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Summary in German

Ziel dieser Arbeit ist es, verschiedene Fragestellungen aus dem Bereich der
Finanzwirtschaft unter Anwendung finanzmathematischer Modelle und Opti-
mierungsverfahren zu untersuchen.

Bevor ein Modell auf eine bestimmte Problemstellung angewendet werden kann,
müssen zuerst die Modellergebnisse an die Beobachtungsdaten angepasst werden.
Hierfür wird eine Zielfunktion definiert, die mit Hilfe von Optimierungsalgorithmen
minimiert wird. Damit können die optimalen Modelparameter gefunden werden.
Dieses Verfahren nennt sich Modellkalibrierung oder Modellanpassung und setzt
voraus, dass das Modell für dieses Anwendungsgebiet geeignet ist.

In dieser Arbeit kommen finanzmathematische Modelle, wie Heston, CIR
oder geometrische Brownsche Bewegung und statistische Methoden, wie Inverse-
Transformation und Chi-Quadrat-Test zur Anwendung. Darüber hinaus werden fol-
gende Optimierungsmethoden getestet: Genetischer Algorithmus, Particle-Swarm-,
Levenberg-Marquardt- und Simplex-Verfahren.

Der erste Teil dieser Arbeit beschäftigt sich mit der Problematik, einen genaueren
Prognoseansatz für Marktliquidität zu finden, in dem man anstelle der Standard-
Brownschen-Bewegung ein kalibriertes Heston-Modell für die Simulation der Bid-
/Ask-Pfade und die Inverse Transformationsmethode statt Compound-Poisson-
Prozesses für die Generierung der Bid-/Ask-Volumsverteilungen verwendet. Es kann
dabei gezeigt werden, dass die simulierten Handelsvolumina zu einem einzigen Wert
konvergieren. Dieser Wert kann als Marktliquiditätsschätzer verwendet werden,
wobei das Heston Modell dafür besser geeignet ist als die Standard-Brownsche-
Bewegung. Gleichzeitig erzielt die inverse Transformationsmethode bessere Ergeb-
nisse für die Simulation der Bid/Ask-Volumen.

Im zweiten Teil untersuchen wir den Preisaufschlag für Hedging- bzw. Liquidität-
skosten, den Kunden zahlen müssen, wenn sie strukturierte Produkte kaufen. Dafür
replizieren wir den Payoff von zehn verschiedenen strukturierten Produkten und ver-
gleichen ihren fairen Preisen mit den tatsächlich gehandelten Preisen. Für diesen
Zweck kommt paralleles Rechnen zum Einsatz, eine neue Technologie, die in der
Vergangenheit nicht möglich war. So können wir ein kalibriertes Heston-Modell für
die Berechnung des fairen Preises von strukturierten Produkten über einen längeren
Zeitraum anwenden. Unsere Ergebnisse zeigen, dass der Aufschlag, den die Kun-
den für diese zehn Produkte zahlen müssen, zwischen 0,9%-2,9% liegt. Ebenfalls
können wir beobachten, dass Produkte mit höheren Payoff-Levels, bzw. besseren
Kapitalschutz, höhere Kosten erfordern. Weiters identifizieren wir Marktvolatilität
als statistisch signifikanten Treiber des Preisaufschlags.

Im dritten Teil zeigen wir, dass der Tracking-Error eines passiv gemanagten
ETFs durch den Einsatz von Optimierungsmethoden signifikant reduziert wer-
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den kann, wenn der Korrelationsfaktor zwischen Index und ETF in der Zielfunk-
tion berücksichtigt wird. Durch das Finden von optimalen Gewichten von einem
selbst-konstruierten Anleihen-Index und des DAX-Index, kann die Anzahl der Kon-
stituenten stark reduziert werden, während der Tracking-Error ebenfalls signifikant
reduziert werden kann.

Im vierten Teil entwickeln wir eine Hedgingstrategie basierend auf Treibstoff-
preisen, die vor allem für Endbenutzer von Benzin- und Dieselkraftstoffen An-
wendung finden kann. Das ermöglicht dem Treibstoffkonsumenten durch den Er-
werb von Kaufoptionen, Treibstoff zu einem bestimmten Preis für eine bestimmte
Zeit zu kaufen. Zum Pricing der amerikanischen Kaufoption verwenden wir eine
geometrisch-Brownsche Bewegung, kombiniert mit einem binomischen Modell.

Summary in English

The goal of this thesis is to examine different issues in the area of finance and ap-
plication of financial and mathematical models under consideration of optimization
methods.

Prior to the application of a model to its scope, the model results have to be
adjusted according to the observed data. For this reason a target function is defined
which is being minimized by using optimization algorithms. This allows finding
the optimal model parameters. This procedure is called model calibration or model
fitting and requires a suitable model for this application.

In this thesis we apply financial and mathematical models such as Heston, CIR,
geometric Brownian motion, as well as inverse transform sampling, and Chi-square
test. Moreover, we test the following optimization methods: Genetic algorithms,
Particle-Swarm, Levenberg-Marquardt, and Simplex algorithm.

The first part of this thesis deals with the problem of finding a more accurate
forecasting approach for market liquidity by using a calibrated Heston model for
the simulation of the bid/ask paths instead of the standard Brownian motion and
the inverse transformation method instead of compound Poisson process for the
generation of the bid/ask volume distributions. We show that the simulated trading
volumes converge to one single value which can be used as a liquidity estimator and
we find that the calibrated Heston model as well as the inverse transform sampling
are superior concerning the use of the standard Brownian motion, resp. compound
Poisson process.

In the second part, we examine the price markup for hedging or liquidity costs,
that customers have to pay when they buy structured products by replicating the
payoff of ten different structured products and comparing their fair values with the
prices actually traded. For this purpose we use parallel computing, a new technology
that was not possible in the past. This allows us to use a calibrated Heston model
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to calculate the fair values of structured products over a longer period of time.
Our results show that the markup that clients pay for these ten products ranges
from 0.9%-2.9%. We can also observe that products with higher payoff levels, or
better capital protection, require higher costs. We also identify market volatility as
a statistically significant driver of the markup.

In the third part, we show that the tracking error of an passively managed ETF can
be significantly reduced through the use of optimization methods if the correlation
factor between Index and ETF is used as target function. By finding optimal weights
of a self-constructed bond- and the DAX- index, the number of constituents can be
reduced significantly, while keeping the tracking error small.

In the fourth part, we develop a hedging strategy based on fuel prices that can be
applied primarily to the end users of petrol and diesel fuels. This enables the fuel
consumer to buy fuel at a certain price for a certain period of time by purchasing a
call option. To price the American call option we use a geometric Brownian motion
combined with a binomial model.
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1 Introduction & Methodology

1.1 Introduction

The aim of the work is to investigate various optimization problems that arise in
the field of finance. In order to solve these optimization problems, a target func-
tion is defined and minimized by applying the optimization methods. The optimal
parameters are then used for modelling. In this thesis the following optimization
methods are applied: Genetic algorithm, Particle Swarm Optimization, Levenberg-
Marquardt method and Simplex method. Financial mathematical models, such as
Heston, CIR or geometric Brownian motion, as well as statistical methods such as
Inverse transform sampling and Chi-square test are also applied. Because of the high
computing time, most investigations have been implemented on cluster systems, a
new technology using parallel computing, which was not possible in the past due to
the unavailability of the technology.

The first paper deals with the estimation of market liquidity based on the simu-
lation of bid ask prices and bid ask volumes. Market liquidity is assumed to be a
function of price and volume. By simulation of the both, bid/ask prices as well as
corresponding bid/ask volumes, we check for every crossing time where the bid price
is equal or greater than the ask price. This is an indication that a buyer and a seller
have agreed on a price at which they want to exchange the minimum amount out of
the offered and demanded quantity. This procedure is repeated for every intersection
point of the bid and ask prices along the simulated price path. Following standard
numerical option pricing procedure, by multiple simulation of the price paths and
calculation of the average of all synthetically generated trades, the expected traded
volume given a certain time interval, converges to one equilibrium, which can be
interpreted as the implied market liquidity. This incorporates the bid ask spread
price dynamics as well as the underlying market depth.

We then try to identify a superior forecasting method for this market liquidity
measure, using a calibrated Heston model for the bid/ask price path simulation,
instead of standard Brownian motion and compound Poisson process, namely the
inverse transform sampling for the generation of the bid/ask volume distribution.
The goal is to apply these techniques to market liquidity modeling and identify
any superior forecasting quality to the liquidity estimation and test this approach
with high frequency data like DAX- and ESTX50- Future. The outstanding new
idea within this work is the application of various optimization techniques to the
Heston model in order to analyze its forecasting quality in contrast to the standard
Brownian motion.

Heston’s stochastic volatility model [7] seems to be a better choice when modeling
price fluctuations, even though it makes assumptions which might not be encoun-
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tered in reality such as normal distributed returns in short time frames. The appli-
cation of stochastic volatility models is very broad. In this paper we will specifically
investigate the application of the Heston model to market liquidity simulation.
Market liquidity describes the ability of a financial market to absorb additional

trades between market participants without affecting the price. When price impact
is strong we speak of illiquidity of a market. In order to simulate market liquidity a
certain parameter set is necessary to map trade capacity. This includes quoted bid
and ask prices along with quoted bid and ask volume, as well as traded price and
traded volume.
The basis of this research within this chapter is the paper of Unger and Hughston

[8] which investigates the liquidity generating price process. It incorporates two
standard Brownian motions which represent the price process of the buyer and the
seller. The intersection of the two Brownian motions serve as an indicator for the
corresponding volume generating process and therefore as an indicator variable for
the points in time when liquidity is being generated. A simulated trade occurs
by taking the minimum of two quoted sizes. Since the quoted volume is assumed
to be simulated by a Compound Poisson process, the law of large numbers yields
exponentially distributed random numbers. The interesting question that arises will
be how the convergence process according to the law of large numbers looks like if
we take the minimum of two exponentially distributed random variables.
My hypothesis suggests that applying the Heston model resp. inverse transforma-

tion method for market liquidity estimation might be a better choice than using the
standard geometric Brownian motion resp. compound Poisson process.
We apply the liquidity estimator to high-frequency data and find a highly signifi-

cant prediction power of market liquidity on two major European futures, the DAX
and ESTX50 future and show that the simulated trading volumes converge to one
single value, which can be used as liquidity estimator. After this application we ob-
serve that the calibrated Heston model as well as the inverse transform sampling are
superior when comparing to the use of standard Brownian motion, resp. compound
Poisson process.
In the second work we replicate the payoff of ten different structured products and

compare their calculated fair values with the real traded prices in order to determine
the markup incurred in the products. This is the first time that a calibrated Heston
model is used to replicate the payoffs of a single asset structured products. We
find significant markups, ranging from 0.9%-2.9% markup on the fair value, which
implies that the better the payoff of the product for the investor, the higher the
hedging costs for the bank. Based on these results two possible drivers of markups
are tested: Volatility and market liquidity. For 8 out of 10 products, volatility is
being obtained as a significant driver of the markup, while liquidity is only found to
be a driver of the markup in one product.
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In the third paper of the thesis we show that the tracking error of passively man-
aged ETFs can be significantly reduced by certain optimization techniques, when
the correlation factor is considered in the target function. The various optimization
methods for simulated as well as real traded prices of bond indices are applied in
order to find the optimal weights for a constructed bond-ETF. By minimizing the
tracking error while keeping the number of bonds small, which then minimizes the
allocation costs, we find that the tracking error can be also minimized.

To simulate the bond prices with 10 years maturity and different credit spreads
we need to simulate the short rate with calibrated Cox-Ingersoll-Ross (CIR) model.

Then we construct the ETF by a combination of bonds with different weights. In
order to find the optimal weights and minimize the tracking error we use different
optimization techniques and show that a performance approximation of a bond index
by a bond ETF is possible.

The main goal of bond index tracking is to keep the number of bonds small,
while minimizing the allocation costs, which in turn keeps the tracking error at
a predetermined minimum level. Finally we analyze the results and compare the
optimization methods based on the tracking error for simulated as well as realized
bond index prices.

The fourth paper applies geometric Brownian Motion price simulation to fuel prices
in order to price American-style fuel price Call options, where the risk-free change
in fuel price is assumed to follow the inflation rate. The purpose of such an option is
to introduce the hedging possibility for a consumer at the gas station. We highlight
the potential application of a fuel option for companies and individuals who are
highly exposed to road traffic-based vehicles such as cars and trucks, as there does
not exist a hedging possibility for refined end products for non-institutional clients,
starting from lack of products to minimum size requirements for trade eligibility of
certain crude financial instruments such as crude oil futures.
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1.2 Methodology

Market Liquidity estimation in a high-frequency setup

The measurement of market liquidity is important for several aspects. Firstly, the
tradability of an asset price and its hedging depends on the market liquidity. Big
positions covered by banks are subject to constant market liquidity revision when it
comes to unwinding the latter. By calculation of an expected market liquidity value
it is possible to detect liquid trading windows and minimize slippage when a large
volume needs to get un-winded within a certain time window. Furthermore, mutual
funds can use the liquidity measure when they expect to receive certain amount
of capital. In order to be able to ensure certain performance the market entry is
crucial. Therefore an estimation of future market liquidity helps to improve mutual
fund performance.

Unger and Hughston [8] measure liquidity using a numerical simulation method-
ology similar to the one which is used in Monte Carlo option pricing. My idea is to
expand the methodology for simulating the underlying price process by application
of the Heston model, as well as expanding the methodology for simulating the un-
derlying volume process by applying the inverse transform sampling. The novelty
about this expansion is that this is the first time that the Heston model is being
applied to the simulation of market liquidity. At the same time, it appears to be
the first time that the inverse transform is being applied to the simulation of an
order volume generating process. In order to measure the forecasting accuracy, I
also conduct forecasting error measurements by comparing the quality of the new
forecasting methods to the old ones.

The literature addresses the application of the Heston model to risk estimation
and hedging, as well as to the pricing of derivatives and structured products. The
computational integration of such methods is covered by many research works such
as by Ingber [3] or Kirkpatrick [12] while theory on optimization techniques is pre-
sented by research works as in Mikhailov and Nögel [5] or Gatheral [6]. However,
there exists currently no research work that applies the Heston model to market
liquidity measurement.

The paper of Unger and Avdiu [2] deals with the theoretic idea of making market
liquidity tradable. In that sense, the displayed value of future expected market
liquidity could define the terms of trade between two counterparts who are willing
to offset each other’s opinion on expected traded volume. Since this value could
be traded like a contract for difference (CFD), this paper focuses on the hedging of
such positions if there is no counterpart to offset a trader’s position.

In order to measure market liquidity it is important to simulate the quoted bid
and ask prices, as well as the quoted bid and ask volumes. Therefore the estimation
of market liquidity assumes two stochastic processes for the development of the bid
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(i) and ask (j) prices, two compound stochastic processes for the simulation of bid
(i) and ask (j) volumes and an algorithm for the calculation of the arithmetic mean
of the traded volumes over a certain period of time.

We calculate the arithmetic mean by taking taking the sum of all generated traded
volumes per time interval and divide it by the total number of the time steps of the
simulation. The bid/ask price process is assumed to follow a geometric Brownian
Motion as in [9]. This enables us to compare it with the performance of the Heston
model simulation.

We develop the multivariate geometric Brownian motions for the price path de-
velopment of a buyer Sj and of a the seller Sj, with µi/j(bid/ask price drift) and
σi/j(price volatility), through:

Si(t) = Si(0) eµit+σiXi (1)

Sj(t) = Sj(0) eµjt+σjXj (2)

where the correlation matrix between the Wiener processes Xi and Xj is defined
as E(Xi, Xj) = ρi,j and ρi,i = 1.

The Heston model assumes a stochastic volatility development of the bid (i) and
ask (j) prices (Si,j) with parameters µi,j(bid/ask price drift), V (t)i,j(bid/ask price
variance), κ (rate of mean reversion), ωi,j(long run variance), σi,j(volatility of vari-
ance) and W i,j

1,2 (Standard Brownian movements).

dS(t)i
S(t)i

= µidt+
√
V (t)idW i

1, (3)

dVi = κi(ωi − σi)dt+ σ(t)i
√
V (t)idW i

2 (4)

describes the bid price development, while

dS(t)j
S(t)j

= µjdt+
√
VjdW

j
1 , (5)

dVj = κj(ωj − σj)dt+ σ(t)j
√
V (t)jdW j

2 (6)

describes the ask price development. W1 andW2 are correlated through dW1 ·dW2 =
ρdt.

In order to estimate the expected market liquidity we simulate independently bid
and ask volumes by using compound Poisson process as well as inverse transform
sampling. By performing a Chi-square test we evaluate the forecasting performance
of both methods and identify the superior one. We assume that the dynamics of
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the volumes processes Qi and Qj follow a compound Poisson process with jump rate
λ. Therefore we define for the the bid and ask volume developments the following
compound Poisson processes:

P (Qi(t) = n) = e−λit
(λit)n
n! , (7)

P (Qj(t) = n) = e−λjt
(λjt)n
n! , (8)

where Qi is the quoted bid volume at time t and Qj the quoted ask volume at time
t.

Using the inverse transform sampling method, the volume process developments
of Qi and Qj are assumed as follows. Let

P (Xi = xki ) = pki , k = 1, 2, ...ni, with
ni∑
k=1

pki = 1 (9)

P (Xj = xkj ) = pkj , k = 1, 2, ...nj, with
nj∑
k=1

pkj = 1 (10)

be the probability mass function (PMF) of of bid (i) resp. ask (j) volume calculated
by historical data with ni quoted bid volumes xki , k = 1...ni and nj quoted ask
volumes xkj , k = 1...nj. The PMF of quoted bid (i) resp. ask (j) volume at time t is
then defined by

P (Qi(t) = xki ) = P (F (xk−1
i ) ≤ U ≤ F (xki )) (11)

P (Qj(t) = xkj ) = P (F (xk−1
j ) ≤ U ≤ F (xkj )) (12)

with F (xti/j) being the cumulative distribution function (CDF) of historical quoted
bid (i) and quoted ask (j) volumes at time t calculated from the PMF

F (xki/j) =
k∑
t=1

pti/j, (13)

and U being a uniform random variable between 0 and 1.

We will further prove that inverse transform sampling is be a useful estimation
method for the bid (i) and ask (j) volume process generation:

P (Qi/j(t) = xki/j) =
k∑
t=1

pti/j −
k−1∑
t=1

pti/j = pki/j. (14)
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The result is a compound volume process Y (t) at time t which characterizes the
volume developing process.

Y (t) =
 min{Qi(t), Qj(t)} if Si(t) ≥ Sj(t)

0 o.w.
. (15)

As we can see, we always take the minimum of two quoted bid and ask volumes
if the simulated bid price is at or above the simulated ask price, since this volume
is assumed to be the agreed quantity of the transaction. Therefore, this process
develops a path of simulated traded volumes.

E[Y ] =
∑n
t=1 Y (t)
n

. (16)

Since the Heston parameters need calibration, we apply four different optimization
techniques and compare their estimation quality in-sample and out-of-sample and
test it on Euro Stoxx 50 Future options. The optimization methods we used for
calibration are Genetic Algorithms (GA), the Particle Swarm Optimization tech-
nique (PSO), the Levenberg-Marquardt method (LM) and the Nelder-Mead Sim-
plex method (SM). In addition to the four optimization methods, a combination
of Levenberg-Marquardt and Genetic (LM +GA) algorithms is tested, using the
optimal parameters of LM as starting values for GA.

These optimization methods lead to a minimization of the root mean square error
between the estimated plain vanilla Heston option price and the realized option price
of option i:

arg minΩ

√∑N
i=1(C0(i, r,Mi, S,Ki)− Ci)2

N
, (17)

where Ω is the set of Heston parameters to be estimated, N expresses the number
of options on the estimation day, C0 is the Heston call function denoting the dollar
adjusted call plain vanilla option price, r the interest rate,Mi the Maturity of Option
i, S the closing price of the Underlying and Ki the strike of option i.

The order submission flow on the bid and ask volume is simulated by compound-
ing Poisson process and inverse transform sampling. Both methods are assumed
to reflect the real traded order arrival times. Therefore we perform a Chi-Square
optimization test in-sample as well as out-of sample. Our null-hypothesis states that
the real arrival times of conducted trades follows a compound Poisson distribution
or an inverse transformation.

To estimate the Heston parameters, we use the same strat values, the same lower
and upper bounds, and the same termination conditions for all four optimization
methods. These are the optimal starting parameters as calculated from the historical
bid/ask call data. The indicated optimization parameters are tested on the basis of
all traded bid and ask options on 20.08.2015.
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Table 1: Lower bounds, upper bounds and starting values of parameter estimation.
kappa theta sigma rho v0

Lower Bounds 0.0001 0.0001 0.0001 -1 0.0001
Upper Bounds 100 10 10 1 10

Start 10.9 0.01 0.3 0.3 0.04

Table 2: Termination conditions
Maximum Function Evaluation 1,000

Maximum Iterations 20,000
Termination Tolerance on the Function Value 0.001

The overall test results show the smallest RMSE for the LM method, indicating
that LM is superior to the other optimization methods. LM not only produces the
smallest RMSE, but also is the fastest optimization method in terms of computa-
tional time. Although LM produces the best calibration results among all optimiza-
tion methods, we can achieve improvement in test results by combining LM method
with Genetic Algorithms.

Table 3 shows the RMSE error for all 4 optimization methods.

Table 3: Estimation RMSEs of all options 27.04.2015-30.12.2015
GA PSO LM NMSim LM+GA

In Sample 46.85 15.30 11.27 11.85 10.23
Out of Sample 82.78 29.51 19.25 22.45 17.36

Computational Time in Seconds 38.106 61.248 2.610 5.742 42.987

To evaluate the sampling of bid/ask volumes by the chi-square test, we take histor-
ical FESX50 tick data and accumulate all tick changes, regardless of price or volume
changes or the submission of new orders, at each second. We use tick data from
April 26, 2015 to December 30, 2015 and test both in-sample and out-of-sample.The
in-sample test includes 1-50 days, while the out-of-sample test takes these 1-50 in-
sample days as the estimation set and tests 1 day out-of-sample.

