z2)dz1dz2

(3.36)

whereR12 = R1−r1. In each of the integrals we can insert the restrictions of φ(v, u, w1, w2; z1, z2)
on the respective domains. Since w1, w

′
2 were arbitrary this in fact yields∫

|z2|=R2

∫
|z1|=R1

Yf (v, z1)Yf (u, z2)gm,k,`(z1, z2)dz1dz2

−
∫
|z2|=R2

∫
|z1|=r1

Yf (u, z2)Yf (v, z1)gm,k,`(z1, z2)dz1dz2

=
∫
|z2|=R2

∫
|z1−z2|=R12

Yf (Yf (u, z1 − z2)v, z2) gm,k,`(z1, z2)dz1dz2

(3.37)

Inserting the Laurant expansion of the fields and gm,k,` and using that for s ∈ C

∫
|z|=1

zsdz =
∫
|z|=1

elog(z)sdz =


∫
|z|=1

1
s+1

d
dze

log(z)sdz = 0, s 6= −1
2πi, s = −1

(3.38)

yields for (3.37)

∑
j≥0

(−1)j
(
`

j

)
v(`−j+k)u(j+m) + (−1)`+j)

(
`

j

)
u(`−j+k)v(j+m)

=
∑
j≥0

(
m

j

)(
v(j−`)u

)
(m−j+k)

.

(3.39)



3.1 Analytic Field Algebras 31

Equation (3.39) is also known as Borcherd’s identity. On the other hand, multiplying the
terms of the Jacobi identity with gm,k,` and applying Resz1Resz2 also reproduces (3.39).
Since the Cauchy pairing (3.38) is non degenerate this proves the claim.

In general C0(H) is not a rational VOA and the tensor product theory and analytic
properties of rational VOA theory cannot be used. Thus a refined version of an OFA is
needed.
Definition 3.1.8. Let V be a rational VOA. An OFA over V is an OFA (H,Y) together
with an injective map of VOAs: ι : V ↪→ C0(H).

Due to theorem 3.1.7, the embedding ι yields a V -module structure on H and Yf

becomes a V -intertwining operator. Thus the naturally existing analytic continuations
〈v′,Yf (v1, z1) · · ·Yf (vn, z1)w〉 (3.40)

defined on |z1| > · · · > |zn| > 0 have multivalued analytic continuations to Confn (C×) by
the general theory of intertwining operator algebras.

The following is immediate from theorem 3.1.7 and the properties of an IOA.
Corollary 3.1.9. For V a rational VOA there is an isomorphism of categories

Conformal OFAs (H,Y,1, D),
s.th. there is an injective ho-
momorphism ι : V ↪→ C0(H) of
VOAs.

'←→

V -modules H with an intertwin-
ing operator Y of type

(
H
HH

)
sat-

isfying the creation and identity
property together with an injective
embedding V ↪→ C0(H)

Later we will construct full conformal field theories from symmetric Frobenius algebras
in RV and conformal OFAs are particular instances for such algebras. In this interpreta-
tion the meromorphic center gets a natural interpretation. It is the maximally extended
chiral symmetry algebra of the theory. Since OFAs give modules over the meromorphic
center, they correspond to a maximally symmetry preserving boundary condition. This
requirement can be dropped and boundary conditions may only preserve the fixed chiral
symmetry V not the maximally extended symmetry algebra.

Lastly for defining Frobenius algebras later we need the notion of an invariant bilinear
form on H.
Definition 3.1.10. [104, section 1.3] Let r < 0, then define

Y(v, r)w ≡ erL−1Y(w,−r)v (3.41)
where w, v ∈ H and (H,Y) is an OFA. An invariant bilinear form on (H,Y) is a bilinear
map

( • , • ) : H ×H → C (3.42)
s.th.

(u,Y(v, r)w) =
(
Y
(
e−rL1(r−2)L0v,−1

r

)
u,w

)
(Y(v, r)u,w) =

(
u,Y

(
e−rL1(r−2)L0v,−1

r

)
w
)

.
(3.43)
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If (H,Y) is an OFA over a rational VOA V this induces a V -module map A : H → H ′,
where H ′ is equipped with the contragradient module structure. A is an isomorphism
precisely when the bilinear form is non-degenerate.

3.1.2 Closed Field Algebras
In this section we give the definition of a closed field algebra (CFA) over a VOA V . We give
a definition in terms of a V -module C and an intertwining operator of type

(
H
HH

)
. The main

theorem of [86] is that this is equivalent to a conformal full field algebra which is the data of
a state space plus some correlation function mappings obeying some convergence properties
to be expected from full two dimensional conformal field theory. Since we don’t need the
technical details of full field algebras we will be terse in their description. Nevertheless,
they serve as the main physical motivation for the whole construction.

Full conformal field theory has left and right moving modes. Thus chiral objects such
as intertwining operators need to be extended to include anti-chiral data. First note that
for V L, V R rational VOAs, the tensor product VOA V L ⊗ V R is also rational. By [54,
Theorem 4.7.4] it in fact follows that any V L⊗V R-module M decomposes as a direct sum

M '
⊕

i∈IL,j∈IR
Mij U

L
i ⊗ UR

j =
K⊕
`=1

UL
νL(`) ⊗ UR

νR(`) =
⊕
n

ML
n ⊗MR

n (3.44)

where νL,R : 1, 2, · · · , K → IL,R are some functions. In addition for i = 1, 2, 3 and Mi =
ML

i ⊗MR
i being V L ⊗ V R-modules it was shown in [44] that VM3

M1M2 ' V
ML

3
ML

1 M
L
2
⊗ V

MR
3

MR
1 M

R
2
.

We call this the splitting property.

Definition 3.1.11. Let V L, V R be rational VOAs,M a V L⊗V R-module and Ya V L⊗V R-
intertwining operator of type

(
M
MM

)
. The full vertex operator associated to Y is given by

YY : M ⊗M →M {x, y}
m1 ⊗m2 7→ YY(m1;x, y)m2

(3.45)

with
YY(m1;x, y)m2 ≡ xL

L
0 yL

R
0 Y(m1, 1)x−LL0 y−LR0 (3.46)

By the splitting property for mL
1 ⊗mR

1 ∈ ML
i1 ⊗M

R
i1 and mL

2 ⊗mR
2 ∈ ML

i2 ⊗M
R
i2 there

exist intertwining operators YL
k ∈ V

ML
k

ML
i1
ML
i2

and YR
k ∈ V

MR
k

MR
i1
MR
i2

s.th.

YY(mL
1 ⊗mR

1 ;x, y)(mL
2 ⊗mR

2 ) =
∑
k

YL
k (mL

1 , x)mL
2 ⊗ YR

k (mR
1 , y)mR

2 . (3.47)

Definition 3.1.12. [86] Let V L, V R be rational VOAs. A closed field algebra (CFA) over
V L⊗V R is a triple (C,Y, ι), where C is a V L⊗V R-module, Y is an intertwining operator
of type

(
C
CC

)
and ι : V L ⊗ V R ↪→ C is an injective map of vector spaces. This data has to

satisfy
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CFAI) Identity and creation property:

Y(ι(1L ⊗ 1R), x) = idC (3.48)

and for all c ∈ C
lim
x→0

Y(c, x)ι(1L ⊗ 1R) = c (3.49)

CFAII) Associativity: Let c1, c2, w ∈ C and v′ ∈ C ′. Then〈
v′,YY(c1; z1, ξ1)YY(c2; z2, ξ2)w

〉
=
〈
v′,YY(YY(c1; z1 − z2, ξ1 − ξ2)c2; z2, ξ2)w

〉
(3.50)

for |z1| > |z2| > |z1 − z2| > 0 and |ξ1| > |ξ2| > |ξ1 − ξ2| > 0.

CFAIII) Single valuedness:
e2πi(LL0−LR0 ) = idC (3.51)

CFAIV) Skew symmetry: For c1, c2 in C it holds

YY(c1;x, y)c2 = eL
L
−1eL

R
−1YY(c1; eπix, e−πiy)c2 (3.52)

The axioms for a CFA follow the by now familiar pattern of having a vertex oper-
ator map and an associativity condition. Note that no convergence property needs to
be assumed since by the splitting property any product correlation functions for v′ =
(vL)′ ⊗ (vR)′, ci = cLi ⊗ cRi , w = wL ⊗ wR decomposes〈

v′,YY(c1; z1, ξ1) · · ·YY(cn; zn, ξn)w
〉

=
∑〈

(vL)′,YL
k1(cL1 , z1) · · ·Ykn(cLn , zn)wL

〉 〈
(vR)′,YR

`1 (cR1 , ξ1) · · · Ỳn(cRn , ξn)wR
〉
.

(3.53)

The products in (3.53) are absolutely convergent for |z1| > · · · > |zn| > 0 and |ξ| >
· · · > |ξ1| > 0 by the properties of an IOA. What is new about the definition is the
single valuedness. It corresponds to the fact that correlation functions should not have
monodromies for transporting field insertions. Let us elaborate on this point. The goal is
to derive from (3.53) single valued functions

µn : C⊗n × Confn
(
C×
)
→ C

(c1, · · · , cn; z1, · · · , zn) 7→ µn(c1, · · · , cn; z1, z1, · · · , zn, zn)
(3.54)

which are smooth in (zi, zi) for i = 1, · · · , n. Pairing (3.54) with any element v′ ∈ C ′ would
give a true n + 1-point function in a full conformal field theory with state space C and
couplings among fields described by Y. The absolutely convergent function (3.53) has a
multivalued analytic continuation

〈v′, µ̃n(c1, · · · , cn; •, •)w〉 (3.55)
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to Confn (C×)×Confn (C×). Let (n, n− 1, · · · , 1) ∈ Confn (C×) and w = 1. The analytic
extension µ̃n evaluated at (n, n − 1, · · · 1) is uniquely fixed by (3.53) and
µ̃n(c1, · · · , cn; z1, ξ1, · · · , zn, ξn) can be obtained from paths γz : (n, · · · , 1) → (z1, · · · , zn)
and γξ : (n, · · · , 1)→ (ξ1, · · · , ξn) in Conf (C×). Choosing γξ = γz one defines

µn(c1, · · · , cn; z1, z1, · · · , zn, zn) = µ̃n
γz×γz(c1, · · · , cn; z1, ξ1, · · · , zn, ξn) (3.56)

where the rhs is the analytic continuation determined by γz × γz. In order for this to
be well defined the analytic continuation has to be independent of the path γz. In [86,
Theorem 2.11] it is shown that this is the case if and only if the single valuedness property
holds. Since analytic continuations only depend on homotopy classes of paths and the
fundamental group π1 (Confn (C×) , (n, · · · , 1)) is generated by braids3

this is invariance under monodromies. Furthermore, this shows that µn is invariant
under permutations, i.e. for σ ∈ Σn it holds

µn(cσ(1), · · · , cσ(n); zσ(1), zσ(1), · · · , zσ(n), zσ(n)) = µn(c1, · · · , cn; z1, z1, · · · , zn, zn) . (3.57)

Finally by the associativity property of IOA one proves by induction that the correlation
functions satisfy

µn(c1, · · · , cn−1, µ`(cn1 , · · · , cn` ;w1, w1, · · · , w`, w`); z1, z1, · · · , zn, zn)
= µn+`−1

(3.58)

It turns out that arguments also work in the other direction [86, Theorem 2.11], i.e.
giving a closed state space C and correlation functions (3.54) which satisfy the natural
convergence property stated in the introduction and have an action of a VOA symmetry
algebra produces a CFA. So a physically reasonable list of requirements for full RCFTs
lead to the mathematically precise notion of a CFA, for which all the rigorous technical
tools of VOA theory can be applied.

Note that due to corollary 3.1.9 and the splitting property, conformal full field algebras
are closely related to OFAs.

Corollary 3.1.13. [103, Corollary 3.3] For V L, V R rational VOAs there is an isomor-
phism of categories

3These are exactly loops in configuration space.
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Conformal OFAs (H,Y,1, D)
over V L ⊗ V R

'←→ CFAs (H,Y, ι).

For later purposes we need non-degenerate bilinear forms on C. These will be the
crucial ingredient for lifting associative algebras in representation categories to Frobenius
algebras.

Definition 3.1.14. [103] Let (C,Y, ι) be a CFA. An invariant bilinear form is a bilinear
pairing

( • , • ) : C × C → C (3.59)
s.th. (

YY(c; eπix, e−πiy)v, w
)

=
(
v,YY

((
exL

L
1 (x−2)LL0 ⊗ eyLR1 (y−2)LR0

)
c; 1
x
,

1
y

))
(3.60)

holds for all v, w, c ∈ C.

As in the open case this induces a V L ⊗ V R-module map Acl : C → C ′ which is an
isomorphism if and only if the bilinear form is non-degenerate.

Modular Invariance of CFAs

As discussed in the previous section, correlation functions of CFA are monodromy invariant.
Put differently, they are invariant under Dehn twist around punctures of spheres, which is
tantamount to saying they are invariant under the mapping class group of an n-punctured
sphere. When extending CFA to tori, correlation functions should be invariant under the
action of the modular group. The construction of the genus one extension was done in [87].
It is closely related to the discussion of chiral genus one correlation functions recalled in
section A.6.1. We freely use the notation introduced there.

Definition 3.1.15. Let (C,Y, ι) be CFA over V L⊗V R. The genus one formal correlation
functions are defined as

µ1
n(c1, · · · , cn;x1, y1, · · · , xn, yn; τL, τR)
≡ trC

(
YY(ρLxρR−ye−πiLR0 c1; e2πix1 , e−2πiy1) · · ·

YY(ρLxρR−ye−πiLR0 cn; e2πixn , e−2πiyn)qL
L
0−

cL
24

τL q
LR0 −

cR
24

τR

) (3.61)

where {xi, yi} are formal variables, ci ∈ C and τL, τR ∈ H 4.

Let 1 > |qz1| > · · · > |qzn| > |qτ | > 0. The splitting property and the results presented
in section A.6.1 immediately give that

µ1
n(c1, · · · , cn; z1, z1, · · · , zn, zn; τ, τ) (3.62)

4One may wonder about the extra factor of e−πiLR
0 in (3.61). In case y = z it holds ρz = ρ−ze

−πiLR
0 ,

which explains the extra factor in the general situation.
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absolutely converges and has a multivalued analytic extension M1
n to Confn (Teich1) ×

Confn (Teich1). Here Confn (Teich1) is the fiber bundle over Teich1 = H with fiber over
a point τ ∈ H given by Confn(Tτ ), the configuration space of n-points on a torus with
complex structure τ .

Note that the Virasoro rescaling property of intertwining operators, permutation in-
variance (3.57) and genus zero uniqueness readily imply the following.

Theorem 3.1.16. [87, Corollary 3.4] For any c1, · · · , cn ∈ C the multivalued analytic
extension M1

n restricts to a unique smooth function

M1
n(c1, · · · , cn; z1, z1, · · · , zn, zn; τ, τ) (3.63)

on Confn (Teich1).

In particular for all a, b ∈ Z it holds

M1
n(c1, · · · , cn; z1, zn, · · · , zi + aτ + b, zi + aτ + b, · · · , zn, zn; τ, τ)

= M1
n(c1, · · · , cn; z1, z1, · · · , zn, zn; τ, τ) .

(3.64)

There is an obvious definition of what it means for a CFA to be modular invariant.

Definition 3.1.17. [87, Definition 3.5] A CFA (C,Y, ι) is modular invariant if for any
c1, . . . , cn ∈ C and (

a b
c d

)
∈ SL(2,Z) (3.65)

it holds

M1
n

(( 1
cτ + d

)LL0 ( 1
cτ + d

)LR0
c1, · · · ,

( 1
cτ + d

)LL0 ( 1
cτ + d

)LR0
cn;

z1

cτ + d
,

z1

cτ + d
, · · · , zn

cτ + d
; zn
cτ + d

; aτ + b

cτ + d
,
aτ + b

cτ + d

)
=M1

n(c1, · · · , cn; z1, z1, · · · , zn, zn; τ, τ) .

(3.66)

The above definition is of course very unhandy. But the splitting property tells that
there should be a way to express modular invariance in terms of chiral and antichiral data.
First we decompose the state space into left and right movers

C =
K⊕
`=1

UL
νL(`) ⊗ UR

νR(`) (3.67)

which by the splitting property yields

YY(•L ⊗ •R;x, y) =
K∑

`1,`2,`3=1

N
νL(`3)
νL(`1)νL(`2)∑

α=1

N
νL(`3)
νL(`1)νL(`2)∑
α2=1

Y `3
`1`2

[
α1
α2

]

Y
νL(`3);L
νL(`1)νL(`2);α1

(•L, x)⊗ Y
νR(`3);R
νR(`1)νR(`2);α2

(•R, y)

(3.68)
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for complex numbers
{
Y `3
`1`2

[
α1
α2

]}
and basis elements Y

k;L,R
ij ∈ V

k;L,R
ij , where the basis

for left and right movers can be different. The reader may compare this to (A.90), the
expansion of a conformal field in terms of intertwining operators. One can interpret (3.68)
as a formal expansion of an arbitrary conformal field, which reduces to an actual field upon
inserting states in the bullet blanks. By theorem A.6.6 and Theorem A.6.8 in the appendix

for any cLi ∈ UL
i there exist complex numbers

{
SLjk

[
α
β

]}
s.th.

Φ1
Y
j,L
ij;α

(•;−z
τ

; q− 1
τ
) =

∑
k∈I

Nk
ik∑

β=1
SLjk

[
α
β

]
Φ1

Y
k;L
ik;β

(•; z; qτ ) . (3.69)

Note that the second sum was absent in the discussion of the appendix since there i = 0

was chosen. The numbers
{
Sjk

[
α
β

]}
form an invertible matrix in the sense that there

exist
{

(SL)−1
i`

[
γ
δ

]}
s.th.

∑
k∈IL

Nk
jk∑

β=1
SLjk

[
α
β

]
(SL)−1

k`

[
β
γ

]
= δj,`δα,γ (3.70)

Analogous expressions hold for right movers.
Since correlation functions M1

n are uniquely determined by their restrictions on 1 >
|qz1| > · · · |qzn| > |qτ | > 0 where they equal products of formal full vertex operators one
can use the associativity property of intertwining operators to reduce modular invariance
for all n ≥ 1 to modular invariance for n = 1. Chasing through the splittings and taking
extra factors of eπiLR0 for right movers into account one arrives at the follow.

Theorem 3.1.18. [87, Theorem 3.6,3.8] A CFA over V L ⊗ V R is modular invariant if
cL − cR = 0 mod 24 and

K∑
k=1

N
νR(k
νR(`)νR(k)∑
β1=1

N
νL(k)
νL(`)νL(k)∑
α1=1

Y k
`k

[
α1
β1

]
SLνL(k)iL

[
α1
α2

]
(SR)−1

νr(k)jR

[
β1
β2

]
=

∑
m∈(νL)−1(iL)∩(νR)−1(jR)

Y m
`m

[
α2
β2

]
(3.71)

holds for any ` ∈ I.

The condition on central charges ensures modular invariance under the T -transformation,
which can be easily seen by shifting τ → τ+1 in (3.62). The second condition is invariance
under the S-transformation.

3.1.3 Open-Closed Field Algebras
The final object to discuss are open-closed field algebras. They are mathematical formula-
tions of rational full conformal field theories with boundary fields. We again start with a
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vertex operator type definition and discuss how this leads to a structure of closed and open
state spaces Hcl, Hop together with a collection of correlation function mappings {µm,n}
for all possible open-closed interactions. These correlation functions satisfy some natural
consistency requirements.

Open-closed field algebras were introduced in [105]. The definition we give here is
spread out over several definitions in [105].

Definition 3.1.19. Let V be a rational VOA. An open-closed field algebra (OCFA) over
V is a tuple (Hcl,Y, ι, Hop,Y,Ycl−op), where (Hcl,Y, ι) is a CFA over V ⊗ V , (Hop,Y) is
an OFA over V and the closed-open vertex operator Ycl−op is a map5

Ycl−op : Hcl ⊗Hop ×H×H→ Hop

(c, o; ζ, ω) 7→ Ycl−op(c; ζ, ω)o .
(3.72)

This data has to satisfy

OCFAI) Convergence 1: For any c1, · · · , cn ∈ Hcl, o1, · · · , on ∈ Hop and v′ ∈ H ′op, ω ∈ Hop

〈v′,Ycl−op(c1; ζ1, ω1)Y(o1, r1) · · ·Ycl−op(cn; ζn, ωn)Y(on, rn)ω〉 (3.73)

converges absolutely if |ζ1|, |ω1| > |r1| > · · · > |ζn|, |ωn| > |rn| > 0 and has a
multivalued analytic extension to Conf3n (C×).

OCFAII) Convergence 2: For any v′ ∈ H ′op, o1, o2 ∈ Hop and c ∈ Hcl

〈v′,Y(Ycl−op(c; ζ, ω)o1; r)o2〉 (3.74)

converges absolutely if r > |ζ|, |ω| > 0.

OCFAIII) Convergence 3: For any v′ ∈ H ′op, o ∈ Hop and c1, c2 ∈ Hcl〈
v′,Ycl−op(YY(c1; z1, ξ1)c2; ζ2, ω2)o

〉
(3.75)

converges absolutely if |ζ2| > |z1| > 0, |ω2| > |ξ1| > 0 and |z1|+ |ξ1| < |ζ2 − ω2|.

OCFAIV) Associativity 1: For any c1,∈ Hcl, o1, o2 ∈ Hop and v′ ∈ H ′op it holds

〈v′,Ycl−op(c1; ζ1, ω1)Y(o1, r1)o2〉 = 〈v′,Y(Ycl−op(c; ζ, ω)o1; r)o2〉 (3.76)

on |ζ|, |ω| > r > 0 and r > |r − ζ|, |r − ω| > 0.

OCFAV) Associativity 2: For v′ ∈ Hop, o ∈ Hop and c1, c2 ∈ Hcl it holds

〈v′,Ycl−op(c1; ζ1, ω1)Ycl−op(c2; ζ2, ω2)o〉 =
〈
v′,Ycl−op

(
YY(c1; ζ1 − ζ2, ω1 − ω2)c2; ζ2, ω2

)
o
〉

(3.77)
for |ζ1|, |ω1| > |ζ2|, |ω2|, |ζ2| > |ζ1−ζ2|, |ω2| > |ω1−ω2| as well as |ζ1−ζ2|+ |ω1−ω2| <
|ζ2 − ω2|.

5The use of horizontal bars in the formula can be confusing. On H it means complex conjugation,
whereas for Hop it is the algebraic completion.
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OCFAVI) Commutativity 1: Let Ĥ = H∪R+, Ĥ = H∪R+, from OCFA1) it in fact follows that
Ycl−op has an extension to Ĥ ∪ Ĥ. Then for any v′ ∈ H ′op, o1, o2 ∈ Hop and c ∈ Hcl

and ζ, ω ∈ R+
〈v′,Ycl−op(c; ζ, ω)Y(o1, r)o2〉 (3.78)

for ζ > ω > r > 0 and
〈v′,Y(o1, r)Ycl−op(c; ζ, ω)o2〉 (3.79)

for r > ζ > ω > 0 are analytic extensions of each other along a path γ ⊂ Ĥ ∪ Ĥ.

OCFAVII) Let Hcl = ⊕K
`=1 U

L
νL(`) ⊗ UR

νR(`) be a splitting. For c = cL ⊗ cR ∈ UL
νL(`) ⊗ UR

νR(`) there
exist V -modules I1, I2 and intertwining operators YL

1 ∈ V
Hop
νL(`)I1

and YR
2 ∈ VI1

νR(`)Hop ,
YL

4 ∈ VI2
νL(`)Hop , Y

R
3 ∈ V

Hop
νR(`)I2

s.th. for any o ∈ Hop, v′ ∈ H ′op

〈v′,Ycl−op(c; ζ, ω)o〉 =
〈
v′,YL

1 (cL, ζ)YR
2 (cR, ω)o

〉
(3.80)

for |ζ| > |ω| > 0 and

〈v′,Ycl−op(c; ζ, ω)o〉 =
〈
v′,YR

3 (cR, ω)YL
4 (cL, ζ)o

〉
(3.81)

for |ω| > |ζ| > 0. In addition it holds

Ycl−op(1; ζ, ζ)o ≡ YL
1 (1, ζ)YR

2 (1, ζ)o = o (3.82)

As in the case of OFA and CFA let us discuss, how this definition leads to the notion
of an open-closed field theory as discussed in the introduction. Let

R`
> ≡

{
(r1, · · · , r`) ∈ R`

+ | r1 > r2 > · · · , rn > 0
}

. (3.83)

Recall that one wants to derive correlation functions
µcl−opn,` : H⊗ncl ×H⊗`op × Confn(H)× R`

+ → Hop

(c1, · · · , cn; o1, · · · , o`; z1, · · · , zn; r1, · · · , r`) 7→
µcl−opn,` (c1, · · · , cn; o1, · · · , o`;z1, z1, · · · , zn, zn; r1, · · · , r`)

(3.84)

which are smooth and have two associativity properties: First, the concatenation

µcl−opn,` (c1, · · · , cn; o1, · · · , oi−1, µ
cl−op
r,s (ci1, · · · , cir; oi1, · · · , ois;w1, · · · , wr; t1, · · · , ts), oi+1,

· · · , o`; z1, · · · , zn; r1, · · · , r`)
(3.85)

absolutely converges to

µcl−opn+r,`+s−1(c1, · · · , cn, ci1, · · · , cir; o1, · · · , oi−1, o
i
1, · · · , ois, oi+1, · · · , o`;

z1, · · · , zn, w1 + ri, · · · , wr + ri; r1, · · · , ri−1, ri + t1, · · · , ri + ts, ri+1, · · · , r`)
(3.86)

for |zp − ri|, |rq − ri| > |wa|, |tb| for any p ∈ {1, · · · , n}, q ∈ {1, · · · , i− 1, i+ 1, · · · `},
a = {1, · · · r} and b = {1, · · · , s} This corresponds to configuration of the following type
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.
Second, for j = 1, . . . , n closed composition

µcl−opn,` (c1, · · · , cj−1, µm(cj1, · · · , cjm; o1, · · · , o`;w1, w1, · · · , wm, wm); cj−1,

· · · , cn; z1, z1, · · · , zn, zn; r1, · · · , r`)
(3.87)

absolutely converges to

µcl−opn+m−1,`(c1, · · · , cj−1, c
j
1, · · · , cjm, cj+1, · · · , cn; o1, · · · , o`;

z1, z1, · · · , zj + w1, zj + w1, · · · , zj + wm, zj + wm, · · · , zn, zn; r1, · · · , r`)
(3.88)

for |zp − zj|, |rq − zj| > |ws| for all p = 1, · · · , n, p 6= j and s = 1, · · · , ` (see figure 1.1 in
the introduction).

The procedure is similar to the closed case and we recall it from [105]. Let ζ1 > ω1 >
r1 > · · · > ζn > ωn > rn > 0 be points on R+, then

〈v′,Ycl−op(c1; ζn, ωn)Y(o1, r1) · · ·Ycl−op(cn; ζn, ωn)Y(on, rn)v〉 (3.89)

has an analytic continuation to Conf2n (C×)×Rn
> by axiom OCFAI). Since (3.89) uniquely

fixes the analytic continuation on the simply connected domain

|ζ1| > |ω1| > r1 > · · · > |ζn| > |ωn| > rn > 0 (3.90)

one can choose an arbitrary point in that domain as the initial point for analytic continu-
ation. The natural pick is (3n, 3n− 1, · · · , 1) and a path

(H ∪ R+)n ⊃ γ1 : (3n, 3(n− 1), · · · , 3) 7→ (z1, · · · , zn) . (3.91)

Composing with the straight path

Rn
> ⊃ γ2 : (3n− 1, 3(n− 1)− 1, · · · , 2) 7→ (3n, 3(n− 1), · · · , 3) (3.92)
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and taking the complex conjugate of γ1 gives a path

(H ∪ R+)n ×
(
H ∪ R+

)n
⊃ γz × γz :(3n, 3n− 1, 3(n− 1), 3(n− 1)− 1, · · · , 3, 2)

7→ (z1, z1, · · · , zn, zn) .
(3.93)

In addition let γr be the straight path

Rn
> ⊃ γr : (3n− 2, 3(n− 1)− 2, · · · , 1) 7→ (r1, · · · , rn) . (3.94)

Analytically continuing (3.89) from (3n, 3n−1, · · · , 1) along the combined path γz×γz×γr
gives a correlation function〈

v′, µcl−opn,n (c1, · · · , cn; o1, · · · , on; z1, z1, · · · , zn, zn; r1, · · · , rn)v
〉

. (3.95)

for (n, `) 6= (n, n) one defines µcl−opn,` by appropriate insertions of either the closed or open
unit. Since there is a CFA sitting inside the OCFA, this correlation function is independent
of the choice of path γz. The path γr is unique up to homotopy, thus this yields a well
defined, smooth, single valued function

µcl−opn,` : Confn (H)× R`
> ×H⊗ncl ⊗H⊗`op → Hop . (3.96)

The above stated associativity properties of µcl−opn,` follow from the associativity assumptions
OCFAIV) and OCFAV) in the definition of an OCFA.

The alert reader may wonder about open loop-channel closed tree-channel equivalence,
i.e. the Cardy condition. Similar to modularity of CFA this involves a gluing operation.
Unfortunately the true analytic description is cumbersome and relies a fair bit on operad
theory. A detailed discussion is given in [104, sections 1-3]. We refrain from stating the
full analytic expression, since explaining all ingredients in the necessary formula (see [104,
equation (3.73)]) takes some effort and deviates from the main theme of the thesis which
is categorical in nature. We just note that the procedure involves gluing a cylinder in
two different ways which is described analytically in terms of corresponding coordinate
transformations and taking traces similar to the torus case.

Definition 3.1.20. An analytic Cardy algebra is an OCFA whose CFA is modular and
s.th. [104, equation (3.73)] is satisfied.

The categorical content of the definition will be explained in the subsequent sections.

3.2 Categorical Algebra of Field Algebras

3.2.1 Associative Algebras in RV
Theorem 3.2.1. [85, Theorem 4.3] Let V be a rational VOA. Then there is an isomor-
phism of categories
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Conformal OFAs (H,Y,1, D),
s.th. there is an injective ho-
momorphism ι : V ↪→ C0(H) of
VOAs.

'←→
Associative Al-
gebras (A,m, η)
in RV

Since this theorem is central when transporting the analytic properties to categorical
algebra we present the proof. This will hopefully help to understand the inner workings of
the notion of a Cardy algebra later.

Proof. First a functor from conformal OFAs to associative algebras in RV is constructed.
Let (H,Y,1, D) be a conformal OFA with an injective homomorphism ι : V ↪→ C0(H). By
theorem 3.1.7 H is C0(H)-module and Yf is a C0(H)-intertwining operator of type

(
H
HH

)
.

The map ι makes H into a V -module and Y into a V -intertwining operator. Thus H is an
object of RV . The tensor product construction given in chapter 2 yields that there exists
a morphism

mr
YF : H �P (r) H → H (3.97)

uniquely determined by
mr

Yf (v �P (r) w) = Yf (v, r)w (3.98)

which for r = 1 gives a multiplication m : H � H → H. We have to show that this is
associative. Let r1 > r2 > r1 − r2 > 0 and γ1, γ2, γ12 be paths in R+ from 1 to r1, r2 and
r1 − r2. If γr is the path from 1 to r in R+, by the definition of the operator Tγr it holds

mr
Yf ◦Tγr(u� v) =mr

Yf

(
r−L0

(
rL0u�P (r) r

L0v
))

=r−L0mr
Yf

(
rL0u�P (r) r

L0v
)

=r−L0Yf

(
rL0 , r

)
rL0v

=Yf (u, 1)v
=mYf (u� v)

(3.99)

where the first equality is the definition of Tγr , the second equality uses that mYf is a
module map. This gives a commutative diagram

H � (H �H) (H �H) �H

H �P (r1) (H �P (r2) H) (H �P (r1−r2) H) �P (r2) H

H H

A

(id�P (r)Tγ2 )◦Tγ1 (T12�P (r2)id)◦Tγ2

m
r1
Yf
◦(id�P (r1)m

r2
Yf

)

A
r1−r2,r2
r1,r2

m
r2
Yf
◦(mr1−r2

Yf
�P (r2)id)

id
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because vertical compositions are equal to m ◦ (id�m) and m ◦ (m� id) respectively and

mr1
Yf ◦ (id �P (r1) m

r2
Yf )(u�P (r1) v)�P (r2) = Yf (u, r1)Yf (v, r2)w

mr2
Yf ◦ (mr1−r2

Yf �P (r2) id)(u�P (r1−r2) v) �P (r2) w = Yf (Yf (u, r1 − r2)v, r2)w .
(3.100)

The two expressions in (3.100) agree due to the associativity requirements of an OFA. This
shows associativity.

The unit η : V → H is defined to be the map ι. Then

V �H H �H

H

η�id

λ

mYf

commutes tautologically. The right unit triangle diagrams

H �H H � V

H

mYf

id�η

ρ

commutes as ι embeds V into C0(H) and the defining property of the meromorphic center
shows commutativity.

In the other direction, assume (A,m, η) is an associative algebra in RV . Then by
definition A is an R-graded vector space. Associated to the product is an intertwining
operator Ym of type

(
H
HH

)
defined by

m(u� v) = Ym(u, 1)v . (3.101)

For r > 0 this gives an open vertex operator Ym(•, r). Since Ym is an intertwining
operator the vertex weight property follows by definition. In addition V is rational,
hence ∐i∈I Ui is an IOA. Decomposing A into simple modules induces a decomposition
of Ym = ∑

i,j,k∈I mijkY
k
ij, where mijk ∈ C. By the properties of an IOA correlation func-

tions of products of intertwining operators Yk
ij converge. Thus

〈m′2,Ym(u1, r1) · · ·Ym(un, rn)m1〉 (3.102)

converges for r1 > · · · > rn > 0. By the left identity axiom for algebras it holds

Ym(1, 1)u = u, ∀U ∈ H . (3.103)

Applying rL0 to (3.103) and noting that η : V → H has to be grading preserving gives

Ym(1, r)rL0u = rL0u (3.104)

which upon replacing u → u′ ≡ rL0u gives the identity property. By a similar argument
the right identity axiom gives

Ym(u, r)1 = erL−1u (3.105)
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which in the limit r → 1 yields the creation property. d- and D-derivative properties
follow from the Virasoro action on intertwining operators. For associativity we note that
there is again a commutative diagram like (3.2.1). By the definition of the open vertex
operator from m this immediately gives associativity. The final thing to prove is, that η
maps V injectively into the meromorphic center. We start by showing that it indeed maps
to C0(H). Ym,f (v, x) ∈ End(H)[[x, x−1]] follows from the fact that η is a V -module map.
The second requirement follows easily from the right unit property.

The two constructions are obviously inverse to each other.

Note that the proof doesn’t use the braiding in RV . The following is clear from corollary
3.1.13.
Corollary 3.2.2. A CFA (H,Y, ι) over V L ⊗ V R gives an associative algebra (C, µ, η) in
RV L⊗V R.

In order to describe the single valuedness and skew-symmetry properties of CFAs in
categorical language a closer look on RV L⊗V R is needed. The splitting property easily
yields:
Lemma 3.2.3. [103, Lemma 3.5] Let M = ML ⊗MR and N = NL ⊗ NR be V L ⊗ V R-
modules. Then

M ⊗N 7−→
(
ML �NL

)
⊗
(
MR �NR

)
(3.106)

is a P (1)-intertwining map and therefore a monoidal product in RV L⊗V R.

By the universal property of P (1)-intertwining maps there exists a unique V L ⊗ V R-
module map βou s.th.(

ML �NL
)
⊗
(
MR �NR

)
M �N

(
NL �ML

)
⊗
(
NR �MR

)
N �M

'

βL+⊗β
R
− βou

'

commutes. Since βL+ and βR− define braidings in RV L and RV R by the splitting property βou
is a braiding in (RV L⊗V R ,�). The natural isomorphism

ΘML⊗MR ≡ ΘML ⊗Θ−1
MR (3.107)

with Θ−1
MR = e−2πiLR0 defines a twist in (RV L⊗V R ,�, βou) since ΘML and Θ−1

MR define twists
in (RV L ,�, βL+) and (RV R ,�, βR−). Clearly the S-matrix defined by
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is non degenerate. In formulas this just reads

si�j,k�` = sij ⊗ s`k (3.108)

In conclusion the following proposition holds.

Proposition 3.2.4. (RV L⊗V R ,�, βou,Θ) is a modular tensor category. It is naturally equiv-
alent to RV L � RV R, the Deligne tensor product of RV L with the reversed category RV R.

If V L = V R by [136, Theorem 3.3] it follows that

(RV⊗V ,�, βou,Θ) ∼= Z (RV ) . (3.109)

By the same computation showing that β+, β− are inverse to each other one shows that
for a V L-intertwining operator YL and a V R-intertwining operator YR it holds

mB0(YL) = mYL ◦ βL+, mB−1(YR) = mYR ◦ βR− . (3.110)

The splitting property gives that for Y ∈ VM3
M1M2 a V L ⊗ V R-intertwining operator the

action of the braiding on the associated module map reads

mY ◦ βou = mB0⊗B−1(Y) . (3.111)

Theorem 3.2.5. [103, Theorem 3.11] Let V L, V R be rational VOAs. Then there is an
isomorphism of categories

CFAs (C,Y, ι) over V L ⊗ V R '←→

Associative and commuta-
tive Algebras (C,m, η) in
(RV L⊗V R ,�, βou,Θ) with trivial
twist.

By definition of braiding and twist in RV R⊗V L single valuedness and skew-symmetry
directly translate to trivial twist and commutativity for the associative algebra for a CFA
given by corollary 3.2.2 and vice versa.

