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Progress in science and technology cannot be stopped. They are in many
ways akin to art. One can persuade the one to halt as little as the others.
They drive the people who are born for them to activity.1

(Carl Bosch, Nobel Laureate and CEO of IG Farben)

Preface

Research activities by large firms have been instrumental to the development of science and technology as
we know it. From the first corporate research laboratories in the late 19th century to today’s digital giants
spans a thread of frontier research and development (R&D), ceaselessly pushing the confines of human
knowledge and ability. Yet, these successes would have been impossible without antecedents of and
interactions with societal institutions (Murmann, 2003). In the pursuit of fostering innovation and filling
the gap between private returns and benefits to society (Nelson, 1959; Arrow, 1962), governments have
introduced supporting institutions, such as intellectual property protections (Nordhaus, 1969), national
science systems (Bush, 1945) or antitrust regimes (Lamoreaux, 2019). This thesis sheds light on a
selection of governmental policies, the resulting opportunities and challenges for corporate innovation
and how firms rise to meet them.

Next to the in-house innovations, commercializing discoveries of outside inventors has played an important
role for corporate innovation for a long time. Not only in the sciences (Iaria, Schwarz, and Waldinger,
2018), but also for industrial innovation, access to frontier scientific knowledge was of crucial importance.
The Haber-Bosch process for nitrogen fixation, revolutionizing the basis of both agriculture and warfare,
is a prime example. Here, Haber’s academic invention at laboratory scale was followed by Bosch’s
industrial research into scale towards commercialization (Hager, 2008). The science-industry relationship
has however shifted over time. In the 1940s, the US government increased spending on basic science
and R&D and replaced university funding by firms, whilst a changed antitrust regime made corporate
in-house R&D more attractive (Mowery, 1995). Towards the end of the 20th century, basic research by
US corporations declined again (Arora, Belenzon, and Patacconi, 2018), leading to renewed reliance on
external knowledge sources, in particular government-funded research (Fleming, Greene, et al., 2019).

Chapter 1 of this dissertation explores the relevance of high-quality science for innovation. Chapter 2
goes on to discuss corporate knowledge access strategies in the modern frontier technologies in computer
science. Scientific conferences provide a direct access channel for the most innovative companies to
embed themselves into scientific communities.

Investment in basic research and the provision of other public good is vital for corporate innovation, but is
also costly. Member countries of the Organisation for Economic Co-operation and Development (OECD)
spend on average 0.6% of GDP on R&D, adding to three times that spent by businesses. On average a third
of R&D-performing companies received innovation support from their government, but these subsidies
only amount to 0.2% of GDP. Governmental support of basic science and R&D needs to be financed. In
the mix of tax instruments of OECD countries, corporate taxes only constitute around 13% of total tax

1Cited in Hayes (1987) as excerpt from a 1932 speech. Bosch was discussing the role of the Haber-Bosch nitrogen fixation
process for prolonging the first world war and concludes with the quote that such considerations were moot.

3
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revenue. Still, the resulting 3% of GDP easily support the government expenditures on R&D (OECD,
2019; OECD, 2020; OECD, 2021). As Nelson (1959) pointed out, government support for R&D relies
on an argument of large positive externalities of such investment relative to other types of investment.
As such, financing governmental R&D support with taxes on R&D-related profits increases the wedge
between private returns and benefits to society and strengthens disincentives. As a consequence, much
of the government support for R&D comes through tax subsidies. For optimal policies, knowledge of the
effects of corporate taxes on R&D and innovation is important.

Chapter 3 of this dissertation contributes to this question by analyzing the effect of the German local
business tax on corporate R&D and patent applications.

At times, corporations need to be reined in as well to protect the competitiveness of markets and to
allow disruptive innovation (Federico, Morton, and Shapiro, 2019). Competition policy for innovation
is wedged between the theoretical approaches of Schumpeter (1942) and Arrow (1962). In Arrow’s
“replacement effect”, firms earn profits in imperfectly competitive markets, reducing incentives to replace
old profits from existing technologies by introducing new innovations. In contrast, Schumpeter argues that
in imperfectly competitive markets, firms can easier appropriate returns from their innovations, raising
incentives to innovate. The endogeneity of market structure towards innovation makes an empirical
evaluation difficult, but available evidence points towards a positive effect of competition on innovation
(Gilbert, 2020).

Mergers constitute events with particular effect on the competitive situation, but with distinct features
making evaluation more difficult than general innovation policy. Mergers require different theoretical
approaches relative to standard models of competition and innovation. Instead of, for example, changing
the number of competitors in a market, everything else equal, mergers leave available assets and production
facilities fixed while unifying control rights for some of them in one actor (Federico, Morton, and Shapiro,
2019). Problems of empirical evaluation are worsened as the occurrence of merger events is endogenously
chosen by the merging parties. Further, merger litigation by antitrust authorities is selective based on
predicted merger effects (Carlton, 2009). Empirical evidence obtained in spite of these challenges finds
mixed evidence with either positive or no effect of competition on innovation (Gilbert, 2020).

Chapter 4 contributes to this literature by analyzing the breakup of the leading German chemical company,
IG Farben, following the Second World War. The breakup was unexpected before the war and executed by
external actors (the Allied powers). It was based on political economy considerations rather than antitrust
analysis and largely followed a geographical structure. Exploiting this, the analysis can circumvent the
limitations of empirical analyses outlined above.

In fact, the histories of the science-industry relationship and the development of modern antitrust regimes
have been linked (Mowery, 1995; Lamoreaux, 2019). In the US, the first establishment of corporate
research laboratories is linked to emboldened enforcement of the Sherman Act, as companies sought new
ways of securing their competitive position. Similarly, the shift of US firms towards in-house R&D in the
post-WW2 period has been linked to stricter antitrust enforcement (Mowery, 1995). Historically, the IG
Farben breakup is placed early in Germany’s transition from a weak antitrust regime closer towards a US
role model (Murach-Brand, 2004). While Germany is perceived to have featured high levels of industrial
research already before the stronger antitrust regime (Mowery, 1995), the regime shift might have further
contributed to this outcome.
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Summarizing, corporate innovation thrives in the context of a multitude of institutions providing incen-
tives. This thesis touches on a selection, investigating the role of scientific discoveries, taxation and
antitrust. The remainder of the preface summarizes the four self-contained chapters.

Chapter Overviews

Chapter 1 provides a descriptive analysis of the relationship between science and innovation.2 In joint
work with Dietmar Harhoff, Fabian Gaessler and Stefano Baruffaldi, we explore in particular the role of
the quality of science for innovation. Previous research had shown that where science and innovation are
closely connected, at the frontier between the two domains, both science and innovation are especially
impactful and valuable (Ahmadpoor and Jones, 2017). We reinforce this finding by showing that the
science-innovation relationship is moderated though the quality of the cited science.

The literature on science-based patents draws conclusions from references from patents to scientific
articles. Accordingly, we start from patents with front-page references to scientific articles, so-called
scientific non-patent literature references (SNPL). For this purpose, we employ a large, custom dataset
connecting United States Patent and Trademark Office (USPTO) and European Patent Office (EPO) patent
references to publications listed in Web of Science and Scopus (Knaus and Palzenberger, 2018). Since
the publication of the chapter, the availability of large, open-source datasets covering both front-page
(Marx and Fuegi, 2019) and in-text non-patent literature references (Marx and Fuegi, 2020) has advanced
the literature even further.

We provide evidence that the quality of scientific publications – as commonly assessed in science via
citations – is a strong predictor of their relevance for and impact on technology development as documented
in patents. We document two main results. First, publications with high scientific quality are vastly more
likely to be cited in patent documents, and cited at a higher rate (Hicks et al., 2000). Second, among
patents directly building on science, the value of patents increases monotonically with science quality.

These results generalize to patents beyond the science-technology frontier - specifically, to patents linked
indirectly to a scientific publication via references to other patents. Patents for which the shortest path in
the citation network is longer are said to be more distant from the science-technology frontier. We find
that the correlation between patent value and SNPL science quality largely propagates to patents at higher
distances to the frontier. Science of high quality spurs technological progress of high value far beyond
the science-technology frontier.

Results remain stable when accounting for contextual information such as organizational boundaries,
timing and for alternative measurement. The science quality-patent value correlation holds for patent-
science links with and without self-references on the inventor or institution level. High-quality science is
linked to high-value technology also beyond the organizational boundaries within which it is developed.
Similarly, results hold when using organization fixed effects to restrict to within-institution variation,
albeit with reduced magnitude. Follow-on patents with shorter time lags between science publication and
patent application are always associated with higher patent value. The correlation with SNPL science
quality remains strongly positive for all levels of citation time lag, but is stronger for patents with short

2This chapter is published as Felix Poege et al. (2019). “Science quality and the value of inventions.” In:
Science Advances 5.12, eaay7323 in a slightly modified version, reprint under creative commons license CC-BY:
https://creativecommons.org/licenses/by/4.0/.
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lag. Finally, results are robust for different measurements of patent value, such as variations of forward
citations (from USPTO or EPO patents), monetary values from abnormal stock returns (Kogan et al.,
2017) and inventor surveys (Giuri et al., 2007) or using patent claim lengths (Kuhn and Thompson, 2019).

Our results are descriptive and the exact causes of the strong correlation will have to be analyzed in future
work. Leaving aside the exact causal links, our results provide intriguing evidence for the governance
system of science, e.g. at universities and public research organizations, as well as for funding agencies
and science policy-makers. The current science system steers researchers to strive for success measured in
terms of citations and impact. According to our findings, the outcomes of such a system are well-aligned
with later stages of technology development and translation of science results. Our study does not provide
evidence on the optimality of the alignment. However, it clearly contradicts the notion that the application
of bibliometric criteria in science funding decisions would lead researchers to engage in exercises that
are of little value to society at large.

Chapter 2, joint work with Stefano Baruffaldi, focuses the science-innovation relationship to the question
of knowledge access and diffusion.3 While firms invest considerable resources on R&D, the origin of
ideas often remains outside of their institutional boundaries – in particular, in scientific communities.
Science is often perceived as a source of accessible knowledge by virtue of the norms of publication and
knowledge sharing. On the other hand, seminal contributions suggest that knowledge spillovers mainly
arise at close proximity (Audretsch and Feldman, 1996; Jaffe, Trajtenberg, and Henderson, 1993) and
firms have to make specific investments to absorb external knowledge (Cohen and Levinthal, 1989). Firm
participation, defined as authorship of papers or sponsorship of conferences, is such a specific investment.
This chapter investigates the extent to which firms participate to scientific communities and to what extent
such participation leads to knowledge diffusion.

Benefiting from scientific communities might require active participation of firms, alternatively passive
observance might suffice. If knowledge flows freely via the publication process, participation should
at the extreme be irrelevant. Moderate firms investments in participation may suffice to abate search
costs in the increasing body of codified knowledge (Fleming and Sorenson, 2004; Jones, 2009). We add
and juxtapose the notion that, in the absence of market mechanisms, a reputation-based system governs
scientific communities. Knowledge diffusion is embedded in a process of socialization which is facilitated
by temporary proximity, but ultimately requires the ability to establish personal connections. Active and
intense participation is necessary to gain reputation and comply with norms that ease social relationships
(Merton, 1973; Crane, 1974; Dasgupta and David, 1994; Stephan, 1996). Scholars such as Rosenberg
(1990), Hicks (1995), and Cockburn and Henderson (1998), lead the way in this line of investigation but
specific evidence has been rare.

Computer science (CS) conferences are a relevant and suitable context to study firm participation to
scientific communities and knowledge diffusion. The large economic relevance of industries around CS
make it an interesting setting (Brynjolfsson and Hitt, 2003; Tambe et al., 2020). Anecdotally, firms
play a large role in the process of scientific and technological advance, field visits and practitioner
interviews deepen this impression. More importantly, the specific norms within CS generate favorable

3A pre-print working paper version is available as Stefano H. Baruffaldi and Felix Poege (2020). A Firm Scientific
Community: Industry Participation and Knowledge Diffusion. en. SSRN Scholarly Paper ID 3644106. Rochester, NY: Social
Science Research Network.
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conditions for empirical investigations. Conference presentations and the resulting proceedings are more
closely comparable to short journal publications than pure occasions for knowledge exchange as in other
disciplines. Consequently, a highly detailed “paper trail” closely captures the universe of conference
presentations. Conferences require scientists to attend. Similar to journals, scientists cannot submit the
same paper to multiple conferences, so that they have to choose.

We study how knowledge flows towards firms change with exposure to science at CS conferences.
Participation in a scientific community is a choice for firms and scientists, which may be endogenous
to other determinants of knowledge flows. To establish causality, we focus on the choice problem of
participation for scientists outside of a focal firm. Our econometric models isolate exogenous variation
in participation arising from the availability of direct flights, as a proxy of general costs of transportation
(Giroud, 2013; Catalini, Fons-Rosen, and Gaulé, 2020). For a given sample of proceedings at a conference
A where a firm participates, we consider a counterfactual group of proceedings from another comparable
conference B (in the same year, the same field, comparable quality and size). We then instrument
the exposure of the firm at A to A/B proceedings with direct flight connections of authors of the A/B
proceedings to the conference location A. Different levels of fixed effect controls (FE) rule out variation
that may correlate with both the availability of direct flights and the dependent variables.

Identification relies on the assumption that there is exogenous variation in flight connectivity between
scientists and conference venues, unrelated with the probability of knowledge flows between scientists and
firms. A key virtue of our setting is that the instrumental variable (IV) operates at the firm-conference-
scientists triad level. In the large majority of cases, the connectivity between firms and scientists via the
conference will not coincide with their direct connectivity. A first concern arises from localized scientific
communities. In this case, participants to any conference would be better connected to the corresponding
venue as well as between each other. In our model we can fully account for this concern, introducing
FE at the firm and scientists region pair level. A second concern is the possibility that time variation at
the firm or scientists location level may correlate both with direct flights and the pair level probability
of knowledge flows. Increasing regional scientific strength might induce higher connectivity as well as
citations. Since our analysis and in particular the IV is defined at the triad level, we can fully account
for this variation by introducing region-year FEs. For analogous concerns at the firm level, we include
firm-year FE. While we cannot test the IV assumptions directly, we undertake several ancillary analyses.
In a placebo test, we show that citations from firm patents and publications published before the focal
conference remain unaffected in IV specifications, different from the standard OLS results. We study the
dynamics of the effect in the first stage, showing that direct flight connections lead to participation of
scientists to the conference series only in or after the year of the conference. We show the robustness of
the models to the inclusion of several additional FEs.

We test the hypotheses in a large and global data set with more than 7,000 conferences and 5,000 firms,
between 1996 and 2015. In this time span, firm participation to conferences is frequent and at a constant
rate. Firm tend to contribute in the conference series of the highest quality and firm proceedings are, on
average, highly cited. Firm participation frequency and intensity are highly skewed, with the top firms
being responsible for the majority of the observed firm participation.

We find that firm citations to scientific papers that the firm was exposed to are much more likely relative
to citations to papers the firm was not exposed to. For patent citations, we find no increase in the citation
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probability. Firm citations towards previous papers by authors present at the conference increase for both
science and patent citations. This already suggests that actual interactions with scientists matter. For
more direct evidence, we analyze future scientific collaborations between the firm and scientists present
at the conference and observe an increase in the collaboration probability. Contrary, we do not find an
average effect on hiring as captured through scientist careers, although recruiting was a stated objective
of many participating firms. The knowledge flows we observe are largely explained by interactions and
collaborations with scientists that remain external to the firm.

Finally, we study the heterogeneity of the effects by the intensity of the participation of the firm. We find
that all effects increase greatly with the intensity of firm participation. For firms that both sponsor the
conference and author several proceedings, citation probabilities increase most strongly. We find similar
patterns using an indicator of firms’ research investments size, based on the number of firms’ active
scientists.

Our results relate to the literature on corporate science (Rosenberg, 1990; Hicks, 1995) and the external
knowledge sources of firm innovation (Cassiman and Veugelers, 2002; Cassiman and Veugelers, 2006;
Simeth and Raffo, 2013). Despite declining firm investments in basic research, scientific knowledge
remains a primary driver of technology and firm value (Simeth and Cincera, 2016; Arora, Belenzon,
and Patacconi, 2018; Fleming, Greene, et al., 2019). Our results offer novel evidence to understand the
relevance of participation in scientific communities and the rationale for corporate science, more broadly.

Second, we add to the literature on firms’ absorptive capacity (Cohen and Levinthal, 1989). Investments
in science can be compatible with firms’ objectives because connections with scientific communities
help to access external scientific knowledge (Cockburn and Henderson, 1998). Firm participation in
a conference is a relatively accessible investment, but can be subject to steep increasing returns to
investments (Gittelman and Kogut, 2003; Gittelman, 2007).

Finally, we contribute to the literature on knowledge diffusion (Audretsch and Stephan, 1996; Jaffe,
1989; Eeckhout and Jovanovic, 2002). Extant work has demonstrated that temporary proximity can
have large effects (Boudreau et al., 2017; Campos, Lopez de Leon, and McQuillin, 2018; Chai and
Freeman, 2019; Lopez de Leon and McQuillin, 2020; Lane et al., 2020). We bring attention to the
role of organizations’ investments as antecedents to such opportunities. Specifically, firms put in place
non-market strategies to acquire external knowledge, based on investments to position themselves within
external scientific communities. The evidence is compatible with an important role of reputation and
prestige of organizations and the centrality of social relationships within communities (Akcigit, Caicedo
Soler, et al., 2018; Haeussler, 2011; Haeussler et al., 2014), that go beyond the effect of proximity and
search costs, and yield increasing returns on participation investments. An uneven pattern of diffusion
emerges, that more plausibly leads to divergence and concentration, rather than convergence, in firms’
innovative productivity (Andrews, Criscuolo, and Gal, 2015; Autor, Dorn, Katz, et al., 2020).
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Chapter 3 is joint work with Ingo Isphording, Andreas Lichter, Max Löffler, Thu-Van Nguyen and
Sebastian Siegloch.4 The chapter investigates whether and how public policy, particularly tax policy,
can foster or impede firms’ innovation activities. Given the role of innovation for economic growth
(Romer, 1990), which policies are effective at impacting innovation has been an important question for
policymakers (Bloom, Van Reenen, and Williams, 2019).

In this chapter, we study the German business tax system’s impact on R&D and innovation. We exploit
variation in the local business tax, a profit tax set at the level of the municipality. German municipalities
can annually alter the local business tax rate, while the definition of the tax base is fixed at the federal
level. We exploit variation in tax rates induced by around 7,300 local tax reforms over the period from
1987 to 2013. As the given profit tax applies to nearly all German plants, we can study policy effects
across the entire population of R&D-active plants. Our estimations rely on survey data targeting all
R&D-active plants in Germany. We complement this dataset with information on granted EPO patents
as well as financial data from Amadeus/Orbis.

We apply an event study design and complementary difference-in-differences regressions to estimate
the causal effect of tax changes on plants’ innovation activities. Our preferred empirical specification
regresses plant-level outcome variables on leads and lags of tax changes, conditional on plant and
municipality fixed effects, sector × year fixed effects, as well as flexible and finely-grained region (e.g.,
commuting zone) by year fixed effects. The latter set of fixed effects accounts for unobservable time-
varying confounders at very disaggregated geographical levels. Effects dynamics around the date of
treatment as well as additional robustness checks do not point to the presence of confounding effects. For
example, we do not detect local economic conditions, population movements or government expenditures
to coincide with a given change in the local profit tax.

Theoretically, we expect an increase of the profit tax rate to have a negative effect on plants’ R&D spending
and innovation. First, the tax-induced decrease in profits lowers plants’ expected post-tax returns on R&D
expenditures, which should lower the level of R&D expenses in turn. Second, we expect a tax increase to
particularly affect those expenses that are financed by equity – given that only the costs of debt-financing
are deductible from a plant’s tax base. The nature of R&D activities suggests that this is particularly
true for expenses on research and development: unfinished R&D projects have little residual value, lack
collateral and face a high risk premium by debt-holders. Moreover, R&D investments are highly uncertain
and potential returns generally realize with substantial time lags. Hence, we expect R&D investments to
respond more to an increase in profit taxation than overall investments. This should particularly hold true
for young and credit-constrained firms, where the lack of collateral is usually particularly pronounced
(Brown, Fazzari, and Petersen, 2009; Thakor and Lo, 2017). Lastly, a reduction in R&D spending should
eventually translate into reduced innovation output as measured via the number of filed patents (see, e.g.,
Griliches, 1990, for the assumed input-output relationship).

We find a negative, statistically significant effect of a profit tax increase on plants’ total R&D expenditures
and patent applications. For R&D expenditure, we estimate a long-term elasticity of -1.25, which is lower
than estimates reported in the context of targeted R&D tax credits or subsidies. The tax-induced reduction
in R&D spending is entirely driven by internally- rather than externally-conducted R&D spending. If
firms conducting the external R&D are located in a different municipality and subject to different tax rate

4See also Ingo Isphording et al. (2021). “Profit Taxation, R&D Spending and Innovation.” mimeo.
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changes, this is plausible. Further, the increased transaction costs of external R&D as well as its role in
knowledge acquisition may render it less elastic. We observe tax-induced reductions in innovation output,
in raw numbers of patents but also when accounting for quality differences by weighting with forward
citations. The effect materializes with some temporal lag of around four years.

Average effects mask heterogeneity by plant liquidity and size. Reductions in R&D spending are
particularly strong among more credit-constrained plants. In contrast, we detect no notable differences
along the plant size distribution. This somewhat questions common practice that R&D tax credits and
subsidies are often size-dependent, with policy makers implicitly assuming small- and medium-sized
firms to be more responsive to a given level of support (Gonzales-Cabral, Appelt, and Galindo-Rueda,
2018).

We extend the scope of the analysis beyond the plant level by assessing the role of innovation for economic
growth, as well as quantifying the importance of tax policy in this relationship. We first show that local
innovation has a positive and lasting effect on local growth, while an increase of the local business tax
substantially reduces growth. Using the estimated elasticity of filed patents with respect to the tax rate,
we further back out that around 40% of the total negative effect of profit taxation on local growth is due
to tax-induced reductions in innovation.

We contribute to the small and recent literature that exploits variation in sub-national tax policy settings
to study the effect of (corporate) taxation on innovation (Moretti and Wilson, 2017; Mukherjee, Singh,
and Žaldokas, 2017; Akcigit, Grigsby, et al., 2018). The analysis of German municipalities provides an
analysis on a smaller geographic level with substantially more variation in treatment. Official survey data
targeting the universe of R&D-active plants further enable us to study detailed plant-level responses to
changes in the local business tax rate, both in terms of innovation input and output (e.g., the effects of a
tax increase on internal vs. external R&D spending, or process vs. product innovations). Moreover, we
use the rich plant-level data to point to mechanisms that underlie the overall effects.

The chapter further speaks to the literature that estimates the effects of targeted R&D tax credits, deduction
possibilities and subsidies (e.g. Bronzini and Iachini, 2014; Dechezleprêtre et al., 2016; Guceri and Liu,
2019; Chen, Jiang, et al., 2019; Agrawal, Rosell, and Simcoe, 2020). We estimate an R&D spending
elasticity with respect to the user cost of capital that is well in the range of these studies. This set
of studies provides clean causal evidence by exploiting policy cut-offs to establish quasi-experimental
research designs. At the same time, the estimates are clearly local in nature, referring to firms around
the respective thresholds. The proposed identification strategy in this chapter enables us to estimate
treatment effects along the full distribution of R&D-active plants. Hence, we are able to identify average
treatment effects but also test for heterogeneous effects along various plant characteristics. For instance,
we show that effects are homogeneous across the plant size, which questions the rationale for size-based
innovation policies to some extent.

Finally, we connect to a large literature that is concerned with market failures that reduce private R&D
activities below socially desirable levels (Nelson, 1959; Arrow, 1962). The benefit to society from
innovation are generally well above the private return (Griliches, 1992; Jones and Williams, 1998). At
the same time, expected knowledge spillovers as well as uncertainty about marketability may lead to
private under-investments into R&D (Czarnitzki and Toole, 2011). Taxes on firms may further lower the
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private returns to R&D, while the benefits to society remain unaffected. This, in turn, widens the gap
between actual and socially desired levels of R&D in an economy (Klenow and Rodriguez-Clare, 2005).

Chapter 4, single-authored, studies how the breakup of a leading innovative company affects competition
and innovation.5 Mergers in innovative industries, such as Dow-DuPont (2017) and Bayer-Monsanto
(2018), have renewed the interest in the effect of competition on innovation. This effect is hard to
determine empirically, as exogenous variation in market structure is rare. Merger analysis in particular
suffers from endogenous selection into mergers as well as enforcement conditional on expected merger
outcomes. To overcome these limitations, I exploit the 1952 breakup of Germany’s leading chemical
company, IG Farben. The breakup was imposed because of IG Farben’s importance for the German
war economy outside of standard antitrust procedures. In technology areas where the breakup increased
competition, patenting strongly increased. Fine-grained information on suppliers and prices of chemical
substances allows auxiliary product-level analysis. The results suggest large positive breakup effects
without short-run trade-offs.

Before the breakup, IG Farben was one of the most innovative German companies. Three of its scientists
won Nobel prizes, and IG Farben produced more than 16% of German-invented patents in chemistry.
After the Second World War, the victorious Allies saw IG Farben’s economic influence combined with
its crucial relevance for the German war machine as undue political potential. IG Farben’s crimes, such
as its major involvement at the Auschwitz concentration camp, fueled this negative perception. However,
political differences between the occupying powers delayed action and the looming cold war altered
views on IG Farben. The Allies, now supporting the IG constituents in their respective occupation zones,
decided on a breakup largely following this structure. The breakup created three large successors, BASF,
Bayer and Hoechst, as well as a dozen smaller businesses (Stokes, 1988; Stokes, 1994).

The breakup of IG Farben, from creation via merger to breakup, closely relates to considerations relevant
to today’s merger and potential breakup decisions. In merger analysis, antitrust authorities consider the
trade-off between potential efficiencies with disincentives arising from reduced competition. In the IG
Farben case, historical sources cite both organizational synergies and scale as reasons for IG Farben’s
1925 creation via merger (e.g. ter Meer, 1953; Plumpe, 1990; Abelshauser, 2003). A priori, the welfare
effects of the initial merger or the eventual breakup are unclear.

The breakup of IG Farben differs in important aspects from standard (de)merger cases, offering advantages
for empirical analysis. Business considerations of the afflicted company were not the primary motivations
of the breakup, as in merger cases and corporate demergers. Standard economic antitrust considerations,
where markets or technologies with potential harm motivate merger litigation, were not the primary
causes of the breakup. Both would lead to selection in observable mergers and merger litigation. Rather,
the breakup was rooted in contemporary political economy considerations and executed by an external
force, with idiosyncratic geographical factors playing a large role. Consequently, effects of this breakup
are closer to causal than previous analyses.

As the main result, innovation in areas impacted by the IG Farben shock increases strongly and persistently
compared to other areas of chemistry. This conclusion results from a comparison of chemical patents
exposed to or unaffected by the IG Farben shock in a difference-in-differences analysis. Breakup exposure

5See also Felix Poege (2021). “Competition and Innovation: The Breakup of IG Farben.” mimeo.
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is the concentration change implied by considering IG Farben as one or as separate successors. IG
Farben research facilities were geographically spread out. As the breakup was largely geographical in
nature as well, the post-breakup structure can be backdated to the pre-breakup, pre-war time. This
avoids contamination by wartime events and post-breakup adjustments. The development of patenting
in exposed and unaffected technologies is parallel before 1952. After the breakup, the two increasingly
diverge. Results are similar when counting only patents without IG Farben association. Results are also
similar when modifying exposure measures to isolate the concentration change caused by the geographical
breakup structure. IG Farben itself is difficult to analyze causally as the number of successors is small
and appropriate control firms are missing. Descriptive analysis suggests strongly increasing patent output
by IG successor firms at high but constant R&D intensity.

The antecedent of innovation effects are changes in product space. Historical product catalogs, matched
to prices, allow a detailed analysis. In fact, the breakup led to horizontal, product-level competition.
After the breakup, 40% of IG Farben-supplied products are offered by two or more successors. Ten years
after the breakup, IG successors still compete at comparable, albeit moderately lower levels. Increased
competition could crowd out other competitors, but it could also remove barriers to entry (Aghion and
Bolton, 1987). Price effects of the breakup could counteract or exacerbate the innovation effect (Gilbert,
2020). In fact, the number of suppliers increases where the breakup led to competition. The increase is
driven by non-IG firms, which suggests additional entry. The IG Farben breakup leads to moderate price
declines for products with competition between successor companies, but not for products with only one
successor.

The interpretation of the results needs to consider the limitations arising from the historical context. How-
ever, historical factors can only influence the results insofar as they differentially affect breakup-exposed
sectors within chemistry. However, the breakup effects are concentrated in products and technologies
where the geographic structure of the breakup created technology and product-level competition, rather
than in areas with IG Farben exposure per se. Some historical factors such as war destruction, Allied
occupation policies or tariff changes are measurable. When included in statistical analysis as control
variables, they do not materially affect the conclusions. Other historical factors are difficult to quantify,
but their potential influence can be judged based on historical research.

The results emphasize the importance of a strong antitrust regime and merger control to maintain
competitiveness of markets.

This chapter contributes to the empirical literature on competition and innovation, in particular towards the
topic of mergers. A merger (reversal) was effected by an intervention external to the market participants
themselves. Previous empirical evidence predominantly relies on merger retrospectives, raising problems
with firms’ self-selection into merging and selective enforcement (Carlton, 2009). Researchers collect
data on a large number of merger cases, use matching to generate control cases and DiD analysis to
estimate effects (Ornaghi, 2009; Szücs, 2014), combined with instruments (Haucap, Rasch, and Stiebale,
2019). Another strand of literature relies on structural estimation (Goettler and Gordon, 2011; Igami and
Uetake, 2020) In this chapter, effects are instead estimated within one event which differentially affected
a large number of technologies and products.

Much of the previous literature on mergers and innovation has focused on direct effects on the merging
parties (Haucap, Rasch, and Stiebale, 2019, as an exception). This chapter instead focuses on aggregate
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breakup effects, combining reactions by the IG Farben successors with reactions from other competitors.
Aggregate effects are relevant from a welfare perspective, as it is unclear whether the responses of
successors and competitors are in parallel. For prices in markets for homogeneous products this is
likely the case. In contrast, innovation decisions of competitors might also be strategic substitutes or
complements (Bulow, Geanakoplos, and Klemperer, 1985; Bloom, Schankerman, and Van Reenen,
2013a; Gilbert, 2020, p. 89). Then, competitor responses may exacerbate or offset the change of
innovation output by the IG successors. In fact, the IG Farben breakup seems to have increased patenting
both by IG Farben as well as other firms.

This chapter relates to the literature on the history of antitrust, in particular towards breakups of large
corporations. Such government action is rare and the literature has focused on seminal US cases such as
Standard Oil or the Bell system (Lamoreaux, 2019). Yet, cases are few and far between. The IG Farben
case adds by broadening the view to a new industry structure in an industry where innovation can be
quantified well and broadly.

This chapter also contributes in making novel data available, either newly or much improved. For one,
product catalogs offer fine-grained product information that approaches market definitions more closely
than the typically used firm- or industry-level data (Affeldt et al., 2021). Comparable detailed product and
price data was previously unavailable for this time period and industry. German patent data is processed
in greater detail and over a longer time-span than before. Intensive use of machine learning and image
processing make it possible to recover applicant, inventor and technology class information previously
unavailable at a comparable scale.
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1
Science Quality and the Value of Inventions

Abstract Despite decades of research, the relationship between the quality of science and the value of
inventions has remained unclear. We present the result of a large-scale matching exercise between 4.8
million patent families and 43 million publication records. We find a strong positive relationship between
quality of scientific contributions referenced in patents and the value of the respective inventions. We rank
patents by the quality of the science they are linked to. Strikingly, high-rank patents are twice as valuable
as low-rank patents, which in turn are about as valuable as patents without direct science link. We show
this core result for various science quality and patent value measures. The effect of science quality on
patent value remains relevant even when science is linked indirectly through other patents. Our findings
imply that what is considered “excellent” within the science sector also leads to outstanding outcomes
in the technological or commercial realm.

15
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1.1 Introduction

The relationship between science and technology has been subject to intense discussions for centuries.
Science was largely funded via patronage during the Renaissance, and a separation of public funding
for fundamental research and private, industrial funding for applied research and commercial innovation
efforts only emerged in the 19th century (Scotchmer, 2004; Mokyr, 2002). Since the aftermath of World
War II, policy-makers have relied on the notion that science helps to generate knowledge and information
which will ultimately contribute to the emergence of new technical and organizational capabilities,
improvements in the quality of life and economic growth (Bush, 1945). Vannevar Bush’s vision of
a publicly funded science system that feeds into privately organized innovation channels became the
blueprint for most of the Western national systems of science funding, R&D and innovation. This notion
has recently come under scrutiny again as voters increasingly demand evidence on the benefits of science
spending. For policy-makers and scientists alike, it is tantamount to improve the understanding of the
impact of science on technical progress and innovation.

The most pertinent form of output delivered by the science sector are publications, which are known
to vary widely in quality. While some scientific publications will reach and inspire large numbers of
researchers, others are never read or referenced. Measures of science quality, such as citation counts or
impact factors, are used to make this heterogeneity visible and have become increasingly important in the
governance of the science sector. Science governance and science funding seek to promote excellent over
more mediocre science output by allocating resources to those researchers and institutions from which
outstanding results can be expected.

But it has been argued that this logic does not take tangible results from technology transfer and commer-
cialization into account. Science is inward-looking according to these voices. This raises the question to
what extent science output that is considered “excellent” within the science sector can lead to outstanding
outcomes in the technological or commercial realm. This paper seeks to contribute new insights toward
the understanding of this nexus.

We provide evidence that the quality of scientific publications – as commonly assessed in science via
citations – is a strong predictor of their relevance for and impact on technology development as documented
in patents. We document two main results. First, publications with high scientific quality are vastly more
likely to be cited in patent documents, and cited at a higher rate. Second, among patents directly building
on science, the value of patents increases monotonically with science quality. These results hold across
scientific disciplines, technology areas and time.

1.2 Data

Our analysis starts from the universe of scientific publications in Web of Science (WoS) from the year
1980 onwards, corresponding to approximately 43 million scientific publications. In terms of patents,
we consider a sample of more than 4.8 million patent families, comprising all patent families from the
database DOCDB with at least one grant publication at the European Patent Office (EPO) or the United
States Patent and Trademark Office (USPTO), with first filing date between 1985 and 2012, included.
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Subsequently, our unit of analysis is the patent family, to which we also interchangeably refer as patents.
The patents protect inventions in developed countries with in total more than one billion inhabitants.

Patents reference various types of documents which relate to the protected material either by determining
novelty (prior art) or by explaining the content of the underlying invention. These documents include
foremost other patents, but frequently also non-patent literature (NPL). (Callaert et al., 2006) A subset of
the latter are references to scientific articles, which we dub Scientific Non-Patent Literature (SNPL).

To link patents to publications, we leverage a highly precise and comprehensive match of NPL references
in patents with scientific publications in WoS.1 The NPL references in patents that were successfully link
to scientific publications comprise our set of SNPL references. Around 0.9 million patents were linked
to at least one scientific publication via a total of about 7.0 million SNPL references. Out of all scientific
publications, about 2.2 million figure in this list of SNPL references.

In our core set of analyses, we rely on established measures of scientific quality and patent value. The
quality of scientific publications is measured by the number of citations from other scientific publications
over a period of three years from publication. We define a patent’s SNPL science quality as the quality of
the patent’s SNPL references. A patent can reference zero, one or several scientific articles, in the same
way as a scientific article can be referenced by zero, one or many patents. Figure 1.1a illustrates this
setup. When more than one SNPL reference is present, we consider by default only the publication with
the highest quality. Patent value is measured by the number of forward patent citations over a period of
five years from the patent’s first filing date. We use citations by US patents as our first measure of patent
value. Our results are robust to alternative choices. We replace citations as science quality measure by
the journal impact factor. We replace our aggregation method of the quality of multiple SNPL references
with several other options. We replace US patent citations as value measure by a host of alternatives. 2

1.3 Results

As a first-order question, we explore the selection of scientific publications into the patent realm, i.e.,
the relationship between science quality and the likelihood that a scientific publication is referenced in
a patent (Hicks et al., 2000). We look at the probability and intensity of referencing, i.e., if any and
how many patented inventions refer to a given scientific contribution. We present results for publications
below the median (all receiving 0 science citations), for publications between the median and the 70th
percentile, and at the percentiles 80, 90, 95, 99 (top 1 percent), 99.9 (top 1 permille), and 99.99 (top
permyriad) of scientific quality. Figure 1.1b presents these results; the line plots the share of scientific
publications appearing as SNPL reference in at least one patent, and the size of the circles indicates the
average number of times they appear as SNPL references.

We find a remarkably strong positive selection of scientific publications of high scientific quality into
SNPL references. Below the median, scientific publications are almost never SNPL references. This
number increases up to 40% at the top 1% of publications by scientific quality. A staggering majority

1The match is based on a methodology documented in detail in Knaus and Palzenberger (2018) and summarized in the
supplementary material.

2The supplementary material provides further detailed information on data sources, discusses the use of citations as indicators
of relatedness between technology and science and elaborates on alternative measures of patent value as well as scientific quality
that we use for robustness analyses.
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of publications at the top 1 permille (>60%) and beyond the top 1 permyriad (80%) are referenced in
patents. The average number of times they appear as SNPL references in distinct patent families is 7.7
and 21.9, respectively. We emphasize that these results are not due to a feedback from important patents
to citations of the underlying science. By restricting our measure for scientific citations to the first three
years after publication, we have effectively excluded this bias.

Science - Papers Technology - Patents

Value proxies:
Patent Citations, $/€ Estimates, Claim Length

Quality proxies:
Science Citations, Impact Factor

SNPL references:
Patent-to-Paper

Science Citations: 
Paper-to-Paper

Patent Citations: 
Patent-to-Patent

(a) Setting: The domains of science (left), technology (right) and patent-paper references
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Figure 1.1: Setting and main results

Notes: Science quality is the 3-year citation count from other scientific publications. b) The patent count is not conditional on
appearing as a SNPL reference. Blue shaded areas show 95% confidence intervals around the mean. N = 42,962,463. c) SNPL
science quality is the quality of publications referenced by a patent. When there are multiple patent-paper references, we by
default use the highest-quality reference (orange). In comparison, we use the average quality (blue). Patent value is measured
as the 5 year count of patent forward citations by US patents. Patent value and science quality are residualized using technology
field × first filing year FEs. Shaded areas show 95% confidence intervals around the respective means. N = 4,767,844 patents
(948,006 with SNPL references).

We move on to our main analysis and investigate the extent to which SNPL science quality is a predictor
of patent value. The main figures account for level differences across technology fields and over time. We
estimate econometric models that absorb variation across these dimensions with pair-level fixed-effect
(FE) controls and graphically present the resulting residual values. In effect, we transform deviations
from the technology field and year specific mean to deviations from the overall mean. This ensures that
structural differences across technological fields and over time do not drive the results. The relationships
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discussed are backed up by econometric models that allow quantifying their average magnitude, assessing
their statistical significance, and controlling for a full set of confounding factors.

The relationship between SNPL science quality and patent value is depicted in figure 1.1c. We plot
the average patent value across the distribution of SNPL science quality. As a first measure of patent
value we use the number of patent citations from US patents. We later on consider alternatives. As
a benchmark level, the figure shows the average value of patents without any SNPL reference (dashed
line). We contrast two possible aggregation methods of SNPL science quality. When a patent references
multiple scientific articles, we in a first variant use highest-quality reference as our measure (orange).
Here, we juxtapose a second variant, where we consider the average quality of all references. Clearly,
top science matters much more, considering scientific material beyond the best one dilutes the science
quality-technology value relationship. In the supplementary material, we show that this extends to using
other aggregation methods which focus on the top of the quality distribution. Consequently, we continue
by only considering the highest-quality SNPL reference.

Previous studies have encountered a higher value of patents with SNPL references or references to other
technical literature, in limited samples or specific fields (Branstetter, 2005; Harhoff, Scherer, and Vopel,
2003). We are able to confirm this finding, on a large scale, in our data: the value of patents with SNPL
references is higher, or equal than the value of patents without SNPL references, for any level of SNPL
science quality except the very bottom.

Notably, SNPL science quality fully explains the difference in value between patents with and without
SNPL references. Patent value increases rapidly, and almost monotonically, for a higher level of SNPL
science quality. Patents with SNPL references at the bottom of the SNPL science quality distribution are
on average as valuable as patents without SNPL references. Compared to this group, patents at the top
of the SNPL science quality distribution receive more than twice as many forward patent citations. This
core result suggests that scientific activities of high quality lead to the development of highly valuable
technologies.

Possibly, high quality research and technology development are undertaken by the same individuals
or organizations, which may drive the result. Companies, startups, inventors and academic scientists
can perform scientific activities that may lead directly to both scientific and technological outcomes
(Gittelman and Kogut, 2003). Therefore, we complement this finding exploring how our results vary
considering separately SNPL self-references. Figure 1.2a describes the corresponding results. The line
in orange indicates the patent value of patents with SNPL self-references. The line in blue describes the
value of patents excluding SNPL self-references. The latter presents close to identical results to those
obtained in figure 1.1c. Note that part of the SNPL science quality distribution, with the exception of
the very top, patent value is higher if patents with SNPL self-references are excluded. In fact, the share
of SNPL self-references is roughly similar and, if anything, tends to decrease for higher levels of SNPL
science quality. Overall this is supportive of the idea that high-quality science is linked to high-value
technology also, and especially, beyond the organizational boundaries within which it is developed.

Our analysis so far has focused on patents at the frontier with science, i.e., linked directly to a scientific
publication via an SNPL reference. To generalize our findings, we also consider patents connected to
scientific publications indirectly via references to other patents. Patents for which the shortest path in
the citation network is longer are said to be more distant from the science-technology frontier. Recent
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(b) Patent value by distance to the scientific frontier and SNPL science quality
Figure 1.2: Additional results

Notes: SNPL science quality is the maximum 3 year citation count across scientific publications appearing as SNPL references
in a patent. Patent value is measured as the 5 year count of patent forward citations by US patents. Patent value and science
quality are residualized using technology field × first filing year FEs. Shaded areas show 95% confidence intervals around the
respective means.
a) SNPL self-references of the highest-quality SNPL reference are considered. N = 4,767,844 patents (948,006 with SNPL
references).
b) The distance to the science frontier (x-axis) is measured as the shortest path to a patent with SNPL references in the patent
references network. For patents not at the science frontier, SNPL science quality is the maximum SNPL science quality in
patents at the frontier to which they are linked. N = 3,816,176
c) Time-distance is measured as the lag between the first filing year of the patent and the publication year of the scientific
publication in SNPL references with the the highest science quality. N = 4,767,844 patents (948,006 with SNPL references).

studies have used this concept of distance between science and technology, and demonstrate that the value
of patents monotonically decreases for higher distances to the science frontier (Ahmadpoor and Jones,
2017). In Figure 1.2b we consider this dimension and describe the value of patents at different levels
of distance from the science-technology frontier. We distinguish patents linked (directly or indirectly)
to SNPL references at the top 10% and bottom 10% of quality. We also report the average value of all
patents, at different distances. Patents linked to more than one patent with SNPL references at the same
distance are assigned to the patent with the highest-quality SNPL reference.
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We find that the correlation between patent value and SNPL science quality largely propagates to patents
at higher distances from the science-technology frontier. The increase in patent value for a change from
the average patent to patents at the top 10% (patents citing other patents with SNPL references to scientific
publications of high quality) is approximately equal to the increase in patent value for a step closer to
the frontier. For instance, patents at one step of distance from the top 10% have the same value than
the average patent at the frontier with science. Patents at any distance from the top 10% always have
higher values than patents at the bottom 10%. The difference persists also at a high distance from the
frontier, approximately constant and equal to about a 3 times higher value. Regression results in the
supplementary material confirm that the positive correlation between SNPL science quality and patent
value starts fading only after a degree of distance higher than 6. We can conclude that science of high
quality spurs technological progress of high value far beyond the science-technology frontier.

In figure 1.2c we also consider time as a related dimension to distance from science. Time is measured
as the lag between the first filing year of a patent family and the publication year of the highest-quality
SNPL reference. We study how patent value varies along the SNPL science quality distribution and for
different levels of time lag. Interestingly, shorter time lags are always associated with higher patent value.
The correlation with SNPL science quality remains strongly positive for all levels of time-distance, but is
stronger for patents with short time-distance. As a consequence, at high levels of SNPL science quality,
patent value is high, on average, but increases also sharply for shorter time lags. Conversely, at low levels
of SNPL science quality the marginal effect of time-distance is small.

So far, we have measured patent value with US forward patent citations. However, the results are robust
across a broad set of alternative measures of patent value. First, we consider the count of citations from
the EPO. Second, we adopt two indicators of monetary value, available for a subsample of patents. We
use estimates from Kogan et al. (Kogan et al., 2017), who propose a measure based on abnormal stock
market returns at the patent’s grant event as a proxy for its private value. We further obtain inventor
survey-based value estimates of patented inventions from the PatVal survey (Giuri et al., 2007). These
two measures are only available for a limited sample of patents of about 899k and 11k, respectively.
Third, we measure patent scope by the length of the text of the first independent claim. This relies on
evidence showing that longer descriptions of the claimed invention implies more narrow legal protection
and, therefore, a lower patent value (Kuhn and Thompson, 2019). We consider separately, and when
available, the length of the first independent claim in the patent grant publication at the USPTO or the
EPO. Table 1.1 reports descriptive statistics based on the average of all these alternative patent value
indicators for patents without SNPL references, and for patents in the top 10% and bottom 10% of SNPL
science quality. We replicate regression results for all these alternative measures of patent value in the
supplementary material.
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Table 1.1: SNPL science quality and alternative measures of patent value

No SNPL Bottom 10% Top 10%

US citations
Mean 5.125 4.928 10.175
Standard Error (0.004) (0.022) (0.058)
N 3,471,621 84,406 84,808

EP citations
Mean 0.947 0.750 2.078
Standard Error (0.001) (0.012) (0.016)
N 3,471,621 84,406 84,808

Kogan et al. (2017) (USD)
Mean 13.326 12.517 16.704
Standard Error (0.044) (0.625) (0.469)
N 700,613 8,866 13,811

PatVal (EUR)
Mean 11.929 8.277 24.450
Standard Error (0.451) (3.226) (4.992)
N 8,507 349 227

US claim length
Mean 185.532 179.467 178.012
Standard Error (0.082) (0.456) (0.496)
N 1,956,651 65,921 69,939

EP claim length
Mean 143.905 140.782 129.188
Standard Error (0.084) (0.335) (0.456)
N 1,159,049 42,534 29,972

Notes: The table presents descriptive statistics for all considered measures of patent value. It reports average values for patents
without SNPL references, with SNPL references in the bottom 10% and in the top 10% of science quality. Patent value and
science quality are residualized using technology field × year FEs. Elasticities from corresponding regression analysis are
available in the supplementary material.
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1.4 Conclusions

The quality of scientific contributions is often measured in terms of their impact within the scientific
community. Yet, scientists also need to gauge and acknowledge of their contributions for society and
future technical and social advancements. The fact that science quality is practically defined within the
realm of science itself, contributes to a perception of science as being an independent upstream activity,
at times detached from technological progress, with an indirect and delayed impact on society at best.

To the contrary, our study suggests that such an interpretation of the relationship between science quality
and technology would largely be a misconception. We show that excellent science is directly linked to
inventions of particularly high value. More specifically, our findings demonstrate that there is a robust and
strong relationship between the scientific quality of a publication referenced in a patent and the patent’s
impact and commercial value.

Our results are descriptive, and the exact causes of the strong correlation will have to be analyzed in
future work. At this point, it seems most reasonable to presume that industrial users of scientific insights
scan the science sector for novel results and employ the ones that are most promising for applications in
their industrial fields. We doubt that they do so merely on the basis of science citation counts or impact
measures. Rather, we expect that they apply their own complex logic and assessments, and that they
may even avoid using the classical metrics of the science sector altogether. Commercial investments
are unlikely to be made on the premise the citation-measured interest in the scientific community was
sufficiently high. Hence, the high correlation between quality measures used in the science sector and
those used in the commercial (patent) realm are fortuitous. They are highly unlikely to reflect a spurious
selection result.

Leaving aside the exact causal links, our results provide intriguing evidence for the governance system
of science, e.g. at universities and public research organizations, as well as for funding agencies and
science policy-makers. The current system steers researchers to strive for success measured in terms of
citations and impact. According to our findings, the outcomes of such a system are well-aligned with
later stages of technology development and translation of science results. Our study does not provide
evidence on the optimality of the alignment. However, it clearly contradicts the notion that the application
of scientific criteria in science funding decisions would lead researchers to engage in exercises that are
of little value to society at large. Quite to the contrary, science quality (as measured by scientists) is a
strong predictor of applicability and practical value of the technologies developed as the fruits of scientific
endeavor. Paradoxically, when making commercial investment decisions, taking academic measures such
as citation counts or impact factors into account may not be a bad idea.
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2
Firm Participation and Knowledge Diffusion

in International Science

Abstract We study the diffusion of knowledge from scientists to firms within scientific communities. We
look at conference proceedings as “paper trail” of scientific communities activities with a unique dataset
of almost all relevant conference series in computer science since 1996. More than 5000 firms appear as
conference sponsors or as affiliations in proceedings. Their participation is concentrated in the highly
ranked conferences and their scientific contributions are on average highly cited. We exploit direct flights
as an instrumental variable for the participation of scientists in conferences where a firm participates and
other similar conferences. The participation in the same conferences has positive effects on knowledge
diffusion to the firm’s scientific and inventive activities. Knowledge diffusion may result from lower
search costs, requiring presence but otherwise minimal investments. Conversely, firms may need to invest
in intense and active participation to gain reputation, show reciprocity, and set off effective knowledge
sharing interactions. Testing this, we show that collaboration with external scientists appears a key
mechanism of diffusion. Moreover, the effects are remarkably stronger the larger the firm’s investments.
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2.1 Introduction

The Advances in Neural Information Processing Systems (NeurIPS) is a leading academic Machine
Learning (ML) conference. In 2017, Google featured as an official sponsor and, with 75 published
proceedings, was, by far, the most represented affiliation of scientists. Other firms such as Microsoft,
IBM or Tencent follow not too distant.1 Science is a driver of innovation (Fleming, Greene, et al., 2019)
which, at least in the common imagination, is often conceived as a source of accessible knowledge by
virtue of the publication norms. Firms active participation may merely respond to marketing objectives.
Most management and economics literature would dismiss such perspective. R&D (Cohen and Levinthal,
1989), hiring (Almeida and Kogut, 1999), location (Alcacer and Chung, 2007; Audretsch and Feldman,
1996), and collaborations (Almeida, Hohberger, and Parada, 2011) decisions concurr to access external
knowledge. In surveys, conferences score highly in importance as channels of knowledge diffusion (Co-
hen, Nelson, and Walsh, 2002). However, the extent to which firms participate in scientific communities’
activities and the resulting dynamics of knowledge diffusion remain largely unexplored. As firms fund
increasingly less basic research internally (Arora, Belenzon, and Patacconi, 2018), further understanding
the interface between science and industry gains importance.

The participation in scientific communities is endemic to modern science (Mokyr, 2002). Moderate
firms investments in participation may, in principle, suffice to abate search costs in the increasing body
of codified knowledge (Jones, 2009; Fleming and Sorenson, 2004). To this theory, we add and juxtapose
the notion that, in the absence of market mechanisms, a reputation-based system governs scientific
communities. Knowledge diffusion is embedded in a process of socialization which is facilitated by
temporary proximity, but ultimately requires the ability to establish personal connections. Active and
intense participation is necessary to gain reputation and comply with norms that ease social relationships
(Stephan, 1996; Dasgupta and David, 1994; Crane, 1974; Merton, 1973). Scholars such as Rosenberg
(1990), Hicks (1995), and Cockburn and Henderson (1998), lead the way in this line of investigation but
specific evidence has been rare.2

In this paper, we study how knowledge diffuses from scientists to firms that participate in the same
scientific communities. We leverage information from conference proceedings as a “paper trail” of the
participation of scientists and firms to distinct scientific communities. We assemble a unique dataset
of all most relevant scientific conferences in Computer Science (CS), worldwide, from 1996 to 2015.
CS is an ideal setting for our study, additional to its economic relevance (Brynjolfsson and Hitt, 2003;
Nelson, 1962). Detailed information on conference series is captured in well-curated datasets, due to the
importance of conference proceedings for scientists (Franceschet, 2010). In our main specifications, we
capture knowledge diffusion using citations from firms’ publications or patents to scientists’ proceedings.
Our setting is analogous to studies on the effect of proximity on knowledge spillovers (Jaffe, Trajtenberg,
and Henderson, 1993; Singh and Marx, 2013), but proximity of firms and scientists is given by the

1Further information available at https://nips.cc/Conferences/2017.
2There are notable exceptions: Gittelman and Kogut (2003) and Gittelman (2007) look at the trade-off between scientific

and innovation performance of firms in biotechnology; Cassiman and Veugelers (2002), Cassiman and Veugelers (2006), and
Simeth and Raffo (2013) study how the relevance of academic knowledge influence firms’ strategy; Vlasov, Bahlmann, and
Knoben (2016) look at the association between small and medium-sized firms’ innovation and the knowledge diversity of
conferences where they participate; (Foerderer, 2020) looks at the effect of the participation to a developers conference on firms
app development and collaborations.

https://nips.cc/Conferences/2017
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intensity of participation of firms and the participation of scientists to different scientific communities,
rather than geography.

We are mainly interested in and able to observe participation defined as the active contribution to scientific
conferences, as opposed to passive attendance. We capture the two possible forms of firms’ participation:
the authorship of proceedings by firms’ affiliated scientists and the sponsorship of conferences. Firms’
scientists as authors of proceedings participate in a similar way as academic scientists do. Sponsorship
entails a specific financial contribution to the conference and gives in turn additional opportunities to
promote the reputation of the firm, space to expose its research and for hiring activities, and additional
entrance tickets. Our understanding of this phenomenon is enriched by interviews with participants at
two important conferences.3 We discuss in the paper how both authorship and sponsorship closely reflect
a significant investment and engagement. A higher number of proceedings and sponsorship decisions
serve also as a proxy of the intensity of participation of the firm, implying larger investments and stronger
presence at a conference.

For a given sample of proceedings at a conference where a firm participates, we consider a counterfactual
group of proceedings from another comparable conference (in the same year, the same field, comparable
quality and size). Participation is then defined as the participation of other scientists, revealed by the
actual presence of a proceeding in the same conference. To establish causality, our econometric models
isolate exogenous variation in the probability of this participation arising from the availability of direct
flights, as a proxy of general costs of transportation (Giroud, 2013; Catalini, Fons-Rosen, and Gaulé,
2020). As a safeguard against the risk of violation of the exclusion restriction, the connectivity of firms
and scientists to conferences seldom coincide with their direct connectivity. By means of FEs controls
at different pair-levels of analysis, we can rule out the most plausible concerns to identification. This
includes, for instance: the still possible correlation between direct flights to the same conferences and
the connectivity between participants (e.g. if scientific communities are geographically localized); time-
invariant and time-variant shocks to the innovation potential of the regions of origin of scientists and
firms (Giroud, 2013).

Our data portray 7298 conferences from 1042 conference series and 5470 participating firms. Firms’
authorship occurs in 88.3% of the conferences and sponsorship in 26.6%, at a rather constant rate over
time. Firm participation is concentrated in the conference series of the highest quality. Firm authored
proceedings are a relatively small share of the total (10.9%) but are, on average, highly cited. The
participation frequency and intensity are highly skewed, with the top firms being responsible for the
majority of the observed participation.

The probability of knowledge diffusion from scientists to both scientific and inventive activities of firms is
significantly higher after participation in the same conferences. These effects are large, of the same order
of magnitude of the correlation with indicators that reveal the direct relevance of a scientist´s research for
firms (e.g. previous citations, research similarity), which add as covariates. The probability of citation
after the conferences increases also for previous publications of authors at the same conferences. Since
these are publications already public long before the conference, this suggests that actual interactions
matter. To provide direct additional evidence, we show that these effects are paralled by a large increase
in the probability of collaboration. At the same time, interestingly, we find a rather null effect on hiring,

3We visited the ECCV conference 2018 in Munich and the NeurIPS conference 2019 in Vancouver.
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measured by changes in affiliation, on average. Indeed, this and further robustness analyses demonstrate
that the knowledge flows and collaborations we observe are largely explained by scientists that remain
external to the firm.

According to our theory of reference, firms that make it to the top of the prestige distribution would face
ever increasing returns. Stronger contributions would increase reputation, and further ease knowledge
sharing and the establishment of collaborations. Conversely, moderate levels of participation may suffice
if only the access to information presented matters. We find that all effects increase greatly with the
participation intensity of firms. The effects are weak or null for firms with only one proceeding presented
and or exclusively sponsoring the conference. At the opposite extreme, firms that are both sponsor and
author several proceedings, participation has the strongest effects, being positive and significant on all
outcome variables, including hiring.

In robustness analyses we replicate all results using a measure of text-similarity of scientific publications,
other variants of citations-based measures, and test alternative FE specifications. In appendix, we show
event study analyses for the effect of direct flights on participation, in a setting where observations are
not conditional on the participation of scientists to any specific conference. We also study the effect of
participation on yearly-constructed outcome variables, using documents published before the conference
to build pre-period measures. We find no sign of anticipation of the effects, providing confidence in the
causal interpretation of the results. Finally, standard errors can be clustered at various levels of analysis,
and including two-way clustering, with no implications for the significance of the results.

Our study makes two main contributions. First, we offer novel evidence to understand the relevance
of participation in scientific communities and the rationale for corporate science, more broadly (Arora,
Belenzon, and Sheer, 2020; Simeth and Raffo, 2013). Second, recent work demonstrates that opportunities
for temporary proximity can have large effects on knowledge spillovers (Campos, Lopez de Leon, and
McQuillin, 2018; Lopez de Leon and McQuillin, 2020; Chai and Freeman, 2019; Boudreau et al., 2017).
We bring attention to the role of organizations’ investments as antecedents to such opportunities. Our
findings reinforce the evidence on the role of temporary proximity but support a theory that defy the
notion of knowledge diffusion as free and evenly distributed spillovers, even in these contexts (Breschi
and Lissoni, 2001). An uneven pattern of diffusion emerges, that more plausibly leads to divergence and
concentration, rather than convergence, in firms innovative productivity (Andrews, Criscuolo, and Gal,
2015; Autor, Dorn, Katz, et al., 2020).

2.2 Participation and Knowledge Diffusion

A fundamental tenant in the economics of innovation is that knowledge does not flow spontaneously
(Akcigit, Caicedo Soler, et al., 2018; Jaffe, Trajtenberg, and Henderson, 1993). Geographical and
technological boundaries, combined with an ever-increasing body of cumulated knowledge, determine
high search costs for individuals and firms (Jones, 2009; Bloom, Jones, et al., 2020; Rosenkopf and
Nerkar, 2001). Science operates in communities, united by a common interest, that share knowledge
systematically (Knorr-Cetina, 1999; Crane, 1974). As such, the structure of science constitutes a way to
organize and navigate existing knowledge (Fleming and Sorenson, 2004). This structure is manifested
in international conferences, that turn into loci of controlled spillovers of specialized, up to date, and
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temporary localized knowledge (Bathelt and Cohendet, 2014). Participation helps abating search costs
within a body of knowledge which is defined along some dimension (e.g. scientific area), but otherwise
scattered in a variety of dispersed, and possibly unknown, locations (Maskell, 2014; Bikard and Marx,
2020). Recent literature contributions have found empirical evidence on the effect of temporary proximity
at conferences on the probability of knowledge flows and collaborations between scientists (Campos,
Lopez de Leon, and McQuillin, 2018; Lopez de Leon and McQuillin, 2020; Chai and Freeman, 2019;
Boudreau et al., 2017).

Active participation to the same community is helpful, because the mere physical presence or reading
of proceedings at conferences may not naturally translate into knowledge diffusion, which is instead
embodied in effective voluntary interactions (Hicks, 1995). Knowledge production within a community
is a collective process where active participation and compliance to social norms are expected (Merton,
1973). Reciprocity and the reputation gained from previous contributions become the currency that
aligns incentives for knowledge production and sharing (Stephan, 1996; Dasgupta and David, 1994).
The willingness to share knowledge may remain anchored to cost and benefits considerations based on
expected reciprocity (Bobtcheff, Bolte, and Mariotti, 2017; Stein, 2008; Mukherjee and Stern, 2009). At
the same time, sharing decisions are not based exclusively on contingent negotiations but rely on a sense of
community and the prestige of individuals and organizations. There is experimental evidence that group
identity (Chen and Li, 2009; Charness, Rigotti, and Rustichini, 2007) and status clues (Bhattacharya
and Dugar, 2014) influence cooperative behavior of individuals. Survey evidence also shows that both
academic and industry scientists take into account expected reciprocity and the perceived conformity to
the norms of science in knowledge sharing decisions (Haeussler, 2011; Haeussler et al., 2014).

This theoretical perspective has implications for the expected role of participation of firms to scientific
communities and the understanding of the related mechanisms of diffusion. Firms need to make invest-
ments in absorptive capacity to take advantage of external knowledge (Cohen and Levinthal, 1989). As
science unfolds as a sequence of inter-independent hypotheses on cause and effect relationships, actively
engaging in science is instrumental in making sense of intermediary and external results (Hellmann and
Perotti, 2011; Arora and Gambardella, 1994). However, the role of absorptive capacity alone justifies
internal research. If the existence of search costs was the only reason, participation in external scien-
tific communities would be subject to evident decreasing returns to investments. The trade-off between
positive and negative spillovers due to disclosure would likely remain binding (Cassiman and Veugelers,
2002; Cassiman and Veugelers, 2006; Laursen and Salter, 2006) and excessive focus on science may
divert the firm from technological output and profit objectives (Gittelman, 2007; Gittelman and Kogut,
2003).

Conversely, firms may face steep increasing returns to investments in participation. As a consequence of
the accumulation of prestige as a form of capital (Matthew effect), social structures of scientific communi-
ties are highly skewed, with few individuals and institutions in positions of great influence (Merton, 1973;
Stephan, 1996). Scientific meetings become not simply temporary gatherings for knowledge sharing, but
also regular occasions to demonstrate participation and commitment and, ultimately, the confrontation
fields where these social structures gradually take shape. Individuals and institutions at the far end
of the prestige distribution obtain disproportional gains in visibility and are in a privileged position to
collaborate and absorb knowledge (Gittelman, 2007; Gittelman and Kogut, 2003). Competition for these
positions, and the notion that existing social structures may require substantial effort to be scratched,
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justify intense active participation. Absorptive capacity, in this sense, becomes a function of the same
reputation-based system that governs scientific communities, rather than of pure firm-level cognitive
mechanisms (Cockburn and Henderson, 1998).

2.3 Research Context

Computer Science Conference Series

Newell, Perlis, and Simon (1967) defined Computer Science (CS) as “the study of computers and the
major phenomena that surround them”. This research area has grown to include a variety of heterogeneous
sub-fields spanning the spectrum between basic and applied research, of primary economic relevance of
this field of research is undeniable (Brynjolfsson and Hitt, 2003). CS is also an ideal setting for our study
for the role of conferences. Conference proceedings constitute a primary outlet (Franceschet, 2010). They
are peer-reviewed and the acceptance process is competitive.4 As a consquence, presenting the same
manuscript at several conferences is rare and considered unethical. Also, proceedings and conferences
information in CS are better covered in existing databases. This allows observing conferences on a
large scale. Importantly, most organizers attempt to ensure the participation of authors, for instance,
conditioning the actual publication of proceeding papers on the physical participation of at least one
author.5 This guarantees that proceedings information will largely reflect the actual composition of active
participants, at least of one member of a team of coauthors.

In CS interactions and feedback loops between basic scientific advancements and insights from techno-
logical applications have been frequent (Nelson, 1962).6 Scientific contributions are also often cited in
patents (Ahmadpoor and Jones, 2017). However, the field is neither an outlier for the importance of
scientific conferences for scientists (beyond the specific value of the publication of proceedings), nor for
their relevance for the downstream industries (Cohen, Nelson, and Walsh, 2002), nor for the presence
of firms at conferences. Cohen, Nelson, and Walsh (2002) find from responses to the Carnegie Mellon
Survey that conferences score similarly high across most industries as a channel of knowledge diffusion
from public research to corporate R&D. Computers and semiconductors industry figure among them,
but, if anything, they fall behind several other industries.7

We also explored descriptively the presence of firms at scientific conferences across different fields, in
Scopus data. Figure B.8 in the appendix presents the related results. In CS, 7.5% of all proceedings
are associated with firms. This share varies by fields: 9.7% in Physics, 11.3% in Engineering, 5.2% in
Biochemistry/Genetics, 17.9% in Earth and Planetary Sciences. With this observation in mind, we note
that CS is not an outlier when it comes to the involvement of firms with scientific communities at inter-
national conferences. Outside of CS however, coverage and availability of complementary information

4Based on publicly available information for a subsample of conferences, the acceptance rate is on average 21% at 𝐴★

conferences (N=333) and around 36% at B or lower conferences (N=988). Detailed data available upon request.
5For instance, the IEEE recommends the exclusion from or limitation of distribution of papers which were not presented at

the conference. https://www.ieee.org/conferences/organizers/handling-nonpresented-papers.html
6High levels of industry participation in the field ML, in particular, has been sharply increasing in the last 10 years (Hartmann

and Henkel, 2020).
7In computers and semiconductors, 37.9% and 48% of respondents indicated conferences to be important, respectively. Only

publications and reports scored higher. This percentage is higher, for example, in petroleum (50%), drugs (64%), steel (54.6%),
machine tools (45.5%), Aerospace (51%), and it is similar in several others (Cohen, Nelson, and Walsh, 2002).

https://www.ieee.org/conferences/organizers/handling-nonpresented-papers.html
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(e.g. conference rankings) is severely diminished. Due to these practicalities these figures remain purely
indicative. For the same reason, we refrain from extending the sample which would come at the cost of
lower data quality.

Firms’ Participation: Authorship and Sponsorship

To better understand the nature of firm participation activities we gathered information on conference
websites and we attended and interviewed participants at two major conferences: the European Conference
on Computer Vision 2018 (ECCV, https://eccv2018.org/) in Munich, Germany and the Neural Information
Processing Systems conference 2019 (NeurIPS, https://nips.cc/) in Vancouver, Canada. We interviewed
more than 50 participants, between scientists and other representatives, of more than 20 firms and about
20 academic scientists. Key findings are reported here and as notes related to quantitative findings later
presented.

The authorship of proceedings occurs normally as for other scientists, via submission and peer-review.
The appearance of firm scientists as authors of proceedings largely coincides with their presence at the
conference. Firm scientists present their work and normally interact with their academic and corporate
peers. Almost all scientists of large firms we interviewed (with only one exception) declared to enjoy
significant freedom to participate in conferences and that the acceptance of a proceeding constitutes
a sufficient condition for all authors to have the support to participate. Scientists from medium to
smaller firms also declared to enjoy similar conditions, only with more binding budget constraints. More
generally, at the conferences we attended, the presence of firm scientists was staggering. In programs
of these and other conferences they also appear in scientific and organization committees, chairs and
discussion roles.

For sponsorship, both firms and academic institutions can apply and allocation of slots happens on a
first-come-first-served basis. Fees range between a few thousand USD up to $80’000, depending on the
conference and sponsorship category.8 The benefits go from: the exposure of the company logo on the
conference website, gadgets or venue; to access to exposition space; the possibility to submit applications
for organizing talks, discussion panels, demos or workshops; and recruiting opportunities. Sponsors also
have the right to additional entry tickets. In most cases, one or more employees among HR personnel
and scientists represent the firm at a booth. Here they provide information and disseminate material on
the firm research and careers opportunities. Large sponsors frequently organize workshops, tutorials,
receptions and social gathering events.