Our results show that the inverse transformation method with a depth of 1 day
of historical data is more suitable than the composite Poisson process for sampling
bid/ask volumes. These results hold for both in-sample and out-of-sample data.

This paper compares the estimation performance of the Heston model and the
Geometric Brownian Motion (GBM) model (bid-ask prices) as well as the Inverse
Transformation Sampling and Compound Poisson processes (bid-ask volumes). The
application is a unique approach to estimating market liquidity.
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Our results show that by simulating bid and ask prices generated by the calibrated
Heston model, market liquidity can be estimated up to 29.14% better than with the
GBM model. The results are robust for both in-sample and out-of-sample tests. The
only drawback of using the Heston model is the high computational time required
to calibrate the parameters and simulate the prices.
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Implicit Hedging and Liquidity Costs of Structured Products

Structured products allow a different type of investment and are linked to certain
conditions. The price of a structured product is thus derived from the development of
the underlying and the predetermined conditions. Banks issuing such products must
at the same time consider how to hedge and trade corresponding counter positions,
since they face the requirement to hedge instantly when the order of a client arrives
and the position is opened. Structured products are based on complex mathematical
formulas and can incorporate high risk exposures. The fair value of these products
calculated by using financial models can differ from the real observed prices on the
market. This difference is called markup, which is also subject to change over time.
The drivers of this markup and the change in the markup have not been extensively
studied by the literature.

Henderson and Pearson(2011) [4], Stoimenov and Wilkens(2005) [10],
Bergstresser(2008) [11], Rogalski and Seward(1991) [15], and Jarrow and
O’Hara(1989) [16] take the closing prices of linked structured products and
compare them to theoretical values derived from the prices of options traded on the
underlying of those products. As they find that the real traded prices are greater
than the calculated fair market values obtained using option pricing methods, they
lack on identifying the real driver behind the discrepancy between pricing and real
observed prices.

Due to the lack of available technologies, it has not been possible in the past to
use financial mathematical models such as Heston to determine the fair value of
structured products over a long period of time.

Therefore we develop a framework which uses the Heston model, including the
calibration methods studied above, resp. geometric Brownian Motion in order to
replicate the payoffs of ten structured products and measure the spread between
theoretical and real prices.

We calculate the payoffs of 10 structured products according to the terms which
appear on the fact sheets published by the banks. Some of the products contain
multiple underlyings. In order to account for that, we use a multivariate geometric
Brownian motion which allows us to calculate a more accurate fair value:

dSit = X i
tdt+ σiS

i
tdW

i
t , (18)

where the Wiener processes are correlated such that E(dW i
t , dW

j
t ) = ρi,j, dt, where

ρi,i = 1.

Product payoffs which only consider one underlying, St are priced using the Heston
model:

dSt = µStdt+√νttStdW S
t , (19)
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where νt, the instantaneous variance, is a CIR process:

dνt = κ(θ − νt) dt+ ξ
√
νt, dW

ν
t , (20)

and W S
t ,W

ν
t are Wiener processes (i.e., random walks) with correlation ρ, or equiv-

alently, with covariance ρ dt, where µ is the rate of return of the asset, θ is the long
run variance, κ is the rate at which νt reverts to θ, ξ is the volatility of the volatility
and determines the variance of νt.

For calibration of the Heston parameters, we use the Levenberg Marquardt method
and Genetic algorithms, since this combination turns out to be the best method in
order to minimize the root mean square error between the estimated plain vanilla
Heston option price and the realized option price of option i:

arg minΩ

√∑N
i=1(C0(i, r,Mi, S,Ki)− Ci)2

N
, (21)

where Ω is the set of Heston parameters to be estimated, N the number of options
on the estimation day, C0 is the Heston call function denoting the dollar adjusted
call plain vanilla option price, r the interest rate, Mi the Maturity of Option i,
S the closing price of the Underlying, Ki the strike of option i. Each simulation
generates 500,000 random paths for each underlying, to which all ten payoffs of the
structured products are then applied to. The fair value is then calculated by taking
the arithmetic average among all outcomes.

The optimization results obtained for the Heston model are then used to calculate
the fair value of structured products linked to a single asset.

In order to identify the drivers of the markups we run two regression, controlling
for volatility and liquidity in order to test if they explain the markup. For structured
products which include multiple underlyings, we run a multivariate regression for
Markupi,t for product i at time t, on the volatility σj,t of underlying j:

Markupi,t = α +
N∑
j=1

γjσj,t + εi,t. (22)

as well as on liquidity λj,t of product i of underlying j:

Markupi,t = α +
N∑
j=1

γjλj,t + εi,t. (23)

For products based on just one underlying we perform a standard single regression,
controlling for volatility σi,t of product i:

Markupi,t = α + γpσi,t + εi,t (24)
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as well as for liquidity λi,t over time:

Markupi,t = α + γpλi,t + εi,t. (25)

The 10 structured products were replicated based on their payoffs and priced using
multivariate geometric Brownian motion or the optimal Heston model (fair value).
The difference between fair value and historical prices is defined as hedging and
liquidity costs (markup).We find that the average markup for a structured product
ranges from 0.9% to 2.9%.

Table 4: Hedging and Liquidity Costs
Product Min Max Average
Dual Index kick-out, Capital risk -0.7% 3.8% 2.0%
Dual Index + Coupon, Capital risk 0.1% 1.4% 0.9%
Trippel Index + Coupon, Capital risk -0.5% 1.4% 1.1%
Single Index + Coupon, Capital risk -0.2% 1.6% 1.4%
Single Index + maturity Coupon, Capital protection -0.3% 1.8% 1.3%
Single Index + Payoff, Strike Capital protection -0.7% 3.5% 2.1%
Single Index + Barrier Payoff, Capital protection 0.3% 2.9% 1.4%
Single Index + ongoing Payoff, Capital protection 0.5% 2.9% 1.9%
Single Index + Payoff, Capital protection 0.6% 4.1% 2.2%
Single Index, Capital risk 1.3% 3.1% 2.9%

We are the first to use a calibrated Heston model to replicate the payoffs of single
asset structured products. The replication is done by using server calculations, a
new technology that uses parallel calculations, which was not possible in the past
due to the unavailability of the technology.

Based on these results, we are able to identify possible drivers of this markup,
specifically whether these drivers explain the change in markup over time. We test
two possible drivers: volatility and market liquidity of the underlying. We find
significant results for volatility for 8 out of 10 products, while we identify liquidity
as a driver for only one product, where the payoff of this product does not require
hedging.

Our results suggest that most of the premium can be attributed to hedging costs,
while hedging costs due to market liquidity cannot be extracted for complex payoffs,
as the volatility of the underlying seems to dominate the cost of hedging in complex
structures. In the presence of hedging, liquidity costs are embedded in the hedging
costs of the underlying.
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Minimizing the Index Tracking Error using Optimization Methods

Another application of optimization techniques in the world of finance is being pre-
sented by minimizing the index tracking error of bond ETFs.

The purpose of ETFs is to replicate the performance of an underlying index. Pas-
sive portfolio managers seek to minimize the discrepancy between the net asset value
(NAV) of an ETF and its underlying index by buying and selling the underlying as-
sets accordingly.

Since each transaction is associated with transaction costs, the managers face the
trade off between tracking the underlying index as good as possible while maintaining
the lowest possible transaction costs. Blanchett and Blanchett(2007) [13] give an
overview of the cost drivers of these transactions.

Jeurissen and van den Berg [14] found that index tracking can be significantly op-
timized by using hybrid genetic algorithms to minimize tracking error. This method
showed better performance than a randomly selected portfolio used to track the
performance of the AEX index.

The methodology of our approach to minimize the index tracking error consists on
the novel approach using the correlation factor between index and ETF ρ(idx,ETF ) →
1 as a target function. Then the quality and robustness of the four optimization
methods is compared and applied to the tracking of a virtually constructed fixed
income bond ETF. The constructed bond index consists of 10 bonds, each with
maturity 10 years while based on different credit spreads, using current Euro Swap
rates or market data. Then an ETF which exhibits a minimal tracking error is
being replicated. The goal is to forecast the price development of the ETF as good
as possible by conducting a one-time asset allocation in advance.

Finally, an out-of-sample test with 10,000 simulations using the four different op-
timization techniques is being performed in order to identify the best optimization
method. The pricing model assumes to follow a Cox-Ingersoll-Ross (CIR) model
with a short-rate, rt, satisfies

drt = α(µ− rt)dt+ σ
√
rtdWt, α, µ, σ > 0, r ≥ 0, (26)

where Wt is a standard Brownian motion, α is the speed of adjustment, µ is the
long term average rate (the mean-reverting level) and σ√rt is the implied volatility.
The zero-coupon bond prices are calculated by

P τ
t = E∗t [exp(−

∫ t+τ

t
rudu)], (27)

where E∗ denotes expectation under the risk-neutral probability measure Q∗.
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Then we construct a bond index at time t, consisting of 10 bonds, each of maturity
10 years for 1250 trading days which is calculated by

Indext = Indext−1

10∑
n=1

wn
Bn(t)

Bn(t− 1) , (28)

where wn is the n-th weight of the corresponding bond and Bn(t) is the n-th bond
price at time t with maturity 10 years and Index1 = 100. Then we simulate 10
bond price paths with randomly chosen vector of credit spreads from 2% to 3% and
compare it to a real traded bond index which was constructed, using 10 different
index bonds with different maturities.

For the construction of the ETF based on market data, ten zero-coupon bonds
issued by different banks are used.

The weight vector for the market and simulated data is randomly chosen with
w = (0.2, 0.15, 0.1, 0.07, 0.09, 0.12, 0.15, 0.03, 0.02, 0.07).

The ETF is then constructed by allocating different combination of bonds with
different weights. In order to find the optimal allocation the four optimization
methods are applied for constructing the ETF. The methods are mentioned above.
We test for an interval of [4; 7] bonds. For each allocation we run the four different
optimization methods and evaluate its tracking error.

Since we want to calculate the tracking Error of the bond ETF we download daily
net asset values of the bond index and calculate their returns. Then we take the
allocation weights for the next 250 trading days and bring them in matrix form,
consisting of two matrices, X and Y:

X =



RETFi,1001

RETFi,1002

RETFi,1003

.

.

RETFi,1250


Y =



RIndex,1001

RIndex,1002

RIndex,1003

.

.

RIndex,1250,


where RETF,t is the return on the ETF-portfolio at time t, which contains different
bonds. RIndex,t is the return on the NAV of the forecasted index benchmark at time
t.
The tracking error is defined through the standard deviation of the active returns,
which is the difference between NAV returns and ETF-portfolio returns. We calcu-
late it by

TrackingError =
√
V ar(X − Y ) ∗

√
250. (29)
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After a time window of 1.000 trading days we calculate the optimal bond weights.
These weights are used for tracking the index, where the tracking error is minimized.
Then we take these weights and apply them to the next year. In other words, the
weights are kept constant for the last 250 trading days in order to perform an out-
of-sample test. The goal is to maximize the correlation between the return of the
index price arising from our asset allocation and the realized ETF price:

arg maxΩ(ρindex,ETF ), (30)

where Ω is the set of ETF weights to be estimated. Since we want to replicate the
bond index by using a new approach we use the correlation between the index and
the ETF:

ρindex,ETF =
∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1 (xi − x̄)2∑n
i=1 (yi − ȳ)2

, (31)

where xi is the i-th return of the projected bond index and yi is the i-th return of
the tracking ETF.

In this paper, we propose a new approach to minimize index tracking er-
ror by setting the correlation factor between index and ETF ρ(idx,ETF ) to
1asanobjectivefunction.

We then compare the quality and robustness of four different optimization methods
applied to the tracking of a stock ETF index and two virtually constructed bond
ETFs. For this purpose, we use 3 different benchmarks: simulated bond ETF, real
data ETF and DAX ETF. We then perform an out-of-sample test using four different
optimization techniques, such as Genetic Algorithms, Particle Swarm Optimization,
Levenberg-Marquardt, and Nelder-Mead Simplex.

As a last step we assign the target function to each optimization method. This
allows us to compare the degree at which the tracking error could be minimized.
We perform this procedure for over 5 years with different bond allocations.

In summary, we find that the Levenberg-Marquardt algorithm works best for ETF
tracking for both simulated and real data, and its application to the objective func-
tion pushing the correlation between the index and the ETF towards 1.
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Fuel hedging in an inflated environment

Another example of price path simulation to the real world application is presented
when pricing an American call option on fuel, where the risk-free change in fuel
price is assumed to follow the inflation rate.

Commercial customers and retail clients would benefit from the possibility of hedg-
ing themselves against increases in fuel prices. Ideally they would be able to buy
such protections directly at the gas station when they fuel their cars, trucks, etc.
Currently there does not exist the possibility for retail clients to hedge the refined
end product price. Since such products are mainly used and available, e.g. due to
minimum size requirements, etc. to institutional clients, this would open not only a
whole new market and business opportunity for providers of such insurers, but also
enable retail clients to benefit from small contract sizes which are directly linked to
their net exposure.

Fuel demand is highly correlated to economic growth. Therefore, the general view
is that fuel prices will tend to increase over time. There exist certain underlying
conditions which back this claim.

On the one hand, countries like China and India have an enormous growth po-
tential, and will therefore require a lot of fuel in order to satisfy domestic demand.
Since renewable energy resources will still take a while until they are widely used,
fossil-based products will continue to serve as primary source of energy supply in
the short term. This means that in a short- to mid-term period, oil and fuel prices
are likely to increase.

On the other hand, the price vulnerability of the oil price due to geo-political
tensions in the Middle-East, the region which is the second-largest provider of the
global oil supply, is the main cause for high risk exposure of oil consumers. Due to
the increased and unstable volatility because of the dependency on political develop-
ments on these countries, oil consumers are in desperate need of hedging instruments
which cover this risk exposure. Since higher volatility means higher risk premiums,
a wider variety of available financial products mitigates this risk.

Moreover, national budgets in the regions of oil-exporting are highly stressed, since
global oil prices crashed because of global demand disruption. This means that oil
exporters will desperately try to push up oil prices in a long-term view, since the
current market share war is not sustainable for none of the market participants.
An increase in oil prices would mean an increase in inflation. Therefore, a financial
instrument which directly addresses and tracks the exposure of a CPI basket con-
stituent, i.e. fuel, would appear to be a direct hedge for consumers against inflation.

All these factors effect negatively the business cycle, since there are just limited
possibilities and instruments in the market available to hedge against increased fuel
prices. Big companies, such as airlines, use standard market instruments for instance
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crude oil futures in order to hedge their risk exposure. But other industries such
as logistics, the trucking industry or private traffic sector are exempted from these
possibilities, simply because of a missing direct exposure to fuel and minimum trade
requirements for financial contracts.

We work in a filtered probability space (Ω,F ,P,F0≤t<∞), where the fuel price
paths are assumed to be (Ft)-adapted. The price dynamics can be described by
the fuel price change dSt. We further assume that the fuel price process under a
real-world probability measure P takes the form

dSt
St

= µdt+ σ(t, S)dWt, (32)

where the processes µ(t)0≤t<∞ and σ(t)0≤t<∞ are Ft-adapted, measurable and uni-
formly bounded. Furthermore, we assume that the fuel price satisfies the no-
arbitrage condition. We deduct that all spot prices are observable since all future
prices are observable as well. This implies absence of arbitrage, which in turn implies

EP̃
t [dSt] = (rNt − Ft)S(t)dt, (33)

where rNt is the nominal risk-free rate and Ft is the instantaneous convenience yield.
Therefore, the fuel price is assumed to follow

St = S0e
Yt , (34)

where (Yt) is a P-Brownian motion with drift. This means that for each t in [0, inf)
we have

Yt ∼ N(µt, σ2t). (35)

We further assume that St to be the value of the fuel price at time t, while Zt
denotes the value of an American call option at time t. What we are interested in,
is the relation between these two prices at various exercise times.

Our methodology builds upon simplification of the application. Therefore, we
operate in a discrete time frame, which proves to be more efficient. For this purpose
we construct a binomial tree with T time steps corresponding to times k= 0, 1, ...,T,
which reflects the fuel price Sk. Moreover, time T defines the maturity until a car
driver or consumer intends to hedge his risk exposure, i.e. his fuel consumption.
Since we are pricing an American option, the car driver has the right to exercise his
fuel insurance at any given time prior to maturity. In our case, on a daily basis.

Our approach is based on the algorithm proposed by Mark Davis for calculating
American options as in [17]. Since American options can be executed at any time, it
is not possible to develop a closed formula for the pricing of such options. On each
day the fuel price either increases to Sk+1=uSk or it decreases to Sk+1=dSk with
u> 1 and d= 1

u
. Each increase or decrease is assumed to have the same probability
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of occurrence. We let Fk be the σ-field generated by {S0, S1, ..., Sk}. At time k the
possible price values are specified by a vector sk=sk[0], ...,sk[k] with

sk[j] =ukd2j=d2j−k. (36)

Saved fuel is worth er at time T , given a risk-neutral environment. The proba-
bilities for increases or decreases, p and d, are risk-neutral if the discounted price
Sk
rk

is a martingale. Thus, at time 0 this requires that S0= 1
er

(pu+(1−p)d) =E[S1
r

].
Therefore,

p=e
r−d
u−d

, (37)

d=e
r−u
d−u

. (38)

Since we are pricing an American call option, the buyer has the right to buy fuel
with exercise value [Sk−K]+. Our pricing algorithm goes backwards and considers
every possible exercise day by discounting every payoff at the end of each day.

In this paper, we propose a hedging approach for fuel. Since fuel prices are an
important driver of inflation, we show that by valuing a U.S. call option, it is possible
to hedge fuel for expected consumption within a given period in exchange for paying
an appropriate premium.

In a risk-neutral environment, this premium depends on the inflation drift, which
indicates an increase in commodity prices in general. This, in turn, strongly in-
fluences the determination of the price of an option, which is a derivative of an
underlying, such as crude oil. We have shown two different frameworks in which
such options could be priced, the continuous framework and the discrete framework.

For practical implementation, the discrete framework seems to be sufficient when
considering daily time steps, since it is assumed that consumption is not necessary
twice a day. Therefore, the exercise times can be reduced to daily time steps. This
approach improves the computation time and provides a guideline.

Our results show that a consumer has to pay a premium of 6.7-8.4 cents per liter
to hedge fuel prices for one year.
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Abstract

This article deals with the identification of a superior forecasting method for market
liquidity using a calibrated Heston model for the bid/ask price path simulation
instead of standard Brownian motion, and compound Poisson process, resp. inverse
transform sampling for the generation of the bid/ask volume distribution. We show
that the simulated trading volumes converge to one single value, which can be used
as liquidity estimator and find that the calibrated Heston model as well as the
inverse transform sampling are superior to the use of standard Brownian motion,
resp. compound Poisson process.

Keywords: Market Liquidity, Heston model, Geometric Brownian motion, calibration,
optimization techniques, Compound Poisson process,Market Liquidity,Inverse transformation
sampling

29



2.1 Introduction

The paper claims to use optimization techniques in the context of financial models
such as the Heston model. The goal is to apply these techniques to market liquidity
modeling and identify any superior forecasting quality to the liquidity estimation
approach using standard Brownian motion. The outstanding new idea within this
work will be the application of various optimization techniques to the Heston model
in order to analyze its forecasting quality in contrast to the standard Brownian mo-
tion. Its application to High frequency trading will add value to the novel approach
of estimating market liquidity with Heston model. Financial models are character-
ized by a set of parameters which describe price movements of financial assets. In
order to price and hedge financial products stoachstic models are most often used
in practice and applied for general risk estimation frameworks.

Heston [16] developed a model for describing a movement of a stock price based
on the standard Brownian motion approach but added an important component:
stochastic volatility. Since a constant volatility is assumed in the classic framework
it may not be appropriate to use such models in order to forecast future price
developments. Heston’s stochastic volatility model seems to be a better choice when
modeling price fluctuations even though it makes assumptions which migh not be
encountered in reality such as normal distributed returns in short time frames. The
application of stochastic volatility models is very broad. In my thesis I will especially
investigate the application of the Heston model to market liquidity simulation.

Market liquidity describes the ability of a financial market to absorb additional
trades between market participants without affecting the price. When price impact
is strong we speak of illiquidity of a market. In order to simulate market liquidity
a certain parameter set is necessary to map trade capacity. This includes quoted
bid and ask prices as well as quoted bid and ask volume as well as traded price and
traded volume.

In order to simulate the Heston model as accurately as possible, a frequent update
of the parameters used for estimation is necessary.

The Heston model has been used in different areas of the finance. These include
pricing of derivatives and structured products, hedging, performance and risk esti-
mation. Many articles address the application of the Heston model. Most works
cover the computational implementation such as Ingber [12] or Kirkpatrick [13].
Others give summeries or overviews of the theoretical optimization techniques such
as Mikhailov and Nögel[14] or Gatheral [15]. But no existing research has been
done so far in order to apply a the Heston model to market liquidity measurement.
Relying on market option data, fair values are calculated with the Heston model.
Exact fair prices can only be achieved by making use of algorithmic optimization
techniques. This optimization leads to a set of parameters which are then used to
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simulate bid and ask prices of the Euro Stoxx 50 Future (FESX).
The bid and ask price simulations generated by the Heston model are applied to
estimated traded volume in the FESX in order to test for accurateness. Due to the
fact that a high percentage of trades are conducted at market and not in the limit
order book, it is not possible to estimate expected traded liquidity just on the basis
of historical quotations. In order to get an accurate estimation of traded volume
it is necessary to scale the traded volume by the factor of 2. It can be shown that
this factor turns out to be a characteristic number of the Compound Poisson process
since just the minimum of a quoted bid and ask volume is traded. This characteristic
number is subject to the estimation of traded volume quotations. This procedure of
scaling is conducted in chapter 4 of my thesis.

The estimated traded volume serves as a good estimator for future expected market
liquidity. Market liquidity is highly linked to market risk since illiquidity leads to
high risk. Therefore it is obvious to link the risk classification number to the value of
future expected market liquidity. Chapter 5 deals with the theoretic idea of making
market liquidity tradeable. In that sense, the displayed value of future expected
market liquidity could define the terms of trade between two counterparts who are
willing to offset each other’s opinion on expected traded volume. Since this value
could be traded like a CFD this chapter focuses on the hedging of such positions if
there is no counterpart to offset a trader’s position.