Finally we want to formulate OCFAs categorically. The main obstacle is that closed
and open state space live in different categories and cannot be compared directly. It is a
well known fact that monoidal functors map commutative algebra objects to commutative
algebra objects. Let

F : (RV⊗V ,�, βou,Θ)→ RV (3.112)
be the composition of the functor in (3.109) with the forgetful functor. (F (Hcl), F (m), F (η))
is a commutative algebra in RV . By OCFAVII) and associativity of IOA for any homoge-
neous element cL⊗ cR ∈ UνL(`)⊗UνR(`) ↪→ Hcl there exists a V -module I` and intertwining
operators Y1

` ∈ V
Hop
I`Hop

and Y2
` ∈ V

I`
U
νL(`)UνR(`)

s.th.
〈
v′,Ycl−op(cL ⊗ cR; ζ, ω)v

〉
=
〈
v′,Y1

`

(
Y2
` (cL, ζ − ω)cR, ω

)
v
〉

(3.113)
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holds for ζ > ω > ζ − ω > 0. Hence for Y1 = ∐N
`=1 Y

N
` and Y2 = ∐N

`=1 Y
2
` we have〈

v′,Ycl−op(wL ⊗ wR; ζ, ω)v
〉

=
〈
v′,Y1

(
Y2(cL, ζ − ω)cR, ω

)
v
〉

(3.114)

for any v′ ∈ H ′op, v ∈ Hop and wL ⊗ wR ∈ Hcl. By the same arguments used several times
now, the intertwining operators on the rhs of (3.114) give a V -module map

ρ : F (Hcl) �Hop → Hop . (3.115)

In addition let

κcl−op =
[
F (Hcl)

ρ−1
V→ F (Hcl) � V

id�ιV→ F (Hcl) �Hop
ρ→ Hop

]
. (3.116)

The categorical description of OCFA given in [105, section 3] can be summarized as follows.

Theorem 3.2.6. An OCFA (Hcl,Y, ι, Hop,Y,Ycl−op) is equivalent to the data of

1. a commutative associative algebra with trivial twist (Hcl, µcl, ηcl) in Z(RV ).

2. an associative algebra (Hop, µop, ηop) in RV .

where in addition the map ρ : F (Hcl) � Hop → Hop gives Hop the structure of a F (Hcl)-
module s.th. the multiplication on Hcl is F (Hcl)-homogeneous in both slots.

Equivalently an OCFA (Hcl,Y, ι, Hop,Y,Ycl−op) is the same as

1. a commutative associative algebra with trivial twist (Hcl, µcl, ηcl) in Z(RV ).

2. an associative algebra (Hop, µop, ηop) in RV .

and an algebra homomorphism χcl−op : F (Hcl)→ Hop s.th. the center condition

holds.

Note that we switched from a commutative algebra in RV⊗V to one in Z(RV ) using
(3.109). The proof goes by showing that axioms of an OCFA have nice categorical repre-
sentations. Denoting the F (Hcl)-module map ρ by
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the equivalence is given by the correspondence

OCFAVII)
(3.82) ←→

OCFAV) ←→

OCFAIV) ←→

OCFAVI) −→

The map χcl−op is defined from ρ as

.

That the two notions are equivalent can be easily shown using just category theory.
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3.2.2 Frobenius Algebras in RV
In the last section we described how OFA over a rational VOA are equivalent to associative
algebras in the representation category of the VOA. Here we assume that the OFA has
a non-degenerate bilinear form and show how this enhances the associative algebra to a
Frobenius algebra. As before we present some details in the open case, the closed case is
almost the same.

The key step in relating invariant bilinear forms to categorical notions is a description
of the morphisms B0 and Ã0 in terms of string diagrams in RV .

Lemma 3.2.7. [103, Proposition 4.9] Let {Yα} be a basis in Vk
ij .

i) The action of Ã0 on the basis reads

.

ii) The action of B0 on the basis reads

.

Let us comment on the proof. The second statement holds by definition of the braiding
in RV . For the first statement on picks a basis

{
Ỹα
}
of V

j′

k′i s.th.

ẽvk ◦mYα ◦ (idi � coevj) = m
Ỹα

. (3.117)

Then it suffices to show Ỹα = B0 ◦ Ã0(Yα). This follows from associativity of IOA and a
computation very similar to the proof of lemma 3.2.8. Recall that B−1 is inverse to B0.
Therefore it is represented by the inverse crossing. Â0 is obtained by the same argument
and is given by

Â0(f) = ẽvj ◦B0 ◦ f ◦ (coevk � idi) . (3.118)
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where f ∈ HomRV (Ui � U ′k, U
′
i). Graphically this reads

. To relate bilinear forms to the above notion we prove the following result, which is
originally stated in [104].

Lemma 3.2.8. Invariance of bilinear forms (3.43) on OFAs over a rational VOA V is
equivalent to the existence of a V -module map ψ : Hop → H ′op s.th.

ψ ◦ Y = B0 ◦ Ã0 ◦ (ψ ⊗ idHop)
ψ ◦ Y = Â0 ◦B−1 ◦ (idHop ⊗ ψ)

(3.119)

Proof. We only show the first one, the second one goes the same. Let Y∈ V
Hop
HopHop , then

for any formal variable x and v, w ∈ Hop, u ∈ H ′op, we compute〈
e−

1
x
L−1B0 ◦ Ã0(Y)(u, 1

x
)e−xL1x−2L0v, w

〉
=
〈
Ã0(Y)

(
e−xL1x−2L0v, eiπ 1

x

)
u,w

〉
= 〈u,Y(v, x)w〉

(3.120)

where the first equation is just the definition of B0 and the second is the definition of Ã0
plus equation (2.43). Next define ψ via

(u, v) = 〈ψ(u), v〉 . (3.121)

Then the invariance (3.43) is equivalent to

〈ψ(u),Y(v, r)w〉 =
〈
ψ
(
Y
(
e−rL1r−2L0v,−1

r

)
u
)
, w
〉

(3.122)

By (3.41) this equals 〈
ψ
(
e−

1
r
L−1Y(u, 1

r
)e−rL1r−2L0v

)
, w
〉

. (3.123)

Using that ψ is a V -module map gives the claim.
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Theorem 3.2.9. [104, Theorem 5.10] There is an isomorphism of categories

OFAs (H,Y,1, D) over a rational
VOA V with a non-degenerate bi-
linear form

'←→ Symmetric Frobenius Algebras
(H,m, η,∆, ε) in RV

We give some parts of the proof with the aim of showing that the theorem can be
obtained by mere category theory after having Lemma 3.2.7.

Proof. We will follow the standard graphical representations for Frobenius algebras pre-
sented in appendix B. Let ψ : Hop → H ′op be an isomorphism which will be depicted
as

.

In order for ψ to induce an invariant bilinear form it has to satisfy

Figure 3.1: Graphical relations for ψ.

. This is just the graphical representation of (3.119). Assume (Hop,m, η,∆, ε) is a
symmetric Frobenius algebra. By [59, Lemma 3.7] the morphism φ
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is invertible.
Setting

and using associativity once shows that φ satisfies 3.1. Hence a symmetric Frobenius
algebra gives a non-degenerate invariant bilinear form.

Conversely, assume (Hop,Y) has a non-degenerate invariant bilinear form with associ-
ated isomorphism ψ. The coproduct is defined by

.
One easily checks that this is coassociative. The counit is defined similarly. We show

one of the Frobenius properties. The other goes the same.
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(1)= (2)=

(3)= (4)= (5)=

(6)= (7)=

The steps are as follows: (1) and (7) are the definition of the coproduct, (2), (4) and
(6) are the defining property of ψ, (3) is associativity of the product, (5) follows from ψ
being an isomorphism.

With the same proof the analogous result for CFAs is shown.

Theorem 3.2.10. [103, Theorem 4.15] There is an isomorphism of categories

CFAs (Hcl,Y, ι) over a ra-
tional VOA V L ⊗ V R with
non-degenerate invariant bilinear
form

'←→
Symmetric, commutative Frobe-
nius algebras in (H,m, η,∆, ε) in
RV L⊗V R

In [57, Proposition 2.25] it is shown that a symmetric, commutative Frobenius algebra
in a braided tensor category automatically has trivial twist and vice versa. Therefore this
extra property doesn’t need to be listed on the rhs of the equality.

3.2.3 (RV |Z(RV )) - Cardy Algebras
So far we related analytic open and closed field algebras to Frobenius algebras in represen-
tation categories of rational VOAs. In addition the open-closed structure was expressed
through an algebra homomorphism. In this section we give the categorical requirement
for modular invariance of CFAs and state the Cardy condition. This will give a Cardy
algebra in RV⊗V . Unfortunately the definition of a Cardy algebra we want to use later
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takes place in Z(RV ). The latter notion is obtained by using the adjoint functor to the
forgetful functor.

Similar to section 3.2.2 we state one key result relating analytic expressions to cate-
gorical ones. Recall that in the appendix A.6 a and b moves on torus two point conformal
blocks

Ψ1
Y
j
0j ,Y

0
ii′

(•, •; z1, z2; qτ ) : Ui ⊗ U ′i → G1
2,0 (3.124)

were used to derive the Verlinde formula. It was shown in [87, section 4] that a, b can be
extended to two point conformal blocks with arbitrary intermediate propagating family.
With the same proof one can show that this further extends to arbitrary simple inputs.
We summarize this in the following proposition.

Proposition 3.2.11. The space of genus one two point conformal blocks

Ψ1
Yk
`k
,Y`ij

(•, •; z1, z2; qτ ) : Ui ⊗ Uj :→ G1
2 (3.125)

is closed under the action of a- and b-moves

a
(

Ψ1
Yk
`k
,Y`ij

(•, •; z1, z2; qτ )
)

= Ψ1
Yk
`k
,Y`ij

(•, •; z1, z2 − 1; qτ )

b
(

Ψ1
Yk
`k
,Y`ij

(•, •; z1, z2; qτ )
)

= Ψ1
Yk
`k
,Y`ij

(•, •; z1, z2 + τ ; qτ ) .
(3.126)

The corresponding transformation matrices still satisfy

S ◦ a = b ◦ S . (3.127)

Since a, b and S are part of a projective representation of the mapping class group,
equation (3.127) fixes S up to a constant. Therefore, given a categorical presentation for
a and b one can derive S by means of category theory. Note that a, b induce maps⊕

`,k∈I
Vk
`k ⊗ V`

ij →
⊕
`,k∈I

V`
`k ⊗ Vk

ij (3.128)

which we still denote by a, b. It is shown in [104, Lemma 4.3,4.4] that their graphical
representation reads

.

Using the SL(2,Z) relations between T and S transformations one can fix the remaining
constant after solving (3.127). With the graphical calculus in ribbon categories it is not
hard to show, that
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will do the job. Using relation B.4 from the appendix one easily shows

Recall the splitting of the full vertex operator given by (3.68). In genus one due to the
trace the only surviving terms are

K∑
`1=1

Y1
`1(•L ⊗ •R;x, y) =

K∑
`1=1

K∑
`2=1

N
νL(`3)
νL(`1)νL(`2)∑

α=1

N
νL(`3)
νL(`1)νL(`2)∑
α2=1

Y `2
`1`2

[
α1
α2

]

Y
νL(`2);L
νL(`1)νL(`2);α1

(•L, x)⊗ Y
νR(`2);R
νR(`1)νR(`2);α2

(•R, y)

(3.129)

If we denote for the S-transformation

SL`1 =
K∑
`2=2

SLνL(`1)νL(`2) (3.130)

and let m`1 be the morphism in RV L⊗V R corresponding to Y1
`1 , the modular invariance

property can be rewritten as
K∑
`1=1

SL`1 ⊗ (SR)−1
`1 m`1 =

K∑
`1=1

m`1 . (3.131)

Note that these are maps, whereas (3.71) is the same equation expanded into coefficients
wrt. to a basis of intertwining operators. Invoking the graphical representation for S,
(3.131) in fact reads
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where we abbreviated ν(`1) = νL(`1) ⊗ νR(`1) and the sum over basis elements in the
space of intertwining operators is implicit. Comparing coefficients one derives the equation

Figure 3.2: Modular Invariance Property

The sums over intertwining operators exactly give the product of the Frobenius algebra
and summing over `1 gives the object Hcl. The upshot of the discussion is, that one can
distill categorical expressions from analytic transformation properties of q-traces with the
exact same content. In the case of modular invariance these are the expressions for a and b
moves, which enable us to give modular invariance of CFA (3.71) in the form of figure 3.2.
In [104] a similar discussion is made for the Cardy condition. We only state the result.

Definition 3.2.12. An OCFA (Hcl,Y, ι, Hop,Y) over a rational VOA V satisfies the Cardy
condition if the corresponding Frobenius algebras satisfy

for all i ∈ I.

Recall the definition of the functor L : C→ Z(C) left and right adjoint to the forgetful
functor. This is a Frobenius functor by [107, Proposition 2.23], thus for (Hop,mop, ηop,∆op, εop)
the Frobenius algebra corresponding to an OFA, L(Hop) is a Frobenius algebra in Z(RV ).
In [107] it was shown how to transport the notion of a Cardy algebra to the Drinfeld center
using the natural isomorphisms of the adjunction. We quickly recall the basic arguments
to close the line of reasoning starting from true correlation functions of genus zero full
RCFTs towards the notion of a Cardy algebra we use in the main part of this thesis.
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Let O ∈ RV and C = ⊕K
`=1 UνL(`) ⊗ UνR(`) ∈ Z(RV ). The natural isomorphisms of the

adjunction are given by

L : HomRV (F (C), O)→ HomZ(RV ) (C,L(O))

L−1 : HomZ(RV ) (C,L(O))→ HomRV (F (C), O)

R : HomRV (O,F (C))→ HomZ(RV ) (L(O), C)

R−1 : HomZ(RV ) (L(O), C)→ HomRV (O,F (C))
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In the definition of a Cardy algebra in RV there is the algebra homomorpism κcl−op :
F (C)→ O. One defines

ιcl−op ≡ L(κcl−op) : C → L(O) (3.132)

To show that ιcl−op is still an algebra homomorphism one just applies L−1 to both sides
of the defining equation for being an algebra homomorphism and recovers the respective
equation for κcl−op. The argument for the center condition is the same. The most non
obvious one is the Cardy condition. Spelling out the string diagrams for ιcl−op ◦ ι†cl−op one
can easily see that the following is true

.

In [133] it was shown that L(1) is a commutative Frobenius algebra in Z(C). With the
completeness of the basis elements in morphism spaces it in addition directly follows that
L(1) is a special Frobenius algebra. Using this one shows

⊕
i∈I
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We summarize the above in a definition of a Cardy algebra in the Drinfeld center. The
preceding paragraph shows that this is equivalent to the previous one.

Definition 3.2.13. [108, Definition 3.7] Let C be a modular tensor category. A (C|Z(C))-
Cardy algebra (Hcl,Hop, ιcl−op) is the data of

A) a commutative symmetric Frobenius algebra (Hcl,mcl, ηcl,∆cl, εcl) in Z(C).

B) a symmetric Frobenius algebra (Hop,mop, ηop,∆op, εop) in C.

C) a morphism ιcl−op ∈ HomZ(C)(Hcl, L(Hop)).

This has to satisfy the following conditions

I) Hcl has to be modular, i.e. there is the equality

II) ιcl−op is an algebra homomorphism.

III) The center condition holds:

IV) The Cardy condition holds:
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Definition 3.2.14. A morphism between (C|Z(C))-Cardy algebras (Hcl,Hop, ιcl−op) and
(Gcl, Gop, ι′cl−op) is a pair of maps fcl ∈ HomZ(C)(Hcl, Gcl), fop ∈ HomC(Hop, Gop) s.th.:

I) Both, fcl and fop, are homomorphisms of Frobenius algebras.

II) The following diagram commutes

Hcl Gcl

L(Hop) L(Gop) .

fcl

ιcl−op ι′cl−op

L(fop)
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Chapter 4

Consistent Correlators from
String-Nets

This chapter is mostly based on [141], but contains some additional new results. We
start with a review of the category of open-closed world sheets. Conformal blocks in their
categorical appearance are determined by a symmetric monoidal functor from open-closed
world sheets to vector spaces and the sewing constraints are neatly cast into a monoidal
natural transformation from the trivial functor to the conformal blocks functor. This gives
a list of 32 relations , recalled in appendix D, which need to be checked in order to define
a consistent set of correlators. Using string-nets we define a functor of conformal blocks
and Cardy algebra colored string-nets will solve the sewing constraints and vice versa, i.e.
solving the sewing constraints for the string-net conformal blocks functor will give a Cardy
algebra.

4.1 Open-closed World Sheets
The definition of the category of open-closed world sheets we give here is originally due to
[49]. It uses the orientation double of two dimensional manifolds to properly define open
boundary components. Although we will exclusively work with string-nets on quotient
surfaces, this doubling seems unavoidable for a rigorous definition of open field insertions.
An open-closed world sheet is defined as a tuple

S̃ ≡
(
Ŝ, ιS, B

i
S, B

o
D, orS, ord

)
(4.1)

consisting of

1. an oriented compact surface Ŝ with boundary components π0
(
∂Ŝ
)

= Bi
S t Bo

S.
The set Bi

S is the set of incoming boundary components, whereas Bo
S are outgoing

boundaries.

2. an orientation reversing involution ιS : Ŝ → Ŝ s.th. S ≡ Ŝ/ 〈ιS〉 is a two dimensional
manifold with corners, called the quotient surface and Ŝ → S is a Z2-bundle. The
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partition of boundary components into sets Bi
S, Bo

S is fixed under ιS. In addition
boundary components π0

(
Ŝ
)
are parametrized s.th. ιS acts as complex conjugation

on the parametrization ψb of any boundary component b. Fixed points Bop of ιS in
π0(Ŝ) are called open boundaries, all other are called closed boundary components
Bcl.

3. global section orS : S → Ŝ. If b ∈ π0
(
Ŝ
)
is fixed by ιS it holds ψ−1

b (S1 ∩H) =
Im(orS).

4. an ordering function ordS : π0
(
Ŝ
)
→

∣∣∣π0
(
Ŝ
)∣∣∣ which satisfies ordS(o) < ordS(c)

for o ∈ Bop and c ∈ Bcl. Furthermore for a subset N of Bop s.th. its pro-
jection under the quotient map Ŝ → S sits on a single connected component of
the boundary of the quotient surface there exists an n ∈

{
1, · · · ,

∣∣∣π0
(
Ŝ
)∣∣∣} s.th.

ordS(N) = {n, n+ 1, · · · , n+ |N | − 1}.

The classification of boundary components into closed and open on the orientation
double Ŝ induces a division of the boundary of S. A point p ∈ ∂S is on a closed boundary
if it has two preimages p0, p1 on disjoint connected components of ∂Ŝ. It is on an open
boundary if it has two distinct preimages in Ŝ which are on the same connected component
of ∂Ŝ. Finally there are physical boundary components on S. A point p ∈ ∂S is on
a physical boundary if its preimage is a fixed point under ιS. Note that preimages of
physical boundary points don’t need to be on boundary components of Ŝ.

Open-closed world sheets can of course be sewn. The data for a sewing of world sheets
is a set G of pairs of incoming and outgoing boundary components (i, o) ∈ Bi

S t Bo
S s.th.

(ιS(i), ιS(o)) ∈ G, either (i, o) ∈ Bi
op t Bo

op or (i, o) ∈ Bi
cl t Bo

cl and there is no o′ ∈ Bo
S

s.th. (i, o′) ∈ G and no i′ ∈ Bi
S s.th. (i′, o) ∈ G. The sewn world sheet S̃(S) has the

orientation double Ŝ(S) = Ŝ/ ∼ with ψ−1
i (z) ∼ ψ−1

o (−z). Let PS : Ŝ → S̃(S) be the
projection map. Then there exists an orientation reversing involution ιS(S) ◦ PS = PS ◦ ιS
and Bi

S(S) = {i ∈ Bi
S|(i, •) /∈ G}, Bo

S(S) = {o ∈ Bo
S|(•, o) /∈ G}. The global section is given

by orS(S) = PS ◦ orS. There is an additional definition for the ordering function which is a
bit cumbersome to write down and since we don’t need it we refrain from actually stating
it.

Finally a homeomophism F : S̃ → T̃ of open-closed world sheets is a homeomorphism
F : Ŝ → T̂ mapping

F ◦ ιS = ιT ◦ F, ψT ◦ F = ψS, F (Bi,o
S ) = Bi,o

T , F ◦ Im(orS) = Im(orT ) . (4.2)

Both, sewings and homeomorphisms of open-closed world sheets are combined into
morphisms of open-closed world sheets. This gives a category of open-closed world sheets
as defined in [106].

Definition 4.1.1. The category of open-closed world sheets WS has objects open-closed
world sheets and morphisms S̃ → T̃ are pairs (F,S), where S is a sewing of S̃ and F is a
homeomorphism S̃(S) ' T̃ .
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Two morphisms in WS are homotopic if the their sewing part agrees and their homeo-
morphisms of world sheets are isotopic as maps of two dimensional manifolds.

Together with the disjoint union this defines a symmetric monoidal category. It is
fairly obvious that WS has a nice presentation in terms of a generating set G of so called
fundamental world sheets. For any object S ∈ WS there exists a list of fundamental
objects

{
S̃i1 , · · · , S̃iNS

}
and a morphism (S, F ) : S̃i1 ⊗ · · · ⊗ S̃iNS → S. Neither the list

of fundamental world sheets, nor the morphism is unique. These facts just correspond
to cutting a two dimensional compact manifold into smaller pieces. An over-complete
generating set of world sheets is given in appendix D. Let Φ,Ψ : WS→ Vect be symmetric
monoidal functors, which are constant on homotopy classes of morphisms. Furthermore,
Ψ is required to be invertible, i.e. Ψ(S, F ) is an invertible linear map for any morphism of
world sheets. A monoidal natural transformation g : Ψ⇒ Φ can be uniquely constructed
from linear maps

gi : Ψ(S̃i)→ Φ(S̃i), i ∈ G (4.3)

by defining
gS = Φ(S, F ) ◦ (gi1 ⊗ · · · ⊗ gi`) ◦Ψ(S, F )−1 (4.4)

where (S, F ) : S̃i1 ⊗ · · · ⊗ S̃i` → S is sewing of S from fundamental world sheets. One of
the key steps in showing that a certain collection of correlators defined on simple world
sheets actually solves the sewing constraints is the following theorem.

Theorem 4.1.2. [106, Theorem 2.8] Given functors Ψ, Φ as above and a collection of
linear maps gi : Ψ(S̃i) → Φ(S̃i), then g extends to a monoidal natural transformation if
and only if

g(Ri,l) = g(Ri,r) (4.5)

for {Ri,l, Ri,r} the left and right hand side of the 32 fundamental world sheet sewings given
in appendix D.

Theorem 4.1.2 in particular applies to the trivial symmetric monoidal functor

∆ : WS→ Vect (4.6)

which maps any open-closed world sheet to the ground field and any morphism just to the
identity.

Definition 4.1.3. Let Φ : WS→ Vect be a symmetric monoidal functor which is constant
on homotopy classes of morphisms. A solution to the sewing constraints for Φ, or consistent
set of correlators for Φ is a monoidal natural transformation

corr : ∆⇒ Φ . (4.7)

This definition together with theorem 4.1.2 breaks the construction of a correlator
mapping down to checking the 32 relations for a monoidal natural transformation. Let us
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disentangle what a natural transformation from the trivial functor to Φ does. First of all
for any open-closed world sheet there is a linear map

corrS : C→ Φ(S) (4.8)

which is nothing but a singled out vector in the vector space Φ(S). In case Φ is a functor
of conformal blocks, this corresponds to the fact that correlators are specific vectors in the
space of conformal blocks on a surface. Let F ≡ (0, F ) : S1 → S2 be a homeomophism of
world sheets. By the definition of a natural transformation there is a commutative diagram

∆(S1) = C ∆(S2) = C

Φ(S1) Φ(S1)

corrS1

id

corrS2

Φ(F )

where Φ(F ) is the action of the mapping class group element F on the space of conformal
blocks. Commutativity tells that corr gives vectors which are invariant under the action of
the mapping class group. The same diagram for a sewing morphism of world sheets yields

Φ(S) ◦ corrS = corrS(S) . (4.9)

Hence gluing correlators for simpler pieces of world sheets gives the correlator on the glued
surface.

In summary, a monoidal natural transformation from the trivial functor to a functor
of conformal blocks yields consistent correlators for the RCFT described by the conformal
blocks functor.

4.2 Cardy Algebras and Consistent Correlators
In this section we show how a Cardy algebra solves the sewing constraints and vice versa.
We start with the construction of a functor of conformal blocks from string-nets. Using
the Drinfeld center instead of the Deligne double allows us to work directly on the quotient
surface of an open-closed surface instead of going through the orientation double. However,
in order to properly separate the open sector, the definition of the symmetric monoidal
functor is a bit cumbersome. The reason being that L : C→ Z(C) is a Frobenius functor,
but not a tensor functor. Throughout this section we fix a modular tensor category C and
a (C|Z(C))-Cardy algebra (Hcl,Hop, ιcl−op). The reader may have RV = C in mind, but
the results apply to an arbitrary modular tensor category. In addition, given a compact
surface Σ with possibly non-empty boundary, we denote gΣ for the genus of the closed
surface obtained from Σ by gluing disks to its boundary components.

We separate open-closed world sheets into three types: disks (type I), spheres with
non-empty open and closed boundaries but no physical boundary (type II) and all other
world sheets (type III). This classification is not closed under sewing of world sheets and
we have to discuss how the sewing operation acts in different cases. We start by a precise
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definition of the different types of world sheets and the vector spaces the block functor
assigns to them.

I) By a disk we mean an object S̃ ∈ WS s.th. g
Ŝ

= 0 and for any bi ∈ π0
(
∂Ŝ
)
it

holds ιS(bi) = bi, i.e. there are only open boundary components, whose images in
the quotient surface sit on a single connected component of the boundary, which is
given by the fixed point set of ιS. Therefore the quotient surface is just a disk Sn,m
with n incoming and m outgoing open boundaries. Open boundaries are ordered by
the ordering function ordS and we denote

Hop = H̃op ⊗ · · · H̃op︸ ︷︷ ︸
n+m

(4.10)

with

H̃op =
 Hop, for outgoing boundary

H∗op, for incoming boundary
(4.11)

and the tensor factors of incoming and outgoing components appear according to
ordS. We define

Bl(S̃) = Hs(S,Hop) . (4.12)
That is, the functor assigns the string-net space on the disk with boundary value the
tensor product Hop.

II) A sphere with non empty open and closed boundary components corresponds to an
object S̃ ∈ WS with gS = 0 and Bop 6= ∅, Bcl 6= ∅. In addition we require that the
fixed point set of ιS is connected and has non-empty intersection with Bop. Thus
there is no connected component of the boundary on the quotient surface which is
purely a physical boundary. In this case we are going to consider a certain subspace
of the string-net space Hs(S,Hcl, L(Hop)) = HomZ(C)(1,Hcl ⊗ L(Hop)), where closed
boundary components of the quotient surface are labeled with Hcl and open ones by
L(Hop) and notation indicates the same assignments as in case I). Since L is lax and
colax tensor functor for any A, B ∈ C there are morphisms

φL : L(A)⊗ L(B)→ L(A⊗B),
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φL1 : 1Z(C) → L(1C),

ψL : L(A⊗B)→ L(A)⊗ L(B),

ψL1 : L(1C)→ 1Z(C), ψL1 = D2idZC.

. The graphical presentation for ψL1 is similar to φL1 but we don’t need in the fol-
lowing, thus we just gave the formula. Recall the map L−1 : HomZ(C) (C,L(O)) →
HomC (F (C), O) from section 3.2.3. We define two maps

Z : HomZ(C)(1,Hop)→ HomZ(C)(1, L(Hop))
f 7→

(
ψL ⊗ id⊗ · · · ⊗ id

)
◦ · · · ◦

(
ψL ⊗ id

)
◦ ψL ◦ L(f) ◦ φL1

(4.13)
and

Y : HomZ(C)
(
1, L(Hop)

)
→ HomC

(
1,Hop

)
' HomZ(C)

(
1,Hop

)
(4.14)

mapping

g 7→ Y (g) ≡ L−1 ◦ F
[
φL ◦ (id⊗ φL) ◦ · · · ◦ (id⊗ · · · ⊗ id⊗ φL) ◦ g

]
(4.15)

Lemma 4.2.1. Y is left inverse to Z, i.e. Y ◦ Z = idHomZ(C)(1,Hop).

Proof. The proof is done using the graphical representation of the morphisms. In
some of the pictures we skip the red strands corresponding to the objects in C in the
definition of L. They are freely braided above black strands and clutter arguments
unnecessary.
The first thing to note is that by completeness the following holds
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. Thus the definition of the map L−1 and induction on the number of tensor factors
in HomZ(C)

(
1, L(Hop)

)
gives

.

Here we don’t give an orientation of red strands since they either correspond to Hop

or H∗op, but the precise appearance of factors is irrelevant. Note that this is just L−1

applied to any tensor factor individually. Next, the composition of the black strands
part of L(f) ◦ φL1 reads

Thus the black strand part of (id⊗L−1) ◦ (ψL ◦ id) ◦ L(f) ◦ φL1 gives
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.
Induction gives

Y ◦Z(f) =

=

=

=

.
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Let Hcl
∗ be the tensor product of closed boundary labels for S were Hcl is assigned

to an incoming closed boundary and H∗cl to an outgoing closed boundary. It is clear
that with possible intermediate application of braiding morphisms there is map
◦̃ : HomZ(C)

(
1,H∗cl

)
⊗ HomZ(C)

(
1,Hcl ⊗ L(Hop)

)
→ HomZ(C)

(
1, L(Hop)

)
. (4.16)

The vector space assigned to a type II) world sheet by the conformal block functor
is now defined as

Bl(S̃) =
{
g ∈ HomZ(C)

(
1,Hcl ⊗ L(Hop)

) ∣∣∣
∀f ∈ HomZ(C)

(
1, H̃cl

)
⊗ · · · · · · ⊗ HomZ(C)

(
1, H̃cl

)
,

∃h ∈ HomZ(C)
(
1,Hop

)
s.th. f ◦̃g = Z(h)

}
.

(4.17)

III) Let S̃ be any world sheet not of type I) or II). The block space on S̃ is defined as

Bl(S̃) = Hs(S, L(Hop)⊗Hcl) (4.18)
where again tensor factors appear according to ordS and incoming boundaries are
labeled with the dual object.

Next we have to define Bl on morphisms. The action of the mapping class group
part F of a morphism (S, F ) in WS is readily given. By the definition of F it steps
down to a homeomorphism of the quotient surface. This homeomorphism acts on the
graph of a string-net inducing a linear map on string-net space. This linear map preserves
the subspace of the string-net space for type II) world sheets, as these are string-nets
on spheres and the only non-trivial elements of the mapping class group are Dehn twists
around homology cycles corresponding to boundary components. These can be reversed
using the projector circles. Defining the action of sewings is more involved. First note that
for any A ∈ C there is an isomorphism

L(A∗) ' L(A)∗ . (4.19)
This readily follows by defining evaluation and coevaluation morphisms

evL(A) = ψL1 ◦ L(evA) ◦ φL : L(A∗)⊗ L(A)→ 1
coevL(A) = ψL ◦ L(coevA) ◦ φL1 : 1→ L(A)⊗ L(A∗)

(4.20)

and their graphical representation reads
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The straightening identities follow from the fact that C is ribbon and rigid. Just as for
objects we distinguish different types of sewings. Whenever we talk about string-nets on
world sheets of type I),II) or III) in the following we actually refer to string-nets on their
quotient surfaces.

i) [I)+I)→ I)] First consider sewing two world sheets of type I) s.th. the result is again
a type I) world sheet. In this case we just concatenate string-nets.

ii) [I)+I)→ III)] The second case is sewing two type I) world sheet resulting in a type
III) world sheet. First we apply the map Z to the source string-nets on the type
I) world sheets and then concatenate. In addition projector circles are a added to
possibly new boundary components of the quotient surface.

iii) [III)+II)→ I)] This is sewing a type III) world sheet to a type II) world sheet giving
a type I) world sheet. In this case the type III) world sheet has quotient surface a
disjoint union of disks each having a single closed boundary component. The result is
necessarily a disk with solely open boundary components. The action on the string-
nets is giving by first concatenating the string-nets and then applying Y to the result
mapping it to the correct vector space.

iv) [I)+II)/III)→ II)/III)] This is gluing disks with only open insertions to other world
sheets using open sewings. First we apply Z to the string-net on the disk and then
concatenate.

v) Any other type of sewing is just concatenation of string-nets.

The first major result is the following theorem.

Theorem 4.2.2. The definitions given for Bl on objects of WS and on morphisms ac-
cording to the last paragraph yield a symmetric monoidal functor Bl : WS→ Vect.

Proof. The only non-trivial part of the theorem is checking that composition of morphisms
is well defined. For this we first check that concatenating string-nets on type I) world sheet
and then applying Z gives the same as first applying Z to the individual string-nets and
then concatenate. Concatenation of string-nets uses evaluation morphisms as coupons are
labeled by elements in the vector spaces 〈•〉 = Hom(1, •). Thus let f ∈ HomZ(C)(1,Hop ⊗
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Hop) and g ∈ HomZ(C)(1,H∗op ⊗Hop), then it holds Z(f) ∈ HomZ(C)(1, L(Hop)⊗ L(Hop)∗),
Z(g) ∈ HomZ(C)(1, L(Hop)⊗ L(Hop)). For the concatenation we compute

(1)=

(2)=

where in (1) the definition of the basis elements
{
θ(ij);k
α

}
is used and (2) uses the ribbon

structure of C. The last picture is nothing but Z applied to the concatenation of the string-
nets. Next we note that compositions of gluing disks to closed boundary components of
type II) world sheets and gluing along open boundary components of the same world sheet
is well defined due to (4.19) . Hence compositions including open boundary components
are well defined. Compositions of gluing along closed boundary compositions are obviously
well defined.
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To summarize, we defined a functor of conformal blocks by assigning to an object in WS
the string-net space with boundary values from the Cardy algebra (Hcl,Hop, ιcl−op) modulo
technicalities in case of type II) world sheets. The restriction to the subspace in this case
is necessary to get a well defined functor. The conformal block space for type II) world
sheets contains all interesting string-nets. In particular it contains all string-nets which
are obtained from gluing type I) world sheets to the open boundary component of a type
II) world sheet, i.e. it contains all open ↔ open-closed correlator sewings.

Furthermore, the string-net spaces reproduce state spaces from the Reshetikhin-Turaev
tft. Therefore it is sensible to call this functor really a functor of conformal blocks. As at
the end of the day all correlators are determined by elements on simple world sheets by
factorization, we quickly recall the state spaces of Bl in some simple cases.

First of all , to any disk D(n,m) with n incoming open boundary components and m
outgoing boundary components it assigns the vector space

Bl(D(n,m)) = Ĥs(D,Hop) = HomZ(C)(1,Hop) ' HomC(1,Hop) . (4.21)

The genus zero part of the closed theory embedded in the Cardy algebra in the form of
the Frobenius algebra Hcl has conformal block spaces

HomZ(C)(1,Hcl) (4.22)

which are exactly the vector spaces the functor Bl gives for spheres with only closed
boundary components. Finally in the open closed sector, fundamental world sheets have a
single open boundary component. Thus the spaces of conformal blocks read

Bl(I) = Ĥs(I, Lop(Hop)⊗H∗cl) ' HomZ(C)(1, Lop(Hop)⊗H∗cl)
Bl(I†) = Ĥs(I†, Lop(Hop)∗ ⊗Hcl) ' HomZ(C)(1, Lop(Hop)∗ ⊗Hcl) .

(4.23)

This can be easily seen by noting that L not being a tensor functor is irrelevant when
having a single open tensor factor, i.e. a single open boundary component. Therefore the
subspace (4.17) is in fact the whole space HomZ(C)

(
1,Hcl ⊗ L̃(Hop)

)
.

Having a sensible symmetric monoidal functor of conformal blocks the first task is to
construct a complete set of consistent correlators on all genus g surfaces. The route we
take is to start with a set of fundamental correlator string-nets which define the structure
maps of a monoidal natural transformation. For these string-nets we show that the 32
sewing relations hold. As the reader may suspect from the 32 relations, the consistency
requirements of a (C|Z(C))-Cardy algebra will solve the sewing relations.

In the following we don’t display the Z(C)-colorings of the string-nets explicitly. In-
stead, red edges are always colored with Hop, orange edges are colored with Hcl and purple
edges are colored with L(Hop). Though Hop is an object of C, we view it as an object of Z(C)
through the fully faithful embedding C ↪→ Z(C) given by A 7→ (A, βA,•) using the fact that
C itself is braided. In addition we don’t give morphism labels. Instead disk shaped vertices
of the string-net graph correspond to structure morphisms of Frobenius algebras. The type
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of structure morphism, i.e. multiplication, comultiplication, unit or counit is determined
by the number of incident edges and their orientations. In addition the open-closed struc-
ture map ιcl−op and its Frobenius adjoint ι†cl−op are displayed as rectangular orange boxes,
where again the orientation of incident edges determines if the box corresponds to ιcl−op
or ι†cl−op. The morphisms for string-nets are always elements in Hom(1, •). All structure
morphisms can be brought to such vector spaces using evaluation and coevaluation maps.
Since concatenation of string-nets is performed using evaluation maps this doesn’t matter
and we can pretend to draw the actual morphism on the surface. Finally, some of the
fundamental string-nets miss projector circles. This is due to the fact that on the corre-
sponding topologies the circles can be homotoped to a point and vanish. Equivalently, the
circle can be freely homotoped into an embedded disk, which doesn’t intersect the rest of
the string-net and according to the graphical calculus in C this evaluates to the identity.
We make the following definition.

I) Open World Sheets:

corropprop corropm corrop∆ corropη corropε

Figure 4.1: Open fundamental correlators.

II) Closed World Sheets:

corrclprop corrclm corrcl∆ corrclη corrclε

Figure 4.2: Closed fundamental correlators.

III) Open-Closed World Sheets:
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corrI corrI†

Figure 4.3: Open-closed fundamental correlators.

We split the proof for consistent correlators into three separate lemmas.

Lemma 4.2.3. The maps {
corropprop, corropm , corrop∆ , corropη , corropε

}
(4.24)

satisfy all open sewing constraints.

Proof. This essentially immediately follows from the Frobenius properties. Since the string-
nets are embedded into disks the graphical calculus directly applies. In the following table
we list the non-trivial open sewing relations in the left column and the property of the
Frobenius algebra Hop which ensures the respective sewing relation to hold in the right
column.

R1) ←→

R2) ←→

R3) ←→

R4) ←→

R5) ←→
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R6) ←→

R7) ←→

R8) ←→

R9) ←→

. Relations R10)-R13) just follow from the fact that corropprop is the identity on Hop.

Lemma 4.2.4. The maps {
corrclprop, corrclm, corrcl∆, corrclη , corrclε

}
(4.25)

satisfy all closed sewing constraints and the genus 1 relation.

Proof. Relations R14)-R23) follow by almost the same reasons as in the corresponding open
case. The only difference is the treatment of the projector circles. We show the argument
once for Frobenius relation R22), all other circle deformations follow by the same argument.