To conclude, firms’ participation, as we observed it, constitutes an actual firm-level investment and an
engagement into the activities of scientific communities. The size of investments can vary substantially,
and is closely correlated with the number of proceedings presented and sponsorship decisions. 9 Passive

8For instance, the NeurIPS conference provides 5 sponsorship categories: Diamond ($80’000), Platinum ($40’000), Gold
($20’000), Silver ($10’000), Bronze ($5’000). In 2017, the conference attracted 84 sponsors with contribution fees totaling
$1.76 million, an increase of 31.5% from the previous year, where 64 sponsors contributed for a total of $840’000). Source:
https://medium.com/syncedreview/a-statistical-tour-of-nips-2017-438201fb6c8a

9As an indicative example of the participation investment of a large firm, we take the participation of Google at the
Neural Information Processing Systems (NeurIPS) conference in 2017 for which sponsorship costs are publicly available
https://medium.com/syncedreview/a-statistical-tour-of-nips-2017-438201fb6c8a. Google figured as a second-tier sponsor of
the conference, which corresponds to a price of $40’000. Seventy-five proceedings presented at the conference were authored
by 86 distinct scientists. We can assume that 50% of them participated in the conference. We assume 5 participants from HR

https://eccv2018.org/
https://nips.cc/
https://medium.com/syncedreview/a-statistical-tour-of-nips-2017-438201fb6c8a
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attendance may occur but it did not appear to be the norm. Finally, specific firm-level processes have
emerged from our interviews, complementary to the participation, such as the internal knowledge sharing
of inputs from the conferences. These and other aspects are further discussed in Appendix B.5.

2.4 Data

We combine various data sources on conference series in CS and their participants between 1996 and
2015. Our primary objective is to cover a highly representative sample of all relevant conference series
in CS with information relevant to our analyses. We make specific efforts and leverage data that allow us
to reach sufficient disambiguation of conference series, firms and scientists. Table B.1 in appendix lists
our data sources with related information. Appendix B.1 offers a visual description of the connections
between these datasets.

We obtain the central information on conferences from the Digital Bibliography & Library Project
(DBLP). This is a database specialized on proceedings and publications in CS maintained at the University
of Trier, Germany. We complement it with information from Web of Science (WoS) and Scopus, on
authors’ affiliations, conference sponsors, citations and abstracts. The match between the two is highly
precise, based on the DOI, when available, or key bibliographic information. We add information on
conference series quality and CS research subfields from the Computing Research and Education (CORE)
data, curated by the Computing Research and Education Association of Australasia. The CORE data
classify, based on experts’ assessment, all relevant conferences series in CS into the quality-rank levels
𝐴★, 𝐴, 𝐵 and 𝐶 and subfields. The match with CORE data is also highly precise, being done largely
manually, with the support of text similarity indicators. Patent level information is from PATSTAT. One
cornerstone in our data is an additional dataset where references to scientific articles in NPL citations are
singled out and linked with bibliometric records in both WoS and Scopus (henceforth SNPL data). The
construction of this dataset is described in Knaus and Palzenberger (2018) and Poege et al. (2019).

Data on airports and flight connections comes from the International Civil Aviation Organization (ICAO)
and the US Bureau of Transportation Statistics (BTS). The ICAO data covers international flights only.
Since the US is one of the most important geographic areas in CS and flights are very important for US
domestic travel the BTS data are an important complement. Both data sources come with a definition of
market regions, usually the name of a city. We geolocalize all conference venues and scientists’ affiliation
and map them to airport regions. We reach a total of around 1’100 relevant airport regions.

We match affiliations, sponsors as well as patent applicants with a custom database of firm names from
ORBIS, the Global Research Identifier Database (GRID) and the EU scoreboards. From ORBIS, we
take any patenting firm as well as any firm in the US and Germany (including subsidiaries). This is a
convenience sample, designed to identify all possible firms active at the conferences in our sample. The
matching is based on a supervised machine learning algorithm that combines, as input, information from

personnel, for a total of 48 participants. The conference took place in Long Beach, California and lasted for 6 days. We assume a
travel cost of $130, a daily cost for accommodation and expenses of $200 per person, and an average yearly wage of $120’000, to
divide by 260 working days. These assumptions are conservative, and neglect expenses related to the preparation and submission
of proceedings and other general costs for the preparation of the material, the booth and conference activities. This sums up
approximately to $260’000. Google, in 2017, participated, with varying intensity, to more than 160 conferences. Moreover, at
the NeurIPS conference 2019 the large firms interviewed declared to have from 100 to up to 200 affiliated participants at the
conference.
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search results for firm names in the search engine Bing (following the approach by Autor, Dorn, Hanson,
et al., 2020) and string similarity. We invest substantial additional manual post-processing efforts to
further disambiguate firms. We aggregate subsidiaries at the level of the corporate group.

The data are representative of all relevant conferences in CS in our period of observation. The data cover
75% of all conference series listed in CORE and the highest share (80%) of CORE conferences not in
our data are of the lowest quality rank, 𝐶. This implies that the data cover almost the entirety of top and
medium ranked conferences and is biased against small and short-lived conference series of the lowest
quality.

The sample is restricted to the period between 1996 and 2010 for practical reasons. Scopus is available
to us from 1996 and we allow for a five-year window to observe dependent variables after the conference
for a sufficiently long period, without truncation up to 2016 (the last year for which we dispose of citation
information). This sample comprises 5470 firms, 7298 conferences pertaining to 1042 conference series,
and a total of 612103 proceedings. We cover in greater detail information on data sources and the
construction of the dataset in Appendix B.1.

2.5 Descriptives

We present basic descriptive information on our data, with a focus on the characteristics of conferences
in our sample and the level of participation of firms. Figure 2.1 shows that conferences in our sample
are distributed worldwide with a prevalence of European and North American locations, as expected, but
also East Asia. Table 2.1 reports the information on the sample of conferences. High-ranked conference
series are fewer, but they are longer-lived and larger. Consequently, the total number of conferences in the
sample is lower for A* and A conferences. However, the average number of conferences per conference
series is higher for higher ranks.

Figure 2.1: Location of conference events

Notes: Frequency-weighted conference airport regions are shown. The data is based on the estimation sample, counts for the years 1996-2010
for conferences where at least one firm was present are aggregated.
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Proceedings receive on average 3 scientific citations on a period of 5 years varying from 1.5 up to 9.8, for
C and A* conferences, respectively. Patent citations are relatively rare, on average 0.15 per proceeding.
It is perhaps more surprising to encounter also here a more than threefold increase, from 0.08 to 0.29, of
citations from C to A* ranked conferences. When restricting to patent citations by firms in our sample,
around 5.1% of proceedings are ever cited by a patent. For 𝐴★ conferences, this number rises to 8.2%.

Table 2.1: Conferences information by rank

Rank 𝐴★ 𝐴 𝐵 𝐶 Total

Conference series - Total 68 199 355 415 1037
Conference events - Total 824 1875 2597 2002 7298
Firms participating - Avg. n. per conference event 7.81 6.12 6.30 4.15 5.84
Firms sponsoring - Avg. n. per conference event 7.19 5.49 5.68 3.55 5.22
Proceedings - Avg. n. per conference event 89.17 84.93 90.42 72.21 83.87
Share of firm-authored proceedings - (%) 17.68 10.78 10.93 7.43 10.87
Science citations (5y) - Avg. n. per proceeding 9.77 3.82 2.39 1.53 3.45
Patent citations (5y) - Avg. n. per proceeding 0.29 0.13 0.16 0.08 0.15

Notes: Data for years 1996-2010 is used.

Looking at the participation of firms, 88.3% of all conferences have at least one firm author and 10.9%
of all proceedings have at least one firm as author affiliation. Also, 26.6% of conferences, corresponding
to 29.6% of proceedings, have at least one firm as sponsor. From Table 2.1, the average number of
firms participating as authors’ affiliations at conferences and as sponsors is 5.8 and 5.2, respectively. It
is interesting to note that the intensity of this participation increases strongly with the quality-rank. In
percentages, in 𝐴★ conferences, 17.7% of contributions are by firms. At levels 𝐴 and 𝐵, around 10.8%
of contributions are by firms and at 𝐶-level, only 7.4% of contributions are by firms. Of 𝐴★ conferences,
39.8% are sponsored by at least one firm, down to 22.2% at C-level.

Figure 2.2: Citation counts by type of authors’ affiliation and conference rank

(a) Science citations
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Notes: Counts forward citations by any CS paper or proceeding (2.2a) or by any patent family (2.2b), by conference quality and by author
status. A citation window of five years for conference proceedings published in 1996-2010 is used. Cf the overall averages in table 2.1.

While comprising only 10.9% of the total, firm authored proceedings stand out in terms of quality.
Figure 2.2 (a) shows the average count of scientific citations to proceedings with and without firm
affiliated scientists, by conference rank. Firm proceedings are of exceedingly high quality, for any level
of conference rank. For instance, within 𝐴★ conferences, firm proceedings receive on average 5 more
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forward citations within five years compared to non-firm proceedings, that receive 9 citations on average.
The results are purely descriptive but suggest that firms have a scientific impact and gain considerable
attention within the scientific communities where they participate. 10 At the same time, figure 2.2 (b)
shows that firm authored proceedings are also cited in patents at a much higher rate. The number of
patent citations decreases for lower conference ranks, but less sharply than scientific citations.11

Table 2.2: Firm information

Variable Mean SD 25% 50% 75% 90% 99%

Firm Scientists 18.40 155.70 1 2 6 17 315
Conference participations 8.15 61.20 1 1 3 8 139
Conference sponsorships 0.86 9.87 0 0 0 1 11
Conference proceedings 13.72 163.82 1 1 3 9 205

in collaboration w. academics 7.14 82.13 0 1 2 5 105
in collaboration w. other firm 1.53 14.27 0 0 1 2 25

Firm Patents citing proceedings 8.24 100.02 0 0 0 3 160

Observations 5224

Notes: Descriptives at the firm level for the 1996-2010 period. Scientist number is the maximum yearly number in this period. Conference
participations/sponsorships count firm-conference events. Conference proceedings instead count the total number of proceedings of that firm,
first overall and then broken down by type. Lastly, the number of patent families citing a proceeding is counted.

Finally, Table 2.2 presents information at the firm level. On average, about 18 different scientists have
worked for a firm in our sample and authored at least one proceeding. They have authored about 13
proceedings presented at 8 distinct conferences. Firms have then sponsored 0.86 conferences and filed 8
patents citing one or more proceedings, on average. Interestingly, a relatively large share of proceedings
(7 out of 13.7, on average) is coauthored with academic scientists. On the other hand, collaborations with
other firms are rarer (1.5 proceedings). Still, a significant share of proceedings (about 45%) is authored
exclusively by scientists affiliated to one single firm. Importantly, the distribution of these firm-level
indicators is extremely skewed. Firms below the median had only 2 active scientists or less, they have
authored only one proceeding, they never sponsored an event, and have no patents with citations to
proceedings. The large share of activity is observed above the median and, even more, at the top quarter,
top 10% and top 1% of the sample (roughly 1250, 500 and 50 firms, respectively).

We present in Appendix B.3 the variation over time of some key descriptive statistics. Overall, not
surprisingly, the number of conferences and proceedings grew substantially (B.9a). The fields of Artificial
Intelligence and, secondly, Information Systems have grown the most. The increase in the number of
conferences in non-US locations has been more prominent (B.9b). In 1996, half of all conferences were
taking place in the United States, by 2015 it was about a quarter. In terms of composition, the figures
discussed above on the level of participation of firms have remained fairly constant over our period of
observation. Interestingly, the share of proceedings in collaboration between academia and firms has
increased steadily, but not collaborations between firms that instead remained rare and constant in share.

10This result resonates well with qualitative evidence from our interviews. Most of the firms declared to have internal
peer-review systems to guarantee that the work they present is of above-average quality within the events where they participate
in. Some firm scientists have also expressed the idea that, differently to academia, they had no pressure to publish and they
would focus on presenting work that they deemed of high impact (from a scientist of a startup in the field of ML: “We are not
in a publish or perish mode”).

11In regression analyses in the appendix table B.8, we test the robustness of these correlations to conference series and
also conference events FE. The analysis confirms that also within conference series and single conference events, proceedings
authored by firms receive more citations. This is particularly the case when the firm is also a sponsor of the event.
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2.6 Econometric Strategy

2.6.1 Econometric Model

Our empirical analysis focuses on the effect of participation in the same conferences on knowledge diffu-
sion from scientists to firms. A first challenge is that we only observe realized conference participations.
Second, both participation of firms and scientists in conferences is determined endogenous firms and
scientists preferences. In simple comparison of knowledge flows from scientists to firms participating and
not participating in the same conferences it would be impossible to distinguish the effect of participating
in the same conferences from the unobserved factors that determine the selection of a conference in the
first place. To test our hypothesis we must address this fundamental inference problem.

We work with a dataset of pair-level observations of firms and proceedings. We maintain all firm-
proceeding pairs for proceedings presented at conferences where a firm participated. We then add, for
each conference, a counterfactual group only of proceedings presented at similar conferences. We create
strata of conferences in the same year, rank, subfield, and within the same size and forward-citations
count categories.12 We retain up to two other conferences selected randomly within the same strata. The
results are robust to selecting only one or more than two. We verified that the average difference for any
observable between matched conferences cannot be distinguished from zero.13

The matching process generates variation in the data between proceedings presented and not presented at
the conferences where the firms participated. The proceedings not presented at the same conferences also
serve as a counterfactual to the observed participation of scientists authors of the proceedings, aligned to
their revealed interests. However, the matching procedure does not solve the endogeneity problem. Other
unobserved factors, besides those considered, that correlate with both the decision to participate as well
as the likelihood of knowledge diffusion, are likely to exist.

To address endogeneity we employ econometric models that isolate exogenous variation in the probability
of participation of scientists. The availability of direct flights to the conference venues from the location
of scientists provides such variation. Direct flights tend to reduce costs, travel time and eliminate layovers.
The presence of direct flights is also more likely associated with airport pairs where competition between
airlines is higher, therefore reducing the price also of other options. This affects the general costs of
transportation and thus the probability of participation. Flight connections have been used before as
proxy for the cost of physical individual interactions within firms (Giroud, 2013), between scientists
(Catalini, Fons-Rosen, and Gaulé, 2020) and as a determinant of cities economic growth (Campante and
Yanagizawa-Drott, 2018). Our study differs as we observe the endogenous variable - participation in
conferences - and use direct flights as an instrumental variable. Figure B.7 in appendix represents our
empirical setup graphically in a stylized scenario.

12To create these categories, we coarsen the conference size into three categories (≤25%, ≤50%, >50% of the largest
conference within the group) and forward citation counts using a median split for A★ and A-ranked conferences and quartiles
for B and C-ranked conferences.

13Results of this analysis are presented in table B.6. Note that each conference in the sample is randomly pared to one or
more other conferences within the same sample (and according to the matching strata). Consequently, this analysis is not a test
of equivalence of matched conferences. It is purely aimed at excluding a malfunction of the matching algorithm and random
selection.
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We implement a two-stage regression model. The main endogenous variable of interest is labeled
Participation and is a dummy variable that takes value 1 if the proceeding 𝑝 was presented in a conference
series 𝑐 where firm 𝑓 participated and 0 for proceedings matched to conference 𝑐 that were actually
presented at a conference where firm 𝑓 did not participate. The first stage equation 2.1 models the
probability of Participation, so defined, as a function of the existence of a direct flight between the
location of the authors of 𝑝 and the venue of conference 𝑐, in the year that 𝑝 is presented. The variable
Direct Flight is equal 1 if a direct flight exists. 𝑋 𝑓 𝑝𝑐 is a vector FE controls and control variables. The
proceedings 𝑝 are nested in years so that we do not have another index for years.

First stage:
𝑃(Participation)𝑝𝑐 𝑓 = 𝛽1Direct flight𝑝𝑐 𝑓 + 𝛽2𝑋𝑝𝑐 𝑓 + 𝑢𝑝𝑐 𝑓 (2.1)

The second-stage equation (2.2) models the probability of knowledge diffusion from the proceeding 𝑝 and
its authors to the firm 𝑓 as a function of Participation. We use as dependent variables a set of indicators
of knowledge diffusion, better defined in the next section 2.6.2.

Second stage:

𝑃(Knowledge diffusion)𝑝𝑐 𝑓 = 𝛾1Participation𝑝𝑐 𝑓 + 𝛾2𝑋𝑝𝑐 𝑓 + 𝜖𝑝𝑐 𝑓 (2.2)

The identification assumption relies on the exogeneity of the availability of direct flights between scientists’
locations and conference venues, with respect to the probability of knowledge flows between scientists
and firms. A specific advantage of our setting is that the pairs of scientists and conference locations,
in the large majority of cases, do not coincide with the pairs of scientists and firms locations. Possible
preexisting relationships between firms and scientists in a given location would hardly influence the
connectivity with conference venues, if these do not coincide. Moreover, this feature strengthens the
credibility of the exclusion restriction - i.e. the assumption that the instrument affects knowledge flows
exclusively via the participation to conferences - because new direct flights to conferences do not imply
increased direct connectivity between firms and scientists.

Airlines’ and conference organizers’ decisions depend on several factors. New airline routes are likely
driven by broad market trends and regulations (Campante and Yanagizawa-Drott, 2018). The location
decisions of conferences series are driven by the general attractiveness of venues but are likely inde-
pendent from the specific pair-level probability of interaction between scientists and firms in a specific
year. Conference locations are scheduled often years in advance and organizers choices are primarily
constrained by budget considerations and the need for adequate venues in terms of size and surrounding
facilities. Some conferences are static, while others show rather erratic patterns of mobility, besides the
preference for attractive locations. As long as the deciding factors of airlines and conference organizers
are unrelated to the pair-level probability of knowledge flows between scientists and firms, they are not a
concern. However, (omitted) factors affecting both the existence of direct flights and the probability of
knowledge diffusion may still bias the results. In our specification, we can account for these factors at
the level of the conference series, the firm and the location of scientists. In this, our approach is akin to
previous studies, in particular Giroud (2013).

Levels FE. Without additional controls, we would have to worry, for instance, that the most innovative
firms, the most productive researchers, and most highly ranked conferences are likely located in regions
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with better airline connectivity. The estimates, rather than an effect of participation, would reflect the
fact that these firms and scientists will more likely cite (or receive citations) and participate in the best
conferences. Accordingly, we include FE controls for all the main levels of observation: conference
series, region of origin of researchers interacted with CS sub-fields, years. Conference series, region of
origin of researchers FE are necessary to control for any constant characteristics related to these levels of
observation that can correlate with access to direct flights. We include the interaction between regions
and sub-fields as FE to account for regional specialization. Year FE account for general time trends in
the data. Firms FE are also included, nested in firms and scientists location pair-FE, discussed next.

Firm and scientists location pair-FE. Another concern is the possible correlation between direct flights
to conference venues and the connectivity between pairs of scientists and firms locations. This would be
the case for pairs of firms and researchers in the same or proximate regions. A new airline, for instance,
would likely increase the number of direct flights to conference locations, but also between all locations
within the same geographic area where it operates. Close firms and researchers will also more likely
participate in the same conferences and, at the same time, exchange knowledge directly because of their
proximity. We control for firm and scientists origin pair-FE, to control generally for all pair specific
features between the firm and the location of scientists. This includes geographic distance, location in
the same countries or regions, spoken language similarity between different countries, etc. Moreover,
these pair-FE control also for possible specific connections of the firm with the scientists’ locations that
we cannot observe (e.g. presence of subsidiaries).

Firm-level shocks: firm and year pair-FE. To control for firm-level shocks, we are able to control for firm
and year pair-FE. An increase in innovative productivity specific to one or more firms and in a specific
period would affect their propensity to participate to conferences, particularly of high quality, and, at the
same time, their capacity to absorb external knowledge. If such trends are indeed firm and time-specific,
level-FE would not suffice. Firms with increased productivity would suddenly participate in the best
conferences that may be better connected via direct flights to scientists’ locations. Positive estimates
may partly reflect the fact these firms may absorb more likely scientific knowledge, independently from
conference participation. Firm and year pair-FE eliminate this type of concerns.

Scientists’ location-level shocks - scientists location and year pair-FE. Finally, we account for time-
specific shocks at scientists’ locations level. Economic and innovation trends may be region and time-
specific. Better infrastructures, including transportation networks, would normally follow or precede
such trends. In this case, despite the use of time-invariant FE, the presence of direct flights may correlate
with the quantity and quality of scientific activities in a region, in specific years. Scientists that increase
their participation to conferences, thanks to the higher attractiveness of their regions for airlines and
conference organizers, may also be those more likely cited in a given period, regardless of their actual
participation. We control for scientists location and year pair-FE to fully absorb this variation.

We model both stages as Linear Probability Models (LPM). The use of LPM eases the interpretation
of the coefficients, that can be interpreted as changes in percentage points in probabilities. 14 In our
main specification, we cluster standard errors at the level of region of origin of scientists. In section 2.9
and in the appendix, we test additional specifications to address other concerns: additional FE controls;

14Non-linear probability models and count models are hardly applicable due to our sample size and the use of high-dimensional
FE.
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continuous outcome variables; alternative clustering of standard errors; OLS specifications; falsification
test analyses.

2.6.2 Definition of Variables

Knowledge Diffusion

Our main dependent variables capture knowledge diffusion from scientists to firms as measured by
citations from firms to proceedings (Jaffe, Trajtenberg, and Henderson, 1993; Roach and Cohen, 2013).
We look both at scientific publications and patent citations. Naturally, scientific citations represent
knowledge diffusion to firm science activities, while patent citations to innovation activities. Patents are
imperfect proxies for innovation but represent actual intellectual property assets. All the more, patents with
citations to science are consistently found to be highly valuable (Ahmadpoor and Jones, 2017; Watzinger
and Schnitzer, 2018; Poege et al., 2019). Science and innovation are also often distinct operations of
independent organizational units, especially in medium to large firms. Hence, the importance of looking
at both dimensions.

Science cit (present) and Patent cit (present). We denote with the variable name Science cit. scientific
citations and with Patent cit. patent citations. We look first at citations to the proceedings at the conference.
Specifically, the label present refers to citations to the same proceeding 𝑝 in the firm-proceeding pair
observation. All citation-based variables are defined as dummy variables equal to 1 if at least one citation
is observed, and 0 otherwise. To avoid truncation in the latest years, we restrict the sample to conferences
up to 2010 and we look at citations within a 5 years time window after each conference.15 For patents,
we count the years of delay based on their priority year.

Science cit (past) and Patent cit (past). We look separately at citations to previous publications of
the scientists, labeled as past. These are citations to other publications from the same authors of the
proceeding 𝑝, published in the same or the previous five years. The window of time considered after the
conference remains also 5 years, as discussed above.

Control Variables

Conditional on the FE-controls in our models, we deem unlikely that there is any residual correlation
between the presence of direct flights and proceeding level or firm-proceeding pair-level variables. We
include additional control variables for robustness. We control for indicators of geographic distance
between scientists’ location and conference venues that, in the first stage, may influence the probability of
participation usings: the logarithm of the geographic distance between the scientists and the conference
venues (Conference distance); a dummy equal one if the conference takes place in the same region of
the scientists. At the firm-proceedings level, we control for indicators of the relevance of the research of
scientists to the focal firm, as likely predictors of knowledge diffusion. Science citations (L) captures the
presence of citations from proceedings of the firm in the previous 5 years up to the year of the conference to

15For patent citations, this may be insufficient to eliminate truncation. Citations are added to patent families over time in
subsequent publications of the patent (e.g. grant publication and international filings), both by examiner and applicants. As
grant lags of several years are not uncommon, many citations may remain unobserved for the latest conferences in our sample.
We ensured that this is not an issue by running regressions for a sample of conferences up to 2008, finding equivalent results.
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previous publications of the authors of the proceeding 𝑝. Similarly, Patent citations (L) capture citations
from patents of the firms. The two variables can be seen as the analogous of lagged dependent variables.
We use, instead, a measure of the research similarity of the firm to the focal proceeding 𝑝, looking at the
text-similarity (title and abstracts) with firms’ proceedings in the year before the conference, in the same
CS sub-field.

Mechanisms

Collaboration. We cannot capture all forms of collaboration, especially if informal or unsuccessful.
However, we can observe scientific collaborations that lead to future coauthored publications. We capture
the presence of such collaborations with the variable Collaboration which is a dummy equal to 1 if in
the 5 years following the conference at least one scientist author of proceeding 𝑝 is found to co-author at
least one publication with the firm. We use this as an additional dependent variable.

Hiring. To capture mobility, Hiring is equal one if at least one scientist author of the proceeding 𝑝 (not
affiliated to the firm 𝑓 at the time 𝑝 is presented) is found to publish with the firm 𝑓 as affiliation in the
5 years following the conference. This is an imperfect proxy because hiring is observed exclusively if
the scientist publishes. This is likely if the scientist is hired in a research unit but less so in a product
development unit. However, this variable serves the purpose to assess whether our results can be explained
by hiring, rather than by knowledge flows and collaborations with external scientists. We use also this
variable as a dependent variable.

Participation intensity. To study the role of firm participation intensity we first use N.firm-proceedings
which is the number of proceedings presented at the conference by the firm‘s scientists. Because
the variable distribution is highly skewed and particularly sparse we aggregate the values of 3 and 4
proceedings together and we censure the variable at the value of 5 for firms with 5 or more proceedings
at a single conference. The median number of papers at a conference is 1, at a mean of 1.6. Only the top
4.9% of our estimation dataset has 5 or more proceedings presented by one same firm. Second, we use
Sponsor, a dummy equal 1 if the firm is a sponsor of the conference. We distinguish the case of firms that
exclusively sponsor a conference, without also having papers presented (Sponsor-only) and the case of
firms doing both (Sponsor-Proceedings). In our estimation dataset, 6.3% of firm attendances come with
sponsorship. Of these, in 30.0% of the cases, firms are both participating and sponsoring.

Firm size. Finally, to proxy the size of research investments, we rank firms within each year by the
number of active scientists they employ. For this, we build an affiliation panel for each scientist. When
there is no publication in a year, but in earlier and later years, we use linear imputations. We use all types
of publications to build the panel. We look at the top 5, top 50 and other firms’ categories by size, within
each year. Overall, 9.6% of firms in our full estimation dataset appears at least for one year in the top five
firms and 30.3% in the top six to fifty.
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2.7 Main Results

2.7.1 First Stage: Participation

The first stage regression results are reported in Table 2.3.16 In this and all tables for the main dependent
variables, we present a series of 3 specifications adding controls gradually. The first column for each
dependent variable includes exclusively level FE controls, for conference series, for scientists locations
and subfield, firms and scientists’ locations pairs, and years. The second column adds time-specific
FE: firm and year pair-FE, scientists location and year pair-FE. The last column is the full specification
including all FE controls and the additional control variables described in section 2.6.2.

Table 2.3: First stage - the effect of Direct flight on Participation

Science cit (present)
(1) (2) (3)

Dep. Var. Participation Participation Participation

Direct Flight 0.056∗∗∗ 0.059∗∗∗ 0.030∗∗∗
(0.006) (0.006) (0.005)

Firm-proceeding controls
Science citations (L) 0.118∗∗∗

(0.003)
Patent citations (L) 0.055∗∗∗

(0.004)
Research similarity (L) 0.958∗∗∗

(0.025)
Conf. distance controls
Conference distance −0.039∗∗∗

(0.003)
Same region −0.160∗∗∗

(0.035)
Same state 0.131∗∗∗

(0.015)

Conf Ser FE Yes Yes Yes
Origin × Field FE Yes Yes Yes
Year FE Yes
Origin × Firm FE Yes Yes Yes
Year × Origin FE Yes Yes
Year × Firm FE Yes Yes

𝑅2 0.297 0.323 0.346
Observations 5126376 5126273 5126273
Number clusters 1124 1114 1114
DV cond. mean 0.512 0.512 0.512

Notes: ∗ 𝑝 < .1, ∗∗ 𝑝 < .05, ∗∗∗ 𝑝 < .01 Standard errors in parenthesis, clustered at the researcher region level. Conf. distance controls
include the distance between researcher and conference location (log), whether that distance is zero and whether the two locations are in the
same US state or non-US country. Firm-proceeding level dataset, where some proceedings were actually at the conference (Participation=1)
and some were at another conference (Participation=0). Participation is instrumented by the direct flight availability between the researcher
location and the conference location. Firm-proceeding controls include whether the firm cited previous work by the authors in the years before
the conference (Science/Patent citations L) and the average abstract similarity between proceedings published by the firm in the previous year
and the focal proceeding (Research Similarity L). First stage results for other second-stage variables are very similar, results are available upon
request.

The results show a strongly significant effect of the instrumental variable Direct flight on Participation.
In all specifications, we find a highly significant and positive coefficient. The magnitude is economically

16For the sake of brevity, we present here only the first-stage result corresponding to our first dependent variable, Scientific
cit. (present). The sample for different dependent variables varies minimally due to some observations being invariant within
FE-controls, but otherwise, the first-stage estimates remain almost identical.



42 CHAPTER 2

meaningful, implying that the existence of a direct flight leads to an increase in the probability of
a proceeding being presented at a conference of about 5.9 p.p. or 3 p.p in the full specification,
corresponding to about a 12 or 6% increase in probability, respectively, relative to the sample average
51.2%. The F-test value on the excluded instrument exceeds a value of 20 and is often substantially
higher, depending on the specification. The lower coefficient and significance of Direct flight is expected
in the third specification because direct flights are more frequent at short and medium distances and
distance controls (Same state in particular) absorb part of the same (possibly exogenous) variation of the
instrumental variable. The control variables estimates show rather predictable correlations.

Appendix B.2.2 presents a heterogeneity analysis of the effect of Direct flight which is informative to
understand the population relevant for the Local Average Treatment Effect (LATE) estimated. We find
predictable variation. The effect of Direct flight is stronger for medium and low ranked conference series
but remains significant for conferences of all ranks. Magnitude and significance also increase with the
geographic distance of conferences of any rank. Finally, in Appendix B.2.1 we propose an event study
analysis, at the scientists’ location - conference series pair level of analysis. Differently from the analyses
in the paper, these analyses are not conditional on the participation of at least one paper at a conference
and look at participation flows between regions and conference-series pairs over time. This allows to
study the dynamic effect on participation of direct flights and to appreciate the lack of pre-trend in the
probability of participation of scientists to a conference series prior to the availability of a direct flight.

2.7.2 Second Stage: Knowledge Diffusion

Table 2.4 presents the result of the second stage regressions for Science cit (present) and Patent cit
(present). The coefficients indicate the change in probability of citation in percentages points (p.p.)
for proceedings presented in the same conference where the firm participates (Participation equal 1).
Columns 1 to 3 present results for Science cit (present) as dependent variables, columns 4 to 6 for
Patent cit (present). For both dependent variables, we deploy a series of model specifications, as for the
first-stage results. Columns 1 and 4 include only main FE (conference series, scientists locations and
subfield, firms and scientists’ locations pairs, and years), column 2 and 5 add year specific FE (firm and
year pair-FE, scientists location and year pair-FE), and columns 3 and 6 add control variables (described
in section 2.6.2).

The coefficient magnitude varies minimally between the first and second specification. We find significant
results, at the 1% level, for the effect of Participation on Scientific cit. (present). The magnitude of the
coefficients varies more, from 0.013 in column 2 to 0.021 in the specification in column 3, corresponding
to 1.3 and 2.1 p.p. change in the probability of observing a citation. In general we find larger estimates
with the IV models as compare to OLS. The difference is moderate for models that do not include distance
controls.

Finding larger IV estimates is not unusual. This may be already expected on the basis of the severe
measurement error associated with publications and patents data, in particular. Additional measurement
error, in our context, is derived from the impossibility to be certain about the physical presence of
scientists: the IV model may allow “cleaning” for this measurement error in the Participation variable.
We also do not necessarily expect a positive bias in OLS estimates, since we compare very similar
proceedings for topic and quality. Moreover, participation may be more strongly driven by familiarity
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to some expected content that would be cited with or without participation, while the IV models isolate
the effect of exposure to findings or persons that may otherwise less likely encountered. Finally, we
show in appendix B.2.2, that the instrument has a larger effect on low-ranked conferences, particularly
when we introduce conference distance control variables. It is plausible that the effect of participation in
lower-ranked conferences is larger at the margin, because these conferences would attract less attention
without participation.

We use the sample mean average conditional on actual participation as a benchmark (the average prob-
ability of citation for proceedings at the conference where the firm participates). Compared to this
baseline, 1.0%, the effects are quite substantial. On the contrary, the coefficient for the effect on Patent
cit. (present) is small and not statistically different from zero: we do not find an effect of Participation
on the probability that proceedings presented at a conference are cited in patents.

The correlation with the control variables is meaningful, showing that proceedings that are similar to
the firm recent research or from authors that have previously been cited by the firm are more likely to
be cited again, both in firm publications and patents. We can use these estimates as a benchmark for
the effect of Participation, noting that it has an almost comparable magnitude to Scientific citations (L):
proceedings of authors already cited in the past by the firm are more likely to be cited again, but the effect
of Participation is of the same order of magnitude as this correlation.

Table 2.5 shows the results on the effect of Participation on the probability of citation to previous
publications of the authors of the focal proceedings (Science cit (past) and Patent cit (past)). We again
include FE and control variables gradually as just discussed for Table 2.4. Point estimates for the effect on
Science cit (past) are 6.9 p.p., in column 1 with basic FE control, to 0.057 in column 2, with significance
levels at 5%, and 11.3 p.p in column 3 with significance level at 1%. This is again a large increase
compared to the conditional sample mean, 15.8%. The effect on patents citations, from the results in
column 4 to 6, is now highly significant and large in magnitude, corresponding to 4.7 in the more basic
specification (column 4), 4.8 in column 5, and 9.8 p.p in column 6.

The results relative to the control variables are again predictable, implying, for instance, that proceedings
previously cited by a firm are more likely to be cited again. To use these as a benchmark, we can say that
Participation increases the probability that the scientists are cited after a conference by about one-fourth
of the probability increase associated with the scientists having been cited already before the conference.
This ratio is a bit less than a half comparing the effect of Participation on Patent cit (present), relative to
the correlation with Patent cit (present).

Overall, the results in table 2.4 and 2.5 demonstrate a strong effect of Participation on citations and
allow some considerations. While the effect on scientific citations is significant for both proceedings
at the conference and previous proceedings of scientists, the effect on patent citations is exclusively
significant for the latter. This can derive from the difference between science and innovation activities
within firms. Scientists participating in conferences can immediately build on new knowledge inputs
in upcoming publications while innovation activities are probably performed by distinct organizational
units and require farther development. The lack of significance for patent citations to focal proceedings
may also be due to patent citations being a noisier indicator.

For the purpose of our investigation, we note that an effect exclusively on proceedings at the conference
would have suggested that the timely screening of information at the conference was the main mechanism
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Table 2.4: The effect of Participation on citations to proceedings at the conference

(1) (2) (3) (4) (5) (6)
Science cit
(present)

Science cit
(present)

Science cit
(present)

Patent cit
(present)

Patent cit
(present)

Patent cit
(present)

Participation 0.013∗∗∗ 0.013∗∗∗ 0.021∗∗∗ 0.001 0.001 0.001
(0.004) (0.004) (0.007) (0.001) (0.001) (0.003)

Science citations (L) 0.029∗∗∗ 0.003∗∗∗
(0.001) (0.000)

Patent citations (L) 0.008∗∗∗ 0.003∗∗∗
(0.002) (0.001)

Research similarity (L) 0.025∗∗∗ 0.007∗∗
(0.006) (0.003)

Conf. distance controls No No Yes No No Yes
Conf Ser FE Yes Yes Yes Yes Yes Yes
Origin × Field FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes
Origin × Firm FE Yes Yes Yes Yes Yes Yes
Year × Origin FE Yes Yes Yes Yes
Year × Firm FE Yes Yes Yes Yes

𝑅2 0.076 0.082 0.083 0.024 0.030 0.031
Observations 5126376 5126273 5126273 5126376 5126273 5126273
Number clusters 1124 1114 1114 1124 1114 1114
DV cond. mean 0.010 0.010 0.010 0.002 0.002 0.002
F (First) 81.1 88.7 31.6 81.1 88.7 31.6

Notes: ∗ 𝑝 < .1, ∗∗ 𝑝 < .05, ∗∗∗ 𝑝 < .01 Standard errors in parenthesis, clustered at the researcher region level. Citations of firm science
(columns 1-3) and firm patents (columns 4-6) in the subsequent five years towards the focal proceeding are analyzed. The dependent variables
are 1 if at least one citation occurred. Firm-proceeding level dataset, where some proceedings were actually at the conference (Participation=1)
and some were at another conference (Participation=0). Participation is instrumented by the direct flight availability between the researcher
location and the conference location. Firm-proceeding controls include whether the firm cited previous work by the authors in the years before
the conference (Science/Patent citations L) and the average abstract similarity between proceedings published by the firm in the previous year
and the focal proceeding (Research Similarity L). Dependent variable mean is for actually presented proceedings. Conf. distance controls
include the distance between researcher and conference location (log), whether that distance is zero and whether the two locations are in the
same US state or non-US country.

explaining citations. It remains possible that proceedings at the conference serve as pointers to previous
proceedings of the same authors. However, we argue that the effect on “citations to the past” is at
least supportive of the hypothesis that actual social interactions with scientists are the central channel of
diffusion.



FIRM PARTICIPATION AND KNOWLEDGE DIFFUSION 45

Table 2.5: The effect of Participation on citations to previous proceedings of scientists

(1) (2) (3) (4) (5) (6)
Science cit

(past)
Science cit

(past)
Science cit

(past)
Patent cit

(past)
Patent cit

(past)
Patent cit

(past)

Participation 0.069∗∗ 0.057∗∗ 0.113∗∗∗ 0.047∗∗∗ 0.048∗∗∗ 0.098∗∗∗
(0.028) (0.025) (0.041) (0.015) (0.013) (0.024)

Science citations (L) 0.394∗∗∗ 0.158∗∗∗
(0.006) (0.003)

Patent citations (L) 0.184∗∗∗ 0.195∗∗∗
(0.006) (0.006)

Research similarity (L) 0.240∗∗∗ 0.012
(0.043) (0.024)

Conf. distance controls No No Yes No No Yes
Conf Ser FE Yes Yes Yes Yes Yes Yes
Origin × Field FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes
Origin × Firm FE Yes Yes Yes Yes Yes Yes
Year × Origin FE Yes Yes Yes Yes
Year × Firm FE Yes Yes Yes Yes

𝑅2 0.304 0.318 0.372 0.176 0.187 0.192
Observations 5126376 5126273 5126273 5126376 5126273 5126273
Number clusters 1124 1114 1114 1124 1114 1114
DV cond. mean 0.158 0.158 0.158 0.050 0.050 0.050
F (First) 81.1 88.7 31.6 81.1 88.7 31.6

Notes: ∗ 𝑝 < .1, ∗∗ 𝑝 < .05, ∗∗∗ 𝑝 < .01 Standard errors in parenthesis, clustered at the researcher region level. Citations of firm science
(columns 1-3) and firm patents (columns 4-6) in the subsequent five years are analyzed. Citations towards publications by the proceeding
authors in the five years before the conference are considered. The dependent variables are 1 if at least one citation occurred. Firm-proceeding
level dataset, where some proceedings were actually at the conference (Participation=1) and some were at another conference (Participation=0).
Participation is instrumented by the direct flight availability between the researcher location and the conference location. Firm-proceeding
controls include whether the firm cited previous work by the authors in the years before the conference (Science/Patent citations L) and the
average abstract similarity between proceedings published by the firm in the previous year and the focal proceeding (Research Similarity L).
Dependent variable mean is for actually presented proceedings. Conf. distance controls include the distance between researcher and conference
location (log), whether that distance is zero and whether the two locations are in the same US state or non-US country.

2.8 Exploration of Mechanisms

2.8.1 Collaboration and Hiring

The following analyses address the effect of Participation on the Collaboration with and Hiring of
scientists. While we do not capture these dimensions perfectly, an effect on these variables is informative
to understand the channels of the knowledge diffusion observed. Both outcomes would be indicative of
strong interactions with scientists. At the same time, collaboration and knowledge diffusion may occur
from scientists that remain external to the firm, or, in the case of Hiring, via the actual mobility of
scientists from academia (or other firms) to the focal firms. Table 2.6 presents the related results, from
columns 1 to 3 for Collaboration and from columns to 4 to 5 for Hiring. We again include FE and control
variables gradually as discussed for tables in section 2.7.

We find a strong and highly significant effect on Collaboration. In our preferred specifications, columns
2 and 3, the estimate implies, respectively, a 2.8 and 7.4 p.p higher probability of scientific collaborations
between scientists and firms who participated in the same conference. The magnitude of these effects
is large if compared with the variable conditional average of 4.8%. The correlation with the control
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variable remains as expected and the magnitude of the effect of Participation relative to these correlations
is meaningful. For instance, Collaboration is 15 p.p. higher for scientists having been cited by the firm.
The magnitude of the effect of Participation is half of that.

We find no significant effect of Participation on Hiring. Hiring is also a rarer event, with a conditional
average probability in the sample of 1.1%. However, the control variables show meaningful and significant
correlations. For instance, indicating a much higher probability of mobility for scientists that have been
previously cited by the firm.

Table 2.6: The effect of Participation on collaborations with and hiring of scientists

(1) (2) (3) (4) (5) (6)
Collaboration Collaboration Collaboration Hiring Hiring Hiring

Participation 0.032∗∗∗ 0.028∗∗∗ 0.074∗∗∗ 0.002 0.001 0.006
(0.009) (0.009) (0.020) (0.004) (0.004) (0.008)

Science citations (L) 0.147∗∗∗ 0.037∗∗∗
(0.004) (0.001)

Patent citations (L) 0.074∗∗∗ 0.012∗∗∗
(0.005) (0.002)

Research similarity (L) 0.047∗∗∗ 0.021∗∗∗
(0.018) (0.007)

Conf. distance controls No No Yes No No Yes
Conf Ser FE Yes Yes Yes Yes Yes Yes
Origin × Field FE Yes Yes Yes Yes Yes Yes
Origin × Firm FE Yes Yes Yes Yes Yes Yes
Year × Origin FE Yes Yes Yes Yes
Year × Firm FE Yes Yes Yes Yes

𝑅2 0.177 0.185 0.196 0.075 0.080 0.087
Observations 5126376 5126273 5126273 5126376 5126273 5126273
Number clusters 1124 1114 1114 1124 1114 1114
DV cond. mean 0.048 0.048 0.048 0.011 0.011 0.011
F (First) 81.1 88.7 31.6 81.1 88.7 31.6

Notes: ∗ 𝑝 < .1, ∗∗ 𝑝 < .05, ∗∗∗ 𝑝 < .01 Standard errors in parenthesis, clustered at the researcher region level. In columns 1-3, the dependent
variable is one if at least one of the proceeding authors has a joint publication with a firm researcher. In columns 4-6, the dependent variable is
one if at least one of the proceeding authors becomes a firm researcher. Firm-proceeding level dataset, where some proceedings were actually
at the conference (Participation=1) and some were at another conference (Participation=0). Participation is instrumented by the direct flight
availability between the researcher location and the conference location. Firm-proceeding controls include whether the firm cited previous
work by the authors in the years before the conference (Science/Patent citations L) and the average abstract similarity between proceedings
published by the firm in the previous year and the focal proceeding (Research Similarity L). Dependent variable mean is for actually presented
proceedings. Conf. distance controls include the distance between researcher and conference location (log), whether that distance is zero and
whether the two locations are in the same US state or non-US country.

These results allow us to conclude that actual collaborations with scientists are likely a relevant channel
of knowledge diffusion. Also interestingly, the hiring of scientists is less likely to explain our results. It
is interesting to note that this finding matches survey evidence from Cohen, Nelson, and Walsh (2002)
who find that conferences and personal interactions score considerably higher than hiring as channels of
knowledge diffusion from public research to corporate R&D. To be sure, by no means does this implies
that hiring is not relevant in general and hiring of scientists to positions where they stop publishing may
occur, which would not be observed in our data. Moreover, the following sections demonstrate that for
some firms, indeed an effect of Participation on Hiring exists. However, the findings allow us to conclude
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that, on average, the observed effect on knowledge diffusion as well as on collaborations is explained by
scientists that remain external to the firms.

2.8.2 Firm Participation Intensity and Research Investments Size

We focus on the role of firms’ participation intensity and firm size. From a theoretical standpoint, we
would expect different results if the prestige of firms within scientific communities were relevant, as
opposed to the case where participation exclusively served the purpose of lowering knowledge search
costs. Moreover, the role of this dimension has direct implications for firm decisions as well as for the
resulting pattern of knowledge diffusion from science to industry.

We study how the effect of Participation varies for firms that do not sponsor the focal conference and that
have numbers of proceedings presented from low (1) to high (up to 5 or more), for firms that exclusively
sponsor the conference, and for firms that both sponsor the conference and author proceedings. The
underlying regression analyses are reported in Appendix Table B.12. Both the endogenous variable,
Participation, and the instrument direct flight, in the first-stage regressions, are interacted with dummy
variables for each subgroup. 17 The results are presented here graphically. Figure 2.3 shows the main
coefficient estimates from Appendix Table B.12 from the full model with all controls (similar results
are found in other specifications). Each graph, from (a) to (f), represents results for a different outcome
variable, reporting the coefficient estimates with bandwidths for the 95% confidence intervals. The bars
indicate the within-group average of the dependent variable.

We highlight the most relevant patterns. First, for all variables, we encounter a remarkably stronger effect
for firms with a higher number of proceeding presented. Firms that only present one proceeding and that
are not sponsors show no significant coefficients, except for the effect on Patent citations (Past) and for
Collaboration, in graphs (e) and (f), respectively. Firms with the largest number of proceedings, on the
contrary, show the largest coefficients, and a statistically significant difference. For these firms, we find
also an effect on patent citations to proceedings at the conference Patent citations (Present), which was
not significant on average for the full sample (see Table 2.4).

Second, sponsorship and authorship appear complementary. Firms that only sponsor a conference show
point estimates larger in magnitude and less precise, relative to firms with only a few proceedings and not
sponsoring, but never pass the significance threshold. For almost all variables, except for Patent citations
(Present) in graph (b), firms that both sponsor a conference and author at least a proceeding demonstrate
a strong and significant effect. The comparison with the within-groups means of the dependent variables
shows that firms with higher intensity of participation also have on average higher levels of the dependent
variables. The effect of Participation adds to these levels.

17We also estimate simplified regression models, where we introduce interactions only for sponsorship (Appendix Table B.9),
or using the number proceedings as a single linear interaction variable, rather than four dummies for each subgroup (Appendix
Table B.11). The results are a subset of those discussed here for the more complete model and lead to the same conclusions.
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Figure 2.3: Heterogeneity of the effect of Participation by participation intensity of the firm
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(b) Patent citations (Present)
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(c) Hiring
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(d) Science citations (Past)
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(e) Patent citations (Past)
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(f) Collaboration
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Notes: Each panel shows the result from an IV regression. We instrument each subgroup of firm participation intensity interacted with researcher participation is by the interaction of the same firm participation intensity
and direct flight availability. For comparison, the dependent variable means in the subgroup of firm participation intensity are shown. Full estimation results are available in table B.12. Control variables and FE are as in
other heterogeneity regressions.
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We highlight the interesting result of the positive and significant effect on Hiring for firms that are both
sponsors and present proceedings (graph c). As noted, sponsoring has indeed also hiring objectives.
However, sponsorship alone shows no impact. This strongly suggests that the active participation of
scientists is fully complementary to sponsoring in hiring activities. This is in line with the idea that
interactions among scientists are a vehicle for exchanging information, possibly, in this case, also about
scientific positions within firms.18 Moreover, scientists assign value to the possibility of publishing and
doing cutting edge research (Stern, 2004; Sauermann and Cohen, 2010). Firms incapable of signaling
such opportunities may not be attractive for scientists. For the scope of our analyses, we maintain that
hiring is unlikely to be an underlying mechanism explaining our results for the majority of firms. Instead,
it is possible that it contributes to strengthening the effects observed for both sponsoring and authoring
firms.

In Table 2.7 we present results for the last analysis of heterogeneity of the effects. We look at the variation
of the effects of Participation by firm-level investments in research, as measured by the number of active
scientists in a year. We present results for all outcome variables and our full specification from column 1
to 6. The results are generally coherent with the evidence from the intensity of participation, indicating
that the largest firms have the strongest effects. Smaller firms have significant effects for patent citations
to previous publications of scientists, but not for other variables. The estimates sizes for Top 5 firms are
multiples of the effect size for smaller firms.

Table 2.7: Heterogeneity of the effect of Participation by firms’ size of research investments

(1) (2) (3) (4) (5) (6)
Science cit
(present)

Science cit
(past)

Patent cit
(present)

Patent cit
(past)

Collaboration Hiring

Top 5 × Participation 0.097∗∗∗ 0.241∗∗∗ 0.016∗∗ 0.278∗∗∗ 0.156∗∗∗ 0.004
(0.024) (0.067) (0.008) (0.056) (0.040) (0.019)

Top 6-50 × Participation 0.023∗∗∗ 0.151∗∗∗ 0.000 0.115∗∗∗ 0.088∗∗∗ 0.005
(0.008) (0.047) (0.003) (0.029) (0.023) (0.008)

Remainder × Participation 0.010 0.050 0.000 0.052∗∗ 0.047∗∗ 0.006
(0.007) (0.039) (0.003) (0.022) (0.020) (0.007)

Conf. distance controls Yes Yes Yes Yes Yes Yes
Proceeding-level controls Yes Yes Yes Yes Yes Yes
Standard FE Yes Yes Yes Yes Yes Yes

𝑅2 0.069 0.370 0.027 0.173 0.195 0.087
Observations 5126273 5126273 5126273 5126273 5126273 5126273
Number clusters 1114 1114 1114 1114 1114 1114
DV cond. mean 0.010 0.158 0.002 0.050 0.048 0.011
F (First) 11.0 11.0 11.0 11.0 11.0 11.0

Notes: ∗ 𝑝 < .1, ∗∗ 𝑝 < .05, ∗∗∗ 𝑝 < .01 Standard errors in parenthesis, clustered at the researcher region level. Ranks are yearly firms
ranks, ordered by the size of the scientific workforce that based on publication information can be attributed to a company, lagged by one
year. Individual coefficients of the rank levels are collinear with fixed effects and omitted. Proceeding-level controls include variables on firm
citations before the conference towards the authors’ previous publications, whether the proceeding is authored by a firm author, whether the
authors have previously participated to the conference and the similarity of previous firm publications with the focal conference publication.
Standard fixed effects include conference, origin × field, origin × firm, year × origin and year × firm fixed effects.

18This interpretation is in line with insights from our interviews. Firms´ scientists declared that they participate in conferences
mostly “like any other scientist” and do not normally have the objective of hiring other scientists on the behalf of the firm. At the
same time, when firms sponsor the conference, HR personnel is often supported by firms scientists. Several HR representatives
declared that exclusively sponsoring conferences turned out ineffective for hiring purposes, as it is difficult to attract the attention
of potential candidates without displaying specific competencies and engagement into the scientific community.
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2.9 Robustness

Alternative Citation Measures

In this section, we address a list of possible concerns regarding the robustness of our results. We start
considering alternative criteria for counting scientific citations and presenting results on a measure of
text similarity as an alternative indicator of diffusion. Table 2.8 presents the related results, where the
alternative variables are used as dependent variables of our full model specification. Column 1 reports,
for reference, the results for our main dependent variable Science cit.(present).

In column 2, we show results for a model where the dependent variable is the probability of observing
citations to proceedings presented to the conference but excluding all author-level self-citations. Firm
self-citations were already excluded in the main dependent variable. However, citations from scientists
that move to the firm, and that were not affiliated to the firm at the moment of the conference, can still
occur. As we have shown that hiring is weekly affected by participation, we doubt that this is frequent.
Accordingly, the effect size in column two is very similar to the effect size in column one, suggesting that
the main results are not driven by author self-citations.

In column 3, we look at citations only from publications where a scientist exclusively affiliated with the
firm appears as the first author. This responds to the concern that the effect we observe may be driven by
other academic scientists, or by other firms, that by coauthoring with the focal firm introduce citations
that would not be otherwise observed. Indeed, co-authored publications are relatively frequent, especially
with academics. In these cases, we cannot single out the individual contribution of single scientists of a
focal firm to the bibliography list. To obviate this concern, we look at first-authored publications, under
the assumption that the first author is the main project leader of a research project (this is indeed the
normal practice in CS, also for scientists affiliated to firms). While the effect size (and the dependent
variable mean) are somewhat smaller, the coefficient remains positive, statistically significant and large
in magnitude.

In columns 4 and 5, we distinguish, respectively, firms’ scientists who are authors of proceedings presented
at the focal conference, from firms’ scientists who are not. In other words, we attempt to distinguish
citations from firms’ scientists more likely physically present at the conference, from other scientists.
As it is expected we find stronger effects for citations from the former group. However, interestingly,
also citations from the latter see a significant and sizable effect. This resonates well with the qualitative
evidence we collected, about the existence of knowledge sharing processes within firms, often formalized
in internal information systems or internal seminar series, dedicated to pass insights from the conference
to non-attendees. A more simple explanation is the possibility that some firms’ scientists may passively
participate without having accepted papers. This especially may play a role when a firm sponsors a
conference and other scientists accompany HR personnel.

Text Similarity Analysis

Scientific citations may reflect strategic behavior or salience (Teplitskiy et al., 2020), for instance, if
scientists add citations to please other scientists, or simply because the exposure to a proceeding increases
the probability that that proceeding is cited rather than another, but without actual influence on the content.



FIRM PARTICIPATION AND KNOWLEDGE DIFFUSION 51

We alleviate this concern by showing that besides the probability of citations, the material content of the
research subsequently carried out by the firm changes as well. We do so using a measure of text similarity
between the focal proceeding 𝑝 and future proceedings of the firm, within the same field and in a time
window of 3 years. We discuss in detail the construction of the similarity measure in appendix B.6.

Column 6, in Table 2.8, presents the results for the text-similarity measure over the entire 3-year period
and for the mean similarity with firm proceedings. Alternative specifications presented in appendices
show variants where we distinguish the similarity for each year separately (Table B.20) and using the
maximum instead of the mean (Table B.21). The results are broadly consistent across these variants.
From column 6, we see that Participation has a positive significant effect on the text-similarity measure of
about 0.03, against a sample average of the variable of 0.1. This reinforces our finding that participation
of firms to the scientific community has real and relevant effects on the firms’ scientific activities.

Table 2.8: Robustness - Science citations’ alternative measures

(1) (2) (3) (4) (5) (6)
Science cit
(present)

Science cit
(No self-cit)

Science cit
(First author)

Science cit
(At conf)

Science cit
(Not at conf)

Similarity
(Mean, Post)

Participation 0.021∗∗∗ 0.018∗∗∗ 0.014∗∗∗ 0.018∗∗∗ 0.011∗∗ 0.030∗∗∗
(0.007) (0.007) (0.005) (0.006) (0.005) (0.007)

Science citations (L) 0.029∗∗∗ 0.024∗∗∗ 0.016∗∗∗ 0.018∗∗∗ 0.016∗∗∗ 0.006∗∗∗
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Patent citations (L) 0.008∗∗∗ 0.007∗∗∗ 0.004∗∗∗ 0.004∗∗∗ 0.005∗∗∗ 0.004∗∗∗
(0.002) (0.002) (0.001) (0.001) (0.001) (0.001)

Research similarity (L) 0.025∗∗∗ 0.023∗∗∗ 0.011∗∗∗ 0.010∗∗ 0.013∗∗∗ 0.727∗∗∗
(0.006) (0.006) (0.004) (0.005) (0.005) (0.008)

Conf. distance controls Yes Yes Yes Yes Yes Yes
Conf Ser FE Yes Yes Yes Yes Yes Yes
Origin × Field FE Yes Yes Yes Yes Yes Yes
Origin × Firm FE Yes Yes Yes Yes Yes Yes
Year × Origin FE Yes Yes Yes Yes Yes Yes
Year × Firm FE Yes Yes Yes Yes Yes Yes

𝑅2 0.083 0.076 0.054 0.053 0.059 0.768
Observations 5126273 5126273 5126273 5126273 5126273 5126273
Number clusters 1114 1114 1114 1114 1114 1114
DV cond. mean 0.010 0.009 0.006 0.006 0.006 0.126
F (First) 31.6 31.6 31.6 31.6 31.6 31.5

Notes: Column 1 shows the default specification, counting all citations by firms within five years. Column 2 excludes all author-level self-
citation. Firm-level self-citations are always excluded. Column 3 restricts to citations where the first author is affiliated with the firm. Column 4
restricts to citations where at least one author of the citing paper attended the conference. Column 5 restricts to citations where no author of the
citing paper attended the conference. Column 6 shows the effect on mean text similarity of subsequent firm papers. ∗ 𝑝 < .1, ∗∗ 𝑝 < .05, ∗∗∗
𝑝 < .01 Standard errors in parenthesis, clustered at the researcher region level. Firm-proceeding level dataset, where some proceedings were
actually at the conference (Participation=1) and some were at another conference (Participation=0). Participation is instrumented by the direct
flight availability between the researcher location and the conference location. Firm-proceeding controls include whether the firm cited previous
work by the authors in the years before the conference (Science/Patent citations L) and the average abstract similarity between proceedings
published by the firm in the previous year and the focal proceeding (Research Similarity L). Dependent variable mean is for actually presented
proceedings. Column 4 also contains a control variable for the number of publications the similarity is computed for. Conf. distance controls
include the distance between researcher and conference location (log), whether that distance is zero and whether the two locations are in the
same US state or non-US country.
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Pre-period Variables Test and Event Study Analyses

To test the plausibility of our identification assumption, we design an analysis analogous to a falsification
test. If the participation at the same conference is, after instrumenting, truly exogenous, then within our
models, Participation should have no effect in these tests, while non-well identified models should still
have a high probability to find significant estimates. First, as dependent variable we use citations from
firm publications published before the conference to proceedings authored by the authors of proceeding
𝑝. Similarly, the measure of text similarity introduced in the section above should not show an effect for
similarity with proceedings of the firm previous to the conference. In other words, we estimate whether
there is any correlation between Participation and measures that are predetermined at the time of the
conference. These measures are analogous to the control variables we use in our models, but we used
them here as dependent variables. For patents, we only consider scientific references introduced by patent
documents published before the conference year.

Table 2.9 shows the results. We pair the estimations from our IV-model with OLS regressions. In
particular, column 1, 3 and 5 show OLS estimates, while columns 2, 4 and 6 estimates from the IV-
models. Column 1 and 2 present results for the falsification test based on scientific citations. Column
3 and 4, based on patent citations. Column 5 and 6, based on text similarity. Notably, we can still find
statistically significant coefficients, indicating endogeneity issues, in the OLS models. On the contrary, we
do not encounter any statistically significant correlation in our IV-models. This increases our confidence
that the instrumental variable strategy truly generates exogenous variation in the variable of interest and
allows us to estimate causal effects.

In a similar way, we can construct dependent variables that vary for each year, from the year of the
conference to the following years. In this setting, for the variables were we find significant results, we
find that the marginal probability of knowledge flows increases especially in the first years after the
conference, but keep increasing up to the fifth year. Table B.10 shows these results for the main variable
on scientific citations (other related analyses are equivalent and available upon request). The event study
analysis in Appendix B.2.1, already mentioned in section 2.7.1, provides a similar insight with respect to
the first-stage results. If either airlines’ or conference organizers’ decisions were driven endogenously by
specific pair-level increases in participation from certain regions, this would likely emerge as a pre-trend
in the probability of participation in the years prior to the change in availability of direct flights. We do
not find any support for this concern.

Alternative Model Specifications

Finally, this section discusses additional results showing the robustness to alternative specifications,
related to the inclusion of additional and different FE controls, and clustering of errors. The set of
FE we include in our preferred specifications is meant to address the most reasonable concerns for our
identification strategy. In Appendix, from Table B.13 to Table B.15 we show the robustness of our results
to additional FE controls. Since conference locations are determined by unobserved amenities, the results
may be driven by such factors. For example, it is evident how frequent conferences in Hawaii, Mallorca
or Florida are compared to the resident scientist population (Figure 2.1). Therefore, we show that the
results are robust to the inclusion of conference location times year FE (Table B.13). Consequently, the
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results are not driven by unobserved conference location amenities. Table B.14 shows robustness to the
inclusion of origin× conference series fixed effects. This pair-level FE controls address possible concerns
about the relative specificity of some conference series for scientists of certain regions. For instance,
some conferences may have more national focus. This may influence the probability of participation of
scientists regardless of accessibility and have implications also for the consequent interactions between
scientists and firms. However, the inclusion of these FE controls does no change the results.

In table B.15, we control for the full interaction of firm, origin and year FE. This set of FE captures
every possible variation of connectivity and interactions between firms and particular regions as would
be embodied for example in direct-flight connections between firms and the researcher regions, over
time. It emphasizes the distinction between direct flights to conference locations (which we study) as
opposed to firm regions (which we control for), and excludes any possibility that contemporaneous shocks
between the firm and the scientists’ regions pairs affect the results. In this model, the residual variation
comes from the possibility that firms may be differently exposed to scientists within one same region
(for instance in different fields of specialization), due to the different accessibility of these scientists to
multiple conferences where the firms participate. Despite this specification is highly demanding, the
results remain largely unaffected.

In table B.16, we test the robustness to various other cluster levels. Given the nature of the dataset,
arguments can be made to cluster on the firm level (the acting entity in the second stage), the researcher
location × conference location level (the level of the instrument) or the proceedings. Along the same
lines, two-way clustering is conceivable. We show that the standard errors in the second stage are not
strongly affected by the cluster choice. However, the first stage often becomes substantially more powerful
with alternative clusters.

Table 2.9: Falsification test - citations and similarity before the conference

(1) (2) (3) (4) (5) (6)
Science cit
(pseudo)

OLS

Science cit
(pseudo)

IV

Patent cit
(pseudo)

OLS

Patent cit
(pseudo)

IV

Similarity
(Mean, t-1)

OLS

Similarity
(Mean, t-1)

IV

Participation 0.029∗∗∗ 0.022 0.002∗∗∗ 0.010 0.016∗∗∗ −0.008
(0.002) (0.031) (0.000) (0.007) (0.000) (0.011)

Conf. distance controls Yes Yes Yes Yes Yes Yes
Conf Ser FE Yes Yes Yes Yes Yes Yes
Origin × Field FE Yes Yes Yes Yes Yes Yes
Origin × Firm FE Yes Yes Yes Yes Yes Yes
Year × Origin FE Yes Yes Yes Yes Yes Yes
Year × Firm FE Yes Yes Yes Yes Yes Yes

𝑅2 0.211 0.211 0.048 0.046 0.594 0.580
Observations 5126273 5126273 5126273 5126273 5126273 5126273
Number clusters 1114 1114 1114 1114 1114 1114
DV cond. mean 0.066 0.066 0.005 0.005 0.087 0.087
F (First) 28.9 28.9 28.5

Notes: ∗ 𝑝 < .1, ∗∗ 𝑝 < .05, ∗∗∗ 𝑝 < .01 Standard errors in parenthesis, clustered at the researcher region level. Conf. distance controls
include the distance between researcher and conference location (log), whether that distance is zero and whether the two locations are in the
same US state or non-US country.Similarity refers to research similarity, measured by the similarity of abstracts of firm publications in the same
subfield with the abstract of the focal proceeding.
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2.10 Conclusion

Participation of firms to scientific conferences, perhaps today at unprecedented levels of intensity in fields
like Machine Learning (ML), is not a rare phenomenon. Over 20 years, from 1996 to 2010 in our analysis
sample (and up to 2015 for the entire initial sample), we find constant and significant participation of
firms, in terms of proceedings authored by firms scientists and sponsorship of conferences in the entire
field of Computer Science (CS). The key finding of the paper is that participation decisions of firms and
scientists to different conferences have a causal effect on firms’ innovation outcomes. In other words,
firms scientific and technological outcomes rely strongly on knowledge within the scientific communities
in which they participate. The effect is not confined to citations to proceedings at the conference, but,
especially for patents, extends to citations to previous work of scientists at the conference. We also
find a strong effect on the probability of scientific collaborations, but not, on average, on hiring. This
suggests that actual collaborations with external scientists are one important mechanism explaining our
results. These effects are much stronger and significant for firms capable of highly intense participation,
as captured by their sponsorship of conferences, the number of proceedings presented and their research
investments size. Participation of a scientist to a conference where a firm is present both as a sponsor and
as proceedings’ affiliation also leads to a higher probability of hiring. The effect for firms that make only
minimal investments in participation is seldom significant.

The effect of active participation implies that physical proximity maintains an important role in the
exchange of knowledge and the formation of collaborations. However, from a theoretical standpoint,
the rationale for participation appears not confined to the need to abate search costs. Our finding is
compatible with the theory that knowledge diffusion within science is shaped by its social norms and
structure. The prestige of organizations within communities likely becomes a complementary asset that
enables effective knowledge access, beyond the mere role of proximity. This provides the rationale
for institutional investments in intense participation in scientific communities. This interpretation of
the results is also supported by descriptive evidence and qualitative accounts on the nature of firms
participation investments, and on their efforts to ensure that their contributions at scientific conferences
are of the highest quality. The role of prestige appears all the more plausible if actual interactions
and collaborations with external scientists, rather than the access to proceedings’ content, is the main
mechanism of diffusion.

These findings make various contributions. Similarly to previous studies, scientific communities appear
to transcend organization boundaries, enabling knowledge flows between academia and industry and
from science to technology. Also, the results confirm, on a larger scale and for knowledge flows across
institutional boundaries, that scientists are strongly influenced by face-to-face interactions. The paper
further suggests that active participation and prestige within the scientific community is an important
antecedent to both collaborations and of knowledge flows, and may constitute a strategic objective
for firms. Absorptive capacity appears not exclusively a function of cognitive ability or face-to-face
interactions, but also of the prestige within scientific communities. Consequently, knowledge diffusion is
likely channeled towards firms with the highest level of participation.

Implications are substantial. First, the results offer a different perspective on the apparent paradox that
investments of firms in research decrease while the relevance of science for firms remain stable, if not
higher. Academia and industry interactions emerge to be significant and not unidirectional. Scientific
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communities remain a platform that generates opportunities for effective interactions. As such, the
active participation of industry maintains an important role in the diffusion of knowledge from science
to technology. The participation in scientific communities may increasingly be a way to access external
knowledge, without internalizing fully its production. The results also challenge the notion that proximity
and participation naturally lead knowledge spillovers to spread equally and freely. Institutions capable of
intense participation are more likely to absorb knowledge, which in turn reinforces their ability to establish
a position within the scientific community, in a process akin to the Matthew effect usually attributed to
the accumulation of prestige of scientists or academic institutions. As a consequence, contributions of
firms to scientific communities are not necessarily in conflict with firm objectives and may lead to the
concentration of innovation capacity. At the same time, this may not be a viable strategy for most firms.
Those that are only able of limited and short-lived investments may gain no benefit from interactions with
scientific communities, and more limited returns from investing in research in general.