Traded volume is an important factor for determining market liquidity. Since most
liquidity is being generated at market and not via limit order book, estimation of
at market volume is very difficult. The problem when simulating at market traded
volume is that pointwise simulation leads to a non-homogenous movement which
does not correspond to reality.

My research will focus on the computational implementation of a valid market
liquidity estimation. The aim of my research will be to show that various simulation
techniques exist for estimating future liquidity. It is likely that simulated traded
volumes will not converge to the number of realized traded volumes due to the
fact that the simulated quotes are Compound Poisson distributed random variables.
Therefore an approximation algorithm might be necessary which generates values
that are converging due to the law of large numbers.

The basis of my research within this chapter will be the current working paper of
Unger and Hughston[19] which investigates the liquidity generating price process.
It incorporates two standard Brownian motions which represent the price process
of the buyer and the seller. The intersection of the two Brownian motions serves
as the indicator for the corresponding volume generating process and therefore as
the indicator variable for the points in time when liquidity is being generated. A
simulated trade occurs by taking the minimum of two quoted sizes. This means if a
buyer wants to buy say 50 units to a certain price and a seller agrees on that price,
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but only wants to trade 10 units, liquidity of 10 units is being generated. Since the
quoted volume is assumed to be simulated by a Compound Poisson process, the law
of large numbers yields exponentially distributed random numbers. The interesting
question will be how the convergence process according to the law of large numbers
looks like if we take the minimum of two exponentially distributed random variables.

The usual way to describe the price dynamics of an asset price process is to assume
conditions such as stochastic independence of increments, finite variation and driving
factors. Such factors may encompass a drift term, stochastic volatility, speed of mean
reversion or correlation terms. In order to generate a price process which is close to
reality it is necessary to update the randomized price movement with the implied
volatilities and its subsequent traded prices of the corresponding derivatives. This
means, without having a method to reduce the error between the estimated value
and the realized value, it is impossible to stick to the real price development.

The problem with stochastic models is that there doesn’t exist a closed-form solu-
tion for every kind of model. In such a case numerical solutions are needed. These
numerical computations need to be calibrated to current market data. Since regular
calibration techniques need a lot of computational resources the focus of this work
lies in the application of robust calibration.

One important calibration parameter which is widely used for pricing financial
products is implied volatility. The Heston model assumes stochastic volatility which
seems to reflect reality better than constant volatility, as used in the classic Black-
Scholes framework. The standard approach is the least-square type calibration. The
shortfall of this approach is its sensitivity to the choice of the initial point: The point
of convergence depends on the point of departure.

The goal of this chapter will be to calculate the fair value of Euro Stoxx 50 Fu-
ture options based on the Heston model. On basis of the obtained parameters a
simulation of expected traded volume will be performed. The parameters needed
for estimation of the volatility parameter v0 are {κ, θ, σ, ρ}, where κ is the mean
reversion rate, θ denotes the long run variance, σ the volatility and ρ the correla-
tion. The error resulting from the least square calibration is subject to optimization
procedures.

For reducing this error several optimization methods exist, such as Genetic algo-
rithms (GA), the Particle Swarm Optimization technique (PSO), the Levenberg-
Marquardt method (LM) and the Nelder-Mead Simplex method (SM). Not many
papers have dealt with these kind of optimization techniques in terms of financial
market data calibration. The application to liquidity estimation outlines the novelty
of our research in this context.

Genetic algorithms are e.g. used by Poklewski-Koziell [23] for calibrating the He-
ston model to synthetically generated data. GAs are based on the natural selection
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and evolution, where the stronger individuals of a population are selected over the
weaker ones. By making us e of this concept, the GA optimizes the relevant pa-
rameters for the Heston model by evaluating how well the individual parameters in
the parameter space optimize the objective function. These individual parameters
are assigned fitness values based on how well the difference to the objective function
is minimized. Well fitting parameters are allowed to reproduce in order to create
subsequent population generations.

Particle Swarm Optimization technique is a self-learning algorithm for localizing
minima in multidimensional spaces that outperforms traditional sampling methods
in terms of computational cost. [36] Gilli and Schumann [22] calibrate option prices
by application of PSO to the Heston model. Kuok and Chan [21] have applied PSO
for calibration in a conceptual hydro-logical context. Other field of application cover
areas such as cosmology and extra-galactic astrophysics. Ruiz et al.[36] apply PSO
to comparing a new method called semi-analytic models of galaxy formation and
evolution (SAMs) in order to test the consequences of including new astrophysical
processes in galaxy formation models.

The Levenberg-Marquardt method is the industry standard when it comes to op-
timization of multivariate non-linear systems posed as least squared problems. It
approximates the non-linear system near the minimum with a quadratic system.[24]
LM is an iterative technique that locates the minimum of a function that is expressed
as the sum of squares of non-linear functions [25]. In our context its application is to
optimize the relevant Heston parameters so that the sum of squares of the deviations
to the realized price values becomes minimal.

The Nelder-Mead Simplex method is based on a concept of a geometric object,
a so called simplex. In 2D this is a triangle, in 3D it is a pyramid. The idea
behind it is a non-linear optimization method which allows to generate a new point
in each iteration in or near the geometric object. To determine the location of this
new point, a reflection step is introduced where the new point is chosen to be the
reflection of the worst existing point. By doing so, the simplex is moving away from
the high energy landscape to the low energy landscape. The algorithm stops if the
simplex is small enough. Then the solution is a point inside of the simplex.[32]

All these optimization techniques are performed in order to minimize the estima-
tion error between the Heston option price and the realized option price under the
condition of minimizing the sum of the squared percentage errors between model
and market implied volatilities. [27][28]

For the estimation of the liquidity, the simulation of bid and ask volumes is nec-
essary. For this purpose, we present two methods, Compound Poisson process and
Inverse transform sampling. We examine these two methods with a Chi-Square test.
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2.2 Model description

The starting point of our research is the liquidity intersection model by Unger and
Hughston.[26] It defines a liquidity generating process based on 4 key parameters
prevailing on market: Bid price, ask price, bid volume and ask volume. The mechan-
ics is is follows: The bid and ask prices are simulated independently by geometric
Brownian motions as well as the corresponding bid and ask volume processes which
are simulated by compound Poisson processes. Every time the bid price reaches the
level of the ask price or exceeds it, a stopping time τ is defined. This stopping time
refers to the time where liquidity is generated by the minimum of the prevailing bid
and ask quoted volumes. By repitition and averaging of the procedure, the simu-
lated traded volume converges to one single value, depending on the bid/ask spread.
This singular value is the estimated liquidity for the time period of simulation of
the corresponding asset.

The described simulation is conducted under assumption of normal distributed
random varibles and by estimation of µ and σ. These are the input parameters for
the geometric Brownian motions which serve as the driving random price processes of
the bid and the ask price. The procedure applies the Black-Scholes framework and all
its properties. The point of interest is where we assume a different underlying price
process of the liquidity generating process. For this purpose we apply the Heston
model and show how the liquidity value behaves when the Heston model is calibrated
with four different optimization methods. These are the already mentioned Genetic
Algorithms (GA), the Particle Swarm optimization technique (PSO), the Levenberg-
Marquardt method (LM) and the Simplex method (SM).

For the estimation of market liquidity we assume two stochastic processes for the
development of the bid (i) and ask (j) prices, two compound stochastic processes for
the simulation of bid (i) and ask (j) volumes and an algorithm for the calculation
of the arithmetic mean of the traded volumes over a certain period of time. The
arithmetic mean is calculated by taking the generated traded volume in a certain
time interval, divided by the total number of time steps.

2.2.1 Simulation of bid (i) and ask (j) prices

For the simulation of the Prices we propose Geometric Brownian motion [20] and
Heston model and compare the estimated results.

The multivariate geometric Brownian motions for the simulation of the price pro-
cess of the buyer Sj and the price process of the seller Sj with µi/j(bid/ask price
drift) and σi/j(price volatility) can be developed as follows:

Si(t) = Si(0) eµit+σiXi (39)

34



Sj(t) = Sj(0) eµjt+σjXj (40)

where the correlation matrix between the Wiener processes Xi and Xj is defined
as E(Xi, Xj) = ρi,j and ρi,i = 1.

The Heston model assumes a stochastic volatility development of the bid (i) and ask
(j) prices (Si,j) with parameters µi,j(bid/ask price drift), V (t)i,j(bid/ask price vari-
ance), κ (rate of mean reversion), ωi,j(long run variance), σi,j(volatility of variance)
and W i,j

1,2 (Standard Brownian movements). Thus we take for the bid dynamics:

dS(t)i
S(t)i

= µidt+
√
V (t)idW i

1, (41)

dVi = κi(ωi − σi)dt+ σ(t)i
√
V (t)idW i

2 (42)

and for the ask price dynamics:

dS(t)j
S(t)j

= µjdt+
√
VjdW

j
1 , (43)

dVj = κj(ωj − σj)dt+ σ(t)j
√
V (t)jdW j

2 , (44)

where W1 and W2 are correlated by dW1 · dW2 = ρdt due to the leverage effect
between asset price and instantaneous volatility.

2.2.2 Simulation of bid (i) and ask (j) volumes

Parallel to the bid and ask price process we have two corresponding bid and ask
volume processes running. Therefore we propose 2 methods:

Compound Poisson process

The dynamics of the volumes processes Qi and Qj are assumed to follow a compound
Poisson process with jump rate λ. Thus for the bid and ask volume processes we
have

P (Qi(t) = n) = e−λit
(λit)n
n! , (45)

P (Qj(t) = n) = e−λjt
(λjt)n
n! , (46)

where Qi resp. Qj denotes the submitted volume quote a buyer or a seller wants to
buy resp. sell at time t.
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Inverse transform sampling

The dynamics of the volumes processes Qi and Qj are assumed to be simulated with
a inverse transform sampling as follows:

Let
P (Xi = xki ) = pki , k = 1, 2, ...ni, with

ni∑
k=1

pki = 1 (47)

P (Xj = xkj ) = pkj , k = 1, 2, ...nj, with
nj∑
k=1

pkj = 1 (48)

be the probability mass function (PMF) of of bid (i) resp. ask (j) volume calculated
by historical data with ni quoted bid volumes xki , k = 1...ni and nj quoted ask
volumes xkj , k = 1...nj. Then the PMF of quoted bid (i) resp. ask (j) volume at time
t is given by

P (Qi(t) = xki ) = P (F (xk−1
i ) ≤ U ≤ F (xki )) (49)

P (Qj(t) = xkj ) = P (F (xk−1
j ) ≤ U ≤ F (xkj )) (50)

with F (xti/j) the cumulative distribution function (CDF) of historical quoted bid
(i) and quoted ask (j) volumes at time t calculated from PMF

F (xki/j) =
k∑
t=1

pti/j (51)

and U an uniform random variable between 0 and 1.

Since for x, y ∈ [0, 1] and x ≤ y

P (x ≤ X ≤ y) = y − x (52)

we can easly prove that the Inverse transform sampling could be a good estimation
for the development of bid (i) and ask (j) volume processes

P (Qi/j(t) = xki/j) =
k∑
t=1

pti/j −
k−1∑
t=1

pti/j = pki/j (53)

2.2.3 Liquidity Estimation

The resulting compound volume process Y (t) at time t characterizes the volume
generating process induced by trading.

Y (t) =
 min{Qi(t), Qj(t)} if Si(t) ≥ Sj(t)

0 o.w.
. (54)
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The result is a non-homogeneous compound process. The min -condition ensures
that the minimum amount of two matched quantities is listed as a transaction, or
traded volume, responsible for the market impact and its costs. By matching bid
and ask prices and taking the average of each possible generated volume we get the
average traded volume (liquidity) over a certain time period n:

E[Y ] =
∑n
t=1 Y (t)
n

(55)

2.3 Optimization

For simulation of the bid and ask prices we proposed geometric Brownian motion
and Heston model.

Since BGM has the lognormal distribution with parameters (µ − σ2

2 t) and σ
√
t

for t ∈ [0,∞] we can use the average mean value as estimator for µ and standard
deviation as estimator for σ, calculated from the historical data.

Heston model is based on the assumption that the volatility of the underlying is
stochastic and includes more parameters to be estimated. To conduct an estimation
we use the theoretical plain vanilla bid/ask option price. We proceed by developing
an analytic expression for the Fourier transform of the option price and then get the
price back by Fourier inversion.

For optimizing the order submission flow on the ask-volume as well as on the bid-
volume side we perform a Chi-Square optimization. Our null-hypothesis states that
the real arrival times of conducted trades follow a Compound Poisson distribution
or an inverse Fourier transformation.

2.3.1 Optimization of Heston parameters

In order to validate the effectiveness of the Heston model optimization we estimate
the Heston parameters by using four different techniques: 1. Genetic algorithms,
2. Particle Swarm Optimization 3. Levenberg-Marquardt and 4. Nelder-Mead
Simplex.

We perform these optimization techniques in order to minimize the root mean
square error between the estimated plain vanilla Heston option price and the realized
option price of option i on the estimation day:

arg minΩ

√∑N
i=1(C0(i, r,Mi, S,Ki)− Ci)2

N
, (56)

where Ω is the set of heston parameters to be estimated, N the number of options
on the estimation day, C0 is the heston call function denotes the dollar adjusted call
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plain vanilla option price, r interest rate, Mi the Maturity of Option i, S the closing
price of the Underlying, Ki the strike of option i.

In order to calculate the plain vanilla option prices e.g. Fast Fourier Transform
(FFT) can be applied.[29] Assuming no dividends and constant interest rate r, the
initial option value C0 is

C0 = SΠ1 −Ke−rTΠ2, (57)

with risk-neutral probability that the option matures in-the-money:

P (ST > K) = Π2 = 1
2

1
π

∫ ∞
0

Re(e
iuln(K)φT (u)

iu
)du (58)

and the delta of the option

Π1 = 1
2

1
π

∫ ∞
0

Re(e
iuln(K)φT (u− 1)
iuφT (−i) )du, [29] (59)

where φT (u) denotes the characteristic function of ln(ST ), which is

φT (u) =
∫ infty

−∞
eiusqT (s)ds, (60)

qT denoting the risk-neutral probability of the log-price of the underlying.[30]

Since the integrand is singular at u = 0, FFT can’t be used for evaluating the
integral. But to make use of the speed advantage of FFT, we make use of the
relation of the initial call option value CT (k) and the risk-neutral density qT (s) by

CT (k) =
∫ ∞
k

e−rT (es − ek)qT (s)ds. (61)

CT (k) tends to S0 as k tends to∞ which indicates that the call price function is not
square-integrable. But the FFT can be applied when using the modified call price
cT (k) defined by

cT (k) = exp(αk)CT (k) for α > 0. (62)

With the invesere transform we can get CT (k) by

CT (k) = exp(−αk)
π

∫ ∞
0

e−ivkΦ(ν)dν, (63)

where
ΦT (ν) = e−rTφT (ν − (α + 1)i)

α2 + α− ν2 + i(2α + 1)ν . (64)

For out-of-the money options, the call price can be obtained with the Fourier
transform ξT (ν) of zT (k) for

ξT (ν) =
∫ ∞
−∞

eiνkzT (k)dk. (65)
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By inversion of this transform we get

zT (k) = 1
2π

∫ ∞
−∞

e−iνkξT (ν)dν, (66)

with
ξT (ν) = e(−rT )( 1

i+ iν
− erT

iν
− φT (ν − i)

ν2 − iν
).[29] (67)

Since we are now able to generate option prices based on stochastic volatility we
can now simulate the bid and ask of the stock price using Heston model.

The calibration of the Heston parameters follows the approach of the multi asset
Heston model. This allows us to simulate the development of bid and ask prices
taking into account the high correlation. [37]

Since the quoted bid and ask prices in the order book do not always correspond
to realized traded prices (too high or too low) a selection of the optimal options for
the calibration of the Heston model is necessary. For this reason, we have tested
options by maturity and moneyness levels as well as the optimal amount of options
in the sample and the historic sampling period.

In order to solve the optimization problem we apply four different techniques and
compare their accuracy within the Heston model to the realized historical prices of
the options.

2.3.2 Heston model calibration with Genetic algorithms

Genetic algorithms operate by maintaining and modifying the characteristics of a
set of trial solutions (individuals) over a number of iterations (or generations). Each
individual solution is represented by a binary string (or chromosome in biological
analogies) in the genetic algorithm. The optimization process is designed to pro-
duce, in successive iterations, an increasing number of individuals with desirable
characteristics. The process is probabilistic but not completely random. The rules
of genetic algorithms have the power of retaining certain desirable characteristics
that would otherwise be lost with a completely random searching method. A genetic
algorithm consists of the following major components: encoding method, reproduc-
tion, crossover, mutation and fitness scale.[9]

Encoding

The initial step in operating the genetic algorithms is to form an initial trial solution
set. Each Heston model parameter is encoded in the form of a binary sub-string
consisting of ’0’ and ’1’. The length of a sub-string depends on the accuracy required
in the model parameter that it represents. The sub-strings are linked together to
form one binary string. If one start with 50 trial solutions, then there would be
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50 binary strings. Each string represents a set of Heston model parameters that, if
decoded, could be used to calculate the value of the objective function. In the initial
set, the values of the Heston model parameter are randomly assigned.[9]

Reproduction

The initial set of strings would generally not provide an optimal solution. Genetic
algorithm works by trying to generate (reproduce) other strings that would fit bet-
ter the objective function. The reproduction process is simply a selection process
of those strings having a better objective function will have a higher chance of
reproduction.[9]

Crossover

The crossover process in which genetic materials (the binary bits) between strings
are exchanged is used to generate new strings. Various crossover methods such
as single-point crossover, multiple-point crossover and uniform crossover could be
used.[9]

Mutation

To avoid being trapped into a local optimal point, a mutation process is used. In
this process, some bits in the strings are selected randomly and their values are
changed. Mutation is generally damaging rather than beneficial to the optimization
process. However, it provides a mechanism for the search to jump out of a local
optimum point.[9]

Fitness scale

During the implementation of the genetic algorithm, a particular type of string
may be excessively reproduced and the algorithm would then converge prematurely,
generating unreliable results. After a number of iterations, the strings in the set
tend to become very similar and hence the variation of objective values associated
with the strings is very small. The relative importance of these strings cannot be
distinguished during the reproduction process. Therefore the desirable (outstanding)
string within the trial solution set cannot be easily identified. in order to overcome
this problem and to increase the variation in objective values, a fitness scale is applied
to linearly map the objective values to a pre-specified range so as to enhance the
resolution for desirable strings.[31]
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2.3.3 Heston model calibration with Particle Swarm Optimization

In Particle Swarm Optimization (ps; Eberhart and Kennedy, 1995), we have again
a population that comprises n solutions, stored in real-valued vectors. In every
generation, a solution is updated by adding another vector called velocity vi. We may
think of a solution as a position in the search space, and of velocity as a direction into
which the solution is moved. Velocity changes over the course of the optimization,
the magnitude of change is the sum of two components: The direction towards
the best solution found so far by the particular solution, Pbesti , and the direction
towards the best solution of the whole population, Pbestgbest . These two directions
are perturbed via multiplication with a uniform random variable ξ and constants
c(ï"·), and summed. The vector obtained is added to the previous vi, the resulting
updated velocity is added to the respective solution. In some implementations, the
velocities are reduced in every generation by setting the parameter ∆, called inertia,
to a value smaller than unity. According to Gilli and Schumann [22] the algorithm
for the differential evolution can be summarized as follows:

Algorithm

1. set parameters nP , nG, F and CR
2. Initialize population P (1)

j,i , j = 1, ..., p, i = 1, ..., nP
3. if k = 1 to nG do
4. P (0) = P (1)

5. for i = 1 to nP do
6. generate l1, l2, l3 ∈ {1, ..., nP}, l1 6= l2 6= l3 6= i

7. compute P (v)
.,i = P

(0)
.,l1 + F × (P (0)

.,l2 − P
(0)
.,l3 )

8. for j = 1 to p do
9. if ξ < CR then P

(u)
j,i = P

(v)
j,i else P (u)

j,i = P
(0)
j,i

10. end for
11. if F (P (u)

.,i ) < F (P (0)
.,i ) then P

(1)
.,i = P

(u)
.,i else P (1)

.,i = P
(0)
.,i

12. end for
13. end for
14. find best solution gbest = argmini F (P (1)

.,i )
15. solution = P

(1)
.,gbest

where nG is the number of generations, P is the population (a matrix of size p×nP ),
F is the objective function, Fi is the objective function value associated with the
ith solution and xi is a random variate with uniform distribution on [0, 1].
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2.3.4 Heston model calibration with Levenberg-Marquardt

LM is an iterative technique that locates the minimum of a function that is expressed
as the sum of squares of nonlinear functions. Its principal application is to optimize
the parameters f(x) = {κ, θ, σ, ρ} of the Heston model curve f(y, x), where y is
a given variable, so that the sum of the squares of the deviations S(x) becomes
minimal.

The Steepest Gradient Descent Method

The steepest descent method is a general minimization method which updates pa-
rameter values in the direction opposite to the gradient of the objective function.
[34] The steepest gradient descent method works by making a step t that is the
negative gradient of the error times some constant.

∆B = −a∂E(B)
∂B

, (68)

where B0 defines the initial guess of the parameter set and E = T − f(zk, Bj) is the
estimation error function with

• T is the experimental data,

• f(zk, Bj) is the fitting function,

• zk are the number of independent data of dimension N,

• Bj are the parameters of dimension M,

• a is a positive constant.