(1)=
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(3)=(2)=

Equality (1) is the completeness relation applied to projector circles. In (2) the complete-
ness relation is performed along the k-labeled circle and in addition one of the Frobenius
properties is used to change the Hcl-colored string-net. In (3) finally the same argument
for circle dragging as in (1) and (2) is performed after doubling the outer projector circle
using the projector property.

Next we show the Dehn twist relation R24).

(1)=

(3)=(2)=

In (1) and (2) the completeness relation is used, which is possible, since Z(C) has sim-
ple objects (Ui ⊗ Uj, βouij,•). Then this relation is expanding Hcl into its simple summands
and using the completeness relation on the summands, seen as tensor products in C. Since
drawing these steps one by one is cumbersome and not enlightening we summarize the pro-
cedure in one step. Finally in (3) we use [57, Proposition 2.25] saying that a commutative,
symmetric Frobenius algebra in a ribbon category has trivial twist.
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The braiding relation R25) follows from

(1)=

(3)=(2)=

(5)=(4)=

Again (1), (2) is completeness for projector circles, (3) and (4) uses completeness to
drag the Hcl-colored edge along the circle and in (5) we first use that Hcl has trivial twist
and braiding, as well as a circle dragging on projector circles.

So we are left with showing the genus 1 property which is satisfied by modular invariance
of Hcl.
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(1)=

(2)= (3)=

(4)= (5)=

(6)= (7)=

Here (1) uses completeness in a different normalization, therefore we replaced coupons
with rectangles in the basis summation. Equation (2) is the modular property of Hcl. In
(3), (4), (5) and (6) we again use completeness to manipulate the string-net graph. Finally
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in (7) equation B.3 is used.

Lemma 4.2.5. All open-closed sewing relations R26)-R31) are satisfied.

Proof. The first relation to show is R26).

(1)=

(3)=(2)=

First we drag the L(Hop)-colored string-net along the projector circle in (1) and (2),
then we use the center condition in (3).

Relation R27) is almost trivial and obviously is satisfied as ιcl−op is an algebra homo-
morphism. In pictures this is

=

.

The relations R28) and R29) are consistency requirements for ιcl−op and ι†cl−op. We only
show R28), the other follows by a similar computation.
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(1)=

(3)=(2)=

In the first picture the red dotted lines indicate the gluing of the world sheet and (3) is
just the definition of ι†cl−op.

The relation R30) is the unit part of ιcl−op being an algebra homomorphism. Since
we had related arguments several times by now and there is really not much to show we
don’t give the graphical representation here. The last relation is R31) and since the only
condition we haven’t used so far is the Cardy condition one might already guess that this
is the central point of the argument.

(1)=
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(3)=(2)=

One last time we note that (1) and (2) is the completeness relation dragging the L(Hop)-
colored string-net along the projector circle. Equality (3) is the Cardy condition.

So we see that each property of a Cardy algebra corresponds to a specific sewing
relation. One might say that the procedure given here realizes the higher genus conformal
bootstrap in an abstract, categorical way since we showed that any correlator for an open-
closed rational conformal field theory has a unique expansion in terms of some fundamental
correlators. It is also noteworthy that it suffices to have consistency conditions in genus
zero and a single requirement in genus one in order to have an all genus description. No
further constraints appear for higher genus correlators. We summarize the results obtained
so far in a theorem.

Theorem 4.2.6. Given the fundamental correlators{
corropprop, corropm , corrop∆ , corropη , corropε , corrclprop, corrclm, corrcl∆, corrclη , corrclε , corrI , corrI†

}
(4.26)

on generating world sheets all 32) sewing relations are satisfied. Therefore there is a
monoidal natural transformation

corr : ∆⇒ Bl (4.27)

giving consistent all genus correlators for the open-closed RCFT described by the (C|Z(C))-
Cardy algebra (Hcl,Hop, ιcl−op).

One might wonder if the other direction of the theorem holds, i.e. given a consistent set
of correlators for the conformal blocks functor, does this determine a Cardy algebra? By
methods involving the use of the Reshetikhin-Turaev tft this was shown in [106]. Here we
give a somewhat easier proof in terms of string-nets. The main simplification is that one
doesn’t need to go through three dimensional bordisms for whom proofs tend to become
difficult as there is no easy way of picturing three dimensional objects on a sheet of paper.

We start by recalling that the first homology class H1(Σ,Z) of a compact surface Σ of
genus g with n boundary components {∂Σ}i is generated by circles around a and b-cycles
of the g-handles and circles which can be freely homotoped to a boundary component. An
example showing the homology cycles is given in figure 4.4.
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Figure 4.4: A genus 3 surface S3,6 with a-cycles respectively b-cycles shown in green and
blue. Red circle show boundary generators in H1(S3,6).

String-nets on any compact surface have projector circles winding once around bound-
ary generators of the first homology class. Assume that a string-net winds around such a
generator. In an annular neighborhood of the boundary we can perform the manipulation
of string-nets

(1)=

(2)=

with (1), (2) the usual circle dragging. Orientations of string-nets shown in the picture are
arbitrary and by induction on the winding number one might replace any string-net by an
equivalent string-net which doesn’t wind around boundary homology cycles. In particular
string-nets on spheres are all equivalent to string-nets with a single coupon, as they can be
unwind leading to a string-net where all edges not intersecting the boundary are localized
in a disk. These internal edges together with their incident vertices can be composed into a
single morphism. Hence one might conclude that string-nets on fundamental world sheets
are all of the form shown in figures 4.1, 4.2 and 4.3, with vertices labeled by arbitrary
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morphisms. This is almost true. The only complication comes from open and closed
propagator world sheets, whose correlators evaluated to the identity map before. A general
string-net on Oprop, Cprop can of course have an arbitrary morphism. Thus we have to
enlarge the setup.

Assume we are given objects Ĝop ∈ C and Ĝcl ∈ Z(C) and we color open boundaries
with Ĝop, closed boundaries with Ĝcl. A string-net on Oprop is determined by a morphism
pop : Ĝop → Ĝop. Furthermore, suppose that the morphisms on all other fundamental world
sheets are chosen s.th. we get a solution to the sewing constraints. Then relation R10)
and R1) give

R1)= R10)= R1)=

showing that p is in fact an idempotent. By the same argument based on relations R14)
and R16) one shows that the closed propagator map pcl : Ĝcl → Ĝcl is also an idempotent.
Since C and Z(C) are abelian categories one can split the idempotents

rop : Ĝop → Gop, eop : Gop → Ĝop

rop ◦ eop = idGop , eop ◦ rop = pop
(4.28)

rcl : Ĝcl → Gcl, ecl : Gcl → Ĝcl

rcl ◦ ecl = idGcl , ecl ◦ rcl = pcl .
(4.29)

In physics terms this corresponds to a situation where the state space of the theory is overly
large leading to states with non-invertible two point function. We may put invertibility of
the two point functions in by hand, i.e. we require pop and pcl to be invertible. Then they are
invertible idempotents on finite dimensional vector spaces, thus they are the identity. But
choosing instead the retracts (splitting) (4.28), (4.29) corresponds to restricting the theory
to smaller state spaces Gop, Gcl with invertible two point functions. For the morphisms
exhibiting the retracts the graphical representation
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is chosen. Next note that similar to [106, Lemma 4.4] it holds

=

.

It is in fact not hard to show this. Both side are elements in⊕
i,j∈I

HomZ(C)(Ui ⊗ Uj, Ĝcl)⊗ HomZ(C)(Ĝcl, Ui ⊗ Uj) . (4.30)

Since
{

(Ui ⊗ Uj, βouij,•)
}
are the simple objects of Z(C) the map⊕

i,j∈I
HomZ(C)(Ui ⊗ Uj, Ĝcl)⊗ HomZ(C)(Ĝcl, Ui ⊗ Uj)→ HomZ(C)(Ĝcl, Ĝcl)∑

i,j∈I
vij ⊗ wij 7→

∑
i,j∈I

vij ◦ wij
(4.31)

is bijective. Applying the map to both sides and using completeness of the basis as well
as the splitting properties of rcl, ecl shows that both sides map to the same element in
HomZ(C)(Ĝcl, Ĝcl).

From the discussion of string-nets on genus zero surfaces it is clear that there are
morphisms .

Om O∆ Oη Oε Cm C∆ Cη Cη I I†

m̂op ∆̂op η̂op ε̂op m̂cl ∆̂cl η̂cl ε̂cl ι̂ ι̂†

Table 4.7: The first row states the type of world sheet and the second row the corresponding
maps.

These morphisms have source and target the big state spaces Ĝop and Ĝop. In addi-
tion one can use the same proofs as before to establish certain properties for the hatted
morphisms
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R6) ⇒ m̂op is associative product on Ĝop

R7) ⇒ ∆̂op is coassociative coproduct on Ĝop

R8) ⇒ ∆̂op ◦ m̂op = (m̂op ◦ id) ◦ (id ◦ ∆̂op)

R9) ⇒ ∆̂op ◦ m̂op = (∆̂op ◦ id) ◦ (id ◦ m̂op)

R9) ⇒ pop ◦ m̂op = m̂op

R10) ⇒ ∆̂op ◦ pop = ∆̂op

R10) ⇒ pop ◦ η̂op = η̂op

R11) ⇒ ε̂op ◦ pop = ε̂op

R16) ⇒ pcl ◦ m̂cl = m̂cl

R17) ⇒ ∆̂cl ◦ pcl = ∆̂cl

R18) ⇒ pcl ◦ η̂cl = η̂cl

R19) ⇒ ε̂cl ◦ pcl = ε̂cl

R20) ⇒ m̂cl is associative product on Ĝcl

R21) ⇒ ∆̂cl is coassociative coproduct on Ĝcl

R22) ⇒ ∆̂cl ◦ m̂cl = (m̂cl ◦ id) ◦ (id ◦ ∆̂cl)

R23) ⇒ ∆̂cl ◦ m̂cl = (∆̂cl ◦ id) ◦ (id ◦ m̂cl)

R24) ⇒ Ĝcl has trivial twist.

R25) ⇒ m̂cl is commutative.

R26) ⇒ ι̂cl−op satisfies the center condition for L(m̂op).

R27) & R30) ⇒ ι̂cl−op is an algebra homomorphism for L(m̂op).

R31) ⇒ ι̂cl−op satisfies the Cardy condition for L(m̂op)
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R32) ⇒ m̂cl satisfies the modularity condition.

But relations R1-R4) and R15),R16) don’t give that η̂op/ ε̂op or their closed equivalents
are unit/ counit maps. But it is readily checked that

mop = ro ◦ m̂op ◦ (eo ⊗ eo) : Gop ⊗ Gop → Gop

∆op = (ro ⊗ ro) ◦ ∆̂op ◦ eo : Gop → Gop ⊗ Gop

ηop = ro ◦ η̂op : 1→ Gop

εop = ε̂op ◦ eo : Gop → 1
mcl = rcl ◦ m̂cl ◦ (ecl ⊗ ecl) : Gcl ⊗ Gcl → Gcl

∆cl = (rcl ⊗ rcl) ◦ ∆̂cl ◦ ecl : Gcl → Gcl ⊗ Gcl

ηcl = rcl ◦ η̂cl : 1→ Gcl

εcl = ε̂cl ◦ ecl : Gcl → 1
ιcl−op = L(ro) ◦ ι̂cl−op ◦ ecl : Gcl → L(Gop)

ι†cl−op = rcl ◦ ι̂†cl−op ◦ L(eo) : L(Gop)→ Gcl.

(4.32)

yield a symmetric Frobenius algebra structure on Gop and a commutative, symmetric Frobe-
nius algebra structure on Gcl. Intermediate propagators vanish due to relations in the table
involving the propagator morphisms. Less trivial is the fact that center condition, Cardy
condition and modularity still hold for the unhatted morphisms. We start with modularity.

(1)= (2)=

(3)= (4)= (5)=
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(6)=

In (1) the definition of mcl is inserted, (2) and (4) are m̂cl ◦ (id ⊗ pcl) = m̂cl, (3) is
modularity for m̂cl, (5) uses 4.6 and (6) is again the definition of mcl. The center condition
follows from

(1)= (2)= (3)=

where (1) is the definition of ιcl−op and mL(Gop), (2) is the center condition for ι̂cl−op where
we inserted an intermediate propagator morphism without changing the diagram. (3) is
again insertion of definitions. Finally the Cardy condition is the computation

(1)= (2)= (3)=
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with all steps following the by now familiar arguments from modularity and center condi-
tion.

This shows that if we start with a solution of the sewing constraints for a Ĝop/ Ĝcl-
colored conformal blocks functor from string-nets, we in fact get the structure of a Cardy
algebra on the retracts Gop/ Gcl. But even more is true. Sewing constraints give a Cardy
algebra unique up to isomorphism. Assume that for a given solution we choose another
set of retracts (G′op, r′op, e′op), (G′cl, r′cl, e′cl).

Lemma 4.2.7. The maps
fop : rop ◦ e′opG′op → Gop

fcl : rcl ◦ e′clG′cl → Gcl
(4.33)

are isomorphisms of Frobenius algebras.

Proof. It suffices to show that both are algebra as well as coalgebra maps. We only present
the proof for the open maps, the closed case goes exactly the same.

mop ◦ (fop ⊗ fop) = rop ◦ m̂op ◦ (eop ◦ fop ⊗ eop ◦ fop)
= rop ◦ m̂op ◦ (pop ◦ e′op ⊗ pop ◦ e′op)
= rop ◦ m̂op ◦ (e′op ⊗ e′op)
= rop ◦ e′op ◦ r′op ◦ m̂op ◦ (e′op ⊗ e′op)
= fop ◦m′op

(4.34)

fop ◦ η′ = fop ◦ r′op ◦ η̂op = rop ◦ η̂op = η (4.35)
This shows that fop is an algebra map.

∆op ◦ fop = (rop ⊗ rop) ◦ ∆̂op ◦ eop ◦ rop ◦ e′op
= (rop ⊗ rop) ◦ ∆̂op ◦ e′op
= (rop ◦ eop ⊗ rop ◦ eop) ◦ (r′op ⊗ r′op)∆̂op ◦ e′op
= (fop ⊗ fop) ◦∆′op

(4.36)

εop ◦ fop = εop ◦ eop ◦ rop ◦ e′op = εop ◦ e′op = ε′op (4.37)
This shows that fop is a coalgebra map.

Lemma 4.2.8. The diagram

G′cl G

L(G′op) L(Gop)

fcl

ι′cl−op
ιcl−op

L(fop)

commutes.
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Proof.
ιcl−op ◦ fcl = L(rop) ◦ ι̂cl−op ◦ ecl ◦ rcl ◦ e′cl

= L(rop) ◦ ι̂cl−op ◦ e′cl
= L(rop) ◦ L(e′op ◦ r′op)ι̂cl−op ◦ e′cl
= L(fop) ◦ ι′cl−op

(4.38)

We summarize the above lemmas in a theorem.

Theorem 4.2.9. Given any set of fundamental string-nets on generating world sheets
with closed boundary values Ĝcl and open boundary values Ĝop, L(Ĝop) which satisfy the
sewing constraints defines a (C|Z(C))-Cardy algebra (Gcl, Gop, ιcl−op), which is unique up to
isomorphism.

4.3 Structure Constants and Defect Fields
There exists a convenient way to compute structure constants and prove modular invariance
as well as factorization of correlators under sewing of world sheets in a more explicit fashion.
The procedure is related to the FRS formalism [58][60][61][62][63][48], but instead of the
Reshetikhin-Turaev tft we use the string-net tft outlined in appendix C. This allows us
to compute structure constants of correlators for highest weight fields in an expansion of
elementary two and three point functions in terms of conformal blocks. The spaces of
conformal blocks are still given by Hom-spaces in a modular tensor category. Thus the
missing ingredient for true correlation functions is an isomorphism of modular functors
MCat

'−→ Man where MCat is the modular functor in its categorical form as used in this
thesis and Man is a modular functor given as a vector bundle with flat connection over the
moduli space of Riemann surfaces. The genus zero and one part of the latter functor is
given by correlation functions of intertwining operators and their q-traces. A higher genus
analytic construction is missing though.

Before giving the construction, we take our time and discuss boundary states and
defects in RCFTs. In a Cardy algebra there is a fixed boundary condition in the form of
a Frobenius algebra. Hence there are no boundary condition changing operators in the
theory. The categorical description of boundary fields and conditions is due to [60]. Its
central object is a special, symmetric Frobenius algebra F in a modular tensor category
C. The reader may think of C as the representation category of a rational VOA. One
can construct a full RCFT with arbitrary topological defects and symmetry preserving
boundary conditions just from F . This may come as a surprise since F is purely chiral
data, bulk objects, however, require the inclusion of antichiral fields. In section 4.4 we
compute the bulk partition function using the string-net formalism. This computation
shows, that indeed, the full content of the bulk theory can be derived from F . So, how to
arrive at F? In chapter 3.1.1 we discussed conformal open field algebras (H,Y,1) over a
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rational VOA V . In the course of section 3.1.1 we explained that the state space H is a
module over V . Hence we may decompose it in terms of simple modules {Ui} for V

H =
⊕
i∈I
niUi (4.39)

where ni ∈ Z≥0 are multiplicity coefficients. The open vertex operator Y became a V -
intertwining operator of type

(
H
HH

)
. Splitting it into simple objects yields

Y =
∑
i,j,k∈I

ni∑
α=1

Yk
ij,α =

∑
i∈I

ni∑
α=1

ΨH
i,α . (4.40)

The summands ΨH
i,α give the coupling of the primary field corresponding to the represen-

tation Ui to the boundary. Since there are ni such primaries, there are ni possibly different
couplings. We have seen that the product of intertwining operators gave (H,Y,1) the
structure of an algebra in RV . If there is in addition a non-degenerate bilinear form on H
this algebra becomes a symmetric Frobenius algebra. For it to be special one has to make
some additional assumptions. For a discussion of how the assumptions lead to specialness
of the Frobenius algebra see [60, section 3.2]. The first assumption is that there are no pri-
maries of negative conformal weight in the theory. Recall that simple representations {Ui}
of a VOA come with fixed lowest weights {hi} and the statement translates to the fact that
in all categorical construction non of the representations with hi ≤ 0 appear. Recall that
a necessary condition for a unitary highest weight representation of the Virasoro algebra
is a positive conformal dimension of the highest weight state. The second assumption is
that the bulk theory Hcl adjacent to the boundary theory H has a unique vacuum state
|0〉 which is normalized 〈0|0〉 = 1. Categorically this means that dimC [Hom(1, Hcl)] = 1.
When computing the partition function later, this in turn is the requirement Z00 = 1.
However, from the formalism one very well computes partition functions having Z00 > 0.
As discussed in [60, section 3.2] this corresponds to the superposition of several CFTs
whose correlation functions completely decouple. Hence the assumption still applies in the
sense that it applies in each individual summand. One could circumvent this problem by
demanding F to be indecomposable [123], i.e. there don’t exist algebras F1, F2 ∈ C s.th.
F = F1 ⊕ F2 as an algebra.

Assume that we are in the more general situation of having different boundary condi-
tions B1, B2 which preserve the underlying chiral symmetry, i.e. they are representations of
the chosen underlying VOA V . In such a theory one can have boundary changing operators{

ΨB2B1
i,α (x)

}
[31][115][125][47] corresponding to a situation modeled on the upper half plane

by

.
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These are fields changing the boundary conditions from B1 to B2 inserted at the point
x on the real axis. In addition they transform in the representation Ui of V and have a
multiplicity label α. Similar to the previous case, when interpreting ΨB1B2

i,α as an inter-
twining operator, this gives the coupling of the primary corresponding to a Ui summand of
the theory to the two boundaries. Conformal invariance and sewing constraints [125][115]
naturally lead to the fact that there are OPEs{

boundary changing
fieldsB2 → B3

}
×
{

boundary changing
fieldsB1 → B2

}
→
{

boundary changing
fieldsB1 → B3

}
(4.41)

which in case B1 = B2 = F , B3 ≡ B can be interpreted as having a morphism

ρ : F ⊗B → B (4.42)

in C (see [60, section 4.4]). The sewing constraints give that ρ equips B with the structure
of a left F -module. The upshot is, that other boundary conditions are described by left
F -modules in C and field insertions are elements of HomF (B1 ⊗ Uk, B2). Being a left
F -module has some nice consequences, e.g. as on object of C, B decomposes as

B =
⊕
i∈I
ABi,FUi (4.43)

where ABi,F = dim
[{
boundary changing operators ΨB,F

i,α

}]
. On the other hand ABi,F should

be expansion coefficients of the annulus partition function with one boundary condition
given by B and the other by F . We will compute these integers using string-nets in section
4.4.

A similar discussion can be made for defects. The naturally expected outcome is that
defect conditions correspond to F1|F2-bimodules in C if the defect separates CFTs build
from boundary algebras F1, F2. Field insertions are naturally elements of HomF1|F2(Uk ⊗+

D1⊗− Ul, D2) describing a defect changing field D1 → D2. In case D1 = D2 = F these are
just bulk fields.

However, we make the simplifying assumption that the defects should be topological.
Assume the following situation

where D is the defect. Let T1, T 1 and T2, T 2 be the holomorphic and anti-holomorphic
parts of the energy momentum tensors for CFT1 and CFT2. The defect should preserve
conformal symmetry. By the folding trick one can view D as boundary for the conformal
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field theory CFT1 ⊗ CFT2, where CFT2 has left and right movers interchanged. Hence
preservation of conformal symmetry can be given in terms of the gluing condition

T1(x) + T 2(x)− T 1(x)− T2(x) = 0 (4.44)

with x a coordinate running along the defect. Being a topological defect means that (4.44)
is solved by

T1(x) = T2(x), T 1(x) = T 2(x) . (4.45)
Note that this in particular implies that CFT1 and CFT2 have the same central charge and
that defect lines can be freely moved as long as they don’t cross a field insertion. Hence
the name topological.

Before we start with the construction a word about choices. Notice that one chooses
a fixed but arbitrary symmetry preserving boundary condition F for a VOA V at the
beginning. The corresponding special symmetric Frobenius algebra in RV fixes the whole
RCFT. A good question is how much arbitrariness is involved in that choice, i.e under
which conditions do different choices of boundary conditions lead to different RCFTs.
Since the description is purely categorical this question can be stated as, when do different
special symmetric Frobenius algebras in a modular tensor category C lead to different
theories? Since all ingredients of the theory are given in form of modules for the chosen
Frobenius algebra it comes not as a surprise that different choices F1, F2 lead to the same
theory if they are Morita equivalent as algebras in C [60][123]. An algebra F in C has a
category of left modules FM with objects (M,ρ) ∈ C left modules and morphisms are maps
HomC(M,N) 3 Φ : (M,ρM)→ (N, ρN) intertwining the module maps. Roughly speaking
F1, F2 are Morita equivalent if there is an equivalence of categories F1M ' F2M.

In this section it will be convenient to change the model for extended surfaces. So far we
used compact surfaces Σ with parametrized boundaries and implicitly we also assumed that
there is a given marked point on each component of the boundary, which for convenience
can be taken as the preimage of (0, 1) ∈ C under the boundary parametrization. An
equivalent description is given by gluing disks to each boundary component resulting in a
closed surface. Let Di be the disk glued to the i-th boundary component. Denote p0 for
the image of 0 ∈ Di under the gluing. Then an additional germ of an arc, or equivalently
a non-zero vector v ∈ Tp0Σ is chosen. That the two descriptions of the surface, one with
parametrized boundary and marked point on the boundary and the other as a closed surface
with marked points and a choice of non-vanishing tangent vectors at marked points, are
the same is shown e.g. in [5, Proposition 5.18]. Let (Σ, {ψi} , {pi}) be a compact surface
Σ with ∂Σ = ⊔

i ∂iΣ boundaries, boundary parametrizations ψi : ∂iΣ → S1 and marked
points pi ∈ ∂iΣ. The corresponding closed surface is denoted by (Σ̂, {qi} , {vi}), with Σ̂ the
closed surface obtained by gluing in disks, qi the center of the i-th glued disk and vi the non
vanishing tangent vector at qi. There is a well defined string-net space on (Σ̂, {qi} , {vi}),
where univalent vertices of the embedded graph have to be marked points on the surface
and the edge incident to a univalent graph has to agree in an open neighborhood of the
point with the germ of an arc induced by the non vanishing tangent vector. Denote the
string-net space with boundary value {Ai ∈ Z(C)} by Hs(Σ̂,A). In [98, Theorem 7.3] it is
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shown that there is an isomorphism of string-net spaces

Hs(Σ,A) ' Hs(Σ̂,A) (4.46)

which, roughly speaking, is given by the map

.

On the rhs the dotted circle corresponds to the former boundary with marked point
and the solid circle is still a projector circle.

The advantage of this description in this section is that boundaries of surfaces will
correspond to boundary field insertion whereas closed field insertions are just marked points
in the bulk. In the following C will be a fixed modular tensor category with list of simple
objects {Ui}i∈i and F ∈ C is a symmetric, special Frobenius algebra. In addition in this
section a world sheet is an oriented compact surface Σ with possibly non-empty boundary
and a finite set of marked points {(pi, vi)}i=1,··· ,N in the bulk and a finite set of marked
points {(qj,±)j=1,··· ,M} on the boundary. The extra label± for boundary points keeps track
of incoming insertions (−) and outgoing ones (+). Starting from a similar setup, in [50]
a correlator for the surface with arbitrary bulk, boundary and defect fields is constructed.
We give a construction in terms of string-net graphs.

Recall that a string-net has an underlying isotopy class of an embedded graph. The
starting point is an isotopy class of an oriented, finite graph Γ ↪→ Σ, s.th. its image on
the surface Σ gives a cell decomposition. In addition each vertex has an arbitrarily chosen
distinguished edge, s.th. the orientation of Σ induces a cyclic order on its incident edges.
In the following we will not distinguish between the abstract graph Γ and its image under
the embedding. Let V2 ⊂ V (Γ) be the subset of two-valent vertices. Let C2 be the set of
2-cells determined by Γ. To define a string-net we label each 2-cell c with a fixed special,
symmetric Frobenius algebra Fc in C. A string-net is built on Σ with given 2-cell labels
along the following steps:

I) (Bulk edges) An edge E in the bulk is adjacent to exactly two 2-cells cl, cr, one to
the left and one to the right according to the orientation of the graph. The edge gets
colored by a Fcl |Fcr -bimodule.

II) (Boundary edges I) An edge running along a boundary component without two valent
vertex is colored as
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where the oriented circle shows the orientation of Σ and N is a left Fcl-module.

III) (Bulk vertex I) For n ≥ 3, an n-valent vertex v in the bulk gets colored as

with bv ∈
〈
X∗1 ⊗F1 X2 ⊗F2 · · · ⊗Fn−1 Xn

〉
. The first edge is the distinguished edge

here and bv is in the image of the map

HomF1|Fn(X1, X2 ⊗F2 · · · ⊗Fn−1 Xn)→ Hom(1, X∗1 ⊗F1 X2 ⊗F2 · · · ⊗Fn−1 Xn) .
(4.47)

If one of the edges is colored by a Frobenius algebra F , i.e. is a transparent defect,
the map is required to factor through the module morphism. In case the transparent
defect edge is oriented towards the vertex the module map is precomposed with φ−1

F .

IV) (Bulk vertex II) For a two valent vertex in the bulk we get a string-net

.

Note that it doesn’t matter if the insertion of the simple object (Ui⊗Uj, βouij ) ∈ Z(C)
is to the left or right of the edge entering the Dij

X1X2-colored coupon. The edge can
be dragged along the projector circle mapping one choice to the other.

V) (Boundary vertex I) For n ≥ 3 a n-valent vertex on the boundary is replaced with
the string-net
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where
bv ∈ HomF1|1(N1, X2 ⊗F2 · · · ⊗Fn−1 Xn ⊗Fn N2) . (4.48)

VI) (Boundary vertex II) Two valent vertices on the boundary are replaced by string-nets
in strips. The general situation looks as follows

where we only show the two valent vertices of Γ in a neighborhood of the boundary.
As before N` is left F -module and ψ`PQ ∈ HomF (P ⊗ U`, Q). In addition we labeled
only some field insertions and dotted black lines running along the boundary indicate
possible additional field insertions not shown here. We also suppressed the ±-label of
field insertions. The manifold with string-net is a manifold with corners and in case
the boundary two valent vertex has label − we think of the line segment to which the
corresponding green curve is attached as oriented opposite to the orientation induced
from the bulk.

The following is immediate from the properties of string-net spaces.

Lemma 4.3.1. Given a world sheet Σ with graph Γ, a fixed label for 2-cells, bulk marked
points

{
(pi, vi, Dki`i

XiYi
)
}
i=1,···N

, boundary marked points
{

(qj,±, ψsjNjNj+1
)
}
j=1,··· ,M

and a fixed
choice of boundary conditions {Nf} for boundary components without field insertion and
fixed coloring of n ≥ 3-valent vertices the above assignments give a well defined element

corr(D,Ψ) ∈ Hs(Σ,
N⊗
i=1

Uki`i ⊗
M⊗
j=1

Usj) (4.49)

where we denoted Upq = (Up ⊗ Uq, β
ou
pq,•) and D = (Dk1`1

X1Y1 , · · · , D
kN `N
XNYN

),
Ψ = (ψs1

N1N2 , · · · , ψ
sM
NMNM+1

).

Note that we implicitly choose a specific order for open and closed insertions.
If two adjacent 2-cells are labeled with the same Frobenius algebra F , an edge incident

to both can be labeled with F itself. Such edges are usually called transparent, as they
don’t correspond to an actual defect. Let ET (Γ) ⊂ E(Γ) be the set of transparent edges
and ΓT ⊂ Γ the transparent subgraph given by the union of all transparent half-edges and
vertices incident to transparent half-edges. Its complement ΓD = Γ\ΓT is called defect
subgraph. It includes all true defect lines as well as all field insertions. Let CD be the union
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of all two cells whose boundaries are unions of true defect edges. We require that the
transparent edges of Γ give a triangulation of CD. A sensible isomorphism of world sheets
should leave the defect graph invariant. The right notion of morphism was formulated in
[50, Definition 5.1] and it says that a morphism f : Σ → Σ̃ is an element of the mapping
class group of Σ, which maps f(ΓD) = Γ̃D and in addition preserves all 2-cell, edge and
vertex labels.

Proposition 4.3.2. Let f : (Σ,Γ)→ (Σ̃, Γ̃) be an isomorphism of world sheets with defect
graph. Then

f#(corrΣ(D,Ψ)) = corrΣ̃(D,Ψ) . (4.50)

Proof. Since f preserves the isotopy class of ΓD we can assume Γ = Γ̃D. Hence it suffices
to show that action on the transparent subgraph doesn’t change the correlator. First of
all note that by [50, Lemma A.2, Lemma A.1] any n ≥ 3-valent vertex of the transparent
subgraph with only F -labeled edges incident to it factors through three valent vertices and
is given by

with I+ = O+ = idF and I− = φ−1
F , O− = φF . Using the Frobenius properties it is not

hard to see that it holds
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In addition if v ∈ ΓT has defect edges incident to it, its morphism label factors through
left module maps as described in [50, Definition 3.1]. The morphism f fixes each 2-cell of
CD as it fixes the defect graph. It only changes the transparent subgraph inside a 2-cell
of CD. Furthermore ΓT is a dual triangulation of such a 2-cell which is labeled according
to [48, Appendix B]. Thus by [48, Lemma 3.3-3.6] this is independent of the triangulation.
Since f maps any triangulation to another triangulation, this shows (4.50).

In order to compute structure constants we have to give a basis for string-net spaces
on the sphere. The boundary values of our string-nets consist entirely of simple objects in
Z(C) and

Hs(S2,
K⊗
i=1

Usiri) = HomZ(C)(1,
K⊗
i=1

Usiri) . (4.51)

Let
{
θ((ij)(kl));(mn)
α

}
be basis in HomZ(C)(Umn, Uij ⊗Ukl). Since left and right movers in the

Drinfeld center separate, the corresponding string-net on a three punctured sphere reads

.

The ε-move of the string-net yields
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(1)= ZSN (ε)7−−−−→

(2)=

In the first step the projector circle is dragged and (2) is duality of the basis elements.
This shows that string-nets

Θα1,··· ,αk−1 =

are a basis in Hs(S2,
⊗k
`=1 Ui`j`) where

and
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is a projector onto span
{

Θα1,··· ,αk−1

}
. Note that the projector acts by concatenation of

string-nets followed by k − 1 applications of the ε-move.

The goal of this section is to derive a formula for factorization of correlators involving
defects. Since defects can be fused, the only non-trivial cutting is given by cutting along a
circle, which is crossed by a single defect line. Alternatively we may glue world sheets at
defect generating field insertions using a suitable insertion of 1 = ∑

v |v〉 〈v|. As usual the
complete basis of states should be given by inverses of two point functions. Since we only
want to factor crossing a defect line, the only surviving terms in the complete basis will
correspond to two point functions of defect generating fields. So we start by computing
structure constants of defect two point functions on the sphere. We start with a cell
decomposition of the sphere with two 2-cells, which are glued together along a single 1-cell
(the equator). Having two field insertions generating a defect with label X, the string-net
then reads
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.

In the figure we pulled the F -labeled part of the 1-cell to the front. The thin horizontal
circle is not an element of the defect graph. It is included for presentation purposes only
and highlights the fact that we are working on a sphere. Using that F is symmetric special
and Dij

XF ;α ∈ HomF |F (Ui⊗+X ⊗− Uj, F ), Dīj̄
FX;β ∈ HomF |F (U∗i ⊗+ F ⊗− U∗j , X) intertwine

left F -actions it is easy to show that this is equivalent to

.

In the following we compute the structure constant wrt. to the basis chosen in the
previous paragraph. In the graphical proof we omit the lower part of the string-net pro-
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jector and only show the upper part giving the proportionality constant. Applying the
appropriate projector yields

ZSN(ε)
y

.

In the second figure the underlying sphere is not shown. Since this is a morphism in
HomC(1,1) ' C it is just a number. We denote this number by

Kij
XF,αβ . (4.52)

Thus we can glue world sheets crossing defect lines starting from insertions
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where the interior of the dashed circles show local disk shaped neighborhoods on world
sheets. The regions may correspond to disjoint world sheets or a single one. Gluing is now
given by gluing in the respective basis element, resulting in a cylinder shaped region with
string-net

gl
ij
X =

On the other hand it is not hard to check, that the correlator on the world sheet with
the same topology as the glued world sheet a cell decomposition from a defect graph with
defect edge labeled by X running along the cylinder gives

cX =
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Both local string-nets are elements in the string-net space

Hs(S2, X∗ ⊗X) ' HomZ(C)(X,X). (4.53)

By semi-simplicity this is equal to

HomZ(C)(X,X) '
⊕
i,j∈I

HomZ(C)(X,Ui ⊗ Uj)⊗C HomZ(C)(Ui ⊗ Uj, X) (4.54)

and a basis element has the string-net presentation

bijµν =

Before we continue, we have to give a quick technical remark. The string-net cX is not
really part of a string-net space since its boundaries are not decorated. We will encounter
this situation several times in the following. In all situations this is due to the fact, that
we look at a cut out part of a string-net on a bigger surface. In [66, Lemma 69] it is
shown that these parts can be replaces by string-nets which are true elements of string-net
spaces. Thus all manipulations to come are fine and the pedantic reader may replace the
string-nets appropriately when performing calculations.

The procedure is now similar to the one in [48][50]. We start by showing that cX is
a projector. We then show that its image is spanned by string-nets of the form gl

ij
X .

This shows that cX has an expansion in terms of gl
ij
X and we only have to compute the

structure constants.

Lemma 4.3.3. cX is a projector.

Proof. As most of the time, the proof is graphical.

(1)= (2)= (3)=



104 4. Consistent Correlators from String-Nets

Step (1) is the bimodule property, (2) is twice the Frobenius property and (3) is specialness
of F .

Pre- and postcomposing bijµν with cX yields

(1)=

Figure 4.5

where (1) is dragging along the projector circle. We need a small lemma to relate the
above string-nets to gl

ij
X .

Lemma 4.3.4. Let X be a F -bimodule and A, B ∈ C. Define the map

PX : X ⊗ A→ X ⊗ A (4.55)

by

.

Then PX is an idempotent. In addition, defining

HomPX (X ⊗ A,B) = {f ∈ Hom(X ⊗ A,B) | f ◦ PX = f } . (4.56)
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it holds
HomPX (X ⊗ A,B) ' HomF |F (X ⊗− A,F ⊗+ B) (4.57)

Proof. To show that PX is an idempotent is the same computation as in the proof of lemma
4.3.3.

For the second point, let f ∈ HomPX (X ⊗ A,B). Define the map I as

.

We have to check that I(f) ∈ HomF |F (X ⊗− A,F ⊗+ B). One easily checks that I(f)
intertwines left F -actions by using the properties of the Frobenius algebra F . The proof
for intertwining of right actions is more interesting and uses invariance under the projector.

(1)= (2)=

(3)= (4)= (5)=
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(6)= (7)= (8)=

(9)=

In (1) the projector is inserted, (2) uses symmetry of F to move the product to the
right and employs the left representation property, (3) is associativity, (4) holds by the
Frobenius property and unitality of the product, (5) is just a deformation of the string
diagram, (6) is again Frobenius property and unitality, (7) is a deformation, (8) uses the
left and right representation property and finally (9) is invariance under the projector.

In the other direction define the map J as

and we check that it is actually invariant under precomposition with PX .
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(1)= (2)= (3)=

The first step follows from g being a F − F -bimodule map, (2) is symmetry of F and (3)
is associativity of F followed by specialness and unitality.

With the help of the Frobenius properties and representation properties it is very easy
to show that J is left and right inverse to I.

The lemma together with [63, Lemma 2.2] shows that the rhs of figure 4.5 has an
expansion in terms of gl

ij
X . To compute the structure constants, we show that the string-

nets

(̃
g
ij
X

)∨
δγ

=

for
(
Dlk
XF ;γ

)∨
∈ HomF |F (X,Uk ⊗+ F ⊗− Ul),

(
Dl̄k̄
FX;δ

)∨
∈ HomF |F (F,U∗k ⊗+ X ⊗− U∗l )

give a dual basis to the formal vector space spanned by the
{
gl

ij
X,αβ

}
.
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(1)=
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ZSN (ε)7−−−−→

(2)=
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(3)=

(4)=
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(5)=

(6)=
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(7)=

In (1) the string-net in the left tube is moved to the right, followed by a splitting of
the projector circles. The second step is application of ZSN(ε) and a deformation of a
β-coupon around the sphere. Steps (2) and (3) is application of identities B.4. In (4) we
doubled the projector circle and (5) is again B.4. Step (6) is immediate from the definition
of the coupon morphisms and (7) is just a deformation of the string-nets. For the upper
string-net on the sphere is computed in [50, (A.10)]. The value of the second one follows
from duality of the basis and specialness of F .