Finally, we highlight some limitations and directions for future research. First, firms’ performance
and general welfare implications are delicate. Firms capable of large investments in participation may
benefit directly from scientific communities and at the same time use the opportunity to guide scientific
advancements towards economically valuable applications. On the basis of the evidence on the value
of science for firm value and the high value of science-based patents, we posit that connections to
scientific communities likely bring great values to such firms. However, strong connections with specific
communities may have implications for the direction of research and the diversity of innovation options
for firms, with not obvious long-run effects. Moreover, the evidence of concentrated knowledge flows
may have implications for the competitive structure of science-based and high-tech industries, potentially
increasing inequality. The scope of these considerations is limited by the microeconomic nature of our
study and is left to future research. Second, the results suggest that knowledge flows across organizational
boundaries are shaped by factors like group identity, reputation and prestige on social interactions that
we cannot fully capture at our level of analysis. Related evidence at the individual level exists (Haeussler,
2011; Chen and Li, 2009; Charness, Rigotti, and Rustichini, 2007) which can be however extended to
consider the interplay between the individual, organizational and institutional dimension. Finally, our
study is limited to CS, although with data that are largely representative for this entire sector. Due to
its importance for the economy, we tend to allege that evidence in this context is relevant. By virtue
of descriptive evidence on the number of firms participating in conferences, and accounts regarding the
relevance of science and conferences (e.g. in chemistry, pharmaceutics, biotechnology, engineering)
(Cohen, Nelson, and Walsh, 2002), we also would expect similar evidence in other sectors. Extending
this analysis to other contexts would still be recommended.
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3
Profit Taxation, R&D Spending and Innovation

Abstract We study how the taxation of profits affects plants’ R&D spending and innovation. Relying on
geocoded survey data for R&D-active plants in Germany over the period 1995-2007, we exploit around
7,300 changes in the local municipal business tax rate. Applying event study and difference-in-differences
designs, we find a negative and statistically significant effect of an increase in profit taxation on R&D
spending with an implied long-run elasticity of −1.25. Reductions in R&D are particularly strong
among more credit-constrained plants but homogeneous across the firm size distribution. Along with the
reduction in R&D spending, higher taxes trigger lagged negative effects on the number of filed patents.
Extending the scope of our analysis beyond the plant level, we further show that reduced innovation
accounts for up to 40% of the overall negative effect of business taxation on local economic growth.
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3.1 Introduction

Innovation has long been emphasized as a key driver of economic growth (Solow, 1957; Romer, 1990).
Firms play a central role in this process by generating and diffusing the vast majority of new technologies
and products. Firms’ engagement in innovation increases their own performance (Kogan et al., 2017),
raises their “absorptive capacity” of competitor knowledge (Aghion and Jaravel, 2015), and exhibits
positive aggregate effects on economic growth because innovating firms crowd out the less productive
ones (Lentz and Mortensen, 2008). Hence, whether and how public policy – and in particular tax policy
– can foster firms’ innovation activities is of key interest for economists and policy makers alike (Bloom,
Van Reenen, and Williams, 2019).

In this paper, we provide new answers to this old question by exploiting the unique German institutional
setting as a laboratory. We exploit variation in the local business tax, a profit tax set at the level of the
municipality, to assess the effect of tax policy on plants’ R&D activities. German municipalities can
annually alter the local business tax rate, while the definition of the tax base is fixed at the federal level.
Using survey data targeting all R&D-active plants in Germany, we exploit variation in tax rates induced
by around 7,300 local tax reforms over the period from 1987 to 2013. As the given profit tax applies to
nearly all German plants, we can study policy effects across the entire population of R&D-active plants.

Information on plants’ R&D spending stems from the biennial longitudinal survey dataset Wissenschaftsstatis-
tik, collected and administrated by the Stifterverband on behalf of the German Federal Ministry of
Education and Research. The dataset serves as a key basis for Germany’s official R&D reporting to
EU authorities and the OECD. Using information on the plants’ name and exact address, we assign treat-
ment, i.e., the applicable local business tax rate in a given year in the respective municipality. We further
use the detailed information in the survey to decompose plants’ R&D spending along various margins,
such as expenses on internally- vs. externally-conducted projects or personnel vs. non-personnel R&D
spending.1 In addition, we test for heterogeneous treatment effects along various plant characteristics
(size, liquidity and R&D intensity). Last, we link the surveyed plants to administrative data from the
European Patent Office. Thereby, we test to what extent tax-induced changes in R&D spending translate
into differences in innovation output as measured by the (citation-weighted, i.e., quality-adjusted) number
of filed patent applications.

We apply an event study design and complementary difference-in-differences regressions to estimate
the causal effect of tax changes on plants’ innovation activities. We separately consider tax increases
and tax decreases in the empirical analysis.2 Our preferred empirical specification regresses plant-level
outcome variables on leads and lags of tax changes, conditional on plant and municipality fixed effects,
sector × year fixed effects, as well as flexible and finely-grained region (e.g., commuting zone) by year
fixed effects; the latter set of fixed effects accounts for unobservable time-varying confounders at very
dis-aggregated geographical levels. Effect patterns around the date of treatment as well as additional
robustness checks do not point to the presence of confounding effects, such as varying local economic

1We use the terms spending and expenditures as synonyms throughout the paper.
2As effects of tax increases and decreases do not have to be symmetric, we shy away from estimating effects in a joint

regression framework. In Section 3.2, we show that more than 90% of all tax changes during the observation period were tax
increases. We detect no clear pattern and face little statistical power when analyzing tax decreases. Therefore, we primarily
focus on the effect of tax increases throughout the paper.
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conditions, population movements or government expenditures coinciding with a given change in the
local profit tax (see Fuest, Peichl, and Siegloch, 2018, for earlier evidence along this line).

Theoretically, we expect an increase of the profit tax rate to have a negative effect on plants’ R&D spending
and innovation. First, the tax-induced decrease in profits lowers plants’ expected post-tax returns on R&D
expenditures, which should lower the level of R&D expenses in turn. Second, we expect a tax increase to
particularly affect those expenses that are financed by equity – given that only the costs of debt-financing
are deductible from a plant’s tax base. The nature of R&D activities suggests that this is particularly
true for expenses on research and development: unfinished R&D projects have little residual value, lack
collateral and face a high risk premium by debt-holders. Moreover, R&D investments are highly uncertain
and potential returns generally realize with substantial time lags. Last, R&D projects usually come with
information asymmetries between the innovator and financial backers (Hall and Lerner, 2010; Hall, 2002;
Bakker, 2013). Using data on publicly-traded firms in the United Kingdom, Aghion, Klemm, et al. (2004)
show that the use of equity finance indeed increases with firms’ R&D intensity among the groups of firms
engaged in innovation. Hence, we expect R&D investments to respond more to an increase in profit
taxation than overall investments. This should particularly hold true for young and credit-constrained
firms, where the lack of collateral is usually particularly pronounced (Brown, Fazzari, and Petersen, 2009;
Thakor and Lo, 2017). Lastly, a reduction in R&D spending should eventually translate into reduced
innovation output as measured via the number of filed patents (see, e.g., Griliches, 1990, for the assumed
input-output relationship).

We produce five sets of empirical results that confirm these hypotheses. First, we find a negative,
statistically significant effect of a profit tax increase on plants’ total R&D expenditures. We estimate a
long-term elasticity of −1.25, which is lower than estimates reported in the context of targeted R&D tax
credits or subsidies. Second, we find the tax-induced reduction in R&D spending to be entirely driven by
internally- rather than externally-conducted R&D spending. Plants appear to reduce R&D at their own
research facilities in response to a tax increase, while outsourced research contracts remain unaffected.3
Moreover, tax-induced reductions on non-personnel R&D expenses are larger than on R&D staff – a
finding consistent with varying adjustment costs for these two production factors. Third, average effects
mask heterogeneity by plant liquidity. Reductions in R&D spending are particularly strong among more
credit-constrained plants. In contrast, we detect no notable differences along the plant size distribution.
This somewhat questions common practice that R&D tax credits and subsidies are often size-dependent,
with policy makers implicitly assuming small- and medium-sized firms to be more responsive to a given
level of support (Gonzales-Cabral, Appelt, and Galindo-Rueda, 2018). Fourth, we observe tax-induced
reductions in innovation output – both in raw numbers of patent applications but also when accounting
for quality-differences by weighting each patent according to the number of citations it receives. The
effect materializes with some temporal lag of around four years. The estimated long-term elasticity of
patent applications with respect to the tax is −0.9, an estimate close to the findings of Akcigit, Grigsby,
et al. (2018). Fifth, we extend the scope of the analysis beyond the plant level by assessing the role of
innovation for economic growth, as well as quantifying the importance of tax policy in this relationship.
We first show that local innovation has a positive and lasting effect on local growth, while an increase of
the local business tax substantially reduces growth. Using the estimated elasticity of filed patents with

3 On average, around 9% of the total R&D budget is spent on R&D activities outside the respective plant.
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respect to the tax rate, we further back out that around 40% of the total negative effect of profit taxation
on local growth is due to tax-induced reductions in innovation.4

Our baseline results are robust to a wide range of alternative specifications and modeling assumptions.
Summary estimates and event study patterns do not change notably when controlling for broader or finer-
grained region-by-year fixed effects . Moreover, effects are basically unchanged when including potential
confounders at the municipality or county level, such as local population, unemployment or GDP per
capita. Effects are also robust to different functional forms of the outcome variable and alternative ways
of drawing inference.

Related literature. Our results contribute to various strands of the literature. First, we add to the
small and recent literature that exploits variation in sub-national tax policy settings to study the effect
of (corporate) taxation on innovation. Moretti and Wilson (2017) provide evidence on the geographic
mobility of “star scientists” in response to tax policy variation at the level of the U.S. states. They find
that star inventors are quite responsive to tax incentives, with long-run mobility elasticities amounting to
around 1.8 (-1.7) for personal and corporate income taxes (tax credits). Akcigit, Grigsby, et al. (2018)
use U.S. state-level panel data on corporate and personal income tax rates as well as on patents over the
entire 20th century to study the effect of tax policy on innovation. They find that higher taxes reduce the
quantity and quality of innovations and affect the geographic spread of innovative activities. Corporate
inventors are found to react more to changes in (corporate) taxes than individual inventors. Exploiting the
same variation in U.S. state-level tax rates over a shorter time period, Mukherjee, Singh, and Žaldokas
(2017) offer similar evidence in showing that increases of the corporate tax rate reduce R&D investments
and patenting. We add to these studies by looking at the German case, which offers unique variation in
profit taxation at the level of roughly 11,000 municipalities. Official survey data targeting the universe
of R&D-active plants further enable us to study detailed plant-level responses to changes in the local
business tax rate, both in terms of innovation input and output (e.g., the effects of a tax increase on internal
vs. external R&D spending, or process vs. product innovations). Moreover, we use the rich plant-level
data to point to mechanisms that underlie the overall effects.

The paper further speaks to the literature that estimates the effects of targeted R&D tax credits, deduction
possibilities and subsidies. Guceri and Liu (2019) exploit a 2008 reform in the UK’s corporate tax scheme
that increased R&D-related deduction possibilities for medium-sized firms relative to larger ones. Based
on a difference-in-differences model, the authors estimate a positive and statistically significant impact
of these tax incentives on R&D spending; the respective elasticity with respect to the user cost of capital
amounting to -1.59. Dechezleprêtre et al. (2016) look at the same institutional setting but exploit asset-
based thresholds for tax subsidy eligibility by means of a regression discontinuity design (RDD). They
also find positive effects on R&D spending and patenting, with an implied user-cost elasticity of -3.0.
Chen, Jiang, et al. (2019) show that a Chinese tax policy that awarded corporate income tax cuts to firms
with R&D investments over a certain threshold substantially stimulated R&D activity. Using bunching
techniques, the authors report a user cost elasticity of -2.0, which shrinks to -1.27 when the substantial
relabeling of general to R&D expenditures is accounted for. Last, Agrawal, Rosell, and Simcoe (2020)
exploit a 2004 reform of the Canadian R&D tax credit scheme for small firms. Using a difference-in-

4 Note that tax policy can affect growth through other channels than innovation, e.g., by reducing investments not related to
R&D, lowering wages, or triggering the re-location of businesses.
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differences approach, they estimate a large positive effect on R&D activity among eligible firms, yet
report rather wide bounds for the user-cost elasticity in the range between -0.71 to -4.57. In terms of
R&D subsidies, Bronzini and Iachini (2014) evaluate a 2003 reform in Northern Italy, which introduced
R&D subsidies for certain industrial research projects. Using a regression discontinuity design around
the eligibility cut-off, they find no significant impact on R&D investments on average. However, the
average effect masks heterogeneous responses: small firms significantly increased their R&D investments
in response to the subsidy, whereas larger firms remained unresponsive. We estimate an R&D spending
elasticity with respect to the user cost of capital of -2.66, that is well in the range of the discussed studies.5

This set of studies provides clean causal evidence by exploiting policy cut-offs to establish quasi-
experimental research designs. At the same time, the estimates are clearly local in nature, referring
to firms around the respective thresholds. The proposed identification strategy in this paper enables us to
estimate treatment effects along the full distribution of R&D-active plants. Hence, we are able to iden-
tify average treatment effects but also test for heterogeneous effects along various plant characteristics.
For instance, we show that effects are homogeneous across plant size, which questions the rationale for
size-based innovation policies to some extent. We are further able to rule-out mis-reporting effects as
shown in Chen, Jiang, et al. (2019), given that our policy instrument, the local business tax rate, does not
specifically target plants’ R&D spending.

Finally, we connect to a large literature that is concerned with market failures that reduce private R&D
activities below socially desirable levels: R&D embodies characteristics of a public good (Nelson, 1959;
Arrow, 1962), such that the social rate of return to innovation is generally well above the private return
(Griliches, 1992; Jones and Williams, 1998). At the same time, expected knowledge spillovers as well
as uncertainty about marketability may lead to private under-investments into R&D (Czarnitzki and
Toole, 2011). Taxes on firms may further lower the private returns to R&D, while social returns remain
unaffected. This, in turn, widens the gap between actual and socially desired levels of R&D in an economy
(Klenow and Rodriguez-Clare, 2005).

The remainder of the paper is structured as follows. Section 3.2 describes the institutional background
of German profit taxation and documents the policy variation we exploit for identification. Section
3.3 describes the plant-level survey data, as well as the matching of patent information and additional
financial variables to the surveyed plants. In Section 3.4, we set up our empirical research design and
test the plausibility of the set-up’s underlying identifying assumptions. Section 3.5 presents the empirical
results. We start by presenting average and heterogeneous treatment effects on R&D spending (Section
3.5.1), before turning to the effects on patenting (Section 3.5.2). In Section 3.5.3, we extend our analysis
beyond the plant level by assessing the importance of innovation for local economic growth as well as
identifying the role of tax policy in this relationship. Section 3.6 concludes.

5Our estimate of the R&D spending elasticity with respect to the user cost of capital is at the upper bound of recent studies
that look at overall investment responses to tax-induced changes in the user cost of capital. See, for example, Yagan (2015),
Zwick and Mahon (2017), Ohrn (2019), Maffini, Xing, and Devereux (2019), Chen, Jiang, et al. (2019), and Moon (2020).
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3.2 Institutional Background

In Germany, business profits are taxed along two different margins. First, at the national level, profits are
either subject to the corporate or personal income tax depending upon a firm’s legal status. In addition,
both corporate (Kapitalgesellschaften) and non-corporate firms (Personengesellschaften) are subject to
the local business tax (Gewerbesteuer), which is levied at the municipality level.6 Our analysis will
exploit within-municipality variation in local business tax rates for identification.

The local business tax (LBT) serves as municipalities’ most important source of revenue. Municipalities
have considerable discretion over the size of the LBT rate. It is derived as the product of the basic federal
tax rate (Steuermesszahl) and a local scaling factor (Hebesatz), which acts as a municipality-specific
multiplier:

𝐿𝑜𝑐𝑎𝑙 𝐵𝑢𝑠𝑖𝑛𝑒𝑠𝑠 𝑇𝑎𝑥 𝑅𝑎𝑡𝑒 = 𝐵𝑎𝑠𝑖𝑐 𝐹𝑒𝑑𝑒𝑟𝑎𝑙 𝑅𝑎𝑡𝑒 × 𝑀𝑢𝑛𝑖𝑐𝑖𝑝𝑎𝑙 𝑆𝑐𝑎𝑙𝑖𝑛𝑔 𝐹𝑎𝑐𝑡𝑜𝑟.

This scaling factor serves as municipalities’ sole margin of adjustment. Municipal councils annually
decide whether and how to adjust the scaling factor for the upcoming year. In contrast, the basic federal
tax rate is set by the national government and uniformly applies to all municipalities.7 This is also true
for the calculation of the tax base: rules are defined at the national level and cannot be altered by state or
municipal governments. The definition of the tax base remained unchanged throughout our observation
period from 1995-2007.8

Figure 3.1 illustrates the spatial and temporal variation in local scaling factors across West Germany.9
Panel A plots, as an example, the 1995 LBT rates for each West German municipality. We observe
substantial differences across Germany, with tax rates varying between zero and 45 percent (1% per-
centile: 12.5%; 99% percentile: 22.5%).10 In addition, we see a fair amount of spatial clustering; in
particular at the level of the federal states. The latter can be reconciled with varying fiscal equalization
schemes across federal states, a feature we account for by controlling for state × year fixed effects in our
preferred empirical specification (see Section 3.4.1 for details). Panel B highlights the substantial amount
of variation in LBT rates within municipalities over time. On average, municipal councils decided to
alter their local business tax rate 3-4 times between 1987 and 2013 — the first and last year of tax data
used in our baseline analysis.11 Around 10% of the sampled municipalities did not adjust their scaling
factor during this time span.

Panel A of Figure 3.2 further shows that more than 90% of all tax changes during this time period were
tax increases. The average tax increase amounted to around one percentage point, or 5 percent relative to
the mean. Figure 3.2 further illustrates that there is meaningful variation in (long-run) tax policies across
West German municipalities. One might worry that municipalities adopt different reform strategies (e.g.,

6Note that most firms from the agricultural sector, non-profit organizations as well as self-employed individuals in liberal
professions (such as accountants, journalists or architects) are exempt from this tax.

7The basic federal rate was 5.0% until 2007. It was reduced to 3.5% in the course of the 2008 German business tax reform.
8The tax base was defined as firms’ operating profits net of 75% of their costs of debt financing and the local business tax

expenditures themselves.
9Many municipal borders in East Germany were redrawn during the 1990s and 2000s. As we cannot assign the exact LBT

rate for affected jurisdictions, we decided to discard East Germany from the analysis.
10Note that municipalities in our sample have strictly positive local business tax rates throughout the effect window.
11We focus on outcomes between 1995 to 2007 and estimate a dynamic event study specification with a lag of eight and a

lead of six years in our baseline specification; see Section 3.4.1 for details.
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many small reforms vs. a few large) that eventually all lead to the same change in tax rates over the
long run. However, as displayed in Panel A, we find the majority of tax changes to be rather

Figure 3.1: Spatial and Temporal Variation in Local Business Tax Rates

(a) The Local Business Tax Rate in 1995 (in %) (b) Number of Tax Changes (1987–2013)

Notes: This figure illustrates the spatial and temporal variation in the local business tax rate across West German municipalities.
In Panel A, the 1995 local business tax rate is plotted for each municipality. Darker colors indicate higher levels of the LBT. In
Panel B, for each municipality the number of total LBT changes over the period 1987-2013 is plotted. Darker colors indicate a
larger number of tax changes in a given municipality. Thick white lines indicate federal state borders. The maps are based on
shapefiles from ©GeoBasis-DE / BKG 2015.

small LBT increases, irrespective of how often municipalities alter their local scaling factor during the
effect window. This finding is corroborated by Panel B, which points to meaningful differences in the
long-term tax policies of municipalities. Between 1987 and 2013, changes in the LBT scaling factor
varied substantially. Moreover, we detect a positive relationship between the number of tax changes and
the total change in the scaling factor.

The institutional features of the LBT allow us to base identification on a large number of very local tax
changes while flexibly controlling for common shocks at the federal state or commuting zone level (see
Section 3.4.1 for details on the empirical strategy pursued). In addition, and in contrast to most other
OECD countries, Germany offered no direct or indirect tax subsidies for firms’ R&D spending during
the time of this analysis (in fact until January 1 2020). This makes the country an ideal laboratory for
the research question of interest because no other tax policies need to be accounted for.12 Moreover, and
despite this institutional feature, Germany ranks among the world’s most innovative countries; see, e.g.,
the annual Bloomberg Innovation Index. During the period from 1995 to 2007, the country’s total R&D

12Note that Germany has long used direct R&D subsidies as a policy instrument to promote firm-level innovation.
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Figure 3.2: Variation in LBT Scaling Factors - All West German Municipalities

(a) Distribution of Annual Scaling Factor Changes

0

10

20

30

40

50

60

70

Sh
ar

e 
of

 A
ll 

Ta
x 

In
cr

ea
se

s 
(in

 %
)

-50 -40 -30 -20 -10 0 10 20 30 40 50
Annual Relative Change in the Local Scaling Factor (in %)

1 2 3 ≥ 4Total Increases 1987–2013:   

(b) Tax Changes over the Sample Period

0

1

2

3

4

5

N
um

be
r o

f T
ax

 In
cr

ea
se

s 
19

87
–2

01
3

-10 0 10 20 30 40 50 60
Relative Change in the Local Scaling Factor 1987–2013 (in %)

Notes: This graph illustrates the variation in the LBT rate changes across all West German municipalities. Panel A illustrates
the distribution of annual scaling factor changes for municipalities with varying numbers of total tax changes throughout the
effect window (1987-2013). Panel B illustrates the municipality-level relationship between the total change in the LBT rate and
the number of tax changes throughout the period 1987–2013.

expenditures amounted to around 2.35% of its GDP on average, which is close to U.S. levels (2.54%) and
much higher than the EU-28 average of 1.65%.13

13Own calculations based on the OECD’s Main Science and Technology Indicators database.
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3.3 Data

R&D Plant-Level Survey Data. Our main data source is the biennial longitudinal survey dataset
Wissenschaftsstatistik, collected and administrated by the Stifterverband on behalf of the German Federal
Ministry of Education and Research. The survey targets all German plants engaged in R&D14 and forms
one key basis of Germany’s official reporting on its entrepreneurial R&D activities to EU authorities
and the OECD. The survey contains detailed information on plants’ overall R&D spending, their R&D
expenses by subcategories (internally- vs. externally conducted R&D; personnel vs. non-personnel R&D
spending) and their R&D staff. Moreover, it offers information on plant size, industry classification and
plants’ organizational structure. By special agreement with the Stifterverband, we also gained access to
each plant’s legal name and exact address (postal code, street and house number) in a given year, which
allows us to precisely assign the applicable LBT.

Our baseline observation window spans the period from 1995 (the earliest year of the survey) to 2007.
We do not cover years beyond 2007 for two reasons. First, we bypass potential R&D effects due to the
Great Recession in 2008-2009. Second, a major tax reform in 2008 altered institutional features of the
LBT, lowering the federal tax rate from 5.0 to 3.5 percent and broadening the tax base. Besides this
restriction, we constrain our baseline sample among two additional margins. First, we discard 649 plants
(6% of the total sample) that report R&D activities not only for their own site but for the entire company
(at different locations). By applying this restriction, we make sure to compare local changes in the LBT
to local plants’ responses. Second, we drop 285 plants who moved during the survey period to exclude
variation that is due to potentially endogenous mobility decisions.15

Ultimately, our baseline sample contains 31,648 unbalanced plant-year observations from 10,056 plants
in 2,442 different municipalities. In total, these plants spent around 37 billion EUR per year on R&D,
which accounts for around three-quarters of Germany’s total R&D expenditures during this period.16
Manufacturing plants account for around 94% of these expenses.17 In Panel A of Figure 3.3, we illustrate
the spatial distribution of R&D-active plants (as of 2007) across West German municipalities. We find
R&D activity to be widespread across the country: around one-fourth of all West German municipalities
have at least one R&D active plant. However, we also detect some R&D clusters, in particular among
centers of German industry alongside the rivers Rhine and Ruhr, as well as in the states of Baden-
Wuerttemberg, Rhineland-Palatinate, and North Rhine Westphalia.

At the level of the individual plant, we detect substantial differences in the size of annual R&D spending.
Panel A of Appendix Table C.1 shows that the total annual amount of plants’ spending on R&D varies
from around 11,000 EUR (1% percentile) to around 91 million EUR (99% percentile). The survey
further allows the disaggregation of plants’ total R&D expenses along two margins. First, information
on plants’ expenses for internally- vs. externally-conducted R&D projects is given. Internal and external
R&D are usually seen as complementary innovation activities, where the marginal return of one activity

14Data Appendix C.1 provides detailed information on the underlying survey methodology.
15We find very similar effects when including these 285 plants and assigning them the corresponding tax rates in their first

observed municipality of residence over all years (see below).
16The vast majority of the remaining R&D volume can be referred to the 649 plants in the data that report R&D activities not

only for their own site but for the entire company.
17In the baseline sample, 81% of all plants are from the manufacturing sector. Notably, this composition is at odds with the

overall German industry structure, where the share of manufacturing plants is substantially lower (at around 9%).
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increases with the intensity of the other (Cassiman and Veugelers, 2006). In this regard, external R&D
is typically used as a strategy to acquire knowledge, either by engaging in licensing and outsourcing or
starting strategic alliances. While the former allows firms to exploit economies of specialization and scale,
strategic cooperation generally aims at the development of new technological capabilities (Bönte, 2003;
Lokshin, Belderbos, and Rene, 2008). However, the search for and coordination of external contractors
and collaborations also comes with sizable (transaction) costs that may prevent some firms from engaging
in external R&D activities (Berchicci, 2013). In our baseline sample, half (49.7%) of the covered plants
outsource parts of their R&D activity at least once during the sampling period. On average, external R&D
accounts for around 9% of plants’ total R&D (20% if we consider plants with non-zero external spending
only). Second, we can distinguish internal R&D spending on personnel from non-personnel expenses
(i.e., for materials and investments). On average, two-thirds of a plant’s internal expenses accrue to its
scientific staff.

Plant-Level Patent Data. To measure innovation output, we link administrative information from the
European Patent Office (EPO) on plants’ patenting activities to the survey data; see the Data Appendix C.1
for a detailed description of the matching procedure. From 1995 to 2007, the covered plants filed 151,862
patents, which accounts for around 60% of all patents filed by German applicants at the EPO during this
period.18 Panel B of Figure 3.3 shows the spatial distribution of patent activity across West Germany.
The spatial pattern is in line with the regional prevalence of R&D plants. One quarter of all covered
plants filed at least one patent during our sampling period. In our baseline specifications, we explicitly
account for the large number of zeros in the plant-level patent data by applying an inverse-hyperbolic-sine
transformation to the outcome variables. In the appendix, we investigate the relationship between R&D
spending and patenting in detail. We find that (i) patenting predominantly occurs in manufacturing and
(ii) the number of patents convexly increase in R&D spending (see Appendix Figure C.1).

A simple count of plants’ number of filed patents may only imperfectly capture the true value of innovation
output if patent quality varies (Scherer, 1965; Hall, Jaffe, and Trajtenberg, 2005). To this end, we construct
a second measure of plant-level innovation activity that accounts for a patent’s number of citations to
infer innovation quality. Previous evidence (see, e.g., Harhoff, Scherer, and Vopel, 2003; Kogan et al.,
2017; Moser, Ohmstedt, and Rhode, 2018) has shown that such citation-weighted measures of patents
correlate well with other proxies of innovation quality (such as profitability). We construct our measure
by weighting each patent by the number of citations it receives from other EPO patents within five years
of a given patent’s first registration. As shown below, we obtain very similar results when using citations
from patents filed at the United States Patent and Trademark Office (USTPO).

Using detailed textual information from the patent application files, we further distinguish product from
process innovations.19 Product innovations generally relate to new or substantially-altered products that
may lead to high social returns. However, these innovations can be easily appropriated by rival firms and
face high market uncertainty, which renders private returns uncertain (Hellmann and Perotti, 2011). In

18By definition, we do not capture patents filed by the government, public universities or individual inventors. Moreover,
not all plants that file a patent during the observation period are covered in the Stifterverband data and our baseline sample,
respectively. This is especially true for plants with very little or infrequent patent activity throughout the observation period.

19More precisely, we follow Danzer, Feuerbaum, and Gaessler (2020) and consider patents as process innovation in case
keywords such as “method”, “process”, or “procedure” appear in the respective patent’s claims text. Note that 12% of all patent
applications do not provide the necessary information to classify an innovation accordingly.
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Figure 3.3: Spatial Distribution of R&D Firms and Patenting in West Germany
(a) Distribution of R&D Plants (b) Distribution of Patents

Notes: Panel A illustrates the distribution of plants in the R&D plant-level dataset Wissenschaftsstatistik as of 2007 across
West German municipalities. Larger circles illustrate more R&D active plants in a given municipality. Panel B plots the
spatial distribution of patenting across Germany. Larger circles indicate that more patents were filed in a given municipality
throughout our observation period from 1995-2007. The maps are based on shapefiles from © GeoBasis-DE / BKG 2015 and
OpenStreetMap contributors and show Germany’s jurisdictional borders as of December 31 2010.

contrast, process innovations, i.e., improvements of a given production process, are commonly considered
as the more incremental ones that yield lower social returns but also bear lower risk (Klepper, 1996). We
will test below whether an increase of the local profit tax affects both types of innovations to a different
extent.

Panel B of Appendix Table C.1 provides descriptive statistics on plants’ patenting activities. The average
plant files 0.84 patents per year, which receives one citation over the following five years on average.
Around 60% of all patents can be categorized as product innovations. However, and as stated before,
these average descriptive statistics mask substantial heterogeneity.

Additional Plant Data. While the Wissenschaftstatistik offers detailed information on plants’ R&D
behavior, little information is given on plants’ financial situation. Theoretically, we may, however, expect
liquidity-constraint firms to react more to a tax increase because costs of debt financing can be deducted
from the tax base while those of equity financing cannot. To proxy plants’ financial situation, we therefore
add information from the Bureau van Dijk’s Amadeues and Orbis databases to the plant-level survey; in
particular, information on plants’ level of non-current liabilities. Unfortunately, the detailed information
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on plants’ financial accounts is available for public firms only. Thus, we can only supplement 40% of the
surveyed R&D plants with information from this additional data source.20

Municipality- and County-Level Data. Last, we complement the plant-level data with annual informa-
tion on local business tax rates as well as other regional, i.e., municipality- and county-level information.
This includes data on municipalities’ annual public expenditures, population levels, unemployment level
or county-level GDP. We will use these variables to test whether economic developments at the local
level may simultaneously determine municipalities’ tax setting and plant activities. Panel C of Appendix
Table C.1 provides the corresponding descriptive statistics. On average, innovation predominantly occurs
in urban, industrialized regions with relatively little unemployment. Municipalities in our sample are
larger (27,663 vs. 7,680 inhabitants) and have a slightly higher GDP per capita (27,656 vs. 24,087 EUR)
than the average West German municipality.

3.4 Empirical Strategy

To estimate the causal effect of changes in the LBT on plant-level R&D expenses and innovation, we
exploit all available changes in the tax rate within a municipality over time in a dynamic generalized
difference-in-differences framework with staggered treatment (Suárez Serrato and Zidar, 2016; Fuest,
Peichl, and Siegloch, 2018; Akcigit, Grigsby, et al., 2018). In Section 3.4.1, we describe the empirical
implementation. We discuss the identification of causal effects in our model in Section 3.4.2.

3.4.1 Event Study Design

We base our analysis on an event study setup that treats each tax reform as an independent event. This
allows us to exploit all available variation in local tax rates across municipalities and years. More
precisely, we regress a given outcome𝑌𝑖𝑡 of plant 𝑖 in year 𝑡. A plant belongs to a sector 𝑠 (manufacturing,
services, and other) and is located in a municipality 𝑚, which is nested in a commuting zone 𝑧. We
regress the outcome 𝑌𝑖𝑡 on leads and lags of the treatment variable 𝑇 𝑘

𝑚𝑡 (the number respectively the size
of tax changes, as further defined below):

𝑌𝑖𝑡 =
∑︁
𝑘

𝛽𝑘𝑇
𝑘
𝑚𝑡 + 𝜇𝑖 + 𝜆𝑚 + 𝜁𝑠𝑡 + 𝜃𝑧𝑡 + 𝜀𝑖𝑡 . (3.1)

We transform outcomes – R&D spending, the number of patents, and various subcategories of the two
– using the inverse hyperbolic sine (IHS) transformation.21 To control for unobserved time-invariant
confounders at the plant and municipality level, we include fixed effects at the respective levels (𝜇𝑖 and
𝜆𝑚). Moreover, state × year and commuting zone × year fixed effects, both included in term 𝜃𝑧𝑡 , as well
sector × year fixed effects, 𝜁𝑠𝑡 , control for regional and sectoral time-varying confounders, respectively.

20However, baseline effects remain unchanged when using this smaller set of plants (see Section 5).
21For any outcome �̃�, the inverse hyperbolic sine transformation is defined as: 𝑦 = ln( �̃�+

√︁
�̃�2 + 1). This transformation comes

with the advantage of being well-defined for zero values in the outcome variable. This is particularly relevant for the plant-level
patent outcomes in the context of this study. For larger values, the IHS transformation is almost identical to the canonical log
transformation. In Section 3.5, we show that the transformation of outcome variables does not drive our estimates.
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We calculate cluster-robust standard errors that account for potential correlations across plants, years,
and sectors within municipalities.

We adjust this generic event study outline in three dimension to fit our empirical setting. First, we
account for the biennial structure of the plant-level R&D survey. To harmonize estimation samples across
outcomes, we restrict the analysis for all outcomes to the subset of years 𝑡 = 1995, 1997, . . . , 2007. Leads
and lags of the treatment variable, 𝑇 𝑘

𝑚𝑡 , thus sum tax changes in two consecutive years to account for tax
reforms in even-numbered years as well. In our preferred specification, we restrict the effect window to
six years before and eights year after a tax reform, i.e., three leads and four lags in the given two-year
structure of the data, 𝑘 ∈ [−6,−4, . . . , 8].

Second, we account for multiple tax changes per municipality by binning the endpoints of the effect
window (McCrary, 2007). Hence, the first lead of the treatment variable, 𝑇−6

𝑚𝑡 , and the last lag, 𝑇8
𝑚𝑡 ,

take into account all tax reforms that will happen six or more years into the future from period 𝑡 onward
or happened eight or more years in the past, respectively. The implicit underlying assumption is that
(pre)-treatment effects are constant beyond these endpoints (Schmidheiny and Siegloch, 2020). Formally,
we define the leads and lags of the treatment variable in the following way:

𝑇 𝑘
𝑚𝑡 =


∑−6

𝑗=−∞ 𝐷𝑚,𝑡− 𝑗 if 𝑘 = −6

𝐷𝑚,𝑡−𝑘 if − 6 < 𝑘 < 8∑∞
𝑗=8 𝐷𝑚,𝑡− 𝑗 if 𝑘 = 8,

(3.2)

where 𝐷𝑚,𝑡 is the actual tax reform indicator denoting treatment in year 𝑡 or 𝑡 − 1. In our empirical
specification, we normalize the last pre-treatment coefficient, 𝛽−2, to zero, i.e., all effects are relative to
two years before treatment.

Third, we use two alternative definitions of treatment, i.e, variation in the LBT rate 𝜏𝑚𝑡 : (i) the number of
tax changes during the past two years (Equation 3.3), and (ii) a continuous treatment variable capturing
the size of the two-year change in the local business tax rate (Equation 3.4):

𝐷𝑖𝑛𝑐
𝑚,𝑡 = 1( |𝜏𝑚𝑡 | > |𝜏𝑚,𝑡−1 |) + 1( |𝜏𝑚,𝑡−1 | > |𝜏𝑚,𝑡−2 |) (3.3)

𝐷𝑐ℎ𝑎
𝑚,𝑡 = |𝜏𝑚𝑡 | − |𝜏𝑚,𝑡−2 |. (3.4)

Implied Elasticities. While event study estimates inform about dynamics of treatment effects, it is
useful to derive one central take-away elasticity. Our baseline summary measure is the elasticity as
implied by the estimates of the last lag in the event study regressions, 𝛽8, which measures the long-run
effect more than seven years after the tax reform. The event study model is able to identify this effect
in the case of multiple treatments as long as there is enough variation in the rhythm of subsequent
tax changes across municipalities (cf. Figure 3.2). We compare these implied long-run elasticities to
alternative summary measures in Section 3.5.
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3.4.2 Identification

To estimate causal effects, we relate within-plant changes in R&D activities to changes in LBT rates
while absorbing common shocks to federal states, commuting zones and economic sectors. To interpret
estimates �̂�𝑘 as causal effects, we have to assume that tax changes are not systematically correlated with
other time-varying local factors within the same federal state, commuting zone and economic sector that
also affect plants’ expenses or innovative activities. Small and insignificant pre-treatment coefficients in
the event study would support this assumption, as most confounding effects that violate the identifying
assumption would show up as diverging pre-trends. If reverse causality was an issue – i.e., if local
policy-makers would adjust LBT rates because of changes in plants’ innovative activities – we should
also observe diverging trends in R&D investments before treatment. As shown below, we find hardly any
support for this concern.

Another concern for identification are confounding shocks that coincide with the tax change, but have no
visible effect before treatment. Whether such shocks are able to impede the identification of causal effects
depends on the geographical level at which they arise. Our preferred specification includes state-by-year
fixed effects, which control for any change in state policies or varying electoral cycles. However, shocks
might also occur below the state level. To this end, we also account for time-varying economic or political
shocks at the level of the 204 West German commuting zones (Arbeitsmarktregionen, henceforth CZ) in
our baseline specification.22

To test the sensitivity of our results with respect to the potential presence of regional shocks at vary-
ing geographical levels, we deviate from this baseline model and replace the CZ-by-year fixed effects
with coarser or finer regional controls below. If systematic local shocks were to violate our identifying
assumption, we would expect results to differ alongside these changes in the exact specification of the
event study model. We absorb common shocks at the level of the 28 administrative districts (Regierungs-
bezirke, NUTS II), the level of the 71 statistical planning regions (Raumordnungsregionen, ROR), and
the 272 counties (Kreise und kreisfreie Städte) in West Germany, respectively. Appendix Figure C.2
illustrates these different jurisdictions for the example of the federal state of Bavaria. As shown in
Section 3.5, we find a stable dynamic treatment effects when moving between specifications, both pre
and post-treatment. If anything, we see post-treatment effects to become larger (in absolute terms) when
controlling for shocks at finer regional levels.

We further acknowledge that economic or political shocks may also occur at the municipality level and,
potentially, coincide with the (level of the) tax change itself. In this regard, one might particularly worry
that local economic developments at the municipal level simultaneously determine municipal tax setting
and plant behavior. We address this concern twofold. First, we show that socioeconomic indicators at
the municipality level (population, the share of unemployed among the population, public expenditures,
and public revenues) do not display any systematic pre- or post-trend when used as dependent variables
in the event study model as set-up in Equation (3.1); a finding in line with previous studies (Fuest, Peichl,
and Siegloch, 2018; Blesse, Doerrenberg, and Rauch, 2019).23 Second, we sacrifice some econometric

22On average, there are eight municipalities and 25 plants per commuting zone in our baseline sample.
23In Section 3.5.3, we investigate the effect of an increase of the LBT rate on local GDP in detail. Besides establishing flat

pre-trends, we show that local GDP declines in response to a tax rate increase (see Panel A of Figure 3.11).
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rigor and include lagged socioeconomic indicators in our baseline event study model. As shown below,
estimates remain very much unaffected by the inclusion of these controls.

3.5 Empirical Results

We next present our empirical findings. In Section 3.5.1, we first focus on the effect of a change in the
local business tax rate on plants’ total R&D spending and various sub-margins thereof. Second, we derive
an estimate of the user-cost-of-capital elasticity and relate this to the implied elasticities from previous
studies. Last, we test for heterogeneous treatment effects along different plant-level characteristics. In
Section 3.5.2, we assess the corresponding effects of a change in the LBT rate on innovation output
as measured by filed patents. Finally, in Section 3.5.3, extend the analysis beyond the plant level by
exploring the importance of innovation for local economic growth and assessing the role of tax policy in
this context.

3.5.1 Effects on R&D Spending

Main Results. Figure 3.4 presents the estimated dynamic effects of an increase in the LBT rate on
plants’ total R&D spending using the event study models as defined in Equations (3.1)–(3.4). First, we
see that pre-trends are reasonably flat and statistically insignificant. Post treatment, we estimate that an
increase in the LBT rate exerts a substantially negative and statistically significant effect on plants’ total
R&D spending. This effect builds up over the first two to three years and levels off thereafter. Estimates

Figure 3.4: The Effect of a Business Tax Increase on Total R&D Spending
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Notes: This graph plots the point estimates, 𝛽𝑘 (𝑘 ∈ [−6,−4, . . . , 8]), and corresponding 95% confidence intervals of the
event study models as defined in Equations (3.1)–(3.4). The dependent variable is a plant’s annual (inverse hyperbolic sine
transformed) total R&D spending. For the treatment group, the business tax change occurred in year 𝑡 = 0 or 𝑡 = −1. The
regressions include plant, municipality, state × year, commuting zone × year, as well as sector × year fixed effects. All
municipalities that experienced a tax decrease during the event window period are excluded. Standard errors are robust to
clustering at the municipality level.

are very similar when using the number of tax increases or the actual size of the tax rate increase as
treatment. This reflects the fact that the average tax rate increase is almost equal to a one percentage point
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increase (cf. Section 3.3). Our baseline summary measure of the implied effect size is the long-term
elasticity as given by the last post-treatment estimate, 𝛽8, of the dummy variable specification of the event
study model (cf. Equation (3.3)). For total R&D spending, this elasticity amounts to −1.25. Below, we
report alternative summary estimates of the effect size.

When assessing the effect of a decrease of the local business tax on plants’ total R&D spending, we
detect no clear post-treatment effect pattern and face little statistical power (cf. Appendix Figure C.4).
However, in light of the small number of tax decreases in the data, this finding is not surprising. Hence,
the remainder of this subsection focuses on the effect of tax increases only.

Figure 3.5: The Effect of a Business Tax Increase on Internal and External R&D Spending
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(b) External R&D Spending
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Notes: This graph plots the point estimates, 𝛽𝑘 (𝑘 ∈ [−6,−4, . . . , 8]), and corresponding 95% confidence intervals of the
event study models as defined in Equations (3.1)–(3.4). The dependent variable is a plant’s annual internal R&D spending in
Panel A, and a plant’s annual external R&D spending in Panel B. Both outcomes are inverse hyperbolic sine transformed. For
the treatment group, the business tax change occurred on in year 𝑡 = 0 or 𝑡 = −1. The regressions include plant, municipality,
state × year, commuting zone × year, as well as sector × year fixed effects. All municipalities that experienced a tax decrease
during the event window period are excluded. Standard errors are robust to clustering at the municipality level.

We next test whether spending adjustments in response to an increase in the LBT rate differ with regard to
internally- vs. externally-conducted R&D projects. As discussed above, previous research suggests that
both types of R&D activities should be seen as complements in plants’ innovation behavior (Cassiman
and Veugelers, 2006), where external R&D serves as a strategy to acquire missing knowledge through
licensing, outsourcing or the start of strategic alliances. Figure 3.5 presents the corresponding estimates
for internal and external R&D spending. We first note that pre-trends become even flatter when dis-
aggregating plants’ total R&D expenditures along this margin. Moreover, we find the effect on total R&D
to be entirely driven by reductions in plants’ internal R&D expenditures (see Panel A of Figure 3.5). In
contrast, we detect no effect on external R&D expenditures (see Panel B). We suggest that this asymmetry
may be due to the type of R&D projects typically conducted inside and outside a given plant, as well as
reflective of the substantial transaction costs associated with the outsourcing of R&D to external partners.

Last, we distinguish plants’ internal spending on R&D personnel – accounting for around two-thirds of
plants’ internal R&D expenditures – from non-personnel R&D expenses and test for differential effects
along this margin. We expect responses on non-personnel spending to be more pronounced because
adjustment costs shall be lower. Figure 3.6 corroborates expectations. Again, we find very flat and
statistically insignificant pre-trends for both outcomes. Both panels also display a quite similar effect
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pattern after treatment. However, effect sizes differ substantially: the implied long-term elasticity for
plants’ spending on R&D personnel amounts to −1.63, the corresponding elasticity for non-personnel
R&D spending to −2.44.

Figure 3.6: The Effect of a Business Tax Increase on Personnel vs. Non-Personnel R&D Spending

(a) Internal Spending on R&D Personnel
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(b) Internal Non-Personnel R&D Spending
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Notes: This graph plots the point estimates, 𝛽𝑘 (𝑘 ∈ [−6,−4, . . . , 8]), and corresponding 95% confidence intervals of the event
study models as defined in Equations (3.1)–(3.4). The dependent variable is a plant’s annual internal R&D spending on personnel
in Panel A, and a plant’s annual internal non-personnel R&D spending in Panel B. Both outcomes are inverse-hyperbolic-sine
transformed. For the treatment group, the business tax change occurred on in year 𝑡 = 0 or 𝑡 = −1. The regressions include plant,
municipality, state × year, commuting zone × year, as well as sector × year fixed effects. All municipalities that experienced a
tax decrease during the event window period are excluded. Standard errors are robust to clustering at the municipality level.

Sensitivity Analysis. We conduct several sensitivity checks to test whether the presented estimates
are robust to varying specifications of the event study model. To simplify the comparison, we present
robustness checks for the tax increase indicator specification of the event study model, as given in
Equation (3.3), only. As discussed in Section 3.4.2, the biggest concern for identification are local shocks
that take place along with the tax reforms. Our baseline specification includes state-by-year and CZ-
by-year fixed effects (𝜃𝑧𝑡 ), which should capture potentially confounding local shocks to a large extent.
However, we also re-estimate the event study model with more or less fine-grained region-by-year fixed
effects (at the county, the ROR, and NUTS II level) and monitor potential changes in the event study
coefficients in order to assess the importance of local shocks as a source of bias. Appendix Figure C.5
shows that effects are statistically significant irrespective of the type of region-by-year fixed effects, but
become stronger, i.e., more negative, when controlling for local shocks at a finer geographical level. This
suggests that local shocks lead to an upward bias of the estimates, driving estimated coefficients towards
zero.

We further explicitly test for the impact of time-varying confounders at the municipality or county level.
Sacrificing some econometric rigor, we include time-lagged variables on municipalities’ annual level of
population, a county’s unemployment rate, as well as county-level GDP per capita as controls in some
specifications of the event study model. Point estimates remain literately unaffected by the inclusion
of these observable confounders (see Appendix Figure C.6). While we take this coefficient stability
as suggestive evidence against omitted variable bias, we further follow the approach in Oster (2019) to
more explicitly assess potential biases due to unobserved time-varying confounders at the municipal or
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county level. Appendix Table C.2 presents bias-adjusted long-term elasticities as bounds for our baseline
summary estimates. Estimates are very close to the baseline results.

In Appendix Figure C.7, we further demonstrate that a log(𝑦 +1)-transformation of the outcome variables
yields almost identical results as the inverse hyperbolic sine transformation in our baseline specification.
Moroever, estimates remain statistically significant when allowing for correlation in the error term at
broader regional levels than the municipality (see Appendix Figure C.8). In Appendix Figure C.9, we
further show that the use of different event window specifications does not render the observed effect
patterns. Pre-trends remain flat when extending the number of leads. Post treatment, estimated effects
on R&D spending level off around six years after treatment. Last, Panel A of Figure C.10 shows that we
obtain very similar results when adding those plants that change their location of residence during the
observation period to the estimation sample.24

Alternative Summary Measures. We next compare the implied long-run elasticity to alternative
summary measures of the treatment effect. First, we estimate a simple difference-in-differences (Diff-
in-Diff) model that regresses a given spending outcome on the log business tax rate and the full set of
plant, municipality, sector × year, and region × year fixed effects. Second, we take the mean over the
four post-treatment event study coefficients 𝛽𝑡 ∀𝑡 = 0, .., 6 to derive a medium-run elasticity with regard
to treatment. For each outcome, we observe a very similar pattern. Simple Diff-in-Diff elasticities

Figure 3.7: Alternative Implied Elasticities – R&D Spending
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Notes: This graph displays implied elasticities for four different R&D spending variables with respect to a change in the local
business tax rate. For each panel (outcome), we display the corresponding elasticity when (i) estimating a simple Diff-in-
Diff model with the log LBT rate as the explanatory variable, (ii) taking the mean over the four post-treatment coefficients
𝛽𝑡 ∀𝑡 = 0, .., 6 of the event study model defined in Equation 3.4 to derive a medium-run elasticity with regard to treatment, or
(iii) taking the last treatment effect (𝛽8) from the same event study model. The first two elasticities indicate average treatment
effects, the third one captures the long-term effect of the tax increase.

are notably smaller (in absolute terms) compared to elasticities derived from the post-treatment event
study coefficients. This finding suggests that a Diff-in-Diff strategy fails to recover a reasonably weighted
average of the treatment effect in the presence of unit and time fixed effects and staggered treatment

24We assigning those plants the prevailing tax rates from their initially observed location of residence in the spirit of an
intention-to-treat effect.
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(Borusyak and Javarel, 2018). Moreover, and in line with the respective effect patterns displayed above,
we find the long-term elasticities to be larger than the medium-run elasticities in absolute terms.

Investment and the Cost of Capital. We further transform our long-run summary measure into an
elasticity with respect to the cost of capital. This key parameter assesses the spending response in percent
relative to a one-percent increase in the user costs of capital. Following Yagan (2015), we calculate
this elasticity as 𝜀𝐼 𝑛𝑣

𝐶𝑜𝐶
= 𝜀𝐼 𝑛𝑣𝜏 /𝜀𝐶𝑜𝐶

𝜏 . The numerator 𝜀𝐼 𝑛𝑣𝜏 refers to the spending elasticity with respect
to the business tax rate, which is given by the long-run elasticity of −1.25 presented in Figure 3.4.
The denominator 𝜀𝐶𝑜𝐶

𝜏 is defined as the elasticity of the cost of capital with respect to the tax rate.
In the German setting, the user cost of capital are given by 𝐶𝑜𝐶 = 𝑟/(1 − 𝜏) with the pre-tax rate of
return 𝑟 = 0.07 and the total profit tax rate 𝜏 = 0.32 (including local business and federal corporate taxes).
It follows that 𝜀𝐶𝑜𝐶

𝜏 = 0.47. Thus, the implied elasticity with respect to the user costs of capital thus
amounts to −2.66. This estimate is very close to the elasticity in Moon (2020), who analyzes a capital
gains tax reform in South Korea. In contrast, Zwick and Mahon (2017) and Chen, Jiang, et al. (2019) find
somewhat lower elasticities of −1.6 for the United States (ranging between −0.8 and −3.3 depending on
plant size) and −1.27 for China (when controlling for the mis-classification of R&D expenses).25

Heterogeneous Effects. In a final step, we use the indicator variable specification of our event study
design (cf. Equation (3.3)) to test for heterogeneous treatment effects by plant-level characteristics. First,
we test for heterogeneity between single- and multi-plant firms by estimating treatment effects separately
for both groups of plants. If the tax-induced reductions in R&D spending as implied by Figure 3.4 are
only due to changes in the spending behavior of multi-plant firms, estimated effects might be due to the
spatial reallocation of R&D activity across plants within a given firm and not necessarily point to an
absolute reduction in innovative activity. However, Appendix Figure C.11 shows that both types of plants
respond similarly to an increase of the LBT.26

Second, we test for heterogeneous treatment effects by plant size, liquidity and R&D intensity. To this
end, we create for each dimension of heterogeneity three equally-sized bins and interact these with all
leads and lags of the treatment variable. In addition, we include bin × year fixed effects to allow for
flexible differential trends across groups. Panel A of Figure 3.8 provides the corresponding medium- and
long-run elasticities by plant size (as measured via sales).27 Ex ante, we expect smaller plants to react
more to changes in the local business tax rate than larger ones. Small plants are usually assumed to have
less access to external funding, and may hence benefit less from the possible deduction of the costs of debt
financing from the tax base. Indeed, a number of OECD countries – such as the UK, France, Australia,
and Canada – offer targeted R&D tax incentives to small- and medium-sized enterprises (SME), assuming
SME’s to react (benefit) more to (from) R&D tax incentives than larger plants (Gonzales-Cabral, Appelt,
and Galindo-Rueda, 2018). However, we find the effect of an increase in the LBT on R&D spending to
be rather independent of plant size.

25However, note that the three studies look at general investments rather than R&D spending. In line with prior evidence, we
may thus expect stronger responses for R&D given that these expenses are disproportionately equity-financed.

26While point estimates are very similar for both groups, standard errors are considerably larger for multi-plant firms - partly
reflecting the fact that only one-third of the covered plants belong to a firm.

27We plot the corresponding event study graphs in Appendix Figure C.12.
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Figure 3.8: The Effect of a Business Tax Increase on Total R&D Spending – Heterogeneous Effects
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Notes: This graph plots the implied medium-run R&D spending elasticities and corresponding 95% confidence intervals as
derived from the event study model defined in Equations (3.1)–(3.3) when allowing for heterogeneous treatment effects by
plant characteristics. In Panel A, we distinguish plants by size (in terms of sales). In Panel B, we assess heterogeneity by
the level of non-current liabilities (as a proxy for liquidity). In Panel C, we allow elasticities to differ by R&D intensity. The
regressions include municipality, plant, state × year, commuting zone × year, as well as sector × year fixed effects. We exclude
all municipalities that experience a tax decrease during the observation period. Standard errors are robust to clustering at the
municipality level.

To further explore the assumed relationship between taxation, R&D spending, and plants’ degree of debt
financing, we next assess treatment effects by plants’ level of non-current liabilities relative to their sales.
We consider this variable as a suitable proxy of plants’ costs of external financing, given that a higher
relative level of liabilities should lead to higher interest rates and, correspondingly, a larger share of
equity financing. As the survey data at hand do not provide any insight on plants’ finance structure, we
add information from the Bureau van Dijk’s Amadeus dataset to the survey (see Section 3.3 for details).
Unfortunately, we can only do so for around 40% of the plants covered in the R&D survey and, therefore,
need to restrict this analysis to a rather small subset of plants.28 Nevertheless, we detect an indicative
effect pattern (see Panel B): in line with expectations, the effect of a local business tax increase on plants’
total R&D spending becomes larger (in absolute terms) with the relative level of non-current liabilities.
While large standard errors warrant extra caution when interpreting this finding, we take the effect pattern
as suggestive evidence in line with theoretical priors. Moreover, results are in line with Zwick and Mahon
(2017) and Moon (2020), who both detect stronger overall investment responses to tax incentives for
financially-constrained firms.

Last, we test whether the effect of a local business tax increase on R&D spending differs among plants
with varying R&D intensity, defined as the share of R&D staff over plants’ total workforce. As R&D
is disproportionally financed via equity (Brown, Fazzari, and Petersen, 2009; Thakor and Lo, 2017),
more R&D intensive plants should react stronger to a given tax increase. Panel C of Figure 3.8 provides
suggestive evidence along this line of argument. Estimated elasticities are larger (in absolute terms) for
more R&D-intensive plants.

28In Panel B of Appendix Figure C.10, we show that overall effects for this smaller sample are close to our baseline results.
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3.5.2 Effects on Innovation

We next investigate whether the tax-induced reduction in R&D spending results in less innovation. To
this end, we estimate the effect of a local business tax increase on the number of filed patents using the
two specifications of our event study model as set-up in Equations (3.1)–(3.4).

Main Effects. We first investigate the effect of a tax increase on plants’ (inverse hyperbolic sine
transformed) annual number of filed patents. Panel A of Figure 3.9 displays the corresponding event
study estimates. Pre-trends are flat and statistically insignificant. Post treatment, we detect a negative and
statistically significant treatment effect that materializes around four years after the tax increase. Effects
on innovation thus appear to be lagged by around two years relative to plants’ R&D spending response
(cf. Figure 3.4). The implied long-run elasticity is −0.87, which is close to the elasticities reported in
Akcigit, Grigsby, et al. (2018). We next account for the fact that patent quality has been shown to vary

Figure 3.9: The Effect of a Business Tax Increase on Patent Applications
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(b) Number of Citation-Weighted Patents
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Notes: This graph plots the point estimates, 𝛽𝑘 (𝑘 ∈ [−6,−4, . . . , 8]), and corresponding 95% confidence intervals of the event
study models as defined in Equations (3.1)–(3.4). In Panel A, the dependent variable is the plant-level annual number of filed
patents. In Panel B, the dependent variable is the number of citation-weighted patents. Both outcomes are inverse hyperbolic
sine transformed. For the treatment group, the business tax change occurred on in year 𝑡 = 0 or 𝑡 = −1. The regressions
include plant, municipality, state × year, commuting zone × year, as well as sector × year fixed effects. All municipalities
that experienced a tax decrease during the event window period are excluded. Standard errors are robust to clustering at the
municipality level.

substantially (Scherer, 1965; Hall, Jaffe, and Trajtenberg, 2005), such that the simple count of plants’
number of filed patents may not measure the true value of innovation output in a correct way. Moreover,
if plants only abandon marginal R&D projects in response to a tax increase, we might see a reduction in
the plants’ quantity of patents but no effect on innovation quality. To this end, we additionally estimate
effects on the citation-weighted number of patents, scaling patents according to the number of citations
they receive by EPO patents within five years of a patent’s own first registration. We detect very similar
effects on the citation-adjusted number of filed patents – the long-run elasticity amounting to −0.94.29

Last, we further investigate whether plants abandon particular types of R&D projects in response to a tax
increase. To this end, we use information from each patent’s claims text that allows for the distinction

29When investigating the impact of tax decreases on the citation-weighted number of applications, treatment effects are small
and statistically insignificant (see Appendix Figure C.13).
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of product from process innovations. While R&D spending for the development of new products is
associated with substantial risks that may in turn open up or revolutionize a market and may thus also
yield substantial social returns, process innovations are generally considered as the more incremental
ones with limited social returns (Klepper, 1996). However, as displayed in Figure 3.10, we find no
heterogeneous responses along this margin. Effects on process innovations materialize earlier, but overall
responses are very similar in quantitative terms.

Figure 3.10: The Effect of a Tax Rate Increase on Product and Process Innovations
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(b) Citation-Weighted Number of Process Patents
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Notes: This graph plots the point estimates, 𝛽𝑘 (𝑘 ∈ [−6,−4, . . . , 8]), and corresponding 95% confidence intervals of the event
study models as defined in Equations (3.1)–(3.4). In Panel A, the dependent variable refers to a plant’s annual number of patents
referring to product innovations. In Panel B, the dependent variable is the number of citation-weighted patents referring to
process innovations. Both outcomes are inverse hyperbolic sine transformed. For the treatment group, the business tax change
occurred on in year 𝑡 = 0 or 𝑡 = −1. The regressions include plant, municipality, state × year, commuting zone × year, as well
as sector × year fixed effects. All municipalities that experienced a tax decrease during the event window period are excluded.
Standard errors are robust to clustering at the municipality level.

Sensitivity Analysis. We conduct several robustness checks to test whether estimated effects on patents
are robust to alternative specifications of our event study models. First, we show that effects on the citation-
weighted number of patents are very similar when using citations from patents registered at the USPTO
rather than the EPO (see Appendix Figure C.14). Second, we show that estimates become larger (in
absolute terms) when controlling for local shocks at finer geographical levels (see Appendix Figure C.15).
When using broader regional controls, such as NUTS II× year fixed effects, some post-treatment estimates
become statistically indistinguishable from zero. In contrast, fine-grained geographical controls at the
county level hardly affect our estimates. The same is true when including time-varying controls at the
municipality or county level or calculating biased-adjusted long-term elasticities in the spirit of Oster
(2019); see Appendix Figures C.3 and C.16.

We further explicitly test the sensitivity of our baseline results with regard to different transformations
of the outcome variable. We consider this test to be particularly important, given that the plant-level
distribution of patents is substantially skewed to the right and many plants do not file a patent in every year
(or even at all). Indeed, there is a recent debate about the “correct” functional form of the outcome variable
when dealing with patent counts that include many zeros (Campbell and Mau, 2020; Bloom, Draca, and
Van Reenen, 2020). In Appendix Figure C.17, we first show that effects remain literally unchanged when
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using a ln(𝑦 + 1) instead of our baseline inverse hyperbolic sine transformation. Moreover, treatment
effects are also similar when using the simple level of each outcome variable.

In Appendix Figure C.18, we further show that estimates remain statistically significant when allowing
for clustering at broader regional boundaries than in the baseline specification. Last, we find that the use
of different event window specifications does not affect the observed effect patterns (see Appendix Figure
C.19). Prior to treatment, coefficients are close to zero and statistically insignificant. Post treatment,
effects materialize around four years and level off around six years after treatment.

Implied Elasticities. In Appendix Figure C.20, we compare our long-run baseline elasticity to alter-
native summary measures: (i) using the simple Diff-in-Diff approach with the log business tax rate as
explanatory variable, and (ii) averaging over the first four post-treatment estimates, �̂�𝑘∀𝑘 = 0, .., 6 to
derive a medium-run elasticity of patenting with regard to an increase in the LBT rate. Again, we detect a
common pattern. First, and in line with our findings in Section 3.5.1, Diff-in-Diff elasticities are notably
smaller (in absolute terms) than estimates from the event study models. Second, and in line with the
dynamic effect patterns shown in Figures 3.9, the long-term elasticity is considerably larger than the
medium-run elasticity in absolute terms.

3.5.3 Business Taxes and Economic Growth

In the final part of our empirical analysis, we widen the scope of our investigation beyond the plant level
and investigate the consequences of tax-induced reductions in R&D spending and innovation for local
economic growth. Among others, Lentz and Mortensen (2008) and Kogan et al. (2017) highlight the
role of firm-level innovation for economic growth by raising average firm productivity. We explore this
suggested mechanism in more detail, proceeding in three steps: First, we assess the impact of innovation
as measured by the citation-weighted number of patents on economic growth at the municipality level.
In a second step, we estimate the total effect of an increase in the LBT rate on local GDP, acknowledging
that business taxes may affect economic performance through other margins than innovation – e.g., via
lower wages (Fuest, Peichl, and Siegloch, 2018) or employment (Dustmann, de Stefano, and Schönberg,
2020). Third, we combine the different empirical estimates from our study to simulate the tax-induced
decline in local economic growth that is due to reduced innovation of local plants.

Local Innovation and Growth. To assess the importance of local innovation for economic growth, we
adapt the empirical set-up of Kogan et al. (2017) and estimate a distributed lag model that relates changes
in the municipality-level citation-weighted number of patents to local GDP. Specifically, we estimate the
following equation:

ln𝐺𝐷𝑃𝑚𝑡 =

8∑︁
𝑘=−6

𝛾𝑘𝑃𝑎𝑡𝑒𝑛𝑡𝑠𝑚,𝑡−𝑘 + 𝜇𝑚 + 𝜁𝑟𝑡 + 𝜀𝑚𝑡 , (3.5)

where𝐺𝐷𝑃𝑚𝑡 refers to municipality𝑚’s GDP in year 𝑡.30 The explanatory variable 𝑃𝑎𝑡𝑒𝑛𝑡𝑠𝑚,𝑡−𝑘 denotes
the (inverse hyperbolic sine transformed) citation-weighted number of patents filed in municipality 𝑚 at

30As official statistics provide measures of GDP at the county level only, we multiply a county’s GDP per capita with a
municipality’s population.
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Figure 3.11: Business Taxes, Local Innovation, and Economic Growth
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Notes: This graph illustrates the relation between business taxes, local innovation, and economic growth. In Panel A, we plot the
dynamic effect of changes in municipalities’ number of (citation-weighted) patents on local GDP based on Equation (3.5). In
Panel B, we plot the total effect of a change in the local business tax rate on local GDP (in black), see Equation (3.6). The dashed
gray line in Panel B indicates how much of the total effect of a tax increase on local GDP is due to tax-induced reductions in local
innovation. This mediation analysis is based on the estimated effects from Panel A and the event study coefficients from Panel B
of Figure 3.9. Depicted coefficients are based on the cumulated estimates, 𝛾𝑘 and 𝛿𝑘 , respectively (always normalized relative
to 𝑘 = −1). Gray shaded areas indicate 95% confidence intervals, standard errors are robust to clustering at the municipality
level. See Appendix C.1 for details on all variables.

time 𝑡 − 𝑘 . As both the outcome and the regressor of interest are observed on an annual basis, we specify
the event time in years (rather than two-year blocks), and restrict the event window from six years before
to eight years after a tax reform. Municipality and state × year fixed effects, 𝜇𝑚 and 𝜁𝑟𝑡 , account for
time-(in)variant confounders. Standard errors are robust to clustering at the municipality level.

Panel A of Figure 3.11 plots the estimated dynamic effects of a change in the local (citation-weighted)
number of patents on local (log) GDP. We detect a clear dynamic pattern suggesting a lagged positive GDP
response to local innovation shocks, with a flat pre-trend in economic growth in the years before. When
interpreting the notable structural break at the point of innovation in the spirit of a Granger causality test,
these estimates suggest that innovation precedes higher levels of local economic growth, while economic
growth does not trigger local innovation. This pattern at the municipality level is very much in line with
evidence by Kogan et al. (2017), who find similar time-series evidence at the national level for the United
States.

Local Business Taxes and Growth. In a second step, we estimate the effect of changes in the local
business tax rate on local GDP. Several contributions have analyzed the impact of corporate taxation on
growth before, such as Gemmell, Kneller, and Sanz (2011) for OECD countries and Ferede and Dahlby
(2012) for Canadian regions. We bring this idea to the municipality level and relate leads and lags of the
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local business tax rate 𝜏𝑚𝑡 to local GDP:

ln𝐺𝐷𝑃𝑚𝑡 =

8∑︁
𝑘=−6

𝛿𝑘𝜏𝑚,𝑡−𝑘 + 𝜇𝑚 + 𝜁𝑟𝑡 + 𝜀𝑚𝑡 , (3.6)

where we again account for municipality and state × year fixed effects.

The corresponding estimated effects are summarized in Panel B of Figure 3.11. In line with previous
evidence, we find a pronounced negative effect of business taxation on economic growth that builds up
over time and levels off around three years after the tax change. Quantitatively, our results imply that an
increase of the local business tax rate by one percentage point decreases local GDP by around 1% eight
years after the tax reform. Small and insignificant point estimates for the pre-treatment period support a
causal interpretation of this effect.

Last, we trace out how much of the overall negative effect of local business taxation on local GDP can be
linked to tax-induced reductions in plant-level innovation. To this end, we combine the estimated effect
of local innovation on municipal GDP as shown in Panel A of Figure 3.11 with the treatment effects of an
increase in the local business tax rate on plants’ citation-weighted number of patents as given in Panel B
of Figure 3.9. Our simulation, displayed by the dashed gray line in Panel B of Figure 3.11, suggests
that the implied effect of a tax-induced reduction in plants’ patenting activity on local GDP is sizable,
amounting to around 40 percent of the total negative effect of local business taxation on economic growth.

3.6 Conclusion

In this paper, we exploit the unique German institutional setting, where municipalities can independently
set profit tax rates, to assess whether and how tax policy can foster firms’ innovation activities. Using
official survey data on the universe of R&D-active German plants, we exploit 7,300 municipal business
tax reforms to show a negative, statistically significant effect of a profit tax increase on plants’ total R&D
expenditures. The corresponding long-term elasticity amounts to around −1.25. The negative effect
on R&D spending is entirely driven by cuts in internal R&D spending. Furthermore, we demonstrate
that decreases in R&D spending are accompanied by tax-induced reductions in the (citation-weighted)
number of filed patents. The patent effects materialize with some temporal lag of about four years. We
estimate a patent elasticity with respect to the tax of around −0.9. Last, our estimates imply that around
40% of the total negative effect of business taxation on local growth are due to reduced innovation.
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4
Competition and Innovation:

The Breakup of IG Farben

Abstract The effect of competition on innovation is hard to study causally. To this end, this study exploits
the 1952 breakup of Germany’s leading chemical company, IG Farben. The Western Allies occupying
Germany restructured one of the worlds’ largest chemical companies along their three occupation zones.
The breakup was imposed as a consequence of IG Farben’s importance for the German war economy and
led to wide variation of competition increases across innovation space. In technology areas with large
competition increases, patenting strongly increases as well. Effects are driven by domestic, non-IG firms.
Fine-grained product-level information on suppliers and prices allows auxiliary analysis. The breakup
induced long-run product-level competition between the IG Farben successors. In affected product areas,
additional suppliers entered and prices declined. The results suggest large positive breakup effects
without short-run trade-offs.
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4.1 Introduction

Most economists now agree that market concentration has increased in relevant sectors of the economy
(Affeldt et al., 2021). Disagreement remains whether efficiency and superior technology of superstar
firms (e.g. Crouzet and Eberly, 2019; Autor, Dorn, Katz, et al., 2020) or market power and lax antitrust
enforcement (e.g. Gutiérrez and Philippon, 2018; Grullon, Larkin, and Michaely, 2019; De Loecker,
Eeckhout, and Unger, 2020) explain this tendency. Fearing negative effects on innovation, some political
leaders have even advocated to reverse mergers and to break up dominant firms (Warren, 2019). Theo-
retical arguments indeed highlight how mergers and concentration can negatively affect innovation and
market dynamics (Federico, Morton, and Shapiro, 2019). Empirically, however, the effect of competition
on economic outcomes is hard to determine, as exogenous variation in market structure is rare. Merger
analysis, central to antitrust enforcement, is further complicated by endogenous selection into mergers
and enforcement conditional on expected merger outcomes.