This means that in steep regions (where slow convergence is advisable) the algorithm
moves quickly and in shallow regions (where fast convergence is more favorable) the
method moves slowly. The steepest gradient descent method works fine with simple
models, but it fails when more complexity is added. In addition, convergence can
take a long time because the method goes through most of the error surface missing
the minima. [33]

The Gauss-Newton Method

The Gauss-Newton method is a method for minimizing a sum-of-squares objective
function. It presumes that the objective function is approximately quadratic in the
parameters near the optimal solution. [34] The method is based on the idea that
nonlinear models can be approximated by linear functions through Taylor expansion
when the system is close to a minimum in error space. Then the square error (E2)
will approximate a quadratic equation where the linear least square method can be
used to find a minimum.
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Levenberg-Marquardt

The Levenberg-Marquardt method performs an interpolation between the Gauss and
the steepest gradient descent methods based upon the maximum neighborhood in
which the truncated Taylor series gives an adequate representation of the nonlinear
model. [35]

In the algorithm a positive constant (damping) is added to the diagonal of of ATA
in order to control the convergence of the method and provide an effective way to
avoid the singularity of the system. In the former case damping will determine
the rapidness of convergence, with large damping producing slow convergence and
vice versa. In the latter case the presence of damping will artificially increase the
eigenvalues improving the ill-conditioning of matrix ATA. In the method the step
to converge from an initial guess to a final solution is represented by

∆B = (ATA+ ε2I)−1AT∆T, (69)

where

• B= Parameters to find,

• A= Jacobian matrix,

• ε2=Damping,

• T=Data.

The general steps of the Levenberg-Marquardt algorithm are as follows:

Algorithm

1. Choose the initial parameters B0

2. Choose the values for the positive constants α and β
3. Start with a large initial damping ε20
4. Determine ATA
5. Determine ∆B and calculate Bi+1

6. Check at each step
-if RMSEi < RMSEi−1, then ε2i+1 = ε2i /β

-if RMSEi > RMSEi−1, then ε2i+1 = αε2i
7. Maintain a minimum value for damping (εmin) to ensure non-singularity of the
matrix Q = ATA+ ε2I. [33]
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2.3.5 Heston model calibration with Nelder-Mead Simplex

The Nelder-Mead Simplex method or Downhill Simplex method is a direct search
method which is independent of the existence of derivatives. It solves the optimiza-
tion problem given a real-valued objective function by starting from a simplex S0.
For each iteration step indexed by k the algorithm identifies a vertex vkmax deter-
mined by

vkmax = argmaxx∈{vk0 ,...vkn}f(x), (70)

which is the vertex where the function takes its largest value. The vertex vkmax of the
simplex Sk is then replaced by a new point v̂ such that f(v̂) < f(vkmax). The new
simplex is called Sk+1. To construct the new vertex v̂ of this simplex the method uses
three operations called reflection, expansion and contraction.[11] For our purpose we
apply the Downhill Simplex method to the given parameter set of the Heston model.

Algorithm

Step 1. Initialize 0 < α ≤ 1, 0 < β < 1, γ > 1 and the ordered vertices vj for
j = 0, ..., n of simplex S0. Choose a maximum number of iterations kmax and set
k := 0.
Step 2. if k > kmax then

stop
Step 3. Calculate the centroid v̂ := 1

n

∑n−1
i=0 vi

Step 4. Reflection: Calculate xr = (1 + α)v̂ − αvn and set vk = xr.
if f(xr) < f(vn−1) then
Step5. if f(xr) < f(v0) then Expansion:

Compute xe = (1− γ)vn + γxr
if f(xe) < f(xr) then

setvk = xe
Step 6.else Contraction:

if f(vn−1) ≤ f(xr) < f(vn) then Partial Outside:
Set xc = ()1− β)v̂ + βxr

else f(xr) ≥ f(vn) Partial Inside:
Set xc = ()1− β)v̂ + βvn

if f(xc) < f(vn) then
Set vk = xc

else Total Contraction:
for j = 1 to n do
vj = v0+vj

2
and set vk = vn

Step 7. Update simplex Sk+1 by sorting {v0, v1, ..., vn}. Set k := k + 1 and go to
Step 2.
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In order to prevent the algorithm of getting trapped in an endless loop it is possible
to pre-define a number of iterations maximum allowed kmax or to extend additional
stopping criteria taking into account the change in the values of the objective func-
tion values or the size of the current simplex. Nelder and Mead propose using the
standard deviation

σf := ( 1
n+ 1

n∑
i=1

(f(vi)− f̄k)2) 1
2 (71)

with
f̄k = 1

n+ 1

n∑
j=1

f(vj) (72)

of the objective function evaluated on the vertices of the simplex Sk as a stopping
rule. If σf is below a sufficient small chosen tolerance level ε > 0, the algorithm
stops. The optimal solution is then given by vertex v0. [11]

2.3.6 Heston model calibration with Levenberg-Marquardt combined
with genetic algorithms

Due to the large amount of data, high frequency of the simulations, and complexity
of the closed Heston formula for calculating option prices, the computer run times for
optimizing Heston parameters are very high. For this reason, we have chosen weak
termination conditions (Maximum function evaluation, maximum iterations, termi-
nation tolerance on the function value). The calibration results are very satisfactory
for all optimization methods.
Nevertheless, we also tested a combination of Levenberg-Marquardt and Genetic

Algorithm by using the optimal parameters of LM as starting parameters for the
GA. This allows us to improve the optimization error (see results below).

2.3.7 Chi-Square optimization test of bid and ask volume

For the simulation of the order submission flow we test for two different arrival
time distributions for the ask as well as for the bis side: Compound Poisson -
distributed and inverse-transformed arrival times. Our null-hypothesis states that
these simulated arrival-times correspond to the real order submission arrival times:

• H0: The bid-ask volume generated by compound Poisson process resp. in-
verse transform has a statistically significant association with the cumulative
distribution function of the real observed bid-ask volume data.

• HA: The bid-ask volume generated by Compound Poisson process or inverse
transform is distinct from the cumulative distribution function of the real
observed bid-ask volume data.
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H0 is accepted if
1− pvalue = P [χ2 > χ2

0.05|H0] > 0.05 (73)

In order to test this assumption we conduct a Chi-Square test for different time
intervals and take the arrival times which matches best reality.

The Compound Poisson process is a distribution which consists of 2 parameters,
λ and n, which measures the arrival time and volume. To estimate λ we take a
sample length of real order submissions which serves as the mean arrival time for
our simulation:

λ̂ = 1
n

n∑
i=1

xi, (74)

where xi are the order submissions per time unit. λ serves as a good estimator for
the maximum likelihood method. To estimate we take historical data and calculate
the mean value of bid/ask volumes for a specific time period.

For the inverse-transformed distribution we take random sample from the past
based on the PMF.

In order to perform a Chi-Square test for simulated ask and bid order submission
we classify for both methods:

• aoi : Number of ask order submissions,

• aei : Expected number of ask order submissions

for the ask volume side as well as

• boi : Number of bid order submissions,

• bei : Expected number of bid order submissions

for the bid volume side and conduct the test

χ2
a = (aoi − aei )2

aei
(75)

for the ask-volume side as well as

χ2
b = (boi − bei )2

bei
(76)

for the bid volume side.
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2.4 Validation of parameter optimization

This section provides the results of the parameter estimation using FESX50 Future
option data as well as the statistical test results from the bid-ask volume Chi-
Square optimization. For the FESX50 parameter optimization we compare root
mean square errors of the four different optimization techniques, namely Genetic
algorithms (GA), Particle Swarm Optimization (PSO), Levenberg-Marquardt (LM),
and Nelder-Mead Simplex (NM). The parameters of interest are the greeks, κ, θ, σ,
ρ , and v0 needed to determine the price of an option, priced with the Heston model.

For the bid-ask volume Chi-Square optimization we provide in-sample as well as
out-of sample test results for Compound Poisson process and inverse transformation.

2.4.1 Validation of Heston optimization

Data overview

The time frame used for testing is 27.04.2015-30.12.2015, the source for the option
data is Interactive Brokers, and the source for the Euribor interest rate data is
Bloomberg. We use 1301 Call options with different maturities and different strikes.
On average 70 to 80 options were traded daily.

Table 5: Data example for August 20, 2015

Maturity (years) Strike Price Stock Price Last Bid Last Ask

1.92 3,318 3,800 103.6 104.2
1.92 3,318 3,000 453.4 454.7
3.37 3,318 4,100 102.0 102.4
3.37 3,318 4,300 74.9 75.0
1.92 3,318 3,300 294.1 295.4
1.92 3,318 3,400 247.0 247.9
1.92 3,318 2,500 836.9 838.2
3.37 3,318 2,500 805.5 806.1
4.84 3,318 3,800 214.5 215.2
6.28 3,318 3,600 310.0 311.0
1.20 3,318 3,050 388.2 389.6
1.20 3,318 3,500 157.0 157.5
1.20 3,318 3,550 137.0 137.9
1.92 3,318 3,250 319.8 321.0
1.92 3,318 3,350 269.7 270.8
1.20 3,318 3,600 113.6 113.6

Continued on next page
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Table 5 – Continued from previous page
Maturity (years) Strike Price Stock Price Last Bid Last Ask

1.92 3,318 3,650 151.0 151.7
1.20 3,318 3,750 74.5 74.6
1.20 3,318 3,800 58.0 58.3
1.92 3,318 3,850 98.5 98.9
1.20 3,318 3,900 43.0 43.1
1.20 3,318 4,000 26.6 26.8
2.64 3,318 3,500 215.0 215.2
2.64 3,318 4,000 84.0 84.2
1.20 3,318 4,100 19.3 19.4
1.20 3,318 4,400 6.1 6.1
1.20 3,318 4,500 3.2 3.2
1.20 3,318 4,600 1.6 1.6
1.20 3,318 4,700 1.8 1.8
1.20 3,318 5,000 0.9 0.9
1.20 3,318 4,150 19.6 19.6
4.84 3,318 4,300 133.0 133.3
0.84 3,318 3,300 237.4 238.6
0.84 3,318 3,400 203.0 204.2
0.84 3,318 3,450 179.4 180.7
0.84 3,318 3,500 158.5 159.1
0.84 3,318 3,550 136.5 137.4
0.84 3,318 3,600 114.0 114.1
0.84 3,318 3,650 88.7 89.2
0.84 3,318 3,700 77.9 78.3
0.84 3,318 3,800 49.0 49.1
0.84 3,318 3,850 42.9 43.1
0.84 3,318 3,900 34.4 34.4
0.84 3,318 3,950 26.7 26.8
0.84 3,318 4,000 20.0 20.1
0.84 3,318 4,100 12.0 12.0
0.84 3,318 4,200 7.4 7.4
0.84 3,318 4,250 6.4 6.4
0.84 3,318 4,300 5.1 5.1
0.84 3,318 4,350 3.8 3.8
0.84 3,318 4,400 2.8 2.8
0.84 3,318 4,450 2.4 2.4
0.84 3,318 4,600 1.5 1.5
0.84 3,318 4,500 2.0 2.0

Continued on next page
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Table 5 – Continued from previous page
Maturity (years) Strike Price Stock Price Last Bid Last Ask

1.20 3,318 4,550 2.6 2.6

Figure 1: End of day last bid prices of all traded call option on August 20, 2015.

Table 6: Euribor interest rates on August 20, 2015
Maturity (years) Euribor rate

0.02 -0.14%
0.05 -0.13%
0.08 -0.09%
0.17 -0.05%
0.25 -0.03%
0.50 0.04%
0.75 0.09%
1.00 0.16%
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For the estimation of the parameters we need to use different maturities. For
calculation we do a linear interpolation by

r(t) = r(t+ 1)− r(t− 1)× ∆t−∆(t− 1)
∆(t+ 1)−∆(t− 1) , (77)

where rt is the interest rate which needs to be determined at time t with maturity
∆ t and r(t-1), r(t+1) are the given short rates at time t-1, resp. t+1 with maturity
∆(t − 1), resp. ∆(t + 1). By interpolation we get following sequence of Euribor
interest rates:

Figure 2: Interpolated Euribor interest rates on August 20, 2015.

Optimisation options

For the estimation of the Heston parameters we use the same strat values, same lower
and upper bounds and the same termination conditions for all four optimisation
methods. These are the optimal start parameters calculated from the historical
bid/ask call data.

The given imput optimisation parameters are tested based on all traded bid and ask
options on 20.08.2015. Out of sample testing are the traded options on 21.08.2015.
The calculated optimal heston parameters are shown in Table 9
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Table 7: Lower bounds, upper bounds and starting values of parameter estimation.
kappa theta sigma rho v0

Lower Bounds 0.0001 0.0001 0.0001 -1 0.0001
Upper Bounds 100 10 10 1 10

Start 10.9 0.01 0.3 0.3 0.04

Table 8: Termination conditions
Maximum Function Evaluation 1,000

Maximum Iterations 20,000
Termination Tolerance on the Function Value 0.001

In sample testing

Figure 3: In-sample market vs. estimated traded call options at 20.08.2015.

Table 9: Example: Heston parameter estimation for 20.08.2015
GA PSO LM NMSim

kappa 0.0001 33.97239 11.93285 10.09133
theta 3.044759053 0.013567 0.014003 0.014909
sigma 0.626419737 0.0001 0.331356 0.382673

rho -0.643085008 0.304603 -0.7736 -0.61471
v0 0.063062179 0.48146 0.200713 0.169579
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Out of sample testing

Figure 4: Out-of-sample market vs. estimated traded call options at 21.08.2015

Parameter estimation results by maturity

Table 10: RMSEs of parameter estimation by maturity in-sample.
Maturity GA PSO LM NMSim LM+GA

0-3 Months 23.21 10.51 8.90 9.56 7.42
3-6 Months 20.99 11.73 9.14 9.74 8.21

6 Months - 1 Year 34.02 15.48 9.71 10.86 8.24
> 1 Year 64.35 17.56 13.48 12.40 11.32

We can see that blocks of short maturities lead to smaller RMSEs in in-sample as
well as out-of-sample estimations. In particular 0-3 months maturity outperforms
longer dated maturities. For the estimation procedure we can see that LM+GA
generates the smallest RMSE in this short maturity block in-sample as well as out-of-
sample. In the the intermediate (3-6 months) maturities, LM+GA outperforms the
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Table 11: RMSEs of parameter estimation by maturity out-of-sample.
Maturity GA PSO LM NMSim LM+GA

0-3 Months 23.60 15.83 14.66 15.00 13.34
3-6 Months 26.14 17.09 15.16 14.90 15.03

6 Months - 1 Year 35.86 18.20 14.58 14.93 14.25
> 1 Year 68.58 27.23 24.16 28.31 23.15

other optimization methods just in-sample but not out-of-sample. Summarizing we
can see a strong dominance of LM+GA method compared to the other optimization
methods in-sample as well as out-of-sample.

Graph of in-sample (27.04.2015-30.12.2015) estimated parameters for a long ma-
turity option with maturity 16.12.2016, Strike=3800:

Figure 5: In-sample market vs. estimated traded call option with long maturity.

Graph of out-of-sample parameter estimation (28.04.2015-30.12.2015) for option
with maturity 16.12.2016, Strike=3800 (Parameter are estimated using data 24 hours
prior):
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Figure 6: Out-of-sample market vs. estimated traded call option with long maturity.

Graph of in-sample (27.04.2015-30.12.2015) estimated parameters for a short ma-
turity option with maturity 15.01.2016, Strike=3500:
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Figure 7: In-sample market vs. estimated traded call option with short maturity.

Graph of out-of-sample parameter estimation (28.04.2015-30.12.2015) for option
with maturity 15.01.2016, Strike=3500 (Parameter are estimated using data 24 hours
prior):
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Figure 8: Out-of-sample market vs. estimated traded call option with short matu-
rity.

Parameter estimation results by moneyness

Table 12: In-sample estimation-RMSE for 27.04.2015-30.12.2015
Moneyness GA PSO LM NMSim LM+GA

At the money 49.00 18.98 12.59 13.80 11.52
Out of the money 45.53 11.90 8.00 8.20 7.95

In the money 53.84 27.78 22.41 21.62 22.04

Table 13: Out-of-sample estimation-RMSE for 28.04.2015-30.12.2015
Moneyness GA PSO LM NMSim LM+GA

At the money 36.33 25.40 22.27 23.21 21.34
Out of the money 48.25 16.31 15.26 18.35 13.22

In the money 61.33 34.81 34.35 34.22 34.26

In-sample RMSEs are smallest using the LM+GA method for at-the-money as
well as out-of-the-money options. Using in-the-money option we can see that the
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NMSim -method produces the smallest RMSE in-sample. We get similar results
for the out-of-the-sample test which indicates that LM+GA works best when using
at-the-money as well as out-of-the-money options for parameter estimation, whereas
NMSim generates the smallest RMSE using in-the-money options for parameter esti-
mation. Since LM+GA provides the strongest test results we apply this combination
for the calibration of the Heston parameters.

Moreover, we determine the optimal time frame for historic parameter estimation.
From all these combinations we then rank the options due to their best calibration
results. Our tests show that the optimal Heston parameters can be calculated using
data from the best 23 options of the last 5 days, selected by maturity and moneyness.

We next present the corresponding graphs using the LM+GA method.

Figure 9: In-sample market vs. estimated traded call option at-the-money call
option.
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Figure 10: In-sample market vs. estimated traded call option out-of-the-money call
option.

Figure 11: In-sample market vs. estimated traded call option in-the-money call
option.
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Figure 12: Out-of-sample market vs. estimated traded call option at-the-money call
option.
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Figure 13: Out-of-sample market vs. estimated traded call option out-of-the-money
call option.

Figure 14: Out-of-sample market vs. estimated traded call option in-the-money call
option.
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RMSE of all options

Table 14: Estimation RMSEs of all options 27.04.2015-30.12.2015
GA PSO LM NMSim LM+GA

In Sample 46.85 15.30 11.27 11.85 10.23
Out of Sample 82.78 29.51 19.25 22.45 17.36

Computational Time in Seconds 38.106 61.248 2.610 5.742 42.987

The general test results show the smallest RMSE for the LM method which in-
dicates that LM is superior to the other optimization methods. Not only that LM
generates the smallest RMSE, it is also the fastest optimization method in terms of
computational time.

Even though LM yields the best calibration results among all optimization meth-
ods, we can achieve an improvement in the test results by combination of the LM
method and Genetic Algorithms.

2.4.2 Validation of Chi-Square optimization

For validation of the Chi-Square test results we take historic FESX50 tick data and
accumulate all tick changes, regardless of price or volume changes or new order
submission, at each second. We take tick data from April 26, 2015 to Dec 30, 2015
and test in-sample as well as out-of-sample. The in-sample test comprises 1-50 days,
whereas the out-of-sample test takes these 1-50 in-sample days as estimation set and
tests 1 day out-of-sample.

Table 15: In sample Chi-Square test results for Compound Poisson CDF.
Nmbr. of Days λ χ2 1-p sign. level H0
1 252.69 18,224.5 0.00 0.05 rejected
2 249.09 34,218.95 0.00 0.05 rejected
3 250.71 25,293.35 0.00 0.05 rejected
4 248.54 36,186.20 0.00 0.05 rejected
5 249.74 44,040.30 0.00 0.05 rejected
10 246.60 25,882.64 0.00 0.05 rejected
20 242.14 24,100.07 0.00 0.05 rejected
50 238.20 31,618.24 0.00 0.05 rejected

Table 15 shows that H0 for Compound Poisson distribution can be rejected for
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all tested in-sample time lengths. The real observed order submission arrival times
cannot be described in-sample by a Possion distribution.

Table 16: Out-of-sample Chi-Square test results for Compound Poisson CDF.
Nmbr. of Days λ χ2 1 - p sign. level H0
1 266.39 38,640.16 0.00 0.05 rejected
2 266.39 42,448.99 0.00 0.05 rejected
3 266.39 46,458.58 0.00 0.05 rejected
4 266.39 64,251.93 0.00 0.05 rejected
5 266.39 62,840.45 0.00 0.05 rejected
10 266.39 31,743.15 0.00 0.05 rejected
20 266.39 53,555.67 0.00 0.05 rejected
50 266.39 70,273.06 0.00 0.05 rejected

Table 16 shows that H0 for Compound Poisson distribution can be rejected for all
tested out-of-sample time lengths. The real observed order submission arrival times
cannot be described out-of-sample by a Possion distribution.

Table 17: In sample Chi-Square test results for inverse transformation.
Nmbr. of Days λ χ2 1-p sign. level H0
1 252.69 974.55 0.70 0.05 accepted
2 249.09 926.65 0.95 0.05 accepted
3 250.71 1,044.85 0.15 0.05 accepted
4 248.54 1,016.62 0.34 0.05 accepted
5 249.74 968.73 0.75 0.05 accepted
10 246.60 1,047.94 0.14 0.05 accepted
20 242.14 999.89 0.49 0.05 accepted
50 238.20 1,042.93 0.16 0.05 accepted

Table 17 shows that H0 for inverse transformation can be accepted for all tested
in-sample time lengths, meaning that a real observed order submission arrival times
can be described in-sample by a inverse transformation.
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Table 18: Out sample Chi-Square test results for inverse transformation.
Nmbr. of Days λ χ2 1-p sign. level H0
1 266.39 16,446.98 0.25 0.05 accepted
2 266.39 22,647.4 0.57 0.05 accepted
3 266.39 23,652.11 0.00 0.05 rejected
4 266.39 27,027.48 0.01 0.05 rejected
5 266.39 25,916.66 0.48 0.05 accepted
10 266.39 32,191.94 0.00 0.05 rejected
20 266.39 38,135.89 0.21 0.05 accepted
50 266.39 56,267.96 0.00 0.05 rejected

Table 18 shows that H0 for inverse transformation can be accepted for some tested
out-of-sample time lengths, meaning that a real observed order submission arrival
times can partly be described out-of-sample by a inverse transformation.

Summarizing, the best estimation result can be achieved by the choice of inverse
transformation and the selection of a 2 day time window.

The graphical representation of the Compound Poisson PMFs shows that the his-
torical bid and ask order submission volumes are not Compound Poisson distributed
whereas the inverse transformation indicates very good Chi-Square test results.

Figure 15: Out-of-sample test results: Market vs. Estimated ask order volume
submission Compound Poisson CDF.
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Figure 16: Out-of-sample test results: Market vs. Estimated ask order volume
submission Compound Poisson CDF without zero values.