δα,γdX = δβ,δdF =
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We absorb the proportionality constant by defining duals

(
g
ij
X

)∨
δγ
≡
d2
i d

2
jD2

dXdF

(̃
g
ij
X

)∨
δγ

. (4.58)

We are ready to compute the expansion constants.

(1)=
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(2)=

ZSN (ε)7−−−−→

(3)=
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(4)=

(5)=

(6)=

(7)=
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In the computation step (1) is deformation of the string-net and the completeness relation,
(2) is again completeness. In step (3) we just deformed the string-net and used that(
Dkl
XF

)∨
intertwines left F -actions. In addition we omitted to draw the sphere the string-

net is located on. (4) first uses the Frobenius property followed by unitality and counitality
of F as well as the right F -action intertwining property for

(
Dk̄l̄
FX

)∨
. Next, (5) first is

unitality of F to get a straight F -colored edge. Then the upper coupon is moved along the
X-colored edge to the bottom and the k̄-colored edge is swiped around the sphere. Finally
symmetry of F is used to insert the product and coproduct. (6) is right action intertwining
used twice to move the product to the bottom and lastly (7) is just specialness of F .

Recalling the normalization factor of the dual element
(
gl

ij
X

)∨
, the expansion coefficient

reads

.

The last step towards a closed formula for the gluing is to relate the above constant to the
defect two point function.
Lemma 4.3.5. 〈

gkl
X;αβ

∣∣∣cX〉 = dkdl
(
Kkl
X;αβ

)−1 (4.59)

The proof is almost the same as the one presented in [50, Lemma A.5]. The major
difference is that our normalization may be different, thus we quickly give a proof.

Proof. Let φ ∈ HomF |F (F,U∗k ⊗+ X ⊗− U∗l ) and ψ ∈ HomF |F (U∗k ⊗+ F ⊗− U∗l , X). Define
maps

λ : HomF |F (F,U∗k ⊗+ X ⊗− U∗l )→ HomF |F (Uk ⊗+ F ⊗− Ul, X)
κ : HomF |F (U∗k ⊗+ F ⊗− U∗l , X)→ HomF |F (F,Uk ⊗+ X ⊗− Ul)

(4.60)

by
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One quickly computes

= =

and similarly λ(κ(φ)) = φ. Thus if we pick a basis
{
φklα
}
in HomF |F (F,U∗k ⊗+ X ⊗− U∗l )

and a basis
{
ψklβ

}
in HomF |F (U∗k ⊗+ F ⊗− U∗l , X) the representing matrices of λ and κ

satisfy ∑
β

λαβκβγ = δαγ
dkdl

=
∑
β

κγβλβα (4.61)

Thus we compute

∑
α

=
∑
α
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Expanding λ, κ in basis finally gives
∑
σωα

κβσδσαdFλαωδωγdX = dFdX
dkdl

δβγ . (4.62)

Putting all things together yields∑
α

Kkl
X;βα

〈
glklX;αγ

∣∣∣cX〉 = dkdlδβγ (4.63)

which is equivalent to 〈
glklX;αγ

∣∣∣cX〉 = dkdl
(
Kkl
X;γα

)−1
. (4.64)

We summarize the section so far in a theorem.

Theorem 4.3.6. The set of correlators is closed under defect crossing gluings. More
precisely, (Σ,D, Dkl

XF ;α, D
k̄l̄
FX,β,Ψ) is a world sheet with defect and boundary field insertions

D, Ψ which can be glued according to the procedure described above and (Σ̃,D,Ψ) is the
world sheet with the same topology as gl(Σ) and concurring field insertions. Then there
is an expansion

corrΣ̃(D,Ψ) =
∑
k,l∈I

∑
α,β

dkdl
(
Kkl
X;βα

)−1
gl

(
corrΣ(D, Dkl

XF ;α, D
k̄l̄
FX,β,Ψ)

)
(4.65)

Note that this is the same formula as in [50, Proposition 2.3], which is to be expected
as we are working with the same chiral data of a defect RCFT. Nonetheless we derived
the formula using the string-net tft instead of the Reshetikhin-Turaev tft, which required
quite some different technical methods.

Besides bulk factorization, world sheets can also factor through the boundary. We
will be more terse in that discussion. Since the crucial computations in [48] are in terms
of string diagrams in C we can use these results to manipulate string-nets. Recall that
boundary insertions are given by elements in HomF (M ⊗ Ui, N) for left F -modules M ,
N . First we outline the computation of a disk two point function. As a disk is a 2-cell
from the start there may be a transparent subgraph inside of the disk. However, using
the Frobenius properties it is easy to check that is can be completely removed (see [48,
section C]), thus the string-net simply reads

.
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This is a string-net on a strip with boundary value Ui ⊗U∗i . A basis for this string-net
space is given by

Ci =

An arbitrary string-net on the Ui-colored strip is determined by a single morphism
φ = KφidUi and its projection onto Ci is computed by applying the projector

inside a disk (there is some obvious cutting and gluing of string-diagrams involved).
Computing the projection of the two point function we find

.
Note that this is the same number as [48, (C.3)]. Two cases have to be distinguished

for boundary factorization.

I) The first case is gluing along boundary insertions on the same boundary. One of
the boundary segments needs to have label −, the other is labeled + (we are gluing
incoming to outgoing boundaries). This we define as follows
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. In words, we glue in a strip whose upper surface is facing towards the reader in
the picture. The dotted black line around the boundary indicates, that there might
in addition be other field insertions not shown in the picture. Locally the string-net
on the surface Σ′ (the surface with the same topology as the glued surface) looks as
follows

where the boundary field insertions on the left boundary component are the insertions
encircled by the i and ī-colored edge in the gluing picture. We have to show that the
defect graph defining the correlator on Σ′ decomposes in terms of the one obtained
from Σ plus the local part from the gluing formula for all possible boundary field
insertions. We can use the proof given in [48, section 4] almost verbatim. First note
that given a fixed defect graph ΓΣ′ one can add a transparent edge connecting the
two boundary components. By the definition of the gluing the boundary components
bound world sheet faces colored by the same Frobenius algebra F . In addition we
assume that the defect graphs agree outside the local gluing area, hence no non-trivial
defect edge can run between the boundary components. The respective string-net
gets an extra part

.
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By [48, (4.22)] this equals

∑
i∈I

∑
α,β

di (Ki
MN)−1

αβ

This shows that the string-net on Σ′ is a summation over the string-nets obtained
from gluing. Therefore factorization along the boundary holds in this case.

II) The second case to consider is gluing of boundary components lying on different
boundary components. Note that this intertwines topologies of world sheets in the
opposite direction to the previous case. Here we start with two different connected
components of the world sheet, which get glued to a single one. In case I, the gluing
split a single connected component into two.

The relevant gluing now looks as follows

.

On the other hand on the topology of the glued surface the string-net defining the
correlator is given by
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.

By the same argument as in case I) we may add an extra edge. This yields

.

Again by [48, (4.22)] this equals
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∑
i∈I

∑
α,β

di(Ki
MN)−1

αβ

which is again a sum over world sheets with defect graph obtained from gluing.

The results for boundary factorization or open gluing can be summarized in the follow-
ing theorem.

Theorem 4.3.7. The set of correlators defined via defect graphs is closed under boundary
factorization. That is, let (Σ,D,Ψ, Bi

MN,α, B
ī
NM,β) be a world sheet which can be glued

along boundary insertions according to the rules above. If we denote (Σ′,D,Ψ) the world
sheet with the same topology as gl(Σ) and concurring field insertions. The correlator for
(Σ′,D,Ψ) can be expanded as follows

corrΣ′(D,Ψ) =
∑
i∈I

∑
α,β

di(Ki
MN)−1

αβ gl
(
corrΣ(D,Ψ, Bi

MN,α, B
ī
NM,β)

)
(4.66)

4.4 Partition Function and Examples of Cardy Alge-
bras

In section 3.2 Cardy algebras were derived from analytic correlation functions in genus zero
and one. However, no example was presented. In this section we take another route and
present examples for Cardy algebras which are derived by categorical methods. We start
by computing the bulk partition function for an RCFT with given symmetric Frobenius
algebra F in a modular tensor category C. In other words we compute the zero point
correlator on the torus using string-net methods. The result unsurprisingly reproduces the
partition function derived in [60]. The computation a posteriori justifies the definition of
bulk field insertions in case the defect is the transparent defect F . As a pure motivational
result we then recall a result from [107] telling that special symmetric Frobenius algebras
and the bulk partition function assemble into a Cardy algebra.

Before computing the partition function we discuss string-net spaces on the torus.
Recall [66, Theorem 70] telling that for a given list of boundary values A ∈ Z(C), the
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string-net space on a surface Σ can be computed by cutting Σ into generators {σ} and
sum over all possible internal boundary decorations at cutting circle modulo the equivalence
relation that cylinder pieces can be freely changed from one generator to another. It is
not hard to show that for a cylinder this boils down to the following isomorphism [66,
Theorem 68]

HomZ(C)(1, A⊗B) −→ Hs(S2, A⊗B) (4.67)

f 7−→

.

Recall that a list of simple objects in Z(C) is given by
{

(Ui ⊗ Uj, βouij )
}
. Thus any

string-net on a cylinder factors through string-nets

.

Decomposing a torus into two cylinders along two a-cycle cuts and employing the equiva-
lence relation under gluing yields that a general string-net on a torus is in an equivalence
class of string-nets of type

which decompose into simple objects
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Tij =

.

Obviously {Tij}i,j∈I constitute a basis for Hs(T ) '⊕i,j∈I HomZ(C)(1, (Ui ⊗Uj)⊗Z(C) (U∗i ⊗
U∗j )) '⊕i,j∈I HomZ(C)(Ui ⊗ Uj, Ui ⊗ Uj).

To compute the torus partition function we start with a suitable transparent graph.
Picking an F -colored triangulation it is not hard to check, that we end up with a string-net

Z(F ) =

.

The factorization formula derived in the previous chapter yields
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Z(F ) =
∑
i,j∈I

∑
α,β

djdj
(
Kij
F ;αβ

)−1

=
∑
i,j∈I

∑
α,β

djdj
(
Kij
F ;αβ

)−1

where in the equality we just dragged the string-net around the b-cycle. The non-trivial
string-net in the left cylinder is a morphism in HomC(Ui ⊗ Uj, Ui ⊗ Uj). Since the trace
is a non-degenerate bilinear form on hom-space in a semi-simple category, we can pick an
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ONB {e1, · · · , eN} in HomC(Ui ⊗ Uj, Ui ⊗ Uj) for which e1 = 1
didj

idUi⊗Uj . The coefficients
of an expansion of f ∈ HomC(Ui⊗Uj, Ui⊗Uj) in terms of the basis are given by tr(f ◦ ei).
Let

P ij =

,

then it holds

tr(e1 ◦ P ij) = = 1
didj

Kij
F ;βα

Thus we have a decomposition of Z(F ) = Z(F )1 + Z(F )2 into two terms:

Z(F )1 =
∑
i,j∈I

Zi,j(F )Ti,j (4.68)

and

Z(F )2 =
∑
i,j∈I

∑
α,β

djdj
(
Kij
F ;αβ

)−1 N∑
`=2

C`

.
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By the discussion of basis element for torus string-net spaces Z(F )2 = 0. Its string-net
part needs to have an expansion in terms of e1 in order to being non-vanishing, but these
are exactly the terms collected in Z(F )2.

We summarize

Theorem 4.4.1. Given a special symmetric Frobenius algebra F in a modular tensor
category C, its partition function is given by

Z(F ) =
∑
i,j∈I

Zi,jTi,j (4.69)

with expansion coefficients

Zi,j(F ) ≡ dimC
[
HomF |F (Ui ⊗+ F ⊗− Uj, F )

]
. (4.70)

Coming back to the Grothendieck ring of Z(C), we note that the string-net basis el-
ements are in one-to-one correspondence with objects {Ui ⊗ Uj}. Identifying these with
characters of simple representations χiχj we see that (4.70) gives an expansion

Z(F ) =
∑
i,j∈I

Zi,jχiχj (4.71)

in terms of left and right moving characters of simple representations, in case C is the
representation category of a rational VOA.

As a concrete example one can consider the ADE classification of modular invariant
partition functions for ŝl(2)k. It is possible to compute the respective modular invariant
partition functions using the categorical setup. We are not going to perform the calcula-
tions, but lay out the necessary steps. The ADE classification first appeared in [30][39].
A rigorous construction was given in [46][100][123]. Let Rk be the modular tensor cate-
gory of representations of ŝl(2)k. It contains k + 1 equivalence classes of simple objects
{U0, · · · , Uk}, which are the integrable highest weight representations. According to [123]
the relation between Dynkin diagrams and algebras in Rk reads

Dynkin diagram level ` Algebra F
An n− 1 F = U0

D2n+2 4n F = U0 ⊕ U4n
E6 10 F = U0 ⊕ U6
E7 16 F = U0 ⊕ U8 ⊕ U16
E8 28 F = U0 ⊕ U10 ⊕ U18 ⊕ U28

The algebra structure in each case is derived from the branching rules (which are the
fusion rules)

[Ui] ? [Uj] =
min(i+j,2k−i−j)∑

`=|i−j|
[U`] . (4.72)
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Having the components
{
µkij
}
of the algebra map µ : F⊗F → F one can use [60, (3.83)] to

express components
{

∆ij
k

}
of the coalgebra map ∆ : F → F ⊗F in terms of the

{
µkij
}
and

other categorical data. Finally [60, (5.85)] gives an expression for Zm̄n in terms of
{
µkij
}
,

fusion matrices of Rk and their inverses, braiding morphisms in Rk as well as components
of twists of simple objects in Rk. This gives in principle an algorithm for computing Zmn,
though going through all the steps (in particular working out the structure constants of
the algebra map) is a cumbersome and lengthy task. In case of the E7 invariant this was
done in [60] and the result for the partition function is

Z(F ) =
16∑

i,j=0
Zijχiχj

= |χ0 + χ16|2 + |χ4 + χ12|2 + |χ6 + χ10|2 + |χ8|2

+ χ8(χ3 + χ14) + (χ2 + χ14)χ8

(4.73)

which is of course the result known in physics (see e.g. [26, table 4.1]).
Finally we come back to Cardy algebras. It turns out that there exists a (C|Z(C))-

Cardy algebra (F,Z(F ), ι), where Z(F ) = ∑
i,j∈I(C) Zi,j(F )Ui ⊗ Uj. The crucial step is the

realization of Z(F ) as the image of a retract

r : L(F )→ Z(F ), e : Z(F )→ L(F ), e ◦ r = PL(F ) (4.74)

of the idempotent

.

This is shown e.g. in [128]. The precise relation to Cardy algebras is the theorem

Theorem 4.4.2. [107, Theorem 3.18] Given a special, symmetric Frobenius algebra F in
C. The triple (F,Z(F ), ιcl−op = e) is a (C|Z(C))-Cardy algebra.

With the considerations for the bulk partition function it is not hard to compute the
annulus partition for two boundary modules M,N . The defect graph consists of two
boundary edges winding around the boundary components of the cylinder plus a F -colored
triangulation of the cylinder. Upon using the Frobenius properties of F one easily checks
that this can always be reduced to
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A(F )NM =

.

Note that this a string-net without projector circles, i.e. with empty boundary value.
By [98, Theorem 8.4,6.4] it holds

Hs(A) ' HomZ(C)(L(1), L(1)) '
⊕
i,j∈I

HomC(U∗i , U∗j )⊗C HomC(Ui, Uj)

'
⊕
i∈I

HomC(Ui, Ui)
(4.75)

but this is a vector space of dimension |I| spanned by the identity morphisms. Going
through Kirillov’s construction it is not hard to see that a string-net basis is given by

Bi =

.

Using boundary factorization we can rewrite A(F )NM as
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A(F )NM =
∑
i∈I

∑
β,γ

di
(
Ki
MN

)−1

βγ

.

In the figure we added a contractible circle shown in turquoise which is not part of the
string-net but highlights an embedded disk. The string-net inside this disk is an element
in HomC(Ui, Ui). To find its projection onto the identity morphism one take its categorical
trace and divides by di. The result is easily seen to be

Ki
MN :γβ

di
. (4.76)

Thus the partition function has an expansion

A(F )NM =
∑
i∈I

∑
β,γ

di
(
Ki
MN

)−1

βγ

Ki
MN :γβ

di

.
or in plain formulas

A(F )NM =
∑
i∈I

dim [HomF (M ⊗ Ui, N)] Bi (4.77)

With the one to one map between simple objects and characters of a VOA, this is the
formula

A(F )NM =
∑
i∈I
A(F )Ni,Mχi (4.78)
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with A(F )Ni,M = dim [HomF (M ⊗ Ui, N)]. This justifies the use of HomF (M ⊗ Ui, N) as
the space of boundary fields. As a first consistency remark we note that A(F )Ni,M ∈ Z≥0
sine they are dimensions of vector spaces. This is of course expected for multiplicity
spaces of fields. Furthermore we rederived formulas [60, (5.135),(5.64)] for annulus and
torus partition function. In addition in [60, section 5] various checks for the expansion
coefficients were performed. As an example it was shown that the trace formula [129]
holds ∑

M∈IF
A(F )Mi,M =

∑
k,`,j∈I

N k̄
`iZ(F )`k (4.79)

where the sum one the lhs runs over all simple left F -modules1. As another proof of
principle one can easily derive that the annulus partition function gives a non-negative
integral matrix representation (NIM-rep) of the fusion rules. As the left module structure
on M ⊗ Ui reads

ρM⊗Ui = ρM ⊗ idUi (4.80)

it holds that
HomF (M ⊗ Ui, N) ' HomF (M,N ⊗ U∗i ) (4.81)

by applying evaluation and coevaluation morphisms for Ui. Let M,K be simple left F -
modules. It holds

∑
N∈IF

A(F )Ni,MA(F )Kj,N
(1)=

∑
N∈IF

dim [HomF (M ⊗ Ui, N)] dim [HomF (N ⊗ Uj, K)]

(2)=
∑
N∈IF

dim
[
HomF (M ⊗ Ui, N)⊗C HomF (N,K ⊗ U∗j )

]
(3)= dim

[
Hom(M ⊗ Ui, K ⊗ U∗j )

]
(4)=
∑
k∈I

Nk
ij dim [Hom(M ⊗ Uk, K)]

(5)=
∑
k∈I

Nk
ijA(F )Kk,M .

(4.82)

In step (1) only definitions are inserted, in (2) it is used that the product of dimensions
of vector spaces is the dimension of the tensor product and (4.81) is applied. (3) is semi-
simplicity of FM . In (4) again (4.81) is used followed by the fusion rules Ui ⊗ Uj =⊕
k∈I N

k
ijUk. Lastly (5) is just the definition again.

During the final stage of writing this thesis it was brought to our attention that in-
dependently from our work, in [132] a construction related to the one presented in this
chapter is performed.

1It was shown on [65, section 5] that for a special Frobenius algebra F in a modular tensor category C
the category of left modules FM is semi-simple.
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4.5 Conclusions
In this chapter we have shown that (C|Z(C))-Cardy algebras uniquely determine consistent
correlators for all genus open-closed RCFTs. The proof is via string-net models on surfaces.
One way of saying this is that we give a hands on proof where the categorical string-
diagrams really correspond to Feynman diagrams of the RCFTs. Furthermore we extended
the construction to include symmetry preserving boundary conditions as well as topological
defects. We showed that the extended construction still solves the sewing constraints by
showing precise factorization formulas for correlators under bulk and boundary gluing.
Using this we computed the bulk and boundary partition functions and showed that the
bulk computation reproduces known partition functions. Furthermore, the categorical
prescriptions give easy proofs of some facts for RCFTs, e.g. we could easily show that
annulus partition functions constitute a NIM-rep. of the fusion rules.

A natural question at this point is if the string-net construction can expanded to an
equivariant setting. By this we mean that one might look at situations where a discrete
group G acts on the surface and the correlators should be equivariant under the action
of G. Quotiening the group action out, one should obtain correlators of the G-orbifold
theory. Another loose end is an extension beyond rational CFTs. In contrast to the G-
equivariant setting where natural generalizations of modular tensor categories exist, the
categorical setting in the non-rational case is less developed. For logarithmic CFTs there
is an extended notion of modularity, but the construction given in this thesis heavily
depends on semi-simplicity of all categories in question. Lastly one might ask about the
relation to other "curves on surfaces" approaches to open-closed interactions. One related
example might be the Arc-complex approach of [96][97]. An obvious loose end is the missing
connection between the true complex analytic and the categorical world. In an algebraic
geometry setting recent progress towards an understanding of vector bundles of conformal
blocks for rational VOAs (in particular the behavior under factorization) has been made
in the papers [37][38]. In the analytic setting articles [67][68] contain a construction of the
vector bundle and a proof for factorization. Using the tools of [73] it seems possible to get
a true complex analytic modular functor from [68]. This could then be compared to the
categorical notions.
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Chapter 5

Homotopy Algebras and Field
Theories

This chapter deals with the second thematic part, homotopy algebras and their role as an
organizing structure for classical gauge theories.The results presented in this chapter are
based on the publications [74][21].

5.1 Basics of L∞ algebras
The main technical tool will be strong homotopy Lie algebras also known as L∞ algebras.
There are by now many sources for basic L∞-theory, since they turn out to play a role in
various different areas in mathematics and physics. Classic sources are [109][72][110]. A
textbook account via operads can be found in [119]. Mathematical descriptions of field
theories using local L∞-algebras appeared in [35][36]. More physics minded introductions
are given e.g. in [75][95][152][23][24].

This introductory section is structured as follows. We begin with a quick conceptual
approach to L∞ algebras using tree shaped graphs. This will lead to a definition in terms
of higher skew symmetric brackets on a graded vector space. The bar construction will
give an alternative definition with symmetric higher brackets on the degree shifted graded
vector space. This step is mainly a technical one. The determined reader could stick with
the first definition and work out all results along the same lines as presented here. But as a
word of warning, signs and degrees become very unhandy very quickly. The degree shifted
version is better suited for describing morphisms and quasi-isomorphisms of L∞ algebras,
whose definition we give next. Their definition becomes conceptually clearer in the shifted
version of L∞ algebras.

We begin with a conceptual approach to L∞ algebras. The reader familiar with operads
will recognize the cofibrant replacement of the Lie operad, but we will not use these terms.
The take away from these introductory words may be the results of [118]. An algebra
over such a cofibrant replacement is really a structure up to homotopy, meaning in this
specific case, that given an L∞ algebra on a chain complex (A•, dA), and given another
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chain complex (B•, dB), which is chain homotopy equivalent to (A•, dA), the L∞-structure
can be transported to (B•, dB) via the chain homotopy equivalence. This justifies the
"homotopy" in strong homotopy Lie algebra. Recall that a Lie algebra on a vector space
V is a skewsymmetric bilinear bracket

[ • , • ] : V × V → V, [v, w] = −[w, v] (5.1)

satisfying the Jacobi identity

[u, [v, w]] + [w, [u, v]] + [v, [w, u]] = 0 . (5.2)

In case the vector space is graded V = ⊕
n∈Z Vn the bracket and Jacobi identity has to

respect the internal grading, i.e. for homogeneous elements v, w

[v, w] = (−1)1+|v||w|[w, v], [v, w] ∈ V|v|+|w| (5.3)

and similar signs appear in the Jacobi-identity. The essential information behind the
definition can be nicely encoded in planar trees. The bracket corresponds to a binary tree

which satisfies skew symmetry

and Jacobi-relation

A bit more formal we consider the S2-module Σ(2), generated by , which is just the sign-
representation. Here Sn denotes the symmetric group on n elements. The corollas can be
grafted by gluing roots to leaves as we did for the Jacobi identity relation. Given a planar
tree T with n-leaves one can form a Sn-module by decorating vertices with Si-modules. To
be more precise, consider a collection of Si-modules {K(i)}, then one sets

K(T ) =
⊕

v∈v(T )
K(|in(v)|) (5.4)

where in(v) is the set of incoming edges at v. All our trees are oriented top to bottom, i.e.
from leaves to root. In case we consider the collection

Σ(n) =
 Σ2 ' C[ ], n = 2

0, else
(5.5)
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the only surviving contributions in Σ(T ) are trees with trivalent vertices only. Of course
this just corresponds to all possible ways to compose the bracket. Modulo technicalities,
the S = ⊔

n≥2 Sn -module F (K) given by
F (K)(n) ≡

⊕
T∈PRT,L(T )=n

K(T ) (5.6)

with PRT the finite set of all rooted planar trees and L(T ) the number of leaves, is the
freely generated S-module. E.g. the trees in the Jacobi-relation are elements in F (C[ ])(3).
Since we want the Jacobi-identity to hold, we quotient the free module by these relations,
i.e

Lie = F (C[ ])/
〈 〉

. (5.7)
To get a Lie algebra on a graded vector space V we consider the S-module
{Hom(V ⊗n, V )}n≥2 with Hom(V ⊗n, V ) = ⊕

m∈Z Homm(V ⊗n, V ) the vector space of n-airy
bilinear maps of all degrees m. The symmetric group acts by permuting inputs of bilinear
maps. A Lie algebra on V is nothing else then a S-equivariant, degree preserving map

L : {Lie(n)} →
{

Hom(V ⊗n, V )
}

. (5.8)
In addition, both sides have a natural notion of composition. On the lhs this is grafting
of trees, where on the rhs it is simply composition of maps. We require L to respect
compositions, in other words, it should be a map of C-linear operads. That this indeed
defines a Lie algebra is easily checked. Since the left hand side is concentrated in internal
degree 0, there will be only degree preserving linear maps in the image of L. The only
generating element is the binary tree, which gets mapped to a skew-symmetric bracket due
to equivariance. The quotient enforces the Jacobi identity for the bracket. All higher airy
operations are given by compositions of the bracket. Note that in this construction the
defining ingredient of a Lie algebra, the bracket, is separated from the vector space it acts
on. This allows for an independent study of such operations. This is the whole essence of
operads.

The notion of a L∞ algebra resolves Lie algebras. This means, that one sets up a
chain complex (Lie∞, ∂) and taking Lie as a chain complex with trivial differential
concentrated in degree 0 there should be quasi-isomorphism

(Lie∞, ∂) '−→ Lie . (5.9)
We are working in homological grading, i.e differentials are of degree −1. A concise def-
inition of Lie∞ can be found in [117]. Let V be a graded vector space. We denote
V [k] = ⊕

n∈Z V [k]n with V [k]n ≡ Vn−k for the k-shifted vector space. Consider the natural
higher airy generalization L(n) = sgnn of the generating module in the Lie algebra case.
One might think of this as the C-vector space generated by n-corolla
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subject to the skewsymmetry relation

.

As before consider the S-module F (L), freely generated by {L(n)[n− 2]}n≥2 via grafting
of trees. We turn this into a chain complex by defining the differential on generators

.

The second sum runs over all (k, n)-unshuffles, which are permutations satisfying

σ(1) < · · · σ(k), σ(k + 1) < · · · < σ(n) (5.10)

and χ(σ) is the Koszul sign of the permutation, which in this case is just (−1)|σ|. The
differential can be extended to all of F (L) by requiring it to be a derivation wrt. to
grafting of trees. Note that the differential is minimal. It has no linear term, rather it
is a sum over quadratic terms. Since ∂ is extended as a derivation, its homology is the
free operad on the homology of the generators. One easily checks, that in degree 0, the
differential is the zero map. The image of the three corolla is exactly the Jacobi-identity.
Hence the homology in degree zero exactly reproduces Lie. One has to show that higher
homologies vanish, which is lengthy but straightforward. The alert reader recognizes the
structure of an L∞-algebra in the differential. Indeed an L∞ algebra is a S-equivariant,
degree preserving map

(Lie∞, ∂) −→
⊕
n≥2

Hom•(V ⊗n, V ), d
 (5.11)

of chain complexes, where (V, d) is a chain complex and the differential is extended to
multilinear maps as

(df)(v1, · · · , vn) = d(f(v1, · · · , vn)) +
n∑
i=1

(−1)|v1|+···+|vi−1|f(v1, · · · , d(vi), · · · , vn) .

(5.12)
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This means the data of an L∞-algebra consists of a chain complex with higher airy brackets
(V, {µn}n≥1) of degree |µn| = n− 2, which are skew symmetric

µn(· · · , vi, vi+1, · · · ) = (−1)1+|vi||vi−1|µn(· · · , vi+1, vi, · · · ) . (5.13)

and we set µ1 = d. Being a map of chain complexes in addition leads to the L∞-relations

Jn =
∑

j+k=n+1
j,k≥1

∑
σ∈US(k,n)

(−1)k(j−1)(−1)σχ(σ)µj(µk(vσ(1), · · · , vσ(k)), vσ(k+1), · · · , vσ(n)) = 0

(5.14)
for any v1, · · · , vn ∈ V and n ≥ 1. The Koszul sign now takes the internal grading of V
into account, i.e.

χ(σ)vσ(1) ∧ · · · ∧ vσ(n) = v1 ∧ · · · ∧ vn (5.15)

for v ∧w = (−1)|v||w|w ∧ v. Let us spell out the first few defining equations to get a better
feeling for L∞ algebras. In the following we denote u, v, w ∈ V .

1)
J1 = µ1 ◦ µ1 = 0 (5.16)

The first equation is of course just the fact that µ1 is a differential.

2)
J2(u, v) = −µ1(µ2(u, v)) + µ2(µ1(u), v) + (−1)|u|µ2(u, µ1(v)) = 0 (5.17)

This is the information that the differential is a derivation of the two bracket.

3)

J3(u, v, w) =µ1(µ3(u, v, w)) + µ3(µ1(u), v, w)+
(−1)|u|µ3(u, µ1(v), w) + (−1)|u|+|v|µ3(u, v, µ1(w)) + µ2(µ2(u, v), w)
+ (−1)(|u|+|v|)|w|µ2(µ2(w, u), v) + (−1)(|v|+|w|)|u|µ2(µ2(v, w), u)

=0
(5.18)

The third equation captures the failure of µ2 being a Lie bracket. It gives that the
Jacobi identity is satisfied up to derivative terms of a higher homotopy µ3. Note that
relation Jn is a map of degree n− 3.

This pattern continues for higher equations. For example J4 gives that a generalized Jacobi
identity among µ3,µ2 holds up to derivative terms of a µ4 homotopy.

For some purposes it is more convenient to give a definition of an L∞ algebra in terms
of symmetric maps. Mathematically this is the bar construction. The construction assigns
to an L∞ algebra (V, {µn}n≥1) a codifferential D of degree −1 on the cofree coalgebra∧
V [1] = ⊕

n≥
∧n V [1]. We neither discuss coderivations, nor the terms cofree or coalgebra.
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Instead we decompose the coderivation in terms of linear maps. D decomposes naturally
into

D =
∑
n,k≥1

Dn,k, Dn,k :
n∧
V [1]→

k∧
V [1], k ≤ n (5.19)

and in fact being a coderivation ensures that there are linear and symmetric maps{
di : ∧i V [1]→ V [1]

}
, s.th.

Dn,n−k(w1, · · · , wn) =
∑

σ∈US(k,n)
dk+1(wσ(1), · · · , wσ(k+1)) ∧ wσ(k+2) ∧ · · · ∧ wσ(n) (5.20)

Being a codifferential, i.e D2 = 0 produces an infinite set of equations for the linear maps
{di}, just as there were infinitely many consistency equations for an L∞-algebra. Figuring
out these equations is just a matter of algebra and the result is

0 =
∑

k+`=n+1
k,`≥1

∑
σ∈US(k,n)

χ(σ) d`(dk(wσ(1), · · · , wσ(k)), wσ(k+1), · · · , wσ(n))), (5.21)

for any w1, · · · , wn ∈ V [1] and n ≥ 1. Hence one defines a 1-shifted L∞-algebra to be a
graded vector space W with symmetric multilinear maps {di}i≥1 satisfying (5.21). Given
a L∞ algebra (V, {µi}) one gets a 1-shifted L∞ algebra on V [1] by setting

dn(sv1, · · · , svn) = (−1)
∑n

i=1 |vi|(n−i)sµn(v1, · · · , vn) (5.22)

where s : Vn → V [1]n+1 is the shifting isomorphism. One easily checks that dn is sym-
metric and of degree −1. That the maps indeed give a 1-shifted L∞ algebra is shown
in [110]. The reason for introducing 1-shifted L∞ algebras is their easier handling. All
maps have the same degree, there are no extra signs from skew symmetry and in addition
the defining equation (5.21) has less signs. Moreover the definition of a L∞-morphism
becomes quite handy in the shifted case. Being really terse one might define a morphism
of L∞ algebras F : (V, {µn}) → (W, {νn}) to be a map of codifferential, cofree coalgebras
(∧V [1], DV ) → (∧W [1], DW ). Of course this definition is not very enlightening in terms
of doing computations. Spelled out in terms of the component maps of the codifferentials
this is equivalent to a collection of symmetric multilinear maps

{
Fk : V [1]⊗k → W [1]

}
k≥1

of degree 0 satisfying the defining equation
∑

k+l=n+1

∑
σ∈US(k,n)

χ(σ)Fl
(
dVk (xσ(1), . . . , xσ(k)), xσ(k+1), . . . , xσ(n)

)

=
n∑
j=1

∑
k1+···+kj=n

ki≥1

∑
σ∈US(k1,··· ,kn)

χ(σ)
j! dWj (Fk1 ⊗ · · · ⊗ Fkj)(xσ(K)) .

(5.23)

A morphism
{
Fk : V [1]⊗k → W [1]

}
k≥1

is a quasi-isomorphism if the induced map F1 :
H•(V [1], dV1 )→ H•(W [1], dW1 ) is an isomorphism. Note that being a quasi-isomorphism is



5.2 Construction of L∞ algebras 141

an equivalence relation as shown in [131, Corollary 5.11]. In addition in [131] it is proven
that every L∞ algebra splits uniquely up to quasi-isomorphism

(L, {µi}) ' (F, µ1)⊕ (H, {νi}i≥2) (5.24)

where H ≡ H•(L, µi) is the homology of the underlying chain complex and (F, µ1) its
complement in (L, µ1). The first summand is called linear contractible and the second
minimal model. Uniqueness follows now from the fact, that there exist a quasi-isomorphism

(L, {µi}) '−→ (H, {νj}j≥2) . (5.25)

5.2 Construction of L∞ algebras
In this section we give the main result of [74] and outline its proof. A corollary of the
theorem will be e.g. the L∞ structure for the Courant algebroid.

In [10] it was shown that for a given vector space H and a homological resolution

· · · Xn · · · X0 ' B0 ⊕H H 0dn+1 dn d1 prH

one can recursively construct a L∞-structure on (X,µ1), where we collected all the differ-
entials of the resolution in µ1 and threw away the degree −1 term H, as it is inessential
to the construction. The construction is by no means unique nor canonical. It crucially
depends on the choice of a homotopy inverse Υ : H → (X•, µ1) to the quasi-isomorphism
Σ : (X•, µ1)→ H1. In particular the construction depends on a choice of two bracket

µ2 : X0 ⊗X0 → X0 (5.26)

satisfying
µ2(Im(d1), x0) ∈ Im(d1) (5.27)

and
Jacµ2(u, v, w) ∈ Im(d1) (5.28)

with
Jacµ2(u, v, w) = µ2(u, µ2(v, w))− µ2(v, µ2(u,w)) + µ2(w, µ2(u, v)) (5.29)

the Jacobiator for the bracket µ2 and elements u, v, w ∈ X0. Assume that [ • , • ] : H⊗H →
H is Lie bracket. It is not hard to show that the following is true

Lemma 5.2.1. [10, section 2] Given a resolution (X•, µ1) '−→ H the triple (µ2,Υ, [ • , • ])
satisfies the two-out-of-three property, i.e. given any two elements of the triple determines
the third one.

1This means that Σ ◦Υ = idH and Υ ◦Σ ∼ idX• , where the two maps are homotopic as maps of chain
complexes.
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The construction of the L∞ algebra on (X•, µ1) in [10] starts with the assumption of
the map µ2, which by the previous lemma is equivalent to the existence of a Lie algebra
structure on H and the choice of a homotopy inverse. In this general setup, the result in
[10] merely guarantees existence of an L∞ algebra structure, but says nothing about its
form. In particular the L∞ resolution may have infinitely many brackets, rendering the
construction possibly quite unhandy. The main result of [74] is that in situations where µ2
is canonically given, the L∞ resolution has a minimally truncated solution with only finitely
many non-vanishing brackets and no choices are required (up to L∞-quasi-isomorphism).
This in particular applies to situations where (H, [ • , • ]) as a Lie algebra is known solely
as a quotient H = (X0, µ2)/B0.

Theorem 5.2.2. [74, Theorem 2] Given a three term complex

· · · 0 X2 X1 X0 0d2 d1

with H1(X•) = H2(X•) = 0 and X0 carries a skew symmetric bilinear map µ2 : X0⊗X0 →
X0 s.th. Im(d1) is an ideal

µ2(Im(d1), x) ∈ Im(d1) (5.30)

and
Jac(x, y, z) ∈ Im(d1) (5.31)

for x, z, y ∈ X0, then there exists an L∞ structure on (X•, µ1) with highest non-trivial
bracket µ4 : X⊗4

0 → X0.

Proof. For the proof it will be convenient to indicate the vector space an element lives in by
a superscript, i.e. ui ∈ Xi. The strategy of the proof is to solve the defining equations Jn
iteratively starting withJ1, which holds by definition. Some of the computations, especially
in higher degree become quite lengthy. Since this is straightforward algebra we sometimes
refer to the respective equation in [74], where the full details are spelled out.

1) J2 : J2 is of degree −1 hence it is only non-vanishing on inputs of total degrees 1, 2, 3.
Thus we go through possible inputs one by one.