This paper exploits the breakup of the largest German chemical company in 1952 by the Allied Powers
outside of standard antitrust practice. The breakup target, IG Farben, was one of the most innovative
German companies.1 Three of its scientists won Nobel prizes, one of them for the world’s first antibiotic.
It had an outsized role in the German innovation system, responsible for 5.9% of all patents by German
inventors, 16.8% in chemistry. But IG Farben also directly or indirectly produced most of Germany’s
explosives, synthetic fuel and rubber. The victorious Allies saw this economic influence combined with IG
Farben’s crucial relevance for the German war machine as undue political potential. IG Farben’s crimes,
such as its major involvement at the Auschwitz concentration camp, fueled this negative perception.
However, political differences between the occupying powers delayed action and the looming cold war
altered views on IG Farben. The Allies, now supporting the IG Farben constituents in their respective
occupation zones, decided on a breakup largely following this structure. Three large successors, BASF,
Bayer and Hoechst, as well as a dozen smaller businesses, were created.

From its creation via merger to breakup, the story of IG Farben closely relates to considerations relevant
to today’s merger and potential breakup decisions in innovative industries. In merger analysis, antitrust
authorities consider the trade-off between potential efficiencies with disincentives arising from reduced
competition. In the IG Farben case, historical sources cite both organizational synergies and scale as
reasons for IG Farben’s 1925 creation via merger.2 A priori, the welfare effects of the breakup are unclear.
Next to the overall conflict between competition and merger efficiencies, the breakup might entail trade-
offs between the short-term and long-term consequences or between different economic outcomes. For
example, the increased competition between the IG Farben successors might remove other companies
from the affected areas and so reduce the breakup impact. On the other hand, the breakup might also
remove entry barriers and lead to new entry. The breakup might also stimulate innovation at the expense

1Stokes (1988) and Stokes (1994) are the key historical references for the breakup and the story of its successors, Hayes
(1987) and Plumpe (1990) for the history of IG Farben until the breakup.

2Despite being engaged in cartels and profit sharing agreements before the merger, significant synergies such as a singular
sales organization could not be realized due to holdup problems (ter Meer, 1953, p. 23). After the merger, IG Farben doubled
its stock capital to finance former BASF’s innovative research and production projects in high-pressure chemistry (Abelshauser,
2003, p. 228). Additionally, benefits to appropriation can be cited as an advantage of a joint IG firm. Similarity of technology
and production profile between the IG Farben constituents implies that R&D projects can gain more widespread application
(Plumpe, 1990, p. 137) and internalizing of intrafirm spillovers - spillovers between merger participants - might yield increased
incentives for innovation (Gilbert, 2020, p. 90).
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of prices. Reactions of other market participants and new entrants might exacerbate the breakup effects,
so that aggregate effects are relevant (Gilbert, 2020).3

Consequently, the primary outcome of interest is the overall innovation activity in Germany. This
consists of innovation by IG Farben, but also of innovation by other firms. For the analysis of trade-offs,
decompositions of innovation, for example according to innovation quality, are relevant. In addition,
economic outcomes such as long-run market structure - entry or exit of market participants - as well as
prices capture additional dimensions of breakup effects.

The breakup of IG Farben differs in important aspects from standard (de)merger cases and offers ad-
vantages for empirical analysis. Business considerations of the afflicted company were not the primary
motivations of the breakup, as in merger cases and corporate demergers. Standard economic antitrust
considerations, where markets or technologies with potential harm motivate merger litigation, were not
the primary causes of the breakup. Both would lead to selection in observable mergers and merger litiga-
tion. Rather, the breakup was rooted in contemporary political economy considerations and executed by
an external force, with idiosyncratic geographical factors playing a large role. Consequently, the effects
of this breakup are closer to causal than previous analyses.

Two data types enable the analysis. Data on German patents allow high-level views on innovation outputs
in technologies and by firms. Fine-grained data on suppliers and prices of chemical substances allow
an analysis of product markets. Starting from scanned grant documents, patent data is collected using
machine learning and image processing. Technology classes relevant to the chemical industry are selected
based on contemporary classifications. As standard measures for heterogeneity between patents such as
forward citations (Harhoff, Narin, et al., 1999) are unavailable, quality measures based on full text analysis
are introduced. Analogous to citations, they measure the importance of a patent for subsequent patents,
relative to previous patents (cf. Kelly et al., 2018). Digitized supplier catalogs provide product data.
The catalogs list thousands of common chemical products and the companies that currently sell them on
the market. The analysis restricts to chemical substances. In economic terms, these are homogeneous
intermediate products. The digitized catalogs cover the pre-war (1939), post-breakup (1952) and long-run
situation (1961). The product-company pairs listed by the catalogs inform about the market competition
for a given product and the portfolio for individual firms - especially for IG Farben. Product-level price
data from industry journals complement the product data.

IG Farben’s enormous size and diversified product portfolio led to impacts across large parts of the civilian
chemical industry. IG Farben in 1939 was involved in the supply of 40.5 % of chemical substances in
the analysis sample. Each such product was potentially affected, but the realized impact depends on the
structure of the breakup. In fact, the breakup led to horizontal, product-level competition. After the
breakup, 40% of IG Farben-supplied products are offered by two or more successors. The likelihood of
IG Farben successors to compete in the same markets decreased only slightly over the next ten years.

3Bloom, Schankerman, and Van Reenen (2013b)’s framework is a possible theoretical foundation. There, competitor
responses are driven by technology and product market spillovers of an initial shock. In the short-run, the IG Farben breakup
introduces rivalry between the IG Farben successors, but leaves the structure of technology and product market spillovers
between IG Farben and other firms intact. The breakup might induce the IG Farben successors as neck-and-neck rivals to
increase R&D and knowledge production to compete for shared markets (Aghion, Bechtold, et al., 2018). According to Bloom,
Schankerman, and Van Reenen’s results, the reaction of knowledge production by competitors depends on whether positive
technology spillovers dominate negative product market spillovers. This is in addition to the direct effect of increased within-IG
Farben competition on competitors, which depends on the relative technological position of the firms (Aghion, Bechtold, et al.,
2018).
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As the main result, innovation in areas impacted by the IG Farben shock increases strongly and persistently
compared to other areas of chemistry. This conclusion results from a comparison of chemical patents
exposed to or unaffected by the IG Farben shock in a difference-in-differences (DiD) analysis. Breakup
exposure is the concentration change implied by considering IG Farben as one or as separate successors.
IG Farben research facilities were geographically spread out. As the breakup was largely geographical in
nature as well, the post-breakup structure can be backdated to the pre-breakup, pre-war time. This avoids
contamination by wartime events and post-breakup adjustments. With a measure of the concentration
change, the technology classes can be separated into an exposed and an unaffected group. Before the war,
IG Farben applied for 12.3% of all chemical patents, 38.8% in technology classes strongly affected by the
breakup. The development of patenting amount in exposed and unaffected technologies is parallel before
1952. After the breakup, the two increasingly diverge. Results are similar when counting only patents
without IG Farben association. Results are also similar when modifying exposure measures to isolate
the concentration change caused by the geographical breakup structure. Heterogeneity analysis provides
insights into how the breakup changed patenting. A short-run quality-quantity trade-off is introduced.
Average quality decreases immediately after the breakup, but slowly normalizes. Patenting in Germany
by foreign applicants increases after the war, but the increase seems unrelated to the breakup. IG Farben
itself is difficult to analyze causally as the number of successors is small and appropriate control firms are
missing. Descriptive analysis suggests strongly increasing patent output by IG Farben successor firms at
high but constant R&D intensity.

The antecedent of innovation effects are changes in product space. The chemical industry offers an
advantageous setting as it contains a large number of markets with comparable structure. Chemical
substances have well-defined properties, so that companies compete in a large number of markets for
homogeneous, intermediate products. Markets can be cleanly defined. The effects of the horizontal,
product-level competition resulting from the IG Farben breakup remain to be investigated.

Increased competition could crowd out other competitors, creating a trade-off to the innovation effect.
On the other hand, incumbents in intermediate good markets can contract to restrict entry (Aghion and
Bolton, 1987). Multiple incumbents could struggle to coordinate accordingly, opening the market for
entry. Similarly, the breakup could increase knowledge spillovers or ease technology licensing and so
facilitate entry. DiD analysis in a panel of chemical substances investigates market structure effects
regarding the overall number of suppliers per product. Changes between 1939 and 1952 cannot be
attributed to the breakup, as it is hard to isolate the effect of other events and a pre-breakup measurement
is unavailable. Reassuringly, after controlling for major shocks, the number of suppliers stays similar
in most specifications. Between 1952 and 1961, however, the number of suppliers increases where the
breakup led to competition. The increase is driven by non-IG firms, which is suggestive evidence that an
initial increase in competition can induce further entry.

Price effects of the breakup could counteract or exacerbate the innovation effect. In fact, in areas where the
IG Farben breakup created effective competition, prices drop by 5.0% compared to products without IG
Farben involvement. Products where only one successor is active instead show price increases compared
to products where the IG was not active. These results are in line with economic intuitions of market
competition and price setting (e.g. Ashenfelter, Hosken, and Weinberg, 2013), but could understate
benefits to consumers if price decreases spill over to downstream markets (Basso and Ross, 2019). On
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average, products with any IG Farben involvement show similar price developments as products not
offered by IG Farben. Similarly, when considering 1939 IG Farben, effect estimates are small.

The results need to be interpreted considering the limitations arising from the historical context. Historical
factors influence the results insofar as they differentially affect breakup-exposed sectors within chemistry.
Confounding factors would need to correlate closely to the geographic structure of IG Farben across
occupation zones, which drives the variation in technology and product-level competition. For some
historical factors related to war destruction, Allied occupation policies or German post-war policies this
can be assessed quantitatively. When included in statistical analysis as control variables, these factors do
not materially affect the conclusions. Other historical factors are difficult to quantify, but their potential
influence can be judged based on historical research. Further, alternative analysis of innovation effects
based on a firm panel instead of a technology class panel yields similar results.

This study contributes to the empirical literature on competition and innovation, specifically the literature
on mergers. A set of studies has relied on merger cases and matching methods combined with DiD analysis
to estimate effects. The evidence is mixed, with either no effects (Danzon, Epstein, and Nicholson, 2007)
or negative effects (Ornaghi, 2009; Szücs, 2014; Haucap, Rasch, and Stiebale, 2019) of mergers. However,
merger cases and litigation by antitrust authorities are selective (Carlton, 2009). In this study, effects
are instead estimated within one event, which differentially affected a broad range of technologies or
products.

Much of the literature on mergers and innovation has focused on direct effects on the merging parties
(Haucap, Rasch, and Stiebale, 2019). This study analyzes aggregate breakup effects, combining reactions
by the directly affected IG Farben successors with reactions from competitors. In addition, this study
tries to identify potential trade-offs created by the breakup. Aggregate effects are relevant from a welfare
perspective, as it is unclear whether the responses of successors and competitors are in parallel. For
prices in markets for homogeneous products this is likely the case. In contrast, innovation decisions of
competitors might also be strategic substitutes or complements (Bulow, Geanakoplos, and Klemperer,
1985; Bloom, Schankerman, and Van Reenen, 2013b; Gilbert, 2020, p. 89). Then, competitor responses
may exacerbate or offset the change of innovation output by the IG Farben successors. This study finds
that patenting in areas affected by the breakup increases relative to unaffected ones, both overall and
for firms unrelated to IG Farben. Descriptively, the IG Farben successors also increased their patent
output. Effects on other outcomes could also counteract the positive innovation effect of the breakup.
Increased competition could change the propensity to patent, inducing a quantity-quality trade-off. This
seems to be the case, at least temporarily. Similarly, policymakers might worry about increased foreign
entry following the weakening of domestic incumbents. While foreign patenting in Germany increased
following the Second World War, this tendency does not drive the breakup effect. In auxiliary analysis,
this study also tests for effects in product space and contributes to the literature on entry and price effects
after mergers. The breakup led to the entry of new firms into existing product markets and to moderate
price declines within them. The breakup did not induce trade-offs in these additional welfare-relevant
dimensions.

This study relates to the literature on the history of antitrust, in particular towards breakups of large
corporations. Such government action is rare, and the literature has focused on seminal US cases such
as Standard Oil or the Bell system (Lamoreaux, 2019). However, cases are few and far between. The IG



88 CHAPTER 4

Farben case adds by broadening the view to a new industry, where innovation can be quantified well and
broadly.

This study also contributes in making novel data available, either newly or much improved. For one,
product catalogs offer fine-grained product information that approaches market definitions more closely
than the typically used firm- or industry-level data (Affeldt et al., 2021). Comparable detailed product
and price data was previously unavailable for this time period and this industry. German patent data is
processed in greater details and over a longer time-span than before. Intensive use of machine learning
and image processing make it possible to recover applicant, inventor and technology class information so
far unavailable at a comparable scale.

Section 4.2 discusses the empirical literature on competition and innovation. Section 4.3 provides an
overview of the breakup of IG Farben. Section 4.4 introduces data sources. Section 4.5 provides
measurements of the breakup and descriptive analysis of IG Farben and successors. Section 4.6 discusses
the empirical strategy and section 4.7 presents the results, effects in innovation and effects in product
space. Section 4.8 discusses limitations arising from contemporaneous events, and section 4.9 concludes.

4.2 Literature: Competition and Innovation

Research on competition and innovation has a long tradition (Reviews include Gilbert, 2006; Cohen,
2010; Gilbert, 2020). Conceptual arguments go back far, at least to Schumpeter (1942) and Arrow
(1962). According to Shapiro (2011), the core of their views can be summarized in a framework of ex
ante and ex post market structure, relative to an innovation. Greater ex ante competition implies low
ex ante profits, which encourages innovation (Arrow). Greater ex post competition reduces the profits
reaped from the innovation and discourages innovation (Schumpeter). The literature on mergers differs
from the broader competition-innovation literature because mergers, instead of removing one rival from
the market, leave R&D and production assets intact and unify control rights for a subset of market
participants (Federico, Morton, and Shapiro, 2019). The theoretical effect of mergers on innovation
depends on particular modeling assumptions and the balance of merger synergies (Jullien and Lefouili,
2018; Federico, Morton, and Shapiro, 2019). Empirical approaches are discussed below. The IG Farben
breakup relates to the literature on mergers in that research assets remain intact, but control changes.
Before the breakup, IG held large shares of many markets throughout the chemical industry, so that ex ante
competition for a new innovation was low. The breakup increased ex ante competition in some markets
so that innovation incentives should increase. Possible counteracting mechanisms include decreased
economies of scale or scope, increased difficulties for financing and decreased intrafirm spillovers.

The dynamic nature of the relationship between industry structure (competition) and industry outcomes
makes empirical work, especially reduced-form, difficult. Structure likely influences performance and
visa versa. With this in mind, the empirical literature has often focused on discrete events that change the
competition intensity in an industry. Often these are merger events, but studies have also analyzed cartel
breakups or compulsory licensing (Gilbert, 2020). The case of IG Farben relates closely to the study
of mergers. One integrated entity is separated into several independent companies, without changing
available R&D or production assets. Therefore, in principle, all theoretical and empirical arguments
delivered in the question of mergers and innovation apply, but in reverse. In typical merger cases, events
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are contingent on actions by market participants. This is most clear for mergers, but similarly, cartel
breakups are often facilitated by cartel members reporting to the authorities. The actions by antitrust
authorities with specific mandates concerning the economic outcome variables also play a role as they
decide which mergers proceed (Carlton, 2009).

To overcome empirical challenges, studies have taken approaches of matching combined with DiD or
instrumental variables (Danzon, Epstein, and Nicholson, 2007; Ornaghi, 2009; Szücs, 2014; Haucap,
Rasch, and Stiebale, 2019). Danzon, Epstein, and Nicholson (2007) study pharmaceutical mergers and
conditional on controls do not find differences between merged and matched non-merged entities. In
contrast, Ornaghi (2009) find negative innovation effects of pharmaceutical mergers. In the same industry,
Haucap, Rasch, and Stiebale (2019) show that after mergers in the pharmaceutical industry, patenting
and R&D activity decline. Szücs (2014) analyzes a large number of mergers across industries using
matching and DiD analysis. He distinguishes acquirer and target and finds that while targets decrease
their R&D expenditure after the merger, acquirers show sharp increases in sales, reducing R&D intensity
(but not R&D itself). However, these approaches are faced with identification challenges, as matching
might not capture all relevant variables determining the decision to merge and the outcome of the
merger. In response, Haucap, Rasch, and Stiebale (2019) use technological and geographical proximity
as instruments for M&As. The use of geographical proximity follows Dafny (2009), who instrument
exposure to a merger of rivals by their respective geographical proximity and find large price increases.

Other studies relying on observational data without additional identification allow for valuable insights.
Cassiman, Colombo, et al. (2005) survey merging firms and argue that technological characteristics are
pivotal for the effect of mergers on innovation. When firms with complementary portfolios merge, R&D
increases, but a merger of substitutive portfolios decreases R&D. Cunningham, Ederer, and Ma (2021)
study drug pipelines of merging firms and find that research activities similar to the acquirer’s portfolio
are more likely to be discontinued after acquisitions.

Notable exceptions are studies exploiting events credibly exogenous to industry dynamics and industry
structure. Watzinger, Fackler, et al. (2020) exploit the government-mandated compulsory licensing of
AT&T patents. Baten, Bianchi, and Moser (2017) and Moser and Voena (2012) analyze the confiscation
of German patents during the First World War by the US government. All find that ultimately, compulsory
licensing has positive innovation effects. Watzinger and Schnitzer (2020) analyze the vertical separation
between Bell’s research unit and the commercial distribution and operating part of the company in 1984,
also finding strong positive innovation effects, with foreign entry playing a major role.

Igami and Uetake (2020) circumvents the empirical identification challenges and estimates a structural
model of oligopolistic competition, mergers and innovation. The findings suggest that mergers resulting
in fewer than six firms lead to welfare loss, especially drastic for mergers leaving only one or two firms in
the market. Goettler and Gordon (2011) analyze the neck-and-neck competition between duopolists Intel
and AMD. Due to microprocessors’ durable nature, firms need to innovate to gain further sales, leading
to large innovation incentives even for monopolists. As a consequence, Goettler and Gordon find that
without competition, innovation in the sector would have been higher. However, increased prices would
have offset any benefits to consumers.

In the vicinity of the competition-innovation literature built around mergers, there are other notable
research trajectories. Authors have analyzed trade-related competition changes, e.g. from liberalization
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episodes, and find ambiguous innovation results. Shu and Steinwender (2018) survey the literature. A
separate channel is the diffusion of knowledge and practices towards acquired firms. Acquisition by
more productive, often foreign, firms leads to positive innovation or productivity effects (e.g. Arnold and
Javorcik, 2009; Guadalupe, Kuzmina, and Thomas, 2012; Braguinsky et al., 2015).

4.3 Historical Background: IG Farben and Breakup

This section provides a brief history of IG Farben’s rise and fall, as far it is relevant to the economic
analysis of its breakup. For the historical literature on IG Farben, see Hayes (1987) and Plumpe (1990);
for the breakup and the IG Farben successors Kreikamp (1977), Stokes (1988), Stokes (1994), and Stokes
(1995). Jeffreys (2010) provides a history focused on IG Farben’s crimes in more popular writing. Figure
4.1 gives an overview of IG’s timeline as well as the eventual split.

Figure 4.1: The Development of I.G. Farbenindustrie A.G.
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Notes: Shows the historical time-line of IG Farben, from preceding cartels, 1925 merger and subsequent breakup using stock transfers. Source:
Stokes (1988, p. 12). Does not include smaller subsidiaries as well as close cartels of IG Farben in the explosives industry.

4.3.1 Making IG Farben

IG Farben used to be the largest company in Germany and the largest chemical company in the world.
It was one of the most innovative German companies, with three of its scientists winning Nobel prizes.
IG Farben had an outsized role in the German innovation system, responsible for 5.9% of all patents
by German inventors, 16.8% in chemistry. Contextualizing IG Farben’s size, its share among German-
invented German patents was three times that of AT&T/Bell among US-invented US patents (2%, see
Watzinger and Schnitzer, 2020).



COMPETITION AND INNOVATION: THE BREAKUP OF IG FARBEN 91

IG Farben was founded as a stock company in 1925 through a merger of some of the largest German
chemical companies. All the founding members originated from the dye industry, although their product
portfolio was broad and diversified by then. Prior to the merger, the companies were part of an organized
cartel of the same name. Before the Second World War, cartels were widespread throughout the German
economy. German law guiding such cartels stipulated the possibility for each member to quit unilaterally,
so that major inefficiencies remained in the cartel organization. If each member could leave and break
the cartel, then giving up one’s own sales division or name was inconceivable. Hence, the merger was
executed, and the founding companies largely gave up their profile to join the new IG Farbenindustrie
AG. Next to holdup problems (ter Meer, 1953, pp. 17–23), easier access to capital is cited as another
reason for the integration (Abelshauser, 2003, p. 228). Both are merger efficiencies in today’s view.

Whether the IG Farben breakup created competition in a particular product market depends on IG
Farben’s internal organization, which created both specialization and redundancy. In supervising its
complex structure, IG Farben created multiple internal groups (Stokes, 1988, pp. 14–19). Control
over production remained with the production groups (Betriebsgemeinschaften). 33 major production
complexes were organized in at first four, later five such groups. The groups specialized in certain areas of
chemistry, such as Upper Rhine (Ludwigshafen) in high-pressure chemistry, Lower Rhine (Leverkusen)
in pharmaceuticals or Berlin in photographic paper, film and artificial silk. However, specialization was
limited and “almost all of the central factories produced a broad range of basic chemicals, intermediates
and finished products” (Stokes, 1988, p. 18). As Stokes notes, much of the differentiation of the production
groups was driven by tradition.

During the 20 years of its existence, IG Farben retained or acquired a dominant position in much of
the German organics, plastics and explosives industry. This happened partly through acquisitions and
partly through organic growth. IG Farben was further directly or indirectly responsible for much of the
production of synthetic fuel and rubber from German coal as substitutes for imports. As part of a wider
autarky strategy, they were vital for the start and continuation of the Second World War. Vast resources
were devoted to turning coal into gasoline as coal, contrary to oil, was one of the few resources abundantly
available to Germany.

IG Farben was not only instrumental to the German war effort but enabled and participated in war
crimes and crimes against humanity. In the German-occupied territories, IG Farben conducted extensive
acquisitions and was later accused of plundering. As much of the German industry, IG Farben employed
forced and slave labor supplied by concentration camps. The most infamous IG investment was in
Auschwitz, where one of the most advanced IG facilities was built, yet never completed. An IG Farben
subsidiary supplied the Zyklon B pesticide used for murdering more than a million people in Auschwitz
and other camps. These three counts, preparing and contributing to wars of aggression, plundering and
seizure of plants, and enslavement, deportation and murder, were the base of the IG Farben trials at
Nuremberg in 1947/1948. Here, the court indicted 24 IG managers, of whom 12 were sentenced to prison
while others were acquitted. While IG’s actions before and during the war were and remain a subject of
contentious debate, it certainly contributed to the perception of the company as “Hell’s cartel” (Jeffreys,
2010).
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4.3.2 Breaking IG Farben

IG’s importance for the German war machine as well as its crimes resulted in the Allied powers confiscating
all of IG’s property in 1945, leaving the administration in the hand of the respective zonal government.
While the Allies attempted to coordinate the occupation policy, the heightening cold war tensions made
this increasingly difficult (Stokes, 1994, p. 71). The subsequent actions differ greatly. While the Soviets
quickly began dismantling their IG plants, the Western Allies were more hesitant and grew protective
of their respective part of the company. With the Western integration of the US, British and French
occupation zone into the bizone and later trizone, the Allied administration of IG Farben was also unified.
As a result, Stedman (1950, p. 442) calls the 1945 breakup “largely theoretical” and states that “[t]he
individual units today are in closer collaboration than they were then”. The breakup question was resolved
in earnest only in the early 1950s.

Figure 4.2: Locations of IG Farben manufacturing and research

    Auschwitz     Frankfurt (Hoechst)

   Leuna/Schkopau

    Leverkusen (Bayer)

   Ludwigshafen (BASF)

   Hüls (Huels)

Wiesbaden (Kalle)

   Wuppertal (Bayer)

Former Eastern Territories
(Poland / Soviet Union)British

Zone

Soviet
Zone

US
Zone

French
Zone

IG Farben
Subsidiary

Notes: Shows IG Farben locations in Germany’s 1936 territory, by postwar situation. BASF formed around the Ludwigshafen facilities in the
French occupation zone (blue). Bayer formed around facilities in the British occupation zones. Hoechst formed around the facilities in the
United States occupation zone (yellow). Some locations (Troisdorf, Marl-Hüls, Wiesbaden) formed smaller successors. The large facilities the
Soviet zone (red) in Leuna, Schkopau and Wolfen were restructured as publicly owned enterprises (Volkseigener Betrieb, VEB). The former
German areas in the East became Polish or Soviet Union territories after 1945 and did not contain major research-active IG Farben facilities.
The IG facilities near Auschwitz, in occupied territories, received large investments during the war, yet never reached completion. Source: Max
Planck Institute for Demographic Research: MPIDR Population History GIS Collection, own calculations.

The breakup was not expected or planned for before the war and its structure only determined during
the occupation period. IG Farben officials saw the writing on the wall, but eventually, planning for an
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Allied victory remained rudimentary (Stokes, 1988, pp. 32–33). Some attempts were made, however.
IG officials attempted to transfer ownership of foreign assets to avoid confiscation. Ideas such as a legal
separation of war-related factories from civilian production were considered but dropped. In the end,
these decisions would be taken by others. Stokes, p. 71, writes: “Although the final outcome of the
breakup was not predictable in 1945, zonal policies helped prejudice its general contours. Practically
speaking, the major Western successors of I.G. Farben were going to be the three large works units of the
old firm, the central factories of which lay in different zones.”

Eventually, there are multiple candidates for the exact timing of the intervention. Zonal structure divided
effective control among the four Allied Powers in 1945. Then, consolidation of the Western occupation
zones consolidated the administration into the Western and Eastern zone by 1948. In August 1950, the
Western Allies created the legal basis for separating IG Farben. The announcement of the final structure
occurred in 1951, and most of the successors legally incorporated in 1952. While it is possible that
specialization processes already happened when returning from war production to civilization production
in 1945-1948, most of the focus was on rebuilding, on using known technologies to resume production
(Stokes, 1994, p. 73).

The breakup was executed via stock transfers. Each owner of IG Farbenindustrie AG shares received
successor shares according to their initial capitalization.

The early postwar time was tumultuous and full of rapid change. After the liberation by the Allied Powers,
Germany was occupied. With the occupation came controls of industry and reparations and economic
reorganization such as the dissolution of cartels. Events such as the economic and political division of
Germany in East and West took effect. These and other aspects of the post-war history are discussed in
section 4.8. In most cases, such changes affect all sectors of the German chemical industry, but insofar
as effects are differential, they are limitations to the generalizability of the results. For many aspects, it
is possible to introduce control variables for statistical robustness checks.

4.4 Data

4.4.1 Patents

This study uses patent data to measure innovation activities. The chemical and pharmaceutical industries
are often cited as the two areas where patents are most suitable as a measure of innovation.4

To generate the patent data, this study digitizes German patent grant documents between 1910 and 1965.
The digitization for this study is complementary and in addition to data available from the German patent
office. Appendix D.1.2 discusses the data generation in detail and assesses various quality aspects. Of
special note, the German patent office was closed for most of 1945 and all of 1946 and 1947, so that these
years are always omitted. War-time applications should be considered with care due to the circumstance
of their application, but also because the patent office processed them only in the 1950s. Applicants will
selectively pursue prosecution of patents still relevant 5-10 years after the original application.

4During the time of interest, the German patent law did not allow product patents in the areas of pharmaceuticals and
chemistry. However, processes were patentable. These were effective in deterring entry, as a competitor producing the same
product would have to prove that a different process was used (Uhrich, 2010).
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For ease of access, patent offices have long classified patents by technology classes. While these are not
congruent to individual markets or products, they were considered relevant by technological experts at
the time. The German system during the sample period knew more than 500 (sub-)classes, a number
comparable to the four-digit level of the present-day Cooperative Patent Classification (CPC). Of those,
only a subset is related to chemistry and is the focus of this study. Inspired by Baten, Bianchi, and Moser
(2017), these are identified based on descriptions of the group-level technological areas. 135 relevant
technology classes remain.5

Patent quality is heterogeneous so that adjustment for quality is advisable (Harhoff, Narin, et al., 1999).
However, in the historical patent data, information on patent citations is not readily available. Kelly et al.
(2018) instead propose alternative quality measure based on patent texts. Kelly et al. calculate similarity
scores between patents based on the word counts of the patent text. Patents similar to future patents are
called influential, while patents similar to past patents are called derivative. High-quality patents are
defined as being influential but not derivative. A quality score results by dividing future similarity by
past similarity. This study adjusts Kelly et al.’s methodology by plugging in a more modern approach
focusing not on word counts but the text’s overall structure (Le and Mikolov, 2014). Appendix D.1.2
discusses this and other adjustments necessitated by the German patent data. The quality measures are
normalized on a patent level to have mean three and standard deviation one, making them comparable
while excluding negative values.

4.4.2 Products and Prices

Product and price data describe established markets. This is complementary to patent data, which
provides insights regarding new products and processes.

Product-firm listings were produced by specialized publishers and provided an industry overview to
customers of chemical products. This publication series used here is the most relevant one for the German
chemical industry. A review of the 1938 edition in a German chemistry journal doubled down on this
book’s claim of being an indispensable encyclopedia for the German chemical industry (Bretschneider,
1939). Its tradition started in 1888 and ended only in 2000 when the publication format went digital. The
volumes allow users to look up producers for a set of common chemical products and to contact them via
mail or telephone. The books are published roughly every three years. With its long publication history
before and after the war, it presents the best data source for tracking the German chemical industry.

For this study, three digitized books inform about the situation in mid-late 1939, early 1952 and early
1961, judged by the dates of the editorials (Wegner, 1940; Barth, 1952; Wegner, 1961). These are the
volumes last published before and first published after the war, as well as one informing about long-run
consequences.

The definition of a product as chosen by industry experts delivers a relevant definition of markets. Clearly,
varying degrees of substitutability between products exist, as do vertical relationships. Overall, however,
this type of data is substantially more fine-grained than typically used industry definitions (Affeldt et al.,

5The CPC’s four-digit level is a comparably high-level aggregation. Technology groups, the next-lower level of aggregation
in the German classification, is not consistently available. The next-higher top-level grouping has 89 technologies, of which 34
refer to chemistry. Unfortunately, with on average only three subclasses per class, inclusion of class×year FEs does not leave
enough variation of exposure within classes.
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2021) and, on a large scale, more closely approaches the definition of relevant markets than otherwise
attainable.

The books contain a selection of the most relevant products in chemistry. To gather this information,
the publisher surveys firms for their product portfolio. For firms, the listing is free of charge, and the
operation is financed by sales of the book and advertisement contained therein. For details and examples,
refer to Appendix D.1.1. With this, the books describe static competition in the chemical industry and
the dynamics of firm portfolios. Entry and exit decisions into the supply of existing products can be
captured well. However, the scope of listed products follows the contemporary situation. As an example,
consider polyvinyl chloride (PVC), one of today’s most widely produced plastics. PVC was discovered
in the 19th century, but industrial scale production in Germany started only in the 1930s. IG Farben
sold one PVC variant as a branded product, which is listed in the 1939 volume. Also, IG Farben and
one subsidiary are listed as producing “vinyl polymer products” (Vinylpolymerisate), a broader group
of chemicals also encompassing PVC. Listing under PVC starts in 1952 when plastic production had
become more widespread. Then, five IG Farben successors were offering PVC for sale. While the listed
products are the most relevant, the development of new chemicals before they reach widespread use has
to be tracked with patent data.

Product-level data from supplier lists comes with some disadvantages. No quantity or sales information is
available. Many chemical products are traded at the national level so that no local variation is observable.
Trade information is unobservable as well. Foreign suppliers are not listed, although trading firms and
resale agents are.

The information from supplier lists is enriched using data from Wikipedia and ChemSpider, which
maintain lists of chemical substances with common alternative names and chemical properties.

Product-level price data is available in publications of industry journals. The prices represent factory
gate prices and are meant to guide readers towards the general price level for a product. Price data
becomes available in 1948 when price controls in the occupied areas are relaxed. Before that, prices as
of 31.12.1944 were fixed (Fäßler, 2006, p. 42). This resulted in considerable inflation in 1948. At the
same time, the price lists are not as comprehensive as in later years. From 1949 until 1954, high-quality
data is available, after which the journal only reports foreign prices.6 Appendix D.1.1 reports details.

4.5 Describing the Breakup

Econometric analysis of the IG Farben breakup and the historical context first requires a quantification
of the breakup. The best available measurement is patent data, which describes the technological
capabilities of individual firms on a detailed level. Subsection 4.5.1 measures the breakup in innovation
space. Historical financial and product data, while less detailed, helps contextualizing the development
of IG Farben and its successors. Subsection 4.5.2 provides a descriptive analysis.

6From 1945 to early 1948, price controls are in place, possibly similarly during and before the war. Figure D.17 in the
appendix shows stable pre-war prices. Stable prices made monthly price updates unnecessary, explaining why price publications
commenced in 1948. The reason why the publication of price lists stopped is unknown.
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4.5.1 Measurement of Competition in Innovation Space

In innovation space, the distribution of IG patents across research facilities and technology classes
characterizes the impact of the breakup. Two approaches are possible. First, the standard Herfindahl-
Hirschman index (HHI) provides a description of concentration within technology classes and relates to
the previous literature. The change in HHI provides an intuitive description of the concentration change
caused by the IG Farben breakup. However, HHI strongly depends on the share of IG Farben-related
patents in each technology class. A set of alternative measures removes this dependence by considering
only IG Farben-related patents. Starting from this set, alternative HHI can be computed, either by
analyzing the breakup of IG Farben across successors or by exclusively analyzing geographical variation
across occupation zones.

The change in the HHI implied by the IG Farben breakup is ΔHHI = HHI𝐼𝐺 − HHI𝐼𝐺 , the difference
between the concentration with the IG as one group and the IG as separate entities. This defines the
concentration change as a positive value, although by definition, HHI decreases. Nocke and Whinston
(2020) suggest that between the absolute HHI and ΔHHI, the focus on the latter is more relevant.7

The implied concentration change ΔHHI can be examined for the pre-war period (1925-1939) as well as
for periods post-war, pre-breakup (1948-1951) or after the breakup (1952-1960). In all three cases, either
HHI𝐼𝐺 or HHI𝐼𝐺 is counterfactual and unobserved. While all three are highly correlated, the pre-war is
least likely to be influenced by other contemporary events or endogenous to the breakup itself. Therefore,
it is the baseline measure of ΔHHI. After 1952, the successor firms have resumed their separate activities
and already responded to the breakup. Between 1948-1951, anticipation and war-related confounders
may play a role.

Calculating the implied concentration change ΔHHI in the pre-war period requires assigning pre-war
patents to the eventual successor companies. While some successor companies filed patents as separate
entities, the bulk of patents was filed as “IG Farben”. Thus, patent applicant information does not inform
about the origin of a particular invention. However, with the geographic dispersion of research facilities
across Germany, the location of inventors reveals the association to the eventual successor.8 Fortunately,
IG Farben was already listing inventor information on its patents before it became mandatory. Assigning
inventor locations according to the nearest research facility or according to pre-merger or post-war
employer recovers the patent portfolio of the IG Farben successors.9 Appendix D.1.3 covers the details
of the reassignment. Figure 4.3 shows the result for the largest successors. This process is successful for
up to 90% of IG Farben patents. For calculations of ΔHHI, unassigned patents and those of East German
IG members are ignored, preserving shares.

7Alternatively, measures such as the CR4 share, the share of patents by the four largest applicants, can be analyzed. That
measure is less sensitive to incorrect disambiguations for smaller applicants. On the other hand, the IG breakup often replaced
the largest applicant with three applicants that are still the largest ones. The CR4 change is then fully determined by the share
of the two applicants that were previously in the top 4, which is not a good measure of the implied concentration change. Even
so, Table D.5 in the appendix shows the change in the CR4 share.

8IG Farben maintained at least 25 research laboratories (Plumpe, 1990, p. 475). Inventive activity was ongoing in all major
work units (Haber, 1971, p. 357; ter Meer, 1953, pp. 29–30).

9This reassignment rule comes close to the actual post-war reassignment of patents. Contemporary reports indicate that
the patents were typically assigned based on the research unit where the patent was originally developed. (“Forschung BASF”
1953) The patent documents do not list ownership changes and subsequent transfers. Especially for the question of post-war
ownership of pre-war inventions and of the patent stock of the old IG Farben, such information would be valuable.
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Figure 4.3: Patents of successor companies, assigned by inventor locations
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Notes: Subsidiaries aside, IG Farben’s Frankfurt headquarter is the applicant of all IG Farben patent. However, unlike most companies at
the time, almost all patents list the inventors. Due to the geographic spread of IG Farben’s research facilities, inventor locations allow the
reassignment to eventual successors. Only in some cases, the inventor careers from deduplicated patent applications are more informative.
Here, inventors are reassigned to their post-war place of employment. The graph shows the yearly number of granted patent applications for the
three large successor companies and the newly independent Huels. Numbers are as listed on the original patent documents (red solid line), as
reassigned to eventual successors using location information (blue dash line) and as reassigned to eventual successors using location information
and inventor name disambiguation (solid blue line). For the smaller successors and East German patents, see Figure D.9.

The IG Farben dissolution led to large concentration decreases in a set of technology classes, typically
equivalent to the reversal of a 4 to 1 merger, with some variance. This equivalence is based on the thought
experiment of splitting up the IG Farben conglomerate into 𝑁Δ equal parts. 𝑁Δ is then a function of
the IG Farben share 𝑠𝐼𝐺 and of ΔHHI, in particular 𝑁Δ = 𝑠2

𝐼𝐺
/
(
𝑠2
𝐼𝐺

− ΔHHI
)
.10 This idea is closely

related to the number equivalent of the HHI first discussed in Adelman (1969). While 𝑁 (HHI) = HHI−1

is the number of equal-sized firms corresponding to HHI, 𝑁Δ is the equal-sized breakup corresponding
to ΔHHI. Aggregating over all patents in chemistry, IG Farben had 12.4% of all patents, split into
3.6% BASF, 2.1% Bayer, 2.3% Hoechst and 4.3% remainder. Considering IG Farben and subsidiaries
as one block, overall HHI was 212, split up it was 91, ΔHHI 121. 𝑁Δ arrives at 4.8. ΔHHI strongly
varies across technology classes, often reaching much higher values than at the aggregate. Table 4.1 lists
these statistics for a selection of technology classes and averages over the subsequent groups of high and
low breakup exposure. For reference, a merger with an effect of ΔHHI > 100 or > 200 (Depending
on absolute HHI) would be above the FTC screening thresholds. With the 75th percentile cutoff, the

10Originally, ΔHHI = HHI𝐼𝐺 −HHI𝐼𝐺 . HHI contributions of non-IG firms are unchanged in this static thought experiment,
so that the equal split formally results in ΔHHI = 𝑠2

𝐼𝐺
− 𝑁Δ (𝑠𝐼𝐺/𝑁Δ)2. Rearrange for 𝑁Δ.
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Table 4.1: ΔHHI implied by the IG dissolution

Selected technology classes Patents 1925-1939 48-52

Count IG % HHI𝐼𝐺 HHI𝐼𝐺 ΔHHI 𝑁Δ ΔHHI

8M: Coloring 643 56 3269 787 2481 4.80 1206
12G: Processes (general) 398 26 706 316 390 2.46 149
12K: Ammonium, Cyanides 484 16 384 224 161 2.47 263
22E: Indigo-based dyes 377 77 5988 1459 4529 4.26 2336
29B: Chemical fibers 601 28 851 239 612 4.43 104
30H: Drug development 1048 15 250 94 156 3.58 49
39C: Synthetic plastics 326 51 2693 918 1775 3.09 670
45L: Pesticides 699 31 1071 349 722 3.69 180

Means for ΔHHI > p75 (N=33) 730 0.37 1803 602 1201 3.53 428
Means for ΔHHI ≤ p75 (N=102) 673 0.04 397 375 21 2.46 34

Notes: Concentration change implied by the IG Farben breakup for selected technology classes and by breakup exposure. The columns show
the count of granted patents, the share of patents by IG Farben or subsidiaries (IG %), the Herfindahl-Hirschman index considering all as one
block (HHI𝐼𝐺) and split up according to the eventual successors (HHI𝐼𝐺) as well as the difference, ΔHHI. 𝑁 Δ is the number equivalent of
ΔHHI, the number of equal-sized companies that the change in HHI implies. The first columns consider patents filed between 1925 and 1939,
the last column for 1948-1952. Patent counts is rounded from fractional counts. Statistics are calculated by technology class, means across
exposed/comparison technology classes in the last two rows. Table D.5 in the appendix shows the change in the CR4 share.

threshold is 160. Averaging over the group of strongly affected technology classes, 𝑁Δ is 3.5. A 4:1
merger reversal is a good midpoint for the range of calculated values.

Finally, alternative measurements of ΔHHI that only focus on geographical aspects of the breakup can be
calculated. To do so, only IG Farben-related patents are considered. As a consequence, HHI𝐼𝐺 = 10000
for all technology classes. HHI𝐼𝐺 either follows the structure of the eventual successors, determined as
outlined above, leading to ΔHHIWithin. Alternatively, only the geographical distribution of IG Farben
across the occupation zones can be exploited. Instead of successor shares, shares in British, French
and US occupation zone form the bases of HHI𝐼𝐺 . This removes variation introduced from subsidiary
structures and leads to ΔHHIOcc. In both cases, East German successors or patents are ignored, as are
patents unassigned to any successor.

4.5.2 Descriptives on IG Farben

The economic effect of the breakup on IG Farben itself is difficult to study causally, as appropriate control
groups are hard to find. The number of successor companies, despite IG Farben’s size, remains rather
small for statistical analysis. However, descriptive analysis is possible. This section first discusses the
aggregate statistics of Figure 4.4 and Figure 4.5, and later dives deeper into IG Farben’s product portfolio.

IG Farben was an export-oriented company with high R&D intensity. At the peak of its strength in the
late 1920s, R&D spending reached 8-12% of revenue, which in turn was over 50% derived from exports
(Figure 4.4). In the context of great depression and Nazi autarky policy, domestic turnover rose during
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Figure 4.4: IG Farben and its successors over time
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section 4.4.1 (Patents).

the 1930s and 1940s, while export shrank further and further.11 R&D continued to play an important
role, but at more moderate levels than before.

The immediate post-war statistics reflect the economic difficulties, but also the fast return to pre-war levels
(Figure 4.4). Turnover collapsed after the war, and export links had disrupted. However, as with the
overall economy, recovery was quick enough that by the early 1950s, the Western IG Farben successors
could reach turnover and export shares as in the mid-1930s. R&D intensity and patenting levels of the
successors initially remained at comparable levels to before the war, with large increases in patenting and
high but constant R&D intensity thereafter. Over the course of the next decades, all successors became
globally successful corporations.

11Especially the synthetic fuel business, which was built on the assumption of an impeding peak oil could only be sustained
through government subsidies after the discovery of new oil fields eliminated the economic basis. As such, the policies towards
autarky pursued by Nazi Germany were convenient.
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Figure 4.5: Comparison to firms in electronics industry (Synthetic control)

Br
ea

ku
p

0

500

1000

1500

Pa
te

nt
s

19
25

19
30

19
35

19
40

19
45

19
50

19
55

19
60

IG Farben
Synthetic control
Siemens
AEG

Notes: Patenting of IG Farben and its successors compared to firms in the electronics industry. Only patents located in West
Germany and Berlin are counted. AEG includes Telefunken and Licentia. Siemens includes Siemens & Halske and Siemens
Schuckertwerke. Other firms entering the synthetic control are Bosch, C Lorenz/Standard Elektronik Lorenz, Tenovis and Voigt
& Haeffner. The synthetic control procedure (Abadie, Diamond, and Hainmueller, 2010) only fits on the 1925-1944 patent
counts, resulting in 65% combined weight for AEG and Siemens. A synthetic control using normalized weights yields similar
results, with more balanced shares.

While it is difficult to find appropriate control firms to IG Farben and its successors, the best attempt at
a descriptive analysis is the comparison with firms in electronics. The electronics sector was dominated
by a duopoly of Siemens and AEG, with some smaller companies like Bosch contributing a smaller
share. While Bosch and Siemens were at some point targeted for decartelization measures equivalent
to IG Farben, these remained largely without effect. Other candidate sectors drop out as they were
also affected by Allied breakups (Heavy industry/Steel) or disproportionately benefited from the war
(Automotive engineering). Figure 4.5 shows that patenting by IG Farben successors increased relative
to AEG, Siemens or a synthetic control group (Abadie, Diamond, and Hainmueller, 2010) of electronics
firms, but this result should be interpreted cautiously.

Fine-grained analysis at the product level allow a better understanding of the breakup structure. With
product-level data, it is possible to characterize the portfolios of the IG Farben successors and where they
compete with each other. When breaking up companies, it is in principle possible to do so along product
lines, as is often attempted in demergers initiated by the companies themselves. Similarly, IG Farben
could have been separated between markets and competition would have remained constant.

The extent of actual competition between the IG Farben successors can be measured by the overlap in
their product portfolios in product catalogs. Between pairs of IG Farben successors, the overlap is the
number of entries offered by both companies. The overlap share is the overlap divided by the maximum
possible overlap, which is the smaller company’s portfolio size. As no quantities of products sold are
available, it is not otherwise possible to quantify the change. Figure 4.6 reports the results for the 1952
and 1961 lists, with the largest successors and some border cases highlighted. The full list is available
in Table D.15 in the appendix. There is substantial overlap in the product portfolios. For the largest
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companies, the overlap share is at 30-40%. Some smaller companies have up to 70% offered by the other,
larger company. The intervention served to create within-market competition.

Figure 4.6 also gives an overview of the development of competition over time by serving a comparison
with the 1961 issue of the book. Note that this figure compares two cross-sections. The set of products
changes between catalogs. Products may be delisted because they are no longer in frequent use, but
mostly, products are added as the books became more detailed. This possibly reflects editorial choices as
well as the increasing development of the chemical industry. Although the absolute number of products
increased, the companies now typically have less overlap between them. The overlap share also decreased.
This suggests that companies changed their product portfolios by specializing, but also that the increased
product-market competition persisted for at least ten years.

Figure 4.6: Competition changes in product space
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In analyzing the development of product portfolios over time, not only cross-sectional but within-product
views are relevant. Table 4.2 focuses on products with supplier data from 1939, 1952 and 1961. Also,
only products with price information are analyzed. The table lists the number of IG Farben suppliers over
time. In the first half of the table, products are split by IG Farben supplier status in 1939, in the second
half by IG Farben successor supplier status in 1952. Two developments become clear. For one, there is
some shift in the IG Farben portfolio between 1939 and 1952. Some products are newly offered; some
products are no longer in supply. Especially the share of products offered by more than one IG Farben
member has now increased. While this situation was already present in 1939, for example if a product
could be supplied by a subsidiary of IG Farben and the main company itself, by 1952 it is exacerbated.

With the product data, it can be concluded that the breakup created competition in relevant markets. The
horizontal nature of the breakup lasted, and while the successors specialized, long-term competition was
stable.
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Table 4.2: Number of IG Farben suppliers by year and by 1939/1952 IG exposure

Panel A: IG Farben suppliers of products conditional on 1939 IG Farben status
IG Farben Products (1939) Other Products (1939)

Share Share Share Mean Share Share Share Mean
No IG One IG Multiple IG Farben No IG One IG Multiple IG Farben

1939 0.00 0.83 0.17 1.17 (0.37) 1.00 0.00 0.00 0.00 (0.00)
1952 0.30 0.35 0.34 1.32 (1.31) 0.83 0.13 0.04 0.22 (0.54)
1961 0.34 0.28 0.38 1.28 (1.29) 0.87 0.09 0.04 0.17 (0.49)

Panel B: IG Farben suppliers of products conditional on 1952 IG Farben status
IG Farben Products (1952) Other Products (1952)

Share Share Share Mean Share Share Share Mean
No IG One IG Multiple IG Farben No IG One IG Multiple IG Farben

1939 0.27 0.58 0.15 0.89 (0.64) 0.80 0.18 0.01 0.21 (0.44)
1952 0.00 0.58 0.42 1.73 (1.08) 1.00 0.00 0.00 0.00 (0.00)
1961 0.23 0.35 0.41 1.45 (1.24) 0.93 0.05 0.03 0.10 (0.38)

Notes: Describes the number of IG Farben successors, split by whether products were offered by IG Farben-connected companies in 1939
(Panel A) or 1952 (Panel B). Rows tabulate the status in 1939, 1952 and 1961. The first set of columns looks at products offered by IG Farben
in 1939/1952 and shows shares by current supplier status. The second set of columns looks at products only offered by other companies in
1939/1952, again showing shares. The last two columns show means and, in brackets, standard deviations. The data in this table only covers
products with data from 1939, 1952 and 1961 and where at least one price information is available. First half: 566 Products, of which 229 were
produced by IG Farben in 1939. Second half: 566 Products, of which 218 were produced by IG Farben in 1952.

4.6 Empirical Strategy

The analysis is based on a standard DiD analysis, comparing observations with high exposure to the IG
Farben breakup to such with low exposure. The former is labeled exposed, the latter comparison group.
Equation 4.1 fixes notation.

𝑌𝑖𝑡 = 𝛼𝑖 + 𝛽𝑡𝐷𝑖 + 𝛿𝑡 + 𝑋𝑖𝑡 + 𝜖𝑖𝑡 (4.1)

The regressions include unit fixed effects 𝛼𝑖 and time fixed effects 𝛿𝑡 . Exposure to the IG Farben shock
𝐷𝑖 is typically binary or categorical, but is also a continuous variable for some analyses.

Details depend on the outcome variable so that the discussion in this section mostly focuses on the
innovation analysis. The three outcome variables are innovation (patent counts), market structure (firm
counts) and prices. The unit of observation and the time structure is different for each so that unified
exposition is difficult and details are covered in the respective part of section 4.7.

The breakup exposure variable measures the concentration change of the IG Farben breakup along the
lines of the successor companies. Concentration levels within technology classes HHI can be calculated
from patent counts by applicant, see section 4.5.1. By considering IG Farben either as one unit or separate
as the eventual successors, the difference in concentration levels ΔHHI measures the breakup exposure.12

12In product-level analysis, the catalogs allow the comparison between products offered by IG Farben and other products. In
particular, products where IG Farben successors competed with each other can be compared to such where only one successor
is active. With this, the analysis can be directly linked to product market competition.
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In the main analysis, ΔHHI follows the literature by calculating HHI from shares of IG Farben successors
towards the overall set of patents in a technology class. Alternatively, measures solely focusing on the
breakup within the set of IG Farben patents can be calculated, thereby isolating variation introduced by
the breakup across occupation zones.

With the breakup taking place in the early 1950s, there are two pre-periods. One long pre-period covers
the time before the war, where IG Farben was one company. The main interpretation of the pre-war period
is to establish long-run parallel trends. The war time itself sometimes also comes with observational data
but is less reliable. After the war follows the post-war, pre-breakup period, 1948 to the early 1950s. This
period informs about new post-war levels. Finally, in 1952 most successors had incorporated, and the
breakup had taken effect. The post-period reaches until the 1960s.

Identification Assumptions Considering the IG Farben breakup as a previously unanticipated event
and predominantly geographically executed, the analysis can rely on two different assumptions for causal
identification.

First, investments in technology and production capacity are long-term and did not take the subsequent
breakup into account because it was not foreseeable. This motivates a comparison between technology
and product areas strongly affected by the shock to those only lightly affected. While variation of IG
Farben investments across technology areas are not random, this variation is unrelated to the eventual
breakup. Without the breakup, so the assumption, there would have been no differential development.

A second argument relies on the geographic structure of the IG Farben breakup. In the first place, research
and production are not randomly distributed across IG Farben facilities. However, the distribution is
chosen independently of the geography of the Western occupation zones, which historically strongly
impacted the breakup structure. With different zonal structures, e.g. BASF and Hoechst or BASF and
Bayer in the same zone, the breakup might have been structured differently. For example, had France
not insisted on its own area of influence, BASF could have been part of the US zone, changing the initial
structure for breakup considerations. A breakup along production lines instead of geography would have
been a theoretical possibility as well. Summarizing, the second possible identification assumption is
that areas with and without redundancy along occupation zones would have, absent the shock, developed
similarly.

The first approach can be realized in all analyses, the second one only where sufficiently fine-grained
data is available. For example, in product-level regressions, it is possible to compare product areas with
IG Farben activity, separated by whether the breakup created competition or not. In innovation analysis,
measures focusing on within-IG variation breakup exposure implement the second argument.

A fundamental assumption regarding the historical context is that the IG Farben shock can be separated
from other contemporary changes. The effects of war destruction, dismantlement, or the German
separation should be distinguishable from effects of the IG Farben breakup. Many parallel events are
quantifiable, and the timing of the IG Farben breakup allows for a discussion of this assumption. All
related arguments are collected in section 4.8.
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4.7 Results

4.7.1 Effects of the Breakup in Innovation Space

The main outcome variables relate to the overall patenting activity in a technology class or to patenting
by non-IG Farben firms. While the theoretical literature as well as antitrust litigation focuses primarily
on direct effects on the merging parties, for an economic analysis of the breakup, an aggregate view is
crucial. While only descriptive, section 4.5 suggests increased patent output of the IG Farben successors
following the breakup. Competitors responses might counteract of exacerbate this pattern.

Table 4.3: Descriptive statistics for IG/non-IG exposed technology classes

Comparing 1925-1939 tech classes: High vs low breakup exposure
N=33 (T) 102 (C) Exposed Comparison Difference (SE) p-value

Granted patents (p.a.) 48.65 44.88 −3.78 (21.30) 0.860
- Domestic 35.82 33.02 −2.80 (16.94) 0.869
- Foreign 9.80 8.78 −1.02 (3.34) 0.762
- Quality-weighted 143.83 134.57 −9.26 (62.64) 0.883
Matched to firm (%) 0.60 0.30 −0.31 (0.03) 0.000∗∗∗
- IG Farben (%) 0.37 0.04 −0.32 (0.02) 0.000∗∗∗
- Other (%) 0.24 0.26 0.02 (0.03) 0.531
HHI (IG together) 1802.86 396.70 −1406.15 (248.57) 0.000∗∗∗
HHI (IG separate) 601.76 375.47 −226.29 (185.14) 0.224
Domestic East (%) 0.17 0.18 0.01 (0.02) 0.624
Domestic East/Berlin (%) 0.24 0.31 0.08 (0.02) 0.000∗∗∗
War destruction (%) 0.33 0.33 −0.01 (0.01) 0.343
Dismantle (%) 0.40 0.13 −0.27 (0.02) 0.000∗∗∗
Dismantle (No IG, %) 0.08 0.09 0.01 (0.01) 0.660

Notes: Shows difference between technology classes with high and low breakup exposure. ∗ 𝑝 < 0.1, ∗∗ 𝑝 < 0.05, ∗∗∗ 𝑝 < 0.01. All data
refers to patents applied for in 1925-1939. Patents counts are annual. Domestic and foreign patents are identified using inventor locations
if available, applicant locations otherwise. Patents are weighted according to forward text similarity divided by backward text similarity, on
patent-level normalized to mean three and standard deviation one. The share of matched patents refers to patents matched to the firm dataset
described in section 4.8. HHI is calculated first assuming all IG Farben members to be one entity, then separately according to their post-1952
split-up. The location of patents is first described by the share applied for from the Eastern, Soviet sector. Berlin is handled separately due to
its special, divided status. War destructions refers to the share of flats destroyed between 1939 and 1945, weighted by the patent locations in a
technology class. Dismantlement on the technology class level is calculated as the share of patents by firms targeted by dismantlement. As the
exposed group is strongly selected towards IG Farben patents, it is also shown considering only non-IG firms.

With quality-weighted patent counts and measures of breakup exposure across technology classes, DiD
regressions in a technology-year panel are possible. The computation of quality measures and breakup
exposure is explained in sections 4.4 and 4.5.1. Only technology classes in chemistry are considered.
The subsequent results follow a two-way fixed effect regression with patent class and application year
fixed effects and an interaction of the application year with the breakup exposure indicator, which cuts at
the 75th percentile of the exposure score. Subsequently, continuous interactions are analyzed. Standard
errors in the regressions are clustered at the technology class level (Bertrand, Duflo, and Mullainathan,
2004).

The two sets of technology classes exhibit similar pre-war descriptives. Table 4.3 reports that technology
classes with high and low breakup exposure have similar pre-war patent counts, also in terms of patenting
by foreigners and by East German firms and inventors. They differ only in terms of exposure to the
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IG Farben shock. Applicants are more likely matched to firms in dismantlement lists and product
catalogs, but the difference is fully driven by IG Farben. Classes with high breakup exposure are more
concentrated before the war, but IG Farben fully drives this difference as well. The higher overall share
of dismantlements is also driven by IG Farben, which is discussed in detail in section 4.8.

A first set of results shows specifications exposing the full dynamics of pre-trends and post-breakup
differences. Figure 4.7 distinguish four periods. First, in the pre-war period, IG Farben was one company.
Then, the patent applications during the Second World War are grayed out. Wartime applications were
only processed in the 1950s. As firms will only pursue applications still valuable under the new breakup
situation, patent counts are subject to selection bias. After the war follows the post-war, pre-breakup
period from 1948 to 1951. Finally, in 1952 most successors had incorporated, and the breakup had taken
effect. The baseline regressions with quality-weighted patent counts, Figure 4.7a, shows flat pre-trends
before the war and before the breakup and long-run increases in patent count after the breakup. Panel
4.7b plots raw averages. The delayed start of the effect in both panels is characteristic of real innovation
processes, where R&D investments may take some time to materialize as patents.

Figure 4.7: Technology class-level DiD regressions: Quality-weighted counts

(a) Quality-weighted patent count: Regression
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(b) Quality-weighted patent count: Descriptives
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Notes: Descriptives and regressions comparing technology classes with high and low exposure to the IG Farben breakup, as defined by the 75th
percentile of ΔHHI (160). Exposure is measured using pre-war (1925-1939) data, but the breakup is finalized and effective around 1952. Shows
quality-weighted counts of granted patents, with average patent quality winsorized and rescaled to have average three and standard deviation
one to exclude negative values. 4.7a shows OLS regressions of log quality-weighted patent counts in technology classes with and without
pre-war IG Farben breakup exposure. Shows 95% confidence intervals. 4.7b shows average quality-weighted patent counts in the two groups.
The graphs correspond to mean(log y) (left) and mean(y) (right), explaining the difference. The German patent office closed in 1945-1947.
Wartime patent applications are largely prosecuted post-war. The coefficients are set in gray to indicate possible bias.

In subsequent analyses, the detailed dynamics are no longer considered and instead, grouped DiD
coefficients are reported for a larger set of dependent variables. 𝛽1948−1951 and 𝛽1952−1960 group the
respective years, showing differences to the baseline period 1925-1944. The main coefficient of interest
is 𝛽1952−1960−𝛽1948−1951. While pre-war and post-war levels of the outcome variables are often comparable
(so 𝛽1948−1951 = 0), the war could have resulted in level shifts, making the individual 𝛽 comparisons
uninformative about the breakup. Table 4.4 reports coefficients for a set of alternative dependent or
breakup exposure variables. Results are robust to estimation using Poisson regression (Table D.6) and
the inclusion of control variables (Table D.12). The DiD coefficient is 0.58. With average patent-level
quality normalized to three, this amounts to 14.9 excess patent grants per patent class and year.
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Decomposition: Quantity and Quality The breakup could have increased the propensity to patent by
the IG Farben successors as well as their competitors. After the breakup, the successors could no longer
access each other’s patents and research results. With this, the value of possessing patents increased. An
increased propensity to patent by some market participants could spill over to others as they are now also
confronted with the increased need to claim their stakes.

With an increased propensity to patent, differential effects across quality and quantity are possible. Raw
patent counts, as well as average yearly patent quality, allow further investigation. Figure 4.8 presents
the results of DiD regressions for both raw counts, Panel 4.8a, and for average quality, Panel 4.8b. The
very sharp and fast increase in the raw patent count after 1952, together with the drop in the average
patent quality, suggests that an initial quantity-quality trade-off is in play. The sudden increase in patents
is unlikely to reflect an increase in innovation but instead rather points to a change in the propensity
to patent.13 Adjusting for quality attenuates the initial increase, and the overall results are consistent
between raw and quality-adjusted patent counts.

Figure 4.8: Technology class-level DiD regressions

(a) Patent count: All patents
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(b) Average quality: All patents
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Notes: 4.8a shows OLS regressions of log patent counts in technology classes with and without pre-war IG Farben exposure. 4.8b corresponding
regressions for average patent quality within classes. The German patent office closed in 1945-1947.

The analysis of inventor counts yields similar results. The number of inventors listed on a patent is a more
classic but also an imprecise measure of investment in a particular project. Despite costing more, larger
teams have been shown to yield better results in both scientific and technological endeavors (Wuchty,
Jones, and Uzzi, 2007). The number of distinct inventors active in a technology class as well as the
average number of inventors listed on patents in a technology class are the corresponding dependent
variables. Figure D.15 in the appendix reports results. The number of unique inventors in IG-exposed
classes follows a similar pattern as the patent count. Increases are driven by new inventors, rather than
by established ones. The average number of inventors per patent has no initial jump in 1952, but a slight
positive long-run tendency. This evidence also points towards short-run increases in the propensity to
patent and long-run increases in innovation effort.

13Alternatively, it is possible that strategic delay plays a role here. Firms might hold back patent applications in the 1948-1951
time frame because of uncertainties over IG Farben’s future. If the firms expected that some extent of compulsory licensing
would be imposed between the successors, such behavior would be rational. However, this observation is not consistent with
the large and immediate drop in quality, as incentives to delay important patents are larger. Further, there is no large spike in
patenting by the IG Farben successors themselves, see Figure 4.4b.
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Decomposition: Domestic and Foreign When thinking about the breakup of a leading company,
policymakers worry about foreign entry. Possibly it is better to retain a national champion if it prevents
foreign competition, even at the expense of welfare and innovation. In the context of the IG Farben
breakup, this is a distinct possibility. With the end of the Second World War, the integration of Germany
into the Western alliance system started. However, it is unclear whether the IG Farben breakup further
facilitated this process.

Figure 4.9: Technology class-level descriptives of foreign and domestic patenting.
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(b) Domestic patents
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Notes: Shows quality-weighted counts of granted patents, averaged over technology classes with and without pre-war IG Farben exposure.
Patent location is defined by inventor location if available, applicant location otherwise. 4.9a focuses on foreign, 4.9b on domestic patents. The
German patent office closed in 1945-1947, so that no data is available for these years.

Immediately following the war, the number of patents by foreign applicants and inventors jumps up
distinctly, following a long-run decline before and during the war. Figure 4.9a shows that technology
classes exposed to the IG Farben shock experience a specifically large increase. However, the increase
happens immediately, and the timing seems unrelated to the IG Farben shock. Subsequently, the number
of foreign patents increases both for patents exposed to the shock and unaffected patents. While the
absolute increases differ in Figure 4.9a, Table 4.4 shows that in percentage (log) terms, the increase
is similar. There is a strongly positive and statistically significant increases in patent counts in both
1948-1951 and 1952-1960 relative to the pre-war period, but the difference between both in percentage
terms is small.

Domestic patents show a different development, with much larger relative increases for technologies
exposed to the IG Farben shock. Immediately after the shock, levels in the comparison group increase
relative to the breakup exposure group, so that the 1948-1951 coefficient is strongly negative in Table 4.4.
Visual inspection in Figure 4.9b shows that this is not due to differential trends but differential levels.
After 1952, the trends diverge, with the comparison group staying constant and the breakup exposure
group strongly increasing. As a consequence, the difference between the early and late DiD coefficient is
very large in Table 4.4.

Summarizing, foreign patenting plays an important role after the Second World War. In the context of
the IG Farben shock, it plays a smaller role than domestic patents.
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Table 4.5: Effects in Technology class-level DiD regression (continuous)

(1) (2) (3) (4) (5) (6)
Exposure: ΔHHI 1925-1939

log(Patents)
All

(Quality)
Non-IG

(Quality)
All

(Count)
Non-IG
(Count)

All
(Quality)

Non-IG
(Quality)

48-51× logΔHHI −0.035∗ 0.011 −0.019 0.020
(0.021) (0.019) (0.020) (0.018)

52-60× logΔHHI 0.052∗∗ 0.075∗∗∗ 0.057∗∗∗ 0.078∗∗∗
(0.020) (0.020) (0.020) (0.020)

48-51× logΔHHI Adj −0.038∗∗∗ −0.010
(0.014) (0.013)

52-60× logΔHHI Adj 0.028∗ 0.043∗∗∗
(0.015) (0.015)

{52-60}-{48-51} 0.087∗∗∗ 0.064∗∗∗ 0.077∗∗∗ 0.057∗∗∗ 0.066∗∗∗ 0.052∗∗∗
(0.023) (0.023) (0.022) (0.022) (0.015) (0.015)

Tech FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes

Classes 104 104 104 104 135 135
Dep. var. mean 4.235 4.071 3.143 2.987 4.047 3.913
Adj. R-Square 0.802 0.801 0.821 0.827 0.794 0.789
Observations 3350 3320 3358 3326 4223 4192

Notes: ∗ 𝑝 < 0.1, ∗∗ 𝑝 < 0.05, ∗∗∗ 𝑝 < 0.01 Standard errors clustered on the technology class level in parentheses. ΔHHI is the difference
between technology-level concentration, considering IG Farben as one block or as broken up according to the 1952 successors. logΔHHI Adj
replaces the log(𝑦) with the observed minimum where ΔHHI = 0. ΔHHI is strongly right-skewed, but its logarithm is not. The DiD coefficients
in turn compare patent counts in 1948-1951 and 1952-1960 with the pre-war period. The main effect is the difference between these two
coefficients, tabulated in row {52-60}-{48-51}. Columns 1, 3 and 5 count all patents, columns 2, 4 and 6 only non-IG patents. In columns 3-4,
raw patent counts are used, all other columns use quality-adjusted counts. The number of observations differs if for some technology-year cells,
no non-zero patent counts are available.

Continuous Breakup Exposure Table 4.5 uses a continuous breakup exposure variable instead of
the binarized version. ΔHHI is highly right-skewed, but in log terms more closely resembles a normal
distribution, so columns 1-4 use this transformation. Some technology classes have ΔHHI = 0, so that
they drop out. Columns 5 and 6 replace these values with the smallest actually observed 𝑙𝑜𝑔(ΔHHI)
and results remain qualitatively unchanged, albeit smaller in magnitude. The results are similar to the
binarized version. Counting all patents, strongly exposed technologies first have fewer patents relative to
the control group and the pre-war time period, but this reverses after the breakup. The magnitude of the
difference arrives at an elasticity of 0.07-0.09. Focusing on patents by applicants not associated with the
IG Farben, there is no initial drop, and the difference coefficient has a magnitude of 0.05-0.06.

Alternative Exposure Variables While intuitively appealing, ΔHHI does not directly conform to the
identification justification of idiosyncratic breakup of IG Farben along the occupation zones. ΔHHI used
in the previous analysis has the advantage of its close relationship to the previous literature in industrial
organization. On the other hand, ΔHHI strongly depends on the share of IG Farben in a particular
technology and only some part of the variation is driven by the breakup along the occupation zones. An
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ideal comparison would be between technologies with similar involvement of IG Farben but variation in
breakup intensity driven by geographic structure.