As we can see in Figure 15 and 16, the histogram reveals that there are many sec-
onds where there are no changes or new submissions in bid or ask orders. Therefore
we can see many zeros in our test sample. In order to avoid distortions of the Com-
pound Poisson process we also test for Compound Poisson process without these
zero values.
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Figure 17: In-sample test results: Market vs. Estimated bid order volume submis-
sion inverse transformation.

Figure 18: Out-of-sample test results: Market vs. Estimated bid order volume
submission inverse transformation.
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2.4.3 Validation of liquidity estimation

After application of the different optimization methods we take a look at the results
and compare it to the results which emerge of the Black-Scholes framework (BS),
where we estimate the liquidity values at each minute, due to computational time
restrictions. This setup is usually used for simulating price processes by assuming
a complete market. In the Heston framework we have to deal with an incomplete
pricing world which leads us to the necessity of adding a contingent claim to the
replicating portfolio. Therefore BS serves as a benchmark for us. For each optimiza-
tion technique we want to conduct the calibration procedure for estimation of the
future market liquidity and compare it to the estimation quality when using stan-
dard Brownian Motion for simulation of the bid and ask prices, as well as the traded
volumes. This comparison gives us just a relative measure of quality. Therefore we
also compare the estimated market liquidity to the realized one. For this purpose
we perform the market liquidity estimation for each optimization method.

Table 19: RMSEs of Heston and GBM model for liquidity estimation.
Heston 2.2836

GBM 3.2228

We can see that Heston model outperforms the GBM model. This indicates that
stochastic volatility is an important factor in market liquidity modeling. Since GBM
assumes a constant volatility we can see that by using a powerful optimization
method for parameter estimation we can generate more realistic results when mod-
eling market liquidity.
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Figure 19: Comparison of realized market liquidity (yellow) vs. estimated mar-
ket liquidity with Heston model (blue) and GBM model (red) from 27.04.2015-
30.12.2015.
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Figure 20: Comparison of realized market liquidity (yellow) vs. estimated market
liquidity with Heston model (blue) and GBM model (red) on 21.08.2015.

2.5 Conclusion

This work compares the estimation power of the Heston model and the Geometric
Brownian motion (GBM) model as well as Inverse transformation sampling and
Compound Poisson proces. The application is a unique approach for market liquidity
estimation.

For the simulation of bid and ask prices we perform Heston und GBM Model.
To calibrate the Heston parameters we propose several optimization methods and
compare their estimation power in-sample as well as out-of-sample by taking his-
toric data of Euro Stoxx 50 Future options. The estimation procedures Heston
parameters are the Genetic algorithms (GA), the Particle Swarm Optimization tech-
nique (PSO), the Levenberg-Marquardt method (LM) and the Nelder-Mead Simplex
method (SM). We find a superior estimation power of the LM method compared to
the other optimization techniques. We test for different option maturities as well as
for different moneyness levels and find a higher estimation power in shorter dated
maturities. The LM method works best for Out-of-the money and at-the-money
options whereas the SM method works best for in-the-money options. Generally the
LM method does not only generate the smallest RMSE, but also performs best in
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computational time.

For the simulation of the bid and ask volume, we apply two types of processes:
Compound Poisson process and Inverse transformation sampling. For a 2 day sam-
pling window, the Chi-Square test indicates a superiority of the Inverse transforma-
tion sampling compared to the Compound Poisson process, since the historical bid
and ask order submission volumes are not Compound Poisson distributed. By using
the Inverse transformation sampling, the forecasting error is significantly lower than
with simulated volumes using the Compound Poisson process. This indicates that
the best choice for the simulation of bid and ask volumes is the Inverse transforma-
tion sampling method.

For liquidity estimation this means, that by simulation of the bid and ask prices,
generated by the calibrated heston model, it is possible to estimate market liquidity
up to 29.14% better than with GBM model. The results are robust for in-sample as
well as out-of-sample tests. The only drawback of using the Heston model is the high
computation time, necessary for the calibration of the parameters and simulation of
the prices.
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Abstract

This article analyzes the implicit hedging and and liquidity costs of structured equity
products offered by various financial institutions. We replicate several payoffs of
structured products and compare the calculated fair value, based on Heston model,
using various optimization techniques and compare their fair values with the historic
prices traded in the market. We find that implicit hedging costs range between 0.9%
to 2.9% markup on the fair value, where we find the underlying market volatility to
be the relevant driver of this range for complex structures, while market liquidity
can be extracted as the only driver of markups for simple structures with no hedging
requirements.
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3.1 Introduction

Structured products are customized financial products which are composed of plain
vanilla financial products and derivatives. They can be categorized into leverage,
participation, return optimization and capital guarantee products. Each category
exhibits different markups on their fair value due to different market conditions,
such as market volatility and market liquidity, and implicit risk factors, such as
the payoff of the structured product. While the detection of structured products
markup has widely been proved by literature, the drivers of these markups have not
been investigated extensively. Moreover, what has been neglected by literature so
far, is the exploration of the drivers of the changes in this markup over time. Since
there exist several reasons for issuers of structured products to charge a markup,
the question remains what determines the change in the markup over time in the
secondary market.

[Henderson and Pearson(2011)] analyze offering prices of 64 issues of a popular
retail structured equity product and find that offered prices are almost 8% greater
than estimates of the products’ fair market values obtained using option pricing
methods.

[Burth et al.(2016)] distinguish between distinguish convex strategies, which con-
vey a payoff resembling a long position in a stock portfolio together with a protective
put, and concave strategies which replicate covered call payoffs. They examine 275
concave products sold in the Swiss market in the late 1990s, and compare their
prices to an estimate of the cost of creating the payoffs using options traded on
EUREX. Not surprisingly, they find that prices of the concave products seem to be
quite favorable for the banks. They also find considerable pricing dispersion, with
distinct differences across different issuing institutions, between products that pay
a coupon versus those that do not, and between instruments issued by a single bank
versus those with co-lead managers.

[Stoimenov and Wilkens(2005)] examine the pricing of equity-linked structured
products in the German market. They compare the closing prices of 2566 equity-
linked structured products on the German stock index DAX (Deutscher Aktienin-
dex) to theoretical values derived from the prices of options traded on the Eurex
(European Exchange) and find that at issuance, structured products on DAX stocks
sell at an average of 3.89% above their theoretical values based on Eurex options.

[Bergstresser(2008)] presents evidence on the abnormal returns of a broad sample
of SEPs that is consistent with the findings in literature of overpricing at the offering
date, such as by [Rogalski and Seward(1991)] and [Jarrow and O’Hara(1989)].

[Wilkens et al.(2003)] compare the daily closing quotes of roughly 170 reverse con-
vertibles and 740 discount certificates to values based on duplication strategies dur-
ing November 2001, using call options traded on the Eurex (European Exchange).
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They investigate the average price differences dependent on product type, issuer,
and underlying. They put a special focus on the possible influence of order flow, i.e.
they analyze, using product life cycles and moneyness as proxies, whether the price
quotes depend on the expected volume of purchases and sales. The study reveals
significant differences in the pricing of structured products, which can mostly be
interpreted as being in favor of the issuing institution.
So far, mostly driving factors explaining the divergence at issuance have been

investigated. As the fair value of a structured product fluctuates over time, meaning
that the markup is not constant after issuance of the product, the drivers for these
changes have not been investigated so far. In assessing the driving factors of pricing
policies, [Wilkens et al.(2003)] conclude that issuers orient their pricing towards the
product lifetime and the incorporated risk of a redemption by shares (given by
the moneyness of the implicit options), bearing in mind the volumes of sales and
repurchases to be expected from issuance until maturity.
We assess the driving factor for the changes in the markup over time by setting

up the following hypothesis:

(H1): The changes in the underlying volatility explain the changes in markup.
(H2): The changes in the underlying liquidity explain the changes in markup.

Moreover we are the first to our knowledge who apply the Heston model for the
calculation of fair value over the entire test period and thus for investigating the
divergence between fair value and traded price of a structured product. We replicate
the payoff of the structured products on several clusters using parallel computing
techniques. The replication using cluster technology represents a novelty in the
pricing of structured products as it allows more simulations to approximate closer
the fair value of these products.
Since several studies find the markup to be non-zero, due to incurred hedging

costs, we investigate why the the markup is not of constant size, but what drives
the markup changes over time. We are interested in finding the reason for these
fluctuations. One possible explanation might be the dependency of hedging costs
on underlying market volatility or liquidity. Therefore, we regression of structured
products markup on market volatility and liquidity. Moreover, we replicate complex
products, and not standard products such as classic, rainbow, guarantee, turbo,
and barrier products, but combination of all these products, by using an optimal
calibrated Heston model in order to calculate a robust fair value over time.
We structure this article as follows: In section 3.2 we give an overview about the

data and methodology we use. In section 3.3 we present the structured products
we replicate. In section 3.4 we price all these products for the past X years, using
the calibrated Heston model, in order to be able to compare them with real traded
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market prices. The difference between these two prices reveals the markup, thus the
implicit hedging costs. In section 3.5 we conduct the regression to test if market
volatility, resp. the changes in market volatility, explains the size of the markup,
resp. its changes. In section 3.6 we present the results obtained and we finally
conclude.

3.2 Data and methodology

Subject of investigation are equity products due to better data availability of historic
equity option prices for calibration of the Heston model. The structured products
we replicate are the following:

1. Dual Index kick-out, Capital risk

2. Dual Index + Coupon, Capital risk

3. Triple Index + Coupon, Capital risk

4. Single Index + Coupon, Capital risk

5. Single Index + maturity Coupon, Capital protection

6. Single Index + Payoff, Strike Capital protection

7. Single Index + Barrier Payoff, Capital protection

8. Single Index + ongoing Coupon, Capital protection

9. Single Index + Payoff, Capital protection

10. Single Index, Capital risk

The structured products are based on the historic price development of the most
important American and European indices such as EURO STOXX, DAX, SMI,
S&P, and Dow Jones. We us historical end of day closing prices of 94 products
with maturities ranging from 2-5 years from Interactive Brokers. Our methodology
comprises the daily closing prices of the above mentioned structured products for
the regression analysis, the daily closing prices of the indices for the calculation
of the fair value, and the daily option closing prices for the calibration of Heston
parameters. The payoffs were calculated using the descriptions, resp. formulas given
in the respective term sheet of the corresponding product. We use the following
abbreviations, applicable to all products: T : Maturity, IC: Invested notional, CP :
Capital protection, Ct: Coupon at time t, Lt: Level at time t, Bt: Barrier at time t,
rt: Risk-free rate at time t, Pi(t): Price of underlying i at time t, ti i-th observation
with coupon payment.
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3.3 Structured products

3.3.1 Dual Index kick-out, Capital risk

This product offers a pre-determined coupon at a specific observation date in the
future, if both indices close at or above a pre-determined level. In that case, the
payoff at time τ is calculated as follows:

Payoff(τ) = min
t>τ
{Ct ∗ e−rτ (t−τ)}+ IC ∗ e−rτ∗(T−τ), t : P1(t) > L1(t) ∧ P2(t) > L2(t)

(78)
Otherwise, the investor bears the following capital risk:

Payoff(τ) = IC ∗min
{
P1(T )
P1(t0) ,

P2(T )
P2(t0)

}
∗e−rτ (T−τ) (79)

3.3.2 Dual Index + Coupon, Capital risk

If both indices trade during the whole life time T of the product always above the
corresponding, pre-determined levels, then the investor obtains the following payoff
at time τ :

Payoff(τ) =
T∑
t=t1

Ct ∗ e−rτ∗(t−τ) + IC ∗ e−rτ∗(T−τ) (80)

If one of both indices touches or drops below the corresponding level, then the
investor bears the following capital risk:

Payoff(τ) =
T∑
t=t1

Ct ∗ e−rτ∗(t−τ) + IC ∗min
{
P1(T )
P1(t0) ,

P2(T )
P2(t0)

}
∗e−rτ∗(T−τ) (81)

3.3.3 Triple Index + Coupon, Capital risk

If all indices trade at a pre-determined observation date at or above a pre-determined
level, then the investor gets the following coupon until early redemption:

Ct = IC ∗ (N + 1), (82)

where N defines the amount of not-paid coupons until this pre-arranged observa-
tion date. If all indices trade on a pre-determined observation date Tl at or above a
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pre-determined barrier, then an early redemption happens and the product is closed.
The payoff at this time τ is then:

Payoff(τ) =
tn∑
t=t1

Ct ∗ e−rτ∗(t−τ) + IC ∗ e−rτ∗(Tl−τ) (83)

Otherwise the investor bears the following capital risk:

Payoff(τ) =
tn∑
t=t1

Ct ∗ e−rτ∗(t−τ) + IC ∗min
{
P1(T )
P1(t0) ,

P2(T )
P2(t0) ,

P3(T )
P3(t0)

}
∗e−rτ∗(T−τ), (84)

where n is the amount of paid out coupons until maturity.

3.3.4 Single Index + Coupon, Capital risk

If the index closes on a pre-determined observation date above a pre-determined
level, then the investor gets the following coupon until early redemption of the
product:

Ct = IC ∗ (N + 1), (85)

where N is the amount of non-paid coupons until this pre-determined observation
date. If the index closes at a ore-determined observation date Tl above a initial level,
then the product expires early and the investor gets back his invested money:

Payoff(τ) =
tn∑
t=t1

Ct ∗ e−rτ∗(t−τ) + IC ∗ e−rτ∗(Tl−τ) (86)

Otherwise, the investor bears the following capital risk:

Payoff(τ) =
tn∑
t=t1

Ct ∗ e−rτ∗(t−τ) + IC ∗ P1(T )
P1(t0) ∗ e

−rτ∗(T−τ) (87)

3.3.5 Single Index + maturity Coupon, Capital protection

This product offers a X % capital protection with following payoff:

Payoff(τ) = (KP + IC ∗max((P1(T )− LT ), 0)) ∗ e−rτ∗(T−τ) (88)
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3.3.6 Single Index + Payoff, Strike Capital protection

The investor gets a pre-determined coupon CT at the end of the maturity if the
index hits the pre-determined level of drops below it once. Additionally, the invested
capital is protected with 100% as follows:

Payoff(τ) = CT ∗ e−rτ∗(T−τ) + IC ∗ (1 +max(P1(T )−BT

P1(t0)) , 0)) ∗ e−rτ∗(T−τ) (89)

3.3.7 Single Index + Barrier Payoff, Capital protection

This 100% capital protected product generates the following payoff if the price of
the index trades at or above the strike during the whole lifetime of the product:

Payoff(τ) = (CT + IC) ∗ e−rτ∗(T−τ) (90)

Otherwise the investor obtains the following payoff:

Payoff(τ) = IC ∗ (max(P1(T )−BT

P1(t0)) , 1)) ∗ e−rτ∗(T−τ) (91)

3.3.8 Single Index + ongoing Coupon, Capital protection

If the index closes on a pre-determined observation date above a pre-determined
level, then the investor gets the following coupon until early redemption of the
product:

Ct = IC ∗ (N + 1), (92)

where N is the amount of non-paid coupons until this pre-determined observation
date. If the index closes at a ore-determined observation date Tl above a initial level,
then the product expires early and the investor gets back his invested money:

Payoff(τ) =
tn∑
t=t1

Ct ∗ e−rτ∗(t−τ) + IC ∗ e−rτ∗(Tl−τ) (93)

Otherwise, the investor gets the following capital protect payoff:

Payoff(τ) =
tn∑
t=t1

Ct ∗ e−rτ∗(t−τ) + IC ∗ (max(P1(T )−BT

P1(t0)) , 1)) ∗ e−rτ∗(T−τ) (94)
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3.3.9 Single Index + Payoff, Capital protection

With this product, the investor’s capital is is 100% protected. Additionaly, the
investor obtains the following payoff:

Payoff(τ) = IC ∗ (max( P1(T )
P1(t0)) , 1)) ∗ e−rτ∗(T−τ) (95)

3.3.10 Single Index, Capital risk

This product offers no capital protection, but offers a participation in the EuroStoxx
performance:

Payoff(τ) = IC ∗ P1(T )
P1(t0)) ∗ e

−rτ∗(T−τ) (96)

3.4 Pricing

[Wallmeier and Diethelm(2009)] develop a clever valuation technique based on a
multinomial tree and use it to examine how multiple barrier reverse convertibles
(MBRCs) are priced in the market. They show that prices exceed model values on
average, with greater overpricing when the stocks are less commonly used in MBRCs
and for those denominated in low interest rate currencies.

Since some of the products include multiple assets, we use a multivariate geometric
Brownian motion in order to price and reproduce the dependency of the underlyings
amongst each other:

dSit = X i
tdt+ σiS

i
tdW

i
t , (97)

here the Wiener processes are correlated such that E(dW i
t , dW

j
t ) = ρi,j, dt, where

ρi,i = 1. This enables us to calculate a more precise fair value. For calculation of the
covariance matrix and µ of the multivariate geometric Brownian motion, we take
historic data of the past year. Our total data availability ranges from 2-5 years of
historic data, where we use daily closing prices.

For products consisting of only one underlying, St we use the Heston model for
pricing:

dSt = µStdt+√νttStdW S
t , (98)

where νt, the instantaneous variance, is a CIR process:

dνt = κ(θ − νt) dt+ ξ
√
νt, dW

ν
t , (99)
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and W S
t ,W

ν
t are Wiener processes (i.e., random walks) with correlation ρ, or equiv-

alently, with covariance ρ dt, where µ is the rate of return of the asset, θ is the long
run variance, κ is the rate at which νt reverts to θ, ξ is the volatility of the volatility
and determines the variance of νt.

For the calibration of the Heston parameters, we perform Levenberg Marquardt
in combination with Genetic algorithms, since this is the best method in order to
minimize the root mean square error between the estimated plain vanilla Heston
option price and the realized option price of option i on the estimation day:

arg minΩ

√∑N
i=1(C0(i, r,Mi, S,Ki)− Ci)2

N
, (100)

where Ω is the set of Heston parameters to be estimated, N the number of options
on the estimation day, C0 is the Heston call function denotes the dollar adjusted
call plain vanilla option price, r interest rate, Mi the Maturity of Option i, S the
closing price of the Underlying, Ki the strike of option i.

We showed in [Avdiu(2017)] that options with shorter maturities, at-the-money
and out-of-the money options yield the most accurate fair values. Thus, we take the
best 23 options of the last 5 days in order to obtain the best calibration results.

We simulate for each underlying one 500,000 random path. Then we apply the
payoffs of all ten products to these simulated paths. We then take the average of all
outcomes to calculate the fair value.

3.5 Driver analysis

In order to analyze the explanatory power of volatility and liquidity on the markup,
we regress each structured product markup on the corresponding one-week volatility
and liquidity. This allows us to extract the drivers of markup size. Thus, we
use volatility and liquidity as a proxy for market trust and regress Markupi,t for
structured product i at time t on the volatility σi,t, resp. on the liquidity λi,t,
considering time lags.

3.5.1 Market liquidity estimation

For calculation of the market liquidity we use a measure which generates an es-
timated traded volume per time unit, as described in [Avdiu(2017)]. The Heston
model assumes a stochastic volatility development of the bid (i) and ask (j) prices
(Si,j) with parameters µi,j(bid/ask price drift), V (t)i,j(bid/ask price variance), κ
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(rate of mean reversion), ωi,j(long run variance), σi,j(volatility of variance) andW i,j
1,2

(Standard Brownian movements). Thus we take for the bid-ask dynamics:

dS(t)ij
S(t)ij

= µijdt+
√
V (t)ijdW ij

1 , (101)

dVij = κij(ωij − σij)dt+ σ(t)ij
√
V (t)ijdW ij

2 , (102)

where W1 and W2 are correlated by dW1 · dW2 = ρdt due to the leverage effect
between asset price and instantaneous volatility. For estimation of the traded bid-
ask volumes we use inverse transform sampling which we apply to the historic data:

P (Qi/j(t) = xki/j) =
k∑
t=1

pti/j −
k−1∑
t=1

pti/j = pki/j (103)

The resulting compound volume process Y (t) at time t characterizes the volume
generating process induced by trading.

Y (t) =
 min{Qi(t), Qj(t)} if Si(t) ≥ Sj(t)

0 o.w.
. (104)

By matching bid and ask prices and taking the average of each possible generated
volume we get the average traded volume (liquidity) over a certain time period n:

λ =
∑n
t=1 Y (t)
n

(105)

3.5.2 Multivariate driver analysis

For structured products with multiple underlyings we conduct a multivariate re-
gression for Markupi,t for product i at time t, on the volatility σj,t of underlying j:

Markupi,t = α +
N∑
j=1

γjσj,t + εi,t. (106)

Then we run a regression on liquidity λj,t of product i of underlying j:

Markupi,t = α +
N∑
j=1

γjλj,t + εi,t. (107)

3.5.3 Single driver analysis

For single products with just one underlying we conduct a standard regression based
on the volatility σi,t of product i:

Markupi,t = α + γpσi,t + εi,t. (108)
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To check for liquidity as driver of the dynamics in the markup of single underlying
structured products, we also need to regress Markupi,t for structured product i at
time t on the liquidity λi,t over time:

Markupi,t = α + γpλi,t + εi,t. (109)

3.6 Results

We calculate the results for all ten structured products, but just present here graph-
ically the first product as an example.

3.6.1 Example 1: Dual Index kick-out, Capital risk

Figure 21: Calculated fair value vs.historic traded price.

For the Dual Index kick-out, Capital risk, we calculate over the past 4 years its
historic fair value, using a calibrated Heston model, and compare it to the historic
traded prices of the structured product. We can see that the traded market prices
exhibit a significant markup in price which reflects the implicit hedging costs for
this product, as well as the banks’ premium.
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Figure 22: Volatility of FTSE and ESTX50 future, with corresponding implicit
hedging costs.

When looking at the volatility of the underlyings of the Dual Index kick-out, Capital
risk, we can first of all see a positive correlation between both indices. When we plot
the corresponding hedging costs over time, we can also see an increase in hedging
costs with an increase in volatility.
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Figure 23: Liquidity of FTSE and ESTX50 future, with corresponding implicit
hedging costs.

When looking at the market liquidity of the underlyings of the Dual Index kick-out,
Capital risk, we don’t see any correlation or direct relationship between the liquidity
of both indices and the corresponding hedging costs.