X1X0 :
d1(µ2(u1, v0)) = µ1(µ2(u1, v0)) = µ2(d1(u1), v0) (5.32)

where the second term on the rhs vanishes due to degree reasons. By assumption
there exists an element f 1(u1, v0) ∈ X1 s.th.

d1(f 1(u1, v0)) = µ2(d1(u1), v0) (5.33)

and we set
µ2(u1, v0) = f 1(u1, v0) = −µ2(v0, u1) . (5.34)
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X1X1 :

d2(µ2(u1, v1)) = µ1(µ2(u1, v1)) = µ2(µ1(u1), v1)− µ2(u1, µ1(v1))
= −µ2(v1, d1(u1))− µ2(u1, d1(v1))

(5.35)

Note that X2 ' ker(d1) and d2 = ι : ker(d1) ↪→ X1. Hence (5.35) has a solution
if

−µ2(v1, d1(u1))− µ2(u1, d1(v1)) = −f 1(v1, d1(u1))− f 1(u1, d1(v1)) ∈ ker(d1)
(5.36)

Note that

d1(f 1(d1(u1), v1)) = µ2(d1(u1), d1(v1)) = d1(f 1(u1, d1(v1)) . (5.37)

Using the symmetry properties of the two bracket this yields

d1(f 1(v1, d1(u1)) + f 1(u1, d1(v1))) = 0 . (5.38)

Thus we set

µ2(v1, u1) ≡ −(f 1(v1, d1(u1)) + f 1(u1, d1(v1)) . (5.39)

X0X2 : One easily checks that this equation reduces to

ι(µ2(v2, u0)) = f 1(ι(v2), u0) . (5.40)

One solves this by setting

µ2(v2, u0) ≡ f 1(ι(v2), u0) (5.41)

which is possible since

d1(f 1(ι(v2), u0)) = µ1(µ2(ι(v2), u0)) = 0 ⇒ f 1(ι(v2), u0) ∈ Im(ι) . (5.42)

We suppressed the inverse of the inclusion map ι in our notation.
X2X1 : By the previous relation we know

µ1(µ2(v2, u0)) = d1(f 1(ι(v2), u0)) = 0 (5.43)

hence the relation reduces to

0 = µ2(ι(v2), u1) + µ2(v2, d1(u1)) = −f 1(ι(v2), d1(u1)) + f 1(ι(v2), d1(u1))
(5.44)

where we used (5.39) and (5.41). Hence the brackets defined so far are consistent
as X3 = 0 and therefore no non-zero two bracket with inputs of degree three
can exist.
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2) J3 : J3 is of degree 0, hence non-trivial equations only appear for inputs of total
degree 0, 1, 2. Again, we go through the relations degreewise.

X0X0X0 : Obviously this is the equation
0 = d1(µ3(u0, v0, w0)) + Jac(u0, v0, w0) (5.45)

which has a solution
µ3(u0, v0, w0) ≡ −f 1(u0, v0, w0) (5.46)

by assumption.
X1X0X0 : This is the equation

0 =ι(µ3(u1, v0, w0))− f 1(d1(u1), v0, w0)
+ f 1(f 1(u1, v0), w0)− f 1(f 1(u1, w0), v0)− f 1(u1, µ2(v0, w0)) .

(5.47)

This has a solution if
g1(u1, v0, w0) ≡f 1(d1(u1), v0, w0)− f 1(f 1(u1, v0), w0)

+ f 1(f 1(u1, w0), v0) + f 1(u1, µ2(v0, w0))
(5.48)

is in ker(d1). To show this is an easy task using (5.45) and (5.30). Omitting
once more the inverse of ι from the notation we can therefore set

µ3(u1, v0, w0) ≡ g1(u1, v0, w0) . (5.49)

X1X1X0 : This is a consistency equation, since a potential new bracket µ3 solving it were
to take values in X3 = 0. Putting all the terms together is a bit cumbersome
but straightforward. We refer to [74, (4.20)] for the explicit computation.

X2X0X0 : This is again a consistency equation. In the definition (5.49) for u1 = ι(u2)
the terms from the three bracket vanishes. Inserting this in Jac(u2, v0, w0) and
using the definition (5.41) on readily checks that this equation is satisfied.

3) J4 : These equations are of degree 1, hence only inputs of degrees 0, 1 may lead to
non-trivial equations.

X0X0X0X0 : We split this equation and suppress the superscript for elements for better read-
ability

J4(u1, u2, u4, u4) = µ1(µ4(u1, u2, u3, u4)) + L(u1, u2, u3, u4) (5.50)
with
L(u1, u2, u3, u4) =

∑
σ∈US(3,1)

(−1)|σ|+1µ2(µ3(uσ(1), uσ(2), uσ(3)), uσ(4)))

+
∑

σ∈US(2,2)
(−1)|σ|µ3(µ2(uσ(1), uσ(2)), uσ(3), uσ(4))

=
∑

σ∈US(3,1)
(−1)|σ|µ2(f 1(uσ(1), uσ(2), uσ(3)), uσ(4)))

+
∑

σ∈US(2,2)
(−1)|σ|+1f 1(µ2(uσ(1), uσ(2)), uσ(3), uσ(4)) .

(5.51)
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As before, this equation has a solution if L(u1, u2, u3, u4) ∈ ker(d1). Applying
the differential we find

d1(L(u1, u2, u3, u4)) =
∑

σ∈US(3,1)
(−1)|σ|µ2(Jac(uσ(1), uσ(2), uσ(3)), uσ(4)))

+
∑

σ∈US(2,2)
(−1)|σ|+1Jac(µ2(uσ(1), uσ(2)), uσ(3), uσ(4)) .

(5.52)
Inserting all the terms of the Jacobi identity a lengthy calculation shows, that
this indeed vanishes. By the same argument as before we can define

h1(u1, u2, u3, u4) = −L(u1, u2, u3, u4) . (5.53)

Note that there cannot be any further non-trivial brackets due to degree.
X1X0X0X0 : For this equation u, v, w ∈ X0 and z ∈ X1. Note that J4(u, v, w, z) is totally

anti-symmetric in its first three entries. For F (x1, · · · , xN) a linear function we
write ∑

anti

F (x1, · · · , xN) ≡
∑
σ∈SN

(−1)|σ|
N ! F (xσ(1), · · · , xσ(N)) (5.54)

for the totally anti-symmetrized sum. We then find

L(u, v, w, z) =
∑
anti

−µ2(µ3(u, v, w), z) + 3µ2(µ3(z, u, v), w)

+ 3µ3(µ2(u, v), w, z) + 3µ3(u, v, µ2(w, z))
(5.55)

where the sum runs over the anti-symmetrization of u, v, w. On the other hand
writing h1(u, v, w, d1(z)) as an anti-symmetrized sum yields

h1(u, v, w, d1(z)) =
∑
anti

3f 1(u, f 1(v, w, d1(z))− f 1(d1(z), f 1(u, v, w))

+ 3f 1(µ2(u, v), w, d1(z))− 3f 1(µ2(d1(z), u), v, w)
(5.56)

and it is not hard to show that (5.55) and (5.56) exactly cancel. For further
details we refer to [74, (4.27)].

4) J5 : For degree reasons, this is the final non-trivial equation and it is possibly non zero
for inputs X0X0X0X0X0. Since the computation is a mere matter of algebra we only
lay out the strategy. First of all, no µ5 exists, simplifying the equation considerably.
Next, using total anti-symmetry of J5 on X0X0X0X0X0 one rewrites the equation as
a totally anti-symmetrized sum as follows

J5(u, v, w, x, y) =
∑
anti

10µ4(µ2(u, v), w, x, y) + 5µ2(µ4(u, v, w, x), y)

+ 10µ3(µ3(u, v, w), x, y)
(5.57)

Inserting the relevant brackets it is straightforward to show that this vanishes.



146 5. Homotopy Algebras and Field Theories

The paradigm example for the above theorem is the Courant algebroid. Recall that a
Lie algebroid is a C∞-linear extension of a Lie algebra. More precisely, given a smooth
vector bundle E → M over a smooth manifold M , the sheaf of sections Γ(E) is a Lie
algebroid if it has a skew symmetric R-bilinear pairing [ • , • ] : Γ(E) ⊗ Γ(E) → Γ(E)
giving it the structure of a Lie algebra. In addition there should exist an anchor map
ρ : Γ(E)→ TM satisfying

ρ([e1, e2]) = [ρ(e1), ρ(e2)] (5.58)

and
[e1, fe2] = f [e1, e2] + (ρ(e1)f)e2 (5.59)

for any e1, e2 ∈ Γ(E) and f ∈ C∞(M). A Courant algebroid is a relaxation of the above
ingredients. In particular the skew symmetric bracket is not required to define a Lie
algebra.

Definition 5.2.3. A Courant algebroid is a smooth vector bundle E →M over a smooth
manifold M , which has a smooth R-bilinear, non-degenerate form 〈 • , • 〉 : E ⊗ E → R2,
a skew symmetric R-bilinear bracket [ • , • ] : Γ(E) ⊗ Γ(E) → Γ(E) and an anchor map
ρ : Γ(E)→ TM . Defining

T (e1, e2, e3) = 1
3 (〈[e1, e2], e3〉+ 〈[e3, e1], e2〉+ 〈[e2, e3], e1〉) ∈ C∞(M) (5.60)

for e1, e2, e3 ∈ Γ(E) and a map D(M) : C∞ → Γ(E) via

〈D(f), e〉 = 1
2ρ(e)f (5.61)

the above data has to satisfy for e1, e2, e3, g, f ∈ C∞(M)

1) Jac(e1, e2, e3) = D(T (e1, e2, e3)).

2) ρ([e1, e2]) = [ρ(e1), ρ(e2)].

3) [e1, fe2] = f [e1, e2] + (ρ(e1)f)e2 − 〈e1, e2〉 D(f)

4) 〈D(f), D(g)〉 = 0

5) ρ(e1) 〈e2, e3〉 = 〈[e1, e2] + D(〈e1, e2〉), e3〉+ 〈e2, [e1, e3] + D(〈e1, e3〉)〉.

The failure of a Courant algebroid to be a Lie algebroid can be cast into a L∞ algebra
using theorem 5.2.2. One starts with the chain complex

· · · 0 X2 ≡ ker(D) X1 ≡ C∞(M) X0 ≡ Γ(E) 0ι D

2R denotes the trivial line bundle over M .
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which is merely a chain complex of infinite dimensional vector spaces. By [127, Proposi-
tion 4.2] it holds

[e, D(f)] = D(〈e, D(f)〉) (5.62)

for all e ∈ Γ(E) and f ∈ C∞(M). In particular [e, Im(D)] ∈ Im(D). Since by 1) in the
axioms for a Courant algebroid we can apply theorem 5.2.2.

Corollary 5.2.4. The complex

· · · 0 X2 ≡ ker(D) X1 ≡ C∞(M) X0 ≡ Γ(E) 0ι D

has a L∞ structure with only non trivial higher airy brackets

µ2(e1, e2) = [e1, e2], e1, e2 ∈ X0

µ2(e, f) = 〈e, D(f)〉 , e ∈ Γ(E), f ∈ C∞(M)
µ3(e1, e2, e3) = −T (e1, e2, e3), e1, e2, e3 ∈ X0

(5.63)

Proof. By the theorem there for sure exists a L∞ structure, we only have to check that
non-trivial maps from the theorem not listed in (5.63) indeed vanish. First note that for
f ∈ ker(D) it holds

µ2(f, e) = µ2(ι(f), e) = −〈e, D(ι(f))〉 = 0 (5.64)

and for f, g ∈ X1 one gets

µ2(f, g) = 2 〈D(f), D(g)〉 = 0 . (5.65)

Hence the two bracket with values in X2 vanishes. Next for f ∈ C∞(M) and e1, e2 ∈ Γ(E)
one has

µ3(f, e1, e2) =− T (D(f), e1, e2)− 〈e2, D(〈e1, D(f)〉)〉
+ 〈e1, D(〈e2, D(f)〉)〉 − 〈[e1, e2], D(f)〉 = 0

(5.66)

by [127, Lemma 5.1]. Finally [127, Lemma 5.2] gives that

µ4(e1, e2, e3, e4) = 0 . (5.67)

Originally the L∞ algebra for a Courant algebroid was discovered in [127]. Here we
have shown that it is a Corollary of the more general theorem 5.2.2.
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5.3 Seiberg-Witten maps and L∞-qisms
We start this section with a lightning review of L∞ algebras as an organizing structure for
classical field theories. There are many formulations of this, all of which boil down to a
translation of the Batalin-Vilkovisky formalism to the world of homotopy algebras. The
mathematically inclined reader should consult the books by Costello and Gwilliam [36][35],
we take a down to earth route outlined in [75]. The advantage of the approach given in
[75] is that it strips all ghost, antifield, antighost etc. from the BV formalism, leaving the
essentials of the theory in form of a L∞ algebra. One might start with the question of
how to figure out how many interacting extensions a free field theory with a given gauge
freedom can have. So we start with a free theory for some gauge field Υ, which can be a
sum of various fields, having some gauge freedom described by gauge parameters Λ. If one
has Yang-Mills theories in mind the story stops there, but thinking of a field theory with
a two form with values in some semi-simple Lie algebra as a fundamental field one sees
that gauge parameters for gauge parameters should be included. This already gets a bit
cumbersome, thus we introduce a chain complex

· · · X1 X0 X−1 X−2
`1 `1 `1

where Λ ∈ X0 is the vector space of gauge parameters, X1 is a potentially non zero space
of gauge parameters for gauge parameters, Υ ∈ X0 is the space of fields in the theory
and X−1 is the space where the equations of motion of the theory take place. The chain
map X−1

`1−→ X−2 is the differential operator defining the equations of motion of the linear
theory. The map X0

`1−→ X−1 is the linear part of the gauge transformation and being a
chain complex at degree −1 just reflects the fact that pure gauge configurations should
trivially satisfy the equations of motion.

At this point it is good to introduce an example to make the general considerations
more palpable. The paradigm example is Yang-Mills theory in four dimensions. To ease
our lives we make some simplifying assumptions on pure Yang-Mills, all of which prevent
further mathematical technicalities. Let (M, g) be a four dimensional, closed manifold
with Lorentzian metric g being of signature (1, 3). In addition let G be a Lie group with
Lie algebra g and P ' M × G → M the trivial G-principal bundle over M . There is no
essential difference if we drop the assumption on M being compact and P being trivial. A
good source for the general case is e.g. [18, chapter 7]. Let ? : Ωk(M)→ Ω4−k(M) be the
Hodge operator wrt. to g which we choose in such a way that ? ? |Ωk(M) = (−1)k(4−k)+1.
Differential forms with values in the Lie algebra g are defined as Ωk(M, g) ≡ Ωk(M) ⊗ g
and the Hodge operator can be naturally extended to Ωk(M, g) by acting solely on the
differential form part. We further assume that g has an inner product 〈 • , • 〉g which is
invariant under the adjoint action of G on g. In case g is semi-simple one might choose the
Killing form. For two k-forms ω, σ ∈ Ωk(M, g) there exists a G-invariant inner product

〈• , • 〉g : Ωk(M, g)⊗ Ωk(M, g)→ C∞(M) . (5.68)
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On homogeneous elements ω = α⊗X, σ = β ⊗ Y the inner product is defined as

〈α⊗X, β ⊗ Y 〉 = α ∧ ?β · 〈X, Y 〉g . (5.69)

Choosing an orthonormal basis (e1, e2, e3, e4) in (TpM, gp) locally around a point p ∈ M
and an orthonormal basis (Z1, · · · , ZN) in g this is equivalent to

〈ω, σ〉p = 1
k!

4∑
µ1,··· ,µk=1
ν1,··· ,νk=1

gµ1ν1 · · · gµlνkωµ1···µk;Aσν1···νk
A dvolg

= 1
k! ω

A
µ1···µkσ

µ1···µk
A dvolg

(5.70)

where we employed the Einstein summation convention in the last step. Greek indices are
spacetime indices running in {1, · · · , 4} and capital Latin letters are Lie algebra indices
running in {1, · · · , N}. The basic field of the theory is a connection 1-form A ∈ Ω1(M, g).
Gauge parameters are g-valued functions λ ∈ C∞(M, g) = Ω0(M, g) acting on fields via

δλA = dλ+ [λ,A] (5.71)

where d is the usual deRham differential. The curvature of the connection reads

F (A) ≡ dA+ 1
2[A,A] . (5.72)

Given the connection A, there exists a differential operator

dA : Ωk(M, g)→ Ωk+1(M, g) (5.73)

whose adjoint operator wrt to 〈 • , • 〉 is given by δA|Ωk+1(M,g) = ? dA ?. Note that F (A) =
dAA. The Yang-Mills action functional is defined to be

SYM(A) =
∫
M
〈F (A), F (A)〉 =

∫
M
〈A, δAF (A)〉

=
∫
M

〈
A, ?d ? dA+ ?d ? 1

2[A,A] + ?[A, ?dA] + 1
2 ? [A, ?[A,A]]

〉
.

(5.74)

The first term in the last formula is the free theory, i.e. it is quadratic in the fundamental
field. All other terms are self interactions of the gauge field, where the second and third
term contribute to a trivalent vertex in a Feynman diagram expansion and the last term
gives a quartic vertex.

We have all the ingredients to setup the complex for the Yang-Mills L∞ algebra:

· · · X1 X0 X−1 X−2

· · · 0 C∞(M, g) Ω1(M, g) Ω1(M, g)

`1 `1

d ?d?d
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Higher brackets in Yang-Mills capturing the full gauge transformation of the field, the self
interaction terms as well as as the non-abelian gauge algebra can now be found as follows.
First of all the gauge algebra is a usual Lie algebra, thus the only non-trivial contribution
from the gauge algebra in degree zero is the Lie bracket

`2(λ1, λ2) = [λ1, λ2] . (5.75)

Next the transformation of the field (5.71) can be written as

δλA = dλ+ [λ,A] = `1(A) + `2(λ,A) (5.76)

thereby defining a non-trivial two bracket in degree −1. These are all brackets in degree 0
and −1. The dynamics, i.e. the action of the theory can be written in the form

SYM(A) =
∫
M

1
2 〈A, `1(A)〉 − 1

3! 〈A, `2(A,A)〉 − 1
4! 〈A, `3(A,A,A)〉 (5.77)

giving higher brackets in degree −2. Note that in this formulation the equation of motions
become

F(A) = `1(A)− 1
2`2(A,A)− 1

3!`3(A,A,A) . (5.78)

Lastly, equations of motion should be covariant under gauge transformations. Applying a
gauge transformation to the equations of motion in the case of Yang-Mills one easily finds
that there is one higher bracket

δλF(A) = [F, λ] = `2(λ,F(A)) . (5.79)

For the list of non-vanishing brackets in components and a proof that these really define
a L∞ algebra (at least in the case of the Minkowski metric, or one could say locally) we
refer to [75, section 4.3].

The example of Yang-Mills theory gives a cooking recipe on how to derive the L∞
algebra of a gauge theory. The procedure is due to [75] and we refer to [75, sections 2 and
3] for a thorough discussion. Given a gauge theory with field content Υ, gauge parameters Λ
and equation of motions Fone sets up a 1-shifted L∞ algebra (X•, {bn}n≥1) with underlying
chain complex

· · · X2 X1 X0 X−1

Λ Υ F

b1 b1 b1

as follows. First of all we note that the theory is more naturally described by 1-shifted L∞
algebra, as the field lives in degree zero in that case. In other words it has ghost number
zero as it should be. The field equations can be cast in the form

F(Υ) =
∑
n≥1

1
n! bn(Υ, · · · ,Υ) ∈ X−1 (5.80)



5.3 Seiberg-Witten maps and L∞-qisms 151

which via polarization identities leads to a definition of all brackets `n(Υ1, · · · ,Υn) for
Υi ∈ X0. Next the gauge variation of the field gets

δΛΥ =
∑
n≥1

1
n!bn+1(Λ,Υ, · · · ,Υ) ∈ X0 (5.81)

which sets all brackets `n+1(Λ,Υ1, · · · ,Υn). Gauge covariance of the equations of motion
naturally leads to

δΛF=
∑
n≥0

1
n!bn+2(Λ,F,Υ · · ·Υ) ∈ X−1 (5.82)

giving brackets bn+2(Λ,F,Υ1 · · ·Υn). In order to read off higher degree brackets one has
to consider the algebra of gauge transformations acting on the fields. Given two gauge
parameters Λ1,Λ2 the commutator of gauge transformations acting on a field

[δΛ1 , δΛ2 ] Υ (5.83)

should be equal to a transformation

δG(Λ1,Λ2)Υ (5.84)

at least on shell. Here G(Λ1,Λ2) ∈ X1 is a function which has to be linear in Λ1,Λ2
since (5.83) is linear in Λ1,Λ2. However, it is allowed to be a powerseries in Υ as gauge
transformation (5.81) is a powerseries in the field. Hence the reasonable expression reads

G(Λ1,Λ2) =
∑
n≥1

1
n!bn+2(Λ1,Λ2,Υ, · · · ,Υ) ∈ X1 (5.85)

leading to brackets bn+2(Λ1,Λ2,Υ1, · · · ,Υn). Since the gauge theory at hand may have a
closed gauge algebra only on shell there might be a term

H(Λ1,Λ2,F) (5.86)

being linear in Λ1,Λ2 for the same reasons as before and depending linearly on the equation
of motions. Again, since the gauge transformations are power series in the fields this may
also be a powerseries in the fields. Hence we naturally arrive at a function of the form

H(Λ1,Λ2,F) =
∑
n≥1

1
n!bn+3(Λ1,Λ2,F,Υ, · · · ,Υ) ∈ X1 (5.87)

Giving brackets bn+3(Λ1,Λ2,F,Υ1, · · · ,Υn). Summarizing the last paragraph, the com-
mutator of two gauge transformations acting on a field may be written in the form

[δΛ1 , δΛ2 ] Υ = δG(Λ1,Λ2)Υ + δTH(Λ1,Λ2,F)Υ (5.88)

with
δTH(Λ1,Λ2,F)Υ = H(Λ1,Λ2,F) . (5.89)
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Amazingly, though the gauge algebra may only close on shell, the gauge Jacobiator always
vanishes

[δΛ1 , [δΛ2 , δΛ3 ]] + [δΛ3 , [δΛ1 , δΛ2 ]] + [δΛ2 , [δΛ3 , δΛ1 ]] = 0 (5.90)
as shown in [75, section 2.4]. In all of the above it is implicit but indispensable that the
consistency of the gauge theory exactly corresponds to the defining relations of the 1-shifted
L∞ algebra. Take for example the closure of the gauge algebra (5.88). In a reasonable
gauge theory, a formula like this holds. After making the ansatz (5.81) for the gauge
transformation and the ansatz (5.85) for G as well as the ansatz (5.87) for H, the formula
(5.88) is equivalent to the 1-shifted L∞ relations on inputs (Λ1,Λ2,Υ1,Υ2, · · · ). Higher
order brackets and relations correspond to higher consistency requirements for further
redundancies in the gauge theory.

This equivalence allows to turn the logic of the argument around. One might start
with a free theory and linear gauge transformation and ask how many interacting theories
are there which have the given free theory. Note that this can be asked at various levels
of strictness, e.g. a plausible route is to fix the non-linear gauge behavior of the field at
hand, thereby fixing some brackets in the 1-shifted L∞ algebra, and trying to derive all
dynamics by completing the so defined brackets to a full 1-shifted L∞ algebra. But in
the most general case, one might even bootstrap the gauge behavior of a field by building
up a L∞ algebra. This is the idea of the L∞ bootstrap given in [22]. In [22] the focus
was on non-associative generalizations of gauge theories, where the gauge algebra is not
known a priori. We don’t go into detail of non-associative deformations of the algebra of
functions on a given spacetime, but stick to the easiest case of the Moyal star product as
a motivating example. Before going into detail, we have to address the motivation of why
looking into the computations about to come. Bootstrapping a 1-shifted L∞ algebra from
the linear theory gives a consistent theory, but not all different solutions of the bootstrap
lead to different physical theories. The most natural idea is to look at equivalence classes
of solutions under quasi-isomorphism instead. Hence the question is, do quasi-isomorphic
L∞ algebras give equivalent physical theories. This question is addressed in [21] by relating
quasi-isomorphisms to Seiberg-Witten maps. Approaches in that direction in terms of local
BRST ( Becchi, Rouet, Stora and Tyutin) cohomology [9] appeared in [8][11].

We start with an example on how vastly different physically equivalent gauge theories
can look. The example is non-commutative Yang-Mills theory as formulated by Seiberg
and Witten in their seminal paper [135]. Non-commutative Yang-Mills (NCYM) on RN

uses the Moyal star product

? : C∞(RN)× C∞(RN)→ C∞(RN)
(f, g) 7→ f ? g

(5.91)

with
(f ? g)(x) ≡ exp

[
i
2θ

ij ∂

∂yi
∂

∂zj

]
f(y)g(z)|y=z=x (5.92)

where θij = −θji ∈ R and |θij| << 1 for all i, j ∈ {1, · · · , N}. This defines a non-
commutative, but still associative algebra (C∞, ?) ≡ MN . In addition the algebra of
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differential forms gets deformed. For this, pick a local basis {dxi}i=1,··· ,N of 1-forms. The
deformed wedge product of differential forms is given by

A
?
∧B =

∑
I,J

(AI ? BJ) dxI ∧ dxJ (5.93)

where A = ∑
I AIdxI is an expansion of the differential form in terms of wedge products of

basis one forms. Formally the ingredients of NCYM and usual Yang-Mills look alike. One
just replaces pointwise products in component expressions by their star analog. Assume g
is some matrix Lie algebra and Â ∈ Ω1(RN , g), λ̂ ∈ MN . Then the gauge transformation
reads

δ̂
λ̂
Âj = ∂jλ̂+ iλ̂ ? Âj − iÂj ? λ̂ (5.94)

with field strength
F̂ij = ∂iÂj − ∂jÂi − iÂi ? Âj + iÂj ? Âi . (5.95)

Based on a regularization argument Seiberg and Witten argued that the NCYM with Lie
algebra g should be equivalent to usual Yang-Mills theory based on the same Lie algebra.
In the following we distinguish between ordinary Yang-Mills and NCYM based on the
same matrix Lie algebra by putting hats on all ingredients of NCYM. The equivalence is
performed in terms of a Seiberg-Witten map, which relates the data of the theories as
follows

λ̂ = λ̂(λ,A), Â = Â(A) . (5.96)
Computing at fixed orders of θ at a time in [135] it was then shown that for NCYM such
a map indeed exists and it maps gauge orbits onto gauge orbits, i.e.

Â(A+ δλA) = Â(A) + δ̂λ(λ,A)Â(A) . (5.97)

As a remark on how vastly different the two theories appear, note that for g = u(1) the
NCYM theory has a non-abelian gauge Lie algebra, whereas usual Yang-Mills is of course
abelian. If one tries to relate the closure of the gauge algebra on both sides one has to take
this into account. Inspired by the L∞ discussion of field theories one can make the ansatz

Â(A+ δ[λ1,λ2]A) = Â(A) + δ̂
λ̂([λ1,λ2],A)Â(A) (5.98)

and try and compute the function λ̂([λ1, λ2], A). Using the explicit expression of the
Seiberg-Witten map for NCYM one easily computes up to first order [21]

λ̂([λ1, λ2], A)
∣∣∣∣
O(θ)

=
[
λ̂1, λ̂2

]
?

∣∣∣
O(θ)

+
(
λ̂(λ1, δλ2A)− λ̂(λ2, δλ1A)

)∣∣∣
O(θ)

. (5.99)

One may conjecture that this formula continues to hold to all orders of θ giving

Â
(
A+ δ[λ1,λ2]A

)
= Â(A) + δ̂[λ̂1,λ̂2]?Â(A)

+ δ̂
λ̂(λ1,δλ2A)Â(A)− δ̂

λ̂(λ2,δλ1A)Â(A)
(5.100)
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where in all formulas [ • , • ]? is the commutator in the algebra MN . So, there are two
questions from the point of NCYM. First how to investigate Seiberg-Witten maps for
other gauge theories and how to get closed formulas to all orders. Both can be dealt
with the help of 1-shifted L∞ algebras. The set up are 1-shifted L∞ algebras of the form
(X1⊕X0⊕X−1, {bi}) and (Z1⊕Z0⊕Z−1,

{
b̃i
}

) where the vector space Xi has degree i and
the same holds for Zi. Hence we are considering gauge theories where gauge parameters
don’t have any further redundancies. However we allow for the full dynamics of the theory
by including the vector spaces X−1, Z−1. We use the letter λ to denote elements in X1, A
will be elements in X0 and E are general elements in X−1. The hatted letters refer to the
respective elements in Zi, i.e. λ̂ ∈ Z1, Â(A) ∈ Z0 and Ê ∈ Z−1.

Definition 5.3.1. [21] Given two gauge theories (X1 ⊕ X0 ⊕ X−1, {bi}) and (Z1 ⊕ Z0 ⊕
Z−1,

{
b̃i
}

) a Seiberg-Witten map is map

λ̂ = λ̂(λ,A), Â = Â(A), F̂= F̂(F, A) (5.101)

s.th.

1)
Â(A+ δλA) = Â(A) + δ̂λ̂(λ,A)Â(A) (5.102)

2)
Â(A+ δC(λ1,λ2,A) A+ δTC(λ1,λ2,F)A)

= Â(A) + δ̂Ĉ(λ̂1,λ̂2,Â)+λ̂(λ2,δλ1A)−λ̂(λ1,δλ2A) Â(A) + δ̂T
Ĉ(λ̂1,λ̂2,F)Â(A)

(5.103)

3)
F̂(F+ δλF, A+ δλA) = F̂(F, A) + δ̂λ̂(λ,A)F̂(F, A) (5.104)

hold. In addition we want this to be reflexive, i.e. having a map λ̂ = λ̂(λ,A), Â = Â(A) and
F̂= F̂(F, A) implies that there exists a map λ = λ(λ̂, Â) and A = A(Â) and F= F(F̂, Â)
with the same properties. In other words we require the relation to be invertible.

The extra terms in the closure formula are defined as in the general discussion of gauge
transformations in terms of L∞ algebras.

Having this, we can turn to quasi-isomorphisms F ≡ {Fn} (X1 ⊕ X0 ⊕ X−1, {bi}) →
(Z1 ⊕ Z0 ⊕ Z−1,

{
b̃i
}

). Recall that the maps Fn are of degree zero. Assume λ̂ is in the
image of F. Then it has an expansion of the form

λ̂ ∼
∑
k≥0

∑
nk≥0

Fnk+1+2k(λ, λ1, · · · , λk, E1, · · · , Ek, Ank)
 (5.105)

The k = 0 term is what we expect from the point of view of Seiberg-Witten maps. For
the other terms note that the whole formalism is for infinitesimal gauge transformations.
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One way of making this explicit is equipping gauge parameters with a small parameter
0 < ε << 1. Hence all k ≥ 2 terms are suppressed by these parameters and we can
discard them. Thus the general formula can be further simplified assuming natural physical
assumptions. A similar discussion holds for fields. In general a field Â in the image of F
may be expanded as

Â ∼
∑
k≥0

∑
nk≥0

Fnk+2k(λ1, · · · , λk, E1, · · · , Ek, Ank)
 . (5.106)

Again, the k = 0 is to be expected, and terms k ≥ 2 are suppressed. The only mysterious
term is the k = 1 term. Recalling the physical interpretation of the vector spaces at hand,
such terms would correspond to a field depending explicitly on a gauge parameter. This
is not too sensible as the former is a dynamical variable, whereas the latter is not. Hence
from a physical point of view we can safely ignore this term. Finally an element Ê in the
image of F may have an expansion

Ê ∼
∑
k≥0

∑
nk≥0

Fnk+1+2k(λ1, · · · , λk, E1, · · · , Ek, E,Ank)
 (5.107)

by the same arguments as before we only keep the k = 0 term and through away the others
as they are either physically unreasonable or suppressed. With these consideration in the
back of our minds we can give the main result of [21].
Theorem 5.3.2. Given to 1-shifted L∞ algebras (X1 ⊕ X0 ⊕ X−1, {bi}) and (Z1 ⊕ Z0 ⊕
Z−1,

{
b̃i
}

) thought of as underlying two classical gauge theories, there exists a Seiberg-
Witten map

λ̂ = λ̂(λ,A), Â = Â(A) (5.108)
if and only if there exist graded symmetric maps {Fn} : X1 ⊕X0 ⊕X−1 → Z1 ⊕ Z0 ⊕ Z−1
with

Fn+k+l(λ1, · · · , λk, E1, · · · , El, An) = 0, for all k, l ∈ {1, 2} , n ≥ 0 (5.109)
satisfying the L∞ quasi-isomorphism equations on inputs (An), (λ,An), (λ1, λ2, A

2) and
(λ1, λ2, E,A

n), and (λ,E,An) for any n ∈ Z≥0.
Proof. The proof of the theorem can be split into several lemmas. We begin with a set of
multilinear, graded symmetric maps {Fn} : X1⊕X0⊕X−1 → Z1⊕Z0⊕Z−1 which satisfy
(5.109). Following the discussion before the theorem we make the ansatz

Â(A) =
∞∑
n=1

1
n! Fn(An)

λ̂(λ,A) =
∞∑
k=0

1
k! Fk+1(λ,Ak)

F̂(A) =
∞∑
n=0

1
n! Fn+1 (F, An)

(5.110)

for a Seiberg-Witten map.
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Lemma 5.3.3. The gauge orbit condition

Â(A+ δλA) = Â(A) + δ̂λ̂(λ,A) Â(A) (5.111)

holds if and only if the maps {Fn} satisfy the L∞ morphism equations on inputs (λ,An)
for all n ≥ 0.

Proof. We start with a straightforward computation of the lhs using the definition of the
map Â as well as the gauge transformation in terms of 1-shifted L∞ algebras.

Â(A+ δλA) (1)= Â

(
A+

∞∑
k=0

1
k! bk+1(λ,Ak)

)
(2)=

∞∑
n=1

1
n! Fn

(
A+

∞∑
k=0

1
k! bk+1(λ,Ak), . . . , A+

∞∑
k=0

1
k! bk+1(λ,Ak)

)
(3)=

∞∑
n=1

1
n!

[
Fn (An) + nFn

(
An−1,

∞∑
k=0

1
k! bk+1(λ,Ak)

)
+ O(λ2)

]
(4)= Â(A) +

∞∑
n=0

1
n!

[
Fn+1

( ∞∑
k=0

1
k! bk+1(λ,Ak), An

)]
(5.112)

(5)= Â(A) +
∞∑
m=0

1
m!

∑
k+n=m

m!
n!k! Fn+1

(
bk+1(λ,Ak), An

)
.

In (1) we inserted the definition of the gauge transformation, (2) is the ansatz for the map
Â. In (3) we collected all terms which are of order O(λ2). These are suppressed as before
and we can leave them out. There is an additional combinatorial factor n for the second
summand as A is of degree 0 and Fn’s are graded symmetric. In (4) we shifted the outer
infinite sum and changed order of arguments causing no extra signs as every input is of
degree 0. The final step is a mere rewriting of sums in a more handy form. We want to
relate these terms to the defining equation for a L∞ morphism. The lhs of the defining
equation (5.23) reads

∑
k+l=n+1

∑
σ∈US(k,l)

χ(σ)Fl+1

(
bk+1(xσ(1), . . . , xσ(k+1)), xσ(k+2), . . . , xσ(n+1)

)
. (5.113)

For inputs x1 = λ, x2 = · · · = xn+1 = A the sum simplifies considerably. Note that
interchanging any two inputs of Fl+1 will not cause extra minus signs as inputs are of
degree 0. We can split the summation into two terms. The first has the gauge parameter
in the first slot, the second has it in the k + 2-th slot. Finally there are n!

k!l! unshuffles
partitioning the gauge field inputs into two set of order k and l. These simplifications yield

∑
k+l=n

n!
k!l! Fl+1

(
bk+1(λ,Ak), Al

)

+ n!
(k + 1)!(l − 1)! Fl+1

(
bk+1(Ak+1), λ, Al−1

)
.

(5.114)
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So we see that the second term of (5.112) appears in the defining relation. What about
the second term in (5.114). Since the second term of (5.112) is a sum over all orders n ≥ 0
we sum over all orders and get

∞∑
n=0

1
n!

∑
k+l=n

n!
(k + 1)!(l − 1)! Fl+1

(
bk+1(Ak+1, λ, Al−1

)

=
∞∑
n=0

∑
k+l=n+1

1
k!(l − 1)! Fl+1

(
bk(Ak), λ, Al−1

)

=
∞∑
l=0

1
(l − 1)!Fl+1

( ∞∑
k=1

1
k! bk(A

k), λ, Al−1
)

=
∞∑
l=0

1
(l − 1)!Fl+1

(
F, λ, Al−1

)
= 0 .

(5.115)

In the last step we used the assumption (5.109) to set the sum to zero. So in general
there are terms linear in the equations of motion. Either one says that the Seiberg-Witten
condition holds on shell making these term vanish or the additional assumptions (5.109)
have to be made.

Next we consider the rhs of (5.23) for inputs (λ,An). To simplify the equation note
that ∣∣∣∣Unsh(k1 + · · ·+ kj)

∣∣∣∣ =
(

n

k1, . . . , kj

)
(5.116)

for k1 + · · ·+ kj = n. This follows from the definition of the multinomial coefficient as the
number of possibilities of splitting a set with n into j subsets of length ki irrespective of
the order of elements in the subsets. Since permutations don’t cause extra signs this gives
for the rhs of (5.23)

∞∑
n=0

1
n!

∑
k1+···+kj=n+1

1
j!
[
b̃j
(
(Fk1(λ,Ak1−1), Fk2(Ak2), . . . , Fkj(Akj)

)(
n

(k1−1),k2,...,kj

)
+b̃j

(
Fk1(Ak1), Fk2(λ,Ak2−1), . . . , Fkj(Akj

)(
n

k1,(k2−1),...,kj

)
... (5.117)
+ b̃j

(
Fk1(Ak1), . . . , Fkj(λ,Akj)

)(
n

k1,...,(kj−1)

)]
.

By graded symmetry terms in square brackets are all equivalent. This gives
∞∑
n=0

∑
k1+···+kj=n+1

1
(j−1)!

1
(k1−1)!···kj ! b̃j

(
Fk1(λ,Ak1−1), Fk2(Ak2), . . . , Fkj(Akj)

)
(1)=
∞∑
n=0

∑
k0+···+kj=n

1
j!

1
k0! · · · kj!

b̃j+1
(
Fk0+1(λ,Ak1), Fk1(Ak1), . . . , Fkj(Akj)

)
(2)=
∞∑
j=0

1
j!
∑
k0≥0

∑
k1,...,kj≥1

1
k0! · · · kj!

b̃j+1
(
(Fk0+1(λ,Ak0), Fk1(Ak1), . . . , Fkj+1(Akj)

)
(5.118)
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At the beginning we just inserted the definition of the multinomial coefficient. In (1) we
shifted the summation indices j and k1 and (2) is a convenient rewriting of the sum. We
want to compare this expression to the rhs of (5.111). For this we compute

δ̂λ̂ Â(A) (1)=
∞∑
j=0

1
j! b̃j+1

(
λ̂(λ,A), Â(A)j

)
(2)=

∞∑
j=0

1
j! b̃j+1

( ∞∑
n=0

1
n! Fn+1(λ,An),

( ∞∑
k=1

1
k! Fk(A

k)
)j)

(5.119)

(3)=
∞∑
j=0

1
j!