Two alternative breakup measures focus on variation within IG Farben. First, ΔHHIWithin considers
only patents associated with IG Farben and its subsidiaries for the calculation of the HHI. Second,
ΔHHIOcc disregards the subsidiary structure and considers only IG Farben’s geographical structure
across occupation zones for the calculation of HHI. Both approaches remove the amount of IG Farben
investment in a particular technology from the analysis. Section 4.5.1 explains details of the calculation.
Both exposure measures are standardized to mean zero and standard deviation one.14

Table 4.6 uses a continuous breakup exposure exposure variable instead of the binarized version. Only
technology classes with non-zero IG Farben share enter the regression. A concentration decrease by
one standard deviation increases patenting by between 15-20% on average over the 1952-1960 period,
relative to 1948-1951. As before, the dynamic effect shows a gradual increase with little pre-war trend,
see Figure D.14 in the appendix.

Robustness Checks Various robustness checks to the innovation analysis are collected and discussed
in section 4.8. Among them is a different estimation strategy focusing on a firm panel (Appendix D.3)
and control variables for various effects of war and postwar policy. However, the robustness checks
apply similarly the market structure and price analysis in the following paragraphs. Also, collecting them
in a separate section allows for the required deep discussion of the historical context and measurement
approaches. More immediately, estimates of the main technology class-level in a Poisson regression are
in Figure D.12 and Table D.6 in the appendix.

4.7.2 Effects of the Breakup in Product Space

Next to the analysis of innovation effects, an auxiliary analysis of outcomes in product space is helpful
for three reasons. First, the antecedent of innovation effects are changes in product space, so that the
analysis in innovation space alone would be incomplete. Second, in product space the level of analysis
is closer to a definition of relevant markets. Finally, the product-level analysis informs about potential
trade-offs to the positive innovation effect. As section 4.5 has shown, the IG Farben breakup resulted
in product-level competition between IG Farben successors. The reactions of other competitors might
strengthen or counteract this tendency. Increased competition could crowd out other competitors, creating
a trade-off to the innovation effect. On the other hand, the breakup could have reduced barriers to entry
erected by IG Farben, leading to more entry. Finally, price effects of the breakup could counteract or
exacerbate the innovation effect.

Market Structure The IG Farben breakup led to large changes in individual product markets. The
analysis in section 4.5.2 has focused on the IG Farben portfolio itself and found that the breakup introduced
horizontal product-level competition. This section formalizes and extends the analysis to a measure of
overall competition in the market, measured by the number of active firms.

14In contrast to the previously used ΔHHI, the alternative exposure measures are substantially less skewed. In fact, the log
transformation increases the skewness, so that it is not applied.
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In considering product-level effects of the IG Farben breakup, market structure itself is the first relevant
outcome. The recent literature in industrial organization has predominantly discussed endogenous product
variety within markets for differentiated products (Crawford, 2012, for a survey). Within such markets,
business stealing externalities between firms and self-cannibalization are relevant for the number of
products relative to the social optimum (Fan and Yang, 2020). For homogeneous products, as discussed
here, such considerations do not play a role. For firms, product variety is exclusively about the number
of markets they are active in. In principle, increased price pressure from the breakup should make
production unprofitable for marginal producers and reduce the number of firms in the market. However,
market concentration can serve as a barrier to entry. Licensing of necessary underlying technologies
might become easier for newcomers if instead of one dominating incumbent, multiple potential licensors
are available. Previous literature has also argued that in intermediate good markets, incumbents can
erect entry barriers by contracting with downstream customers (Aghion and Bolton, 1987). In fact, IG
Farben did pursue arrangements with other chemical companies about limitations of production portfolios
(Haber, 1971, p. 288).

With a panel of chemical substances covering the years 1939-1952-1961, it is possible to investigate
market structure effects in terms of the overall number of suppliers per product. Chemical substance lists
in historical product catalogs were created and consolidated by domain experts. Synonyms and closely
related products are linked to each other and clustered. As such, the market definition is relevant, but
narrow.15 Changes between 1939 and 1952 cannot be attributed to the breakup, as it is hard to isolate the
effect of other events and a pre-breakup measurement is unavailable. However, the number of suppliers
stays similar in most specifications. Between 1952 and 1961 the number of suppliers increases, driven
by non-IG firms, suggesting additional entry. This is particularly pronounced for products where more
than one IG Farben successor was active and the shock had increased competition. This is suggestive
evidence that an initial increase in competition can induce further entry.

Table 4.7 regresses the number of firms on exposure to the IG Farben shock measured in 1939 or 1952.
The regression is based on a panel of product occurring in the price lists and for which data from 1939,
1952 and 1961 is available. These restrictions focus on products already well-known and relevant in
the chemical industry in 1939. Standard errors are clustered at the product level (Bertrand, Duflo, and
Mullainathan, 2004). Unit fixed effects are at the same level. Time fixed effects are at the product catalog
level. In pairs of columns, the first one only controls for product and year fixed effects, while the second
introduces a set of controls for events between 1939 and 1952. The overall number of firms increases for
products with IG Farben exposure. Especially when measuring exposure in 1952, the increase is focused
- necessarily - on areas with multiple IG Farben successors. However, the coefficient for 1961 further
increases, suggesting crowding in of additional suppliers for products where the IG Farben breakup
created competition. Focusing on non-IG firms in the right half of the table, it becomes clear that IG
Farben successors themselves drove a large part of the increases in the overall number of firms in 1952.
The additional increase in 1961, however, relies more heavily on additional entry.16

15In principle, the market definition could be enhanced by incorporating relationships of substitutability between individual
substances. Such data could is available from databases of modern chemistry. The drawback that the level of knowledge has
significantly advanced since the period of study could be circumvented by focusing on input-output relationships described in
the actual patent documents. This remains for future research.

16Similar results can be obtained when leaving out the 1939 data, so that only the 1952-1961 difference is analyzed. In this
result, trading firms play a role. Trading companies, according to the product catalogs, are to some extent representatives of
foreign companies selling products in Germany. They are only listed in the 1939 and 1961 book, so that their exclusion in Table
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Table 4.7: Number of suppliers by product, as a result of IG Farben exposure

Number of firms Number of non-IG firms

(1) (2) (3) (4) (5) (6) (7) (8)

IG1939 ≥ 1 × 1952 −0.531∗ 0.364 −0.436 0.403
(0.295) (0.320) (0.277) (0.282)

IG1939 ≥ 1 × 1961 1.166∗ 1.701∗∗ 1.245∗∗ 1.699∗∗∗
(0.603) (0.667) (0.564) (0.629)

IG1952 = 1 × 1952 0.369 0.704∗∗∗ −0.115 0.165
(0.297) (0.251) (0.288) (0.248)

IG1952 = 1 × 1961 1.141∗ 1.167∗∗ 0.885 0.860∗
(0.597) (0.518) (0.567) (0.499)

IG1952 ≥ 2 × 1952 1.403∗∗∗ 2.845∗∗∗ −0.469 0.867∗∗
(0.509) (0.423) (0.485) (0.369)

IG1952 ≥ 2 × 1961 5.950∗∗∗ 5.629∗∗∗ 4.678∗∗∗ 4.302∗∗∗
(1.072) (1.057) (1.030) (1.026)

Product, Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Type × Year FE Yes Yes Yes Yes
Controls Yes Yes Yes Yes

Products 566 566 566 566 566 566 566 566
Adj. 𝑅2 0.528 0.618 0.560 0.640 0.505 0.607 0.534 0.622
Observations 1698 1698 1698 1698 1698 1698 1698 1698

Notes: Considers only products with data from 1939, 1952 and 1961 where at least one price information is available. IG1939 is the count of
firms associated with IG Farben offering the product in 1939, pre-war and pre-breakup. IG1952 is the number of IG Farben successors offering
the product in 1952, immediately after the breakup. The number of firms is the number of suppliers of the product according to the product
catalog of the respective year, winsorized at the 99% level. In columns 5-8, IG firms or successors are excluded from the count. Control
variables include the count of firms headquartered in East Germany or Berlin in 1939, the count of cartels in 1939 and the count of firms slated
for dismantlement in 1939, each interacted with year dummies. Table D.16 contains estimates for control variables. See also the discussion in
section 4.8. ∗ 𝑝 < 0.1, ∗∗ 𝑝 < 0.05, ∗∗∗ 𝑝 < 0.01

Price Effects Innovation effects are key measures for dynamic consequences of the IG Farben breakup,
but next to the long-run considerations, short-run effects may play a role as well. Price changes directly
influence consumer welfare, possibly occur in a shorter time-frame. As the product analysis is limited to
homogeneous goods markets, an increase in competition should lead to a decline in prices. Case-study
evidence from merger retrospectives would suggest as much (Ashenfelter, Hosken, and Weinberg, 2013,
p. 240). For some products, IG Farben and its subsidiaries maintained production capacity in multiple
locations, eventually assigned to multiple successors. Therefore, the breakup will effectively induce
competition only in some product markets, while firms in other product markets at most face potential
competition. Short-run price effects are likely concentrated in such markets with effective competition,
i.e. multiple IG Farben successors.

Confirming this hypothesis strengthens the understanding of the setting but also offers additional benefits.
Unlike for patents, where the patent application measures research activity with temporal noise, the
timing of prices is clear. Prices are valid for the exact point when they are posted so that higher-frequency

D.17 is a mixture of robustness check and heterogeneity analysis. Results stay qualitatively similar, but with smaller magnitudes.
Entry by foreign suppliers seem to play some role, but does not explain the full effect.
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analysis is feasible. With pre-breakup price data, analysis a before/after analysis in the product domain
is feasible. Finally, price data allows for additional robustness checks. Here, it is possible to test whether
the changes in tariff levels in 1951 had a confounding effect.

The analysis of the pricing effect relies on factory prices for chemical substances from industry journals.
Price reports start in 1948 after price controls are relaxed. They list products on a rolling basis, so that
in a typical month 30-40% of all prices are reported. For the price effect analysis, only products with
prices both before Q2/1950 and after Q2/1952 are considered. The product prices are linked to supplier
lists that reveal which IG Farben members (1939) and how many successors (1952) offer the product in
the market. For details on data construction, see section 4.4 and Appendix D.1.1.

Figure 4.10 displays average prices by IG supplier status over time. Products not sold by any IG Farben
successor (as measured in 1952) behave similarly to products where only one IG Farben successor was
present. If at all, price trajectories are above the ‘no IG’ group. However, products where the IG
Farben breakup created product-level competition are on a different trajectory. While prices overall
increase substantially in 1951, they do not participate in that price increase to the same extent. The
IG Farben status as measured in 1939 is a mixture of the two groups identifiable in 1952, so that their
price trajectories are only marginally below products without IG Farben involvement. Visually, the start
of divergence of the price trajectories seems to occur earlier than the breakup finalization (early 1952).
Instead, it coincides with the breakup announcement and the enactment of its legal basis in August 1950.17
In subsequent regressions, the first year of the post-period is accordingly set to the third quarter of 1950.

Figure 4.10: Raw price data descriptives

(a) Prices by 1952 IG Farben status
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(b) Prices by 1939 IG Farben status
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Notes: Average prices reported in a month. Prices are normalized to the closest data relative to January 1950. In panel 4.10b,
10/1953 is removed. There, a very short price list leads to a very large outlier. Products are grouped by the occurrence of IG
Farben (or subsidiaries and successors) as suppliers in 1939 or 1952. In 1939, it is not possible to distinguish which eventual
successors produce a product.

Table 4.8 formally reports regression coefficients on the price data. Standard errors in the regressions are
clustered at the product level (Bertrand, Duflo, and Mullainathan, 2004). When a product has multiple

17Law 35 of the Allied High Commission (“Disperson of Assets of I.G. Farbenindustrie A.G.”), dated 17th of August 1950.
The executive order finalizing the process is dated 17th of May 1952. The legal documents are retrievable at http://deposit.d-
nb.de/online/vdr/rechtsq.htm.

http://deposit.d-nb.de/online/vdr/rechtsq.htm
http://deposit.d-nb.de/online/vdr/rechtsq.htm
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Table 4.8: DiD estimates for price effects

(1) (2) (3) (4) (5) (6)
log(price) All > 1949𝑄1 > 1949𝑄1 All > 1949𝑄1 > 1949𝑄1

Post × IG1939 = 1 −0.015 −0.026 −0.040
(0.026) (0.025) (0.025)

Post × IG1952 = 1 0.069∗∗ 0.068∗∗ 0.065∗∗
(0.030) (0.028) (0.031)

Post × IG1952 ≥ 2 −0.069∗∗∗ −0.050∗∗ −0.057∗∗
(0.025) (0.024) (0.025)

Product, Month FE Yes Yes Yes Yes Yes Yes
Type × Month FE Yes Yes Yes Yes Yes Yes
Cartel × Month FE Yes Yes
Δ Tariff × Month FE Yes Yes

N Time series 464 464 401 516 516 443
N Chemicals 363 363 308 400 400 336
Within R-Square 0.000 0.001 0.007 0.012 0.009 0.013
Observations 8129 7953 6878 9030 8854 7593

Notes: Shows difference in difference estimates for a assumed event time in 1950Q3. Columns 1-3 show effects based on the 1939 structure of
IG Farben. Columns 4-6 differentiate products by whether there was one or more than one IG Farben successor active. The baseline is always
the group of products with no IG Farben involvement. Chemical types are organic, inorganic, metals, pharmaceuticals and plastics. Products
with involvement of at least one sales cartel in 1939 are considered as cartelized (“Cartel”). Changes between the previous special tariff and the
subsequent ad valorem tariff after the 1951 tariff adjustment are the Δ Tariff control variable. The difference is winsorized at the 1% and 99%
level. Both tariffs are calculated as percentages and Δ Tariff is the difference. When information about quality grades (e.g. ‘pure’) is available,
multiple time series per product can exist. Standard errors clustered on the product level in parentheses. ∗ 𝑝 < 0.1, ∗∗ 𝑝 < 0.05, ∗∗∗ 𝑝 < 0.01

time series due to quality grades, clustering remains at the higher product level. Unit fixed effects at
the product grade level are present in all regressions. Time fixed effects are at the month level (prices).
Columns 1-3 show price tendencies using pre-war information on IG Farben portfolios as well as post-war
information about the general IG Farben portfolio. Here, negative coefficient estimates are statistically
indistinguishable from zero. Columns 4-6 show that coefficients focusing on areas with ex-post IG
Farben competition are negative and statistically significant. Prices for products with ex-post IG Farben
competition fall relative to prices of other products.

The price analysis enables several robustness checks, namely the role of sales cartels, regulations con-
cerning specific product groups and tariff changes. Section 4.8 discusses the role of sales cartels. These
were widespread and officially supported in pre-war Germany but dissolved in the early post-war period.
Table D.11 shows that accounting for cartels listed in the 1939 supplier lists does not qualitatively change
results. Further, Allied economic policies and restrictions may have interfered with prices. Table D.12
shows that product type × month fixed effects or excluding the specifically impacted group of plastics
does not change the results. Finally, with product-level tariff data, the effects of Germany’s 1951 GATT
accession can be estimated. Results in Table D.13 remain unchanged.

With information about the nature of the chemical substances, detailed comparisons of the groups are
feasible. Tables D.9 and D.10 in the appendix reports descriptive statistics between products produced by
IG Farben and such not produced by IG Farben. The respective section discusses the differences in detail.
In general, IG Farben products were simpler by molar mass and heaviest element and, per kg, cheaper.
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IG Farben products were much more likely in the areas of pharmaceuticals and plastics and less likely
in inorganic chemistry. This is in line with historical narratives, suggesting that other chemical firms
were especially active in specialty chemicals. Yet, the only area of chemistry that IG Farben dominated
completely were plastics.

Propensity score matching takes observable differences between chemical substances into account. Table
D.14 reports estimates from DiD analysis following the matching. The matching incorporates detailed
chemical characteristics, pre-breakup price levels, as well as the competitive situation. Estimates confirm
the results from the analysis without matching and tend to show even larger negative effects.

4.8 Robustness to Historical Factors

This section discusses important historical factors and parallel events surrounding the IG Farben breakup.
As the breakup happens during one of the most turbulent episodes of German history, the core question
is whether the end of the Second World War set off a complete renewal (“Hour Zero”) or was rather
characterized by continuity. This question was subject of intense debate in post-war German society.
Both for society and for the economy, historians emphasize continuity and reject notions of a radical
divergence (e.g. Morsey, 2010).

When analyzing the effects of the war, the three main themes are the direct impact of the war, such
as bombing, Allied occupation policies and the separation of the Soviet occupation zone as well as
the German postwar policy and recovery. Insofar as these effects impact both IG Farben-related areas
of chemistry as well as unrelated areas, they are a part of the parallel trends assumption justifying the
difference in difference analysis. While in general untestable, in some cases, it is possible to appraise their
effect by constructing appropriate control variables. Most control variables can be introduced directly in
the regressions on technology class or product level. Oster (2019) bounds allow an explicit assessment
of biases by unobservable confounders. For an additional robustness check of the central innovation
result, a firm-level panel offers a different view and yields similar results. Its construction and results are
discussed in Appendix D.3.

War Damages The war damages to German cities were extensive, but according to the historical
literature, the effect on the German industry was smaller than often thought. For example, the US
Strategic Bombing Survey conducted after the war concluded that of Germany’s war industry, at most
20% had been destroyed (Jeffreys, 2010, p. 295). Overall, the German economy recovered quickly and
could return to pre-war levels of export by 1950 (Figure 4.11b). Due to its central role for war-related
industries such as synthetic fuels and explosives, IG Farben facilities were likely the primary targets of
Allied air campaigns. As an example, the Leverkusen plant was hit by 14 aerial attacks since 1944.18 Yet,
the machines were left rather intact, with only 15% of the factory beyond repair (Jeffreys, 2010, p. 295).
To the extent that IG Farben facilities were specifically targeted and destroyed, the damages could result

18The Leverkusen example represents a middle ground for the IG story. Of the West German plants, the BASF facilities
were hardest hit by the war, while the Hoechst facilities were spared. On the other hand, the Hoechst facilities suffered from
underinvestment. The strongest attacks against IG plants targeted the East German synthetic fuel plants at Leuna, which were
completely destroyed.
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in negative effects on innovation by IG Farben successors, i.e. in smaller estimates.19 Systematic data
on the war-time destruction of companies is not available. However, an indirect proxy is the devastation
of the city’s housing stock. Robustness checks based on Kästner (1949) and Hohn (1991) match patents
to the closest city within 10 km and assign the destruction ratio of that city. Table 4.3 shows that the
destruction ratio does not vary between technology classes differentially exposed to the IG Farben shock.
In technology-level (Tables D.8), firm-level (Table D.19) and product-level regressions (Table 4.7), the
inclusion of war destruction as a control variable does not alter results.

Figure 4.11: Zero Hour: Germany’s economy
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with reference level 1937. Source: Statistical yearbooks for West Germany.

Allied Economic Policies and German Recovery In the initial period after the war, with the economy
in disarray and the population’s basic needs unmet, the Allies assumed direct control over the the
economy. With this initially came a set of production restrictions. These were especially targeted towards
the dismantlement of all war-related capacity, discussed in detail below, and the restriction of strategic
goods. Table D.20 in the appendix gives a detailed account of the relevant products, industries and the
development of the regulations over time. According to the 1946 Potsdam Industrial Plan, the German
economy was to be limited to 70-75% of the pre-war 1936 level. The ceilings were never reached before
the 1947 Revised Industrial Plan increased figures to 100% of the 1936 level. By mid-1950, also this
restriction was lifted. After mid-1950, restrictions were still placed on war-related chemicals and some
parts of the plastics value chain. These were only relaxed in 1951.

For the empirical strategy, relaxations in the 1950s are of the largest concern. If these relaxations would
differentially affect production areas with IG Farben activity, they constitute parallel events of concern. In
particular of concern is the plastics industry, where relaxation only occurred by 1951. Robustness checks
thus repeat analysis while disregarding technology areas (Table D.8) or products (Table D.12) relevant
for the plastics industry. The consistency of results is also reassuring given the dominance of IG Farben
in these fields. The removal of restrictions towards the civilian industry by the Petersberg Industrial

19Yet, Waldinger (2016) exploits bombing damage to universities and does not find long-run effects on research output.
Likewise, Baruffaldi and Gaessler (2021) find that the loss of research infrastructure has little effect on research output over ten
years. Renewal of obsolete infrastructure might even have a positive effect.
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Plan, effective in late 1950, are unlikely to have large confounding effects. First, the restrictions did not
regulate individual products within broad class of chemicals. Fixed effect controls for the broad chemical
class are available. Second, the removal of restrictions did not lead to an immediate, marked increase in
production. Figure 4.11a shows the output of the German manufacturing and chemical industry relative to
the pre-war level. The chemical industry does not show a strong output increase in mid-1950, indicating
that the policy was either not binding or that not much additional capacity was available. This is consistent
with the historical literature (Morsey, 2010, p. 5).

The brisk German economic recovery and the economic boom starting in the early 1950s could themselves
possibly confound the IG Farben shock. In fact, the number of granted patents in technology classes not
exposed to the breakup does stay constant, both within and outside of chemistry, see Figure D.11. On the
level of technologies, it is difficult to think of a comparison that alleviates these concerns. If the economic
shocks driving the recovery were global (e.g. the Korean war), they would similarly affect counts of, e.g.,
US patents. Even if they were specific to technologies in Germany, affected German companies’ patenting
activities would likely spill over to other patent systems as well. On a more practical side, matching
technologies or patents across patent systems in historical time comes with considerable difficulties, see
the online appendix of Baten, Bianchi, and Moser (2017). A better argument is that in product-level
regressions, effects can be traced particularly to such products where multiple IG Farben successors were
active. It is unlikely that macroeconomic shocks driving recovery and boom exactly correlate with the
micro-structure of the IG Farben successors’ product portfolios.

Dismantlement of Factories After the war, the Allies sought to limit Germany’s war potential, but
also to recuperate some of their own the economic losses. The extent and impact of these policies can be
captured using data given by Harmssen (1951, pp. 98–126). Harmssen prints the official dismantlement
targets for the Western Zones as of 1947 and reported dismantlements for the Soviet zone. There are
almost 2000 factory entries, pertaining to some 1700 firms. However, only 100 firms of the chemical
industry actually occur in the dismantlement lists, consistent with the over 80% of entries classified as
aerospace, defense, machinery or mining. The actual list of dismantled plants is much smaller as the
Western allies adjusted the lists. For the Western zones, the list of dismantlement targets starts with
1500 entries and is halved by 1949 (Wallich, 1955, p. 369). Table 4.9 shows that even of the most
productive firms in chemistry, only a minority is affected. For a technology class analysis, the share of
patents by firms slated for dismantlement can be calculated. Table 4.3 shows that among non-IG Farben
firms, around 8% of pre-war patents were applied by targeted firms, balanced between classes by IG
shock exposure. Controlling for this variable leaves results unchanged, see Table D.8. The firm-level
regressions in Table D.19 show that the patent output of firms exposed to dismantlement permanently
suffers, but the estimates for IG Farben exposure remain unchanged.

Next to the effect of dismantlements on the wider chemical industry, the effect on IG Farben is important.
IG Farben was a primary target, and all factories were contained in the lists. On a technology class
level, this mechanically leads to a strong correlation between breakup exposure and dismantlement share.
Studying the issue in more details, it is unlikely that damages to the IG Farben successors through
dismantlement drive the effect. Looking more closely at the dismantlement lists, some plants were to
be fully disassembled or destroyed. Yet, most of the time, only parts of listed plants were intended
for dismantling. For example, IG Farben in Leverkusen was set to lose production facilities for seven
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types of chemicals, a small subset of its portfolio.20 In West Germany, whole plants were slated for
dismantlement only in the French zone. Abelshauser (2003, pp. 349–350) discusses their history. After
much controversy, dismantlements only affected synthetic fuels and plastics, crucial other plants could be
saved. If dismantlements had been realized as originally intended, they would have implied considerable
damages for the recovery of BASF. In the end, they never affected the supply of in-house production or
other industries. While lacking counterfactuals, it is notable that the IG Farben successors could recover
quickly to pre-war levels of economic activity, as discussed in 4.5.2.

Table 4.9: Breadth of dismantlement and Eastern Zone exposure in firm population

(%) Firms with dismantled plants East HQ Firms

Book Any US UK FR SU 1939 Top 10% (All)

1939 9.2 3.1 2.3 2.7 3.5 38.5 260 (2373)
1952 11.1 3.8 2.8 3.1 3.1 8.3 289 (2734)
1961 5.3 1.3 1.9 1.9 1.3 6.9 318 (3101)

Notes: Dismantlement statistics for top 10% firms by chemical products offered in 1939/1952/1961 respectively. East HQ refers to the later
German Democratic Republic but also includes firms in today’s Poland and Czech Republic.

The Soviet Sector and German Separation Quickly after Germany’s liberation and the division into
occupation zones, the Soviet sector started to develop on a diverging path. Here, the harshest reparation
policies were introduced. Large parts of the surviving industry were dismantled and brought to the Soviet
Union. As in the Western zones, the Soviets took direct control of the IG Farben plants, even before
nationalization efforts were begun in earnest.21 Latest with the currency reforms in East and West, the
integration of West and East German industry began to decline. In the supplier lists of 1952, no East
German chemical firms are listed. Figure D.16 shows the importance of interzonal (East-West) trade by
comparing it with overall trade. The initial importance of interzonal trade is visible, as well as the quick
drop in the 1950s and the lack of recovery. Table 4.9 shows that before the Second World War, a large
share of chemical companies was headquartered in East Germany or Berlin. Of those, some were able
to relocate their operations and are still active in West Germany in 1952. For inventive activity, it is
possible to control for the pre-war share of inventive activity taking place in the Soviet sector. This can
either occur on the firm or the technology class level. For firms, it is also possible to introduce controls
for the headquarter location in the East. Dismantlement targets for the Soviet sector are available from
Harmssen (1951).

Robustness checks can account for differential exposure to the Soviet sector. For innovation, analysis on
the technology class level and the firm level is feasible. Table 4.3 shows that patents in technologies with
and without exposure to the IG were located in East Germany with the same rate. However, the share of
patents located in Berlin is higher for IG-exposed technologies, consistent with some IG plants located
there. Explicitly controlling for the share, Table D.8 finds estimates unchanged. In analyzing supplier
numbers, the share of firms located in East Germany before the war leaves the core results intact, see

20Listed were for example a drug against Malaria, some plastics and substances relevant as rocket fuel. All substances listed
in the 1952 product listing were still offered by Bayer. See D.21 for the 1947 dismantlement entries related to IG Farben.

21For the history of IG Farben in East Germany after 1945, see Stokes (1995).
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Table 4.7 and D.16. Firm-level regressions in Appendix D.3 explicitly introduce control variables and
show the robustness of the innovation analysis.

Allied Competition Policy Before the war, the German laws regulating cartels were anti-competitive,
as considered from today’s perspective. Maintaining high prices to strengthen industry was a policy
objective. Cartels were allowed, and their general form was regulated by law, to the extent that Ger-
many’s cartel court’s was largely arbitrating grievances between cartel members. Early during the Allied
occupation, in 1947, such cartels were dissolved. However, Germany itself did not introduce competition
regulation until 1958 (Murach-Brand, 2004)

As cartels were publicly supported institutions, cartel membership was often public information. The 1939
product catalog details which products are to be procured from cartel organizations directly. Similarly,
for listed companies, firm directories also include information about cartel memberships. Combining
this information, the effect of the dissolution of cartels can be directly accounted for. In the data, there
are 48 cartels supplying 143 products, among which 52 have price information available. Of those, 20
are offered by cartels with IG Farben association. Cartels with IG Farben membership have a particular
role in this study. The 1939 data contains 9 such cartels, most prominently the “Stickstoff-Syndikat”
(Nitrogen syndicate), which was dominated by the IG Farben group. Products supplied by these cartels
are considered to be supplied by IG Farben.

Whether the 1947 dissolution of cartels affected the innovation activities of chemical companies is unclear,
but for example Kang (2020) suggests a negative effect. In principle, areas with IG Farben activity (see
for example Stokes, 2016, p. 174) and such without were affected, and cartels were frequent throughout
the economy. Nevertheless, since IG Farben was the dominant force in its areas of activity, the effect
in non-IG areas would likely be stronger. Therefore, if patenting activity in non-IG areas drops more
strongly immediately following the war, this could be a reason. Table D.11 shows that controlling for
cartels does not strongly influence the results.

Tariff Changes from GATT Accession Effective October 1951, Germany entered the General Agree-
ment on Tariffs and Trade (GATT), the precursor of today’s World Trade Organization. Germany’s tariff
system was thoroughly reformed, and many tariffs changed. To capture the effect, tariff levels based on
the pre- and post-reform schedules (Lang, 1939; Bundesministerium der Finanzen, 1951) are matched to
individual products. The previous schedule had not undergone major reforms since 1902 and was, with
only short interruptions and exceptions, still in effect in 1951 (Jerchow, 1979). The 1902 system imposed
a specific tariff that leveraged fixed amounts per unit of imported goods. In 1951, structure, level and type
of tariff were changed. Afterwards, a largely ad valorem tariff, leveraging fixed percentages of imported
goods’ values, was introduced. Knowing the prices per volume, the two systems can be compared. The
change increased tariffs, reportedly to - unsuccessfully - gain leeway for GATT negotiations, and put Ger-
many in an intermediate position compared to other European countries (Wallich, 1955, pp. 257–258). In
the covered chemical products, tariffs changed from an average of 9.1% to 14.9%. In price regressions,
controls for dynamic effects of the tariff changes do not strongly influence the estimates for the IG Farben
shock, see Table D.13.
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Other Factors Next to the previously discussed factors, others elude measurement attempts. Direct
expropriation and exploitation of German intellectual property and tacit knowledge took place during and
after the war. German IP in foreign countries was confiscated, and survey groups by the Allies took stock
of the technology level of German firms. Scientists - especially in war-related fields such as rocketry and
chemical weapons - were recruited (Jacobsen, 2014). Overall, it is difficult to quantify the effect of these
policies. Historians who tried to judge their economic impact determined it to be large and significant
(Gimbel, 1990). On the other hand, confiscated technical specifications often required additional tacit
knowledge (Stokes, 1991, p. 15) or were about to be obsolete due to new technological developments
(Murmann and Landau, 2000, p. 61). To the extent that civilian research was concerned, contacts between
US and German scientists might have helped to facilitate post-war collaboration. The results of Baten,
Bianchi, and Moser (2017) suggest that such policies have a positive effect on subsequent innovation,
resulting in a possible upwards bias. Whether such a bias materializes depends on whether the policies
more strongly targeted fields with IG Farben activity. Yet, Allied technical survey efforts covered a broad
set of targets.22 Possible confounding effects that come through labor-related channels are beyond the
scope of this paper. This is, for one, the loss of life during the war, but also the relocation of East-German
inventors (Dorner et al., 2020). On the management level, the loss of experienced personnel due to war
crime trials is another possible factor. However, the number of convicted managers is small, and their
sentences were short (Jeffreys, 2010). Oster (2019) bounds allow an explicit assessment of biases by
unobservable confounders. Table D.7 shows corresponding results.

4.9 Conclusion

This paper studies the effect of the 1952 IG Farben breakup on innovation, market structure and prices.
The breakup created competition in technology classes and product areas, driven by the horizontal
splits of the different R&D locations of IG Farben. Patent grants in technology classes affected by the
breakup strongly increase. Innovation effects incorporate short-run quantity-quality trade-offs and are
driven by changes in domestic patenting. Foreign patenting in Germany increases, but the differential
increase in technologies with breakup exposure does not explain the overall increase. The breakup
facilitated subsequent entry and led to moderate short-run price declines. The latter effects can be traced
particularly to products where the breakup created horizontal competition between IG Farben successors.

Naturally, the historical context of the IG Farben breakup is fraught with potential confounding factors.
As such, any analysis remains afflicted by limitations. However, it is possible to analyze the historical
context for how strong the confounding factors possibly are. The influence of some can be quantified,
others can be understood more closely. By studying the timing of the estimates or by limiting to narrow
product areas, it is possible to alleviate concerns. Eventually, it is unlikely that a single factor from the
historical context can explain the set of observed effects better than the IG Farben breakup itself. For
example, it is possible that wartime damages to IG Farben or political action immediately after the war
damaged Farben’s ability to compete. This might have led to entry or weakened IG’s ability to control
markets, leading to reduced prices. However, since the observed price drops are exclusively driven by
markets where the IG separation actually increased competition, this is unlikely. Robustness analyses in

22Gimbel (1990, pp. 64–67) details the cases of chemical companies Merck, Degussa and Linde next to IG Farben and its
subsidiary Wacker. Overall, the survey teams worked on a list with 20000 targets, later narrowed to 400.



122 CHAPTER 4

turn introduces control variables for effects of war destruction, Allied occupation and competition policy,
and the Soviet sector.

The results might be lower bound estimates. The IG Farben successors likely did not engage in all-out
competition. This might be due to interlinkage of production chains, but also IP rights. Each IG Farben
shareholder received stock of every successor. While ownership of IG Farben was widely distributed, this
might facilitate considerations related to common ownership. Further, in Germany, commercial banks
typically exercise voting rights of shares in their customers’ portfolios, leading to interlinked choices.
Outright cartelization is also not unfathomable, in fact the IG Farben successors were often indicted by
European antitrust authorities (Kovacic, Marshall, and Meurer, 2018).

The historical setting of the IG Farben breakup is very relevant today. The industry structure of the
German chemical industry of the early 1950s is not unlike the situation today. Large corporation with
strong investments in in-house research continue to drive technological developments. Scale effects are
key to success. Mergers such as ChemChina-Syngenta, Dow-DuPont or Bayer-Monsanto have focused
attention on competition and innovation. On the other hand, whether similar findings apply for platform
industries with their pronounced network effects remains for future research.

The implications for policy remain subtle. The results highlight the importance of competitive markets
and strong antitrust policy. On the other hand, the Allied occupation and mandated breakups are credibly
one-shot events that are unlikely to foretell future breakups. The German government had agreed to
introduce formal competition legislature largely following the US role model. With regards to outright
breakups, it had remained conservative and did not plan to extend similar policies to other firms formerly
on candidate lists. Consequently, dynamic incentives remain unchanged. Firms would not have to fear
further breakups as a consequence of their business success. For an evaluation of the effect of competition
on outcomes such as innovation, this is helpful as it removes a channel. Channels of effects are restricted
to changed firm size and changed competitive situation, for non-IG firms only the latter. As a policy of
breakups would change dynamic considerations, such extrapolations have to remain cautious.
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A.1 Data

In the following we briefly introduce the scientific literature and patent data. Table A.1 provides details
on the structure of the merged dataset. Figure A.2 shows descriptive statistics over time on the samples
of patents and SNPL references.

Scientific Literature Data

Scientific literature data comes from 43 million scientific publications, corresponding to all research
articles indexed in the Thomson Reuters Web of Science (WoS) database that were published between
1980 and 2016. WoS is the largest bibliographic database of scientific literature and provides all main
information for each scientific publication, including authors, affiliations, research field and citations.1

Patent Data

The main source of patent data in our study is the database DOCDB, a database maintained and updated
on a weekly basis by the European Patent Office (EPO).2 It includes records from more than 90 patent
offices. We base our study on a sample of more than 4.8 million patent families in DOCDB, comprising
all patent families with at least one grant publication at the European Patent Office (EPO) or the United
States Patent and Trademark Office (USPTO), with first filing date between 1985 and 2012, included.
We include references generated during the search and examination phase of patents filed at the EPO,
USPTO or the World Intellectual Property Organization (WIPO). Note that at the WIPO, there is no grant
procedure and WIPO examinations are typically conducted by the EPO.

DOCDB contains all information digitally available on these patents. An advantage with respect to
non-patent literature (NPL) citations data, as compared to other databases, is the availability of enriched
xml text comprising separate fields for title, authors, year, journals title, pages, volume and number.
This allows matching this information separately with bibliographic scientific literature information,
substantially improving the quality of the match (see section A.2).

Whenever we refer to technology field, we use the classification of IPC patent codes in the 34 technology
fields provided by WIPO.3

Data Transformation

Whenever we use logarithmic transformations on variables with natural zero values (e.g. citation counts),
we use a log(𝑥 + 1) transformation. When unifying patent attributes at the patent family level, several
decisions have to be taken. For technology fields, we use the modal technology field of member patents.
In case of ties, we use the numerically lowest field. When no field classification is available, we drop
the patent family. When multiple patent value estimates from Kogan et al. (2017) or PatVal (Giuri
et al., 2007) are available, we use the highest one. Some variables with extreme values are winsorized.

1More extensive information on the WoS is available at www.webofknowledge.com.
2More extensive information on DOCDB is available at www.epo.org/searching-for-patents/data/bulk-data-sets/docdb
3WIPO Classification: https://www.wipo.int/edocs/mdocs/classifications/en/ipc_ce_41/ipc_ce_41_5-annex1.pdf

www.webofknowledge.com
https://www.wipo.int/edocs/mdocs/classifications/en/ipc_ce_41/ipc_ce_41_5-annex1.pdf
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Table A.1: Structure of the dataset

Scientific publications (1980-2012) Total Excluding Excluding
social/humanities self-references

Scientific publications 42,962,463 35,874,824
Scientific publications in SNPL references 2,248,563 2,203,035 2,079,713
Scientific publications in SNPL references (within
five years)

1,627,872 1,597,426 1,465,312

Patent families (1985-2012) Total EPO USPTO

Patent family - SNPL reference combinations 6,962,239 1,009,481 6,177,977
Unique SNPL references 2,229,658 575,637 2,017,694
Patent families 4,767,844 1,960,772 4,442,742
Patent families with SNPL references 948,006 488,270 917,179

Notes: Observation counts in the dataset. Discrepancies originate from the different views on the data. The first part of the
table also considers SNPL citations from the 1980-1984 range, whereas the second part does not.

Backward reference counts, the number of times a patent references to other patents, are winsorized at
the 95th percentile. The same is applied for the number of inventors and SNPL references. Lengths of
the first independent claim are winsorized at the 1st and 99th percentile. When assigning scientific fields
to scientific publications, in case of multiple fields, we retain the scientific field whose codes are first in
the alphabet. We restrict our sample to SNPL citations where the publication year of the scientific article
was at or before the first filing year of the patent family.

A.2 Methods

Linking Scientific and Patent Literature Data

“Science” usually refers to the creation and organization of knowledge, often in the form of testable
hypotheses and predictions regarding natural phenomena. In a stark simplification, academic scientists
(who are mostly employed in the public sector) live in a world governed by the quest for making
pioneering contributions to knowledge, hence striving for novelty of insight and for a better understanding
of fundamental issues (Merton, 1968; Merton, 1973). According to this view, scientists also follow norms
of disclosing newly generated knowledge and information in scientific publications. The societal or private
benefit from applications is considered less important, but also hard to assess directly. In principle, the
science could thus be decoupled from the economic pursuit of wealth and monetary gain.

Conversely, “technology” refers to the realm of the artificial and to artifacts which may have, or may have
not, been constructed with the help of scientific insights. Technology is defined in the OECD Frascati
Manual as the collection of techniques, skills, methods, and processes used when producing goods and
services. Applications of new insights are largely brought about by engineers (Allen, 1977). Engineers
(who mostly work in the private sector) are governed by rules and incentives that are very different
from those guiding the behavior of scientists. They seek to contribute new technologies, use secrecy
to protect the market positions of their employers and are involved in strategic considerations of market
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rivalry. Engineers thus turn knowledge into marketable products which then generate monetary returns
for owners. This by now classical view of the relationship between science and technology is described,
inter alia, by Allen (1977) and Brooks (1994).

Initially understood as two distinct and independent realms, science is now viewed to directly facilitate
the application of new knowledge (Stokes, 2011), and that science and technology may follow a process
of co-evolution (Murray, 2002). Science has also been described as a kind of map used in the process of
devising new technologies (Fleming and Sorenson, 2004). This new view acknowledges that the realms
of science and commercial technology development overlap and that their relationship is not necessarily
a linear one. While universities mostly generate knowledge, they also file patent applications and license
intellectual property. And corporate entities mostly seek to commercialize new products and services, but
also engage in basic research not immediately tied to product development and in publication of research
results.

SNPL References as a Measure of Knowledge Input

We use non-patent literature references to scientific publications (SNPL) as an indicator of relatedness
of a technology, as described in a patent, to scientific contributions, as reported in scientific publications.
Numerous studies have proposed patent citations as an indicator of knowledge flows (Jaffe, 1986; Jaffe,
1989). While some authors have raised concerns on the validity of this approach for general patent
citations (Thompson and Fox-Kean, 2005; Alcacer and Gittelman, 2006), SNPL references have been
consistently found to be more related to actual knowledge flows than other types of references (Roach
and Cohen, 2013). In the context of our study, it is not necessary to interpret SNPL references as a direct
indicator of knowledge flows: we assume more broadly that a cited scientific paper contains relevant
information for the understanding and the development of a technology.

SNPL Matching Methodology

The dataset we adopt to link patents to cited scientific publications is a full match of DOCDB patent data
with bibliographic information included in WoS. The matching process is documented in detail in Knaus
and Palzenberger (2018). Here we present a brief overview.

The matching consists of three steps, target selection, search and quality control. In the target selection
step, cleaning steps are undertaken to exclude NPL strings which are no scientific articles or are outside
of the available WoS data. For the remaining entries, a search engine was employed to look up NPL
full-text strings in a full-text index of the complete WoS or Scopus content. The search engine returns a
ranked list of match candidates. During the quality control stage, the topmost candidate is examined and
the match quality is judged according to a field-based scoring. Only high-quality matches are considered
valid matches for the final dataset.

The matching procedure is applied on a first set of roughly 37 million NPL references. 27 million (71.8%)
entries were selected as a potential target and linked to WoS entries. However, not all of these constitute
a valid match after taking the quality of the match into account. The quality of a match is judged by six
quality indicators (year, volume, page(s), first author, journal title, article title). Each of these indicators
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equals one if the information from the matched scientific article can be found in the non-patent literature
citation string. The quality score is the sum of the indicators and ranges from zero to six.

To validate the matching quality, random subsamples of 1,000 NPL references each were drawn. An
NPL string is considered a valid target if it could be found in the WoS using a manual search. Figure A.1
plots precision and recall, where precision is computed as the share of correct matches out of all matches
delivered by the algorithm. Recall is the share of all targets which could be recovered successfully. The
graph reveals that when accepting a quality score of three and higher as high-quality matches, precision
scores of 0.99 and recall scores of 0.96 (EPO) and 0.92 (USPTO) can be achieved.4 Table A.2 shows
the final quality achieved.

We, therefore, restricted the sample to matches of quality equal to or higher than three. Out of the 27
million references retained as valid targets, 13 million (47.1%) satisfied this quality requirement. Our
units of analysis are DOCDB patent families which typically include multiple references.

While the precision and recall scores are high, they only refer to what could have been matched – the
content of the Web of Science. Clearly, not all scientific publications that can be referenced in patents
are covered in this database. We assess the extent of this issue and consider the subset of NPL references
which could not be matched to WoS. We attempt a match to an alternative publication database, Scopus,
which has a larger coverage. This exercise generates 113,340 additional SNPL links to 49,254 Scopus
items for publication years 1996-2016. Given that this is less than 2% of the total, for simplicity, we
disregard these links in our analysis.

Our final sample contains 948,006 DOCDB patent families with at least one grant publication and at
least one matched SNPL reference at any of the patent offices considered here.

This compares well with previous datasets, and in general, constitute a larger number of observations
than previously identified in existing studies. Ahmadpoor and Jones (2017) use patent data exclusively
at the USPTO between 1976 and 2015 where 759,000 patents were found to be directly linked to at
least one scientific publication in WoS via an NPL reference. Jefferson et al. (2018) starts with 11.8
million scientific publications published between 1980 and 2015, of which roughly 1.2 million are cited
in 690,000 patent families (1.1 million patents). Marx and Fuegi (2019) link US patents from 1926-2018
to scientific papers from 1800-2018, identifying approximately 15.7 million citation links between 1.4
million patents to 2.9 million papers. In comparison, our dataset links 948,006 patent families from
1985-2017 to 2,229,658 distinct scientific articles in the time range of 1980-2016.

SNPL Self-references

We single out SNPL references to scientific publications where at least one author also figures among
the inventors of the patent and where one affiliation of the SNPL references overlap with the list of
applicants in the patent. We refer to these categories as SNPL inventor self-references and applicant
self-references, respectively. This type of SNPL references reveals links between patents and scientific
publications originating from either the same organization or from the same individuals, or both. The first

4With a quality cutoff at four, the precision increases even further, but recall suffers to a greater extent so that the quality
cutoff at three is preferred when putting equal weight on precision and recall.
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Table A.2: Match quality

Office Precision Recall

EPO 0.99 0.96
USPTO 0.99 0.92
WIPO 0.99 0.97

Notes: Based on a manual validation exercise of 1000 NPL references per office, as reported in Knaus and Palzenberger (2018).
Precision is the share of NPL reference matches that was correct. Recall is, when considering all NPL references that could
have been matched, the share that were matched correctly.

analyses rely on the full sample of SNPL references. We present results separately for these categories
and excluding them in a later stage.

We consider SNPL inventor self-references those that refer to scientific publications where at least one
author has the same name of an inventor on the patent. We consider as SNPL applicant self-references
those that refer to scientific publications where at least one affiliation overlaps with the list of applicants
in the patent. To match applicants with affiliations we use a list of manually disambiguated organizations
(academic institutions and firms) derived from the combination of multiple sources: the Global Research
Identifier Database (GRID), the ORBIS database and the EU Scoreboards database. We merge separately
applicants in patents and affiliations in scientific publications to these lists using a probabilistic matching
algorithm based on training data. We consider an applicant and an affiliation to be the same when they
match to the same entity in the list. Note that the two categories of self-references may overlap.5

Related Literature on SNPL References

We briefly summarize the literature that has so far discussed the characteristics of SNPL references and
their relationship with patent value.

Hicks et al. (2000) look at all scientific articles published between 1993 and 1995 in journals indexed
in the Science Citation Index (SCI) with at least one US author. They find that about 6,600 of these
publications were cited in 1997 US-invented patents. The probability of a publication being cited as SNPL
depends not only on the publication’s research field, but also on its scientific impact. If a publication
belongs to the top 1% most highly cited publications, it is about nine times more likely to be cited by a
US patent than a randomly chosen US publication. In similar vein, Popp (2017) finds in green energy
technology fields that scientific articles that are cited frequently by other articles are also more likely to
be cited by patents.

Breschi and Catalini (2010) analyze all patent applications to the European Patent Office (EPO) registered
in the period 1990 to 2003 within three technology fields (lasers, semiconductors and biotechnology)
and find about 44,000 patents with altogether 18,000 SNPL references. SNPL references are more
frequent in biotech and lasers than in semiconductors, presumably due to the larger distance between the
semiconductor technology field and science.

5Figure A.5a presents related descriptive statistics.



SCIENCE QUALITY AND THE VALUE OF INVENTIONS 129

Harhoff, Scherer, and Vopel (2003) are among the first to analyze the relationship between the value of
such patents and the scientific impact of the underlying scientific contributions. They document a positive
relationship between patent value and the number of NPL references. The relationship is particularly
strong in the technical area of chemicals and pharmaceuticals. Several other authors have explored the
role of NPL references as potential determinants of patent value. Branstetter (2005) uses a random
sample of 30,000 US patents from 1983-86, of which about 4,300 include SNPL. Those patents that cite
scientific articles are of significantly higher quality (more claims and forward-citations) than those that
do not. Sorenson and Fleming (2004) link about 17,300 patents from 1990 with about 16,700 non-patent
references. Here, patents that cite non-patent literature receive more citations and are cited more quickly
than other patent. They argue this positive relationship between forward-citations and science intensity
of a given patent is due to knowledge diffusion through the academic publication. Gittelman and Kogut
(2003) explicitly ask “Does good science lead to valuable knowledge?" in biotechnology. They suggest
that “(. . . ) the evolutionary logics that select valuable scientific publications and valuable patents are
different, and because of this, influential publications are not more likely to lead to influential patents
than other publications." They employ data on the patent and publication portfolios of 116 biotechnology
firms and obtain results that largely confirm their hypothesis.

Suzuki (2011) argues that patented inventions may be assessed with regard to their monetary or their
technical quality. The presence of references to the scientific publications has a strong positive effect on
the technological value, but a weak negative effect on the commercial value of the patent. The author
also points to considerable heterogeneity across technological fields. Fischer and Leidinger (2014) use
data from Ocean Tomo auctions between 2006 and 2009 to approximate auction prices as a function of
observable value correlates. They find only weak and imprecisely estimated effects for the number of NPL
references. As they point out, patents traded at Ocean Tomo auctions are not representative and mostly
in the IT and IT-related technical fields. Zahringer, Kolympiris, and Kalaitzandonakes (2017) construct a
sample of young life science firms and find that higher-quality academic science is associated with patent
citations. This relationship is moderated by the respective firm’s research activities. Veugelers and Wang
(2019) use all Web of Science journal articles published in 2001 and all patents from PATSTAT (version
2013b). They find that only about 10% of articles become SNPL. Novel publications are more likely to
receive future citations by patents, particularly the 1% highly novel scientific publications. They further
find that publications receiving more scientific citations also receive more patent citations.

Sapsalis, de la Potterie, and Navon (2006) use data on 155 patent families with application dates be-
tween 1985 and 1999 at the EPO to model the relationship between citations received by patents and
characteristics of the underlying science. They find that NPL self-references (i.e. the inventors are also
authors on the referenced scientific publication) to the scientific literature are associated with an increase
in forward-citations of a patent. The authors argue that in such cases of highly valuable patents, “the
inventors master (and contribute to) the related science-base (as witnessed by their own publications) and
decide to codify their tacit knowledge into technological inventions" (Sapsalis, de la Potterie, and Navon,
2006, p. 1640).

In the perspective followed by Fleming and Sorenson (2004), invention is interpreted as a process
of search for new and useful configurations of technological components. Science serves as a map,
pointing inventors to particularly useful configurations of components. Alternatively, science allows
inventors to avoid search over less productive solutions. However, these effects are not pertinent across
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all technologies. Recourse to science may offer little help when inventors work with highly independent
components, but should generate high returns when the underlying inventive problem is particularly
difficult. Using the population of patents granted by the USPTO in May and June of 1990 (n=16,822
after exclusion of 442 patents without any references), they find that only 2,919 of these patents reference
scientific publications. In the empirical analysis, the authors show that references to scientific publications
increase forward-citations received by patents with an elasticity of about 10%.

While the results of the studies discussed here are intriguing, they are typically obtained from relatively
small samples which are particularly well-suited for the respective studies. An exception is the recent study
by Ahmadpoor and Jones (2017), who analyze the network of US patents citing directly or indirectly SNPL
references. They hereby introduce the distance to the science frontier as a metric for science-technology
intensity. Watzinger and Schnitzer (2018) borrow this metric and provide correlations between the
science-technology intensity and the value of patents. Mukherjee, Romero, et al. (2017) emphasize the
importance of the age structure of references. The authors study (separately) scientific publications in the
WoS database and patents, but they do not link NPL references to WoS entries. Both for publications and
for patents they detect a “hot spot" defined by the age structure (of backward references) that is correlated
with an increase in citations received by the publication or patent.

Measures of Science Quality

Scientific Citations

Our main variable of interest is the scientific quality of publications cited in patents. We use measures of
science quality based on the count of forward-citations to publications. This is an established bibliometric
indicator of scientific quality. The use of citations is based on the notion that scientists cite publications
they consider influential for their own research. Accordingly, it is possible to assume that highly cited
publications have a greater impact on follow-on research and represent a meaningful measure of their
scientific quality.

For a given publication, we count the number of citations in a window of three years from publication.
This raises the issue that some of these citations may happen later than the filing date of the citing patent.
In this case, the number of citations received by a publication may be not independent of the patent
itself. In our main specifications, we assume for simplicity that the number of citations to the publication
remains indeed independent to the patent citation. In robustness analyses, we verified that the core results
remain equivalent when excluding patent citations to publications published in the three years before the
filing of the patent.

Journal Impact Factor

An alternative measure of science quality is the impact factor of the journal in which the respective
publication is published (JIF). In any given year, the impact factor of a journal is the number of citations,
received in that year, of articles published in that journal during the two preceding years, divided by the
total number of articles published in that journal during the two preceding years. We use JIF indicators
available by the inCite Journal Citations Report. A disadvantage of this measure is that, due to the lack

http://jcr.incites.thomsonreuters.com
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of completeness of the necessary information, the data are available only after 1997. Moreover, the JIF
constitutes a retrospective measure of quality of the journal that ignores the possible high variance of
publications quality within one same journal and over time. On the other hand, the JIF has the advantage
of being predetermined at the time a publication is published, so that it is not subject to concerns about
truncation and mechanical correlation with the measure of patent value.6

Patent Level Aggregation of SNPL References

In our sample, for patents with SNPL, there are on average 7.2 SNPL references per patent, and a
considerable share of 64.0% has references to more than one distinct scientific publication. In our main
analyses, we define SNPL science quality as the maximum science quality across publications in SNPL
references in a patent. This is based on the notion that the distribution of scientific forward-citations is
highly skewed. Consequently, the scientific impact of the most highly cited publication, or the journal
with the highest JIF, may be more indicative of SNPL overall science quality than the average across
publications. For robustness, we also estimate alternative aggregation operators. This is further discussed
in section A.2.7

We apply a coherent criterion to aggregate at the patent level the information regarding the presence
of self-references: we consider a patent as having a self-reference if the scientific publication with the
highest scientific quality among the SNPL references is a self-reference.

Measures of Patent Value

Patent Citations

Our main dependent variable is patent value. In our main specification, we proxy patent value with
the number of forward-citations received by the patent. The number of citations is an established, and
perhaps the most widely used, measure of patent value, which is highly correlated with other indicators of
technological and economic value of patents (Harhoff, Scherer, and Vopel, 2003; Fischer and Leidinger,
2014; Moser, Ohmstedt, and Rhode, 2018). Patent citations differ substantially from citations in scientific
literature. Scientific citations constitute recognition of scientists of the relevance of previous contributions
for their own work. In contrast, patent citations, particularly to other patents, perform the legal function
of documenting the technological relatedness of a patent to existing prior art with the scope of assessing
its novelty and patentability (Michel and Bettels, 2001; Roach and Cohen, 2013).

Due to different legal requirements, citations at the EPO and the USPTO differ substantially. EPO patents
tend to cite patents that are essential to document the novelty (or lack of novelty) and patentability of the
invention; the applicants, in particular, are not required to provide any citation8. Applicants at USPTO
are expected to report the most extensive list of citations to all possibly relevant patents and examiner
complement this list. For this reason we provide analysis where we count EPO and USPTO citations
separately. In our main specifications we use USPTO citations.

6We use the JIF as variable of interest in table A.6 to show robustness of our results to alternative measures of science quality.
7Table A.7 shows the corresponding results.
8Indeed, EPO patents are often filed with no initial references, and, when present, the introduction of references by the

applicant is arguably more strategic than in other jurisdictions.
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We construct the count of citations to a patent from the USPTO over a period of 5 years from the first
filing date.9 In robustness analyses, we use the count of citations from the EPO within 5 years from the
first filing date. In case of the EPO citation measure, only examiner-supplied citations are considered.

Patent Scope

As alternative proxy for patent value, we adopt a measure of the patent’s scope. The value of a patent is
considered proportional to the scope of its protection on a particular technology. The narrower the scope
of protection, the lower is its value. The text of patent claims tends to be longer for highly specific and
narrow patent protection. In other words, longer descriptions of a claimed invention are associated with
more specific features that are actually object of the patent protection (Kuhn and Thompson, 2019). Our
measure is defined as the logarithm of the number of words in the first independent claim in patents.10

Measures of Monetary Value

Patent citations and patent claim length need to be understood as merely indirect measures of a patent’s
economic value. Moreover, the number of citations is at times considered to also capture the technological
and social value of a patent (Trajtenberg, 1990), which may differ from the private value for the patent
owner. Obtaining direct indicators of the monetary private value of patents is a challenging task. Data
on this dimension of patent value have limited coverage. To complement the array of indicators of patent
value in this direction we adopt two sources of data. First, we use data provided by Kogan et al. (2017)
based on estimated stock market returns to the grant of the patent, as a proxy of the private value of the
patent grant. Kogan values are only available for patent families with US patent members where at least
one applicant was a publicly listed US company. The data cover exclusively a total of 1,029,987 patent
families, of which 229,525 come with SNPL references. Second, we use survey-based assessments of
patent value from the research project PatVal (Giuri et al., 2007). This is a subsample of 11,061 patent
families with at least one EP patent member, of which 2,554 have SNPL references with first filing year
mostly in 2003-2005.11 Descriptive statistics are available in the main publication.12

9The choice of the time window for the count of scientific and patent citations is motivated primarily by pragmatic
considerations: we want to ensure a sufficient period so that the number of citations actually reflects the underlying constructs
we are interested in, but we want to limit truncation. The difference between the window considered for scientific publications
and for patents is also motivated by the fact that patent applications are not instantly published after filing and – as a result –
typically receive few citations within the first years, whereas scientific publications are often cited immediately after publication.

10Tables A.5 and A.6 show the corresponding results. Descriptive statistics are available in the main publication.
11Tables A.5 and A.6 show the corresponding results.
12The Kogan et al. (2017) patent value measures have been in widespread usage since their publication, but in our setting

they come with major drawbacks. Much of the private value of the technology will already be incorporated in the stock price,
as previous patent publications and grants in other patent systems are informative for investors. The value narrowly captures the
additional value of a patent granted in the US patent system. Any information related to the technological capability of the firm
that the patent reveals will not be incorporated in that measure. On the other hand, the measures from Giuri et al. (2007) are
based on a survey, but the exact phrasing measures much more precisely the concept of private patent value: “Suppose that on
the day in which this patent was applied for, the applicant and you had all the information you have today regarding the value
of this and the related patents. In case a potential competitor of the applicant was interested in buying the whole set of patents
(the patent family including all national patents derived from it), what would have been the minimum price (in Euro) that the
applicant should have demanded?”.
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A.3 Regression Analyses

Regression Models

Selection of Scientific Publications into SNPL References

In a first set of analyses, we consider the probability and frequency in which scientific publications appear
in SNPL reference, as a function of their scientific quality.

The regressions take the following forms:

𝑦𝑖 = 𝛽𝑐𝑖𝑡 cit𝑖 +
∑︁

ft
𝛽ft SFfi ∗ 𝑇fi + 𝜖𝑖 (A.1)

Dependent variable and predictors of interest:

• 𝑦𝑖: The dependent variable is a measure of the probability (or frequency) of a scientific publication
appearing among the SNPL references. Respectively, the variable is either a binary or a count
variable. Count variables are log-transformed with offset 1. Given the large dataset and the large
number of FE groups, nonlinear (count) models are not considered. We employ several variants of
these variables.

• cit𝑖: The main independent variable is a measure of scientific quality. We measure scientific
quality at the publication level as the number of citations received over a 3 year period starting
from publication (see section A.2).

FEs:

• SFfi ∗𝑇fi: These are FEs corresponding to the combination of scientific fields and publication years.
These FEs control flexibly for mechanical differences in scientific quality and SNPL frequency
across different scientific fields and over time within each scientific field. In total, there are 252
scientific field codes supplied by the Web of Science.

Science Quality and Patent Value: Residualized Variables

Naturally, usage of SNPL references as well as the quality of cited SNPL varies substantially over
technological areas as well as over time. In the regression models below, this is taken into account explicitly
with FE control variables. In all figures relating patents to scientific quality, we apply residualization
which brings the graphical display in line with the regression outputs.

To do so, we regress both the SNPL science quality variables as well as the patent value variables on the
full set of technology area × first filing year FEs. The formal model reads 𝑦𝑖 =

∑
ft 𝛽ft𝐹fi ∗ 𝑇ti + 𝜖𝑖 . This

is done in the full sample of patents both with and without SNPL references. Afterwards, we calculate
the residual variation as 𝜖𝑖 ≡ 𝑦𝑖 − �̂�𝑖 = 𝑦𝑖 −

∑
ft 𝛽ft𝐹fi ∗ 𝑇ti, where 𝜖 , �̂� and 𝛽 are estimated values. In fact,

𝜖𝑖 = 𝑦𝑖 − �̄�ft, where �̄�ft is the mean within technology area × first filing year group. Therefore, 𝐸 [𝜖𝑖] = 0,
both overall and within each ft group.
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The values plotted in the graphs are 𝜖𝑖 + �̄�, where �̄� is the full-sample mean of 𝑦. This returns the absolute
levels back to what is contextually expected and interpretable.

In plain terms, this strategy removes level effects within technology area × first filing year groups by
subtracting the mean 𝑦 within groups. The overall level is retained by adding the overall 𝑦 mean. The 𝑦

variable is transformed. Before, it is a deviation from the within-group mean. Afterwards, it is a deviation
from the overall mean.

Science Quality and Patent Value: Regression Models

In the empirical analysis, we study the relationship between the presence and the quality of scientific
publications referenced in patents and the value of patents.

The regressions take the following form:

𝑦𝑖 = 𝛽hasSNPL hasSNPL𝑖 + 𝛽snplQ snplQ𝑖

+
∑︁

ft
𝛽ft𝑇𝐹fi ∗ 𝑇ti +

∑︁
𝑎

𝛽𝑎𝐴ai +
∑︁
𝑛

𝛽𝑛𝑁ni +
∑︁
𝑟

𝛽𝑟𝑅ri +
∑︁
𝑝

𝛽𝑝𝑃pi + 𝜖𝑖
(A.2)

Dependent variable and predictors of interest:

• 𝑦𝑖: The dependent variable is a measure of patent value. In the main specifications and figures,
we use the count of citations from the USPTO within the first 5 years after filing. In alternative
specifications, we use: the count of citations from the EPO; indicators of monetary value; patent
scope as measured by the length of the first independent claim (see section A.2). All dependent
variables are in log-terms with offset 1. Given the large dataset and the large number of FE groups,
nonlinear (count) models could not be considered.

• hasSNPL𝑖: A dummy equal to 1 if a patent has at least one reference to a scientific publication

• snplQ𝑖: A measure of SNPL science quality. We measure scientific quality at the scientific
publication level as the number of citations received over a period of 3 years from publication. We
define SNPL science quality as the maximum scientific quality across SNPL references in a patent
when more than one is present.13

FEs:

• 𝑇𝐹fi ∗ 𝑇ti: These are FEs corresponding to the combination of technological classes and first
filing year. These FEs control flexibly for mechanical differences in patent value across different
technological fields and over time within each technological field.

• 𝐴ai: These are FEs for the applicant of the patent.

• 𝑁ni: These are FEs for the distinct number of inventors listed on the patent.

13We test the robustness of the results to alternative aggregation criteria (see table A.7).
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• 𝑅ri: These are FEs for the number of patent references. We use individual FEs for each number of
references up to the 95th percentile and assign one dummy for all patents with a higher number of
references.14

• 𝑃pi: These are FEs for the number of patent references to scientific publications. We use an
individual FE for each number of references up to the number corresponding to the 95th percentile
and aggregate in one FEs patents with a higher number of references. Note that hasSNPL𝑖 is
collinear and therefore dropped when this set of FEs is used.

Regression Results

Selection of Scientific Publications in SNPL References

We present first regression results for the probability that a scientific publication appears in SNPL
references as a function of its scientific quality. In the first main specification, table A.3, column 1 and 2,
we consider all SNPL references. Second, in column 3 and 4, we consider exclusively SNPL references
within five years from the year of publications. Third, in column 5 and 6, we consider references within
five years and exclusively if they are the SNPL references with the highest scientific quality. In a fourth
variant, column 7 and 8, we consider only SNPL references that are cited for the first time by an applicant,
so that each patent applicant-scientific publication pair is counted at most once (one per applicant).
Finally, in table A.4, we provide regression results excluding academic patents as well as self-references
of various types. Figures A.3a and A.3b also show graphically that the exclusion of SNPL self-references
is irrelevant to the results. Overall, we consistently find a positive and significant effect of science quality
on the selection of scientific articles into SNPL references.

Main Regression Results: SNPL Science Quality and Patent Value

Table A.5 presents regression results for our core findings. It shows elasticity estimates for the main
measure of SNPL science quality and each one of the alternative measures of patent value as dependent
variable. We include sets of more demanding controls incrementally. All models include the variable
hasSNPL𝑖 as a control for the level effect of having at least one SNPL reference. In column 1 to 6, we
present results for our base-line specification where we control exclusively for technology field and year
pair FEs. In column from 7 to 12, we include all patent level controls as detailed in the above section A.3.
In column from 13 to 18, we add applicant FEs. Figure A.4a further highlights the striking differences in
the overall distribution of patent citations for patents with and without SNPL references.

Alternative Measures of SNPL Science Quality

As a first variant to these specifications, we test the robustness of the results to alternative measures
of SNPL science quality. In table A.6 we use a measure based on the journal impact factor instead of
citations. The number of observations is lower because the journal impact factors are only available to

14In regressions involving PatVal (EUR) values, the number of available observations is substantially lower. Here, we include
only the log-transformed count of backward patent references when estimating the extended specification.
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us from 1998 onward. Overall, we find very similar results.15 In table A.7, we use alternative measures
of SNPL science quality derived from different criteria of aggregation at the patent level of the scientific
quality of multiple scientific publications, when more than one appear in the NPL-references of a patent.
When 𝑐𝑖 is the citation count of SNPL reference 𝑖, in our main models we consider the maximum.
Alternatively, we also consider the sum (

∑
𝑖 𝑐𝑖), average ( 1

𝑛

∑
𝑖 𝑐𝑖) and square root of the sum of squares

(
√︃∑

𝑖 𝑐
2
𝑖
). We find similar results irrespective of the aggregation criterion used. Figure A.4b graphically

shows the results.

Self-references

Figure A.5a shows the frequency of occurrence of self-references: between 5 and 10% of all patent
families include a self-reference. Most self-references are inventor self-references (5-10%), whereas
applicant self-references are less frequent with 2-4%. The frequency of self-references tends to decrease
with the SNPL science quality (although non-monotonically); this tendency is most pronounced at the
top.

In the paper, we consider the possibility that self-references drive the results. On the one hand, from
a theoretical standpoint, it is interesting to consider whether high-quality science leads to high-value
technologies within or outside the boundaries of the organizations in which it is developed. On the other
hand, we want to ensure that the results are not driven by highly productive organizations and individuals
that perform scientific and technological activities at the same time.

Figure A.5b replicates the results reported in the paper, separating different categories of self-references.
The different groups of self-references behave very similarly. Table A.8 provides regression estimates
separately for a sample consisting only of patents with self-references and excluding all patents with self-
references. While the magnitude is larger for the sample with self-references, the estimated elasticities
are positive and significant in all specifications. We can conclude that self-references do not drive the
overall effects.

Technology Fields, Year of Patent Filing, and Applicant Countries

We analyze the heterogeneity of the estimates, first, across technological fields of patents. In table A.9,
we run separate regressions by technology main area. In line with previous literature (e.g., Harhoff,
Scherer, and Vopel, 2003), we find that effects are particularly strong in Chemistry. However, SNPL
science quality also matters for Electrical Engineering, Instruments as well as Mechanical Engineering.

Second, we explore the heterogeneity over time based on the first filing year of patents. We decompose the
elasticities calculated in table A.5 (column 1/2, 7/8) over time. Figure A.6 depicts the corresponding point
estimates. We find that after marginally increasing between 1985 and 2000, the extent of the relationship
decreased substantially. After 2000, there is a substantial decline which is especially pronounced for the
US system. The understanding of the reasons for this decline requires further research.

15The only exception are the results for the USD values, where the results are unstable in the first two specifications (column
5 and 11) but remain positive and significant in our last and most complete specification.
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We consider the possibility that the effect is driven by intense science usage of particular countries. To
do so, we split the sample by the first applicant country and consider China, Europe (EU-28), Japan,
South Korea and the United States separately. From table A.10, we find that science quality is important
in all countries, but particularly so in Europe, the US and Japan. Overall, the results are consistent across
different geographic areas.