3.6.2 Hedging and Liquidity Costs

The 10 structured products were replicated on the basis of their payoffs and priced
with multivariate geometric Brownian motion or the optimal Heston Model (fair
value).

The difference between Fair Value and historical prices is defined as Hedging and
Liquidity Costs (Markup).
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Table 20: Hedging and Liquidity Costs
Product Min Max Average
Dual Index kick-out, Capital risk -0.7% 3.8% 2.0%
Dual Index + Coupon, Capital risk 0.1% 1.4% 0.9%
Trippel Index + Coupon, Capital risk 1.3% 3.1% 2.9%
Single Index + Coupon, Capital risk -0.2% 1.6% 1.4%
Single Index + maturity Coupon, Capital protection -0.3% 1.8% 1.3%
Single Index + Payoff, Strike Capital protection -0.7% 3.5% 2.1%
Single Index + Barrier Payoff, Capital protection 0.3% 2.9% 1.4%
Single Index + ongoing Payoff, Capital protection 0.5% 2.9% 1.9%
Single Index + Payoff, Capital protection 0.6% 4.1% 2.2%
Single Index, Capital risk -0.1% 0.5% 0.2%

Table 20 shows the range and average markup on each structured product. We
can see that the average markup on a structured product ranges from 0.9% to 2.9%.

3.7 Conclusion

We replicate the payoff of ten different structured products and compare their cal-
culated fair values with the real traded prices in order to determine the markup
incurred in the products. We find significant markups, ranging from 0.9%-2.9% on
the fair value, which serves as an indication for implicit hedging costs associated for
the corresponding product. The markup also includes any premium earned by the
issuing bank, but it is not possible to infer the share how much of that markup can
be assigned towards he hedging costs and how much towards the bank premium.

Overall we find that the better the payoff of the product for the investor the
higher the hedging costs for the bank. This means that clients face a higher capital
protection, resp. lower barriers that trigger a positive payoff.

We are the first to use a calibrated Heston model to replicate the payoffs of single
asset structured products, which yields better results than pricing methods using
standard Brownian motions over a long period of time . The replication is done by
using cluster calculation, a new technology using parallel computing, which was not
possible in the past due to the unavailability of the technology.

Based on these results it is possible for us to identify possible drivers for this
markup, especially if these drivers explain the change in markup over time. We
test two possible drivers: Volatility and market liquidity of the underlying. We find
significant results for volatility for 8 of 10 products, while we only identify liquidity
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as a driver for one product, where the payoff of this product does not require any
hedging.

Our results indicate that most of the markup can be assigned to hedging costs,
while hedging costs due to market liquidity can’t be extracted in complex payoffs, as
the underlying’s volatility seems to dominate the cost of hedging in complex struc-
tures. In the presence of hedging, liquidity costs are embedded in the underlying’s
hedging costs.

We find the main driver of the markup of complex structured products to be
volatility. The liquidity costs can only be extracted from non-complex structures as
we find it to be the single driver of product markups. Only in absence of hedging
necessity, market liquidity seems to drive the dynamics of the markup changes.

We can conclude that products with hedging requirements are exposed to volatil-
ity, as it drives the hedging costs, while the markup of products with no hedging
requirements can be explained by market liquidity.
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3.8 Appendix

Table 21: Volatility
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Abstract

We propose a new approach for index tracking error minimization by using the cor-
relation factor in the target function. We analyze different optimization techniques
for minimizing the tracking error of equity and fixed income ETFs. We test the
DAX and a bond ETF empirically and also simulate a bond ETF using the CIR
model for the modeling of the short-rate. We show that by making use of these
techniques an approximation of the stock as well as bond index performances by
an ETF is possible. We find that the Simplex method yields the smallest tracking
error for replicating the stock index performance, resp. the Levenberg-Marquardt
method for replicating the bond index performances.
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4.1 Introduction

Most optimization techniques are dealing with minimization of some generated data
according to a target function, which is in most cases comprised of realized obser-
vations. The minimization of the distance between forecasted, or estimated values,
and realized values needs a proper framework for which these techniques offer robust
solutions. A very important applied optimization problem is the minimization of
the tracking error of ETFs.

Tracking error is a real problematic issue for ETF investors. ETFs are designed
with the objective of replicating the performance of specific indices. The primary
goal of portfolio managers is to minimize the tracking error, which is the perfor-
mance difference between an ETF’s net asset value (NAV) and its underlying index.
Therefore, tracking error can indicate to us how well managers have met their ob-
jectives. Factors such as fees and expenses, creation and redemption costs, portfolio
optimization, index changes and dividend reinvestment policy may cause an ETF’s
performance to deviate from its underlying index.[1]

A quite a novel instrument for tracking the fixed income market are fixed income
ETFs. According to a definition of Fidelity: "Fixed income exchange-traded funds
(ETFs) are baskets of fixed income investments that trade as a single unit throughout
the day. That means, by creation of a fixed income ETF, intra-day visibility arises.
This encompasses not only intra-day price movements but also cost transparency.
Therefore FI-ETFs belong to an emerging product family which investors are seeking
with increasing interest.

Generally there exist two types of ETFs managers: An active manager tries to
select stocks from the index that will outperform others in the future and thus beat
the performance of the index. Passive managers, on the other hand, do not believe
in beating the market permanently and therefore try to replicate the market 100 %.
[13]

For passive management of ETFs there are 2 possible ways: Full replication and
partial replication. Full replication, selects all stocks that make up an index in
their respective market weighting. In contrast, partially replicated ETFs try to
approximate the underyling’s index performance as good as possible by investing in
a minimum amount of underlyings that map the index best. This gives the manager
more flexibility and offers him a reduced cost structure which allows him to handle
the asset allocation in a way that the portfolio might not be as vulnerable to declines
in the underlying index as the index itself. On the downside, the tracking error of
such passively managed indices is larger than the passively managed ones, which
makes the minimization of the tracking error an important challenge.

Therefore it makes sense to investigate and rate different optimization techniques
which could be applied in order to minimize the tracking error. For reducing the
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tracking error several optimization methods can be applied, such as Genetic algo-
rithms (GA), the Particle Swarm Optimization technique (PSO), the Levenberg-
Marquardt method (LM) and the Nelder-Mead Simplex method (NMS).

Jeurissen and van den Berg [3] found that Index tracking can be significantly
improved by using hybrid genetic algorithms in order to reduce the tracking error.
This method showed to outperform a randomly selected portfolio which was used
to track the performance of the AEX-index. For further ETF-tracking literature we
also refer to [3].

Our approach builds up on this idea by applying four different optimization tech-
niques to a bond index tracking. Beside the information about quality of these
optimization techniques, we propose a new approach for index tracking error mini-
mization by using the correlation as target function. A tracking error minimization
means pushing ρ(Index,ETF ) → 1 equivalently.

Moreover, we are the first to apply this methodology to a real traded stock and
bond ETF as well as to a simulated bond ETF and to compare their tracking errors
with the corresponding traded ETF indices.

This study shows uniquely which calibration technique should be used in order to
minimize the ETF tracking error and compares the tracking performance between
a real traded stock ETF and its index, as well as a simulated bond ETF and the
corresponding bond ETF using real market data.

Since we use a randomly generated benchmark as well as realized market data the
results obtained can be applied to any upcoming index tracking problem. For the
stock ETF index we use the historical end-of-day traded prices of the 30 DAX stocks
to replicate the ETF index using a combination of 12, 15, 18 and 21 stocks to test the
tracking error minimization capabilities of the above mentioned four optimization
methods. For the simulated fixed-income ETF we virtually issue a realized historical
and a simulated bond index for which we use the CIR-model in order to simulate the
short-rate for pricing 10 bonds with 10 years maturity, but different credit spreads,
to test combinations of 4, 5, 6 and 7 bonds. For the real traded bond ETF we take
10 randomly chosen bonds due to unavailability of historically real traded bond ETF
data on a sub level. Therefore we construct an own bond index by choosing random
weights.

We want to track the ETF as close as possible by a one-time asset allocation which
is done in advance. The simulation and evaluation is performed 10.000 times. The
average resulting tracking errors are investigated for each optimization technique
and evaluated for effectiveness and robustness for any asset allocation.

All the optimization techniques are performed in order to minimize the tracking
error between the optimal allocated stock ETF and real DAX ETF as well as the
optimal bond ETF and the virtually constructed bond index. We study the effec-
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tiveness and robustness of these four optimization techniques for performing future
ETF allocations.

This paper is structured as follows: In chapter (4.2) we simulate 10 bonds with
maturity 10 years but different credit spreads by using a calibrated CIR model and
yield curve EURIBOR data from Bloomberg in order to estimate the parameters
of the CIR model. For the real traded bonds and assets we use historic prices
from Bloomberg. In chapter 4.3 construct a bond index and project a possible
development of this bond index within the next 5 years. Moreover we construct
various ETFs allocated with a different number of bonds and stocks, and perform
four different optimization methods in order to find out which method generates the
best tracking error. The optimization problems are mentioned in chapter 4.4 for
each optimization method. Chapter 4.5 presents the results obtained and chapter 6
concludes.

4.2 Bond index pricing

The Cox-Ingersoll-Ross (CIR) model assumes that the short-rate, rt, satisfies

drt = α(µ− rt)dt+ σ
√
rtdWt, α, µ, σ > 0, r ≥ 0, (110)

where Wt is a standard Brownian motion, α is the speed of adjustment, µ is the
long term average rate (the mean-reverting level) and σ√rt is the implied volatility.
Within the CIR model the short rate is guaranteed to remain non-negative. We
compute the zero-coupon bond prices by

P τ
t = E∗t [exp(−

∫ t+τ

t
rudu)], (111)

where E∗ denotes expectation under the risk-neutral probability measure Q∗. The
pricing relation shows that any yield-curve model consists of two ingredients:

• the change of measure from Q to Q∗ and

• the dynamics of the short rate r under Q∗.

Assuming that the Local Expectation Hypothesis holds, an advantage of the LEH
is that there is no need to know how to change the probability measure in step (i).
Another advantage is that we have some intuition about the parameters that de-
termine the dynamics of the short rate under the data-generating measure, whereas
we do not have such intuition about the parameters under the risk-neutral measure.
The LEH is therefore a useful starting point.[5]

The LEH states that:
E(dP

P
) = rt + πrt

Pr
P
, (112)

93



where P (t, T ) is the price at time t of a zero-coupon bond with maturity T and π
is the risk premium. It is possible to prove that

P (t, T ) = F (t, T )eG(t,T )rt , (113)

where
F (t, T ) = ( φ1e

φ2(T−t)

φ2(eφ1(T−t) − 1) + φ1
)φ3 , (114)

G(t, T ) = ( eφ1(T−t) − 1
φ2(eφ1(T−t) − 1) + φ1

) (115)

and
φ1 =

√
(α + π)2 + 2σ2, (116)

φ2 = α + π + φ1

2 , (117)

φ3 = 2αµ
σ2 . (118)

CIR’s basic point is that when interest rates are random, different term premia
cannot simultaneously equal zero because of Jensen’s Inequality. Therefore, differ-
ent versions of the pure expectations theory are inconsistent with one another. But
Campbell [6] argues that "it turns out that different versions of the expectations
theory, as opposed to the pure expectations theory, are not necessarily incompati-
ble with each other or with arbitrage pricing equilibrium". He shows that even if
"Jensen’s Inequality places a wedge between different concepts of risk premia in the
term structure, this does not prevent different premia from being constant through
time at different values".

For the yield-curve fitting we use the simplex method since due to [7] "it is one of
the best curve fitting methods, having several advantages. First, it is simple to use.
Compared to the well-known least-squares method, the simplex method does not
need the derivative function, nor does the orthogonality condition apply. Second, it
is easy to adopt any function in the computer program-only the function evaluation
needs to be changed. And since the response surface is a paraboloid, there are
no local minima giving false solutions. However, the simplex calculation is a little
slower than the analytic least-squares calculation."

We run 20.000 iterations to get following parameter estimates for the CIR model
per Dec 8, 2014: r0 = 0.0001890656 φ1 = 0.165459 φ2 = 0.1 φ3 = 0.342016 π =
−0.649334 α = 0.365147 µ = 0.0424216 σ2 = 0.00230475. Bootstrapping using
these parameters we get following corresponding estimated yield-curve in Figure 24.
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Figure 24: Fitted Euro yield-curve

4.3 Index and ETF construction

4.3.1 Benchmark projection

Fixed-income benchmark

After parameter estimation of CIR model and determination of the yield-curve we
are now able to build the simulated price of a bond index at time t. Our example
focuses on an index consisting of 10 bonds, each of maturity 10 years for 1250 trading
days which is calculated by

Indext = Indext−1

10∑
n=1

wn
Bn(t)

Bn(t− 1) , (119)

where wn is the n-th weight of the corresponding bond and Bn(t) is the n-th bond
price at time t with maturity 10 years and Index1 = 100. In order to generate
the simulated bond price for these 5 years we build 10 paths, one for each bond,
where each path represents a possible bond price development until maturity. For
simulation we assume a randomly chosen vector of credit spreads from 2% to 3%.

Table 22 outlines the composition of the bond index using real market data.

95



Table 22: Bond index composition
ISIN Name Emmitent Maturity

XS0122710188 Unicr.Bk Aus. 01/31Mtnflr UNICREDIT BK AUS 23.01.2031
DE000A0XYJ16 Kreditanst.f.Wiederaufbau KFW 19.05.2019
XS0160028014 Abruzzo, Reg. 02/36Flrmtn REGION OF ABRUZZO 06.11.2036
XS0162062888 Puglia, Reg. 03/23Flrmtn REGION OF PUGLIA 05.02.2023
XS0286746432 Sns Bank Nv 07/17 Flr Mtn SNS BANK NEDERLAND 12.02.2017
XS0282583722 Morgan Stanley 07/17 Flr MORGAN STANLEY 15.01.2017
XS0284728465 Goldm.S.Grp 07/17 Flr Mtn GOLDMAN SACHS 29.01.2017
ES0214958102 OS CAIXANOVA-A VBLE ABANCA CORP BAN. 20.02.2017
ES0000095812 Gen.Catalunya GENERALITAT DE CATAL. 12.06.2018
XS0300196879 Intesa San.07/17 Flr Mtn WMEM850605 17.05.2017

For both cases market and simulated data we use the same randomly chosen weight
vector, w = (0.2, 0.15, 0.1, 0.07, 0.09, 0.12, 0.15, 0.03, 0.02, 0.07).

The resulting projected benchmark for our simulated test environment can be seen
in Figure 25.
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Figure 25: 1250 simulated trading days projected index

The resulting projected benchmark for our market data test environment can be
seen in Figure 26.
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Figure 26: 1250 historical trading days projected index

Depending on their financial situation, banks and corporates are able to adjust the
yields of their newly issued bonds due to changes in default or risk premiums. This
change has an impact on the price development of bonds trading in the secondary
market, as the jumps in Figure 26 indicate. Both factors were neglected in the
simulation of the bond prices.

Equity benchmark

In order to test our methodologies on real data we apply the four optimization tech-
niques to daily DAX ETF index data. The goal is to track the performance of the
DAX ETF with less stocks than the actual 30 DAX stocks to save transaction costs
during the readjustment processes. Since the combination of all stocks for different
weights applying all four optimization methods exceeds even regular cluster calcu-
lation capacities, we cap our maximum number of combinations at 1,200 concerning
the stocks. The choice of the combination of stocks is done with same probability.
The reason for this cap arises from the fact that no significant contribution to mini-
mize the tracking error can be achieved after 1,200 combinatorial trials. This means
that the identification of the stocks which track the DAX ETF index best is done
through the application of our four optimization methods, i.e. by optimizing the
weights which minimize the tracking error, capped at 1,200 trials.

Table 23 outlines the composition of the DAX ETF index.
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Table 23: DAX ETF index composition
1. Linde plc 16. Bayer Aktiengesellschaft

2. Covestro AG 17. Fresenius SE and Co. KGaA
3. SAP SE 18. Deutsche Telekom AG

4. Deutsche Borse AG 19. Adidas AG
5. Siemens Aktiengesellschaft 20. Deutsche Post AG

6. E.ON SE 21. Allianz SE
7. MERCK Kommanditgesellschaft auf Aktien 22. Bayerische Motoren Werke AG

8. BASF SE 23. HeidelbergCement AG
9. Volkswagen AG 24. Deutsche Lufthansa AG

10. Henkel AG and Co. KGaA 25. Daimler AG
11. Deutsche Bank Aktiengesellschaft 26. Beiersdorf Aktiengesellschaft

12. Fresenius Medical Care AG and Co. KGaA 27. Infineon Technologies AG
13. RWE Aktiengesellschaft 28. Munchener Ruckversicherungs-Gesellschaft AG

14. Vonovia SE 29. Continental Aktiengesellschaft
15. Thyssenkrupp AG 30. Wirecard AG

The resulting projected benchmark DAX test environment can be seen in Figure
27.
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Figure 27: 1250 historical trading days DAX index

4.3.2 ETF construction

The ETF is constructed by allocating different numbers and combination of bonds
with different weights. In order to find the optimal allocation the four optimiza-
tion methods are applied for constructing the ETF. The methods are mentioned in
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chapter 4. We test for an interval of 4-7 bonds and 12-21 stocks in step sizes of 3.
For each allocation we run the four different optimization methods and evaluate it’s
tracking error.

4.3.3 ETF tracking error calculation

To calculate Tracking Error, we take the projected daily NAV returns of the bond
index and its underlying ETF portfolio allocation for the next 250 trading days and
arrange them into matrixes X and Y as follows:

X =



RETFi,1001

RETFi,1002

RETFi,1003

.

.

RETFi,1250


Y =



RIndex,1001

RIndex,1002

RIndex,1003

.

.

RIndex,1250,


where RETF,t is the return on the ETF-portfolio at time t, containing different bonds
and RIndex,t is the return on the NAV of the projected index benchmark at time t.
Tracking Error is the standard deviation of the active returns (difference between
NAV returns and ETF-portfolio returns) calculated as:

TrackingError =
√
V ar(X − Y ) ∗

√
250, (120)

The annual multiplier allows an easier easier comparison with other statistical cal-
culations. [8] After 1.000 trading days we calculate the optimal bond weights for
tracking the index with a minimum tracking error and apply these weights to the
next year, meaning we keep the weights constant for the last 250 trading days for
performing an out-of-sample test.

4.4 ETF tracking error optimization

We now have projected an ETF price development which serves as a benchmark for
our asset allocation. Our goal is to maximize the correlation between the return of
the index price arising from our asset allocation and the realized ETF price:

arg maxΩ(ρindex,ETF ), (121)

where Ω is the set of ETF weights to be estimated. Since we want to replicate the
bond index by using a new approach we use the correlation between the index and
the ETF:

ρindex,ETF =
∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1 (xi − x̄)2∑n
i=1 (yi − ȳ)2

, (122)

99



where xi is the i-th return of the projected bond index and yi is the i-th return of
the tracking ETF. We next define for each optimization method the target function
compare their accuracy regarding the minimization of the tracking error over 5 years
for different bond allocations, combining 4 to 7 bonds, resp. 12-21 stocks.

4.4.1 ETF tracking calibration with Genetic algorithms

Genetic algorithms (GA) operate by maintaining and modifying the characteristics
of a set of trial solutions (individuals) over a number of iterations (or generations).
Each individual solution is represented by a binary string (or chromosome in bi-
ological analogies) in the genetic algorithm. The optimization process is designed
to produce, in successive iterations, an increasing number of individuals with desir-
able characteristics. The process is probabilistic but not completely random. The
rules of genetic algorithms have the power of retaining certain desirable character-
istics that would otherwise be lost with a completely random searching method. A
genetic algorithm consists of the following major components: encoding method,
reproduction, crossover, mutation and fitness scale.[9] The target function for our
optimization problem using GA is defined by

f(x) = −ρ(idx,ETF ),

with :
n∑
i=1

wi = 1.
(123)

4.4.2 ETF tracking calibration with Particle Swarm Optimization

In Particle Swarm Optimization (PSO, Eberhart and Kennedy, 1995), we have again
a population that comprises n solutions, stored in real-valued vectors. In every
generation, a solution is updated by adding another vector called velocity vi. We may
think of a solution as a position in the search space, and of velocity as a direction into
which the solution is moved. Velocity changes over the course of the optimization,
the magnitude of change is the sum of two components: The direction towards
the best solution found so far by the particular solution, Pbesti , and the direction
towards the best solution of the whole population, Pbestgbest . These two directions
are perturbed via multiplication with a uniform random variable ξ and constants
c(ï"·), and summed. The vector obtained is added to the previous vi, the resulting
updated velocity is added to the respective solution. In some implementations, the
velocities are reduced in every generation by setting the parameter ∆, called inertia,
to a value smaller than unity [2]. The target function for our optimization problem
using PSO is defined by

f(x) = −ρ(idx,ETF ),

with :
n∑
i=1

wi = 1.
(124)
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4.4.3 ETF tracking calibration with Levenberg-Marquardt

Levenberg-Marquardt (LM) is an iterative technique that locates the minimum of a
function that is expressed as the sum of squares of nonlinear functions. Its principal
application is to optimize the parameters f(x) = {ρ1, ρ2, ...ρ10} of the ETF-tracking
portfolio f(y, x), where y is a given variable, so it minimizes the squared distance
εT ε, where ε = x − x̂. The Levenberg-Marquardt method performs an interpo-
lation between the Gauss and the steepest gradient descent methods based upon
the maximum neighborhood in which the truncated Taylor series gives an adequate
representation of the nonlinear model. [10]

In the algorithm a positive constant (damping) is added to the diagonal of of ATA
in order to control the convergence of the method and provide an effective way to
avoid the singularity of the system. In the former case damping will determine
the rapidness of convergence, with large damping producing slow convergence and
vice versa. In the latter case the presence of damping will artificially increase the
eigenvalues improving the ill-conditioning of matrix ATA. In the method the step
to converge from an initial guess to a final solution is represented by

∆B = (ATA+ ε2I)−1AT∆T, (125)

where B= Parameters to find, A= Jacobian matrix, ε2=Damping, T=Data. [11]

We minimize correlation between the index and ETF price using LM with following
target function:

f(x) = minΩ[ρ2
(idx,ETF ) + 1],

with :
n∑
i=1

wi = 1,
(126)

4.4.4 ETF tracking calibration with Nelder-Mead Simplex

The Nelder-Mead Simplex method (NMS) or Downhill Simplex method is a direct
search method which is independent of the existence of derivatives. It solves the
optimization problem given a real-valued objective function by starting from a sim-
plex S0. For each iteration step indexed by k the algorithm identifies a vertex vkmax
determined by

vkmax = argmaxx∈{vk0 ,...vkn}f(x), (127)

which is the vertex where the function takes its largest value. The vertex vkmax of the
simplex Sk is then replaced by a new point v̂ such that f(v̂) < f(vkmax). The new
simplex is called Sk+1. To construct the new vertex v̂ of this simplex the method
uses three operations called reflection, expansion and contraction.[12]
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The target function for our optimization problem using NMS is defined by

f(x) = −ρ(idx,ETF ),

with :
n∑
i=1

wi = 1.
(128)

4.4.5 ETF tracking calibration with Levenberg-Marquardt combined
with genetic algorithms

Due to the large amount of data and complexity of the tracking error formula, the
calculation run times for minimization of the tracking errors are very high. For
this reason, we have also chosen weak termination conditions (Maximum function
evaluation, maximum iterations, termination tolerance on the function value). The
calibration results are very satisfactory for all optimization methods.