∞∑
n=0

∑
k1,...,kj≥1

1
n!

1
k1! · · · kj!

b̃j+1
(
Fn+1(λ,An), Fk1(Ak1), . . . , Fkj(Akj)

)
.

Equality (1) is the definition of the gauge transformation in terms of the 1-shifted L∞
structure, (2) is the ansatz for the Seiberg-Witten map and (3) is the explicit expression
of the product of sums. We see that this is nothing but (5.118). Hence (5.111) gives the
defining equations of a L∞ morphism and vice versa, proving the claim of lemma 5.3.3.

We discussed the proof of this lemma quite thoroughly since it serves as the paradigm
example for computations proving lemmas about to come. All steps in the proofs are
similar to the ones we performed above and mostly consist of combinatorial considerations
taking grading of inputs and symmetry of maps into account. The interested reader may
work out the details of the equations.

For the closure statement we start with ignoring the potential term involving the equa-
tions of motion. The equation to show then reads

Â(A+ δC(λ1,λ2,A) A) = Â(A) + δ̂Ĉ(λ̂1,λ̂2,Â)+λ̂(λ2,δλ1A)−λ̂(λ1,δλ2A) Â(A) (5.120)

which upon using lemma 5.3.3 is equivalent to showing

λ̂(C(λ1, λ2, A), A) = Ĉ(λ̂1, λ̂2, Â) + λ̂(λ2, δλ1A)− λ̂(λ1, δλ2A) . (5.121)

As stated before, to show this one performs steps very similar to the steps pf the previous
proof. For the additional term we compute

Â
(
A+ δC(λ1,λ2,A) A+ δTC(λ1,λ2,F)A

)
(1)=

∞∑
n=1

1
n! Fn

(
(A+ δC(λ1,λ2,A) A+ δTC(λ1,λ2,F)A)n

)
(2)=

∞∑
n=1

[
1
n! Fn(An) + 1

(n− 1)! Fn
(
δC(λ1,λ2,A) A,A

n−1
)

+ 1
(n− 1)! Fn

(
δTC(λ1,λ2,F)A,A

n−1
)

+ O(λ3)
]
,

(5.122)

(1) is the ansatz for the map Â and (2) separates terms in orders of gauge parameters
and takes symmetry into account. Throwing away terms of order O(λ3) we are left with
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computing the third term in the final expression. By definition it holds

δTC(λ1,λ2,F)A =
∞∑
n=0

1
n! bn+3(λ1, λ2,F, A

n) (5.123)

thus we get ∑
n≥1

1
(n− 1)!Fn

(
δTC(λ1,λ2,F)A,A

n−1
)

+ O(λ3)

=
∑
n≥1

1
(n− 1)!

∑
k≥0

1
k!Fn

(
bk+3(λ1, λ2,F, A

k), An−1
)

.
(5.124)

Again we start with the lhs of the defining equation (5.23) on inputs (λ1, λ2, E,A
n)

∑
k+l=n+1

(n− 3)!
(k − 3)!(l − 1)!Fl

(
bk(λ1, λ2, E,A

k−3), Al−1
)

+ (n− 3)!
(k − 2)!(l − 2)!Fl

(
bk(λ1, λ2, A

k−2), E,Al−2
)

− (n− 3)!
(k − 2)!(l − 2)!Fl

(
bk(λ1, E,A

k−2), λ2, A
l−2
)

+ (n− 3)!
(k − 2)!(l − 2)!Fl

(
bk(λ2, E,A

k−2), λ1, A
l−2
)

+ (n− 3)!
(k − 1)!(l − 3)!Fl

(
bk(λ1, A

k−1), λ2, E,A
l−3
)

− (n− 3)!
(k − 1)!(l − 3)!Fl

(
bk(λ2, A

k−1), λ1, E,A
l−3
)

+ (n− 3)!
(k − 1)!(l − 3)!Fl

(
bk(E,Ak−1), λ1, λ2, A

l−3
)

+ (n− 3)!
k!(l − 4)!Fl

(
bk(Ak), λ1, λ2, E,A

l−4
)
.

(5.125)

Due to assumption (5.109) all terms except the first one vanish. Changing the summation
indices and summing this term over n ≥ 1 including the factorial prefactor we get (5.124)
for E = F. As we did before we turn to the rhs of (5.23) evaluated on (λ1, λ2, E,A

n) and
summed over all n. This yields

∑
n≥1

n∑
j=1

1
(n− 1)!

∑
k1+···+kj=n

ki≥1

1
(j − 3)!

(n− 3)!
(k1 − 1)!(k2 − 1)!(k3 − 1)! · · · kj!

b̃j(Fk1(λ1, A
k1−1, Fk2(λ2, A

k2−1), Fk3(E,Ak3−1), . . . , Fkj(Akj)) .
(5.126)

To arrive at (5.126) we used (5.109) to drop terms and used symmetry relations very similar
to the ones used in (5.119). Shifting summation indices as we did before we get that this
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equals
∞∑
n=1

1
n! b̃n(λ̂1, λ̂2, F̂, Â

n) = δ̂T
Ĉ(λ̂1,λ̂2,F̂) Â (5.127)

Putting things together we see that

∞∑
n=1

1
(n− 1)! Fn

(
δTC(λ1,λ2,F)A,A

n−1
)

=
∞∑
n=1

1
n! b̃n(λ̂1, λ̂2, F̂, Â

n) = δ̂T
Ĉ(λ̂1,λ̂2,F̂) Â

(5.128)

holds if the maps Fn satisfy the defining equations for inputs (λ1, λ2, E,A
n). This proves the

equivalence of the gauge closure condition of Seiberg-Witten maps and the corresponding
subset of L∞ algebra morphisms.

Next we turn to dynamics of the theories.

Lemma 5.3.4.
∞∑
n=0

1
n! Fn+1 (F, An) =

∞∑
n=1

1
n! b̃n

(
Ân
)

(5.129)

Assuming that the maps Fn define a L∞ quasi-isomorphism, this is the known statement
that quasi-isomorphisms are isomorphisms on the sets of Maurer-Cartan elements of the
two L∞ algebras. There are surely proofs of this fact in the literature but we weren’t able
to pinpoint a concrete instance where an explicit proof was given. Since proving this by
hand is not difficult we quickly do the math.

Proof.
∞∑
n=0

1
n! Fn+1 (F, An) =

∞∑
n=0

1
n!
∑
k≥1

1
k! Fn+1

(
bk(Ak), An

)
(5.130)

This is again the lhs (5.23) evaluated on field input only. The rhs of (5.23) evaluated on
fields only and summed over n plus taking prefactors into account gives

∑
n≥1

1
n!

n∑
j=1

∑
k1+···+kj=n

ki≥1

1
(j − 1)!

n!
k1! · · · kj!

b̃j(Fk1(Ak1), . . . , Fkj(Akj))

=
∑
j≥1

1
j! b̃j(Â

j)
(5.131)

where we performed the same steps as in (5.119).

So this Seiberg-Witten equation is equivalent to the L∞ morphisms evaluated on fields
only.
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We are left with the Seiberg-Witten equation (5.104). Again we start with computing
the lhs of it.

F̂(F+ δλF, A+ δλA)
(1)=
∞∑
n=0

1
n!

[
Fn+1 (F, An) + Fn+2 (F, δλA,An) + Fn+1 (δλF, An)

]
+ O(λ2)

(2)=F̂(F, A) +
∞∑
m=0

1
m!

∑
n+k=m

m!
n!k!

[
Fn+2

(
bk+1(λ,Ak),F, An

)

+ Fn+1
(
bk+2(λ,F, Ak), An

) ]
.

(5.132)

The equality (1) is merely insertion of the definitions of the maps and separating terms of
different orders in the gauge parameters. In (2) we threw away terms of too high order in
λ, inserted the definition of the gauge transformations in terms of 1-shifted L∞ algebras
and rewrote the summation. In order to relate this to (5.23) we evaluate the lhs of (5.23)
on inputs (λ,E,An). This gives

∑
k+l=n+1

(n− 2)!
(k − 2)!(l − 1)!Fl

(
bk(λ,E,Ak−2), Al−1

)
+ (n− 2)!

(k − 1)!(l − 2)!Fl
(
bk(λ,Ak−1), E,Al−2

)

− (n− 2)!
(k − 1)!(l − 2)!Fl

(
bk(E,Ak−1), λ, Al−2

)
+ (n− 2)!
k!(l − 3)!Fl

(
bk(Ak), λ, E,Al−3

)
.

(5.133)
The last two terms vanish and changing summation indices accordingly for the first two
terms as well as summing over n gives the second term in the last equality of (5.132).
Hence we need to evaluate the rhs of (5.23) on (λ,E,An). This gives

∞∑
m=0

1
m!

∞∑
j=0

∑
k1+···+kj+2=m

1
j!k1! . . . kj+2! b̃j+2

(
Fk1+1(λ,Ak1), Fk2+1(F, Ak2),

Fk3(Ak3), . . . , Fkj+2(Akj+2)
)

=
∞∑
j=0

1
j! b̃j+2

(
λ̂(λ,A), F̂(F, A), Â(A)j

)
(5.134)

= δ̂λ̂(λ,A) F̂(F, A) .

where the equalities are due to the by now familiar manipulations performed in previous
computations.

A final word about the existence of the maps Fn. Though they are defined on equal ele-
ments one can use polarization identities to get maps on different input elements. Though
we are using the defining equations of a L∞ morphism, the fact that the Fn should corre-
spond to a quasi-isomorphism is guaranteed by the requirement of invertibility for Seiberg-
Witten maps.
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5.4 Conclusions
In the first part of this chapter we gave a L∞ algebra closure theorem for vector spaces
with arbitrary skewsymmetric brackets. The L∞ extension is finite in the sense that the
underlying complex is a three term complex and the L∞ has non-trivial higher n-brackets
only up to and including n = 4. In addition we presented how the L∞ structure of the
Courant algebroid is corollary of the construction. In the second part of the chapter we
proved a theorem relating Seiberg Witten maps to L∞ quasi-isomorphisms.



Appendix A

Vertex Operator Algebra Basics

A.1 Vertex Operator Algebras and Operator Product
Expansions

Vertex operator algebras (VOAs) can be seen as a holomorphic enhancement of associative
algebras, where the product depends on a complex variable. They are a mathematical tool
for describing the chiral symmetries of two dimensional conformal fields theories (CFTs).
Since we are aiming at a more mathematical treatment of CFTs we stick with mathematics
conventions for notations and expansions. When giving the definitions of the objects
involved, we comment on the relation to the physics conventions. The following definitions
and remarks can be found in any textbook on VOAs, classic sources are [54][113][53][93][52].

Definition A.1.1. A vertex operator algebra (V,1, Y, ω) is the data of

(1) a Z-graded vector space V = ⊕
n∈Z V(n) satisfying grading restrictions dim V(n) <∞

and there exists an N ∈ Z s.th. V(n) = 0 for n ≤ N .

(2) a vacuum 1 ∈ V(0).

(3) a vertex operator Y (•, z) : V → End(V )[[z, z−1]] for z ∈ C. These can be expanded
in operator valued Laurent series

Y (v, z) =
∑
m∈Z

u(n)z
−n−1

(A.1)

where for u ∈ V(k) the modes satisfy u(n) : V(a) → V(a+k−n−1).

(4) a conformal vector ω ∈ V(2).

The data has to satisfy the following axioms:

(i) Units: For any z ∈ C the vertex operator of the vacuum evaluates to the unit map

Y (1, z) = idV . (A.2)
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In addition applying vertex operators to the vacuum gives an analytic function

Y (v, z)1 = v + zV [[z]] . (A.3)

(ii) Virasoro property: The modes in the vertex operator Laurent expansion of the con-
formal vector

Y (ω, z) =
∑
n∈Z

L(n)z
−n−2

(A.4)

define a copy of the Virasoro algebra, i.e.[
L(n), L(m)

]
= (n−m)L(m+n) + c

12(n3 − n)δm,n (A.5)

where c ∈ C is the central charge of the VOA. Furthermore the zero mode is a grading
operator

L(0)v = nv, for v ∈ V(n) (A.6)
and L(−1) acts as a translation operator in the sense that

d
dzY (v, z) = Y (L(−1)v, z) . (A.7)

Due to (A.6) we refer to the grading as the conformal weight of an element.

(iii) Convergence: Let V ∗ = ⊕
n∈Z V

∗
(n) the direct sum of linear dual spaces and πn :

V → V(n) the projection operator onto the conformal weight n space. For w ∈ V ∗,
v1, v2, v3 ∈ V there exists a function

C1(z1, z2) = G(z1, z2)
za1z

b
2(z1 − z2)c , a, b, c ∈ N, G ∈ C[z1, z2] (A.8)

s.th.

〈w, Y (v1, z1)Y (v2, z2)v3〉 ≡
∑
n∈Z
〈w, Y (v1, z1)πnY (v2, z2)v3〉 = ι12C1(z1, z2) . (A.9)

for |z1| > |z2| > 0. On the right hand side the natural evaluation pairing between dual
elements is used. Defined like that absolute convergence of 〈w, Y (v1, z1)Y (v2, z2)v3〉
is implied, being the power series expansion of a holomorphic function.
Similarly there exists a function

C2(z1, z2) = H(z1, z2)
zo1z

p
2(z1 − z2)q , o, p, q ∈ N, H ∈ C[z1, z2] (A.10)

s.th.

〈w, Y (Y (v1, z1 − z2)v2, z2)v3〉 ≡
∑
n∈Z
〈w, Y (πnY (v1, z1 − z2)v2, z2)v3〉 = ιz2,z1−z2C2(z1, z2)

(A.11)
for |z2| > |z1 − z2| > 0.
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(iv) Operator Product Expansion (OPE): The above expressions agree in the sense that
C1(z1, z2) = C2(z1, z2). Thus they are just different expansions of the same rational
function in different regions.

(v) Commutativity: Again, assume the conditions for convergence hold, then

〈w, Y (v2, z2)Y (v1, z1)v3〉 = ι21C1(z1, z2) . (A.12)

For some of the proofs and applications it is more convenient to express rationality and
the OPE property for VOAs in terms of a Jacobi identity for formal power series. The
calculus of formal variables suits as a formal analog of the calculus of Laurent expansions
of meromorphic functions. Let V be a vector space and {xi} will denote formal variables,
of which the reader may secretly think of as coordinates in the complex planes. We will
use formal power series of the following type

V [x] =
{

N∑
n=0

vnx
n |vn ∈ V N ∈ N

}

V [[x]] =
∑
n∈N

vnx
n |vn ∈ V


V
[
x, x−1

]
=


M∑
n=−N

vnx
n |N,M ∈ N


V [[x, x−1]] =

∑
n∈Z

vnx
n | vn ∈ V


V ((x)) =

 ∑
n≥−N

vnx
n | vn ∈ V, N ∈ N


V {x} =

∑
n∈Q

vnx
n | vn ∈ V



(A.13)

and their obvious multivariable analogs. In addition, the localization

V [[x1, x2]]S (A.14)

at S = 〈x1, x2, x1 − x2〉 will play a prominent role. We define a map ι12 : V [[x1, x2]]S →
V [[x1, x2, x

−1
1 , x−1

2 ]] from the expansion

ι12
1

(z1 − z2)n = ι12
1

zn1 (1− z2
z1

)n = 1
zn1

∑
k≥0

(
z2

z1

)kn

=
∑
k≥0

(
k + n− 1
n− 1

)
zk2
zk+n

1

=
∑
k≥0

(−1)k
(
−n
k

)
zk2z

−k−n
1 .

(A.15)
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in the region |z1| > |z2| on the complex plane. Hence ι12 on an homogeneous element of
V [[x1, x2]]S is given by

ι12
P (x1, x2)

x`1x
k
2(x1 − x2)n =

∑
m≥0

(−1)k
(
−n
k

)
P (x1, x2)x−`−n−m1 x−k+m

2 (A.16)

and is linearly extended to V [[x1, x2]]S. It is a power series expansion into only finitely
many negative powers of x2. For the Jacobi identity we need the formal delta function in
V [[x, x−1]]

δ(x) =
∑
n∈Z

xn (A.17)

which has its name due to the fact that for f ∈ V [[x, x−1]] it holds

f(x)δ(x) =
∑
n,m

f(n)x
n+m = f(1)δ(x) . (A.18)

Since power series in this thesis will appear mostly as power series of linear operators on
vector spaces we give a sensible definition of limits of such power series.

Definition A.1.2. A possibly infinite family (F(i))i∈I ∈ End(V ) is summable if for any
v ∈ V , F(i)v 6= 0 for only finitely many i. Given F ∈ End(V )[[x1, x

−1
1 , x2, x

−1
2 ]], then

lim
x1→x2

F (x1, x2) = lim
x1→x2

∑
n,m∈Z

Fn,mx
n
1x

m
2 (A.19)

exists if for any m ∈ Z, the family
(
F(n,m−n)

)
n
is summable. The limit is defined to be

lim
x1→x2

F (x1, x2) =
∑

n,m∈Z
F(n,m−n)x

m
2 . (A.20)

If limx1→x2 F (x1, x2) exists we compute

F (x1, x2)δ
(
x1

x2

)
=

∑
n,m,k∈Z

F(n,m)x
n+k
1 xm−k2 =

∑
n,m,k∈Z

F(n−k,m)x
n
1x

m−k
2

=
∑

n,m,k∈Z
F(k,m)x

n
1x

m−n−k
2

=
∑

n,m,k∈Z
F(k,m−k)x

m
2 x

n
1x
−n
2

= F (x2, x2)δ
(
x1

x2

)
.

(A.21)

Thus δ
(
x1
x2

)
acts by restricting to x1 = x2. The definition of the delta function can be

extended to more general arguments by setting

δ
(
x1 − x2

x3

)
=
∑
k∈N

∑
`∈Z

(−1)k
(
`

k

)
x−`3 x`−k1 xk2 . (A.22)
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Lemma A.1.3.
x−1

1 δ
(
x2 + x0

x1

)
= x−1

2 δ
(
x1 − x0

x2

)
(A.23)

x−1
0 δ

(
x1 − x2

x0

)
− x−1

0 δ
(
x2 − x1

−x0

)
= x−1

2 δ
(
x1 − x0

x2

)
(A.24)

The proof is a straightforward computation expanding delta functions into power series.
Let C(x0, x1, x2) = h(x0,x1,x2)

xr0x
s
1x
t
2

with h(x0, x1, x2) ∈ C[x0, x1, x2] and r, s, t ∈ N. Along the
same steps it is not hard to show

x−1
0 δ

(
x1 − x2

x0

)
ι12C|x0=x1−x2 − x−1

0 δ
(
x2 − x1

−x0

)
ι21C|x0=x1−x2

= x−1
2 δ

(
x1 − x0

x2

)
ι10C|x2=x1−x0

(A.25)

Recall that the definition of a VOA involved a rational function C(z0, z1, z2). Rationality,
commutativity and associativity (OPE) can be phrased as

〈v′, Y (v1, z1)Y (v2, z2)v3〉 = ι12C|z0=z1−z2

〈v′, Y (v2, z2)Y (v1, z1)v3〉 = ι21C|z0=z1−z2

〈v′, Y (Y (v1, z0)v2, z2)v3〉 = ι20C|z0=z1−z2

(A.26)

from which one immediately deduces

Proposition A.1.4. (Jacobi identity for VOAs)

x−1
0 δ

(
x1 − x2

x0

)
Y (v1, x1)Y (v2, x2)− x−1

0 δ
(
x2 − x1

−x0

)
Y (v2, x2)Y (v1, x1)

= x−1
2 δ

(
x1 − x0

x2

)
Y (Y (v1, x0)v2, x2)

(A.27)

The Jacobi identity is an elegant intermediate step for deriving the OPE formula known
from the physics literature. Before continuing we note that the opposite line of reasoning
also works, i.e. starting with the definition of a VOA, where all axioms are kept but
convergence (rationality), commutativity and OPE (associativity) are replaced by the single
axiom of the Jacobi identity nothing is lost. By a contour integration argument the Jacobi
identity is equivalent to Borcherd’s identity for modes of vertex operators. The Lie algebra
structure on the modes (which is equivalent to the OPE) is a special case of Borcherd’s
identity. We give the relation between Jacobi identity and OPE in the following paragraph.
Deriving rationality, commutativity and associativity for correlation functions is done e.g.
in [54, section 3.3]. The proof of the equality is more generally applicable to situations with
vertex operator maps and we freely switch between axiomatic presentations of structures
involving correlation functions or the Jacobi identity, as both presentations have advantages
in different situations.

Let
Resx0x

n
0 = δn,−1 (A.28)
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be the formal analog of the residue pairing and apply it to (A.27). This yields

[Y (v1, x1), Y (v2, x2)] = Resx0x
−1
2 δ

(
x1 − x0

x2

)
Y (Y (v1, x0)v2, x2)

=
∑
m∈N

∑
n∈Z

(
n

m

)
(−1)mx−n−1

2 xn−m1 Y
(
(v1)(m)v2, x2

)
=

N∑
m=0

∑
n∈Z

(
n

m

)
(−1)mx−n−1

2 xn−m1 Y
(
(v1)(m)v2, x2

)
(A.29)

where the lower truncation property for VOAs is used in the second step.
Proposition A.1.5. Let

:Y (v, z1)Y (w, z2) : ≡
∑
n∈Z

∑
m<0

v(n)w(m)z
−n−1
2 z−m−1

1 +
∑
n∈Z

∑
m≥0

w(n)v(m)z
−n−1
2 z−m−1

1

≡ Y (v, z1)+Y (w, z2) + Y (w, z2)Y (v, z1)−
(A.30)

be the normal ordered product of two vertex operators. For z1, z2 ∈ C s.th. |z1| > |z2| it
holds

Y (v, z1)Y (w, z2) =
N∑
m=0

Y (v(m)w, z2)ι12
1

(z1 − z2)m+1 + :Y (v, z1)Y (w, z2) : . (A.31)

Proof. First note that for any z1, z2 ∈ C there is the equation

Y (v, z1)Y (w, z2) = [Y (v, z1)−, Y (w, z2)] + :Y (v, z1)Y (w, z2) : . (A.32)

The commutator can be computed from (A.30) by noting that the − index just restricts
the commutator formula to negative powers of z1. Hence we have

[Y (v, z1)−, Y (w, z2)] =
N∑
m=0

(∑
n<m

(
n

m

)
(−1)mz−n−1

2 zn−m1 Y
(
(v1)(m)v2, z2

))

=
N∑
m=0

(∑
n<0

(
n

m

)
(−1)mz−n−1

2 zn−m1 Y
(
(v1)(m)v2, z2

))

=
N∑
m=0

∑
n≥0

(
−n− 1
m

)
(−1)mzn2 z−n−1−m

1 Y
(
(v1)(m)v2, z2

)
=

N∑
m=0

Y
(
(v1)(m)v2, z2

)
ι12

1
(z1 − z2)−m−1

(A.33)

where in the second equality we use
(
n
m

)
= 0 for 0 ≤ n < m. For the last equality the

following chain of binomial coefficient identities is used(
−n− 1
m

)
(−1)m =

(
n+m

m

)
=
(
n+m

n

)
=
(
−m− 1

n

)
(−1)n . (A.34)
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Note that if we define in analogy to the usual Cauchy integration formula the normal
ordered product at z1 = z2 as

:Y (w, z2)∂nY (v, z2) :≡
∮
C(z2)

dz1

2πi
Y (v, z1)Y (w, z2)

(z1 − z2)n+1 (A.35)

we recover the usual OPE formula

Y (v, z1)Y (w, z2) =
N∑
m=0

Y (v(m)w, z2)ι12
1

(z1 − z2)m+1 +
∑
n≥0

(z1 − z2)n
n! :Y (w, z2)∂nY (v, z2) :

(A.36)
from (A.31).

The upshot of this section is that having fields in the form of vertex operators, s.th.
the correlation functions among the fields produce rational functions and have a natural
associativity property, produces an operator product expansion among the fields with only
rational dependence on the location of the fields.

A.2 VOA Representations and Intertwining Opera-
tors

In this section we give a quick overview over the key points relevant for this thesis in
VOA representation theory. This includes in particular rational VOAs and a discussion
of intertwining operators. The later part will be a helpful primer for the discussion of
modular tensor categories arising as representation categories of VOAs. Again there is a
plethora of literature on the material presented here, textbook accounts can be found e.g.
in [53][54][42][52][113].

Definition A.2.1. Given a VOA (V, Y,1, ω) a representation is a triple (W,YW ) consisting
of a graded vector space W = qn∈RWn, a vertex operator map

YW : V → End(W )[[x, x−1]]
v 7→

∑
n∈Z

v(n)x
−n−1 (A.37)

and an identity element 1 ∈ W0. The data has to satisfy

(R1) (Lower truncation:) dimW(n) <∞ and v(n)w = 0 for n big enough.

(R2) (Identity property:) Y (1, z) = idW .

(R3) (Jacobi identity:)

x−1
0 δ

(
x1 − x2

x0

)
YW (v1, x1)YW (v2, x2)− x−1

0 δ
(
x2 − x1

−x0

)
YW (v2, x2)YW (v1, x1)

= x−1
2 δ

(
x1 − x0

x2

)
YW (Y (v1, x0)v2, x2)

(A.38)
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(R4) (Virasoro embedding:) The modes of the Virasoro vertex operator
YW (ω, x) = ∑

n∈Z L(n)x
−n−2 satisfy the Virasoro relations with the central charge

given by the central charge of V .

(R5) (Virasoro grading:) The zeroth mode of YW (ω, x) acts the grading operator: L(0)w =
nw for w ∈ W(n). In addition the Virasoro field is required to satisfy the usual
translation property

d
dxYW (v, x) = YW (L(−1)v, x) (A.39)

Definition A.2.2. A morphism f : W1 → W2 is a grading preserving linear map such
that

f(YW1(v, x)w1) = YW2(v, x)f(w1) (A.40)

for all w1 ∈ W1 and v ∈ V .

Note that the definition applies for any formal variable x. Again, choosing complex
numbers for formal variable one could derive rationality properties of correlation functions
on the two sphere from the Jacobi identity. The vertex operator map might be seen as a
formal power series enhancement of a module map for an associative algebra, just as the
vertex operator of a VOA is the enhancement of an associative algebra. The Jacobi identity
then corresponds to the usual intertwining of module map and product. In addition one
can start from the Jacobi identity and derive along the exact same steps as before an OPE
of fields, now living in some representation. However, note one crucial difference: The
underlying vector space of a VOA representation is not Z-graded in general, though vertex
operators are genuinely integer spaced. In addition OPEs will only be defined for elements
in the underlying VOA, which now act on W , not for arbitrary elements of W .

Clearly any VOA is a module over itself.

Definition A.2.3. A VOA (V, Y,1, ω) is simple if it is irreducible as a module over itself.

Given two representations (W1, YW1), (W2, YW2) over VOAs V1 and V2 one might also
try and define a V1 ⊗ V2-representation W1 ⊗W2 using in both cases the tensor product
of vector spaces. Though for VOAs there is no problem in defining the tensor product,
the general R-grading of representations prevents the tensor product W1⊗W2 from having
finite dimensional weight spaces.

Given a representation W , a natural task is to define an adjoint representation on
W ∗ = qn∈RW ∗

n . For this to work one has to derive some easy statements about the
transformation behavior of YW under the action of SL(2,C), which acts by exponentiating
the action of the sl(2,C) generators

{
L(−1), L(0), L(1)

}
.

Lemma A.2.4. Let (W,YW ,1) be a V -representation. Let w, z ∈ C, global conformal
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transformations act as

ewL(−1)YW (v, z)e−wL(−1) = Yw
(
ewL(−1)v, z

)
= YW (v, z + w)

ewL(0)YW (v, z)e−wL(0) = YW
(
ewL(0)v, ewz

)
ewL(1)YW (v, z)e−wL(1) = YW

(
ew(1−wz)L(1)(1− wz)−2L(0)v,

z

1− wz

) (A.41)

Proof. Proving the first identity goes along the same steps as in the proof for (3.21). For
the second identity note multiplying the Jacobi identity by x1 and applying Resx0Resx1

gives [
v(1), YW (w, x)

]
= YW

(
v(1)w, x

)
+ xYW (v(0)w, x)

⇔
[
v(1), w(n)

]
=
(
v(1)w

)
(n)

+
(
v(0)w

)
(n+1)

.
(A.42)

Taking the degree shift in YW (ω, x) = ∑
n∈Z L(n)x

−n−2 into account one finds for v ∈ V
homogeneous [

L(0), v(n)
]

= |v|v(n) +
(
L(−1)v

)
(n+1)

= (|v| − n− 1)v(n)

(A.43)

where we used (A.39) in the second equality. So L(0) acts as a grading operator on the
modes. From this one easily derives

ewL(0)YW (v, z)e−wL(0) =
∑
n∈Z

e
wadL(0)v(n)z

−n−1

=
∑
n∈Z

∑
m≥0

(w(|v| − n− 1))m

m! v(n)z
−n−1

=
∑
n∈Z

ew|v|v(n) (ewz)−n−1

= YW
(
ewL(0)v, ewz

)
.

(A.44)

Finally the proof of the third identity is conceptually the same as the previous one, but
significantly more cumbersome. We omit it here and refer to [54, Proposition 5.2.3] for a
detailed exposition.

We remark that the proofs for the identities only use the Jacobi identity and the
Virasoro properties in the definition of a representation. This will allow to state similar
transformation properties in situations where a Jacobi identity and Virasoro actions hold
later. A consequence of the transformation properties is the following necessary condition
on irreducible modules.

Lemma A.2.5. Let (W,YW ,1) be a simple V -representation. Then there exists hW ∈ R
s.th.

W =
∐
n∈Z

WhW+n . (A.45)
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Proof. A VOA module is irreducible if for a sub-vector space U ⊂ W from YW (v, x)u ∈
U((x)) for all v ∈ V it follows that U = W or U = 0. Assume now that there exist
homogeneous elements w1, w2 in W with |w1|− |w2| ∈ R\Z. LetW1, W2 be the V -modules
inside W , generated by w1 and w2 respectively. These are by definition the smallest
subspaces s.th. w1 ∈ W1, w2 ∈ W2 and Y (v, x)u1 ∈ W1((x)) for v ∈ V and u1 ∈ W1 and
similar for W2. Since

|(w1)(n)| = |w1| − n− 1 (A.46)

it is clear that for u ∈ W1 it holds |u| ∈ |w1| + Z. But then w2 /∈ W1, thus W1 is a
non-trivial submodule contradicting irreducibility.

As promised one can use the transformation properties to define an adjoint or dual
module.

Theorem A.2.6. [54, Theorem 5.2.1] Let (W,YW ) be an (V, Y,1, ω) representation. The
graded dual W ∗ carries a vertex operator

YW ∗ : V → End (W ∗) [[x, x−1]]
v 7→ YW ∗(v, x) =

∑
n∈Z

v∗(n)x
−n−1 (A.47)

defined by setting

〈YW ∗(v, x)w′, w〉 ≡
〈
v′, YW

(
exL(1)

(
−x−2

)L(0)
v, x−1

)
w
〉

(A.48)

for all w′ ∈ W ∗, w ∈ W . (W ∗, YW ∗ ,1) is called contragradient module for W .

Though we omit the proof here we still give the definition of the Virasoro action, which
will allow us to move the action of the Virasoro algebra from a representation to its dual
when paired. By the creation property of a VOA it holds L(−2)1 = ω, L(n)1 = 0 for n ≥ −1
and the Virasoro identity gives L(1)ω = 0. Equation (A.48) for ω therefore yields

∑
n∈Z

〈
L∗(n)w

′, w
〉
x−n−2 = 〈YW ∗(ω, x)w′, w〉 =

〈
w′, YW

(
x−4ω, x−1

)
w
〉

=
∑
n∈Z

〈
w′, L(n)w

〉
xn−2

(A.49)

which is equivalent to 〈
L∗(−n)w

′, w
〉

=
〈
w′, L(n)w

〉
. (A.50)

We will see, that contragradient modules naturally also serve as categorical duals of
representations. The fact that a single dual module is defined here already hints at a rigid,
braided monoidal category of representations. Finally, we want to be able to perform
OPE-like expansions between elements of different representations. This is possible by
introducing intertwining operators.
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Definition A.2.7. Let W1, W2, W3 be representations of (V, Y,1, ω). An intertwining
operator of type

(
W3

W1W2

)
is a map

Y : W1 → Hom(W2,W3) {x}
w 7→

∑
n∈Q

w(n)x
−n−1 (A.51)

where w(n) ∈ Hom(W2,W3) s.th.

IO1) Lower truncation: for u ∈ W2 it holds w(n)u = 0 for n big enough.

IO2) Jacobi identity:

x−1
0 δ

(
x1 − x2

x0

)
YW3(v, x1)Y(w, x2)− x−1

0 δ
(
x2 − x1

−x0

)
Y(w, x2)YW2(v, x1)

= x−1
2 δ

(
x1 − x0

x2

)
Y(YW1(v, x0)w, x2)

(A.52)

IO3) Virasoro translation: d
dxY(w, x) = Y

(
L(−1)w, x

)
.

If we want to refer to intertwining operators between arbitrary modules Wα,Wβ,Wγ

we sometimes write
(
γ
αβ

)
for the type of the intertwining operators and the space of inter-

twining operators of type
(
γ
αβ

)
is denoted as V

γ
αβ. Obviously the sum of two intertwining

operators of the same type is again an intertwining operator, hence V
γ
αβ is a C-vector space

and its dimension is denoted by Nγ
αβ.

In section A.1 we gave the definition of a VOA in terms of associativity, rationality
and commutativity properties of convergent correlation functions. A similar definition can
be made for VOA modules. For intertwining operators of modules only a definition in
terms of the Jacobi identity is possible, though. A definition in terms of rational functions
will clearly fail as intertwining operators don’t have power series expansions. In the next
section we will discuss under which assumptions on V this can be remedied.

Lemma A.2.8. Let Y∈ Vk
ij be an intertwining operator between simple modules, then

Y(wi, x)wj ∈ xhk−hi−hjWk((x)) (A.53)

where Wi = ∐
n∈ZWhi+n.

Proof. From the Virasoro properties one derives as before |(wi)(n)| = |wi| − n− 1. Hence

|(wi)(n)wj| = |wi|+ |wj| − n− 1 = |hi|+ r + |hj|+ s− n− 1 = |hk|+m, r, s,m ∈ Z
(A.54)

or equivalently
n+ 1 ∈ |hi|+ |hj| − |hk|+ Z (A.55)

which immediately implies the claim.
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The following is stated e.g. in [80, Proposition 1.11].

Lemma A.2.9. Let Y∈ V
γ
αβ and r ∈ Z. The map

Br(Y) : Wβ ⊗Wα → Wγ {x}
(w2, w1) 7→ Br(Y)(w2, x)w1 ≡ exL(−1) Y(w1, e

(2r+1)πix)w2
(A.56)

defines an isomorphism V
γ
αβ ' V

γ
βα.

Proof. First we prove that Br(Y) is in fact an intertwining operator of type
(
γ
β α

)
. The

lower truncation axiom is obvious. The expression Y(w1, e
(2r+1)πix)w2 only involves finitely

many negative powers of x. Since exL(−1) only raises the powers, this is still true for
Br(Y)(w2, x)w1. One may define

Br(Y)(w2, x)w1 =
∑
n∈R

(w2)r(n)w1x
−n−1

(A.57)

by equating coefficients in front of powers of x. By the previous sentence this immediately
implies

(w2)r(n)w1 = 0, n big enough . (A.58)

Next the Virasoro translation property:

d
dxBr(Y)(w2, x)w1 = exL(−1)L(−1)Y(w1, e

(2r+1)πix)w2 + exL(−1)
d

dxY(w1, e
(2r+1)πix)w2

= exL(−1)L(−1)Y(w1, e
(2r+1)πix)w2 − exL(−1) Y(L(−1)w1, e

(2r+1)πix)w2
(A.59)

using
L(−1)(w1)(n) −

(
L(−1)w1

)
(n)

= (w1)(n)L(−1) (A.60)

this equals
exL(−1) Y(w1, e

(2r+1)πix)L(−1)w2 = Br(Y)(L(−1)w2, x)w1 (A.61)

Next we check the Jacobi identity:

x−1
0 δ

(
x1 − x2

x0

)
YW3(v, x1)Br(Y)(w2, x2)w1

=x−1
0 δ

(
x1 − x2

x0

)
ex2L(−1)e−x2L(−1)YW3(v, x1)ex2L(−1) Y(w1, e

(2r+1)πix2)w2

=x−1
0 δ

(
x1 − x2

x0

)
ex2L(−1)YW3(v, x1 − x2)Y(w1, e

(2r+1)πix2)w2

=x−1
0 δ

(
x1 − x2

x0

)
ex2L(−1)YW3(v, x0)Y(w1, e

(2r+1)πix2)w2

=x−1
1 δ

(
x0 − (−x2)

x1

)
ex2L(−1)YW3(v, x0)Y(w1, e

(2r+1)πix2)w2 (A.62)
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=x−1
1 δ

(−x2 − x0

−x1

)
ex2L(−1) Y(w1, e

(2r+1)πix2)YW3(v, x0)w2

− x−1
2 δ

(
x0 − x1

−x2

)
ex2L(−1) Y(YW2(v, x1)w, e(2r+1)πix2)w2

=x−1
1 δ

(−x2 − x0

−x1

)
Br(Y)(YW3(v, x0)w2, x2)w1

− x−1
2 δ

(
x0 − x1

−x2

)
Br(Y)(w2, x2)YW2(v, x1)

=x−1
1 δ

(
x2 + x0

x1

)
Br(Y)(YW3(v, x0)w2, x2)w1

− x−1
2 δ

(
x0 − x1

−x2

)
Br(Y)(w2, x2)YW2(v, x1)

=x−1
2 δ

(
x1 − x0

x2

)
Br(Y)(YW3(v, x0)w2, x2)w1

x−1
0 δ

(
x2 − x1

−x0

)
Br(Y)(w2, x2)YW2(v, x1) .

We used relation (A.23) several times in the computation. In addition note that we cannot
replace e(2r+1)πix with −x in intertwining operators as its expansion includes real powers.
However in module vertex operators or inside delta functions only integer powers appear
and we are allowed to make the replacement. Finally, to prove that it is an isomorphism
it is enough to give an inverse map. The claim is that B−r−1 is the inverse of Br.

B−r−1 (Br(Y)) (w1, x)w2 = exL(−1)Br (Y) (w2, e
(−2r−1)πix)w1

= exL(−1)e−xL(−1) Y(w1, x)w2

= Y(w1, x)w2

(A.63)

The other direction goes the same.