Interdisciplinarity of SNPL References

We explore the role of interdisciplinarity of science. Previous studies demonstrate the existence of a close
connection between novelty and scientific impact and the ability of scientists to successfully recombine
knowledge from distinct domains (Mukherjee, Romero, et al., 2017; Wang, Veugelers, and Stephan,
2017; Veugelers and Wang, 2019). In the context of our analysis we are interested in exploring whether
this dimension explains the correlation between SNPL science quality and patent value. We proxy
the interdisciplinarity of science with the interdisciplinary journals as captured by the classification of
journals in scientific fields in WoS.16

In figure A.7a we plot the share of patents with SNPL references to interdisciplinary scientific publications
and, in figure A.7b, the patent value by SNPL science quality of patents with and without SNPL
interdisciplinary references. The share of patents with interdisciplinary SNPL references is highest for
intermediary values of SNPL science quality. Indeed, we find that interdisciplinarity is associated overall
with higher patent value, with the exception of patents at the top of the SNPL science quality distribution.
The correlation with SNPL science quality remains in any case highly positive for both categories. Table
A.11 presents the underlying regression results.

Distance of SNPL References

Finally, we present regression results for the distance and time-distance of SNPL references. The related
results are presented graphically in the paper. Table A.12 shows results relative to the interaction between
the distance of SNPL references and table A.13 reports the corresponding regression results for the
time-distance of SNPL references. Here, we split the time-distance into tertiles. In accordance to what
is discussed in the paper, we find that patent families at a short distance, by either dimension, are of
particularly high value and tend to show higher elasticities with SNPL science quality as well. The
elasticities remain in any case strongly positive and significant also at a relatively high distance.

16Some field codes refer directly to multidisciplinary research. These field codes are ah, vj, wu, bq, po, ev, ui, dy, le, ro, if
and pm. We tested our results by including journals associated with these codes in the sample of interdisciplinary journals or
excluding them. This affects the level estimates of patent value for different values of interdisciplinarity but leaves untouched
the correlation with SNPL science quality.



138 APPENDIX A

A.4 Supplementary Graphs and Tables

Figure A.1: Precision-recall tradeoff in the WoS match
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The tangent 45° line shows the optimal precision-recall tradeoff when precision and recall
are valued equally.

Notes: Based on manually evaluating 1000 matches for each patent office, as reported in Knaus and Palzenberger (2018). The
45°-line shows the set of points which is of the same quality if precision and recall are weighted equally. This corresponds to
a F1-score. The point where this line is intersected is the optimal point, here shown for the WIPO validation. Precision is the
share of SNPL reference matched correctly among the matched SNPL references. Recall is the ratio between correct matches
identified and all SNPL references that were or should have been matched.
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Figure A.2: Sample descriptives over time
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Notes: Shows the composition of the estimation sample. The estimation sample contains US and EP patents from patent
families with at least one member patent granted at USPTO or EPO.

Figure A.3: Selection into SNPL by science quality

(a) Probability of patent citation (ext. margin)
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(b) Number of patent citations (int. margin)
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Notes: Probability of being cited as SNPL (left) and the number of SNPL citations (right) by science quality of a scientific
publication. Science quality is the 3-year citation count of the scientific publication. Shaded areas show 95% confidence
intervals around the respective means.
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Figure A.4: Patent Value and SNPL references
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(b) Patent value by SNPL science quality

Notes: Left: Distribution of patent citations for patents with and without SNPL references. Residualized 5-year patent
forward-citations by US patents towards patent families are used, see section A.3.
Right: Average patent values by science quality, considering alternative science quality operationalizations. SNPL science
quality is the quality of publications referenced by a patent. When there are multiple patent-paper references, we by default use
the highest-quality reference (orange). In comparison, the average quality also delivers a positive correlation (gray), but it is
more diluted. Other aggregation methods which also focus on the top of the distribution are virtually identical to the maximum.
These are the sum (green) and the square root of the sum of squares (blue). Science quality is the 3 year citation count of a
scientific publications. Patent value is measured as the 5 year count of patent forward citations by US patents. Patent value and
science quality are residualized using technology field × first filing year FEs. The dashed line indicates the average patent value
of patents without SNPL references. Shaded areas show 95% confidence intervals around the respective means. N = 4,767,844
patents (948,006 with SNPL references).
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Figure A.5: Patent value by science quality, with and without SNPL self-references
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Notes: Left: Share of SNPL self-references by SNPL science quality. Right: Average patent value by SNPL science quality
and categories of SNPL self-references. The lines show values for any self-reference (green), inventor self-references (orange)
and applicant self-references (blue) or patents without SNPL self-references (gray). SNPL science quality is the maximum
3-year citation count across scientific publications appearing as SNPL references in a patent. Patent value is measured as
the 5-year count of patent forward-citations by US patents. Patent value and science quality measures are residualized using
technology field-first filing year pair FEs. The gray shaded area shows 95% confidence intervals around the respective means.
For visual purposes, the confidence intervals around the means concerning self-references show the maximum extent of the
95% confidence intervals of any of the three underlying measures.

Figure A.6: Patent value-science quality relationship over time

(a) Baseline regressions
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(b) All patent-level controls
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Notes: The figure plots the interactions coefficients between each first filing year of patents and SNPL science quality, in a
regression with the 5-year patent forward-citations by US patents and EP patents as dependent variables. Science quality is
the maximum 3-year citation count of SNPLs of a patent family. Left: Models include technology field and first filing year
pair FEs. Right: Models additionally include FEs for SNPL reference counts, patent reference counts and number of inventors.
Range indicators show 95% confidence intervals around the respective regression coefficients.
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Figure A.7: Patent value by science quality and interdisciplinarity
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(b) Patent value and interdisciplinarity
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Notes: Left: Share of patents with interdisciplinary SNPL by SNPL science quality. Right: Patent value by SNPL science
quality and by interdisciplinarity of SNPL references. Scientific articles are considered interdisciplinary if the journal where
they are published is associated with at least two WoS field codes. SNPL science quality is the maximum 3-year citation count
across scientific publications appearing as SNPL references in a patent. Patent value is measured as the 5-year count of patent
forward-citations by US patents. Patent value and science quality measures are residualized using technology field-first filing
year pair FEs. Shaded areas show 95% confidence intervals around the respective means.
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Table A.3: SNPL and science quality elasticities (intensive and extensive margin, by SNPL definitions)

SNPL definition All Within 5y Within 5y max quality One per applicant
(1) (2) (3) (4) (5) (6) (7) (8)

DV: SNPL (1/0) Count (1/0) Count (1/0) Count (1/0) Count

3y Cit 0.053 0.068 0.041 0.048 0.012 0.013 0.041 0.043
(1525.98) (1551.78) (1378.07) (1408.98) (762.81) (796.86) (1371.67) (1443.36)

Field × Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Adj. R-Square 0.113 0.110 0.090 0.089 0.032 0.033 0.089 0.093
Observations 42259668 42259668 42259668 42259668 42259668 42259668 42259668 42259668

Notes: Values in “0/1”-columns are semi-elasticities, values in “Count”-columns are elasticities. Includes WoS subject code times publication year FEs. The level of observation is at the WoS item.
Science quality (3y cit) is measured by 3-year forward-citations by other WoS items. Robust standard errors. T-statistics in parentheses.

Table A.4: SNPL and science quality elasticities (probability and frequency, with SNPL restrictions)

SNPL restriction No academic patents No applicant self-ref. No inventor self-ref. No any self-ref.
(1) (2) (3) (4) (5) (6) (7) (8)

DV: SNPL (1/0) Count (1/0) Count (1/0) Count (1/0) Count

3y Cit 0.036 0.046 0.052 0.066 0.050 0.063 0.049 0.063
(1188.04) (1195.63) (1511.65) (1535.17) (1476.07) (1493.49) (1472.55) (1489.77)

Field × Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Adj. R-Square 0.082 0.077 0.111 0.108 0.107 0.103 0.106 0.103
Observations 42259668 42259668 42259668 42259668 42259668 42259668 42259668 42259668

Notes: Includes WoS subject code times publication year FEs. The level of observation is at the WoS item. Science quality (3y cit is measured by 3-year forward-citations by other WoS items. The
baseline category consists of observations with no 3-year forward-citations, approximately 50% of the dataset. Robust standard errors. T-statistics in parentheses.
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Table A.5: Patent value and science quality

(1) (2) (3) (4) (5) (6)
DV (log): 5y Cit US 5y Cit EP US Claim Length EP Claim Length USD Values EUR Values

3y Cit SNPL ref (max) 0.082 0.042 −0.015 −0.059 0.021 0.114
(123.56) (85.49) (−26.83) (−39.08) (6.52) (3.69)

Patent-level controls Base Base Base Base Base Base
Patent applicant FE No No No No No No
Adj. R-Square 0.156 0.067 0.157 0.323 0.113 0.045
Observations 4319660 4319660 2464729 1241154 899351 10844

(7) (8) (9) (10) (11) (12)
DV (log): 5y Cit US 5y Cit EP US Claim Length EP Claim Length USD Values EUR Values

3y Cit SNPL ref (max) 0.037 0.030 −0.012 −0.038 −0.047 0.089
(45.97) (47.64) (−16.58) (−18.64) (−11.46) (2.88)

Patent-level controls All All All All All All
Patent applicant FE No No No No No No
Adj. R-Square 0.262 0.100 0.160 0.324 0.125 0.065
Observations 4319660 4319660 2464729 1241154 899351 10844

(13) (14) (15) (16) (17) (18)
DV (log): 5y Cit US 5y Cit EP US Claim Length EP Claim Length USD Values EUR Values

3y Cit SNPL ref (max) 0.027 0.023 −0.010 −0.027 0.004 0.091
(29.75) (31.70) (−11.91) (−12.85) (2.21) (1.61)

Patent-level controls All All All All All All
Patent applicant FE Yes Yes Yes Yes Yes Yes
Adj. R-Square 0.362 0.169 0.253 0.389 0.887 0.113
Observations 3764150 3764150 2099419 1122902 857252 5702

Notes: All reported values are elasticities. 3y Cit SNPL ref (max) is a measure of SNPL science quality corresponding to the
maximum 3-year citation count across scientific publications appearing as SNPL references in a patent. Patent-level controls
“Base” include technology fields and first filing year pair FEs. Patent-level controls “All” further include FEs for SNPL reference
counts, patent reference counts and number of inventors. Patent applicant FEs are based on the first applicant on the grant
publication. Robust standard errors. T-statistics in parentheses.
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Table A.6: Patent value and science quality (journal impact factor of SNPL reference)

(1) (2) (3) (4) (5) (6)
DV (log): 5y Cit US 5y Cit EP US Claim Length EP Claim Length USD Values EUR Values

JIF SNPL ref (max) 0.118 0.087 −0.034 −0.142 −0.008 0.212
(68.01) (67.05) (−26.18) (−31.72) (−0.83) (2.98)

Patent-level controls Base Base Base Base Base Base
Patent applicant FE No No No No No No
Adj. R-Square 0.148 0.064 0.157 0.327 0.112 0.045
Observations 3928677 3928677 2289162 1106544 773983 10253

(7) (8) (9) (10) (11) (12)
DV (log): 5y Cit US 5y Cit EP US Claim Length EP Claim Length USD Values EUR Values

JIF SNPL ref (max) 0.030 0.056 −0.039 −0.105 −0.056 0.178
(15.80) (37.49) (−25.04) (−18.81) (−5.11) (2.52)

Patent-level controls All All All All All All
Patent applicant FE No No No No No No
Adj. R-Square 0.255 0.097 0.160 0.329 0.124 0.065
Observations 3928677 3928677 2289162 1106544 773983 10253

(13) (14) (15) (16) (17) (18)
DV (log): 5y Cit US 5y Cit EP US Claim Length EP Claim Length USD Values EUR Values

JIF SNPL ref (max) 0.016 0.044 −0.031 −0.078 0.019 0.143
(7.15) (24.40) (−15.36) (−12.75) (3.90) (1.04)

Patent-level controls All All All All All All
Patent applicant FE Yes Yes Yes Yes Yes Yes
Adj. R-Square 0.359 0.170 0.260 0.394 0.891 0.117
Observations 3385170 3385170 1930366 993031 734430 5353

Notes: All reported values are elasticities. 3y Cit SNPL ref (max) is a measure of SNPL science quality corresponding to the
maximum JIF across scientific publications appearing as SNPL references in a patent. Patent-level controls “Base” include
technology fields and first filing year pair FEs. Patent-level controls “All” further include FEs for SNPL reference counts, patent
reference counts and number of inventors. Patent applicant FEs are derived from the first applicant on the grant publication.
Robust standard errors. T-statistics in parentheses.
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Table A.7: Patent value and science quality (alternative science quality indicators)

(1) (2) (3) (4) (5) (6) (7) (8)
DV (log): 5y Cit US 5y Cit US 5y Cit US 5y Cit US 5y Cit US 5y Cit US 5y Cit US 5y Cit US

SNPL science quality indicators:

3y Cit SNPL ref (max) 0.037 0.027
(45.97) (29.75)

3y Cit SNPL ref (sum) 0.038 0.027
(46.32) (29.32)

3y Cit SNPL ref (avg) 0.042 0.030
(47.38) (29.83)

3y Cit SNPL ref (sq) 0.038 0.028
(46.65) (29.96)

Patent-level controls All All All All All All All All
Patent applicant FE No Yes No Yes No Yes No Yes
Adj. R-Square 0.262 0.362 0.262 0.362 0.262 0.362 0.262 0.362
Observations 4319660 3764150 4319660 3764150 4319660 3764150 4319660 3764150

Notes: All reported values are elasticities. The table present results for alternative criteria of aggregation at the patent level of the science quality of SNPL references. The dependent variable is the
5-year count of patent forward-citations by US patents. Patent-level controls “All” include technology fields and first filing year pair FEs, FEs for SNPL reference counts, patent reference counts
and number of inventors. Patent applicant FEs are derived from the first applicant on the grant publication. Robust standard errors. T-statistics in parentheses.
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Table A.8: Patent value and science quality (self-references)

Self-references Excluded Only
(1) (2) (3) (4)

DV (log): 5y Cit US 5y Cit US 5y Cit US 5y Cit US

3y Cit SNPL ref (max) 0.034 0.025 0.040 0.027
(36.54) (23.74) (24.20) (14.19)

Patent-level controls All All All All
Patent applicant FE No Yes No Yes
Adj. R-Square 0.255 0.358 0.235 0.339
Observations 4101699 3556564 3688129 3156722

(5) (6) (7) (8)
DV (log): 5y Cit EP 5y Cit EP 5y Cit EP 5y Cit EP

3y Cit SNPL ref (max) 0.025 0.018 0.046 0.037
(35.33) (22.60) (34.15) (23.21)

Patent-level controls All All All All
Patent applicant FE No Yes No Yes
Adj. R-Square 0.090 0.160 0.084 0.151
Observations 4101699 3556564 3688129 3156722

Notes: All reported values are elasticities. 3y Cit SNPL ref (max) is a measure of SNPL science quality corresponding to the
maximum 3-year citation count across scientific publications appearing as SNPL references in a patent. Patent-level controls
“All” further include FEs for SNPL reference counts, patent reference counts and number of inventors. Patent applicant FEs are
derived from the first applicant on the grant publication. Robust standard errors. T-statistics in parentheses.
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Table A.9: Patent value and science quality (by technology area of patent)

Technology area Electrical Eng Instruments Chemistry Mechanical Eng
(1) (2) (3) (4)

DV (log): 5y Cit US 5y Cit US 5y Cit US 5y Cit US

3y Cit SNPL ref (max) 0.029 0.031 0.059 0.048
(22.05) (16.18) (45.28) (11.28)

Constant 1.645 1.470 1.048 1.080
(1758.52) (984.06) (524.81) (1323.79)

Patent-level controls All All All All
Patent applicant FE No No No No
Adj. R-Square 0.204 0.232 0.235 0.176
Observations 1542296 714030 779718 953578

(5) (6) (7) (8)
DV (log): 5y Cit US 5y Cit US 5y Cit US 5y Cit US

3y Cit SNPL ref (max) 0.026 0.025 0.040 0.032
(18.03) (10.66) (26.02) (6.16)

Patent-level controls All All All All
Patent applicant FE Yes Yes Yes Yes
Adj. R-Square 0.316 0.359 0.324 0.309
Observations 1359980 570818 652092 755247

Notes: All reported values are elasticities. 3y Cit SNPL ref (max) is a measure of SNPL science quality corresponding to the
maximum 3-year citation count across scientific publications appearing as SNPL references in a patent. Patent-level controls
“All” further include FEs for SNPL reference counts, patent reference counts and number of inventors. Patent applicant FEs are
derived from the first applicant on the grant publication. Robust standard errors. T-statistics in parentheses.
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Table A.10: Patent value and science quality (by patent applicant country)

Patent applicant country China Europe Japan South Korea United States
(1) (2) (3) (4) (5)

DV (log): 5y Cit US 5y Cit US 5y Cit US 5y Cit US 5y Cit US

3y Cit SNPL ref (max) 0.021 0.042 0.036 0.014 0.032
(3.31) (25.15) (18.65) (3.08) (29.35)

Patent-level controls All All All All All
Patent applicant FE No No No No No
Adj. R-Square 0.218 0.287 0.171 0.176 0.268
Observations 54067 948340 869126 149395 2032498

(6) (7) (8) (9) (10)
DV (log): 5y Cit EP 5y Cit EP 5y Cit EP 5y Cit EP 5y Cit EP

3y Cit SNPL ref (max) 0.005 0.033 0.022 0.018 0.033
(0.92) (23.90) (13.93) (5.25) (38.76)

Patent-level controls All All All All All
Patent applicant FE No No No No No
Adj. R-Square 0.126 0.090 0.072 0.118 0.133
Observations 54067 948340 869126 149395 2032498

Notes: All reported values are elasticities. 3y Cit SNPL ref (max) is a measure of SNPL science quality corresponding to the
maximum 3-year citation count across scientific publications appearing as SNPL references in a patent. Patent-level controls
“All” further include FEs for SNPL reference counts, patent reference counts and number of inventors. Patent applicant FEs are
derived from the first applicant on the grant publication. Robust standard errors. T-statistics in parentheses.
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Table A.11: Patent value and science quality (interdisciplinarity)

(1) (2) (3) (4)
DV (log): 5y Cit US 5y Cit US 5y Cit EP 5y Cit EP

Interdisciplinary 0.054 0.046 0.041 0.037
(15.26) (12.26) (15.37) (12.67)

3y Cit SNPL ref (max) × Single Discipline 0.043 0.031 0.036 0.028
(45.33) (29.77) (47.83) (32.40)

3y Cit SNPL ref (max) × Interdisciplinary 0.034 0.024 0.023 0.018
(31.47) (20.68) (27.86) (18.73)

Patent-level controls All All All All
Patent applicant FE No Yes No Yes
Adj. R-Square 0.262 0.362 0.100 0.169
Observations 4319660 3764150 4319660 3764150

Notes: All reported values are elasticities. 3y Cit SNPL ref (max) is a measure of SNPL science quality corresponding to the
maximum 3-year citation count across scientific publications appearing as SNPL references in a patent. The interdisciplinarity
status is taken from the most cited scientific publication appearing as SNPL reference in a patent. Patent-level controls “All”
further include FEs for SNPL reference counts, patent reference counts and number of inventors. Patent applicant FEs are
derived from the first applicant on the grant publication. Robust standard errors. T-statistics in parentheses.
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Table A.12: Patent value and scientific impact (US citations) (by frontier distance)

(1) (2)
DV (log): 5y Cit US 5y Cit US

Distance to frontier:
1 0.819 (416.37) 0.740 (316.23)
2 0.605 (340.54) 0.562 (288.90)
3 0.373 (204.97) 0.394 (192.48)
4 0.231 (108.29) 0.262 (100.96)
5 0.135 (46.88) 0.190 (50.51)
6 0.107 (29.23) 0.170 (34.30)
7 0.121 (32.47) 0.204 (40.20)
8 0.119 (36.58) 0.199 (45.92)
9 0.109 (35.64) 0.189 (46.96)
10 0.071 (22.54) 0.149 (35.72)
3y Cit SNPL ref (max) 0.060 (208.43)
3y Cit SNPL ref (max) × 1 0.091 (144.40)
3y Cit SNPL ref (max) × 2 0.073 (155.18)
3y Cit SNPL ref (max) × 3 0.042 (74.00)
3y Cit SNPL ref (max) × 4 0.032 (32.85)
3y Cit SNPL ref (max) × 5 0.013 (8.03)
3y Cit SNPL ref (max) × 6 0.012 (5.41)
3y Cit SNPL ref (max) × 7 0.002 (0.71)
3y Cit SNPL ref (max) × 8 0.001 (0.28)
3y Cit SNPL ref (max) × 9 −0.001 (−0.74)
3y Cit SNPL ref (max) × 10 0.001 (0.39)

Patent-level controls Base Base
Patent applicant FE No No
Adj. R-Square 0.186 0.188
Observations 4378579 4378579

Notes: All reported values are elasticities. Patent-level controls “Base” include technology fields and first filing year pair
FEs. 3y Cit SNPL ref (max) is a measure of SNPL science quality corresponding to the maximum 3-year citation count across
scientific publications appearing as SNPL references in a patent. Robust standard errors. T-statistics in parentheses.
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Table A.13: Patent value and scientific impact (by time-distance)

(1) (2) (3) (4)
DV (log): 5y Cit US 5y Cit US 5y Cit EP 5y Cit EP

SNPL time distance:

Short 0.139 0.115 0.089 0.076
(33.16) (25.42) (27.95) (21.57)

Medium 0.052 0.040 0.039 0.028
(12.11) (8.50) (12.10) (7.89)

3y Cit SNPL ref (max) × Short 0.041 0.032 0.034 0.027
(37.57) (26.96) (39.15) (28.34)

3y Cit SNPL ref (max) × Medium 0.038 0.027 0.027 0.021
(33.59) (21.89) (30.59) (20.94)

3y Cit SNPL ref (max) × Long 0.031 0.019 0.028 0.018
(26.98) (14.83) (30.25) (17.53)

Patent-level controls All All All All
Patent applicant FE No Yes No Yes
Adj. R-Square 0.263 0.363 0.101 0.169
Observations 4319660 3764150 4319660 3764150

Notes: All reported values are elasticities. 3y Cit SNPL ref (max) is a measure of SNPL science quality corresponding to the
maximum 3-year citation count across scientific publications appearing as SNPL references in a patent. Short, Medium and long
time-distance are dummies for the tertiles of time-distance. Patent-level controls “All” further include FEs for SNPL reference
counts, patent reference counts and number of inventors. Patent applicant FEs are derived from the first applicant on the grant
publication. Robust standard errors. T-statistics in parentheses.
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B.1 Data

In this appendix we extend the description of our data sources and data construction, following the section
2.4 of the paper. Table B.1 summarizes the type of information obtained from each source and gives
references to the source. The relationships between the data sources are visually documented in figure
B.1.

Table B.1: Data sources.

Data source Variables

DBLP Conference, conference series information including place, time and presented
papers, author disambiguation
http://dblp.uni-trier.de/

CORE Conference series quality ranking, sub-fields classification
http://www.core.edu.au/conference-portal

WOS, Scopus Affiliation information, citations, scientific classifications of articles, sponsor-
ship information

SNPL data NPL citations from patents to conference proceedings
Knaus and Palzenberger (2018) and Poege et al. (2019)

PATSTAT Patent information, applicant and inventor names and addresses

ICAO, BTS Direct flight connections, Airport regions
https://www4.icao.int/newdataplus
https://www.bts.gov/

ORBIS, GRID, EU
Scoreboards

Firm names, ownership structure, industry information

http://www.grid.ac
https://ec.europa.eu/growth/industry/innovation/facts-figures/scoreboards_en

Figure B.1: Structure of the dataset

http://dblp.uni-trier.de/
http://www.core.edu.au/conference-portal
https://www4.icao.int/newdataplus
https://www.bts.gov/
http://www.grid.ac
https://ec.europa.eu/growth/industry/innovation/facts-figures/scoreboards_en
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DBLP has a very broad coverage (Cavacini, 2015) and, compared to other sources, contains more
consistent conference and conference series information. Additionally, DBLP supplies a high-quality
author name disambiguation (Kim, 2018). DBLP has the highest coverage rate among specialized
databases. The data provide an identifier for conference series. Conference event locations and dates
are not available as independent fields but can be easily parsed from conference volumes titles. WoS
and Scopus have a higher coverage rate, due to the coverage of other fields, but the information in
DBLP is more consistent and representative for CS (Cavacini, 2015). Additional information on DBLP
is available at dblp.uni-trier.de. A recent discussion of the disambiguation procedures is available at
blog.dblp.org/2020/01/08/corrections-in-dblp-2019/.

Other relevant bibliographic information is missing in DBLP, which we obtain from Web of Science (WoS)
and Scopus. Since Scopus is available to us from 1996 onwards, we focus our attention to those years.
Both WoS and Scopus are widely used bibliometric databases with large coverage of different scientific
fields, but possibly with lower coverage of specific fields relative to specialized databases like DBLP. The
match between DBLP and the complete WoS and Scopus is done using the DOI and the cleaned title.
Matches are verified using page numbers, publication years and author names and only matches showing
sufficient overlap are kept. Necessarily, we drop conferences and conference proceedings for which no
match is found in WoS or Scopus. We can match up to 90% of the DBLP entries with an item in WoS
and/or Scopus.

We add information on conference series quality and CS research subfields from the Computing Research
and Education (CORE) data, curated by the Computing Research and Education Association of Australa-
sia. The CORE data classify conference series into the quality-rank levels 𝐴★, 𝐴, 𝐵 and 𝐶 and subfields.
The CORE data constitutes an expert-based assessment of conference quality and subfields and is meant
to cover a comprehensive set of all relevant conferences in CS. We match CORE to our data manually,
partially supported by probabilistic string matching algorithms. We retain exclusively conference series
which match with CORE ranking information and drop conference series which are unclassified. We
use the latest available version of CORE, which provides the broadest coverage. Consequently, our rank
classification is time-invariant. However, by comparing different versions of CORE rankings (2008,
2010, 2013, 2014, 2017, 2018) it is evident that changes in ranks are rare and in most cases minimal.

Table B.2: Observation counts

Observation counts
All WoS/Scopus With CORE ≤ 2010

Dataset
Proceedings 1617817 1444813 982548 612103
Conference Events 22404 20361 10973 7298
Conference Series 3767 3505 1087 1042

Firms
All Firms 9941 7316 5470
Participants 9173 6791 5042
Sponsors 2121 1398 1027

Notes: Observation counts for different matching steps. Fourth column is the estimation sample. Third column from the right is relevant for
the descriptive part. First column: All DBLP items. Second column: DBLP items found in WoS or Scopus. Third column: Also restricting to
conference series matched with CORE. Last column: Also restricting to 1996-2010.



156 APPENDIX B

Table B.2 provides an overview of the number of observations in our data. Merging DBLP with
WoS/Scopus and CORE inevitably reduces the number of available observations. Thanks to the com-
bination of both, 90% of DBLP (since 1996) is maintained after matching with WoS and Scopus. The
achieved coverage rate of DBLP in Scopus and Web of Science is displayed for proceedings in figure B.2a
and for articles in figure B.2b, where after 1996, rates of 70-90% are observed. The full Scopus database
is only available to us from 1996 onwards, which explains the lack of coverage before. Clearly, without
Scopus, the analysis would lack representativeness, but the WOS adds around 10% in all years. This
forces us to restrict our period of analysis to after 1996. Combining DBLP, WOS and Scopus guarantees
to obtain the largest possible coverage of bibliographic information in CS in this period of time.

Figure B.2: DBLP items covered by WOS / Scopus
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Notes: Shows results of the DBLP-WOS/Scopus match. Match was based on DOI/title, cleaning using page numbers, publication years and
author names.

The match with CORE data leads to a more substantial drop in the number of unique conference series and
conference events originally covered. However, we verified that these are largely small and less relevant
conferences, with few corresponding proceedings each. We still retain 982548 conference proceedings,
corresponding to 70% of the initial total (the number of proceedings in DBLP matched with WoS or
Scopus).

Most importantly, as noted in the paper, our data cover 75% of all conference series listed in CORE. Eighty
percent of conference series listed in CORE and not in our data are of the lowest quality rank, 𝐶. This
implies that the data cover almost the entirety of top and medium ranked conferences in CORE. In general,
the sample is biased against small conference events, short-lived conference series, and conference series
of the lowest quality, that are less likely covered in a generic bibliographic database as WoS or Scopus,
and are less likely ranked in CORE.

We can claim that the data are largely representative of all relevant conference events in CS in our
period of observation. Table B.2 also shows the difference between our estimation sample with years
1996-2010 and our full sample 1996-2015. Citation-based variables require time windows in which
the citations can be observed. We choose five-year windows. This truncation issue forces us to limit
to 1996-2010 the sample for econometric analyses. The full dataset (up to 2015) consists of a total of
10973 conference events in the 1996-2015 period – pertaining to 1087 conference series and more than
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one million proceedings. A total of 7316 firms have participated to at least one conference event, either
authoring at least one conference proceeding or sponsoring a conference event. The sample up to 2010
comprises instead 5470 firms, 7298 conference events pertaining to 1042 conference series, and a total
of 612103 of conference proceedings. In the remainder of the paper, we also present descriptive statistics
limited to this sample.

Matching Firms

We generate a list of firm entities that we use as candidates. Our goal is to provide global coverage of the
- probably - most important firms which conduct scientific publishing. For this reason, we use the firm
names from the EU scoreboards as well as the firm included in GRID. The Scoreboard lists the by R&D
expenditure top companies worldwide. In the first year of the list, 2003, 500 EU and 500 global companies
are separately listed. Over time, the length of the lists was increased, so that the 2017 Scoreboard lists
the top 1000 EU firms and worldwide the top 2500. The 2017 Scoreboard is the last included in our data.
All in all, this adds roughly 8300 distinct firm name strings, of which often several refer to the same firm
entity. For GRID, use a snapshot from May 2018. GRID, as a curated dataset of research-active entities
is a prime candidate for adding firms likely involved in scientific activities. We only add entities labeled
as company, which adds another roughly 21,000 match candidates. We further wanted to complement
this list by firms who possibly use information from conferences in their technological activities, but do
not publish frequently enough to occur in the curated GRID list. Therefore, we add all firm names for
firms which in ORBIS were found to be connected to at least one patent. Also, we added firms from the
US and DE section of ORBIS to try to capture smaller firms this way. Especially the latter part expands
the set of firms too much by too many irrelevant candidates, so we did not further expand to additional
countries.

Matching bibliometric information to firms is particularly hard as little additional information besides the
affiliation string exists. Location information is often not given, as is the case for sponsor information.
When it is available, it often does not refer to the headquarter location but to the particular research lab.
Therefore, we try to enrich the affiliation name with contextual knowledge from the Internet, following
the approach by Autor, Dorn, Hanson, et al. (2020). We search for the affiliation string in a search engine
and retain the first ten results. We disregard very frequent occurrences, where for example many firms
are listed on a single website. We also use frequency weighting to put a higher weight on less common
entries.

The match uses the software package Dedupe (Gregg and Eder, 2019). Dedupe provides a probabilistic
algorithm which, based on manually crafted training data, calculates weights for different input features.
These input features are the web search-based similarities, but also traditional string similarity measures.
Dedupe also calculates a minimum similarity threshold for which matches are kept. This is done based
on a comparison of precision and recall scores. The matching step returns for each affiliation string a set
of candidate firm strings which this affiliation string might belong to.

In the next step, we cluster the n:m match provided by Dedupe to group firm strings which belong to the
same entity. In GRID, ORBIS and the EU Scoreboards, several possibilities for writing of the same firm
name are possible. Additionally, firms may have been renamed, merged, acquired etc. Incidentally, the
web search-based algorithm is by itself quite good at picking up these name changes. However, this step
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required a lot of manual refinement. Whenever multiple entity names were grouped, we validated these
choices. When in doubt, the clustering implicitly and our validation explicitly clustered entities in larger
groups. So, if two firms merged during a part of the sample time frame, we consider them to be the same
entity for our full sample. Also, when the matching algorithm was not able to confidently distinguish
subgroups of conglomerates, we grouped them into one entity. This happens with firms like Samsung or
LG. The firm clusters yield our firm entities for this study.

Figure B.3 shows the sources of firm observations in the conference dataset. These give an overview
over successful matches and of the extent of clustering. The number of firms in each category is
weighted by the number of proceedings authored by (blue) and the number of conferences visited (red).
Also, an unweighted count is provided. Most individual matches are from ORBIS only, followed by
GRID only. However, the most important firms can actually be found in all three databases (“OR-
BIS+Scoreboard+GRID”).

The advantage of our approach is to provide a very global, comprehensive firm dataset. Previous studies
have typically only focused on large, listed US companies. Given the degree of internationalization
observed in our data, this would substantially underestimate the role of firm science in CS. The disad-
vantage of not using one consistent firm dataset is that further descriptives at the firm level are difficult
to obtain. For example, the GRID data does not contain any further firm-level information, whereas both
Scoreboard and ORBIS do. We therefore being with match descriptives based on the Scoreboard only,
which provides the most consistent set of firm-level information. Subsequently, we attempt to provide
industry classifications for all firms.

We apply our match algorithm for a variety of data sources. At the core of this study is the match between
affiliations for conference participants and sponsorship information found in WOS and Scopus. The most
relevant of those are for CS conferences also found in DBLP. However, for figure B.8, conferences in other
fields are also informative. Further, we use the same matching strategy to match firm applicants from
patents citing computer science proceedings or otherwise relevant for computer science (the technology
main area ‘Electrical Engineering’). Due to this broader match target set, there can be a number of firms
which are matched to some affiliation or applicant string but never occur in the computer science dataset.

Table B.3 shows, for the subsample of the 2010 Scoreboard, which share of entities can be matched.
We focus on one Scoreboard slice as combining several slices would create a distorted sample. Large
companies are always retained, whereas small companies would frequently enter and leave the yearly lists.
In the 2010 Scoreboard, we can find 69.5% of the Scoreboard companies in any data source, including
conferences, journal publications, conferences outside of CS and relevant patents. However, also 69.5%
participated to a conference. The shares are necessarily higher in some sectors and smaller in others.
In Telecommunication Services or Telecommunication Hardware and Equipment, more than 70% of all
firms ever participate to a conference. However, in all sectors, some companies show some engagement
with the academic community.

Intensity of participation and sponsorship also varies substantially across sectors. Table B.3 shows this in
columns 4-7. These columns show the share of Scoreboard firms that ever participated or sponsored a CS
conference in the 1996-2015 time period as well as the average number of conferences they participated
to or sponsored. As some examples, the sector “Software and Computer Services” contains both smaller
IT companies as well as the global players of IT. “Leisure Goods” contains some companies involved in
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Figure B.3: Sources of firm data
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Notes: Shows the data sources of firms in the dataset. Firm data is taken from the EU Scoreboards, ORBIS as well as GRID. The number of
firms in each category is weighted by the number of proceedings authored by (blue) and the number of conferences visited (red). An unweighted
count is provided as well (green).

electronic entertainment among a greater number of companies unrelated to CS. This explains the low
participation share but high average participation intensity.

We can also classify firms outside of the Scoreboards into industries. The industries by firms are
taken from the respective data sources. In the Scoreboard, the classification according to the ‘Industry
Classification Benchmark’ (ICB) is taken. In ORBIS, the 4-digit NACE2 classification is translated into
the ICB classification. For the 2016 Scoreboard, we have a direct correspondence to ORBIS, from which
we construct a probabilistic match between NACE2 and ICB. This one is extrapolated for the remaining
ORBIS entries. GRID on the other hand lacks any firm-level properties. The website URL is available,
however. We use this and website addresses from ORBIS to attempt a linkage between GRID and ORBIS.
Conditional on a matching website, we require a close string similarity for a match. With this, we further
get ICB information for GRID-only entities. When for one firm cluster, more than one source of industry
information is available, all sources are weighted equally. With this, we can describe the industries
present in our estimation sample.

Figure B.4 shows a distribution of firms across business sectors. The number of firms in each category is
weighted by the number of proceedings authored by (blue) and the number of conferences visited (red).
An unweighted count is provided as well (green). As expected, business sectors traditionally associated
with computer science such as “Software and Computer Services” or “Technology Hardware” are very
important. However, also firms from a variety of other sectors are occasionally present at conferences.

Constructing Scientist-Firm Biographies

For the collaboration and hiring variables, and for self-citations and scientist counts, we rely on dis-
ambiguated scientist profiles and affiliation information combined with firm information. The scientist
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Table B.3: Descriptives: Firms at conferences (Scoreboard 2010 subsample)

All Ever Matched Participation Sponsorship
N N Share Ever Total Ever Total

Aerospace & Defense 46 37 0.80 0.54 17.52 0.20 0.76
Chemicals 109 91 0.83 0.17 5.14 0.04 0.29
Construction & Materials 69 38 0.55 0.19 1.17 0.04 0.12
Electrical Components 148 108 0.73 0.37 16.01 0.14 1.14
Engineering & Machinery 272 160 0.59 0.31 5.98 0.07 0.27
Finance 80 37 0.46 0.15 0.34 0.06 0.11
Food Producers 67 43 0.64 0.15 0.43 0.03 0.03
General Industrials 56 31 0.55 0.25 13.29 0.11 0.57
General Retailers 20 10 0.50 0.20 1.45 0.00 0.00
Health Care Equipment 73 56 0.77 0.36 1.01 0.04 0.05
Industrial Metals & Mining 36 29 0.81 0.36 1.03 0.00 0.00
Industrial Transportation 15 9 0.60 0.40 0.93 0.00 0.00
Leisure Goods 28 17 0.61 0.32 30.57 0.18 1.82
Media 17 11 0.65 0.41 4.76 0.12 1.18
Oil & Gas 36 33 0.92 0.47 3.44 0.17 0.44
Personal Goods 60 30 0.50 0.13 0.43 0.05 0.10
Pharmaceuticals & Biotech 229 185 0.81 0.13 0.72 0.05 0.06
Software & Computer Services 207 124 0.60 0.43 39.43 0.22 6.00
Support Services 37 21 0.57 0.32 7.14 0.14 0.68
Technology Hardware 253 214 0.85 0.67 30.16 0.23 2.89
Telecommunication Services 26 23 0.88 0.81 109.31 0.54 5.35
Travel & Leisure 26 13 0.50 0.23 1.62 0.08 0.12
Utilities 58 48 0.83 0.33 2.03 0.07 0.10

Total 1968 1368 0.70 0.34 13.5 0.12 1.3

Notes: Shows the number of firms with conference participation and their activities, exemplary for the 2010 Scoreboard. The first column
shows the number of firms, by industry. While the Scoreboard contains overall 2000 entries, in some cases multiple parts of conglomerates
are listed separately, for example Samsung. In the matching process, these cannot be distinguished with high accuracy and are joined into one
entity. The second column shows the number and share of firms that could ever be matched in any target dataset, including CS conferences and
journals, conferences outside of CS and relevant patents. The remaining firms could never be matched. Columns four to seven show the share
of Scoreboard firms that ever participated or sponsored a CS conference in the 1996-2015 time period. As almost all firms who sponsor also
participate, the ‘Ever Participation’ shares also show shares of firms found in the conference dataset. Columns five and seven show the total
number of conferences attended as well as the number of sponsored conferences.

profiles are taken from DBLP, but for the affiliation information, we rely on data from WOS and Scopus.
While for the majority of the data, only a paper-firm link is relevant, here a paper-person-firm link is
required. To achieve this, we match at the paper level individual authors from DBLP to individuals
authors and corresponding affiliations in Scopus, and if not available, in WoS.

With this, we establish a person-year panel and compute fractional association of individual scientists
with firms or academia. Whenever a scientist is associated with a firm on a journal article or conference
proceeding, that information is also taken into account. If in a given year a scientist features different
affiliations from one or several papers, fractional counts are used. In years where the scientist did not
publish, linear interpolations from years before and after are used for the variable on firm size of research
investments.

There is a small share of cases where the individual information of affiliation cannot be retrieved. A
small part of this issue is due to missing affiliation information. The rest comes from a limitation of
WoS, where there is no direct link between the the author list and affiliation list, that they are simply
listed uniquely in their order of appearance. For this reason, when available, we prefer information from
Scopus, which is essentially complete. We also mitigate this issue as far are possible in WoS: the first
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Figure B.4: Industries of firms
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affiliation can always be assigned to the first person or papers with only one affiliation can be assigned
completely. Still, some cases remain where the information is missing.



162 APPENDIX B

B.2 Investigating the First Stage

B.2.1 Event Study: Direct Flights and Participation

We design an event study on the dynamics of the effect of direct flights on the probability of participation
of scientists to conferences. The variation in the availability of direct flights derives from new airlines
routes and from the changes in venues of conference series. As an example, figure B.5 shows the case of
the European Conference on Computer Vision (ECCV), an 𝐴-ranked conference in AI/Machine vision.
The conference takes place every two years at varying places in Europe and the locations are decided
roughly with 4 years of advance. In our most conservative models, the identifying variations would
derive from the possibility to access the conference venues with direct flights, for scientists outside the
country where the conference is hosted, after controlling for time-specific FE of their locations, and for
their geographic distance. In robustness analyses, we also control for the specific conference FE.

In the event study setting, we can explore, for instance, whether any anticipation in participation exists.
We collapse our data and build a panel at the level of scientists locations and conference series pair-level.
We use as dependent variables the number of researchers from a region that participate in the conference
in a given period and, alternatively, a dummy equal 1 if at least one scientist from that region participates.
We construct variables on the change of direct flight availability. If in this period, relative to the previous
period, a direct flight connection to the conference series becomes available, the direct flight indicator
is 1. If a direct flight connection is no longer available, the indicator is -1. If there is no change, the
indicator is 0. Note that some conferences like the ECCV do not occur every year, which is why we are
using relative time periods.

Notes: ECCV: European Conference on Computer Vision. We visited this conference in 2018 and discuss findings in section 2.3.

Figure B.5: ECCV locations over time
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More formally, we look at a panel of researchers’ region 𝑟 , conference series 𝑐 by time 𝑡 in an event-study
setting. The endpoints are binned, following the suggestion of Schmidheiny and Siegloch (2020). For
each period 𝑗 , the variable 𝐷

𝑗
𝑟𝑐𝑡 takes value 1 if a direct flight is introduced, value -1 if a direct flight

is removed, and 0 if no change occurs. The coefficient 𝛾 𝑗 captures the effect of a positive change.
The period 𝑗 − 1 is used as a baseline. Also, we control for FE on the region-year, region-conference
series and conference series-year level (single conference event). We add the same control variables
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on a researcher region-conference-level which are also employed in the main text. We cluster on the
conference series-researcher region level.

We restrict the combinations to all region-conference series combinations to various sets of candidate
regions. The most narrow set is defined by all regions from which at least one researcher ever attends the
focal conference. The results from this specification are shown in figure B.6 and columns 3/6 of table
B.4. The second definition considers all location with at least one researcher active in the conference’s
field. This is shown in columns 2/5. Finally, the third definition considers all possible locations. Here,
columns 1/4 of table B.4 are relevant. Note that the notation in the tables and figure displays negative
time period values for periods after the event and positive for periods before the event: this reads, the
effect of having a direct flight available in, say, 2 years in the future (positive values) or the effect of a
direct flight having become available and maintained 2 years in the past (negative values).

Figure B.6 plots the regression results of equation B.1, for log-transformed participation counts and the
participation binary dummy variable. Table B.4 lists detailed estimation results for the log-transformed
counts. Results for the dummy variable as dependent variable are equivalent and available upon request.
There is a relevant and statistically significant increase in the number of participants. This effect starts
immediately at the point of the flight introduction and remains present, but no pre-trends can be found.
The flight-induced participation seems to be persistent and slightly increasing in subsequent years if a
direct flight connection persists. Based on the regression results, pre-trends or anticipation effects are
likely not a concern. All other coefficients behave as expected. When the conference is in their home
region, researchers are more likely to attend. Researchers are less likely to attend distant conferences.
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Figure B.6: Event study estimates of the effect of direct flights on participation (Region-conference series
level of analysis)
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Table B.4: Event study regression results of the effect of direct flights on participation (Region-conference
series level of analysis)

(1) (2) (3) (4) (5) (6)
Participants log(1+) log(1+) log(1+) log(1+) log(1+) log(1+)

Domestic (State) 0.012∗∗∗ 0.018∗∗∗ 0.076∗∗∗ 0.012∗∗∗ 0.019∗∗∗ 0.082∗∗∗
(0.001) (0.001) (0.006) (0.001) (0.002) (0.007)

Same region 0.169∗∗∗ 0.159∗∗∗ 0.044∗∗ 0.183∗∗∗ 0.173∗∗∗ 0.048∗∗
(0.014) (0.014) (0.019) (0.017) (0.017) (0.023)

Distance (log) −0.002∗∗∗ −0.003∗∗∗ −0.018∗∗∗ −0.002∗∗∗ −0.003∗∗∗ −0.019∗∗∗
(0.000) (0.000) (0.001) (0.000) (0.000) (0.001)

t>3 −0.001 −0.001 −0.008
(0.002) (0.003) (0.008)

t>2 −0.001 −0.001 0.000
(0.001) (0.001) (0.004)

t=3 −0.002 −0.003 −0.007
(0.002) (0.002) (0.006)

t=2 −0.001 −0.001 0.000 −0.002 −0.002∗ −0.005
(0.001) (0.001) (0.003) (0.001) (0.001) (0.004)

t=0 0.004∗∗∗ 0.005∗∗∗ 0.010∗∗∗ 0.005∗∗∗ 0.006∗∗∗ 0.014∗∗∗
(0.001) (0.001) (0.003) (0.001) (0.001) (0.004)

t=-1 0.007∗∗∗ 0.009∗∗∗ 0.017∗∗∗ 0.010∗∗∗ 0.012∗∗∗ 0.026∗∗∗
(0.001) (0.002) (0.005) (0.002) (0.002) (0.006)

t=-2 0.007∗∗∗ 0.009∗∗∗ 0.018∗∗∗ 0.011∗∗∗ 0.012∗∗∗ 0.031∗∗∗
(0.002) (0.002) (0.006) (0.002) (0.003) (0.009)

t=-3 0.007∗∗∗ 0.008∗∗∗ 0.018∗∗ 0.011∗∗∗ 0.013∗∗∗ 0.035∗∗∗
(0.002) (0.002) (0.007) (0.003) (0.004) (0.011)

t=-4 0.011∗∗∗ 0.012∗∗∗ 0.035∗∗∗
(0.003) (0.004) (0.013)

t<-3 0.006∗∗∗ 0.007∗∗ 0.014∗
(0.002) (0.003) (0.008)

t<-4 0.009∗∗ 0.010∗∗ 0.035∗∗
(0.004) (0.005) (0.014)

Region set All Field Attendance All Field Attendance
Conf. distance controls Yes Yes Yes Yes Yes Yes
Origin × Conf. Ser. FE Yes Yes Yes Yes Yes Yes
Origin × Year FE Yes Yes Yes Yes Yes Yes
Year × Conf. Ser. FE Yes Yes Yes Yes Yes Yes

𝑅2 0.467 0.473 0.505 0.519 0.523 0.534
Observations 4014488 2318856 303520 2600869 1491435 202066
Number clusters 668026 390677 48110 485981 281388 36601

Notes: ∗ 𝑝 < .1, ∗∗ 𝑝 < .05, ∗∗∗ 𝑝 < .01 Standard errors in parentheses, clustered at the conference series times researcher region level.
Regression results for equation B.1. In columns 3/6 all regions from which at least one researcher ever attends the focal conference are
considered. All location with at least one researcher active in the conference’s field are considered in columns 2/5. All possible locations are
considered in columns 1/4.
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B.2.2 First Stage Heterogeneity

We investigate how the strength of the instrumental variable varies in the first stage by interacting it
with key characteristics of conferences. We estimate regression B.2 with various sets of heterogeneity
dimensions ℎ. Generally speaking, we expect direct flights to matter more when the researchers are
otherwise indifferent between similar conferences along with our matching criteria. For example, we
expect researchers to spare less to attend 𝐴★ or 𝐴 conferences. For lower-level conferences, the discomfort
of traveling might start to play a stronger role. Consequently, we expect the instrument to have less
relevance for highly-ranked conferences and more for low-ranked conferences. Similarly, the availability
of direct flights should matter more at long distances. We maintain the same observation level than for
our main analyses in the paper, detailed in section 2.6.

𝐷{p presented at c} 𝑓 𝑝𝑐 =
∑︁

𝛽1𝑖𝐷{direct flight} 𝑓 𝑝𝑐 × ℎ𝑝𝑖

+
∑︁

𝛽2𝑖𝑙𝑜𝑔 (1 + distance) 𝑓 𝑝𝑐 × ℎ𝑝𝑖

+
∑︁

𝛽2𝑖𝐷{direct flight} 𝑓 𝑝𝑐 × 𝑙𝑜𝑔 (1 + distance) 𝑓 𝑝𝑐 × ℎ𝑝𝑖

+
∑︁

𝛽3𝑖ℎ𝑝𝑖 + 𝛽4𝑋 𝑓 𝑝𝑐 + 𝑢 𝑓 𝑝𝑐

(B.2)

Results are presented in Table B.5. Column 1 corresponds to our main specification. Column 2 shows
that the effect of the instrument is larger for conferences at longer distances. Also as expected, it turns
out that the quality level of the conference matters. For models without distance controls (column 3),
the instrumental variable is significant for all rank levels of conferences, but it is already stronger in
magnitude for lower ranked-conferences. In the most conservative models, including distance controls,
the coefficient size for 𝐴★ and 𝐴 conferences is comparatively small and weekly significant (column 4).
However, the strength of the instrument increases for longer geographic distances and becomes large and
significant at long distances for all quality levels. We see this in column 5 where we interact the distance
of conferences with the effect of Direct flight for conferences of different ranking (triple interactions).
In these models, the value of the distance variable is centered at the mean, so that the coefficient on the
interacting variables can be interpreted as effects at the mean (corresponding to approximately 3600 km,
8.2 in logarithm).
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Table B.5: First stage - Heterogeneity of the effect of Direct flight on Participation

(1) (2) (3) (4) (5)
Participation Participation Participation Participation Participation

Direct flight 0.030∗∗∗ 0.033∗∗∗
(0.006) (0.006)

𝐴★/A-level × DF 0.039∗∗∗ 0.010∗ 0.018∗∗∗
(0.005) (0.005) (0.005)

B/C-level × DF 0.077∗∗∗ 0.049∗∗∗ 0.046∗∗∗
(0.009) (0.008) (0.008)

log(Distance) −0.039∗∗∗ −0.048∗∗∗ −0.039∗∗∗
(0.003) (0.004) (0.003)

𝐴★/A-level × log(Distance) −0.039∗∗∗
(0.004)

B/C-level × log(Distance) −0.055∗∗∗
(0.005)

Direct flight × log(Distance) 0.023∗∗∗
(0.005)

𝐴★/A-level × DF × log(d) 0.024∗∗∗
(0.006)

B/C-level × DF × log(d) 0.020∗∗∗
(0.005)

Same airport −0.164∗∗∗ −0.231∗∗∗ −0.164∗∗∗ −0.235∗∗∗
(0.036) (0.039) (0.036) (0.039)

Domestic (State) 0.132∗∗∗ 0.128∗∗∗ 0.132∗∗∗ 0.126∗∗∗
(0.015) (0.015) (0.015) (0.015)

Conf Ser FE Yes Yes Yes Yes Yes
Origin × Field FE Yes Yes Yes Yes Yes
Origin × Firm FE Yes Yes Yes Yes Yes
Year × Origin FE Yes Yes Yes Yes Yes
Year × Firm FE Yes Yes Yes Yes Yes

Cluster Origin Origin Origin Origin Origin
Number clusters 1114 1114 1114 1114 1114
𝑅2 0.333 0.334 0.323 0.334 0.334
Observations 5126273 5126273 5126273 5126273 5126273

Notes: ∗ 𝑝 < .1, ∗∗ 𝑝 < .05, ∗∗∗ 𝑝 < .01 Standard errors in parenthesis, clustered at the researcher region level. The dataset follows the
description of table 2.3. The value of log(Distance) is centered at the mean value in the regressions. The sample mean of log(Distance) is about
8.2, corresponding to approximately 3600 km.
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B.3 Supplementary Figures

Figure B.7: Stylized empirical setup
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Figure B.8: Share of firms-authored conference proceedings by field
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Notes: Fields are identified based on ASJC codes from Scopus between 1996-2015. Largest fields (millions of proceedings) are Engineering
(2.19), CS (1.49), Physics (0.53), Mathematics (0.30), Material Science (0.28), Energy (0.18). Smallest fields are Agriculture (0.02), Bio-
chemistry (0.02), Chemistry (0.03), Medicine (0.03), Environmental Science (0.08). Fields with less than 15,000 items or in social sciences or
humanities are disregarded.
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Figure B.9: Conference proceedings by field and conference locations
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(b) Conference locations

Notes: Only DBLP conferences with matched Web of Science/Scopus articles as well as CORE information are considered. Conferences in
panel B.9a are assigned to their first CORE field code.

Figure B.10: Firm participation and patent citations
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Notes: Shows activity of firms on the conference (B.10a) and proceeding (B.10b) level. In B.10b, sponsorship refers to a proceeding at a
conference with at least one firm sponsor. Due to truncation we restrict the data based on patent citations to the year 2010 and before. The
negative tendency is still likely the artifact of citations data truncation.
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Figure B.11: Coauthorships of CS proceedings with a firm

(a) Coauthorships with a firm overall
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(b) Coauthorships on firm proceedings
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Notes: Coauthorships of firms a different firm or institution on conference proceedings. In B.11a, the share of all proceedings with firm authors
is decomposed in proceedings with coauthorships and such without, further split up in such with firm-firm and firm-academia coauthorships.
B.11b plots the same decomposition conditional on having at least one firm author.
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B.4 Supplementary Tables

Table B.6: Covariate balancing table.

Average value Difference (SE) p-value
(Actual conf) (Counterfactual-Actual)

Exact matching criteria
Year 2005.22 0.000 (0.000) 1.00
Rank: A* 0.10 0.000 (0.000) 1.00
Rank: A 0.28 0.000 (0.000) 1.00
Rank: B 0.36 0.000 (0.000) 1.00
Rank: C 0.25 0.000 (0.000) 1.00
Field: General CompSci 0.08 0.000 (0.003) 0.94
Field: General Engineering 0.05 −0.001 (0.001) 0.46
Field: AI / Computer Vision 0.21 0.000 (0.001) 1.00
Field: Computation Theory 0.16 0.000 (0.001) 1.00
Field: Computer Software 0.22 0.000 (0.001) 1.00
Field: Data Format 0.10 −0.001 (0.002) 0.55
Field: Distributed Computing 0.13 0.000 (0.001) 0.80
Field: Information Systems 0.13 −0.002 (0.002) 0.49

Coarsened matching criteria
Size of the conference 70.40 0.022 (0.563) 0.97
Mean 5-year citations 4.46 0.005 (0.056) 0.93

Untargeted matching criteria
Conference series age 5.27 −0.042 (0.052) 0.42
Number of fields 1.10 −0.002 (0.006) 0.70
Number of sponsors 1.34 −0.010 (0.018) 0.56
Number of firms 4.95 −0.021 (0.059) 0.72

Observations 5799 10492

Notes: Covariate balancing for two counterfactual conferences. Shows the average deviation of the counterfactual conference from the actual
conference.

Table B.7: CORE fields.

Share
(first)

Count Share
(freq)

Count

Computer Science (general) 7.3 41754 7.1 40476
Engineering (general) 15.1 85837 15.4 87747
Design (general) 0.0 0 0.1 518
Artificial Intelligence and Image Processing 28.8 163843 28.7 163258
Computation Theory and Mathematics 8.2 46612 8.1 46213
Computer Software 10.2 57895 10.1 57468
Data Format 6.4 36332 6.4 36427
Distributed Computing 10.2 58017 9.6 54782
Information Systems 13.8 78812 13.9 79252
Library and Information Studies 0.0 0 0.5 2962

Total 100.0 569102 100.0 569102

Notes: CORE fields as aggregated in the conference-level match are shown. Each conference series is associated with up to three CORE fields.
Shares and counts using the first or using equal weighting among the CORE fields is shown. 1996-2015 data is shown.
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Table B.8: Scientific and commercial value of corporate proceedings.

(1) (2) (3) (4) (5) (6)

log 5y
Science
Citations

Science
Citations

Science
Citations

Science
Citations

Science
Citations

Science
Citations

Firm 0.262∗∗∗ 0.239∗∗∗ 0.063∗∗∗ 0.056∗∗∗ 0.050∗∗∗ 0.044∗∗∗
(0.011) (0.011) (0.006) (0.006) (0.005) (0.005)

Sponsor 0.088∗∗∗ 0.079∗∗∗ 0.008 0.005
(0.023) (0.023) (0.014) (0.014)

Firm=Sponsor 0.389∗∗∗ 0.125∗∗∗ 0.109∗∗∗
(0.044) (0.028) (0.024)

Year FE Yes Yes Yes Yes
Conf FE Yes Yes
Conf Series FE Yes Yes
𝑅2 0.015 0.016 0.260 0.260 0.326 0.326
Clusters 7298 7298 7295 7295 7217 7217
Obs 612103 612103 612100 612100 612022 612022

(1) (2) (3) (4) (5) (6)

log 5y
Patent

Citations
Patent

Citations
Patent

Citations
Patent

Citations
Patent

Citations
Patent

Citations

Firm 0.095∗∗∗ 0.091∗∗∗ 0.069∗∗∗ 0.066∗∗∗ 0.067∗∗∗ 0.064∗∗∗
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

Sponsor 0.018∗∗∗ 0.016∗∗∗ 0.012∗∗∗ 0.011∗∗∗
(0.004) (0.004) (0.003) (0.003)

Firm=Sponsor 0.072∗∗∗ 0.055∗∗∗ 0.038∗∗∗
(0.014) (0.010) (0.009)

Year FE Yes Yes Yes Yes
Conf FE Yes Yes
Conf Series FE Yes Yes
𝑅2 0.026 0.027 0.085 0.086 0.139 0.139
Clusters 7298 7298 7295 7295 7217 7217
Obs 612103 612103 612100 612100 612022 612022

Notes: ∗ 𝑝 < .1, ∗∗ 𝑝 < .05, ∗∗∗ 𝑝 < .01 Standard errors in parentheses clustered on the conference level. 𝑙𝑜𝑔 (1 + cit) for a window of five
years is used as the outcome variable. Outcome variables: Forward citations of DBLP conference proceedings / patent families by DBLP items
within five years. Mean science citations: 3.45 . We analyze how citations by proceedings received within five years are different for proceedings
authored by firms. Additionally, we test whether proceedings authored by a firm-sponsor receive more citations. We include as regressors a
dummy indicating whether at least one author is affiliated to a firm, Firm, a dummy indicating whether the conference where a proceeding is
presented is sponsored by a firm, Sponsor, and one dummy indicating whether the presenting firm is also a sponsor, Firm=Sponsor. In all
regressions, we control for year FEs. In columns (3) and (4), conference series FE capture time-invariant quality and field differences across
conference series. In columns (5) and (6), conference event FE also leave out all variation except within individual conferences. We find that
proceedings authored by firms receive on average more citations. The coefficient decreases when controlling for conference series FE and
conference event FE, but remains highly significant. This implies that firms tend to present research in conference series of the highest quality,
but also within conference series and single conferences, proceedings authored by firms receive more citations. Overall, scientific articles which
are associated with at least one firm receive roughly 4.4% more citations than other proceedings in the same conference as seen in column 5.
The results on sponsorship suggest that corporate sponsorship is concentrated among high-quality conferences. However, this effect fully stems
from firms choosing to sponsor high-quality conference series, rather than individual conferences within conference series (compare columns
1/2 and 3/4). Since sponsorship is defined at the conference level, it cannot be included in columns 5 and 6. When presenting and sponsoring
coincide, the proceeding receives especially many citations. Column 6 shows that within a conference, firm citations where the firm is also
sponsoring receive 11% more citations compared to proceedings where the firm does not also sponsor. These descriptive results do not imply
any causality. Possibly, proceedings receive additional attention through the advertising of sponsorship, so that sponsoring creates an additional
halo effect which leads to more visibility and follow-on research. This would constitute a causal mechanism and our observations at conferences
suggest such a possibility. However, equally likely firms especially sponsor when they expect to also present strong research at a conference.
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Table B.9: Heterogeneity: Sponsorship

(1) (2) (3) (4) (5) (6)
Science cit
(present)

Science cit
(past)

Patent cit
(present)

Patent cit
(past)

Collaboration Hiring

Participation 0.021∗∗∗ 0.112∗∗∗ 0.001 0.097∗∗∗ 0.073∗∗∗ 0.005
(0.008) (0.042) (0.003) (0.025) (0.021) (0.008)

Participation× Sponsor 0.058∗∗∗ 0.190∗∗∗ 0.003 0.108∗∗ 0.112∗∗∗ 0.045∗∗∗
(0.019) (0.056) (0.008) (0.043) (0.042) (0.017)

Sponsor −0.029∗∗∗ −0.097∗∗∗ 0.000 −0.049∗∗ −0.051∗∗ −0.022∗∗
(0.010) (0.031) (0.004) (0.024) (0.023) (0.009)

Science citations (L) 0.028∗∗∗ 0.391∗∗∗ 0.003∗∗∗ 0.156∗∗∗ 0.146∗∗∗ 0.036∗∗∗
(0.001) (0.006) (0.000) (0.003) (0.004) (0.001)

Patent citations (L) 0.008∗∗∗ 0.183∗∗∗ 0.003∗∗∗ 0.194∗∗∗ 0.073∗∗∗ 0.012∗∗∗
(0.002) (0.006) (0.001) (0.006) (0.006) (0.002)

Research similarity (L) 0.023∗∗∗ 0.234∗∗∗ 0.006∗∗ 0.009 0.044∗∗ 0.020∗∗∗
(0.007) (0.044) (0.003) (0.025) (0.019) (0.007)

Conf. distance controls Yes Yes Yes Yes Yes Yes
Conf Ser FE Yes Yes Yes Yes Yes Yes
Origin × Field FE Yes Yes Yes Yes Yes Yes
Origin × Firm FE Yes Yes Yes Yes Yes Yes
Year × Origin FE Yes Yes Yes Yes Yes Yes
Year × Firm FE Yes Yes Yes Yes Yes Yes

𝑅2 0.076 0.366 0.031 0.185 0.190 0.084
Observations 5126273 5126273 5126273 5126273 5126273 5126273
Number clusters 1114 1114 1114 1114 1114 1114
DV cond. mean 0.010 0.158 0.002 0.050 0.048 0.011
F (First) 16.6 16.6 16.6 16.6 16.6 16.6

Notes: ∗ 𝑝 < .1, ∗∗ 𝑝 < .05, ∗∗∗ 𝑝 < .01 Standard errors in parenthesis, clustered at the researcher region level.
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Table B.10: Robustness - Science citations timing

(1) (2) (3) (4) (5) (6)
Science cit

(𝑡 = 0)
Science cit

(𝑡 ≤ 1)
Science cit

(𝑡 ≤ 2)
Science cit

(𝑡 ≤ 3)
Science cit

(𝑡 ≤ 4)
Science cit

(𝑡 ≤ 5)

Participation 0.001 0.006 0.011∗∗ 0.014∗ 0.016∗∗ 0.021∗∗∗
(0.001) (0.004) (0.005) (0.007) (0.007) (0.007)

Science citations (L) 0.001∗∗∗ 0.009∗∗∗ 0.016∗∗∗ 0.022∗∗∗ 0.026∗∗∗ 0.029∗∗∗
(0.000) (0.001) (0.001) (0.001) (0.001) (0.001)

Patent citations (L) 0.000 0.003∗∗∗ 0.004∗∗∗ 0.006∗∗∗ 0.007∗∗∗ 0.008∗∗∗
(0.000) (0.001) (0.001) (0.001) (0.002) (0.002)

Research similarity (L) 0.001 0.008∗∗ 0.014∗∗∗ 0.020∗∗∗ 0.024∗∗∗ 0.025∗∗∗
(0.001) (0.004) (0.005) (0.007) (0.006) (0.006)

Conf. distance controls Yes Yes Yes Yes Yes Yes
Conf Ser FE Yes Yes Yes Yes Yes Yes
Origin × Field FE Yes Yes Yes Yes Yes Yes
Origin × Firm FE Yes Yes Yes Yes Yes Yes
Year × Origin FE Yes Yes Yes Yes Yes Yes
Year × Firm FE Yes Yes Yes Yes Yes Yes

𝑅2 0.021 0.038 0.054 0.067 0.077 0.083
Observations 5126273 5126273 5126273 5126273 5126273 5126273
Number clusters 1114 1114 1114 1114 1114 1114
DV cond. mean 0.000 0.003 0.005 0.007 0.009 0.010
F (First) 31.6 31.6 31.6 31.6 31.6 31.6

Notes: Columns 1-6 analyze the probability that at least one citation from the firm to the focal proceeding occurred within 𝑡 years, from 𝑡 = 0 to
𝑡 = 5. For 𝑡 = 5, this corresponds to the default dependent variable. ∗ 𝑝 < .1, ∗∗ 𝑝 < .05, ∗∗∗ 𝑝 < .01 Standard errors in parenthesis, clustered
at the researcher region level. Firm-proceeding level dataset, where some proceedings were actually at the conference (Participation=1) and
some were at another conference (Participation=0). Participation is instrumented by the direct flight availability between the researcher location
and the conference location. Firm-proceeding controls include whether the firm cited previous work by the authors in the years before the
conference (Science/Patent citations L) and the average abstract similarity between proceedings published by the firm in the previous year and
the focal proceeding (Research Similarity L). Dependent variable mean is for actually presented proceedings. Conf. distance controls include
the distance between researcher and conference location (log), whether that distance is zero and whether the two locations are in the same US
state or non-US country.
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Table B.11: Heterogeneity: Participation intensity for citations (linear specification)

(1) (2) (3) (4) (5) (6)
Science cit
(present)

Science cit
(past)

Patent cit
(present)

Patent cit
(past)

Collaboration Hiring

# Firm’s proceedings×
Participation 0.013∗∗∗ 0.063∗∗∗ 0.003∗∗ 0.050∗∗∗ 0.046∗∗∗ 0.007∗∗

(0.004) (0.013) (0.001) (0.010) (0.009) (0.003)

# Firm’s proceedings −0.005∗∗ −0.028∗∗∗ −0.001 −0.025∗∗∗ −0.022∗∗∗ −0.002
(0.003) (0.009) (0.001) (0.006) (0.006) (0.002)

Sponsor×
Participation 0.080∗∗∗ 0.151∗∗∗ 0.016∗∗∗ 0.181∗∗∗ 0.172∗∗∗ 0.050∗∗∗

(0.017) (0.028) (0.006) (0.033) (0.028) (0.013)

Sponsor −0.041∗∗∗ −0.074∗∗∗ −0.008∗∗∗ −0.091∗∗∗ −0.085∗∗∗ −0.025∗∗∗
(0.010) (0.015) (0.003) (0.018) (0.016) (0.007)

Science citations (L) 0.026∗∗∗ 0.383∗∗∗ 0.002∗∗∗ 0.150∗∗∗ 0.138∗∗∗ 0.034∗∗∗
(0.001) (0.005) (0.000) (0.004) (0.004) (0.002)

Patent citations (L) 0.006∗∗∗ 0.175∗∗∗ 0.002∗∗∗ 0.189∗∗∗ 0.067∗∗∗ 0.011∗∗∗
(0.002) (0.006) (0.001) (0.006) (0.006) (0.002)

Research similarity (L) 0.014∗∗ 0.210∗∗∗ 0.002 −0.002 0.017 0.011∗
(0.007) (0.031) (0.002) (0.020) (0.018) (0.006)

Conf. distance controls Yes Yes Yes Yes Yes Yes
Conf Ser FE Yes Yes Yes Yes Yes Yes
Origin × Field FE Yes Yes Yes Yes Yes Yes
Origin × Firm FE Yes Yes Yes Yes Yes Yes
Year × Origin FE Yes Yes Yes Yes Yes Yes
Year × Firm FE Yes Yes Yes Yes Yes Yes

𝑅2 0.075 0.373 0.026 0.193 0.186 0.083
Observations 5126273 5126273 5126273 5126273 5126273 5126273
Number clusters 1114 1114 1114 1114 1114 1114
DV cond. mean 0.010 0.158 0.002 0.050 0.048 0.011
F (First) 34.6 34.6 34.6 34.6 34.6 34.6

Notes: Linear specification version of B.12. The number of firm proceedings is winsorized at five. ∗ 𝑝 < .1, ∗∗ 𝑝 < .05, ∗∗∗ 𝑝 < .01 Standard
errors in parenthesis, clustered at the researcher region level. Standard fixed effects include conference, origin × field, origin × firm, year ×
origin and year × firm fixed effects.
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Table B.12: Heterogeneity: Participation intensity for citations

(1) (2) (3) (4) (5) (6)
Science cit
(present)

Science cit
(past)

Patent cit
(present)

Patent cit
(past)

Collaboration Hiring

1 × Participation 0.011 0.055 −0.001 0.064∗∗∗ 0.040∗∗ −0.003
(0.007) (0.040) (0.003) (0.020) (0.019) (0.007)

2 × Participation 0.026∗∗∗ 0.164∗∗∗ 0.001 0.101∗∗∗ 0.084∗∗∗ 0.013
(0.008) (0.044) (0.003) (0.028) (0.024) (0.009)

3, 4 × Participation 0.041∗∗ 0.226∗∗∗ 0.002 0.168∗∗∗ 0.136∗∗∗ 0.025∗∗
(0.016) (0.067) (0.006) (0.046) (0.035) (0.013)

5+ × Participation 0.061∗∗ 0.289∗∗∗ 0.017∗∗ 0.237∗∗∗ 0.236∗∗∗ 0.025
(0.024) (0.069) (0.007) (0.048) (0.057) (0.020)

Sponsor, no proceedings ×
Participation 0.036 0.188∗ −0.010 0.090 0.104∗ 0.021

(0.028) (0.102) (0.010) (0.062) (0.053) (0.030)
Sponsor + Proceedings ×

Participation 0.099∗∗∗ 0.350∗∗∗ 0.009 0.254∗∗∗ 0.214∗∗∗ 0.065∗∗∗
(0.030) (0.065) (0.011) (0.060) (0.061) (0.024)

2 −0.005 −0.040∗∗∗ −0.001 −0.012 −0.015∗ −0.007∗∗
(0.003) (0.014) (0.001) (0.009) (0.009) (0.004)

3, 4 −0.011 −0.068∗∗ −0.001 −0.048∗∗ −0.041∗∗ −0.014∗∗
(0.008) (0.027) (0.003) (0.022) (0.019) (0.007)

5+ −0.020 −0.099∗∗∗ −0.011∗∗ −0.089∗∗∗ −0.101∗∗∗ −0.010
(0.017) (0.038) (0.005) (0.029) (0.037) (0.013)

Sponsor, no proceedings −0.016 −0.073 0.004 −0.016 −0.034 −0.013
(0.013) (0.046) (0.005) (0.029) (0.025) (0.014)

Sponsor + Proceedings −0.040∗∗ −0.128∗∗∗ −0.003 −0.079∗∗ −0.067∗ −0.032∗∗
(0.017) (0.038) (0.007) (0.033) (0.035) (0.014)

Conf. distance controls Yes Yes Yes Yes Yes Yes
Proceeding-level controls Yes Yes Yes Yes Yes Yes
Standard FE Yes Yes Yes Yes Yes Yes

𝑅2 0.083 0.371 0.028 0.196 0.196 0.085
Observations 5126273 5126273 5126273 5126273 5126273 5126273
Number clusters 1114 1114 1114 1114 1114 1114
DV cond. mean 0.010 0.158 0.002 0.050 0.048 0.011
F (First) 5.9 5.9 5.9 5.9 5.9 5.9

Notes: Reports the coefficients underlying table 2.3 in section 2.8. ∗ 𝑝 < .1, ∗∗ 𝑝 < .05, ∗∗∗ 𝑝 < .01 Standard errors in parenthesis, clustered
at the researcher region level. Standard fixed effects include conference, origin × field, origin × firm, year × origin and year × firm fixed effects.
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Table B.13: Conference location × year fixed effects

(1) (2) (3) (4) (5) (6)
Science cit
(present)

Science cit
(past)

Patent cit
(present)

Patent cit
(past)

Collaboration Hiring

Participation 0.019∗∗ 0.095∗∗ 0.002 0.096∗∗∗ 0.045∗∗ −0.002
(0.008) (0.048) (0.003) (0.026) (0.019) (0.007)

Science citations (L) 0.029∗∗∗ 0.393∗∗∗ 0.003∗∗∗ 0.158∗∗∗ 0.150∗∗∗ 0.037∗∗∗
(0.001) (0.007) (0.000) (0.003) (0.004) (0.001)

Patent citations (L) 0.008∗∗∗ 0.183∗∗∗ 0.003∗∗∗ 0.194∗∗∗ 0.075∗∗∗ 0.013∗∗∗
(0.002) (0.006) (0.001) (0.006) (0.005) (0.002)

Research similarity (L) 0.027∗∗∗ 0.253∗∗∗ 0.006∗ 0.015 0.075∗∗∗ 0.029∗∗∗
(0.008) (0.050) (0.003) (0.026) (0.019) (0.007)

Conf. distance controls Yes Yes Yes Yes Yes Yes
Standard FE Yes Yes Yes Yes Yes Yes
Dest × Year FE Yes Yes Yes Yes Yes Yes

𝑅2 0.090 0.378 0.033 0.198 0.212 0.088
Observations 5126273 5126273 5126273 5126273 5126273 5126273
Number clusters 1114 1114 1114 1114 1114 1114
DV cond. mean 0.010 0.158 0.002 0.050 0.048 0.011
F (First) 32.1 32.1 32.1 32.1 32.1 32.1

Notes: ∗ 𝑝 < .1, ∗∗ 𝑝 < .05, ∗∗∗ 𝑝 < .01 Standard errors in parenthesis, clustered at the researcher region level.Standard fixed effects include
conference, origin × field, origin × firm, year × origin and year × firm fixed effects.