Nevertheless, we also apply a combination of Levenberg Marquardt and Genetic
Algorithms by using the optimal parameters of LM as start parameters for GA in
order to enhance the minimization of the tracking error. (see results below)

4.5 Results

Using the four optimization methods, we do several asset allocations of 4 to 7 bonds
for which for we try to replicate the index as good as possible. We split our projection
into two parts: The in-sample test encompasses the first four years (1.000 trading
days) whereas the out-of-sample test is performed over the fifth year (250 trading
days). We calculate the tracking error for each optimization method and each asset
allocation for simulated and market data over the in-sample period as well as over
the out-of-sample testing period. It is obvious that for a larger number of bonds
used the tracking error decreases. But the interesting point for an ETF-manager is
to replicate the index using a minimum number of bonds. Depending on the costs
of buying an additional bond compared to the costs of a higher tracking error, the
ETF-manager may choose his own allocation, especially with respect to hedging
purposes.

Termination tolerance on the function value is 0.001. If the termination condition
was not reached, we use the additional optimization parameters from table 24.

Table 24: Termination conditions
Maximum function evaluation 1,000

Maximum iterations 20,000
Termination tolerance on the function value 0.001
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Comparing each method by averaging the tracking errors of all asset allocation, we
get following tracking errors (TE) for each optimization method in-sample (Table
25):

Table 25: Tracking error in-sample
Method Simulated Avg. TE Market Avg. TE DAX Avg. TE
LM 0,81% 0,88% 2,23%
NMS 0,83% 0,94% 2,28%
GA 0,97% 1,04% 2,22%
PSO 0,92% 1,02% 2,23%

and out-of-sample (Table 26):

Table 26: Tracking error out-of-sample
Method Simulated Avg. TE Market Avg. TE DAX Avg. TE
LM 0,84% 2,45% 3,82%
NMS 0,92% 2,53% 3,69%
GA 1,14% 2,62% 4,05%
PSO 1,12% 2,61% 3,87%

In general, all four optimization methods seem to work very well, but nevertheless
there sometimes occur quite significant tracking errors during the 5 years of testing
as can been seen in the appendix.
We find that the Levenberg-Marquardt method generates the smallest tracking er-
ror in-sample as well as out-of-sample for the simulated bond ETF. The second
best is the Nelder-Mead Simplex algorithm, the third is the Genetic algorithm and
the worst method for ETF tracking we found was the Particle Swarm Optimization
method
For the DAX ETF tracking we also find that the Levenberg-Marquardt method
generates the smallest tracking error in-sample, but that the Nelder-Mead Simplex
algorithm performs best out-of-sample, closely followed by LM.
The detailed results including the corresponding weights of the bonds can be taken
from the appendix.
We further show that the tracking error can be improved by combination of LM
method and GA, in which the optimal paeameters of LM were used as start param-
eters for GA.
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4.6 Conclusion

Within this work we propose a new approach for index tracking error minimization
by pushing the correlation factor between index and ETF ρ(idx,ETF ) → 1. We then
compare the quality and robustness of four different optimization methods applied
to the tracking of a stock ETF index as well as two virtually constructed bond ETFs.
One main problem of passively managed ETFs is to keep the generated tracking error
at a minimum. The crowfoot is that the index tracking error performance is just
as good as its applied calibration method. Therefore we test these methods for two
different asset classes, equity and fixed income. The equity index we choose is the
DAX 30 ETF index, while for the fixed income ETFs we construct indices consisting
of 10 bonds with maturity 10 years but different credit spreads, using current Euro
Swap rates or market data. Then we build ETFs with minimal tracking error for
these 5 years, meaning that we project a possible price development of the ETF
which we want to track as close as possible by a one-time asset allocation which is
done in advance. Thereafter we perform an out-of-sample test using four different
optimization techniques, such as Genetic algorithms, Particle Swarm Optimization,
Levenberg-Marquardt and Nelder-Mead Simplex.

The results indicate a superior performance in- and out-of-sample of the LM
method in fixed income ETF tracking, followed by the NMS method, and a superior
performance of the LM method for the equity ETF in-sample, but NMS to be the
superior optimization method for out-of-sample equity ETF tracking, followed by
the LM method.

We can also see that the GA and PSO method show worse convergence than the
LM and NMS method. Further, we can see that the for in-sample as well as for
out-of sample the simulated tracking error of fixed-income ETFs is smaller than the
tracking error calculated from real market data. The reason for that might be that
for the simulated bond ETF, the CIR model assumes normal distributed short rate
which seem to converge faster in the here used optimization techniques than real
world returns.

For the equity ETF we find the calculated tracking errors much larger than the
fixed-income ETF tracking error. One reason for this might be the higher volatility
in equity markets, which makes it more difficult to comprise a smaller set of stocks
which still replicates the stock index as close as possible.

Nevertheless we find for simulated as well as for real world data the LM method
superior to NMS, GA, and PSO. To sum up, we find that the Levenberg-Marquardt
algorithm works best for ETF tracking for simulated and for real world data as well
as its application to the target function which pushes the correlation between the
index and the ETF towards 1.
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4.7 Appendix

4.7.1 ETF tracking error minimization with Genetic algorithms

Number of bonds using GA: 4

Simulated Bonds: 2 3 5 10
Weights: 36,94% 26,10% 20,67% 16,29%

Tracking Error: i-s: 1,21% o-o-s: 1,24%
Historical Bonds: 2 3 5 9

Weights: 7,03% 59,81% 26,79% 6,37%
Tracking Error: i-s: 1,86% o-o-s: 3.44%

Dax Underlying 1 6 7 9 12 14
15 20 21 23 25 28

Weights: 6.44% 13.56% 6.97% 14.22% 10.48% 12.75%
4.27% 12.65% 10.24% 3% 3.99% 1.44%

Tracking Error: i-s: 2.7% o-o-s: 5.4%

Table 27: Optimal asset allocation using 4 bonds for replicating the index, corre-
sponding weights and resulting tracking error in-sample and out-of-sample.
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Figure 28: ETF index tracking with 4 bonds using Genetic algorithms

Number of bonds using GA: 5
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Simulated Bonds: 1 2 3 5 10
Weights: 26,61% 23,11% 15,49% 14,53% 17,27%

Tracking Error: i-s: 0,97% o-o-s: 1,02%
Historical Bonds: 2 3 7 8 9

Weights: 26,61% 23,11% 15,49% 14,53% 17,27%
Tracking Error: i-s: 0,97% o-o-s: 2,81%

Dax Underlying 1 3 4 6 7 9 12
13 14 15 20 21 22 27 28

Weights: 5.46% 4% 3.39% 11.15% 5.62% 11.05% 9.24%
3.45% 11.08% 3.18% 9.38% 10.27% 3.89% 6.76% 2.07%

Tracking Error: i-s: 2.24% o-o-s: 3.26%

Table 28: Optimal asset allocation using 5 bonds for replicating the index, corre-
sponding weights and resulting tracking error in-sample and out-of-sample.
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Figure 29: ETF index tracking with 5 bonds using Genetic algorithms

Number of bonds using GA: 6
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Simulated Bonds: 1 2 3 5 6 7
Weights: 24,94% 18,84% 12,31% 11,33% 14,07% 18,50%

Tracking Error: i-s: 0,74% o-o-s: 0,76%
Historical Bonds: 1 2 3 4 5 10

Weights: 22,49% 26,72% 24,19% 7,76% 10,63% 8,21%
Tracking Error: i-s: 0,67% o-o-s: 2,25%

Dax Underlying 1 3 4 6 8 9 12 14
15 16 17 20 21 23 25 26
27 30

Weights: 4.43% 3.44% 3.34% 9.38% 2.41% 8.23% 9.56% 10.14%
3.21% 2.97% 4.41% 9.86% 10.34% 3.35% 2.9% 3.83%
7.29% 0.91%

Tracking Error: i-s: 2.03% o-o-s: 3.58%

Table 29: Optimal asset allocation using 6 bonds for replicating the index, corre-
sponding weights and resulting tracking error in-sample and out-of-sample.
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Figure 30: ETF index tracking with 6 bonds using Genetic algorithms

Number of bonds using GA: 7
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Simulated Bonds: 1 2 3 4 5 6 7
Weights: 22,64% 17,30% 11,32% 8,03% 10,57% 13,05% 17,09%

Tracking Error: i-s: 0,33% o-o-s: 0,35%
Historical Bonds: 1 2 3 4 5 8 10

Weights: 20,58% 21,79% 17,50% 7,10% 9,81% 15,62% 7,59%
Tracking Error: i-s: 0,64% o-o-s: 1,98%

Dax Underlying 1 3 4 5 6 7 9
11 12 13 14 15 16 17
20 21 23 24 25 26 27

Weights: 4.26% 3.17% 1.62% 0.86% 9.27% 4.45% 8.19%
2.14% 9.16% 2.94% 9.06% 3.72% 4.05% 1.98%
8.23% 9.19% 3.53% 0.33% 3.46% 4.33% 6.05%

Tracking Error: i-s: 1.89% o-o-s: 3.95%

Table 30: Optimal asset allocation using 7 bonds for replicating the index, corre-
sponding weights and resulting tracking error in-sample and out-of-sample.
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Figure 31: ETF index tracking with 7 bonds using Genetic algorithms

4.7.2 ETF tracking error minimization with Particle Swarm Optimiza-
tion

Number of bonds using PSO: 4
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Simulated Bonds: 2 3 5 10
Weights: 36,93% 26,10% 20,67% 16,28%

Tracking Error: i-s: 1,21% o-o-s: 1,24%
Historical Bonds: 2 3 5 9

Weights: 6,6% 60,09% 26,92% 6,40%
Tracking Error: i-s: 1,32% o-o-s: 3,25%

Dax Underlying 3 6 12 13 14 15
19 20 21 25 27 29

Weights: 3.96% 13.42% 11.9% 5.04% 13.14% 3.3%
9.41% 11.44% 12.17% 4.75% 9.76% 1.7%

Tracking Error: i-s: 2.78% o-o-s: 3.91%

Table 31: Optimal asset allocation using 4 bonds for replicating the index, corre-
sponding weights and resulting tracking error in-sample and out-of-sample.
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Figure 32: ETF index tracking with 4 bonds using Particle Swarm Optimization

Number of bonds using PSO: 5
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Simulated Bonds: 1 2 3 5 6
Weights: 29,62% 23,10% 15,48% 14,54% 17,26%

Tracking Error: i-s: 0,97% o-o-s: 1,02%
Historical Bonds: 4 7 8 9 10

Weights: 17,41% 60,23% 0,01% 5,63% 16,72%
Tracking Error: i-s: 1,41% o-o-s: 2,86%

Dax Underlying 4 6 7 9 12 14 15
17 19 20 21 24 27 28 30

Weights: 3.19% 11.59% 4.28% 9.43% 9.29% 12.14% 3.34%
2.29% 7.63% 11.84% 11.03% 1.99% 7.68% 2.26% 2.01%

Tracking Error: i-s: 2.47% o-o-s: 3.69%

Table 32: Optimal asset allocation using 5 bonds for replicating the index, corre-
sponding weights and resulting tracking error in-sample and out-of-sample.
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Figure 33: ETF index tracking with 5 bonds using Particle Swarm Optimization

Number of bonds using PSO: 6
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Simulated Bonds: 1 2 3 5 6 7
Weights: 24,95% 18,84% 12,31% 11,34% 14,07% 18,50%

Tracking Error: i-s: 0,72% o-o-s: 0,73%
Historical Bonds: 1 2 3 4 5 10

Weights: 23,08% 24,81% 24,82% 7,96% 10,89% 8,43%
Tracking Error: i-s: 0,68% o-o-s: 2,31%

Dax Underlying 1 3 4 6 8 9 12 14
15 16 17 20 21 23 25 26
27 30

Weights: 4.35% 3.35% 2.81% 9.71% 2.26% 8.44% 9.58% 10.27%
2.95% 3.12% 4.35% 10.01% 10.28% 3.5% 3.16% 3.92%
7.02% 0.94%

Tracking Error: i-s: 2.03% o-o-s: 3.71%

Table 33: Optimal asset allocation using 6 bonds for replicating the index, corre-
sponding weights and resulting tracking error in-sample and out-of-sample.
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Figure 34: ETF index tracking with 6 bonds using Particle Swarm Optimization

Number of bonds using PSO: 7
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Simulated Bonds: 1 2 3 4 5 6 7
Weights: 22,67% 17,31% 11,28% 8,03% 10,59% 13,01% 17,10%

Tracking Error: i-s: 0,33% o-o-s: 0,35%
Historical Bonds: 1 2 3 4 5 8 10

Weights: 20,76% 21,16% 17,40% 7,22% 9,89% 15,96% 7,61%
Tracking Error: i-s: 0,65% o-o-s: 2,01%

Dax Underlying 3 4 6 7 9 12 13
14 16 18 19 20 21 22
23 24 25 26 27 29 30

Weights: 2.82% 2.93% 9.77% 4.87% 6.79% 9.56% 3.52%
10.75% 3.42% 2.14% 3.23% 7.61% 9.61% 3.29%
3.11% 0.57% 2.41% 3.73% 7.55% 1.24% 1.09%

Tracking Error: i-s: 1.86% o-o-s: 3.47%

Table 34: Optimal asset allocation using 7 bonds for replicating the index, corre-
sponding weights and resulting tracking error in-sample and out-of-sample.
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Figure 35: ETF index tracking with 7 bonds using Particle Swarm Optimization

4.7.3 Fixed-income ETF tracking error minimzation with Levenberg-
Marquardt

Number of bonds using LM: 4
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Simulated Bonds: 2 3 5 10
Weights: 36,93% 26,09% 20,69% 16,29%

Tracking Error: i-s: 1,21% o-o-s: 1,24%
Historical Bonds: 4 7 8 9

Weights: 20,20% 67,06% 5,76% 6,99%
Tracking Error: i-s: 1,26% o-o-s: 3.10%

Dax Underlying 6 7 9 12 14 16
17 20 21 23 25 27

Weights: 11.93% 3.52% 14.18% 9.8% 12.78% 4.47%
3.22% 12.26% 11.44% 4.03% 4.54% 7.83%

Tracking Error: i-s: 2.67% o-o-s: 4.8%

Table 35: Optimal asset allocation using 4 bonds for replicating the index, corre-
sponding weights and resulting tracking error in-sample and out-of-sample.
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Figure 36: ETF index tracking with 4 bonds using Levenberg-Marquardt

Number of bonds using LM: 5

113



Simulated Bonds: 1 2 3 5 6
Weights: 29,56% 23,10% 15,50% 14,56% 17,28%

Tracking Error: i-s: 0,97% o-o-s: 1,02%
Historical Bonds: 2 3 8 9 10

Weights: 21,08% 32,56% 28,91% 4,69% 12,77%
Tracking Error: i-s: 0,80% o-o-s: 2,52%

Dax Underlying 3 4 6 8 9 12 13
14 15 17 20 21 22 25 26

Weights: 3.76% 3.64% 9.86% 3.35% 9.98% 10.83% 4.92%
11.92% 3.8% 4.87% 11.38% 10.56% 3.82% 3.63% 3.71%

Tracking Error: i-s: 2.38% o-o-s: 3.81%

Table 36: Optimal asset allocation using 5 bonds for replicating the index, corre-
sponding weights and resulting tracking error in-sample and out-of-sample.
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Figure 37: ETF index tracking with 5 bonds using Levenberg-Marquardt

Number of bonds using LM: 6
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Simulated Bonds: 1 2 3 5 6 7
Weights: 24,94% 18,84% 12,31% 11,33% 14,07% 18,50%

Tracking Error: i-s: 0,72% o-o-s: 0,73%
Historical Bonds: 2 3 5 6 9 10

Weights: 18,38% 38,81% 18,09% 6,75% 3,88% 14,08%
Tracking Error: i-s: 0,80% o-o-s: 2,20%

Dax Underlying 1 2 3 6 9 11 12 13
14 15 17 19 20 21 22 27
28 29

Weights: 4.29% 2.46% 3.24% 10.96% 8.13% 3.69% 9.34% 4.43%
10.17% 2.89% 4.3% 3.92% 8.81% 9.69% 3.7% 6.99%
1.52% 1.48%

Tracking Error: i-s: 2.1% o-o-s: 3.09%

Table 37: Optimal asset allocation using 6 bonds for replicating the index, corre-
sponding weights and resulting tracking error in-sample and out-of-sample.
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Figure 38: ETF index tracking with 6 bonds using Levenberg-Marquardt

Number of bonds using LM: 7
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Simulated Bonds: 1 2 3 4 5 6 7
Weights: 22,67% 17,31% 11,28% 8,03% 10,60% 13,01% 17,10%

Tracking Error: i-s: 0,33% o-o-s: 0,35%
Historical Bonds: 1 2 3 4 5 6 8

Weights: 21,89% 14,44% 12,10% 7,67% 9,90% 13,30% 20,71%
Tracking Error: i-s: 0,64% o-o-s: 1,96%

Dax Underlying 1 3 4 6 7 9 12
14 15 16 17 18 19 20
21 22 23 24 25 26 27

Weights: 4.15% 2.88% 2.87% 9.72% 3.86% 6.61% 8.96%
10% 2.37% 3.32% 2.41% 1.03% 3.03% 9.13%

9.68% 3.23% 3.38% 0.45% 2.68% 3.56% 6.69%
Tracking Error: i-s: 1.77% o-o-s: 3.57%

Table 38: Optimal asset allocation using 7 bonds for replicating the index, corre-
sponding weights and resulting tracking error in-sample and out-of-sample.
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Figure 39: ETF index tracking with 7 bonds using Levenberg-Marquardt

4.7.4 ETF tracking error minimzation with Nelder-Mead Simplex
(NMS)

Number of bonds using NMS: 4
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Simulated Bonds: 2 3 5 10
Weights: 36,94% 26,10% 20,67% 16,29%

Tracking Error: i-s: 1,21% o-o-s: 1,24%
Historical Bonds: 2 3 5 9

Weights: 6,68% 60,03% 26,89% 6,39%
Tracking Error: i-s: 1,35% o-o-s: 3.35%

Dax Underlying 3 5 6 7 8 9
12 14 19 20 21 23

Weights: 3.83% 3.31% 13.89% 6.84% 6.02% 8.97%
10.24% 13.94% 5% 12.62% 11.26% 4.08%

Tracking Error: i-s: 2.72% o-o-s: 4.43%

Table 39: Optimal asset allocation using 4 bonds for replicating the index, corre-
sponding weights and resulting tracking error in-sample and out-of-sample.
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Figure 40: ETF index tracking with 4 bonds using Nelder-Mead Simplex

Number of bonds using NMS: 5
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Simulated Bonds: 1 2 3 5 6
Weights: 29,61% 23,11% 15,48% 14,53% 17,27%

Tracking Error: i-s: 0,97% o-o-s: 1,02%
Historical Bonds: 1 2 3 4 5

Weights: 22,51% 35,33% 23,86% 7,75% 10,54%
Tracking Error: i-s: 0,73% o-o-s: 2,65%

Dax Underlying 1 3 4 6 7 9 12
14 17 20 21 22 24 25 27

Weights: 5.29% 4.34% 3.08% 10.31% 3.16% 10.62% 9.23%
12.25% 3.22% 12.3% 11.11% 3.25% 0.45% 3.66% 7.73%

Tracking Error: i-s: 2.33% o-o-s: 3.89%

Table 40: Optimal asset allocation using 5 bonds for replicating the index, corre-
sponding weights and resulting tracking error in-sample and out-of-sample.
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Figure 41: ETF index tracking with 5 bonds using Nelder-Mead Simplex

Number of bonds using NMS: 6
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Simulated Bonds: 1 2 3 5 6 7
Weights: 24,95% 18,84% 12,31% 11,34% 14,07% 18,50%

Tracking Error: i-s: 0,72% o-o-s: 0,73%
Historical Bonds: 1 2 3 4 5 10

Weights: 21,17% 31,04% 22,75% 7,30% 10,01% 10%
Tracking Error: i-s: 0,63% o-o-s: 2,11%

Dax Underlying 1 2 3 6 7 9 10 12
14 15 19 20 21 22 23 26
27 28

Weights: 4.7% 2.3% 2.87% 12.1% 5.65% 6.83% -0.04% 9.17%
10.45% 3.48% 2.9% 9.76% 10.1% 3.85% 3.14% 4.38%
6.9% 1.47%

Tracking Error: i-s: 2.03% o-o-s: 3.78%

Table 41: Optimal asset allocation using 6 bonds for replicating the index, corre-
sponding weights and resulting tracking error in-sample and out-of-sample.
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Figure 42: ETF index tracking with 6 bonds using Nelder-Mead Simplex

Number of bonds using NMS: 7
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Simulated Bonds: 1 2 3 4 5 6 7
Weights: 22,67% 17,31% 11,28% 8,03% 10,60% 13,01% 17,10%

Tracking Error: i-s: 0,33% o-o-s: 0,35%
Historical Bonds: 1 2 3 4 5 8 10

Weights: 20,59% 21,80% 17,26% 7,16% 9,81% 15,82% 7,55%
Tracking Error: i-s: 0,65% o-o-s: 2%

Dax Underlying 1 2 3 4 5 6 7
9 11 12 14 15 17 19

20 21 22 23 26 27 29
Weights: 3.57% 1.83% 2.97% 2.51% 1.41% 10.41% 3.54%

6.84% 2.73% 8.95% 10.69% 3.35% 2.3% 2.49%
8.64% 9.76% 3.54% 2.93% 3.92% 6.46% 1.16%

Tracking Error: i-s: 1.83% o-o-s: 3.39%

Table 42: Optimal asset allocation using 7 bonds for replicating the index, corre-
sponding weights and resulting tracking error in-sample and out-of-sample.
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Figure 43: ETF index tracking with 7 bonds using Nelder-Mead Simplex
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4.7.5 Euro Swaps Curve

Date Yield
1D -0.052

1W -0.01
1M 0.022
2M 0.048
3M 0.082
6M 0.179
7M 0.161
8M 0.151
9M 0.151

10M 0.154
11M 0.166

1Y 0.179
18M 0.19

2Y 0.207
3Y 0.259
4Y 0.326
5Y 0.403
6Y 0.5
7Y 0.61
8Y 0.728
9Y 0.844

10Y 0.952
11Y 1.051
12Y 1.138
15Y 1.34
20Y 1.531
25Y 1.615
30Y 1.66
35Y 1.687
40Y 1.706
45Y 1.709
50Y 1.698

Table 43: Euro Swaps Curve 08/12/14.
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Abstract

This paper proposes an option pricing application for the hedging of fuel prices. We
consider a world where all commodities have the same expected return, defined by
the inflation rate. Therefore the risk-free change in fuel price is assumed to follow
the inflation rate. Since fuel can be considered as a derivative of oil, it is interesting
to notice that there does not exist a hedging possibility for the end product after
refinement, transportation and taxes. Since the amount of intermediary trades be-
tween the raw and the end product influences the end price, many consumers are
exposed to the end price. Considering the observations of the end price as the fil-
tration being generated, they allow us to apply a hedging formula to the fuel prices
in form of an American call option. Industries consider different ways of hedging
their consumption exposure with crude oil futures, correlations between crude oil
and kerosine, and so on. But for companies and individuals who are highly exposed
to road traffic based vehicles such as cars and trucks, it would be of advantage to
have a direct hedging instrument such as a fuel option.