Lemma A.2.10. Let r ∈ Z and

Ar : Vk
ij → V

j′

ik′ (A.64)

defined by

〈Ar (Y(mi, x))m′k,mj〉 =
〈
m′k,Y

(
exL1e(2r+1)πiL0x−2L0m1, x

−1
)
mj

〉
. (A.65)

Then Ar is well defined and an isomorphism with inverse A−r−1. Setting

Âr(Y)(•, x)• ≡ e−(2r+1)πiL0A−r−1(Y)(•, x)e(2r+1)πiL0• (A.66)

also defines an isomorphism Vk
ij
'→ V

j′

ik′. Its inverse is given by

Ãr(Y)(•, x)• ≡ e−(2r+1)πiL0Ar(Y)(•, x)e(2r+1)πiL0 • . (A.67)
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The proof is almost the same as before, thus it is omitted here.
Lastly we state the definition of a rational VOA. There are some competing notions in

the literature, since over the years the definition got refined. We settle with possibly the
most restrictive one.

Definition A.2.11. A VOA V is called rational if:

1) It is simple (i.e. irreducible) as a module over itself.

2) It is of CFT type: V(n) = 0 for n < 0, V(0) = C1 and V ∗ ' V as V -modules.

3) Every weak V -module is completely reducible 1.

The last point needs some explanation. A weak module has all the properties of a V -
module except that it doesn’t need to have a grading, but it satisfies all the conditions of
a V -module which still make sense under this generalization. For a list of rational VOAs
we refer to [91]. Examples include VOAs constructed from even lattices [41][43] or VOAs
corresponding to integrable highest weight representations L(k, 0) of affine Lie algebras at
level k [55][92]. The last example will be discussed in the next section.

A.3 Examples and CFT Fields
After the mathematical treatment of VOAs and their representations we relate mathemat-
ical terms to quantities better known in physics. Usually in physics the state space H of
a RCFT is decomposed into left and right moving conformal families H = ⊕

i,j∈I Ui × U j.
The vector spaces Ui, U j are Verma modules built from a primary φi of conformal weight hi
and similar for U j. In VOA terms this is nothing but a simple representation of a rational
VOA V , which due to the unit properties in the definition are built by applying modes
of module vertex operators to a lowest weight state |hi〉, which is the state corresponding
to a primary field. Therefore these representations are of Verma module type. Since the
Virasoro algebra is embedded into a VOA this automatically contains a conformal family.
Bur in addition the representation may be generated by application of other field modes,
e.g. in case the CFT has Kac-Moody symmetry the representation should contain states
from applications of Kac-Moody currents. As a non Lie algebra type example for a CFT
with additional symmetry consider W-algebras. In this case the representation should also
be generated by modes of the higher spin currents. In both cases, though, the primary
state spaces remain representations of the Virasoro algebra. VOAs are now just the math-
ematical object capturing all of these symmetry algebras and a representation of the VOA
for a given symmetry is part of the usual chiral subspace of the state space of the physical
theory. Note however that this doesn’t exclude non-unitary representations in general. To

1Often this is stated as two points: That every N-gradable weak module is completely reducible and
that V is C2-cofinite. That this is equivalent to the statement given in the definition follows from results
in [116][1].
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make this more palpable we discuss the case of Kac-Moody algebras2. The VOA structure
for Kac-Moody algebras is discussed in many places, we follow [52, section 2]. Let g be a
semi-simple Lie algebra and

ĝk = g((t))⊕ kC (A.68)

its centrally extended loop algebra. Since g is semi-simple its Killing form ( • , • ) is a
non-degenerate bilinear form. Let h∨ be the dual Coxeter number of g, the normalized
inner product is defined as

〈 • , • 〉 = 1
2h∨ ( • , • ) (A.69)

and the Lie bracket on generators of ĝk reads

[Xtn, Y tm] = [X, Y ]tn+m + km 〈X, Y 〉 δn+m,0C . (A.70)

Let ĝ+ = g[[t]]t⊕kC ⊂ ĝ be the positive mode sub Lie algebra and Ck be its one dimensional
representation defined by the action of a single generator

X ⊗ tn1 = 0, ∀n ≥ 0
C · 1 = k1 .

(A.71)

The vacuum VOA associated to ĝk has underlying vector space the induced module

Vk(ĝ) = U(ĝ)⊗U(ĝ+) Ck (A.72)

where U(ĝ) is the universal enveloping algebra. As a vector spaces there is an isomorphism

Vk(ĝ) ' U(t−1g[[t−1]]) (A.73)

which is tantamount to saying that it is the following vector space

Vk(ĝ) ' spanC

{
ja1
n1 · · · j

am
nm1

∣∣∣n1 ≤ · · · ≤ nm < 0, ifni = ni+1 then ai ≤ ai+1
}

(A.74)

for {ja} a basis in g and we abbreviated jan = jatn. The vertex operator is defined as

Y (1, z) = idVk(ĝ)

Y (ja−11, z) = ja(z) =
∑
n∈Z

janz
−n−1 (A.75)

and more generally

Y (ja1
n1 · · · j

am
nm1, z) = 1

(−n1 − 1)! · · · (−nm − 1)! :∂−n1−1
z ja1(z) · · · ∂−nm−1

z jam(z) : .

(A.76)
2It turns out that representation theory of W-algebras very much follows from this by Drinfeld Sokolov

reduction. The interested reader may consult [2] for original results on this or [3] for an excellent review.
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If we assume that {ja} is an ONB wrt 〈 • , • 〉 we can define the Sugawara energy momentum
tensor as the vertex operator

T (z) ≡ Y

(
1

2(k + h∨)j
a
−1j

a
−11, z

)
= 1

2(k + h∨) :ja(z)ja(z) : . (A.77)

The embedded Virasoro algebra then has central charge

c(k) = k dim g

2(k + h∨) . (A.78)

That this indeed defines a VOA is checked in [52, section 2.4]. Furthermore there is a
relation between representations of ĝk and VOA representations of Vk(ĝ). A representation
U of ĝk is called smooth if for any u ∈ U there exists N > 0 s.th.

Xtn · u = 0, ∀X ∈ g, n ≥ N . (A.79)

It is shown in [52, section 5] that smooth ĝk-modules are in one-to-one correspondence with
Vk(ĝ)-representations. This is not too surprising since the vertex operator or its module
vertex operator may equally be described by its Lie algebra of modes, which in this case
is the universal enveloping algebra of ĝk. The smoothness condition then just ensures
the lower truncation property of modules. Examples of such modules are highest weight
representations of ĝk 3. Given a weight λ of ĝk its highest weight representation Mλ is
generated from a highest weight stat |λ〉 by applying negative modes. That is, a vector in
Mλ is a finite linear combination of vectors

m = ρλ(T a1
n1 ) · · · ρλ(T amnm ) |λ〉 (A.80)

where {T an} are elements of ĝk in its Cartan Weyl basis. Here ρλ : ĝk → End(Mλ) is the
module map and similar to the previous case only modes

T an =


E−αini

, αi ∈ Φ+ ni ≤ 0,
Hai
ni
, ai = 1, · · · , rk(g), ni < 0

Eαi
ni
, αi ∈ Φ+ ni < 0

(A.81)

with Φ+ the positive roots of g, appear. Using the explicit commutation relations (A.70)
it is obvious that these are smooth modules. Let P+ be the dominant integral weights of
g and θ ∈ Φ+ the highest root of g. For weights

P k
+ = {λ = (λg, k, 0) | (λg, θ) ≤ k, λg ∈ P+} (A.82)

the representation Mλ is integrable, meaning that the induced representation of any sl2
triple {Eα

n , E
−α
n , Hα} ⊂ ĝk for α ∈ Φ+ is finite dimensional. The condition (A.82) ensures

3see e.g. [64] for an exhaustive treatment of the representation theory of affine Lie algebras
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that at a fixed level there are only finitely many integrable highest weight representa-
tions. It turn out that the corresponding VOA modules for Vk(ĝ) are exactly the simple
representations of Vk(ĝ). Unfortunately it is not true that Vk(ĝk) is a rational VOA. Of
course Vk(ĝk) is a module over itself. Let Nk be the ĝk-submodule of Vk(ĝ) generated by
(Eθ
−1)k+11. It is the maximal submodule and the quotient

V k(ĝk) ≡ Vk(ĝk)/Nk (A.83)

inherits naturally a VOA structure as it is a submodule and the module map is the vertex
operator. As a vector space there is an isomorphism V k(ĝk) ' L(k, 0), with L(k, 0) the
irreducible highest weight module of ĝk with weight λ = 0. This is a rational VOA and
its simple modules are still labeled by P k

+. Highest weight modules for ĝk will give N-
graded VOA modules similar to general simple modules for VOAs. The conformal weight
of the corresponding V k(ĝ)-representation Mλ are not too hard to compute (see e.g. [39,
chapter 15.3.3]) and given by

hλ = (λg, λg + 2ρ)
2(k + h∨) (A.84)

where ρ = 1
2
∑
i∈Φs+ αi is the sum over simple positive roots of g (usually called the Weyl

vector).
This settles the state space, but what about fields? Though intertwining operators or

vertex operators resemble conformal fields the two notions should not be confused. A field
operator inserted at 0 ∈ C in a CFT is usually given in the form of an operator valued
series expansion

Φ(z, z) =
∑

n,m∈Z
φ[n,m]z

−n−hlz−m−hr (A.85)

where (hl, hr) are left and right moving conformal weights of the field. In this thesis we
adopted the mathematics convention of expanding operator valued Laurent series with
fixed exponents irrespective of conformal weights

Φ(z, z) =
∑

n,m∈Z
φn,mz

−n−1z−m−1 . (A.86)

The coefficients are related by a simple index shift

φ[n,m] = φn+hl−1,m+hr−1 . (A.87)

Assume that Φ(z, z) is a field of a RCFT with state space H = ⊕
i,j Hi,jUi × U j. By the

operator-state correspondence there exists a unique vector |v〉 ∈ H corresponding to Φ via

|φ〉 = lim
z,z

Φ(z, z)1 = φ[−hl,−hr]1 . (A.88)

The bare field itself is of course not very interesting. Only through its interactions, or
couplings, to all other fields in the theory it becomes relevant. But these are exactly given
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by the intertwining operators! If we assume for simplicity that |φ〉 = vL⊗vR ∈ Ui×U j ↪→ H
is a homogeneous element of H and rewrite H as

H =
K⊕
n=1

UL
νL(n) × UR

νR(n) (A.89)

the field has an expansion

Φ(z, z) =
∑

k,`,n=1,··· ,K
νL(k)=i,νR(k)=j

N
ν(n)
νL(k)νL(`)∑
α1=1

N
νR(s)
νR(k)νR(`)∑
α2=1

Cn
k`

[
α1
α2

]
Y
νL(n)
νL(k)νL(`);α1

(vL, z)YνR(n)
νR(k)νR(`);α2

(vR, z)

(A.90)

for some coefficients Cn
k`

[
α1
α2

]
∈ C. Hence computing a correlation function reduces to

computing

〈Φ1(z1, z1) · · ·Φn(zn, zn)〉
∼
∑〈

φLi1

∣∣∣Yi1
i2p1(φLi2 , z2)Yp1

i3p2(φLi2 , z3) · · ·Ypn−1
in−1in(φLin−1 , zn−1)

∣∣∣φLin〉
×
〈
φRk1

∣∣∣Yk1
k2q1(φRk2 , z2)Yq1

k3q2(φRk3 , z3) · · ·Yqn−1
kn−1kn(φRkn−1 , zn−1)

∣∣∣φRkn〉
(A.91)

where we secretly moved the insertion point of Φ1 to ∞ and the insertion of Φn to 0. Let
us make this more concrete by considering a three point function.

〈Φt(z1, z1)Φu(z2, z2)Φv(z3, z3)〉 (A.92)

Wlog we may send z1 →∞, z2 → 1, z3 → 0 to express the three point function as a matrix
element

lim
z2→1
〈φt|Φu(z2, z2) |φv〉 = lim

z2→1
lim
z1→∞

z
2hLt
1 z

2hRt
1 〈Φt(z1, z1)Φu(z2, z2)Φv(0, 0)〉 . (A.93)

This can be computed by inserting the OPE ansatz

Φu(z2, z2)Φv(0, 0) ∼
K∑
n=1

∑
mL,mR

Cn;mL,mR

uv z
hLn−hL2−h

L
3−M

L

2 z
hRn−hR2 −h

R
3 −M

R

2 ΦmL,mR

n (0, 0) (A.94)

with ML = ∑
im

L
i , MR = ∑

jm
R
j and mL,mR are multiindices running over descendants{

LL−mLLR−mRΦn ≡ LL−mL1
· · ·LL−mLPL

R
−mR1
· · ·LR−mRQΦn

}
. (A.95)

Inserting (A.94) into (A.93) and assuming for simplicity that all fields are highest weight
primaries yields

lim
z2→1
〈φt|Φu(z2, z2) |φv〉 = Ct

uvdtt . (A.96)



A.3 Examples and CFT Fields 181

We may assume dtt = 1 by picking an ONB. On the other hand we can compute (A.93) in
the expansion of intertwining operators

lim
z2→1
〈φ1|Φ2(z2, z2) |φ3〉 = lim

z2→1

∑
k,`,n=1,··· ,K

ν(k)∈u,ν(l)∈v,ν(n)∈t

N
ν(n)
νL(k)νL(`)∑
α1=1

N
νR(s)
νR(k)νR(`)∑
α2=1

Cn
k`

[
α1
α2

]

〈φ1|YνL(n)
νL(k)νL(`);α1

(φL2 , z2)YνR(n)
νR(k)νR(`);α2

(φR2 , z2) |φ3〉 .

(A.97)

The first sum is restricted to indices ν(k) = νL(k)⊗νR(k) in the simple representation the
state φ2 lives in and similar for ν(n), ν(l). Evaluating this gives

lim
z2→1
〈φ1|Φ2(z2, z2) |φ3〉 =

∑
k,`,n=1,··· ,K

ν(k)∈u,ν(l)∈v,ν(n)∈t

N
ν(n)
νL(k)νL(`)∑
α1=1

N
νR(s)
νR(k)νR(`)∑
α2=1

Cn
k`

[
α1
α2

]
Ft
uv;α1F

t
uv,α2

(A.98)

with F1
23,α three point chiral conformal blocks. Comparing (A.98) with (A.96) one get a

relation between the expansion coefficients of a conformal field and the coefficients of the
OPE, which is most conveniently given in a diagram

.
Having explained in detail the relation between conformal fields, their expansion in

terms of intertwining operators and OPE coefficients we briefly discuss the four point
case. In contrast to the three point discussion we suppress most of the indices in order to
highlight the essentials. Given a four point function

〈φi|Φj(z1, z1)Φk(z2, z2) |φ`〉 (A.99)
for |z1| > |z2| > 0 we insert the expansion of Φj, Φk in terms of intertwining operators∑

p

Ci
jpC

p
k` 〈φi|YiL

jLpL(φLj , z1)YpL

kL`L(φLk , z2)YiR

jRpR(φRj , z1)YpR

kR`R(φRk , z2) |φ`〉

=
∑
p

Ci
jpC

p
k` F

ij
k`(p|z1, z2)Fij

k`(p|z1, z2)
(A.100)

where we used the notation of [26, section 2.12] for conformal blocks and the explicit
isomorphism between conformal blocks and intertwining operators. In case |z1| > |z2| >
|z1 − z2| we can use proposition A.4.5 IOA3) to equally expand this as∑

q

Ci
q`C

q
jk 〈φi|YiL

qL`L

(
Y
qL

jLkL(φLj , z1 − z2)φLk , z2
)
YiR

qR`R

(
Y
qR

jRkR(φRj , z1 − z2)φRk , z2
)
|φ`〉

=
∑
q

Ci
q`C

q
jk F

i`
jk(q|z2, z1 − z2)Fi`

jk(q|z2, z1 − z2) .

(A.101)
The essential information is again best given in terms of a diagram
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which is of course nothing but the usual diagram when discussing crossing symmetry
of the four point function.

A.4 Intertwining Operator Algebras
Intertwining operator algebras are a mathematical tool to describe genus zero conformal
blocks. They were introduced in [78]. The treatment given here follows [80]. Since results
become gradually more complicated we refrain from presenting proofs, but give detailed
reference where to find them in the literature. Most of the results only involve the basic
statements about intertwining operators given previously plus some theorems about partial
differential equations with regular singularities.Before we go into details we state a result
from complex analysis which is secretly used in some places.

Proposition A.4.1. Let I ⊂ R be an open subset. A function f : I → C has a possibly
multivalued analytic continuation f̃ : C → C if and only if f is an analytic function. In
addition on any branch the analytic continuation is uniquely determined by the identity
principle.

First we recall the major result of [81] and the logic of arguments leading to it.

Theorem A.4.2. [81, Theorem 1.4,2.5] Let V be a rational VOA, M1, M2, M3, M4 and
M be V -modules. Let Y1 ∈ VM4

M1M and Y2 ∈ VM
M2M3. Then for mi ∈ Mi there exist N , L

∈ N and
ci(z1, z2), kj(z1, z2) ∈ C

[
z±1

1 , z±2 , (z1 − z2)−1
]

(A.102)

for i = 1, . . . , N and j = 1, . . . , L, s.th.

Ψ(z1, z2) ≡ 〈m′4,Y1(m1, z1)Y2(m2, z2)m3〉 (A.103)

satisfies
∂m

∂zm1
Ψ +

N∑
i=1

ci(z1, z2) ∂
N−i

∂zN−i1
Ψ = 0

∂m

∂zm2
Ψ +

L∑
j=1

kj(z1, z2) ∂
L−j

∂zL−j1
Ψ = 0

(A.104)

for |z1| > |z2| > 0. Similar statements hold for iterates on |z2| > |z1−z2| > 0. Furthermore,
singular points z1 = 0, z1 =∞, z2 = 0, z2 =∞ and z1 = z2 are regular.
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The proof of the theorem relies on an intelligent filtration of C
[
z±1

1 , z±1
2 , (z1 − z2)−1

]
,

but the result is not too surprising as the whole point of the construction is to describe
chiral correlation functions, whose singular points are exactly at

{
z±1

1 , z±1
2 , (z1 − z2)−1

}
.

Regularity of the singular points tells that the solution has at most poles at singularities.
The consequence of theorem A.4.2 we are most interested in is the following theorem.

Theorem A.4.3. [81, Theorem 3.5] Let V be a rational VOA. Then in the setup of theorem
A.4.2, there exists P ∈ Z and for any mi ∈Mi homogeneous there exist ni, mi s.th. for

|m1|+ |m2|+ ni > P (A.105)

Ψ(z1, z2) is absolutely convergent on |z1| > |z2| > 0 and there exist analytic functions fi
s.th. Ψ can be analytically extended to

4∑
i=1

zmi2 (z1 − z2)nifi
(
z1 − z2

z2

)
(A.106)

on |z2| > |z1 − z2| > 0. Furthermore, any product

〈m′,Y1(m1, z1) · · ·Yn(mn, zn)mn+1〉 (A.107)

absolutely converges on |z1| > · · · > |zn| > 0 and can be analytically extended to Confn(C×).

As promised in the previous section this gives an associativity statement for correlation
functions of intertwining operators.

Theorem A.4.4. [78, Theorem 16.2,14.8] Let V be a rational VOA, then in the setup
of theorem A.4.2, there exists a V -module M̃ and intertwining operators Y3 ∈ VM̃

M1M2,
Y4 ∈ VM4

M̃M3
s.th.

〈m′4,Y4 (Y3(m1, z1 − z2)m2, z2)m3〉 (A.108)
absolutely converges on |z2| > |z1−z2| > 0 and equals (A.103) on |z1| > |z2| > |z1−z2| > 0.

This section can be conveniently summarized in the following proposition.

Proposition A.4.5. Let V be a rational VOA with simple modules {Ui}∈I. Then O =∐
i∈I Ui is an intertwining operator algebra (IOA)[80, Definition 2.1], i.e. it satisfies the

following list of axioms:

IOA1) (Convergence 1) For any Ui`, ` = 1, . . . , n + 2 and Yk ∈ V
jk−1
ikjk

for k = 2, . . . , n − 1
and Y1 ∈ V

in+2
i1ji , Yn ∈ V

jn
inin+1

φ(m1, . . . ,mn; z1, . . . , zn) ≡
〈
m′in+2 ,Y1(mi1 , z1) · · ·Yn(min , zn)min+1

〉
(A.109)

converges absolutely on |z1| > · · · > |zn| > 0. In addition it has a multivalued analytic
continuation Φ(m1, . . . ,mn; z1, . . . , zn) to Confn(C×).
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IOA2) (Convergence 2) For any Y1 ∈ V
j
i1i2 and Y2 ∈ Vi4

ji3

〈m′4,Y2 (Y1(m1, z1 − z2)m2, z2)m3〉 (A.110)

converges absolutely on |z2| > |z1 − z2| > 0.

IOA3) (Associativity) For any Y1 ∈ Vi4
i1j, Y2 ∈ V

j
i2i3 there exist Y`

3,α ∈ V`
i1i2, Y

`
4,α ∈ Vi4

`i3 and
Q ∈ N for all ` ∈ I s.th.

〈m′4,Y1(mi1 , z1)Y2(mi2 , z2)mi3〉

=
∑
`∈I

Q∑
α=1

〈
m′i4 ,Y

`
4,α

(
Y`

3,α(mi1 , z1 − z2))mi2 , z2
)
mi3

〉 (A.111)

holds for |z1| > |z2| > |z1 − z2| > 0.

IOA4) (Skew symmetry) For any Y1 ∈ Vi4
i1j, Y2 ∈ V

j
i2i3 , there exist Y3 ∈ Vi4

i2j, Y2 ∈ V
j
i1i3

and Q ∈ N for all ` = 1, . . . , I s.th.

〈m′4,Y1(mi1 , z1)Y2(mi2 , z2)mi3〉 (A.112)

defined on |z1| > |z2| and

∑
`∈I

Q∑
α=1

〈
m′4,Y

`
3,α(mi2 , z2)Y`

4,α(mi1 , z1)mi3

〉
(A.113)

defined on |z2| > |z1| are analytic extensions of each other.

Correlation functions (A.109), or better their analytic continuation to configuration
space, exactly give conformal blocks as shown in [151].

A word of warning should be given, whenever we discuss correlation functions of in-
tertwining operators. In general expressions like 〈m′4,Y(mi1 , z1)Y2(mi2 , z2)mi3〉 are multi-
valued analytic functions on their domain of convergence. One can make them into single
valued functions by specifying a branch of the logarithm. That is if we write

〈m′4,Y(mi1 , x1)Y2(mi2 , x2)mi3〉 |xni =en log(zi) (A.114)

it is uniquely determined and single valued. Throughout the whole thesis we always choose
branches with cuts along the positive real axis and leave this choice implicit.

A.5 Fusion, Braiding and Pentagon Equation
In the previous section we gave an outline on how intertwining operators for rational
VOAs give rise to chiral correlation functions in genus zero, which satisfy the expected
properties of rationality and having the correct singular points. In order to prove rigidity
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and modularity of RV for V rational, one needs the Verlinde formula. A rigorous proof
appeared in [84], the key steps are reviewed in the next sections.

We start by introducing fusion and braiding matrices of genus zero conformal blocks.
As before, let {Ui}i∈I be the simple modules of a rational VOA V . For A ∈ N, let{
Y
i3;A
i1i2;1, . . . ,Y

i3;A
i1i2;N i3

i1i2

}
be a basis for Vi3

i1i2 . Note that for different values of A, these

are different bases.

Definition A.5.1. Let |z1| > |z2| > |z1 − z2| > 0, the fusion matrices

F(i1i2i3);i4
[
α1 j α2
β3 k β4

]
(A.115)

are defined by〈
u′i4 Y

i4;1
i1j;α1(ui1 , z1)Yj;2

i2i3;α2(ui2 , z2)ui3
〉

=
∑
k∈I

N
i4
ki3∑

β3=1

Nk
i1i2∑

β4=1
F(i1i2i3);i4

[
α1 j α2
β3 k β4

] 〈
u′i4 ,Y

i4;3
ki2;β3

(
Y
k;4
i1i2;β4(ui1 , z1 − z2)ui2 , z2

)
ui3
〉

(A.116)

As formulas are already overloaded, the dependence of fusion matrices on bases of
intertwining operators is only implicit through an extra index at the index running through
different basis elements. Fusion matrices are just an expansion of IOA3) in terms of basis
elements. Graphically fusion matrices are represented by

=
∑
k∈I

N
i4
ki3∑

β3=1

Nk
i1i2∑

β4=1
F(i1i2i3);i4

[
α1 j α2
β3 k β4

]

.

Since single valued analytic continuations of products and iterates to the universal cover
˜Conf2(C×) are uniquely determined by the functions on the simply connected domains

|z1| > |z2| > 0 and |z2| > |z1−z2| > 0, fusion matrices also give coefficients for the analytic
extensions. Denoting the analytic continuation of〈

u′i4 ,Y
i4;3
ki3;β3

(
Y
k;4
i1i2;β4(ui1 , z1 − z2)ui2 , z2

)
ui3
〉

(A.117)

by
Ψk
β4β3(ui1 , ui2 , ui3 , u′i4 ; z1 − z2, z2) (A.118)
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this reads
Φj
α1α2(ui1 , ui2 , ui3 , u′i4 ; z1, z2)

=
∑
k∈I

N
i4
ki3∑

β3=1

Nk
i1i2∑

β4=1
F(i1i2i3);i4

[
α1 j α2
β3 k β4

]
Ψk
β4β3(ui1 , ui2 , ui3 , u′i4 ; z1 − z2, z2)

(A.119)

Similarly braiding matrices can be defined as coefficients in a basis expansion of IOA4).
Let |z1| > |z2| > 0 and m = z1−z2

2 . For any n ∈ Z, we define a path Bn as sketched in the
following figure

where Bn maps z1 
 z2 along a circle of radius | z1−z2
2 | and winds n times around m.

It winds counterclockwise for n ≥ 0 and clockwise for n < 0.
Definition A.5.2. Let B̂n denote the operation of analytically continuing an analytic
function on ˜Conf2(C×) along the lift B̃n ⊂ ˜Conf2(C×) of the path Bn : [0, 1]→ Conf2(C×).
By IOA4) for any n there exist braiding matrices

Bi1(i2i3)i4
n

[
α1 j α2
α3 k α4

]
(A.120)

defined as
B̂n

(
Φj
α1α2(ui2 , ui1 , ui3 , u′i4 ; z2, z1)

)

=
∑
k∈I

N
i4
i1k∑

α3=1

Nk
i2i3∑

α4=1
Bi1(i2i3)i4
n

[
α1 j α2
α3 k α4

]
Φk
α3α4(ui1 , ui2 , ui3 , u′i4 ; z1, z2)

(A.121)

The graphical representation of braiding matrices reads

=
∑
j∈I

N
i4
i1j∑

α3=1

Nj
i2i3∑

α4=1
Bi1(i2i3)i4
n

[
α3 k α4
α1 j α2

]

.
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The stage is almost set for proving pentagon and hexagon equations for fusion and braiding
matrices. Similar to the four point case we introduce the notation

Φkl
α1α2α3(ui1 , ui2 , ui3 , ui1 , ui5 ; z1, z2, z3) (A.122)

for the single valued analytic continuation to ˜Conf3(C×) of〈
u′i5 ,Y

i5;1
i1k,α1(ui1 , z1)Yk;2

i2l;α2(ui2 , z2)Yl;3
i3i4;α3(ui3 , z3)ui4

〉
(A.123)

and
Ψkl
β1β2β3(ui1 , ui2 , ui3 , ui4 , u′i5 ; z1 − z2, z2 − z3, z3) (A.124)

for the analytic continuation of pure iterates.

Proposition A.5.3. [84, Proposition 1.2, 1.3]

1) Basis elements of four point functions are linearly independent. To be more precise
the maps

Φj
α1α2 : U ′i4 ⊗ Ui1 ⊗ Ui2 ⊗ Ui3 → Hol

(
˜Conf2(C×)

)
u′i4 ⊗ ui1 ⊗ ui2 ⊗ ui3 7→ Φj

α1α2(ui1 , ui2 , ui3 , u′i4 ; z1, z2)
(A.125)

are linearly independent for any j ∈ I, α1 = 1, . . . , N i4
i1j, α2 = 1, . . . , N j

i2i3 and choice
of basis. Analogously the maps

Ψk
β2β1 : U ′i4 ⊗ Ui1 ⊗ Ui2 ⊗ Ui3 → Hol

(
˜Conf2(C×)

)
u′i4 ⊗ ui1 ⊗ ui2 ⊗ ui3 7→ Ψk

β2β1(ui1 , ui2 , ui3 , u′i4 ; z1 − z2, z2)
(A.126)

are linearly independent for any k ∈ I, β1 = 1, . . . , N i4
ki3, β2 = 1, . . . , Nk

i1i2 and choice
of basis.

2) Basis elements of five point functions are linearly independent, e.g.

Φkl
α1α2α3 : U ′i5 ⊗ Ui1 ⊗ Ui2 ⊗ Ui3 ⊗ Ui4 → Hol

(
˜Conf3(C×)

)
u′i5 ⊗ ui1 ⊗ ui2 ⊗ ui3 ⊗ ui4 7→ Φkl

α1α2α3(ui1 , ui2 , ui3 , ui1 , ui5 ; z1, z2, z3)
(A.127)

are linearly independent for any k, l ∈ I, α1 = 1, . . . , N i5
i1k, α2 = 1, . . . , Nk

i2,l and
α3 = 1, . . . , N l

i3i4 and choice of basis. Statements for iterates of intertwining operators
and combinations of iterates and products hold alike.

The proof of the proposition relies on the explicit presentation of P (z)-tensor products
as Ui1 �P (z) Ui2 '

∐
j∈I

(
V
j
i1i2

)∗
⊗ Uj '

∐
j∈I N

j
i1i2 Uj, its universal property and lemma

2.0.11.
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Corollary A.5.4. The pentagon equation holds

∑
s,t,r∈I

Nk
ri4∑

β4=1

Nr
i2i3∑

β5=1

Ns
i1r∑

γ7=1
F(i1i2i3);s

[
γ7 r β5
δ8 t δ9

]

F(i1ri4);i5
[
α1 k β4
γ6 s γ7

]
F(i1i2i3);k

[
α2 ` α3
β4 r β5

]

=
∑
p,q∈I

N
i5
p`∑

ε4=1
F(i1i2i3);i4

[
ε4 ` α3
γ6 q δ8

]
F(i1i2`);i5

[
α1 k α2
ε4 p δ9

]
(A.128)

Proof. Since elements
{

Φkl
α1α2α3

}
and

{
Ψij
β1β2β3

}
are all linearly independent, the above

equation follows by applying fusion morphisms to Φkl
α1α2α3(ui1 , ui2 , ui3 , ui1 , ui5 ; z1, z2, z3) s.th.

the result is a sum over elements Ψkl
β1β2β3(ui1 , ui2 , ui3 , ui4 , u′i5 ; z1 − z2, z2 − z3, z3) with coef-

ficients exactly the left or right hand side of (A.128). Linear independence immediately
gives the result.

By the same arguments one derives the hexagon equation for B1. Since we don’t need
the hexagon equation and writing it in full detail is very cumbersome we leave it to the
enthusiastic reader to add the details on the hexagon equation.

A.6 Properties of genus one correlation functions
So far the discussion solely involved genus zero correlation functions. The treatment of
genus 1 correlation functions follows a similar pattern. Though the technical details are dif-
ferent at some points, the line of reasoning is the same as in the genus zero case. One starts
by gluing genus zero correlation functions to genus one correlation functions using traces.
This defines analytic functions on certain domains in the complex plane. Again, they sat-
isfy a nice partial differential equation and the general theory of holomorphic PDEs give
that they have an analytic continuation to the configuration space of the torus. Since the
functions are glued from genus zero correlation functions, associativity and commutativity
properties hold and linear independence statements can be derived just as in the genus
zero case. The only new feature is the action of the mapping class group of the torus on
correlation functions. One needs to show that the space of multivalued analytic functions
on a twice punctured torus obtained by taking traces of genus zero four point functions
is closed under action of the mapping class group. This yields matrices corresponding to
Dehn twists as well as the S-matrix. Finally one derives an equation relating S-matrix and
braiding, which together with the pentagon equation will give the famous Verlinde formula.
That the modular S-matrix diagonalizes fusion rules was first conjectured by Verlinde in
[142]. A more rigorous treatment bases on highest weight representations of the Virasoro
algebra and intertwining operators 4 was given in [121]. It took another 15 years and a

4Called "couplings" in [121].
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series of papers mostly due to Huang and Lepowsky in order to arrive at a mathematical
proof for all rational VOAs. The ideas of the proof still follow [121], the main steps were
outlined above and we give the key results to the formula.

Again we mostly omit proofs for the statements, but point to the exact spot in the
literature, where the reader can find proofs.

A.6.1 Genus one correlation functions
In order to properly lift genus zero correlation functions to the torus we have to discuss
some basics of holomorphic coordinate transformations. This is due to the fact that inter-
twining operators live on the plane, but the gluing is best defined in terms of a cylinder.
A thorough discussion of such transformations is given e.g. in [52, section 6], though tech-
nically it is only for transformations of infinitesimal or formal disks. The structure sheaf
of a formal disk is just C[[z]] where z is some chosen formal generator. Hence infinitesimal
transformations act on formal power series. We will only need exponentials and logarithms,
which are globally defined holomorphic functions and thus have power series expansions
with infinite radius of convergence. Therefore we can expand the functions and apply the
formulas derived in the infinitesimal setting to the respective power series.

Let z = z0 + iz1 be a coordinate on a cylinder of radius one and infinite length, i.e. we
make the identification z ∼ z + 2πi. Then w = ρ(z) ≡ qz = e2πiz is a coordinate for an
annulus in the complex plane. Inserting an operator at a point zi on the cylinder gives an
operator insertion at qzi in the annulus. The standard local coordinate around zi vanishing
at zi is given by ξ = z − zi. Unfortunately qξ doesn’t give a local coordinate around qzi
vanishing at zi. To remedy this, one considers

x 7→ 1
2πi log(1 + 2πix) =

∞∑
k=1

(2πi)k−1x
k

k
(A.129)

for x ∈ C. By comparing coefficients one finds ci ∈ C, i > 0 s.th.

e
∑

i>0 cix
i+1∂xx = 1

2πi log(1 + 2πix) . (A.130)

Using the usual representation of the Virasoro algebra on holomorphic functions the lhs of
(A.130) can be written as

ecL+x, with cL+ ≡
∑
i>0

ciLi (A.131)

The inverse map to (A.129) is

y 7→ 1
2πi

(
e2πiy − 1

)
= e−cL+y . (A.132)

A good local coordinate is now given by

ρzi(x) = ρ(x+ zi)− ρ(zi) = 1
2πi

(
e2πix − 1

)
qzi2πi = e−cL+qzi2πix = e−cL+ (qzi2πi)L0 x .

(A.133)
This is the pullback of the local coordinate ξ = z − zi to the complex plane.
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Definition A.6.1. Let V be a rational VOA and Ui a simple V -module. Recall that there
exists hi ∈ C s.th. Ui = ∐

n∈N Uhi+n. Consider f : Ui → U i, the trace of f is defined as

tr(f) =
∑
n∈N

trUhi+n(f) =
∑
n∈N

dimUhi+n∑
i=1

〈
(eni )′ , feni

〉
(A.134)

where {eni } is some basis of Uhi+n.

The reader should take this definition with a grain of salt, since for arbitrary maps
f , there is no reason why its trace should exist. The sum (A.134) is in general infinite,
making it somewhat ill defined. However, we only need specific traces over intertwining
operators, for which the definition turns out to be sensible (see Theorem A.6.5). Hence
the definition should be read as a rule of computation, displayed once without having to
deal with national overloaded formulas for intertwining operators.

Definition A.6.2. Let V be a rational VOA and Yi ∈ V
Pi−1
MiPi

for i = 1, . . . , N , where Mi,
Pi are V -modules and P0 = PN . Let φ1

Y1,...,YN
(•; z1, · · · , zN ; q) be defined as

m1 ⊗ · · · ⊗mN 7→φ1
Y1,...,YN

(m1, · · · ,mN ; z1, · · · , zN ; q)
≡ trP0

(
Y1(ρz1m1, qz1) · · ·YN(ρzNmN , qzN )qL0− c

24
) (A.135)

Lemma A.6.3. Let C1>···>N = {(z1, . . . , zN) ∈ C× | |z1| > · · · > |zN | > 0} and Az1>···>zN
be the space of analytic functions on C1>···>N . Then

φ1
Y1,...,YN

(m1, · · · ,mN ; z1, · · · , zN ; q) ∈ Aqz1>···>qzN ((q)) (A.136)

for all m1, · · · ,mN .

Proof. Due to grading restriction it holds ρzimi ∈ Mi. Hence the lemma immediately
follows from the convergence property of products of intertwining operators at fixed degree.