Table B.14: Conference series × origin fixed effects

(1) (2) (3) (4) (5) (6)
Science cit
(present)

Science cit
(past)

Patent cit
(present)

Patent cit
(past)

Collaboration Hiring

Participation 0.060∗∗ 0.202∗ 0.010 0.135∗∗ 0.162∗∗ 0.019
(0.026) (0.114) (0.009) (0.068) (0.065) (0.020)

Science citations (L) 0.025∗∗∗ 0.360∗∗∗ 0.002∗∗∗ 0.147∗∗∗ 0.134∗∗∗ 0.034∗∗∗
(0.002) (0.009) (0.001) (0.005) (0.006) (0.002)

Patent citations (L) 0.006∗∗∗ 0.169∗∗∗ 0.003∗∗∗ 0.186∗∗∗ 0.067∗∗∗ 0.011∗∗∗
(0.002) (0.006) (0.001) (0.007) (0.006) (0.002)

Research similarity (L) −0.001 0.179∗∗ 0.000 0.002 −0.007 0.011
(0.018) (0.086) (0.006) (0.050) (0.047) (0.015)

Conf. distance controls Yes Yes Yes Yes Yes Yes
Standard FE Yes Yes Yes Yes Yes Yes
Origin × Conference FE Yes Yes Yes Yes Yes Yes

𝑅2 0.072 0.383 0.051 0.207 0.165 0.114
Observations 5112327 5112327 5112327 5112327 5112327 5112327
DV cond. mean 1066 1066 1066 1066 1066 1066
Number clusters 0.010 0.158 0.002 0.050 0.048 0.011
F (First) 9.3 9.3 9.3 9.3 9.3 9.3

Notes: ∗ 𝑝 < .1, ∗∗ 𝑝 < .05, ∗∗∗ 𝑝 < .01 Standard errors in parenthesis, clustered at the researcher region level. Standard fixed effects include
conference, origin × field, origin × firm, year × origin and year × firm fixed effects.
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Table B.15: Researcher location × Firm × Year fixed effects

(1) (2) (3) (4) (5) (6)
Science cit
(present)

Science cit
(past)

Patent cit
(present)

Patent cit
(past)

Collaboration Hiring

Participation 0.037∗∗∗ 0.149∗∗∗ 0.000 0.139∗∗∗ 0.116∗∗∗ 0.014
(0.014) (0.058) (0.005) (0.034) (0.034) (0.013)

Science citations (L) 0.028∗∗∗ 0.398∗∗∗ 0.004∗∗∗ 0.158∗∗∗ 0.146∗∗∗ 0.036∗∗∗
(0.001) (0.008) (0.001) (0.004) (0.005) (0.002)

Patent citations (L) 0.007∗∗∗ 0.181∗∗∗ 0.003∗∗∗ 0.196∗∗∗ 0.073∗∗∗ 0.012∗∗∗
(0.002) (0.006) (0.001) (0.006) (0.006) (0.002)

Research similarity (L) 0.014 0.217∗∗∗ 0.008 −0.020 0.015 0.015
(0.011) (0.057) (0.005) (0.033) (0.029) (0.012)

Conf. distance controls Yes Yes Yes Yes Yes Yes
Conf Ser FE Yes Yes Yes Yes Yes Yes
Origin × Field FE Yes Yes Yes Yes Yes Yes
Origin × Firm × Year FE Yes Yes Yes Yes Yes Yes

𝑅2 0.109 0.415 0.079 0.221 0.223 0.135
Observations 4917944 4917944 4917944 4917944 4917944 4917944
DV cond. mean 997 997 997 997 997 997
Number clusters 0.010 0.158 0.002 0.050 0.048 0.011
F (First) 24.6 24.6 24.6 24.6 24.6 24.6

Notes: ∗ 𝑝 < .1, ∗∗ 𝑝 < .05, ∗∗∗ 𝑝 < .01 Standard errors in parenthesis, clustered at the researcher region level. Fixed effects on researcher
location × firm × year added.
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Table B.16: Full-model specification with various cluster levels

(1) (2) (3) (4) (5) (6)
Science cit
(present)

Science cit
(present)

Science cit
(present)

Science cit
(present)

Science cit
(present)

Science cit
(present)

Participation 0.021∗∗∗ 0.021∗ 0.021∗∗ 0.021∗∗ 0.021∗ 0.021∗∗∗
(0.007) (0.012) (0.008) (0.009) (0.012) (0.007)

Science citations (L) 0.029∗∗∗ 0.029∗∗∗ 0.029∗∗∗ 0.029∗∗∗ 0.029∗∗∗ 0.029∗∗∗
(0.001) (0.005) (0.001) (0.002) (0.005) (0.001)

Patent citations (L) 0.008∗∗∗ 0.008∗∗ 0.008∗∗∗ 0.008∗∗∗ 0.008∗∗ 0.008∗∗∗
(0.002) (0.003) (0.002) (0.002) (0.003) (0.002)

Research similarity (L) 0.025∗∗∗ 0.025∗∗∗ 0.025∗∗∗ 0.025∗∗∗ 0.025∗∗∗ 0.025∗∗∗
(0.006) (0.009) (0.008) (0.008) (0.008) (0.007)

Conf. distance controls Yes Yes Yes Yes Yes Yes
Conf Ser FE Yes Yes Yes Yes Yes Yes
Origin × Field FE Yes Yes Yes Yes Yes Yes
Origin × Firm FE Yes Yes Yes Yes Yes Yes
Year × Origin FE Yes Yes Yes Yes Yes Yes
Year × Firm FE Yes Yes Yes Yes Yes Yes

Cluster Origin Firm Origin-Dest TW O/D TW O/F Paper
𝑅2 0.083 0.083 0.083 0.083 0.083 0.083
Observations 5126273 5126273 5126273 5126273 5126273 5126273
N clusters 1114 3235 88398 235902

Level 1 (Twoway) 1114 1114
Level 2 (Twoway) 511 3235

DV cond. mean 0.010 0.010 0.010 0.010 0.010 0.010
F (First) 31.6 144.5 49.6 14.6 27.8 141.4

Notes: Default specification with varying cluster levels. Columns 1-3 and 6 apply one-way clustering. Column 1 clusters by researcher airport
region, column 2 by citing firm. Column 3 clusters by researcher times conference airport region. Columns 4 and 5 apply two-way clustering,
for origin and destination clusters, and origin and firm clusters, respectively. Column 4 clusters by researcher and conference airport regions.
Column 5 clusters by researcher airport region and firm region. Column 6 applies one-way clustering on the proceeding-level. ∗ 𝑝 < .1, ∗∗

𝑝 < .05, ∗∗∗ 𝑝 < .01 Standard errors in parenthesis, clustered at the researcher region level.
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Table B.17: Science citations (OLS/IV)

(1) (2) (3) (4) (5) (6) (7) (8)
Science cit
(present)

Science cit
(present)

Science cit
(present)

Science cit
(present)

Science cit
(past)

Science cit
(past)

Science cit
(past)

Science cit
(past)

Participation 0.006∗∗∗ 0.013∗∗∗ 0.005∗∗∗ 0.021∗∗∗ 0.059∗∗∗ 0.057∗∗ 0.043∗∗∗ 0.113∗∗∗
(0.000) (0.004) (0.000) (0.007) (0.003) (0.025) (0.002) (0.041)

Science citations (L) 0.031∗∗∗ 0.029∗∗∗ 0.402∗∗∗ 0.394∗∗∗
(0.001) (0.001) (0.004) (0.006)

Patent citations (L) 0.009∗∗∗ 0.008∗∗∗ 0.188∗∗∗ 0.184∗∗∗
(0.002) (0.002) (0.006) (0.006)

Research similarity (L) 0.041∗∗∗ 0.025∗∗∗ 0.307∗∗∗ 0.240∗∗∗
(0.003) (0.006) (0.012) (0.043)

Method OLS IV OLS IV OLS IV OLS IV
Conf. distance controls No No Yes Yes No No Yes Yes
Conf Ser FE Yes Yes Yes Yes Yes Yes Yes Yes
Origin × Field FE Yes Yes Yes Yes Yes Yes Yes Yes
Origin × Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
Year × Origin FE Yes Yes Yes Yes Yes Yes Yes Yes
Year × Firm FE Yes Yes Yes Yes Yes Yes Yes Yes

𝑅2 0.083 0.082 0.090 0.083 0.318 0.318 0.379 0.372
Observations 5126273 5126273 5126273 5126273 5126273 5126273 5126273 5126273
Number clusters 1114 1114 1114 1114 1114 1114 1114 1114
DV cond. mean 0.010 0.010 0.010 0.010 0.158 0.158 0.158 0.158
F (First) 88.7 31.6 88.7 31.6

Notes: Shows the results of OLS and corresponding IV specifications. Leaving out Year×Origin and Year×Firm FE leaves results qualitatively unchanged. ∗ 𝑝 < .1, ∗∗ 𝑝 < .05, ∗∗∗ 𝑝 < .01 Standard errors in parenthesis,
clustered at the researcher region level.
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Table B.18: Patent citations (OLS/IV)

(1) (2) (3) (4) (5) (6) (7) (8)
Patent cit
(present)

Patent cit
(present)

Patent cit
(present)

Patent cit
(present)

Patent cit
(past)

Patent cit
(past)

Patent cit
(past)

Patent cit
(past)

Participation 0.001∗∗∗ 0.001 0.001∗∗∗ 0.001 0.019∗∗∗ 0.048∗∗∗ 0.012∗∗∗ 0.098∗∗∗
(0.000) (0.001) (0.000) (0.003) (0.001) (0.013) (0.001) (0.024)

Science citations (L) 0.003∗∗∗ 0.003∗∗∗ 0.168∗∗∗ 0.158∗∗∗
(0.000) (0.000) (0.003) (0.003)

Patent citations (L) 0.003∗∗∗ 0.003∗∗∗ 0.200∗∗∗ 0.195∗∗∗
(0.001) (0.001) (0.006) (0.006)

Research similarity (L) 0.007∗∗∗ 0.007∗∗ 0.094∗∗∗ 0.012
(0.001) (0.003) (0.004) (0.024)

Method OLS IV OLS IV OLS IV OLS IV
Conf. distance controls No No Yes Yes No No Yes Yes
Conf Ser FE Yes Yes Yes Yes Yes Yes Yes Yes
Origin × Field FE Yes Yes Yes Yes Yes Yes Yes Yes
Origin × Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
Year × Origin FE Yes Yes Yes Yes Yes Yes Yes Yes
Year × Firm FE Yes Yes Yes Yes Yes Yes Yes Yes

𝑅2 0.030 0.030 0.031 0.031 0.191 0.187 0.227 0.192
Observations 5126273 5126273 5126273 5126273 5126273 5126273 5126273 5126273
Number clusters 1114 1114 1114 1114 1114 1114 1114 1114
DV cond. mean 0.002 0.002 0.002 0.002 0.050 0.050 0.050 0.050
F (First) 88.7 31.6 88.7 31.6

Notes: Shows the results of OLS and corresponding IV specifications. Leaving out Year×Origin and Year×Firm FE leaves results qualitatively unchanged. ∗ 𝑝 < .1, ∗∗ 𝑝 < .05, ∗∗∗ 𝑝 < .01 Standard errors in parenthesis,
clustered at the researcher region level.
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Table B.19: Collaboration (OLS/IV)

(1) (2) (3) (4) (5) (6) (7) (8)
Collaboration Collaboration Collaboration Collaboration Hiring Hiring Hiring Hiring

Participation 0.021∗∗∗ 0.028∗∗∗ 0.015∗∗∗ 0.074∗∗∗ 0.005∗∗∗ 0.001 0.003∗∗∗ 0.006
(0.001) (0.009) (0.001) (0.020) (0.000) (0.004) (0.000) (0.008)

Science citations (L) 0.155∗∗∗ 0.147∗∗∗ 0.037∗∗∗ 0.037∗∗∗
(0.003) (0.004) (0.001) (0.001)

Patent citations (L) 0.077∗∗∗ 0.074∗∗∗ 0.013∗∗∗ 0.012∗∗∗
(0.005) (0.005) (0.002) (0.002)

Research similarity (L) 0.104∗∗∗ 0.047∗∗∗ 0.023∗∗∗ 0.021∗∗∗
(0.005) (0.018) (0.002) (0.007)

Method OLS IV OLS IV OLS IV OLS IV
Conf. distance controls No No Yes Yes No No Yes Yes
Conf Ser FE Yes Yes Yes Yes Yes Yes Yes Yes
Origin × Field FE Yes Yes Yes Yes Yes Yes Yes Yes
Origin × Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
Year × Origin FE Yes Yes Yes Yes Yes Yes Yes Yes
Year × Firm FE Yes Yes Yes Yes Yes Yes Yes Yes

𝑅2 0.185 0.185 0.214 0.196 0.080 0.080 0.087 0.087
Observations 5126273 5126273 5126273 5126273 5126273 5126273 5126273 5126273
Number clusters 1114 1114 1114 1114 1114 1114 1114 1114
DV cond. mean 0.048 0.048 0.048 0.048 0.011 0.011
F (First) 88.7 31.6 88.7 31.6

Notes: Shows the results of OLS and corresponding IV specifications. Leaving out Year×Origin and Year×Firm FE leaves results qualitatively unchanged. ∗ 𝑝 < .1, ∗∗ 𝑝 < .05, ∗∗∗ 𝑝 < .01 Standard errors in parenthesis,
clustered at the researcher region level.
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B.5 Understanding Firms’ Attendance of Scientific Conferences

In this paper, we capture firms’ conference attendance on a large scale through data on authorship of
conference proceedings and on sponsorship of conference events. We collected qualitative evidence to
better understand the reality behind these indicators. We attended two large, high-quality conferences
to gather evidence in support of our assumptions. The first conference was the European Conference
on Computer Vision 2018 (ECCV, https://eccv2018.org/) in Munich, Germany. The ECCV is a large
biannual 𝐴★ conference in computer vision, a subfield of AI. In 2018, about 3500 persons participating.
The second conference was the Neural Information Processing Systems conference 2019 (NeurIPS,
https://nips.cc/) in Vancouver, Canada, with more than 13000 participants. At ECCV and NeurIPS, we
interviewed more than 50 in total, between scientists, HR representatives and engineers, of more than 20
firms and about 20 academic scientists. We talked to firms of several countries and of various size and
with different levels of participation. We investigated their activities at conferences and the processes
taking place before, during and after conferences. Falling short of a full qualitative study, we here report
our general impressions from the interviews. This follows from section 2.3 of the paper where we describe
the main characteristics of CS conference series and the modes of participation of firms.

In summary, firms activities at a conference can be categorized in (i) scientific activities and, (ii) branding
and recruiting activities. These two categories relate to rather distinct underlying dynamics and processes.
The former is reflected in the conference participation of scientists who present their work and normally
interact with their academic and corporate peers. Generally, firm scientists conveyed the impression of
a high degree of autonomy, having considerable freedom in the decision of which conferences to attend
and, to a large extent, what to present. Firm-level processes, mostly unknown to academic scientists,
play a role mostly in the screening of presented work before and in the follow-up activities after the
conference. Interestingly, the screening of work submitted to conferences concerns primarily a selection
based on quality: most firms have in place internal peer-review systems (and not of hierarchical approval)
to ensure presenting above-average scientific work.

Nonetheless, this also entails guaranteeing the presence of sufficient intellectual property protection.
All firm scientists interviewed declared that prior to a conference presentation, firm lawyers would
verify whether a patent application is necessary, to protect possible valuable inventions and to avoid
compromising the future option of obtaining a patent.1 However, no one declared this to have ever been
an impediment to their participation. It also remains that the work of firms scientists presenting at the
conference appeared often not directly related to current product development. Some scientists said that
the research closely related to product development is normally maintained secret and performed by
different organizational units.

After a conference event, all firms appeared to have in place knowledge sharing processes. Depending
on the firm, these may take the form of informal activities, such as the sharing of references among
colleagues (also who did not participate to the conference). More often, researchers were expected to
write more structured reports or to prepare presentations on the content of the conference to be discussed
in internal meetings. In some cases this was supported by an internal IT information system to trace

1In most patent jurisdictions, rendering public an invention generates prior art which jeopardizes the novelty of an eventual
patent application also if inventors and authors of the publication are the same

https://eccv2018.org/
https://nips.cc/
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the participation of different individuals to different conferences and events and maintain information on
their feedback.

Official recruiting and branding activities are mostly carried out by personnel at the conference booths and
are directly connected with sponsorship. HR personnel, in particular, advertise job opportunities, mostly
for PhDs and young researchers, attend at the booth to all potential candidates and schedule possible
follow-up interviews after the conference. The HR units then take care of preparing the material and
define the main activities before the conference, and have follow-up meetings to discuss the outcomes
and possible improvements after the conference.

Despite being distinct activities, scientific and branding/hiring activities are not disconnected. On the one
hand, the firm sponsorship and the personnel employed at the firm’s booths also advertise more generally
scientific activities of firms scientists and can offer organizational and logistic support to their scientists.
The promotion of research activities performed by firm, especially focused on the specific contributions
at the focal conference, is at least equally evident than the promotion of job positions. The sponsorship
benefits and “infrastructure” of large sponsors, especially at large conferences like NeurIPS, is used to
create opportunities for divulging research results, even to offer specialized tutorials and workshops,
beyond the presentation of proceedings or organization of workshops that may be part of the normal
conference program.

On the other hand, several HR representatives referred to have experimented also participating to confer-
ences without the presence of scientists. This however proved to be ineffective also for hiring objectives,
due to the difficulty of engaging with other scientists. The presence of scientists at the booths is planned,
in order to facilitate the conversations with potential candidates for job positions that are often interested
in discussing in detail research developed by the firm. And the promotion of research at the firm is clearly
complementary to engaging possible candidates. Interestingly, most HR representatives we interviewed
declared that the decision of the conferences to sponsor often follows the preferences of where scientists
want to present their research. Scientists did not seem to care much about whether the firm sponsored or
not an event when deciding where to participate, and would very well, and often do, participate without
corresponding sponsorship. Informal connections and interactions of scientists at the conference may
also constitute a vehicle to reach and engage candidates. The few sponsors we could talk to with a small
booth and no parallel scientific activity demonstrate limited interactions with the conference participants
and their booths were poorly attended. One of these sponsors’ representative (from a large firm) explicitly
expressed dissatisfaction for the lack of a more significant investment by the firm, in her/his own words,
“to a community that I deem important for our research units”.

The evidence discussed here is necessarily anecdotal. In particular, it is based on only two events and
a sample of interviewees necessarily selected by the presence at these conferences. Moreover, the level
of investment of firms at ECCV18 and NeurIPS19, similarly to other conference series in ML, has risen
sharply in the latest years. Nonetheless, we can very well expect that the type of firm activities carried
out at other conferences would be equivalent, and, while the level of investment may have varied over
time and across subfields, the nature of these activities would likely be the same. Most importantly, this
evidence stands as a proof that the participation of firms to conferences constitute a substantial firm-level
investment which is well approximated by our empirical quantitative data.
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B.6 Similarity Measures

We calculate text similarity scores using the cosine similarity between reduced term frequency–inverse
document frequency (tf-idf) values of the cleaned abstracts and titles. In a first step, the abstract is
cleaned. Cleaning involves concatenating title and actual abstract, removing copyright statements and
replacing special keywords with character strings (2D becomes twod, L2 becomes eltwo, ...). Then,
everything which is not a character is replaced with a whitespace. We employ stemming, which reduces
flexed forms of words to their stem. We also remove stop words. Of the so-cleaned abstract, we take the
50,000 most frequent tf-idf values of one, two and three-grams. We exclude very frequent terms. We
then use a truncated singular value decomposition (SVD) to reduce the dimensionality from 50,000 to
300. This approach is also called latent semantic analysis (LSA). The latter name hints at the purpose -
finding dimensions that concisely describe the semantic content of an abstract. Multiple words can have
the same meaning and the same word can have several meaning, depending on the context. All in all,
this approach generates a procedure which maps an abstract into 300 dimensions. For the tf-idf measure
as well as the SVD, it is necessary to take the full body of documents into account in a training stage.
For this, we use all 2.6 million DBLP items for which we can find abstracts. Once this training stage
is completed, individual abstracts can be analyzed. Finally, the cosine similarity is calculated for two
transformed abstracts.

We insert mean and maximum similarity scores as outcome variables into our regression setup from
section 2.6. The theoretical range of the similarity scores is between -1 and 1, but observed values are
typically between zero and one. In each firm × year × field group, we observe several similarities when
firms have published more than one paper. Within these groups, we take the average and the maximum.
When a firm has not published a paper in a given year × field group, we set the similarity score to zero.
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Table B.20: Mean similarity scores

(1) (2) (3) (4) (5)
Mean Similarity t-1 t t+1 t+2 t+3

Participation −0.008 0.043∗∗∗ 0.018∗∗ 0.023∗∗∗ 0.015∗∗
(0.011) (0.008) (0.008) (0.007) (0.006)

Science citations (L) 0.011∗∗∗ 0.013∗∗∗ 0.012∗∗∗ 0.013∗∗∗
(0.001) (0.001) (0.001) (0.001)

Patent citations (L) 0.007∗∗∗ 0.010∗∗∗ 0.009∗∗∗ 0.010∗∗∗
(0.001) (0.001) (0.001) (0.001)

Conf. distance controls Yes Yes Yes Yes Yes
Conf Ser FE Yes Yes Yes Yes Yes
Origin × Field FE Yes Yes Yes Yes Yes
Origin × Firm FE Yes Yes Yes Yes Yes
Year × Origin FE Yes Yes Yes Yes Yes
Year × Firm FE Yes Yes Yes Yes Yes

𝑅2 0.580 0.422 0.597 0.608 0.622
Observations 5126273 5126273 5126273 5126273 5126273
Number clusters 1114 1114 1114 1114 1114
DV cond. mean 0.087 0.151 0.090 0.087 0.084
F (First) 28.5 28.8 29.0 29.3 29.3

Notes: ∗ 𝑝 < .1, ∗∗ 𝑝 < .05, ∗∗∗ 𝑝 < .01 Standard errors in parenthesis, clustered at the researcher region level.This table shows mean abstract
similarity scores of firm papers in 𝑡 + 𝑥 relative to the focal paper. Only papers within the same CS field are compared. When a firm did not
publish in 𝑡 + 𝑥, the mean similarity score is set to zero. Firm-proceeding level dataset, where some proceedings were actually at the conference
(Participation=1) and some were at another conference (Participation=0). Participation is instrumented by the direct flight availability between
the researcher location and the conference location. Firm-proceeding controls include whether the firm cited previous work by the authors in
the years before the conference (Science/Patent citations L) and the average abstract similarity between proceedings published by the firm in the
previous year and the focal proceeding (Research Similarity L). Dependent variable mean is for actually presented proceedings. Conf. distance
controls include the distance between researcher and conference location (log), whether that distance is zero and whether the two locations are
in the same US state or non-US country.
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Table B.21: Maximum similarity scores

(1) (2) (3) (4) (5)
Max Similarity t-1 t t+1 t+2 t+3

Participation −0.010 0.075∗∗∗ 0.029∗∗ 0.045∗∗∗ 0.022∗
(0.017) (0.014) (0.014) (0.013) (0.013)

Science citations (L) 0.026∗∗∗ 0.029∗∗∗ 0.026∗∗∗ 0.027∗∗∗
(0.002) (0.002) (0.002) (0.002)

Patent citations (L) 0.019∗∗∗ 0.023∗∗∗ 0.022∗∗∗ 0.023∗∗∗
(0.002) (0.002) (0.001) (0.001)

Conf. distance controls Yes Yes Yes Yes Yes
Conf Ser FE Yes Yes Yes Yes Yes
Origin × Field FE Yes Yes Yes Yes Yes
Origin × Firm FE Yes Yes Yes Yes Yes
Year × Origin FE Yes Yes Yes Yes Yes
Year × Firm FE Yes Yes Yes Yes Yes

𝑅2 0.685 0.541 0.697 0.706 0.716
Observations 5126273 5126273 5126273 5126273 5126273
Number clusters 1114 1114 1114 1114 1114
DV cond. mean 0.165 0.245 0.172 0.168 0.162
F (First) 28.5 28.8 29.0 29.3 29.3

Notes: ∗ 𝑝 < .1, ∗∗ 𝑝 < .05, ∗∗∗ 𝑝 < .01 Standard errors in parenthesis, clustered at the researcher region level.This table shows maximum
abstract similarity scores of firm papers in 𝑡 + 𝑥 relative to the focal paper. Only papers within the same CS field are compared. When a
firm did not publish in 𝑡 + 𝑥, the mean similarity score is set to zero. Firm-proceeding level dataset, where some proceedings were actually
at the conference (Participation=1) and some were at another conference (Participation=0). Participation is instrumented by the direct flight
availability between the researcher location and the conference location. Firm-proceeding controls include whether the firm cited previous
work by the authors in the years before the conference (Science/Patent citations L) and the average abstract similarity between proceedings
published by the firm in the previous year and the focal proceeding (Research Similarity L). Dependent variable mean is for actually presented
proceedings. Conf. distance controls include the distance between researcher and conference location (log), whether that distance is zero and
whether the two locations are in the same US state or non-US country.
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C.1 Data

In this section of the Appendix, we provide additional information on each of the different datasets used
in the empirical analysis and provide additional descriptive statistics.

The plant-level R&D survey data. The main data source of this analysis is the biennial longitudinal
survey dataset Wissenschaftsstatistik, collected and administrated by the Sifterverband on behalf of the
German Federal Ministry of Education and Research. The survey targets the universe of research-active
plants in Germany. Those are identified via several distinct channels: (i) federal and European datasets
on public R&D funding, (ii) patent applications, (iii) plant or firms’ annual accounts or business reports,
(iv) commercial company databases, (v) the media, and (vi) membership lists of trade associations with a
focus on innovative activity. This continuously-updated register of R&D active plants is compared with
information from the Bureau van Dijk databases to identify plant closures and changes of plant location.
To further ensure the comprehensiveness of the plant register, regular surveys are conducted among plants
in R&D active industries (in particular: automotive engineering, mechanical engineering, electrical and
chemical engineering), which have not been known for their R&D activity so far. Results of these short
surveys indicate that a very high share of all R&D-active plants in Germany is indeed covered by the
dataset.

The survey covers detailed information on plants’ overall R&D spending, its R&D expenses by sub-
categories (internally- vs. externally conducted R&D, personnel vs. non-personnel R&D spending) and
its R&D staff (by age structure, qualification, education). Moreover, it offers information on plant
size (in terms of sales and employees), industry classification and plant’s organizational structure (single-
vs. multi-plant firms). By special agreement with the Stifterverband, we also gained access to each plant’s
exact address (postal code and location) in a given year, which allows us to precisely assign the applicable
LBT (treatment). Panel A of Appendix Table C.1 provides detailed descriptive statistics. The survey
forms the basis of Germany’s official reporting of its entrepreneurial R&D activities to EU authorities
and the OECD.

Patent data. To assess the impact of profit taxation on innovation output, we link administrative
information on plants’ patenting activity from the European Patent Office (EPO, PATSTAT dataset as of
4/2016) to the R&D survey. As plants often register the very same innovation at multiple intellectual
property (IP) protection institutions, worldwide patent databases focus on “patent families”, i.e., pool
those inventions that show the very same content and priority date. The latter refers to the date of the first
patent application within a patent family at any institution and determines the start of the IP protection
period. The focus on patent families effectively rules out the threat of double-counting the very same
patented innovation within and across different IP systems. Within the EPO system, double-counting of
patents may still occur in cases of parallel or divisional applications. However, these cases are very rare.

To best match the plant-level survey, we limit ourselves to patent families that were first registered between
1995 and 2007 and identify each patent family’s initial applicant(s). This is particularly important in the
context of our analysis: we want to identify the plant where the initial invention occurred, not the current
IP holder. We next drop all patent applications that have not been (co-)filed by a plant (as classified
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by PATSTAT), and geocode all remaining patents. In a final step, we use detailed information on the
applicants’ name(s) and location(s) of residence to merge the number of filed patents to the plant-level
survey by means of a fuzzy matching algorithm. In case multiple actors jointly invented a new product or
process, we only assign the respective share of a patent to a surveyed plant. Overall, the surveyed plants
account for around 60% of all patents filed by a German applicant during the period from 1995 to 2007.

As the value of patents differs substantially (Scherer, 1965; Hall, Jaffe, and Trajtenberg, 2005), we
create a second measure of innovation output that weights each patent family according to the number of
citations it receives from other EPO patents that are filed within the first five years after its registration.1
Citation-adjusted weighted counts are widely used in the literature and have been shown to correlate
well with real-world measures of innovation quality such as profitability (see, e.g., Harhoff, Scherer, and
Vopel, 2003; Kogan et al., 2017; Moser, Ohmstedt, and Rhode, 2018). As a robustness test, we also
weight patents with the number of citations they receive by patents filed at the United States Patent and
Trademark Office (USTPO). Relying on data from Danzer, Feuerbaum, and Gaessler (2020), we further
distinguish product from process innovations. To group patents along this margin, information from the
highly standardized patents’ claims texts is used. Patents are classified as process innovation if the claim
text of a patent includes terms such as “method”, “process” or “procedure”. Panel B of Appendix Table
C.1 provides descriptive statistics on each measure of plants’ innovation output. Note that some patent
applications (12%) do not provide enough information to classify a patent accordingly. Excluding these
patents from the baseline regressions does not affect estimates.

Additional plant-level data. While the Stifterverband data provide detailed information on plants’ R&D
activities, the survey offers only few insights on plants’ financial situation. To test for heterogeneous
effects among more or less cash-constrained plants, we link additional information from the Bureau van
Dijk’s (BvD) AMADEUS and ORBIS databases to the surveyed plants.2 The match between the R&D
survey and the BvD data has been established by the Stifterverband as part of the survey’s implementation
strategy. The two BvD datasets offer a variety of financial information at the company level. Thus, for
plants that belong to a company, we actually proxy their financial situation via the company’s one. As the
BvD datasets predominantly cover larger and oftentimes stock-listed plants or firms, we can only match
around 40% of the surveyed plants to the BvD data.

To prepare the BvD data for the purposes of our study, we predominantly follow Kalemli-Ozcan et al.
(2015) and Gopinath et al. (2017). We first combine multiple vintages of the AMADEUS and ORBIS
datasets to increase coverage over time. Ultimately, we use vintages of the AMADEUS database from
2001, 2002, 2007 and 2010, as well as the 2016 ORBIS version. When a given plant appears in more
than one vintage, we follow Gopinath et al. (2017) and take those information from the most recent
vintages. When multiple financial accounts are available for a given plant in a given year, we always
refer to accounts with higher quality. Here, we always prefer those accounts that cover the full twelve
months of a given year. Moreover, we prefer accounts in accordance to IFRS guidelines over GAAP
accounts or those with unknown reporting standards. Last, we choose unconsolidated over consolidated

1We show that effects remain unaffected when using citations in the United States Patent and Trademark Office (USPTO) IP
protection system, too. Citations counts are quite different in these two institutions as the USPTO requires patent applicants to
list all relevant patents prior art, whereas such a requirement does not exist at the EPO. Citation data is taken from PATSTAT
10/2019 to completely rule out attrition in our sample.

2The data was kindly made available by the LMU-ifo Economics & Business Data Center (https://www.ifo.de/EBDC.)

https://www.ifo.de/EBDC
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accounts. In the empirical analysis, we measure plants’ liquidity constraints via the level of non-current
liabilities; Panel A of Appendix Table C.1 providing the corresponding descriptive statistics.

Municipality- and county-level data. Information on LBT scaling factors (Realsteuerhebesätze der
Gewerbesteuer) for all West German municipalities were obtained from the Federal Statistical Office and
the Statistical Offices of the German States. We construct a balanced panel dataset for the universe of
municipalities by combining two different sources. Data for the period from 1987 to 2000 was obtained
by filing individual requests to the respective Statistical Offices of the German States. Information for
the years from 2001 to 2013 is publicly accessible via annual reports: “Hebesätze der Realsteuern”,
published by the Statistical Offices of the German States.

Information on local GDP per capita is available at the county level only and can be accessed via the
Working Group Regional Accounts of the Federal Statistical Office and the Statistical Offices of the
German States. The available data cover the period from 1992 to 2014. We use the revision from
August 2015 and account for inflation by calculating real GDP per capita in 2010 prices using the
consumer price index published by the Federal Statistical Office (Verbraucherpreisindex). For some
regression, we derive a measure of municipality-level GDP by multiplying the respective county’s GDP
per capita with a given municipality’s level of population.

Data on municipal expenses for all West German municipalities over the period from 1998-2007 were
obtained from the Federal Statistical Office and the Statistical Offices of the German States. Since 2001,
information on local expenses are publicly available via the annual reports “Statistik Lokal”, published
by the Statistical Offices of the German States. For the period from 1998-2000, we filed a data request
to the statistical offices. Again, we account for inflation by using the consumer price index and express
expenses in 2010 prices.

Information on population levels are available for the entire effect window (1987-2013) and were taken
from the Federal Statistical Office and the Statistical Offices of the German States. We combine two
different sources to construct a balanced panel for the universe of West German municipalities. First,
data for the period from 1987 to 1999 are based on data requests we filed to the Statistical Offices of
the German States. Second, data on population levels from 2000 onwards are publicly available via the
annual German municipality register (Gemeindeverzeichnis).

Last, we collect information on the number of unemployed individuals per municipality for the period
1998 to 2013 from the annually report Bestand an Arbeitslosen, Rechtskreise SGB III und SGB II,
Insgesamt, published by the German Federal Employment Agency. In the empirical analysis, we divide
this number by the respective municipality’s annual population level to proxy local unemployment rates.
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C.2 Descriptive Statistics, Correlations and Definitions

Table C.1: Descriptive Statistics (Baseline Sample)

Mean Std Deviation Min 1% Pctl. 99% Pctl. Max Observations

A. Plant-Level R&D Survey

R&D Spending Levels (in M EUR)
Total R&D Spending 8,109.77 89,163.33 0 11.00 91,309 4,418,510 31,648
Internal R&D Spending 6,837.73 75,420.28 0 0.00 79,945 4,197,584 31,648
External R&D Spending 1,272.03 21,521.87 0 0.00 11,122 1,119,049 31,648
Internal Spending on R&D Personell 4,152.55 42,238.54 0 0.00 49,834 2,454,123 31,648
Internal R&D Spending on Non-Personell 2,685.16 35,403.09 0 0.00 31,037 2,282,560 31,648

Spending Shares (in %)
Share of Internal R&D Expenses 90.93 18.36 0 0.00 100 100 31,529
Share of External R&D Expenses 9.07 18.36 0 0.00 100 100 31,529
Share of Internal R&D Expenses for Scientific Staff 67.22 16.54 0 18.44 100 100 31,072
Share of Internal R&D Expenses for Non-Personell 32.78 16.54 0 0.00 82 100 31,072

Other Plant Characteristics
No. of Employees 536.54 3,035.90 1 3.00 6,214 161,800 31,623
Sales (in MM EUR) 210.95 1,601.39 0 0.00 2,840 84,062 31,445
R&D Spending per Employee (in M EUR) 23.43 347.68 0 0.12 183 35,503 31,623
Non-Current Liabilities to Sales Ratio 0.53 4.48 -0 0.02 3 184 5,879
Manufacturing Sector 0.85 0.36 0 0.00 1 1 31,648
Service Sector 0.10 0.31 0 0.00 1 1 31,648
Other Sector 0.05 0.21 0 0.00 1 1 31,648

B. Patent Data
Number of Patents 0.84 7.62 0 0.00 15 969 31,648
Citation-Weighted Number of Patents (EP) 0.97 9.96 0 0.00 19 1,082 31,648
Citation-Weigted Number of Patens (With Claims Data) 0.87 8.84 0 0.00 17 1,023 31,648
Citation-Weighted Number of Patents (USTPO) 1.72 19.66 0 0.00 35 2,326 31,648
Citation-Weighted Number of Process Innovations 0.39 4.96 0 0.00 8 538 31,648
Citation-Weighted Number of Product Innovations 0.48 4.53 0 0.00 11 486 31,648

C. Local Characteristics
Population 27,432.37 76,806.31 177 878.00 284,912 1,689,980 11,403
Log Unemployment Per Capita 3.44 1.34 0 1.27 7 11 8,179
Expenses in M EUR 745.85 3,773.02 -220 12.35 9,772 118,149 8,181
GDP per capita 28,280.75 10,380.23 12,696 16,115.12 81,428 100,807 10,917

Notes: This table shows descriptive statistics for our baseline sample. Panel A provides insights on covered plants’ R&D spending
in levels, spending shares, and other plant characteristics. Panel B offers information on plants’ patenting activities. Last, in Panel
C information on municipality- and district-level characteristics are given. See the Data Appendix C.1 for more informaiton on the
respective data sources.
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Figure C.1: Assessing the Link between R&D Spending and Patenting
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(b) Internal Margin Effect
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Notes: This binscatter plot illustrates the relationship between plants’ annual R&D spending and their respective number of filed
patents in our baseline sample. An inverse hyperbolic sine transformation is applied to both variables. Year and industry fixed
effects are accounted for. We plot the overall relationship in Panel A, and the intensive margin effect in Panel B. Information
on plants’ R&D spending stems from the Wissenschaftsstatistik. Information on plants’ patenting activities is taken from the
European Patent Office. See Data Appendix C.1 for more information on both datasets.
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Figure C.2: Regional Classifications of Municipalities in the Free State of Bavaria
(a) Commuting Zones (CZ) (b) Counties

(c) Statistical Planning Regions (ROR) (d) Administrative Districts (NUTS II)

Notes: This figure illustrates different regional subdivisions used to control for region-times-year fixed effects in our study,
focusing on the 2,056 municipalities in the Free State of Bavaria for the purpose of illustration (thin black lines indicate
municipality borders as of December 31, 2010). Panel A plots municipalities along with the 56 commuting zones in Bavaria (thick
black lines), which corresponds to our baseline specification. Panel B shows instead the 96 counties and city counties (kreisfreie
Städte) in Bavaria (nested in commuting zones). Panels C and D show the 18 statistical planning regions (Raumordnungsregionen,
ROR) and seven administrative districts (Regierungsbezirke, NUTS II), respectively, which are geographical aggregations of
commuting zones. Maps: © GeoBasis-DE / BKG 2015, OpenStreetMap contributors.
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Figure C.3: The Effect of a Tax Rate Increase on Municipality-Level Outcomes

(a) Population
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(c) Total Expenses
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(d) Total Revenues
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Notes: This graph plots the point estimates, 𝛽𝑘 (𝑘 ∈ [−6,−4, . . . , 8]), and corresponding 95% confidence intervals of the event
study model as defined in Equations (3.1)–(3.3). The dependent variable is a municipality’s annual population in Panel A, it
annual share of unemployed per capita in Panel B, its total annual expenditures in Panel C, and its total annual revenues in
Panel D. All outcomes are in logs. For the treatment group, the business tax change occurred on in year 𝑡 = 0 or 𝑡 = −1. The
regressions include municipality, state × year, commuting zone × year, as well as sector × year fixed effects. All municipalities
that experienced a tax decrease during the event window period are excluded. Standard errors are robust to clustering at the
municipality level.



PROFIT TAXATION, R&D SPENDING AND INNOVATION 197

C.3 Additional Results on R&D Spending

Table C.2: Implied Long-Term Elasticities and Oster Bounds

Total Internal Internal Spending Internal Non-Personnel
R&D Spending R&D Spending on R&D Personnel R&D Spending

A. Uncontrolled Estimates
Point Estimate -1.25 -1.77 -1.63 -2.44

B. Controlled Estimates
Point Estimate -1.19 -1.81 -1.62 -2.49

C. Bounded Oster Estimates
Point Estimate -1.16 -1.84 -1.61 -2.63

Notes: This table displays the implied long-term elasticity of plants’ level of R&D spending (and various sub-categories
thereof) with regard to an increase in the LBT rate. In Panel A, we report our baseline elasticities as given in Figure
3.7. In this specification, we do not control for time-varying local confounders at the municipality or county level. In
Panel B, we display the corresponding elasticities when accounting for potential confounders at the municipality or
county level. Last, in Panel C, we provide bounded estimates of these elasticities in the spirit of Oster (2019). In detail,
we calculate the corresponding elasticities via the following formula: 𝛽∗ = 𝛽 − [ ¤𝛽 − 𝛽 ] 𝑅𝑚𝑎𝑥−�̃�

�̃�− ¤𝑅 , where ¤𝛽 and ¤𝑅
refer the uncontrolled elasticity and R-Squared and 𝛽 and �̃� to the controlled elasticity and corresponding R-Squared,
respectively. Moreover, we set 𝑅𝑚𝑎𝑥 to 1.3 × �̃�. The framework assumes that coefficient stability with regard to
observable confounders may inform about the importance of omitted variable bias if the importance of the controls in
explaining the variance of the outcome is accounted for.

Figure C.4: The Effect of a Tax Decrease on R&D Spending
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Notes: This graph plots the point estimates, 𝛽𝑘 (𝑘 ∈ [−6,−4, . . . , 8]), and corresponding 95% confidence intervals of the
event study model as defined in Equations (3.1)–(3.4). The dependent variable is a plant’s annual (invserse hyperbolic since
transformed) total R&D spending. For the treatment group, the business tax change occurred on in year 𝑡 = 0 or 𝑡 = −1. The
regressions include municipality, state × year, commuting zone × year, as well as sector × year fixed effects. All municipalities
that experienced a tax increase during the event window period are excluded. Standard errors are robust to clustering at the
municipality level.
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Figure C.5: The Effect of a Tax Increase on Total R&D Spending – Varying Regional Controls
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(b) Internal R&D Spending
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(c) Internal Spending on R&D Personnel
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(d) Internal Non-Personnel R&D Spending
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Notes: This graph plots the point estimates, 𝛽𝑘 (𝑘 ∈ [−6,−4, . . . , 8]), and corresponding 95% confidence intervals of the
event study model as defined in Equations (3.1)–(3.4) when using varying regional × year fixed effects. All regressions further
include plant, municipality, as well as sector × year fixed effects. For the treatment group, the business tax change occurred on
in year 𝑡 = 0 or 𝑡 = −1. All outcomes are inverse hyperbolic sine transformed. Moreover, all municipalities that experienced a
tax decrease during the event window period are excluded. Standard errors are robust to clustering at the municipality level.
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Figure C.6: The Effect of a Tax Increase on Total R&D Spending – Local Time-Varying Controls
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(c) Internal Spending on R&D Personnel
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(d) Internal Non-Personnel R&D Spending
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Notes: This graph plots the point estimates, 𝛽𝑘 (𝑘 ∈ [−6,−4, . . . , 8]), and corresponding 95% confidence intervals of the
event study model as defined in Equations (3.1)–(3.3) and adding local time-varying controls. In addition to these potential
confounders, the regressions include plant, municipality, state × year, commuting zone × year, as well as sector × year fixed
effects. All outcomes are inverse hyperbolic sine transformed. Moreover, all municipalities that experienced a tax decrease
during the event window period are excluded. Standard errors are robust to clustering at the municipality level.
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Figure C.7: The Effect of a Tax Increase on Total R&D Spending – Alternative Transformations of 𝑌
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-.1
5

-.1
-.0

5
0

.0
5

.1
Es

tim
at

ed
 E

ffe
ct

 R
el

at
iv

e 
to

 P
er

io
d 

t =
 -2

-6 -4 -2 0 2 4 6 8
Years Relative to the Tax Reform

IHS(Outcome) Log(1+Outcome)
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Notes: This graph plots the point estimates, 𝛽𝑘 (𝑘 ∈ [−6,−4, . . . , 8]), and corresponding 95% confidence intervals of the event
study model as defined in Equations (3.1)–(3.3) when using different transformations of the respective outcome variable. All
regressions include plant, municipality, state × year, commuting zone × year, as well as sector × year fixed effects. All outcomes
are inverse hyperbolic sine transformed. Moreover, all municipalities that experienced a tax decrease during the event window
period are excluded. Standard errors are robust to clustering at the municipality level.
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Figure C.8: The Effect of a Tax Increase on Total R&D Spending – Alternative Inference

(a) Total R&D Spending
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(d) Internal Non-Personnel R&D Spending
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Notes: This graph plots the point estimates, 𝛽𝑘 (𝑘 ∈ [−6,−4, . . . , 8]), and corresponding 95% confidence intervals of the event
study model as defined in Equations (3.1)–(3.3) when using different ways of drawing inference, i.e., clustering standard errors
at the indicated spatial jurisdictions. All regressions include plant, municipality, state × year, commuting zone × year, as well as
sector × year fixed effects. All outcomes are inverse hyperbolic sine transformed. Moreover, all municipalities that experienced
a tax decrease during the event window period are excluded.
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Figure C.9: The Effect of a Tax Increase on Total R&D Spending – Alternative Effect Windows

(a) Total R&D Spending
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(b) Internal R&D Spending
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(c) Internal Spending on R&D Personnel
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(d) Internal Non-Personnel R&D Spending
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Notes: This graph plots the point estimates, 𝛽𝑘 (𝑘 ∈ [−10,−8, . . . , 8]), and corresponding 95% confidence intervals of the
event study model as defined in Equations (3.1)–(3.3) when using different effect windows. All regressions include plant,
municipality, state × year, commuting zone × year, as well as sector × year fixed effects. All outcomes are inverse hyperbolic
sine transformed. Moreover, all municipalities that experienced a tax decrease during the event window period are excluded.



PROFIT TAXATION, R&D SPENDING AND INNOVATION 203

Figure C.10: The Effect of a Tax Increase on Total R&D Spending - Different Samples
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(b) Information on Non-Current Liabilities
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Notes: This graph plots the point estimates, 𝛽𝑘 (𝑘 ∈ [−6,−4, . . . , 8]), and corresponding 95% confidence intervals of the event
study model as defined in Equations (3.1)–(3.3) on total R&D spending when using different samples. In Panel A, add those
plants that change location of residence beyond municipality borders. As treatment, we assign the corresponding tax rates from
plants’ initially observed location of residence. In Panel B, we limit the sample to those plants where information on non-current
liabilities is available. For the treatment group, the business tax change occurred on in year 𝑡 = 0 or 𝑡 = −1. The regressions
include plant, municipality, state × year, commuting zone × year, as well as sector × year fixed effects. All municipalities
that experienced a tax increase during the event window period are excluded. Standard errors are robust to clustering at the
municipality level.

Figure C.11: The Effect of a Tax Increase on R&D Spending - Single- vs. Multi-Plant Firms
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Notes: This graph plots the point estimates, 𝛽𝑘 (𝑘 ∈ [−6,−4, . . . , 8]), and corresponding 95% confidence intervals of the event
study model as defined in Equations (3.1)–(3.3) when allowing for heterogeneous effects for single- vs. multi-plant firms. The
dependent variable is a plant’s annual total R&D spending. For the treatment group, the business tax change occurred on in
year 𝑡 = 0 or 𝑡 = −1. The regressions include plant, municipality, state × year, commuting zone × year, as well as sector × year
fixed effects. All municipalities that experienced a tax increase during the event window period are excluded. Standard errors
are robust to clustering at the municipality level.
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Figure C.12: The Effect of a Tax Increase on Total R&D Spending – Heterogeneous Effects

(a) Firm Size (Sales)
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(b) Non-Current Liabilities over Sales
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(c) R&D Intensity
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Notes: This graph plots the point estimates, 𝛽𝑘 (𝑘 ∈ [−6,−4, . . . , 8]), and corresponding 95% confidence intervals of the event
study model as defined in Equations (3.1)–(3.3) when allowing for heterogeneous effects by (a) firm size, (b) the non-current
liability to sales ratio, and (c) R&D intensity. In Panel A, we group plants according to their median sales during the observation
period. In Panel B, we distinguish plants according to their average non-current liability to sales ratio, and in Panel C according
to their R&D intensity (as defined via the share of R&D staff over total employees). All regressions include plant, municipality,
state × year, commuting zone × year, sector × year, as well as bin × year fixed effects. The outcome variable is inverse hyperbolic
sine transformed. Moreover, all municipalities that experienced a tax decrease during the event window period are excluded.
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C.4 Additional Results on Patenting

Table C.3: Implied Long-Term Elasticities and Oster Bounds

Number of Citation-Weighted Number
Filed Patents of Filed Patents

A. Uncontrolled Estimates
Point Estimate -0.87 -0.94

B. Controlled Estimates
Point Estimate -0.84 -0.85

C. Bounded Oster Estimates
Point Estimate -0.81 -0.72

Notes: This table displays the implied long-term elasticity of plants’ (citation-weighted)
number of filed patents with regard to an increase in the LBT rate. In Panel A, we
report our baseline elasticities as given in Figure 3.9. In this specification, we do not
control for time-varying local confounders at the municipality or county level. In Panel
B, we display the corresponding elasticities when accounting for potential confounders
at the municipality or county level. Last, in Panel C, we provide bounded estimates of
these elasticities in the spirit of Oster (2019). In detail, we calculate the corresponding
elasticities via the following formula: 𝛽∗ = 𝛽 − [ ¤𝛽 − 𝛽 ] 𝑅𝑚𝑎𝑥−�̃�

�̃�− ¤𝑅 , where ¤𝛽 and ¤𝑅
refer the uncontrolled elasticity and R-Squared and 𝛽 and �̃� to the controlled elasticity
and corresponding R-Squared, respectively. Moreover, we set 𝑅𝑚𝑎𝑥 to 1.3 × �̃�. The
framework assumes that coefficient stability with regard to observable confounders may
inform about the importance of omitted variable bias if the importance of the controls in
explaining the variance of the outcome is accounted for.

Figure C.13: The Effect of a Business Tax Decrease on Patents
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Notes: This graph plots the point estimates, 𝛽𝑘 (𝑘 ∈ [−6,−4, . . . , 8]), and corresponding 95% confidence intervals of the event
study models as defined in Equations (3.1)–(3.4). The outcome refers to a plant’s annual citation-weighted number of patents.
It is inverse hyperbolic sine transformed. For the treatment group, the business tax change occurred on in year 𝑡 = 0 or 𝑡 = −1.
The regressions include plant, municipality, state × year, commuting zone × year, as well as sector × year fixed effects. All
municipalities that experienced a tax increase during the event window period are excluded. Standard errors are robust to
clustering at the municipality level.
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Figure C.14: The Effect of a Tax Increase on Patents - EPO vs. USTPO citations

(a) EPO-Citation-Weighted Number of Patents
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(b) USTPO-Citation-Weighted Number of Patents
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Notes: This graph plots the point estimates, 𝛽𝑘 (𝑘 ∈ [−6,−4, . . . , 8]), and corresponding 95% confidence intervals of the
event study model specifications as defined in Equations (3.1)–(3.4). In Panel A, a given patent is weighted by the number
of citations it receives from patents filed at the EPO during the first five years after its registration. In Panel B, weights are
calculated according to the number of citations a patent receives in the USTPO within the same time horizon. Both outcomes
are inverse hyperbolic sine transformed. For the treatment group, the business tax change occurred on in year 𝑡 = 0 or 𝑡 = −1.
The regressions include plant, municipality, state × year, commuting zone × year, as well as sector × year fixed effects. All
municipalities that experienced a tax increase during the event window period are excluded. Standard errors are robust to
clustering at the municipality level.

Figure C.15: The Effect of a Tax Increase on Patents – Varying Regional Controls

(a) Number of Patents
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(b) Citation-Weighted Number of Patents
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Notes: This graph plots the point estimates, 𝛽𝑘 (𝑘 ∈ [−6,−4, . . . , 8]), and corresponding 95% confidence intervals of the
event study model as defined in Equations (3.1)–(3.4) when using different set of regional × year fixed effects. Moreover, all
regressions include plant, municipality, as well as sector × year fixed effects. For the treatment group, the business tax change
occurred on in year 𝑡 = 0 or 𝑡 = −1. All outcomes are inverse hyperbolic sine transformed. Moreover, all municipalities
that experienced a tax decrease during the event window period are excluded. Standard errors are robust to clustering at the
municipality level.
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Figure C.16: The Effect of a Tax Increase on Patents – Local Time-Varying Controls
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(b) Citation-Weighted Number of Patents
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Notes: This graph plots the point estimates, 𝛽𝑘 (𝑘 ∈ [−6,−4, . . . , 8]), and corresponding 95% confidence intervals of the
event study model as defined in Equations (3.1)–(3.4) when (not) controlling for time-varying local characteristics. Moreover,
all regressions include plant, municipality, state × year, commuting zone × year as well as sector × year fixed effects. For
the treatment group, the business tax change occurred on in year 𝑡 = 0 or 𝑡 = −1. All outcomes are inverse hyperbolic
sine transformed. Moreover, all municipalities that experienced a tax decrease during the event window period are excluded.
Standard errors are robust to clustering at the municipality level.

Figure C.17: The Effect of a Tax Increase on Patents – Alternative Transformations of 𝑌

(a) Number of Patents
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(b) Citation-Weighted Number of Patetns
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Notes: This graph plots the point estimates, 𝛽𝑘 (𝑘 ∈ [−6,−4, . . . , 8]), and corresponding 95% confidence intervals of the
event study model as defined in Equations (3.1)–(3.4) when using different transformations of the outcome variable. To ease
presentation, the level outcome is standardized. All regressions include plant, municipality, state × year, commuting zone ×
year as well as sector × year fixed effects. For the treatment group, the business tax change occurred on in year 𝑡 = 0 or 𝑡 = −1..
Moreover, all municipalities that experienced a tax decrease during the event window period are excluded. Standard errors are
robust to clustering at the municipality level.
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Figure C.18: The Effect of a Tax Increase on Patents – Alternative Inference

(a) Number of Patents
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(b) Ctiation-Weighted Number of Patents
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Notes: This graph plots the point estimates, 𝛽𝑘 (𝑘 ∈ [−6,−4, . . . , 8]), and corresponding 95% confidence intervals of the event
study model as defined in Equations (3.1)–(3.3) when using different ways of drawing inference, i.e., clustering standard errors
at the indicated spatial jurisdictions. All regressions include plant, municipality, state × year, commuting zone × year, as well as
sector × year fixed effects. All outcomes are inverse hyperbolic sine transformed. Moreover, all municipalities that experienced
a tax decrease during the event window period are excluded.

Figure C.19: The Effect of a Tax Increase on Patents – Alternative Effect Windows
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(b) Ctiation-Weighted Number of Patents
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Notes: This graph plots the point estimates, 𝛽𝑘 (𝑘 ∈ [−10,−8, . . . , 8]), and corresponding 95% confidence intervals of the
event study model as defined in Equations (3.1)–(3.3) when using different effect windows. All regressions include plant,
municipality, state × year, commuting zone × year, as well as sector × year fixed effects. All outcomes are inverse hyperbolic
sine transformed. Moreover, all municipalities that experienced a tax decrease during the event window period are excluded.
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Figure C.20: Alternative Implied Elasticities – Patents

-0.50
-0.68

-0.87

-0.41
-0.62

-0.94

-2.0

0.0

-2.0

0.0

Diff-in-Diff
Estimate

Medium-Run
Treatment

Effect

Long-Run
Treatment

Effect

A. Number of Patent Applications

B. Citation-Weighted No. of Patents

Im
pl

ie
d 

El
as

tic
iti

es

Notes: This graph displays implied elasticities for our two baseline patent outcomes with respect to a change in the local business
tax rate. For each panel (outcome), we display the corresponding elasticity when (i) estimating a simple Diff-in-Diff model
with the log LBT rate as the explanatory variable, (ii) taking the mean over the first four post-reform treatment coefficients from
the event study specification as defined in Equation (3.3), or (iii) taking the last treatment effect (𝛽8) from the same event study
model.
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D.1 Data

D.1.1 Products and Prices

Both product and price data is derived from publication from and for experts in the chemical industry.
They are designed to give an overview over the market situation and as such paint a detailed picture of
the contemporary industry structure. They are digitized in a mixture of OCR, automated processing and
matching in the von Gaudecker (2019) framework and many manual additions.

Product Data Product catalogs list, for a large number of chemical products, the firms supplying them.
The analysis restricts to chemical substances. These are, in economic terms, homogeneous intermediate
products. Differentiated consumer products, for example industrial cleaners or paints, are excluded.
Figure D.1 shows an example of how product listings look like. Typically, a chemical is given by its
German name as well as translations in several other languages. Subsequently follows a list of chemical
companies that the chemical can be procured from. A separate part of the book lists contact information
for the companies such as address and telephone number.

The introductory remarks in each of the volumes describes the process of their creation and their content.
Specifically, the chemical industry is described as producing a myriad of final products from a small set
of inputs, which necessitates listing only products usual in trade (Wegner, 1940; Barth, 1952). The total
number of potential individual products was given in 1939 as 60,000 and as 100,000 in 1953 (Wegner,
1940; Wegner, 1953). The information is based on information given by the producers themselves and
appearance in the volume is free of charge (Wenzel 1930). The books finance themselves by featuring
advertisements in the books themselves as well as by the sales price. However, if firms object and want
to keep information secret, products will not be listed (Wenzel 1938). The books also typically do not
list foreign suppliers. Until 1932, a parallel publication series tried to keep track of this different set of
firms but this effort proved too cumbersome. Specific events impacting the contents of the books are
commented on. The 1940 edition for example remarks that war-related changes could not be represented
in the book to not delay its publication further, whereas firms from recently occupied areas are covered
(Wegner, 1940). As the editorial was written in December 1939, this references the recent invasion of
Poland. Henceforth, the volume entitled 1940 is referenced by the date of its publication, 1939. The 1952
edition (Barth, 1952, editorial dated April 1952) describes itself as the first address and product listing
of the West-German chemical industry since the end of the war. Turnover of firms between editions is
typically high, the 1930 edition drops 1500 firms and adds 600 new ones (Wenzel 1930). The 1938 edition
claims to have added 3000 new producing and trading firms (Wenzel 1938). Based on these remarks,
the listed products represent the current supplier status of Germany’s chemical industry with respect to a
cross-section of common, relevant products.

Individual product-year entries are linked between volumes using alternative names and adjusted string
similarity. For example, Phthalic acid is also called Benzene-1,2-dioic acid and is cross-references to
Phthalic anhydrate, which is Phthalic acid with one molecule of water removed. Alternative names
are mostly sourced from the product books, but also from looking up product names in the German
Wikipedia. Linkage using string similarity is added to deal with OCR mistakes. However, similarity
between chemical names is treacherous, as for example sulfide and sulfate (German: Sulfit/Sulfat) are
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Figure D.1: Product listing examples in 1939 and 1952

(a) ASS, 1939 (b) Phthalic anhydride, 1939

(c) ASS, 1952 (d) Phthalic anhydride, 1952

Notes: Entry from 1939 and 1952, where ex-post IG Farben successors competed with each other. Acetylsalicylic acid,
better known as Aspirin, is a pharmaceutical product. Phthalic anhydride is an input product to the dyestuffs, plastics and
pharmaceutical industry. Acetylsalicylic acid was in 1939 offered by IG Farben (with two listings, one as “Bayer”) and several
others. In 1952, with Bayer and Hoechst, two IG Farben successors as well as many of the previously active non-IG suppliers
offer the product. For phthalic anhydride, BASF and Bayer compete in 1952, after the product was already offered by IG Farben
in 1939.

very similar, yet chemically different. To this end, similarity is adjusted by up-weighting the beginning
and the end of substance names and by down-weighting common OCR mistakes (e.g. l vs i vs I). A set
of training data is used to estimate a regularized logistic regression of a set of string similarity measures,
which yields the similarity score. Only candidates with very high similarity are kept. The result of the
overall procedure is a network of linked alternative names.

From supplementary sources (Wikipedia and ChemSpider), properties of chemical substances can be
extracted. This is in particular the chemical composition. The molar weight gives a first impression of a
molecule’s complexity. From the formula, the heaviest atom can be identified. In inorganic chemistry,
especially for metal salts, this atom can drive a large part of the molar weight.

Price Data Price data is taken from industry journals (“Chemie-Ingenieur-Technik”, from 1953 also
the insert “Chemiemarkt” to “Chemische Industrie”), where it was part of reports on the general market
situation. The price information does not intend to capture the final price paid by customers, which
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Figure D.2: Name network for Phthalic acid
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Phthalanhydrid
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o-Phthalsäure
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Notes: Red dashed links are product catalog cross-references or alternative names, green dotted links alternative names derived from Wikipedia.
Black solid links rely on text similarity.

would depend on too many details. Instead, they describe producer prices at the factory gate. When
there is substantial variance of price across producers, the lists indicate price spans (“Was bieten unsere
Preisberichte” 1952).

The quality of the price lists improves over time. The chaos of the early post-war period only gradually
allowed the production of such lists, as high variance across firms and various disruptions rendered
information notoriously unreliable (“Was bieten unsere Preisberichte” 1952). The price lists in 1948/1949
are short and sparse, whereas the later lists are more detailed and comprehensive. Both pattern lead to
larger variance listed prices in the early periods. By mid-1949, however, the situation seems to have
normalized sufficiently. Figure 4.10 in the main text plots average prices by supplier status, where the
partially extreme price levels of 1948/early 1949 are clearly visible. Most analyses will restrict to the
later time periods.

Before and during the war, government controls render price information meaningless, but data on
innovation activity as well as industry structure allows tracking the German chemical industry until
the outbreak of war. More high-level price data covering longer periods is available from the German
Statistical Yearbook. Here, price trends before and after the war can be compared. Before the war, lack
of changes in prices indicate that rigid price controls were in place, so that such a pre-post comparison
is uninteresting. Price controls were maintained after the war. Between 1945 and 1948, prices as of
31.12.1944 were fixed (Fäßler, 2006, p. 42).

The price lists report various purity levels or delivery variants, exemplified in Figure D.3. For example,
Acetylsalicylic acid is available in the standard form and as powder - always in pharmaceutical grade
(denoted DAB). For other products, the distinction is between in purity grades, for example ‘for technical
processes’ and ‘pure’ (≥ 97% product). In other cases, cross-references in the product books group very
similar chemical substances together, such as Phthalic anhydrate and Phthalic acid (The former is the
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Figure D.3: Reported prices and quality information

(a) Prices for Acetylsalicylic acid
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(b) Prices for Phthalic anhydrate / Phthalic acid
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Notes: Shows prices reported in industry journals for two selected substances. Phthalic anhydrate is Phthalic acid with water
removed. The two substances were grouped based on cross-references (alternative names) from the product books. DAB is
an abbreviation for the contemporary German pharmaceutical standard (“Deutsches Arzneibuch”). When price information is
given as ranges as for Acetylsalicylic acid, midpoints are used in the analysis.

latter with one water molecule removed). In such cases, the time series were inspected manually and
separated if different tendencies or price levels exist between purity grades. In the regression, only one
time series related to Acetylsalicylic acid would occur as the ‘powder’ variant has no post-1952 data. The
distinction by quality grades is typically not reflected in the product catalogs and price series are matched
to the best available fit.