Keywords: Fuel price, fuel consumption, inflation, American call option, binomial
option pricing.
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5.1 Introduction

Fuel consumption is a driving factor of the economy. Price fluctuations in com-
modity prices influence global economic growth and are characterized by cyclical
phases of up and down movements. Since the general demand in fuel is strongly
correlated to economic growth, we face a rapid increase in fuel prices due to several
different factors.

First, far Eastern countries record a high economic growth which leads to a high
demand in fuel. This again causes a steady increase in commodity prices in general,
especially in fuel.

A second point is related to the supply-demand problem which is currently influ-
encing fuel price determination. It originates in the uncertainty about future fuel
supply due to a contingent shortfall of fuel export in Middle East. Markets rumour
and steady uncertainty about such issues heat prices and make them very sensitive
to any kind of news related to them. The effect we observe is higher volatility which
in turn makes prices more expensive due to a higher risk premium.

A third point that stresses the price increases in fuel is the current imbalance in
national budgets. In order to reduce the high budget deficits European governments
try to get rid off its debts by increasing inflation in long-term. Indicators for such
behaviour are programs such as the CBPP (covered bond purchase program) 1 and
2 indicated by the European Central Bank. In order to stabilize financial markets
by buying goverment bonds across Europe, the negative long-term effect is that
money supply M0 inevitably increases too. In case of affecting M3, this will lead to
higher inflation. As many European economies are struggeling, the increased money
supply has no negative effect at the moment. But one has to expect that as soon
as economies recover and spending power increases, fuel prices will tend to increase
due to higher demand in crude oil which in turn heats inflation.

The combination of these factors seems to have a toxic effect on the natural business
cycle. There are limited ways of hedging against increasing fuel prices. Industrial
sectors which heavily depend on oil prices such as airlines hedge by use of standard
market instruments such as option structures or futures in crude oil. But due to the
natural imperfections in hedging, increasing oil prices will also lead to higher costs
for these industries.

The goal of this paper is to introduce a hedging proposal for increasing fuel prices
with respect to the road traffic. Since this sector is widely forgotten by financial
product development, this paper proposes a hedging approach on fuel by pricing an
American option on fuel which may be exercised directly at the gas station. The
reason for the lack of interest in developing hedging opportunities for this area may
stem from the fact that road traffic is no industry sector in classic terms such as
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the airline sector, whereas it affects any business which is conducted by road traffic
from cargo companies to private car drivers.
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Figure 1: Historical fuel price development (diesel (blue), Eurosuper unleaded
(green), normal 90 octane (red) and super plus (light blue))[6]

5.2 The model

The model proposed here is based on a filtered probability space (Ω,F ,P,F0≤t<∞),
where price processes are assumed to be (Ft)-adapted. The underlying price process
we deal with can be described by the change in the fuel price dSt. The fuel price
dynamics (under a real-world probability measure P) are assumed to take the form

dSt
St

=µdt+σ(t, S)dWt, (129)

where the processes µ(t)0≤t<∞ and σ(t)0≤t<∞ are Ft-adapted, measurable and uni-
formly bounded. Moreover the fuel price satisfies the no-arbitrage condition. As-
suming that all future prices are observable leads to the conclusion that also the
spot price is observable. Therefore absence of arbitrage implies

EP̃
t [dSt] = (rNt −Ft)S(t)dt, (130)

where rNt is the nominal risk-free rate and Ft is the instantaneous convenience yield.
Therefore the fuel price is assumed to take the form

St=S0e
Yt , (131)
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where (Yt) is taken to be a P-Brownian motion with drift. Thus for each t in [0, inf)
we have

Yt∼N(µt, σ2t). (132)

Assuming that St represents the value of the fuel price at time t, and Zt represents
the value of an American call option at time t, we are interested in the relation of
the prices at the various exercise times.

5.3 Pricing a Fuel option

5.3.1 Continuous time case

The time interval in which the model is studied is a bounded interval [0,T ]. We
consider next an American call option with maturity T , for which its payoff is
characterized by the non-negative adapted continuous process Z= (Zt)0≤t≤T . What
we are interested in is a hedge against raising fuel prices. Therefore the payoff of
the American call option is

Zt= (St−K)+. (133)

For integrability we need

E∗sup0≤t≤TZt<∞. (134)

Definition 3.1: A replicating payoff for the random fuel price process value St is
any admissible payoff of the American option with value Z= (Zt)0≤t≤T such that,
with probability one,

∀t∈[0,T ], Zt≥St. (135)

One characteristic of hedging fuel is that of early exercise. As it would not make
sense to price an option of European-style e.g. for car drivers on a long-term basis,
we need to take into account all possible exercise dates the fuel option may be
exercised. Therefore we need to maximize E[Zν ] over all finite stopping times ν, with
Z= (Zt)t∈N being an Ft-adapted sequence of random variables with Esupt∈N|Zt| <∞.
In the setting of American options, Zt represents the hedging profit attachted to
exercizing the option at time t.

Let τ be the set of all stopping times with respect to the filtration (Ft)t∈N. Then

τt,T={ν∈τ |P(ν)∈[t, T ]) = 1}, 0≤t≤T, (136)

τt,∞={ν∈τ |P(ν)∈[t,+∞]) = 1}, t∈T. (137)
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Definition 3.2: The Snell envelope Ũ , of (Zt)t∈N is the sequence (Ut)t∈N defined
by

Ut=ess supν∈τt,∞E[Zν |Ft]. (138)

Suppose that (Ṽt)0≤t≤T is the discounted value of a car driver’s hedging strategy
and V= (Vt)0≤t≤T is the value process of this strategy such that, with probability
one,

∀t∈[t, T ], V t≥Zt. (139)

Due to the fact that under P̃ the discounted value of an admissible strategy is a
supermartingale, we can set up following proposition:

Proposition 3.1: Consider the price process of an American option defined by
a nonnegative, continuous, adapted process Z= (Zt)0≤t≤T , which satisfies (134).
Denote by Ũ the Snell envelope, under P̃, of the process Z̃, with Z̃t=βtZt and let
U be the process defined by Ut=S0

t Ũt, where β represents the discount factor. We
have

Ut=ess supτ∈[t,T ]EP̃(e−
∫ τ
t
rsdsZτ |Ft), (140)

and, if V is the value process of any replicating strategy for the American option,
we have, almost surely, Vt≥Ut, for every t∈[0,T ]. [3]

Proof: see [3].

5.3.2 Discrete time case

For the purpose of application, the pricing of a fuel option in a discrete time
frame might be more convenient and even more sufficient. Therefore we construct a
binomial tree with T time steps corresponding to times k= 0, 1, ...,T, which models
the fuel price Sk. The time T corresponds to the time horizon a car driver would
like to hedge his fuel consumption. In our framework we assume a possible early
exercise of the American call option every day.

We make use of the notation of Mark Davis as in [2]. At each node, resp. every
day, the fuel price moves either up to Sk+1=uSk or down to Sk+1=dSk with u> 1
and d= 1

u
. For each up and down movement we assume the same probability of

occurance. We let Fk be the σ-field generated by {S0, S1, ..., Sk}. At time k the
possible price values are specified by a vector sk=sk[0], ...,sk[k] with

sk[j] =ukd2j=d2j−k. (141)
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In a risk-neutral environment any saved fuel is worth er at time T . The up and
down probabilities p and d are risk-neutral if the discounted price Sk

rk
is a martingale.

Therefore, at time 0 this requires that S0= 1
er

(pu+(1−p)d) =E[S1
r

], a condition that
is required at every node. Hence

p=e
r−d
u−d

, (142)

d=e
r−u
d−u

. (143)

In case of the American call option with strike K, reflecting the fuel price, the
buyer has the right to buy fuel with exercise value [Sk−K]+. The pricing algorithm
works backwards and takes into account every exercise possibility by discounting
every payoff at every node. For this reason we consider a general exercise value Ŷkj.
The function Z̃ is defined by

Z̃Nj=ŶNj, j= 0, ...,N, (144)

Z̃(k−1)j=max{Ŷ(k−1)j,
1
er

[pZ̃kj+(1−p)Z̃k(j+1)]},j= 0, ...,k−1,k=T , ..., 1. (145)

Next we denote S as the stopping region S={(k, j) :Ẑkj=Ŷkj}. Now let τ ∗ be a
random stopping time

τ ∗=min{k:Ẑ(k, Jk) =Ŷ (k, Jk)}=min{k: (k, Jk)∈S}. (146)

At time N we have Ẑ=Ŷ .
Proposition 3.2:

1. Ẑ00=maxτ∈∑E[r−τ Ŷ (τ, Jτ )], where
∑ is the set of all Fk-stopping times.

2. The time τ ∗ defined above is optimal: E[r−τ∗Ŷ (τ ∗, Jτ∗)] =Ẑ00.
Proof: see [2]

5.3.3 Change of measure

Letting Su, u<t be a price observed at an earlier date u, we know that it cannot
be a martingale since it is risky when discounted by the risk-free rate. Therefore,
under the probability measure P we cannot have

EP[e−rtSt|Su, u<t] =e−ruSu. (147)
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Instead, due to the existence of a risk premium we have

EP[e−rtSt|Su, u<t] >e−ruSu. (148)

The key in finding an equivalent martingale measure P̃ such that the equation

EP̃[e−rtSt|Su, u<t] =e−ruSu (149)

is satisfied, is to switch the drift term to zero. This is done by switching the process
Wt to a new process W̃t with distribution P̃. [1]

In order to find a probability measure P̃ such that St becomes a martingale we
need to define a new probability P̃ by

Yt∼N(µ̃t, σ2t), (150)

where the new drift parameter µ̃t defines the difference between the two measures
P and P̃. We then have

EP̃[e−r(t−u)St|Su, u<t] =Sue−r(t−u)eµ̃(t−u)+ 1
2σ

2(t−u). (151)

We define µ̃ as
µ̃=I−1

2σ
2, (152)

where I defines the intranational inflation specified by the consumer price index
CPI. When relating the inflation to commodity prices we have

It=rNt −Ft+λNt νt, (153)

which is essentially a local expression of the so-called Fisher equation. It relates
the change in fuel price to the nominal interest rate minus the implicit convenience
yield Ft plus a risk premium term. [4]

By taking the inflation rate as the risk-neutral driver of the fuel price process, the
fuel price process is supposed to behave like

dS̃t

S̃t
= [rNt −Ft+λNt νt]dt+νtdW̃t. (154)

The nominal risk-free rate rN in equation (154) can be replaced by

rN=I+F. (155)
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In a risk-neutral environment the risk premium term λNt νt vanishes. Therefore we
are left with

dS̃t

S̃t
=Idt+σdW̃t. (156)

When assuming a dynamic change in the the CPI we need a change-of-measure
density process which switches the CPI to a risk-neutral world. This helps us to
model the risk-neutral drift term of the fuel price process. Hughston showed that the
change-of-measure density process ρt corresponds to the approach proposed above
as

ρt=exp[−
∫ t

0
λNt dWs−

1
2

∫ t

0
(λNt )2ds], (157)

where λNt is the nominal risk premium vector.

Coming back to the determination of the risk-neutral probability measure for the
fuel price process, we want the exponential on the right-hand side of (151) to become
one. This is verified by (152) since for

−I(t−u)+µ̃(t−u)+1
2σ

2(t−u) = 0, (158)

by substituting this in (151), we get

EP̃[e−I(t−u)St|Su, u<t] =Su. (159)

Transferring eIu to the right we get the equivalent martingale measure under P̃,

EP̃[e−ItSt|Su, u<t] =e−IuSu. (160)

By determining a particular value for µ̃ with the help of (154), we can find a
probability distribution under which the expectation of the fuel price process fulfill
the martingale property. This distribution is given by

N((I−1
2σ

2)t−Ft, σ2t). (161)

5.4 Application

In the sections above we showed that from theoretical pricing point of view, we may
deal with the continuous or the discrete case. The implementation of a fuel hedge
in a discrete time framework is sufficient since it enables the consumer, who buys
an American call option on fuel, to exercise his right every day when we consider
daily time steps. By application of the binomial option pricing model we calculate
following examples for the buyer of an American call option on fuel:
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Figure 2: Call premiums (in Cent/Liter) of Diesel, Normal 90 octane, Super 95
octane and Eurosuper unleaded for 1, 3, 6 and 12 months maturity as of April 18th,
2012

Keeping the strike at-the-money we can see for different maturities how the price
for hedging fuel develops. The price reflects the premium the buyer of such an option
is obliged to pay if he wanted to buy his excerice right of physical delivery.

Considering the daily exercise possibility we face following chart for different hedg-
ing maturities:
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Figure 3: Call premium development (in Cent/Liter) of Diesel (blue), Eurosuper
unleaded (green), Normal 90 octane (red) and Super Plus (light blue) for different
maturities (1 day - 365 days) as of April 18th, 2012

In other words, the buyer of the fuel option has the right to buy 1 liter of fuel within
the next year for todays price, if he payed a premium of e.g. 8 cents per liter. From
pricing point of view it is possible to consider various strikes but in order to fulfill
the requirements of a covered primary hedge, which is ought to prevent speculation,
we propose just the implementation of at-the-money strike fuel options.

For the usual risk-neutral dynamics, under the assumption of a geometric brownian
motion, we have

dS̃

S̃
= (r−F )dt+σdW̃ , (162)
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where r displays the constant interest rate and F the convenience yield.[5] In order
to get a Call price for a commodity option we can write

C(t) =e−r(T−t)EP̃ [max(0,S(T )−K)]. (163)

Assuming that all commodities have the same expected return we may consider
that for an end product, which has it’s origin in a commodity, the inflation rate may
serve as a valid risk-neutral measurement indicator. As equation (155) showed we
might apply inflation as the only driver of the commodity economy. In order to see
what difference in pricing this makes we compare a T= 12-months American fuel
Call option under the risk neutral measures P̃r and P̃I . For calculation we make use
of the CRR-model and evaluate

C(t) =e−r(T−t)EP̃I [max(0,S(T )−K)], (164)

as well as
C(t) =e−r(T−t)EP̃r [max(0,S(T )−K)]. (165)
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Figure 4: Daily Super Call premium development for fixed 12-month maturity for
the period of Jan 10th 2011 - March 31st 2012.
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Figure 5: Daily Diesel Call premium development for fixed 12-month maturity for
the period of Jan 10th 2011 - March 31st 2012.

We can see that the difference in the option premium comes from the difference
in inflation and interest rate levels. Of course, the spread between the two pricing
approaches tightens when looking at shorter maturites. Interpreting the spread
difference is quite interesting since a higher Call option premium in an inflated
environment means that hedging is more effective since future value depreciation is
covered better by the fair value. In contrast to this a higher Call option premium
in the interest rate world would mean that hedging is overpriced since future value
depreciation is higher as the fair value might indicate.

5.5 Conclusion

In this paper we proposed a hedging approach for fuel. As fuel prices represent
a key driver of inflation we show that by pricing of an American call option a fuel
hedge for the prospective consumption within a certain time period is possible for
paying a reasonable premium. In a risk-neutral environment this premium depends
on the inflation drift which displays any increase in commodity prices in general.
This in turn heavily influences the determination of the price of an option which is
a derivative of an underlying such as crude oil. We showed two different frameworks
in which such options could be priced, the continuous framework and the discrete
one. For practical implementation the discrete time framework seems to be sufficient
when considering daily time steps as consumption is assumed not to be necessary
two times a day. Therefore the exercise times can be reduced to daily time intervals.
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This procedure improves calculation time and provides a policy guideline.

For regulatory hedging reasons we just consider at-the-money American call fuel
options which prevent speculation. Nevertheless the maturity may differ. The goal
of fuel hedging is to reduce consumption costs by defining a worst case scenario over
a certain time period.

5.6 Author contribution

The basic idea to develop a model for hedging of fuel prices came from S.U. K.A.
proposed a binomial model after doing an extensive literature review. S.U. provided
the data and K.A. performed the calculations and programming. S.U. & K.A.
interpreted and summarized the results together and wrote the conclusion.

135



References

[1] Neftci Salih N., An Introduction to the Mathematics of Financial Derivatives,
Academic Press, Elsevier Science, 1996, p.105.

[2] Davis H.A. Mark, American options in the binomial model (Revised), Finite
Difference Methods, 2011.

[3] Lamberton Damien, Optimal stopping and American options, Ljubljana
Summer School on Financial Mathematics, 2009.

[4] Hughston P. Lane, Inflation Derivatives, Working paper, 1998.

[5] Hélyette Geman, Commodities and Commodity Derivatives, John Wiley&
Sons Ltd, 2005.

[6] Federal Ministry of Economy, Family and Youth (http://www.bmwfj.gv.at),
Fuel price monitor, Prices on energy, Energy and mining, Jan 2013.

136


	9f299078-b0b8-4e35-9569-ab41b33a0d3a.pdf
	Introduction & Methodology
	Introduction
	Methodology

	Market Liquidity estimation in a high-frequency setup
	Introduction
	Model description
	Simulation of bid (i) and ask (j) prices
	Simulation of bid (i) and ask (j) volumes
	Liquidity Estimation

	Optimization
	Optimization of Heston parameters
	Heston model calibration with Genetic algorithms
	Heston model calibration with Particle Swarm Optimization
	Heston model calibration with Levenberg-Marquardt
	Heston model calibration with Nelder-Mead Simplex
	Heston model calibration with Levenberg-Marquardt combined with genetic algorithms 
	Chi-Square optimization test of bid and ask volume

	Validation of parameter optimization
	Validation of Heston optimization
	Validation of Chi-Square optimization
	Validation of liquidity estimation

	Conclusion

	Implicit Hedging and Liquidity Costs of Structured Products
	Introduction
	Data and methodology
	Structured products
	Dual Index kick-out, Capital risk
	Dual Index + Coupon, Capital risk
	Triple Index + Coupon, Capital risk
	Single Index + Coupon, Capital risk
	Single Index + maturity Coupon, Capital protection
	Single Index + Payoff, Strike Capital protection
	Single Index + Barrier Payoff, Capital protection
	Single Index + ongoing Coupon, Capital protection
	Single Index + Payoff, Capital protection
	Single Index, Capital risk

	Pricing
	Driver analysis
	Market liquidity estimation
	Multivariate driver analysis
	Single driver analysis

	Results
	Example 1: Dual Index kick-out, Capital risk
	Hedging and Liquidity Costs

	Conclusion
	Appendix

	Minimizing the Index Tracking Error using Optimization Methods
	Introduction
	Bond index pricing
	Index and ETF construction
	Benchmark projection
	ETF construction
	ETF tracking error calculation

	ETF tracking error optimization
	ETF tracking calibration with Genetic algorithms
	ETF tracking calibration with Particle Swarm Optimization
	ETF tracking calibration with Levenberg-Marquardt
	ETF tracking calibration with Nelder-Mead Simplex
	ETF tracking calibration with Levenberg-Marquardt combined with genetic algorithms 

	Results
	Conclusion
	Appendix
	ETF tracking error minimization with Genetic algorithms
	ETF tracking error minimization with Particle Swarm Optimization
	Fixed-income ETF tracking error minimzation with Levenberg-Marquardt
	ETF tracking error minimzation with Nelder-Mead Simplex (NMS)
	Euro Swaps Curve


	Fuel hedging in an inflated environment 
	Introduction
	The model
	Pricing a Fuel option
	Continuous time case
	Discrete time case
	Change of measure

	Application
	Conclusion
	Author contribution