In order to show that Φ1
Y1,··· ,YN is an absolutely convergent function and can be analyt-

ically extended to the whole torus it is shown in [82] that it satisfies a suitable differential
equation. Before giving the differential equation, let’s make some comments of what to
expect from it. As described in [52] conformal blocks for a rational VOA should correspond
to horizontal sections of a holomorphic vector bundle with (projectively) flat connection
over the moduli space of Riemann surfaces. Thus the differential equation for genus 1 can
be interpreted as the local expression of a (projectively) flat connection. Furthermore being
a vector bundle over moduli space, the space of solutions should be invariant under the
action of the mapping class group, hence for the torus, solution space is preserved under
modular transformations. Therefore one might expect modular forms to play a significant
role and this is exactly what happens.
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For k ∈ N let G2k+2(τ) be the k-th Eisenstein series. For k = 0 this is a pseudo modular
form, whereas for k ≥ 1 it is a modular form of weight 2k + 2, i.e. for(

a b
c d

)
∈ SL(2,Z) (A.137)

it holds
G2

(
aτ + b

cτ + d

)
= (cτ + d)2G2(τ)− 2πic(cτ + d) (A.138)

and
G2k+2

(
aτ + b

cτ + d

)
= (cτ + d)2k+2G2k+1(τ) (A.139)

In addition, let ℘m(z; τ) be the m-th Weierstrass zeta function, which is a modular form
of weight m

℘m

(
z

cτ + d
; aτ + b

cτ + d

)
= (cτ + d)m℘(z; τ) (A.140)

Both type of functions can be expressed in terms of qτ instead of τ and we don’t distinguish
between the two presentations. The natural analog of (A.102) is the algebra

M = C [G4(qτ ), G6(qτ ), ℘2(zi − zj; qτ ), ℘3(zi − zj; qτ )]i<j=1,...,N . (A.141)

M has an obvious grading in terms of modular weight. Lastly there is following differential
operator

Dj(w) ≡ −4πqτ∂qτ + wG2(qτ ) +G2(qτ )
N∑
i=1

zi∂zi −
∑
i 6=j

℘1(zi − zj; qτ )∂zi (A.142)

for w ∈ C and
Ds
j(w) ≡

s∏
k=1

Dj(wk), ∀s ≥ 1 (A.143)

Note that elements of M are in particular analytic functions in (z1, . . . , zn; τ). The main
technical result about traces of products of intertwining operators now reads

Theorem A.6.4. [82, Theorem 3.9] For V a rational VOA, Yi ∈ V
Pi−1
MiPi

for i = 1, . . . , N ,
where Mi, Pi are V -modules and P0 = PN and m1, · · · ,mN homogeneous there exist func-
tions

Cm,j ∈M Km,j ∈M, m = 1, . . . , L, j = 1, . . . , N (A.144)

where Cm,j has modular weight m and Km,j has modular weight 2m, s.th.
(
∂Lzj +

L∑
m=1

Cm,j∂
L−m
zj

)
φ1
Y1,...,YN

(m1, · · · ,mN ; z1, · · · , zN ; qτ ) = 0 (A.145)
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and(
DL
i (a1) +

L∑
m=1

Km,jDL−m
i (a2)

)
φ1
Y1,...,YN

(m1, · · · ,mN ; z1, · · · , zN ; qτ ) = 0 . (A.146)

holds for 1 > |qz1 | > · · · > |qzN | > |qτ | > 0. In (A.146) we abbreviated a1,j = ∑N
i=1 |mi| +

2(L− j) and a2,j = ∑N
i=1 |mi|+ 2(L−m− j).

The differential equation looks fairly complicated. Its full technical derivation is quite
involved but one can make some vague comments on its form, especially on the appear-
ance of the differential operators (A.142). As noted before, conformal blocks are horizontal
sections of a projectively flat vector bundle over the moduli space of Riemann surfaces.
This point of view was pioneered by [56]. The connection on the conformal block bun-
dle is related to the action of the energy momentum tensor (see e.g. [51, section 7],[52,
chapter 17][68, equation 3.6.11]) and therefore to the action of the Virasoro algebra. The
differential operators (A.142) are closely related to the Virasoro action on q-traces (A.135)
as shown in [82, Lemma 3.8]. This at least slightly motivates the form of the differen-
tial equations (A.145),(A.146), a detailed derivation of the differential equations using the
general theory of conformal block should be possible using the results of [68, section 5.5].

Two important statements follow from theorem A.6.4. The first addresses analytic
continuations and the second the action of the modular group.

Theorem A.6.5. [82, Theorem 4.1] For 1 > |qz1| > · · · > |qzN | > |qτ | > 0, q-traces
φ1
Y1,...,YN

(m1, · · · ,mN ; z1, · · · , zN ; q) are absolutely convergent. In addition they can be an-
alytically continued to

TN ≡ {(z1, . . . , zN ; τ) ⊂ Cn ×H | zi 6= zj + pτ + q, p, q ∈ Z} (A.147)

The analytically continued single valued continuation of φ1
Y1,...,YN

(m1, · · · ,mN ; z1, · · · , zN ; q)
on the universal cover T̃N will be denoted as

Φ1
Y1,...,YN

(m1, · · · ,mN ; z1, · · · , zN ; q) . (A.148)

Again single valuedness requires choosing a fixed branch for
φ1
Y1,...,YN

(m1, · · · ,mN ; z1, · · · , zN ; q) on the region 1 > |qz1| > · · · > |qzN | > |qτ | > 0 ⊂
CN × H. The theorem immediately follows from the analyticity of the differential equa-
tions (A.145),(A.146). For modular invariance we introduce

G1
N =

{
f ∈ Hol

(
T̃N
)
| ∃Y1, · · · ,YN , m1, · · · ,mN s.th.

f(z1, · · · , fN ; q) = Φ1
Y1,...,YN

(m1, · · · ,mN ; z1, · · · , zN ; q)
}
.

(A.149)

Theorem A.6.6. [82, Theorem 7.3] The space G1
N is invariant under modular transfor-

mations, that is for (
a b
c d

)
∈ SL(2,Z) (A.150)
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denote aτ+b
cτ+d = τ ′, then it holds

Φ1
Y1,...,YN

(( 1
cτ + d

)L0

m1, · · · ,
( 1
cτ + d

)L0

mN ; z1

cτ + d
, · · · , zN

cτ + d
; qτ ′

)
∈ G1

N (A.151)

This statement requires considerably more work to prove and the proof relies on certain
properties of Zhu’s algebra. Genus one correlation functions satisfy associativity and com-
mutativity properties, which due to the explicit form in terms of q-traces directly follow
from their genus zero counterparts.

Theorem A.6.7. [82, Theorem 4.2, 4.3] In the situation of definition A.6.2, for any
i = 1, . . . , N there exist Ỹi+1 ∈ V

Pi−1
Mi+1iPi

and Ỹi ∈ VPi
MiPi+1

s.th.

Φ1
Y1,...,YN

(m1, · · · ,mN ; z1, · · · , zN ; q)
= Φ1

Y1,...,Yi−1,Ỹi+1,Ỹi,...,YN
(m1, . . . ,mi+1,mi, . . . ,mN ; z1, · · · , zN ; q) .

(A.152)

Furthermore, for any i = 1, . . . , N , there exists a V -module Li and Y′i ∈ VLi
MiMi+1

, Y′i+1 ∈
V
Pi−1
LiPi+1

s.th.

Ψ1
Y1,...,Y′i ,Y

′
i+1,...,YN

(m1, . . . ,mN ; z1, . . . , zN ; q)
≡Φ1

Y1,...,Yi−1,Y′i+1,...YN
(m1, · · · ,Y′i (mi, zi − zi+1)mi+1, . . . ,mN ; z1, · · · , zi−1, zi+1, . . . , zN ; q)

(A.153)
is absolutely convergent on{

1 > |qz1| > · · · > |qzi−1 | > |qzi+1 | > · · · > |q| > 0
}
∩
{
|qzi+1| > |qzi − qzi+1| > 0

}
.

(A.154)
On

{
1 > |qz1| > · · · > |qzi−1| > |qzi | > |qzi+1 | > · · · > |q| > 0

}
∩
{
|qzi+1 | > |qzi − qzi+1| > 0

}
it agrees with

φ1
Y1,...,YN

(m1, · · · ,mN ; z1, · · · , zN ; q) . (A.155)

The final result which we recall in this section is linear independence of genus one
correlation functions for simple modules. This is needed to prove identities involving Dehn
twists and S-transformations, as their matrix representations are coefficients in front of
such functions.

Theorem A.6.8. [84, Proposition 2.2] In the setup of definition A.6.2, let N = 2 and{
Y
i3;A
i1i2;α

}
α=1,...,N i3

i1i2

be a basis in Vi3
i1i2. Then, q-traces seen as maps

Φ1
Y
i4;1
i1`;α1

,Y`;2i2i4;α2
(•, •; z1, z2; q) : Ui1 ⊗ Ui2 → G1

N (A.156)

are linearly independent for any ` ∈ I and α1 = 1, . . . , N i4
i1`, α2 = 1, . . . , N `

i2i4.
An analogous statement holds for Ψ1.



194 A. Vertex Operator Algebra Basics

From A.6.8 one defines the S-matrix corresponding to the S-transformation.

Definition A.6.9. Let U0 = V , then the S-matrix is defined by

Φ1
Yi0i;1

(
v;−z

τ
; q− 1

τ

)
=
∑
j∈I
SijΦ1

Y
j
0j;1

(v; z; qτ ) . (A.157)

The same matrix appears when considering two point functions instead of one point
functions.

Lemma A.6.10. [84, section 2]

S
(

Ψ1
Y
j
ej;1,Y

0
ii′;1

(m,n′; z1, z2; qτ )
)

=
∑
`∈I
S`jΨ1

Y`
e`;1,Y

0
ii′;1

(mi, v; z1, z2; qτ ) (A.158)

Proof. We compute

S
(

Ψ1
Y
j
0j;1,Y

0
ii′

(m,n′; z1, z2; qτ )
)

(1)=trMj

(
Y
j
0j;1

(
ρ− z1

τ

(
Y0
ii′;1

((
−1
τ

)L0

m,−1
τ

(z1 − z2)
)(
−1
τ

)L0

n′, q− z2
τ

))
q
L0− c

24
− 1
τ

)
(2)=trMj

(
Y
j
0j;1

(
ρ− z1

τ

(
−1
τ

)L0 (
Y0
ii′;1 (m, (z1 − z2))n′, q− z2

τ

)
q
L0− c

24
− 1
τ

))
(3)=Φ1

Y
j
0j;1

((
−1
τ

)L0

Y0
ii′;1(m; z1 − z2)n′;−z2

τ
; q− 1

τ

)
(4)=
∑
`∈I
Sj`Φ1

Y`0`;1

(
Y0
ii′;1(m; z1 − z2)n′; z2; qτ

)
(5)=
∑
`∈I
Sj`Ψ1

Y`
e`;1,Y

0
ii′;1

(m,n′; z1, z2; qτ )

(A.159)
In (1) the expansion of Ψ1 in the suitable domain is inserted, (2) is the SL(2,C)-action
(A.41) for intertwining operators. In (3) we used the definition of Φ1 and (4) is (A.157).
Finally, (5) is again just the definition of Ψ1.

Let R : Vk
ij → V

j′

k′i be the isomorphism5

R(Y) = eπi(hi3−hi2 )B0 ◦ A0(Y) . (A.160)

The next step in order to prove the Verlinde formula is to analyze how two point func-
tions behave under Dehn twists around generators of middle homology, i.e. transporting
insertions around a and b-cycles of the torus.

5The letter R is not by accident. In the graphical representation, after rescaling, R rotates the trivalent
vertex corresponding to Y by π.
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Theorem A.6.11. [84, Proposition 4.3] Let

a
(

Ψ1
Y
j
0j;1,Y

0
ii′

(mi, v; z1, z2; qτ )
)

= P0

[
Ψ1

Y
j
0j;1,Y

0
ii′

(mi, v; z1, z2 − 1; qτ )
]

b
(

Ψ1
Y
j
0j;1,Y

0
ii′

(mi, v; z1, z2; qτ )
)

= P0

[
Ψ1

Y
j
0j;1,Y

0
ii′

(mi, v; z1, z2 + τ ; qτ )
] (A.161)

where P0 : G1
2 → G1

2;0 is the projection to correlation functions, with intermediate propa-
gating representation U0. Then it holds

a
(

Ψ1
Y
j
0j;1,Y

0
ii′

(mi, v; z1, z2; qτ )
)

= e−2πihi
(

B(ji′i)j
−1

[
1 0 1
1 0 1

])2

Ψ1
Y
j
0j;1,Y

0
ii′

(mi, v; z1, z2; qτ )

(A.162)

b
(

Ψ1
Y
j
0j;1,Y

0
ii′;1

(mi, v; z1, z2; qτ )
)

= e−2πihi
∑
`∈I

N`
i′j∑

α1=1

Nj
i∑̀

α1=1
F(ijj′)j

[
1 0 1
α1 ` α2

]

F(i`′`)i
[
α1 j R(α2)
β1 0 β2

]
Ψ1

Y`0`;1,Y
0
ii′;1

(mi, v; z1, z2; qτ )

(A.163)

As noted in footnote 5, a rescaled version of R is related to a pivotal structure. The
final step for the Verlinde Formula is a fact from topology. It is well known that the S-
transformation interchanges a and b-cycle of a torus. Since genus one correlation functions
are a representation of the mapping class group of the torus, a similar relation should hold
among a, b and S-actions.

Theorem A.6.12. [84, Proposition 4.5]

S ◦ a = b ◦ S (A.164)

as maps on G1
2,0.

The proof is very similar to the proof of lemma A.6.10, using once the rescaling property
of intertwining operators. Putting all things together, the final statement of the whole
section is the next theorem.

Theorem A.6.13. [84, Corollary 4.7] For all i, j, k ∈ I it holds

∑
`∈I
Si`

(
B(`j′j)`
−1

)2
[
1 0 1
1 0 1

]
S−1
`k = Nk

ij F(jj′j)j
[
1 0 1
1 0 1

]
(A.165)

The theorem follows from (A.164) and the pentagon identity, which is used to show
that the rhs of (A.163) modulo the twist equals the rhs of (A.165) (see [84, section 3]).

This is almost the Verlinde formula. Note that F(jj′j)j
[
1 0 1
1 0 1

]
6= 0, as otherwise the lhs of
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(A.165) vanishes. But for ` = 0 the braiding matrix in (A.165) is derived from correlation
function

〈m′k, YV (u; z1)YUk(v, z2)nk〉 (A.166)
where nk,mk ∈ Uk and u, v ∈ V . Since both, the module map and the vertex operator are
power series expansions, they are independent of the paths in the definition of the braiding
matrix. Hence the braiding matrix in this case is constant one, giving a contradiction.

Corollary A.6.14.

Nk
ij =

∑
`∈I

Si`Sj`S
−1
k`

S0`
(A.167)

Proof. Let

Υkj =

(
B(kj′j)k
−1

)2
[
1 0 1
1 0 1

]

F(jj′j)j

[
1 0 1
1 0 1

] (A.168)

then (A.165) can be written as ∑
`∈I
Si`Υ`jS

−1
`k = Nk

ij . (A.169)

Since Ui, Uj and Uk are simple modules it holds Nk
0j = δjk. This yields

S0mΥmj =
∑
k∈I

δjkSkm ⇔ Υmj = Sjm
S0m

. (A.170)

Inserting (A.170) in (A.169) gives (A.167).



Appendix B

Category Theory Basics

In order to be as self contained as possible we recall some definitions and facts about
categories. There is a plethora of literature on category theory. A classic source is e.g.
[111]. Textbook accounts more oriented towards applications in this thesis can be found
in [45] and [5].

A (small) category C consists of a set of objects Ob(C) and for any two objects c, d a
set of morphisms HomC(c, d) together with a composition map

◦ : HomC(c, d)× HomC(d, e)→ HomC(c, e) . (B.1)

A category is called C-linear if HomC(c, d) is a C-vector space for any two objects c, d in
C.

We will typically write c ∈ C for c ∈ Ob(C). Let C,D be categories. A functor F : C→ D
is a map Ob(C)→ Ob(D) and F : HomC(c, d)→ HomD(F (c), F (d)) satisfying

F (idC) = idD, F (f ◦ g) = F (f) ◦ F (g) . (B.2)

Given two functors F,G : C → D a natural transformation η : F → G is a collection of
maps ηc : F (c)→ G(c) for any c ∈ C with commuting diagrams

F (c) F (d)

G(c) G(d)

F (f)

ηc ηd

G(f)

for any c, d ∈ C and f ∈ HomC(c, d). If ηc is an isomorphism for any c ∈ C, η is a natural
isomorphism. Given two functors

L : C 
 D : R (B.3)

then L is left adjoint to R if there is a natural isomorphism

HomD(L(•), •) '−→ HomC(•, R(•)) (B.4)



198 B. Category Theory Basics

in which case R is right adjoint to L. Two categories C, D are equivalent if there is pair of
adjoint functors L : C 
 D : R and both functors are fully faithful meaning that

HomC(•, •)→ HomD(L(•), L(•)) (B.5)

is a bijection of sets. A monoidal category is a category C together with a bifunctor
⊗ : C × C → C an object 1 and natural transformations A : ⊗ ◦ (id × ⊗) → ⊗(⊗ × id),
λ, ρ satisfying

ρ : c⊗ 1 ' c, λ : 1⊗ c ' c (B.6)
and the usual pentagon and hexagon diagrams relating all different ways of bracketing
tensor products of four elements commute.

The prototypical example of a monoidal category is of course the category of vector
spaces or more general the category of R-modules for some ring R. A monoidal category
is strict if associativity and unit morphisms are identities. Any monoidal category is
equivalent to a strict monoidal category, thus when dealing with purely categorical terms
we assume monoidal categories to be strict. In the graphical calculus the tensor product
of two elements is displayed by placing them next to each other. A monoidal category is
braided if there is a natural isomorphism βA,B : A⊗B → B ⊗ A. In pictures the braiding
reads

A B

B A

Figure B.1: βA,B

A B

B A

Figure B.2: β−1
A,B

.
Following the example of vector spaces one can abstract the notion of dual objects to an

arbitrary category. An object A has a right dual A∗ if there are morphisms evA : A⊗A∗ →
1, coevA : 1→ A∗ ⊗ A graphically given by

A

A

They have to satisfy the straightening properties
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.

Similarly one defines a left dual for A as an object ∗A with evaluation ẽvA : ∗A⊗A→ 1
and coevaluation morphisms c̃oevA : 1 → A ⊗ ∗A. Here the graphical calculus are the
obvious cup and cap running in the other direction.

A category in which every object has a left and right dual is called rigid. Right and
left dual objects in fact don’t need to be the same or even isomorphic. However, given
that C has a natural isomorphism π : idC ⇒ (•)∗∗ left and right dual objects are easily
shown to be isomorphic. The map π is called pivotal structure1. It turns out that every
category with a pivotal structure is equivalent to a category with strict pivotal structure,
i.e. a pivotal structure whose component morphisms are just the identity. Thus we will
assume that all our categories are strictly pivotal.

So far we equipped C with a (strict) monoidal structure, a braiding, a rigid structure and
a strict pivotal structure. This allows us to define left and right traces for f ∈ HomC(A,A)
by

ftrr(f) = trl(f) =

If trr(•) = trl(•) the category is called spherical. The last bit of structure is a twist, i.e.
a natural isomorphism θ : idC ⇒ idC satisfying θA⊗B = θA ⊗ θB ◦ βB,A ◦ βA,B. Graphically
the twist is represented by

.

A spherical category with a twist is called ribbon. The name is due to the fact, that in
a ribbon category one might think of the lines in the graphical calculus as thickened to
ribbons. The twist then corresponds to twisting the ribbon once around its core.

The next requirements concern the size of the category. Heuristically we want it as
finite as possible while still being interesting. First of all C should be enhanced in Vect,
the category of finite dimensional C-vector spaces. Any Hom-space therefore is a finite
dimensional vector space and the monoidal product is bilinear. Next an object A is called

1The name stems from the fact, that when employing the graphical calculus the pivotal structure rotates
coupons by π.
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simple if HomC(A,A) ' C. In Vect the only isomorphism class of simple objects is [C].
Finally, the category is semi-simple if any object decomposes as a finite direct sum of
simple objects. Even better it is fusion if the monoidal unit is simple. In a spherical fusion
category an object has a number attached to it, its dimension dA = tr(idA) ∈ HomC(1,1).
Typically we will denote the set of isomorphism classes of simple objects as I(C) or I if the
category in question is clear from the context. Representatives of such an isomorphism
class are usually denoted by Ui. Note that for a simple object its dual is also simple. For
a fusion category there exist decomposition maps for an object A

bαi : A→ Ui, biα : Ui → A, α = 1, · · · , dimC (HomC(A,Ui)) = ni (B.7)
which are dual to each other in the sense that∑

i∈I

∑
α

biα ◦ bαi = idA, bαi ◦ b
j
β = δijδαβidUj . (B.8)

In the graphical calculus the duality identities read

.
In addition in a semi-simple category simple objects have non-zero trace. The global di-
mension is the number

D2 =
∑
i∈I
d2
i . (B.9)

Furthermore we need the fusion rules Nk
ij ≡ dimC (HomC(Ui ⊗ Uj, Uk)). The name is

justified by taking the Grothendieck ring, i.e. the ring with elements isomorphism classes
[A] of objects. The sum is defined as [A] + [B] = [A ⊕ B] and the product is given by
[A] · [B] = [A ⊗ B]. If C is the representation category of a rational VOA this recovers
the ring of characters χA = [A] of representations, which has generators the characters of
simple representations χi = [Ui] and fusion product

χi · χk =
∑
k∈I

Nk
ijχk . (B.10)

For HomC(Ui⊗Uj, Uk) we introduce a basis
{
θα(ij),k

}
α=1,··· ,Nk

ij

with dual basis
{
θ
k;(ij)
β

}
β=1,··· ,Nk

ij

,
satisfying

.
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where

.

The final ingredient we want on our fusion, ribbon category is modularity.

Definition B.0.1. A fusion, ribbon category is modular if the |I| × |I|-matrix s with
entries

is invertible.

Again the name is derived from conformal field theory. For a representation category
of a rational VOA, the matrix s is up to a normalization the modular S-matrix acting on
the ring of characters.

Given two C-linear categories C, D one can form their Deligne tensor product C � D
which has objects given by formal direct sums ⊕iCi �Di, for objects Ci ∈ C and Di ∈ D.
The morphism spaces are given by

HomC�D(C1 �D1, C2 �D2) = HomC(C1, D1)⊗C HomD(D1, D2) (B.11)

linearly extended to formal sums. Given a modular tensor category (MTC) C, denote C
for the MTC with the same objects and hom-spaces as C but with reversed braiding and
twist. The Deligne product C�C can be seen as putting chiral and antichiral data together
to describe full conformal field theory. Instead of the Deligne product we will work with
the Drinfeld center Z(C) of a modular tensor category. For any monoidal category D, its
Drinfeld center Z(D) has objects

(D, βD,•) (B.12)
where D ∈ D and βD,• : D⊗• ⇒ •⊗D is a natural isomorphism called half-braiding. Note
that D itself doesn’t need to have a braiding. In case it has a braiding, D is fully faithfully
embedded into its center by D 7→ βD,•. But in general an object of D can have many
different embeddings given by different half-braidings. If C is semi-simple and spherical
the Drinfeld center is a modular tensor category [122]. It was shown by Shimizu [136] that
there is a braided equivalence

C � C '−→ Z(C) (B.13)
for C a MTC. Thus, in this thesis we work with the Drinfeld center instead of the Deligne
product when describing closed sectors of conformal field theories. Of course there exists
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an obvious forgetful functor F : Z(C) → C mapping (C, βC,•) 7→ C. It was shown in [107]
that there exists a left and right adjoint functor to the forgetful functor

L : C→ Z(C)

B 7→

 ⊕
i∈I(C)

(B ⊗ U∗i )⊗ Ui, βouL(B),•

 (B.14)

with the over-under half-braiding

and its action on morphisms is given by L(f) = f ⊗ idU∗i ⊗Ui . The forgetful functor is
easily seen to be a strong monoidal functor, i.e. there exist natural isomorphisms φ•,• :
F (• ⊗ •) ⇒ F (•) ⊗ F (•) and φ1 : 1C ⇒ F (1Z(C)). Its adjoint functor on the other hand
is just lax and colax monoidal, meaning that there exist similar natural transformations,
which fail to be isomorphisms. However in [107] it was shown that L is a Frobenius functor,
i.e. a functor preserving Frobenius algebra.
Lemma B.0.2. [107, Lemma 2.25] If F ∈ C is a Frobenius algebra then L(F ) ∈ Z(C)
is Frobenius algebra. In a addition F is symmetric and special if and only if L(F ) is
symmetric and special.

Recall that a Frobenius algebra in a monoidal category C is the data of an object A ∈ C
with morphisms

m : A⊗ A→ A η : 1→ A ∆ : A→ A⊗ A ε : A→ 1

satisfying
I) (m, η) define an associative algebra on A:

= = =
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II) (∆, ε) define a coassociative coalgebra on A:

= = =

III) The Frobenius properties hold

= =

.

If A is in addition pivotal, we can ask for (A,m, η,∆, ε) to be symmetric, i.e. there is an
equality of morphisms

=

The above morphisms are easily seen to be isomorphisms A→ A∗. For C braided, we can
require (A,m, η,∆, ε) to be (co-)commutative, i.e.

= =

.

In addition, (A,m, η,∆, ε) a symmetric Frobenius algebra is called special if it holds
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with dotted line in the first picture representing just the unit object.
Besides Frobenius algebras themselves, one can also have left-, right- and bimodule

objects in C for a given Frobenius algebra F . A left module is an object M ∈ C with a
morphism

ρl : F ⊗M →M

satisfying the obvious representation theory constraints

.

Right modules are define analogously and a bimodule is simply a left and right module
s.th. left and right actions ρl, ρr commute. Note that modules are only required to be
modules for the algebra structure of F . No consistency requirements for the coalgebra
structure have to hold. Given two left F -modules M1, M2, the subspace of HomC(M1,M2)
intertwining the algebra action is denoted by HomF (M1,M2). For two Frobenius al-
gebras F1, F2 there is the natural notion of a F1-F2-bimodule M , which has left F1-
action and right F2-action. Spaces of morphisms between F1-F2-bimodules are denoted
as HomF1|F2(M1,M2) ⊂ HomC(M1,M2). Given a F1-F2-bimodule M and objects A, B in
C, the tensor product A ⊗M ⊗ B can be given the structure of a F1-F2-bimodule using
the braiding. The left and right actions are defined to be
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The object A⊗M ⊗B with this bimodule structure is denoted as A⊗+ M ⊗− B.
Lastly for the reader’s convenience we recall some special morphism spaces used in the

description of string-nets. We omit the simple proofs and refer to [99], where some of the
proofs can be found. First of all in a fusion category C the symmetric bilinear pairing

HomC(C,D)⊗C HomC(D,C)→ HomC(1,1) ' C
f ⊗ g 7→ tr(f ◦ g)

(B.15)

is non-degenerate. For a list of objects A1, · · · , An ∈ C we denote

〈A1, · · · , An〉 ≡ HomC(1, A1 ⊗ · · · ⊗ An). (B.16)

Since braiding and twist are natural isomorphisms the map

is an isomorphism 〈A1, · · · , An〉 ' 〈An, A1, · · · , An−1〉. Hence only the cyclic order of
elements matter in 〈A1, · · · , An〉 and we replace boxes for morphisms by round coupons in
that case

.

For an arrow oriented towards the coupon with label A the respective element gets replaced
by A∗. Coupons can be composed with the help of the evaluation morphisms.

In addition the following identities hold: For any A ∈ C there are isomorphisms

a)
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b) For {biα} a basis in 〈i, A∗n, . . . A∗1〉 with dual basis {bαi } in 〈i, A1, . . . An〉 in the sense
that (biα, b

β
j ) = δijδαβ it holds

where the b-b coupons indicate summation over basis and dual basis.

The second relation is called completeness property and will be used several times.
Finally we list some useful identities when dealing with modular tensor categories. The
interested reader can find proofs in [5, section 3]. The following identities hold

Figure B.3

and

Figure B.4

.



Appendix C

The String-Net Topological Field
Theory

The main constructions in this thesis are performed in terms of so called string-nets. Orig-
inally introduced by Levin and Wen [114] in the realm of topological phases of matter (see
also [102][94]), string-nets became a tool for constructing a 3-2-1 extension of the Turaev-
Viro three dimensional topological field theory (tft). A first mathematical treatment of
string-nets was given by Kirillov in [98] and an extension of the Turaev-Viro tft appeared
in a series of papers [99][6][7]. This extension of the Turaev-Viro tft was based on the
idea of string-nets, however an extended string-net tft was constructed by Goosen in his
PhD thesis [66]. The construction of the string-net tft is based on a classification of 3-2-1
extended three dimensional tfts given in [14][13]. The classification goes through a genera-
tors and relation formulation of tfts as described by Walker in an unpublished manuscript
[143].

This section is structured as follows. We start with recalling the definition of the string-
net space assigned to a surface and state the main result of [98][99][6][7] that this in fact
agrees with the state space of the Reshetikhin-Turaev tft. Next we give a very brief account
of fully extended tft in three dimensions via generators and relations in order to present the
fully extended string-net tft constructed by Goosen. Throughout this section C denotes a
spherical fusion category.

C.1 The String-Net Space on Surfaces
Let Σ be an arbitrary two dimensional smooth, oriented manifold, possibly with boundary
and not necessarily compact. A string-net on Σ is an isotopy class of an embedded,
oriented finite graph Γ ↪→ Σ. Finite means we require Γ to have finitely many edges and
vertices. Furthermore the embedding has to be s.th. the intersection of the image of Γ
with ∂Σ are exactly the images of the univalent vertices of Γ. A C-coloring of Γ is an
assignment of an object C(e) ∈ C to any edge e ∈ E(Γ) and an assignment of a morphism
φ ∈ 〈C(e1), · · · , C(en)〉 to any vertex v. Here ei are the edges incident to the vertex taken
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to be oriented away from the vertex. When flipping the orientation of an edge colored by
C, its color changes to C∗. The boundary value of a C-colored string-net is a pair (p,C)
consisting of intersection points p = {Γ ∩ ∂Σ} and the colors C of edges intersecting the
boundary.

Let D ↪→ Σ be an embedded disk for which we can assume that its boundary intersects
Γ tranversally in edges e1, · · · , em. Then there is an injective evaluation map

〈 • 〉D : Γ ∩D → 〈C(e1), · · · , C(em)〉 (C.1)

given by composing all the morphisms from vertices in the interior of the disk according
to the orientation of the edges. From now on all string-nets are assumed to be C colored.
Two string-nets Γ1, Γ2 are equivalent if there exists a disk D ↪→ Σ s.th. Γ1, Γ2 agree on
Σ\D and

〈Γ1 ∩D〉D = 〈Γ ∩D〉D . (C.2)
For a given boundary value C one defines a C-vector space

VGraph(Σ,C) ≡ formal finite C-linear combinations of string-nets
with boundary value C

(C.3)

Recall that C is a C-linear spherical fusion category, hence its morphism spaces are finite
dimensional vector spaces. An element Γ = ∑

xiΓi ∈ VGraph(Σ,C) is null if exists a disk
D ↪→ Σ s.th. all the Γi agree on Σ\D and

〈Γ ∩D〉D = 0 (C.4)

where the zero on the rhs is the zero in the respective morphism space of C. Denote the
vector space of null string-nets with a given boundary value C by

NGraph(Σ,C) . (C.5)

The pre string-net space is defined as the quotient

Ĥs(Σ,C) ≡ VGraph(Σ,C)
NGraph(Σ,C) . (C.6)

The quotient ensures that the graphical calculus of C holds locally on Σ, i.e. we can
manipulate string-nets on open disks according to string diagrams for morphisms in C. For
the true string-net space boundary values have to be taken into account properly. This is
done defining a category of boundary values B(R) for any one dimensional manifold R. Its
objects are pairs (p,C) of pairwise disjoint points p ≡ p1, · · · , pk ∈ R which are labeled
by objects C ≡ C1, · · · , Ck ∈ C, where Ci is the label of the i-th point. Morphism spaces
in B(R) are defined as

HomB(R) ((p1,C1), (p2,C2)) ≡ Ĥs(R× I; C∗1,C2) (C.7)

with I = [0, 1] and C∗1 is placed on R× {0}.
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Theorem C.1.1. [98, Theorem 6.4] There is an equivalence of categories B(S1) ' Z(C)
and B(R) ' C.

The string-net space on Σ is again a quotient of formal vector spaces. Let (p,A) ∈
B(∂Σ), one defines

VGraph(Σ,A) ≡ pairs (f,Γ) of formal C-linear combinations of string-nets Γ
with boundary value C and morphisms f ∈ HomB(∂Σ)(C,A)

(C.8)

and
NGraph(Σ,A) ≡ subspace of null graphs under local relations as before

plus relation (fγ,Γ) = (f, γΓ) where γ ∈ HomB(∂Σ)(C′,C),
f ∈ HomB(∂Σ)(C,A) and Γ has boundary value C′

(C.9)

The string-net space for boundary value (p,C) ∈ B(∂Σ) is the quotient

Hs(Σ,C) ≡ VGraph(Σ,C)
NGraph(Σ,C) . (C.10)

The main result of the series of papers [98][99][6][7] can be summarized in the following
theorem.

Theorem C.1.2. Let Σ be a compact oriented surface of genus g with parametrized bound-
ary ∂Σ. Let C =

{
C1, · · · , C|π0(∂Σ)|=Cn

}
be a list of objects in Z(C). There is an isomor-

phism of vector spaces

Hs(Σ,C) ' ZTV,C(Σ,C) ' ZRT,Z(C)(Σ,C) ' HomZ(C)(1, C1 ⊗ · · ·Cn ⊗ Lg) (C.11)

where L = ⊕
i∈I(Z(C)) U

∗
i ⊗ Ui and ZTV,C, ZRT,Z(C) are the state spaces of the Turaev-Viro

and Reshetikhin-Turaev tfts.

The last equality is just the usual computation of the state space of the Reshetikhin-
Turaev tft. How to incorporate the category of boundary values when drawing string-nets
on a surface? This can be done by projector circles, which for C ∈ Z(C) is defined as the
string-net

.
Figure C.1: Drinfeld-center projector

An element in string-net space is an equivalence class of an embedded graph with
boundary value in the Drinfeld center and for generators in H1(Σ) corresponding to con-
nected components of the boundary a projector circle is added. An example is given in
figure C.2.
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Figure C.2: Example of a projected string-net on a genus 1 surface.

C.2 The string-net TFT
Based on classification results for three dimensional twice extended tfts [130][14][13] Goosen
constructed a three dimensional string-net tft. Let Bordor123 be the bicategory with objects
disjoint unions of circles, 1-morphisms are oriented two dimensional cobordisms between
disjoint unions of circles and 2-morphisms are three manifolds with corners whose bound-
aries are surfaces corresponding to 1-morphisms. This will be the source category for
extended three dimensional tfts. The target category is the bicategory of Vect-enriched
profunctors FVect. This is the bicategory with objects C-linear categories, 1-morphisms
C→ D are functors Dop�C→ Vect and 2-morphisms are natural transformations between
such functors. A twice extended three dimensional tft is defined as functor of bicategories

Z : Bordor123 → FVect . (C.12)

This definition is quite abstract, but it can be broken down to fairly concrete conditions.
First of all Bordor123 has a nice presentation as a freely generated bicategory, which means
that there are finitely many generating objects, 1-morphisms and 2-morphisms plus some
consistency requirements among them s.th. any other object, 1-morphism or 2-morphism
factors through the generating elements. In [13, section 3] the anomaly free modular pre-
sentation was given. Its generating object is . Generating 1-morphisms are

and generating 2-morphisms are four invertible maps corresponding to associativity of
pair of pants, left and right units of cylinders, braiding moves of pair of pants and Dehn
twist of a cylinder. There are in addition eight non-invertible 2-morphisms
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The ν, ν†-morphism has source respectively target the zero object which corresponds
to the empty set. The generating 2-morphisms have to satisfy a total of nine relations
for which we refer to [13, section 3]. A twice extended three dimensional topological field
theory is now a map Z with source the bicategory freely generated by the anomaly free
modular presentation, assigning to the circle a C-linear category Z( ). To generating
1-morphisms it assigns vector spaces, where boundary circles of the bordisms representing
the 1-morphisms are colored with objects of Z( ) and the assignment is functorial in the
coloring. Generating 2-morphisms are mapped to linear maps, which have to satisfy the
nine consistency relations.

In [66, section 5.2] it is shown that there is a string-net tft ZSN for any spherical fusion
category C mapping

ZSN7−−→ Z(C)

and for A,B,C ∈ Z(C) it assigns

ZSN7−−→ Hs( ;A,B,C∗)
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ZSN7−−→ Hs( ;A∗, B∗, C)

ZSN7−−→ Hs( ;A)
ZSN7−−→

Hs( ;A∗)

By the construction of a general tft functor, to an arbitrary 1-morphism Σ with incom-
ing boundary colorings A1, · · · , An and outgoing boundary colorings B1, · · · , Bm, decom-
posed into generating 1-morphisms σ = {σ1, · · · , σk} the string-net tft gives

ZSN(Σ;A∗1, · · · , A∗n, B1, · · · , Bm) =
∫ L∈Z(C)⊗

σ

ZSN(σi; A∗i ,Bi,Li) (C.13)

where the coend ranges over all internal colorings. It is shown in [66, Theorem 70] that
there is an isomorphism

ZSN(Σ;A∗1, · · · , A∗n, B1, · · · , Bm) ' Hs(Σ;A∗1, · · · , A∗n, B1, · · · , Bm) . (C.14)

Lastly we recall the non-trivial generating 2-morphisms of the string-net tft. The generating
morphisms are given for string-nets on the source morphism being in a specific form. It
is not hard to show that any string-net on the respective source bordism can be brought
in that specific form. First the Dehn-twist winds a string-net once around cylinder. The
braiding moves map

ZSN (β)7−−−−→

ZSN (β−1)7−−−−−−→

.

Next the η-moves map
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ZSN (η)7−−−−→

ZSN (η†)7−−−−−→

.
Finally ε-moves act as follows

ZSN (ε)7−−−−→

ZSN (ε†)7−−−−→

For all other generating 2-morphisms we refer to [66, section 5].
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Appendix D

Generating World Sheets and Sewing
Relations

In order to be as self-contained as possible we give the set of generating open-closed world
sheets. The following figures display the quotients of the orientation double for generating
world sheets.

I) Open World Sheets:

Oprop Om O∆ Oη Oε

Purple colored parts of the boundary correspond to open boundaries. Black bound-
aries are physical boundaries.

II) Closed World Sheets:

Cprop Cm C∆ Cη Cε

III) Open-Closed World Sheets:

I I†
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D.1 Sewing Relations
In the following figures red curves indicate how the world sheet displayed is glued from
easier parts. The blue flag on gluing curves indicate the direction of gluing. For the part
containing the flag an incoming boundary is glued. In the figures blue boundaries denote
in-boundaries and green ones correspond to out-boundaries.

I) Open Relations:

←→ ←→

R1) R2)

←→ ←→

R3) R4)

←→

R5)

←→ ←→

R6) R7)

←→ ←→

R8) R9)

←→ ←→

R10) R11)
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←→ ←→

R12) R13)

II) Closed Relations:

←→ ←→

R14) R15)

←→ ←→

R16) R17)

←→ ←→

R18) R19)

←→

R20)

←→

R21)

←→ ←→

R22) R23)
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In the picture of the Dehn-twist and braid move the red dashed lines are not gluing
lines, but auxiliary curves to display the action of the elements of the mapping class
group corresponding to the moves.

←→ ←→

R24) R25)

III) Open-Closed Relations

←→ ←→

R26) R27)

←→ ←→

R28) R29)

←→ ←→

R30) R31)

IV) Genus 1 Relation: The genus one move takes place on a torus with one boundary
component and interchanges a- and b-cycle of the torus as indicated by the colors.

←→

R32)
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