The change in availability of price time series over time requires several adjustment. In a typical month
30-40% of all prices are reported, increasing over time. For the price panel, several cleaning steps are
undertaken. First, only prices for products linked to the 1939 or 1952 product catalogs are kept. Price time
series must have at least one observation before or in Q2/1950 and after or in Q2/1952, leaving around
560 time series. Time series with large gaps or five or fewer price entries are dropped (Approximately
20). Products with extreme price changes are dropped (Factor > 4 since 01/1950, approximately 10 price
series).

D.1.2 Patents

For the analysis, various parts of the information contained on individual patents is required. While some
data could be acquired from the German patent office, much of the needed information has to be acquired
through image processing or OCR and subsequent text processing. These are especially the technology
class, applicant name, inventor location and application year. Here, a largely automated processing
pipeline was designed which delivers highly accurate information for almost all patent documents.

Year Information The German patent office was first set up in 1877, although successors existed in
the various German states. It handled German IP matters until mid-1945, when it closed. It remained so
until 1948, when preliminary offices were established. These accepted patent applications, but processing
started only in 1950. By then, also wartime applications were processed. Therefore, patent statistics
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Figure D.4: IG Farben patent

Notes: Example patent. Highlighted are technology class (12o) and group (14). Further, inventor location (Ludwigshafen) and application year
(1937) are marked.

show a gap in the years 1946 and 1947, but are available from 1948 onwards. Figure D.5 shows the
difference between application and grant year for patents where this information is available. Note the
strongly increasing grant lag for war-time patents, implying that patents applied for during these years
are typically granted when when technological requirements have already changed. As a consequence,
applicants might have only selectively pursued these patents, leading to selection issues.

In historical patent records from before 1945, only granted patents (“Patentschriften”) are available.
To ensure a correct pre-post comparison, this study therefore disregards applications which were not
ultimately granted, even when this data is available. Figure D.5 shows the grant rate by comparing
the number of granted patents in the data with the number of applied patents from administrative
publications. A comparison of the number of granted patents (completeness of the data) is impossible
as the administrative publications list granted patents by their grant year. In the long run, the grant rate
remains roughly the same, although a policy of limited novelty checks at reopening yields a temporarily
much higher grant rate.
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Figure D.5: Patent grant lags
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Technology Class Information The German patent office classified technologies into 89 major and
roughly 540 minor technology classes. Descriptions of these technology classes from 1910 and 1949
(Taschenbuch des Patentwesens 1910; Deutsches Patent- und Markenamt, 1949) show that at this level,
the content of the technology classes remains almost always the same.

The descriptions of the technology classes as well as the 1949 technology groups enable classification of
the technology classes into such that are directly relevant for the chemical industry. This classification
includes classes from health care, photography and agriculture that have a relevant relation to the chemical
industry. This yields 135 classes. The paragraph on text quality measures below validates this definition
with patent lists featuring significant advances in inorganic chemistry.

While the technology class information is available on patent publications, making them available for data
analysis presented a major challenge. Standard OCR (Tesseract) proved to be too unreliable because the
technology classes are numbers and letters without context in the middle in the document. Therefore, OCR
had to be augmented with a pattern recognition algorithm designed directly for the font used. Figure D.6
demonstrates the process. First, in the relevant subsection of the patent scan, the location of the technology
class and group are identified. For this, image templates of the “KLASSE” and “GRUPPE” strings are
matched to the scan. Over time, with the layout of the patents the actual font and templates also change.
Especially the processing of the letters is often incorrect so that they are matched to a set of templates,
based on problems identified in the training data. The letter font also changes over time, requiring multiple
sets of templates. All areas that are known to be blank, for example behind the matched latter, are painted
white to remove manual markings and other noise. Finally, the remainder of the technology class string
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is processed using OCR. In addition to this general process, some automatic corrections are applied. For
example 3 and 8 are often confused, also a set of rule-based automatic corrections removes technology
class letters that, from knowing the technology class list, cannot occur. This process relies on OpenCV
(https://opencv.org/) in combination with Tesseract (https://github.com/tesseract-ocr/tesseract).

Figure D.6: Technology class extraction

(a) Locate technology class using image templates

(b) Extracted technology class
(c) Match of letter ‘o’

Notes: Process of extracting the technology class, based of the example in Figure D.4. First, the locations of the technology class within the
document is identified, to reduce variance from the input documents (D.6a). As a result, the technology class snippet is extracted (D.6b). Based
on extracts, the correct letter is identified (D.6c). Standard OCR can identify the remaining numbers sufficiently well.

Based on manual training data, it was possible to retrieve the technology class information with up to
95% accuracy. Most of the cases where the algorithm was unsuccessful, the quality of the underlying
image is problematic and manual processing is required. For example, many documents before 1900 were
manually reclassified to the level of the minor patent class. These manual additions lead to problems, as
Table D.1 shows.

Applicant and Inventor Information Applicant and inventor information is extracted from the OCR
using machine learning. First, the precise location of applicant/inventor strings is ascertained using
keywords. For example “sind als Erfinder genannt worden” (were named as inventors) signifies that the
inventors are named just before. The necessary keywords change with the layout of the patents over time.
The second part, the actual processing, is visualized in Table D.2. Here, the applicant/inventor strings
are tokenized (split into words) and each token is assigned to a label. These labels signify the meaning
of a particular token, for example whether it is part of the applicant name, a location, the patent title or
a particular part of the inventor name. With labels such as ‘in_word’ and ‘und_word’ (for ‘and’), the
syntactic structure can be captured as well. The label assignment uses conditional random fields, where
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Table D.1: Quality indicators for technology class processing

All Excluding bad input

Count Correct (%) Count Correct (%)

1877-1900 172 77.33 138 93.48
1901-1920 531 92.66 514 95.72
1921-1933 275 98.18 272 98.53
1934-1945 344 97.38 342 97.95
1948-1949 780 97.69 779 97.82
1950-1954 101 98.02 97 100.00
1955-1961 478 93.10 457 95.62
later 67 98.51 66 98.48

Total 2748 94.69 2665 97.00
Notes: Quality indicators by application years of patents, based on randomly selected patent documents. The two rightmost columns exclude
patents where bad input data makes correct processing impossible. The predominant reason are manual, handwritten additions (before 1900)
or changes of the technology class.

a model based on a set of string features (which are based on the tokens) executes the classification.1
Features from the current as well as the two preceding and subsequent tokens enter the calculation.
The model is trained based on a convenience sample training data, mostly designed to teach the model
about strings where weaknesses were observed. The advantage of this method over standard rule-based
classification and extraction is twofold. First, rules do not need to be implemented precisely by hand.
Second, the algorithm is rather robust to the frequent problems occurring within the OCR.

Before application year 1938, most patents do not have inventor information, but large firms and especially
IG Farben do. Figure D.7b shows the share of patents with inventor information for different groups.
For some time, supplying inventor information was voluntary, which was only changed with the 1936
reform of the German patent law. Here, the inventors’ right to be named on patent applications was
first introduced. In the end, the inventor information could be recovered for about 90% of all IG Farben
patents. In the remainder, the inventor information was typically intentionally omitted from the document.

Text Analysis and Quality Measures The first step of the text analysis is to find a numerical repre-
sentation of the documents (patent fulltexts) to compute similarity scores between them. Text analysis
is done based on Angelov (2020)’s wrapper of Doc2Vec (Le and Mikolov, 2014). Doc2Vec is advanta-
geous compared to the bag of word (TF-IDF)-based numerical representations that are often used in the
economic literature. For one, it is able to take the context of a word into account. Also, it is designed to
incorporate the structure of documents. Finally, Doc2Vec has some ability to take into account different
writing variants of the same word, which alleviates the necessity for stemming and lemmatization and
makes it more robust against OCR errors. The calculation with Doc2Vec results in a set of document
vectors 𝐷𝑖 , between which the similarity is calculated as the cosine similarity.

𝑆𝑖 𝑗 = 𝑐𝑜𝑠(𝐷𝑖 , 𝐷 𝑗) (D.1)

1The ‘parserator’ package in Python does the heavy lifting, see https://github.com/datamade/parserator



220 APPENDIX D

Table D.2: Extraction of applicant and inventor details

Header Inventor

OCR Classification OCR Classification

DE000000703500A pn DE000000703500A pn
. trash IWDLIZ trash

trash O trash
trash trash

I. name trash
G. name 2 trash
FARBENINDUSTRIE name ME trash
AKT.- name NN trash
GES. name trash
IN in_word trash
FRANKFURT, location * trash
MAIN location DR. title_name

trash KARL first_name
HERSTELLUNG title KÖBERLE other_name
VON title F other_name
PERYLENCARBONSÄUREESTERN title UND und_word

trash DR. title_name
trash OTTO first_name
trash SCHLICHTING last_name
trash IN in_word
trash LUDWIGSHAFEN, location
trash RHEIN, location

Notes: For patent DE000000703500A (Figure D.4), demonstrates the result of the conditional random field parsing of applicant and inventor.
Parts of the document were first identified to contain applicant and inventor information. These parts of the documents are then tagged as
applicant name, location or different parts of inventor names.

Calculating a vector space for a very large number of patents computationally demanding, but converges
in reasonable time for the roughly 250,000 fulltexts of patent grant documents in the timespan of interest
for chemical patents. To speed up the execution, multiprocessing is used, i.e. multiple processor cores
run the code. This however might introduce slight numerical deviations between every training execution,
even after setting seeds. The correlations of quality scores between executions are on the order of 0.98.

Quality of a patent 𝑄𝑖 is defined as the ratio between the forward similarity 𝐹𝑆𝑖 and backward similarity
𝐵𝑆𝑖 towards other patents in the same technology class. Forward similarity is seen as a measure of how
influential a particular patent was, how much its language is taken up by subsequent patents. Backward
similarity in contrast is seen as a measure of derivativeness, how much a patent took up language from
previous patents.

𝐹𝑆𝑖 =
1

𝑁 (𝐹𝑖)
∑︁
𝐹𝑖

𝑆𝑖 𝑗

𝐹𝑖 = { 𝑗 : 𝑡 ( 𝑗) = 𝑡 (𝑖) + 𝜏 ∧ 𝑡𝑐(𝑖) = 𝑡𝑐( 𝑗)}, 𝜏 ∈ {1..5}
(D.2)
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Figure D.7: Patent processing descriptives

(a) Patent matching algorithm: IG Farben patents based
on automatic and manual processing.
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to the processing pipeline above, manual to manual classification of company names based on the DPMA base data. (D.7b) plots the share of
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Patents in chemistry (fourth line) and patents overall (last line) are least likely to list inventors.

𝐵𝑆𝑖 =
1

𝑁 (𝐵𝑖)
∑︁
𝐵𝑖

𝑆𝑖 𝑗

𝐵𝑖 = { 𝑗 : 𝑡 ( 𝑗) = 𝑡 (𝑖) − 𝜏 ∧ 𝑡𝑐(𝑖) = 𝑡𝑐( 𝑗)}, 𝜏 ∈ {1..5}
(D.3)

𝑄𝑖 =
𝐹𝑆𝑖

𝐵𝑆𝑖
(D.4)

𝑡𝑐(𝑖) is the technology class of patent 𝑖, 𝑡 (𝑖) is the application year of patent 𝑖. 𝑁 (𝐹𝑖) and 𝑁 (𝐵𝑖) indicate
the cardinality of 𝐹𝑖 and 𝐵𝑖 , i.e. number of patents 𝑗 within five years in the same technology class.

For practical purposes, the The so-obtained quality scores are adjusted and normalized. They are
winsorized at the 1st and 99th percentile and are standardized to have mean three and standard deviation
one. This ensures that there are no negative values in any quality measure (which would occur with
mean one) and that results are easy to interpret. Finally, the number of patents in 1945 is very small.
For that reason, 1945 is not considered for quality scores. 1946 and 1947 are disregarded as in all other
regressions as the German patent office was closed in these years. This gap is skipped for purposes of
calculating the previous or next five years in equations D.2 and D.3. So, for a patent in 1950, the previous
five years are 1949, 1948, 1944 and 1943.

These measures are inspired by Kelly et al. (2018) but differ in that instead of the total forward/backward
similarity, the average forward/backward similarity are used. As long as the number of patents in
the previous and subsequent years are the same, there is little difference. However, the number of
patent applications at the German patent office changes considerably across years, as Figure D.11 shows.
Therefore, not normalizing by the amount of patent applications in consideration would incorporate future
and past changes in patent numbers into current quality measures, which is not desirable for event study
estimates. Since this measure is calculated within technology classes (also different to Kelly et al.), the
past and future development of the size of technology classes would directly enter the quality calculation
- but this is itself the base outcome measure on top of which the quality scores are applied. On the
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other hand, to some extent these concerns apply also to forward citation counts. These are necessarily
correlated with the number of future patent applications in the close technology space. Hence, text-based
quality measure calculated based on total future similarities likely correlate better with forward citation
counts, a key validation target in the study of Kelly et al.

Kelly et al. (2018) account for dynamically changing terminology by adjusting their measure of similarity.
Their TF-IDF measures that are separately calculated for each time period, intended to reflect the updated
corpus of words. While this adjustment offers an important methodological advantage, it also vastly
increases computational complexity. Next to calculating a separate text model for each year, this approach
is not easily integrated into the otherwise advantageous Doc2Vec methodology.

A middle ground approach is to calculate the text model based on patents well before the policy change
and to extrapolate it to the remaining time period. In a robustness check, only patents between 1920
and 1940 train the Doc2Vec model. This model is then extrapolated to 1941-1965 patents. With this,
new words in patent texts after the policy change around 1952 do not influence the underlying similarity
scores. As it turns out, regressions based on this alternative approach yield qualitatively very similar
results, although the correlation between the quality scores yielded by the different approaches is only
around 0.52 (0.66 for pre-war patents). Figure D.13 compares estimates based on the two types of quality
scores. Quality scores take only patent grant documents into account, as the availability of application
documents after the Second World War would artificially inflate quality scores.

Validating Quality Scores with Lists of Notable Patents The external validity of the quality scores
can only be tested with additional data. A separate publication series compiles notable patents in inorganic
chemistry from 1877 until roughly 1935 (Bräuer and D’Ans, 1921; Bräuer and D’Ans, 1925; Bräuer and
D’Ans, 1930; Bräuer and D’Ans, 1934; Bräuer and D’Ans, 1940). Industry experts first list and then
reprint the 4265 patents most relevant to industrial users. As a first test, 97.9 % of the listed patents are
covered technology classes in ‘Chemistry’, as defined above. On the flip side, inorganic chemistry is
only a subset of chemistry, but still 50.4 % of ‘Chemistry’ technology classes contain patents in organic
chemistry. For a test of the correlation between quality scores and highlighted patents, only technology
class-year pairs with at least ten patents in inorganic chemistry between 1924 and 1935 are considered.
After this restriction, 2737 inorganic chemistry patents remain.2 Table D.3 lists regression results and
finds positive and statistically significant semi-elasticities between highlighted patents and their estimated
quality. The correct control group would be other patents in inorganic chemistry, but this remains for
future research.

D.1.3 Reassigning IG Farben Patents

During the time period in question, journeys to work are typically short. Historical evidence is compiled
by Pooley and Turnbull (1999), who collect journey-to-work histories for 1813 British individuals, totaling
more than 12,000 individual journeys. In Table 4 therein, they list for the 1920-1939 time period an
average workplace distance of 11.1 km (London), 5.6 km (other cities with >100,000 population) and 4.4

22737 highlighted patents remain after restricting to the 1924-1935 time period. The further restriction is useful as a strong
positive correlation should only be expected for technology classes where inorganic chemistry actually plays an important role.
Also, some of the selections are due to the digitization of the lists being still in progress.
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Table D.3: Validating quality scores

(1) (2)
log(Quality) Doc2Vec for all Doc2Vec for 𝑡 ≤ 40

Featured patent 0.021∗∗ 0.011∗
(0.009) (0.006)

Tech-Year FE Yes Yes

Adj. R-Square 0.090 0.131
Observations 18905 18905

Notes: In columns 1 and 2, quality is based on all patents. In columns 3 and 4, quality is based on patents in 1940 and before. Featured patent
is a dummy variable for being featured in a publication series listing significant advances in inorganic chemistry. The sample consists of all
patents between 1924 and 1935 with at least ten patents featured in the inorganic chemistry list.

km (Towns < 100,000 population). The overall average is 6.8 km. (Pooley and Turnbull, 1999, p. 287)
In the (not tabulated) variance around these estimates, inventors are likely on the upper end. Because of
this, the upper boundary for reassignment of 30km is chosen. In this light, the travel distances reported in
Table D.4 are reasonable. They are slightly smaller, which is due to the coarse measurement of inventor
locations (which are available at the city or, for larger cities, city-quarter level).

Table D.4: Distance between geocoded inventor and IG plant locations

Mean distance Std. Dev. Min Max Total Patents

Agfa 4.12 5.95 0.07 27.32 286.00
BASF 2.58 5.58 0.02 27.81 3366.00
Bayer 1.92 3.12 0.06 24.83 2134.00
Cassella 1.46 0.89 0.01 7.78 317.00
Hoechst 3.03 4.68 0.05 26.34 2481.00
Huels 11.78 10.39 0.03 29.81 36.00
East Germany 8.74 9.28 0.02 28.75 397.00

Overall 2.87 5.24 0.01 29.81 9017.00
Notes: The minimum distance is often zero as inventor and plant locations are coarse and only available at the city-quarter (for large cities) or
town level. East Germany subsumes several locations such as Leuna, Schkopau or Premnitz. See also map D.10.

The only subsidiaries where the geographical assignment is challenged are Bayer/Agfa and Cassella/Hoechst.
For Bayer/Agfa, Agfa’s Leverkusen plant cannot be distinguished from Bayer’s Leverkusen plant, in fact
they are at the exact same physical location. Therefore, Agfa’s Leverkusen operation is subsumed under
Bayer’s label. Cassella is located in Frankfurt-Mainkur, a suburb of Frankfurt (Main). Hence Hoechst,
located in several other parts of Frankfurt (Main), cannot fully be distinguished from Cassella. As far as
possible, the deduplication of inventor profiles is used to rectify both problems. Inventors whose patents
are subsequently assigned to Agfa or Cassella are also previously assigned to these companies. Map D.10
visualizes the issue.
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Figure D.8: Success rate of IG Farben patent reassignment
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Figure D.9: Patents of successor companies, assigned by inventor locations (smaller successors)
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eventual successors. Only in some cases, the inventor careers from deduplicated patent applications are more informative. Here, inventors
are reassigned to their post-war place of employment. The graph shows the yearly number of granted patent applications for the three large
successor companies and the newly independent Huels. Numbers are as listed on the original patent documents (red solid line), as reassigned to
eventual successors using location information (blue dash line) and as reassigned to eventual successors using location information and inventor
name disambiguation (solid blue line). For BASF, Bayer, Hoechst and Huels see Figure 4.3.
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Figure D.10: Map: Inventor reassignment locations
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Notes: Shows the location of inventors (with number of patents above a threshold) and the successor company that they are assigned to in
the location-based reassignment. The background maps shows modern European regional boundaries of Germany, Austria, Poland and Czech
Republic, colored with the number of IG Farben patents assigned to NUTS3 regions. Maximum intensity regions are typically not visible below
the reassignment location markers. Map source: European Commission.
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D.2 Supplementary Results

D.2.1 Innovation in Technology Classes

Figure D.11: Patent counts
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(b) Total granted patents (log)
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Notes: Shows the average by technology class (D.11a) and the total amount of granted patents (D.11b) across groups of patents.
The first two groups are patents in chemistry, further divided by high and low breakup exposure (defined as 75th percentile of
ΔHHI of 1925-1939 patents). The third group is patents outside of chemistry. The patent office was closed for most of 1945,
1946 and 1947, hence no data is available. A graph for quality-weighted patents is part of Figure 4.7 in the main text.

Selected technology classes 1925-1939 1948-1952

Patents IG % CR4𝐼𝐺 CR4𝐼𝐺 ΔCR4 ΔCR4

8M: Coloring 643 0.56 0.72 0.52 0.20 0.10
12G: Processes (general) 398 0.26 0.32 0.24 0.09 0.06
12K: Ammonium, Cyanides 484 0.16 0.28 0.22 0.06 0.10
22E: Indigo-based dyes 377 0.77 0.88 0.67 0.22 0.26
29B: Chemical fibers 601 0.28 0.37 0.25 0.12 0.06
30H: Drug development 1048 0.15 0.21 0.15 0.06 0.03
39C: Synthetic plastics 326 0.51 0.61 0.51 0.10 0.15
45L: Pesticides 699 0.31 0.44 0.33 0.11 0.10

Means for ΔHHI > p75 (N=33) 730 0.37 0.50 0.38 0.12 0.09
Means for ΔHHI ≤ p75 (N=102) 673 0.04 0.24 0.22 0.01 0.01

Notes: Statistics by technology class, means across classes with high and low breakup exposure in the last two rows.

Table D.5: Δ CR4 implied by the IG dissolution
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Figure D.12: Event studies: Poisson estimates

(a) Patent count

Br
ea

ku
p

SuccessorsIG Farben World War II
-.5

0

.5

1

1.5

C
oe

ffi
ci

en
t f

or
: p

oi
ss

on
(p

at
en

ts
)

19
25     

19
30     

19
35     

19
40     

19
45     

19
50     

19
55     

19
60

 All applicants 
 Non-IG applicants 

(b) Quality-weighted patents
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Notes: Technology-year panel Poisson regression with 95% confidence intervals. Regressions comparing technology classes
with high and low exposure to the IG Farben breakup, as defined by the 75th percentile of ΔHHI (160). Exposure is measured
using pre-war (1925-1939) data, but the breakup is finalized and effective around 1952. Shows quality-weighted counts of
granted patents, with average patent quality winsorized and rescaled to have average three and standard deviation one to exclude
negative values. The German patent office closed in 1945-1947. Wartime patent applications are largely prosecuted post-war.
The coefficients are set in gray to indicate possible bias.

Figure D.13: Event studies: Alternative calculation of quality scores

(a) Average quality

Br
ea

ku
p

SuccessorsIG Farben World War II

-1

-.5

0

.5

1

C
oe

ffi
ci

en
t f

or
: Q

ua
lit

y

19
25     

19
30     

19
35     

19
40     

19
45     

19
50     

19
55     

19
60

 Quality (Doc2Vec all patents) 
 Quality (Doc2Vec patents 1940 and before) 

(b) Quality-weighted patents
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Notes: Technology-year panel regression with 95% confidence intervals. Regressions comparing technology classes with high
and low exposure to the IG Farben breakup, as defined by the 75th percentile of ΔHHI (160). Exposure is measured using
pre-war (1925-1939) data, but the breakup is finalized and effective around 1952. Round estimate markers rely on quality-scores
where the Doc2Vec model was trained on the full corpus of chemical patents. Diamond estimate markers rely on a Doc2Vec
model trained only with patents until 1940 and extrapolated for later years. Patent quality is winsorized and rescaled within
technology classes to have average three and standard deviation one to exclude negative values. D.13a shows average yearly
quality within technology classes as dependent variable. D.13b shows quality-weighted counts of granted patents. The German
patent office closed in 1945-1947. Wartime patent applications are largely prosecuted post-war. The coefficients are set in gray
to indicate possible bias.
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Figure D.14: Event studies: Alternative calculation of ΔHHI
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Notes: Technology-year panel regression with 95% confidence intervals. Dependent variable are quality-weighted non-IG patents. Continuous
exposure measures are interacted with year indicators. Exposure is measured using pre-war (1925-1939) data, but the breakup is finalized and
effective around 1952. The explanatory variables as explained in section 4.5.1 are standardized to mean zero an standard deviation one. The
German patent office closed in 1945-1947. Wartime patent applications are largely prosecuted post-war. The coefficients are set in gray to
indicate possible bias.



CO
M

PETITIO
N

A
N

D
IN

N
OVA

TIO
N

:TH
E

IG
FA

R
B

EN
B

R
EA

K
U

P
229

Table D.6: Effects in Technology class-level DiD regression (Poisson)

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Exposure: ΔHHI 1925-1939 1930-1939 1925-1935 1948-1952

Poisson(Patents)
All

(Quality)
Non-IG

(Quality)
All

(Count)
Non-IG
(Count)

Domestic
(Quality)

Foreign
(Quality)

All
(Quality)

All
(Quality)

All
(Quality)

48-51×HighΔHHI 0.020 0.280∗∗ 0.066 0.294∗∗ −0.405∗∗∗ 0.715∗∗∗ 0.035 0.035 0.074
(0.103) (0.124) (0.110) (0.129) (0.095) (0.152) (0.100) (0.101) (0.097)

52-60×HighΔHHI 0.505∗∗∗ 0.673∗∗∗ 0.505∗∗∗ 0.661∗∗∗ 0.288∗∗∗ 0.794∗∗∗ 0.499∗∗∗ 0.532∗∗∗ 0.528∗∗∗
(0.123) (0.139) (0.129) (0.144) (0.107) (0.180) (0.123) (0.120) (0.119)

{52-60}-{48-51} 0.485∗∗∗ 0.393∗∗∗ 0.439∗∗∗ 0.367∗∗∗ 0.694∗∗∗ 0.079 0.464∗∗∗ 0.497∗∗∗ 0.453∗∗∗
(0.093) (0.096) (0.075) (0.081) (0.100) (0.098) (0.095) (0.092) (0.095)

Firm FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Classes 135 135 135 135 135 135 133 135 134
Dep. var. mean 149.470 131.332 46.971 41.277 101.073 40.096 150.267 149.470 149.776
Pseudo R-Square 0.915 0.914 0.896 0.894 0.904 0.864 0.914 0.915 0.915
Observations 4257 4257 4455 4455 4257 4257 4234 4257 4248

Notes: ∗ 𝑝 < 0.1, ∗∗ 𝑝 < 0.05, ∗∗∗ 𝑝 < 0.01 Standard errors clustered on the technology class level in parentheses. ΔHHI is the difference between technology-level concentration, considering IG Farben as one block
or as broken up according to the 1952 successors. High ΔHHI refers to the concentration change in the top 25% of the distribution, threshold 160. The DiD coefficients in turn compare patent counts in 1948-1951 and
1952-1960 with the pre-war period. The main effect is the difference between these two coefficients, tabulated in row {52-60}-{48-51}. The dependent variables are quality-weighted patent counts, except columns (3) and
(4) with simple patent counts. Quality weights are normalized to mean three, standard deviation one. The columns restrict patents by applicants, either all (columns 1, 3) or applicants unconnected to IG Farben (columns
2, 4, 7-9). Columns 5-6 restrict patents by location, where inventor location is preferred if available. Domestic patents refer to patents with a German location, foreign patents to patents with a foreign location.
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Table D.7: Effects in Technology class-level DiD regression (Robustness)

(1) (2) (3)
Exposure: ΔHHI 1925-1939

log(Patents) Uncontrolled Controlled Oster

48-51×HighΔHHI −0.10 −0.18 −0.21

52-60×HighΔHHI 0.37 0.32 0.31

{52-60}-{48-51} 0.46 0.50 0.52
Notes: Shows coefficients from regression with and without controls as well as resulting Oster (2019) bounds. Dependent variable: quality-
weighted non-IG Farben patents. Controls are the share of non-IG firms targeted for dismantling, the share of patents located in East Germany
or Berlin as well as war destruction, proxied by the share of destroyed flats in the city of patent inventor or applicant. Control variables
are interacted with a full set of year indicators. The DiD coefficients in turn compare patent counts in 1948-1951 and 1952-1960 with the
pre-war period. The main effect is the difference between these two coefficients, tabulated in row {52-60}-{48-51}. Bounds are calculated
as: 𝛽∗ = 𝛽 − [ ¤𝛽 − 𝛽 ] 𝑅𝑚𝑎𝑥−�̃�

�̃�− ¤𝑅 , where ¤𝛽 and ¤𝑅 refer the uncontrolled coefficient and R-Squared and 𝛽 and �̃� to the controlled coefficient and
R-Squared. 𝑅𝑚𝑎𝑥 is set to 1.3× �̃�. The underlying assumption is that reaction of coefficients to observable controls informs about the potential
importance of omitted variable bias.

Figure D.15: Regressions based on disambiguated inventors

(a) Number of unique inventors
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(b) Mean inventors per patent
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Notes: OLS regressions comparing technology classes with high and low exposure to the IG Farben breakup, as defined by the 75th percentile
of ΔHHI (160). Exposure is measured using pre-war (1925-1939) data, but the breakup is finalized and effective around 1952. Shows 95%
confidence intervals. The German patent office closed in 1945-1947. Wartime patent applications are largely prosecuted post-war. The
coefficients are set in gray to indicate possible bias. Before 1937, inventor information on German patents is only available for large companies
such as IG Farben. See Appendix D.1.2.
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Table D.8: Effects in Technology class-level DiD regression (Robustness)

(1) (2) (3) (4) (5) (6)
Exposure: ΔHHI 1925-1939

log(Patents)
Default Excl

Plastics
Control

Dismantle
Control

East
Control
Destr

Control
All

48-51×HighΔHHI −0.097 −0.167 −0.104 −0.201∗ −0.098 −0.185
(0.117) (0.108) (0.120) (0.121) (0.119) (0.121)

52-60×HighΔHHI 0.366∗∗∗ 0.291∗∗ 0.370∗∗∗ 0.352∗∗ 0.364∗∗∗ 0.322∗∗
(0.137) (0.124) (0.135) (0.144) (0.137) (0.142)

48-51× Dismantle (%) −1.448∗∗ −0.858
(0.710) (0.873)

52-60× Dismantle (%) 1.135∗ 1.489∗
(0.664) (0.879)

48-51× East/Berlin (%) −1.362∗∗∗ −1.194∗
(0.506) (0.683)

52-60× East/Berlin (%) −0.192 −0.669
(0.535) (0.800)

48-51× Destruction (%) 0.136 −0.722
(1.112) (1.134)

52-60× Destruction (%) 0.383 −0.157
(1.101) (1.286)

{52-60}-{48-51} 0.463∗∗∗ 0.458∗∗∗ 0.474∗∗∗ 0.553∗∗∗ 0.461∗∗∗ 0.507∗∗∗
(0.113) (0.117) (0.109) (0.125) (0.116) (0.120)

Tech FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes

Classes 135 132 135 135 134 134
Dep. var. mean 3.913 3.878 3.913 3.913 3.917 3.917
Adj. R-Square 0.788 0.792 0.790 0.789 0.787 0.789
Observations 4192 4097 4192 4192 4187 4187

Notes: ∗ 𝑝 < 0.1, ∗∗ 𝑝 < 0.05, ∗∗∗ 𝑝 < 0.01 Standard errors clustered on the technology class level in parentheses. Dependent variable:
quality-weighted non-IG Farben patents. Column 2 excludes technology classes 39A, 39B and 39C, referring to chemical synthesis plastics
and handling of plastics. Column 3 controls for the share of non-IG firms targeted for dismantling. The inclusion of IG Farben in this measure
would control directly for the IG Farben share, mechanically highly correlated to the breakup indicator. The more appropriate test for effects
of dismantlement is a firm-level regression as described in section 4.8. Column 4 controls for the share of patents located in East Germany or
Berlin. Column 5 controls for war destruction, proxied by the share of destroyed flats in the city of patent inventor or applicant. The number
of observations differs as for small technology classes, text similarities and quality scores cannot be calculated. The DiD coefficients in turn
compare patent counts in 1948-1951 and 1952-1960 with the pre-war period. The main effect is the difference between these two coefficients,
tabulated in row {52-60}-{48-51}.
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D.2.2 Price Analysis

Tables D.9 and D.10 shows means comparisons between the different groups of IG Farben exposure. As
expected, the groups are unbalanced. Overall, the balancing test conveys the impression that IG Farben
products are more likely within basic chemicals, whereas other chemical companies in Germany tended
to specialize in more niche or specialty chemicals. However, a substantial overlap exists. This impression
relies on the main observations that prices per kg for IG products were lower, their chemical weight
smaller and the number of competitors larger compared to non-IG products. While IG prices are on
average lower, it is important to note that absolute prices crucially depend on the nature of a product.
Some products, for example radioactive luminescent colors, are only used and sold in small amounts and
thus have exceedingly high per-kg prices. Winsorization is used to contain the effect of such outliers in
the balancing tables whereas in regressions, product fixed effects suffice. Molar mass is the weight of a
substance sample divided by the number of contained molecules, measured in weight per mole (mol, a
standard unit for the number of particules). For the purposes of this analysis, it is only relevant that the
molar mass rises with the number and size of atoms contained in a compound. Molecules are heavier
if they are more complex (e.g. large organic compounds such as Chlorophyll) or if they contain with
heavy atoms (e.g. lead salts). To capture the latter explanation, the atom with the largest atomic mass is
identified from the chemical formula. The molar mass reduced by all occurrences of this atom is listed as
‘remaining mass’. Overall, substances sold by IG Farben are lighter and with lighter heaviest atom. Note
that this is unlikely to be driven by a distinction in organic/inorganic chemistry, where share differences
are not large enough to explain the difference. In terms of tariffs, pre-war tariffs on IG products were
higher than on non-IG products, but the post-war difference is negligible. This might speak to IG Farben’s
political influence, which was reduced after the war. Finally, products with IG Farben involvement had
consistently more suppliers than non-IG products.
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Table D.9: Descriptive statistics for IG/non-IG product portfolios: 1952

Comparing 1952: IG Farben - No IG Farben
N=518 IG No IG Difference (SE) p-value

Price (per kg, log) 5.38 6.33 0.95 (0.15) 0.000∗∗∗
Quality grades 1.73 1.42 −0.31 (0.07) 0.000∗∗∗
Has Wikipedia data (%) 0.94 0.95 0.01 (0.02) 0.482
Molar mass (g/mol) 122.02 193.63 71.61 (10.47) 0.000∗∗∗
- Heaviest element 32.11 47.98 15.88 (3.66) 0.000∗∗∗
- Remaining mass 74.89 116.50 41.61 (9.91) 0.000∗∗∗
Anorganic 0.41 0.45 0.04 (0.04) 0.417
Organic 0.36 0.44 0.08 (0.04) 0.061∗
Pharma 0.14 0.09 −0.06 (0.03) 0.046∗∗
Plastics 0.07 0.00 −0.07 (0.02) 0.000∗∗∗
Metal 0.02 0.02 0.01 (0.01) 0.650
Has tariff data (%) 0.86 0.86 0.00 (0.03) 0.877
Pre-war tariff (%) 0.13 0.06 −0.07 (0.03) 0.037∗∗
Post-1951 tariff (%) 0.15 0.15 −0.01 (0.01) 0.274
Tariff difference (%-%) 0.03 0.10 0.06 (0.03) 0.026∗∗
Suppliers (1939) 6.34 4.05 −2.29 (0.43) 0.000∗∗∗
- Non-IG (1939) 5.00 3.78 −1.22 (0.43) 0.004∗∗∗
- Cartel (1939, %) 0.15 0.11 −0.04 (0.03) 0.261
- Non-IG (1952) 3.56 2.79 −0.77 (0.25) 0.002∗∗∗

Notes: Shows difference between the different groups used in the comparisons. Appendix D.2.2 explains the data in details. ∗ 𝑝 < 0.1, ∗∗

𝑝 < 0.05, ∗∗∗ 𝑝 < 0.01
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Table D.10: Descriptive statistics for IG/non-IG product portfolios: 1939

Comparing 1939: IG Farben - No IG Farben
N=466 IG No IG Difference (SE) p-value

Price (per kg, log) 5.44 6.10 0.65 (0.16) 0.000∗∗∗
Has Wikipedia data (%) 0.95 0.95 −0.01 (0.02) 0.698
Molar mass (g/mol) 133.71 184.62 50.92 (11.15) 0.000∗∗∗
- Heaviest element 32.38 51.54 19.15 (3.95) 0.000∗∗∗
Anorganic 0.42 0.48 0.06 (0.05) 0.185
Organic 0.41 0.35 −0.06 (0.04) 0.180
Pharma 0.14 0.13 −0.02 (0.03) 0.566
Plastics 0.03 0.01 −0.02 (0.01) 0.116
Metal 0.00 0.04 0.04 (0.01) 0.010∗∗∗
Has tariff data (%) 0.87 0.86 −0.02 (0.03) 0.611
Pre-war tariff (%) 0.12 0.04 −0.08 (0.03) 0.002∗∗∗
Post-1951 tariff (%) 0.16 0.14 −0.01 (0.01) 0.098∗
Tariff difference (%-%) 0.04 0.11 0.07 (0.02) 0.002∗∗∗
Suppliers (1939) 6.30 4.02 −2.28 (0.42) 0.000∗∗∗
- Non-IG (1939) 4.64 4.02 −0.62 (0.42) 0.140
- Cartel (1939, %) 0.17 0.09 −0.08 (0.03) 0.008∗∗∗
- Non-IG (1952) 3.47 3.37 −0.10 (0.28) 0.715
IG (1952): Any 0.79 0.23 −0.57 (0.04) 0.000∗∗∗
IG (1952): 1 0.36 0.17 −0.19 (0.04) 0.000∗∗∗
IG (1952): 2+ 0.43 0.06 −0.38 (0.04) 0.000∗∗∗

Notes: Shows difference between the different groups used in the comparisons. Appendix D.2.2 explains the data in details. ∗ 𝑝 < 0.1, ∗∗

𝑝 < 0.05, ∗∗∗ 𝑝 < 0.01
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Table D.11: DiD estimates for price effects, considering cartels

(1) (2) (3) (4) (5) (6)
log(price) Base Post Dynamic Base Post Dynamic

Post × IG1939 = 1 −0.026 −0.024 −0.024
(0.025) (0.025) (0.025)

Post × IG1952 = 1 0.068∗∗ 0.068∗∗ 0.068∗∗
(0.028) (0.028) (0.028)

Post × IG1952 ≥ 2 −0.050∗∗ −0.049∗∗ −0.049∗∗
(0.024) (0.024) (0.024)

Post × Cartel 1940 −0.042 −0.031
(0.031) (0.029)

Product, Month FE Yes Yes Yes Yes Yes Yes
Type × Month FE Yes Yes Yes Yes Yes Yes
Cartel × Month FE Yes Yes

N Time series 464 464 464 516 516 516
N Chemicals 363 363 363 400 400 400
Within R-Square 0.001 0.002 0.003 0.009 0.009 0.010
Observations 7953 7953 7953 8854 8854 8854

Notes: Shows difference in difference estimates for a assumed event time in 1950Q3. Columns 1-3 show effects based on the 1939 structure
if IG Farben, columns 4-6 based on the 1952 structure of the IG Farben successors. The baseline is always the group of products with no IG
Farben involvement. Products with involvement of at least one sales cartel in 1939 are considered as cartelized “Cartel”. When information
about quality grades (e.g. ‘pure’) is available, multiple time series per product can exist. Standard errors clustered on the product level in
parentheses. ∗ 𝑝 < 0.1, ∗∗ 𝑝 < 0.05, ∗∗∗ 𝑝 < 0.01

Table D.12: DiD estimates for price effects, chemical types

(1) (2) (3) (4) (5) (6)
log(price) All All No Plastics All All No Plastics

Post × IG1939 = 1 −0.026 −0.036 −0.021
(0.025) (0.025) (0.025)

Post × IG1952 = 1 0.068∗∗ 0.070∗∗ 0.076∗∗∗
(0.028) (0.029) (0.028)

Post × IG1952 ≥ 2 −0.050∗∗ −0.046∗∗ −0.046∗
(0.024) (0.023) (0.024)

Product, Month FE Yes Yes Yes Yes Yes Yes
Type × Month FE Yes No Yes Yes No Yes

N Time series 464 464 456 516 516 498
N Chemicals 363 363 355 400 400 384
Within R-Square 0.001 0.002 0.001 0.009 0.009 0.009
Observations 7953 7970 7783 8854 8869 8450

Notes: Shows difference in difference estimates for a assumed event time in 1950Q3. Columns 1-3 show effects based on the 1939 structure
if IG Farben, columns 4-6 based on the 1952 structure of the IG Farben successors. The baseline is always the group of products with no IG
Farben involvement. In columns 3 and 6, products from the group of plastics and adhesives is omitted. When information about quality grades
(e.g. ‘pure’) is available, multiple time series per product can exist. Standard errors clustered on the product level in parentheses. ∗ 𝑝 < 0.1, ∗∗
𝑝 < 0.05, ∗∗∗ 𝑝 < 0.01
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Table D.13: DiD estimates for price effects, considering tariffs

(1) (2) (3) (4) (5) (6)
log(price) Base Post Dynamic Base Post Dynamic

Post × IG1939 = 1 −0.026 −0.042∗ −0.043∗
(0.025) (0.025) (0.025)

Post × IG1952 = 1 0.068∗∗ 0.066∗∗ 0.066∗∗
(0.028) (0.031) (0.031)

Post × IG1952 ≥ 2 −0.050∗∗ −0.058∗∗ −0.058∗∗
(0.024) (0.024) (0.025)

Post ×Δ Tariff −0.001 0.009
(0.041) (0.032)

Product, Month FE Yes Yes Yes Yes Yes Yes
Type × Month FE Yes Yes Yes Yes Yes Yes
Δ Tariff × Month FE Yes Yes

N Time series 464 401 401 516 443 443
N Chemicals 363 308 308 400 336 336
Within R-Square 0.001 0.002 0.004 0.009 0.010 0.011
Observations 7953 6878 6878 8854 7593 7593

Notes: Shows difference in difference estimates for a assumed event time in 1950Q3. Columns 1-3 show effects based on the 1939 structure
if IG Farben, columns 4-6 based on the 1952 structure of the IG Farben successors. The baseline is always the group of products with no IG
Farben involvement. Changes between the previous special tariff and the subsequent ad valorem tariff after the 1951 tariff adjustment are the Δ
Tariff control variable. Both tariffs are calculated as percentages and Δ Tariff is the difference. The difference is winsorized at the 1% and 99%
level. When information about quality grades (e.g. ‘pure’) is available, multiple time series per product can exist. Standard errors clustered on
the product level in parentheses. ∗ 𝑝 < 0.1, ∗∗ 𝑝 < 0.05, ∗∗∗ 𝑝 < 0.01
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Table D.14: Matching+DiD estimates for price effects

(1) (2) (3) (4) (5) (6)
log(price) IG 1952 IG 1952 IG 1952 IG 1952 IG 1952 IG 1952

Post × Treated −0.099∗∗∗ −0.101∗∗ −0.134∗∗ −0.156∗∗ −0.093∗∗ 0.057
(0.032) (0.044) (0.057) (0.061) (0.040) (0.036)

Post × Δ Tariff 0.016 −0.013 −0.062
(0.042) (0.036) (0.095)

Post × Cartel 1940 0.003 −0.014 0.021
(0.076) (0.051) (0.046)

Treatment group IG ≥ 2 IG ≥ 2 IG ≥ 2 IG ≥ 2 IG ≥ 2 IG = 1
Control group IG = 0 IG = 0 IG = 0 IG = 0 IG ≤ 1 IG = 0
Product, Month FE Yes Yes Yes Yes Yes Yes
Pre-treatment price Yes Yes Yes Yes Yes Yes
Chemical properties Yes Yes Yes Yes Yes
Competitor count Yes Yes Yes Yes

N cluster 361 266 259 227 339 332
Adj. R-Square 0.984 0.985 0.986 0.987 0.985 0.985
Observations 6404 4704 4556 4004 5906 5550

Notes: Shows difference in difference estimates for a assumed event time in 1950Q3. Probit model for propensity scores in turn adds includes
price (squared), chemical type interacted with log molar mass and maximum atomic mass in the compound as well as indicators for the room
temperature state of matter. Finally, the coarsened number of competitors in 1952 is added (0-1, 2-3, 4+). Columns 1-5 use products with two
or more IG Farben successors as breakup-exposed group. Column 6 considers products with one IG Farben successor as exposed. Columns
1-4 and 6 consider products without 1952 IG involvement as control. Column 5 includes both products with zero or one IG Farben successor in
the control group. When information about quality grades (e.g. ‘pure’) is available, multiple time series per product can exist. Standard errors
clustered on the product level in parentheses. ∗ 𝑝 < 0.1, ∗∗ 𝑝 < 0.05, ∗∗∗ 𝑝 < 0.01
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D.2.3 Supplier Analysis

Table D.15: IG Farben successor product portfolio overlap

Company Products Company Products Overlap 1952 Overlap 1961 Δ

1952 1961 1952 1961 N % N %

Bayer 747 790 Hoechst 682 830 244 0.36 213 0.27 -0.09
BASF 429 489 Bayer 747 790 163 0.38 180 0.37 -0.01
BASF 429 489 Hoechst 682 830 189 0.44 157 0.32 -0.12

Cassella 117 39 BASF 429 489 54 0.46 12 0.31 -0.15
Cassella 117 39 Bayer 747 790 60 0.51 16 0.41 -0.10
Cassella 117 39 Hoechst 682 830 76 0.65 16 0.41 -0.24
Cassella 117 39 Huels 117 161 13 0.11 4 0.10 -0.01
Huels 117 161 BASF 429 489 59 0.50 65 0.40 -0.10
Huels 117 161 Bayer 747 790 46 0.39 30 0.19 -0.21
Huels 117 161 Hoechst 682 830 87 0.74 46 0.29 -0.46

Wacker 57 97 BASF 429 489 26 0.46 18 0.19 -0.27
Wacker 57 97 Bayer 747 790 22 0.39 40 0.41 +0.03
Wacker 57 97 Cassella 117 39 9 0.16 1 0.03 -0.13
Wacker 57 97 Hoechst 682 830 34 0.60 24 0.25 -0.35
Wacker 57 97 Huels 117 161 18 0.32 13 0.13 -0.18
Dynamit 44 80 BASF 429 489 15 0.34 25 0.31 -0.03
Dynamit 44 80 Bayer 747 790 14 0.32 27 0.34 +0.02
Dynamit 44 80 Cassella 117 39 6 0.14 3 0.08 -0.06
Dynamit 44 80 Hoechst 682 830 10 0.23 18 0.22 -0.00
Dynamit 44 80 Huels 117 161 5 0.11 25 0.31 +0.20
Dynamit 44 80 Wacker 57 97 4 0.09 11 0.14 +0.05

Kalle 24 18 BASF 429 489 11 0.46 4 0.22 -0.24
Kalle 24 18 Bayer 747 790 10 0.42 3 0.17 -0.25
Kalle 24 18 Cassella 117 39 7 0.29 2 0.11 -0.18
Kalle 24 18 Dynamit 44 80 1 0.04 1 0.06 +0.01
Kalle 24 18 Hoechst 682 830 15 0.63 6 0.33 -0.29
Kalle 24 18 Huels 117 161 5 0.21 1 0.06 -0.15
Kalle 24 18 Wacker 57 97 3 0.13 1 0.06 -0.07

Notes: Bilateral overlap between product portfolios of IG Farben successors in 1952 and 1961. Looks at all products (repeated cross-sections),
excluding brands. Overlap is calculated as share of the smaller portfolio.



COMPETITION AND INNOVATION: THE IG FARBEN BREAKUP 239

Table D.16: Number of suppliers by product, as a result of IG Farben exposure (control coefficents)

Number of firms Number of non-IG firms

(1) (2) (3) (4) (5) (6) (7) (8)

IG1939 ≥ 1 × 1952 −0.531∗ 0.364 −0.436 0.403
(0.295) (0.320) (0.277) (0.282)

IG1939 ≥ 1 × 1961 1.166∗ 1.701∗∗ 1.245∗∗ 1.699∗∗∗
(0.603) (0.667) (0.564) (0.629)

IG1952 = 1 × 1952 0.369 0.704∗∗∗ −0.115 0.165
(0.297) (0.251) (0.288) (0.248)

IG1952 = 1 × 1961 1.141∗ 1.167∗∗ 0.885 0.860∗
(0.597) (0.518) (0.567) (0.499)

IG1952 ≥ 2 × 1952 1.403∗∗∗ 2.845∗∗∗ −0.469 0.867∗∗
(0.509) (0.423) (0.485) (0.369)

IG1952 ≥ 2 × 1961 5.950∗∗∗ 5.629∗∗∗ 4.678∗∗∗ 4.302∗∗∗
(1.072) (1.057) (1.030) (1.026)

East1939 × 1952 −0.817∗∗∗ −0.903∗∗∗ −1.014∗∗∗ −1.050∗∗∗
(0.122) (0.109) (0.097) (0.094)

East1939 × 1961 −0.015 −0.215 −0.139 −0.305
(0.211) (0.198) (0.193) (0.187)

Cartel1939 × 1952 0.097 −0.183 0.126 0.107
(0.646) (0.597) (0.577) (0.564)

Cartel1939 × 1961 6.527∗∗∗ 6.196∗∗∗ 6.263∗∗∗ 6.100∗∗∗
(1.287) (1.316) (1.231) (1.272)

Dism.1939 × 1952 −0.453∗∗ −0.591∗∗∗ −0.281 −0.230
(0.206) (0.161) (0.184) (0.149)

Dism.1939 × 1961 −1.236∗∗∗ −1.197∗∗∗ −1.044∗∗∗ −0.889∗∗∗
(0.414) (0.331) (0.393) (0.320)

Product, Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Type × Year FE Yes Yes Yes Yes

Products 566 566 566 566 566 566 566 566
Adj. 𝑅2 0.528 0.618 0.560 0.640 0.505 0.607 0.534 0.622
Observations 1698 1698 1698 1698 1698 1698 1698 1698

Notes: Considers only products with data from 1939, 1952 and 1961 where at least one price information is available. IG1939 is the count of
firms associated with IG Farben offering the product in 1939, pre-war and pre-breakup. IG1952 is the number of IG Farben successors offering
the product in 1952, immediately after the breakup. The number of firms is the number of suppliers of the product according to the product
catalog of the respective year, winsorized at the 99% level. In columns 5-8, IG firms or successors are excluded from the count. Control
variables include the count of firms headquartered in East Germany or Berlin in 1939, the count of cartels in 1939 and the count of firms slated
for dismantlement in 1939, each interacted with year dummies. See also the discussion in section 4.8.



240 APPENDIX D

Table D.17: Number of suppliers by product, as a result of IG Farben exposure

Excluding trading and IG companies Excluding trading companies

(1) (2) (3) (4) (5) (6) (7) (8)

IG1939 ≥ 1 × 1952 −0.269 0.479∗ −0.351 0.443
(0.257) (0.264) (0.277) (0.301)

IG1939 ≥ 1 × 1961 −0.475 0.615 −0.565 0.576
(0.366) (0.414) (0.384) (0.438)

IG1952 = 1 × 1952 −0.205 0.039 0.271 0.566∗∗
(0.274) (0.240) (0.282) (0.243)

IG1952 = 1 × 1961 −0.205 0.068 0.034 0.355
(0.378) (0.318) (0.402) (0.327)

IG1952 ≥ 2 × 1952 −0.270 0.898∗∗ 1.594∗∗∗ 2.855∗∗∗
(0.453) (0.367) (0.479) (0.416)

IG1952 ≥ 2 × 1961 0.711 1.867∗∗∗ 1.889∗∗∗ 3.082∗∗∗
(0.676) (0.613) (0.683) (0.617)

East1939 × 1952 −0.896∗∗∗ −0.934∗∗∗ −0.698∗∗∗ −0.788∗∗∗
(0.096) (0.094) (0.120) (0.108)

East1939 × 1961 −0.905∗∗∗ −0.975∗∗∗ −0.796∗∗∗ −0.897∗∗∗
(0.125) (0.120) (0.137) (0.127)

Cartel1939 × 1952 0.249 0.245 0.252 −0.010
(0.572) (0.561) (0.637) (0.590)

Cartel1939 × 1961 2.254∗∗∗ 2.161∗∗∗ 2.545∗∗∗ 2.288∗∗∗
(0.828) (0.830) (0.879) (0.868)

Dism.1939 × 1952 −0.270 −0.196 −0.434∗∗ −0.545∗∗∗
(0.180) (0.149) (0.200) (0.161)

Dism.1939 × 1961 −0.824∗∗∗ −0.788∗∗∗ −0.980∗∗∗ −1.064∗∗∗
(0.245) (0.199) (0.260) (0.206)

Product, Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Type × Year FE Yes Yes Yes Yes

Products 566 566 566 566 566 566 566 566
Adj. 𝑅2 0.450 0.558 0.451 0.564 0.500 0.580 0.508 0.602
Observations 1698 1698 1698 1698 1698 1698 1698 1698

Notes: Considers only products with data from 1939, 1952 and 1961 where at least one price information is available. IG1939 is the count of
firms associated with IG Farben offering the product in 1939, pre-war and pre-breakup. IG1952 is the number of IG Farben successors offering
the product in 1952, immediately after the breakup. The number of firms is the number of suppliers of the product according to the product
catalog of the respective year, excluding trading firms, winsorized at the 99% level. In columns 5-8, IG firms or successors are excluded from
the count. Control variables include the count of firms headquartered in East Germany or Berlin in 1939, the count of cartels in 1939 and the
count of firms slated for dismantlement in 1939, each interacted with year dummies. See also the discussion in section 4.8.
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D.3 Innovation Analysis in Firm Panel

Robustness analysis can be conducted at varying levels. Some variables directly apply to the product
level (cartels, production restrictions) and tests for their relevance can be implemented directly in the
respective regressions. Some variables can be collected and aggregated to a technology class level (war
destruction, dismantlement, Soviet sector). Such analysis is bound to remain indirect as the shocks affect
firms, not technologies. In a firm-level analysis, measurement and control is more direct. In this section,
a firm-panel is constructed to offer an additional robustness check for the innovation analysis, leading to
comparable results.

Building a Firm Panel The firm panel is constructed by combining various firm data sources.
These are supplier lists (see D.1.1), handbooks of listed corporations (Hoppenstedt-Aktienführer, via
https://digi.bib.uni-mannheim.de/aktienfuehrer/) and firms slated for dismantlement (Harmssen, 1951)
as well as manually collected complementary entries. The firm entries are first matched with each other
and the resulting clusters are matched to patent applicants. Appendix D.1.2 discusses details. The
subsequent regressions consider patents in classes relevant to the chemical industry. Only firms with
patent applications in at least four pre-war (1925-1939) years are part of the panel. With this, the focus
is on incumbent firms. However, exposure measures to the IG Farben breakup and other shocks can be
calculated with pre-war variables. Overall, more than 350 firms remain in the panel. As the IG Farben
successors are special and often outliers in terms of size, they are excluded for the main regressions but
included in alternative specifications. The pre-1945 patent count of the eventual successors follows the
hypothetical reassignment according to the breakup rules.

Table D.18: Descriptive statistics for IG/non-IG exposed technology classes

Comparing firms: High vs low breakup exposure
N=100 (T) 303 (C) Exposed Comparison Difference (SE) p-value

Weighted ΔHHI 779.04 61.16 −717.88 (25.08) 0.000∗∗∗
Quality-weighted patents 162.34 255.25 92.91 (123.92) 0.454
- (log) 4.21 4.09 −0.12 (0.15) 0.445
Foreign (%) 0.19 0.10 −0.09 (0.04) 0.016∗∗
Patents in Soviet sector (%) 0.37 0.35 −0.03 (0.05) 0.577
War destruction (%) 0.27 0.29 0.02 (0.02) 0.425
Any plants dismantled (%) 0.14 0.33 0.19 (0.05) 0.000∗∗∗
In product list (1939, %) 0.71 0.33 −0.38 (0.05) 0.000∗∗∗
- product count 41.92 6.82 −35.10 (11.41) 0.002∗∗∗
- with IG competition (%) 0.28 0.10 −0.18 (0.03) 0.000∗∗∗

Notes: Shows difference between firms with high and low breakup exposure. ∗ 𝑝 < 0.1, ∗∗ 𝑝 < 0.05, ∗∗∗ 𝑝 < 0.01. All data refers to patents
applied for in 1925-1939. The shock exposure ΔHHI for technology classes is calculated first assuming all IG Farben members to be one entity,
then separately according to their post-1952 split-up. A firm’s value of shock exposure is weighted according to pre-war patent counts in the
respective technology classes. Patents counts are totals. Patents are weighted according to forward text similarity divided by backward text
similarity, on patent-level normalized to mean three and standard deviation one. Firm locations follow the predominant patent location, where
domestic and foreign patents are identified using inventor locations if available, applicant locations otherwise. Domestic are such located in
present-day Germany or Poland, Soviet sector patents all located in present-day East Germany, Berlin or Poland. The inclusion of Poland is a
coarse reference to Germany’s pre-war territory. War destructions refers to the share of flats destroyed between 1939 and 1945, weighted by the
patent locations of a firm. Dismantlement is an indicator for whether the firm occurs in any dismantlement list. The occurrence in a product list
and, if so, with how many products is based on the 1939 book. The share of products with IG Farben competition is the pre-war co-occurrence
with any IG Farben member or IG Farben-associated cartel.

https://digi.bib.uni-mannheim.de/aktienfuehrer/
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The firms are grouped by their technology exposure to the IG Farben breakup. For this, the technology
class-specific exposure (ΔHHI) is weighted by the pre-war patent portfolio of the firms. Again, firms
in the top 25% by exposure are marked as exposed to the breakup, leading to a threshold of 342. In
Table D.18, their main characteristics are tabulated and compared with the control firms. They have
similar pre-war levels of patenting and are similarly exposed to the Soviet sector as well as to destruction
of German cities. They are moderately more likely to be foreign (as measured by patent locations),
but substantially less likely to be a target of dismantlement. Notably, they have a high likelihood to be
included in the 1939 supplier list, but more so for the firms active in similar technologies as IG Farben.
Consequently, firms in this group on average have more products offered in the supplier lists and are more
likely exposed to product-market competition by IG Farben.

Table D.19 shows the regression results. The empirical strategy follows the main innovation analysis,
with the level of observation shifted to firms. Standard errors in the regressions are clustered at the firm
level (Bertrand, Duflo, and Mullainathan, 2004). Unit fixed effects at the same level are included, time
fixed effects are at the year level. Firms patenting in technologies with high exposure to the IG Farben
breakup strongly increase their patenting output after the breakup, relative to comparison firms. Columns
1-4 individually include the main control variables and columns 5-7 include them all at the same time. All
of dismantlement, exposure to the Soviet sector and war destructions predict decreases in patenting in the
post-war periods, but the main effect estimates remain unchanged. The effects also remain qualitatively
unchanged when excluding IG Farben firms (columns 1-5), considering all firms including the IG Farben
successors (column 6) or when excluding foreign firms (column 7). Effect sizes become larger when
including the IG Farben successors. The results are smaller in magnitude than the technology-class level
regressions of section 4.7.1, hinting towards entry by new innovators playing a role as well.
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Table D.19: Firm-level regressions controlling for dismantlements and East exposure

(1) (2) (3) (4) (5) (6) (7)
No IG No IG No IG No IG No IG All Domestic

48-51*High ΔHHI −0.023 −0.074 0.002 −0.028 −0.016 −0.076 −0.159
(0.137) (0.135) (0.126) (0.138) (0.126) (0.119) (0.105)

52-60*High ΔHHI 0.211 0.136 0.236∗ 0.202 0.189 0.263∗∗ 0.178∗
(0.142) (0.141) (0.132) (0.143) (0.132) (0.123) (0.104)

48-51*Dismantle −0.266∗∗ −0.047 −0.068 0.007
(0.114) (0.102) (0.097) (0.097)

52-60*Dismantle −0.395∗∗∗ −0.174∗ −0.127 −0.035
(0.112) (0.103) (0.099) (0.099)

48-51*East Pat (%) −0.908∗∗∗ −0.931∗∗∗ −0.902∗∗∗ −0.736∗∗∗
(0.106) (0.107) (0.105) (0.102)

52-60*East Pat (%) −0.910∗∗∗ −0.918∗∗∗ −0.929∗∗∗ −0.695∗∗∗
(0.114) (0.116) (0.113) (0.104)

48-51*Destruction (%) −0.237 −0.522∗ −0.531∗ −0.134
(0.299) (0.278) (0.277) (0.225)

52-60*Destruction (%) −0.492 −0.757∗∗ −0.756∗∗ −0.140
(0.312) (0.296) (0.293) (0.219)

DiD: {52-60}-{48-51} 0.234∗∗ 0.210∗∗ 0.234∗∗ 0.230∗∗ 0.206∗∗ 0.339∗∗∗ 0.337∗∗∗
(0.092) (0.094) (0.093) (0.093) (0.095) (0.097) (0.102)

Firm, Year FE Yes Yes Yes Yes Yes Yes Yes

N Firms 403 403 403 403 403 417 368
Adj. R-Square 0.563 0.566 0.580 0.564 0.582 0.617 0.643
Observations 13299 13299 13299 13299 13299 13761 12144

Notes: ∗ 𝑝 < 0.1, ∗∗ 𝑝 < 0.05, ∗∗∗ 𝑝 < 0.01 Standard errors clustered on the firm level in parentheses. Dependent variables are inverse
hyperbolic sine transformed quality-weighted patents in technology classes related to the chemical industry. In columns 1-5, the sample consists
of firms not related to IG Farben. In column 6, all firms are included and column 7 excludes foreign firms. High ΔHHI refers to the top
25% of firms in terms of pre-war-weighted exposure to ΔHHI in technology. Dismantle is a dummy of whether the firm was featured on a
dismantlement list. East Pat is the share of pre-war patents in East Germany or Berlin. Destruction is the average war destruction in the German
cities, weighted by pre-war patent locations. Poisson regressions or regressions without quality-weighting deliver qualitatively similar results.
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D.4 Historical Context

Figure D.16: East-West trade flows
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Notes: D.16: Interzonal trade as a share of total trade, in the chemical industry and total. Earlier numbers are not available
from statistical yearbooks. Source: Statistical Yearbooks for West Germany

Figure D.17: Long-run price trends
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Figure D.17 shows the long-run development of some chemicals for which the German Statistical Year-
books reported prices. While the number of prices is not sufficient to draw statistical conclusions about
long-run tendencies, it is apparent that price controls strongly restricted the movement of prices before
and during the Second World War, at least from 1937 onwards.
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Table D.20: Post-war production and capacity restrictions until 1951

Materials
Potsdam

Industrial Plan
Revised

Industrial Plan
Washington/Petersberg

Industrial Plan
Agreement on

Industrial Monitoring

Announcement Mar 46 Aug 47 Apr 49 / Nov 49 Apr 51

Effect N/A ? Sept 50 Apr 51
Target level 70-75% of 1936

Dismantle 1500 plants
100% of 1936

859 plants, later 700
Unrestricted

Dismantlement stop
Unrestricted

Chemical industry

Basic chemicals
Others chemicals
Pharmaceuticals

Colors

40% of 1936
70% of 1936
80% of 1936

36k t
Export restricted

98% of 1936
97% of 1936
84% of 1936
96% of 1936

Export allowed

Unrestricted

Synthetic ammonia Prohibition of production Post-dismantlement capacity None

Chlorine Basic chemicals / Only upon approval Post-dismantlement capacity None

Synthetic fuels Prohibition of production Monitoring

Plastics value chain

Styrene 70% of 1936 100% of 1936 20k t None

Butadiene Not mentioned Prohibition of production

Synthetic rubber, gum Prohibition of production (ex. small Q) Monitoring

Synthetic fibers 185k t Not mentioned None

Consumer products Q Restrictions Unrestricted None

Metals

Copper, zinc, lead, tin,
nickel

ca. 50% of 1936 up to 100% of 1936 None

Aluminium Prohibition of production Capacity restriction None
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Table D.20: Post-war production and capacity restrictions until 1951

Materials
Potsdam

Industrial Plan
Revised

Industrial Plan
Washington/Petersberg

Industrial Plan
Agreement on

Industrial Monitoring

Magnesium Prohibition of production

Beryllium Prohibition of production None

Vanadium Prohibition of production None

War-related products Prohibition of production

War material, including explosives, warfare gases, biological weapons

Firearm propellants, e.g. Nitroguanidine, Nitroglycerin, Diethylene glycol, Nitrocellulose

Rocket fuels: Hydrogen peroxide (>37%), Hydrazine hydrate, Methyl nitrate

White phosphorus and other burn agents

Notes: Summarizes post-war production restrictions until 1951. Not all restrictions laid out came into effect. For example, the Potsdam Industrial Plan had little practical consequence. This was due to a breakdown of
coordination among the Allies and changed priorities in the wake of the coming Cold War. Also, the German industry did not reach ceilings before they were adjusted (Morsey (2010, p. 5) and Wallich (1955, p. 369)).
Exemplary, with respect to plastics and synthetic ammonia, the Potsdam plan outlawed production, but halted this restriction until sufficient imports were viable. After this, all capital equipment should be removed.
Specialized metals are listed as IG Farben subsidiaries were involved in their production. Aluminium, Magnesium, Beryllium and Vanadium are either light metals or ingredients for specialty steel.Butadiene and Styrene -
in 3:1 ratio - are ingredients for the synthetic rubber “Buna”, among other chemical substances. Styrene was only explicitly regulated in the Washington Industrial Plan, before it was regulated as ‘generic chemicals’. With
the Washington Agreement, capacity restrictions on civilian production such as cement, paper, textiles and shoes, cars, trains etc. were lifted. Other goods more tightly restricted were steel, heavy machine tools, aircraft,
ships and electronic and optical components. Under the agreement on industrial monitoring (1951), industries such as synthetic rubber and synthetic fuels required approval for capacity expansion, but were otherwise free
to operate. Source: Harmssen (1951). Factory numbers from Wallich (1955, p. 369).
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Table D.21: Dismantling of IG Farben

Successor Plant Type Products / Description

British-American zone
Bayer Dormagen Part Perlon (en: Nylon)
Bayer Elberfeld Part Cellulose derivatives, artifical resins
Bayer Holten Part 1,2-Dichloroethane
Bayer Leverkusen Part Sodium sulfide, “Atebrin” (Mepacrine), polyamides,

artificial resins, hydrazine hydrate (Propellant), acti-
vated carbon, toluene nitrate (Explosives)

Bayer Uerdingen Part Chloride, causic soda, alkydal artifical resins
Bayer Zweckel Part Diethyl ether, 1,2-Dichloroethane, polyethylene,

bleaching powder
Other Duisburg Unclear Liquid oxygen
Anorgana Gendorf Part Bleach und sodium hydroxide, acetaldehyde, glycol
Wacker Burghausen Part No details
Kalle Wiesbaden Part Methyl, ethyl, Cellulose derivatives
Hoechst Frankfurt/M Part “Uresin” (Pastics), acetate, carboresin, black sulfur,

solvents, chloride solutions, dinitrobenzene
Hoechst Griesheim Unclear Industrial gases
Other Kassel Unclear Industrial gases
Dynamit Fürde/Grevenbrück Part Explosives, fuses
Dynamit Schlebusch Part Glycerine, toluene nitrate
Dynamit Troisdorf Part Nitrogen, vulcanized fiber, phenol formaldehyde

resin, celluloid
Dynamit Claustal-Zellerfeld Part High explosives, grenades
Dynamit Empelde-Hannover Full Ammunition
Dynamit Near Hamburg Full (At Düneburg/Krümel) Explosives
Dynamit Nürnberg Full Bullet casings
Dynamit Kauferin/Landsberg Full Ammunition
Dynamit Stadeln Full Bullet casings
Dynamit Hamm Full Gunpowder
French zone

Other Rottweil Part Hunting ammunition
BASF Ludwigshafen Full 38 plants (unspecified)
BASF Oppau Full 11 plants (unspecified)
Other Rheinfelden Full Unspecified
Soviet zone

IG East Aken Full
IG East Wolfen Full Agfa plants
IG East Schkopau Full Buna plant
IG East Leuna Full Leuna plant
IG East Piesteritz Full Nitrogen plant
IG East Bitterfeld Full
IG East Coswig Full (Former WASAG)

Notes: Dismantlement targets as reported in Harmssen (1951), lists as of 1947. Soviet zone lists actual dismantlements.
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